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1. Abstract 
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer 

death, with a five-year survival rate of <5% and a median survival of 6 months. Extensive 

desmoplastic reaction is a characteristic feature and a prognostic factor of PDAC, which conveys its 

resistance. Desmoplastic stroma accounts for approx. 90% of tumor volume and consists 

predominantly of non-malignant fibroblasts (pancreatic stellate cells, PSC). Previous studies have 

revealed the PSC mesenchymal origins, capacity to switch between quiescent and activated states, 

proinflammatory features, expression of soluble factors, ability to migrate, and phagocytize. 

 

State of the art: Abundance of stroma has sparked previous attempts to dissect the interactions 

between PSC and tumor cells (TC) producing a common picture of a microenvironment supporting 

PDAC development. Unfortunately, focus on snapshot-like analysis has proven difficult to translate 

into therapeutical advances, as it discards the dynamic interactions in the microenvironment, as well as 

the temporal dynamics of gene expression itself. Gene regulatory networks (GRN) adapt to 

environmental cues by rewiring connections between genes, those induced modulations effectively 

lead to state-transitions e.g. PSC activation, or produce mutually exclusive cell-fate decisions e.g. 

differentiation, senescence, or death. We recognize that cell-specific assignment of stimuli, 

identification of genes forming the GRNs, as well as the identification of cellular state-changes remain 

undiscovered. We hypothesize that at an early stage, the quiescent → activated PSC transition yields a 

steady state PSC gene regulatory network (GRN), but the subsequent succession of impulse responses 

along TC→PSC→TC interaction axis drives both cell types into unstable states maintained only for 

the duration of the direct TC-PSC contact. 

 

Aims: Through the application of a high-throughput complexity reduction approach and in silico 

modeling I aim to reconstruct the GRNs underlying the cell-cell communication, and identify key 

soluble factors shaping the double-paracrine interactions. I aim to use the models to gain a mechanistic 

and functional insight into how the cues are integrated and how they affect GRN maintenance. I hope 

to capture cell-fate decisions and identify key dynamic changes with the ultimate goal of finding 

genetic markers to aid development of novel therapeutic options for this deadly malignancy. 

 

Results: We have individually stimulated PSC and TC with conditioned supernatant from the 

respective other cell type and recorded a time-series (1-24h) from which genome-wide microarray 

expression data has been generated. In this dissertation I used the time-resolved expression profiles to 

identify significant gene kinetics through an approach-involving gene ranking, filtering, and clustering 
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followed by gene ontology and pathway analysis. I identified key gene interactions using a genetic 

algorithm embedded in a continuous time recurrent neural network (CTRNN) modeling scheme. Then 

I used the derived GRN’s to produce a picture of unique intercellular interactions. Through in silico 

simulations with the created models, and subsequent data analysis and interpretation I delivered 

targets for experimental testing on the inter- as well as intra-cellular levels. 

 Experimental validation of the selected gene targets using gene silencing and qRT-PCR 

confirmed the in silico predicted TC network behavior; validation of the intercellular connections 

confirmed their dependence on the identified networks. 
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2. Zusammenfassung 
Hintergrund: Das duktale Adenokarzinom der Bauchspeicheldrüse (PDAC) ist eine der führenden 

Ursachen für Todesfälle durch Krebs, mit einer 5-Jahresüberlebensrate von <5% und einer 

mittleren Überlebenszeit von 6 Monaten. Umfangreiche desmoplastische Reaktion ist ein 

charakteristisches Merkmal und ein prognostischer Faktor für PDAC, welches auch dessen 

therapeutischen Widerstand vermittelt. Desmoplastisches Stroma bildet ca. 90% des 

Tumorvolumens und besteht überwiegend aus nicht-malignen Fibroblasten (Pankreas Sternzellen, 

PSC). Frühere Studien haben den mesenchymalen Ursprung dieser Zellen, ihre Fähigkeit zur 

Umschaltung zwischen ruhendem und aktiviertem Zustand, ihre proinflammatorischen 

Eigenschaften, die Expression von löslichen Faktoren, und ihre Fähigkeit zu wandern und zu 

phagozytieren enthüllt. 

 

State of the art: Erhebliche Auswirkungen des Stromas auf die Tumorprogression wurden durch 

frühere Versuche gezeigt. Leider konzentrierten sich diese Studien nur auf eine Momentaufnahme 

und ignorierten dabei die dynamischen Wechselwirkungen in der Mikroumgebung, sowie die 

zeitaufgelöste Dynamik der Genexpression selbst was die Umsetzung in Therapieansätze 

behindert hat. Gen-regulatorische Netzwerke (GRN) passen sich dynamisch an Umweltreize an 

und Beeinflussen den zellulären Zustand. Diese induzierte Modulation führt effektiv zu Zell 

Veränderungen (e.g. PSC Aktivierung), oder sogar zu sich gegenseitig ausschließenden Zell-

Schicksal Entscheidungen (e.g. Differenzierung, Seneszenz oder Tod). In diesem Zusammenhang 

blieben die Zell-spezifische Zuordnung von Reizen, die Identifizierung der entsprechenden Gene 

welche die zugrunde liegenden GRN bilden, sowie die Identifizierung von zellulären Zuständen 

bislang unerforscht. Wir vermuten, dass in einem frühen Stadium der Tumorentwicklung durch 

die Aktivierung von PSC ein stabiles GRN Netzwerk hergestellt wird, welches dann aber durch 

die anschließende Sequenz von Impulsantworten entlang der Tumorzellen (TC)→PSC→TC 

Interaktions Achse destabilisiert wird. 

 

Ziele: Mein Ziel ist es, durch eine Reduktion von Komplexität und den Einsatz von in silico 

Modellierung die zugrunde liegenden Gen-regulatorische Netzwerke zu rekonstruieren und die 

Faktoren zu identifizieren, welche für die Doppel-Parakrine Stimulierung der Zellen in dieser 

Mikroumgebung verantwortlich sind. Ein weiteres Ziel ist es einen mechanistischen und 

funktionellen Einblick in die Signal Integration und dessen Wartung auf der Gen ebene zu 

gewinnen. Ich hoffe, die Zell-Schicksal Entscheidungen erfassen zu können und wichtige 
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dynamische Veränderungen zu identifizieren. Dadurch können genetische Marker für die 

Entwicklung neuer therapeutischer Optionen für diese tödliche Malignität gefunden werden. 

 

Ergebnisse: Durch die Stimulierung von PSC und TC durch konditioniertes Medium von dem 

jeweils anderen Zelltyp wurden zwei Microarray-Expressionsdaten Zeitreihen von 1-24h 

Experimental aufgenommen. In dieser Arbeit durch den Ansatz von Gen Einstufung, Filtrierung 

und Clustering identifiziere ich die zeitaufgelösten Genexpressionsprofile welche dann mit Gen-

Ontologie und Pathway-Analyse bearbeitet werden. Mit Hilfe eines genetischen Algorithmus in 

einem zeitverzögerten rekurrenten neuronalen Netz (CTRNN) konnte ich die Schlüssel-Gen 

Interaktionen erkennen. Die abgeleiteten Netzwerke habe ich dann zur Erzeugung eines Bildes 

der einzigartigen interzellulären Wechselwirkungen benutzt. Durch in silico Simulationen mit den 

erstellten Modellen, die anschließende Datenanalyse und Interpretation konnte ich Ziele für die 

experimentelle Prüfung auf der inter- und intra-zellulären Ebene identifizieren. 

Experimentelle Validierung der ausgewählten Gen-Targets mit Gen-Stilllegung und qRT-

PCR bestätigte das in silico vorhergesagtes Verhalten des TC Netzwerks, zusätzlich konnten wir 

auch die Abhängigkeit der ausgewählten interzellulären Verbindungen von den identifizierten 

Netzwerken bestätigen. 
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3. Introduction 
3.1 Cancer 

Cancer is a common descriptor of many heterogeneous and multifactorial diseases, which 

share certain features such as unconstrained growth (proliferation), invasiveness and metastasis of 

the tumor cells. Approximately two hundred distinct types of cancer have been recognized thus 

far and divided based on the histology into six major categories: carcinomas, sarcomas, 

lymphomas, myelomas, leukemias, and teratomas. These major categories, while significantly 

different from each other, are even more intricate as tumors can form with features intertwining 

multiple types and thus resulting in the eighth category of mixed types. Carcinomas comprise 

around 85% of all human cancers including pancreatic, lung, cervical, breast, skin and brain 

tumors, and are known to be invasive into the surrounding tissues and organs, metastasizing to 

lymph nodes and other sites. 

 

3.2 Pancreatic cancer 

Carcinoma of the exocrine pancreas, also known as the Pancreatic Ductal Adenocarcinoma 

(PDAC) is the main object of interest in the work presented here. It is a gastrointestinal 

malignancy and one of the leading causes of cancer death that for a very long time evaded the 

progress in cancer research, mostly due to the lack of distinctive early symptoms and resulting 

diagnostic difficulties (Li et al. 2004, Dickman et al. 2006). Patients with carcinoma of the 

exocrine pancreas have a dismal prognosis with a five-year survival rate of <5% and a median 

survival of 4-6 months depending on the staging of the disease upon diagnosis (Jemal et al. 2010, 

Gudjonsson 1987, Warshaw et al. 1992, Cartmel et al. 1997). Exact etiology of PDAC is not 

known, but alcohol abuse, poor dietary habits often resulting in overweight and obesity, diabetes, 

smoking, and family history are most often cited as the main risk factors (Lowenfels et al. 1993 

and 2004, Weisburger et al. 1995, Klein et al. 2001, Luo 2010). 

 

3.2.1 Pancreatic Ductal Adenocarcinoma (PDAC) 

Pancreatic ductal adenocarcinoma constitutes approx. 90% of all primary malignant tumors 

of the pancreatic gland. The sources of the tumors are either pancreatic ducts (99%) or acinar 

cells (1%) (Anand et al. 2010). This form of pancreatic cancer is highly aggressive, causing 

organism-wide devastation with its rapid progression and resistance to all forms of treatment 
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(DiMagno et al. 1999, Sener et al. 1999, Kornmann et al. 2003). Statistics over the last 10 years 

show that in only around 7% of all diagnosed cases the tumors were still confined to the primary 

site, while over 90% of patients were diagnosed in the late stages of the disease. After the tumor 

has spread to surrounding tissues and lymph nodes treatment is impossible (Xu et al. 2010; WHO 

Data and Statistics 2010). Only early diagnosis combined with tumor resectability and staging 

(size, spread) determines the survival prognosis and outcome (Table 1), and only primary, non-

metastatic tumors offer a chance for treatment. The only successful treatment option is a 

pancreaticoduedenectomy, surgical removal of the distal stomach, duodenum, common duct, and 

head of the pancreas, containing the pancreatic neoplasm, first reported by Whipple et al. in 1935. 

Unfortunately, resection alone is rarely curative. Out of around 15-20% patients who undergo this 

procedure, only one in five survive at least 5 years. All other cancer treatment options have been 

used in pancreatic cancer and include chemotherapy and radiation, however success rate is 

limited even with the most efficient chemotherapeutic drugs e.g. gemcitabine. One-year survival 

of pancreatic cancer patients treated with gemcitabine is around 18% (Burris et al. 1997, 

Rothenberg et al. 1996, Li et al. 2003), gemcitabine enhanced by Erlotinib yields an increase to 

23% (Moore et al. 2007), while 5-fluorouracil (5-FU) is as effective as gemcitabine alone 

(Mulcahy, 2009). More recently combinatorial therapies have been introduced into clinical trials 

such as the adjuvant Chemo-Radio-Immunotherapy, however their impact on long-term survival 

is yet to be determined, other therapies have limited effect on the survival due to the intense 

resistance of pancreatic adenocarcinoma to all extant treatments. Once the cancer has spread, 

palliative treatment is used to improve the patient's quality of life by controlling the symptoms 

and complications and limiting the cachectic reaction, unfortunately disease at an advanced stage 

cannot be significantly slowed down.  

Stage Survival 

IA	   37% * 

IB	   21% *	  

IIA	   12% *	  

IIB	   6%	  

III	   2%	  

IV	   1% 

* tumor is resectable 

Table 1 5-year survival rates of patients depend on tumor stage at the time of diagnosis, and tumor 

resectability. Data based on a publication by the American Cancer Society, October 2009. 
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3.2.2 Tumor microenvironment 

One of the explanations for the high resistance of PDAC to treatment may be the highly 

complex microenvironment and the poor vasculature of these tumors. The vast majority of cells 

in pancreatic ductal neoplasm are non-malignant stroma cells (Mahadevan et al. 2007) and the 

extensive desmoplastic reaction (a process in which fibrous tissue infiltrates and surrounds the 

neoplasm as observed also in breast, prostate and lung tumors) is one of the characteristic features 

of PDAC. The desmoplastic stroma in PDAC contains myofibroblasts (stellate cells), immune 

cells, nerve fibers and marrow-derived stem cells, all forming a unique environment, which not 

only harbors and nourishes tumor cells, but also likely drives their progression and metastasis, at 

the same time conveying therapy resistance (Korc 2007). Cancer microenvironment has 

previously been shown to affect many tumors in a manner that enhances proliferation, 

invasiveness, tumorigenicity and metastatic potential (Bhowmick et al. 2004, Hu et al. 2008, 

Nelson et al. 2006, Orimo et al. 2006, Tlsty et al. 2006). However, very little is known about 

specific interactions between cells comprising it, and even less about the molecular mechanisms 

underlying them. It has been shown recently that desmoplasia in PDAC may be promoted through 

the paracrine signaling of tumor cells and associated fibroblasts via the sonic hedgehog (SHH) 

(Bailey et al. 2008 and 2009, Yauch et al. 2008). SHH is a gene family forming a signaling 

pathway with a key role in regulating vertebrate organogenesis, and control of the adult stem cell 

division. Inhibition of SHH in a mouse model has been shown to increase the efficiency of 

chemotherapeutic delivery in pancreatic cancer (Olive et al. 2009).  

Since the vast majority of cells in PDAC stroma are myofibroblasts, they are the natural 

candidates for tumor-stroma interaction investigation. Fibroblasts are however not the only cell 

type of interest as the presence of immune cells in the neoplasm combined with the quick 

progression of PDAC suggests that tumor cells are capable of creating favorable 

microenvironmental conditions with immunosuppressive features, as was proposed by Dunn et al. 

(2004) in the hypothesis of “cancer immunoediting”. According to this the immune system not 

only protects the host against tumor development, but can also promote tumor growth by 

selecting for tumor escape variants with reduced immunogenicity and through e.g. secretion of 

immunoregulatory proteins, or direct alteration of immune cell populations including T cells, 

NKT cells and dendritic cells.  
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The normal tissue-specific microenvironment arising as a result of intercellular interactions 

has been shown to be capable of inhibiting malignant cell growth in breast cancer, where 

fibroblasts (not tumor-associated) inhibit the growth of transformed mammary epithelial cell line 

in vitro (Sadlonova et al. 2005). Changes in normal tissue organization and homeostasis coming 

from e.g. chronic inflammation (pancreatitis) and wound healing may increase the chance of 

tumor initiation (Dvorak 1986, Schafer et al. 2008). When altered during a malignant 

transformation, the microenvironment provides a significant synergistic contribution to tumor 

development, usually by supporting tumor cell proliferation (Surowiak et al. 2006, Yazhou et al. 

2004). In fact, breast cancer myofibroblasts (similar to stellate cells found in the PDAC stroma) 

correlate with a high proliferative rate of breast tumor cells and a poorer prognosis (Polyak et al. 

2009); the latter aspect was recently also investigated by Farmer et al. (2009). Their results show 

that a stroma-related signature may be used in breast cancer to predict its resistance to 

neoadjuvant therapies. This suggests that perturbations of the normal mesenchymal-epithelial 

interactions can lead to unregulated growth (Farrow et al. 2008). It has been shown in prostate 

cancer (Cunha et al. 2002) that normal epithelial cells are affected by the tumor-stroma 

interactions differently than the tumor-associated fibroblasts indicating that abnormalities must be 

present both in epithelial and stromal cell compartments (Cunha et al. 2002, Polyak et al. 2009). 

These findings are in contrast with available therapies, which specifically target tumor cells, 

avoiding the associated stroma. Furthermore, some of the existing therapies may actually be 

suboptimal for stroma-rich cancers as demonstrated in prostate (Cunha et al. 2002), breast 

(Barcellos-Hoff in 1998), and pancreatic cancer (Ohuchida et al. 2004), where fibroblasts sub-

lethally irradiated before injection have been shown to more potently enhance tumor growth than 

unirradiated cells, owing this to the acquisition of an activated phenotype (Polyak et al. 2009).  

Investigation of the molecular crosstalk between malignant cells and tumor stroma in this 

context may be essential to unfold the pancreatic cancer ability to progress in such a rapid 

manner, as well as understand its resistance to therapy. A therapy targeting the non-malignant 

stroma cells may have the additional benefit of pursuing genetically stable cells rather than the 

inherently unstable tumor cells.  

The potential of altering the tumor-stroma interactions recently became even clearer after a 

publication by Beatty et al. (2011) who have shown the true potential for the development of 

therapies. They have used an agonist of CD40 receptor in tumor associated macrophages and 

showed that the activation of this receptor causes a significant activation of immune reactivity 

leading to tumoricidal effects and depletion of stroma. 
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Given the importance of crosstalk between cells the work presented here focuses on the 

identification of the paracrine signaling and the underlying molecular regulation in tumor cells 

and pancreatic stellate cells, which are the main constituent of the PDAC stroma. While many 

connections between the various cell types are already known in both inflammation and 

carcinogenesis of pancreas (Figure 1), interactions leading to the development of the aberrant 

environment as well as further tumor cell progression towards metastasis remain largely 

undiscovered. Understanding the gene regulation underlying intercellular interactions resolved 

via the cytokine patterns taken up and released by each cell type may provide more accessible and 

more effective drug targets. 

 

 

Figure 1 Interactions in inflammation and cancerogenesis of pancreatic cancer, modified after Algül 

et al. 2007 
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3.2.3 Pancreatic stellate cells 

Pancreatic Stellate Cells (PSC) are the main component of the PDAC microenvironment. 

PSC are organ specific cells of the connective-tissue family located in the exocrine areas of the 

pancreas. PSC were first observed by Watari et al. in 1982 and Ikejiri 1990 using fluorescence 

and electron microscopy, and isolated by Apte et al. and Bachem et al. in 1998. 

Stellate cells are of mesenchymal origin and have the capacity to switch between a 

quiescent and activated phenotype, which makes them in that manner similar to the hepatic 

stellate cells (HSC), a fact that awakened interest in them soon after their discovery. In a healthy 

pancreas, stellate cells are quiescent, and can be identified by vitamin A containing lipid droplets 

in their cytoplasm (Watari et al. 1982). Their activation in vivo may occur in response to various 

circumstances such as tissue damage e.g. through alcohol, prolonged inflammation, or infiltration 

of the tissue by immune cells. This activation is accompanied by a non-malignant transition from 

the quiescent into a myofibroblast-like phenotype, in which the vitamin A droplets are degraded 

and PSC begin to express α-smooth muscle actin (α-SMA), produce extracellular matrix 

components such as type I collagen, fibronectin and laminin, and actively proliferate (Yen et al. 

2002, Masamune et al. 2009). 

In vitro stellate cells can be activated by alcohol (ethanol), cytokines (TGFβ, PDGF, TNFα, 

IL1, IL6) (Bachem et al. 1998, Apte et al. 1999, Mews et al. 2002), growth factors (PDGF) 

(Luttenberger et al. 2000), and oxidative stress. Upon activation PSC acquire a variety of 

functions e.g. due to their proinflammatory phenotype they express intercellular adhesion 

molecule ICAM-1, as well as cytokines and chemokines e.g. IL6, IL8, and monocyte 

chemoattractant protein MCP-1. They are well recognized as key mediators of pancreatic fibrosis 

(Wells et al. 1998, Haber et al. 1999), which is a characteristic feature of chronic pancreatitis. In 

addition, it has been shown that PSC possess (in vitro) the ability to migrate in a chemotactic 

direction (Phillips et al. 2003), remove necrotic debris and aged polymorphonuclear cells by 

means of phagocytosis, inhibit apoptosis (Hwang et al. 2008, Vonlaufen 2008) and enhance the 

migration and invasion of pancreatic cancer cells (Bachem et al. 2008). 

Stellate cells seem to be significant players in the neoplastic development and progression, 

and the microenvironment in which they exist has already been shown to influence the growth, 

differentiation, survival, and motility of cells (Crnogorac-Jurcevic et al. 2001, Koenig et al. 2006, 

Jaskiewicz et al. 2003, Lohr et al. 2001). However, the molecular mechanisms and the 

understanding of the underlying cellular regulation driving the progression towards invasion and 

metastasis remain scarce. 
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Abundant crosstalk between cells in PDAC, which occurs via autocrine, paracrine and 

juxtacrine connections between cells in the complex microenvironment influences the progression 

of tumor cells. Many of the signals driving proliferation and invasion may be attributed to the 

stromal component of tumors (Bissell et al. 2001), but the exact formation of the paracrine 

interactions, signal assignment to specific cells in the microenvironment, as well as the 

underlying gene regulation responsible for the formation of those interactions remain open. 

Pancreatic stellate cells are the major cellular component of the PDAC stroma and are known to 

produce a wide range of factors affecting the ECM composition e.g. collagen, fibronectin, 

proteoglycans, and proteinases (Mollenhauer et al. 1987, Seymour et al. 1994, Bachem et al. 

2005). Production of those proteins is stimulated by various signaling pathways such as 

transforming growth factor β (TGFβ), hepatocyte growth factor (HGF), fibroblast growth factors 

(FGF), insulin-like growth factor 1 (IGF-1) and epidermal growth factor (EGF) (Ide et al. 2006, 

Mahadevan et al. 2007). The precise configuration of the ECM is regulated by various 

mechanisms in tumor and stellate cells. e.g. matrix metalloproteinases involved in degradation 

and remodeling of the ECM (Jones et al. 1999), and their inactivators – tissue inhibitors of 

metalloproteinases (TIMPs) (Gress et al. 1998, Bramhall et al. 1996, Neesse et al. 2010). 

Considering the impact of stroma on tumor progression previous studies by Apte et al. (1999), 

Luttenberger et al. (2000), Schneider et al. (2001), Mews et al. (2002), and Bachem et al. (2005) 

have attempted to dissect the interactions between PSC and TC, and produced a common picture 

of a microenvironment supporting the development of pancreatic cancer. None of the 

aforementioned studies have investigated in depth the dynamic nature of gene regulation 

responsible for the formation of the paracrine interactions, and most were performed using tissue 

samples, which contain a complex mixture of stroma cells, discarding the different impact each 

cell may have on the formation of intercellular connections. A recent study by Xu et al. (2010) 

has shown that cancer associated fibroblasts (PSC) may be more important to the progression of 

cancer than previously believed. Aside of having the ability to (de)construct the ECM they also 

have the capacity to accompany TC to distant metastatic sites, an important since the presence of 

“source” stoma likely significantly increases the chances of tumor cells to form neoplasms in 

remote locations.  

PDAC cells are some of the most resilient to therapy we know, and the host response to 

pancreatic cancer shares many parallels with an infection or a wound, as many tumors arise in 

areas of infection or chronic inflammation. Existing evidence suggests an increasing role for 

inflammation as a critical link with tumor progression (Grivennikov et al. 2010). In a recent paper 

Feng et al. (2010) have modeled early tumor initiation and found that the immune system both 
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attacks and helps early development of tumors.  Apparently tumor cells produce chemoattractant 

signals similar to those in wounded tissue, leading to infiltration by leukocytes, which are 

however usually incapable of destroying the TC, leading to a chronic inflammatory state that 

supports tumor growth (Feng et al. 2010). The term “wounds that never heal” best describes the 

current view of tumors. In light of our findings presented in Busch et al. 2008 regarding the 

keratinocyte migration in the process of wound healing the presence of cancer associated 

fibroblasts (PSC) in the stroma of PDAC suggests a strong potential impact of those cells on 

tumor cell progression. 
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3.2.4 Progression towards invasion and metastasis 

 Unconstrained growth, invasion and metastasis are the three main features of malignant 

tumors such as PDAC. In normal tissue, environment is the natural barrier for any motile cell, 

however TC are capable of modifying this environment in such a way that its constraints are 

loosened. There are a few significant rate-limiting steps in tumor progression including (after 

Albini, 1998): 

- Proliferation – oncogene activation, suppressor inactivation 

- Loss of cell adhesion e.g.loss of e-cadherin 

- Matrix degradation – MMPs, uPa/plasmin, cathepsin activity 

- Extravasation and reaching distant sites – resistance to immune system 

- Adhesion to endothelial cells – E-selectin, mucins, V-CAM, I-CAM, integrins (β2, β4) 

- Attachment to extracellular matrix – integrins (β1/β3/β5) 

- Basement membrane degradation – gelatinases uPA/plasmin 

- Migration – chemotactic growth factors, gradients of matrix proteins 

- Proliferation at distant sites – organ specific growth factors 

- Angiogenesis – VEGF, bFGF, HGF 

A general separation of those steps into two phases has been recently proposed by Chaffer 

et al. (2011), and Shibue et al. (2010) who divide it into two general phases: physical 

translocation of a TC to a distant tissue, and colonization, and suggest that clonal evolution may 

be insufficient to explain the unique properties of metastasizing cell populations, offering cancer 

stem cells as a solution to the transdifferentiation events. 

 Pancreatic tumors show high motility resulting in a very fast progression towards 

metastasis, but at the same time slow proliferation. It has been shown that PSC can stimulate the 

migration of cancer cells in vitro (Vonlaufen et al. 2008) and that they may accompany tumor 

cells during the process of migration to metastatic sites (as cell clusters)(Xu et al. 2010), 

which would explain how the tumors are capable of forming metastasis so rapidly. In addition to 

that, secondary pancreatic tumors at metastatic sites are often genetically different from the 

primary tumors, which would suggests that the metastasis sets on at a very early stage of the 

disease, contrary to what we see in many other solid tumors. This however is in contrast with the 

most recent findings by Yachida et al. 2010, and Campbell et al. 2010, who show that the notion 

of rapid progression towards metastasis in pancreatic cancer may be coming from poor 

diagnostics and not actual molecular developments. Using next generation sequencing Campbell 
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et al. compared mutations found in the original tumors with metastatic sites. They confirmed that 

all mutations found in the metastases were also present in the original tumor. Yachida et al. 2010 

have used estimates of proliferation and mutation rates to mathematically model and calculate the 

number of cell divisions between discrete events in tumor evolution. They estimate that the 

average time necessary for the formation of a non-metastatic neoplasm is on average 11.8 years, 

and it takes another 6.8 years for the emergence of clones leaving a large window of opportunity 

for early detection (Figure 3, Yachida et al. 2010). 

 

 

Figure 2 Progression to metastasis (Mammary gland biology and breast cancer. Conference on 

Common Molecular Mechanisms of Mammary Gland Development and Breast Cancer Progression; 

Sharon F. McGee (Adapted from Chambers et al. 2002; Chambers & Matrisian, 1997)) 
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Figure 3 Schema of the genetic evolution of pancreatic cancer by Yachida et al. 2010 

 The high metastatic capacity of pancreatic tumors is a great challenge in the fight against 

them. Metastasis is one of the hallmarks of PDAC progression and is revealed with the activation 

of blood and lymph vessel angiogenesis together with inflammatory and immune-suppressive 

responses, which further promote migration and invasion (Kopfstein et al. 2006). The high 

complexity of this process becomes clear when we consider all the steps that are necessary for a 

cell to metastasize (Figure 2). First the malignant primary cell must compromise its basal 

structures, by breaking down the extracellular matrix (ECM), it must detach itself and migrate 

into the surrounding tissue where it can invade small blood or lymph vessels. Subsequently it has 

to survive the journey through the circulation, invade the endothelium and base membrane, 

prepare the new site to grow a colony, proliferate, and attract new blood vessels to nourish its 

growth and survival. Even if all those steps are successful, the cell is still not predestined for 

metastatic success as it may either proliferate to form a clinically detectable metastasis, remain 

dormant as a single cell, or run through a limited series of divisions to form a micro-metastasis, 

which is usually successfully destroyed by the organisms own immune defenses (Nguyen 2004). 

This complexity is consistent with the notion of the metastatic cell being a rare variant of the 

tumor cell, which arises at a very late stage of tumor progression, but it is clearly contradictory to 

the inescapable progression towards metastasis by practically all untreated carcinomas (few 

exceptions include glioma and basal cell carcinoma). 

 Genetics’ view of metastatic progression defines metastasis as a series of molecular 

alterations, resulting from mutations. Cell biology however focuses on the regulator/effector 



 

     

 

16	  

mechanisms that implement the metastatic phenotype especially the Epithelial Mesenchymal 

Transition (EMT). EMT is considered the single most important pro-metastatic 

transdifferentiation event after which epithelial cells acquire mesenchymal (embryonic) features. 

This, like any differentiation process, causes a change in the expression of various genes and 

proteins scattered across the entire genome. An interdisciplinary approach to the problem offers 

an alternative solution with a cell attractor model, the underpinnings of which have been provided 

by Delbrück as early as 1948 (Differentiated states correspond to the stable states in a bi-stable 

system) and Kauffman in 1969 (High-dimensional attractors of genomic networks represent cell 

types). Rather than looking at single events such as mutations, this approach looks at a cell in the 

form of states in a high-dimensional space. Attractors in this space are low energy sinks (valleys 

in the attractor landscape), which correspond to the specific mutually exclusive phenotypic events 

such as proliferation, differentiation, migration and apoptosis, and can undergo a switch-like 

transition from one to another (Figure 4). Each of those programs is represented in each cell type 

by a very specific gene expression profile, which corresponds to only one of those exclusive cell 

decisions (Huang and Ingber 2006).  

 

Figure 4 From a lecture by Dr. Hauke Busch (2008) 

Keeping in mind the attractor model, we notice that our approach in this project has the 

capacity to recognize gene expression profiles corresponding to switch-like events associated 

with those decisions, consequently suggesting that the observation of the dynamic changes may 

provide new insights into how the cell behavior is established and affected. 
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3.2.5 Gene regulation 

In light of the aforementioned complexity of tumor formation and associated changes in the 

microenvironment we recognize that the understanding of gene regulation in pancreatic cancer is 

limited, and while certain genes have been previously implicated in the process of tumor 

progression (e.g. Sato et al. 2004, Crnogorac-Jurcevic et al. 2001, Campagna et al. 2008, López-

Casas et al. 2010), the connections between the regulatory networks and the system-wide changes 

still elude us. Among the goals of this work is to provide a deeper understanding of gene 

regulation in both cell types of interest (stellate and tumor cells) in the context of the tumor 

microenvironment, with a focus on tumor cell response to stellate cells. 

It is well established, that gene expression is not constant, but varies with time and 

location, and is dependent on cell cycle, and genetic code, as well as additional modifications e.g. 

epigenetic DNA methylation, histone modifications. This multi-level regulation allows the cell to 

respond flexibly to its environment (Jaenisch and Bird 2003). Control over expression is exerted 

on every level starting with storage of information, conformation of chromatin, its arrangement in 

the nucleus, modifications to chromatin structure, and its accessibility, complex processes of 

replication, transcription, translation and post-translational modifications, and ending with 

proteins, which may also exert regulatory effects on the process of transcription (transcription 

factors), performing replication and transcription (various polymerases), cleaving the nucleic 

acids (nucleases), and histones (chromosome packaging). Each stage can be modulated and the 

phenotypic outcome is what can be described as cellular decisions e.g. proliferation, 

differentiation leading to the formation of tissues and organs, and cell death. The separation of 

time scales between the various processes in cells, as well as the high complexity of each stage of 

this modulation are the main reasons why gene regulation still eludes our understanding. In 

addition, accumulating evidence suggests that the structural order in which genes are stored in the 

eukaryotic genome is not as random as was once believed. Initially it was thought that the only 

gene clustering in DNA was the result of evolutionary events such as duplications, while 

everything else was the result of random arrangement of coding and non-coding sequences. 

Recently multiple genome-wide expression studies in organisms such as Drosophila (e.g. 

Spellman et al. 2002, Boutanaev et al. 2002, Kalmykova et al. 2005), mouse (e.g. Williams et al. 

2002, Nelander et al. 2005, Singer et al. 2005, Sémon et al. 2006, and Purmann et al. 2007), as 

well as human  (Caron et al. 2001, Lercher et al. 2002, Vogel et al. 2005) showed that genes with 

similar expression levels are non-randomly distributed within genomes and tend to cluster within 

genomic neighborhoods. Eisen et al. (1998) suggested that genes sharing similar time-resolved 
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patterns of expression (co-expressed) are likely to have similar function, an assumption which 

may not be entirely accurate as ectopic expression may be explained by expression leakage, 

caused by spreading of chromatin modifications or the transcription apparatus into neighboring 

genes (Yanai, 2006). Nonetheless, following the logic of the guilt-by-association principle we are 

tempted to extrapolate it stating that co-expressed genes are likely to be co-regulated (Walker et 

al. 1999, Quackenbush 2003, Joshi et al. 2004, Zhou et al. 2005, Yanai 2006), a finding which 

has turned out to be very useful in a complexity reduction approach where clustering is used to 

identify common gene expression profiles. 

 

Transcriptional programs may be represented as gene networks, where products of 

expressed genes activate or repress secondary downstream targets. Since TFs bind selectively to 

cis-regulatory elements (binding sites) in promoters of their downstream targets, it is reasonable 

to assume that genes regulated by the same TF should all contain the corresponding binding sites 

in their regulatory regions and exhibit similar expression profiles as measured in e.g. microarrays. 

Pilpel et al. (2001) found that genes sharing pairs of binding sites are significantly more likely to 

be co-expressed than genes with only single binding sites in common. This is in agreement with 

the hypothesis that a limited number of transcription factors combine in various ways in order to 

respond to a much larger number of environmental conditions or stress factors. Segal et al. (2003) 

and Beer and Tavazoie (2004) further developed this idea to find combinations of regulatory 

mechanisms that best explain expression data. 

 

In addition to the aforementioned intrinsic complexity of gene regulation, we also 

recognize a further complication coming from the extracellular effects. The model of 

extracellular-induced (cytokines, growth factors etc.) gene expression has two major components: 

the initial induction of primary response (immediate early genes) within seconds to minutes, 

followed by a compulsory delay allowing translation of TFs, which then induce the secondary 

response genes. The initial response does not require de novo protein synthesis and is therefore 

mediated by pre-existing transcription factors. Secondary response genes require de novo protein 

synthesis. The third class of genes, delayed primary response genes remains outside the scope of 

this work, as it is indistinguishable from delayed primary and secondary responses without 

additional experimentation (e.g. involving cycloheximide to block de novo protein synthesis) 

(Tullai et al. 2007). Taking into account the three main signaling patterns established between 

cells via soluble factors i.e. autocrine, paracrine, and mixed; we investigated the time ordered 
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sequence of events on the transcript level to differentiate between gene clusters stimulated by 

either signal (Figure 5). 

 

Figure 5 Signaling can be identified by its effects on time-resolved gene expression profiles 

The initial stimulation of cells induced through extracellular paracrine signaling results in 

an upregulation of immediate early genes on a time scale of minutes, and at the latest within 2h. 

Genes that show an upregulation after 4h or later, are either delayed primary genes, or constitute a 

secondary wave most likely via the involvement of an autocrine set of signals already secreted by 

the cell at this stage, additionally the secondary genes can be induced without the extracellular 

signal involvement through feed-forward type of intrinsic signaling where initially induced TF act 

on their downstream targets. GRN modeling presented in this work operates on precisely this set 

of paradigms accepting both: internal and external stimuli to drive the internal network dynamics.  
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3.2.6 Investigating gene regulation in PDAC 

The fast development of high throughput technologies is driving recent genome-wide 

expression profiling in pancreatic cancer. Twelve molecular pathways involved in pancreatic 

cancer were described recently using those techniques (Jones et al. 2008). One of the earliest 

attempts of gene expression evaluation was made using the serial analysis of gene expression 

(SAGE), which aims to find RNA molecules that are present in one total RNA preparation, but 

absent in another (Argani et al. 2001). Since then, the bulk of gene expression analysis in PDAC 

has been performed using hybridization-based methods i.e. microarrays e.g. two-channel cDNA 

spotted arrays (Han et al. 2002), with support of PCR-based techniques that aim to visualize the 

transcripts by amplification and quantification (at least relative) between amounts of a particular 

product in cell extracts from two experimental states e.g. RT-PCR, SIP-PCR, in situ qRT-PCR. 

Most of the datasets generated using those methods are located in the Pancreatic Expression 

Database (Chelala et al. 2007 and 2009, Cutts et al. 2011), and include, among others, expression 

profiling of laser microdissected tissues provided by Crnogorac-Jurcevic et al. 2002, Logsdon et 

al. 2003, Grutzmann et al. 2004, and Buchholz et al. 2005.  

Unfortunately, while the benefit of using hybridization-based technologies such as 

microarrays is clear as we measure the expression levels of thousands of genes simultaneously 

and identify hundreds of significant genes differentially expressed in pancreatic cancer, building 

in essence expression profiles of the cells of interest, a few significant problems arise. The 

validation of the derived targets remains an issue, first and foremost because it is hampered by the 

very high cost in terms of work hours necessary to process the long lists of genes of interests at 

the involved laboratories; second, because the understanding of the complexity of gene regulation 

is incomplete, with new potential sources of variation in PDAC such as recent microRNA 

discoveries (López-Casas et al. 2010). Nonetheless, as our understanding of the molecular 

regulation in PDAC improves, it is becoming easier to combine various data sources to arrive at 

meaningful conclusions. Jones et al. (2008) combined the available genomic (sequencing, 

amplifications, deletions) and transcriptomic data (SAGE) in 24 PDAC patients to show twelve 

core pathways altered in pancreatic cancer, out of which six were described as shared among all 

investigated tumors including apoptosis, regulation of G1/S phase transition, hedgehog signaling, 

KRAS, TGF-β, and Wnt/Notch signaling. In the work presented here, while employing only one 

transcriptomic data source, we use a wide range of supplementary techniques for complexity 

reduction, combined with Systems Biology-driven modeling, and additional literature-driven 

sources for the analysis of gene expression in PDAC. 
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3.2.7 Issues 

Differential gene expression profiling of pancreatic cancer, while adding significantly to 

our understanding of molecular changes in PDAC, in nearly all cases focuses on snapshot-like 

identification of changes in tumor cells, disregarding not only the dynamic impact of the 

microenvironment, but even more importantly, the dynamic nature of gene expression itself, 

which is known to vary depending on the state of the environment. Although one may argue that 

the snapshot approach is valid when applied to well defined precursor lesions such as pancreatic 

intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasms (IPMNs), and 

mucinous cystic neoplasms (Hruban et al. 2004) as they are the earliest form of neoplastic 

transformation, it cannot be forgotten that all of them arise in the rich microenvironment of 

pancreas and are no doubt heavily affected by it. From this picture we draw a clear conclusion 

that the expansion of our understanding of the underlying PDAC biology does not translate well 

to therapeutical advances because of the dynamical environment-dependent genome-wide 

changes in tumor cells. Therefore it seems hardly feasible that such approaches (i.e. gene 

expression profiling) will be able to produce sufficiently specific biomarkers from the given 

cellular context, and a different solution is needed.  

The identification of biomarkers for diagnosis, prognosis and treatment is by far the most 

important task currently underway, it is therefore in our best interest to employ genome-wide 

technologies to evaluate the dynamical changes in gene expression regulation (e.g. time-series 

microarray experiments), and combine them with modern analytical methodologies, which allow 

not only the processing of genes in silico, but also modeling of the potential interactions between 

those genes prior to their experimental evaluation. Emerging techniques such as those provided 

by Systems Biology offer an integrative approach and show great promise as they allow us to 

reduce the complexity of the problem and focus on only a limited number of genes of interest. 

This seems to be one of the greatest challenges in the current data analysis as can be witnessed in 

the supplemental information of Harsha et al. 2009 compendium on potential biomarkers of 

pancreatic cancer, which provides a list of targets, the validation of which seems daunting. 
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3.3 Systems Biology in cancer research 

The fast development of Biotechnology and vast amounts of biological data produced by 

high-throughput techniques over the last two decades have brought the life sciences into the age 

of information technology, at first tentatively with the introduction of Computational Biology and 

Bioinformatics, and more recently with the emergence of Systems Biology. Systems Biology is 

where biomedical techniques meet Bioinformatics, Physics and Mathematics to create a unique 

perspective on life at the molecular level. Today we are capable of recreating intracellular 

signaling in silico, and are presented with a long-term goal of modeling intercellular interactions 

in tissues, and at some point whole organisms, as complete systems. Disciplines such as 

Molecular Biology, Functional Genomics and Biochemistry, while unique on their own, draw 

significant benefits from the interdisciplinary and integrative systemic approach, which provides 

not only analysis of experimental results, but more importantly directs the attention towards new 

experimental designs. Successful integration and combination of all smaller parts creates a fully 

functional framework for Systems Biology, and gives a strong argument for its scientific validity. 

Traditional approaches combined with new technologies still seek to understand the function of 

genes and their products, and how they determine phenotypes, but on a greater scale.  

Traditional biomedical research in cancer has focused for a long time on a ‘single 

gene/protein/molecule of interest’ approach, such as the search for an oncogene. We have long 

believed that such a single altered gene might be responsible for a disease, however more than 70 

oncogenes have been found, and while they provide us with understanding of key changes in 

cells, only very few malignancies have ever been shown to be the result of the altered activity of a 

single oncogene (e.g. Burkitt's lymphoma, CHL Classical Hodgkin Lymphoma). Instead of 

looking at cancer on a per-gene basis, in Systems Biology we treat it as a system-wide problem, 

and this system dysfunction is what allows the cell to escape the normal growth control in a 

multicellular microenvironment. Systems Biology of cancer aims not only at improving our 

understanding of the cell as a complete unit in which all processes are intertwined, crosstalk is 

abundant and the behavior is often cumulative, but also to provide us with tools to establish 

means of restoring such disturbed system back to its original state. The mathematical approaches 

applied here aim to create a strict representation (preferably quantitative) of biological processes 

(e.g. pathways), units (e.g. cells) and systems (e.g. tissues, organs, organisms) with the goal of 

understanding their behavior, predicting, and altering them for the benefit of fighting this disease. 

The ability of Mathematics to describe a system in engineering terms provides us with a 

quantitative system-level understanding of living matter at a level previously unachievable by 
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experimentalists alone. All this is possible due to the significant technological advances in 

computer science, and biological high-throughput methods e.g. microarrays. The ability to 

measure the expression of tens of thousands of genes simultaneously and to study adaptive 

responses of cells to different stimuli on the gene level has turned out to be a major milestone. 

The approach undertaken in this project is concept-based in a way that it provides the 

combination of systems theory with molecular biology in an iterative loop between the 

experiment and the model. The experiments are driven by the needs of the model and aim to 

provide a contextual understanding of the interactions between tumor cells and pancreatic stellate 

cells.  

 

Ludwig von Bertalanffy proposed the underlying theory for Systems Biology, Systems 

Theory, between the 1940’s and 1970’s. It is based on principles from Physics, Biology and 

Engineering. A system, in general, is a set of elements, which interact with each other (and with 

their environment, if the system is open), and form an “entity” (e.g. a pattern), which is different 

from any of the separate parts. Therefore a system consists of four underlying features:  

- Objects, which are its parts or variables; 

- Attributes, which are qualities or properties of the system and its objects; 

- Relationships between the objects, and the 

- Context of a system, which exists in an environment. 

 

Depending on the organization of the input/throughput/output a system can be either open or 

closed (a closed system does not interact with its environment). Several system characteristics 

are: wholeness and interdependence (the whole is more than the sum of all parts), correlations, 

perceiving causes, chain of influence, hierarchy, suprasystems and subsystems, self-regulation 

and control, goal-orientation, interchangeability with the environment, inputs/outputs, the need 

for balance/homeostasis, change and adaptability (morphogenesis) and equifinality (there are 

various ways to achieve similar goals) (Theory Clusters 2010). In the context of biological 

systems such as gene regulatory networks we speak of dynamical systems, which evolve over 

time, and mathematically have two parts: a state vector x ∈ Rn (a list of numbers which may 

change as time progresses), which describes exactly the state of some real or hypothetical system, 

and a function, f : Rn → Rn, which tells us, given the current state, what the state of the system 

will be in the next instant of time (R – real numbers, does not apply to complex dynamical 

systems where complex values take over).  
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There are two kinds of dynamical systems: discrete time and continuous time. Gene regulatory 

networks in this project are viewed as continuous-time dynamical systems, which change 

smoothly over time. Another important distinction in dynamical systems is between chaotic and 

deterministic dynamics, that is, between systems, which exhibit randomness and unpredictability 

versus those, which do not. A deterministic model will always produce the same output from a 

given starting condition. This seemingly unpredictable behavior is called chaos and most natural 

systems are chaotic (Rasband 1990, Ott 1993, Strogatz 1994). A gene regulatory network is 

considered a nonlinear, dynamical, and stochastic (random i.e. non-deterministic) system. 

Nonlinear dynamics deals with the long-term quantitative behavior of dynamical systems (solved 

numerically or approximated). However, often the focus is not on finding precise solutions to the 

equations defining the dynamical system (which is often hopeless), but rather to answer questions 

like "Will the system settle down to a steady state in the long term, and if so, what are the 

possible attractors?" or "Does the long-term behavior of the system depend on its initial 

condition?” (Boros, 2009). 

  

In order to understand the behavior of a complex time-continuous dynamical stochastic 

system, such as a gene regulatory network, derived from time-resolved microarray data, we use 

Systems Biology to build and validate models of the gene interactions. In this project we apply an 

ODE-driven neural network (NN) approach to model the genes as nodes in a network. The model 

successfully provides a platform to investigate in silico, without experimental cost, whether the 

system has a steady state (or multiple), whether the initial conditions define the long-term 

behavior of the system, and what type of global behavior will result in response to external as 

well as internal perturbations of such system. This in the context of switch-like mechanisms 

leading to cell-fate decisions is of profound importance and interest. 
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3.4 Modeling of gene regulatory networks (GRN) 

Gene regulatory networks are the control system of cells; they consist of genes interacting 

with each other and their products on multiple levels – transcriptomic, proteomic and 

metabolomic. When speaking of gene regulation, transcription factors are in the spotlight, as they 

form the underpinnings of this regulation, however the process is multi-level and has biochemical 

(signal transduction cascades) and mechanistic components (accessibility, location, translocation 

of products between cell compartments), which should be kept in mind.  

In order to improve our comprehension of the regulatory processes and provide means of 

analyzing highly complex high-throughput data, without employing complex and expensive 

experimental setups, computer assisted procedures have been developed, which allow us to build 

entire GRN in silico. The goal of modeling GRN is to unravel the dynamical interactions between 

genes of interest in the context of cellular behavior and transitions under the assumption that 

causality of transcriptional regulation can be inferred from changes in mRNA expression profiles, 

where additional regulation levels are neglected or included as hidden factors in diverse gene 

regulatory models. This is what we call reverse engineering, and what provides a framework of 

describing a cell in terms defined by Physics and Mathematics (Hecker 2009, Fu et al. 2009). The 

objective of in silico modeling is to understand the cell as a whole with not only genome-wide 

models, but holistic models encompassing all levels of cellular regulation including protein, 

metabolite, and mechanistic. Unfortunately due to computational and mathematical complexity, 

and more importantly limited data availability (concurrent measurements on multiple levels of 

regulation are usually outside of the financial scope of a single lab) most of the modeling 

approaches, including the one presented in this work, use only gene expression as data sources. 

Of course, generalized multi-scale models of inter- and intra- cellular interactions exist, but the 

results they provide are often too complex to follow, understand, and more importantly validate 

(e.g. complex genome-wide Bayesian networks), some approaches for the sake of feasibility 

forego entirely, or at least simplify, the low level gene regulation often focusing on the 

phenotypic effects of experimental perturbations. The model presented in this work attempts to 

create a good approximation of the regulatory networks of interest, simplifying the problem by 

building networks of not only direct, but also indirect connections between genes.  
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 Systems Biology of network inference is an iterative process between experiment and 

model, which aims to provide insights into the processes of interest without the need of building 

expensive experimental models (Figure 6). 

 

Figure 6 Iterative process of modeling and experimentation in Systems Biology. Modeling precedes 

biological verification and interpretation in the section of analysis. (from a lecture by David 

Edwards, courtesy of the Bioconductor project) 

 

Experimental design, selection of data preprocessing and analysis, as well as the modeling 

methods are tailored to answer a specific biological question. There is no single ‘best’ modeling 

technique applicable to everything, but rather different formalisms exist that allow us to address 

different questions. Since aspects of structure and dynamics can be compared with principles 

governing man-made systems, mathematical modeling approaches apply many traditional 

engineering methods to address such questions as the modularity of a regulatory network, the 

response of the system to perturbations arising from its environment, and the robustness of its 

behavior in the presence of noise (Ropers et al. 2008).  

In this context GRN modeling is, due to the high dimensionality of the genome-wide microarray 

data, a non-trivial task, further complicated by the dynamic nature of time-course experiments 

used to discover the dynamical, time-continuous changes among genes. 
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3.4.1 Artificial neural networks 

In this project we apply an artificial neural network (ANN) approach (continuous time 

recurrent neural network CTRNN). The applicability and ability to reverse engineer GRNs from 

time-resolved microarray data was previously demonstrated in our work concerning wound 

healing (Busch et al. 2008) – a project that forms the base reference for the neural network 

methodology described throughout this thesis. Artificial neural networks are part of machine 

learning approaches, which allow computers to evolve behaviors based on empirical data. In fact 

other methods of machine learning are used throughout the presented work including genetic 

programming, Bayesian learning and clustering, but it is the neural networks, that form the core 

of reverse engineering.  

With ANNs we attempt to mimic the brain, by representing neurons and their connections 

in mathematical terms. Just like the learning capacity of a brain, ANNs aim to teach computers to 

solve highly complex questions, without the use of standard computational, algorithmic 

approaches. Instead of defining each step of data processing, the neural network is set to discover 

the solution by itself in an iterative manner. Just like in the brain, where each neuron has up to 

10.000 connections with other neurons, each node in an ANN is connected to other nodes, each 

capable of receiving signals, and if strong enough, activating and transmitting it onward to other 

connected nodes. 
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3.4.1.1 Continuous Time-Recurrent Neural Network (CTRNN) 

Continuous time-recurrent neural networks are a wide class of recurrent neural networks in 

which inputs and outputs are functions of a continuous time variable and neurons have a temporal 

response (relating state to inputs) that is described by a differential equation in time (Pineda, 

1987, Forcada 2011). Connections between neurons in this network type form a directed cycle 

creating an internal state of the network (Figure 7)(Websters 2011). Recurrence of the network 

defines the presence of feedback loops, which allow it to exhibit dynamic temporal behavior. 

Continuous time is in line with our desire to model a natural biological system, which evolves in 

an inherently continuous manner.  

 

Figure 7 Continuous time recurrent neural network (CTRNN) directed cycle with auto-regulatory 

feedback loops (based on a presentation by Busch et al. 2008) 

In a 1995 paper Randall D. Beer “On the dynamics of small continuous-time recurrent 

neural networks” suggested, that small dynamic neural networks have the potential of being 

“powerful building blocks for the modular construction of larger networks with desired 

dynamics”. Based on the principle ideas of Beer’s CTRNN approach, the method used in this 

project was proposed by David Camacho-Trujillo in his PhD dissertation “Reverse engineering of 

genetic networks with time delayed recurrent neural networks and clustering techniques” 

(University of Heidelberg, 2008), and used to build a working framework applicable to high 

throughput data. Performance of the CTRNN approach for reverse engineering GRNs was 

successfully evaluated by David Camacho-Trujillo, as well as confirmed in our aforementioned 

paper (Busch et al. 2008). The focus of the presented work is on the application of the method to 

draw biologically relevant conclusions in the context of gene regulation in pancreatic cancer.  
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3.4.2 Alternative methods of reverse engineering GRNs from time-resolved data 

Depending on the type of data and the type of question multiple different methods of 

reverse engineering GRN exist (Hache et al. 2009). They may be static or dynamic, with a 

continuous or discrete time, linear or nonlinear, deterministic or stochastic and include: Boolean 

networks (Liang et al. 1998), linear models (D'haeseleer et al. 1999), differential equations (Chen 

et al. 1999), association networks (Basso et al. 2005, Schäfer et al. 2005), static Bayesian 

networks (Friedman et al. 2000), neural networks (Hache et al. 2007), state space models (Rangel 

et al. 2005), and dynamic Bayesian networks (Friedman et al. 1998, Yu et al. 2004, Werhli et al. 

2006). Due to the nature of time-series expression data, only few are capable of modeling the 

dynamical behavior of genes (Table 2), including: systems of differential equations, dynamic 

Bayesian networks (DBN), relevance networks, Gaussian models, and neural networks. Direct 

comparisons between those methods may be found in an in-depth review offered by Hache et al. 

(2009), who summarized the results of comparisons in one sentence “Averaged over all results, 

the neural network approach shows the best performance.” Unfortunately, currently no reverse 

engineering approaches are capable of dealing with large networks of tens to hundreds of genes. 

As Hache et al. (2009) have shown “Sensitivity, specificity, and precision are always low. Some 

methods predict only few gene interactions, such as DBN, indicated by a low sensitivity and, in 

contrast to that, other methods identify many false regulations, such as the correlation measures.”  

 
Author	   Organism	   Data	   Time	  points	   Model	  scheme	   Learning	  algorithm	  
D’haeseleer	  et	  al.	  
(1999)	  

Rat	   RTQ-‐PCR	   28	   Linear	  difference	  
equations	  

Least	  squares	  

Nariai	  et	  al.	  (2004)	   Yeast	   cDNA	  ma.	   69	   Bayesian	  network	   Stepwise	  hill	  	  
climbing	  

Bernard	  and	  
Hartemink	  (2005)	  

Yeast	   cDNA	  ma.	   69	   Dynamic	  Bayesian	  
network	  

Stepwise	  simulated	  	  
annealing	  

Guthke	  et	  al.	  (2005)	   Human	   cDNA	  ma	   5	   Linear	  differential	  
equation	  

Stepwise	  

Kimura	  et	  al.	  (2005)	   T.thermophilus	   cDNA	  ma.	   14	   S-‐system	  model	   Evolutionary	  
algorithm	  

Van	  Someren	  et	  al.	  
(2006)	  

Mouse	   cDNA	  ma.	   5	   Linear	  difference	  
equations	  

LASSO	  

Table 2 Examples of GRN inference approaches for time-series based on Hecker, et al. 2008. 
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3.5 Data sources 

The source data underlying the expression analysis throughout this project was produced 

by hybridization of the total cell mRNA (reverse transcribed to cDNA) to an Affymetrix 

microarray. The choice of microarrays, a hybridization-based method, was determined by our 

need to visualize transcripts by labeling and quantification on a global, cellular scale, which is 

especially useful if it is not only the differences between the cells that are interesting but also the 

specific patterns of regulation. Microarray analysis was previously broadly applied in functional 

genomics and Systems Biology for gene discovery, disease diagnosis and prognosis, drug 

discovery (pharmacogenomics), and toxicological research (toxicogenomics). Microarrays enable 

us not only to look for a transcript among thousands of different genes simultaneously, but also to 

simultaneously measure the activity and interactions of thousands of genes. Typical scientific 

questions addressed by microarray experiments include the identification of expression patterns, 

which can answer questions concerning functional pathways and how cellular components work 

together to regulate and carry out cellular processes, in addition to the identification of 

differentially expressed genes, which can help us understand the changes happening in the cell 

under certain conditions and which genes, groups of genes, classes of genes are up or down 

regulated under those conditions. 

 

Due to the dynamic nature of gene expression the most interesting data is gathered not by 

focusing on a single-snapshot differences between samples, but rather on following the dynamic 

changes in the expression levels of all genes over a long period of time. Such detailed information 

enables us to visualize not only differences between the control and the treatment at a specific 

time point, but also to understand how the cell gene levels change over time in response to a 

specific treatment. Time-course expression analysis is more complex than a snapshot approach 

and requires a stringent set of rules for every stage including the experimental design. In order to 

create experiments viable for subsequent analysis one has to clearly define the nature of the 

experiments, type and number of treatments, and number of time points (short time series of up to 

6 time points, or long time series of over 6 time points). In addition, standard rules apply such as 

a clear definition of treatment, controls, and the overall setup making each experiment clearly 

distinct from the other. 
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4. Hypothesis and Objective 
Pancreatic ductal adenocarcinoma (PDAC) with its high resistance to known therapies 

shows behavior distinct from more common types of solid tumors: slow proliferation, quick 

progression towards metastasis, and desmoplasia. The microenvironment in which pancreatic 

cancer arises is quite unique with multiple cell types forming the tissue and entering the neoplasm 

e.g. myofibroblasts (pancreatic stellate cells, PSC), immune cells, and nerve fibers. It is known 

that this microenvironment undergoes significant changes in abnormal conditions such as 

inflammation developing into pancreatitis (chronic inflammation) and fibrosis. Previous studies 

by other groups have revealed PSC ability to harbor and nourish cancer cells, as well as affect 

their progression, and convey radio- and chemo-resistance. Unfortunately those studies focus on 

search for the most abundant signals and snapshot-like static analyses of cultured cells and tissue 

samples ignored the most crucial factors characterizing response to perturbations in complex 

systems that is: the temporal dynamics in gene expression itself and that of intercellular 

interactions, and the redundancy of molecular signals underlying mutual relationships, meaning 

that an altered expression of a soluble factor in one cell type remains without consequences if 

matched by preexisting signal from the other cell type (or another factor with similar downstream 

signaling). It therefore remains unresolved whether the rapid progression of pancreatic cancer 

may be directly attributed to the PSC, which type of cell initiates the paracrine signaling, which 

soluble factors and which receptors are specifically involved in each cell, and what the dynamic 

nature is of this intercellular signaling and its underlying gene regulation. 

We hypothesize that at an early stage, the quiescent→activated PSC transition yields a 

steady state PSC gene regulatory network (GRN), but the subsequent succession of impulse 

responses along TC→PSC→TC interaction axis drives both cells’ GRNs it into unstable states 

maintained for the duration of TC-PSC contact. The double-paracrine connections between cells 

are established transiently as a result of the GRN formation and can be identified via those 

underlying networks. 

Through the application of high-throughput complexity reduction approach and in silico 

modeling we aim to reconstruct the GRNs underlying the formation of the cell-cell interactions, 

and to identify key soluble factors shaping the double-paracrine communication. We aim to use 

the models to gain a mechanistic and functional insight into how the signals are integrated and 

how they affect GRN maintenance. We hope to capture cell-fate decisions and identify key 

dynamic changes with the ultimate goal of finding genetic markers to aid development of novel 

therapeutic options for this deadly malignancy. 
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5. Materials and Methods 
 

Experimental work throughout this project was performed by collaboration partners at the 

European Pancreas Center (Dr. Nathalia Giese), the Department of Immunology at the University 

of Heidelberg (PD Dr. Thomas Giese), and at the Division of Functional Genome Analysis of the 

German Cancer Research Center DKFZ (Dr. Andrea Bauer). 
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5.1 Workflow 

To uncover the intercellular connections and intracellular gene interactions in tumor and 

pancreatic stellate cells we designed three experiments, in which we individually stimulated cells 

with conditioned supernatant from the respective other cell type. This approach allowed us to 

record time-resolved, genome-wide microarray expression data (up to 24h after stimulation), and 

thus unravel the time-ordered sequence of events underlying the regulation and the paracrine 

signaling between the tumor and stellate cells. We recently showed that the long-term cellular 

behavior is captured and reflected in the cells' gene expression kinetics (Busch et al. 2008). 

Therefore, we set up a high throughput data analysis and modeling pipeline to describe the 

dynamics of the pancreatic tumor microenvironment in silico (Figure 8). Processing was 

optimized for data quality and reproducibility in silico.  

 

The bioinformatics of microarrays begins with data pre‐processing also referred to as low-

level analysis (image processing, quantification, normalization), which prepares the data for the 

high-level analysis that answers the real biological questions. Once the final format for the data 

is achieved, data exploration may commence, and this part of the process is referred to as 

exploratory analysis. Typical exploratory tasks include classification (or class prediction), 

clustering (or automatic classification), correlation, association, and pathway analysis. 

 

Low-level microarray data processing was performed using the Bioconductor framework of 

the R programming environment, a set of open source software packages for mathematical and 

statistical analysis of biological data. For high-level analysis as well as exploratory analysis we 

used a wide range of tools, most of which are open source in the form of websites, databases or 

standalone software packages. The only proprietary tools used in this work include the Transfac 

Professional database (a free version exists but is of limited use), and Ariadne Pathway Studio 

with its ResNet Mammalian manually curated database. 
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Figure 8 Workflow intertwining experiment with computational data analysis 

Section 4.2 

Section 4.3 

Section 4.4

Section 4.5

Section 4.6

Section 4.8

Section 

5.9



 

     

 

38	  

  



 

     

 

39	  

5.2 Experiments for genome-wide expression profiling 

To unravel the time-ordered sequence of events underlying the gene regulation and the 

paracrine signaling between tumor and stellate cells, three time-course experiments were 

performed (Figure 9). In all cases we individually stimulated cells with conditioned medium from 

the respective other cell type, exchanged medium, and collected samples at 8 intervals, once 

every hour between 0h and 7h with an additional measurement at 24 hours (by definition, it is a 

long time series). Untreated controls were collected at 24h to account for basal gene expression 

changes unrelated to experimental conditions. Experimental validations of the microarray results 

were performed using qRT-PCR to verify transcript levels and time-resolved behavior of genes of 

interest. 

 

 

 

Figure 9 Experimental setup to unravel cell-cell communication in PDAC microenvironment 
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5.2.1 Cell lines 

Eight cell lines were used, in combination, for PSC preconditioning. MiaPaCa2 cell line 

was used for the remaining two TC experiments, and 2 cell lines: Panc1 and MiaPaCa2 were used 

for experimental validation procedures. Additional validation of experimental results was 

expanded for all remaining TC lines using the Wagner CellLines dataset in Oncomine 

(www.oncomine.org). 

 

MiaPaCa2 65-years-old Caucasian male (Yunis et al. 1977) 

Panc1 56-years-old Caucasian male, epithelioid carcinoma (Lieber et al. 1975) 

BxPC3 61-years-old female with a primary pancreatic adenocarcinoma 

T3M4 Pancreatic adenocarcinoma 

Colo357 Human Lymph node metastasis (Morgan et al. 1980) 

SU8686 Pancreatic adenocarcinoma 

Capan1 40-years-old Caucasian male, pancreatic adenocarcinoma from metastatic 

site in the liver 

Aspc1 62-years-old Caucasian female, pancreatic adenocarcinoma derived from 

the patients ascites (fluid from the peritoneal cavity) 
 

All cell lines were acquired from ATCC Bioresource Center. 
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5.2.2 Stellate cells (Experiment 1) 

Supernatant from 8 human adenocarcinoma cell lines (Σ) was gathered and used for 

stimulation of primary human PSC derived from patient tissue (Figure 10). Tissue origin implies 

pre-exposure to TC, therefore to ensure GRN stabilization PSC were passaged and allowed to 

grow in a cell culture prior to the experiments.  

 

 

 

Figure 10 Stimulation of quiescent stellate cells with conditioned medium (8 human pancreatic 

adenocarcinoma cell lines) (Experiment 1) 
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5.2.3 Tumor cells (experiments #2 and #3) 

Both TC experiments were performed on the MiaPaCa2 tumor cell line, and the cells were 

treated with supernatant from either quiescent (#2), or stimulated (#3) stellate cells (Figure 11). 

Serum free supernatant was used to treat TC. 

 

Experiment #2: Stimulation with the supernatant of quiescent stellate cells (PSC) 

Experiment #3: Exposure to the supernatant of stimulated stellate cells (PSC*) 

 

 

Figure 11 Stimulation of tumor cells with quiescent (Experiment 2), and stimulated (Experiment 3) 

stellate cells (PSC) 

 

 

Each experiment was performed in triplicate. Total RNA was gathered for each time point 

using Qiagen kits, an aliquote for mRNA re-isolate with MagnaPur, samples were collected for 

later study, as well as reverse transcribed to cDNA for microarray hybridization. Confirmation 

experiments were performed with qRT-PCR (see section 6.5).  
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5.3 Microarrays  

mRNA samples from each time point of each experiment were reverse-transcribed (cDNA) 

and hybridized to the Affymetrix Human Genome U133 Plus 2.0 arrays (HGU133Plus2 

GeneChip) for further analysis (Figure 12). Altogether 27 Affymetrix chips were used for data 

analysis of the three main experiments. Quantification of the microarrays with the corresponding 

scanning software was performed at the Division of Functional Genome Analysis (DKFZ), and 

the output in the form of raw data files was used for the computational data preprocessing, 

analysis, modeling and interpretation of experiments in the presented work.  

 

 

Figure 12 Experimental procedure from cell treatment to image acquisition 
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5.4 Low-level data analysis 

Image acquisition and quantification is automated by the software provided with the 

Affymetrix scanners, and was executed by Dr. Andrea Bauer. Raw data along with microarray 

images form the starting point of the presented work. 

5.4.1 Normalization of microarrays 

Normalization of microarrays was performed using the Robust Multi-chip Average 

normalization (RMA) by Irizarry et al. as included in the function JustRMA of the Bioconductor 

‘affy‘ library (Irizarry et al. 2003, Bolstad et al. 2003), which includes a 3-step procedure of: pre-

normalization (PM perfect match only), background correction; normalization (quantile); post-

normalization (median polish). 

Quantile normalization was used to unify the distribution of the data on every chip (making 

distributions identical in statistical properties) through first ordering the genes by placing the 

strongest gene on top across all conditions (Figure 13), calculating mean for the row, and 

reshuffling them back into original positions. In the end the entire matrix contains not the original 

data but the mean values. All conditions have the same values but usually in different positions, 

data distribution is unified, and biological information is preserved. 

 

Figure 13 Quantile normalization steps from original data stored on an array, up to the re-ordered 

averaged values. 

 

Data quality was evaluated with quality control (QC) plots using the overview() function of 

made4 R library for multivariate analysis of microarrays (Culhane et al. 2005) (Figure 14). 
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a.  b.  

Figure 14 Sample data distribution prior (left), and after (right) quantile normalization using RMA 
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5.4.2 Post-normalization data filtering 

 We applied an adaptive spatial filtering approach based on the IQR (inter-quartile range) to 

remove genes that, due to their low overall intensity or variability, are unlikely to carry 

information about the phenotypes under investigation. IQR provides a measure of the statistical 

spread of the middle 50% of the intensity scores for each gene (between 75th and 25th 

percentile). Genes characterized by a relative large signal distribution were preserved and genes 

with either consistently low intensity values or low variance across all time points were removed 

(Figure 15) (von Heydebreck et al. 2004, Bossotti et al. 2007, Spugnini et al. 2006, Lo Iacono et 

al. 2006, and Olivero et al. 2006.).  

 

Figure 15 IQR filter removes genes that show little changes within the experimental points. The 

distributions of the various probe sets shown in red are retained by the filter, blue are rejected. 

(Figure by Calogero et al. 2010 OneChannelGUI package vignette, Bioconductor project) 

Filter was implemented in R using genefilter package (Bioconductor) with code by Morten 

Mattingsdal of the Bioinformatic Core Facility at the Rikshospitalet-Radiumhospitalet HF, Oslo, 

Norway. 
iqrFilter<-function(x, threshold){ 
           require(affy) 
           require(genefilter) 
           iqr <- function(x){IQR(x)>threshold} 
           ff <- filterfun(iqr) 
           which <- genefilter(x, ff) 
           par(mfrow=c(1,2)) 
           text<-paste("Unfiltered probes= ", dim(exprs(x))[1], sep="") 
           hist(exprs(x), main=text, breaks=100) 
           text<-paste("Filtered probes= ", sum(which), sep="") 
           hist(exprs(x[which,]), main=text, breaks=100) 
           return(x[which,]) 
} 

 

Annotation of the microarray data was performed using the annotate R package (Gentleman 

2010) and the corresponding hgu133plus2.db annotation file for the Affymetrix HGU133Plus2 

microarray.  
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5.5 High-level data analysis 

High-level analysis of microarrays allows us to identify differentially expressed genes as 

well as perform a biological interpretation of the data using tools for gene clustering, correlation 

analysis, Gene Ontology (GO) and pathway analysis. We separate the latter into a section on 

exploratory data analysis (5.6). 

5.5.1 Gene ranking 

Normalized log2 transformed microarray data were used to calculate the gene fold change 

value (i.e. how many times the intensity of gene expression changed compared to the control). FC 

value has no measure of statistical significance but is biologically relevant and specifically usable 

for our data, which other than the time series has no other replication. Genes were ranked 

according to the Euclidian distance between the maximum expression within a probe set and 

the mean expression of a probe set over all time points (as we showed in Busch et al. 2008), 

both scaled (normalized) to the maximum value measured in each dataset.  

The ranking procedure was implemented in an IDL script rank.pro as originally proposed 

by Hauke Busch, and further developed for the needs of this project. 
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5.5.2 Statistical analysis of the time-series 

To identify a potential overlap between FC results and a recognized statistical approach we 

apply a cubic spline regression method appropriate for a long time series of over 6 time points 

(Leek et al. 2006) as implemented in the Edge statistical suite (Storey et al. 2005). We have 

shown previously (MaSigPro in Busch et al. 2008), that the statistical analysis can only 

approximate the ranking performed with FC values, which produce biologically meaningful data. 

Any statistical method and defined parameters such as p-values, or false discovery rates have a 

direct impact on the gene expression correlation structure, and therefore on which genes are 

identified as the top ranking. 

 

An additional evaluation of the available statistical methods was performed using:  

- Significance analysis of microarrays (SAM) (Tusher et al. 2001) 

- timecourse – an R package with MB-statistics and/or T2 statistic (Tai and Speed (2006) and 

Tai (2005)) derived using multivariate empirical Bayes approaches; 

- BATS (Bayesian analysis of time series) by Angelini et al. 2008 

 

Edge was selected as the optimal solution providing the most reproducible results when 

compared to FC ranking. The advantage of Edge is the ability to identify genes that are 

differentially expressed between two or more different biological conditions (e.g., healthy versus 

diseased, treated versus untreated) in a time course experiment (Storey et al. 2005 and 2007; 

Storey, Dai and Leek 2007). Edge also allows two types of time course significance analysis: the 

first one tests for genes whose expression changes over time, and the second identifies genes, 

which show different expression over time between two or more biological conditions.  
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5.6 Exploratory data analysis 

 Our ability to gather genome-wide expression data outstrips our ability to process it in a 

similar, high-throughput, manner. Large databases containing millions of gene measurements 

exist, but the applications of methods to draw biologically meaningful conclusions remain scarce. 

In this project we apply multiple steps of analysis to draw biologically relevant conclusions and 

to prepare data for the modeling stage. These steps include the clustering of gene expression 

profiles (using Bayesian clustering), Gene ontology analysis (using David, WebGestalt, and 

eGOn), Transcription Factor Binding Site Analysis TFBSA (using TransFac and Paint), and 

pathway analysis (using Ariadne Pathway Studio, KEGG, WikiPathways, and Pathway 

Commons). 
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5.6.1 Clustering of gene expression profiles 

To identify patterns of regulation and potential directions for cell fate decisions we apply 

clustering as a complexity reduction approach to find genes sharing similar expression profiles 

(Figure 16). To eliminate bias we apply an unsupervised Bayesian clustering (BC), which clusters 

the data from scratch, without a priori knowledge of existing gene expression profiles. BC 

provides a distinct improvement over the alternative solutions with its ability to reliably cluster 

the data without a significant number of outliers, and more importantly to perform on-the-fly 

modifications to the cluster numbers without recalculation. BC is based on a representation of 

clusters through a stochastic population model. Clusters are formed based on a ‘typical’ 

expression profile and each gene assigned to the cluster follows the same typical kinetic and 

differs from this profile only due to individual variability (random effects) (Magni et al. 2008). 

The assignment occurs by a random walk process (Ferrazzi et al., 2005). BC identifies the 

optimal number of clusters automatically, and the quality is easily assessed by visually inspecting 

the result.  

For BC clustering we used the timeclust package (Magni et al. 2008, Ferrazzi et al., 2005). 

The default gene clustering in this project encompasses top 500 ranked genes, both up- and down-

regulated. BC was self-sufficient for sets of up to 250 genes, and supported by:  

–Heuristics (for sets of 250-500 genes), and 

–Self-organizing maps (> 500 genes). 

 

 

Figure 16 Microarray data set is clustered using a Bayesian algorithm 
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5.6.2 Manual clustering approach 

Initial clustering of PSC data, which was performed manually by Dr. Axel Szabowski, was 

based on the visual inspection, and identification of gene families sharing similar expression 

profiles and function within each cluster. First a preselection of distinct profiles was performed to 

create general clusters containing TFs and known regulators. In the next step clusters were 

augmented with all available family members of those representative genes, along with genes of 

interest sharing the same expression profile. Since many of the selected genes have shown low 

expression levels, a summarized profile for each module was used instead of the standard 

computation of a mean value (avoids signal attenuation in each cluster). This knowledge-driven 

clustering, while in many respects successful and biologically strong, has proven to be suboptimal 

as the time necessary to perform it outweighed the quality of the achieved results when compared 

to Bayesian clustering, therefore an automated Bayesian clustering algorithm was applied to all 

datasets.  
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5.6.3 Gene ontology analysis 

Gene Ontology (GO) analysis was performed using: 

- David (Nat. Inst. of Allergy and Infectious Diseases (NIAID), NIH) (Huang et al. 2009),  

- WebGestalt (Zhang et al. 2005), 2nd generation (Gene Set Analysis Toolkit)(Duncan 2010)  

- eGOn, part of GeneTools (Beisvag et al. 2006) 

GO is a functional and statistical analysis, which based on the list of differentially 

expressed genes returns a list of significantly (FDR adjusted) enriched GO terms. Those terms are 

functionally grouped, and fall into three major categories – biological process, molecular 

function, cellular component, and more specific classes such as intracellular metabolism, 

transcriptional regulation, membrane, organelle, secreted factors etc. The results of this 

enrichment analysis give us an insight into how the cell responds to the given conditions in each 

of the experiments, but also provide detailed functional overview of each of the clusters coming 

from the BC. While systematically enhancing the biological interpretation of large lists of genes, 

GO has the disadvantage of disregarding correlation between the genes coming from their 

expression levels, and their behavior over time. Also both inhibitors and activators may be 

located within a single term, which defines a process that can be regulated both positively and 

negatively, while at the same time not defining the direction of this interaction, making it difficult 

to draw immediate conclusions. 

 

David – a comprehensive collection of GO analysis tools, providing both functional annotation 

and functional classification of genes binding multiple data sources to draw from e.g. pathway 

(Biocarta, Kegg, Reactome), disease (e.g. OMIM_Disease), literature (PubMed). However, due to 

very limited visualization capabilities, including them all usually obscures the analysis. 

 

WebGestalt – combines GO enrichment analysis with visualization tools and methods for 

pathway analysis (KEGG, WikiPathways, Pathway Commons). Additionally contains GO slim, 

which is a cut-down version of GO that provides a broad overview of the ontology content 

without the fine-grained details, which is particularly useful for summarizing results. 

 

eGOn – allows for comparisons between multiple gene lists, which are analyzed simultaneously 

to compare the distribution of the annotated genes over the GO hierarchy. It applies a generalized 

linear model and generalized estimation equations (Leisering et al. 2000) in the form of a 

statistical test.  
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5.6.4 Correlation analysis   

To identify similarities and differences between datasets we apply correlation analysis. 

Distance-measuring techniques apply various distance metrics to calculate the similarity between 

points, the most commonly used are: Euclidian distance, standard correlation, Pearson, and 

Spearman (ranked) correlation, and Manhattan distance.  

Here we use the Pearson correlation, a nonparametric measure, which does not make any 

assumptions for the probability distribution of the data.  

To compute the Pearson correlation coefficient of two vectors or of a correlation matrix of 

an m×n array, we apply the correlate function in the IDL programing environment. The results are 

plotted in a graphical form for direct comparisons of each gene in the given datasets.  
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5.6.5 Pathway analysis 

Pathway analysis was performed using WebGestalt and Ariadne Pathway studio. 

WebGestalt provides the basic facility of Gene Set analysis using KEGG (Kyoto Encyclopedia of 

Genes and Genomes), Pathway Commons (pathwaycommons.org) combining e.g. IntAct, 

HumanCyc, BioGrid, Reactome, and Wikipathways (wikipathways.org). For the statistical 

analysis in WebGestalt we used the hsapiens_affy_hg_u133_plus_2 reference set, multiple test 

adjustment was performed using the Benjamini & Hochberg method with p-value cut-off of 0.05 

(<5%). 

 

Ariadne Pathway Studio was used with the default parameters and each dataset was analyzed to 

identify the known biological relationships, associations, interactions and facts that were 

extracted from the biomedical literature and are stored in the manually curated ResNet 

Mammalian Database (www.ariadnegenomics.com). With Pathway studio we can interpret gene 

expression data, build, expand and analyze pathways as well as find relationships among genes, 

proteins, cell processes and diseases. It is literature based and the identified interactions are not 

tissue specific (although it is possible to focus on a specific organ), therefore for each analysis 

step with this tool we add overlap checks against the microarray experiments in this project to 

ensure cell-type specificity.  

Pathway analysis combined with the transcription factor binding site analysis TFBSA 

(transfac database) forms the underpinnings of our method of identifying specific regulatory 

patterns for a cell type of interest using the microarray data as a validation.  

 

The most common applications for the pathway analysis included the search for the: 

- Shortest path between genes of interest; 

- Shortest path with common regulators; 

- Shortest path with transcription factors; 

- Location of proteins within cellular compartments (plasma membrane, mitochondria, ER, 

Golgi and nucleus) and extracellular matrix. 
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5.6.6 Transcription factor binding site analysis (TFBSA) 

Transcription factor binding site analysis was performed using the Transfac Professional 

database as well as Paint (Promoter Analysis and Interaction Network Toolset version 4.0-pre) 

from Daniel Baugh Institute for Functional Genomics and Computational Biology (Vadigepalli et 

al. 2003). 

Efficient identification of TFBS is a crucial step in the study of gene regulation as it 

provides us with a comprehensive resolution of transcriptional regulation even from filtered 

microarray data. This approach tackles the problem by modeling TF-binding sites using position 

weight matrices and searching for these sites in the DNA sequences of genes of interest (transfac 

database).  

 

Following parameters were used for all TFBSA analyses: 

 
Upstreamer	   TF	  Retriever	  

Desired	  upstream	  length:	  5000	   Match	  (TRANSFAC	  Pro	  v.2010.01)	  

Gene	  Identifier	  type:	  Entrez	  ID	   MATCH	  filter:	  Minimize	  False	  Positives	  
Human	  –	  Affymetrix	  HG-‐U133	  Plus	  2	   MATCH	  Vertebrates	  non	  redundant	  	  

Plain	  file	  format	   Core	  similarity	  threshold:	  1.0	  
 

Table 3 TFBSA analyses parameter choices 
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5.7 Modeling of gene regulatory networks with CTRNNs 

Modeling of the GRN from time-course data in this project was performed using a 

modified version of the continuous time-recurrent neural network (CTRNN) by Beer et al. (1995) 

as described in Busch et al. (2008). A network is defined here as a set of N-coupled ordinary 

differential equations, each one describing the kinetics and interactions of an individual gene.  
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Figure 17 Ordinary differential equation describing the kinetics and interactions of a gene in a 

CTRNN network (in red are parameters, which are being evolved in the network) and the 

corresponding sigmoidal activation function (Busch et al.2008) 

This CTRNN approach proposed by David Camacho-Trujillo in his PhD dissertation 

“Reverse engineering of genetic networks with time delayed recurrent neural networks and 

clustering techniques” (University of Heidelberg 2008) based on concepts developed by Prof. 

Randal D. Beer (Dept. of Computer Engineering and Science, Case Western Reserve University, 

Cleveland, OH 44106). 

We have previously shown that it is applicable to time-resolved microarray data (Busch et 

al. 2008). The initial implementation by David Camacho was modified into a working framework 

applicable to high throughput microarray data by Dr. Hauke Busch (University of Freiburg), and 

subsequently modified into its current iteration by me. The direct modifications of the approach 

included  the construction of a workflow as shown in Figure 8, redefinition of model parameter 

boundaries, addition of custom input functions, ability to evolve additional parameters in the 
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input functions (i.e. input signal decay λ), ability to integrate external expression profiles as 

inputs, and modifications to the evolutionary algorithms and fitness evaluation procedures of the 

CTRNN to achieve optimal fitting results.  

The performance of the CTRNN approach for reverse engineering GRNs was previously 

successfully evaluated by Dr. Camacho-Trujillo, as well as confirmed in the aforementioned 

publication, a theoretical evaluation was not the objective of the work presented here. The focus 

was the application and achieving biologically relevant results in the context of pancreatic cancer. 

Only an overview of the methodology will be provided in the subsequent sections wherever 

applicable, detailed background information may be located in Busch et al. 2008. 
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5.7.1 Gene selection strategy 

The initial model construction was performed using a ‘metagene‘ approach, where a 

theoretical gene kinetic, averaged from all genes in a cluster, was taken. This stage provided us 

with a draft network for a quick evaluation of the dynamic behavior of the system. Subsequent 

modeling was driven by gene selection in search of the most stable and fit solutions. We have 

followed two approaches to gene selection. The first one attempted to select genes in an unbiased, 

semi-automatic way by taking e.g. the single most upregulated probe set in each cluster, mean of 

the top 10 most upregulated genes in each cluster, summarized expression of genes from a 

specific family of genes, a single representative (mean) of each cluster (same as the metagene 

approach), mean of all transcription factors in a cluster. 

The second approach was knowledge-driven and followed the researchers goals and 

interests. This selection was supported by detailed analysis of the top ranking genes in all 

experiments (w.r.t. the existing literature, GO and pathway analysis), and detailed analysis of 

intra- and intercellular signaling within the top 500 differentially expressed genes. While 

introducing a bias into the selection, this method provided biologically sound gene selection, and 

has been used in the construction of the final models.  

 

Final gene selection for the model was performed by collaborators:  

- Dr. Nathalia Giese (European Pancreas Center) – TC model; 

- Dr. Axel Szabowski (DKFZ) – PSC model.  
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5.7.2 Construction of a continuous recurrent neural network  

Armed with gene selection we enter the modeling stage, where each gene cluster, which 

corresponds to a node in the neural network, is represented with an ODE (Figure 18). 

 

!!– fold expression of the respective gene; 

!! −  time constant defining transcript decay; 

Δτ j – is a time-delay term, a generalization of the original CTRNN definition (Hu et al., 2005; Kim et al., 2007), which accounts for 
the time delay between gene induction, transcription, translation and final effect of a gene j on any other gene; 

!!"  – square matrix describing connection weights from gene j à i; 

!!  – offset term accounts for basal gene expression (noise in the system); 

! – non-linear sigmoid activation function incorporating interaction between genes by weighting the input of gene j à i, as defined by 
an exponentially decaying function, factor a controls the steepness of σ(x) to adjust the transition width between the off and the on 
state of a gene; 

!!!  – external signal modeled here as an exponential decay function. The input in the form of an external cellular stimulus and its 
impact on the network is not known a priori, hence multiple approaches are possible - constant, pulse-like, decaying/increasing, or 
periodic; 

!  – input signal decay 
Figure 18 ODE of a neural network type defining the interactions and behavior of each node in the 

network 

Updating the state of a CTRNN is accomplished by numerically integrating the defining 

differential equations. The method of choice for the ODE integration is a forward Euler update, 

which is the default procedure. This first order solver, due to the nature of the neural network and 

multiple iterative processes involved in the evolutionary programming implemented in the 

algorithm, provides an optimal trade-off between computational burden and quality of the results. 

An adaptive method of a 4th-order Runge-Kutta update was implemented by me (inefficiently at 

the moment) for testing purposes, but has not yielded any significant fitness improvements, which 

can be attributed to successful fitness evaluation with mean square error function. A one step 

Midpoint method will be implemented in the future to improve overall efficiency. More detailed 

parameter ranges are presented in the corresponding result sections for each of the models.  
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5.7.3 Modeling procedure 

A typical CTRNN simulation proceeds as follows: first, a CTRNN is created and initialized 

with a random set of parameters created within predefined (literature) biological boundaries, then 

a loop is entered in which the appropriate CTRNN state update function is called repeatedly. 

Model parameters, as defined in the ODE, are fitted to the experimental time series with a genetic 

algorithm (GA) as the global optimization method using mutation, crossing-over, selection, and 

an elitist strategy. 

1. Choose initial population 

2. Evaluate each individual's fitness 

3. Repeat 

4. Select individuals to reproduce 

5. Mate pairs at random 

6. Apply crossover operator (exchange  

 whole sets of parameters) 

7. Apply mutation operator (randomly  

 modify a parameter) 

8. Evaluate each individual's fitness 

9. Until terminating condition  

 (e.g. predefined no. of generations) 

  

Figure 19 The canonical genetic algorithm procedure 

The learning loop terminates when a satisfactory solution is found (exact fit to the data), or 

the number of generations has passed a preset limit (in our case 1500-2000). The subsequent 

stages are arranged in a manner shown in Figure 20 beginning with long-term network 

simulations, which are an attempt to establish the in silico system behavior. Solutions are selected 

among the resulting systems based on a combination of fitness (evaluated with a Mean Square 

Error function (MSE)) to experimental data and robustness to perturbations (established with the 

Largest Lyapunov Exponent (LLE) analysis).  

Since the number of measured time-points is far lower than the number of evaluated 

parameters a dimensionality problem arises and is solved by including interpolation of data (cubic 

spline function with a sampling interval of Δt=0.05h (3 minutes)), using pre-defined, biologically 

reasonable parameter ranges, time delay on gene activity, search for a balance between network 

topology robustness and systems fitness to the experimental parameters (the fittest solution is not 
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always the true solution, because such solution must be also robust towards parameter variability, 

accounting for the inherent noise in a biological system). Additionally we evaluate a zero input 

response as an augmentation of the fitness function, under the assumption that the fold expression 

of genes should not change in any significant way in the absence of an external signal. Hence, 

systems, which homeostatic state becomes unstable over time in the absence of an external input 

receive a fitness penalty. See Busch et al. 2008 Supplementary materials for a more detailed 

description of the NN implementation. Model parameters and evolved parameter ranges are 

provided in the corresponding model result sections (see for PSC 6.1.7.2 and TC 6.2.8.3). 

 

 

Figure 20 Modeling and simulations (from a technical introduction by Dr. Hauke Busch, DFKZ) 
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5.7.4 Integration of models 

A neural network of the CTRNN type, as used in this project, is a directed cycle (Figure 

21:A), an ‘enclosed’ entity, capable of receiving external signals, and evolving all parameters to 

identify interactions between neurons from expression data, providing as a result optimal model 

parameters fitted to experimental data, but incapable of producing a measurable output (it is not a 

layered network with output neurons as in Figure 21:B).  

A.            B.  

Figure 21 A. CTRNN (Busch et al. 2008); B. feed-forward neural network (Wikimedia Commons, 

GNU License, created by Colin M.L. Burnett) 

Lack of output neurons means that creation of an integrated model consisting of two sub 

networks, each derived from a different cell type, connected by their extracellular signals is not 

possible. Such a construct where the output of one network is used dynamically as an input for 

the other system, and all of them are allowed to freely evolve over time in search of a stable 

solution is the ultimate goal of reverse engineering; unfortunately no such model exists at the 

moment. However for the needs of this project, model integration was performed by replacing the 

theoretical external input functions (e.g. exponentially decaying initializing input, and secondary 

inputs of various types e.g. positive/negative periodic) with a measured microarray gene 

expression of known cytokines from the other cell type. This cytokine signature was constructed 

from the combined and averaged kinetics of all upregulated transcripts of secreted factors 

identified in the top 500 genes of the cell type of interest forming the intercellular 

communication. 
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5.8 Knowledge-driven identification of intercellular signaling 

 The analysis of signaling between cells, which accounts for intercellular communication is 

non-trivial, and usually involves experimental screening procedures to distinguish between 

overlapping and specific interactions. We propose here a knowledge-driven approach, which 

facilitates the identification of highly specific extracellular signals affecting each of the 

underlying modeled gene regulatory networks in the cells. Although the identification of genes 

encoding soluble proteins from microarray data is easy with tools such as GO, the identified 

signaling profiles are limited to factors inducible in response to stimulation discarding the highly 

constitutively expressed genes. In addition they are usually unspecific, as proteins secreted by one 

cell type are often overlapping with the other cell type, forming a distinctive microenvironment 

that can be considered as background for the actual stimulation. Disturbing communication 

between cells using those connections is not optimal. More valuable are unique factors, which 

specifically affect the formation of the proposed GRNs. 

 

The proposed approach involves the coupling of two aforementioned methods (Pathway 

analysis, and TFBSA) with reverse engineered GRN and microarray data in a four-stage 

procedure (plus the initial experiment and modeling stages) (Figure 22). 

 

First, TFBSA is used to identify TFs underlying the modeled regulation. Second, derived 

TFs are used in Pathway Studio, where pathways are expanded and extracellular proteins 

regulating those intracellular gene networks are identified (direction of the regulation is of 

paramount importance). In the third stage, an overlap between the theoretically derived (Pathway 

Studio) secreted proteins and actual microarray data for each cell type of interest is performed to 

identify only those proteins that act on the GRN of interest (Figure 22). Finally in the fourth 

step, all derived soluble factors are combined into a single list, and filtering of data is performed 

to group genes into sets uniquely produced by either cell type, or by both cell types with an 

additional investigation of factors inducible in response to stimulation. 

The last two steps ensure that the literature-derived data from Pathway Studio is verified against 

the actual microarray experiment providing a tissue-specific context.  

 

As a result of this approach, the modeled GRNs are connected with the soluble factors driving 

them. TFBSA restores information, which may otherwise be lost due to filtering and ranking. 

Pathway Studio provides knowledge-based pathways of direct and indirect interactions between 
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genes and proteins in various compartments of the cell. Depending on cell compartment of 

interest the procedure may begin at e.g. TF and expand to encompass extracellular factors, which 

affect them, or it may begin with known secreted proteins in a search for their common targets in 

the nucleus. 

 

 

 

 

 

Figure 22 Complete procedure for the identification of extracellular signals in the context of reverse 

engineered gene regulatory networks  

 

  

1.	  Experiment	  

2.	  Reverse	  engineering	  of	  GRNs	  

3.	  TFBSA	  analysis	  of	  GRNs

4.	  Pathway	  expansion	  of	  TFBSA	  results	  using	  

Pathway	  Studio	  to	  include	  signals	  of	  interest	  

(e.g.	  extracellular,	  membrane-‐bound	  etc.) 

5.	  Overlap	  identification	  between	  the knowledge-‐

derived	  interactions and	  actual	  microarray	  data



 

     

 

65	  

5.9 Brief overview of experimental validation methods 

Since neither the design nor the execution of the experiments is part of my work, only a 

general overview of the procedures will be offered. Detailed analysis of the experimental results 

was performed by me and can be located in the corresponding sections of the results. 

5.9.1 siRNA knockdowns 

In order to identify the effect of the selected genes of interest on tumor cells in the context 

of pancreatic microenvironment, we applied a functional genomics approach based on RNA 

interference also known as loss-of-function screening. RNA interference (RNAi) is a robust 

method of posttranscriptional silencing of genes using double-stranded RNA (dsRNA) in the 

form of either siRNA (short interfering RNA as used here) or shRNA (short hairpin RNA) with 

sequence homology driven specificity. RNA interference was previously shown to be an effective 

way of evaluating sensitizing targets in pancreatic cancer (Azorsa et al. 2009). 

5.9.2 Controls 

Two sets of controls were applied to each experimental setup:  

- non-transfected control: normal, non-transfected tumor cells from the corresponding cell 

line (MiaPaCa2 or Panc1); 

- negative control: tumor cell transfected with scrambled siRNA. 

 

Comparing cells transfected with a scrambled sequence siRNA control to non-transfected cells 

reveals changes caused by the process of siRNA delivery. Therefore a complete analysis involves 

comparisons between the non-transfected tumor cells, cells transfected with negative control 

siRNA and cells transfected independently with gene specific siRNAs. This provides the ultimate 

control over specificity of siRNA effects. While additional control may be provided with rescue 

experiments in which the RNAi effect is reversed through expression of a target gene refractory 

to silencing by a particular siRNA, due to limited material availability this approach was not 

pursued here. 

  

4.8
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5.9.3 qRT-PCR profiling 

In order to confirm the microarray data results gathered from all time series experiments 

(replication of the microarray), as well as validate simulations, knockdown predictions of the core 

network, and identified intercellular interactions quantitative reverse transcription PCR 

experiments have been performed by PD Dr. Thomas Giese, Institute of Immunology, University 

of Heidelberg. 

5.9.4 Functional assays 

An additional set of assays was used to investigate biological implications of the 

knockdowns on tumor and stellate cells including a clonogenic, MTT, and an invasion assay. 

Clonogenic and invasion assays have been setup as co-culture systems to investigate the effects of 

the investigated cell types on each other and the effect of GRN predicted knockdowns. While the 

phenotypic implications remain outside of the scope of the presented work, samples were 

gathered from all co-culture systems for qRT-PCR evaluations and were used in the experimental 

validation section of this thesis (see 6.5). 

 

5.9.4.1 Statistical testing of validation experiments 

The readouts of assays were of quantitative order (numerical), groups were compared using 

non-parametric Mann-Whitney and paired Wilcoxon test, as well as parametric two-way ANOVA 

wherever the corresponding replicated data sets show an approximately Gaussian distribution and 

pass the d'Agostino-Pearson normality test. Post-tests were performed using the Bonferroni 

method to address the problem of multiple comparisons. 
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6. Results 
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6.1 Stellate cells 

6.1.1 Array normalization and filtering 

Normalization of all nine arrays in the PSC experiment was performed using RMA 

expression measure to unify data distribution (see 5.4.1) and visualized with box plots (Figure 23) 

to verify the quality of the processing. Distribution histogram showed a strong positive skewing 

(Figure 23) therefore an additional step of IQR filtering has been applied with a filter cut-off of 

0.25 (log2) to achieve a more Gaussian distribution (Figure 24) (5.4.2). 

 

Figure 23 RMA normalization results of the stellate cell microarrays, before filtering. 

 

Figure 24 Filtering procedure results in a more normal distribution of the data 
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6.1.2 Gene ranking 

Initial IQR filtering reduced the initial microarray dataset from 54 676 down to 5101 probe 

sets, a number that still translates into a complex set of gene expression kinetics as shown in 

Figure 25.  

 

Figure 25 Filtered microarray data retains its time-resolved complexity 

Genes were ranked (according to 5.5.1) and sorted from the most to the least differentially 

changing. The distribution of the rank scores is presented in Figure 26a, and shows that we have a 

relatively small number of genes, that are very highly upregulated, and a majority of genes in the 

low score range of 0.0 to 0.5. Top 500 ranked genes (absolute) fall within score range above 0.29 

(Euclidian metric), and only 38 genes achieve a mean log2 FC ratio of > 1.0 log2. A quick 

overview of top 30 deregulated genes shows that the majority of them is upregulated in response 

to the treatment as shown in Figure 26.b.  

A two-fold change is represented by a log2 ratio of 1.0 (up-regulation) or -1.0 (down-

regulation), a three-fold change in gene expression is represented by a log2 ratio of 1.58 or -1.58, 

0.0 means that there is no change.  
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Experiment	   Rank	  score	  cut-‐off	  
(Euclidian	  
distance)	  

Mean	  abs	  FC	  cut-‐
off	  (log2)	  

Number	  of	  
genes	  with	  abs	  
mean	  FC>1.0	  	  

Lowest	  ranked	  
gene	  in	  top	  500	  

Highest	  ranked	  
gene	  (mean	  FC	  
log2)	  

Experiment	  1	  PSC	   0.29	   0.24	   38	   PKD2	  (+0.24)	   CXCL1	  (+2.7)	  
 

Figure 26 A. Distribution of rank scores for both up- and down-regulated genes. B. Top 30 ranked 

upregulated (yellow) and down-regulated (green) genes in stellate cells.  
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6.1.3 Statistical analysis of PSC  

Statistical analysis using Edge (5.5.2), was applied to compare FC ranking, with cubic 

spline regression under the assumption that the top 30 genes, while reshuffled, should still remain 

within the investigated range of top 500 FC ranked set (250 up- and 250 down-regulated). A 

comparison of the statistics (sorted) with FC-based ranking is shown in Table 4 (downregulated 

genes are shown in green). Only 2 out of top 30 genes ranked with Edge are found outside of the 

top 500 ranked genes confirming a reasonable overlap. 

 

Rank	  Fold	  change	   Rank	  EDGE	   P-‐Value	  EDGE	   Q-‐Value	  EDGE	   ProbeID	   Gene	  Name	  
66	   1	   2.74E+01	   0.07935286	   218400_at	   OAS3	  
110	   2	   2.16E-‐04	   0.07935286	   209278_s_at	   TFPI2	  

17	   3	   2.86E-‐04	   0.07935286	   202411_at	   IFI27	  
11	   4	   3.08E-‐04	   0.07935286	   212224_at	   ALDH1A1	  
49	   5	   3.14E-‐04	   0.07935286	   34478_at	   RAB11B	  

37	   6	   3.33E-‐04	   0.07935286	   205113_at	   NEFM	  
22	   7	   3.35E-‐04	   0.07935286	   205207_at	   IL6	  
14	   8	   3.41E-‐04	   0.07935286	   205239_at	   AREG	  

23	   9	   3.51E-‐04	   0.07935286	   214974_x_at	   CXCL5	  
6	   10	   3.68E-‐04	   0.07935286	   205419_at	   EBI2	  
228	   11	   4.16E-‐04	   0.07935286	   201601_x_at	   IFITM1	  

26	   12	   5.04E-‐04	   0.07935286	   203821_at	   HBEGF	  
250	   13	   5.49E-‐04	   0.07935286	   201890_at	   RRM2	  
29	   14	   5.96E-‐04	   0.07935286	   38037_at	   HBEGF	  

98	   15	   7.59E-‐04	   0.07935286	   1554026_at	   MYO10	  
146	   16	   9.58E-‐04	   0.07935286	   224657_at	   ERRFI1	  
659	   17	   1.00E-‐03	   0.07935286	   235609_at	   235609_at	  

259	   18	   1.07E-‐03	   0.07935286	   202796_at	   SYNPO	  
126	   19	   1.08E-‐03	   0.07935286	   239629_at	   CFLAR	  
410	   20	   1.09E-‐03	   0.07935286	   202572_s_at	   DLGAP4	  

273	   21	   1.26E-‐03	   0.07935286	   215136_s_at	   EXOSC8	  
246	   22	   1.28E-‐03	   0.07935286	   217066_s_at	   DMPK	  
251	   23	   1.29E-‐03	   0.07935286	   213125_at	   OLFML2B	  

16	   24	   1.30E-‐03	   0.07935286	   209612_s_at	   ADH1B	  
89	   25	   1.34E-‐03	   0.07935286	   230380_at	   THAP2	  
285	   26	   1.42E-‐03	   0.07935286	   226218_at	   IL7R	  

332	   27	   1.43E-‐03	   0.07935286	   229578_at	   JPH2	  
57	   28	   1.46E-‐03	   0.07935286	   202376_at	   SERPINA3	  
82	   29	   1.52E-‐03	   0.07935286	   202644_s_at	   TNFAIP3	  

551	   30	   1.56E-‐03	   0.07935286	   208626_s_at	   VAT1	  

Table 4 A comparison of the cubic spline statistics (sorted) with fold change-based ranking  

(green: downregulated genes) 
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6.1.4 Exploratory analysis 

6.1.4.1 Bayesian clustering results 

To identify unique gene expression kinetic profiles, which reflect intracellular information 

flow and responses to extracellular stimuli, we applied a Bayesian clustering algorithm (BC) to 

the set of top 500 deregulated genes in the PSC experiment. BC divided gene kinetics into 12 

major clusters and three outliers: CDKN2B (up), MYEF2 (up), and SMARCD3 (down) (Figure 

27). Nine of the twelve clusters are upregulated; the remaining three (clusters 7, 10 and 11) are 

downregulated. 

 

 

 

A. Upregulated 
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B. Downregulated 

 

C. Outliers 

Figure 27 Clustering results for stellate cell experiment (1) divided into three main sets. 

 

Interestingly, while the complexity visible among the upregulated genes in 9 clusters is to 

be expected in response to the treatment with TC supernatants, the downregulation is somewhat 

more surprising. A vast majority of the top downregulated genes can be located in a single cluster 

(10) with the top 10 downregulated genes including: ARHGDIA, ATN1, HSPB6, TP53I11, 

RAB11B, SLC9A3R2, GRINA, ADH1B, TLN1, and BCN. 
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6.1.5 Gene ontology of stellate cells 

The GO analysis of the PSC experiment was performed using the David and WebGestalt 

(5.6.3). David has the benefit over WebGestalt in that it provides a set of tools for functional 

classification and clustering of genes in addition to standard GO enrichment analysis, however 

WebGestalt is far more capable in terms of overviewing the GO data and its visualization. Each 

analysis step was performed using the standard selection of top 250 up- and 250 down-regulated 

probe sets (Affymetrix IDs). 

 

6.1.5.1 David  

Affymetrix IDs were converted into 211 (up-) and 208 (down-regulated) David IDs 

respectively, and their corresponding official gene symbols, discarding duplicates. Functional 

annotation and functional classifications were performed on both datasets. Using the functional 

annotation tools in David we were able to determine which genes in our dataset share the same 

functional annotation, and which form patterns of significant regulation in the stellate cells. A 

combination of the statistic (low p-value) and the number of genes enriching the GO terms 

provides the most informative results. The most interesting results are located in the Biological 

Process branch of GO and are presented in the pie chart below (Figure 28), which shows that the 

PSC actively downregulates pro-apoptotic signaling pathways, increases metabolic processes, and 

shows wound-healing related signaling. 

Functional clustering of the GO terms in stellate cells reveals 40 upregulated clusters (13 

with an enrichment score of >1.5), and around 80 downregulated (18 with an enrichment score 

>1.5). 
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A.  

B.  

Figure 28 Most enriched, fine-grained, gene ontology terms from top up- (A.) and down-regulated 

(B.) genes in stellate cells. 

  



 

     

 

77	  

6.1.5.2 WebGestalt 

WebGestalt was used to perform an enrichment analysis. Default settings used here include 

the hypergeometric test for enrichment evaluation, and multiple test adjustment with Benjamini & 

Hochberg (BH). 

 

Upregulated genes: Total number of 250. Unambiguously mapped User IDs to Entrez IDs: 196. 

Unique User Entrez IDs: 175. The Enrichment Analysis is based upon the unique IDs. 

 

Downregulated genes: Total number of User IDs: 250. Unambiguously mapped User IDs to 

Entrez IDs: 219. Unique User Entrez IDs: 191. The Enrichment Analysis is based upon the 

unique IDs. 

 

A visualization of GO enrichment was achieved with a directed acyclic graph as shown for 

the Molecular Function branch of Gene Ontology in Figure 31. The most fine-grained term of 

gene ontology within the molecular function branch is chemokine activity. This suggests that the 

stellate cell likely actively responds to the stimulation by regulating the levels of secreted 

proteins. 

Figure 29 and Figure 30 present an overview of the Biological Process and Cellular 

Component of GO Slim, for top 250 upregulated, and top 250 downregulated genes respectively. 

Since the analysis was performed using GO Slim, the overview is not as fine-grained as with the 

complete David results. Interestingly the main GO terms enriched by the upregulated genes in 

stellate cells are related to response to stimulus, cell communication, and developmental 

processes (Figure 29 biological process) 
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Figure 29 Top 250-upregulated genes enriching the biological process and cellular component of GO 

slim 

 

 

Figure 30 Top 250-downregulated genes enriching the biological process and cellular component of 

GO slim 
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Figure 31 Directed acyclic graph presenting the top 10 terms in the Molecular Function branch of 

Gene Ontology enriched by top 250 upregulated probe sets (WebGestalt). 
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6.1.6 Pathway analysis 

WebGestalt was used for the initial pathway analysis using KEGG, WikiPathways and 

Pathway Commons analysis options (5.6.5). Gene selection and analysis parameters were 

identical to the earlier GO analysis (6.1.5). Top 10 KEGG results are shown (Table 5). 

 

Upregulated	   	   	  

NOD-‐like	  receptor	  signaling	  
pathway	  

adjP=1.43e-‐07	   HSP90B1,	  TNFAIP3,	  BIRC3,	  IL6,	  NFΚBIA,	  IL8,	  XIAP,	  CXCL1,	  
CXCL2	  

Small	  cell	  lung	  cancer	   adjP=0.0012	   CCNE2,	  PTGS2,	  BIRC3,	  NFΚBIA,	  ITGA2,	  XIAP	  

Cytokine-‐cytokine	  receptor	  
interaction	  

adjP=0.0012	   CXCL5,	  LIF,	  IL11,	  IL7R,	  CCL20,	  IL6,	  CXCL3,	  IL8,	  CXCL1,	  CXCL2	  

Pathways	  in	  cancer	   adjP=0.0079	   CCNE2,	  PTGS2,	  HSP90B1,	  BIRC3,	  IL6,	  NFΚBIA,	  IL8,	  ITGA2,	  
XIAP,	  FOS	  

Chemokine	  signaling	  pathway	   adjP=0.0079	   CXCL1,	  CXCL5,	  CXCL2,	  CCL20,	  CXCL3,	  NFΚBIA,	  IL8	  

Apoptosis	   adjP=0.0079	   BIRC3,	  IRAK2,	  NFΚBIA,	  CFLAR,	  XIAP	  

Hematopoietic	  cell	  lineage	   adjP=0.0079	   IL11,	  CD44,	  IL7R,	  IL6,	  ITGA2	  

Toll-‐like	  receptor	  signaling	  pathway	   adjP=0.0102	   FOS,	  IL6,	  NFΚBIA,	  MAP3K8,	  IL8	  

Epithelial	  cell	  signaling	  in	  
Helicobacter	  pylori	  infection	  

adjP=0.0126	   CXCL1,	  HBEGF,	  NFΚBIA,	  IL8	  

T	  cell	  receptor	  signaling	  pathway	   adjP=0.0126	   NFΚBIE,	  FOS,	  NFΚBIA,	  MAP3K8,	  BCL10	  

 

Downregulated	   	   	  

Focal	  adhesion	   adjP=4.36e-‐05	   PARVB,	  PARVB,	  ZYX,	  PXN,	  COL4A2,	  TLN1,	  ITGA7,	  COL1A1,	  
COL6A1,	  COL6A1,	  RAC1,	  COL3A1,	  VEGFB,	  GRLF1	  

ECM-‐receptor	  interaction	   adjP=0.0006	   COL4A2,	  AGRN,	  HSPG2,	  ITGA7,	  COL3A1,	  COL1A1,	  COL6A1	  

VEGF	  signaling	  pathway	   adjP=0.0144	   MAPKAPK2,	  NFATC4,	  PXN,	  MAP2K2,	  RAC1	  

Notch	  signaling	  pathway	   adjP=0.0162	   NOTCH1,	  NCOR2,	  DVL3,	  JAG1	  

Neurotrophin	  signaling	  pathway	   adjP=0.0162	   MAPKAPK2,	  CALM3,	  YWHAE,	  MAP2K2,	  RAC1,	  ARHGDIA	  	  

Pathways	  in	  cancer	   adjP=0.0162	   CDKN2B,	  COL4A2,	  RUNX1T1,	  RAC1,	  DVL3,	  TGFB2,	  
MAP2K2,	  FGFR1,	  VEGFB,	  RXRB	  

Wnt	  signaling	  pathway	   adjP=0.0216	   DVL3,	  LRP5,	  NFATC4,	  PRKACA,	  DAAM2,	  RAC1	  

Metabolism	  of	  xenobiotics	  by	  
cytochrome	  P450	  

adjP=0.0216	   GSTA4,	  ADH1B,	  EPHX1,	  CYP1B1	  

Melanogenesis	   adjP=0.0216	   CALM3,	  CREB3L1,	  DVL3,	  PRKACA,	  MAP2K2	  

Prion	  diseases	   adjP=0.0255	   NOTCH1,	  PRKACA,	  MAP2K2	  

Table 5 Top 10 KEGG pathways identified among the top expressed genes in PSC 

A closer inspection of pathways significantly enriched by genes in both sets reveals the 

intercellular interactions through the cytokine and chemokine terms, as well as an enrichment of 

pathways related to immune and antiviral responses (Table 5: Upregulated). 
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6.1.7 Model of the stellate cell gene regulatory network 

6.1.7.1 Gene selection 

Gene selection was knowledge-driven, and used the results of Bayesian clustering to form 

network modules (6.1.4.1).  

 
Module	  1	   Module	  2	   Module	  3	   Module	  4	   Module	  5	  
FOS	  
EGR1	  
	  

ZC3H12A	  
ZC3H12C	  
PTGS2	   	  
KLF6	   	  
KLF13	  

BHLHB3	  
ZEB1	  
KLF7	  

NR4A2	  
NR4A3	   	  
FGFR2	  
KLF4	  
KLF5	   	  
KLF11	  

ATF3	  
FOSB	   	  
JUNB	   	  
EGR3	  

Module	  6	   Module	  7	   Module	  8	   Module	  9	   	   	  
HIRA	  
MALAT1	  
PHACTR2	  
APOL6	  

IFIT1	   	  
IFIT2	   	  
IFIT3	   	  
IFITM1	  
IFITM2	  	  
OAS3	   	  
MX1	   	  
ICAM1	  

RGS2	  
RGS3	   	  
RGS10	  
BIRC2	  
PTPRE	  

GPRC5A	  
MTSS1	  

	  

Table 6 Gene regulatory network modules selected for reverse engineering 

In general each module for network reconstruction represents an individual expression 

profile identified using BC. PSC gene selection was augmented by manual pre-selection 

performed by dr. Axel Szabowski, therefore the division of genes into modules is based on 

expression profile structure derived from BC and supported by functional classification. Each 

gene from the final selection was analyzed in detail (Table 7) and alterations to the BC results 

were performed manually whenever functional reassignment was necessary e.g. KLF6 (BC 

cluster 8 along FOS and EGR1) fits functionally better with Module 2 genes related to apoptosis.  
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- Module 1 Immediate early gene family of transcription factors (FOS, EGR1); 

- Module 2 Apoptosis related (ZC3H12a, ZC3H12c, PTGS2, KLF6/13); 

- Module 3 Proliferation and differentiation (BHLHB3, ZEB1, KLF7); 

- Module 4 Proliferation, apoptosis, invasion (KLF4, KLF5), nuclear receptors with 

pleiotropic effects (NR4A2, NR4A3) 

- Module 5 AP-1 transcriptional complex (EGR3, ATF3, FOSB, JUNB); 

- Module 6 generally unknown function, significantly upregulated with a common 

kinetic profile of interest (APOL6, HIRA, MALAT1, PHACTR2) 

- Module 7 Inflammatory state response, interferon induced proteins (IFIT1, IFIT2, 

IFIT3, IFITM1, IFITM2, ICAM1, OAS3, MX1); 

- Module 8 (Family of RGS genes, BIRC2, PTPRE); 

- Module 9 Differentiation and metastasis (GPRC5A, MTSS1) 

 

 

Figure 32 Gene expression kinetics for summarized probe sets in experiment 1 stellate cells 
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IL8	  	   CXC	  chemokine	  family,	  one	  of	  the	  major	  mediators	  of	  the	  inflammatory	  response,	  functions	  

as	  a	  chemoattractant,	  is	  a	  potent	  angiogenic	  factor,	  contributes	  to	  the	  aggressive	  biology	  of	  
human	  pancreatic	  cancer.	  

CXCL1	   A	  small	  cytokine	  implicated	  in	  melanoma	  pathogenesis.	  Expressed	  by	  macrophages,	  
neutrophils	  and	  epithelial	  cells,	  has	  neutrophil	  chemoattractant	  activity.	  Plays	  a	  role	  in	  
developmental	  processes	  and	  is	  involved	  in	  angiogenesis,	  inflammation,	  wound	  healing,	  and	  
tumorigenesis.	  Its	  up-‐regulation	  has	  been	  attributed	  to	  constitutive	  activation	  of	  NFκB,	  
which	  is	  an	  emerging	  hallmark	  in	  various	  types	  of	  tumors	  including	  breast,	  colon,	  pancreatic,	  
ovarian,	  as	  well	  as	  melanoma.	  	  

Malat1	  	  
	  

(Metastasis-‐associated	  lung	  adenocarcinoma	  transcript)	  a	  noncoding	  RNA,	  associated	  with	  
metastasis	  in	  early-‐stage	  non-‐small	  cell	  lung	  cancer	  (NSCLC)	  	  

EBI2	  	  
	  

Superfamily	  of	  rhodopsin-‐like	  7TM	  receptors	  (seven-‐transmembrane	  segment	  receptors),	  
also	  known	  as	  G-‐protein-‐coupled	  receptors.	  Known	  to	  control	  leukocyte	  movements.	  

GPRC5A	  	   A	  retinoic	  acid-‐induced	  protein	  3.	  Significant	  in	  light	  of	  the	  fact	  that	  PSC	  activation	  is	  
associated	  with	  loss	  of	  cytoplasmic	  vitamin	  A	  (retinol)	  stores.	  Metabolites	  of	  retinol	  include	  
all-‐trans	  retinoic	  acid	  and	  9-‐cis	  retinoic	  acid	  (9-‐RA).	  It	  may	  be	  a	  link	  between	  retinoid	  acid	  
and	  G	  protein	  signaling	  pathways.	  May	  play	  a	  role	  in	  embryonic	  development	  and	  epithelial	  
cell	  differentiation,	  and	  has	  been	  implicated	  in	  tumor	  suppression	  in	  lung	  cancer.	  

AREG	  	   (amphiregulin)	  a	  ligand	  of	  the	  EGF	  receptor,	  an	  autocrine	  growth	  factor,	  as	  well	  as	  a	  mitogen	  
for	  astrocytes,	  Schwann	  cells,	  and	  fibroblasts.	  Interacts	  with	  the	  EGF/TGF-‐alpha	  receptors	  to	  
promote	  the	  growth	  of	  normal	  epithelial	  cells	  and	  inhibits	  the	  growth	  of	  certain	  aggressive	  
carcinoma	  cell	  lines.	  

ESM1	  	   Implicated	  in	  the	  regulation	  of	  the	  LFA-‐1/ICAM-‐1	  pathway,	  may	  therefore	  influence	  both	  the	  
recruitment	  of	  circulating	  lymphocytes	  to	  inflammatory	  sites,	  and	  LFA-‐1-‐dependent	  
leukocyte	  adhesion	  and	  activation.	  ESM1	  binds	  to	  integrin	  and	  blocks	  binding	  to	  intercellular	  
adhesion	  –	  reasonable	  since	  one	  of	  the	  most	  profound	  features	  of	  PDAC	  is	  desmoplasia	  

IL6	  	   Cytokine	  Interleukin-‐6	  (IL-‐6)	  is	  a	  pro-‐inflammatory	  cytokine	  secreted	  by	  T	  cells	  and	  
macrophages	  to	  stimulate	  immune	  response	  to	  trauma,	  especially	  burns	  or	  other	  tissue	  
damage	  leading	  to	  inflammation.	  

LIF	  	   (Leukemia	  inhibitory	  factor)	  a	  cytokine	  of	  the	  same	  family	  as	  IL6.	  Has	  been	  shown	  to	  induce	  
macrophage	  differentiation.	  

STC1	  	  
	  

(Stanniocalcin)	  is	  a	  glycoprotein	  hormone	  involved	  in	  calcium	  and	  phosphate	  homeostasis.	  
STC1	  is	  present	  in	  breast	  ductal	  epithelium,	  and	  its	  expression	  is	  induced	  by	  BRCA1,	  a	  tumor	  
suppressor	  gene	  that	  has	  an	  important	  role	  in	  breast	  and	  ovarian	  cancer.	  STC1	  is	  
differentially	  expressed	  in	  a	  number	  of	  cancers	  compared	  with	  the	  relevant	  normal	  tissues.	  

IFIT1	  	   (Interferon	  induced	  protein)	  is	  a	  cytokine	  most	  commonly	  produced	  by	  the	  cells	  of	  the	  
immune	  system	  in	  response	  to	  challenges	  such	  as	  viruses,	  bacteria,	  parasites	  and	  tumor	  
cells.	  It	  is	  not	  surprising	  to	  see	  a	  great	  increase	  in	  interferon-‐induced	  proteins,	  as	  PSC	  are	  
known	  to	  produce	  cytokines	  during	  formative	  stages	  of	  chronic	  pancreatitis.	  

DUSP6	  	  
	  

a	  dual	  specificity	  protein	  phosphatase	  that	  negatively	  regulates	  ERK2	  member	  of	  the	  
mitogen-‐activated	  protein	  (MAP)	  kinase	  superfamily,	  which	  are	  associated	  with	  cellular	  
proliferation	  and	  differentiation.	  

 

Table 7 Sample set of genes of interest in the pancreatic stellate cells according to GeneCards (as 

accessed at the Weizmann Institute of Science) 
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6.1.7.2 Model parameters 

Following parameters (Table 8) were used to build the model of stellate cell GRN (see 5.7). 

 

Model	  parameters:	   	  
Number	  of	  generations	   2000	  
Population	  size	   700	  
Runs	   2000	  
Mutation	  rate	   0.01	  
	   	  
Euler	  integration	  parameters:	   	  
Time	  delay	   15	  
Time	  step	  size	   0.05	  
Interpolation	  points	  resulting	  from	  time	  step	  size	   480	  
	   	  
CTRNN	  parameters:	   	  
Initialization	  of	  parameters	   Randomized	  
Sigmoidal	  function	  interpolation	  points	   1000	  
Range	  of	  interaction	  weights	   10	  
Offset	  range	   2.5	  
Decay	  range	   2.5	  
Minimal	  time	  constant	  of	  decay	   0.1	  
Delay	  range	   20	  
Range	  of	  initial	  input	   15	  
Fitness	  points	  (how	  many	  interpolation	  points	  are	  evaluated	  with	  the	  
mean	  square	  error	  function)	  

140	  

Second	  input	  beginning	   40	  
Period	  of	  the	  second	  input	   5.0	  
Amplitude	  of	  the	  second	  input	  relative	  to	  the	  learned	  first	   0.1	  
Input	  halflife	  in	  minutes	   0.5	  
Tension	  of	  the	  spline	  interpolation	  of	  the	  data	   1.0	  (<<1	  cubic,	  >>1	  linear)	  

Table 8 PSC CTRNN model parameters 

Out of a total of 480 interpolated points in the time series, 9 were experimentally measured 

points (0h-7h, 24h), the remaining were spline interpolated. 340 interpolated values between 7h 

and 24h were of limited use in the fitness evaluation as they only loosely approximated the actual 

signal in the cells. Two strategies were applied to this part of data. Fitness evaluation was 

performed either on all interpolated points for the initial 7 hours (140 points), or in a second 

approach on all 480 points, but with an additional modification of the fitness function (C code 

implementation). This modification introduced a 10% penalty to the interpolated values ensuring 

that the experimental points get a higher score. Both approaches produced equally satisfying 

results (fitness >90%), and both have been evaluated for the final model. The first one is most 

often used for visualization, because the fitness is higher in the initial data points (0-7h) where the 

resolution of experimental values is higher. 
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6.1.7.3 Fitness evaluation 

Fitness of the model to the initial 7 experimental data point in PSC experiment is shown in  

(Figure 33), the total fitness over 24h was > 95% . 

 

 

   

 

Figure 33 PSC model fitted solutions plotted for each cluster. Dashed red line represents the 

experimentally measured and interpolated values, black lines are the modeled solutions, and 

dashed-and-dotted red lines represents the external input functions as well as a 0 input value line for 

reference. 

6.1.7.4 System selection using LLE 

Largest Lyapunov Exponent has been used to identify systems, which show the most robust 

response to perturbation (see section 5.7.3 and Supplementary materials of Busch et al. 2008). 

The final systems used for in silico simulations and knockdowns are selected by ranking them 

using the Euclidian distance between the robustness and fitness criterions. The LLE method is 

described in more detail in our paper, Busch et al. (2008). 
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6.1.7.5 Interaction matrix and the resulting network visualization 

Results of the modeling are presented in the form of a weight matrix, where weights over 

all time points were summarized for visualization purposes, and each rectangle depicts a 

summarized interaction of one gene (module/cluster) with another.  

 

Figure 34 PSC GRN weight matrix. Positive (activation) interactions are in red, negative (inhibition) 

in green. 

Subsequently the weight matrix was converted into a weighed and directed interaction 

network (Figure 35). The visualization is organized in sequence of clusters from 1-9 from top to 

bottom. The first 5 clusters contain the early and intermediate response genes. They are 

responsible for receiving the external signal (paracrine), and are driven by it. The majority of 

those genes transduce the signal downstream towards their targets and into what we call a ‘central 

hub of genes’ in this network (HIRA, APOL6, MALAT1, PHACTR2). ‘Central hub’ is a module, 

which integrates and distributes this signaling into the ‘effector’ clusters. Those are distinctly 

different, as they show a switch-like behavior, once initialized - they remain permanently 

upregulated in response, and result in the changed behavior of the cells. 
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Figure 35 Interaction network (red for activation, and green for inhibition). Only effective weights 

are plotted accounting for the offset parameter value corresponding to the identified system noise. 
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6.1.7.6 In silico simulations and perturbations 

We assume that reconstructed GRNs are formed in response to the PSC-TC crosstalk and 

remain stable. We next hypothesize that interruption of elucidated interactions should disturb 

network formation, and we set out to predict which module knockout would lead to a system-

wide response breakdown. To elucidate those central breakpoints, we used the derived model for 

in silico simulations and knockdowns. An in silico knockdown screen was performed for all 

modules in each network. Two points were revealed in PSC (Figure 36) including AP-1 complex, 

and module 6 genes (HIRA, APOL6, PHACTR2, MALAT1). Simulations show that the AP1 

knockdown downregulated immediate early and delayed gene responses, but system recovers its 

activity after approx. 7h, proving AP1 redundancy. Module 6 knockdowns resulted in a system-

wide breakdown, which suggests its central role in the PSC signaling hierarchy, positioning it as a 

potential experimental target. 

 

 

a. b. c.  

Figure 36 In silico simulation of the native system (a.) and knockdowns of AP1 (b.) and central hub 

of genes (c.) 
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6.1.7.7 Stellate cell output 

The biological output of the PSC experiment is in the form of a changed profile of soluble 

factors. Cytokines and chemokines affect the formation of the microenvironment, act on TC in a 

paracrine feedback loop, and on PSC in an autocrine manner. Identification of the most 

upregulated genes encoding those proteins was performed using GO among top 250 upregulated 

ranked genes resulting in a list of 20 factors clustering into 4 distinct profiles (Figure 37).  

 

 

Figure 37 Four main clusters of secreted proteins produced by stellate cells in response to 

stimulation with tumor cell supernatant, resolved over nine time points. 

Expanding the list to top 500 upregulated probe sets increases the number to a total of 39 

identified soluble factors (Table 9). 
	   	   	   	  

CXCL1	  	   CLCF1	  	   STC1	  	   KITLG	  	  

CXCL2	  	   EBI2	  	   TIMP3	  	   VMO1	  	  

CXCL3	  	   LIF	   ESM1	  	   ST3GAL1	  	  

CXCL5	  	   S100A6	  	   TFPI2	  	   SERPINA3	  	  

CCL20	  	   EREG	  	   TNFAIP3	   ISG15	  	  

IL1RL1	  	   AREG	  	   ADAMTS6	  	   LAMC2	  	  

IL7R	  	   PLAUR	  	   FAM55C	  	   BDNF	  	  

IL6	  	   EGFR	  	   DKK3	  	   GNPTG	  	  

IL8	  	   HBEGF	  	   ANGPTL4	  	   COL17A1	  	  

IL11	  	   VEGFA	  	   PCOLCE2	   	  

Table 9 Secreted factors and membrane bound proteins identified among top 500 upregulated genes 

in stimulated stellate cells using David Gene Ontology analysis.  
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6.2 Tumor cells 

Having successfully established that the stimulation of PSC by tumor cell supernatant 

results in a strongly altered expression profile of PSC, we used experiments 2 and 3 to determine 

what effect the stimulation of PSC has on TC. Both experiments were performed with the same 

TC line (MiaPaCa2), treated with supernatants from either quiescent (experiment 2), or 

stimulated PSC (experiment 3).  

Processing of the two TC microarray experiment data, which includes normalization, 

filtering, ranking as well as high-level analysis with gene ontology, and pathway analysis, was 

performed with the same stringency as in the PSC experiment analysis. Additional steps were 

introduced to specifically focus on potential differences between TC experiments. 

6.2.1 Array normalization and filtering 

Normalization and filtering procedures were performed as described in section 5.4 of 

Materials and Methods resulting in a unified data distribution. 

a.  

b.  

Figure 38 RMA normalization results of the tumor cell experiment 2 (a) and experiment 3 (b) 

microarrays, before filtering. 
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An IQR filter was applied to achieve a more Gaussian distribution (Figure 39). 

a.  

b.  

Figure 39 IQR filtering procedure with a cut off value 0.25 for experiment 2 (a) and 0.35 for 

experiment 3 (b) 
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6.2.2 Gene ranking 

Gene ranking according to the Euclidian distance between the mean and peak expression was 

performed using log2 fold change values as described in section 5.5.1. 

 

 

 
 

Experiment	   Rank	  score	  
cut-‐off	  
(Euclidian	  
distance)	  

Mean	  FC	  cut-‐off	  
(abs.	  FC	  log2)	  

Number	  of	  
genes	  with	  
mean	  FC>1.0	  	  

Lowest	  ranked	  gene	  in	  
top	  500	  (abs.	  FC	  log2)	  

Highest	  ranked	  gene	  
(mean	  FC	  log2)	  

TC	  experiment	  2	   0.44	   0.43	   235	   225239_at	  (+0.43)	   MT1M	  (-‐2.54)	  
TC	  experiment	  3	   0.27	   0.44	   157	   IDI1	  (+0.44)	   MT1M	  (+4.75)	  
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TC#2	   	   TC#3	  

Rank	   GeneName	   	   Rank	   Gene	  Name	  
0	   MT1M	   	   0	   MT1M	  
1	   SCD5	   	   1	   HMOX1	  
2	   MMP1	   	   2	   MAP3K8	  

3	   1558048_x_at	   	   3	   SLC30A1	  
4	   1560144_at	   	   4	   SLC30A1	  
5	   MBNL1	   	   5	   LAMP3	  

6	   IMMP2L	   	   6	   BIRC3	  
7	   ZCCHC7	   	   7	   CXCL3	  
8	   PIAS1	   	   8	   HSPA6	  

9	   MGAT5	   	   9	   NFΚBIZ	  
10	   ATP1B3	   	   10	   RAB39B	  
11	   MBNL1	   	   11	   INHBE	  

12	   236963_at	   	   12	   WIPF3	  
13	   TMEM14B	   	   13	   ZC3H12A	  
14	   JMJD1C	   	   14	   225227_at	  

15	   ARHGAP5	   	   15	   NPL	  
16	   F2RL1	   	   16	   EGR3	  
17	   FAM129A	   	   17	   236285_at	  

18	   234675_x_at	   	   18	   BIRC3	  
19	   KIAA1267	   	   19	   UNC5B	  
20	   IMMP2L	   	   20	   SERPINE1	  

E.                               F.    

Figure 40 Gene ranking of TC experiments reveals striking differences. A/C. Rank score 

distribution; B/D. Top ranked genes (green: downregulated, yellow: upregulated), E/F. top 20 

ranked genes (green: downregulated, yellow: upregulated) 

 

Gene ranking has allowed us to select the top 500 differentially regulated genes in the time 

series – a cut-off, which ensures that we capture all representative gene expression kinetics and 

yet retain a reasonably concise subset for further investigation. Looking at the distribution of 

ranked genes in Figure 40 we notice that the tumor cell response to stellate cells is clearly 

stimulus-dependent. Quiescent PSC elicit a broader response with a greater number of genes 

upregulated within the rank score range of 0.5-1.0. Stimulated PSC not only elicit a much more 

focused response, but more importantly geared towards upregulating the majority of top ranked 

genes (Figure 40.D/F), whereas quiescent PSC effect is nearly reversed (Figure 40.B/E). 
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A comparison of top 500 ranked genes in all three experiments reveals an overlap of only 8 

genes (240013_at, ZC3H12C, ZBTB24, FOS, ID2, C20orf117, CXCL5, IGFBP4), however 

disregarding their upregulated or downregulated state (Figure 41.A.). The highest unique overlap 

of 48 genes is between stellate cells and tumor cells in experiment 3 suggesting at least a partial 

stimulation of similar pathways. A closer inspection reveals a clear-cut separation between 

upregulated and downregulated genes in PSC#1 and TC#2, whereas TC#3 show an additional 

group of ambiguous genes with a pattern of change from down- to up- and reversed. Venn 

diagram in Figure 41.B shows an overlap of downregulated genes, and in C upregulated. 

Downregulated genes overlap only between TC experiments (9 genes). The greatest overlap in 

upregulated genes is conserved between PSC#1 and TC#3 (41 unique genes in total).  

 

A.  

B. C.  

Figure 41 Venn diagram showing the total overlaps of top 500 ranked genes in all three experiments 

A. regardless of the state of up/down-regulation, B. downregulated, C. upregulated. 
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6.2.3 Statistical analysis of the tumor cell experiments 

Statistical evaluation was performed with Edge (see section 5.5.2) and compared to the FC-

based ranking. In case of TC#2 (quiescent PSC supernatant)(Table 10) 6 out of the 20 genes fall 

outside of the top 500 FC-based ranking. 

 

Rank	  Fold	  change	   Rank	  EDGE	   P-‐Value	  EDGE	   Q-‐Value	  EDGE	   Probe	  ID	   Gene	  Name	  

592	   1	   0.00056044	   0.05804103	   201272_at	   AKR1B1	  

82	   2	   0.000992151	   0.05804103	   229011_at	   229011_at	  
16	   3	   0.001015699	   0.05804103	   213506_at	   F2RL1	  
45	   4	   0.001100471	   0.05804103	   218330_s_at	   NAV2	  

293	   5	   0.00111146	   0.05804103	   212023_s_at	   MKI67	  
2	   6	   0.001130298	   0.05804103	   204475_at	   MMP1	  
3	   7	   0.001144427	   0.05804103	   1558048_x_at	   1558048_x_at	  

322	   8	   0.001202512	   0.05804103	   201508_at	   IGFBP4	  
78	   9	   0.001296703	   0.05804103	   214079_at	   DHRS2	  
568	   10	   0.001328101	   0.05804103	   204950_at	   CARD8	  

77	   11	   0.001503925	   0.05804103	   1554036_at	   ZBTB24	  
17	   12	   0.001516484	   0.05804103	   217967_s_at	   FAM129A	  
586	   13	   0.001591837	   0.05804103	   240126_x_at	   BPTF	  

276	   14	   0.001802198	   0.05804103	   205547_s_at	   TAGLN	  
319	   15	   0.001852433	   0.05804103	   232965_at	   LOC400684	  
140	   16	   0.001858713	   0.05804103	   1554333_at	   DNAJA4	  

47	   17	   0.002029827	   0.05804103	   207156_at	   HIST1H2AG	  
738	   18	   0.002061225	   0.05804103	   208080_at	   AURKA	  
18	   19	   0.002142857	   0.05804103	   234675_x_at	   234675_x_at	  

Table 10 Comparison of Edge and fold change ranking methods for tumor cell experiment 2 

(quiescent PSC supernatant) 
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In TC#3 (stimulated PSC supernatant)(Table 11) only 5 genes (FDFT1, PHF19, BIRC5, PLK1, 

and ANLN) fall below the top 500 FC-based rank. 

 

Rank	  Fold	  change	   Rank	  EDGE	   P-‐Value	  	   Q-‐Value	  	   Probe	  ID	   Gene	  Name	  

34	   1	   2.23E-‐05	   0.02541207	   226517_at	   BCAT1	  

99	   2	   4.20E-‐05	   0.02541207	   206632_s_at	   APOBEC3B	  

9	   3	   4.20E-‐05	   0.02541207	   223218_s_at	   NFΚBIZ	  

568	   4	   6.17E-‐05	   0.02541207	   210950_s_at	   FDFT1	  

109	   5	   7.08E-‐05	   0.02541207	   209774_x_at	   CXCL2	  

39	   6	   7.87E-‐05	   0.02541207	   202643_s_at	   TNFAIP3	  

7	   7	   9.05E-‐05	   0.02541207	   207850_at	   CXCL3	  

42	   8	   1.05E-‐04	   0.02541207	   224367_at	   BEX2	  

180	   9	   1.13E-‐04	   0.02541207	   205047_s_at	   ASNS	  

64	   10	   1.55E-‐04	   0.02541207	   225285_at	   BCAT1	  

40	   11	   1.64E-‐04	   0.02541207	   205830_at	   CLGN	  

282	   12	   1.68E-‐04	   0.02541207	   204470_at	   CXCL1	  

331	   13	   1.76E-‐04	   0.02541207	   209608_s_at	   ACAT2	  

679	   14	   1.77E-‐04	   0.02541207	   227212_s_at	   PHF19	  

639	   15	   1.81E-‐04	   0.02541207	   210334_x_at	   BIRC5	  

49	   16	   1.88E-‐04	   0.02541207	   202644_s_at	   TNFAIP3	  

159	   17	   1.95E-‐04	   0.02541207	   201041_s_at	   DUSP1	  

174	   18	   2.09E-‐04	   0.02541207	   209146_at	   SC4MOL	  

1454	   19	   2.28E-‐04	   0.02541207	   202240_at	   PLK1	  

608	   20	   2.44E-‐04	   0.02541207	   222608_s_at	   ANLN	  

Table 11 Comparison of Edge and fold change ranking methods for tumor cell experiment 3 

(stimulated PSC supernatant) 

 

Those values were expected, but the performance was suboptimal, as we expected at most 

10% genes to fall outside of our top 500, for that reason we performed an additional check of all 

significant genes according to Edge (Figure 42). 
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Figure 42 Stacked columns showing the fraction of significant (Edge) genes (red) in relation to the 

total number of genes (entire column) in both filtered TC data sets 

 

Edge has identified approximately 1000 significant genes in TC#3 dataset (with a FDR 

adjusted p-value <1%). This 1000 significant genes covers 89% of our top 500 FC-ranked genes, 

which is a much more reasonable result. In contrast to that, there are ’only’ approximately 250 

genes identified as significant in TC#2 (with a FDR adjusted p-value <1%).  

 

This combined with the earlier overview of rank distribution and FC, offers strong 

evidence of significant differences between the two TC experiments. 
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6.2.4 Exploratory analysis 

6.2.4.1 Clustering results 

Bayesian gene expression clustering (see 6.1.4.1) has revealed striking differences between 

the TC experiments. TC#2 (quiescent PSC) cluster into a significantly smaller number of profiles 

(6), then TC#3 (stimulated PSC) (15). The latter are additionally showing a much higher 

complexity, and are more difficult to organize into a smaller number of unique clusters, with 

visible shifts and delays in gene kinetics. 

6.2.4.1.1 TC#2 (supernatant of quiescent PSC) clustering 

Clustering of the top 500 genes in TC#2 resulted in a total of 5 upregulated clusters, 4 

downregulated, and one upregulated outlier - ID2. Visual inspection and analysis of time resolved 

behavior allowed us to reduce the numbers into 3 and 2 respectively as shown in Figure 43: 

 

A. Upregulated 

 

                                             B. Downregulated             C. Outlier 

Figure 43 Experiment 2 tumor cell clustering of gene expression profiles 
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6.2.4.1.2 TC#3 (supernatant of stimulated PSC) clustering 

Where there were only 3 upregulated and 2 downregulated clusters in experiment 2, now 

with stimulated PSC we see an organization of top genes into 10 significantly activated and 5 

inhibited clusters (Figure 44). 

 

 

 

 

A. Upregulated 
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B. Downregulated 

 

Figure 44 Experiment 3 tumor cell clustering of gene expression profiles 
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6.2.5 Correlation between tumor cell experiments 

In order to clearly define the differences between gene kinetics in the TC experiments we 

performed a correlation analysis using the Correlate function of IDL (see 5.6.4). Correlation 

analysis is the simplest way to quantitatively compare two separate data sets, and is especially 

useful to perform comparisons between control experiments. The analysis works by applying a 

specific distance metric to calculate the distance between the points of interest (also in a 

multidimensional space). The results as presented in Figure 45 clearly show that we have a very 

low correlation for most of the top ranked genes, with some of them highly anti-correlated (e.g. 

MT1M, FAM129A).  

 

Figure 45 A sample of top ranked genes of experiment 3 (black) plotted against experiment 2 (blue) 

with the calculated correlation value (C). 

Stimulus-dependent differences between TC become clearer as we consider the top ranking 

genes i.e. on one hand the most upregulated gene in TC#3 – metallothionein MT1M – is also the 

most downregulated gene in TC#2, on the other hand, the most downregulated gene in TC#3 

(ID3) shows little to no response in TC#2. Many other genes of interest show similar differences, 

but few are as anti-correlated as MT1M. Correlation was performed on a cross-experimentally 

normalized data set without filtering to preserve genes, which show no variability over time and 

would otherwise be removed. In addition, there is not a single gene, in the top 250, that has at the 

same time, exactly the same expression level and exactly the same time-resolved behavior in both 

experiments. 
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6.2.6 Gene ontology analysis of TC experiments 

GO analysis was performed as described in materials and methods (5.6.3), as well as in the 

results section for PSC#1 (6.1.5), with all parameters identical across all experiments to ensure 

comparability of data. TC data were organized as follows:  

- Ranked gene lists of each experiment were divided into top 250 up- and 250 down-

regulated genes, identified with Affymetrix IDs. 

- Each data set was loaded into David and WebGestalt and converted into official gene 

symbols and Entrez ID’s – annotation results were compared between the two to 

select the most complete. 

 

Experiment 2 upregulated genes:  

Out of 250 Affymetrix IDs, 178 were unambiguously mapped to Entrez IDs, 152 unique IDs were 

used for analysis. 

Experiment 2 downregulated genes: 

Out of 250 Affymetrix IDs, WebGestalt mapped only 57 Entrez IDs, a poor result of the 

WebGestalt conversion engine. An intermediate stage of conversion via David was performed. 

David successfully converted the same set to 227 official gene symbols, which then 

unambiguously mapped to 154 Entrez IDs, producing 142 unique identifiers usable for both 

David and WebGestalt. 

 

Experiment 3 upregulated genes: 

Out of 250 Affymetrix IDs, WebGestalt unambiguously mapped 190 to Entrez IDs, and 154 

unique identifiers were used for the enrichment analysis. 

Experiment 3 downregulated genes: 

Out of a total of 250 Affymetrix IDs, WebGestalt unambiguously mapped 203 to Entrez IDs and 

174 unique IDs were used for the enrichment analysis. 

 

A direct comparison of the top 10 enriched GO terms in the Biological Process branch is shown 

in Table 12, accompanied by the results of the PSC#1 GO analysis. 
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PSC	  exposed	  to	  TC	   TC	  exposed	  to	  PSC	   TC	  exposed	  to	  PSC*	  

Upregulated	   Upregulated	   Upregulated	  

Response	  to	  wounding	   Negative	  regulation	  of	  viral	  
reproduction	  

Response	  to	  chemical	  stimulus	  

Response	  to	  stress	   Regulation	  of	  transcription	  factor	  
activity	  

Response	  to	  external	  stimulus	  

Defense	  response	   Negative	  regulation	  of	  viral	  genome	  
replication	  

Response	  to	  organic	  substance	  

Response	  to	  external	  stimulus	   Blood	  vessel	  maturation	   Immune	  system	  process	  

Pos.	  reg.	  of	  transcription	  from	  RNA	  
polymerase	  II	  promoter	  

Healing	  during	  inflammatory	  
response	  

Response	  to	  stimulus	  

Positive	  reg.	  of	  macromolec.	  
Biosynthetic	  process	  

TGFB	  receptor	  signaling	  pathway	   Negative	  regulation	  of	  programmed	  
cell	  death	  

Regulation	  of	  defense	  response	   Regulation	  of	  transcription	  regulator	  
activity	  

Negative	  regulation	  of	  apoptosis	  

Positive	  regulation	  of	  transcription,	  
DNA-‐dependent	  

Response	  to	  oxidative	  stress	   negative	  regulation	  of	  cell	  death	  

Positive	  reg.	  of	  nucleic	  acid	  metabolic	  
process	  

Response	  to	  toxin	   negative	  regulation	  of	  cellular	  process	  

Inflammatory	  response	   Transcription	  from	  RNA	  polymerase	  II	  
promoter	  

Negative	  regulation	  of	  biological	  
process	  

	   	   	  

Downregulated	   Downregulated	   Downregulated	  

cortical	  cytoskeleton	  organization	   organelle	  organization	   cellular	  component	  morphogenesis	  

cortical	  actin	  cytoskeleton	  
organization	  

cellular	  macromolecule	  biosynthetic	  
process	  

cell	  morphogenesis	  

membrane	  organization	   macromolecule	  biosynthetic	  process	   maintenance	  of	  sister	  chromatid	  
cohesion	  

cellular	  component	  organization	   chromatin	  organization	   maintenance	  of	  mitotic	  sister	  
chromatid	  cohesion	  

actin	  cytoskeleton	  organization	   vesicle	  mediated	  transport	   heart	  development	  

extracellular	  matrix	  organization	   microtubule	  cytoskeleton	  
organization	  

mitotic	  sister	  chromatid	  cohesion	  

actin	  filament-‐based	  process	   regulation	  of	  macromolecule	  
biosynthetic	  process	  

cellular	  component	  organization	  

membrane	  invagination	   regulation	  of	  Rho	  protein	  signal	  
transduction	  

cytoplasmic	  microtubule	  organization	  

endocytosis	   cellular	  component	  organization	   sister	  chromatid	  cohesion	  

regulation	  of	  cellular	  component	  
organization	  

Rho	  protein	  signal	  transduction	   anatomical	  structure	  development	  

Table 12 Biological process (top 10 enriched terms, with varying adjusted p-value ranges <<0.05) 

 

The presented result shows a strong contrast between the two TC experiments clearly suggesting 

stimulus-dependent induction of different pathways. 
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6.2.6.1 Intersection of GO terms in TC experiments 

Both TC experiments are significantly different once compared with ranking, clustering, 

and GO term enrichment. In order to answer a question of how many of the top-ranked genes in 

both TC experiments enrich the same GO terms, and how many of them overlap between 

experiments we performed an intersection analysis using eGOn (5.6.3). 4 reporter lists were used, 

1 from each experiment containing top 250 upregulated, and 1 containing top 250 downregulated 

genes. Intersection results are presented in overview Figure 46, with more detailed enrichment 

presented for the biological process branch in Figure 47. GO analysis follows the branches down 

into finely-grained terms, and only the terms, which are significantly enriched by genes in both 

experiments, are considered, which explains why the total number of genes in the graphs never 

exceeds 150 (the remaining genes fall into incongruent categories). 

 

 

Figure 46 GO intersection of experiments 2 and 3 tumor cells 

The same GO terms are enriched by a very different number of genes (in both, up- and 

down-regulated state). The differences become even more apparent when we consider how many 

genes are identical for both experiments among those enriched terms – for the upregulated gene 

set only 14 genes overlap, for the downregulated – none. 
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Figure 47 Sample of a detailed intersection analysis for only one branch of GO (Biological Process) 

between the upregulated genes in experiments 2 and 3. 
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6.2.7 Pathway analysis 

Functional enrichment of pathways was analyzed using the WebGestalt with KEGG, 

Pathway Commons, and WikiPathways (5.6.5). The same gene lists as for GO analyses were used 

here. A sample of the outcome, in the form of a comparison between the top upregulated 

pathways in TC#2 and TC#3 is portrayed (Table 13). 

 

TC#2	  (supernatant	  of	  quiescent	  PSC)	   	   TC#3	  (supernatant	  of	  stimulated	  PSC)	  

	   	  	   	   	   	  	  
KEGG	  	   Adj.	  p-‐value	   	   KEGG	   Adj.	  p-‐value	  
PPAR	  signaling	  pathway	   0.2871	   	   Cytokine-‐cytokine	  receptor	  interaction	   1.19e-‐07	  
mTOR	  signaling	  pathway	   0.2871	   	   MAPK	  signaling	  pathway	   4.81e-‐06	  
Adipocytokine	  signaling	   0.2871	   	   NOD-‐like	  receptor	  signaling	  	   6.71e-‐06	  
Amyotrophic	  lateral	  sclerosis	  	   0.2871	   	   Chemokine	  signaling	  pathway	   0.0009	  
Neurotrophin	  signaling	  	   0.2871	   	   Jak-‐STAT	  signaling	  pathway	   0.0085	  
Pathogenic	  E.coli	  infection	   0.2871	   	   Toll-‐like	  receptor	  signaling	   0.0085	  
Aminoacyl-‐tRNA	  biosynth.	   0.2871	   	   Pathways	  in	  cancer	   0.0085	  
Axon	  guidance	   0.2871	   	   Prostate	  cancer	   0.0264	  
TGF-‐beta	  signaling	  pathway	   0.3436	   	   T	  cell	  receptor	  signaling	  pathway	   0.0465	  
MAPK	  signaling	  pathway	   0.4016	   	   Complement	  and	  coagulation	  cascades	   0.0552	  

Table 13 Comparison of top upregulated pathways from KEGG analysis of experiment 2 and 3 

 

Interesting in this context is that out of all top 10 upregulated pathways in experiment 2 

none meet the significance cut-off for adjusted p-values (5%), which suggests that a broad range 

of different pathways is getting activated in response to stimulus, and too few are significantly 

enriched by a large number of genes. This general deregulation of pathways in TC is a common 

theme in all tumors, but a comparison with experiment 3 shows that the latter are being pushed in 

a more directed manner towards survival with proinflammatory signals, and a wide-range of 

intercellular signaling. 
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6.2.8 GRN model of tumor cells 

All previous analysis stages provided evidence of a clear treatment-dependent separation 

between TC, at the same time confirming what we saw in the first microarray experiment: Stellate 

cells are significantly altered when moving from the quiescent into the stimulated state, and this 

alteration has a strong feedback effect on TC. It is therefore no longer a question whether there is 

an effect of exposure in TC, but rather how this effect is achieved. We address this question by 

applying our reverse engineering to discover the underlying GRN responsible for signal 

integration and its propagation in TC. Tumor experiment 3 was chosen as the logical object for 

reverse engineering as we have proven it to be a continuation and the last stage of the 

hypothesized sequence of signaling from TC→PSC→TC. 

 

6.2.8.1 Gene selection 

Gene choice was dictated by BC results (see 6.2.4.1.2), and knowledge-driven interest of 

collaborating partners (Dr. N.Giese, 5.7.1 Materials and Methods).  BC provided us with a 

division of the expression kinetics, and the manual gene selection from each cluster was based on 

the strength of gene overexpression, existing knowledge of its function, on its potential for novel 

regulation, and possible accessibility as targets of existing therapeutics, with a main focus on 

genes with transcriptional activity. The final selection provided a set of genes, which were united 

into a mean kinetic profile, a module, represented by a neuron in the neural network. Cluster 4 

has been removed from the data set as it contained only members of the Complement System, 

which were of no interest at this point, and a total of 39 genes (Table 14) were selected from the 

remaining clusters. 

Module	   Selected	  genes	  (TC	  treated	  with	  stimulated	  PSC	  à	  Exp.3)	  
1	   CEBPD	   	   	   	   	  
2	   GRHL1	   TRIM16	   	   	   	  
3	   PCGF5	   DUSP2	   	   	   	  
4	   -‐	   	   	   	   	  
5	   ARNTL2	   	   	   	   	  
6	   AGA	   FAM129A	   PHF14	   SAT1	   WDR78	  
7	   FGF18	   	   	   	   	  
8	   SPHK1	   SQSTM1	   RELB	   BCL3	   	  
9	   ANK2	   DUSP1	   FOS	   HES1	   	  
10	   EGR1	   EGR2	   EGR3	   EGR4	   ATF5	  
.	   BHLHB2	   FOSB	   JUN	   GADD45A	   KLF10	  
.	   TRIM36	   ZEB1	   ZFP36	   SKIL	   LMO4	  

Table 14 Gene selection for the GRN model of tumor cells 



 

     

 

108	  

 

Each of the modules was investigated to identify potential interactions between them with GO, 

and pathway analysis. An evaluation of kinetic profiles allowed us to divide clusters into 

categories based on the sequence of their activation signals over time e.g. genes activated via 

paracrine or autocrine signals. While the gene content in each of the evaluated modules is 

significantly altered from the complete clusters, the gene expression dynamic over time is 

preserved (see 6.2.4.1.2 to review the expression profiles).  

 

 

Figure 48 Gene expression kinetics among the top upregulated genes in tumor cells 
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• Module 1 genes show a sustained activity, beginning with an early upregulation and 

decreasing only after 24 hours, suggesting that either the initial paracrine stimulus is 

sufficient to drive the responses, or that a combined paracrine and autocrine signal is 

necessary to keep them in this state. CEBPD has been linked to cell fate determination, 

immune and inflammatory responses. 

• Genes in modules 2 are transiently stimulated and judging from their expression kinetic can 

be categorized as intermediate response genes to an extracellular paracrine signal. 

Upregulation starts here at around 2h. Selected genes are related to cell growth and 

differentiation. 

• Module 3 genes show two waves of signaling - initial almost simultaneous with the early 

responding genes within an hour, and then a secondary amplification at 2.5h or later. This 

suggests a cooperative upregulation via both paracrine, and autocrine signaling. PCGF3 

gene has been implicated in chromatin remodeling; DUSP2 is involved in a wide variety 

of cellular processes such as proliferation, differentiation, transcription regulation and 

development.  

• Module 5 genes are upregulated after 2.5h (either induced delayed primary, or secondary 

response to PSC stimulus), and remains upregulated throughout the experiment, 

suggesting additional autocrine sustaining. ARNTL2 was linked to circadian clock and 

regulation of cell proliferation. 

• Module 6 genes show upregulation at all signaling stages, most likely due to the changes in 

the microenvironment occurring from both paracrine and autocrine signaling.  

• Module 7 genes are only transiently upregulated after 2.5h. FGF18 has broad mitogenic 

and cell survival activities. 

• Module 8 genes are significantly stimulated and judging from their expression kinetic are 

either primary delayed or secondary response to paracrine stimulus with earliest 

upregulation starting already within 2h, and an amplification of signal in an autocrine 

manner past 4h. Selected genes are related to development and growth. 

• Module 9 genes are continuously upregulated, and include immune response, response to 

stimulus, and regulation of cell proliferation, differentiation, and apoptosis. 

• Module 10 shows the earliest response to paracrine stimulus. EGR family, FosB, ATF5, 

KLF10, TGIF. Cell fate determination, growth factor stimulation. 
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Cluster	   Gene	   Function	  
1	   CEBPD	   Enhancer,	  implicated	  in	  cell	  cycle	  control	  and/or	  cell	  fate	  determination.	  C/EBP	  family	  members	  recognize	  similar	  DNA	  

sequences	  in	  their	  target	  genes	  and	  form	  homo-‐	  or	  hetero-‐dimers	  with	  other	  C/EBPs,	  as	  well	  as	  with	  transcription	  factors	  
of	  the	  NF-‐κB	  and	  Fos/Jun	  families.	  Important	  in	  regulation	  of	  genes	  involved	  in	  immune	  and	  inflammatory	  responses,	  
may	  be	  involved	  in	  the	  regulation	  of	  genes	  associated	  with	  activation	  and/or	  differentiation	  of	  macrophages.	  (provided	  
by	  RefSeq)	  

2	   GRHL1	   TF,	  which	  may	  play	  a	  role	  in	  development.	  May	  be	  involved	  in	  epidermal	  differentiation	  (By	  similarity).	  
2	   TRIM16	   Regulator	  of	  cell	  growth,	  a	  transcriptional	  regulator	  in	  the	  retinoid	  signaling.	  The	  estrogen-‐responsive	  B	  box	  protein	  

(EBBP)	  restores	  retinoid	  sensitivity	  in	  retinoid-‐resistant	  cancer	  cells	  via	  effects	  on	  histone	  acetylation.	  	  
3	   PCGF5	   Part	  of	  the	  polycomb	  family	  of	  proteins,	  which	  can	  remodel	  chromatin	  such	  that	  transcription	  factors	  cannot	  bind	  to	  

promoter	  sequences	  in	  DNA.	  	  
3	   DUSP2	   A	  phosphatase	  inactivating	  ERK1	  and	  ERK2	  -‐	  a	  negative	  regulator	  of	  MAPK	  activity.	  In	  the	  massive	  signaling	  upon	  cell	  

stimulation	  this	  phosphatase	  is	  highly	  upregulated	  to	  recycle	  the	  kinases	  of	  the	  MAP	  signaling	  pathway.	  It	  is	  involved	  in	  a	  
wide	  variety	  of	  cellular	  processes	  such	  as	  proliferation,	  differentiation,	  transcription	  regulation	  and	  development.	  

4	   -‐	   Gene	  cluster	  4	  contains	  immune	  response-‐related	  proteins	  such	  as	  complement	  members	  CFB,	  C3,	  CHI3L2,	  and	  has	  been	  
removed	  from	  the	  selection.	  

5	   ARNTL2	   Transcriptional	  regulator	  and	  signal	  transducer,	  functionally	  linked	  to	  circadian	  clock-‐mediated	  activities	  and	  to	  the	  
regulation	  of	  cell	  proliferation	  

6	   AGA	   Involved	  in	  the	  catabolism	  of	  N-‐linked	  oligosaccharides	  of	  glycoproteins.	   	  
6	   FAM129A	   Regulates	  phosphorylation	  of	  a	  number	  of	  proteins	  involved	  in	  translation	  regulation	  including	  EIF2A,	  EIF4EBP1	  and	  

RPS6KB1.	  May	  be	  involved	  in	  stress	  response.	  
6	   PHF14	   Unknown	  function.	  
6	   SAT1	   Acetyltransferase,	  a	  rate-‐limiting	  enzyme	  in	  the	  catabolic	  pathway	  of	  polyamine	  metabolism.	  It	  catalyzes	  the	  acetylation	  

of	  spermidine	  and	  spermine,	  and	  is	  involved	  in	  the	  regulation	  of	  the	  intracellular	  concentration	  of	  polyamines	  and	  their	  
transport	  out	  of	  cells.	  

6	   WDR78	   Unknown	  function.	  
7	   FGF18	   Fibroblast	  growth	  factor	  (FGF)	  family	  member	  with	  broad	  mitogenic	  and	  cell	  survival	  activities.	  Involved	  in	  a	  variety	  of	  

biological	  processes,	  including	  embryonic	  development,	  cell	  growth,	  morphogenesis,	  tissue	  repair,	  tumor	  growth,	  and	  
invasion.	  It	  is	  a	  pleiotropic	  growth	  factor	  that	  stimulates	  proliferation	  in	  a	  number	  of	  tissues,	  most	  notably	  the	  liver	  and	  
small	  intestine	  

8	   SPHK1	   Sphingosine	  kinase	  1,	  mediates	  VEGF	  induced	  activation	  of	  Ras	  and	  MAPK.	  SPHK1	  governs	  the	  subtle	  balance	  between	  
the	  sphingolipids	  ceramide	  and	  sphingosine	  1-‐phosphate	  (S1P)	  levels.	  Both	  of	  which	  are	  key	  regulators	  of	  cell	  death	  and	  
proliferation.	  SPHK1	  is	  an	  oncogene,	  overexpressed	  in	  many	  tumors,	  protects	  cancer	  cells	  from	  apoptosis.	  

8	   SQSTM1	   A	  multifunctional	  protein	  that	  binds	  ubiquitin	  and	  regulates	  activation	  of	  NF-‐kB	  signaling	  pathway.	  Functions	  as	  a	  
scaffolding/adaptor	  protein	  in	  concert	  with	  TNF	  receptor-‐associated	  factor	  6	  to	  mediate	  activation	  of	  NF-‐kB	  in	  response	  
to	  upstream	  signals.	  Mutations	  result	  in	  sporadic	  and	  familial	  Paget	  disease	  of	  bone.	  (provided	  by	  RefSeq)	  

8	   RELB	   interacts	  with	  NF-‐κ-‐B	  1	  and	  2	  pleiotropic	  transcription	  factors,	  involved	  in	  inflammation,	  immunity,	  differentiation,	  cell	  
growth,	  tumorigenesis	  and	  apoptosis.	  NF-‐κ-‐B	  is	  a	  homo-‐	  or	  heterodimeric	  complex	  formed	  by	  the	  Rel-‐like	  domain-‐
containing	  proteins	  RELA/p65,	  RELB,	  NFΚB1/p105,	  NFΚB1/p50,	  REL	  and	  NFΚB2/p52.	  It	  is	  controlled	  by	  various	  
mechanisms	  of	  post-‐translational	  modification	  and	  subcellular	  compartmentalization	  as	  well	  as	  by	  interactions	  with	  
other	  cofactors	  or	  corepressors.	  RelB-‐p50	  and	  RelB-‐p52	  complexes	  are	  transcriptional	  activators.	  RELB	  neither	  associates	  
with	  DNA	  nor	  with	  RELA/p65	  or	  REL.	  Stimulates	  promoter	  activity	  in	  the	  presence	  of	  NFΚB2/p49	  

8	   BCL3	   A	  proto-‐oncogene	  candidate.	  Protein	  encoded	  by	  this	  gene	  contains	  seven	  ankyrin	  repeats,	  which	  are	  most	  closely	  
related	  to	  those	  found	  in	  I	  κ	  B	  proteins.	  This	  protein	  functions	  as	  a	  transcriptional	  co-‐activator	  that	  activates	  through	  its	  
association	  with	  NF-‐κ	  B	  homodimers.	  The	  expression	  of	  this	  gene	  can	  be	  induced	  by	  NF-‐κ	  B,	  which	  forms	  a	  part	  of	  the	  
autoregulatory	  loop	  that	  controls	  the	  nuclear	  residence	  of	  p50	  NF-‐κ	  B.	  (provided	  by	  RefSeq)	  	  

9	   ANK	   Ankyrins	  family	  of	  proteins	  link	  the	  integral	  membrane	  proteins	  to	  the	  underlying	  spectrin-‐actin	  cytoskeleton	  and	  play	  
key	  roles	  in	  activities	  such	  as	  cell	  motility,	  activation,	  proliferation,	  contact	  and	  maintenance	  of	  specialized	  membrane	  
domains.	  (provided	  by	  RefSeq)	  

9	   DUSP1	   DUSP1	  gene	  is	  induced	  in	  human	  skin	  fibroblasts	  by	  oxidative/heat	  stress	  and	  growth	  factors.	  The	  bacterially	  expressed	  
and	  purified	  DUSP1	  protein	  has	  intrinsic	  phosphatase	  activity,	  and	  specifically	  inactivates	  mitogen-‐activated	  protein	  
(MAP)	  kinase	  in	  vitro.	  Furthermore,	  it	  suppresses	  the	  activation	  of	  MAP	  kinase	  by	  oncogenic	  ras	  in	  extracts	  of	  Xenopus	  
oocytes.	  Thus,	  DUSP1	  may	  play	  an	  important	  role	  in	  the	  human	  cellular	  response	  to	  environmental	  stress	  as	  well	  as	  in	  the	  
negative	  regulation	  of	  cellular	  proliferation.	  (provided	  by	  RefSeq)	  

9	   FOS	   The	  Fos	  gene	  family	  consists	  of	  4	  members:	  FOS,	  FOSB,	  FOSL1,	  and	  FOSL2.	  These	  genes	  encode	  leucine	  zipper	  proteins	  
that	  can	  dimerize	  with	  proteins	  of	  the	  JUN	  family,	  thereby	  forming	  the	  transcription	  factor	  complex	  AP-‐1.	  As	  such,	  the	  
FOS	  proteins	  have	  been	  implicated	  as	  regulators	  of	  cell	  proliferation,	  differentiation,	  and	  transformation.	  In	  some	  cases,	  
expression	  of	  the	  FOS	  gene	  has	  also	  been	  associated	  with	  apoptotic	  cell	  death.	  (provided	  by	  RefSeq)	  

9	   HES1	   Basic	  helix-‐loop-‐helix	  family	  of	  transcription	  factors.	  It	  is	  a	  transcriptional	  repressor	  of	  genes	  that	  require	  a	  bHLH	  protein	  
for	  their	  transcription.	  

10	   EGR1	   EGR	  family	  of	  C2H2-‐type	  zinc-‐finger	  proteins.	  It	  is	  a	  nuclear	  protein	  and	  functions	  as	  a	  transcriptional	  regulator.	  The	  
products	  of	  target	  genes	  it	  activates	  are	  required	  for	  differentitation	  and	  mitogenesis.	  

10	   EGR2	   Defects	  in	  this	  gene	  are	  associated	  with	  Charcot-‐Marie-‐Tooth	  disease	  type	  1D	  (CMT1D),	  Charcot-‐Marie-‐Tooth	  disease	  
type	  4E	  (CMT4E),	  and	  with	  Dejerine-‐Sottas	  syndrome	  (DSS).	  Multiple	  transcript	  variants	  encoding	  two	  different	  isoforms	  
have	  been	  found	  for	  this	  gene.	  

10	   EGR3	   An	  immediate-‐early	  growth	  response	  gene,	  which	  is	  induced	  by	  mitogenic	  stimulation,	  participates	  in	  the	  transcriptional	  
regulation	  of	  genes	  in	  controlling	  biological	  rhythm.	  

10	   EGR4	   Transcriptional	  regulator.	  Recognizes	  and	  binds	  to	  the	  DNA	  sequence	  5'-‐GCGGGGGCG-‐3'	  (GSG).	  Activates	  the	  
transcription	  of	  target	  genes	  whose	  products	  are	  required	  for	  mitogenesis	  and	  differentiation	  (By	  similarity)	  

Table 15 Entrez summary for model genes in tumor cells 
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6.2.8.2 Model construction 

Clear-cut expression kinetics in PSC experiment 1 produced a likewise streamlined gene 

regulatory model (Figure 35); such straightforward gene selection was not possible for TC 

kinetics, due to signal ambiguity with many additional shifts and delays in gene kinetics, 

additionally complicated by a strong overrepresentation of transcription factors in kinetic profile 

10. Therefore, in a multi-stage approach, first, a TC CTRNN model was constructed using a 

metagene, where a mean-kinetic of each cluster was taken and the resulting system was used to 

fine-tune parameters and input functions of the neural network (5.7). Subsequently 4 TC models 

were constructed, which differed in module 10 gene content (Table 16). Network topology was 

preserved in general across all models with minor deviations (<10 altered weights on a 9x9 

summarized weight matrix) resulting from the variations in selection-dependent module kinetics, 

which modulated interaction weights sufficiently to cross the noise level and become either 

effective (connection gain) or ineffective (connection loss) (as defined by the offset parameter cf. 

Materials and methods).  

The most connected network of effective weights was achieved with Model 2 containing a 

total of 24 genes (Table 16, cluster 10 EGR-only). All resulting models showed a fit to the 

experimental data of at least 90%. The identified gene interactions were plotted based on the 

summarized effective weights in Figure 55. 

 
TC	  Models	   Metagene	   Model	  1	   Model	  2	   Model	  3	   Model	  4	  

Genes	  from	  	  
(BC)	  kinetic	  
profiles	  

9	  	  
(1	  mean	  per	  
cluster)	  

35	  	  
(complete	  
preselection)	  

24	  	  
(EGR-‐only	  
cluster	  10)	  

31	  	  
(cluster	  10	  
without	  EGR)	  

21	  	  
(randomized	  
selection)	  

Table 16 TC evaluation of gene content in network modules during GRN model construction 
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6.2.8.3 Model parameters 

Parameters were initialized randomly and then evolved over 2000 generations with a 

genetic algorithm. Following parameters were used to build each model of tumor cell GRN: 

 

 

Model	  parameters:	   	  
Number	  of	  generations	   2000	  
Population	  size	   700	  
Runs	   1500	  
Mutation	  rate	   0.01	  
	   	  
Euler	  integration	  parameters:	   	  
Time	  delay	   15	  
Time	  step	  size	   0.05	  
Interpolation	  points	  resulting	  from	  time	  step	  size	   480	  
	   	  
CTRNN	  parameters:	   	  
Initialization	  of	  parameters	   Randomized	  
Sigmoidal	  activation	  function	  interpolation	  points	   1000	  
Range	  of	  interaction	  weights	   10	  
Offset	  range	   2.6	  
Decay	  range	   2.4	  
Minimal	  time	  constant	  of	  decay	   0.1	  
Delay	  range	   20	  
Range	  of	  initial	  input	   15	  
Fitness	  points	  (how	  many	  interpolation	  points	  are	  evaluated	  with	  the	  
mean	  square	  error	  function)	  

480	  

Second	  input	  beginning	   50	  interpol.	  points	  (=2.5	  hours)	  
Period	  of	  the	  second	  input	   5	  minutes	  
Amplitude	  of	  the	  second	  input	  relative	  to	  the	  learned	  first	   0.1	  
Input	  halflife	  in	  minutes	   0.5	  
Tension	  of	  the	  spline	  interpolation	  of	  the	  data	   1.0	  (<<1	  cubic,	  >>1	  linear)	  

Table 17 TC GRN model parameters 
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6.2.8.4 Fitness evaluation 

Fitness was evaluated with the MSE function for the 140 as well as 480 interpolated points 

in the time series for the same reason as it was the case for the PSC model (6.1.7.3). 

The dashed line represents the experimental values, black lines are the modeled solutions and 

dashed-and-dotted lines represent the external input functions. Fitting for all 4 models was 

successful with a rate of >96% fit to experimental data (Figure 49).  

 

Figure 49 High fitness of model to experimental data has been achieved 
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6.2.8.5 Selection-driven model evaluation 

Interaction networks produced from each of the models’ weight matrices provide a visual 

comparison (Figure 50-54). The most complete set of interactions is achieved with model 2 

(Figure 51). Green arrows represent inhibition, red activation. In each of the sub-models, the 

unchanging interactions are either black or gray (inhibition or activation), while lost interactions 

are plotted in blue (regardless of what type of an interaction it was). 

  

Figure 50 Complete gene selection for reverse engineering of the TC gene regulatory network  

 

Figure 51 Evaluation of interactions with an EGR-only gene cluster 10 
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Figure 52 Evaluation of interactions with all genes except EGR’s in cluster 10 

 

 

Figure 53 Randomized gene selection 
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6.2.8.6 Interaction matrix and the resulting network visualization 

Model 2 genes (Table 18, Figure 54) formed the modules in the TC#3 GRN, interactions 

reverse engineered with CTRNN were converted from a matrix of effective weights into an 

interaction network (Figure 55). 

 

Cluster	   Selected	  genes	  (TC	  treated	  with	  stimulated	  PSC	  à	  Exp.3)	  
1	   CEBPD	   	   	   	   	  
2	   GRHL1	   TRIM16	   	   	   	  
3	   PCGF5	   DUSP2	   	   	   	  
4	   -‐	   	   	   	   	  
5	   ARNTL2	   	   	   	   	  
6	   AGA	   FAM129A	   PHF14	   SAT1	   WDR78	  
7	   FGF18	   	   	   	   	  
8	   SPHK1	   SQSTM1	   RELB	   BCL3	   	  
9	   ANK2	   DUSP1	   FOS	   HES1	   	  
10	   EGR1	   EGR2	   EGR3	   EGR4	   	  

Table 18 Tumor cell model gene selection 

 

 

Figure 54 Gene expression kinetics used for the final TC model 
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Figure 55 Interaction network (red for activation, and green for inhibition). Only effective weights 

are plotted accounting for the offset parameter value corresponding to the identified system noise  
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As gene clustering analysis (6.2.4.1) and model show (Figure 55), unlike in stellate cells, where 

the main role of the early response genes is to receive, integrate and divert the initial stimulus into 

a single central hub, which passes it to its downstream targets, in TC, the early response genes 

(module 10 EGRs) seem to be both, the recipient of the initiating stimulus, and the main response 

hub, as they transduce the signaling to downstream targets, and receive only a very limited 

feedback from them. The first targets of that signaling are primary delayed and secondary 

response genes, which GO describes as responsible for cell-cell communication, regulation of 

growth and proliferation, as well as metabolic processes, cellular processes and response to stress 

and stimulus. These modules feed the signaling further towards the intermediate genes (transition 

module containing genes responsible for signal transduction, regulation of gene expression and 

ion binding). Finally a module of late genes seems to integrate not only the direct initial stimulus 

from the early genes, but is most likely amplified by the autocrine feedback in TC (immune 

response, response to stimulus, regulation of proliferation, differentiation and apoptosis). The 

result of TC treatment with stimulated PSC is a response, which can be defined as a cytokine 

profile, that likely acts in vivo in an autocrine manner on TC as well as a perpetuating stimulus on 

PSC. Although we do see genes upregulated past 24 hours e.g. cluster 4 complement members 

(removed from the final model), the remaining clusters show a decline at the 24-hour time point. 

This overall lack of a permanent switch in TC may mean that the interactions with PSC are one of 

many signals necessary to drive them in the direction of a cell-fate decision. 

 

6.2.8.7 Model system selection using LLE 

Largest Lyapunov Exponent was used to identify systems, which show the most robust 

response to perturbation (see section 5.7.3 and Supplementary materials of Busch et al. 2008). 

The final systems used for in silico simulations and knockdowns were selected by ranking them 

using both the robustness and fitness criterion at the same time, and taking those that rank the 

highest on both scales. The LLE method is described in more detail in our paper, Busch et al. 

(2008). 
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6.2.8.8 In silico simulations 

6.2.8.8.1 Inputs 

Extracellular input evaluation was performed to establish whether tumor cell GRN is 

capable of retaining its state in the absence of supportive secondary inputs. At the modeling stage 

we clearly predefine the inputs to account for the in vitro situation, where the initial signal is of 

paracrine nature coming from stellate cells, in our case from supernatant stimulation, and 

secondary signal is the autocrine feedback produced by TC. Mathematically they are defined as 

an exponentially decaying function (Figure 56 A) and a sine function (Figure 56 B) respectively. 

Simulations allow us to alter those functions on the fly to evaluate the system behavior in 

changing conditions. The vital parameters for those functions are their amplitudes (derived from 

the neural network model, evolved over many generations with the genetic algorithm), and input 

decays (either evolved or preset). Results of input modifications show that to achieve an optimal 

fit of model to the experiment a decaying input mimicking the paracrine signal has to be trailed 

by a continuous secondary (periodic) function. This suggests that the tumor-stellate cell 

interactions are forming a perpetuating cycle and are not of switch-like nature. 

a.  

b.   

c.  

Figure 56 Evaluating input functions allows us to achieve the optimal fit of tumor cell model to the 

experimental data: A. Single exponentially decaying input; B. Two inputs; C. Continuous secondary 

input 
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6.2.8.8.2 TC Knockdowns 

Knockdown screen was performed for all modules in the network. In general TC 

knockdowns have proven less effective than PSC, mostly due to ambiguous gene kinetics, its 

greater signaling complexity, and as a result greater stability and overall redundancy.  

 

a.  à  

b.  

Figure 57 A. Simulation of the native system without knockdowns vs. the knockdown of cluster 10 

genes. B. Effect of the cluster 10 knockdown on the remaining genes in the network (red: 

experimental interpolated data, black: knockdown simulation). 
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TC GRN knockdowns have revealed module 10 (EGR1-4) as the weakest point in the 

network (Figure 57) of the final model. Knocking it out resulted in the strongest single-module 

knockdown effect, affecting all the other modules in the network. 

All earlier models were also investigated in addition to the final set, and across all of them, 

knockdowns of modules 1 (CEBPD) and 9 (Fos, Hes1, Ank2, Dusp1) have had a measurable 

impact on the system, however depending on the content of the 10th cluster (presence or lack of 

EGRs) the changes were more or less pronounced, in all cases however the system recovered after 

24h if the extracellular input (periodic) was preserved. However in case of models without EGRs 

in module 10, its knockdown had no effect.  

The earliest model built with the metagene approach, has shown results confirming Model 

1 (complete 35 gene selection, see Table 16), assuring the earlier assumption of the metagene 

being an effective, albeit averaged representative of the network modules. 

 

Interestingly, we were able to show that it is possible to achieve a system-wide breakdown 

of control in TC, by performing a double-node knockdown of EGR1-4 and CEBPD genes 

(module 10 and 1 respectively) (Figure 58). The genes are ‘freed’ from constraints of inhibition 

and activation within the network. This finding while interesting is not usable in practical terms 

for two reasons: first, we are attempting to break down a network by downregulating its responses 

and not actually upregulating them, as is visible for some of the genes in that knockdown; second, 

a multi-module knockdown is not feasible in vivo due to its high toxicity. 
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a.       b.  

c.  

Figure 58 Effect of the in silico knockdown of clusters 1 & 10 on the remaining regulatory network. 

A. native simulation, B. knockdown simulation, C. knockdown simulation for each of the network 

modules (black: simulated, red: experimental) 

 

Since this correlation of CEBPD and EGR effect is rather striking, we investigated the 

known interactions between the EGR and the CEBP gene families using pathway analysis (Figure 

59). The results have confirmed our suspicions of interdependency between those genes. 

Especially interesting in this context is the work of Carro et al., who have investigated C/EBPβ 

and linked it to the transcriptional network for mesenchymal transformation (EMT) of brain 

tumors (Carro et al. 2010) suggesting that there may be potential for cell-fate decisions between 

these two gene sets. 
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Figure 59 Known (literature-derived) links between EGR and CEBPD gene families are unveiled via 

the direct interactions of EGR1/2 with CEBPB and indirect interactions with other genes of both 

families 

 

Armed with the modeling and simulation results the EGR genes became a likely target for in vitro 

validations, however the specificity of those genes had to be evaluated first using our TC#2 

control experiment. 
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6.2.9 Significance and specificity of EGR knockdowns in tumor cells  

Selection of EGRs as targets was shaped by the outcome of the in silico knockdown in TC. 

Several questions arose as a result: How specific is the EGR knockdown? Are the EGRs equally 

as important when quiescent PSC stimulate TC, as they are with stimulated PSC treatment? If 

they are, then gene selection is invalid, because the changes in expression of EGRs are not related 

to the specific form of stimulus, but are an unspecific reaction, which may be induced by a 

random stimulus. 

6.2.9.1 Control model of tumor cells 

GRN model was reconstructed using the control TC dataset (supernatant of quiescent PSC). 

Preserved parameter ranges and gene selection forced gene re-clustering (BC) to account for 

significantly different kinetics between the two experiments. Clustering results were altered from 

the original data set as genes which previously clustered together were separated e.g. cluster 10 

was divided into sub-clusters with varying expression profiles (EGR genes Figure 60). 

 

Figure 60 TC#2 EGR gene kinetics are significantly altered from TC#3 experiment, notice the 

different scales  

 

 Genes showed often reversed, and always different time-resolved expression profiles. 

Additionally, expression levels for nearly all genes were also drastically different (usually 

significantly decreased as shown in 6.2.5). Organizing those genes into the same modules as in 

experiment 3, without additional evaluation made no biological sense, as the underlying idea of 

clustering was to identify genes, which may act in a synergistic manner, therefore only non-

redundant gene clusters were used. Effectively we retained a set of genes representing unique 

original clusters 2 (GRHL1), 6 (FAM129A, WDR78), 9 (FOS, HES1), and separated cluster 10 

into 4, one for each EGR. Producing the final set of network modules: EGR1, EGR2, EGR3, 

EGR4, GRLH1, FOS/HES1, FAM129A/WDR78, KLF10/ZFP36, RELB/BCL3. 
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6.2.9.2 Interaction networks 

Resulting model weight matrix was translated into an interaction network of effective 

weights (Figure 61.A). Only two effectively connected modules were identified in this sparsely 

connected network including: EGR1, and FOS/HES1. As expected this result was in strong 

disparity with TC#3 effective weights interaction network (Figure 61.B). 

 

a.  b.  

Figure 61 Comparison of TC interaction networks (effective weights) in experiment 2 (a) and 

experiment 3 (b) 
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6.2.9.3 In silico simulations and knockdowns in TC control experiment 

Simulations were performed with the same inputs as defined for experiment 3. Unlike 

experiment 3, where all genes in the network were up-regulated, here we had a strong presence of 

downregulated modules, therefore the input functions were allowed to evolve into both: negative 

as well as positive values (accounting for an inhibitory effect of the extracellular stimulus).  

EGR1 silencing compared to the full system simulation (Figure 62) showed no effect (minor 

changes in EGR2 and EGR3 gene kinetics). FOS/HES1 effect was much stronger as genes, which 

were downregulated due to the action of this cluster, upon its knockdown became significantly 

upregulated. 

 

 

Figure 62 Simulations and knockdown evaluation of tumor cell control experiment 

 

In silico knockdowns showed lack of EGR effect on network topology, confirming cell and 

condition specificity of EGR genes identified in TC#3. 
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6.2.10 Integration of the stellate and tumor cell models 

To verify resolved interactions in the TC#3 GRN in the context of actual PSC microarray 

data, an integration of signaling was performed by replacing the mathematically simulated 

external stimuli (exponentially decaying function mimicking supernatant stimulation, and a 

secondary sustaining sine function corresponding to autocrine feedback loops and secondary 

paracrine stimulation) with an actual signature of secreted factors from PSC (Table 9). That 

signature was constructed by taking spline interpolated mean of all involved expression kinetics, 

and a 2.5h delay was added to account for the time necessary for the cytokines to be produced, 

secreted and accumulated in the extracellular space before they become available to TC (Figure 

63). CTRNN parameters were preserved and input amplitude was allowed to evolve in the 

network.  

 

Figure 63 Schematic representation of model integration via the secreted protein gene expression 

profile of stimulated stellate cells acting on tumor cells. 

 

Data used here were cross-experimentally re-normalized, and re-clustered adding cluster 11 

(SKIL, TRIM36 and ZEB1), which showed an altered expression profile, and removing FGF18, 

which was lost in the cross-experimental filtering. 
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Resulting model showed a 95% fit to the experimental data  (Figure 64) and preserved 

topology for a core set of interactions including the EGR gene family (Figure 65).  

 

Figure 64 Fitness evaluation over complete time series in the integrated model 

 

Figure 65 TC regulatory network reconstructed with a PSC cytokine signature shows a preserved 

core of interactions (blue frame) including cluster 10 (EGR genes)  

  

Integrated Exp.1 and Exp.3 (20091005)Experiment 3 (20090212)
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6.2.10.1 Tumor cell output 

Biological output of TC in response to stimulation with PSC supernatant was in the form of 

an altered GRN, and was also measurable by a changed profile of secreted proteins. Cytokines 

and chemokines produced by TC affect the microenvironment in a wide range of feedbacks. We 

have identified 31 soluble factors in TC#2, and 32 in TC#3 using GO (Table 19 and Table 20) 

among the top 500 upregulated and ranked genes in both sets. 

 

	   Response	  of	  tumor	  cells	  treated	  with	  stimulated	  stellate	  cell	  supernatant	  from	  top	  500 ranked genes 
CXCL1	   chemokine	  (c-‐x-‐c	  motif)	  ligand	  1	  (melanoma	  growth	  stimulating	  activity,	  alpha)	  	  
CXCL2	  	  	   chemokine	  (c-‐x-‐c	  motif)	  ligand	  2	  	  
CXCL3	   chemokine	  (c-‐x-‐c	  motif)	  ligand	  3	  	  
CXCL5	   chemokine	  (c-‐x-‐c	  motif)	  ligand	  5	  	  
CXCL6	   chemokine	  (c-‐x-‐c	  motif)	  ligand	  6	  (granulocyte	  chemotactic	  protein	  2)	  	  
CX3CL1	   chemokine	  (c-‐x3-‐c	  motif)	  ligand	  1	  	  
CLCF1	   cardiotrophin-‐like	  cytokine	  factor	  1	  	  
CXCL10	   chemokine	  (c-‐x-‐c	  motif)	  ligand	  10	  	  
IL6R	   interleukin	  6	  receptor	  	  
IL8	   interleukin	  8	  
IL15	   interleukin	  15	  	  
IL32	   interleukin	  32	  
TNF	   tumor	  necrosis	  factor	  (tnf	  superfamily,	  member	  2)	  
HBEGF	   heparin-‐binding	  egf-‐like	  growth	  factor	  
FGF18	   fibroblast	  growth	  factor	  18	  
WNT6	   wingless-‐type	  mmtv	  integration	  site	  family,	  member	  6	  
CSF1	   colony	  stimulating	  factor	  1	  (macrophage)	  
CSF3	   colony	  stimulating	  factor	  3	  (granulocyte)	  
SERPINE1	   serpin	  peptidase	  inhibitor,	  clade	  e	  (nexin,	  plasminogen	  activator	  inhibitor	  type	  1),	  member	  1	  
C3	   complement	  component	  3	  
SHH	   sonic	  hedgehog	  homolog	  (drosophila)	  
PTX3	   pentraxin-‐related	  gene,	  rapidly	  induced	  by	  il-‐1	  beta	  
BTC	   betacellulin	  
SFN	   Stratifin	  
GAL	   galanin	  
ANGPTL4	   angiopoietin-‐like	  4	  
PLAT	   plasminogen	  activator,	  tissue	  
FAM20C	   family	  with	  sequence	  similarity	  20,	  member	  c	  	  
CFB	   complement	  factor	  b	  
PRSS35	   protease,	  serine,	  35	  	  
HEG1	   heg	  homolog	  1	  (zebrafish)	  
PLAUR	   plasminogen	  activator,	  urokinase	  receptor	  

  Table 19 32 soluble factors identified with David GO among top 500 upregulated genes in 

TC#3 (supernatant of stimulated PSC) 
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	   Response	  of	  tumor	  cells	  treated	  with	  quiescent	  stellate	  cell	  supernatant	  from	  top	  500 ranked genes 
WNT6	   wingless-‐type	  mmtv	  integration	  site	  family,	  member	  6	  	  
RBP4	   retinol	  binding	  protein	  4,	  plasma	  	  
MMP13	   matrix	  metallopeptidase	  13	  (collagenase	  3)	  	  
GDF15	   growth	  differentiation	  factor	  15	  	  
IGHG1	   immunoglobulin	  heavy	  constant	  gamma	  1	  (g1m	  marker)	  	  
LOXL2	   lysyl	  oxidase-‐like	  2	  	  
CEACAM1	   carcinoembryonic	  antigen-‐related	  cell	  adhesion	  molecule	  1	  (biliary	  glycoprotein)	  	  
PLAUR	   plasminogen	  activator,	  urokinase	  receptor	  	  
LAMC1	   laminin,	  gamma	  1	  (formerly	  lamb2)	  	  
SERPINE1	   serpin	  peptidase	  inhibitor,	  clade	  e	  (nexin,	  plasminogen	  activator	  inhibitor	  type	  1),	  member	  1	  	  
CCL5	   chemokine	  (c-‐c	  motif)	  ligand	  5	  	  
SFRP1	   secreted	  frizzled-‐related	  protein	  1	  	  
ANGPTL4	   angiopoietin-‐like	  4	  	  
MUC15	   mucin	  15	  	  
IGHG3	   immunoglobulin	  heavy	  constant	  gamma	  3	  (g3m	  marker)	  	  
MMP1	   matrix	  metallopeptidase	  1	  (interstitial	  collagenase)	  	  
LTBP2	   latent	  transforming	  growth	  factor	  beta	  binding	  protein	  2	  	  
TFPI	   tissue	  factor	  pathway	  inhibitor	  (lipoprotein-‐associated	  coagulation	  inhibitor)	  	  
KLK7	   kallikrein	  7	  (chymotryptic,	  stratum	  corneum)	  	  
CTGF	   connective	  tissue	  growth	  factor	  	  
SERPINA3	   serpin	  peptidase	  inhibitor,	  clade	  a	  (alpha-‐1	  antiproteinase,	  antitrypsin),	  member	  3	  	  
CYR61	   cysteine-‐rich,	  angiogenic	  inducer,	  61	  	  
GSN	   gelsolin	  (amyloidosis,	  finnish	  type)	  	  
SPARC	   secreted	  protein,	  acidic,	  cysteine-‐rich	  (osteonectin)	  	  
PSG6	   pregnancy	  specific	  beta-‐1-‐glycoprotein	  5	  	  
PLAU	   plasminogen	  activator,	  urokinase	  	  
INHBE	   inhibin,	  beta	  e	  	  
SPINLW1	   serine	  peptidase	  inhibitor-‐like,	  with	  kunitz	  and	  wap	  domains	  1	  (eppin)	  	  
IGFBP4	   insulin-‐like	  growth	  factor	  binding	  protein	  4	  	  
PSG9	   pregnancy	  specific	  beta-‐1-‐glycoprotein	  9	  	  
LIPG	   lipase,	  endothelial	  

  Table 20 31 Soluble factors identified with David GO among top 500 upregulated genes in 

TC#2 (supernatant of quiescent PSC)  
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6.2.11 Tumor cell summary  

Experiments PSC#1 and TC#3 form a logical chain of events in the transformed tissue 

where the initialization of PSC by TC is closely followed by a stimulation of those TC through 

the secreted factors coming from PSC in a feedback loop. This loop extends further beyond our 

experimental setup with TC responding to the stimulation with an altered profile of secreted 

proteins likely affecting PSC in a paracrine feedback. While evaluating microarray data we 

investigated only the transcriptional level of organization (assuming that the protein level 

approximately follows the transcript levels in the cells) and ignoring any posttranslational 

modifications, which are otherwise known to alter cell regulation, and any mechanistic effects 

related to the proximity of the cells in vivo. 

  

 

Figure 66 Sequence of events taking place in the tumor microenvironment between TC and PSC 
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Our complexity reduction approach has allowed us to perform both a quantitative (model) 

and qualitative (functional genomics) analysis of the inter- and intra-cellular interactions of tumor 

and stellate cells, with a focus on the GRNs arising in response to the stimulus coming from the 

other respective cell type. Due to the nature of the tissue organization in vivo, it is clear that the 

impact of TC and PSC on each other is continuous and cannot be completely resolved in an 8-

point time series. It is also necessary to understand that in the final stage of intercellular 

connection identification, we are not investigating the tumor onset, but rather the more stable 

state of an established system, where PSC have been pre-activated in tissue, and TC have 

previously seen PSC. Our analysis of time-resolved microarray data, clustering, and GRN models 

showed that the immediate response of cancer cells to primed stellate cell stimulation comes via 

the activation of early response transcription factors including: 

EGR1 (involved in the MAPK pathway, also mediates up-regulation of epidermal growth factor 

receptor expression during hypoxia, was implicated in carcinogenesis and cancer progression, 

especially metastasis, and was also linked to the MEK1/ERK1/2 pathway coupling between the 

CCK2 receptor and nuclearization and DNA binding of Egr-1 (Leung-Theung-Long et al. 2005)); 

EGR2 and EGR3 (both have direct links to FasL ligand (CD95L death ligand) and can induce 

apoptosis in various cancer cell lines by direct transactivation of BNIP3L and BAK (Unoki et al. 

2003), although experimental evidence exists suggesting that EGR2 does not directly induce 

CD95L (Li-Weber et al. 2003); and EGR4 implicated in mitogenesis and differentiation. 

(RefSeq). These 4 genes feed the signals into the other connected network modules, which 

include transcriptional factors, repressors and enhancers in the cancer cells, and it seems that 

functionally the most important among them are: 

CEBPD (recognizes similar DNA sequences in their target genes and form homo- or hetero-

dimers with other C/EBPs, as well as with transcription factors of the NF-κB and Fos/Jun 

families);  

AP1 member: FOSB, JUNB. Each of the FOS family of proteins can dimerize with proteins of 

the JUN family, as well as ATF factors forming the transcription factor complex AP-1. Genes of 

the FOS and JUN families have been implicated as regulators in cell cycle progression, 

differentiation, and cell death, and were shown to affect transformation (in e.g. squamous cell 

sarcoma, Hodgkin lymphoma). AP1 has been shown to possess a remarkable capability for 

decision-making and antagonistic features in nearly all processes it affects depending on the 

cellular context (Hess et al. 2004). 

SOX8 (involved in the regulation of embryonic development and in the determination of the cell 

fate);  
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ATF4 Activating transcription factor 4 has been shown to have among others a role in regulating 

VEGF expression, as well as responses to hypoxic stress (Afonyushkin et al. 2010); 

ATF5 shown to increase cisplatin-induced apoptosis through up-regulation of Cyclin D3 

transcription (Wei et al. 2006); 

NFΚB2 implicated in survival, apoptosis, immune and inflammatory responses, and cell growth. 

Correlates with autoimmune arthritis, asthma, septic shock, lung fibrosis, glomerulonephritis, 

atherosclerosis (Chen et al. 1999 and Baldwin 1996) 

TNFAIP2 induced by TNF signaling interconnects with life and death pathways via JNK, NFκB 

(RefSeq);  

KLF10 – Krueppel-like Factors have a broad range of effects including proliferation, 

differentiation, development, and programmed cell death.  They have guilt by association 

connection with signaling hubs such as SP1, which while not present in our dataset in significant 

amounts, may be a significant player in signal distribution. KLF10 has been associated with t-cell 

differentiation and activation, role in development of the heart (fibrosis and myocyte disarray as a 

result of KLF knockouts in mice) (McConnell et al. 2010)  

ZEB1 a zinc finger transcription factor plays a role in transcriptional repression of interleukin 2 

and its best-described biological function is the induction of EMT in epithelial cells (Wellner et 

al. 2010). Arumugam et al. 2009 suggest that ZEB1 and other regulators of EMT may maintain 

drug resistance in human pancreatic cancer cells, and therapeutic strategies to inhibit ZEB1 and 

reverse EMT should be evaluated. 

 

In silico simulations of the TC model provided two potential targets for experimental 

validation (EGRs, and CEBPD). EGRs showed the strongest single-module knockdown effect in 

silico, therefore they were selected for validation. 
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6.3 Intercellular signaling 

In order to decipher the intercellular signaling patterns a multi-stage approach (see 5.8) was 

used in which first the soluble factors among the top 500-upregulated genes in each experiment 

were identified using GO and pathway tools (aforementioned). Altogether 39 factors in PSC (#1), 

31 in TC (#2), and 32 in TC (#3) were derived (Table 9, Table 19, and Table 20) with only 2 

shared across all (ANGPTL4, PLAUR). TC setups provided divergent sets of signatures with only 

2 factors shared (Serpine1, WNT6), proving a stimulus-dependent induction of signaling (Figure 

67). 

 

Figure 67 Venn diagram comparing secreted factors identified among top 500 ranked genes in all 

three experiments reveals only 1 gene overlapping all sets. 

 

In the second stage of this procedure a knowledge-driven approach was applied to link 

reverse engineered GRN with cell-specific soluble factors as proposed in section 5.8. For this 

purpose the intercellular signaling was divided into 3 main phases covering the separate outputs 

of all investigated cells (Figure 68).  

The GRNs were explored with transcription factor binding site analysis (TFBSA) to 

discover the lowest level of regulation, from which data were extrapolated using a non-specific 

(tissue, cell-type, disease) literature-driven Ariadne Pathway Studio to encompass all levels of 

signaling. Pathway analysis was applied to each data set with the correct direction of regulation in 

search of the shortest path connecting either common targets or common regulators of the derived 
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TF. To ensure condition-specific signal identification, filtering of pathway analysis results was 

performed against each corresponding microarray data set. Downregulated genes, and in general 

any genes whose expression never exceeds log2 fold change value of 0.5 were not taken into 

consideration with the exception of the search for constitutively expressed factors for which each 

dataset was taken in its normalized, but unfiltered form. 

 

Figure 68 Division of signaling into 3 major phases with specific outputs of each cell type of interest 
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6.3.1 Output 1: Initialization of communication between TC and PSC 

We showed through microarray and model analysis that PSC behavior was significantly 

altered after initial stimulation with TC (summary effect of 8 cell lines). We therefore recognized 

that constitutively secreted proteins produced by TC were sufficient to be identified by, and to 

stimulate PSC. Cytokines constitutively secreted by TC were identified from the controls of 

experiment 2 and 3. This initiating signal affected PSC and we deciphered (Figure 69) it into: 

- the GRN model of PSC (#1)(upregulated genes), and 

- a cluster of approximately 150 genes, which is representative of the majority of 

downregulated genes in this experiment (cluster 10) 

 

Figure 69 Stimulation elicits inhibition and activation of genes in the target cells (PSC) 

The activation of genes resulted in the formation of the GRN as identified with modeling (see 

section 6.1.7). From this model the most significant module was the central hub containing HIRA, 

APOL6, PHACTR2, and MALAT1. Those genes were used for TFBSA analysis to identify the 

underlying TFs (Figure 70)(3 significant with a p-value < 0.05: NRSF, CRX, NR5A2 and 

additional 6 with p-value (0.1 > pVal. > 0.05): SZF1, RFX, OG2, DBP, NKX25, KID3). 

 

Figure 70 TFBSA heat map result showing the statistically significant p<0.05 (red) transcription 

factors whose binding sites are overrepresented for the central hub genes 
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An additional stage of TFBSA analysis was applied to the top 250-upregulated genes in PSC 

dataset and resulted in a list of 14 TF (CREB, E2F, EGR1, ETF, ETS1 (c-ETS-1, p54), HIC1, 

IRF1, PAX-4, SP1, STAT2 (ISGF3), TAX, TEL-2, TFAP2A (AP2), ZF5 (ZFPI161)). 

The derived TFs (Figure 70) were used for pathway reconstruction using Ariadne Pathway 

Studio (Figure 71), which allowed us to build the shortest pathways by expanding them from the 

starting set in search of the extracellular and membrane proteins, which regulate them.  

 

 

Figure 71 Pathway studio sample result – common regulators of three major transcription factors in 

stellate cells. Pathway studio provides options to separate signaling into cell compartments and 

easily identify interactions between any and all of the involved genes. 
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Analysis of the PSC GRN-derived TFs (TFBSA) in Pathway Studio has yielded a total of 

82 soluble factors, all filtered against the experimental microarray datasets to ensure PDAC-

specificity (initial Pathway Studio are tissue/cell-type/disease unspecific).  

Genes were further filtered to identify unique patterns, where each soluble factor was 

investigated for its presence in the dataset of the other cell type, both changing among top 

regulated genes and at a constitutive level in controls. This stage ensured that on one hand no 

significant genes were lost, as even if they overlapped between cells on a constitutive level they 

were assigned to the correct group, and on the other hand all factors expressed uniquely by only 

one cell type were identified providing an overview of stimulus-dependent cues. TC datasets #2 

and #3 were generated with MiaPaCa2 TC, whereas PSC setup #1 stimulation was performed 

with a combined set of 8 TC cell lines, therefore an additional inspection of all genes of interest 

was carried out against the Oncomine database (Wagner CellLines dataset) for all of the 

remaining and available lines (MiaPaCa2, Panc1, BxPC3, SU8686, Capan1, Aspc1). Finally 

genes were divided into three unique groups based on the expression levels in each cell type 

(Figure 72).  

 

 

Figure 72 Gene expression grouping in stellate cells 

 

Group 1 genes (TC ì, PSC ì)  (VEGF, DKK1, CTGF, TGFβ1), which were highly 

constitutively expressed in both cell types (and all TC cell lines of interest) form a homeostatic-

like, rich microenvironment, which most likely provides the background for the subsequent signal 

formation, but is unlikely to affect the regulatory dynamics in the forming GRN reverse 
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engineered in PSC #1. This group was additionally augmented with all the different genes 

produced constitutively or inducible in response to treatment from both cell types e.g. genes 

showing a variance across different TC cell lines (cross-referenced with Oncomine)(FN1, 

ADAMTS1, PLAT, BDNF, ADM). 

 

Group 2 genes (TC ì, PSC î) uniquely target the intracellular GRN dynamics of PSC and 

were highly expressed by TC in either all (MMP9, CTSE), or some of TC cell lines (LAMA2, 

CCL5, PGF, NPPA, CSF1, FGF2), and not by PSC. This group was additionally augmented with 

genes, which initially showed low expression in MiaPaCa2 TC and PSC, but were upregulated in 

the other TC lines (MMP7, LAMC2, PTHLH, CCL8, EGF, BMP2, MMP13). 

 

Group 3 genes (TC î, PSC ì) in general form the unique signaling path from stellate cell 

into tumor cells, however when expressed on a constitutive level and not inducible these factors 

are more likely affecting PSC in an autocrine feedback loop (e.g. INHBA, CCL2, MMP14). They 

are therefore most likely significant for the formation of the stellate cell environment. 

 

Additionally a set of membrane-bound proteins was identified on PSC stimulated by the 

initialization signal from TC and included: 

 
Membrane/membrane bound proteins in PSC: AKAP12, AKAP5, CAV1, EGFR, 
ESR1, PDC, PPARG, PTGS2 
 
Nuclear receptors: NR0B1, NR1H2, NR5A1, NR5A2 
 

KEGG	  Pathways	  for	  secreted	  proteins	   	  

MAPK	  signaling	  pathway	   adjP=2.90e-‐06	  

Cytokine-‐cytokine	  receptor	  interaction	   adjP=2.90e-‐06	  

Hypertrophic	  cardiomyopathy	   adjP=3.30e-‐06	  

Dilated	  cardiomyopathy	   adjP=3.30e-‐06	  

Hematopoietic	  cell	  lineage	   adjP=3.30e-‐06	  

Pathways	  in	  cancer	   adjP=3.30e-‐06	  

Graft-‐versus-‐host	  disease	   adjP=9.43e-‐05	  

Type	  I	  diabetes	  mellitus	   adjP=9.43e-‐05	  

mTOR	  signaling	  pathway	   adjP=0.0001	  

Pancreatic	  cancer	   adjP=0.0001	  

Table 21 KEGG pathway analysis of secreted proteins 
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6.3.1.1 Inhibiting signals 

An additional evaluation of inhibited genes in PSC was performed for cluster (10) (see 

6.1.4.1). Genes were analyzed with TFBSA to identify the underlying TF, which then were used 

in Pathway Studio to identify extracellular proteins affecting them. Overlap with microarray data 

provided tissue-specific factors including: 

 
Secreted: AGT, EDN1, EGF, FGF2, FGF8, HGF, IGF1, IL1B, IL4, IL8, INS, 
LEP, TGFB1, TNF, VEGF. 
 
Membrane/membrane bound: AHR, EGFR, ESR1, KITLG, PPARG, PTGS2, RXRA, VDR,  
 
Nuclear receptors: NR0B1, NR1H4, NR2F1, NR4A1, NR5A2 

 

KEGG pathways analysis was performed using WegGestalt. Top 10 results are shown in Table 22 

and Table 23. 
KEGG	  pathways	  for	  secreted	  proteins	   	   	  

Cytokine-‐cytokine	  receptor	  interactions	   TGFB1,	  TNF,	  HGF,	  LEP,	  IL1B,	  EGF,	  IL8,	  IL4	   adjP=1.25e-‐13	  

Pathways	  in	  cancer	   TGFB1,	  HGF,	  FGF8,	  FGF2,	  EGF,	  IL8,	  IGF1	   adjP=5.51e-‐11	  

Melanoma	   HGF,	  FGF8,	  FGF2,	  EGF,	  IGF1	   adjP=1.78e-‐10	  

MAPK	  signaling	  pathway	   TGFB1,	  TNF,	  IL1B,	  FGF8,	  FGF2,	  EGF	   adjP=9.82e-‐10	  

Type	  I	  diabetes	  mellitus	   TNF,	  IL1B,	  INS	   adjP=2.03e-‐06	  

Regulation	  of	  actin	  cytoskeleton	   FGF8,	  FGF2,	  INS,	  EGF	   adjP=2.66e-‐06	  

NOD-‐like	  receptor	  signaling	  pathway	   TNF,	  IL1B,	  IL8	   adjP=4.13e-‐06	  

Hypertrophic	  cardiomyopathy	   TGFB1,	  TNF,	  IGF1	   adjP=8.65e-‐06	  

Hematopoietic	  cell	  lineage	   TNF,	  IL1B,	  IL4	   adjP=8.65e-‐06	  

Prostate	  cancer	   INS,	  EGF,	  IGF1	   adjP=8.65e-‐06	  

Table 22 KEGG pathway analysis of secreted proteins 

KEGG	  pathways	  for	  membrane	  proteins	   	   	  

Pathways	  in	  cancer	   KITLG	  PTGS2	  PPARG	  EGFR	  RXRA	   adjP=1.17e-‐05	  

Thyroid	  cancer	   PPARG	  RXRA	   adjP=0.0007	  

Non-‐small	  cell	  lung	  cancer	   EGFR	  RXRA	   adjP=0.0014	  

PPAR	  signaling	  pathway	   PPARG	  RXRA	   adjP=0.0018	  

Small	  cell	  lung	  cancer	   PTGS2	  RXRA	   adjP=0.0021	  

Cytokine-‐cytokine	  receptor	  interaction	   KITLG	  EGFR	   adjP=0.0137	  

MAPK	  signaling	  pathway	   NR4A1	  EGFR	   adjP=0.0137	  

Table 23 KEGG pathway analysis of membrane proteins 

The same general procedure was applied to the remaining outputs. 
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6.3.2 Output 2: Feedback of PSC acting upon TC 

PSC response to the initialization signal was shown in the previous step in the form of an 

identified signature of soluble factors (Table 9). These did not cover the extracellular signaling in 

its entirety, since they were identified among top 500 ranked genes ignoring highly constitutively 

expressed factors, which do not change significantly over time and are filtered out. In order to 

specifically identify the correct subset of soluble factors driving the formation of TC #3 GRN, 

TFBSA and Pathway Studio analysis were performed as described earlier. 

 

1. Identification of secreted factors regulating the core network genes in TC 

Data source: 35 genes used for the TC model analyzed with TFBSA to uncover underlying 

regulation (see 6.2.8.1 Gene selection). Identified TFs were used for Pathway Studio analysis and 

the resulting list of genes encoding secreted proteins, was overlapped (intersection search) with 

stellate cell experiment 1 microarray data set. 

 

2. Identification of TC receptors and membrane-bound proteins affected by secreted proteins from 

PSC and responsible for transducing signals to the internal network in TC. 

Data source: as above, but filtering of the results performed against the TC dataset, in search of 

TC receptors. 

 

3. Identification of PSC cytokine targets in TC – both receptor and membrane-bound 

Data source: genes encoding secreted proteins in stellate cells (experiment 1, Table 9), were used 

for Pathway Studio analysis to identify membrane bound and intracellular proteins. Results were 

filtered against the TC data (experiment 3). 
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Soluble factors from both sets (pathway results and top secreted factors) were combined to 

produce a list of 61 genes (11 shared between the lists). Subsequent analysis was performed to 

produce three main groups of soluble factors (Figure 73) with a subset specifically targeting the 

intracellular dynamics of TC (group 2). 

 

Figure 73 Gene expression grouping of soluble factors in tumor cells experiment #3 

 

Group 1 genes (PSC ì, TC ì) are homeostatic factors, which are inducible in PSC, but 

are also highly constitutively expressed by TC. These factors do not alter the overall homeostasis 

of the TC, unless they are factors with gradient dependent action (chemoattractants) (PLAU, 

S100A6, TFPI, ISG15, PLAUR, GNPTG, VEGFA, LIF, ADM, CLCF1, HBEGF, LCN2, PDGFA, 

PCOLCE2, ANGPTL4, F3). 

 

Group 2 genes (PSC ì, TC î) are focusing factors, which are expressed uniquely by PSC 

and drive the stimulation of TC in setup #3 (DKK3, TIMP3, TFPI2, IL6, ESM1, EDN1, IL7R, 

KITLG, CCL20, TNFAIP3, EBI2).  This group was also augmented by selected genes, which 

were unique to only some of the TC cell lines (downregulated) Constitutively high and unique to 

PSC (INHBA, CCL2, DCN, IL6, MMP14 produced by all PSC, and some TC FN1, ADAMTS1, 

PLAT,  BDNF) 

 

Group 3 genes (PSC î, TC ì) Autocrine enhancement, and paracrine feedback into PSC 

(output 3) (SERPINA3, CXCL1, EREG, CXCL5, CXCL3, COL17A1, AREG, CCL5, CXCL2, 

LCN2, IL8, IL11) 
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In addition we also investigated the presence of receptors and membrane bound proteins in the 

unfiltered, and unranked microarray dataset in search of highly constitutively expressed genes, 

which were not changing significantly across the time points (therefore filtered out by the 

standard processing approaches). Factors were divided into two subgroups – the primary group 

contained genes identified with both aforementioned methods (targets of cytokines, and common 

regulators). Secondary group contains factors identified with only one of the two methods. 

 
Membrane/membrane bound (TC): 
 
Primary: AR, BCL2L11, CEACAM1, HMOX1, ICAM1, IL6R, IL6ST, PLAUR,   
Secondary: TNFRSF9, IL20RB, CD83, SDC4, ABCG1 ITGB4, SLC7A5, IFNAR2, 
TGFBR1, SLC3A2, SHH 
Constitutively expressed in TC: IL8RA, IL8RB (CXCR2), CXCR4, CCR6, 
EGFR, LIFR, TFR2, IL11RA, PPARA, ITGB1, PDGFRA. 
 
 
Intracellular (knowledge-driven, present in tumor cell dataset, but not 
necessarily the same as the model genes in TC): BCL2, CASP3, CASP8, 
CCND1, CCNE1, CDKN1A, CEBPB, CFLAR, CTNNB1, DUSP1, EGR1, EGR3, FAM55C, 
FOS, FYN, IRF1, JAK1, JUN, JUNB, PCOLCE2, PTK2, RPS6KB1, SHC1, SPHK1, 
STAT1, TNFAIP3 

 

KEGG analysis has been performed for all sets combined, top 20 results are shown in Table 24. 
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KEGG	  pathways	  analysis	   	   	  

Pathways	  in	  cancer	   CASP3,	  FN1,	  TGFA,	  TGFBR1,	  PTK2,	  CDKN1A,	  FOS,	  CCNE1,	  
JUN,	  CCND1,	  PDGFA,	  CTNNB1,	  JAK1,	  IL6,	  IL8,	  ITGB1,	  SHH,	  
STAT1,	  AR,	  BCL2,	  CASP8	  

adjP=7.73e-‐20	  

Cytokine-‐cytokine	  receptor	  interaction	   LIF,	  PDGFA,	  IL11,	  IFNAR2,	  TNFRSF9,	  CCL20,	  IL6,	  IL6ST,	  IL8,	  
TGFBR1,	  IL20RB,	  IL6R	  

adjP=1.28e-‐09	  

Focal	  adhesion	   PDGFA,	  CCND1,	  JUN,	  FYN,	  CTNNB1,	  SHC1,	  FN1,	  ITGB1,	  
BCL2,	  PTK2,	  ITGB4	  

adjP=1.28e-‐09	  

Jak-‐STAT	  signaling	  pathway	   LIF,	  CCND1,	  IL11,	  IFNAR2,	  JAK1,	  IL6,	  IL6ST,	  STAT1,	  IL20RB,	  
IL6R	  

adjP=1.47e-‐09	  

ErbB	  signaling	  pathway	   JUN,	  RPS6KB1,	  PTK2,	  CDKN1A,	  SHC1,	  AREG,	  TGFA,	  EREG	   adjP=5.31e-‐09	  

Prostate	  cancer	   PDGFA,	  CCND1,	  CTNNB1,	  TGFA,	  AR,	  BCL2,	  CDKN1A,	  
CCNE1	  

adjP=5.86e-‐09	  

Colorectal	  cancer	   CCND1,	  JUN,	  BCL2,	  TGFBR1,	  CASP3,	  CTNNB1,	  FOS	   adjP=1.17e-‐07	  

Toll-‐like	  receptor	  signaling	  pathway	   JUN,	  IFNAR2,	  CASP8,	  FOS,	  IL6,	  IL8,	  STAT1	   adjP=3.23e-‐07	  

Small	  cell	  lung	  cancer	   CCND1,	  BCL2,	  PTK2,	  FN1,	  CCNE1,	  ITGB1	   adjP=2.61e-‐06	  

p53	  signaling	  pathway	   CCND1,	  CASP3,	  CDKN1A,	  CASP8,	  CCNE1	   adjP=1.54e-‐05	  

Glioma	   PDGFA,	  CCND1,	  CDKN1A,	  SHC1,	  TGFA	   adjP=1.54e-‐05	  

Viral	  myocarditis	   CCND1,	  CASP3,	  FYN,	  CASP8,	  ICAM1	   adjP=1.54e-‐05	  

Pancreatic	  cancer	   CCND1,	  TGFBR1,	  JAK1,	  TGFA,	  STAT1	   adjP=2.03e-‐05	  

NOD-‐like	  receptor	  signaling	  pathway	   TNFAIP3,	  CASP8,	  IL6,	  IL8	   adjP=0.0002	  

Natural	  killer	  cell	  mediated	  cytotoxicity	   IFNAR2,	  CASP3,	  FYN,	  SHC1,	  ICAM1	   adjP=0.0003	  

Chronic	  myeloid	  leukemia	   CCND1,	  TGFBR1,	  CDKN1A,	  SHC1	   adjP=0.0003	  

Apoptosis	   BCL2,	  CASP3,	  CASP8,	  CFLAR	   adjP=0.0006	  

Prion	  diseases	   FYN,	  EGR1,	  IL6	   adjP=0.0006	  

ECM-‐receptor	  interaction	   ITGB4,	  FN1,	  SDC4,	  ITGB1	   adjP=0.0006	  

MAPK	  signaling	  pathway	   PDGFA,	  JUN,	  TGFBR1,	  CASP3,	  FOS,	  DUSP1	   adjP=0.0008	  

Table 24 KEGG pathway analysis 

 

KEGG analysis provides a clear division of the identified factors into known pathways, 

corroborating previous GO and pathway results for both cell types. Combined, the unique signals 

converging on PSC and TC provided a list of potential targets to disrupt not only the cell 

intracellular network, but in fact the extracellular signaling responsible for the formation of this 

network, offering the option of breaking the further perpetuation of the TC-PSC signals.  

  



 

     

 

145	  

6.3.3 Output 3: Tumor cells response to the stimulation 

Analysis of the TC#3 response to PSC stimulation was divided into two phases. 

 

1. Identification of soluble factors produced by TC#3.  

Output 3 genes (Table 19) were identified among the most significantly inducible in the 

time-series experiment using GO among on top 500 upregulated genes. Common factors were 

joined into the microenvironment (Figure 67), and an additional screen was performed against the 

PSC genes in search of constitutively highly expressed factors. Each gene identified as highly 

constitutively expressed in PSC and low in TC was also verified among inducible genes, if found 

it was considered as inducible, but aiding the formation of the microenvironment rather than the 

formation of the cell-cell communication. Genes highly constitutively expressed in both cell types 

additionally induced in TC tip the balance in favor of TC. Finally, genes at a low constitutive 

level in both cell types, if induced in TC, would present a significant and unique soluble factor 

most likely inducing further effects on adjacent cells. The last group of primary interest consisted 

of: CXCL6, CX3CL1, CXCL10, IL6R, TNF, FGF18, WNT6, CSF3, C3, SHH, BTC, GAL, CFB. 

 

2. Search for targets of soluble factors.  

This analysis step was speculative, as output 3 could not be validated against an 

experimental target data set (no corresponding measurements of stimulated PSC responding to 

stimulated tumor cells exist).  

 

Data source: Secreted factors identified in experiment 3, no other dataset can be used, and it is a 

speculative search for PSC membrane and intracellular targets of TC cytokines. Pathway studio 

was used to identify targets of tumor cell cytokines. 
Intracellular: BAX, BCL, BIRC3, CASP8, CFLAR, CTNNB1, DUSP1, FOS, 
MAPK1, MAPK8, PTK2 
Receptors and Membrane-bound proteins: EGFR, ICAM1, IL6ST, KITLG, LPL, 
MCL1, PLAUR, PTGS2, TNFRSF11A 

 

As a result of the analysis a complete schema of interactions has been produced Figure 74. 
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6.4 Signaling schema 

 

Figure 74 Signaling schema 
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6.5 Experimental validation 

 In order to confirm the transcript levels of microarray measured genes in PSC and TC we 

performed expression profiling using qRT-PCR for selected genes of interest. Moreover, to 

substantiate in silico simulations and predictions of the behavior of the TC core network genes in 

vitro gene silencing and qRT-PCR of selected genes was executed. This project was additionally 

supplemented by a series of assays including clonogenic, invasion, and MTT, samples were used 

for qRT-PCR measurements to validate identified intercellular connection. Biological readout of 

those assays is beyond the scope of the presented work. 

6.5.1 qRT-PCR gene expression profiling of stellate cells 

qRT-PCR measurements included model genes as well as known markers of stellate cell 

activation: SMACTA2, FOS, EGR-1, IFITM1, OAS, ICAM1(CD54), PTGS2 (Cox2), KLF4, KLF5, 

KLF6, RAGE, HIAP2, IL6, VEGF, IL8, COL1A1, COL4A2, LIF,  CXCL2 (MIP2a), CXCL5 

(ENA78), CXCL12 (SDF-1), Fibronectin (FN1). Time series experiments formed a replicate of 

experiment 1 microarray and confirmed the used expression profiles.  

 

Figure 75 Expression evaluation of stellate cell selected genes of interest in a time series. 
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Central hub genes HIRA, APOL6, PHACTR2, MALAT1 measured by means of microarrays 

(Figure 76) were evaluated using qRT-PCR. The dynamic profiles of MALAT1 and PHACTR2 

were confirmed, unfortunately HIRA and APOL6 measurements were performed using primers 

targeting alternative splice variants resulting in different gene kinetics (confirmed after blasting 

the Affymetrix probe sequences, and PCR primers against the target sequences). The high 

expression levels of the central hub genes in stellate cells were confirmed with snapshot 

measurements from patient tissue samples. The highest levels were identified for MALAT1, and 

PHACTR2, and moderate for HIRA and APOL6. 

 

Figure 76 Microarray data for central hub genes MALAT1, HIRA, APOL6, and PHACTR2 

To identify possible relationships in the gene expression we performed the nonparametric 

Spearman correlation on 3 separate datasets measuring the same set of central hub genes HIRA, 

APOL6, PHACTR2, MALAT1 in: 

1. 20 histologically verified PDAC patient tissues samples (Tissue) 

2. Tumor ASPC1, BxPc3, Capan1, Colo357, MiaPaca2, Panc1, Su8384, T3M5 (TC) 

3. 13 stellate cell samples gathered at various time points (PSC) 

 

	   TC	   PSC	   Tissue	   	   TC	   PSC	   Tissue	  

correlation	   MALAT1	   MALAT1	   MALAT1	   correlation	   HIRA	   HIRA	   HIRA	  
HIRA	   0.018	   -‐0.099	   -‐0.030	   MALAT1	   0.018	   -‐0.099	   -‐0.030	  
PHACTR2	   0.419	   -‐0.088	   0.650	   PHACTR2	   -‐0.027	   0.310	   0.290	  
APOL6	   0.038	   0.863	   0.722	   APOL6	   0.159	   0.319	   0.220	  
	   	   	   	   	   	   	   	  
p-‐Value	   MALAT1	   MALAT1	   MALAT1	   p-‐Value	   HIRA	   HIRA	   HIRA	  
HIRA	   0.948	   0.748	   0.900	   MALAT1	   0.948	   0.748	   0.900	  
PHACTR2	   0.106	   0.775	   0.002	   PHACTR2	   0.920	   0.303	   0.214	  
APOL6	   0.888	   0.0001	   0.0003	   APOL6	   0.556	   0.288	   0.350	  
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	   TC	   PSC	   Tissue	  

correlation	   PHACTR2	   PHACTR2	   PHACTR2	  
APOL6	   0.469	   0.124	   0.642	  
	   	   	   	  
p-‐Values	   PHACTR2	   PHACTR2	   PHACTR2	  
APOL6	   0.067	   0.687	   0.002	  

Table 25 Spearman correlation coefficients and corresponding p-Values for stellate cell central hub 

genes across 3 sets – tumor cell lines, stellate cells, and patient tissue. 

A high correlation was noticed between MALAT1 and APOL6, in both PSC and tissue samples, 

but not TC alone. This suggests a lack of functional coupling between the two genes in TC, at the 

same time confirming their significance in the GRN of PSC.   

 

The known PSC activation markers including α-smooth muscle actin, collagen and 

fibronectin, showed reduced levels in both microarray and PCR data, which is not surprising as 

the primary human stellate cells were extracted from malignant tissue, where they were 

previously fully activated. 

 

Figure 77 Comparison of marker gene expression levels between microarray and PCR experiments 
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We confirmed that the original microarray data used for model construction and data analysis was 

in agreement with the PCR measurements (Figure 78). 

 

 

Figure 78 Microarray vs. PCR measurements of selected model genes in stellate cells  
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6.5.2 qRT-PCR gene expression profiling of tumor cells 

qRT-PCR measurements of 16 representative genes used for the TC GRN were evaluated 

in a time series (Figure 79) including EGR1, EGR2, EGR3, EGR4, SPHK1, PLAT, BCL3, 

GADD45A, HES1, JUN, NFΚB, c-FOS, GRHL1, DUSP2, ARNTL2, SQSTM1. This evaluation 

formed a replicate of the initial microarray experiment, and was supplemented by a set of genes 

of interest including: IL6, IL8, VEGF, ICAM, CSF1/M-CSF, CSF3/G-CSF, CXCL2 (MIP2a), 

CXCL3(MIP2b), CXCL5(ENA78), MALAT1, CEBPB. 

 

 

 

Figure 79 Sample comparison of genes between tumor cell experiments 2 and 3 in microarray and 

qRT-PCR confirming observations for tumor cell model  
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6.5.3 Gene silencing in tumor cells (GRN model validation) 

Gene silencing in TC (MiaPaCa2) was performed using siRNAs against EGR1, 2, 3 and 4. 

Initial siRNA against EGR2 was removed from the profiling experiment with stimulated stellate 

cell supernatant (PSC*) due to low initial transcript levels. siRNA efficiency was tested and 

confirmed at a concentration of 3nM and 10nM. Knockouts of each and all EGRs were evaluated 

to ensure gene specificity. TC (MiaPaCa2) gene knockouts were performed in medium and after 

exposure to both quiescent (PSC) and stimulated stellate cell supernatants (PSC*) with 

aforementioned controls at each of the two concentrations. Three separate sets of experiments 

were performed at different time points (4h, 24h, 48h) after exposure to stellate cells. 

 

 

Figure 80 Time constraints in the knockdown experiments 

 

PCR evaluation was performed to confirm: 

- siRNA EGR 1-4 knockdown efficiency  

- Knockdown effect on model genes including: CEBPD, SQSTM1, ARNTL2, DUSP2, 

GRHL1, c-FOS, NFκB, JUN, HES1, GADD45A, BCL3, PLAT, SPHK1, as well as a 

set of genes of interest including MALAT1, IL8, VEGF, ICAM1, CSF1, CSF3, 

CXCL1/3/5. 

 

Figure 81 shows qRT-PCR measurements of selected genes of interest in MiaPaCa2 TC 

(transfected with siRNA EGR1/3/4/1-4) exposed to either: medium (control), or stimulated PSC* 

after 24h. While the in silico knockdown simulations were performed on a combined cluster of 

EGR genes, the in vitro experiments were performed against each EGR gene separately as well as 

in combination. 
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Figure 81 siRNA EGR knockdown effect in tumor cells (MiaPaCa2) in medium and exposed to 

stimulated stellate cells (measurements taken after 24h from exposure). Blue graph depicts 

transcript level of TC in medium, red - TC exposed to PSC*.  
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qRT-PCR analysis showed that the effect of EGR knockdowns was different for the various 

family members (1-4), that it depended highly on TC stimulation (medium vs. stimulated PSC), 

and was strongest for EGR3 gene knockdown in TC treated with PSC supernatants. 

 

The effect of exposure was investigated separately by comparing expression levels in TC 

(MiaPaCa2) and PSC (both quiescent PSC, and stimulated PSC*) at three time points: 4h, 24h, 

and 48h from exposure (Figure 82). Due to material constraints only a combined knockout of 

EGR1-4 was performed here, which was suboptimal since the single-gene knockdowns showed 

greater efficacy. Profiled genes included: EGR1, EGR2, EGR3, EGR4, GADD45A, HES1, NFΚB, 

GRHL1, SQSTM1, BCL3, DUSP2, JUN, c-FOS, Sphk1, ARNTL2, CEPBD. The results (Figure 

82) showed that there is a significant difference in gene expression between the three different 

time points and forms of stimulation. The effect is therefore both stimulus- and time-dependent. 

The strongest spread between stimulus effects was achieved after 48 hours from siRNA 

transfection and was clearly seen for genes such as BCL3 and DUSP2. Unfortunately the results 

of this set of PCR measurements were not directly comparable with the results presented earlier 

(Figure 81) because samples were gathered from a preparation for a clonogenic assay, which as 

part of the protocol included the trypsinization of cells in order to detach them from the plate 

surface, this procedure significantly alters the signaling and resulting gene expression profiles in 

TC. Therefore not the knockdown effect on particular genes, but rather the overall differences 

arising from the combination of the knockdown, form of cell stimulus, and time of exposure are 

of interest in that visualization. 
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Figure 82 Comparison of gene expression levels in three conditions (medium, quiescent PSC control, 

and stimulated PSC*) for three separate time points 4h, 24h, and 48h 
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6.5.4 Predictive power of the tumor cell model 

TC model was constructed using cells exposed to conditioned medium of stimulated PSC. 

In silico knockdown simulations were performed on a cluster of EGR genes (1-4), and the in vitro 

experimental evaluation with siRNA was performed against all EGRs separately as well as 

combined (siRNA EGR1-4).  

We have shown in the qRT-PCR experiments that the effect of EGR genes knockdowns is 

different for the various family members (1-4), that it depends highly on TC treatment (medium, 

quiescent vs. stimulated PSC), and is strongest for EGR3 gene knockdown in TC treated with 

PSC* supernatants. The effect is not only stimulus-, but also time-dependent. The strongest 

spread between stimulus effects is achieved after 48 hours from exposure to the corresponding 

supernatant. 

Among all in silico predictions, of which validation was undertaken, we have failed to 

correctly identify the behavior of cluster 3 represented by DUSP2 in MiaPaCa2 cell line. The 

simulations predicted an effect at both 4h and 24h, whereas the in vitro validation showed it to be 

relatively unchanging, and even slightly up-regulated at the measured time point of 24h (Figure 

81), nonetheless the effect of the knockdown becomes visible after 48h, however due to the 

tripsinization of the cells in that culture it was impossible to state that this effect was due to the 

EGR knockdown. The remaining gene modules in the network of TC were validated confirming 

the predictions. 

Interesting effect has been noticed for the set of additional genes of interest, containing IL8, 

VEGF, ICAM1, CSF1, CSF3, CXCL1, CXCL3, and CXCL5. Except for CXCL5 all the other 

secreted factors showed a clear downregulation in gene expression, for some i.e. CSF1 and 

ICAM1 we saw a major difference between knockdown effect in TC exposed to medium (control) 

vs. PSC*, which was also dependent on which EGR family member was silenced. 
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6.5.5 Validation of knockdowns in the context of cell-cell communication 

The organization of cell-cell communication in the PDAC microenvironment suggests high 

dependency of signals produced by each cell type on preceding stimuli from the other respective 

cell type. This in turn may mean that disturbing the intracellular GRN in TC may have a 

measurable effect on the expression of pre-stimulated PSC genes encoding soluble factors 

involved in the subsequent double-paracrine regulation.  

In order to experimentally validate the established soluble factors forming the connections 

between both cell types, as well as identify the effect of the TC gene knockdown on those factors, 

a set of genes (Table 26) was investigated. The experimental data were gathered using qRT-PCR 

from samples of a co-culture of either uninitialized (PSC), or prestimulated stellate cells (PSC*) 

with tumor cells (MiaPaCa2, and Panc1) in medium or transfected with siRNA against EGR 

genes. Due to the strongest knockdown effect of EGR3 gene siRNA shown earlier, this gene was 

the primary silencing target, additional measurements were performed with EGR1-4 knockdown. 

A total of 24 genes were investigated, 17 were measured in both cell types, 6 were 

identified as inducible in TC, and 3 in PSC, 1 gene was not expressed (CXCR2) in the given 

conditions. In fact additional FACS analysis showed that this receptor is present (data not shown). 

 

AREG2	   CCR62	  TC	   CSF1	  TC	   CSF3	  TC	   CXCL12	  TC	  
CXCL32	  TC	   CXCL5	   CXCR42	   ERBb1(EGFR)	  2	   HO-‐12	  
ICAM1	   IFNaR12	   IFNaR22	   IL82	   LIF2	  
PLAT	   PPARa2	   PPARg2	   SHH2	  TC	   VEGF2	  
IL62	  PSC	   COX2	  (PTGS2)	  2	  PSC	   CXCR2	  (IL8R)	  2	  none	   ESR12	  PSC	   	  

 

Table 26 Genes selected for co-culture evaluation. 2 - measured in both cell types, PSC - induced only 

in PSC, TC - induced only in TC. 

MiaPaCa2 EGR3 knockdown in TC cultured in medium alone caused a downregulation of 

all investigated genes except CSF1 and PLAT (Figure 83). CSF1 was not affected by the 

knockdown, and PLAT transcript level dropped by approximately 50% in TC exposed to PSC*. 

AREG, CCR6, HO-1, ICAM1, IFNaR2, and PLAT, showed stronger downregulation upon 

exposure to PSC* than in medium alone. CXCR4 showed a very strong upregulation upon 

exposure to PSC*, the same knockdown in medium-only caused it’s downregulation. 

 

MiaPaCa2 EGR3 knockdown in TC exposed to uninitialized PSC caused a 

downregulation (minimum 20% up to -80%) of LIF, CXCL1, PPARg, PPARa, IFNaR1, IFNaR2, 

ERBb1 (EGFR), CXCR4, CCR6, SHH. 
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Uninitiated stellate cells (PSC) were sensitive to tumor cell knockdown, which was 

revealed in significant downregulation of PPARa, PPARg, COX2(PTGS2), EGFR, ESR1, 

IFNAR1, and LIF. The same knockdown in stimulated stellate cells (PSC*) has had the opposite 

effect on the aforementioned genes. 

 

Stimulated PSC* were also sensitive to TC EGR3 knockdown clearly showed as a 

downregulation of VEGF falling below the corresponding uninitiated PSC levels, strong drop in 

production of IL6 and IL8. The measurement for IL8 showed a 71% decrease when compared to 

the baseline control at 0, VEGF drop was much less significant and at 5% was well within the 

frame of experimental error and biological variation. Nonetheless, a look at the TC knockdown 

effect on VEGF and IL8 in quiescent PSC revealed significant differences between the two forms 

of stellate cells.  

A.  
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B.  

C.  

Figure 83 A. Tumor cells (MiaPaCa2 siRNA EGR3) in co-culture with uninitialized (PSC), and 

stimulated (PSC*) stellate cells. B. Uninitialized and stimulated PSC are sensitive to TC EGR3 

knockdown. C. TC knockdown EGR1-4 has a strong effect on the behavior of stellate cells 
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7. Discussion 
7.1 Summary 

In the presented work we applied Systems Biology approaches to the analysis and 

modeling of transcriptomic data in pancreatic stellate and tumor cells. We identified the 

transcript-level dynamic changes in gene regulation of both cell types upon exposure to each 

other, as they may be occurring in vivo. By means of microarray analysis we were able to 

recognize that tumor cells are capable of stimulating stellate cells, and with the model of PSC we 

have shown a switch-like gene expression kinetic, which is responsible for PSC response to this 

stimulus. The fact that TC derived from a cell culture (previously unexposed to PSC) were 

capable of stimulating quiescent PSC suggested the presence of a sufficiently distinct and 

recognizable set of secreted proteins at a constitutive level in TC.  

The subsequent analysis of TC experiments revealed that their responses are stimulus 

dependent i.e. quiescent PSC elicited a broad and unspecific response, while pre-stimulated PSC 

provoked a more focused riposte, and while in both cases TC were driven in many, often 

conflicting directions, only the latter stimulation produced a picture of progression towards 

survival with anti-apoptotic, pro-inflammatory, and pro-angiogenic signaling. With the models of 

both cell types we established the functional links between the genes of interest and general 

patterns of regulation underlying the responses to stimuli. 

The signaling, which began with the initiation of the intercellular communication by TC 

carried on with PSC responses driving double paracrine feedbacks of TC, forming what seems to 

be a continuous system with abundant autocrine and paracrine loops between the cells, creating at 

the same time a rich and, at least transiently, stable environment. Models showed that removal of 

the sustained stimulation resets the gene expression to the initial state observed in each cell. Since 

the initiation of the signaling occurs through the recognition of TC by PSC, and further feedbacks 

seem to enhance the responses of both cell types, a reasonable conclusion is that the TC maintains 

a form of unstable control over PSC. Breaking down this self-propagating intercellular 

communication and initialization is of great interest as it may serve as a way to break the TC 

resistance to therapy which PSC are believed to convey, as well as their ability to progress 

towards metastasis. Using the derived models and the identified related extracellular signals we 

were able to identify a set of potential points of interference for the disruption of this 

communication in both cell types, and have successfully confirmed our in silico targets in TC 

with experimental validation. 
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7.2 Regulation of cell-cell interactions 

As we have stated in the introduction, traditional methods of genome-wide expression 

analysis in PDAC have not been successful in translating their findings into therapeutical targets, 

and have failed to dissect the gene regulation in PDAC in a cell-specific manner. Throughout this 

thesis we have demonstrated a unified, streamlined approach to analyzing gene regulation in each 

cell type and its resulting intercellular communication. Our experiments were designed to mimic 

the in vivo condition, and the derived GRN’s present a reasonable approximation based on 

experimental evidence. In this section we show how our findings on the intra- and intercellular 

level correspond to the existing overall knowledge of pancreatic cancer, how they fall within the 

existing biological framework of cancer biology, and which of them seem to be of importance in 

the investigated context. 

7.2.1 Dynamic regulation of transcriptional responses in PSC 

Transcriptional regulation of stellate cells in the experimental conditions is driven by the 

initial constitutive stimulus from TC, which is intercepted by PSC cells inducing early response 

genes such as the immediate early gene family of transcription factors JUN, FOS, EGR1, all 

within an hour from stimulation. FOS, which is stimulated by growth factors, was previously 

shown to receive this type of signaling via the Ras-Raf-ERK signaling pathway (Fitzner et al. 

2004). This initial stimulus also drives delayed response genes including the AP-1 transcriptional 

complex (EGR3, ATF3, FOSB, JUNB), as well as e.g. PTGS2, MAP2k3, all influenced the most 

within 2 hours after stimulation, and showing a second wave of activation at approximately 4 

hours suggesting an autocrine feedback loop, at a point where the PSC is already secreting 

various proteins into the ECM. It is believed that the responses to proinflammatory cytokines 

depend mostly on the c-Jun N-terminal kinase pathway (MAPK), mediating the phosphorylation 

and activation of c-Jun, and p38 which contributes to both FOS and c-Jun gene induction (Ip et 

al.1998). Our model shows that the focal point of the reconstructed network is a hub, represented 

here by four genes: APOL6, HIRA, MALAT1, and PHACTR2, which integrates the initiating 

signals and diverts them, via its downstream targets, toward the remaining modules in the 

network, which are represented in our model by three “effector” clusters (containing genes which 

fall into GO categories of proliferation, differentiation, inflammatory state response, and 

interferon induced proteins e.g. ZEB1, KLF7, IFIT1, IFITM1 etc.). All are continuously 

upregulated past 24 hours, suggesting the presence of a switch-like mechanism driven by the 

initializing stimulus and kept up by the subsequent autocrine and secondary paracrine responses. 
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 The central hub genes are of special interest in this context as they form the weakest point 

in this network. PHACTR2 as a phosphatase has a likely role in modulating the signal 

transduction through posttranslational protein modifications (reversible protein phosphorylation 

(kinases) and dephosphorylation (phosphatases) processes). That explains its wide signaling 

spread in the time series and also a global effect on other genes, as it may easily affect a wide 

range of signaling pathways in the cell. It has been recently associated with Parkinson’s disease 

as a genetic risk factor (Wider et al. 2009). MALAT1 is a metastasis associated lung 

adenocarcinoma transcript, a non-coding regulatory RNA, which has been found to have 

predictive power in early stage non-small cell lung cancer (Ji et al. 2003). Its function is 

otherwise unknown. HIRA - HIR histone cell cycle regulation defective homolog A is one of only 

few genes responsible for controlling the localization of histone H3 in the genome. Modifications 

of this histone have been shown to be important in the epigenetic regulation of gene expression 

(Goldberg et al. 2010). It is widely recognized that epigenetic modifications play a significant 

role in human cancers including PDAC (Sato et al. 2006). APOL6 is a member of the 

apolipoprotein L gene family, which is pivotal for cholesterol transport. Changes in expression of 

this gene likely affect the cholesterol content in cellular membranes in turn modulating processes 

such as gene transcription and signal transduction.  

 

While we could not confirm a transition to a steady state in the model, it does however 

show a transiently stable state that exists for as long as the information exchange with TC is 

taking place. The most likely culprit in this transition to this state is a module containing IFN-

inducible gene. IFN has been previously shown to induce a state of senescence in PSC (data not 

shown, paper in preparation). The combined model and experimental observations support the 

hypothesis that signaling initialization in the ECM, unveiled in a desmoplastic reaction, occurs in 

response to TC presence. Application of our proposed knowledge-driven method of signal 

identification allowed us to establish a fairly small subset of soluble factors most likely driving 

the signaling towards the central hub genes in PSC including: unique soluble factors secreted by 

TC, PSC surface receptors, as well as potential membrane bound signal transducers. All of these 

factors seem to be affecting the formation of the GRN in PSC in both direct and indirect manner 

offering a way to interrupt further responses and stabilization of the system, even without directly 

affecting the intracellular GRN, which in case of PSC is difficult (inability to transfect PSC 

remains a major challenge).  
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7.2.2  A question of activation 

Stellate cells, which have been pre-activated in vivo do not revert to an inactive state, but as 

our data showed they are also not being induced to overexpress the standard activation markers 

by our tumor cells. Fibronectin, laminin, α-smooth muscle actin were all unchanged in the time 

series. Even so, we still observed increased levels of ECM proteins such as collagen (e.g. 

COL1A1, COL6A1 showing minor changes under experimental conditions over time, but 

remaining at high constitutive levels), along with an abundant expression of ICAMs (intercellular 

adhesion molecules), all accompanied by the secretion of a wide range of cytokines and 

chemokines - predominantly proinflammatory and proangiogenic. The signaling cues resulting 

from the initial stimulation seem to take PSC on the path of the aforementioned transition via the 

interferon-related signaling, as well as show potential for an induction similar to the one during 

chronic pancreatitis, when the cells become active via the release of pro-inflammatory cytokines 

(Aoki et al. 2005). It is now well established, from both clinical and experimental studies, that 

pancreatic necro-inflammation shown in alcohol related pancreatitis is associated with 

upregulation of cytokines such as PDGF, TGF-β1, TNF-α, IL-1 and IL-6 (Apte et al. 2006) all of 

which we find in PSC upon stimulation with TC supernatant. It has also been previously reported 

that PSC are activated by each of the listed cytokines, therefore autocrine signaling likely plays a 

significant role in the stimulation of PSC in vivo, as well as in paracrine stimulation of 

surrounding stroma, apparently initializing a series of events altering not only the PSC, but also, 

and maybe more importantly, the microenvironment (McCarroll et al. 2003, Masamune et al. 

2005). 

The usual activation of PSC in vivo occurs in response to the signaling coming from the 

immune cells in the pancreatic microenvironment, and offers the standard response to 

inflammation. As results presented in the section on TC have shown, when treated with 

stimulated PSC supernatant they produce a range of factors, which are known attractors of 

immune cells. This suggests a connection between the current state of the PSC as seen in 

experiment 1 and their potential for induction upon exposure to immune cells invading the 

neoplasm at later stages of tumor and microenvironment development. This is in line with the 

findings of Feng et al. (2010), and we believe that the sequence of events in the pancreatic 

microenvironment may indeed follow a path, in which a form of PSC priming by other cells is 

necessary before a complete reactivation and progression towards migration by PSC might occur. 

In contrast to what we expected, and what was previously shown in literature, our 

experiments did not yield any significant time-resolved, therefore inducible, changes in 
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expression levels of genes encoding metalloproteinases in PSC. While PSC have been previously 

shown to be an important source of MMPs in pancreatic cancer (Schneiderhan et al. 2006) driving 

tumor desmoplasia and promoting invasiveness (Ellenrieder et al., 2000), here we confirmed the 

presence of MMPs on a constitutive level only. As later analysis of TC showed, MMPs were 

upregulated (induced) in TC exposed to PSC. They were also constitutively highly produced by 

TC (including MMP7, 9, and 13, which we believe are vital for PSC initialization in our system). 

MMPs are significant in the context of tumor development because they may be used by the TC 

for ligand/receptor shedding in the process of evading the host immunological response, as well 

as for the disassembly of the ECM during the desmoplastic reaction. Lack of MMP induction in 

PSC in our experiment may be attributed to the specific experimental conditions and the fact that 

they were previously activated in vivo. On the other hand one has to keep in mind that the 

aforementioned publication operates with data gathered from a CAM assay, which is a non-

mammalian system that may have a significant impact on the achieved results. 
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7.2.3 Antiviral responses of stellate cell 

Modeling of PSC combined with cluster analysis has revealed 3 effector clusters including 

one containing interferon-induced genes. Interferons (IFNs) are proteins, which are usually 

produced by immune cells in response to the presence of pathogens e.g. viruses, bacteria, or 

tumor cells. Their main function is the initialization of the host immune responses to combat an 

infection. The initialization of IFN-dependent signaling in PSC suggests they may be recognizing 

TC and attempt to initialize the host immune response (Figure 84). From TC#3 we know that this 

response is suboptimal because it does not kill the TC, but it does drive the further increase of 

inflammation-related signaling, which may enhance TC ability to progress. 

In terms of time-resolved gene expression, the IFN-induced genes are either driven by an 

autocrine feedback, as they become upregulated at the earliest 3h from stimulation, therefore 

falling into a time frame where the PSC already secretes factors into the microenvironment, or are 

secondary targets of genes induced by paracrine signals (Figure 84). 

 

Figure 84 Interferon related genes found in the stellate cells experiment. 

The expression of genes encoding IFN receptors in PSC (Figure 85) suggests that the initial 

stimulus is of paracrine nature and stimulates the interferon α, β, and γ receptor IFNAR1 inducing 

the IFN dependent signaling cascades. The time resolved gene expression suggests that a 

secondary autocrine wave of signaling within PSC enhances those responses after 4h. 
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Figure 85 Time resolved gene expression kinetics of the two main interferon receptors in stimulated 

stellate cells (qRT-PCR) 

It is widely recognized that the most common host response to viral infection is disclosed 

via a range of factors produced to combat it including their encoding genes e.g. IL1B, IL6, IL8, all 

of which are present in PSC in abundance (Figure 86). 

 

Figure 86 IL1B, IL6 and IL8 gene expression in stellate cells 

Monsurro et al. have recently (2010) investigated a set of interferon related genes in PDAC 

tissue samples, and selected cell lines, and have been able to differentiate between two carcinoma 

subtypes – one permissive to viral vectors used for gene therapy, and another – resistant to viral 

infection. They conclude that the detection of these two phenotypes might help the selection of 

patients enrolled in virally mediated gene therapy trials (Monsurro et al. 2010). Since the set 
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proposed by Monsurro et al. is the most complete to date, we performed an overlap between their 

findings and our more specific time-resolved datasets in order to differentiate the signaling 

between the two cell types. 

We used our filtered and ranked microarray data and compared them with Monsurro 

supplementary data, identifying an overlap shown in Table 27. Genes, which were missing from 

the Monsurro dataset were found in the unfiltered microarray data set with little to no changes 

over time, and therefore were removed from the comparison. 

 

ì in	  PSC	   ì in	  TC	   Present	  and	  ì in	  both	   ì 	  in	  PSC	  	  
î in	  TC	  

î in	  PSC	  	  
ì in	  TC	  

IFI27	   GBP1	   IFIH1	   ISG20	   IRF1	  
IFI35	   IFI16	   IFIT3	   	  
IFI44	   IFI30	   OAS3	  
IFI44L	   IFNAR1	   PRKRIR	  
IFIT1	   IRF1	   IFNAR2	  
IFIT2	   IRF6	  
IFIT5	   ITPKC	  
IFITM1	   JAK1	  
IFITM2	   PCK2	  
IFNA10	   STAT1	  
IFNA14	   	  
IL6	   	  
IRF7	   	  
ISG20	   	  
ISGF3G	   	  
MX1	   	  
PRKRIR	   	  

Table 27 Comparison of interferon-regulated inducible genes in PSC and TC experiments 

(upregulated ì , downregulated î)  

Out of 44 genes overlapping between the signature of Monsurro and our data – 23 were 

found in PSC only (TC time-resolved expression for those genes does not change significantly, 

and they are not present in our filtered dataset), 14 were only found in TC, and 7 showed 

expression changes in the time series of both. Further filtering for only upregulated genes reduced 

those numbers further to 17, 10, and 5 respectively.  

IFNAR2 receptor provided additional insights showing a different expression profile for 

tumor and stellate cells in response to the treatment. TC response for the receptor was autocrine 

(with an inhibitory effect of the extracellular stimulus in the early hours), whereas PSC were 

stimulated by both, the paracrine and autocrine signals, suggesting that the earliest stimulus came 

from the initializing signals provided by the TC supernatant in the first experiment. 
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Figure 87 IFNAR2 expression in tumor and stellate cells (microarray data) 

 

Interestingly the TC experiment did not show any upregulation of interferon production in 

those cells, IFN-induced genes such as OAS1 were downregulated, there was no significant 

production of IL6, and the only interleukin related to the host immune response was IL8, which 

was not surprising since it may be stimulated in various ways. STAT1, which is a known signal 

transducer in the IFNα, β, and γ pathways, was insignificantly upregulated in TC (< 0.5 log2 fold 

change). All this seems to point to the fact that PSC initiate the antiviral response, and 

subsequently their secreted factors affect IFN-related signaling pathways in an autocrine manner 

in PSC themselves driving the proinflammatory responses. The switch-like behavior of the 

effector clusters suggests a state transition occurring in the PSC, which is contingent on TC 

presence. 
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7.2.4 Autocrine and paracrine signaling resulting from PSC stimulation 

GRN reconfiguration in response to perturbation of PSC by TC is a dynamic process, 

which has an outcome in the form of a cellular response with a predominantly proinflammatory 

profile arranged into 4 clusters containing significantly upregulated genes encoding soluble 

factors (Table 9). We also investigated soluble signals apart of the standard ranked list of genes, 

but in association with the underlying TC GRN, and identified a unique subset of factors likely 

affecting the TC network (Figure 74). The autocrine component of this second phase of signaling 

is just as interesting as the PSC initialization because here we identified factors previously 

reported for pancreatic cancer in general e.g. PPARG, and we can confirm their presence in the 

environment. Our analysis suggests that the PPARG signaling is enhanced in both cell types, 

beginning with the initialization of PSC by TC through recruitment of PPARG receptor, PSC 

seem to respond via ANGPTL4. The presence of PPAR receptors on TC surface suggests auto- 

and paracrine signal crosstalk. Interesting is the time-resolved expression of the tumor cell 

PPARG gene, which seems switch-like, and we see a significant peak already 1h after stimulation 

of TC by PSC supernatant (Exp.3). Then the expression level remains virtually unchanged 

throughout the duration of the experiment. 

A review by Eibl (2008) shows clearly that there is a lot of controversy surrounding the 

PPAR-γ proteins, but in vitro evidence seems to suggest that ligands of this receptor may have a 

tumor promoting effect by enhancing tumor angiogenesis through the stimulation of VEGF 

production (Eibl, 2004 and 2008; Margeli et al. 2003, Biscetti et al. 2008). PPARG signaling in 

stellate cells has also been implicated in the maintenance of the quiescent phenotype of hepatic 

stellate cells HSCs (Galli et al. 2000), however whether this applies to PSC is debatable.  

Because of this redundancy of PPARG in both cell types, we don’t believe that it is such a 

great experimental or therapeutical target. Our signaling schema (Figure 74) with the unique 

factors offers a much more precise and cell-specific set of factors.  

Other potential autocrine/paracrine components shared in the microenvironment include 

EGFR, PLAUR, PTGER4, PTPRE, PTPRR. Some of those will be discussed in more detail later. 
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7.2.5 Tumors as wounds that never heal 

PSC response to initialization suggests that they perceive TC presence as dangerous, a 

finding supported by the predominantly proinflammatory signaling (inflammation is a significant 

player in supporting PDAC progression), initiation of IFN-induced genes in the aforementioned 

antiviral response, as well as induction of genes, which enrich the “response to wound healing” 

GO category (in fact the main biological process identified in PSC (Table 12)).  

We related these findings to our previous project investigating the transcriptional regulation 

of migrating keratinocytes in the process of wound healing (Busch et al. 2008), and interestingly 

keratinocytes seem to share many regulatory features with the tumor-associated fibroblasts (PSC) 

and only some with pancreatic TC. A rather surprising finding, due to the context and cell type, 

we expected to see more comparable results between keratinocytes and TC rather than PSC 

(fibroblasts). 

Genes identified as core elements in the transcriptional regulation of keratinocytes 

included: FOS, EGR1, EGR3, and PTGS2. The first three (FOS, EGR1, EGR3) were all part of 

the GRN of PSC and TC, however only the PSC show a significant change in PTGS2 transcript 

levels. PTGS2 is a gene encoding for prostaglandin-endoperoxide synthase 2 (previously reported 

as overexpressed in PDAC by Yoshida et al. 2005), and in the model of HGF-induced 

keratinocyte migration it was used as an indicator of migration in conjunction with AKAP12.  

AKAP12 (encoding A-kinase anchor protein-12) was shown to negatively regulate PTGS2, 

and upregulate FOS, EGR1, EGR3, which promote migration in silico. Here, we see that AKAP12 

levels are not changing in PSC, but with the knowledge-driven approach we were able to 

establish that it is a potential signal transducer for TC constitutive factors into PSC GRN (data not 

shown). AKAP12 however seems to be of particular interest in light of recent findings by Mardin 

et al. 2010, where it has been shown that increased mRNA levels correlate with diminished 

invasive and metastatic capabilities of tumor cells. Tumor cells in our experiments show a 

downregulation of AKAP12, which would correlate with their capacity for invasiveness. 

It is however the EGR gene family that seems to be of pronounced importance in the 

investigated GRN in conjunction with wound healing. We have previously shown that EGR1 and 

EGR3 are important for the core network in HGF-induced keratinocytes. In the presented project 

the high expression levels of both EGRs convinced us to investigate their regulatory effects, and 

we showed with our TC#3 model that they are in fact the weakest point and a potential target of 

interference, which is not the case for PSC. This implies the question of why the same genes have 

a different impact in each of the investigated cell types. We previously showed that the dynamical 
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time-resolved gene expression changes translate well to the level of proteins, a comparison of 

EGR1 and EGR3 genes between the three pertinent experiments: HGF-induced keratinocytes, 

PSC, and pancreatic TC reveals differences in transcript levels and distinct time-resolved profiles 

in each cell type, which suggests that while present in the cells, the stimulation and responses of 

those genes are significantly different between them.  

 

 

Figure 88 EGR1 and EGR3 gene expression is different between the different cells and conditions 

(microarray data) 

A closer inspection of EGR1 and EGR3 genes (Figure 88) showed that their time-resolved 

behavior was condition and cell dependent, and especially EGR3 showed a significantly altered 

kinetic in TC. An attempt to overlap EGR1 and EGR3 profiles between HGF-induced 

keratinocytes, PSC and pancreatic TC revealed that EGR1 expression correlates between 

keratinocytes and PSC, while EGR3 profile was different for each of them. EGR3 was especially 

interesting in this context as in keratinocytes the peak of stimulation for this gene was around 1h 

(early response genes) after which we saw a shutdown as kinetics returned to 0. In pancreatic TC 
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that initial peak was extended to nearly 4 hours, whereas PSC had a focused response with a peak 

at 2h. The extended signaling range of EGR3 may be attributed to an autocrine feedback loop, 

which drives the further activation of this gene in TC, but it may also be a delayed primary 

response. EGR responses differentiating the stimulus effect is not surprising as those TFs can 

induce different genes through the different cis-regulatory elements. This dependence of gene 

expression on extracellular stimulus is significant as it suggests that we should be able to attack 

intracellular signal transduction through alteration of extracellular stimuli.  

An additional small subset of genes induced in PSC, TC, and HGF-induced keratinocytes 

included: CXCL3, PLAU, PLAUR, and CCL20. Those genes form part of the feedback-rich 

signaling between PSC and TC in the pancreatic microenvironment and correlate with wound 

healing. PLAUR (CD87) is a receptor overexpressed in multiple malignancies, where apparently 

the TC hijacks the plasminogen activation system for its own purposes. It is widely expressed and 

existing literature evidence suggests its involvement in regulation of cellular adhesion, cell 

motility, angiogenesis, tumor invasion and metastasis (Kjøller, 2003; Ploug et al. 2002 and 2003; 

Yimin et al. 2003). The presence of PLAU/PLAUR signaling between PSC and TC correlates well 

with factors we identified in TC including ICAM1 (intercellular adhesion molecule), and 

CEACAM1 (cell adhesion molecule), all transducing signals affecting the TC GRN. PLAUR has 

been shown in a mouse model to be positively correlated with tumor initiation and growth 

(Ploplis et al. 2007). Its ubiquitous presence on PSC and TC, as well as apparent significance in 

the regulation of the underlying GRN in TC suggest that it may offer a potential for common 

stromal targeting, but it’s not cell-specific.  

All this suggests that the initialization of PSC is not dissimilar from wound healing, at least 

on the transcript level, and keeping in mind the work of Xu, and Feng, it would seem that the 

signaling may preserve the outcome – migration – although it is likely that additional interactions 

are necessary to push the stellate cells into that direction, possibly with immune cells, which are 

ubiquitous in the PDAC microenvironment, and perhaps an EMT transdifferentiation event is 

necessary for PSC to achieve that state. 
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7.2.6 Autocrine and paracrine signaling driving TC stimulation 

Stimulation of TC can be divided into two phases, first, the direct stimulation by factors 

released by PSC in experiment 1, second, an autocrine feedback loop in TC. We reduced the 

complex interactions into a subset of 9 unique PSC factors affecting the formation of the TC 

GRN (Figure 74), and interestingly show that the leading paracrine signaling is executed not as 

one might expect by a factor from the list of top inducible e.g. proinflammatory cytokines C-X-C, 

or interleukin IL8, but rather via a set of less expected genes including TIMP3, IL7R, ESM1, 

EBI2, CCL20, DKK3, IL6, TFPI2, and STC1. All of the aforementioned chemokines act here by 

enriching the complex microenvironment of both cell types, and form a background most likely 

necessary for the establishment of the GRN, but they do not seem to directly drive the GRN 

formation. Investigation of the dynamics of extracellular signals shows that while there are genes, 

which are upregulated past 24 hours, the majority of the ranked secreted factors show a slow 

decline in their expression levels at the last (24h) time point. This, previously mentioned, overall 

lack of a permanent switch in TC may mean that these interactions are insufficient to drive TC in 

the direction of a specific cell-fate decision.  

Nonetheless, following the many abundant environmental cues we still arrive at a 

conclusion that TC in experiment 3 are driven in the direction where the role of inflammation is 

to promote cancer cell proliferation and stromal/matrix degradation. First and foremost via the 

pro-angiogenic and proinflammatory cytokines CXC along with LIF, and interleukins, suggesting 

that neovascularization is a vital step in progression prior to rapid tumor growth. Pro-angiogenic 

and inflammation-related chemokines identified in our TC dataset include CXCL1, CXCL2, 

CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8, and mediate angiogenic activity through 

engagement of the common receptor CXCR2 (IL8RB) (Romagnani et al. 2004). CXCL1/3/4 and 5 

also, as shown before, overlap with the signals produced by PSC. CXCL12 in turn mediates 

angiogenic activity through the CXCR4 receptor (Liang et al. 2007) in an autocrine feedback in 

TC. CXCL1 and 3 have also been shown to exert autocrine control over neoplastic cell 

proliferation (Richmond 1986, Coussens et al. 2002). CXCL2, 5, 6, and 10 all have pleiotropic 

effects ranging from regulation of proliferation, neutrophil activation, to modulation of adhesion 

molecule expression. Apparently the supernatant of stimulated PSC causes the destabilization of 

the fragile immune homeostasis, which normally consists of a succession of pro- and anti-

inflammatory signals. Loss of the anti-inflammatory signals is known to lead to chronic 

inflammation and proliferative signaling (National Cancer Institute Website, accessed Dec.2010). 
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In 2008 Zhong et al. developed an in vitro model, which successfully recapitulates features 

of lung tumorigenesis in vivo to investigate mechanisms by which stromal cells regulate the 

biological properties of lung adenocarcinoma cells. They made significant discoveries including: 

- TC are capable of chemoattracting stromal cells by mimicking inflammation and 

angiogenesis; 

- Co-culture of tumor and stromal cells enhances TC proliferation and clonogenicity; 

- Chemokines upregulated in vitro (CCL2, VEGF, CCL5, CXCL1, CXCL2, and 

CCL11) correlate with lung tumors in mice and humans; 

- CXCL1 secretion was enhanced in the cocultures, and CXCR2 inhibition attenuated 

cell-cell interactions; 

- TC secrete a wide range of factors supporting their development and progression 

including clusterin and LIF, which are prosurvival molecules; CXCL1, CCL3, LIF, 

IL-18, TNFα, and IL-15 which are proinflammatory molecules; and CXCL1, 

CX3CL1, VEGF, VCAM1 which promote tumor angiogenesis. 

 

Comparing those findings to our data we see that much of the interplay between the various 

cells is similarly modulated in the PDAC tumor-stroma relationship. We identified similar 

signaling in the PDAC microenvironment using gene ranking and GO analysis, but the factors 

were often secreted by a different cell type e.g. Zhong et al. have shown lung cancer cells to 

produce LIF, a pro-survival and proinflammatory molecule, which we show to be a significant 

regulatory element produced by the PSC in response to stimulation by TC supernatant. 

  

In addition to the aforementioned chemokines, we also identified various interleukins 

known to mediate the inflammatory gene expression effects. The supernatant of stimulated PSC 

contains among others IL1, IL6, and IL8. Interleukin 8 is actually produced by both, TC and PSC, 

and is known to amplify inflammation, activate p38 and ERK1/2 MAPK pathways, induce NFκB 

through TRAF6-dependent pathway, and induce c-Jun N-terminal kinase (JNK) of the mitogen 

activated protein kinase pathway (MAPK) in a dose- and time-dependent manner (Manna et al. 

2005). IL6 produced by PSC and received via IL6R in TC leads to the activation of NFκB, and a 

crucial step of the induction of ICAM-1, which is an intercellular adhesion molecule, also 

inducible by IL1 and TNF. In fact IL6R receptor on TC initiates multiple effects. The IL6-IL6R 

complex activates signal transduction pathways involving a protein tyrosine kinase and 

serine/threonine kinase(s), which are required for the subsequent transcriptional activation of a set 

of genes including immediate early genes such as JunB in a variety of cells, and tissue specific 
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genes such as acute phase reactants in hepatocytes. TNF related signaling is unveiled via 

TNFAIP3 which is induced by multiple stimuli, including the proinflammatory cytokines TNF 

and IL1, and trigger the toll-like pathogen recognition receptors (Verstrepen et al. 2010). 

 

Not much is known about the remaining unique PSC signals driving TC, including: TIMP3, 

which is a tissue inhibitor of metalloproteinases that inhibit matrix metalloproteinases. It blocks 

the binding of VEGF to one of its receptors, VEGFR2, and inhibits downstream signaling and 

angiogenesis. Alterations in the TIMP-3 have been found to contribute to the tumorigenesis of 

pancreatic endocrine tumors, causing tumor-specific loss or strong reduction of TIMP-3 protein 

expression (Wild et al, 2003)(after copewithcytokines.de). IL7R is an interleukin receptor, which 

has not been linked to pancreatic cancer previously. ESM1 is also known as endocan and was 

identified by Lassalle et al. (1996) who described its constitutive expression in human umbilical 

vein endothelial cells and constitutive expression in human lung. EBI2 is an Epstein-Barr virus-

induced G-protein coupled receptor 2, which is interesting in light of the anti-viral response 

identified by us in PSC. CCL20 is a strongly chemotactic protein for lymphocytes, which also 

weakly attracts neutrophils. DKK3 was shown involved in embryonic development through its 

interactions with the Wnt signaling pathway. TFPI2 may play a role in the regulation of plasmin-

mediated matrix remodeling. Finally, STC1 stanniocalcin was linked to increased metabolic rates, 

and with altered expression to ovarian and breast cancers. 
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7.2.7 Dynamic regulation of transcriptional responses in TC 

Unlike in PSC, we could not identify any potential state transitioning set of genes in TC. 

Only few genes are showing upregulation past the experimental window e.g. CFB, C3 

complement system members, but they do not determine cell fate. This suggests that the 

TC→PSC→TC interaction axis drives TC-GRN into an unstable condition, which is maintained 

for only as long as the TC has an immediate contact to PSC. Consequently, once the 

communication is interrupted cells return to their respective steady states (cf. 6.2.8.8.1).  

In silico simulations and knockdowns (cf. 6.2.8.8.2), have provided two points of 

interference in the underlying GRN: EGR genes and CEBPD. We showed that the strongest 

single-module knockdown effect is achieved with the EGR genes downregulating the system 

responses. However unlike in stellate cells the system-wide effect is less pronounced, which may 

be attributed to the strong transcriptional deregulation of TC, where multiple TF share common 

targets, as well as to the overall ambiguity of signaling with many additional shifts and delays in 

the expression profiles. A system-wide effect was achieved through a double-module knockdown 

(EGRs and CEBPD) effectively destabilizing the entire TC network. This finding reaffirms the 

importance of the gene selection. Unfortunately does not seem to be applicable in practical terms, 

as a double knockdown of this art is highly cytotoxic and cannot be validated with gene silencing. 

Targeted in vitro knockdowns have allowed us to differentiate between the EGR gene family 

members attributing the strongest influence on the other network modules to siRNA against 

EGR3 (as measured by qRT-PCR), confirming our in silico predictions. An interesting finding in 

the context of the TC-PSC interactions was offered by an invasion assay, which was established 

as a co-culture system and used in the presented work for qRT-PCR validations. The biological 

readout of this assay (data not shown) showed that TC EGR knockdown has anti-invasive effect 

on TC. Since EGRs are at the center of the TC GRN, it appears that breaking them down - breaks 

down the semi-homeostatic, sustained PSC-TC state, and affects the TC capacity to migrate 

(invasion assays confirmed TC migration reduction of up to 90% upon knockdown, data not 

shown). 
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7.2.8 Intracellular dynamics of gene expression in tumor cells 

Inflammation-related signaling is a dominant feature of the PSC-TC microenvironment. 

The local production of cytokines not only stimulates stromal cells in the surrounding 

microenvironment, but also likely attracts circulating immune cells. In this context, it is not 

surprising that we find NFκB as one of the most enriched signaling pathways in experiment 3 TC. 

A clear link between NFκB and cancer lies in the inflammation as a vast majority of 

inflammatory genes rely on the activation of NFκB. First, it is required for the activation of the 

innate and adaptive immune responses; second, it is directly connected with cancer through its 

survival-switch decisions. Although we see a significant upregulation of inhibitors of the NFκB 

pathway such as NFΚBIA, NFΚBIZ (previously reported as a significant marker among a six-gene 

signature by Stratford et al. 2010), others such as NFΚBIL2 are downregulated. NFΚB2 itself sees 

a peak at a 5-hour time point, and a significant upregulation of RelA, and RelB has been noticed. 

Additionally, TNF signaling, which we see in tumor cells can be either activating or inhibiting the 

NFκB pathway via:  

- TNFRSF9 (interacts with TRAF adaptor proteins shown to transduce the signals 

leading to the activation of NFκB),  

- TNFRSF21 (shown to activate NFκB and MAPK8/JNK, capable of inducing cell 

apoptosis through its death domain that interacts with TRADD protein), TNFAIP2 

an angiogenic factor,  

- TNFAIP3 (shown to inhibit TNF-induced NFκB-dependent gene expression by 

interfering with RIP- or TRAF2- mediated transactivation signal – an inhibitor of 

programmed cell death (Heyninck et al. 1999).  

Additional identified signals acting on NFκB include IL1R, TLR, CD95L (fasL), IL8, NOD2, 

SQSTM1, ELL2, all present in abundance in tumor cells. 

Toll-like receptor signaling is especially interesting in this context as it interconnects 

pathways induced by pro-inflammatory proteins such as NFκB, TNF, and TRAF, but also due to 

it’s involvement in pathogen-recognition. IRAK2 (IL1R-associated kinase) is upregulated in both 

TC and PSC, and is essential for sustaining TLR-induced expression of genes encoding pro-

inflammatory cytokines and activation of the NFκB, and MAPK. IRAK2 binds to the IL1 type I 

receptor following IL1 engagement and while it is not necessary for activation of the initial 

signaling cascades, it has been shown to be indispensable for sustaining TLR-induced expression 

of those genes and pathways (Keating et al. 2007). Another potential point of interest in the 

inflammatory signaling is disclosed in the form of the HSP70 proteins (molecular chaperones) of 
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which HSPA6 is highly upregulated in our tumor cell dataset (others include HSPA1B, HSPA1A, 

HSPA4). HSP70-induced proinflammatory cytokine production is mediated via the 

MyD88/IRAK/NFκB signal transduction pathway (Rohde et al. 2005, Asea et al. 2002). HSPs are 

known to be upregulated in highly drug resistant pancreatic cancer as well as in other types of 

carcinomas. Members of this family promote cancer cell growth by distinct mechanisms. There is 

an ongoing effort by many laboratories in pursuing HSPs (Ito et al. 2003, Galluzzi et al. 2009, 

Rérole et al. 2010) and TLRs (O'Neill et al. 2008) as possible cancer therapy targets, and as it 

seems with good reason. 

 

The proinflammatory response in TC is also exposed in the context of one of the most 

upregulated genes in our dataset, which is also part of our transcriptional network: CEBPD. The 

CCAAT/enhancer binding protein (CEBP) family of transcription factors includes five genes, and 

interestingly one of its members – C/EBPβ – has been recently linked as a significant player in 

the transcriptional network for mesenchymal transformation (EMT) of brain tumors (Carro et al. 

2010). CEBPB shares promoter occupancy with CEBPD as was shown with CHiP analysis by 

Carro. It also binds to the IL1 response element in the IL6 gene, as well as to the regulatory 

regions of several acute phase and cytokine genes, making it an important player in the regulation 

of genes involved in immune and inflammatory responses. Its distinct expression profile, and 

significant upregulation have ignited our interest and it turned out to be a very important regulator 

in the transcriptional network of tumor cells responding to PSC stimulation. A combination in 

silico knockdown of clusters 1 (CEBPD) and 10 (EGR genes) is the only one that causes a 

system-wide breakdown of the network in tumor cells. 

 

The inevitable outcome of inflammation is the recruitment of immune cells into the 

neoplasm, a fact, which caught the attention of Feng et al. 2010. Although tumor associated 

macrophages (TAMs) are able to kill TC when activated by IL2, IL12 or IFN, they also produce a 

host of compounds – angiogenic factors, growth factors, proteases and cytokines – that either 

contribute to cancer progression or blunt the anti-tumor response. As has been shown, the 

infiltrating immune cells are in fact incapable of destroying the tumors, instead amplifying the 

inflammation, which supports the TC development (Feng et al. 2010). Infiltrating macrophages 

have also been shown to amplify the expression of IL8 (abundant in our PSC/TC experiments) in 

the microenvironment of non-small lung cancer (Chen et al. 2003). The infiltration of tumors with 

TAMs has been earlier shown to correlate with poor prognosis in several cancers and recent 

studies suggest an emerging role for TAMs in the remodeling of the tumor microenvironment to 
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support growth and metastasis and support the concept of modifying TAMs responses as 

therapeutic approaches (Mantovani et al. 2006, Robinson-Smith et al. 2007).  

 

 While the tumor-associated macrophages (TAMs) are outside of the scope of the presented 

experimental work, they cannot be disregarded in the context of pancreatic microenvironment, 

and while we do not cover those interactions directly, we do identify early signs of this process in 

our analysis. IL6 secreted by PSC, and CSF1 (M-CSF), which we identified as secreted by TC, 

are known to skew monocyte differentiation towards the macrophage lineage (National Cancer 

Institute Website, accessed Dec.2010). CSF specifically, is necessary to recruit mature 

macrophages into the neoplastic tissue. CSF1 and CSF3 have been reported to positively affect 

proliferation in TC. Other genes falling into this category found in TC experiment include 

CCND2, HES1, FGF18, IL15, SPHK1, TGFBR1, and CXCL5. The most interesting in the context 

of immune evasion may be CSF3 (G-CSF granulocyte colony-stimulating factor), a gene 

upregulated in TC #3 but downregulated in TC #2, suggesting a stimulus-dependent response. It 

has been previously shown that this gene is rarely upregulated in pancreatic cancer tumors and 

has been associated with poor prognosis (Takami et al. 2008). G-CSF (CSF3) as well as M-CSF 

(CSF1) have been previously reported as a potential prognostic factor for patient survival, 

although not independent of tumor stage (Groblewska et al. 2007). G-CSF has also been linked 

with IL6 as the main factors responsible for suppression of dendritic cell differentiation, 

maturation, and antigen presentation adding to the significant capability of tumor cells to evade 

the host immune system (Bharadwaj et al. 2007). That capability to actively evade the immune 

system of the host is usually attributed to the use of metalloproteinases (MMP), which may be 

used for receptor shedding (Schneiderhan et al. 2006). Interestingly one of the main PSC signals 

uniquely affecting TC is TIMP3, a tissue inhibitor of metalloproteinases. TAMs are at the center 

of recruitment and response to angiogenic and lymphangiogenic stimuli, and what potentially 

happens upon infiltration of TAMs into the pancreatic neoplasm is not difficult to predict. Tumor-

associated macrophages are known to secrete proteins such as TGFβ, TNFα, IL1α, therefore we 

can speculate that the TC response to this signaling will involve a further increase in IL8 and 

VEGFA for vascular angiogenesis. TAMs are known to induce VCAM-1 expression in 

mesothelial cells, a step that is believed to be key for TC dissemination into peritoneum (lining of 

the abdominal cavity) during metastasis. Wu et al. 2007 have shown that VCAM-1 expression by 

tumor cells leads to decreased apoptosis of the TC and a significant decrease in the number of 

tumor-infiltrating CD8+ T cells in the neoplasm. In summary the inflammatory, and angiogenic 

signals combined with the speculated infiltration of neoplasm by TAMs as well as the presence of 
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some strongly upregulated genes such as CEBPD and ZEB1 (related to the Epithelial-

Mesenchymal Transition) offer strong signs of the TC metastatic potential enhanced further by 

the newly discovered (Xu et al. 2010) capability of PSC to co-migrate with TC. 

 

As we have previously shown, there is a gene regulatory connection in TC between the 

CEBP and the EGR family of genes, both significant in the reverse engineered regulatory 

network. From literature we can resolve the connections between EGR2, 3, and 4 via GCLC 

interconnecting them (see section 5.2.8.8.2). GCLC is central to the antioxidant capacity of the 

cell, and may be upregulated by IL1β via the p38 form of MAPK and NFκB. Their 

interdependency connects us with EGR1 and ATF4, linking directly to angiogenesis induced in 

response to hypoxic stress, as well as endothelial cell proliferation, inflammatory response and 

regulation of leukocyte migration, all significant steps engaged very early in the development of 

tumors. Hypoxia is known to increase the resistance of human pancreatic cancer cells to apoptosis 

and genes central to this stress reaction include Akt, Hif-1, and HMOX1, along with GCLC. The 

last two genes show a significant upregulation in experiment 3 tumor cells. Hypoxia has also been 

shown to link with EMT inducer Twist (Peinado et al. 2008), which operates under the control of 

hypoxia signaling in the tumor microenvironment. An even stronger link of tumor pro-survival 

signaling induced by hypoxia is discovered in our analysis via the strong induction of 

metallothioneins, which have been previously shown to be capable of attenuating hypoxic cell 

death in vitro (Tanji et al. 2003).  

Especially interesting in the framework of our analysis is MT1M, a highly regulated and 

stimulus-dependent metallothionein produced by TC, which shows strong anti-correlation 

between TC experiments (high upregulation when treated by stimulated PSC, high 

downregulation when treated with quiescent PSC). MTs have been shown to correlate with 

metastasis in certain tumors. Poor prognosis and poor histological grading (poorer glandular 

differentiation and nuclear anaplasia) has been shown for colorectal cancer, plastic astrocytomas, 

squamous cell carcinoma of the esophagus, renal cell carcinoma, and small cell carcinoma of the 

lung. Unfortunately this is not the case for all tumors, which indicates variability of the biological 

significance according to the tumor type (Palmiter 1998). However, wherever it is being used as a 

prognostic of poor survival, it is associated with a high proliferative activity of the tumor cells. It 

has been previously suggested that the expression of metallothioneins could be a prognostic 

indicator in pancreatic carcinomas (Ohshio et al. 1996). Since the expression of MTs is not 

always indicative of prognosis (Palmiter 1998), it seems that MTs alone are insufficient as a 
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marker of progression, but a closer inspection of related genes may provide a set, which correlates 

together not only functionally, but also expression-wise to offer a stronger marker. 

 The biological mechanisms underlying metallothionein overexpression in tumors are not 

fully understood, but from our analysis we recognize a link between MTs, zinc, and its cellular 

transporters. Zinc is an important trace element for healthy growth and development, which has 

been previously related to cancer growth and progression (Cherian 1994; Fan et al. 2002). The 

regulation and maintenance of a “normal” concentration and distribution of cellular zinc is 

essential to the function, metabolism, growth, proliferation and survival of cells. It is required for 

many genes like TNFAIP3 or ZBTB1 (zinc finger proteins), essential for many transcription 

factors and metalloenzymes, and critical for metalloproteinases MMPs, which are involved in 

hypoxia, angiogenesis, cell proliferation and metastasis. Zinc homeostasis is under the control of 

antagonistic zinc transporters ZIP (intake) and ZnT (removal). In our dataset we recognize a set 

of upregulated genes related to this regulation including SLC39A8, SLC39A10 and SLC39A14, 

which encode Zrt-, irt-like proteins (ZIP), as well as SLC30A1, which encodes a ZnT that 

removes zinc from the cell. In this context it is interesting that SLC39A8 has been linked with the 

regulatory effects of the transcriptional network for mesenchymal transition in brain tumors 

(Carro et al. 2010). This gene is also part of the transcriptional network governing the angiogenic 

switch in human pancreatic cancer (Abdollahi et al. 2007). 

 It is known that too much of ZIP, a molecule that enables the transport of zinc into cells, 

promotes the growth and spread of pancreatic tumors cells. It has been recently reported that ZIP4 

overexpression causes increased IL6 transcription through CREB, which in turn activates STAT3 

and leads to increased cyclin D1 expression, resulting in increased cell proliferation and tumor 

progression in pancreatic cancer (Zhang et al. 2010). On the other hand too much ZnT, which 

removes zinc, may cause a breakdown in many regulatory processes. Zinc deficiency induces 

oxidative DNA damage and increases p53 expression. DNA damage combined with an impaired 

repair system may lead to further cancer progression. 

 Existing literature suggest regulation mechanism whereby MTs can interact with p53 in the 

control of cell division (Śliwińska-Mossoń et al. 2009). Hainaut and Milner (1993) found that 

exposure to a metal chelating agent induces a reversible conformation change in wild type p53 to 

the mutant form, and they suggest that binding zinc ions to tertiary structure of p53 stabilizes it. 

Metallothioneins with their high affinity to zinc ions and ability to remove it from the cell suggest 

a direct connection where reduction of intra-nuclear zinc ion levels induces functional 

inactivation of p53 providing the tumor cells with the ability to proliferate and accumulate 
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mutational events. MT promoters have binding sites for the Sp1, AP-1, and AP-2 transcription 

factors that mediate the effects of growth factors and protein kinases on transcription processes. 

All of this combined provides us with a stimulus-transcription coupling between MTs, SP1, AP1, 

AP2, as well as most of the transcription factors of the zinc-finger type including EGRs, and 

through that a connection to signaling cascades such as for example IGF1R à Src-Mek-Erk-Egr1. 

These potential interactions between the p53 tumor suppressor and MTs are also interesting 

in light of findings by Yamasawa et al. 2002 who have shown that loss of function p53 correlates 

with an overexpression of GADD45A – a p53 target, and one of the more significantly changing 

genes in our tumor cell experiment (3). p53-GADD45A co-expression has apparently (only an 

abstract of a Chinese publication is available) been shown to be a poor predictor for patient 

outcome (Dong et al. 2005). It would be interesting to see how that changes if the profile is 

expanded to include e.g. MT1M given the biological relationships. 
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7.2.9 Potential points of interference 

The identification of the intracellular gene regulatory networks and unique soluble factors 

allowed us to propose a set of potential points of interference to disturb the formation of the TC-

PSC-TC signaling axis. While we were able to decrypt interactions between cells, and confirm 

their dependence on the underlying GRN, their physiological impact is yet to be studied. 

Intracellular target genes are often members of larger clusters, which share time-resolved 

expression profiles, and a further investigation of those may provide additional interesting venues 

for potential in vitro and in vivo validation.  

Some of the identified signaling cues are reinforced by literature sources proving the 

validity of the approaches applied in our work, and emphasizing the potential of the novel factors 

arising in this context. 

 

Intracellular targets: 

- PSC GRN points of interference including PHACTR2, MALAT1, HIRA, and APOL6. 

- TC GRN points of interference including the EGR gene family with emphasis on 

EGR3.  

The latter were confirmed with in vitro qRT-PCR analysis to have the predicted effect, 

unfortunately the transfection of PSC remains outside of experimental possibility. 

Additionally we offer a relatively short list of intracellular signal transducers, which may 

be of potential interest including the toll-like receptor signaling in the PSC antiviral responses, 

and signal transduction in the inflammation-related pathways of TC. Furthermore many signals of 

autocrine and paracrine nature are transduced through common receptors such as EGFR, PLAUR, 

CXCR1/3/4/5. Blocking those receptors may offer another way to block the cell-cell interactions. 

 

Intercellular targets: 

Signaling established between the PSC and TC is a dynamic process, which is clearly 

depicted in the temporal gene expression profiles. We were able to divide them into subgroups 

dependent on autocrine, paracrine and mixed intercellular signals. The points of interference at 

the extracellular level aim to interrupt not only the direct signal exchange, but also the actual 

formation of the underlying GRN induced in response to the stimuli. They are in detail presented 

in Figure 74 and are grouped into three separate phases with TC factors initializing PSC, PSC 

factors stimulating TC, and TC response into the microenvironment, most likely uniquely 

affecting PSC in another paracrine feedback: 
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1. Phase1: MMP9, MMP7, MMP13, CTSE, EGF, CSF1, PGF, FGF2, CCL8, CCL5, 

CRH, SERPINA1, IL1A, NPPA, APOE, LAMA2, LAMA3, LAMC2, PTHLH, A2M, 

BMP2, PRL, GHRL 

2. Phase 2: TIMP3, IL7R, ESM1, EBI2, CCL20, DKK3, IL6, TFPI2, STC1 

3. Phase 3: CX3CL1, CXCL6, CXCL10, CSF1, CSF3, BTC, GAL, C3, CFB, SHH, 

FGF18, WNT6 

 

Our findings overlap and confirm data reported by other groups including: 

- sonic hedgehog SHH produced by TC in the final response phase, recently reported 

by Bailey et al. 2008, Yauch et al. 2008, Olive et al. 2009, and Xu et al. 2010.  

- AKAP12 identified as a signal transducer during PSC initialization, reported by us in 

the context of the GRN of migrating keratinocytes, where the model has shown that 

it is important to cell migration (Busch et al. 2008).  

- CSF1 produced by TC in the final response, aforementioned in this discussion 

(Groblewska et al. 2007), also shown by Zhong et al. 2008 for lung cancer.  

- PTHLH as a TC signal initializing PSC, reported by us (Busch et al. 2008) as one of 

the abundantly overexpressed proteins in migrating keratinocytes.  

 

Rich environmental setup: 

- TGF-β reported by Ellenrieder et al. 2001, Jungert et al. 2007, Ijichi et al. 2006, and 

Bardeesy et al. 2006.  

- VEGF – Yang et al. 2006, Tang et al. 2006 

- EGF via EGFR and HGF both involved in migratory response of keratinocytes in 

wound healing (Busch et al. 2008) 

- ESR1 (Konduri et al. 2007) 

- PPAR (Eibl et al. 2004, Eibl et al. 2008) 

- PLAU/PLAUR (Kjøller, 2003; Ploug et al. 2002 and 2003; Yimin et al. 2003; Ploplis 

et al. 2007). 
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8. Conclusions  
Our global gene expression analysis, ranking and modeling allowed us to capture and 

predict temporal dynamics of gene regulatory networks and to define the interactions between 

genes of interest in both cell types. In silico simulations provided a list of experimental targets, 

which were successfully validated in tumor cells. From the experimental context and data 

analysis we were able to recognize that the initial stimulus axis of TC→PSC→TC interactions 

induces a PSC state transitions from the initial stable steady state (corresponding to PSC, which 

are activated, but unexposed to TC) into an unstable state contingent on exposure to TC. A 

finding in line with the in vivo situation where cells in the desmoplastic stroma are motile, and 

transiently exposed to tumor cells. We investigated how the transition is induced (constitutive TC 

stimulus), what regulatory mechanisms are stimulated during that induction (PSC GRN, soluble 

output), what effect they have on the associated TC (TC GRN), and how those TC maintain the 

PSC state through soluble factors. Through the proposed methodology we have gained a deeper 

understanding of how TC-PSC microenvironment is established, how the extracellular signaling 

cues are formed, and how they affect the intracellular networks in a time-ordered manner. The 

identified potential points of interference offer valid and in case of extracellular factors easily 

accessible targets for the development of therapeutic agents, which would aim to disturb the 

formation of this complex cellular interplay that drives pancreatic tumor resistance. 

 



 

     

 

192	  

 



 

     

 

193	  

9. Future Work  
Quiescent PSC were recently isolated by Vonlaufen et al. (2010), with that it is now 

possible to observe the complete set of state transitions in the stroma including the move from a 

quiescent into an activated PSC steady state, which in our case was experimentally approximated. 

To investigate a complete set of interactions the experiments will have to be extended to 

encompass also immune cells. This is especially important since the occurrence of TC may be 

either preceded by chronic inflammation and immune cells presence, or trailed by immune cell 

infiltration of tissue in response to tumor attractors. 

Stellate cells were shown to be unique in many ways when investigated in the context of 

PDAC. The signaling cues put them into the range of: inflammation, wound healing, and antiviral 

responses. Therefore a change of perspective may be necessary, from looking at PSC as 

fibroblasts, to looking at them as multi-functional cells sharing features with other cell types e.g. 

immune cells such as macrophages (antiviral responses). The identification of shared signaling in 

the area of wound healing also suggests that an investigation of PSC in the context of findings by 

Xu et al. 2010, and Busch et al. 2008 might be beneficial in order to limit the stellate cell 

capability to accompany TC in the formation of distant metastases. 

An expansion of the existing CTRNN modeling approach to include an additional layer of 

output neurons (similar to one described by Arie et al. 2007) may allow us to create models of 

multiple cell types interacting with each other, which would greatly improve model integration. 

A one step Midpoint method will be implemented in the future to improve the ODE 

integration, which is currently achieved with forward Euler method, and avoid the 

implementation issues of multiple iterative loops of the Runge-Kutta method.  
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