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Zusammenfassung 

Krebszellen akkumulieren im Laufe der Karzinogenese genetische Veränderung. Diese 

Veränderungen können in Größenordnungen von Punktmutation bis hin zu großen 

chromosomalen Aberrationen entstehen. Nach unserem heutigen Verständnis werden 

dadurch essentielle genetische Programme dysreguliert, die im Normalzustand 

unkontrollierte Zellteilung und -wachstum verhindern. Transkriptionsfaktoren (TF) sind 

Schlüsselproteine der Genregulation und werden häufig mit genetisch bedingten 

Krankheiten, z.B. MYCN in Neuroblastomen (NB), in Verbindung gebracht. Der Erforschung 

der Genregulation im Allgemeinen wie im Speziellen kommt daher eine zentrale Rolle in der 

Krebsforschung zu und sie steht auch im Zentrum meiner Arbeit. 

Nach einem Karzinogenesemodell von NB ohne MYCN-Amplifikation stehen 

Mutationen des Chromosomenarms 11q (11q-CNA) im Verdacht, die Tumorentwicklung 

maßgeblich zu beeinflussen. Unsere Genexpressionsanalysen von 11q-CNA in NB mit 

unterschiedlichem klinischen Verlauf ergaben ein verbessertes Karzinogenesemodell. 

Genexpressionsprofile von NB mit negativem klinischen Verlauf unterschieden sich drastisch 

zwischen Tumoren mit und ohne 11q-CNA, wohingegen die 11q-CNA bei NB mit günstigem 

Verlauf offensichtlich durch einen unbekannten Mechanismus kompensiert wird. Das TF-

kodierende Gen CAMTA1 befindet sich auf der chromosomalen Region 1p, die in 

Neuroblastomen häufig deletiert ist. In vitro-Experimente mit ektopischer CAMTA1-

Induktion lieferten CAMTA1-regulierte Gene unterschiedlicher Genexpressionsprofile, die 

durch Anreicherungstests funktionell mit Zellzyklussteuerung und neuronaler 

Differenzierung assoziiert und anschließend experimentell bestätigt werden konnten. Die 

demnach für CAMTA1 vermutete Rolle als Tumorsuppressorgen in NB wurde durch in vivo-

Analysen in Mäusen bestätigt. Weiterhin untersuchten wir die Wirkung von MYC und MYCN 

in NB ohne MYCN-Amplifikation und fanden dabei heraus, dass diese TF auch in diesen 

Tumoren eine Reihe gemeinsamer Zielgene in Abhängigkeit ihrer eigenen Genexpression 

maßgeblich regulieren. Promoteranalysen und Chromatin-Immunopräzipitation lieferten 

dabei weitere Belege für die Regulation der bestimmten Zielgene durch MYC/MYCN. Die 

genomweite Anwendung von Promoteranalysen und Anreicherungstests in 

Genexpressionsdaten von Mausmodellen ermöglichte uns die Vorhersage von Ziel-TF des 

Rage-Signalwegs. Im Labor konnten E2f1 und E2f4 als Komponenten des Rage-abhängigen 

genregulatorischen Netzwerkes validiert werden. 

Schließlich konnten wir die gesammelten praktischen Erfahrungen mit 

Genexpressionsdaten einsetzen, um eine neue Maschinenlernmethode zur präzisen 

Bestimmung von TF-Zielgenen im Menschen zu entwickeln. Dazu wurde eine genomweite 

Korrelationsmetanalyse von 4064 Genexpressionsprofilen ausgewertet und zusammen mit 

Promoteranalysen von TF-Bindestellen sowie bereits bekannten regulatorischen 

Interaktionen zwischen TF und Zielgenen verknüpft. Unsere Methode übertraf die Leistung 

vergleichbarer Methoden und verbesserte Nachteile herkömmlicher Algorithmen speziell für 

höhere Eukaryoten, insbesondere die häufig fälschlicherweise angenommene Kopplung der 

mRNA-Expression von TF und ihren Zielgenen. Unsere Entwicklung ist frei verfügbar als 

Softwarepaket mit vielfältigen Anwendungen wie z.B. die Identifikation von Schlüssel-TF in 

einer Vielzahl zellulärer Systeme (wie z.B. Krebszellen).  
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Abstract 

Cancer cells accumulate genetic changes during carcinogenesis. The dimension of 

these changes range from point mutations to large chromosomal aberrations. It has been 

widely accepted that essential genetic programs are thereby dysregulated that normally 

would prevent uncontrolled cellular division and growth. Transcription factors (TFs) are key 

proteins of gene regulation and are frequently associated with genetic pathologies, e.g. 

MYCN in neuroblastomas (NBs). Research on gene regulation -in general or condition-

specific- thus is a central aspect in cancer research, and it is also the focus of my work. 

In a carcinogenesis model of NBs without MYCN-amplification, mutations of 

chromosome 11q (11q-CNA) are suspected to critically influence tumor development. We 

were able to refine this model by means of gene expression analysis on 11q-CNA in NBs with 

different clinical outcome. Gene expression profiles of NBs with unfavorable progression 

differed significantly between tumors with and without 11q-CNA, whereas 11q-CNA in NBs 

with favorable outcome is apparently compensated by a yet unknown mechanism. The TF-

encoding gene CAMTA1 is located on the chromosomal region 1p, which is frequently 

deleted in NBs. In vitro experiments with ectopic induction of CAMTA1 yielded CAMTA1-

regulated genes with different gene expression profiles that were functionally associated by 

enrichment analyses with cell cycle regulation and neuronal differentiation. The suggested 

role of CAMTA1 as a tumor suppressor gene was confirmed by additional in vivo 

experiments. Furthermore, we studied the effect of MYC and MYCN in NBs without MYCN-

amplification and found that these TF also strongly regulate a large number of common 

target genes according to their own gene expression in these tumors. Promoter analyses and 

chromatin immunoprecipitation additionally supported the regulation of the determined 

target genes by MYC/MYCN. The genome-wide application of promoter and enrichment 

analyses on gene expression data from mouse models enabled us to predict target TFs of 

Rage signaling. E2f1 and E2f4 were validated experimentally as components of the Rage-

dependent gene regulatory network. 

Finally, we used our experience from gene expression analysis to develop a novel 

machine learning method to precisely predict TF target gene relationships in human. We 

combined results from a genome-wide correlation meta-analysis on 4064 microarray gene 

expression profiles and promoter analyses on TF binding sites with known regulatory 

interactions between TFs and target genes in our approach. Our method outperformed 

other comparable methods in human, as we improved shortcomings of other algorithms 

specifically for higher eukaryotes, in particular the frequently (erroneously) assumed 

correlation between the mRNA expression of TFs and their target genes. We made our 

method freely available as a software package with multiple applications like the 

identification of key TFs in a multiplicity of cellular systems (e.g. cancer cells). 
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1. Motivation and background 

 

1.1. Motivation 

Cancer is a disease that acquires its malignancy by genetic mutability and 

dysregulation of essential cellular genetic programs. My work throughout my thesis has 

been dedicated to identifying such genetic programs and their transcriptional regulators in 

the context of carcinogenesis. 

Neuroblastomas are tumors of the early childhood with tremendously diverging 

clinical phenotypes. Copy number alteration (CNA) of chromosome 11q occurs frequently 

and has been proposed as a clinical marker for poor outcome. The objective of my first 

project was to implement and apply bioinformatics methods to elucidate the relationship 

between 11q CNA and clinical phenotype employing gene expression profiles. I continued 

working on Neuroblastoma cells and analyzed time-series gene expression data to examine 

the potential tumor suppressor functionality of the transcription factor (TF) calmodulin 

binding transcription activator 1 (CAMTA1). I first filtered CAMTA1 responsive genes and 

then determined gene clusters that are induced or repressed at different time-points upon 

CAMTA1 induction. I then described the biology of these genes by means of gene ontology 

categories. Furthermore, I established the application of transcription factor binding site 

(TFBS) scans to understand the involvement of transcriptional regulators v-myc 

myelocytomatosis viral oncogene homolog (MYC) and MYCN in Neuroblastoma cells. In the 

fourth study, I used this technique comprehensively to identify key TFs involved in the 

regulatory network of activated Rage signaling in mice models of skin inflammation. From 

these projects I learned about the vast potential of transcriptional analyses in cancer 

research and the need to better understand transcriptional gene regulation. This led me to 

create a new bioinformatics method to reconstruct regulatory interactions between TFs and 

target genes on a genome-wide scale in human. The machine learning approach I developed 

integrated information from three different aspects of gene regulation: 1) a meta-analysis of 

correlation of co-regulated genes reflected in a broad range of conditions spanning 

thousands of available microarray profiles, 2) putative TFBSs obtained from genome-wide 

position weight matrix scans, and 3) descriptors of network topology derived from a 

repository of known regulatory interactions between TFs and target genes. 

My motivation can be summarized as employing gene expression profiling to 

engineer powerful tools to investigate the biology of tumors and elucidate changes in their 

gene regulatory networks. In particular, neuroblastomas were in the focus of most projects. 

All studies I contributed to have been published in well-ranking journals.  
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1.2. Transcription 

A central aspect of cellular complexity and dynamics is transcription. Why is it 

central? Every somatic cell of a living organism inherits the whole genome containing the 

blueprint on how to reproduce and maintain itself. To carry that into effect, the encoded 

genes first need to be transformed into active products, and transcription is a paramount 

step in this process. 

In human, there are approximately 22 000 genes that carry the information for the 

development of the organism, including cellular differentiation into several hundred distinct 

cell types. This high degree of complexity is achieved by thoroughly tuned genetic programs. 

In the post-genomic era [4], extensive research has been focused on investigating the 

relationships between the genome, cell physiology, development, and pathogenesis [5]. 

Somatic cells develop into distinct tissue types and usually remain in their 

differentiated state, yet they all contain the same genome. The mechanisms yielding 

different cellular phenotypes are implemented by proteins. While many processes are 

essential to most cell types and require common proteins such as enzymes involved in DNA 

repair or replication, RNA polymerases, ribosomal proteins, cytoskeleton proteins, enzymes 

of the central metabolism, or proteins building the chromosomal structure, cellular 

differentiation requires different sets of proteins to be synthesized in different cell types. 

Evidently, specific genes are expressed in some cell types but not in others. In consequence, 

any cell phenotype may be regarded as a result of the activity of specific gene sets. Although 

the vast majority of protein encoding genes guarantees the viability of many cell types and 

remains rather constantly expressed (housekeeping genes), a considerable number of genes 

are expressed tissue- or condition-specifically. These specific genes are particularly of 

interest in research dedicated to carcinogenesis. 

 

1.3. Transcription factors and their function as regulators of gene expression 

Human gene expression is a progress of enormous complexity. Up to date, at least six 

different levels of gene expression control have been identified: 

 

1) transcriptional control (DNA transcribed into pre-mRNA) 

2) RNA processing (pre-mRNA splicing and modifications) 

3) RNA transport and localization (export from mRNA the nucleus into the cytosol) 

4) mRNA degradation (mRNA stability, RNA silencing) 

5) translation (rate of mRNA translation by ribosomes) 

6) protein activity (degradation, post-translational modification, location of protein) 
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Several classes of proteins function as regulators of gene expression at the 

transcriptional level and are hence referred to as transcription factors (TFs). Transcriptional 

control comprises several mechanisms (to which I count epigenetic modifications), and 

precedes other levels of regulation. It is therefore the only level at which production of 

intermediate molecules that are not required can be prevented. As TFs influence gene 

expression via transcriptional control, they are essential components in determining cellular 

phenotypes.  

There may be more than 2000 human genes encoding TFs [6]. TF proteins contain 

DNA binding domains or structures with which they attach to short specific nucleotide 

sequences in control regions of a gene. A further level of complexity is introduced into the 

variability and dynamics of TF binding by the ability of many TF proteins to form oligomers, 

most frequently homo- or hetero-dimers. TFs are thought to administrate gene regulation by 

either promoting or hindering the accessibility of the transcription start site (TSS) of a 

transcribed locus by RNA polymerases and other proteins of the transcription initiation 

complex, thereby either inducing or repressing transcription. This accessibility can be 

provided by modifying the chromatin structure, or by bending the DNA to form a loop where 

TFs are in physical contact with mediator proteins (co-activators) interacting with the 

transcriptional pre-initiation complex at the core promoter (“looping model”; e.g. [7]). 

Eukaryotic protein-encoding genes are transcribed by RNA polymerase II. A model of 

transcriptional regulatory elements of human RNA polymerase II genes is depicted in Figure 

1.1. Several TFs are required to initiate the transcription of all these genes. These general TFs 

are required for transcription of all RNA polymerase II genes and bind at the compact core 

promoter region, which spans about 60 base pairs (bp) [8] and characteristically 

encompasses an element called the TATA-box (because of its 5’-TATAA-3’ consensus 

sequence). The TATA-box defines the TSS and is located 25 to 30 bp upstream of the TSS. 

Several transcription regulatory elements (TREs) that are bound by specific TFs are located 

proximal to the core promoter. Together with the core promoter, they form principal regions 

for transcriptional gene regulation and are often subject to epigenetic silencing via 

methylation. TREs are labeled enhancers or silencers when they mediate induction or 

repression of gene expression, respectively. However, these labels may be condition-

dependent. A typical TRE is stretched over 500 bp and contains 10 TFBSs for at least three 

different TFs, most frequently two activators and one repressor [8]. Additionally, activators 

and repressors may compete for the same TFBS. A typical transcribed locus in the Drosophila 

genome encompasses 10 kilobases (kb) of DNA [9] around the TSS, which also includes 

insulators, i.e. negative-regulatory, cis-acting elements that limit the advance of condensed 

chromatin or confine the activity of enhancers to specific genes [10]. In mammalian 

genomes, enhancers, silencers, or insulators can be scattered over distances of more than 
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100 kb [8]. It is widely assumed that the combination of regulatory elements accounts for 

the required specificity of transcription and suffices to achieve the complexity of higher 

eukaryotes [5,8,11]. Evidently, the fate of a cell depends on the concerted action of TFs and 

in consequence TFs often play key roles in pathogenesis, e.g. as tumor suppressor genes or 

proto-oncogenes in cancer. 

 

 

Figure 1.1 | Gene regulatory DNA region of a human protein-encoding gene. General 
TFs (green) interacting with co-activators (brown) and RNA polymerase II (dark pink) 
are bound to the core promoter region adjacent to the TSS. Proximal, upstream and 
distal enhancers (yellow) and silencers (purple) are occupied by specific TFs (red and 
purple). An insulator element (grey) prevents interactions with regulatory elements of 
other genes in proximity. Figure modified from [12]. 

 

1.4. Transcription factor binding motifs and position weighted matrices 

Specific TFs bind specific sequence motifs of about 5-10 nucleotides. There are 

several experimental techniques to determine the sequences of transcription factor binding 

sites (TFBSs), such as DNase footprinting or chromatin immunoprecipitation (ChIP) assays. 

The combination of ChIP with high-throughput methods, like nucleotide microarrays (ChIP-

chip) or deep sequencing (ChIP-seq), yields thousands of putative TFBSs for a given TF. These 

sequences can be aligned to identify consensus sequences reflecting TF binding specificity, 

and to infer position weighted matrices (PWMs, see Figure 1.2). PWMs are probabilistic 

TATA binding 
protein

A

B
F

E H
co-activators

distal
enhancer

upstream
enhancer

insulator

specific transcription
factors

silencer

transcription start site
(TSS)

general transcription
factors

proximal
enhancer

repressor Modified from Raven and Johnson, 
Biology, 6th Edition 2002, p. 323



5 

Position A C G T Consensus 

1 5 0 12 0 G

2 15 0 2 0 A

3 0 17 0 0 C

4 17 0 0 0 A 

5 0 0 0 17 T 

6 0 0 17 0 G 

7 0 13 0 4 C 

8 0 17 0 0 C 

9 0 17 0 0 C 

10 0 0 17 0 G 

11 0 0 17 0 G 

12 2 0 15 0 G 

GACATGCCCGGG

AACATGCCCGGG

GACATGCCCGGG

GGCATGCCCGGG

AACATGCCCGGG

AACATGCCCGGG

GACATGCCCGGG

GACATGCCCGGG

AACATGCCCGGG

GGCATGCCCGGG

GACATGCCCGGG

GACATGCCCGGG

GACATGCCCGGG

GACATGTCCGGA

GACATGTCCGGA

AACATGTCCGGG

GACATGTCCGGG

binding sequence alignment position weighted matrix
with consensus

graphical representation
of consensus sequence

positional
base count

representations of each base at each position of a TFBS. So far, PWMs of hundreds of TFs 

have been determined, which can be used as templates by in silico motif scans to predict 

putative TFBSs. Enrichment analyses of predicted TFBSs can associate sets of genes with 

regulatory TFs and may yield plausible mechanistic insights on transcriptional regulation in 

human [13-15]. On the downside, PWM scans can not predict the actual binding of a TF to a 

putative TFBS and thus come along with high false positive rates [16]. 

 

 

 

 

 

1.5. Quantifying gene expression 

Currently, assessing gene expression on a large scale remains difficult as it is a very 

dynamic process involving many levels of control. Moreover, high-throughput techniques 

and data are only available for DNA methylation, mRNA and regulatory RNA abundance at 

present, but not for protein quantity, activity and modification. Because of this and the fact 

that most high-throughput experiments investigate mRNA levels, scientists often generalize 

to gene expression profiles when referring to mRNA expression measurements of a 

specimen, and I will also use this term accordingly. 

Modern deep sequencing approaches are developing rapidly and are being 

performed in large quantities as I am writing this thesis, but for the last one or two decades 

microarrays have dominated high-throughput gene expression analyses, producing hundreds 

of thousands of gene expression profiles. Advanced microarrays measure the relative 

abundance of thousands of different mRNAs by hybridization of fluorescence-labeled cRNA 

or cDNA with synthesized complementary oligonucleotides (probe) fixed on a chip or bead. 

The fluorescence intensity at each probe is then detected and translated into relative 

expression values of the corresponding mRNA. There are several different facilities and 

Figure 1.2 | Position weighted matrix 
(PWM) generation. Experimentally 
determined binding sequences are aligned 
and the incidence of each DNA base at 
every position of the alignment is counted. 
The counts in the PWM thus provide the 
relative base frequencies, which are 
symbolized by the corresponding letter 
size in a graphical representation of the 
PWM (high frequency = large letter). 
(Graphical PWM representation produced 
by Transfac database [2].) 
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commercial companies producing microarrays that differ in material and protocol, but they 

all rely on the same hybridization principle and mostly yield reliable and reproducible results. 

Gene expression analyses employing microarrays have been the key to many 

discoveries analyzing the concerted interaction between genes in biomedical research. They 

have enabled scientists to track genome-wide alterations in developmental processes (e.g. 

[17]), knockout, knockdown, or other perturbation experiments, cancers and other diseases, 

and they are applied in diagnostics and prognosis or in screenings for potential drug targets. 

Furthermore, microarray studies have provided insight into the modular organization, 

structural characteristics, and temporal dynamics of biological networks [18], and they can 

be used to analyze functional or metabolic pathways, to learn classifiers to predict gene 

expression [17], and to reconstruct biological networks, such as protein-protein interactions 

or gene regulatory networks (GRNs). In the studies I am presenting here, my main focus has 

been on GRNs, so I will further describe them in the next section. 

 

1.6. Gene regulation and (challenges in) gene regulatory network 

reconstruction 

Identification of key regulatory elements (such as TFs) of a genetically induced 

disease, and clarifying how they interact and cooperate provides direct potential access 

points for treatment strategies. However, the reconstruction of GRNs, particularly in higher 

eukaryotes, remains a major task of systems biology. Approaches may be crudely separated 

into two categories based on the number of components considered in the model [19], 

which I will use in the following. Another way to differentiate the models might be by their 

scope and application [18], as some models are intended to describe and predict gene 

expression dynamics, whereas others are focused on defining the network components or 

edges. 

Small-scale approaches have been designed to produce detailed mechanistic and 

quantitative models of a single or a few regulatory circuits and are based on rules derived 

from thermodynamics (e.g. Hill functions), or kinetic models. They require accurate 

measurements of many parameters (e.g. TF activity, DNA binding dynamics and affinity, TF 

oligomerization, TF cooperativeness and interactivity), and a detailed knowledge of the 

regulatory DNA regions of the network components (usually genes). Such approaches have 

been successfully applied to prokaryotes (e.g. [20,21]), where the system tractability and 

accumulated knowledge are sufficient [19]. In higher eukaryotes, the demands of the 

methods and the much higher complexity of gene regulation have rendered these 

approaches impractical in the past. 

Large-scale approaches aim to reconstruct GRNs on a genome-wide scale. The 

methods range from Boolean networks or probabilistic Bayesian approaches [11,14,19,22] 
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over linear models [23,24] to differential equations [25]. Unlike small-scale models, where 

the components and edges of the network are known a priori, large-scale models infer the 

components and edges de novo. The abundance of quantitative mRNA expression data, as 

well as the availability of the genome sequence and an increasing number of experiments 

measuring interactions between proteins and DNA are being exploited to infer eukaryotic 

GRNs [19]. Most techniques are focused on defining regulatory modules or components of 

GRNs that fit a given input of mRNA data for a specific cell-type, condition, or a TF, but they 

are usually applied to more simple model organisms, e.g. for Escherichia coli [26], or 

Saccharomyces cerevisiae [27-29]. Large-scale approaches have been rarely applied in 

mammals and have been limited to individual or few regulatory TFs (e.g. [30]). Besides the 

lack of high-throughput protein data of all kinds, the major challenges of accurate GRN 

reconstruction in human are the inability to accurately identify the gene regulatory region 

[19], and (in my opinion) the need for simplification, leading to invalid generalization of a 

biological concept used to infer regulatory interactions (RIs). For example, some methods 

assume a direct relationship between the gradient of TF mRNA levels and their target genes, 

which has worked efficiently e.g. for the reconstruction of MYC target genes in human B-

cells [31,32], but the concept is hardly generalizable (even though it has been shown for 

MYC TFs as I will describe in the presented studies), as the activity of many human TFs is 

controlled in post-translational events [33]. 

Essentially, there is a great need for improved approaches to reconstruct human 

GRNs, in particular for methods that can comprehensively identify RIs between TFs and 

target genes on a genome-wide scale with high precision and recall. 

 

1.7. Machine learning and support vector machines 

Computational analyses using machine learning algorithms have become a valuable 

and indispensable aid in biomedical research. Their applications in combination with gene 

expression data include diagnosis and prognosis in disease, eliciting clusters, functional 

pathways or regulatory modules, reconstruction of GRNs, or dissecting and predicting the 

behavior of systematic cellular transcriptional changes, to name only a few. 

Many questions in research can be defined as classification problems and therefore 

can be addressed by machine learning classifiers. In general, these classifiers can be 

separated into unsupervised and supervised methods. Unsupervised classifiers can be 

applied to observations (samples) without a priori knowledge of group memberships 

(classes). The standard unsupervised method (in respect to gene expression analysis) is 

hierarchical clustering. In contrast, a supervised classifier is trained to recognize patterns in 

empirical data that distinguish observations (=samples) of known classes and subsequently 

applies the “learned” patterns to predict the class affiliation of unseen observations. Several 



8 

machine learning classifiers have been developed that are kernel-based, and among them, 

Support Vector Machines (SVMs) [34,35] have become popular because of their wide-range 

applicability (to data with linear and non-linear class boundaries), computational feasibility, 

excellent performance, and generalization capability [36]. A kernel can be thought of as a 

function for measuring similarity [37]. SVMs utilize kernels based on dot products of vectors. 

As I have made extensive use of SVMs in my main project (chapter 6, page 29) I will highlight 

some of their principles in the following. 

 

 

Figure 1.3 | Decision boundaries of SVMs. Vectors from different classes are 
represented by black circles versus orange or blue dots. In the linearly separable case 
(A), an SVM finds the discriminating hyperplane (=decision boundary) with the largest 
distance (=margin; colored light blue) to the closest vectors (=support vectors, 
highlighted in grey). Another decision boundary with a thinner margin (and therefore 
not optimal) is marked in grey. In the linearly non-separable case (B), the SVM can 
employ a non-linear kernel that maps the data into a higher dimensional feature space 
within which the data becomes linearly separable. The light blue margin illustrates how 
the margin around the decision boundary could be represented in the original vector 
space. 

 

The idea behind SVMs can be described rather simply: For a training set of vectors 

(i.e. observations or samples), the algorithm searches for an optimal hyperplane (i.e. a 

decision boundary) in the vector space that separates the vectors according to their class. 

The hyperplane is optimal in that the width of the margin between the closest vectors of 

different classes defining the hyperplane (called support vectors) is maximized, as illustrated 

in Figure 1.3A. Vapnik showed that maximizing the margin also maximizes the 

generalizability of the yielded separation [38]. In most cases however, such a linear decision 

boundary does not exist. A kernel trick [39] is then applied, which is also known as kernel 

substitution, because the dot product used by linear kernel SVMs is replaced by a different 
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adequate kernel function (e.g. a non-linear Gaussian radial basis function (RBF)) that maps 

the training vector space into a Euclidean space of higher dimensionality, in which the 

vectors become separable (Figure 1.4B). 

When transformed into the original vector space, the hyperplane can be regarded as 

a (non-linear) hypersurface (Figure 1.3B and Figure 1.4C). The scaling can be computationally 

expensive, so the trick is to use a mapping 

function that does not need explicit 

calculation, but can be computed for all 

high-dimensional vectors within the 

original space. Because most natural data 

sets are noisy and non-separable (leading 

to poor generalization ability of an 

optimally fit decision boundary), 

additional slack variables are introduced 

that relax the constraints and further 

facilitate the computation of the 

optimized solution for the SVM kernel. 

Allowing (penalized) misclassification 

errors during the training process (soft-

margin classifiers) also helps to avoid 

overfitting of the SVM. 

 

1.8. Cross-validation 

Several cross-validation procedures 

have been established to estimate 

generalization capacity and potential 

overfitting of a classifier. Cross-validation 

is integrated into the classifier building 

process and -if applied correctly (!)- 

enables finding optimal parameters for a 

classifier, e.g. C (misclassification penalty) 

and γ (corresponding to the variance of a 

Gaussian RBF kernel) in SVMs. 

Additionally, it may provide an accurate 

estimate of a classifier’s performance that 

is useful to judge its utility, in particular if 

x1

x2

z1

z2

z3

separating hyperplane

Φ

x1

x2

linearly

non-separable

A

B

C

kernel function

decision boundary

Figure 1.4 | Kernel trick. As the data set (two 
classes, black versus blue points) is not 
linearly separable in the vector space (A), the 
classifier kernel function is substituted with a 
(non-linear) function Φ that maps the vectors 
into a feature space of higher dimensionally 
(B), where they may become distinguishable 
by a hyperplane (marked light brown). This 
hyperplane may be represented in the 
original vector space as shown in C. 
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the amount of data is a limiting factor. In a basic k-fold cross-validation, the training data S 

is partitioned into k sets (S1,…,k), to train k classifiers where each time a different set is left 

apart from the training for testing, so that each training set of S serves as the test set exactly 

once. The parameters of the classifier with the best performance (accuracy) on its 

corresponding test set are then chosen to build a classifier with the whole data S. A problem 

of this strategy is that the classifier performance is likely to be over-optimistic because it is 

estimated from the same data that was used for parameter optimization. 

A better estimate of the classifier performance is obtained by using a test set that is 

completely independent of the classifier building. A good approach thereto is nested cross-

validation (illustrated in Figure 1.5), where an m-fold inner cross-validation loop is nested 

into a k-fold outer cross-validation loop. In the outer loop, the data S is partitioned 

randomly into k sets (S1,…,k), where in iteration i (i=1,…,k) set Si is left apart as a test 

set and the remaining sets are passed to the inner loop as Ti (Ti=S\Si). In the inner loop, 

Ti is again divided randomly into m subsets Tij (j=1,…,m), where in each inner iteration j 

subset Tij is defined as validation set Vij 

and the remaining data becomes training 

set Uij (Uij=Ti\Vij). A classifier is then 

trained on each Uij and its parameters 

are optimized to the best accuracy on 

validation set Vij, while the actual 

accuracy of the classifier is estimated with 

the independent test set Si. The nested 

cross-validation is computationally 

demanding because of the high number 

of trained classifiers (k x m), but it 

provides a more conservative estimate of 

the average performance of a classifier. 

Further cross-validation 

approaches make use of bootstrapping. 

The sampling can be stratified in case of 

skewed class distributions, and it is 

possible to integrate these sampling 

methods into nested cross-validation. 
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Figure 1.5 | Nested cross-validation. A four-
fold inner cross-validation loop is executed 
within a four-fold outer cross-validation loop. 
For details on the procedure and symbols, 
please refer to the main text (section 1.8). 
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2. Integrated genomic profiling identifies two distinct molecular 

subtypes with divergent outcome in neuroblastomas with loss of 

chromosome 11q 

This study has been published [40]: 

 Publication I 

Fischer M, Bauer T, Oberthuer A, Hero B, Theissen J, Ehrich M, Spitz R, Eils R, 

Westermann F, Brors B, König R, and Berthold F: Integrated genomic profiling 

identifies two distinct molecular subtypes with divergent outcome in 

neuroblastoma with loss of chromosome 11q. Oncogene 2009, 29(6):865-875. 

 

2.1. Motivation 

Neuroblastomas cover a spectrum of heterogeneous phenotypes to an extent that is 

rarely observed in other cancer types. This is reflected on the genome level by numerous 

non-random chromosomal copy number aberrations (CNAs) [41]. Neuroblastoma may 

therefore constitute a good tumor model to study the impact of CNAs on the transcriptome 

and to relate them to different clinico-genetic phenotypes. 

Some frequently observed CNAs are thought to be critical events in tumorigenesis. 

The effects of MYCN oncogene amplification have been extensively studied and the results 

dictate that there is a direct impact of elevated gene dosage on gene expression levels [42]. 

In contrast, it is less clear how low-level copy number gains (<fivefold) or hemizygous losses 

of large chromosomal regions affect gene expression in neuroblastoma. Loss of 11q has a 

prevalence of nearly 30% and correlates highly with an unfavorable outcome [43,44]. 

Therefore, it has been proposed to be included in clinical trials as a stratified prognostic 

marker [45,46]. 

MYCN amplification, which is observed in ~20% of neuroblastomas, and 11q CNAs are 

almost mutually exclusive events, suggesting that they constitute genetically distinct 

subgroups [1,47,48]. This indicates that tumorigenesis of these two phenotypes is 

characterized by different cellular mechanisms. Whereas the effect of MYCN amplification 

on the transcriptome has been well investigated, the influence of 11q CNAs on global gene 

expression is poorly understood. 

In this project, we worked in cooperation with the clinician PD Dr. Matthias Fischer 

and the team of Prof. Dr. Frank Berthold from the Cologne university children’s hospital, 

department of pediatric oncology. We followed a strategy that incorporated results from 

various bioinformatics approaches, clinical information, cytogenetic characteristics and 

promoter methylation analyses to elucidate the relationship between neuroblastoma 
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phenotypes with and without 11q CNAs and their transcriptome. In particular, I performed 

several analyses to elucidate how 11q CNA is linked to neuroblastoma tumorigenesis. 

 

2.2. Main Results 

2.2.1. Neuroblastomas with loss of 11q fall into two prognostically distinct 

subgroups by gene expression-based classification  

Previously, cooperation partners from our groups published a prediction analysis of 

microarrays (PAM)-based classifier that uses the gene expression patterns of 144 genes to 

accurately predict the outcome of neuroblastomas [49]. When applied to a subset of 61 

specimens with 11q CNAs that were not included in the training set, the classifier separated 

the patients into two distinct groups: 20 patients were predicted to be favorable and 41 

patients unfavorable. Event-free survival at five years was significantly different between 

these two predicted groups (P=0.001), even after exclusion of six patients with MYCN 

amplification (P=0.005). These results strongly indicated that neuroblastomas with loss of 

11q fall into two distinct groups with divergent clinical course based upon the gene 

expression patterns of 144 selected genes. 

 

2.2.2. In neuroblastomas with loss of 11q, global gene expression patterns differ 

between patients with favorable and unfavorable outcome 

The next step was to see how the clinical outcome of neuroblastomas with 11q CNAs 

relates to their global expression patterns. To avoid bias on gene expression by other CNAs, 

we excluded neuroblastomas with MYCN amplification and/or loss of 1p, leaving a selection 

of 110 specimens for the analysis. These were sorted into four defined clinico-genetic 

subgroups according to 11q status (“normal” versus “del11q” - deletion/imbalance) and 

clinical outcome (“fav” - at least two years event-free survival without cytotoxic treatment 

versus “unfav” - metastatic or multiple loco-regional progression/relapse or death of 

disease). Figure 2.1 illustrates this division into subgroups. In unsupervised analyses 

(principal component analysis and hierarchical clustering, data shown in the publication 

only), the tumors clustered together primarily according to their clinical phenotype. Notably, 

favorable neuroblastomas were inseparable by 11q status (normal/fav and del11q/fav), 

whereas unfavorable neuroblastomas with loss of 11q (del11q/unfav) and unfavorable 

neuroblastomas without loss of 11q (normal/unfav) formed individual clusters each. 

To objectify these observations, I implemented a centroid distance analysis (adapted 

from [50]). Overall differences in gene expression can be judged by this approach. A centroid 

is defined as the vector of mean gene expression values over all patients of a subgroup. 

Euclidean distances were calculated pairwise between the centroids of different clinico-
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genetic neuroblastoma subgroups. The significance of the centroid distances between the 

subgroups was assessed by a permutation analysis. 

We obtained highly significant differences (P<0.001) between all pairs of subgroups 

except between del11q/fav and normal/fav (P=0.19, see Figure 2.2). Taken together, these 

results provided evidence that favorable neuroblastomas with and without 11q CNAs do not 

differ in their overall gene expression. 

 

 

 

Table 2.1 | Differentially expressed genes between selected Neuroblastoma 
subgroups and subsets located on chromosome 11q. 

 normal/fav vs. 
normal/unfav 

normal/fav vs. 
del11q/fav 

normal/unfav vs. 
del11q/unfav 

del11q/fav vs. 
del11q/unfav 

SAM 1187 genes 2 genes 64 genes 282 genes 

Genes on 11q 38 (3%) 0 27 (42%) 10 (4%) 

 

 

2.2.3. Differential gene expression between clinico-genetic neuroblastoma 

subgroups 

I conducted significance analysis of microarrays (SAM; Figure 2.3 and Table 2.1) to 

determine differentially expressed genes between the four clinico-genetic subgroups. There 

were only two differentially expressed genes between favorable tumors with and without 

11q loss (P<0.05), which underlined our previous observations. In contrast, much larger 

numbers ranging from 64 to 2470 differentially expressed genes resulted from comparing all 

other subgroup pairs (Figure 2.3A).  

We then took a closer look at the lists of differentially expressed genes. The question 

was if there was an overlap of differentially expressed genes between favorable and 

unfavorable tumors with respect to their 11q status that might account for a malignant 

Figure 2.1 | Neuroblastoma subgroups defined 
by clinical outcome and status of chromosome 
11q. A favorable outcome (“fav”) was defined by 
event-free survival of >2 years in absence of 
cytotoxic treatment whereas unfavorable outcome 
(“unfav”) meant malignant progression or death of 
disease. CNA of 11q was abbreviated “del11q” as 
opposed to the “normal” karyotype. The numbers 
give the count of specimens in each subgroup. The 
arrows indicate pairwise comparisons of 
subgroups that were conducted. 
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normal/fav vs. normal/unfav normal/fav vs. del11q/fav normal/fav vs. del11q/unfav

normal/unfav vs. del11q/fav normal/unfav vs. del11q/unfav del11q/fav vs. del11q/unfav

phenotype. In fact, we counted 100 genes that were common in the comparison of 

subgroups with normal 11q and the comparison of subgroups with 11q CNAs, making up 

35% of the differing genes in the latter case (Figure 2.3B and Table 2.1). With only one 

exception, all genes from the overlap were down-regulated in the unfavorable subgroups. 

This emphasizes their potential biological relevance for malignant progression of 

neuroblastomas independent of the 11q status. Several of these genes have been previously 

suggested to correlate with adverse outcome of neuroblastomas, such as FYN oncogene 

related to SRC, FGR, YES (FYN) [51], microtubule-associated protein 7 (MAP7) [49,52], and 

CAMTA1 [53]. These results point to a common mechanism that promotes malignant 

progression of unfavorable neuroblastomas with and without 11q CNAs. 

 

 

2.2.4. Relating differential expression between clinco-genetic neuroblastoma 

subgroups to chromosomal location on 11q 

We analyzed the number of differentially expressed genes located on chromosome 

11q (see Table 2.1). Neither of the two genes differentially expressed between del11q/fav 

and normal/fav tumors were located on 11q. In contrast, 42% (27/64) of genes identified by 

comparing unfavorable neuroblastomas with and without loss of 11q were annotated to 

Figure 2.2 | Analysis of pairwise centroid distances between favorable and 
unfavorable tumors with and without 11q aberration. The histograms indicate 
the distributions of centroid distances from permutation analyses. Original 
centroid distances are marked by red lines and assigned p-values. In contrast to 
the pair normal/fav vs. del11q/fav, all pairs exhibited highly significant differences. 
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11q. This is a highly significant enrichment (P<1e-18), and as expected, most of these 

transcripts (24 of27) had lower transcription levels in the subgroup with loss of 11q. We did 

not find such enrichment when comparing the two subgroups with loss of 11q: only 10 of 

282 differentially expressed genes were encoded on 11q (P=0.40), whereas comparison of 

the two subgroup with normal 11q status yielded a slight under-representation of 11q genes 

(38 of 1187 genes, P=0.01). These findings indicate that the expression of genes located on 

chromosome 11q is affected by 11q CNAs when a malignant phenotype has been developed, 

whereas in favorable neuroblastomas, loss of 11q appears to have no pronounced impact on 

the expression of these genes. An enrichment of differentially expressed genes located on 

11q was also found between del11q/unfav and normal/fav tumors (176 of 2470 genes, 7%, 

P<1E-05). 

 

 

 

 

 

When comparing the two favorable groups (del11q/fav and normal/fav) against 

del11q/unfav (Figure 2.3C), the large overlap of 269 differentially expressed genes with 

similar up- or down-regulation supported our hypothesis that the favorable tumors actually 

formed a homogenous subgroup together. Moreover, 51 differentially expressed genes were 

common among comparisons of normal/fav and normal/unfav to del11q/unfav tumors, 

corresponding to 80% of differentially expressed genes between normal/unfav and 

del11q/unfav (Figure 2.3D). All 11q genes from the intersection were consistently 

downregulated in del11q/unfav neuroblastomas. With respect to the large number of 

differentially expressed genes between the two subgroups of normal 11q status, these 

findings further indicated that loss of 11q affects genes encoded on chromosome 11q 

particularly in unfavorable neuroblastomas. 

Figure 2.3 | Results 
obtained by significance 
analysis of microarrays 
(SAM). A provides an 
overview of the number of 
differentially expressed 
genes in all pairwise 
comparisons. B, C, and D 
provide further details on 
the overlap of differentially 
expressed genes in selected 
subgroup comparisons (see 
main text). 
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Array-based comparative genomic hybridization (aCGH) analysis was conducted and 

excluded a potential bias in our findings as a result of different sizes of 11q deletions (or 

additional 17q CNAs) in the favorable and unfavorable subgroups. Similarly, the clinico-

genetic subgroups did not differ in the CpG-methylation status of promoter regions of 10 

differentially expressed genes located on 11q. Although the status of only a sample of genes 

on 11q was determined, these findings argue against a general involvement of differential 

CpG-methylation on the down-regulation of genes located on 11q in del11q/unfav 

neuroblastoma. 

 

 

3. Gene expression profiling confirms tumor suppressor effects of 

transcription factor CAMTA1 in neuroblastoma cells 

This study has been published [54]: 

 Publication II 

Henrich KO, Bauer T, Schulte J, Ehemann V, Deubzer H, Gogolin S, Muth D, Fischer M, 

Benner A, König R, Schwab M, and Westermann F: CAMTA1, a 1p36 Tumor 

Suppressor Candidate, Inhibits Growth and Activates Differentiation Programs in 

Neuroblastoma Cells. Cancer Res. 2011 Apr 15;71(8):3142-51. Epub 2011 Mar 8. 

 

3.1. Motivation 

Similar to 11q CNA (see previous chapter), deletion of distal 1p is another recurrent 

chromosomal aberration in neuroblastoma. About 30% of neuroblastomas carry 1p 

mutations and, in contrast to tumors with 11q CNAs, they often coincide with genomic 

amplification of MYCN, an oncogenic transcription factor. Besides neuroblastoma, loss of 

heterozygosity (LOH) of distal 1p has been observed in other malignant tumors including 

breast cancer [55], colon cancer [56], glioma [57], and melanoma [58]. Consequently, 

genomic regions that are prone to frequent genomic mutation associated with cancers are in 

focus when searching for potential tumor suppressor genes and oncogenes. This can be 

done by finding the smallest region of consistent deletion. For example, analysis of 

frequently deleted regions on 11q yielded CADM1, a gene encoding a cell adhesion molecule 

that is associated with several clinical markers of poor outcome in neuroblastoma [59]. 

CADM1 is involved in signaling and may therefore control many downstream target genes. 

Moreover, low expression of CADM1 is associated with poor outcome in tumors with and 

without 11q CNAs [59]. 

Mapping studies of 1p deletions in neuroblastomas pointed to a 261 kb genomic 

region encompassing the TF CAMTA1 [60,61]. Similar to CADM1, low expression of CAMTA1 
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correlates with adverse outcome of neuroblastomas independent from 1p deletions and 

other clinical markers [53]. Besides neuroblastoma, the prognostic value of CAMTA1 has 

been described for colorectal cancer [31]. 

In this study, we employed mouse models and inducible cell line models to explore 

the biological impact of CAMTA1 induction in neuroblastoma cells. Specifically, I applied and 

partially extended established gene expression analyses and conducted enrichment analyses 

to determine gene sets induced or repressed upon CAMTA1 induction and evaluated the 

contexts in which they take action in the cell. 

 

3.2. Main results 

3.2.1. CAMTA1 suppresses growth in neuroblastoma cell lines and is associated 

with neuronal differentiation 

In vitro experiments were conducted on cell lines (SH-EP and IMR5-75) that exhibit 

low endogenous CAMTA1 expression levels. The cell lines were transfected with an inducible 

CAMTA1 expression vector. After CAMTA1 induction, colony formation ability and growth 

rate were significantly reduced (SH-EP) and anchorage-independent growth inhibited (IMR5-

75, please refer to Publication II for details). In mice, in vivo induction of CAMTA1 via 

inoculation of inducible IMR5-75 cells into established tumors resulted in decreased tumor 

volume. These findings strongly supported the idea of CAMTA1 taking influence on cell cycle, 

proliferation and growth control. 

CAMTA1-induced SH-EP cells exhibited morphological attributes of differentiation, 

such as neurite-like processes. In a reverse approach, i.e. employing in vitro models of 

neuroblastoma differentiation, morphological differentiation and induction of neuronal 

marker genes was correlated with increase of CAMTA1 expression. Taken together, these 

results imply an impact of differentiation signals and neuronal differentiation onto CAMTA1 

regulation. 

 

3.2.2. Identification of genes responsive to CAMTA1 induction 

In this project, my task was the bioinformatics gene expression analyses of data from 

CAMTA1-induced neuroblastoma cell lines to identify and categorize the transcriptional 

changes. I received the raw microarray time series data measuring the gene expression of 

induced SH-EP cells (and IMR5-75 cells, data not published yet). I modified established 

approaches [62] to filter out genes that fulfilled three different criteria: 

1) Sufficient minimal expression in a defined minimum number of time points. 

2) Sufficient variance (via interquartile range). 

3) Adequate correlation between biological replicates. 
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The first two filters are established procedures, whereas the third filter was my 

extension. The filter guarantees similar gene expression profiles within biological groups. 

Genes that may be regulated in an experiment-independent way are regarded as noise and 

are removed as they are nonrelevant for the clustering. Applying this extended gene filtering 

approach yielded 683 transcripts (referred to as genes in the following). I conducted 

hierarchical clustering employing Pearson correlation distances to further differentiate 

distinct expression profiles within these genes, resulting in five clusters (see Figure 3.1). 

 

 

 

Two clusters (A and B) contained 

genes that were up-regulated upon 

CAMTA1 induction in a time-dependent 

manner, but unchanged in the 12 hour non-induced control (Figure 3.2). Clusters C and D 

also exhibited time-dependent distinct expression profiles, but with respect to expression 

levels of the non-induced controls, the relevance of these observations was less clear. In 

contrast, cluster E presented a well-defined profile of down-regulated genes upon CAMTA1 

induction. 

 

3.2.3. CAMTA1-induced genes influence cellular processes of neuronal 

development, calcium ion transport, proliferation and metabolism 

In the original publication, we used Gene Ontology Tree Machine to functionally 

annotate two gene sets obtained from clustering (combined clusters A + B, and cluster E). 

Here, I am presenting an update of the analysis of enriched Gene Ontology (GO) terms that I 

have conducted just prior to writing this thesis. I decided to do so for two reasons: First, GO 

database is constantly updated and the annotation accurateness has improved substantially 

in the meanwhile, and second, I have added a multiple testing correction step (Benjamini-

Hochberg). Terms with a corrected P<0.1 were defined as significant. The analysis was 

conducted with the enhanced original tool, now integrated into the WebGestalt v2 toolbox 

[3,63].  
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Figure 3.1 | Clustering dendrogram 
of selected genes in SH-EP cells 
upon CAMTA1 induction. Five 
clusters with specific gene expression 
patterns were defined. The number of 
genes in each cluster and a designated 
letter for reference are plotted below 
the graph. 



19 

3h 6h 12h24h12h 3h 6h 12h24h12h 3h 6h 12h24h12h 3h 6h 12h24h12h 3h 6h 12h24h12h
ON OFF ON OFF ON OFF ON OFF ON OFF

R
e

la
ti

ve
 e

xp
re

ss
io

n
 (

lo
g2

) 2
.0

1
.5

1
.0

0
.5

0
.0

-0
.5

-1
.0

2
.0

1
.5

1
.0

0
.5

0
.0

-0
.5

-1
.0

2
.0

1
.5

1
.0

0
.5

0
.0

-0
.5

-1
.0

2
.0

1
.5

1
.0

0
.5

0
.0

-0
.5

-1
.0

2
.0

1
.5

1
.0

0
.5

0
.0

-0
.5

-1
.0

Cluster A
368 probes

Cluster B
133 probes

Cluster C
40 probes

Cluster D
54 probes

Cluster E
88 probes

• replicate 1
• replicate 2

• replicate 1
• replicate 2

• replicate 1
• replicate 2

• replicate 1
• replicate 2

• replicate 1
• replicate 2

BIOLOGICAL PROCESS

cellular component organization

→ cytoskeleton organization

→ intermediate filament bundle assembly

cellular process

→ muscle cell proliferation

→ microtubule-based movement

→ hormone metabolic process

→ regulation of cell communication

→ negative regulation of signal transduction

→ cell motility

→ negative regulation of smooth muscle cell
migration

developmental process

→ system development

→ nervous system development

→ cell differentiation

→ neuron differentiation

→ forebrain neuron fate commitment

metabolic process

→ steroid metabolic process

→ protein repair

transport

→ metal ion transport

→ release of sequestered calcium ion into cytosol

→ regulation of calcium ion transport into cytosol

MOLECULAR FUNCTION

binding

→ protein binding

→ calmodulin binding

→ ion binding

→ sodium ion binding

catalytic activity

→ transferase activity

→ glycine N-acyltransferase activity

→ glycogen phosphorylase activity

transcription regulatory activity

→ basal transcription repressor activity

CELLULAR COMPONENT

cell part

→ cell projection

→ neuron projection

→ cell fraction

→ synaptosome

BIOLOGICAL PROCESS

cell adhesion

→ cell-matrix adhesion

→ regulation of focal adhesion assembly

cellular process

→ cell cycle

→ M phase

→ mitosis

→ cell cycle arrest

metabolic process

→ lipid metabolic process

→ steroid metabolic process

→ vitamin D metabolic process

→ DNA metabolic process

→ DNA replication

→ DNA repair

response to stimulus

→ cellular to UV

transport

→ negative regulation of transport

→ nuclear transport

→ positive regulation of transcription
factor import into nucleus

MOLECULAR FUNCTION

binding

→ nucleic acid  binding

→ double-stranded DNA binding

→ translation initiation factor activity

→ nucleoside binding

→ adenyl nucleotide binding

→ ATP binding

→ protein binding

→ collagen binding

→ kinase binding

→ histone binding

catalytic activity

→ pyrophosphatase activity

→ DNA helicase activity

→ oxidoreductase activity

→ vitamin D 24-hydroxylase activity

→ oxidoreductase activity, acting on
paired donors, …

→ transferase activity

→ protein kinase activity

molecular transducer activity

→ receptor signaling protein activity

CELLULAR COMPONENT

intracellular organelle

→ cytoskeleton

→ spindle microtubule

→ chromosome

→ chromatin

→ condensed chromosome kinetochore

→ nucleus

→ nucleoplasm

 

 

 

 

 

 

 

 

  

Figure 3.2 | Gene expression profiles in defined 
clusters of genes responding to CAMTA1 
induction in SH-EP cells. Each line in the graphs 
corresponds to a biological replicate. Gene 
expression was measured between three and 24 
hours upon induction and at 12 hours without 
induction (control). Gene ontology term 
enrichments associated with combined clusters A 
and B, and with cluster E are shown below the 
graphs (algorithm from WebGestalt tool [3], 

Benjamini-Hochberg corrected P<0.1). Many of the terms describe processes or 
functions that are characteristic of tumor suppressor genes. 
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GO terms that were significantly (corrected P<0.1) associated with CAMTA1 induced 

genes are listed in Figure 3.2 (box on the lower left side). The results described in Publication 

II have been mostly confirmed but are rendered more precisely. Several GO terms describe 

processes of neuronal development and function, e.g. “nervous system development”, 

“forebrain neuron fate commitment”, “neuron projection”, or “synaptosome”, which is in 

line with the suggested role of CAMTA1 in differentiation and neuron development. In 

addition, shaping of cytoskeleton structures may be regarded as a feature of differentiating 

cells (e.g. “microtubule-based movement”, “intermediate filament bundle assembly”). 

Inhibitory effects on signaling by CAMTA1-induced genes are reflected by “negative 

regulation of signal transduction” and “basal transcription repressor activity”, which are 

expected for a tumor suppressor gene. GO terms linked to calcium and calmodulin 

(“calmodulin binding”, “regulation of calcium ion transport into cytosol”, and “release of 

sequestered calcium into cytosol”) were of particular interest with respect to the 

Ca2+/calmodulin-dependent activity of CAMTA1. Moreover, these associations suggest that 

CAMTA1 acts both as an integrator and effector of Ca2+ signaling. 

 

3.2.4. Characterizing CAMTA1-repressed genes 

GO terms associated with down-regulated genes after CAMTA1 induction (Figure 3.2, 

box on the lower right side) were in agreement with these results. Several significant terms 

were related to cell cycle progression, most prominently reflected by “mitosis”. Interestingly, 

four genes were also linked to “cell cycle arrest”. It is plausible that because of feedforward 

loops, inverse feedback loops in cell cycle progression, and cross-talk between pathways, 

some genes may be associated with this seemingly opposing term. Nevertheless, several 

checkpoints in the cell cycle require affirmative checks on DNA integrity and positive 

signaling input. The inhibition of genes associated with “DNA repair”, “DNA replication”, 

“response to UV”, “spindle microtubule”, and “condensed chromosome kinetochore” 

implies that CAMTA1 inhibits passage of these checkpoints. Other down-regulated genes are 

involved in “positive regulation of transcription factor import into nucleus”, “translation 

initiation factor activity”, “receptor signaling protein activity”, and “protein kinase activity”, 

which corroborates the hypothesis of an inhibitory effect of CAMTA1 on signaling (and 

signaling-induced cell cycle progression). 

 

3.2.5. Observed CAMTA1 functionality is confirmed in an independent cell line. 

To validate the finding that CAMTA1-regulated genes are involved in neuronal 

differentiation and cell cycle arrest, we selected five genes from the extrapolated CAMTA1-

responsive clusters that were annotated to GO terms “neuronal differentiation” and “cell 



21 

cycle arrest”: cyclin-dependent kinase inhibitor 1C (CDKN1C), tropomodulin 2 (TMOD2), 

sodium channel, voltage gated, type VIII, alpha subunit (SCN8A), S100 calcium binding 

protein B (S100B), and stathmin-like 3 (STMN3). The expression of these genes was then 

evaluated by quantitative RT-PCR in an independent CAMTA1-induced SH-EP cell line clone. 

We found that all five genes were consistently regulated in dependency of CAMTA1 

induction. These observations supported the robustness and generalizability of our previous 

conclusions that CAMTA1 promotes cell differentiation and arrests cell cycle progression. 

 

 

4. Promoter motif analyses identify common MYCN/MYC binding 

sites of genes that are up-regulated upon MYCN induction in 

neuroblastoma cells and that are associated with poor outcome 

of neuroblastomas without MYCN amplification 

This study has been published [64]: 

 Publication III 

Westermann F, Muth D, Benner A, Bauer T, Henrich KO, Oberthuer A, Brors B, 

Beissbarth T, Vandesompele J, Pattyn F, Hero B, König R, Fischer M, and Schwab M: 

Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous 

regression or malignant progression in neuroblastomas. Genome Biol 2008, 

9(10):R150. 

 

4.1. Motivation 

In the previous two chapters, I described how gene expression profiling can be 

applied to elucidate properties of clinico-genetic subgroups, mechanisms of tumorigenesis 

and the role of a TF therein as a tumor suppressor gene. TFs can also function as oncogenes. 

Some TFs regulate a small distinct set of genes in a very specific manner, whereas others 

influence large genetic programs comprising hundreds of genes. TFs have been associated 

with all hallmarks of cancer development [65]. Moreover, TFs are thought to drive critical 

cellular genetic programs from development to apoptosis and can therefore become 

promising therapeutic targets in a wide range of pathological conditions. 

MYC gene family members encode TFs and are potential proto-oncogenes. MYC TFs 

are involved in all aspects of tumorigenesis [66,67]: unlimited proliferation, loss of 

differentiation, cell growth, neo-angiogenesis, cell motility, and genomic instability. 

As stated earlier, genomic amplification of MYCN occurs in ~20% of neuroblastoma 

and identifies a subtype with poor prognosis. MYCN amplification is reflected by elevated 

protein levels and increased activity, and has been implicated in both tumor initiation and 
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progression of neuroblastoma [68,69]. Seemingly contradictory to its association with 

malignancy, MYCN levels in neuroblastomas without chromosomal MYCN amplification 

(non-amplified; NA) are higher in more favorable localized tumors (stages 1-3; localized-NA) 

and in stage 4S tumors (4S-NA). 4S-NA tumors have good prognosis in contrast to stage 4 (4-

NA) tumors, which are predominantly malignant cancers [70-72]. Furthermore, MYC TFs 

(including MYCN) can also render cells more sensitive to apoptosis [73], and cell lines from 

MYCN amplified neuroblastomas are still capable of differentiation [74]. 

All MYC family members require MYC associated factor X (MAX) to form 

heterodimers to bind DNA via a helix-loop-helix leucine zipper domain to regulate 

transcription of their targets. The MYC:MAX binding motif has been well studied and the 

consensus sequence, 5’-CACGTG-3’, is known as “E-box”.  

In this project, we applied gene expression profiling and cluster analyses to 

determine a core set of MYC and MYCN target genes in MYCN-inducible neuroblastoma cells. 

To validate the target gene set, I conducted promoter analyses employing both canonical 

motif searches and PWM scans and quantified enrichments of potential MYC binding sites in 

the target gene set. Additionally, ChIP experiments were conducted in the wet lab (by 

cooperation partner PD Dr. Frank Westermann and his group) to validate MYC/MYCN 

binding to the target gene promoters. After this validation, expression levels of the target 

gene set was used to assess transcriptional activity of MYC/MYCN in different clinical 

subtypes of neuroblastomas, and the inferred activities were compared to gene expression 

levels of MYC and MYCN. Furthermore, we evaluated MYC/MYCN target gene expression in 

regard to overall survival of neuroblastoma patients. 

 

4.2. Main results 

4.2.1. MYC and MYCN are inversely correlated in neuroblastoma subtypes 

MYC expression is suppressed in neuroblastoma cells with high levels of MYCN RNA 

[75]. When analyzing 251 neuroblastomas, we observed a similar inverse correlation of MYC 

and MYCN expression levels over different tumor subtypes. In MYCN NA neuroblastomas, 

the MYCN expression level was highest in stage 4S-NA tumors, followed by localized-NA 

tumors, and was lowest in 4-NA tumors. Conversely, the gradient of MYC RNA decreased 

from stage 4-NA tumors over localized-NA, stage 4S-NA to MYCN amplified tumors. 

 

4.2.2. MYC repression upon MYCN induction in neuroblastoma cells and definition 

of MYC/MYCN regulated genes 

We analyzed gene expression profiles of neuroblastoma cell lines with ectopically 

inducible MYCN (SH-EPMYCN cells). These cells express endogenous MYC, but not MYCN. 
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Upon induction of the tetracycline-dependent MYCN expression system by tetracycline 

removal, MYC mRNA and protein levels decreased already prior to elevation of MYCN levels. 

This trend was reflected by the known MYC target genes prothymosin alpha (PTMA), 

dyskeratosis congenita 1 (DKC1), Mdm2 p53 binding protein homolog (MDM2), and 

minichromosome maintenance complex component 7 (MCM7). Expression levels of these 

targets decreased shortly after induction of the tetracycline system just as MYC levels were 

reduced and before MYCN levels increased. As MYCN levels were elevated later on, so were 

target expression levels. In general, these genes followed the trend of combined MYC/MYCN 

expression levels. 

We clustered the gene expression profiles taken in a time-series upon induction of 

the MYCN expression system using self-organizing maps (SOMs). All 504 clusters were 

analyzed for gene expression patterns similar to MYC/MYCN expression maxima, and for 

enrichments of known MYC/MYCN targets. This yielded two subgroups formed by 167 genes 

from six clusters: subgroup I contained genes expressed equally high at both maximum MYC 

levels and MYCN levels. MYCN maximum levels were higher than levels of endogenously 

expressed MYC, so these genes appeared to be less responsive to MYCN compared to MYC. 

Gene expression profiles of subgroup II genes matched the maximum protein expression of 

MYC and MYCN and were highest at time-points with maximum MYCN expression. We found 

enrichments of genes from the MYC target gene database in these two subgroups (P <0.05). 

No significant enrichments were found in clusters containing MYC or MYCN repressed genes, 

so we focused on the two defined subgroups for further validation. 

 

4.2.3. Validation of potential MYC/MYCN target genes in silico and by ChIP 

To predict the direct regulation of the identified subgroups by MYC/MYCN in silico, I 

conducted PWM scans and canonical consensus binding motif searches on the gene 

promoters. I downloaded the available sequences 2kb up- and downstream of the annotated 

TSS of all genes and scanned for MYCN TFBSs. I then assessed the enrichment of genes with 

MYCN TFBSs in each cluster from the SOM clustering by Fisher’s exact tests and ranked them 

according to P-values. All six clusters from subgroups I and II were ranked among the top 15 

clusters, underlining their potential MYC/MYCN responsiveness. ChIP-on-chip experiments 

conducted on cell lines expressing MYCN and/or MYC further confirmed these findings. 

Almost all 140 genes with probes on the tiling arrays corresponding to their promoters were 

bound by MYC or MYCN in the six cell lines. 

Together, these results suggest that genes from the two defined subgroups form a 

core set of targets for MYC or MYCN, depending on which of these TFs is expressed. 
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4.2.4. MYC/MYCN activity in MYC NA neuroblastoma subtypes 

A portion of 92% (154 of 167) of the defined MYC/MYCN target genes were 

expressed highest in MYCN-amplified neuroblastoma, suggesting similar regulation in the 

tumors as in the cell lines. In NA tumors, we observed distinctly lower but increasing 

portions of induced target genes starting from localized-NA tumors (lowest) via tumors of 

subtype 4S-NA towards 4-NA tumors. This indicates that (apart from MYCN-amplified 

neuroblastomas) MYC/MYCN activity is increased in stage 4-NA and to a lesser extent in 

stage 4S-NA. In agreement with this are elevated levels of either MYC or MYCN in stage 4-NA 

and 4S-NA respectively compared to localized-NA tumors. Regarding the smaller number of 

induced genes in 4S-NA, we concluded that MYCN regulates a smaller set of genes in these 

tumors, while MYC appears to induce a larger set of MYC/MYCN target genes in 4-NA 

tumors. 

 

4.2.5. High MYC/MYCN target gene expression is associated with poor overall 

survival 

Global tests were applied to all 504 clusters. The six clusters defining MYC/MYCN 

targets were significantly associated with overall survival of neuroblastoma patients, even 

after adjustment for co-variables MYCN amplification, staging (stage 4 versus stages 1-3 and 

4s), and age at diagnosis (≥1.5 years). Two of the six clusters, both from subgroup I, ranked 

on top of all clusters. Finally, there was a substantial overlap of MYC/MYCN targets to genes 

with previously published neuroblastoma classifiers based on gene expression. These 

findings support that the expression levels of defined MYCN/MYC targets can be applied to 

determine MYC/MYCN activity and that high activity serves as an independent robust 

marker of poor outcome. 

 

 

5. Reconstruction of the Rage-dependent gene regulatory network 

in a mouse model of skin inflammation from gene expression 

profiles and position weighted matrix scans 

This study has been published [76]: 

 Publication IV 

Riehl A, Bauer T, Brors B, Busch H, Mark R, Németh J, Gebhardt C, Bierhaus A, 

Nawroth P, Eils R, König R, Angel P, Hess J: Identification of the Rage-dependent 

gene regulatory network in a mouse model of skin inflammation. BMC Genomics 

2010 Oct 5;11:537.  
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5.1. Motivation 

Throughout the previous studies I showed that analyzing gene expression and 

transcriptional regulation by TFs grants insight into biological mechanisms of tumorigenesis 

and provides a better understanding of the nature of cancer entities, specifically of 

neuroblastomas. In the project described in this chapter, we worked together with Dr. Astrid 

Riehl and colleagues to address the questions how signaling triggered by the receptor for 

advanced glycation end products (Rage) contributes to the establishment and maintenance 

of a pro-inflammatory microenvironment that supports neoplastic transformation and 

malignant progression of skin cancer. 

Unresolved inflammation is thought to foster multiple hallmarks of cancer [65] by 

providing a tumor-promoting environment. A better insight into molecular mechanisms 

underlying tumorigenesis in the context of inflammation, such as signaling and gene 

regulatory networks, is implicitly required. Rage is a signaling protein that mediates and 

maintains the strength of inflammatory responses in a mouse model of skin carcinogenesis 

upon inflammation [77]. Rage functions as a pattern recognition receptor with multiple 

ligands and is expressed at increased levels at sites of inflammation. Several downstream 

target genes have been identified that are expressed context-specifically [78] and have been 

implicated in neoplastic cell transformation and tumor progression [79-81]. However, in-

between mediators of Rage signaling and involved TFs remain mostly unknown. In this 

project, my cooperation partners conducted time-resolved gene expression profiling of skin 

samples taken from Rage-/- and wild-type (wt) mice treated with tetradecanoyl phorbol 

acetate (TPA), a potent inducer of inflammation and tumor promoter, to identify genes that 

are affected by Rage signaling. Subsequently, I applied comprehensive TFBS scans to predict 

associations of TFs with gene sets exhibiting Rage-dependent gene expression patterns. I 

further divided the extracted Rage-responsive genes into clusters and predicted associations 

of TFs with these more specific gene sets. My analysis provided candidate TFs that were 

investigated on the protein level in skin samples and found to be involved in the gene 

regulatory network downstream of Rage signaling. 

 

5.2. Main results 

5.2.1. Rage-dependent gene expression profiles exhibit two temporal phases in 

response to TPA stimulation 

Rage-/- and wt mice (three biological replicates each) were treated with TPA. Gene 

expression profiles of skin samples were measured at 6, 12, 24, and 48 hours after treatment 

and compared to TPA-untreated controls. Transcripts were ranked by average and peak 

expression relative to controls of respective genotypes, yielding 341 common transcripts 
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Figure 5.1 | Gene expression 
dynamics of wt and Rage-/- 
mice upon TPA treatment. 
A Back skin was isolated 6, 
12, 24, or 48 hours after TPA 
stimulation. Non-treated and 
acetone-treated mice served 
as controls (0). Microarray 
global gene expression 
analysis of RNA samples was 
performed (three replicates 
for each genotype and time 
point). B Following quantile 
normalization, wt genes were 
ranked according to high 
mean and peak expression 
separately to filter for TPA-
responsive genes. A common 
subset of 341 genes was 
identified among the 1000 
top-ranked genes of three 
experiment series. C K-means 
clustering produced six 
clusters of which cluster 3 
and 6 were the largest. The 
kinetic of these clusters 
showed a response 
independent of the Rage 
genotype at t=6h, but the 

stimulus response of both repressed (cluster 3) and induced (cluster 6) transcripts was 
only sustained in wt mice. 

among the three replicate series (Figure 5.1). These transcripts were divided into six clusters 

by k-means clustering. Expression profiles, particularly of the two largest clusters (cluster 3, 

n=125; cluster 6, n=84), were in line with the previously described function of Rage in 

sustaining inflammatory stimuli: cluster 3 contained transcripts that were repressed six 

hours after TPA induction in both genotypes. The repression was persistent throughout later 

time-points in wt, but not in Rage-deficient mice. Vice versa, cluster 6 transcripts were 

induced transiently in Rage-/- mice, but maintained at induced levels in wt animals. These 

results indicate that gene expression dynamics of genes targeted by Rage can be divided into 

two phases. The first phase is characterized by an early Rage-independent response to the 

inflammatory stimulus, whereas Rage is essential for sustaining the changed transcription 

levels in the subsequent second phase. 

 

  

Taken  from Publication IV
(Riehl et al., 2010)
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5.2.2. Rage-dependent differential expression after TPA stimulation  

We aimed at identifying genes that were differentially expressed between Rage-/- and 

wt mice in the second phase after the TPA stimulus. (This analysis was conducted 

independently of the clustering described in the previous passage.) A linear model was 

applied that revealed differential expression at a significant level (corrected P<0.05) only at 

time point t=24h upon TPA administration. A total of 122 transcripts (representing 114 

different genes) were differentially expressed at this time point, including induced and 

repressed genes. 

 

 

 

 

 

 

 

 

 

 

5.2.3. Predicting TFs of the Rage-dependent gene regulatory network 

I applied hierarchical clustering employing Pearson correlation distances to the gene 

expression values, thereby revealing three clusters with distinct expression profiles (Figure 

5.2). Then I assessed which TFs were likely to regulate the individual clusters as well as the 

whole set of differentially expressed genes. I conducted PWM scans on promoter regions (±2 

kb of the TSS) with all PWMs available for TFs in Transfac database [2]. After mapping TFBSs 

from PWMs to TFs, I calculated over-representation of TFBSs in the gene sets by Fisher’s 

exact tests. Within all differentially expressed genes, putative binding sites of 17 TFs and 
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Figure 5.2 | Hierarchical 
clustering of differentially 
expressed transcripts 
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24 h after TPA treatment. 
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isoforms were significantly enriched (corrected P<0.05, Table 5.1). Some TFs could thereby 

be associated with individual clusters: trans-acting transcription factor 1 (Sp1) and 4 (Sp4), 

hepatic nuclear factor 4 (Hnf4), and CAC-binding protein (CAC-bp) with cluster 1, Wilms 

tumor 1 homolog (Wt1) with cluster 2, and E2F transcription factor (E2f) with cluster 3. 

TFBSs for MAZ related factor (Mazr) were enriched in both clusters 1 and 2. 

 

Table 5.1 | Enriched TFBS in differentially expressed genes 24 hours after TPA 
stimulation. 

Clusters TF 
Fischer test 

P-value 
Corrected 

P-value 
Cluster genes 

with PWM without PWM 

all 

Sp1 5.33E-07 1.06E-04 94 3 

Sp1 isoform 1 5.33E-07 1.06E-04 94 3 

Sp4 1.72E-06 2.27E-04 83 14 

AP-2beta 1.24E-06 1.22E-03 77 20 

AP-2alpha 1.60E-05 1.27E-03 79 18 

AP-2gamma 2.13E-05 1.41E-03 79 18 

MAZR 6.03E-05 3.41E-03 74 23 

CAC-binding protein 1.32E-04 6.52E-03 81 16 

Egr-1 3.56E-04 1.56E-02 85 12 

Egr-3 4.38E-04 1.73E-02 78 19 

E2F 4.85E-04 1.75E-02 58 39 

c-Myc 7.31E-04 2.41E-02 67 30 

Egr-2 9.69E-04 2.94E-02 80 17 

COUP-TF1 1.06E-03 2.94E-02 89 8 

WT1 1.19E-03 2.94E-02 67 30 

WT1-isoform1 1.19E-03 2.94E-02 67 30 

COUP-TF2 1.45E-03 3.38E-02 48 49 

cluster 1 

Sp4 2.01E-06 7.93E-04 40 2 

Sp1 6.13E-05 6.86E-03 42 0 

Sp1 isoform 1 6.13E-05 6.86E-03 42 0 

MAZR 6.93E-05 6.86E-03 36 6 

HNF-4alpha7 1.84E-04 1.46E-02 29 13 

CAC-binding protein 3.12E-04 2.06E-02 38 4 

cluster 2 

MAZR 2.14E-04 7.64E-02 19 1 

WT1 5.79E-04 7.64E-02 18 2 

WT1-isoform1 5.79E-04 7.64E-02 18 2 

cluster 3 
E2F 1.88E-05 7.45E-03 28 8 

E2F-1 8.50E-05 1.68E-02 28 8 

 

Taken together, the enrichment analyses predicted several TFs that had not been 

reported previously in connection to Rage signaling. These TFs were therefore promising 
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candidates for further investigation. In particular, TFs associated with cell cycle and tumor 

pathology, such as E2f and Wt1 proteins, are of interest in the context of carcinogenesis.  

 

5.2.4. Expression of E2f TFs upon induction of Rage signaling by TPA stimulation 

We wanted to test the hypothesized involvement of members from the E2f family of 

TFs in Rage signaling. No significant changes in gene expression levels were detected in the 

expression data, so we considered post-transcriptional alterations that would affect the 

activity of these TFs. Protein levels of E2f1, a transcriptional activator, and E2f4, a 

transcriptional repressor, were quantified on Western blots and further visualized by 

immunohistochemical staining. 

Indeed, protein levels of the transcriptional activator E2f1 were induced in 

keratinocytes of both Rage-/- and wt samples at time points t=6h and t=12h after TPA 

stimulation. While the expression level was still kept up high in wt keratinocytes 24 hours 

after TPA stimulation, it was not increased in Rage-deficient skin lysate. E2f4 protein was 

induced and a constant increase was observed until 24 hours after TPA stimulation in wt 

samples. In contrast, E2f4 levels were not induced and remained constant in Rage-/- samples. 

The findings are consistent with the two phase model of Rage signaling described earlier and 

corroborate a potential impact of Rage signaling on E2f activity. Whether this impact is direct 

or indirect could not be concluded at this time, however. It is worth mentioning that the E2f-

Rb pathway is critical for strict regulation of cell cycle progression and often directly targeted 

in carcinogenesis. It is therefore plausible that downstream targeting of this pathway by 

Rage signaling may provide a molecular link between inflammation keratinocyte 

hyperproliferation supporting skin cancer development. The results from the 

immunohistochemical staining were in line with the protein dynamics observed on the 

Western blots and provided an additional highly informative visualization. 

 

 

6. RIP: The regulatory interaction predictor – machine learning 

based approach for predicting target genes of TFs 

This study has been published [82]: 

 Publication V 

Bauer T, Eils R, and König R: RIP: The regulatory interaction predictor - a machine 

learning based approach for predicting target genes of transcription factors. 

Bioinformatics. 2011 Aug 15;27(16):2239-47. Epub 2011 Jun 20 

.  
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6.1. Motivation 

When I started my PhD, I was exited by the idea of reconstructing a genome-scale 

human regulatory network that would elucidate the means by which cell signaling drives the 

dynamics of gene expression. The applications of such a network would be enormous. It 

would be possible to trace observed changes in mRNA levels back to the source, i.e. the 

controlling elements (TFs and upstream signaling pathways). In pathogenesis, causative 

molecular mechanisms could be extrapolated and their elements targeted in therapy to 

name only one exciting application. All through my cooperation projects I worked on gene 

expression profiling and follow-up analyses with the aim to understand the molecular 

alterations behind carcinogenesis. I learned how large-scale promoter analyses can identify 

potential TFs in control of transcriptional changes. However, the PWM scan technique, even 

though applicable with good results as demonstrated in previous chapters, tends to produce 

large numbers of false positives which reduces the precision of the predictions considerably. 

The core elements of regulatory networks are TFs, target genes, and regulatory 

interactions (RIs) between them. Several approaches have been developed to reconstruct 

regulatory networks on different scales and model organisms (reviewed in [18,19]), but 

essentially they have not achieved satisfactory results in the attempt to realize the idea I 

described above. Major issues of most present methods are: 

a) Statistics for inferring RIs based on questionable assumptions of gene regulation 

and/or missing validation of the assumptions in the used data (proof of principle). 

b) Improper transfer of gene regulatory principles from prokaryotes to eukaryotes. 

c) High computational demands of the models that drastically limit the number of 

included network components. 

d) Over-simplification, i.e. the use of gene expression data only instead of including data 

representing different aspects of gene regulation. 

e) Lack of an objective true positive set (True RIs) to estimate the performance or to 

validate the findings. 

f) Insufficient precision (high false positive rate) or insufficient recall (low re-discovery 

of known RIs). 

 

Up to date, a lot of attention and effort are still focused on providing solutions to this 

unresolved major task of systems biology. In this chapter, I will describe the method I have 

developed to contribute to the realization of this idea. I will illustrate the achieved 

improvements and provide examples of successful application of my method. 

Most current algorithms for large scale RI inference are based solely on gene 

expression data and assume a direct relationship between the gradients of TF mRNA and its 

target genes. While this assumption may be true for a large number of TFs in prokaryotes, it 
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is not met by many TFs in human, where post-translational modifications affect TF activity or 

degradation kinetics [33]. Unfortunately, techniques to measure protein quantity and 

kinetics in high-throughput are at the best in a developmental stage and data are available in 

insufficient numbers only. I therefore developed an in silico method to compensate this 

limitation. 

A biological concept that has been around for long is the principle that genes that 

share biological functionality are co-expressed, and this co-expression is achieved by co-

regulation. So instead of considering statistics between TF mRNA gradients and potential 

target genes, I analyzed statistics of co-regulated target gene sets and subsequently deduced 

their regulatory TFs from known RIs, thereby overcoming shortcomings of conventional 

methods and lack of protein data. Human gene expression data covering a large spectrum of 

biological conditions are available in abundance, and thus I conducted a correlation meta-

analysis of thousands of gene expression profiles to identify co-expressed genes in a large 

number of primary human tissues. Additionally, I analyzed gene promoters employing 

comprehensive PWM scans to acquire putative TF binding data that are unbiased by 

experimental conditions, as in case of e.g. ChIP analysis. Finally, I extracted a considerable 

amount of RIs identified in published experiments that were assembled in Transfac database 

[2]. Our concept was to have a machine learning classifier learn the trends of correlation and 

TFBS enrichments within RIs known to be co-regulated and then predict RIs on a genome-

wide scale to discover new RIs. For this purpose, we defined 10 elaborate features 

(quantifiable characteristics) that combined the results of correlation and PWM analyses of 

known RIs. I trained numerous SVMs with the features of defined training sets and 

performed cross-validations to estimate the quality of the predictions. I eventually combined 

all SVMs into one master classifier termed “regulatory interaction predictor” (RIP) that 

achieved considerably good recall and precision. RIP was then used to predict RIs between 

303 TFs and 13 069 genes. The predictions were validated by pathway analysis, with an 

independent RI database, and further applied to a (published) in vivo study on interferon α 

(IFNα) signaling in monocytes to identify key TFs affected by IFNα induction.  

 

6.2. Main Results 

6.2.1. Training machine learning classifiers to predict TF target genes – the 

workflow 

The algorithm we developed for our supervised machine learning approach to predict 

RIs between TFs and target genes is depicted in Figure 6.1. Defining sets of true positives 

(TP) and true negatives (TN) of sufficient sizes was an essential prerequisite for training the 

SVMs. I extracted 2896 RIs between 303 TFs and 949 target genes from Transfac database, 
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which were defined as the TP set (True RIs). Vice versa, all other possible combinations of 

the 303 TFs and 949 genes (=284 641 unknown RIs) were defined as the TN set (True non-

RIs). There may be a number of True RIs within the set of unknown RIs, but even if one 

assumed that at present only 10% of RIs had been discovered in total, the defined True non-

RIs would only contain ~26 000 wrongly labeled RIs. Compared to the much larger amount of 

remaining ~258 000 True non-RIs, this would still be acceptable. 

 

Correlation
meta-analysis

Microarray data
TRANSFAC

Transcription factor
binding sites

Promoter scan

10 features

Gold standard

2896
True 
RIs

284 651
True non-

RIs

Training (¾)

2172 213 488

Validation (¼)

724 71 163

20 x 
random

sampling
SVM training

Ensemble classifier

SVM 1

SVM 2

SVM 3

…

SVM 100

100 x 
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sampling

20 x

Performance 
estimation
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Figure 6.1 | General workflow of RIP. Features for inferring regulatory interactions 
(RIs) between TFs and genes were derived from three different aspects: tightly 
correlated genes identified by meta-analysis of gene expression profiles, TF binding site 
predictions, and database content of co-regulated genes from the training set (gold 
standard). The information of the gold standard was also used to define True RIs and 
True non-RIs.. For training of Support Vector Machines (SVMs), True RIs and True non-
RIs were divided into a training set and a validation set. An equal number of True RIs 
and True non-RIs were randomly drawn (by bootstrapping) 100 times and used to train 
100 different SVMs yielding one ensemble classifier. Each ensemble classifier was 
evaluated with its validation set. This procedure was repeated 20 times yielding an 
averaged estimate about their performances. The classifiers were combined to one 
master classifier (RIP) containing 2000 SVMs, and applied to predict new RIs. 
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We then needed to describe RIs by quantifiable features that reflect characteristics of 

regulatory influence of TFs on target genes. We based these features on two assumptions: 

1) Gene sets that are involved in a common biological process are co-regulated. 

Common TFs should thus control these gene sets under specific conditions, and these 

genes should frequently show correlation on the mRNA level. 

2) Gene sets directly regulated by a common TF (TF-modules) ought to possess 

(enrichments of) corresponding TFBSs in their promoter sequences. 

 

We deduced 10 features from these assumptions by a) analyzing correlation of gene 

pairs in 4064 human gene expression profiles from 76 biological conditions (e.g. tumor type, 

tissue type, etc.), b) conducting genome-wide PWM scans, and c) using statistical descriptors 

of network structure arising from the True RIs. Before training the SVMs, I tested if the 

assumed principles underlying our features were reflected by the data. 

 

6.2.2. Genes with correlated gene expression share biological processes 

I conducted a correlation meta-analysis by calculating Pearson correlation 

coefficients for all possible gene pairs within 13 069 genes (all genes represented on the 

microarray platform Affymetrix HGU133A) in 76 biological conditions. The correlation 

coefficients were used to select gene pairs at different stringency by applying two filters CC 

and FoC. CC was the minimum (absolute) correlation coefficient that was required in a 

minimum fraction of conditions FoC. Therefore, CC controlled correlation intensity, and FoC 

controlled correlation frequency, and they were both applied at different stringency levels. 

The functional relation of the filtered gene-pairs was estimated using selected Gene 

Ontology annotations (GO, [83]) and a method adapted from [84]. In brief, I selected 81 GO 

terms that represented a broad range of biological functions, and that were still sufficiently 

specific. The functional relatedness of gene pairs was quantified by the Functional Similarity 

score (FS-score), which is the percentage of gene pairs sharing at least one selected GO 

term. Figure 6.2 shows the results for gene pairs filtered at various stringency levels. FS-

scores between 14.8% and 58.3% were achieved (stringency parameters CC=0.6 to 0.9, 

FoC=0.25 to 0.5). For a wide range of cutoffs (selecting ≤5000 genes, see Figure 6.2), the FS-

scores increased with higher stringency (up to CC=0.8, FoC=0.35) from 14.8% to 57.3%., 

which was what we expected assuming that genes sharing biological functions tend to 

correlate (assumption 1). Interestingly, the FS-score of filtered gene pairs fluctuated to some 

extent towards the highest stringency levels (<300 selected gene pairs) before recovering 

and reaching its summit. This behavior resulted from an increased proportion of 

constitutively expressed gene families (e.g. hemoglobins, histones, immunoglobulins) that 
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showed high correlation of expression between each other without sharing any common 

biological processes. 

 

To investigate the relationship between biological cooperation (sharing biological 

functions) and co-regulation, I calculated the FS-score of all gene-pairs derived from TF-

modules of the True RIs (each of these gene pairs is regulated by at least one common TF) 

and compared it to 100 000 randomly selected gene pairs. The gene pairs of True RIs (the 

gold standard) had a FS-score of 35.3%, whereas the FS-score of randomly selected gene 

pairs was distinctively lower (11.2%). Notably, the maximum FS-score of the filtered gene 

pairs was even higher than that of gene pairs of the True RIs, and both were substantially 

increased in comparison to randomly selected gene pairs. 

In summary, these results demonstrate that functional relatedness of genes is 

associated with increasing transcriptional correlation levels. Both correlated gene pairs and 

Figure 6.2 | Functionally relatedness of gene pairs with high correlation of 
expression. The graph shows the FS-score which is the percentage of gene pairs sharing 
at least one functional category for a variety of different stringency criteria, i.e. Pearson 
correlation (CC) and fraction of classes (FoC). For example, setting the threshold for CC 
to 0.85 in>25% (FoC=0.25) of the datasets yielded 380 annotated gene pairs of which 
56.6% (=215) shared the same functional GO category. In comparison, the gold standard 
comprised 35.3% (12 176 out of 34 538) pairs having at least one functional GO 
category in common and merely 11.2% of 100 000 randomly selected gene pairs shared 
functional GO categories. 
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co-regulated genes showed substantially higher functional relatedness than randomly 

selected gene pairs. This showed that assumption 1 (described above) was generally fulfilled 

within the gene expression data. 

 

 

6.2.3. Correlated genes are frequently regulated by common TFs 

The next question was if the consequence of assumption 1, i.e. correlated gene pairs 

are co-regulated, could be generalized to describe features of RIs that are useful for machine 

learning. I therefore assigned correlation links between genes with sufficiently high 

correlation. I chose CC=0.6 and FoC=25% as a robust cutoff yielding the most correlation 

links for the highest number of genes while having an FS-score that was still sufficiently 

higher than the FS-score of random gene pairs. For a gene of interest, all genes with a 

correlation link to that gene were defined as its correlation neighbors. I then compared the 

correlation neighbors of genes from True RIs with those of genes from True non-RIs. I found 

that correlation neighbors were generally much more likely to have a True RI with a TF if the 

considered gene also was known to be regulated by that TF (feature 3; see Figure 6.3A). To 

quantify the relevance of this observation, we employed Fisher’s exact test to calculate 

enrichment significances of True RIs among correlation neighbors. In total, we defined six 

features for RIs based on correlation neighbors (features 1-6) and two additional features 

containing the averaged correlation over all conditions (features 9 and 10). All features 

Figure 6.3 | Distributions for True RIs and True non-RIs of two selected features.  
A Frequency distribution of feature 2 True RIs (blue bars) and True non-RIs (green 
bars): the number of correlation neighbors known to be regulated by the corresponding 
TF (True RIs from Transfac). Genes of True RIs had more correlation neighbors 
regulated by the same TF than genes of True non-RIs. B Frequency distribution of 
feature 7: binding motif significance obtained from PWM scans of the gene promoters 
(1kb upstream of the TSS). A –log10 transformation was applied to linearize the 
significance (P-values). Genes with a True RI to a TF contained a significant binding 
motif of the regulating TF more frequently than genes not known to be regulated by the 
TF (True non-RIs). For comparability, counts for True non-RIs were stratified to the 
total number of True RIs in this figure. 
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based on correlation neighbors significantly discriminated True RIs and True non-RIs. Table 

6.1 lists descriptions of the 10 features and their discriminatory power calculated by a 

Wilcoxon-test. 

 

Table 6.1 | Feature descriptions, included data resources, and discriminatory 
significance between True RIs and True non-RIs. 

Index Feature Description 

Feature includes 
Wilcoxon 

test (P) PWM 
scans 

correlation 
neighbors 

median 
correlation 

True RI 
structure 

1 
The number of correlation neighbors 
of the corresponding gene. 

5.1E-03 

2 

The number of correlation neighbors 
(including the corresponding gene) 
which were known to be regulated 
by the corresponding TF (True RIs). 

<4.6E-86 

3 

The -log10(P) in which P was the 
enrichment significance (Fisher test) 
of known regulated genes (True RIs) 
in the correlation neighbors 
(including the corresponding gene) 
compared to all other genes. 

<4.6E-86

4 
The number of correlation neighbors 
with a significant PWM hit of the 
corresponding TF. 

1.5E-50 

5 

The -log10(P) in which P was the 
enrichment significance (Fisher test) 
of PWM-hits of the TF within the 
correlation neighbors including the 
corresponding gene. 

4.6E-86

6 

The number of correlation neighbors 
that were known to be regulated 
(True RIs in the training sets, taken 
from the gold standard) and which 
had a significant PWM hit of the TF. 

<4.6E-86 

7 
The -log10(P) in which P was the 
significance of the (best) PWM hit of 
the corresponding TF. 

<4.6E-86 

8 

The number of genes regulated by 
the TF (True RIs). This feature was 
added to enable differentiation 
between common and specific TFs. 

<4.6E-86 

9 

Select all genes regulated by the 
corresponding TF (True RIs). For 
these genes, calculate the average 
median correlation to the 
corresponding gene of the RI over all 
76 conditions. 

7.2E-55 

10 

Select all genes which were 
putatively not regulated by the 
corresponding TF (True non-RIs). 
Feature 10 was then calculated like 
feature nine. 

1.1E-02 
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6.2.4. Promoters of known target genes contain TFBS enrichments of 

corresponding TFs 

To find putative TFBSs, the promoter of each gene was scanned for known binding 

motifs (using PWMs). I found that True RIs had more often a putative TFBS of the particular 

TF than True non-RIs (feature 7, P<4.6E-86; Table 6.1; Figure 6.3B). This implicated the 

general validity of assumption 2 for the 13 069 investigated genes. In total, we derived four 

features from TFBS predictions (features 4-7). All four features showed highly discriminative 

power distinguishing True RIs from True non-RIs (Table 6.1). 

 

6.2.5. Classifier performance 

A total of 2000 SVMs were trained employing a 20x 100-fold stratified cross-

validation to compensate for the imbalance in numbers between True RIs and True non-RIs. 

The sampling scheme is illustrated in Figure 6.1. Each of the 20 SVM sets from the outer 

cross-validation encompassed 100 SVMs and is denoted “ensemble classifier” in the 

following. The performance of the 20 ensemble classifiers were computed and the average 

used as a performance estimate of the combined classifier, which I designated “regulatory 

interaction predictor” (RIP). I compared the performance of RIP to other methods for 

inferring RIs, including the algorithm for reconstruction of accurate cellular networks 

(ARACNE; [32]), context-likelihood of relatedness (CLR; [26]), two approaches of RI inference 

by means of correlation between TF-coding genes and potential target genes, and RI 

inference by conventional PWM scans (see Figure 6.4 and Publication V, Supplement S3 for 

details). 

 

 

 

Because of the sparsity of links in regulatory networks (many non-RIs), precision (rate 

of true positives out of all positively classified) and recall (true positive discovery rate) are 

Figure 6.4 | Precision versus recall 
curve of RI inferring methods. The 
performance of the RIP classifier was 
compared to that of PWM scans, CLR, 
ARACNE, and correlation-based 
inference (meta: using filtered gene pairs 
with CC and FoC; overall: average 
correlation over all 4064 samples). The 
RIP classifier achieved considerable 
precision and recall, and clearly 
outperformed all compared methods in 
the human data. 
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critical for judging the classifier utility. Notably, RIP obtained good precision levels. At the 

most stringent cutoff, RIP reached maximum precision (44.0%) and a recall of 4.5%. For the 

lowest stringency, the precision decreased to 5% at the highest observed recall (48.4%). The 

recall-precision curve is shown in Figure 6.4. The RIP classifier clearly outperformed the 

other compared methods that did not yield convenient precision levels at any stringency. 

This probably resulted from the assumptions behind those algorithms, which deduce RIs 

from statistics relating TF mRNA expression gradients to that of the target genes. While this 

worked well in lower model organisms used originally by CLR and ARACNE, within the human 

datasets TF mRNA correlated with target gene expression in only 2.2% of True RIs (average 

correlation r≥0.6). Unlike RIP, neither CLR nor ARACNE succeeded in recovering True RIs 

specifically in this wide range of eukaryotic cellular contexts. 

I subsequently analyzed the features of True RIs that were never classified positively 

by RIP and compared them to True RIs that were always classified correctly. More than 50% 

of these misclassified True RIs did not have any significant PWM hits within the promoter 

regions in contrast to >99% of the correctly classified True RIs. This indicates that RIP tends 

to favor regulation mediated by direct binding of TFs to the promoter over indirect effects. It 

is to note that the performance of RIP was estimated rather conservatively. The actual 

number of True RIs is likely to be higher than our estimates based on Transfac entries 

because many RIs have not been discovered so far, and RIP was designed to discover such 

new RIs. 

 

6.2.6. Inferring new RIs 

The training of RIP encompassed a total of 303 TFs and 949 genes. To predict new RIs, 

I calculated the 10 features for all 3 959 907 possible RIs between 303 TFs and an extended 

target gene pool (n=13 069). The RIP master classifier was applied and provided 2000 votes 

(one vote from each SVM) for each candidate RI. Confidence values were assessed from the 

averaged precisions of the 20 ensemble classifiers (see last section). RIP predicted 6073 RIs 

with 44.0% confidence at the most stringent cutoff. At ≥31.5% confidence (≥1600 SVM 

votes; 17.7% recall), it predicted 73 923 RIs for 301 TFs and 11 263 genes, which was a 

sufficient number of RIs with an acceptable portion of true positives, and was thus used for 

further analyses. 

 

6.2.7. Applying the inferred regulatory interactions to a microarray gene 

expression study: identifying TFs responsive to interferon α 

An important application of RIP predictions is the identification of TFs associated with 

observed gene expression profiles. For example, a TF can be associated to a set of 
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differentially expressed genes if predicted TF targets are significantly enriched therein. In a 

study on the effect of the cytokine IFNα on monocytes [85], a gene set of 241 genes showed 

significantly altered expression between samples with and without IFNα induction. We used 

this data as a case study for testing the utility of RIP predictions. Fisher’s exact tests revealed 

over-representation of predicted targets (≥1600 votes) of 13 TFs in the gene set (Table 6.2). 

All these TFs have been described previously in IFNα-induced signaling [86-90]. Predicted 

targets of the heterotrimeric TF-complex interferon stimulated gene factor 3 (ISGF3) were 

most significantly enriched, with 20 out of 28 predicted ISGF3 targets differentially 

expressed (71.4%). ISGF3 is composed of signal transducer and activator of transcription 1 

and 2 (STAT1 and STAT2) and IFN regulatory factor 9 (IRF9). ISGF3 is activated by cytokines 

and inflammatory factors [85] and functions as an IFNα treatment-dependent transactivator 

of IFN-inducible genes [91]. These findings clearly demonstrated the utility of RIP in 

reconstructing regulatory effectors from gene expression profiles. To compare this result to 

a standard method, I used PWM scans at a similar stringency level and predicted RIs with 29 

genes for ISGF3, of which only four were differentially expressed, corroborating the superior 

precision of RIP. 

 

Table 6.2 | Association of predicted TF-modules with differentially expressed 
genes upon IFNα induction in monocytes. 

Transcription 
factor 

Differentially 
expressed 

Module 
size 

% 
Corrected 

P-value 

STAT1:STAT2:IRF9 20 28 71.4 6.95e-23 

IRF1 58 1187 4.9 5.72e-03 

IRF2 15 169 8.9 1.07e-02 

STAT1 67 1513 4.4 1.15e-02 

GAF 3 5 60 1.15e-02 

NFKB1 36 681 5.3 1.59e-02 

STAT3 23 384 6 3.21e-02 

IRF7 4 17 23.5 3.53e-02 

ETS1 48 1065 4.5 3.53e-02 

RELA 37 762 4.9 3.53e-02 

IRF3 4 18 22.2 3.53e-02 

ELF2 3 9 33.3 3.70e-02 

SPI1 24 439 5.5 4.63e-02 

 

Among the genes encoding the 13 TFs associated by RIP predictions, many exhibited 

consistently altered transcription levels, but only one (IRF7) was significantly up-regulated 

upon IFNα induction. This may indicate post-translational regulation of TF activity, which has 

been previously reported for most (if not all) of the 13 TFs (e.g. [87,89,90,92]). Nevertheless, 
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RIP successfully predicted RIs for the affected genes and key TFs that are likely to be missed 

by other methods.  

 

Table 6.3| Associations of predicted TF-modules with KEGG pathways. 

Transcription factors Pathway 

IRF1, IRF2, IRF3, IRF5, IRF7, STAT1, STAT3, NFATC2, NF-GMa, 
NFκB, NFKB1, NFKB1:RELA, RELA, CD28RC, HMGA1, JUN, 
CEBPA, CEBPB 

Cytokine-cytokine receptor interaction 

IRF7, STAT4, STAT1:STAT2:IRF9, CD28RC, NFATC2, NF-GMa, 
POU1F1 

Jak-STAT signaling pathway 

IRF1, IRF3, IRF7, NFκB, RBPJ Toll-like receptor signaling 

NFATC2, NF-GMa Fc epsilon RI signaling pathway 

NF-AT, NFATC2, NF-Gma, SPI1 Hematopoietic cell lineage 

IRF2, NF-AT, NF-AT1 T cell receptor signaling 

ELF1 Natural killer cell mediated cytotoxicity 

IRF1, IRF2, LEF1, XBP1, RFX2, RFX3, RFX5:RFXAP:RFXANK Antigen processing and presentation 

IRF1, XBP1, RFX2, RFX3, RFX5:RFXAP:RFXANK Cell adhesion molecules (CAMs) 

ETS1, STAT1 MAPK signaling pathway 

IRF2, NFKB1:RELA Apoptosis 

SP4 Calcium signaling pathway 

TCF7L2 Wnt signaling pathway 

p53, p73 p53 signaling pathway 

E2F:DP, E2F4, NFYA Cell cycle 

E2F:DP, E2F1:TFDP1/TFDP2, E2F4 DNA replication 

E2F:DP Purine metabolism 

E2F:DP, E2F4 Pyrimidine metabolism 

E2F:DP, E2F1:TFDP1/TFDP2, E2F4 Nucleotide excision repair 

E2F1:TFDP1/TFDP2, E2F4 Mismatch repair 

GATA4, NR5A1 C21-Steroid hormone metabolism 

NR5A1 Androgen and estrogen metabolism 

NR1H4, PPARA:RXRA, RXRA PPAR signaling pathway 

NR1I2, RXRA:NR1I2, RXRA:NR1I3 Retinol metabolism 

NR1I2, RXRA:NR1I2 Linoleic acid metabolism 

HNF1A, NR1I2, RXRA:NR1I2, RXRA:NR1I3 Drug metabolism - cytochrome P450 

HNF1A, NFE2, NR1I2, RXRA:NR1I2, RXRA:NR1I3 Xenobiotics of cytochrome P450 
metabol. FLI1, HNF1B, SMAD3 ECM-receptor interaction 

HNF1B Focal adhesion 

Cell junctions 

NFE2L2 Glutathione metabolism 

NR1H3, SP4 Neuroactive ligand-receptor 
interaction 

RARB 

Non-homologous end-joining 

Proteasome 

Protein export 

Oxidative phosphorylation 
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6.2.8. RIs predicted for a large number of TFs are supported by pathway analysis 

and an independent database 

In the previous section, I described the relevance of RIs predicted by RIP in a specific 

cellular context. To evaluate the validity of predictions on a broader basis, I followed two 

approaches. The first was a pathway analysis. I associated TFs to pathways from the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) by means of over-representation of predicted 

target genes (≥1600 votes) among the pathway genes. The results cover a variety of signaling 

and metabolic pathways and are presented in Table 6.3. Most of the associations have been 

described previously in numerous publications and reflect the biology of the pathways. 

A similar analysis conducted on the original set of True RIs from Transfac further 

confirmed many of the associations, and several potentially novel associations were found 

(bold TF names in Table 6.3). An elaborate description of the results can be found in 

Publication V, in the main text, section 3.8, and in Supplement S5. In summary, key TFs 

involved in the following pathways were found (highlighted in Table 6.3 in colors indicated in 

brackets): 

 

a) Cytokine response and immune system (red). 

b) Cell cycle and proliferation-related signaling pathways (yellow). 

c) Steroid (grey), retinol and drug metabolism (green). 

 

In a second validation approach I compared predicted RIs (≥1600 votes) to known RIs 

of 74 TFs from 25 TF families of the Transcriptional Regulatory Element Database (TRED). 

The procedure and all results are described in Publication V, Supplement S6. In brief, I 

calculated over-representation of TF-modules from TRED (TRED TF-modules) within TF-

modules from the predicted RIs. In 85.4% of the tested TFs, the correct TF family was 

assigned (among the top three hits), and the actual TF was assigned correctly (top three hits) 

in 73.5%. Taken together, these results strongly support the broad functional relevance of 

RIs predicted by RIP, particularly for biological contexts involving the associated pathways 

and TFs tested. 

 

6.2.9. RIP software package 

To provide RIP to the public I implemented an easy-to-apply software package with a 

manual containing application examples for the statistical software R. The package is 

published under GNU general public license ≥2 and freely available for download at 

http://www.ichip.de/software/RIP.html. The RIP-package allows the application of the RIP 

http://www.ichip.de/software/RIP.html
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classifier to predict RIs specific to a single condition as well as to predict RIs common to sets 

of distinct experiments on a genome-wide scale and for 303 TFs. 

 

 

7. Short summaries of main conclusions 

The following paragraphs contain major conclusions from the studies presented 

above and describe how the studies are linked together with respect to the central concept 

of my thesis, i.e. understanding transcriptional gene regulation and development of a new 

method to infer gene regulatory interactions (RIs). For additional discussion, please refer to 

the attached original publications in section 9. 

 

7.1. Neuroblastomas with genomic 11q aberrations fall into two distinct 

subtypes depending on the clinical outcome: a revised model of for tumorigenesis 

(Publication I) 

In a model outlined by Brodeur [1], neuroblastomas fall into two different subtypes: 

Type 1 tumors exhibit numerous CNAs and have the ability to regress spontaneously or to 

differentiate into benign ganglioneuroma, whereas type 2 tumors follow an aggressive 

clinical course and are mainly characterized by either MYCN amplification (type 2A) or loss of 

11q (type 2B). In this work, we combined clinical data with gene expression profiling, 

cytogenetic and epigenetic analyses to investigate if tumors with 11q CNAs formed a distinct 

clinico-genetic subgroup. 

We found that neuroblastomas with 11q CNAs are actually divided into two 

subgroups with different phenotypes and global gene expression patterns. When compared 

to tumors without 11q CNAs, surprisingly, there was no contrast between the gene 

expression profiles of favorable neuroblastomas with and without 11q CNAs. On the 

contrary, global gene expression of neuroblastomas with unfavorable phenotype and 11q 

CNAs deviated much from unfavorable neuroblastomas with normal 11q karyotype. We 

realized that loss of 11q affects the expression of genes located on 11q only in 

neuroblastomas with adverse outcome. In favorable tumors, the events leading to such 

changes in gene expression are apparently compensated by a yet unknown molecular 

mechanism. This led us to conclude that loss of 11q is insufficient to change gene expression 

in neuroblastomas that are characteristic of an aggressive phenotype. Instead, the events 

causing malignant transformation of neuroblastomas are likely to occur previously to the 

acquisition of loss of 11q and possibly other CNAs (see Figure 7.1). Further in line with our 

modified model is the fact that favorable phenotypes with low primary risk hardly ever turn 

unfavorable [1]. In unfavorable neuroblastomas, 11q CNAs contribute specific properties to 
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Taken  from Publication I
(Fischer et al., 2010)

the phenotype that stick out on the gene expression level. Yet we observed a large overlap 

of differentially expressed genes between unfavorable and favorable phenotypes regardless 

of the 11q status which indicates a common mechanism of tumorigenesis in these distinct 

phenotypes. 

In general, our study demonstrated that the occurrence of a prognostically important 

genomic CNA does not necessarily imply a homogeneous clinico-genetic subgroup, and 

illustrates how integration of data comprising several different aspects can lead to a revised 

tumorigenesis model. 

 

 

As gene expression levels of genes located on 11q are apparently not only affected by 

corresponding 11q CNAs, other transcriptional regulatory effects must be responsible for the 

transcriptional differences between neuroblastoma subtypes with different outcome. We 

found evidence that these changes are not due to epigenetic modifications of genomic DNA, 

therefore a significant role of TFs as key regulators that mediate the distinct gene expression 

Figure 7.1 | Revised model of neuroblastoma tumorigenesis modified according to 
Brodeur [1]. In the early steps of tumorigenesis, clinical and biological phenotypes are 
formed with distinct gene expression patterns. Structural genomic alterations occur 
during later course and are more frequent in unfavorable neuroblastoma, where they 
may contribute to specific properties of the tumors. In the favorable subgroup, genomic 
alterations occur occasionally only and remain silent events. Amplification of MYCN may 
represent an early event of tumorigenesis as an exception. 
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profiles is a likely scenario that needs further exploration. We were able to show the impact 

of CAMTA1, as well as MYC and MYCN (even in MYCN non-amplified neuroblastomas) in 

follow-up studies (see next paragraphs), but it is likely that there exist even more 

components in neuroblastoma regulatory networks that need to be considered when 

deciphering neuroblastoma tumorigenesis. 

Essentially, malignant transformation of neuroblastomas in combination with 11q 

CNA has a strong impact that is reflected by differential gene expression levels, so the gene 

expression data must conceal the required information to a considerable extent. With 

regard to understanding gene RIs, I concluded that a method delivering TF candidates with 

high stringency is urgently required, but for this additional experiments covering other 

aspects of gene regulation were mandatory. 

 

7.2. CAMTA1 TF acts as a tumor suppressor in neuroblastomas and affects cell 

cycle progression and neuronal differentiation (Publication II) 

CAMTA1 is constantly expressed at lower levels in aggressive neuroblastomas 

compared to more benign phenotypes and constitutes a prognostic marker of poor 

outcome. From this we concluded that down-regulation of CAMTA1 grants malignant 

neuroblastoma cells a selective advantage which may be reversed by re-expression of 

CAMTA1. We found experimentally that induction of CAMTA1 in human neuroblastoma cell 

lines with low endogenous CAMTA1 expression impairs colony formation and reduces 

growth rates, and leads to reduced tumor size in in vivo mouse models. 

The considerably high expression levels of CAMTA1 in favorable neuroblastomas of 

stage 1, 2, and 4S indicated that CAMTA1 acts as a tumor suppressor gene. Time-series gene 

expression profiles of neuroblastoma cell lines were employed to test this hypothesis. I 

extrapolated genes affected by induction of CAMTA1 with a modified gene filtering approach 

prior to clustering. This approach identified subsets of genes with different gene expression 

profiles in response to CAMTA1 induction. Two of five identified clusters were up-regulated 

either constantly or transiently whereas another cluster exhibited constantly decreasing 

gene expression levels upon CAMTA1 induction (in comparison to the non-induced control). 

Furthermore, a GO term enrichment analysis revealed several functional attributes of genes 

from individual clusters that fit well with the proposed role of CAMTA1, particularly in 

neuron differentiation and cell cycle control. In turn, these findings were confirmed in a 

subsequent quantitative gene expression analysis of five CAMTA1-regulated genes with 

specific GO annotations in an independent neuroblastoma cell line. 

Intracellular Ca2+ levels show pleiotropic effects in neuron differentiation and Ca2+ 

influx can induce neuritic outgrowth of neuroblastoma cell lines [93]. CAMTA1 responds to 
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Ca2+ signaling by binding of calmodulin. The GO term analyses further suggested that 

CAMTA1 affects neuronal differentiation both by integrating and mediating Ca2+ signaling.  

As a tumor suppressor candidate, CAMTA1 may provide a good therapeutic target 

and deserves more attention in research of strategies to treat malignant neuroblastomas. 

Finally, gene expression profiling proved to be a valuable technique to deduct 

properties of a TF and correlated (and co-regulated) target genes. In my main project, I used 

these principles to reconstruct RIs on a large-scale. Nevertheless, in order to distinguish 

between background noise contained in the gene expression data, and generally valid RIs, I 

needed to incorporate both numerous sets of gene expression profiles from different 

conditions and an independent source for evidence of putative RIs into my approach to RI 

reconstruction. 

 

7.3. MYC and MYCN affect distinct gene expression profiles in different 

neuroblastoma subtypes without MYCN amplification (Publication III) 

MYCN amplification is an established marker of poor outcome in neuroblastoma: It is 

associated with malignant progression and tumorigenesis. Furthermore, MYCN expression 

frequently correlates inversely to MYC expression. Our findings implicate that MYC and 

MYCN also play an active part in neuroblastomas without MYCN amplification, particularly in 

stage 4-NA, but also in stage 4S-NA. We were able to define a core set of putative 

MYC/MYCN-regulated target genes by gene expression profiling. Our findings suggest both 

mutual and distinct roles of MYC and MYCN as putative key transcriptional regulators in 

several malignant neuroblastoma subtypes without MYCN amplification. To this end, 

exclusive or cumulative mechanisms of action come into consideration, depending on the 

observed expression levels of MYC and MYCN and their target genes with respect to the 

corresponding subtype. 

In pursue of the working hypothesis, I applied bioinformatics methods for predicting 

TFBSs in DNA sequences and established an approach for identifying over-represented TFBSs 

in promoters of a gene set. This approach is applicable to a large number of TFs with known 

binding motifs and holds a great potential to identify key TFs in any condition where gene 

expression profiling can be conducted, e .g. in cancer research. 

In this study [64], the results from our analyses were further validated by ChIP 

experiments. The defined MYCN/MYC target gene set served as an indicator of MYC/MYCN 

activity in neuroblastoma subtypes. We observed a considerable induction of the target 

gene set in stage 4-NA and linked it to MYC activity. To a lesser extent, the targets were 

induced by MYCN in stage 4S-NA tumors. We concluded therefore that MYC is a stronger 

transactivator in stage 4-NA tumors than MYCN in stage 4S-NA, which may be related to the 

more favorable nature of the ladder subtype and is in line with the antagonistic roles 
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described for MYCN in tumorigenesis and apoptosis. Additionally, high expression levels of 

MYC/MYCN target genes were associated with poor outcome of neuroblastoma patients 

with and without adjustment for co-variables. 

 

7.4. The Rage-dependent regulatory network in a tumor-promoting 

inflammatory context (Publication IV) 

In essence, we were able to further dissect how Rage signaling affects long-term 

dynamics of gene regulation involved in inflammation and potentially in carcinogenesis. We 

were able to identify target genes of Rage signaling and predicted potent mediators of the 

signal on the TF level. Furthermore, we proposed different transcriptional regulators for 

Rage-responsive clusters with distinct dynamic gene expression profiles, and thereby 

provided key components for a core model of Rage signaling. 

This project exemplified the benefits of iterative application of wet lab experiments 

and bioinformatics analyses. My in silico analyses provided candidate TFs (E2f, Sp1, Sp4, 

Hnf4, Mazr, CAC-bp, and Wt1) controlling Rage-dependent transcriptional changes in murine 

keratinocytes, and these candidates were subsequently validated in vivo as components of 

the regulatory network affected by Rage signaling.  

The successful application of genome-wide PWM scans was substantial for this work 

and provided a solid basis for prediction of transcriptional regulation. We improved these 

predictions for general application by in-depth analyses and reconstruction of regulatory 

networks. In the context of Rage signaling, we were able to confirm the principle that genes 

that are affected transcriptionally by certain TFs contain enrichments of regulatory 

sequences in a region adjacent to the TSS that can be detected by binding motif scans. In 

combination with gene expression profiling, such results provide independent and unbiased 

evidence that can be used to deduce RIs between TFs and potential target genes. 

We further demonstrated that the identification of key TFs provides meaningful 

hypotheses for the understanding of cellular systems that can be tested directly in follow-up 

experiments. 

 

7.5. RIP – a powerful tool to predict regulatory interactions with multiple 

applications (Publication V) 

We developed the regulatory interaction predictor (RIP), a novel machine learning 

approach to predict gene regulation on a genome-wide scale. The predictions resulted from 

experiments spanning a wide range of biological conditions and can be applied to more 

specific conditions as well. The RIP classifier reached considerably high precision and recall 

and outperformed other comparable methods. 
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RIP predicted 6073 RIs at 44.0% confidence and 73 923 RIs at ≥31.5% confidence. 

These figures appear reasonable considering the dimensions of the input (949 genes with 

2896 known RIs) in relation the number of candidate genes (13 069), and a large number of 

predicted RIs proved to be valuable in various applications. 

I established a comprehensive promoter analysis that supports the prediction of TFBS 

and TFs potentially regulating a set of genes. I critically assessed the validity of several 

assumptions that need to be considered for regulatory network reconstruction. I confirmed 

that cooperation in specific biological functions is reflected by (frequent yet condition-

specific) correlation of co-regulated genes. Furthermore, I showed that correlation meta-

analysis can be used efficiently to improve the prediction of general and condition-specific 

co-regulation of genes by applying correlation filters. Additionally, I found that TF mRNA 

gradients do not correlate to mRNA gradients of their target genes in a wide range of 

experimental conditions. 

We succeeded in transferring the described relationships of gene regulation into 

quantifiable features to infer gene regulation. I found that these features distinguished True 

RIs from True non-RIs. Subsequently, I trained SVMs to predict novel RIs by combining 

descriptors of 1) a correlation meta-analysis of 4064 gene expression profiles from 76 

different experiments and conditions, 2) TFBS predictions from PWM scans, and 3) 

association of co-regulation, correlation and TFBS predictions employing a set of known RIs 

from Transfac database. 

RIs predicted by RIP effectively identified key regulators of IFNα signaling, TFs that 

are associated with pathways, and a considerable portion of RIs from an independent 

database (TRED). 

The algorithm behind RIP is generic and can easily be extended by other TFs, for 

which a PWM, and (favorably but not necessarily) a set of target genes is available. The 

method can be transferred and applied to predict RIs for other species than human. 

Furthermore, the features may even be modified and improved in future versions of the 

classifier. 

The presented RIP classifier is available to the public as a software package and offers 

a wide range of applications for gene expression analyses, such as identification of key TFs 

and pathways involved in the pathology and changed function of the investigated cells. 

RIP has the potential to fill gaps in the understanding of regulatory networks of 

cancer entities like neuroblastomas. 

My aim in the future is to apply RIP to define key TFs of various tumor types and gain 

a better mechanistic insight into their pathogenesis. Additionally, I want to further improve 

the algorithm and evaluate its potential in reconstructing condition-specific RIs, and to tune 

it to deliver stringent predictions with such high precision that individual RIs can be 
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considered in models of carcinogenesis and other experiments. Finally, genomic deep 

sequencing approaches, high-throughput protein data, and high content DNA methylation 

analyses are promising technical developments that I want to employ to extend our method. 
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Integrated genomic profiling identifies two distinct molecular subtypes with

divergent outcome in neuroblastoma with loss of chromosome 11q
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Imbalances in chromosome 11q occur in approximately
30% of primary neuroblastoma and are associated with
poor outcome. It has been suggested that 11q loss
constitutes a distinct clinico-genetic neuroblastoma sub-
group by affecting expression levels of corresponding
genes. This study analysed the relationship of 11q loss,
clinical phenotype and global transcriptomic profiles in
four clinico-genetic subgroups (11q alteration/favourable
outcome, n¼ 7; 11q alteration/unfavourable outcome,
n¼ 14; no 11q alteration/favourable outcome, n¼ 81; no
11q alteration/unfavourable outcome, n¼ 8; tumours with
MYCN amplification and/or 1p loss were excluded).
Unsupervised and supervised comparisons of gene expres-
sion profiles consistently showed significantly different
mRNA patterns between favourable and unfavourable
neuroblastomas, both in the subgroups with and without
11q loss. In contrast, favourable tumours with and without
11q loss showed highly similar transcriptomic profiles.
Disproportionate downregulation of 11q genes was
observed only in unfavourable tumours with 11q loss.
The diverging molecular profiles were neither caused by
considerable differences in the size of the deleted regions
nor by differential methylation patterns of 11q genes.
Together, this study shows that neuroblastoma with 11q
loss comprises two biological subgroups that differ both in
their clinical phenotype and gene expression patterns,
indicating that 11q loss is not a primary determinant of
neuroblastoma tumour behaviour.
Oncogene (2010) 29, 865–875; doi:10.1038/onc.2009.390;
published online 9 November 2009

Keywords: neuroblastoma; integrative genomics; loss of
11q; gene expression; outcome; cancer

Introduction

Human cancer genomes are characterized by multiple
genetic aberrations and epigenetic modifications.
Recurrent DNA copy number alterations (CNA)
in malignant cells are thought to be critical events in
human tumourigenesis, and have been suggested
to determine the biological phenotype of the tumour
by changing the expression of cancer genes located at
the affected sites. The effects of oncogene amplification
on mRNA expression levels have been well character-
ized in various entities and serve as a paradigm for a
direct relationship of gene dosage and expression levels
in cancer (Savelyeva and Schwab, 2001). However, the
influence of low-level copy number gains (ofivefold
change) and hemizygous losses of large genomic regions
on expression levels of the corresponding genes and the
global transcriptome is less clear, and its delineation has
remained a challenge of cancer research.

In neuroblastoma, several non-random genomic
alterations have been described to be closely associated
with distinct phenotypes of the disease (reviewed in
Fischer et al., 2008). This paediatric tumour may
therefore represent a valuable model to analyse the
interactions of CNA and transcriptomic aberrations.
A hallmark of neuroblastoma is its biological and
clinical heterogeneity, ranging from spontaneous regres-
sion of the tumour to relentless progression with fatal
outcome of the patients. At diagnosis, these two
contrasting subtypes can be largely distinguished by
specific chromosomal alterations. Amplification of the
oncogene MYCN occurs in B20% of neuroblastomas
and is strongly associated with a poor prognosis. More
recently, loss of 11q has been reported to be highly
correlated with an adverse patients’ outcome (Attiyeh
et al., 2005; Spitz et al., 2006a), and has thus been
proposed as a stratifying prognostic marker in the
International Neuroblastoma Risk Group classification
system (Cohn et al., 2009) as well as in the upcoming
clinical trial of the Children’s Oncology Group (Maris
et al., 2007). As 11q CNA and MYCN amplification are
inversely correlated in neuroblastoma, these two geno-
mic alterations have been suggested to delineate two
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molecularly distinct subgroups (Brodeur, 2003; Bilke
et al., 2005). In contrast, the majority of favourable
neuroblastomas lack structural genomic aberrations but
show numerical variations of whole chromosomes (Spitz
et al., 2006b; Janoueix-Lerosey et al., 2009). In addition
to genomic alterations, the divergent biological and
clinical neuroblastoma subtypes show distinct gene
expression profiles (reviewed in Fischer et al., 2008). In
a previous study, we have described a prognostic 144-
gene expression classifier for neuroblastoma patients
using the prediction analysis for microarrays algorithm
(PAM) that predicts outcome of neuroblastoma patients
with high accuracy (Oberthuer et al., 2006).

Together, there is convincing evidence today that
both genomic and transcriptomic alterations are asso-
ciated with the diverging clinical phenotypes of neuro-
blastoma. However, whereas the effect of MYCN
amplification on the transcriptome has been well
characterized (Boon et al., 2001; Alaminos et al., 2003;
Westermann et al., 2008), little is known about the
interactions of gains or deletions of large genomic
regions and gene expression patterns in neuroblastoma.
In this study, we aimed to determine the effect of 11q
loss on global gene expression patterns and clinical
phenotypes in neuroblastoma. For this purpose, we used
various bioinformatics strategies in an integrative
genomics approach, for which we considered clinical
information of neuroblastoma patients as well as whole
genome expression profiles, cytogenetic characteristics
and promoter methylation data of the tumours.

Results

Gene expression-based classification identifies two
prognostically distinct subgroups of neuroblastoma
patients with loss of 11q
To determine the predictive power of our previously
defined 144-gene expression-based PAM classifier
(Oberthuer et al., 2006) in the subset of neuroblastoma
with loss of 11q, 61 tumours that had not been included
in the original training set and that showed a CNA at
11q were analysed. The PAM classifier predicted 20
patients to be favourable and 41 patients to be
unfavourable. Event-free and overall survival of patients
with favourable PAM prediction were significantly better
than those with an unfavourable prediction (event-free
survival at 5 years, 0.79±0.09 vs 0.27±0.09, P¼ 0.001;
overall survival at 5 years, 0.95±0.05 vs 0.64±0.09,
P¼ 0.013; Figures 1a and b). After exclusion of patients
with MYCN amplification (n¼ 6) from the analysis, the
event-free survival of PAM favourable and unfavourable
tumours was still significantly different (0.79±0.09 vs
0.31±0.10 at 5 years, P¼ 0.005, Figure 1c), whereas
there was a trend towards a significantly differing overall
survival (0.95±0.05 vs 0.75±0.09 at 5 years, P¼ 0.061,
Figure 1d). These data strongly suggest that neuroblas-
toma with loss of 11q comprises two distinct subsets with
different clinical courses, which is mirrored by distinct
gene expression patterns.

Global gene expression patterns differ in favourable and
unfavourable neuroblastomas with loss of 11q
We next analysed the relationship of clinical pheno-
types, 11q aberrations and global gene expression
patterns of the tumours. For this purpose, four
neuroblastoma subgroups were defined according to
11q status (normal vs deletion/imbalance as determined
using fluorescence in situ hybridization (FISH)) and the
outcome of patients (event-free survivors for at least 2
years without any cytotoxic treatment vs metastatic or
multiple loco-regional progression/relapse or death of
disease). These clinical parameters were chosen to avoid
biased results elicited by possible treatment influences
on the natural courses of the disease. Tumours showing
MYCN amplification and/or loss of 1p were excluded
from the study because of their known or potential
effect on gene expression profiles and the outcome of
patients. According to these criteria, a total of 110
samples were selected from the cohort of our previous
study (Oberthuer et al., 2006).

At first, we applied unsupervised algorithm methods
(principal component analysis and hierarchical cluster-
ing of unfiltered gene expression data) to determine the
effects of the clinical phenotype and the 11q status on
gene expression profiles independently of the clinico-
genetic classification. Both principal component analysis
and hierarchical clustering revealed that tumours group
primarily according to their clinical phenotype
(Figures 2a and b). Most notably, favourable tumours
with 11q loss (del11q_fav) did not associate with
unfavourable tumours with 11q loss (del11q_unfav)
but with favourable tumours without 11q loss (normal_-
fav). A discriminatory effect of 11q CNA was observed
only within the subgroup of unfavourable tumours, but
not within the subgroup of favourable tumours.
Unfavourable tumours without 11q loss (normal_unfav)
were more associated with del11q_unfav than with
normal_fav samples but did not build a delimited cluster
on their own.

We next aimed to objectify these observations in a
supervised analysis approach. Every subgroup was
compared with each other by applying a method termed
analysis of centroid distances, which is suitable to
measure differences in overall gene expression patterns
(Classen et al., 2007). We calculated the pairwise
Euclidean distances between all possible pairs of
subgroups and determined their significance using
permutation analysis. Highly significant differences
(Po0.001 for each comparison, Figure 3) were observed
between all groups except for the pair del11q_fav versus
normal_fav (P¼ 0.19). This finding corroborates the
results of the unsupervised analyses, suggesting that
favourable neuroblastomas with and without 11q loss
do not differ in their overall gene expression profiles.

Identification of genes that are differentially expressed
between clinico-genetic neuroblastoma subgroups
To identify genes that are differentially expressed
between the clinico-genetic subgroups, we performed
significance analysis of microarrays (SAM; Table 1 and
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Supplementary Table 3) and analysis of variance
(ANOVA). In line with our above mentioned observa-
tions, only two and three genes were differentially
expressed between favourable tumours with and without
11q loss by SAM and ANOVA, respectively (Po0.05
each). In contrast, expression profiles of favourable and
unfavourable tumours with loss of 11q differed in 282
and 227 transcripts using SAM and ANOVA, respec-
tively. Comparison of favourable versus unfavourable
tumours without 11q aberrations revealed the largest
number of differentially expressed genes (1187 and 322
transcripts as determined using SAM and ANOVA,
respectively). In the cohort of tumours from patients
with unfavourable outcome, subgroups with and with-
out loss of 11q differed by 64 and 69 genes using SAM
and ANOVA, respectively.

On the basis of the SAM results, we next determined
whether unfavourable tumours with and without 11q
aberrations shared common features of gene expression
in comparison with their favourable counterparts
that may define their malignant phenotype. We observed
100 transcripts with a common differential expres-
sion between the subgroups normal_unfav versus
normal_fav and del11q_unfav versus del11q_fav, corre-
sponding to 35% of the mRNAs differing between the

latter subtypes (Supplementary Figure 1a and Supple-
mentary Table 4A). It is noteworthy that all of these
genes were regulated in the same direction in both
comparisons, indicating their biological relevance in
malignant progression of neuroblastoma. With one
exception (HIST1H1C), all transcripts had lower
expression levels in the unfavourable tumours. Among
these mRNAs, genes were detected that have been
described to be differentially regulated in benign and
adverse neuroblastoma previously, such as FYN (Ber-
wanger et al., 2002), MAP7 (Fischer et al., 2006;
Oberthuer et al., 2006) and CAMTA1 (Henrich et al.,
2006). These data suggest that common mechanisms
drive the malignant phenotype in both unfavourable
neuroblastomas with and without 11q CNA.

We then asked whether expression levels of genes
located on 11q were preferentially affected by loss of this
chromosomal region using the SAM data (Table 1 and
Supplementary Table 3). The two genes that were
differentially expressed between del11q_fav and nor-
mal_fav tumours were not located on chromosome 11q.
In contrast, 27 of the 64 mRNAs (42%) that were
differentially expressed between unfavourable neuro-
blastomas with and without loss of 11q were located on
11q, which is a significant enrichment of genes at this
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Figure 1 Kaplan–Meier estimates for event-free survival (EFS) and overall survival (OS) of neuroblastoma patients with 11q
aberrations according to the prognostic prediction analysis for microarrays (PAM) gene signature in the whole cohort (n¼ 61, a and b,
respectively) and after exclusion of MYCN amplified tumours (n¼ 55, c and d, respectively). Blue, favourable PAM prediction; red,
unfavourable PAM prediction. A full colour version of this figure is available at the Oncogene journal online.
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chromosomal region (Po10�18). As expected, most of
these transcripts were downregulated in tumours of the
del11q_unfav subgroup (24/27 genes). Comparison of
del11q_fav and del11q_unfav tumours revealed 10/282
genes that were located on 11q (P¼ 0.40), whereas
comparison of normal_fav and normal_unfav tumours
revealed an under-representation of genes located on
11q (38/1187 genes, P¼ 0.01). These results indicate that
loss of 11q affects the expression of genes located at this
region, but only in neuroblastoma with an unfavourable
phenotype.

We finally examined the number of genes that were
differentially expressed between del11q_unfav and

normal_fav tumours. The number of transcripts that
were differentially expressed between these diametrically
opposed subgroups was high (2470 genes), and sig-
nificantly enriched for genes located on 11q (176 genes,
7%; Po10�5). We then determined the overlap of
mRNAs that were differentially expressed between these
subgroups and between the del11q_unfav versus
del11q_fav tumours. If the latter tumours formed a
homogeneous subgroup with normal_fav tumours, one
would expect a large overlap of genes in these two
comparisons. Indeed, 95% (269/282) of the genes of the
comparison of del11q_unfav versus del11q_fav tumours
were found in both analyses, all of which were regulated
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Figure 2 Principal component analysis plot (a), and hierarchical clustering of unfiltered gene expression data (b) of favourable and
unfavourable neuroblastomas with and without 11q aberrations. For hierarchical clustering, Pearson’s correlation and average linkage
were used.
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in the same direction (Supplementary Figure 1b and
Supplementary Table 4B). Similarly, a large number of
commonly regulated genes (51/64 genes, 80%) was
found when the overlap of the comparisons normal_fav
versus del11q_unfav and normal_unfav versus del11-
q_unfav was determined (Supplementary Figure 1c and
Supplementary Table 4C). Notably, genes located on
11q were consistently downregulated in del11q_unfav in
comparison with both normal_unfav and normal_fav
tumours, supporting the hypothesis that 11q loss does
affect the expression of corresponding genes in unfa-
vourable neuroblastoma.

Genomic aberrations at 11q comprise large chromosomal
regions in both favourable and unfavourable
neuroblastoma
To rule out the possibility that our findings were
influenced by substantial differences in the size of 11q

alterations, we performed array-based comparative
genomic hybridization (aCGH) of those tumours with
loss of 11q for which DNA was available (del11q_unfav,
n¼ 10; del11q_fav, n¼ 6). Apart from an interstitial
53.3-Mb deletion of one tumour of the del11q_unfav
subgroup (NB327), all aberrations represented large
terminal deletions. Breakpoints clustered in two regions
at 70–72 and 77–84Mb, as reported previously (Stallings
et al., 2006; Spitz et al., 2006b). In the del11q_unfav
subgroup, loss of terminal genomic material ranged
from 54.8 to 64.0Mb (62.2Mb on average), whereas it
ranged from 49.9 to 64.1Mb in del11q_fav tumours
(55.7Mb on average, Figure 4a and Supplementary
Table 5). In one case of the latter subgroup (NB062),
only a weak decrease in the signal strength at 11q could
be detected by aCGH, which was probably due to a
mosaicism of approximately 50% diploid cells without
11q aberrations and 50% triploid cells with one deleted
and two intact copies of 11q in this sample. It is to be
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version of this figure is available at the Oncogene journal online.

Table 1 Differentially expressed genes as determined by pairwise comparison of neuroblastoma subgroups using significance analysis of
microarrays (SAM)

Normal_fav vs
normal_unfav

Normal_fav
vs del11q_fav

Normal_unfav
vs del11q_unfav

del11q_fav
vs del11q_unfav

SAM 1187 genes 2 genes 64 genes 282 genes
Genes on 11q 38 (3%) 0 27 (42%) 10 (4%)
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noted that although deletions at 11q in the subgroup of
del11q_unfav tumours were slightly larger on average
than those of the del11q_fav subgroup, the largest
terminal deletion of the whole cohort was observed in a
del11q_fav tumour. These results argue against a
significant influence of the size of the deleted region in
determining the clinical phenotype of the tumour.

In addition to 11q aberrations, almost all tumours of
both the del11q_fav and the del11q_unfav subgroup
were characterized by large 17q gains (Supplementary
Table 5). These genomic alterations ranged from 41.2 to
56.1Mb in the favourable subgroup (49.9Mb on
average), and from 39.6 to 55Mb in the unfavourable
subgroup (46.7Mb on average). At a lower frequency, a
gain of 17q was also found in tumours of both
subgroups without 11q CNA (3/19 of normal_fav
tumours and 2/5 of normal_unfav tumours). These data
may indicate that a gain of 17q does not have an effect

in addition to 11q loss on the determination of the
clinical phenotype or on the gene expression profile of
the tumour.

Promoter regions of differentially expressed genes
located on 11q do not differ in their methylation
status in clinico-genetic subgroups
To determine whether epigenetic regulation by promoter
hypermethylation might contribute to the specific gene
expression profile of unfavourable neuroblastomas with
loss of 11q, we finally analysed the methylation status of
promoter regions from genes that were found to be
downregulated in this subgroup. For this purpose, we
selected 10 genes located at 11q, six of which had
diminished expression levels in del11q_unfav in compar-
ison with normal_unfav tumours, and four of which had
lower mRNA levels in del11q_unfav in comparison with

del11q_fav del11q_unfav

CpG units

tu
m

o
r 

sa
m

p
le

s
del11q_fav

del11q_unfav

normal_fav

normal_unfav

Figure 4 Schematic representation of deleted genomic regions at 11q in the del11q_fav and the del11q_unfav subgroups as determined
using array-based comparative genomic hybridization (aCGH) (a). Case NB062, in which only a weak decrease in the signal strength at
11q was detected, is indicated by a grey bar. Hierarchical clustering of methylation ratios (b). A total of 425 CpG units of 10 genes
located on 11q were analysed in 16 tumour samples (four of each subgroup). DNA-methylation values are indicated by colours ranging
from dark red (non-methylated) to bright yellow (100% methylated). Poor-quality data are indicated in grey. A histogram is given in
the inset that indicates the frequency of each colour in the hierarchical cluster analysis of this figure. For hierarchical clustering,
Euclidian distance and complete linkage were used.
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del11q_fav tumours (Supplementary Table 6). In all, 22
genomic regions, ranging from 300 to 500 bp (median
length, 432 bp), were analysed in four tumours of each
subgroup (Supplementary Table 1), and the methylation
status of 425 CpG units was determined. In total, a
strikingly homogeneous methylation pattern was ob-
served in tumours of all subgroups, as indicated by an
unsupervised hierarchical cluster analysis (Figure 4b).
The largest methylation differences were found in a
region approximately 600 bp upstream of the DLG2
transcription start site, in which methylation ratios of
four CpG units varied between 20 and 60%. In the
remaining regions, methylation ratios did not differ
considerably apart from outlying values of single CpG
units. Although these results do not exclude the
possibility that methylation of specific genes at 11q
may contribute to the determination of the neuroblas-
toma phenotype, they indicate that the downregulation
of multiple genes at 11q in del11q_unfav neuroblastoma
does not result from global differences in CpG
methylation patterns.

Discussion

Cancer genomes are characterized by numerous altera-
tions including low-level copy number gains and losses
of large chromosomal regions. Recurrent genomic CNA
are thought to define distinct tumour subsets and
contribute to tumourigenesis by affecting the expression
of cancer genes. To identify such genes, transcriptomic
patterns of tumours with and without the respective
alterations have been compared in several studies. In
most of these, the CNA under investigation were found
to correlate with de-regulated gene expression of both
the corresponding genes and global gene expression
profiles (Pollack et al., 2002; Nigro et al., 2005; Chen
et al., 2007; Yoshimoto et al., 2007; Gallegos Ruiz et al.,
2008; Potter et al., 2008). However, other studies did not
observe such correlations between CNA and gene
expression patterns (Platzer et al., 2002; Huang et al.,
2006). These heterogeneous results may be explained not
only by the divergent biological behaviour of different
malignancies in these studies, but also by the methodical
difficulty to integrate CNA spanning hundreds of genes
and the corresponding gene expression patterns in small
tumour cohorts.

In neuroblastoma, loss of large genomic regions at
11q occurs in roughly 30% of the tumours and is
associated with an unfavourable clinical outcome. To
evaluate the hypothesis that tumours with 11q CNA
form a distinct clinico-genetic subgroup and to examine
the effect of this genomic alteration on the transcrip-
tome in vivo, we integrated clinical information,
cytogenetic characteristics, gene expression profiles and
promoter methylation data of neuroblastomas with and
without loss of 11q. Classification of 61 neuroblastomas
with 11q loss by our previously defined gene expression-
based classifier (Oberthuer et al., 2006) reliably distin-
guished tumours from patients with favourable and

unfavourable outcome, suggesting that tumours with
11q CNA do not represent a homogeneous clinico-
genetic subgroup of neuroblastoma. We next performed
a more global assessment of the interactions of 11q
CNA, gene expression patterns and the clinical pheno-
type by analysing four clinico-genetic subgroups defined
according to the presence or absence of 11q CNA and
the clinical outcome of the patients. Using both
unsupervised and supervised analyses, it was shown
that neuroblastoma with loss of 11q comprises two
distinct subgroups that differ both in their clinical
phenotype and their gene expression profile. Surpris-
ingly, the gene expression profiles of tumours with 11q
CNA from patients with a favourable disease did not
deviate from benign tumours without 11q CNA. In
contrast, unfavourable tumours with loss of 11q seem to
constitute a specific subgroup and show downregulation
of genes located at 11q in comparison with neuroblas-
toma without 11q CNA. Promoter methylation patterns
of 10 genes showing downregulated expression in
unfavourable tumours with 11q loss did not differ
significantly among the four clinico-genetic subgroups.
Together, these findings strongly suggest that 11q loss
affects the expression levels of multiple corresponding
genes in vivo in adverse neuroblastoma. In favourable
neuroblastoma, however, the molecular effects of 11q
loss are obviously compensated by yet unknown
mechanisms.

As imbalances in 11q (that is, at least two intact
copies of chromosome 11 but additional deleted copies)
were present only in the subgroup of favourable
neuroblastoma, one might suggest that these tumours
may represent a more benign clinico-genetic subgroup in
comparison with tumours with 11q deletions, and that
the observed differences might be attributed to a less
pronounced gene dosage effect. It has, however, been
shown that patients with imbalances and patients with
deletions of 11q do not differ in their clinical courses
(Spitz et al., 2006a). In addition, 3/7 tumours within the
favourable subgroup with 11q loss showed hemizygous
deletions at this genomic site, which clearly shows that
our observations do not merely reflect different trans-
criptomic effects of either imbalances or deletions.

Current models of neuroblastoma pathogenesis pro-
pose two biologically different subtypes of the disease,
based on the presence of recurrent CNA (Brodeur,
2003): type 1 describes neuroblastoma with the capacity
to spontaneously regress or to differentiate into benign
ganglioneuroma and is characterized by numerical
chromosomal alterations, whereas type 2 tumours
follow an aggressive clinical course, and are further
separated into two subtypes, 2A and 2B. Whereas type
2B is defined by an amplification of the oncogene
MYCN, type 2A is mainly characterized by loss of
chromosome 11q. According to this model, the pheno-
type of type 2A is conferred by 11q CNA, which has
been suggested to downregulate the expression levels of
one or multiple tumour suppressor genes in this region
by haploinsufficiency or complex multigene repression
mechanisms (Bilke et al., 2005; Maris et al., 2007;
Stallings, 2007). This hypothesis has been substantiated
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by several studies that concurrently reported that loss of
11q affects the expression levels of multiple correspond-
ing genes (McArdle et al., 2004; Wang et al., 2006;
Lastowska et al., 2007; Mosse et al., 2007). However, the
sample numbers of these analyses were medium sized at
most (n¼ 22 – n¼ 101), and in some of these, the data
sets were dichotomized according to the cytogenetic
aberrations under investigation, which renders the
identification of subsets within a CNA-defined subgroup
impossible. Notably, McArdle et al. (McArdle et al.,
2004) observed that two low-stage tumours with loss of
11q grouped together with hyperdiploid low-stage
tumours in a hierarchical cluster analysis. The research-
ers concluded from their data that loss of 11q (and gain
of 17q) may be insufficient events to lead to a global
gene expression profile indicative of aggressive stage 4
tumours, which is well in line with the results of our
study.

In this study, we provide strong evidence that loss of
11q does not determine the phenotype of neuroblastoma
by its own. It seems more likely that the decision
between favourable and unfavourable neuroblastoma
is made by yet undefined transforming events (for
example, activating mutations in the tyrosine kinase
ALK in a small subgroup; Mosse et al., 2008) previously
to the acquirement of 11q loss and possibly also
previously to the acquirement of other chromosomal
alterations (Figure 5). The biology of each subtype
seems to be reflected accurately by the gene expression
profile of the tumour cells. After the tumour phenotype
has been specified, numerical aberrations occur primar-
ily in the favourable subset, which might result from a

mitotic defect in these tumours. Structural alterations
(for example, 11q loss) may rarely arise in this subtype
but do not contribute to the development of aggressive
tumours. In contrast, a defect in genomic stability may
represent an inherent property of unfavourable neuro-
blastoma, leading to multiple structural aberrations at
fragile genomic sites. Selective pressure on the cancer
cells may then promote the development of a tumour
subset with 11q loss, whereas the presence of MYCN
amplification seems to be almost incompatible with
11q CNA. The effect of 11q loss can be recognized
in the transcriptome of unfavourable neuroblastoma
and may contribute to specific properties of this
subtype. In favourable tumours, however, the effects
of diminished gene dosages caused by 11q CNA are
obviously balanced by molecular mechanisms yet to
be determined.

In line with the proposed model, we observed
unfavourable tumours without any detectable structural
genomic alterations (Supplementary Table 5), and a
substantial concordance of differentially expressed genes
between unfavourable and favourable tumours, regard-
less of the presence of CNA at 11q and other sites
(Supplementary Figure 1a) (Westermann et al., 2008).
These findings corroborate the notion of a common
mechanism of malignant transformation in aggressive
neuroblastoma. Alternatively, it is possible that loss of
11q represents a first hit in neuroblastoma tumouri-
genesis and that favourable tumours with 11q CNA
constitute an intermediate stage of aggressive neuro-
blastoma development before a second transforming
event. This notion might be supported by the fact that

spontaneous
regression or
maturation

aggressive
behaviour

del 11q 
and others

(rare)

Determination of 
biological behaviour

(unknown event)

Acquirement of 
structural cytogenetic

aberrations

Neuroblast

favourable
gene expression

unfavourable
gene expression

normal
(frequent)

Malignant potential/
Gene expression profile
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del 11q
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Figure 5 Proposed model of neuroblastoma tumourigenesis modified after Brodeur (2003). The biological and clinical phenotype of
neuroblastoma is determined at an early stage of tumour development and is reflected by distinct gene expression patterns. Afterwards,
structural genomic alterations occur preferentially in the unfavourable subgroup and may contribute to specific properties of the
tumour cells. However, structural alterations may also occasionally occur in the favourable subgroup, in which they are silent events.
As an exception, amplification of MYCN may represent an early event of tumourigenesis.
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4/7 tumours of the del11q_fav subgroup were detected
in the neuroblastoma mass screening program. How-
ever, as favourable tumours are known to rarely develop
into unfavourable neuroblastoma (Brodeur, 2003), this
hypothesis seems to be rather unlikely.

It is important to emphasize that this study did not
aim at evaluating the prognostic significance but the
biological relevance of 11q loss for the pathogenesis of
neuroblastoma. It has been shown in large patient
cohorts that loss of 11q is statistically associated with
adverse clinical courses (Attiyeh et al., 2005; Spitz et al.,
2006a). Nevertheless, our results provide further evi-
dence that gene expression patterns are strongly
correlated with the biological and clinical behaviour in
neuroblastoma (Ohira et al., 2005; Asgharzadeh et al.,
2006; Oberthuer et al., 2006, 2008). In general, our study
shows that the presence of prognostically meaningful
genomic aberrations does not necessarily form a
homogeneous clinico-genetic subgroup of cancer, and
exemplifies that integration of detailed clinical informa-
tion of the patients with genetic, transcriptomic and
epigenetic characteristics of the tumours can contribute
to the establishment of models for tumour development.

Materials and methods

Characteristics of patients and tumours
In this study, analyses were performed in two patient cohorts
that were defined by different criteria: (1) For analysis of the
power of the PAM classifier to predict the outcome of patients
with tumours showing 11q CNA, all available tumours with
loss of 11q, as determined using FISH, were analysed (total,
n¼ 61; deletion, n¼ 44; imbalance, n¼ 17; stage 1, n¼ 8; stage
2, n¼ 4; stage 3, n¼ 5; stage 4, n¼ 40; stage 4S, n¼ 4; MYCN
amplification, n¼ 6; loss of 1p, n¼ 19, 1p status not evaluable
in 1 case). Patients were enrolled in the German neuroblastoma
trials NB90-NB04 with informed consent. Median age at
diagnosis was 31 months, and the median follow-up of patients
who were alive was 56 months. (2) For the comparison of
clinico-genetic subgroups, we selected all available tumours
(total, n¼ 110; stage 1, n¼ 50; stage 2, n¼ 24; stage 3, n¼ 5;
stage 4, n¼ 14; stage 4S, n¼ 17) from our previously described
expression array cohort (Oberthuer et al., 2006) that fitted to
the following clinical and genomic criteria: (i) Samples from
patients with clinical courses defined as either survival without
event for at least 2 years without any chemotherapy (n¼ 88,
referred to as ‘favourable’ throughout the paper), or as
progression/relapse into stage 4 (n¼ 7), multiple loco-regional
relapses (n¼ 1) or death of disease (n¼ 14), which were in total
referred to as ‘unfavourable’. (ii) In addition, the selected
tumours were characterized by either the presence (n¼ 21) or
the absence of loss of 11q (n¼ 89) according to FISH analysis.
Tumours with MYCN amplification or loss of 1p were
intentionally excluded from these sets. All patients were
enrolled in the German neuroblastoma trials NB90-NB97 with
informed consent. Median age at diagnosis was 14 months, and
median follow-up of patients who were alive was 89 months.
The characteristics of the patients and tumours are summarized
in Supplementary Table 1.

Fluorescence in situ hybridization (FISH) analyses
CNA of the chromosome arms 1p, 11q and the MYCN status
were determined by interphase FISH, as described elsewhere

(Spitz et al., 2003), using the DNA probes D1Z2 (1p36), n-myc
(2p24) and MLL (11q23), together with the centromeric probes
D1Z1, D2Z and D11Z1, respectively. Cell nuclei were
counterstained using 4,6-diamidino-2-phenylindole. According
to the ENQUA guidelines (Ambros and Ambros, 2001),
chromosomal aberrations were defined as deletion by monos-
omy of the specific region, imbalance by at least two intact
copies of the chromosome and additional copies with deletions
in the specific region and MYCN amplification by at least a
fivefold increase in MYCN signal numbers in relation to the
number of chromosome 2.

Gene expression profiling analyses
Gene expression profiling experiments were carried out using a
customized neuroblastoma-related oligonucleotide microarray
(Agilent Technologies, Santa Clara, CA, USA) that comprised
10 163 probes covering 8155 Unigene clusters. A total of 486 of
the probes on the microarray refer to genes annotated on
chromosome 11q. Expression profiles from each neuroblasto-
ma sample were generated as dye-flipped duplicates in dual-
colour experiments as described elsewhere (Oberthuer et al.,
2006). Data from dye-flipped chip pairs were averaged to yield
one intensity value for every gene probe of each patient after
quality control of raw microarray data and normalization of
expression profiles had been performed. All microarray data
are available at the ArrayExpress database (http://www.ebi.
ac.uk/arrayexpress accession: E-TABM-38).

Array-based comparative genomic hybridization (aCGH)
High-resolution oligonucleotide aCGH was performed using
either 44 or 105K microarrays (43 000 and 99 000 human
sequence probes, respectively) as described elsewhere (Spitz
et al., 2006b). In brief, 2.5–5 mg genomic tumour and reference
DNA were labelled and processed according to the manufac-
turer protocol for each hybridization (Agilent Technologies)
and scanned. Images were extracted using Feature Extraction
9.5 software and visualized using CGH-Analytics 3.5 software
(Agilent Technologies). The boundaries of chromosome gains
and losses were delineated using the ADM-2 algorithm of the
CGH-Analytics software.

Analysis of the methylation status of promoter regions
Analysis of the methylation pattern of DNA promoter regions
was performed by Sequenom Inc. (Hamburg, Germany) as
described elsewhere (Ehrich et al., 2005). In brief, 1mg genomic
DNA of each sample was treated with sodium bisulphite using
EZ-96 DNA methylation kit according to the alternative
conversion protocol of the manufacturer (Zymo Research,
Orange, CA, USA). Genomic regions of interest were
amplified by PCR using reverse primers that incorporate the
T7 promoter sequence for in vitro transcription. Oligonucleo-
tides used as primers were designed by using Methprimer
(www.urogene.org/methprimer/, Supplementary Table 2).
Quantitative methylation analysis was then performed using
Sequenom’s MassARRAY platform, which uses MALDI-
TOF mass spectrometry in combination with RNA base-
specific cleavage (MassCLEAVE). Mass spectra were acquired
by using a MassARRAY Compact MALDI-TOF (Sequenom)
and spectra’s methylation ratios were generated using the
Epityper software 1.0 (Sequenom).

Bioinformatics and statistical analyses
For survival analysis, Kaplan–Meier estimates were calculated
and compared by log rank-test. Death resulting from therapy
complications was censored for event-free survival and overall
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survival analysis. Progression, relapse and death from disease
were considered as events. PCA and hierarchical clustering of
expression data were performed using the Rosetta Resolver
Software (Version 7.2; Rosetta Inpharmatics LCC, Seattle,
WA, USA). Pairwise comparison of centroid distances in
global gene expression patterns was performed in three steps
(Classen et al., 2007). First, the group mean expression values
were calculated for each gene. Next, the distances between the
mean values were quantified for each gene in the two groups
under investigation using the Euclidean distance. The centroid
distance between two groups is defined as the sum of distances
for all genes. Finally, the significance of the calculated centroid
distance of all group-pairs was analysed. The group labels were
randomly permuted 10 000 times followed by a recalculation of
centroid distances. The P-value is given by the fraction of
iterations that yield centroid distances at least as great as the
original centroid distance between two groups. To determine
differentially expressed genes, pairwise comparison of sub-
groups were performed using one-way ANOVA with Benja-
mini–Hochberg correction for multiple testing (Rosetta
Resolver Software) and SAM (Tusher et al., 2001) with the
samr package v1.23 for R open-source software (http://
www.R-project.org). The SAM statistics was computed with
1000 permutations and the D-value chosen for a 90th percentile
false-discovery rate o0.05. Fisher’s exact test was applied to
analyse for an enrichment of differentially expressed genes on

11q against the null hypothesis that differentially expressed
genes are randomly distributed over all chromosomes. The
quantitative methylation data were analysed in an unsuper-
vised hierarchical clustering using the Euclidian distance and
complete linkage. All calculations were performed using the
gplots, Hmisc, lattice and gmodels package in R. Hypothesis-
based significance testing was evaded, because the observed
differences were negligible.
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CAMTA1, a 1p36 Tumor Suppressor Candidate, Inhibits
Growth and Activates Differentiation Programs in
Neuroblastoma Cells
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Daniel Muth1, Matthias Fischer7, Axel Benner3, Rainer K€onig4, Manfred Schwab1, and Frank Westermann1

Abstract
A distal portion of human chromosome 1p is often deleted in neuroblastomas and other cancers and it is

generally assumed that this region harbors one or more tumor suppressor genes. In neuroblastoma, a 261 kb
region at 1p36.3 that encompasses the smallest region of consistent deletion pinpoints the locus for calmodulin
binding transcription activator 1 (CAMTA1). Low CAMTA1 expression is an independent predictor of poor
outcome inmultivariate survival analysis, but its potential functionality in neuroblastoma has not been explored.
In this study, we used inducible cell models to analyze the impact of CAMTA1 on neuroblastoma biology. In
neuroblastoma cells that expressed little endogenous CAMTA1, its ectopic expression slowed cell proliferation,
increasing the relative proportion of cells in G1/G0 phases of the cell cycle, inhibited anchorage-independent
colony formation, and suppressed the growth of tumor xenografts. CAMTA1 also induced neurite-like processes
and markers of neuronal differentiation in neuroblastoma cells. Further, retinoic acid and other differentiation-
inducing stimuli upregulated CAMTA1 expression in neuroblastoma cells. Transciptome analysis revealed 683
genes regulated on CAMTA1 induction and gene ontology analysis identified genes consistent with CAMTA1-
induced phenotypes, with a significant enrichment for genes involved in neuronal function and differentiation.
Our findings define properties of CAMTA1 in growth suppression and neuronal differentiation that support its
assignment as a 1p36 tumor suppressor gene in neuroblastoma. Cancer Res; 71(8); 3142–51. �2011 AACR.

Introduction

Neuroblastoma is a childhood tumor derived from precur-
sor cells of the sympathetic nervous system. The clinical and
biological behavior of this tumor is remarkably heterogeneous,
encompassing fatal tumor progression, as well as spontaneous
regression and differentiation into mature ganglioneuroma.
Deletion within distal 1p characterizes about 30% of neuro-
blastomas and also frequently occurs in a broad range of other
human malignancies including colorectal cancer, glioma,
breast cancer, and melanoma. Further, 1p36 deletion is an

independent predictor of neuroblastoma progression (1).
Thus, it is widely assumed that distal 1p harbors genetic
information mediating tumor suppression. The combination
of recent fine mapping studies (2, 3) defines a 1p36.3 smallest
region of consistent deletion shared by virtually all 1p-deleted
neuroblastomas that spans 261 kb between D1S2731 and
D1S214, encompassing the CAMTA1 locus (4). CAMTA1
encodes a calmodulin-binding transcription activator (5, 6)
that is predominantly expressed in neuronal tissues (7). There
is no evidence for CAMTA1 mutations in neuroblastoma (8),
however, low CAMTA1 expression is significantly associated
with markers of unfavorable tumor biology and poor outcome.
Intriguingly, the prognostic value of CAMTA1 expression is
independent of established risk markers, including 1p dele-
tion, in multivariate survival analysis (4). Additional evidence
supporting CAMTA1 involvement in tumor development
comes from glioma and colon cancer. CAMTA1 is homozy-
gously deleted in a subset of gliomas (9) and is the only gene
mapping to the 1p36 smallest region of overlapping hetero-
zygous deletion in this entity (10). In colorectal cancer,
genome-wide copy number analysis revealed that loss of a
2 Mb region encompassing CAMTA1 has the strongest impact
on survival among all identified genomic alterations (11).
Further, as in neuroblastoma, low expression of CAMTA1 is
an independent predictor of poor outcome in colorectal
cancer (11).
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In this study, we explore the effect of CAMTA1 on neuro-
blastoma biology using inducible cell models. Our data imply
that CAMTA1 is a 1p36 tumor suppressor candidate that
inhibits features of malignant cells and is involved in neuro-
blastoma cell differentiation.

Materials and Methods

Cell culture
Culture of the neuroblastoma cell lines SH-EP, IMR5-75, and

Be(2)-C, was described previously (12). All lines were kindly
provided by Dr. Larissa Savelyeva (German Cancer Research
Center) and authenticated by multiplex-FISH karyotyping at
the start of the project. Cells were tested for mycoplasma,
viral, and foreign cell contamination using the Multiplex cell
Contamination Testing (McCT) Service (13). Drugs were
added at the following concentrations: all-trans retinoic acid
(Sigma), 10 mmol/L (in ethanol, end concentration did not
exceed 0.1%); valproic acid (Sigma), 1 mmol/L (in Dulbecco's
PBS); Helminthosporium carbonum-toxin (HC-toxin; Sigma,
Lot #054K4121), 15 nmol/L (in methanol, end concentration
did not exceed 0.02%).

Polyclonal antibody production and Western blotting
A custom polyclonal CAMTA1 antibody was raised in

rabbits against the epitope peptide NH2-CHRLYKRSER-
IEKGQGT-COOH, representing the COOH-terminal CAMTA1
region (Pineda Antikoerper-Service). Final bleeds were affinity
purified, and antibody specificity was confirmed via Western
blotting detection of inducible ectopically expressed CAMTA1
and specific epitope blocking. Protein expression was assessed
in cell lysates as previously described (12). Protein loading was
controlled by detecting b-actin (clone AC-15, Sigma-Aldrich).

Inducible stable cell lines
Stable neuroblastoma cell lines overexpressing CAMTA1

under control of the Tet-repressor were generated using the
T-REX Tetracycline-Regulated Mammalian Expression System
andGatewayTechnology (Invitrogen). To generate aTet/Doxy-
responsive CAMTA1-expression plasmid, we followed the One-
Tube Protocol for Cloning attB-PCR Products into Destination
Vectors from the Gateway Technology with Clonase II manual.
The full-length coding sequence of CAMTA1 was attB-PCR-
amplified from the hg01719s1/KIAA0833 cDNA clone (7), and
cloned into pT-REx-DEST30 (Invitrogen). The resulting con-
struct was transfected into SH-EP and IMR5-75 cells stably
expressing the tetracycline repressor protein (pcDNA/6TR;
Invitrogen). Individual clones were selected, expanded and
assayed for CAMTA1 expression on tetracycline treatment
(1 mg/mL) using Western blotting. Control clones allowing
inducible LacZ expression were generated in parallel (vector
pT-REx/GW-30/LacZ; Invitrogen). Blasticidin (7.5 mg/mL) and
geneticin/G418 sulfate (200 mg/mL) were used for clone selec-
tion.

Cell cycle, growth, and colony formation assays
Cell cycle distribution was assessed by fluorescence-acti-

vated cell sorting (FACS) as previously described (14). For

growth assays, cells were seeded in triplicate onto 6-well plates
(1,500 per well), and growth rates were determined by Alamar
Blue assay (AbD Serotec) on days 0, 2, 4, and 6 according to the
manufacturer's instructions. Cells were formaldehyde-fixed
and stained with 10% Giemsa solution to visualize colonies
2 weeks after seeding.

For soft agar assays, 6-well plates were precoated with 0.7%
agarose in full medium (RPMI-1640 supplemented with 10%
FCS), and 4,000 cells were seeded into 0.35% agarose in full
medium per well in triplicate. Cells were fed weekly and
stained with crystal violet 4 weeks after seeding.

Growth of xenograft tumors in nude mice
IMR5-75 cells were cultured to 80% confluency, harvested,

and suspended in Matrigel (BD Bioscience). Eight-week-old
athymic NCR (nu/nu) mice were inoculated s.c. in the flank
with 2 � 107 cells in 200 mL Matrigel (sample size: 8 mice
inoculated with IMR5-75-CAMTA1 and 6mice inoculated with
IMR5-75-LacZ control cells). Doxycycline was administered
via drinking water (2 mg/mL) and orogastric lavage (2 mg/
mouse) when all tumors were progressive and reached a
volume of at least 100 mm3. Tumor size was measured with
a digital calliper to calculate tumor volume. Mice were sacri-
ficed at day 4 after induction.

Quantitative real-time RT-PCR
The quantitative real-time reverse transcriptase PCR

(QPCR) protocol and primers for CAMTA1 and housekeeping
genes were described previously (4). QuantiTect Primer Assays
(Qiagen) were used for amplification of tubulin, beta 3 (TUBB3,
Hs_TUBB3_1_SG); neurofilament, light polypeptide (NEFL,
Hs_NEFL_1_SG); microtubule-associated protein 2 (MAP2,
Hs_MAP2_1_SG), cyclin-dependent kinase inhibitor 1C
(p57 Kip2) (CDKN1C, Hs_CDKN1C_1_SG); tropomodulin 2 (neu-
ronal) (TMOD2, Hs_TMOD2_1_SG); sodium channel, voltage
gated, type VIII, alpha subunit (SCN8A, HsSCN8A_1_SG); S100
calcium binding protein B (S100B, Hs_S100B_1_SG); and stath-
min-like 3 (STMN3, Hs_ STMN3_1_SG).

Microarray analysis
Total RNA was isolated using Trizol (Invitrogen) from

CAMTA1 expressing SH-EP cells at 0, 3, 6, 12, and 24 hours
after CAMTA1 induction and at 12 hours from noninduced
controls. Two biological replicates were carried out for time-
series experiments. RNA was converted to cRNA, labeled, and
hybridized to Agilent whole human genome 4� 44 K (G4112F)
microarrays according to the Two-Color Microarray-Based
Gene Expression Analysis protocol (Agilent Technologies).
Raw data were background-corrected using the "normexp"-
method and quantile-normalized employing the "limma"
package included in the Bioconductor release 2.4 (www.bio-
condutor.org) for R statistical software v2.9.0 (www.r-project.
org). Unspecific filtering was applied to the normalized data as
implemented in the "genefilter" R package (Bioconductor
release 2.4) for each biological replicate separately (15). Probes
were selected for which expression values were greater than or
equal to the first quartile of the expression range for at least 2
time points (rather than selecting an absolute expression
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value as a cutoff) to select genes with quantifiable expression
in at least 2 measurements. A relaxed threshold for the
interquartile range (IQR) filter was selected (0.3) and applied
to exclude genes with low variability. Only probes which
showed a positive Pearson correlation between biological
replicates (r > 0.8) were included in analyses. The remaining
intersection of filtered probes for both biological replicates
was used in unsupervised hierarchical clustering of Pearson
correlation distances (1 � Pearson correlation coefficients) to
obtain clusters with common expression profiles. All arrayed
probes are henceforth referred to as genes for simplification.
Gene Ontology Tree Machine (GOTM) was used for functional
annotation of expression data (16). GOTM compares the
distribution of GO terms within a gene set (defined here as
gene clusters with common expression profiles) to that in a
reference gene set (defined here as all genes represented on
the G4112 array). To test for a statistically significant enrich-
ment of GO terms within gene sets, a hypergeometric test was
used with a significance level of 0.01 (16).

Survival analysis
CAMTA1 expression was derived from expression profiling

data from a cohort of 251 neuroblastomas (17). Of 251 tumors,
70 were previously analyzed for CAMTA1 expression by cDNA
microarray or QPCR (4). All patients were enrolled in the
German Neuroblastoma Trial and diagnosed between 1989
and 2004 (n¼ 68 stage 1, n¼ 46 stage 2, n¼ 39 stage 3, n¼ 67
stage 4, n ¼ 31 stage 4s; n ¼ 31 MYCN amplified, n ¼ 220
MYCN nonamplified; n ¼ 168 age at diagnosis <1.5 years, n ¼
83 age at diagnosis �1.5 years). Criteria for sample selection
were availability of sufficient amounts of tumor material, 60%
or more tumor content, and RNA integrity number more than
7.5. The composition of the cohort in terms of tumor stage,
MYCN status and age at diagnosis was in agreement with the
composition of an unselected cohort of 940 patients diagnosed
between 1995 and 2001 in Germany (data not shown). Uni-
variate survival analysis was done to validate established
prognostic variables as described previously (4). Multivariate

Cox regression was used to investigate the prognostic power
of CAMTA1 expression adjusting for established prognostic
variables as described previously (4). The cutoff value for
dichotomization of CAMTA1 expression was estimated by
maximally selected log-rank statistics (18). Parameter esti-
mate shrinkage was applied to correct for potential over-
estimation of the hazard ratio estimate due to cutoff selection
(19). Bootstrap resampling, together with a shrinkage proce-
dure, was used to correct confidence limits and P values (20).
Event-free survival (EFS) was measured from date of diagnosis
until occurrence of disease progression, relapse, or death from
disease. EFS times of patients who experienced no events
within the follow-up time were censored.

Results

Low CAMTA1 expression predicts poor neuroblastoma
outcome

Low CAMTA1 expression was previously identified as a
predictor of poor outcome (4). To validate the prognostic
value of CAMTA1 in a larger set of patients, CAMTA1 expres-
sion was derived from expression profiling data from a cohort
of 251 neuroblastomas (17) and analyzed. Multivariate survi-
val analysis confirmed low CAMTA1 expression as a predictor
of poor outcome, independent of established risk markers,
including 1p status, MYCN status, tumor stage and age of the
patient at diagnosis (Table 1). Even within the cohort of 1p
nondeleted tumors, CAMTA1 expression emerged as an inde-
pendent prognostic factor (Table 2).

CAMTA1 suppresses growth of neuroblastoma cells in
vitro and in vivo

The effect of CAMTA1 on neuroblastoma cell growth was
explored in stable clones allowing tetracycline-inducible
CAMTA1 expression in the SH-EP cell line, which has low
endogenous CAMTA1 expression (21) (validated by QPCR,
data not shown). Induction of CAMTA1 in SH-EP cells sig-
nificantly decreased colony formation ability and growth rate

Table 1. Cox proportional hazards regression for event-free survival (251 neuroblastomas)

Factor Effect Hazard ratio (95%
confidence limits)

P

CAMTA1 expressiona Low vs. high 5.23 (2.29–10.3) <0.001
1p deletion Yes vs. no 1.26 (0.62–2.55) 0.52
Stage 3, 4 vs. 1, 2, 4s 1.16 (0.58–2.32) 0.67
Age �1.5 years vs. <1.5 years 1.32 (0.68–2.54) 0.41
MYCN amplification Yes vs. no 0.85 (0.41–1.76) 0.66

NOTE: CAMTA1 expression was derived from array expression data from a cohort of 251 neuroblastomas (17). Results specific for
oligo probe A_32_P4981 are shown. Two other independent CAMTA1-specific probes (A_32_P4985 and A_24_P220921) revealed
similar results. Established risk factors included in the model were all associated with decreased event-free survival in univariate
survival analysis: 1p deletion (HR 4.05, P < 0.001), higher stage (3 and 4; HR 3.36, P < 0.001), age� 1.5 years (HR 3.8, P < 0.001), and
MYCN amplification (HR 3.55, P < 0.001).
aTo correct for potential hazard ratio overestimation due to cutoff selection, parameter estimate shrinkage was applied. To correct
confidence limits and P values, bootstrap resampling, together with a shrinkage procedure, was used.
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(Fig. 1A and B). The proportion of cells in the G1/G0 phase
significantly increased on CAMTA1 induction (OFF: 59.3% �
1.7%, ON: 69.9%� 0.4%, mean � SD, P < 0.001 for 3 replicates)
with a concomitant decrease in the proportion of cells in the
S-phase (OFF: 29.2% � 1%, ON: 19.5% � 0.7%, mean � SD, P <
0.001 for 3 replicates; exemplary FACS analysis in Fig. 1C).
Induction of LacZ in a negative control clone had no sig-
nificant effect on cell growth or cell cycle distribution. To
analyze the effect of CAMTA1 on anchorage-independent and
in vivo growth, we used stable clones allowing tetracycline/
doxycycline-inducible CAMTA1 expression in IMR5-75, a
MYCN-amplified neuroblastoma cell line with low endogenous
CAMTA1 levels (assessed by QPCR, data not shown) and
colony-forming ability in soft agar. CAMTA1 induction in
IMR5-75 significantly inhibited anchorage-independent
growth, whereas induction of LacZ in a negative control clone
had no significant effect on colony-forming ability in soft agar
(Fig. 1D). Following subcutaneous inoculation of athymic
nude mice with CAMTA1-inducible IMR5-75 cells, CAMTA1
was induced in established tumors via doxycycline adminis-
tration. Induction of CAMTA1 in tumors was validated by
QPCR (Fig. 1E). CAMTA1 induction resulted in significantly
reduced tumor volume, whereas induction of LacZ in the
negative controls had no significant effect (Fig. 1E). Taken
together, these data show that higher CAMTA1 expression
shifts the cell cycle away from proliferation and suppresses
both in vitro and in vivo growth of neuroblastoma cells.

CAMTA1 induces markers of neuronal differentiation
and is upregulated during neuroblastoma cell
differentiation
Microscopic inspection of CAMTA1-induced SH-EP cells

revealed a higher degree of morphological differentiation,
including acquisition of neurite-like processes (Fig. 2A). To
investigate whether this morphology is associated with induc-
tion of neuron-specific markers, we measured expression of
genes encoding the early neuronal marker b3 tubulin (TUBB3),
and the later neuronal markers microtubule associated pro-
tein 2 (MAP2) and neurofilament light chain (NEFL). CAMTA1
induction in SH-EP cells significantly increased the expression
levels of all 3 neuronal markers compared with noninduced

controls (Fig. 2B). To test whether CAMTA1 is upregulated
during neuronal differentiation, we assessed CAMTA1 expres-
sion in 4 established neuroblastoma in vitro differentiation
models that were extensively characterized in previous studies
(22, 23): (i) Be(2)-C treated with retinoic acid, (ii) SH-EP
treated with valproic acid, (iii) Be(2)-C treated with HC-toxin,
and (iv) SH-EP treated with HC-toxin. Morphological differ-
entiation and induction of the neuronal marker MAP2 were
associated with a significant increase of CAMTA1 expression
levels in all tested neuroblastoma differentiation models
(Fig. 3). Together, these data support that CAMTA1 regulation
is part of the response to differentiation signals and induces
genes characteristic of neuronal differentiation.

CAMTA1 induces genetic programs mediating neuronal
functions and growth inhibition

We investigated time-resolved genome wide transcription
profiles of CAMTA1-induced SH-EP cells to analyze the global
molecular changes induced by the transcription factor
CAMTA1 and to elucidate the biological basis of the observed
CAMTA1-associated phenotype. We identified a total of 683
genes regulated on CAMTA1 induction (Supplementary
Table S1). Unsupervised clustering resulted in 5 clusters
comprising genes with common dynamic expression patterns
(Fig. 4). Of these, 2 clusters (A, 368 genes and B, 133 genes)
contained genes that were time-dependently upregulated by
CAMTA1 induction, and whose expression was unchanged in
the 12 hours noninduced control. Cluster E comprised 88
genes downregulated on CAMTA1 induction (expression
unchanged in noninduced control). All CAMTA1-regulated
genes from clusters A, B, and E were associated to GO
annotations. This categorization of genes into functional
classes was used to provide insight into the molecular pro-
cesses contributing to the CAMTA1-induced phenotype. We
also tested whether specific GO terms were enriched among
CAMTA1-induced or CAMTA1-repressed genes. A given GO
term was considered enriched when the observed number of
genes from that category was significantly greater than the
number expected by chance (P < 0.01). GO terms enriched
among CAMTA1-induced genes (Fig. 4, clusters A and B)
reflected the CAMTA1-associated differentiation phenotype.

Table 2. Cox proportional hazards regression for event-free survival in patients without 1p deletion (195
neuroblastomas)

Factor Effect Hazard ratio (95%
confidence limits)

P

CAMTA1 expressiona Low vs. high 4.42 (1.64–9.67) 0.002
Stage 3, 4 vs. 1, 2, 4s 1.14 (0.5–2.63) 0.76
Age �1.5 years vs. <1.5 years 1.74 (0.76–3.99) 0.19
MYCN amplification Yes vs. no 2.38 (0.27–20.99) 0.43

NOTES: CAMTA1 expression was derived from array expression data from 195 neuroblastomas (17). Results specific for oligo probe
A_32_P4981 are shown. Two other independentCAMTA1-specific probes (A_32_P4985 and A_24_P220921) revealed similar results.
aTo correct for potential hazard ratio overestimation due to cutoff selection, parameter estimate shrinkage was applied. To correct
confidence limits and P values, bootstrap resampling, together with a shrinkage procedure, was used.
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Figure 1. A, tetracycline-inducible CAMTA1 expression and detection via custom-made polyclonal antibody (here in SH-EP). B, CAMTA1 expression
suppresses growth of SH-EP cells as determined by colony formation assay andAlamarBlue viability assay (mean�SD, 3 replicates). C, CAMTA1 expression in
SH-EP cells results in an increased proportion of cells in G1/G0 phase 48 hours after induction as determined by FACS analysis (1 of 3 replicates is shown). D,
CAMTA1 suppresses anchorage-independent growth of IMR5–75 cells in soft agar. E, CAMTA1 induction suppresses growth of subcutaneous IMR5–75 tumors
in nude mice. Sample size: 8 mice inoculated with IMR5–75-CAMTA1 and 6 mice inoculated with IMR5–75-LacZ negative control cells. Doxycycline was
administered via drinking water (2 mg/mL) and orogastric lavage (2 mg/mouse) when all tumors were progressive and reached a volume of at least 100 mm3.
QPCR was performed on total RNA isolated from 1 CAMTA1 ON and 1 CAMTA1 OFF tumor, respectively, to validate CAMTA1 induction via doxycycline
administration. Cells allowing inducible LacZ expression were used as negative controls.
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A large fraction of enriched GO terms related to neuronal
differentiation or function (e.g., "nervous system develop-
ment," "transmission of nerve impulse," "voltage-gated sodium
channel activity," and "neurofilament"). Overrepresentation of
the GO term "kinase inhibitor activity" among CAMTA1-
induced genes was in line with the observed inhibitory effect
on cell cycle progression. The enrichment of the GO term
"Ca2þ/calmodulin-dependend protein kinase complex" was of
particular note considering the Ca2þ/calmodulin-dependent
activity of CAMTAs (24). Among CAMTA1-repressed genes
(Fig. 4, cluster E), the majority of enriched GO terms related to
cell cycle associated processes. General inhibition of the cell
cycle was indicated by overrepresentation of the GO term
"regulation of cyclin-dependent kinase activity." Mitotic inhi-
bition was reflected by enrichment of GO terms, such as
"mitosis" and "spindle organization and biogenesis." Inhibition
of DNA synthesis was indicated by overrepresentation of GO
terms, such as "DNA replication initiation." We chose 5
CAMTA1 targets that are representative of the functional
classes "neuronal differentiation" and "cell cycle inhibition"
for validation by QPCR in an independent SH-EP-CAMTA1
clone (Fig. 5): CDKN1C (p57 Kip2) that is involved in G1 phase
arrest and is a critical terminal effector of pathways control-
ling differentiation, TMOD2, encoding a neuron-specific mem-
ber of the tropomodulin family of actin-regulatory proteins,
SCN8A, encoding a subunit of voltage gated sodium channels,

S100B, encoding a Ca2þ binding protein involved in neurite
extension and axonal proliferation and STMN3, a paralog of
STMN2 (SCG10), which is implicated in terminal differentia-
tion of sympathetic neurons (25). The consistent CAMTA1-
dependent regulation of the tested genes in this independent
setting supports the robustness of our approach. Overall, time-
resolved expression profiling in CAMTA1-induced cell models
and functional classification using GO term analysis indicate
that CAMTA1 induces differentiation programs and inhibits
effectors of cell cycle progression.

Discussion

CAMTA1 is pinpointed by a 1p36.3 smallest region of
consistent deletion in neuroblastoma (2–4). In the absence
of somatic mutations (8), low CAMTA1 expression is an
independent predictor of poor survival as determined by
QPCR and multivariate survival analysis in a cohort of 102
neuroblastomas (4). Here, we further confirmed this result in
an extended cohort of 251 neuroblastomas employing oligo-
nucleotide array expression data (17), supporting the robust-
ness of this prognostic marker independent of the technical
platform used. CAMTA1 is also included in most of the
recently reported prognostic neuroblastoma expression clas-
sifier gene sets, highlighting its predictive power (17, 26–28).
The consistently low expression of CAMTA1 in aggressive
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Figure 2. A, morphological changes on CAMTA1 induction in SH-EP cells. B, QPCR reveals induction of neuron-specific marker genes on CAMTA1 induction
in SH-EP cells (mean � SD, 3 replicates).
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neuroblastomas led us to hypothesize that (i) downregulation
of CAMTA1 mediates a selective advantage of malignant
neuroblastoma cells and (ii) reexpression of CAMTA1 in
neuroblastoma cells with low endogenous CAMTA1 levels
may inhibit features of malignancy. In line with this hypoth-
esis, CAMTA1 induction in SH-EP cells suppressed colony
formation and growth rate and induced accumulation of cells
in the G1/G0 phase of the cell cycle. In IMR5-75 cells, CAMTA1
inhibited anchorage independent growth and in vivo growth in
nude mice, further strengthening the role of CAMTA1 as a
tumor suppressor candidate.

The induction of neurite-like processes and neuronal mar-
ker genes (TUBB3,MAP2, and NEFL) on CAMTA1 induction in
SH-EP points to a role of CAMTA1 in neuroblastoma cell
differentiation. This is further supported by CAMTA1 upregu-
lation in different in vitro models of neuroblastoma differ-
entiation. The histone deacetylase inhibitors used here,
valproic acid andHC-toxin, exhibit antineuroblastoma activity
(23, 29) and are candidates for future clinical use. Retinoic acid
is already implemented in the postconsolidation therapy of
stage 4 neuroblastomas (30). Whether upregulation of
CAMTA1 contributes to the antineuroblastoma properties
of these drugs needs to be addressed in further studies.

CAMTA1 acts as a transcription activator (6). Our results
from integrating CAMTA1-induced transcription profiles and
corresponding GO annotations are consistent with the idea
that CAMTA1 regulates effectors of neuronal function and cell
cycle inhibition. High expression of neuron-specific genes is a
feature of localized tumors (stages 1 and 2) (31) and, despite
poor histological differentiation, disseminated 4s tumors (32).
The high expression of CAMTA1 in stages 1, 2, and 4s tumors
(4) may indicate that the genetic programs induced by
CAMTA1 in vitro contribute to the favorable phenotype of
this subgroup in vivo. Intracellular Ca2þ fulfils a pleiotropic
role in both the physiology and differentiation of neuronal
cells, and neuritic outgrowth can be induced in neuroblas-
toma cells by promoting Ca2þ influx (33). CAMTA family
members respond to Ca2þ signaling by binding to calmodulin
(24), and the GO term "Ca2þ/calmodulin-dependend protein
kinase complex" was enriched among CAMTA1-induced
genes. This suggests that CAMTA1 acts as both integrator
and effector of Ca2þ signaling and may mediate Ca2þ-depen-
dent processes in neuronal differentiation. GO terms enriched
among CAMTA1-repressed genes indicate that processes of
mitosis and DNA replication are inhibited by CAMTA1.
Together with the previous observation that CAMTA1 is
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Figure 3. CAMTA1 is induced in
neuroblastoma differentiation
models. QPCR reveals induction
of CAMTA1 and the neuronal
marker MAP2 in Be(2)-C cells
treated with all-trans retinoic acid
or Helminthosporium carbonum
(HC)-toxin, and SH-EP cells
treated with valproic acid or HC-
toxin (mean � SD, 3 replicates).
Incubation time was 5 days for
valproic acid or HC-toxin and
7 days for all-trans retinoic acid.
Morphological differentiation was
confirmed microscopically.
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expressed in a cell cycle dependent manner with highest levels
in S and M phase (21), this may indicate that CAMTA1 acts as
a negative regulatory factor during DNA synthesis andmitosis.
A variety of regulatory mechanisms could be responsible for

the downregulation of CAMTA1 in unfavorable neuroblasto-
mas. In line with a haploinsufficiency model, CAMTA1 expres-
sion is lower in 1p deleted neuroblastomas (4). However, low
CAMTA1 expression predicts poor outcome also within the
subgroup of 1p nondeleted neuroblastomas, which calls for
additional negative regulators of CAMTA1 expression. A com-
mon mechanism mediating transcriptional repression of
growth-regulating genes in tumors is methylation of cytosine
residues in gene-associatedCpG islands. However, we foundno
evidence for CAMTA1 promotor methylation using methyla-
tion specific PCR on bisulfite treated neuroblastoma DNA
samples (data not shown). Further epigenetic factors may play

a role. It has been reported that histone deacetylase inhibitors
reexpress silenced tumor suppressors including p21WAF1/CIP1,
p16, p57Kip2, and p19INK4d (34). The induction of CAMTA1 on
treatment with the histone deacetylase inhibitors valproic acid
and HC-toxin is in line with a similar regulatory model.
Whether CAMTA1 induction by HDAC inhibitors involves
chromatin remodeling at the CAMTA1 locus or whether factors
upstream of CAMTA1 are activated, remains to be investigated.

To pinpoint 1p36 tumor suppressor genes, a previous study
used chromosome engineering generating mouse models with
gain and loss of a region corresponding to human 1p36 (35).
Gain of this region inhibited proliferation, whereas loss of the
same region rendered cells sensitive to oncogenic transforma-
tion. In search of the gene(s) mediating this phenotype, several
candidates, including CAMTA1, were knocked down to test
whether their depletion could reverse the proliferation defect
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Figure 4. Genetic programs induced by CAMTA1 in SH-EP cells as determined by time-resolved whole-genome microarray expression analysis. RNA
harvested at 3, 6, 12, and 24 hours after CAMTA1 induction and at 12 hours without induction (control) was hybridized against RNA harvested at time
point 0 hour (uninduced). Experiments were done in 2 biological replicates. Gene clustering based on Pearson correlation coefficients revealed 5 clusters
containing genes with common time-dependent expression profiles on CAMTA1 induction (Clusters A–E). Left panel, GO terms significantly enriched among
CAMTA1 induced genes (clusters A þ B) according to GOTM analysis (P < 0.01). Right panel, GO terms significantly enriched among CAMTA1 repressed
genes (cluster E) according to GOTM analysis (P < 0.01).
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of mouse embryonic fibroblasts with gain of the 1p36 homo-
logous region. In this assay, knockdown of most tested genes,
including CAMTA1, had no significant effect, whereas knock-
down of another gene (CHD5), functionally rescued the pro-
liferation defect. The failure of CAMTA1 to show an effect in
this context is likely to be due to tissue specificity. CAMTA1 is
predominantly expressed in neuronal tissues and, in light of
the data presented here, its growth suppressive effect in
neuroblastoma cells is closely linked to its ability to induce
effectors of neuronal differentiation. In a mouse embryonic
fibroblast background, both the expression of CAMTA1 and
the potential to induce differentiation are likely to be limited.

Together, our data suggest that CAMTA1 is a 1p36 tumor
suppressor candidate that inhibits key features of malignant
cells and is involved in neuronal differentiation. Understand-
ing the function of CAMTA1may help develop diagnostic tools
and/or effective therapeutic strategies for children with unfa-
vorable neuroblastoma. Further dissection of CAMTA1 down-
stream signaling and identification of mechanisms regulating
CAMTA1 will be the points of departure to reach this goal.
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Abstract

Background: Amplified MYCN oncogene resulting in deregulated MYCN transcriptional activity is observed in 20%
of neuroblastomas and identifies a highly aggressive subtype. In MYCN single-copy neuroblastomas, elevated MYCN
mRNA and protein levels are paradoxically associated with a more favorable clinical phenotype, including
disseminated tumors that subsequently regress spontaneously (stage 4s-non-amplified). In this study, we asked
whether distinct transcriptional MYCN or c-MYC activities are associated with specific neuroblastoma phenotypes.

Results: We defined a core set of direct MYCN/c-MYC target genes by applying gene expression profiling and
chromatin immunoprecipitation (ChIP, ChIP-chip) in neuroblastoma cells that allow conditional regulation of MYCN
and c-MYC. Their transcript levels were analyzed in 251 primary neuroblastomas. Compared to localized-non-
amplified neuroblastomas, MYCN/c-MYC target gene expression gradually increases from stage 4s-non-amplified
through stage 4-non-amplified to MYCN amplified tumors. This was associated with MYCN activation in stage 4s-
non-amplified and predominantly c-MYC activation in stage 4-non-amplified tumors. A defined set of MYCN/c-MYC
target genes was induced in stage 4-non-amplified but not in stage 4s-non-amplified neuroblastomas. In line with this,
high expression of a subset of MYCN/c-MYC target genes identifies a patient subtype with poor overall survival
independent of the established risk markers amplified MYCN, disease stage, and age at diagnosis.

Conclusions: High MYCN/c-MYC target gene expression is a hallmark of malignant neuroblastoma progression,
which is predominantly driven by c-MYC in stage 4-non-amplified tumors. In contrast, moderate MYCN function
gain in stage 4s-non-amplified tumors induces only a restricted set of target genes that is still compatible with
spontaneous regression.
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re involved in the biology of many cancer types. They encode
asic helix-loop-helix leucine zipper proteins that are found
s heterodimers with their obligate partner protein, MAX [6].
he MYC-MAX heterodimer binds to DNA consensus core
inding sites, 5'-CACGTG-3' or variants thereof (E-boxes),
hich preferentially leads to transcriptional activation of tar-
et genes. Repression of target genes by MYC proteins has
lso been described [7]. This seems to be independent of the
inding of MYC proteins to E-boxes, but involves a cofactor,
iz-1, that tethers MYC-MAX to gene promoters, such as p15

nd p21. Enhanced activity of MYC transcription factors con-
ributes to almost every aspect of tumor formation: unre-
tricted cell proliferation, inhibition of differentiation, cell
rowth, angiogenesis, reduced cell adhesion, metastasis, and
enomic instability [6,8]. In contrast, MYC transcription fac-
ors, including MYCN, also sensitize cells for apoptosis, a
unction that should inhibit tumor formation and that could
lso be involved in spontaneous tumor regression [9].

pontaneous tumor regression does occur in neuroblastoma,
t a higher frequency than in any other cancer type. This proc-
ss resembles the physiological concurrence of massive cellu-
ar suicide (apoptosis) and differentiation of a few neurons
long the sympathoadrenal cell lineage in the normal devel-
pment of the sympathetic nervous system. Spontaneous
egression is most frequently observed in a subset of dissem-
nated MYCN single-copy neuroblastomas (non-amplified
NA)), termed stage 4s (stage 4s-NA) [10]. However, popula-
ion-based screening studies for neuroblastomas in Japan,
uebec and Germany suggest that spontaneous regression

lso occurs in other neuroblastoma subtypes, predominantly
ocalized (stages 1, 2, 3) neuroblastomas (localized-NA) [11-
3]. Paradoxically, MYCN mRNA and protein levels are
igher in favorable localized-NA and, particularly, in stage
s-NA tumors than in stage 4-NA tumors with poor outcome
14-16], but they do not reach the levels observed in MYCN
mplified tumors. In line with this, neuroblastoma cells with
levated MYCN expression retain their capacity to undergo
poptosis [17] or neuronal differentiation [18]. Thus, it has

been speculated that MYCN does not only mediate malignant
progression in MYCN amplified tumors, but is also either
involved or at least compatible with spontaneous regression
in favorable neuroblastomas. In contrast, a functional role of
MYCN in stage 4-NA tumors with low MYCN levels is ques-
tionable. Here, other transcription factors or pathways within
or outside the MYC family of transcription factors could be
more relevant. Neuroblastoma-derived cell lines that lack
amplified MYCN generally express c-MYC rather than MYCN,
often at higher levels than normal tissues [19,20]. However,
transcriptional activity of MYCN or c-MYC as reflected by the
transcript levels of direct MYCN/c-MYC target genes in rela-
tion to MYCN and c-MYC levels has not yet been defined in
neuroblastoma subtypes.

Here, we defined a core set of MYCN and c-MYC target genes
by using oligonucleotide microarrays and a neuroblastoma
cell line that allows conditional expression of MYCN or c-
MYC. Direct regulation of these target genes by MYCN/c-
MYC was assessed by analyzing the binding of MYCN and c-
MYC protein to target gene promoters using PCR- and array-
based chromatin immunoprecipitation (ChIP and ChIP-chip,
respectively) in different neuroblastoma cell lines. We further
investigated the expression of these direct MYCN/c-MYC tar-
get genes in relation to MYCN and c-MYC expression in dif-
ferent clinical neuroblastoma subtypes. In addition, the
association of MYCN/c-MYC target gene expression with
overall survival independent of the well-established markers
- amplified MYCN, disease stage and age at diagnosis - was
demonstrated.

Results
Inverse correlation of MYCN and c-MYC expression in 
neuroblastoma subtypes
c-MYC mRNA levels are very low in MYCN amplified tumors
(Figure 1), which is due to high MYCN protein repressing c-
MYC mRNA expression [20]. Previous quantitative PCR anal-
yses in a cohort of 117 neuroblastoma patients revealed that
mRNA levels of MYCN are significantly lower in stage 4-NA
than in stage 4s-NA (p = 0.008) and localized-NA neuroblas-
tomas (stages 1, 2, 3; p = 0.03) [14]. To test whether this lower
expression of MYCN in stage 4-NA tumors is due to elevated
c-MYC activity that represses MYCN expression, we analyzed
c-MYC and MYCN mRNA levels in a cohort of 251 primary
neuroblastoma tumors using a customized 11K oligonucle-
otide microarray (other MYC gene family members were not
differently expressed (data not shown)). Although c-MYC
mRNA levels were not significantly higher in stage 4-NA (n =
52) than in localized-NA tumors (n = 138), we found an
inverse correlation of MYCN and c-MYC expression between
stage 4s-NA (n = 30) and stage 4-NA tumors. Stage 4-NA
tumors showed lower expression of MYCN and higher expres-
sion of c-MYC, whereas stage 4s-NA tumors showed lower
expression of c-MYC and higher expression of MYCN (Figure
1; p = 0.008 for c-MYC, p = 0.07 for MYCN).
Genome Biology 2008, 9:R150
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verse correlation of MYCN and c-MYC mRNA levels in neuroblastoma subtypesigure 1
verse correlation of MYCN and c-MYC mRNA levels in neuroblastoma subtypes. Relative mRNA expression is shown for MYCN and c-MYC as well as for 
DM2, DKC1, and PTMA, three direct targets of MYCN/c-MYC. Data are represented as box plots: horizontal boundaries of boxes represent the 25th 

nd 75th percentile. The 50th percentile (median) is denoted by a horizontal line in the box and whiskers above and below extend to the most extreme 
ata point, which is no more than 1.5 times the interquartile range from the box. A set of 251 primary neuroblastoma tumors was analyzed consisting of 
38 localized-NA (stage 1/2/3), 30 stage 4s-NA, 52 stage 4-NA and 31 MYCN amplified (AMP) neuroblastoma tumors. Gene expression levels from stage 
s-NA, stage 4-NA, and MYCN amplified tumors were compared pair-wise with those of localized-NA tumors as reference. Differential gene expression 
as assessed for each gene by using the Mann-Whitney test (cut-off of p < 0.05).
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ecause increased activity of MYCN in stage 4s-NA or c-MYC
 stage 4-NA tumors should both result in high expression of

hared target genes compared to localized-NA neuroblasto-
as, we analyzed known direct MYCN/c-MYC target genes,

amely MDM2 [21], DKC1 [22], and PTMA [23], in neurob-
stoma subtypes. As expected, the highest expression of all

hree transcripts was observed in MYCN amplified tumors
Figure 1; p < 0.001 for all three transcripts, n = 31). MDM2

RNA levels were higher in stage 4-NA (p = 0.005) and stage
s-NA (p = 0.03) than in localized-NA tumors (the expression
ange of MDM2 is large because of two MYCN amplified
umors with non-syntenic co-amplification of MDM2 (data
ot shown)). Similarly, DKC1 and PTMA expression was
igher in stage 4-NA (p < 0.001 for DKC1, p = 0.02 for PTMA)
nd in stage 4s-NA (p = 0.03 for DKC1, p = 0.007 for PTMA)
han in localized-NA tumors. These results suggest an

creased MYCN/c-MYC activity also in stage 4s-NA (MYCN)
nd in stage 4-NA (predominantly c-MYC) compared to local-
ed-NA tumors. However, higher DKC1 mRNA levels in stage
-NA tumors and higher PTMA mRNA levels in stage 4s-NA
umors also suggest differential regulation of MYCN/c-MYC
arget genes in these subtypes. To further analyze MYCN/c-

YC activity as well as differential regulation of MYCN/c-
YC target genes in neuroblastoma subtypes, we thought to

efine a comprehensive set of target genes directly regulated
y MYCN and/or c-MYC in neuroblastoma cells.

epression of endogenous c-MYC by targeted 
xpression of a MYCN transgene in SH-EPMYCN cells 
efines c-MYC- and MYCN-regulated genes
o identify MYCN/c-MYC-regulated genes in neuroblastoma
ells, we employed the experimental system SH-EPMYCN,
hich stably expresses a tetracycline-regulated MYCN trans-
ene [23]. Exponentially growing SH-EPMYCN cells cultured
ith tetracycline express c-MYC but almost no MYCN protein

Figure 2a). Induction of MYCN by removing tetracycline
rom the medium is associated with a rapid reduction of c-

YC at the mRNA and protein levels. c-MYC reduction
ccurs prior to the full expression of ectopically induced
YCN protein (Figure 2a). Accordingly, mRNA levels of

irect MYCN/c-MYC targets, such as PTMA and DKC1, ini-
ially decline before accumulating MYCN protein leads to the
e-induction of these genes. Similar profiles were observed
ith direct MYCN target genes, such as MDM2 and MCM7

Additional data file 1).

e used SH-EPMYCN cells for a global search of MYCN and c-
YC target genes in neuroblastoma cells using a customized

euroblastoma oligonucleotide microarray (11K, Agilent) that
as enriched with probes for genes differentially expressed in
euroblastoma subtypes and for direct MYCN/c-MYC target
enes [14,24]. Gene expression profiles of SH-EPMYCN cells at
, 4, 8, 12, 24, and 48 hours after targeted MYCN expression
ere generated. Self-organizing maps (SOMs) were used to

apture the predominant pattern of gene expression. This
nalysis yielded 504 clusters (best matching units (BMUs))

consisting, on average, of 20 clones per cluster (Additional
data file 1). We searched for clusters with characteristic gene
expression profiles of direct MYCN/c-MYC target genes. In
addition, known c-MYC target genes from a public database
[25] and known MYCN target genes from a literature search
were mapped to the 504 clusters (Additional data file 2). A
significant enrichment of known MYCN/c-MYC targets was
found in 6 clusters (clusters 140, 168, 195, 280, 308, and 336;
p < 0.05, adjusted for multiple testing), consisting of 167
genes. The genes in these six clusters were induced by MYCN
and c-MYC in SH-EPMYCN cells. Based on their average gene
expression profiles, we grouped the clusters into two sub-
groups, I and II. Subgroup I genes (clusters 140, 168, and 195)
were expressed at equal levels in SH-EPMYCN cells expressing
endogenous c-MYC (2 hours) and in those fully expressing
ectopic MYCN (24 and 48 hours), despite the fact that the
maximum protein level of MYCN was significantly higher
than that of endogenous c-MYC (Figure 2a; Additional data
file 1). This indicates that subgroup I genes are regulated by
MYCN, and also suggests that they are less responsive to
MYCN than to c-MYC in SH-EPMYCN cells. The mRNA levels
of subgroup II genes (clusters 280, 308, and 336) were high-
est in SH-EPMYCN cells fully expressing ectopic MYCN and fol-
lowed the combined absolute c-MYC and MYCN protein
levels during the time course experiment. We also found clus-
ters with MYCN and c-MYC repressed genes (for example,
subgroup III; Additional data file 1). However, enrichment of
known MYCN/c-MYC repressed genes from the literature/
database in defined clusters was not found using our statisti-
cal cut-off (after adjustment for multiple testing, no cluster
showed p < 0.05). This was at least partly due to the fact that
in SH-EPMYCN cells, some genes were repressed by MYCN but
not by c-MYC (subgroup IV). In addition, c-MYC repressed
genes from different experimental systems compiled in the c-
MYC target gene database were not necessarily repressed by
MYCN and/or c-MYC in SH-EPMYCN cells.

Therefore, we focused on genes for further validation that
were induced by both MYCN and c-MYC proteins in SH-
EPMYCN cells and grouped into subgroup I and II. We
extracted all available promoters from the genes represented
on the array and scanned for canonical E-boxes (CACGTG)
and for the 12 bp MYCN position-weight matrix [26] within 
-2 kb and +2 kb of the transcriptional start site. We ranked all
504 clusters according to the relative number of putative
MYCN/c-MYC binding sites in each cluster. All clusters from
subgroups I and II were among the 15 top-ranked clusters
with enrichment of predicted MYCN/c-MYC binding sites
(data not shown).

To further validate target gene regulation by MYCN/c-MYC in
neuroblastoma cells, we performed ChIP-chip using a 244K
oligonucleotide promoter microarray (Agilent). We analyzed
the binding of MYCN and c-MYC to the promoters of the 147
subgroup I and II genes that were represented on the 244K
promoter microarray. We used five neuroblastoma cell lines
Genome Biology 2008, 9:R150
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entificationdof MYCN/c-MYC target genes in neuroblastoma cell lines
igure 2
entification and validation of MYCN/c-MYC target genes in neuroblastoma cell lines. (a) Repression of endogenous c-MYC by targeted expression of a 
YCN transgene in SH-EPMYCN cells defines MYCN/c-MYC-regulated genes. MYCN and c-MYC protein levels were monitored in a time series after 

emoving tetracycline in exponentially growing SH-EPMYCN cells that stably express a tetracycline-regulated MYCN transgene. Mean and standard deviation 
f the relative mRNA levels of MYC, DKC1 and PTMA are given from two time series experiments as measured by a customized neuroblastoma oligo 
icroarray. (b) Hierarchical clustering of MYCN- and c-MYC binding to 140 target gene promoters as measured by ChIP-chip in 6 neuroblastoma cell 

nes. ChIP-chip results of 140 MYCN/c-MYC target genes from 5 neuroblastoma cell lines that preferentially express either high levels of MYCN (SH-
PMYCN, IMR5/75 (approximately 75 copies of MYCN) and Kelly (approximately 100-120 copies of MYCN)) or c-MYC (SJ-NB12 and SY5Y). Additionally, as 
n intermediate type, parental SH-EP cells were analyzed. SH-EP cells preferentially express c-MYC, but also low levels of MYCN. ChIP-chip experiments 
ere performed with a monoclonal antibody against human MYCN and a polyclonal antibody against human c-MYC for each neuroblastoma cell line. A 
ut-off for positive binding was set for both transcription factors to >4-fold enrichment for one and >2-fold enrichment of at least one of the two 
eighboring probes. MYCN/c-MYC-binding is color-coded as follows: blue, c-MYC binding; red, MYCN/c-MYC binding; dark red, MYCN binding; light 
ellow, lack of MYCN/c-MYC binding. Hierarchical clustering was used to group neuroblastoma cell lines according to their MYCN/c-MYC-binding 
attern. Differentiation between MYCN and c-MYC-binding was mainly achieved through the monoclonal MYCN antibody. The polyclonal antibody 
gainst c-MYC also gave positive binding signals for a large set of analyzed target gene promoters in neuroblastoma cell lines with high MYCN that lack c-
YC expression (SH-EPMYCN, IMR5/75 and Kelly).
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hat either preferentially express high levels of MYCN (SH-
PMYCN, IMR5/75 (approximately 75 copies of MYCN), and
elly (approximately 100-120 copies of MYCN)) or c-MYC

SJ-NB12 and SY5Y). Additionally, as an intermediate type,
arental SH-EP cells were analyzed, which preferentially
xpress c-MYC, but also MYCN at low level [20,23]. ChIP-
hip experiments were performed with a monoclonal anti-
ody against human MYCN and a polyclonal antibody against
uman c-MYC for each of the neuroblastoma cell lines. A cut-
ff for positive binding was defined as >4-fold enrichment for
ne probe together with >2-fold enrichment for at least one of
he two neighboring probes compared to input control. In
ddition, we manually inspected each of the MYCN and c-
YC-binding profiles from the 147 genes. Seven genes were

xcluded from the analysis because the probe sets for the
enes mapped within the genes but outside the target gene
romoter regions (all profiles for Kelly and SJ-NB12 cell lines
re given in Additional data files 3 and 4, respectively; MYCN-
nd c-MYC-binding results are given in Additional data files
-7). We also performed PCR-based ChIP for selected candi-
ate genes (n = 13; Additional data file 8), which all showed
nalogous results to ChIP-chip (data not shown). Almost all
40 target gene promoters showed binding of MYCN and/or
-MYC in the six analyzed neuroblastoma cell lines as meas-
red by ChIP-chip (Figure 2b). Intriguingly, hierarchical clus-
ering of neuroblastoma cell lines according to the MYCN/c-

YC-binding pattern clearly separated MYCN- and c-MYC-
xpressing neuroblastoma cell lines. Differentiation between
YCN and c-MYC binding was mainly achieved through the
onoclonal anti-MYCN antibody. The polyclonal antibody

gainst c-MYC also gave positive binding signals for a large
et of target gene promoters in neuroblastoma cell lines with
igh MYCN that lack detectable c-MYC expression (SH-
PMYCN, IMR5/75 and Kelly). This was most likely due to
nspecific binding of the polyclonal c-MYC antibody to
YCN in these cells. Nevertheless, the lack of binding of
YCN to a large set of target gene promoters in the c-MYC-

xpressing cells, SJ-NB12 and SY5Y, and the positive binding
f c-MYC to almost all of these target gene promoters in these
ells allowed the distinction between MYCN and c-MYC.
aken together, these results indicate that the genes from
ubgroups I and II represent a core set of target genes directly
egulated by either MYCN or c-MYC in neuroblastoma cells
ependent on which MYC protein is expressed.

radual increase of MYCN/c-MYC target gene 
xpression from stage 4s-NA through stage 4-NA to 
YCN amplified tumors

o determine transcriptional activity of MYCN/c-MYC pro-
eins in primary neuroblastomas (n = 251), we analyzed dif-
erential expression of subgroup I and II genes in
euroblastoma subtypes using the Global test as proposed by
oeman et al. [27]. Almost all these genes (154 of 167; 92%)

howed highest expression in MYCN amplified tumors, sug-
esting that regulation of these genes by MYCN is similar in
euroblastoma cell lines and tumors. Compared to localized-

NA tumors (stages 1, 2, 3), expression of subgroup I and II
genes was significantly associated with stage 4s-NA (p =
0.002), stage 4-NA (p < 0.001) and MYCN amplified tumors
(p < 0.001). Global test results further indicated that an
increasing number of MYCN/c-MYC target genes was
induced from stage 4s-NA through stage 4-NA to MYCN
amplified tumors (Additional data files 9-11). To further illus-
trate this, we grouped each of the 154 genes into one of four
classes based on pair-wise comparisons (Mann-Whitney test,
cut-off p < 0.05). These were, compared to localized-NA
tumors: overexpressed in MYCN amplified and in stage 4s-
NA tumors (class 1); overexpressed in MYCN amplified, stage
4-NA and stage 4s-NA tumors (class 2); overexpressed in
MYCN amplified tumors (class 3); overexpressed in MYCN
amplified and stage 4-NA tumors (class 4) (Figure 3). Com-
pared to localized-NA tumors, 25 (16%) of the 154 MYCN/c-
MYC target genes, including CCT4, FBL, MDM2, NCL, NPM1,
PTMA, and TP53, were expressed at higher levels in stage 4s-
NA tumors (Table 1). Eighty-eight (57%) of the 154 MYCN/c-
MYC target genes, including 21 of those overexpressed also in
stage 4s-NA tumors, were expressed at higher levels in stage
4-NA than in localized-NA tumors (Table 1, class 2; Addi-
tional data file 5). Accordingly, stage 4-NA tumors shared
overexpression of 68 of 154 direct MYCN/c-MYC target genes
(44%), including AHCY, RUVBL1, PHB, CDK4, and MRPL3,
with MYCN amplified tumors. Together, this indicates that
besides MYCN amplified tumors, stage 4-NA tumors, and to
a lesser extent stage 4s-NA tumors, also show higher MYCN/
c-MYC activity compared to localized-NA tumors. In line with
this, we also found lower mRNA levels of an increasing
number of MYCN/c-MYC repressed genes from stage 4s-NA
(10 out of 68 (15%) in vitro validated repressed genes that are
also lower in MYCN amplified tumors) through stage 4-NA
(34 out of 68 (50%)) to MYCN amplified tumors (68 out of
102 in vitro validated repressed genes had the lowest expres-
sion levels in MYCN amplified tumors (67%)). Based on the
relative expression of MYCN and c-MYC in neuroblastoma
subtypes, we propose that elevated MYCN activity in stage 4s-
NA tumors induces only a restricted set of MYCN/c-MYC tar-
get genes, whereas elevated c-MYC activity in stage 4-NA
tumors induces a larger set of MYCN/c-MYC target genes.

High expression of MYCN/c-MYC target genes is a 
robust marker of poor overall survival independent of 
genomic MYCN status, age at diagnosis and disease 
stage
Having shown that MYCN/c-MYC target gene activation is
also associated with distinct neuroblastoma subtypes, we
wanted to test whether MYCN/c-MYC activity as determined
by the expression levels of their target genes is associated with
overall survival and improves outcome prediction independ-
ent of known risk markers. We used the Global test to test the
influence of each of the 504 experimentally defined gene clus-
ters on overall survival directly, without the intermediary of
single gene testing. The p-values for each cluster were
adjusted for multiple testing and ranked according to their
Genome Biology 2008, 9:R150
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ssociation with overall survival. Table 2 gives the association
ith overall survival of the six MYCN/c-MYC target gene clus-

ers and the rank in relation to all other clusters. In a separate
nalysis, we determined the association with overall survival
or each of the 504 experimental gene clusters adjusted for
mplified MYCN, stage 4 versus stages 1, 2, 3, and 4s, and age
t diagnosis ≥1.5 years (Table 2). These well-established risk
arkers highly correlated with poor outcome in univariate

nalyses (p < 0.001 for each of these three markers). As
xpected, the Global test without adjustment for co-variables
dicated that all MYCN/c-MYC target gene clusters were sig-

ificantly associated with poor overall survival (p < 0.001).
ntriguingly, all six MYCN/c-MYC target gene clusters
emained significantly associated with overall survival after
djusting for amplified MYCN, stage 4 versus stages 1, 2, 3,
nd 4s, and age at diagnosis ≥1.5 years. Of note, two of the
YCN/c-MYC target gene clusters (clusters 168 and 140,

oth from subgroup I showing a higher responsiveness to c-
YC than to MYCN in SH-EPMYCN) revealed the strongest

ssociation with overall survival of all 504 clusters after
djusting for co-variables (Table 2). Figure 4 shows the asso-
iation with overall survival for each gene from cluster 168

with and without adjustment for co-variables. Most of the
genes within this cluster, such as AHCY, ARD1A, CDK4,
HSPD1, PHB, RUVBL1, and TRAP1, remained associated
with overall survival after adjustment for co-variables. A less
significant association with overall survival was observed for
clusters with MYCN/c-MYC repressed genes: clusters 454,
482, 484, and 486 were associated with poor overall survival
without adjustment for co-variables in the Global test (p <
0.001, adjusted for multiple testing), but they showed no sig-
nificant association with poor overall survival when adjusting
for the co-variables amplified MYCN, stage 4 versus stages 1,
2, 3, and 4s, and age at diagnosis ≥1.5 years. We also asked
whether direct MYCN/c-MYC target genes as defined by our
analyses are represented in previously published gene expres-
sion-based classifiers that distinguish low-risk from high-risk
neuroblastomas independent of other risk markers. Gene
lists from these studies hardly overlapped, making interpre-
tation difficult. The overlap with our MYCN/c-MYC target
gene list was defined by using the gene names as common
identifiers. Indeed, different genes defined by our study as
direct MYCN/c-MYC target genes were represented in the
gene expression classifier gene lists: from the 44 genes over-

able 1

YCN/c-MYC target genes overexpressed in stage 4s-NA compared to localized-NA tumors (classes 1 and 2)

robe Gene name Class BMU Group MYCN/c-MYC-fold change* c-MYC target DB† Validated by ChIP‡

_24_P311604 C4orf28 1 195 I 1.38 +

_23_P102420 CCT4 1 168 I 1.31 +

_23_P5551 NCL 1 308 II 1.69 Up +

_23_P44836 NT5DC2 1 140 I 1.40 +

_32_P139196 C13ORF25V_1 2 308 II 3.83 ND

_24_P133488 CDCA4 2 140 I 1.45 +

_23_P137143 DKC1 2 308 II 1.93 Up +

_23_P216396 EXOSC2 2 308 II 1.83 +

_23_P78892 FBL 2 195 I 1.93 Up +

_24_P228796 GAGE7B 2 195 I 1.27 ND

_23_P41025 GNL3 2 308 II 1.80 Up ND

_32_P8120 GNL3 2 308 II 1.81 Up ND

_23_P398460 HK2 2 280 II 1.71 Up +

s172673.9 Hs172673.9 2 168 I 1.73 +

_23_P502750 MDM2 2 336 II 1.19 ChIP +

_23_P92261 MGC2408 2 280 II 2.14 +

_23_P50897 MKI67IP 2 280 II 1.97 Up +

_23_P214037 NPM1 2 140 I 1.61 Up +

_23_P57709 PCOLCE2 2 308 II 2.40 +

_24_P34632 PTMA 2 308 II 2.21 Up +

_23_P126825 SLC16A1 2 195 I 1.22 +

_23_P126291 SNRPE 2 336 II 1.49 +

_23_P117068 SNRPF 2 336 II 1.44 +

_23_P31536 SSBP1 2 336 II 1.24 +

_23_P26810 TP53 2 140 I 1.44 Up +

Fold change expression in SH-EPMYCN cells after MYCN induction. †c-MYC target gene database entry [25]: Up, upregulated; ChIP, validated by ChIP. 
Validation of MYCN/c-MYC binding using ChIP in this study (Additional data files 5-7). BMU, best matching unit; ND, not determined.
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xpressed in high-risk neuroblastomas independent of other
arkers described by Schramm et al. [28], we identified 10

enes directly regulated by MYCN/c-MYC (DDX21, SCL25A3,
IFA4A2, NME1, NME2, TKT, LDHA, LDHB, HSPD1,
SPCB); from the 20 genes overexpressed in high-risk neu-

oblastomas independent of other markers described by
hira et al. [29], we identified 5 genes directly regulated by
YCN/c-MYC (EEF1G, AHCY, TP53, ENO1, TKT); and from

he 66 genes overexpressed in high-risk neuroblastomas
ndependent of other markers described by Oberthuer et al.
24], we identified 7 genes directly regulated by MYCN/c-

YC (PRDX4, MRPL3, SNRPE, FBL, LOC200916, PAICS,
HCY; Figure 5). Together, these results show that MYCN/c-
YC activity as determined by the expression status of a sub-

et of MYCN/c-MYC target genes is significantly associated
ith poor overall survival independent of other established

markers and is a consistent element of gene expression-based
neuroblastoma risk classification systems.

Discussion
In this study, we analyzed MYCN and c-MYC activity as
reflected by the expression levels of a core set of direct
MYCN/c-MYC targets in neuroblastoma subtypes. As
expected, the highest expression levels of MYCN/c-MYC tar-
gets were observed in MYCN amplified tumors. However, we
found that besides MYCN amplified tumors, subtypes of
MYCN single-copy tumors, namely stage 4-NA and, to a lesser
extent, stage 4s-NA, also showed increased MYCN/c-MYC
target gene activation compared to localized-NA tumors. In
general, low MYCN mRNA and protein levels are found in
most stage 4-NA tumors [14-16], which does not explain the
high mRNA levels of MYCN/c-MYC target genes in this sub-

xpression of MYCN/c-MYC target genes in neuroblastoma subtypesigure 3
xpression of MYCN/c-MYC target genes in neuroblastoma subtypes. Differential expression was analyzed for each of the genes (n = 154) in MYCN 
mplified (AMP), stage 4s-NA and stage 4-NA tumors using localized-NA (stage 1/2/3) tumors as reference in pair-wise comparisons (Mann-Whitney test, 
ut-off p < 0.05, black). We grouped each of these 154 genes into one of four classes based on their relative expression in clinically relevant neuroblastoma 
ubtypes. These classes were, compared to localized-NA tumors: overexpressed in MYCN amplified and in stage 4s-NA tumors (class 1; CCT4 and NCL); 
verexpressed in MYCN amplified, stage 4-NA and stage 4s-NA tumors (class 2; TP53 and FBL); overexpressed in MYCN amplified tumors (class 3; 
THFD2 and EEF1E1); and overexpressed in MYCN amplified and stage 4-NA tumors (class 4; AHCY and MRPL3).
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ype. Here, we describe an inverse correlation of MYCN and
-MYC expression levels in stage 4-NA and stage 4s-NA
umors. From experiments in neuroblastoma cell lines, it is
nown that MYCN and c-MYC control their expression via
utoregulatory loops and via repressing each other at defined
romoter sites [20]. Neuroblastoma cell lines with high
xpression of MYCN as a result of amplification lack c-MYC
xpression. Whenever MYCN and c-MYC are co-expressed in
euroblastoma cell lines, c-MYC expression predominates.
ogether, this suggests that increased activity of c-MYC

represses MYCN in a substantial number of stage 4-NA
tumors. In contrast, an inverse regulation, namely the repres-
sion of c-MYC by MYCN, is found in MYCN amplified and, to
a lesser extent, in stage 4s-NA tumors. It is important to note
that localized-NA tumors also express MYCN as well as c-
MYC and it is likely that they are active because these tumors
frequently show high tumor cell proliferation indices [14].
Nevertheless, in localized-NA tumors, we did not observe that
one MYC transcription factor dominates over the other, such
as in the other neuroblastoma subtypes.

able 2

ssociation of MYCN/c-MYC target gene clusters with overall survival in primary neuroblastomas (n = 251)

luster Number of genes Rank OS* p-value OS† Rank OS with CV* p-value OS with CV†

68 (I) 19 3 <0.0001 1 0.0004

40 (I) 38 4 <0.0001 2 0.0006

95 (I) 21 31 <0.0001 12 0.0060

08 (II) 33 18 <0.0001 26 0.0161

80 (II) 32 29 <0.0001 37 0.0232

36 (II) 26 51 <0.0001 45 0.0280

Rank of all 504 clusters tested for association with overall survival (OS) using the Global test without and with adjustment for co-variables (CV; 
mplified MYCN, stages 1, 2, 3, 4s versus 4, age at diagnosis ≥1.5 years). †p-value from Global test adjusted for multiple testing. In the Cluster column, 
or II gives the cluster group as defined by the SOM analysis using SH-EPMYCN cells.

ssociation of cluster 168 genes with overall survivaligure 4
ssociation of cluster 168 genes with overall survival. The two gene plots illustrate the influence on overall survival of each gene from cluster 168. The 
ene plot gives the influence on overall survival without (left) and with (right) adjustment for the variables genomic MYCN status, age at diagnosis (≥1.5 
ears), and disease stage (stages 1, 2, 3, 4s versus stage 4). The gene plot shows a bar and a reference line for each gene tested. In a survival model, the 
xpected height is zero under the null hypothesis that the gene is not associated with the clinical outcome (= reference line). Marks in the bars indicate by 
ow many standard deviations the bar exceeds the reference line. The bars are colored to indicate a negative (red) association of a gene's expression with 
verall survival. In addition, the boxplot class is given for each gene.
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gure 5
presentation of MYCN/c-MYC target genes in a gene expression-based neuroblastoma risk stratification system. Two-way hierarchical cluster analysis 
ing 144 oligonucleotide probes from the gene expression-based classifier and the 251 patients from the entire cohort. Clinical characteristics (outcome, 
hite = no event, gray = relapse/progression, black = death due to neuroblastoma; genomic MYCN status, white = NA, black = amplified; chromosome 1p 
atus, white = normal, black = 1p deleted, gray = not available; chromosome 11q status, white = normal, black = 11q deleted, gray = not available; age at 
agnosis, white <1.5 years, black ≥1.5 years; disease stage, white = stage 1, 2, gray = stage 3, yellow = stage 4s, black = stage 4) are added to the heatmap 
 gene expression. The gene expression cluster with direct MYCN/c-MYC target genes is highlighted. The Rank Classifier column gives the classifier rank 
und by the Prediction Analysis for Microarrays algorithm and a complete 10-times-repeated 10-fold cross validation. The Cluster column gives the 
sults from the SOM analysis using gene expression profiles from SH-EPMYCN cells. The MYCN/c-MYC regulated column gives the fold changes after 
YCN induction. The Ebox column gives the position of a canonical E-box in the promoter. The c-MYC TGDB column gives the entries in the public c-
YC target gene database. *UP, upregulated.

251 patients

Rank classifier Symbol Cluster Ebox MYCN/c-MYC-regulated   c-MYC TGDB

130 VRK1 447 2 up *UP

108 FLJ10151 40 2.4 up

137 HIST1H1C 482 down/up

3 SLC25A5 383 1.8 up

90 PRDX4 221 346 1.6 up *UP

58 HSPC163 247 down/up

139 MRPL3 336 81 2.2 up

57 SNRPE 336 1.8 up

107 ZNF525 25 1.7 up

105 RPL36A 1 1.4 up *UP

110 FBL 223/195 -4 2.6 up *UP

100 BX119435 466 5.6 up

129 NOLA1 307 284 1.5 up *UP

4 GMPS 445 1.8 up

95 LOC200916 364 2.5 up

1 PAICS 364 (-283/18/617/685) 2.2 up *UP

5 AHCY 196 1.6 up *UP

13 AHCY 168 2.2 up *UP

E2F signature

MYCN/c-MYC

signature

Outcome

MYCN

1p deletion

11q deletion

Age at diagnosis

Stage

SCG2

PDE4DIP
FLJ39739

DST

PKIB
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ur findings further indicate that MYCN/c-MYC target gene
tivation gradually increases from stage 4s-NA through
age 4-NA to MYCN amplified tumors. High expression of a
rge number of MYCN/c-MYC target genes was found in
age 4-NA and MYCN amplified tumors, but not in stage 4s-
A tumors, which is probably involved in the divergent clini-
l outcome of these subtypes. This also suggests that MYCN
 stage 4s tumors is a weaker transactivator than c-MYC in
age 4-NA tumors. Whether this effect is due to the cellular
ntext in which they are expressed and/or due to different
nctions of the two MYC proteins in neuroblastoma cells is

nclear. In favor of a cellular context factor, we observed that
romoter constructs from the PTMA gene, which is highly
pressed in stage 4s NA and MYCN amplified tumors,
owed a strong activation in N-type but not S-type neurob-
stoma cell lines despite similar MYCN protein levels
npublished data). In favor of different functions of the two
YC proteins, our analyses in SH-EPMYCN cells suggest that a
rge number of MYCN/c-MYC target genes (subgroup I
nes) are less responsive to MYCN than to c-MYC. Another

nsolved question is which molecular mechanisms induce
evated MYCN activity in stage 4s-NA tumors or elevated c-
YC activity in stage 4-NA tumors. Candidate pathways
volved in differential regulation of MYC proteins are the

onic hedgehog pathway (Shh) for MYCN activation [30] and
e Wnt/beta-catenin pathway for c-MYC activation [31,32].
owever, we observed that c-MYC mRNA levels are not
gnificantly higher in stage 4-NA than in localized-NA
mors. This suggests that molecular mechanisms that
crease c-MYC protein abundance/stability or simply c-MYC
tivity are involved in MYCN/c-MYC target gene activation
 stage 4 tumors.

ur data are in line with a model where stage 4s-NA tumors
hibit a moderate MYCN function gain compared to local-

ed-NA tumors. Both subtypes usually have favorable out-
me. Most localized-NA tumors are cured by surgery alone

r even regress spontaneously. Stage 4s-NA tumors fre-
uently regress spontaneously but regression can also be
duced by a 'mild' chemotherapy. We found that stage 4s-NA
mors express, on average, the highest MYCN mRNA levels

f all non-amplified tumors [14]. From the experimentally
efined direct MYCN target genes, only a restricted set of 25
nes, including CCT4, FBL, MDM2, NCL, NPM1, PTMA, and

P53, was overexpressed in stage 4s-NA compared to local-
ed-NA tumors, indicating that elevated MYCN in stage 4s-
A tumors only partially activates its downstream target
nes. On the one hand, this suggests that moderate MYCN
nction gain in stage 4s-NA tumors is involved in the meta-
atic phenotype. On the other hand, moderate MYCN func-
on gain in this subtype is still compatible with, or might even
vor, spontaneous regression. From the list of MYCN target

enes overexpressed in stage 4s-NA tumors, TP53 as a pro-
optotic gene, and MDM2, coding for the direct inhibitor of

53 and mediating pro-tumorigenic activities, are strong can-
idates to be involved in the unique phenotype of stage 4s-NA

tumors. However, it is important to note that TP53 and
MDM2 are co-expressed at higher levels also in stage 4-NA
and MYCN amplified tumors. Both subtypes initially respond
to therapy, but rapidly acquire resistance and frequently
show progression/relapse, suggesting that additional condi-
tions activating MDM2 and/or suppressing TP53 functions
are acquired. In line with this, alterations disrupting the p14-
MDM2-p53 pathway, such as MDM2 amplification, p14
methylation/deletion, and TP53 mutations are found in neu-
roblastoma cell lines that were established from relapsed
patients [33]. In this context, it remains to be shown whether
small compounds that selectively inhibit MDM2, such as nut-
lin-3, and that induce proliferation arrest and apoptosis in
neuroblastoma cell lines [34,35] represent a new therapeutic
option for high-risk neuroblastomas.

Conclusions
High expression of a defined subset of direct MYCN/c-MYC
target genes turned out to be a robust marker for poor overall
survival independent of the established markers, amplified
MYCN, disease stage (stage 4 versus stages 1, 2, 3, and 4s) and
age at diagnosis (≥1.5 years). Recently, several gene expres-
sion-based neuroblastoma risk stratification systems have
been developed that predict outcome more accurately than
established risk markers [24,28,29]. Unfortunately, the clas-
sifier gene lists emerging from these studies hardly overlap,
which has been ascribed to the different composition of the
investigated cohorts and the different high-throughput gene
expression platforms used. Our data show that markers of
increased MYCN/c-MYC activity are consistently represented
in these classifier gene lists, indicating that a gene expression-
based classifier that reflects MYCN/c-MYC function should
make an attractive tool for neuroblastoma classification and
risk prediction.

Materials and methods
Patients
All patients from this study (n = 251) were enrolled in the Ger-
man Neuroblastoma Trials NB90-NB2004 with informed
consent and diagnosed between 1989 and 2004 (patient char-
acteristics are in Additional data files 2 and 12). Tumor sam-
ples were collected prior to any cytoreductive treatment. The
only criterion for patient selection was availability of suffi-
cient amounts of tumor material. Tumor specimens were
checked for at least 60% tumor content.

Neuroblastoma sample preparation and gene 
expression analysis
Gene expression profiles from the tumors were generated as
dye-flipped dual-color replicates using customized 11K oligo-
nucleotide microarrays as previously described [24]. The 11K
Agilent microarray was constructed in our laboratory based
on extensive neuroblastoma transcriptome information from
different whole-genome analyses from primary tumors and
Genome Biology 2008, 9:R150
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euroblastoma cell lines. These also include comparative
anscriptome analysis of MYCN amplified versus not ampli-
ed tumors as well as of neuroblastoma cell lines with varia-
le/conditional MYCN/c-MYC expression that allowed the

richment with MYCN/c-MYC-regulated genes [14,24]
npublished data). The reference for each tumor RNA was
 RNA pool of 100 neuroblastoma tumor samples. Data nor-
alization and quality control is described in Additional data

le 2. All raw and normalized microarray data are available at
e ArrayExpress database (Accession: E-TABM-38) [36].

euroblastoma cell line experiments and SOM analysis
he SH-EPMYCN cell line, previously also denoted as TET21N
3], expressing a MYCN transgene under the control of a tet-
cycline-repressible element was used to generate gene
pression profiles from different time points after MYCN
duction showing variable MYCN and c-MYC levels. RNA
olation from SH-EPMYCN cells was performed as previously
escribed [14]. Gene expression profiles were generated as
ye-flipped dual-color replicates using the same customized
K oligonucleotide microarray platform used for the tumor
mples. The reference for RNA from SH-EPMYCN cells after
YCN induction was RNA from SH-EPMYCN cells cultured in

arallel that lack MYCN expression. Gene expression profiles
om SH-EPMYCN cells with variable MYCN and c-MYC levels
ere taken for a SOM analysis (Additional data file 2). Protein
pression was assessed by immunoblotting using 50 μg of
tal cell lysates from the cell line experiments as previously

escribed [37]. Blots were probed with antibodies directed
ainst MYCN (SantaCruz, sc-53993, Santa Cruz, CA, USA)
d c-MYC (SantaCruz, sc-764, Santa Cruz, CA, USA).

hIP, ChIP-chip and protein analysis
hromatin immunoprecipitation was performed as described
reviously [38,39] using 10 μg of MYCN (SantaCruz, sc-
3993), c-MYC (SantaCruz, sc-764) [40,41] and normal
ouse IgG (SantaCruz, sc-2025) antibodies and Dynabeads

roteinG (Invitrogen, Carlsbad, CA, USA). Eluted and puri-
ed MYCN-ChIP-DNA (1 μl) of IMR5/75 and SH-EPMYCN was
sed as a template in PCR reactions running for 35 cycles. The
rimer sequences are given in Additional data file 8. In addi-
on, ChIP-DNA templates from SH-EPMYCN, SH-EP, Kelly,

R5/75, SJNB-12 and SY5Y cells using MYCN and c-MYC
tibodies were amplified for DNA microarray analysis (Agi-

nt Human Promoter ChIP-chip Set 244K) using the WGA
igma-Aldrich, St. Louis, MO, USA) method [42]. DNA labe-

ng, array hybridization and measurement were performed
cording to Agilent mammalian ChIP-chip protocols. For
e visualization of ChIP-chip results, the cureos package
.2 for R was used (available upon request). The in silico

romoter analysis for the identification of putative MYC
inding sites (canonical and non-canonical E-boxes) is
escribed in Additional data file 2.

Differential gene expression and survival analysis
Differential gene expression of MYCN/c-MYC and their tar-
get genes in neuroblastoma tumors was evaluated for stage
4s-NA, stage 4-NA and MYCN amplified using localized-NA
tumors (stages 1, 2, 3) as reference using Goeman's Global
test and the Wilcoxon rank sum test. A result was judged as
'statistically significant' at a p-value of 0.05 or smaller. Differ-
ential expression of MYCN was evaluated in two partially
overlapping cohorts, one measured by quantitative PCR [14]
and the other by oligo microarray (the overlap was 101
patients). To test the association of MYCN in vitro clusters
with overall survival (death due to neuroblastoma disease),
Goeman's Global test was used [27]. To evaluate the influence
of gene expression on outcome independent of established
markers, the Global test was adjusted for the following co-
variables: genomic MYCN status, stage of the disease (stage 4
versus stages 1, 2, 3, and 4s), and age at diagnosis (≥1.5 years
versus <1.5 years). Because of multiple testing of probably
dependent gene clusters, p-values were adjusted according to
Benjamini and Yekutieli [43] to control the false discovery
rate of 5%.

Abbreviations
ChIP, PCR-based chromatin immunoprecipitation; ChIP-
chip, array-based chromatin immunoprecipitation; NA, non-
amplified; SOM, self-organizing map.

Authors' contributions
FW designed and coordinated the study. FW and DM inter-
preted results and drafted the manuscript. AO, MF, AB, BB
and FW carried out array-based expression profiling and data
analyses of neuroblastoma tumor samples and cell lines. BH
was responsible for clinical data management. TB and RK
performed in silico promoter analyses. JV and FP contributed
samples and performed literature searches of MYCN/c-MYC
target genes. DM performed chromatin immunoprecipitation
experiments. DM, TB and FW analyzed ChIP-chip data. AB,
BH and FW carried out global test and survival analyses. FW,
DM, KOH, JV, FP and MS contributed to the manuscript. All
authors read and approved the final manuscript.

Additional data files
The following additional data are available. Additional data
file 1 is a figure showing a Cluster map of genetic programs
regulated by conditional expression of c-MYC and MYCN pro-
teins in SH-EPMYCN cells. Additional data file 2 is a document
describing in more detail the methods and materials.
Additional data files 3 and 4 are sets of figures showing ChIP-
chip results of MYCN/c-MYC target genes in the Kelly and SJ-
NB12 cell lines. Additional data files 5, 6 and 7 are tables list-
ing MYCN/c-MYC target genes overexpressed in stage 4s-NA,
stage 4-NA and MYCN amplified tumors, respectively, com-
pared to localized-NA tumors. Additional data file 8 is a table
Genome Biology 2008, 9:R150
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dditional data files 9, 10 and 11 are figures showing the asso-
ation of MYCN/c-MYC induced genes with neuroblastoma
btypes using the Global test. Additional data file 12 is a
ble providing patient data.

dditional data file 1luster map of genetic programs regulated by conditional expres-on of c-MYC and MYCN proteins in SH-EPMYCN cellsluster map of genetic programs regulated by conditional expres-on of c-MYC and MYCN proteins in SH-EPMYCN cells.lick here for filedditional data file 2etailed methods and materialsetailed methods and materials.lick here for filedditional data file 3hIP-chip results of MYCN/c-MYC target genes in the Kelly cell nehIP-chip results of MYCN/c-MYC target genes in the Kelly cell ne.lick here for filedditional data file 4hIP-chip results of MYCN/c-MYC target genes in the SJ-NB12 cell nehIP-chip results of MYCN/c-MYC target genes in the SJ-NB12 cell ne.lick here for filedditional data file 5YCN/c-MYC target genes, which grouped in class 1 and 2YCN/c-MYC target genes, which grouped in class 1 and 2.lick here for filedditional data file 6YCN/c-MYC target genes, which grouped in class 4YCN/c-MYC target genes, which grouped in class 4.lick here for filedditional data file 7YCN/c-MYC target genes, which grouped in class 3YCN/c-MYC target genes, which grouped in class 3.lick here for filedditional data file 8enes and primers selected to confirm ChIP-chip resultsenes and primers selected to confirm ChIP-chip results.lick here for filedditional data file 9ssociation of MYCN/c-MYC induced genes with stage 4s-NA neu-blastomas using the Global testssociation of MYCN/c-MYC induced genes with stage 4s-NA neu-blastomas using the Global test.lick here for filedditional data file 10ssociation of MYCN/c-MYC induced genes with stage 4-NA neu-blastomas using the Global testssociation of MYCN/c-MYC induced genes with stage 4-NA neu-blastomas using the Global test.lick here for filedditional data file 11ssociation of MYCN/c-MYC induced genes with MYCN amplified euroblastomas using the Global testssociation of MYCN/c-MYC induced genes with MYCN amplified euroblastomas using the Global test.lick here for filedditional data file 12atient dataatient data.lick here for file
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Abstract

Background: In the past, molecular mechanisms that drive the initiation of an inflammatory response have been
studied intensively. However, corresponding mechanisms that sustain the expression of inflammatory response
genes and hence contribute to the establishment of chronic disorders remain poorly understood. Recently, we
provided genetic evidence that signaling via the receptor for advanced glycation end products (Rage) drives the
strength and maintenance of an inflammatory reaction. In order to decipher the mode of Rage function on gene
transcription levels during inflammation, we applied global gene expression profiling on time-resolved samples of
mouse back skin, which had been treated with the phorbol ester TPA, a potent inducer of skin inflammation.

Results: Ranking of TPA-regulated genes according to their time average mean and peak expression and
superimposition of data sets from wild-type (wt) and Rage-deficient mice revealed that Rage signaling is not
essential for initial changes in TPA-induced transcription, but absolutely required for sustained alterations in
transcript levels. Next, we used a data set of differentially expressed genes between TPA-treated wt and Rage-
deficient skin and performed computational analysis of their proximal promoter regions. We found a highly
significant enrichment for several transcription factor binding sites (TFBS) leading to the prediction that
corresponding transcription factors, such as Sp1, Tcfap2, E2f, Myc and Egr, are regulated by Rage signaling.
Accordingly, we could confirm aberrant expression and regulation of members of the E2f protein family in
epidermal keratinocytes of Rage-deficient mice.

Conclusions: In summary, our data support the model that engagement of Rage converts a transient cellular
stimulation into sustained cellular dysfunction and highlight a novel role of the Rb-E2f pathway in Rage-dependent
inflammation during pathological conditions.

Background
A striking feature of many human cancers is an underly-
ing and unresolved inflammation, which often predates
the disease and orchestrates a tumor supporting micro-
environment. Indeed, several lines of evidence, including
population-based epidemiological and clinical studies as
well as experimental animal model systems, highlighted
chronic infection and persistent inflammation as major
risk factors for various types of cancer [1,2]. Thus, mole-
cular mechanisms converting a transient inflammatory

tissue reaction into a tumor promoting microenviron-
ment as well as signaling and gene regulatory networks
implicated in cellular communication between tumor
and immune cells will be auspicious targets for innova-
tive strategies of translational cancer research.
Recently, we could show that the receptor for

advanced glycation end products (Rage) drives the
strength and maintenance of inflammation during
tumor promotion in a mouse model of inflammation-
associated skin carcinogenesis [3]. Accordingly, tumor
formation in mutant mice with Rage deletion (Rage-/-)
was impaired in this model, but also in a tumor model
of colitis-induced colon cancer [3,4].
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Rage is a multi-ligand as well as pattern recognition
receptor of the immunoglobulin super-family with low
expression levels in most adult tissues. However, Rage
expression increases at sites of inflammation, mainly on
inflammatory cells, endothelial cells and epithelial cells,
and propagates cellular dysfunction in numerous inflam-
mation-related pathological states, such as diabetes, vas-
cular disease, neurodegeneration, chronic inflammation,
and cancer [5-7].
With respect to Rage signaling, several target genes

have been identified in the past, including pro-
inflammatory mediators, matrix metalloproteinases, and
adhesion proteins, however, their expression critically
depends on the cell type, its microenvironment, and
quality of the stimulus [8]. In the process of neoplastic
transformation and malignant progression, activation of
Rage by its ligands, such as advanced glycation end pro-
ducts (AGEs), high mobility group box-1 (Hmgb1), and
members of the S100 protein family, can stimulate
tumor cell proliferation, invasion, chemoresistance, and
metastasis [9-11]. Rage ligands derived from cancer cells
can also support the establishment of a pro-tumorigenic
microenvironment by activation of leukocytes, vascular
cells, fibroblasts, and modulation of immune tolerance
[11]. Although multiple intracellular signaling pathways,
including MAP kinases, Rho GTPases, PI3K, JAK/STAT,
and NF-�B, have been found to be altered following
Rage stimulation, the molecular mechanisms how Rage
triggers intracellular signaling to regulate cellular deci-
sions remain largely elusive, and the identity of direct
signaling molecules downstream of the receptor are still
unknown [5,12-14].
In order to elucidate how Rage receptor signaling con-

verts a transient stimulus into a long lasting response,
global gene expression kinetics were recorded with skin
samples of wt and Rage-/- mice upon TPA stimulation.
We applied a recently published computational analysis
tool that enables a global, holistic view on cellular
responses over a time frame of hours based on dynamic
transcription level data [15], and identified the charac-
teristic duration and temporal order of transient and
Rage-dependent events upon TPA stimulation. Subse-
quently, a computational approach was applied to pre-
dict transcription factors that are implicated in the
Rage-dependent regulation of pro-inflammatory gene
expression, and thus, to identify novel key molecules as
putative targets for innovative strategies of anti-
inflammatory therapy.

Results
Identification of Rage-dependent gene expression upon
TPA treatment of mouse back skin
In order to identify alterations in the gene expression
profile during the process of skin inflammation we

applied TPA on the back skin of wt and Rage-/- mice
and prepared total RNA at consecutive time points after
treatment (6, 12, 24, and 48 hours following TPA appli-
cation in three individual animal experiments). The
RNA was hybridized on whole mouse genome oligonu-
cleotide microarrays followed by feature extraction and
quantile normalization procedure (Figure 1A). The gene
fold expression was calculated with respect to non-
treated controls (0 h), and TPA-responsive genes in
samples of wt back skin were ranked according to their
combined averaged mean and peak expression within
the experimental time window of 48 hours for each
individual kinetic series. Subsequently, we identified a
common subset of 341 genes among the 1,000 highest
ranked genes in all three experiments with a small var-
iance between the experiments (Figure 1B and see Addi-
tional file 1). These genes were further separated into
six expression profile sets according to k-means cluster-
ing (see Additional file 2). Most candidate genes were
found in cluster 3 (n = 125) or in cluster 6 (n = 84),
representing genes that were either TPA-repressed or
TPA-induced within 6 hours and maintained altered
expression for at least 24 hours (Figure 1C). Interest-
ingly, when we considered the transcript levels of these
genes in Rage-/- back skin and superimposed both wt
and Rage-/- data sets we found a comparable response in
both genotypes at 6 hours. However, initial transcript
level responses ceased to basal levels in Rage-/- skin
between 12 and 24 hours upon stimulation, whereas the
response was sustained in wt animals. Our data suggest
the existence of two phases of the TPA response: an
initial Rage-independent response that is followed by a
second Rage-dependent maintenance of the altered tran-
script levels (Figure 1C).
Next, linear models with empirical Bayesian correction

were applied to identify differentially expressed genes
between wt and Rage-/- back skin at the investigated
time points after TPA administration. In line with pre-
ceding analyses and previous results [3], genes (n = 122)
that differ significantly between both genotypes were
only found 24 hours after TPA stimulation (see Addi-
tional file 3). According to their temporal expression
pattern, differentially expressed genes were further
divided by unsupervised hierarchical clustering of their
correlation distance (one minus the Pearson correlation
coefficient) into three sub-clusters. While cluster 1 (n =
52) and cluster 2 (n = 25) shared TPA-induced genes,
cluster 3 (n = 45) was composed of TPA-repressed
genes (see Additional file 3). We selected several differ-
entially expressed genes (Tgfb1, Tnf, Fosl1, Mmp2, Irf7,
Hmgb2, and Hdac2) and could confirm altered tran-
script levels by quantitative real-time PCR using cDNA
from back skin of wt and Rage-/- mice 24 hours after
TPA treatment (see Additional file 4). With regard to
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Figure 1 Global gene expression analysis of wt and Rage-/- skin following single TPA treatment. (A) Mice of respective phenotypes were
treated once with TPA, and back skin was isolated 6, 12, 24, or 48 hours after stimulation. Non-treated and acetone-treated mice served as
control (0). Global gene expression analysis of RNA samples was performed on whole mouse genome oligonucleotide microarrays (n = 3 for
each genotype and time point). (B) Following quantile normalization, wt genes of each kinetic from three independent animal experiments (1, 2,
and 3) were ranked according to high mean and peak expression separately to filter for TPA-responsive genes. A common subset of 341 genes
was identified out of the top 1000 ranked genes within each kinetic. (C) K-means clustering revealed 6 clusters of which cluster 3 and 6 shared
most genes (for cluster 1, 2, 4, and 5 see Additional file 2). Black lines represent transcript levels of TPA-regulated genes in wt samples and red
lines represent the corresponding genes in Rage-/- samples.
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their functional annotation, genes of cluster 1 were cor-
related with immune effector process, tissue remodeling
and cell signaling, while genes of cluster 3 showed evi-
dent connection to histone and chromatin modifications
as well as metabolic processes (data not shown).
Taken together, time-resolved global gene expression

analysis of wt and Rage-/- skin upon TPA application
disclosed expression patterns that subdivide the TPA-
induced response into an initial Rage-independent phase
and a second Rage-dependent maintenance of the estab-
lished signal. Differentially expressed genes 24 hours
after TPA stimulation revealed three gene clusters char-
acterized by distinct functions.

Prediction of transcription factors implicated in the Rage-
dependent gene regulatory network
In order to identify relevant transcription factors impli-
cated in the regulation of Rage-dependent genes we per-
formed an in silico promoter analysis. We used the probes
that were differentially expressed between wt and Rage-/-

mice at the time point 24 hours after TPA application and
selected those that mapped unambiguously to one Entrez-
gene-ID and for which the promoter sequence was avail-
able (n = 97). These probes were clustered by their
correlation distance within the samples from t = 24 hours
into three clusters (see Additional file 5). We analyzed
2 kb upstream and downstream sequences of the anno-
tated transcriptional start site and calculated the enrich-
ment of transcription factor binding sites (TFBS)
compared to all other available genes represented on the
microarray by Fisher’s exact tests. The analysis revealed
several highly enriched TFBS for Specificity protein 1 and
4 (Sp1 and 4), Activator protein 2 (Ap2/Tcfap2), E2-pro-
moter-binding factor (E2f), Myc-associated zinc-finger
protein and Myc-associated zinc-finger protein-related
protein (Mazr), Early growth response factor (Egr), CAC-
binding protein (CAC-bp), v-Myc myelocytomatosis viral
oncogene homolog (Myc), Nuclear receptor subfamily 2
group F members (Nr2f/COUP-TF), and Wilms tumor 1
homolog (Wt1) (Table 1). The enrichment tests were also

Table 1 In silico promoter analysis of differentially expressed genes 24 hours after TPA stimulation

Genes BF Name Fischertest P.Val Corrected P.Val With PWM cluster Without PWM cluster

all Sp1 5.33E-07 1.06E-04 94 3

Sp1 isoform 1 5.33E-07 1.06E-04 94 3

Sp4 1.72E-06 2.27E-04 83 14

AP-2beta 1.24E-06 1.22E-03 77 20

AP-2alpha 1.60E-05 1.27E-03 79 18

AP-2gamma 2.13E-05 1.41E-03 79 18

MAZR 6.03E-05 3.41E-03 74 23

CAC-binding protein 1.32E-04 6.52E-03 81 16

Egr-1 3.56E-04 1.56E-02 85 12

Egr-3 4.38E-04 1.73E-02 78 19

E2F 4.85E-04 1.75E-02 58 39

c-Myc 7.31E-04 2.41E-02 67 30

Egr-2 9.69E-04 2.94E-02 80 17

COUP-TF1 1.06E-03 2.94E-02 89 8

WT1 1.19E-03 2.94E-02 67 30

WT1-isoform1 1.19E-03 2.94E-02 67 30

COUP-TF2 1.45E-03 3.38E-02 48 49

Cluster 1 Sp4 2.01E-06 7.93E-04 40 2

Sp1 6.13E-05 6.86E-03 42 0

Sp1 isoform 1 6.13E-05 6.86E-03 42 0

MAZR 6.93E-05 6.86E-03 36 6

HNF-4alpha7 1.84E-04 1,46E-02 29 13

CAC-binding protein 3.12E-04 2.06E-02 38 4

Cluster 2 MAZR 2.14E-04 7.64E-02 19 1

WT1 5.79E-04 7.64E-02 18 2

WT1-isoform1 5.79E-04 7.64E-02 18 2

Cluster 3 E2F 1.88E-05 7.45E-03 28 8

E2F-1 8.50E-05 1.68E-02 28 8
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applied on each of the three clusters separately to address
the question, whether specific TFBS were significantly
associated with differentially expressed genes in distinct
clusters. While TFBS for Mazr were enriched in promoters
of genes of at least 2 of 3 clusters, a significant correlation
of TFBS for Sp1, Sp4, Hnf4, and CAC-bp were only found
for promoters of genes in cluster 1 (Figure 2A). Similarly,
significant enrichment of TFBS for Wt1 was restricted for
gene promoters in cluster 2, and TFBS for E2f were lim-
ited to gene promoters in cluster 3 (Figure 2A).
In summary, the enrichment analyses highlighted the
putative involvement of several transcription
factors, such as E2f and Wt1, that were previously not

associated with Rage signaling, and therefore, represent
an exciting starting point for further investigation.

Impact of Rage on the regulation of E2f proteins in TPA-
treated skin
To confirm our prediction on transcription factors
implicated in Rage-dependent gene transcription, we
investigated the expression and regulation of the E2f
transcription factor that is well known to determine cel-
lular responses to growth factors, stress and differentia-
tion signals, as well as DNA damage [16]. E2f represents
a family of eight transcription factors that are further
subdivided into a group of potent transcriptional

Figure 2 In silico promoter analysis of differentially expressed genes 24 hours after TPA treatment. (A) Annotated promoter sequences
of 97 differentially expressed genes between wt and Rage-/- skin were screened for significant enrichment of transcription factor binding sites
(TFBS). TFBS were grouped according to their enrichment within clusters of differentially expressed genes between wt and Rage-/- skin 24 hours
after TPA treatment. (B) Protein expression of E2f1, E2f4, Rb, and Rbl1 was investigated by Western blot analysis with whole cell lysates of TPA-
and control-treated back skin of wt and Rage-/- mice. Actin protein levels served as control for protein quality and quantity.
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activators (E2f1-3a) and a group of preferential tran-
scriptional repressors (E2f3b, E2f4-8) [17]. Analysis of
our global gene expression data revealed no major
alteration in transcript levels of most E2f family mem-
bers between both genotypes, suggesting an impact of
Rage on posttranslational regulation of E2f proteins.
Interestingly, we found strong induction in protein
levels of E2f1, a representative for the group of tran-
scriptional activators, 6 and 12 hours after TPA applica-
tion in skin lysates of both genotypes. However,
enhanced protein levels 24 hours after TPA stimulation
were only detected in wt lysates (Figure 2B). E2f4, a
representative for the group of transcriptional repres-
sors, gradually increased upon TPA treatment, showing
a peak at 24 hours in wt skin, while no alterations in
protein level were detected in Rage-/- samples through-
out the kinetic (Figure 2B). Retinoblastoma (Rb) and
retinoblastoma-like (Rbl) proteins regulate the activity of
E2f transcription factors [16]. We found changes for Rb
protein expression with highest levels 6 hours after sti-
mulation in wt skin samples and 24 hours in Rage-/-

skin samples (Figure 2B). Rbl1 protein expression was
induced in wt and Rage-/- skin samples following TPA
stimulation, but a concerted increase over time was only
detected for wt animals. Together, these data support
the conception that the Rb-E2f pathway is downstream
of Rage signaling and critically contributes to
altered gene transcription during TPA-induced skin
inflammation.
Immunohistochemical staining was performed on tis-

sue sections of wt and Rage-/- back skin upon single
TPA treatment in order to investigate whether keratino-
cytes were the cellular origin of altered E2f protein
levels. While slight staining for E2f1 protein was
detected in keratinocytes of control-treated wt back
skin, intense nuclear staining was found in kerationcytes
upon TPA stimulation (Figure 3A-E). A similar staining
pattern for E2f1 protein was observed in control-treated
Rage-/- back skin and 6 hours after TPA administration,
however, less intense staining was determined at later
time points (Figure 3F-J). Immunohistochemical analysis
of E2f4 protein revealed a strong but transient induction
in the cytoplasm of keratinocytes of wt back skin 12
hours after TPA stimulation, followed by translocation
of E2f4 protein into the nucleus by 24 hours after TPA
application (Figure 3K-O). Again, an obvious change in
E2f4 protein expression was detectable in Rage-/- back
skin (Figure 3P-T). These data are in clear accordance
with our immunoblot data and demonstrate a direct
correlation between RAGE signaling and E2f-dependent
gene expression in epidermal keratinocytes upon TPA-
induced skin inflammation. Finally, we also determined
Rb, Rbl1, and Rbl2 protein levels by immunochisto-
chemistry. While no major alteration in Rbl2 protein

levels was observed following TPA stimulation or
between both genotypes (see Additional file 6), we
found a stronger staining for Rb and Rbl1 proteins in
keratinocytes of TPA-treated wt compared to Rage-/-

back skin (Figure 4).

Discussion
The aim of our study was to highlight the molecular
mechanism how Rage signaling contributes to the
dynamic long-term gene regulatory response under phy-
siological and pathological conditions of inflammation.
We selected the model of TPA-induced inflammation
on mouse back skin since it allows a highly reproducible
and temporal analysis of altered gene expression during
acute phase inflammation, including the initiation as
well as the resolution phase. Furthermore, we recently
provided experimental evidence that Rage-/- mice are
defective in the establishment and maintenance of der-
mal inflammation upon TPA stimulation accompanied
by impaired tumor formation in a chemically induced
skin tumor model [3]. Finally, it is worthwhile to note
that Rage and its ligands are expressed or induced in
numerous cell types, including keratinocytes, immune
cells and endothelial cells [5]. With regard to this com-
plex autocrine and paracrine signaling, in vitro
approaches to identify the role of Rage signaling on
gene regulatory networks under pathological conditions
are almost impossible.
Global profiling of gene expression kinetics with sam-

ples from TPA-treated wt mice revealed a comprehen-
sive list of differentially expressed genes that were
strongly induced or repressed within 6 hours and main-
tained altered transcript levels for at least 24 hours.
Intriguingly, most of these genes exhibited similar
changes in expression at early time points, but rapidly
returned to basal levels in the absence of Rage, provid-
ing experimental evidence that Rage is not necessarily
required to initiate gene regulation in TPA-induced skin
inflammation. However, Rage is absolutely required to
maintain altered expression of genes implicated in
immune effector processes, cell signaling, as well as his-
tone and chromatin organization, and thereby sustains
the tissue response.
Our data fit into the model that engagement of Rage

converts a transient cellular stimulation into sustained
cellular dysfunction. An important driver of this conver-
sion is the long-term activation of pro-inflammatory
transcription factors, especially NF-�B, which represents
a key feature of most intracellular signaling pathways
that have been described downstream of Rage stimula-
tion [6,8,18]. However, we hypothesized that in addition
to NF-�B other transcription factors contribute to Rage-
dependent modulation of the gene regulatory network.
Obviously, most genes with a significant difference in

Riehl et al. BMC Genomics 2010, 11:537
http://www.biomedcentral.com/1471-2164/11/537

Page 6 of 13

95



transcript levels between wt and Rage-/- back skin were
detectable 24 hours after TPA administration due to the
effect of Rage on the temporal expression pattern. Com-
putational analysis of TFBS in proximal promoter
regions of differentially expressed genes allowed predic-
tion of specific transcription factors that act downstream
of Rage signaling during TPA-induced inflammation. In
line with our data, a couple of recent studies describe a
direct link between Rage signaling and Egr-1 activation
in endothelial cells and liver cells [19-22]. In this con-
text, Egr-1 was found in the physiological response to

hypoxia and stress signals by direct up-regulation of
inflammatory and pro-thrombotic genes. Moreover, a
systems biology approach with human monocytes trea-
ted with the immunomodulatory peptide LL-37 revealed
an involvement of Ap2, Sp1, E2f and Egr in gene regula-
tion during conditions based on innate immunity [23].
Our data also predict that these transcription factors
seem to be co-activated by various conditions of
inflammation and synergize with well-known pro-
inflammatory transcription factors such as NF-�B and
AP-1 in a Rage-dependent manner. It is worth to note

Figure 3 E2f1 and E2f4 protein expression in skin following a single TPA stimulus. Tissue sections of acetone- (Ac) or TPA-treated (6, 12,
24, and 48 hours) back skin from wt and Rage-/- mice were analyzed by immunohistochemical staining using E2f1- and E2f4-specific antibodies.
Representative images of at least 2 animals of each genotype and time point are shown with red staining for E2f1 or E2f4 and counterstaining
with hematoxylin. Scale bar = 25 μm.
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that TFBS for Sp1, Ap2, and Egr are also present in the
promoter of Rage [24,25], suggesting a positive feedback
loop by up-regulation of the receptor, which ensures
maintenance and amplification of cellular activation in
settings where ligands of Rage accumulate. A similar
scenario has been described for NF-�B, which also
represents a target of Rage signaling and activator of
Rage expression [5,6].
Interestingly, our analysis revealed a significant enrich-

ment of TFBS for the transcription factor E2f. There
are a number of findings demonstrating diverse

transcriptional regulation of E2f-responsive genes, sug-
gesting that expression of these genes is regulated by
different sets of Rb-E2f protein complexes [16]. How-
ever, it is currently uncertain how individual E2f mem-
bers recognize a particular E2f-binding site during cell
cycle progression or differentiation. One possibility is
that the DNA-binding specificity of E2f members is
influenced by other transcriptional regulatory factors,
such as Sp1, that bind to sites contiguous to the E2f-
binding site [26,27]. We found TPA-induced protein
levels for E2f1 and E2f4 in epidermal keratinocytes of wt

Figure 4 Rb and Rbl1 protein expression in skin following a single TPA stimulus. Tissue sections of acetone- (Ac) or TPA-treated (6, 12, 24,
and 48 hours) back skin from wt and Rage-/- mice were analyzed by immunohistochemical staining using Rb- and Rbl1-specific antibodies.
Representative images of at least 2 animals of each genotype and time point are shown with red staining for Rb or Rbl1 and counterstaining
with hematoxylin. Scale bar = 25 μm.
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mice. At the same time, we observed a prominent up-
regulation of Rb1 and Rbl1, suggesting the formation of
Rb-E2f protein complexes. In contrast to wt mice,
induction of E2f and Rb family proteins was impaired or
only transient in keratinocytes of TPA-treated Rage-/-

back skin. Rb family proteins associate with a wide
range of chromatin remodeling proteins forming tran-
scriptional repressor complexes [28]. Thus, the existence
of Rb-E2f complexes in keratinocytes after TPA stimula-
tion could explain the enrichment of TFBS for E2f in
the gene set characterized by strong and sustained
repression. In addition to control of gene expression
and binding to inhibitory Rb proteins, the activity of
E2F proteins is tightly regulated by post-translational
modification and regulation of protein turnover [29].
As an example, free E2F1 and E2F4 proteins are
unstable due to ubiquitination and proteasomal degra-
dation. Numerous cellular proteins have been
described to regulate E2F protein ubiquitination, such
as the CK1-MDM2 complex [30,31], ARF proteins
(p14ARF in human and p19ARF in the mouse; [32]),
Set9 and LSD1 [33]. However, our analysis did not
reveal major changes in expression of any of these reg-
ulators upon TPA application or between RAGE-defi-
cient mice and controls, and a functional link between
RAGE signaling with one of these proteins has not
been documented to the best of our knowledge. Iva-
nova and colleagues reported that in differentiating
keratinocytes calcium-induced protein kinase C (PKC)
activation reduces E2F1 protein level, which requires
activation of novel PKC isoforms by the MAP kinase
p38 [34]. Again E2F1 down-regulation in differentiat-
ing keratinocytes involves its ubiquitination and pro-
teosomal degradation subsequent to CRM1-dependent
nuclear export and degradation of E2F1 during differ-
entiation [35]. Indeed, we observed strong cytoplasmic
staining for E2F1 protein 12 hours after TPA treat-
ment in keratinocytes of Rage-/- mice and wt controls.
However, in contrast to wt controls, which show
obvious nuclear staining for E2F1 until 48 hours after
treatment, nuclear staining in keratinocytes of Rage-/-

mice was hardly visible at any time point, suggesting
that RAGE signaling might regulate nuclear-cytoplas-
mic shuttling of E2F proteins.
Finally, our data predict that the Rb-E2f pathway and

its target genes not only act downstream of Rage signal-
ing, but also might be pivotal for the process of skin
inflammation upon TPA treatment. Indeed, CDK activ-
ity, which is up-stream of Rb-E2f, was recently corre-
lated with roles in inflammatory cell differentiation,
adhesion and recruitment as well as cytokine production
and inflammatory signaling [36]. Intriguingly, CDK inhi-
bitor drugs that are well-known to impair cell cycle pro-
gression in tumor cells have emerged recently as

potential anti-inflammatory, pharmacological agents by
influencing the resolution of inflammation [36,37].

Conclusions
In summary, our approach to combine gene expression
profiling with computational analysis did not only high-
light the topology of Rage-dependent gene regulation in
skin inflammation, but also allowed the prediction of
novel transcription factors downstream of Rage signaling
(Figure 5). A major challenge in the future will be the inte-
gration of known and newly identified transcription factors
in a common model of Rage-dependent signaling network
and to predict a dynamic program of inflammation in set-
tings of physiological as well as pathological conditions.

Methods
Animal work and sample preparation
Rage-/- animals were described previously [38], and wt
controls were obtained from Charles River Laboratories.
Mice were housed and treated with TPA as described
previously [3]. In short, 10 nmol TPA/100 μl Acetone
was applied to the shaved dorsal back skin and mice
were sacrificed at indicated time points. Mice receiving
acetone or no treatment served as controls. The proce-
dures for performing animal experiments were in accor-
dance with the principles and guidelines of the
‘Arbeitsgemeinschaft der Tierschutzbeauftragten in
Baden-Württemberg’ and were approved by the ‘Regier-
ungspräsidium Karlsruhe’, Germany (AZ 129/02).
Skin necropsies for RNA or protein preparation were

immediately frozen in liquid nitrogen after isolation. For
histological analysis, tissues were fixed with 4% parafor-
maldehyde (PFA) in PBS pH 7.4, paraffin embedded,
and cut into 6 μm sections as described previously [3].
Tissue sections were stained with hematoxylin-eosin and
were examined by several experienced experimenters.

RNA preparation
Total RNA extraction from mouse back skin of
untreated, 24 hours acetone- and 6, 12, 24, 48 hours
TPA-treated wt and Rage-/- mice was performed accord-
ing to the manufacturer’s instructions using peqGOLD
RNAPure™ Reagent (Peq Lab, Erlangen, Germany). For
RNA integrity and degradation analysis, the 2100 BioA-
nalyzer (Agilent Technologies, Santa Clara, CA) with
RNA 6000 Nano LabChip Kit was used according to the
manufacturer’s instructions. Only RNA preparations
with a RNA Integrity Number (RIN) of at least seven
were used for microarray analysis.

Microarray analysis
Global gene expression analysis was performed on
4x44K whole mouse genome one-color 60-mer oligonu-
cleotide microarrays (Agilent Technologies) containing
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41,174 unique probes. For amplification and single-color
labeling of 1 μg RNA, the Low RNA Input Linear
Amplification Kit and the One-Color RNA Spike-in Kit
(Agilent Technologies, Santa Clara, CA) were used
according to the manufacturer’s protocol. Upon hybridi-
zation, microarray read out was accomplished in the
Agilent Scanner G25505B (Agilent Technologies, Santa
Clara, CA) with 5 μm resolution and automatically
adjusting PMT voltages according to manufacturer’s
specification. Data processing was performed using Fea-
ture Extraction FE V9.5 Image Analysis software (Agi-
lent Technologies, Santa Clara, CA) as recommended by
the manufacturer.

Quantitative real-time polymerase chain reaction analysis
Quantitative real-time polymerase chain reaction analy-
sis was performed as described previously [3]. Primers
used for RQ-PCR analysis are listed in Additional file 7.
Target gene cycle of threshold values were normalized

to the corresponding cycle of threshold values of using
the change in cycle of threshold method.

Statistical analysis
Array data were normalized by the quantile method [39],
in combination with the “normexp” background correc-
tion implemented in Limma [40], and log2-transformed.
Differentially expressed genes were identified by applying
a linear model with the factors “time point” and “geno-
type”, and subsequent empirical Bayesian correction [40].
For each time point t, the following contrast was calcu-
lated: (Ir,t - Ir-0) - (Iw,t - ww,0), where I is the logarithm of
the vector of intensities, indices r and w refer to Rage-/-

and wt mice, respectively, and 0 is the control condition
(t = 0). P-values from the F test of the linear model were
adjusted for multiple testing by the method of Benjamini
and Hochberg [41]. All adjusted P-values < 0.05 were
considered significant. All calculations were carried out
in R version 2.6.2 http://www.R-project.org and Limma

Figure 5 Model of physiological and pathological functions of RAGE signaling . Combination of gene expression profiling and
computational approaches revealed that RAGE is not necessary for the initial response after stimulation, but absolute required for sustaining
altered gene transcription. This is mainly due to the impact of RAGE-mediated signaling on expression and activity of transcription factors such
as E2F. Thereby, RAGE modulates the kinetic of transcript levels of genes implicated in tissue homeostasis, inflammation, and cancer.
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version 2.12.0. A list of differentially expressed genes at
24 hours after TPA stimulation is given in Additional
file 3.
In order to further assess the dynamic response of the

gene regulation upon TPA stimulation, we ranked the
gene expression kinetics according to the peak and
mean fold expression of each genes within the experi-
mental time window of 48 hours [15]. Fold expression
of each gene was calculated with respect to the control
condition of wt and Rage-/- animals. Next, a rank score s

was defined for every gene as s FE FEt p= +2 2 , where

FEi = 〈gi(t)〉T and, FEp denote the time-averaged mean
and peak gene fold expression (FE) of the gene’s time
series, respectively, normalized to the maximal peak and
maximal mean fold expression of all measured genes.
Gene ranking was performed separately for the three
biological replicates of the TPA stimulation. Taking the
1,000 genes having the highest rank score s in each
replicate, a set of 341 genes common to all rank lists
was identified for further analysis (Additional file 1).
Taking the top 500, 2,000 or 3,000 genes did not change
the quality of the results. Subsequent k-means clustering
of these 341 wt expression profiles was performed and
expression levels of the same genes in Rage-/- samples
were superimposed. Pathway analysis was accomplished
by using web-based DAVID [42,43].

In silico promoter analysis
All available promoter sequences of murine genes repre-
sented on the whole mouse genome microarray were
extracted from NCBI Entrezgene database ([44]; down-
load: June 19th, 2008). Putative transcription factor bind-
ing sites (TFBS) were scanned within 2 kb upstream and
downstream of the annotated transcriptional start site
utilizing a position-weight matrix (PWM) scan as imple-
mented in cureos package v0.3 ([45]; http://www.bepress.
com/sagmb/vol2/iss1/art7) and described in Westermann
et al. [46] for R open-source software http://www.R-pro-
ject.org. PWMs were taken from the TRANSFAC data-
base ([47]; release: January 12th, 2008). P-values for each
PWM were obtained by comparing their scores to those
of 1,000 random 4 kb sequence permutations. A general
P-value cut-off of p < 0.1 was set as a reasonable compro-
mise between false-positives and false-negatives. The
genes that were differentially expressed between wt and
Rage-/- mice at the time point 24 hours after TPA appli-
cation were divided into three sub-clusters with different
gene expression profiles by unsupervised hierarchical
clustering within samples at the time point t = 24 hours
(complete linkage, the distance was calculated by one
minus the Pearson correlation coefficient). Fisher’s exact
tests were performed to determine enrichments of PWM

hits (counting genes with ≥ 1 significant score as a hit)
for each cluster as compared to all other genes repre-
sented on the microarray. All P-values were Benjamini-
Hochberg-corrected for multiple testing.

Western Blot analysis
Western Blot analyses were performed with whole cell
lysates from mouse back skin with antibodies listed in
Additional file 8 according to the manufacturer’s
instructions. Whole cell lysates were prepared with
RIPA buffer (50 mM Tris-HCL pH 8, 150 mM NaCl,
0.1% SDS, 0.5% deoxylacid Na+-salt, 1% NP-40).

Immunohistochemistry analysis
Immunohistochemistry staining was performed on back
skin sections from wt and Rage-/- mice with the Immu-
nodetection Kit (Vector Laboratories; Burlingame, CA)
according to the manufacturer’s instructions. Primary
and secondary antibodies used are listed in Additional
file 8.

Additional material

Additional file 1: Table with 341 TPA-responsive genes in back skin
of wt mice.

Additional file 2: K-means clustering of TPA-responsive genes. K-
means clustering of common TPA-responsive genes in the kinetics of
three independent experiments with wt animals revealed 6 clusters.
Cluster 1 (n = 5), cluster 2 (n = 45), cluster 3 (n = 125), cluster 4 (n = 71),
cluster 5 (n = 11), and cluster 6 (n = 84). Black lines represent transcript
levels of genes in wt skin samples. Red lines represent transcript levels in
Rage-/- skin samples.

Additional file 3: Table of 122 genes differentially expressed 24
hours after TPA stimulation.

Additional file 4: Quantitative real-time PCR of differentially
expressed genes 24 hours after TPA treatment. Relative transcript
levels of differentially expressed genes were determined by quantitative
real-time PCR with cDNA derived from wt and Rage-/- back skin 24 hours
upon TPA treatment. Transcript levels for genes of interest were
determined in triplicates with wt and Rage-/- cDNA samples and
normalized to Hprt transcript levels. Next, expression values of genes of
interest derived from wt cDNA were set to one and bars represent
relative transcript levels for Rage-/- cDNA samples. Similar data were
obtained for two independent biological replicates (data not shown).

Additional file 5: Cluster dendrogram of genes differentially
expressed at t = 24 hours. Clustering was done only over samples
from t = 24 hours via Person correlation distance, complete linkage
algorithm. Three clusters were defined from the dendrogram.

Additional file 6: Rbl2 protein expression in skin following a single
TPA stimulus. Tissue sections of acetone- (Ac) or TPA-treated (6, 12, 24,
and 48 hours) back skin from wt and Rage-/- mice were analyzed by
immunohistochemical staining using Rbl2-specific antibodies.
Representative images of at least 2 animals of each genotype and time
point are shown with red staining for Rbl2 and counterstaining with
hematoxylin. Scale bar = 25 μm.

Additional file 7: Table of primer sequences used for quantitative
real-time PCR analysis.

Additional file 8: Table of primary antibodies used for Western Blot
(WB) and immunohistochemistry analysis (IHC).

Riehl et al. BMC Genomics 2010, 11:537
http://www.biomedcentral.com/1471-2164/11/537

Page 11 of 13

100

http://www.bepress.com/sagmb/vol2/iss1/art7
http://www.bepress.com/sagmb/vol2/iss1/art7
http://www.bepress.com/sagmb/vol2/iss1/art7
http://www.bepress.com/sagmb/vol2/iss1/art7
http://www.bepress.com/sagmb/vol2/iss1/art7
http://www.bepress.com/sagmb/vol2/iss1/art7
http://www.bepress.com/sagmb/vol2/iss1/art7
http://www.bepress.com/sagmb/vol2/iss1/art7
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S1.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S1.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S1.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S1.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S2.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S2.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S2.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S2.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S3.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S3.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S3.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S3.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S4.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S4.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S4.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S4.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S5.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S5.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S5.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S5.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S6.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S6.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S6.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S6.TIFF
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S7.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S7.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S7.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S7.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S8.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S8.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S8.DOC
http://www.biomedcentral.com/content/supplementary/1471-2164-11-537-S8.DOC


Acknowledgements
We gratefully acknowledge Angelika Krischke and Ingeborg Vogt for
excellent technical assistance and Axel Szabowski for helpful discussion. Our
work was supported by the Initiative and Networking Fund of the Helmholtz
Association within the Helmholtz Alliance on Systems Biology (to P.A., J.H., T.
B., and R.K.), the Cooperation in Cancer Research of the Deutsche
Krebsforschungszentrum and Israeli’s Ministry of Science, Culture and Sport
(to P.A. and J.H.), the Excellence Initiative of the German Federal and State
Governments (to H.B.), the Federal Ministry of Education and Research
through the National Genome Research Network (grant 01GS0883 to B.B.
and R.E.), and the Dietmar Hopp Foundation (to J.H.).

List of abbreviations
AGE: advanced glycation end products; AP1: Activator protein 1; AP2:
Activator protein 2; CAC-bp: CAC-binding protein; E2f: E2-promoter-binding
factor; Egr: Early growth response factor; Hmgb1: High mobility group box-1;
JAK: Janus kinase; MAP kinases: mitogen-activated protein kinases; Maz: Myc-
associated zinc-finger protein; Mazr: Myc-associated zinc-finger protein-
related protein; Myc: v-myc meylocytomatosis viral oncogene homolog; NF-
�B: Nuclear factor kappa B; Nr2f: nuclear receptor subfamily 2 group F
members, PI3K: Phosphoinositide-3-kinase; PKC: protein kinase C; Rage:
receptor for advanced glycation end products; Rb: Retinoblastoma protein;
Rbl1: Retinoblastoma-like protein 1; Rbl2: Retinoblastoma-like protein 2; Sp1:
Specificity protein 1; Sp4: Specificity protein 4; STAT: Signal transducer and
activator of transcription; Tcfap2: transcription factor AP-2, alpha; TFBS:
transcription factor binding sites; TPA: 12-O-tetradecanoylphorbol-13-
acetate; Wt: wild-type; Wt1: Wilms tumor 1 homolog.

Author details
1Signal Transduction and Growth Control, German Cancer Research Center
(DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany. 2Theoretical
Bioinformatics, German Cancer Research Center, Heidelberg, Germany.
3Freiburg Institute for Advanced Studies - FRIAS School of Life Sciences -
LIFENET Albert-Ludwigs-University Freiburg, Germany. 4Center for Biosystems
Analysis, Albert-Ludwigs-University Freiburg, Germany. 5Institute of Pharmacy
and Molecular Biology and Bioquant Center, University of Heidelberg,
Germany. 6Department of Dermatology, University Hospital Heidelberg,
Germany. 7Department of Medicine I and Clinical Chemistry, University
Hospital Heidelberg, Germany. 8Experimental Head and Neck Oncology,
Department of Otolaryngology, Head and Neck Surgery, University Hospital
Heidelberg, Germany.

Authors’ contributions
AR, CG, PA and JH design and analysis of experimental research; AR, RM, JN
and CG performed experimental research; TB, BB, HB, RK and RE designed
and performed computational and statistical analysis; AB and PN provision
of animal model system and analytic tools; AR and JH wrote the paper; TB,
BB, HB, RM, JN, RK, CG, AB, PN, RE and PA critical review and editing of the
manuscript.
None of the authors had any personal or financial conflicts of interest.

Received: 21 April 2010 Accepted: 5 October 2010
Published: 5 October 2010

References
1. Coussens LM, Werb Z: Inflammation and cancer. Nature 2002, 420:860-867.
2. Balkwill F, Mantovani A: Inflammation and cancer: back to Virchow?

Lancet 2001, 357:539-545.
3. Gebhardt C, Riehl A, Durchdewald M, Nemeth J, Furstenberger G, Muller-

Decker K, Enk A, Arnold B, Bierhaus A, Nawroth PP, et al: RAGE signaling
sustains inflammation and promotes tumor development. J Exp Med
2008, 205:275-285.

4. Turovskaya O, Foell D, Sinha P, Vogl T, Newlin R, Nayak J, Nguyen M,
Olsson A, Nawroth PP, Bierhaus A, et al: RAGE, carboxylated glycans and
S100A8/A9 play essential roles in colitis-associated carcinogenesis.
Carcinogenesis 2008, 29:2035-2043.

5. Riehl A, Nemeth J, Angel P, Hess J: The receptor RAGE: Bridging
inflammation and cancer. Cell Commun Signal 2009, 7:12.

6. Bierhaus A, Nawroth PP: Multiple levels of regulation determine the role
of the receptor for AGE (RAGE) as common soil in inflammation,

immune responses and diabetes mellitus and its complications.
Diabetologia 2009, 52:2251-2263.

7. Stern D, Yan SD, Yan SF, Schmidt AM: Receptor for advanced glycation
endproducts: a multiligand receptor magnifying cell stress in diverse
pathologic settings. Adv Drug Deliv Rev 2002, 54:1615-1625.

8. Clynes R, Moser B, Yan SF, Ramasamy R, Herold K, Schmidt AM: Receptor
for AGE (RAGE): weaving tangled webs within the inflammatory
response. Curr Mol Med 2007, 7:743-751.

9. Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y,
Lalla E, Fu C, et al: Blockade of RAGE-amphoterin signalling suppresses
tumour growth and metastases. Nature 2000, 405:354-360.

10. Kang R, Tang D, Schapiro NE, Livesey KM, Farkas A, Loughran P, Bierhaus A,
Lotze MT, Zeh HJ: The receptor for advanced glycation end products
(RAGE) sustains autophagy and limits apoptosis, promoting pancreatic
tumor cell survival. Cell Death Differ 2009.

11. Logsdon CD, Fuentes MK, Huang EH, Arumugam T: RAGE and RAGE
ligands in cancer. Curr Mol Med 2007, 7:777-789.

12. Stern DM, Yan SD, Yan SF, Schmidt AM: Receptor for advanced glycation
endproducts (RAGE) and the complications of diabetes. Ageing Res Rev
2002, 1:1-15.

13. Lin L: RAGE on the Toll Road? Cell Mol Immunol 2006, 3:351-358.
14. van Beijnum JR, Buurman WA, Griffioen AW: Convergence and

amplification of toll-like receptor (TLR) and receptor for advanced
glycation end products (RAGE) signaling pathways via high mobility
group B1 (HMGB1). Angiogenesis 2008, 11:91-99.

15. Busch H, Camacho-Trullio D, Rogon Z, Breuhahn K, Angel P, Eils R,
Szabowski A: Gene network dynamics controlling keratinocyte migration.
Mol Syst Biol 2008, 4:199.

16. DeGregori J, Johnson DG: Distinct and Overlapping Roles for E2F Family
Members in Transcription, Proliferation and Apoptosis. Curr Mol Med
2006, 6:739-748.

17. Polager S, Ginsberg D: p53 and E2f: partners in life and death. Nat Rev
Cancer 2009, 9:738-748.

18. Bierhaus A, Schiekofer S, Schwaninger M, Andrassy M, Humpert PM, Chen J,
Hong M, Luther T, Henle T, Kloting I, et al: Diabetes-associated sustained
activation of the transcription factor nuclear factor-kappaB. Diabetes
2001, 50:2792-2808.

19. Lv B, Wang H, Tang Y, Fan Z, Xiao X, Chen F: High-mobility group box 1
protein induces tissue factor expression in vascular endothelial cells
via activation of NF-kappaB and Egr-1. Thromb Haemost 2009,
102:352-359.

20. Li M, Shang DS, Zhao WD, Tian L, Li B, Fang WG, Zhu L, Man SM, Chen YH:
Amyloid beta interaction with receptor for advanced glycation end
products up-regulates brain endothelial CCR5 expression and promotes
T cells crossing the blood-brain barrier. J Immunol 2009, 182:5778-5788.

21. Zeng S, Dun H, Ippagunta N, Rosario R, Zhang QY, Lefkowitch J, Yan SF,
Schmidt AM, Emond JC: Receptor for advanced glycation end product
(RAGE)-dependent modulation of early growth response-1 in hepatic
ischemia/reperfusion injury. J Hepatol 2009, 50:929-936.

22. Chang JS, Wendt T, Qu W, Kong L, Zou YS, Schmidt AM, Yan SF: Oxygen
deprivation triggers upregulation of early growth response-1 by the
receptor for advanced glycation end products. Circ Res 2008, 102:905-913.

23. Mookherjee N, Hamill P, Gardy J, Blimkie D, Falsafi R, Chikatamarla A,
Arenillas DJ, Doria S, Kollmann TR, Hancock RE: Systems biology evaluation
of immune responses induced by human host defence peptide LL-37 in
mononuclear cells. Mol Biosyst 2009, 5:483-496.

24. Li J, Schmidt AM: Characterization and functional analysis of the
promoter of RAGE, the receptor for advanced glycation end products. J
Biol Chem 1997, 272:16498-16506.

25. Reynolds PR, Kasteler SD, Cosio MG, Sturrock A, Huecksteadt T, Hoidal JR:
RAGE: developmental expression and positive feedback regulation by
Egr-1 during cigarette smoke exposure in pulmonary epithelial cells. Am
J Physiol Lung Cell Mol Physiol 2008, 294:L1094-1101.

26. Dimova DK, Dyson NJ: The E2F transcriptional network: old
acquaintances with new faces. Oncogene 2005, 24:2810-2826.

27. Polager S, Ginsberg D: E2F - at the crossroads of life and death. Trends
Cell Biol 2008, 18:528-535.

28. Macaluso M, Montanari M, Giordano A: Rb family proteins as modulators
of gene expression and new aspects regarding the interaction with
chromatin remodeling enzymes. Oncogene 2006, 25:5263-5267.

Riehl et al. BMC Genomics 2010, 11:537
http://www.biomedcentral.com/1471-2164/11/537

Page 12 of 13

101

http://www.ncbi.nlm.nih.gov/pubmed/12490959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12490959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12490959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12490959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11229684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11229684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11229684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11229684?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18208974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18208974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18208974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18208974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18208974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18208974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18208974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18208974?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18689872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18689872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18689872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18689872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18689872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18689872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18689872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18689872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19426472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19426472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19426472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19426472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19426472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19426472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19426472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19426472?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19636529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19636529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19636529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19636529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19636529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19636529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19636529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19636529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19636529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19636529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19636529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19636529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12453678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12453678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12453678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12453678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12453678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12453678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12453678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12453678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12453678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12453678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12453678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12453678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10830965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10830965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10830965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10830965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10830965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10830965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10830965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10830965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331236?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12039445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12039445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12039445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12039445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12039445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12039445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12039445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12039445?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17092432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17092432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17092432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17092432?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18264787?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18594517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18594517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18594517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18594517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17100600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17100600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17100600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17100600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17100600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17100600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17100600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17100600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19776743?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19776743?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19776743?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19776743?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11723063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11723063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11723063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11723063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11723063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11723063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11723063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11723063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19652887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19652887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19652887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19652887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19652887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19652887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19652887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19652887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19652887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19652887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19652887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19652887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19380826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19380826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19380826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19380826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19380826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19380826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19380826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19380826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19380826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19380826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19380826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19380826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19303658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18323529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18323529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18323529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18323529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18323529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18323529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18323529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18323529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18323529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18323529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18323529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18323529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19381363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19381363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19381363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19381363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19381363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19381363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19381363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19381363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19381363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19381363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19381363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19381363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9195959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9195959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9195959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9195959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9195959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9195959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9195959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9195959?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18390831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18390831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18390831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18390831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18390831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18390831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18390831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18390831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15838517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15838517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15838517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15838517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15838517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15838517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15838517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15838517?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18805009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18805009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18805009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18805009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16936746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16936746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16936746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16936746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16936746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16936746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16936746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16936746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16936746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16936746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16936746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16936746?dopt=Abstract


29. Stevaux O, Dyson NJ: A revised picture of the E2F transcriptional network
and RB function. Curr Opin Cell Biol 2002, 14:684-691.

30. Huart AS, MacLaine NJ, Meek DW, Hupp TR: CK1alpha plays a central role
in mediating MDM2 control of p53 and E2F-1 protein stability. J Biol
Chem 2009, 284:32384-32394.

31. Zhang Z, Wang H, Li M, Rayburn ER, Agrawal S, Zhang R: Stabilization of
E2F1 protein by MDM2 through the E2F1 ubiquitination pathway.
Oncogene 2005, 24:7238-7247.

32. Martelli F, Hamilton T, Silver DP, Sharpless NE, Bardeesy N, Rokas M,
DePinho RA, Livingston DM, Grossman SR: p19ARF targets certain E2F
species for degradation. Proc Natl Acad Sci USA 2001, 98:4455-4460.

33. Kontaki H, Talianidis I: Lysine methylation regulates E2F1-induced cell
death. Mol Cell 2010, 39:152-160.

34. Ivanova IA, D’Souza SJ, Dagnino L: E2F1 stability is regulated by a novel-
PKC/p38beta MAP kinase signaling pathway during keratinocyte
differentiation. Oncogene 2006, 25:430-437.

35. Ivanova IA, Dagnino L: Activation of p38- and CRM1-dependent nuclear
export promotes E2F1 degradation during keratinocyte differentiation.
Oncogene 2007, 26:1147-1154.

36. Leitch AE, Haslett C, Rossi AG: Cyclin-dependent kinase inhibitor drugs as
potential novel anti-inflammatory and pro-resolution agents. Br J
Pharmacol 2009, 158:1004-1016.

37. Hallett JM, Leitch AE, Riley NA, Duffin R, Haslett C, Rossi AG: Novel
pharmacological strategies for driving inflammatory cell apoptosis and
enhancing the resolution of inflammation. Trends Pharmacol Sci 2008,
29:250-257.

38. Constien R, Forde A, Liliensiek B, Grone HJ, Nawroth P, Hammerling G,
Arnold B: Characterization of a novel EGFP reporter mouse to monitor
Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis
2001, 30:36-44.

39. Smyth GK, Speed T: Normalization of cDNA microarray data. Methods
2003, 31:265-273.

40. Smyth GK: Limma: linear models for microarray data New York: Springer
2005.

41. Benjamini Y, Hochberg Y: Controlling the false discovery rate: A practical
and powerful approach to multiple testing. J Royal Stat Soc B 1995,
57:289-300.

42. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA:
DAVID: Database for Annotation, Visualization, and Integrated Discovery.
Genome Biol 2003, 4:P3.

43. Huang da W, Sherman BT, Lempicki RA: Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nat
Protoc 2009, 4:44-57.

44. Maglott D, Ostell J, Pruitt KD, Tatusova T: Entrez Gene: gene-centered
information at NCBI. Nucleic Acids Res 2005, 33:D54-58.

45. Rahmann S, Muller T, Vingron M: On the power of profiles for
transcription factor binding site detection. Stat Appl Genet Mol Biol 2003,
2:Article7.

46. Westermann F, Muth D, Benner A, Bauer T, Henrich KO, Oberthuer A,
Brors B, Beissbarth T, Vandesompele J, Pattyn F, et al: Distinct
transcriptional MYCN/c-MYC activities are associated with spontaneous
regression or malignant progression in neuroblastomas. Genome Biol
2008, 9:R150.

47. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I,
Chekmenev D, Krull M, Hornischer K, et al: TRANSFAC and its module
TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic
Acids Res 2006, 34:D108-110.

doi:10.1186/1471-2164-11-537
Cite this article as: Riehl et al.: Identification of the Rage-dependent
gene regulatory network in a mouse model of skin inflammation. BMC
Genomics 2010 11:537.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Riehl et al. BMC Genomics 2010, 11:537
http://www.biomedcentral.com/1471-2164/11/537

Page 13 of 13

102

http://www.ncbi.nlm.nih.gov/pubmed/12473340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12473340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12473340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12473340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12473340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12473340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12473340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12473340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16170383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16170383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16170383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16170383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16170383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16170383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16170383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16170383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11274364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11274364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11274364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11274364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11274364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11274364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11274364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11274364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20603083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20603083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20603083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20603083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20603083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20603083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20603083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20603083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16116476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16116476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16116476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16116476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16116476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16116476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16116476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16116476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16116476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16116476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16116476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16116476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16924238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16924238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16924238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16924238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16924238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16924238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16924238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16924238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19775281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19775281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19775281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19775281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19775281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19775281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19775281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19775281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18407359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18407359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18407359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18407359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18407359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18407359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18407359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18407359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18407359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18407359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18407359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18407359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11353516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11353516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11353516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11353516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11353516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11353516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11353516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11353516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12734009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12734009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12734009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12734009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15608257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646785?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646785?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646785?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646785?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646785?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646785?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646785?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16646785?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18851746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381825?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381825?dopt=Abstract


[12:28 22/8/2011 Bioinformatics-btr366.tex] Page: 2239 2239–2247

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 16 2011, pages 2239–2247
doi:10.1093/bioinformatics/btr366

Gene expression Advance Access publication June 20, 2011

RIP: the regulatory interaction predictor—a machine
learning-based approach for predicting target genes of
transcription factors
Tobias Bauer1,2, Roland Eils1,2,∗ and Rainer König1,2,∗
1Department of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), INF 280, 69120 Heidelberg and
2Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, and
Bioquant, INF 267, University of Heidelberg, 69120 Heidelberg, Germany
Associate Editor: Joaquin Dopazo

ABSTRACT

Motivation: Understanding transcriptional gene regulation is
essential for studying cellular systems. Identifying genome-wide
targets of transcription factors (TFs) provides the basis to discover
the involvement of TFs and TF cooperativeness in cellular systems
and pathogenesis.
Results: We present the regulatory interaction predictor (RIP),
a machine learning approach that inferred 73 923 regulatory
interactions (RIs) for 301 human TFs and 11 263 target genes with
considerably good quality and 4516 RIs with very high quality.
The inference of RIs is independent of any specific condition. Our
approach employs support vector machines (SVMs) trained on a set
of experimentally proven RIs from a public repository (TRANSFAC).
Features of RIs for the learning process are based on a correlation
meta-analysis of 4064 gene expression profiles from 76 studies,
in silico predictions of transcription factor binding sites (TFBSs) and
combinations of these employing knowledge about co-regulation of
genes by a common TF (TF-module). The trained SVMs were applied
to infer new RIs for a large set of TFs and genes. In a case study,
we employed the inferred RIs to analyze an independent microarray
dataset. We identified key TFs regulating the transcriptional response
upon interferon alpha stimulation of monocytes, most prominently
interferon-stimulated gene factor 3 (ISGF3). Furthermore, predicted
TF-modules were highly associated to their functionally related
pathways.
Conclusion: Descriptors of gene expression, TFBS predictions,
experimentally verified binding information and statistical
combination of this enabled inferring RIs on a genome-wide
scale for human genes with considerably good precision serving as
a good basis for expression profiling studies.
Contact: r.koenig@dkfz.de
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Human gene regulation involves numerous mechanisms comprising
protein–protein interaction, DNA binding and transcription,
epigenetic DNA modifications, RNA interference and translation.

∗To whom correspondence should be addressed.

Central to this is the specific binding of transcription factors
(TFs) to promoters of genes to regulate their transcription, and
the discovery of such regulatory interactions (RIs) to reconstruct
large-scale regulatory networks is a main focus of systems
biology research. So far, several hundreds of TFs have been
identified for many species (Matys et al., 2006). Some TFs bind
exclusively to distinct DNA sequence motifs at specific conditions,
whereas others are ubiquitously active (Farnham, 2009). Chromatin
immunoprecipitation (ChIP) assays have been used to infer TF
binding to the promoter of the investigated gene. This was scaled
up by ChIP-on-chip technology to obtain the location of specific TF
binding genome wide. However, results from such investigations
strongly depend on the studied cellular system and treatment.
Besides this, computational methods were developed and applied
to predict transcription factor binding sites (TFBSs) independent
from the samples under study (Stormo, 2000; Valen et al., 2009).
These predictions were mainly based on motif searches with position
weight matrices (PWMs). PWMs are probabilistic representations
of a frequency distribution of nucleotides at each position of a
binding site. In contrast to ChIP-on-chip assays, genome-wide PWM
searches detect potential TFBSs for any TF (for which a PWM
has been assembled from experimentally discovered binding sites)
independent of conditional restrictions and thus provide information
about TFBSs in an unbiased manner. Predictions with PWMs have
been effectively applied to identify the relevant TFs and their sets
of regulated genes in gene expression data (Segal et al., 2003a;
Sinha, 2006). However, TFBS predictions are rather unspecific and
therefore come along with high false positive rates (Stormo, 2000).

Several methods have been developed to construct large-scale
regulatory networks using gene expression data, genome-wide ChIP
profiles, PWM-scans and a combination of these (Bonneau, 2008).
The availability of abundant experimental data for various model
organisms enabled to infer regulatory networks for microorganisms
explaining and predicting gene expression, e.g. for Escherichia coli
(Faith et al., 2007), Saccharomyces cerevisiae (Bar-Joseph et al.,
2003; Joshi et al., 2009; Segal et al., 2003b) and the Halobacterium
NRC-I (Bonneau et al., 2006). Furthermore, methods were designed
to infer significant RIs between TFs and genes using Pearson’s
correlation and mutual information of gene expression, e.g. the
Algorithm for the Reconstruction of Accurate Cellular Networks
(ARACNE; Margolin et al., 2006) and the Context Likelihood of
Relatedness (CLR; Faith et al., 2007). ARACNE and CLR were
jointly applied to identify target genes for Nrf2 (nuclear factor

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2239

 at G
esellschaft f?r B

iotechnologische F
orschung on A

ugust 23, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

103

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


[12:28 22/8/2011 Bioinformatics-btr366.tex] Page: 2240 2239–2247

T.Bauer et al.

erythroid 2-related factor) in the lung of mice in response to
oxidative stress (Taylor et al., 2008). Recently, the third Dialogue
on Reverse Engineering Assessment and Methods (DREAM3)
compendium has set up a synthetic data compendium to benchmark
several methods inferring RIs. The top five performing algorithms
integrated both the provided steady-state (unperturbed, knockdown
and knockout) and time-series data (multifactorial perturbations).
The performance of the best method apparently depended mainly
on predictions reconstructed from steady-state levels of the gene
knockout datasets (Marbach et al., 2010) and prediction algorithms
for steady-state conditions are mainly required for predicting
regulation in tumor samples. A modified version of CLR was
among the top five performers and its optimal performance was
achieved when using comprehensive knock-out data alone (Madar
et al., 2010). The compendium data resembled small subnets
of E.coli and yeast and provides synthetic transcriptional data.
However, the data—like many of the prediction methods—neglect
post-transcriptional regulation of TFs. Besides this, the underlying
presumption that expression of the target genes depends mainly
on the mRNA gradients of their regulating TFs is often violated,
specifically in higher eukaryotes. In turn, regulation of TFs on the
protein level plays a substantial role, e.g. for hypoxia-inducible
factors (HIFs; Kaelin et al., 2002), p53 (Harris and Levine, 2005)
and retinoblastoma 1 (RB1; Chen et al., 2009). Additionally, some
prediction algorithms are tailored to infer condition-specific RIs for
a single or a few TFs rather than predicting RIs for numerous TFs
and a wide range of cellular systems and conditions.

To address these limitations, we developed the regulatory
interaction predictor (RIP), a supervised machine learning approach
that predicts RIs between a large number of human TFs and genes,
independent of any specific condition. Our approach distinguishes
between TFs and genes and does not presume any dependency of
target genes on the gene expression gradients of their regulating
TFs. It bases on the knowledge of experimentally derived regulatory
interactions in human. For deriving RIs for regulation studies
of human cells, RIP has been implemented in a package for
the statistical software R and is available for download at
http://www.ichip.de/software/RIP.html.

2 METHODS

2.1 Gene expression analysis
Gene expression data was taken from the CAMDA 2007 dataset containing
5896 gene expression profiles collected from a wide range of human
cancer types comprising normal and disease tissue samples which
were performed with Affymetrix HG-U133A microarrays (ArrayExpress,
www.ebi.ac.uk/arrayexpress, accession E-TABM-185). To get unbiased
datasets, we disregarded cell line experiments and experiments with <10
samples. Finally, we used gene expression data from 4064 primary human
tissue samples of 76 experimental subsets (=conditions) for our meta-
analysis. Microarray probe-sets were included in the analysis if they mapped
to exactly one gene from the EntrezGene database (Maglott et al., 2007)
according to Affymetrix annotations. For each of these probe-sets, the raw
expression values were used from the probes located at the 3′ end of
their target sequence to minimize RNA degradation effects and reverse
transcriptase errors. With this, we obtained expression levels of 13 069
genes for all 76 conditions. Only these genes were considered. Each subset
(microarrays of one condition) was normalized using the Robust multi-array
average (RMA) method as implemented in the affy R-package (Bioconductor
release 2.4, www.bioconductor.org). Pearson’s correlation coefficients were

computed for each gene pair and condition by a correlation meta-analysis.
To account for anticorrelation due to inhibitory signaling propagation, the
absolute correlation values were used. We employed a filtering approach
adapted from Zhou et al. (2005) to select highly correlated gene pairs. The
filter consisted of two parameters: The filter consisted of two parameters:
correlation coefficient (CC) and fraction of conditions (FoC). When co-
applied, they select gene pairs that exceed a defined minimum correlation
(absolute value) in a defined minimum percentage of the 76 conditions. CC
and FoC each take values between 0 and 1.Applying CC = 0.6 and FoC = 0.25
therefore selected those gene pairs that correlated >0.6 (or <−0.6) in >19
conditions (25%).

2.2 Identification of functionally related gene pairs
using Gene Ontology

To estimate the functional relatedness between genes in a gene pair,
we compared their Gene Ontology (GO) terms. The mapping of
GO terms of biological processes was downloaded from EntrezGene
(http://www.ncbi.nlm.nih.gov/gene). The GO term hierarchy was taken from
the GO.db R-package in Bioconductor release 2.4. Following an approach
described elsewhere (Zhou et al., 2005), we constructed 81 functional
categories. A GO term was selected as a functional category if its annotation
contained ≥150 genes of our analyzed genes and if each of its children
contained <150 genes, resulting in 81 midrange GO terms. These 81
GO terms described functional categories that were used to estimate the
functional relation of gene pairs from the correlation meta-analysis. We
assessed a pair of genes as functionally related if they shared at least one of
these functional categories.

2.3 The gold standard
The TRANSFAC database v2009.2 (Wingender et al., 1996) provided
PWMs used for TFBS predictions as well as a collection of TFs and their
target genes derived from published experiments. TRANSFAC contained
redundant entries for a number of TFs. Therefore, we manually corrected this
by pooling TF entries if all their subunits were encoded by the same genes
(the same EntrezGene IDs). We further discarded TFs with less than two
RIs. This was done because we could not define appropriate validation sets
for such TFs (to estimate their performance). Additionally, 72% of these TFs
did not have any PWM motif in TRANSFAC (which was needed for several
machine learning features, see below). This yielded 303 TFs with 2896 RIs
for 949 regulated genes. For all these genes, we had the respective probes
on the Affymetrix microarrays and promoters for the TFBS predictions.
For the machine learning approach, we defined a gold standard comprising
true positive and true negative regulatory interactions (True RIs and True
non-RIs). True RIs (2896) were extracted from TRANSFAC and based on
published experiments. The remaining 284 641 possible combinations of the
303 TFs and 949 genes were defined as True non-RIs. This is based on
the assumption that regulatory networks are sparse and therefore a vast
majority of unknown TF–gene pairs are unlikely to interact. It is to note
that a large number of interactions may not have been discovered yet.
Still, even if one assumes that e.g. only 10% of interactions have yet been
discovered, our ‘True’ non-interactions would comprise ∼26 000 wrongly
labeled interactions. This would still be acceptable compared to the much
larger amount of remaining ∼258 000 real True non-RIs (out of 284 641
non-RIs).

2.4 TFBS predictions with PWM motifs
Promoter sequences were extracted from EntrezGene using the biomaRt
package for R (Bioconductor release 2.4). Sequences from the annotated
transcriptional start site up to 1 kb upstream were considered. To detect
putative TFBS, PWMs were taken from TRANSFAC v2009.2 and PWM-
scans were performed as described previously using the cureos R-package
v0.3 (Westermann et al., 2008). P-values for each prediction were obtained
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by comparing its score to 10 000 randomly generated sequences (for details,
see Westermann et al., 2008). A motif was considered to be significant if
P<0.1. Hits with a P≥0.1 were discarded.

2.5 Defining the features for the classifier
Ten features were calculated to describe discriminating properties of a pair
of a TF and a gene (putative RI) based on TFBS predictions from PWM-
scans, the correlation meta-analysis and information about co-regulation
of genes from the gold standard. The correlation was used to (i) identify
all genes that correlate at high levels with a given gene (defining sets of
correlation neighbors, see below) and to (ii) compare the average correlation
of a candidate target gene to known TF targets (or non-targets). The features,
therefore, do not presume any dependency between the expression profiles
of a target gene and the expression of TF encoding genes.

All possible gene pairs from the gene expression analysis were filtered
by applying the two filters CC = 0.6 and FoC = 0.25. For each remaining
gene pair, we defined the two genes to be linked by correlation. The set
of genes with correlation links to a given gene were then designated to
be its correlation neighbors. Six features for a putative RI were based on
correlation neighbors:

(1) Feature one was the number of correlation neighbors of the
corresponding gene.

(2) Feature two was the number of correlation neighbors (including
the corresponding gene) which were known to be regulated by the
corresponding TF (True RIs, taken from the gold standard).

(3) Feature three was −log10(P) in which P was the estimated
significance for the enrichment of known regulated genes (True RIs
in the training sets, taken from the gold standard) in the correlation
neighbors (including the corresponding gene) in comparison to all
other genes (P was calculated by a Fisher’s exact test).

(4) Feature four was the number of correlation neighbors with a
significant PWM hit of the corresponding TF.

(5) Feature five was −log10(P) in which P was the estimated significance
for enrichment of PWM-hits of the TF within the correlation neighbors
including the corresponding gene (P was calculated by a Fisher’s
exact test).

(6) Feature six was the number of correlation neighbors that were known
to be regulated (True RIs in the training sets, taken from the gold
standard) and which had a significant PWM hit of the TF.

Two features were added describing TFBS predictions and knowledge about
co-regulation:

(7) Feature seven was −log10(P) in which P was the significance of the
PWM hit of the corresponding TF.

(8) Feature eight was the number of genes known to be regulated by
the TF (True RIs in the training sets, taken from the gold standard).
This feature was added to enable differentiation between universal
and specific TFs.

Furthermore, two features were defined considering the correlation of known
co-regulated or non-co-regulated genes:

(9) We selected all genes known to be regulated by the corresponding
TF (True RIs in the training sets, taken from the gold standard). For
each of these target genes, we calculated the median correlation to
the corresponding gene of the RI over all conditions (76 conditions).
Feature nine was the average of these medians.

(10) We selected all genes which were not known to be regulated by the
corresponding TF (True non-RIs in the training sets, taken from the
gold standard). Feature 10 was then calculated in analogy to feature
nine.

Fig. 1. General workflow. Features for inferring RIs between TFs and genes
were derived from three different aspects: co-regulation of genes derived
from a meta-analysis of gene expression profiles, TF binding site predictions
and statistics about a combination of both including experimentally validated
binding information from the training set (gold standard). The information of
the gold standard was also used to define True RIs and True non-RIs. SVMs
were trained with True RIs and True non-RIs and then used to predict new
RIs. For training, True RIs and True non-RIs were divided into a training set
and a validation set. An equal number of True RIs and True non-RIs were
randomly drawn (bootstrapping approach) 100 times and used to train 100
different SVMs yielding one ensemble classifier. Each ensemble classifier
was evaluated with its validation set. This procedure was repeated 20 times
yielding an averaged estimate about their performances. The classifiers were
combined to one master RIP classifier containing 2000 SVMs and applied
to predict new RIs.

During training the classifiers, information of known RIs from the validation
sets was not used, and all RIs from the validation sets were considered as
True non-RIs.

2.6 Training, validating and applying the classifier
We performed a 20× 100-fold stratified cross-validation (overview of the
workflow is given in Fig. 1). The classifications were performed using
support vector machines (SVMs) from the R-package MCRestimate of
Bioconductor release 2.4. SVMs with Gaussian kernels were employed.
For the training sets, we randomly selected 75% of all True RIs and True
non-RIs (2172 True RIs, 213 488 True non-RIs). The remaining of 25%
of RIs served for validation to estimate the performance of the classifiers.
To optimize the parameters (kernel width and cost function), 75% of True
RIs of the training set were drawn with replacement from the 2172 True
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RIs and the same amount from the 213 488 True non-RIs of the training
set. One SVM classifier was trained with these samples and kernel width
γ and cost function c were optimized by a grid search employing γ = 2i,
i∈{−10,−8,−6,−4,−2,0,2,4} and c = 2j , j∈{−6,−4,−2,0,2,4,6,8,10}
using the rest of the training set for validation. This was done by a 10-fold
inner cross-validation of the MCR estimate package. To obtain variability and
to account for the high amount of True non-RIs, we performed this procedure
100 times yielding 100 SVM classifiers by using different sets of randomly
selected True RIs and True non-RIs from the training set. All 100 trained
machines were combined and used as one ensemble classifier. The ensemble
classifier was validated with the validation set by a voting scheme. Each SVM
classifier voted for an RI of the validation set and the minimum number of
positive votes was set to define the stringency for the ensemble classifier.
During training, True RIs from the validation sets were set as True non-RIs to
leave any class-label information of the validation sets untouched (for feature
10, this was done vice versa with True non-RIs from the validation sets).
The whole process was repeated 20 times using different randomly selected
training and validation sets. The overall performance was then estimated
from the average of all 20 cross-validations for each stringency threshold.
To predict new RIs, all information from the gold standard was employed to
train the machines. All trained machines (2000) were taken as one combined
master classifier (RIP master classifier) using again the voting scheme in
which each SVM contributed one vote. Confidence values of the predictions
were calculated from the number of positive votes according to the averaged
precision values of the cross-validation.

2.7 Enrichment tests for differentially expressed genes
of the case study

In the case study, interferon α (IFNα) induction was examined using
human monocytes and Affymetrix HG-U95Av2 microarrays (Tassiulas et al.,
2004). Data were downloaded from the NCBI Gene Expression Omnibus
database (www.ncbi.nlm.nih.gov/geo/, accession GSE1740) and normalized
as described above. Differentially expressed genes were determined between
samples with and without IFNα stimulation (six samples each) using the
significance analysis of microarrays (SAM) and a false discovery rate
(FDR) of <0.01 (Tusher et al., 2001). One-sided Fisher’s exact tests were
performed to identify overrepresented differentially expressed genes among
the predicted TF-modules (vote cutoff 1600). P-values were corrected for
multiple testing by the (Benjamini and Hochberg, 1995).

2.8 Associating TF-modules to pathways
Predicted TF-modules were associated with pathways from the Kyoto
Encyclopedia of Genes and Genomes (KEGG; Kanehisa and Goto, 2000).
For each TF-module, genes were selected from predicted RIs with ≥1600
votes from the RIP master classifier. One-sided Fisher’s exact tests were
performed to identify pathways being significantly enriched in genes of
the predicted TF-modules. To focus on major signatures, pathways and
TF-modules with less than three genes as well as pathways assigned to
diseases were not considered. This resulted in 176 pathways of signaling
and metabolism for the analysis. All P-values were corrected for multiple
testing using the Benjamini–Hochberg method.

3 RESULTS AND DISCUSSION

3.1 Predicting regulated genes of TFs with a machine
learning approach

Figure 1 gives an overview of the workflow. True TF–gene
interactions (True RIs) were derived from TRANSFAC (Wingender
et al., 1996) database (the gold standard) comprising 2896
experimentally well-studied RIs of 303 TFs and 949 genes. All other
284 651 pairs of TFs and genes from these sets were considered

as True non-Regulatory Interactions (True non-RIs). For each
RI, 10 features were calculated to separate True RIs from True
non-RIs. These features were combined from results of a correlation
meta-analysis of gene expression (4064 microarrays covering 76
conditions), PWM-scans and information about co-regulation of
genes by common TFs (TF-modules). We used these features for
training and validation of classifiers (SVMs). As the number of
True RIs was sparse compared with the number of True non-RIs,
we performed a stratified 20× 100-fold cross-validation for training
the classifiers and estimating their performances. Finally, one master
classifier was used combining 20 ensemble classifiers (consisting of
100 SVMs each) to predict new RIs.

3.2 Genes with correlated gene expression share
biological processes

Our prediction method is based on the assumption that genes
regulated by the same TF share common cellular processes and thus
correlate in their gene expression. To get a quantitative estimate
for this assumption, we performed a correlation meta-analysis and
compared the correlation of gene pairs with similar function to
randomly selected gene pairs. For the correlation meta-analysis,
we calculated Pearson’s correlation for all possible gene pairs for
all 76 conditions. We selected gene pairs at different levels of
correlation (adjusting CC and FoC, see Section 2) and estimated
their functional relation using GO terms (Ashburner et al., 2000)
for biological processes. We considered 81 GO terms for the
analysis adapting an approach described elsewhere (Zhou et al.,
2005). The 81 GO terms were retrieved by selecting terms that
contained at least 150 annotated genes and that had only children
with <150 annotated genes. This cross-section through the GO
graph yielded a well-balanced selection of GO terms which were
sufficiently descriptive and specific to describe particular biological
functions on a broad range. To quantify the functional relatedness
of gene pairs, we defined the functional similarity score (FS-score)
as the percentage of gene pairs sharing at least one selected
GO term out of all gene pairs. Figure 2 shows the results for
different correlation stringencies. Notably, for a wide range of
cutoffs (selecting ≤5000 genes, see Fig. 2), the FS-score of our
inferred gene pairs was higher than for gene pairs of the gold
standard (pairs of genes known to be regulated by the same TF).
Our inferred pairs showed FS-scores between 14.8% and 58.3%
(stringency parameters CC = 0.6–0.9, FoC = 0.25–0.5, see Section 2)
while the gold standard had an FS-score of 35.3%. The FS-score
increased with higher stringency (up to CC = 0.8, FoC = 0.35) from
14.8% to 57.3%.

Interestingly, increasing the stringency further reduced the
FS-score (at cutoffs for which the number of selected gene pairs
was <300). We found that this behavior was due to an increased
fraction of constitutively expressed gene families (e.g. hemoglobins,
histones, immunoglobulins) that show high correlation of expression
between each other without sharing any common biological
processes. We compared these results to 100 000 randomly selected
gene pairs sampled from the same gene-pool. For these random
samples, the FS-score was distinctively lower (11.2%). These
results demonstrate that genes with correlated expression were
considerably often involved in similar cellular processes, which
was comparable to gene pairs known to be regulated by the
same TFs.
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Fig. 2. Gene pairs with high expression correlation are functionally related.
The graph shows the FS-score which is the percentage of gene pairs sharing
at least one functional category for a variety of different stringency criteria
[Pearson correlation (CC) and fraction of classes (FoC)]. For example, setting
the threshold for CC to 0.85 in >25% (FoC = 0.25) of the datasets yielded 380
annotated gene pairs of which 56.6% (=215) shared the same functional GO
category. For comparison, the gold standard comprised 35.3% (12 176 out
of 34 538) pairs having at least one functional GO category in common and
only 11.2% of 100 000 randomly selected gene pairs had common functional
GO categories.

3.3 Groups of correlated genes are frequently
regulated by common TFs

The correlation of gene pairs served as a good basis for deducing
features of RIs for a machine learning approach to distinguish True
RIs from True non-RIs. For this, we defined correlation links for
gene pairs with sufficiently high expression correlation. We chose
CC = 0.6 and FoC = 25% as a robust cutoff yielding the most
correlation links for the highest number of genes, while having
an FS-score that was still sufficiently higher than the FS-score of
random gene pairs. For a gene of interest (of an RI), we defined
genes as its correlation neighbors if they had a correlation link to
that gene. We calculated six features for RIs based on correlation
neighbors (features 1–6) and two additional features containing the
averaged correlation over all conditions (features 9 and 10). For
example, we considered the number of correlation neighbors that
were known to have a True RI to the TF of interest. As expected,
if there was a True RI between a gene and a TF, the number of
correlation neighbors with True RIs of the same TF was higher
compared with True non-RIs (Fig. 3a). The other features based on
correlation neighbors yielded similar discriminative power between
True RIs and True non-RIs. Table 1 contains the results for all
features.

3.4 Predicted TFBSs discriminate known RIs from the
bulk

To find putative TFBSs, the promoter of each gene was scanned for
known binding motifs (using PWMs). We found that True RIs had
more often a putative TFBS of the particular TF than True non-RIs
(P<4.6E-86 using a Wilcoxon test). Moreover, within the group of
correlation neighbors of a gene with a True RI, putative TFBSs of the
corresponding TF were more significantly enriched in comparison
to True non-RIs (Fig. 3b). In total, we derived four features from

(a)

(b)

Fig. 3. Distributions for True RIs and True non-RIs of two selected features.
(a) Frequency distributions are given for feature two of True RIs (blue
bars) and True non-RIs (green bars, overlap with blue appears dark green).
Feature two was the number of correlation neighbors which were known
to be regulated by the corresponding TF (True RIs, taken from the gold
standard). The higher the feature value, the more correlating genes are
known to be regulated by the TF. Genes of True RIs had more correlation
neighbors that were regulated by the same TF than genes of True non-RIs. (b)
Frequency distribution of feature five: −log10(P) and P was the significance
of enrichment of correlation neighbors with TFBSs of the TF. True RIs
showed more significant enrichment of correlation neighbors with TFBSs
than non True RIs. For comparability, counts for True non-RIs were stratified
to the total number of True RIs in this figure.

Table 1. P-values of Wilcoxon rank sum tests for all features

Feature 1 2 3 4 5 6 7 8 9 10

P-value 5.1 <4.6 <4.6 1.5 4.6 <4.6 <4.6 1.5 7.2 1.1
E-03 E-86 E-86 E-50 E-86 E-86 E-86 E-50 E-55 E-02

TFBS predictions (features 4–7). All four features showed highly
discriminative power distinguishing True RIs from True non-RIs
(Table 1).

3.5 Classifier performance
The 20 training sets of True RIs and True non-RIs were assembled.
For each training set, all features were calculated and 100 SVMs
(denoted as one ensemble classifier in the following) were trained
by a cross-validation. Each of the 20 ensemble classifiers predicted
a separate validation set from the gold standard. The results of
all 20 ensemble classifiers were averaged (as an estimate of their
performance) and compared with the performance of conventional
PWM-scans. We were specifically interested in correctly predicting
RIs which was estimated by the precision (rate of true positives
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Fig. 4. Recall–precision curve of the ensemble classifiers (red) and the
PWM-scans (black). Mean values of all 20 ensemble classifiers were
calculated to estimate precision and recall for the master classifier. We
obtained recall levels between 4.5% and 48.4% and precision levels between
44.0% and 5.0% by decreasing the threshold of required positive votes from
100 to 1. In contrast, PWM scans only yielded precisions of <5% at all
stringencies.

out of all positively classified). Notably, the classifiers showed very
good precision. At the most stringent cutoff (all 100 SVMs voted
positively), the classifiers reached a precision of 44.0% (recall:
4.5%, accuracy: 99%, specificity: 99.9%). This level of precision
is considerably good regarding that regulatory networks are sparse,
i.e. the number of True RIs is substantially lower than the number of
True non-RIs (∼1:99 in the gold standard). For the lowest stringency
(only one classifier needed to vote positively), we got the best recall
of 48.4% (precision: 5%; accuracy: 90.1%; specificity: 90.6%). The
recall–precision curve for all stringencies is shown in Figure 4.
We analyzed the features of True RIs that were never classified
positively and compared them to True RIs that were always correctly
classified. More than 50% of these misclassified True RIs did not
have any significant PWM hits within the promoter regions, whereas
>99% of the correctly classified True RIs had significant PWM
hits. In contrast to our ensemble classifiers, PWM-scans alone were
below 5% precision at all stringency settings, and were therefore
considerably outperformed by the ensemble classifiers. It is to
note that we estimated the performance of our classifiers rather
conservatively. The actual prevalence of True RIs is likely to be
much higher than the one obtained from the gold standard as many
RIs may not have been discovered so far. Our approach was designed
to discover such new RIs and the considerably good precision of
the ensemble classifiers implied that combining them to a master
classifier suited well to infer new RIs (Section 3.6).

3.6 Inferring new regulatory interactions
To infer new RIs on a large scale, we combined all trained 20
ensemble classifiers to one RIP master classifier. We investigated
all combinations of the set of 303 TFs and all 13 069 investigated
genes yielding 3 959 907 candidate RIs. Features were calculated
with the entire training and validation set. The RIP master classifier
was applied providing 2000 votes (one vote from each SVM
machine) for each candidate RI. Confidence values were assessed
from the precisions of the validation set (averages of 20 ensemble
classifiers, see Section 4). With the most stringent cutoff, we

Table 2. Association of predicted TF-modules with differentially expressed
genes upon IFNα induction in monocytes

Transcription Differentially Module Percentage Corrected
factor expressed size P-value

STAT1:STAT2:IRF9 20 28 71.4 6.95e-23
IRF1 58 1187 4.9 5.72e-03
IRF2 15 169 8.9 1.07e-02
STAT1 67 1513 4.4 1.15e-02
GAF 3 5 60 1.15e-02
NFKB1 36 681 5.3 1.59e-02
STAT3 23 384 6 3.21e-02
IRF7 4 17 23.5 3.53e-02
ETS1 48 1065 4.5 3.53e-02
RELA 37 762 4.9 3.53e-02
IRF3 4 18 22.2 3.53e-02
ELF2 3 9 33.3 3.70e-02
SPI1 24 439 5.5 4.63e-02

predicted 6073 RIs with 44.0% confidence. With ≥31.5% confidence
(cutoff of ≥1600 votes), we yielded 73 923 RIs for 301 TFs and
11 263 genes. Supplementary Table S1 contains all predictions with
this cutoff. Supplementary Table S2 provides an overview of the
numbers of predicted RIs for different cutoffs. The chosen cutoff
of 31.5% confidence and 17.7% recall yielded a sufficient number
of genes from newly predicted RIs while potentially avoiding
too many false positives, and these predicted RIs were used for
further investigations. We compared the performance of RIP to
the established methods CLR (Faith et al., 2007) and ARACNE
(Margolin et al., 2006) using the same expression data as input.
However, neither of the algorithms reached acceptable precision
levels at any stringency (details of the method and results can be
found in Supplementary Table S3.) We were interested why they
performed comparably poorly. These methods were based on direct
relationships between the expression profiles of TFs and their target
genes. This assumption may well hold in lower organisms, but it was
not appropriate for our human expression data. Only 2.2% of all true
RIs showed an absolute overall correlation (computed over all 4064
microarray experiments) >0.6 between the expression profiles of
the TF coding genes and their targets (see Supplementary Table S3).
These findings support the utility of RIP, in particular, for regulation
analysis of human cells.

3.7 Applying the inferred regulatory interactions to a
microarray gene expression study: identifying TFs
responsive to IFNα

A typical application of our predicted RIs is to investigate the
association of TFs and their regulated genes (TF-modules) to a list of
differentially expressed genes from a microarray study. A TF can be
associated to this list of differentially expressed genes, if the genes
of the TF-module are significantly enriched in the gene list. We
used microarray data from a study investigating the effect of IFNα

on monocytes (Tassiulas et al., 2004). The dataset contained six
samples treated with IFNα and six reference samples. We identified
241 significantly differentially expressed genes (FDR < 0.01). These
genes were significantly enriched (P<0.05 of a Fisher’s exact test)
in 13 of the predicted TF-modules (Table 2). On top of the resulting
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list were TFs known to respond to IFNα. The most significant
enrichment was found for the heterotrimeric TF-complex IFN-
stimulated gene factor 3 (ISGF3, P=6E-23) for which 20 out
of 28 predicted target genes were differentially expressed. ISGF3
consists of the subunits STAT1, STAT2 and interferon regulatory
factor (IRF) 9. It is activated by cytokines and inflammatory
factors (Tassiulas et al., 2004). ISGF3 mediates the transcriptional
activation of IFN-inducible genes dependent on IFNα treatment (Fu
et al., 1990). Furthermore, we found enrichments for IRF1, IRF2,
IRF3, IRF7 and STAT3. Together with ISGF3, their response to
IFNα treatment is mediated by the JAK–STAT signaling pathway.
Two nuclear factor kappa b (NFκB) subunits (NFKB1 and RELA)
and three E-twenty six (ETS)-domain TFs (ETS1, ELF2, SPI1)
completed the list of associated TF-modules. Specific roles for
all these TF classes have been described in monocytes (Brach
et al., 1993; Friedman, 2007) and in IFN signaling of T-helper
cells (Grenningloh et al., 2005). SPI1 plays a central role in
monocyte and granulocyte development. It interacts with IRF4 and
IRF8 upon phosphorylation, and IRF8:SPI1 complexes bind to an
ETS/IRF composite element containing an SPI1 binding site. NFκB
family members are key regulators of the inflammatory response
in monocytes, and AP1 family members cooperate with SPI1 in
gene regulation in erythroid cells (Friedman, 2007). We compared
our predictions of ISGF3 target genes with predictions employing
only PWM-scans. The stringency of the PWM-scans was chosen
(P≤0.005) to get a number of predicted target genes that was
comparable to the master classifier. The PWM-scan yielded 29 target
genes for ISGF3, only 4 out of which (=13.8%) were differentially
expressed in the IFNα study. Our predictions from the machine
learning approach were considerably more sensitive to infer genes
and TFs involved in the gene regulatory processes of IFNα response
(our predictions: 20 differentially expressed out of 28 predicted
ISGF3 target genes = 71.4%).

Additionally, we analyzed the expression levels of the TF
encoding genes. IRF7 from the listed 13 TFs showed strong
differential expression at a significant level and was upregulated
in the IFNα-induced cells. IRF1, IRF2, STAT2, STAT3 and RELA
had slightly (but consistently) elevated expression levels, whereas
IRF3 was slightly decreased in the IFNα-induced cells.

3.8 Genes were highly enriched in pathways which
were associated with TFs regulating these genes

To investigate the functional relevance of our predicted RIs, we
associated the predicted TF-modules with signaling and metabolic
pathways from KEGG database. We selected RIs from regulated
genes which were found in KEGG, yielding 220 TF-modules of
22 345 predicted RIs with 3276 genes. Each gene set of the TF-
modules was tested to be enriched in each pathway of KEGG
(Fisher’s exact test). The results cover a variety of signaling and
metabolic pathways (Table 3). Additionally, we performed the same
analysis for 565 genes with known RIs in TRANSFAC (which was
the overlap of KEGG and TRANSFAC) and provided the results in
Supplementary Table S4. Most of the associations with our predicted
RIs have been described previously and reflect the biology of the
pathways. Potentially novel associations are marked in bold in
Table 3. In the following, we describe the findings for cell cycle
and proliferation-related signaling pathways (yellow in Table 3)
in more detail (other pathways are described in Supplementary

Table 3. Associations of predicted TF-modules with pathways (new
associations are given in bold)

Transcription factors Pathway

IRF1, IRF2, IRF3, IRF5, IRF7, STAT1,
STAT3 NFATC2, NF-GMa, CD28RC,
HMGA1 NFκB, NFKB1,
NFKB1:RELA, RELA JUN, CEBPA,
CEBPB

Cytokine–cytokine receptor
interaction

IRF7, STAT4, STAT1:STAT2:IRF9
CD28RC, NFATC2, NF-GMa, POU1F1

Jak–STAT signaling
pathway

IRF1, IRF3, IRF7, NFκB, RBPJ Toll-like receptor signaling
NFATC2, NF-GMa Fc epsilon RI signaling

pathway
NF-AT, NFATC2, NF-Gma, SPI1 Hematopoietic cell lineage
IRF2, NF-AT, NF-AT1 T cell receptor signaling
ELF1 Natural killer cell-mediated

cytotoxicity
IRF1, IRF2, LEF1, XBP1 RFX2, RFX3,

RFX5:RFXAP:RFXANK
Antigen processing and

presentation
IRF1, XBP1 RFX2, RFX3,

RFX5:RFXAP:RFXANK
Cell adhesion molecules

(CAMs)
ETS1, STAT1 MAPK signaling pathway
IRF2, NFKB1:RELA Apoptosis
SP4 Calcium signaling pathway
TCF7L2 Wnt signaling pathway
p53, p73 p53 signaling pathway
E2F:DP, E2F4, NFYA Cell cycle
E2F:DP, E2F1:TFDP1/TFDP2, E2F4 DNA replication
E2F:DP Purine metabolism
E2F:DP, E2F4 Pyrimidine metabolism
E2F:DP, E2F1:TFDP1/TFDP2, E2F4 Nucleotide excision repair
E2F1:TFDP1/TFDP2, E2F4 Mismatch repair
GATA4, NR5A1 C21-steroid hormone

metabolism
NR5A1 Androgen and estrogen

metabolism
NR1H4, PPARA:RXRA, RXRA PPAR signaling pathway
NR1I2, RXRA:NR1I2, RXRA:NR1I3 Retinol metabolism
NR1I2, RXRA:NR1I2 Linoleic acid metabolism
HNF1A, NR1I2, RXRA:NR1I2,

RXRA:NR1I3
Drug

metabolism—cytochrome
P450

HNF1A, NFE2 NR1I2, RXRA:NR1I2,
RXRA:NR1I3

Metabolism of xenobiotics
by cytochrome P450

FLI1, HNF1B, SMAD3 ECM–receptor interaction

HNF1B
Focal adhesion
Cell junctions

NFE2L2 Glutathione metabolism
NR1H3, SP4 Neuroactive ligand–receptor

interaction

RARB

Non-homologous
endjoining

Proteasome
Protein export
Oxodative phosphorylation

Table S5). We observed highly significant associations of E2F1 and
E2F4 and their hetero-dimers with TFDP1 and TFDP2 to cell cycle
and related pathways. Their function in cell cycle progression has
been extensively reported in the literature (see e.g. Weinberg, 2006).

2245

 at G
esellschaft f?r B

iotechnologische F
orschung on A

ugust 23, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

109

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


[12:28 22/8/2011 Bioinformatics-btr366.tex] Page: 2246 2239–2247

T.Bauer et al.

Nuclear transcription factor Y alpha (NFYA) was also associated
with these pathways. The binding of E2F is dependent on an
adjacent CCAAT site being occupied by NFY (Zhu et al., 2004),
and functionality of NFY has been shown for G2/M transition of
the cell cycle in combination with p53 (Imbriano et al., 2005). p53
and its family member p73 were associated with the pathway of p53
signaling. TCF7L2 was associated with the Wnt signaling pathway,
which is in accordance with the functionality of TCF7L2 in that
canonical pathway. In summary, these findings well support the
functional relevance of the predicted RIs for these pathways.

3.9 Predicted RIs are supported by comparison with
an independent database

To validate our predictions, we compared the predicted RIs (≥1600
votes) to known RIs of 74 TFs from 25 TF families of the
Transcriptional Regulatory Element Database (TRED). Details on
the procedure and all results can be found in Supplementary
Table S6. In brief, we tested for association (by means of
overrepresentation) of sets of RIs from TFs in TRED (TRED
TF-modules) with our predicted RIs for these TFs (our predicted
TF-modules). In 85.4% of all tested TFs, the correct TF-family was
among the top three TRED TF-modules, and in 73.5% the actual TF
was assigned correctly (again considering the top three hits). These
results further validated RIP using an independent source of RIs of
a significant number of well-studied TFs.

4 CONCLUSIONS
We presented a novel machine learning approach (RIP) that predicts
gene regulation on a genome-wide scale with considerably high
precision. The predictions are based on a broad range of conditions
and can be applied to more specific experiments as well. Presumably,
only a minor fraction of all RIs has been discovered so far. Given
knowledge of 2896 True RIs for 949 human genes, a number of 6073
RIs (at the most stringent cutoff) predicted out of 3 959 907 candidate
RIs of 303 TFs and 13 069 genes seems reasonable. Also a number
of 73 923 RIs (lower stringency, requiring only 80% of positive
votes) yielded useful results when applied to the case study of IFN
signaling. We employed descriptors for inferring gene regulation
from three different aspects: (i) a meta-analysis was performed to
obtain groups of genes with high correlation in different cell and
tissue types from different experiments. (ii) TFBSs were predicted
in silico using PWMs to scan promoters of every investigated gene.
With these predictions, known transcription factor–gene regulations
could be well distinguished from other transcription factor–gene
combinations. (iii) Statistical descriptors were used to exploit the
association of co-regulation, correlation and TFBS predictions. This
information was integrated by a machine learning approach yielding
a powerful tool to infer regulatory networks that can be adjusted for
recall and precision at a high level of prediction performance. We
applied RIP to infer RIs in human. RIP is intended to be an in silico
approach to extend lists of known and experimentally derived RIs.
It needs PWMs (not necessarily extracted from TRANSFAC) of
known TFs with known binding sites for initial learning. Thus, other
TFs can also be included into the analysis if their binding motifs
have been identified in some target genes and a PWM motif could
be generated. With that knowledge, it is possible to extend the gold
standard and predict RIs for these TFs. If a comprehensive gold

standard of experimentally validated True RIs is given (and PWMs
for the corresponding TFs), the method can be readily applied also
to other well-studied organisms. The presented RIP classifier offers
a wide range of applications for gene expression analyses such as
identification of key transcription factors and pathways involved in
the pathology and changed function of the investigated cells.
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