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Abstract

For their huge variety of functions mesenchymal stromal/stem cells (MSCs) are at-

tractive candidates for tissue engineering and cell therapy. Although in vitro differen-

tiation of MSCs is well established and has been extensively studied, little is known

about stem cell niches. So how are these niches defined in tissues and which cell-matrix

contacts determine the fate of MSCs therein? To approach this task, herein the adhe-

sive behavior of MSCs was evaluated under varying conditions employing non-invasive

impedance monitoring in real-time, using fibroblast and keratinocytes as non-specific

controls. Major focus was on changes in adhesion and migration of MSCs induced to

differentiate into adipogenic and osteogenic lineages, the effects of extracellular matrix

(ECM) contacts on this response, and the correlation of impedance profiles with specific

differentiation markers including the predictive value of these recorded profiles. Finally,

the influence of the MSC source was evaluated by comparing different cell populations

derived from bone marrow and fat tissue.

MSCs roughly resembled fibroblast adhesion while keratinocytes differed significantly,

which was reflected by impedance recordings. Inducing differentiation, impedance pro-

files of MSCs driven into the osteogenic lineage revealed a continuous rise of impedance

due to matrix deposition and strong cell-matrix contacts and furthermore by matura-

tion and formation of a mineralized matrix. Adipogenic differentiation was marked by

shallower initial slopes and eventually declining profiles, corresponding to more com-

pact and roundish cells with lowered cell-cell contacts. Concordance of impedance

profiles and differentiation markers of the varying differentiation potential of MSCs

from different donor and age underlined the reliability of the system. MSC migration

was delayed during adipogenesis or by increasing cell attachment in response to TNFα

treatment. Pre-coating with ECM proteins revealed favored osteogenesis on collagen I

and IV, whereas adipogenesis was increased on fibronectin, which was also reflected by

impedance recordings.

Overall, the present thesis revealed distinct differences of cell attachment during the

process of differentiation and the guidance of differentiation by cell-matrix contacts and

evaluated the potential of impedance measurements as a valuable tool for real-time,

non-invasive high throughput screening of cell properties and identification of receptors

involved in the regulation differentiation processes.



Zusammenfassung
Aufgrund ihrer vielfältigen Funktionen sind mesenchymale Stammzellen (MSCs) in-

teressant für die künstliche Gewebskonstruktion und die Zelltherapie. Obwohl die in

vitro Differenzierung von MSCs gut etabliert und weitreichend untersucht wurde, ist

wenig bekannt über die Stammzellnischen. Wie sind diese Nischen im Gewebe definiert

und welche Matrix-Kontakte bestimmen das Schicksal der MSCs? Um dieser Frage

nachzugehen wurde das Adhäsionsverhalten von MSCs unter verschiedensten Bedin-

gungen mit Hilfe von Impedanz-Messungen untersucht. Fibroblasten und Keratinozyten

dienten als unspezifische Kontrollen. Das Hauptaugenmerk lag auf den Veränderungen

der Zelladhäsion und Migration während der Differenzierung in Fett- oder Knochen-

Zelllinien, den Effekten von extrazellulären Matrix (EZM)-Kontakten auf diese Verän-

derungen und der Korrelation der Impedanz-Profile mit spezifischen Differenzierungs-

markern, bzw. wie diese Profile der Abschätzung der Differenzierung dienen können.

Desweiteren wurden Zellen aus Knochen- und Fettgewebe verglichen um den Einfluss der

Zellherkunft zu untersuchen. Während sich Keratinozyten klar unterschieden, stimmte

die Adhäsion von MSCs im Wesentlichen mit dem Verhalten von Fibroblasten überein,

was sich auch in Impedanz-Messungen widerspiegelte. Nach Induktion wiesen die Pro-

file der osteogenen Differenzierung aufgrund von Reifung und Bildung einer mineral-

isierten Matrix und starken Zell-Matrix-Kontakten einen kontinuierlichen Anstieg der

Impedanz auf. Adipogenese zeichnete sich durch anfänglich schwächere Steigung und

später abfallende Profile aus. Dies deckte sich mit kompakteren und runden Zellen sowie

geringeren Zell-Zell-Kontakten. Übereinstimmende Impedanzprofile mit dem Differen-

zierungsgrad der Zellen aus unterschiedlichen Spendern und unterschiedlichem Alter

bestätigen diesen Ansatz. Migration von MSCs konnte durch Induktion der Adipo-

genese oder durch Verstärkung der Zellanheftung durch TNFα-Behandlung verzögert

werden. Zellinteraktionen mit EZM-Proteinen zeigten, dass die Osteogenese auf Kolla-

gen I und IV bevorzugt wird, wohingegen die Adipogenese auf Fibronektin erhöht war.

Diese Ergebnisse konnten durch Impedanzmessungen bestätigt werden.

Die vorliegende Arbeit zeigt wesentliche Unterschiede der Zellanheftung während des

Verlaufs und die Steuerung der Differenzierung durch Zell-Matrix-Kontakte auf und

untersuchte die Möglichkeiten von Impedanz zur nicht-invasiven Hochdurchsatzbestim-

mung von Zelleigenschaften in Echtzeit und zur Identifizierung von Rezeptoren die an

der Regulierung der Abläufe der Differenzierung beteiligt sind.



Für meinen Papa.
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1 Introduction

1.1 Mesenchymal stromal cells

Since their first description by Friedenstein et al. in 1970, mesenchymal stromal/stem

cells (MSCs) have evolved from connective-tissue generating cells to a promising resource

for therapeutic applications. Their adaptive mesodermal differentiation potential, im-

mune regulatory properties and trophic functions make MSCs attractive candidates for

novel cell therapies (Kern et al., 2006; Sensebé et al., 2010; Zhao et al., 2010). By

selecting adhesive stromal cells, MSCs are readily isolated from various human tissues,

including bone marrow and adipose tissue. They can be propagated in vitro maintain-

ing their differentiation capacity and genetic stability (Kern et al., 2006; Bieback et al.,

2009), though clonal nature defined as CFU-Fs (colony forming unit-fibroblastic cells)

and true multipotent stemness are questionable in some cases (Bianco et al., 2010).

Function and MSC behavior depend on the tissue of origin, age and individual charac-

teristics of the donor, but also conditions of isolation and early propagation (Kern et al.,

2006; Bieback et al., 2009; Gregory et al., 2005), all of which have to be addressed to

qualify MSC isolates. Strategies to yield more homogeneous populations e.g. by clonal

amplification or cell sorting are often hampered by paucity of suitable well-defined sur-

face markers allowing for prospective isolation. Very crucial for expansion of MSCs is

maintenance of stemness, i.e. self renewal capacity and specific tissue precursor proper-

ties, as prerequisites for clinical application. As promising approach for extending life

span in vitro hTERT has been inserted in MSCs (Hung et al., 2010), which could foster

tissue engineering but may in vivo increase the risk for developing cancer.

To provide common standards in the field of MSCmore homogeneous, the International

Society for Cellular Therapy (ISCT) defined minimal criteria for these cells. Accord-

ing to these criteria, MSCs must be (1) multipotential in vitro i.e. they must be able

to differentiate at least into adipogenic, osteogenic and chondrogenic lineages and (2)

1



1.1 Mesenchymal stromal cells

plastic-adherent. Additionally, surface markers of MSCs were defined and accordingly

(3) MSCs must express CD105, CD73 and CD90. For excluding contamination, mainly

by several types of hematopoietic cells, (4) they should lack CD45, CD34, CD14 or

CD11b, CD79α or CD19 and HLA-DR (Dominici et al., 2006). Furthermore, an uni-

form terminology was agreed on to avoid further confusion. During the nearly 40 years

after the first report of MSCs, several terms can be found in the literature: Introduced

as osteogenic stem cells (Friedenstein et al., 1970), Caplan coined the popular term of

mesenchymal stem cells (Caplan, 1991) while now MSCs should be addressed as mul-

tipotent ’mesenchymal stromal cells’, and this term and definition is used throughout

this thesis.

Since the 1990s MSCs have been used in various therapeutic approaches of tissue en-

gineering and clinical regenerative medicine due to their potential to differentiate into

diverse cell types like osteoblasts, adipocytes, or chondrocytes (Prockop, 1997; Pittenger

et al., 1999; Gregory et al., 2005): Infusion of MSCs improved the outcome in children

with osteogenesis imperfecta (Horwitz et al., 2002). Direct injection of concentrated

bone marrow for the treatment of long-bone fractures supported bone healing when

applying MSCs from bone marrow (Hernigou et al., 2005) and also MSCs in combi-

nation with tissue engineering was succesfully applied for bone replacement (Quarto

et al., 2001). MSCs transplanted into infarcted heart and stimulated to differentiate

into cardiomyocytes by 5-azacytidine reduced the size of damaged tissue (Tomita et al.,

1999) and MSCs can also differentiated in vitro into functional beating cardiomyocytes

(Makino et al., 1999; Planat-Benard et al., 2004a). Furthermore, MSC mediated en-

hancement of epithelial wound healing was shown. However, it needs to be clarified,

whether MSCs contribute to wound healing by transdifferentation, for example into

cornea cells (Arnalich-Montiel et al., 2008). Alternatively paracrine effects could stim-

ulate neighboring stromal cells (Oh et al., 2008), by either recruiting macrophages or

endothelial lineage cells (Chen et al., 2008) or, most likely through multiple combined

pathways. MSCs can not only be implanted in diverse anatomical sites for tissue re-

pair using their differentiation potential to resume physiological processes, reports have

shown prevention of graft versus-host-disease (GvHD) and enhanced engraftment in

haematopoietic stem cell transplantation in combination with MSCs (Le Blanc et al.,

2008; Muller et al., 2008; Kim et al., 2004). Moreover, in response to cytokines and other

soluble factors, they can also migrate into inflammatory sites and tumor surrounding

2



1.1 Mesenchymal stromal cells

stroma (Mishra et al., 2009). Thus, genetically manipulated MSCs could deliver drugs

to the tumor microenvironment for interference with tumor growth (Hall et al., 2007;

Bexell et al., 2009).

However, besides envisaged therapeutic benefits, MSCs also carry potential risks.

Spontaneous differentiation into osteogenic lineage including increased calcification by

MSCs injected into rat hearts, demonstrated pitfalls in therapeutic application of MSCs

(Breitbach et al., 2007). Not only development of ’wrong’ tissues can occur, there

are also reports that MSCs resident in tumor stroma converted into cells resembling

carcinoma associated fibroblasts (CAFs) (Galiè et al., 2008; Mishra et al., 2009), though

distinct markers to trace their fate or function are still elusive. Among other factors,

CAFs secrete stromal derived factor-1 (SDF-1) that stimulates tumor cell proliferation

and migration via SDF-1 receptor (CXCR4) (Orimo et al., 2005). Moreover, SDF-1

recruits endothelial precursors from bone marrow, favoring tumor angiogenesis. Other

biomarkers suggest a strong relationship of MSCs with perivascular cells or pericytes

which are essential for functional maturation of blood vessels (Brachvogel et al., 2005;

Bexell et al., 2009; Paquet-Fifield et al., 2009; Bianco et al., 2010). Underlining MSC

plasticity, mesenchymal-epithelial transitions have been reported, possibly generating

also malignant epithelial cells, but this is still a controversial issue and in several cases

cross-contamination in culture has been uncovered (Orimo et al., 2005; Rubio et al.,

2008; Garcia et al., 2010). For all applications a challenging problem remains that cell

isolates represent mixed populations, containing early precursors with a wide poten-

tial, cells committed already to distinct lineages or more specialized fibroblastoid cells

(Bianco et al., 2010).

1.1.1 Differentiation of MSCs

The ability of MSCs to differentiate into cells of various tissue types as major hallmark

of their properties is the most obvious benefit for clinical application. Besides fulfilling

the minimal criteria for MSCs to give rise to adipogenic, osteogenic and chondrogenic

cells (Gregory et al., 2005), differentiation into myocytes (Zuk et al., 2001), hepatocytes

(Banas et al., 2007; Seo et al., 2005), neurons (Safford et al., 2004), pancreatic cells

(Timper et al., 2006) and also into endothelial cells (Planat-Benard et al., 2004b) was

3



1.1 Mesenchymal stromal cells

shown in various studies. In this thesis the main focus is on adipogenic and osteogenic

differentiation.

1.1.1.1 Adipogenic differentiation

Differentiation along the adipogenic pathway is not only one of the crucial characteristics

of MSCs, but might also be of clinical relevance for example in fat grafting for the treat-

ment of contour deformities (Yoshimura et al., 2008). Early adipogenic differentiation

is marked by increased levels of CCAAT/enhancer binding protein β (C/EBPβ) and

CCAAT/enhancer binding protein δ (C/EBPδ) which in turn activate as heterodimers

peroxisome proliferative activated receptor γ (PPARγ), one of the major proteins in

adipocyte maturation and maintenance. PPARγ is thought to play a role in the growth

arrest at G0/G1 phase typically seen for cells at the onset of adipogenic differentiation.

This is followed by cell doubling for clonal amplification of committed cells (Pairault and

Green, 1979). PPARγ activates C/EBPα, both leading to activation of adipogenic spe-

cific genes like adiponectin, perilipin, leptin, fatty acid synthase and fatty acid binding

protein. But C/EBPα also serves as negative effector by decreasing the early adipogenic

markers C/EBPβ and δ. By accelerating the degradation of β-catenin, PPARγ partic-

ipates in suppression of Wnt-signaling, thus inhibiting osteogenesis (Liu and Farmer,

2004).

Morphologically adipogenic differentiation is accompanied by drastic changes of the

cell shapes from an elongated fibroblast-like morphology into more roundish cells con-

taining large accumulations of lipid droplets. The conversation into mature adipocytes

is preceded by a decreased assembly of the cytoskeletal proteins actin and tubulin (Gre-

goire et al., 1998; Spiegelman and Ginty, 1983). For adipogenic differentiation in vitro,

usually MSCs at confluent stage are stimulated with a cocktail of factors which trigger

or accelerate adipogenesis such as dexamethasone, insulin, 3-isobutyl-l-methyl-xanthine

(IBMX), and indomethacine. The glucocorticosteroide dexamethasone increases expres-

sion of the early adipogenic markers C/EBPδ and decreases glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) mRNA. The phospohodiesterase inhibitor IBMX increases the

level of 3’-5’ cyclic adenosine monophosphate (cAMP) which in turn activates protein

kinase A (PKA). Perhaps of more input IBMX directly acts on the adipogenic dif-

ferentiation process by increasing C/EBPβ levels. Indomethacine accelerates adipo-
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genesis by increasing C/EBPβ expression in a prostaglandin-independent manner and

by inhibiting of cAMP degradation but it might also be a direct agonist for PPARγ.

In addition indomethacine increases levels of ADRP (Adipocyte differentiation-related

protein, also termed adipophilin) which leads to accumulation of triglycerides and fat

storage. Finally, due to its inhibitory activity on cyclooxygenases indomethacine also

acts as negative effector of osteogenesis (Styner et al., 2010; Lehmann et al., 1997; Gre-

gory et al., 2005). Insulin and also insulin-like growth factor (IGF)-1 are not only major

regulators of glucose uptake, thus fueling lipid metabolism, but might also play a role

in stimulation of the clonal amplification of committed adipogenic cells.

1.1.1.2 Osteogenic Differentiation

Their potential to differentiate into osteoblasts and the resulting ability to form bone

matrix qualifies MSCs for therapeutical application supporting bone repair after in-

juries. At the cellular level the ossification process can be divided into three major

stages of differentiation: (i) proliferation of precursor cells and mature osteoblasts, (ii)

production and maturation of extracellular matrix (ECM), and (iii) cell-mediated min-

eralization of the matrix (Aubin, 2001). Each stage is accompanied by expression of

a specific set of genes. Central player in osteogenesis is runt-related transcription fa-

tor 2 (Runx2), also termed Cbfa-1, which is activated via bone morphogenic proteins

(BMPs) or ERK 1 and 2 dependent pathways (Lee et al., 2000; Salasznyk et al., 2004).

Underlining its importance knock out of Runx2 leads to accumulation of immature os-

teoblasts and preventing of bone formation in mice (Komori et al., 1997; Otto et al.,

1997). Activated Runx2 binds to osteoblast-specific cis-acting element 2 (OSE2) and

induces several osteogenesis related proteins (Ducy et al., 1997; Hoshiba et al., 2009).

One of those, osteopontin (OPN) shows two peaks of high gene expression, the first

between day 4 and 6 after induction of differentiation and the second at late phase

when matrix and mineralization are almost fully developed. Similarly, increased levels

of bone sialoprotein (BSP) are also detectable in a very early and at late phase. In

contrast, alkaline phosphatase (ALP) is expressed exclusively during early stages, ini-

tiating mineralization of the ECM by hydrolyzation of organic phosphates (Stanford

et al., 1995). The ALP level decreases when mineralization is fully developed (Aubin,

2001). At this late stage again Runx2 induced genes are highly expressed as BSP and
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1.2 The extracellular matrix and the stem cell niche

other osteogenic specific markers like osteocalcin (OCN). Complete osteogenic differen-

tiation in vitro is marked by deposits of calciumphosphate and hydroxyapatite in the

mineralized matrix of cultured cell layers. Although cultivation of MSCs in medium

containing dexamethasone, ascorbic acid and β-glycerophosphate (BGP) was shown to

be efficient for in vitro osteogenic differentiation (Pereira et al., 1995; Colter et al.,

2000), these conditions might not reflect the in vivo signals. Contradictory results for

the role of bone morphogenic protein (BMP)2 in osteogenesis have been reported (Gre-

gory et al., 2005; Hanada et al., 1997; Diefenderfer et al., 2003) whereas osteogenic

differentiation has been also induced by other factors like 1α,25-dihydroxyvitamineD3

or 9-cis retinoic acid (Jørgensen et al., 2004; Titorencu et al., 2007). During the process

of induced in vitro differentiation ascorbic acid increases the production of collagen and

ALP activitiy in cells undergoing osteogenic differentiation (Maniatopoulos et al., 1988;

Chan et al., 1990). The secreted collagens (mainly type I collagen) bind to integrin

α1β1 at the cell surface, activating intracellularly ERK proteins which in turn initiate

a signaling cascade which ends in activation of Runx2 (Salasznyk et al., 2004). For

matrix mineralization BGP serves as organic phosphate source for the osteogenic cells.

Though dexamethasone is not essential for osteogenic differentiation, it apparently in-

creases the osteogenic output of cells which differentiate. However, for its stimulating

effect on adipogenic differentiation and the known negative influence of glucocorticoides

on bones, the role of dexamethasone might be of ambivalent nature (Aubin, 2001).

1.2 The extracellular matrix and the stem cell niche

A central role for the pool of stem cells and their fate plays the stem cell niche, the

environment in which genuine stem cells are located including surrounding cells, the

composition of the surrounding ECM as well as growth factors bound or produced

there. The stem cell niche not only maintains the self-renewal properties and regulates

proliferation but also prevents or, upon appropriate stiumuli, directs stem cell differen-

tiation (Warstat et al., 2010). Stem cells which are triggered to migrate out of their

niche by extrinsic factors like cytokines or growth factors may enter circulation or can

start to proliferate and differentiate into different lineages after homing at specific sites.

For therapeutic application the maintenance of stemness of the cells in vitro is of cru-

cial importance. Thus, major issues are, (1) providing an environment which allows
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proliferation of the stem cells without losing their potential to differentiate and (2) the

developing of factor-conditioned supports or matrices which are favorable for certain

lineages. This will be of highest interest for either tissue engineering or direct clinical

application of MSCs. Due to its protein composition the extracellular matrix (ECM)

provides a scaffold for tissues and the cells within it. The composition of ECM macro-

molecules varies from tissue to tissue and through specific cell-matrix contacts the ECM

plays also a regulatory role in cell adhesion, proliferation, migration, differentiation and

cell behavior in general. In the context herein, these interactions with the ECM are

essential for stem cells mediating their homing in the stem cell niche (Warstat et al.,

2010). Concordantly, cultivation of MSCs on certain ECM proteins can improve the

maintenance of differentiation potential in vitro (Volloch and Kaplan, 2002) but also

promote (Salasznyk et al., 2004; Mizuno and Kuboki, 2001) or inhibit certain differenti-

ation pathways (Mauney and Volloch, 2009, 2010; Santiago et al., 2009) which is further

refined by structural and mechanical substrate properties like stiffness or elasticity (En-

gler et al., 2006; Rowlands et al., 2008). These signals from the outside (ECM) into the

cell are mainly mediated by integrins (outside-in signaling) which triggers the cellular

responses such as growth or maintenance of stemness, migration and differentiation.

1.2.1 Proteins of extracellular matrix

The ECM is made up by a large number of proteins and its composition varies from tissue

to tissue, determining ECM function. ECM proteins can be grouped into collagens and

other glycoproteins, both capable of self-assembly, and less structured proteoglycans.

Due to their extended use this section further describes ECM proteins collagen I and

IV as well as laminin and fibronectin.

1.2.1.1 Collagens

Collagens are the most abundant proteins in vertebrates, being present amply in all

connective tissues and in varying amounts in virtually all organs. Collagen terms for

a group of several subfamilies of trimeric proteins sharing structural and functional

properties. All collagens express domains with triple helical conformation giving rise

to rigid, rod-like molecular structures. Collagens such as fibrillar (type I, II, III, V

and VI collagen) or short chain collagens (type VIII and X collagen) express only one
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triple-helical domain spanning almost the entire length of the molecule. Other colla-

gens such as basement membrane (BM) collagens (type IV collagens, several isoforms),

FACITs (fibril-associated collagens with interrupted triple helices: type IX, XII, XIV,

XVI and XIX collagen) or MACITs (membrane-associated collagens with interrupted

triple helices: type XIII and XVII) are composed of show short triple helical domains

which are interrupted by non-helical sequences (Kühn, 1995). The subunits of these su-

perhelices, called α-chains contain the repetitive sequence motif (Gly-X-Y)n, frequently

with proline in the X or Y position besides any other amino acids. This is an absolute

prerequisite for the typical rod-like collagen structure being stabilized through regu-

larly spaced hydrogen-bonds. In addition collagens are stabilized by a high content of

hydroxyproline through specific hydroxylation of proline in Y-position. This is raising

the number of hydrogen-bonds and thus the degree of hydroxylation is further increas-

ing the thermal denaturation temperature. Usually, collagens form fibrils, filaments

or networks. The formation of these supramolecular aggregates occurs either by pure

self-assembly or together with other extracellular components such as decorin or the

’minor’ collagen types (FACITs). Collagens mostly contribute to the stable scaffold of

ECM-structures, but also to the anchorage of cells to the ECM. Direct adhesion of cells

to collagen occurs in a conformation dependent manner, mostly recognizing distinct

triple-helical binding sites by integrins, in particular integrin α1β1 and α2β1. In addi-

tion, collagens can exhibit regulatory functions as well (Kreis and Vale, 1999). Thus,

different types of collagens have an influence on cell differentiation and migration during

development, in most cases also mediated via integrins.

Collagen type I is the predominant collagen in striated collagen fibrils. Its fibril-

lar structure makes collagen I the major protein in various tissues. It forms rope-like

structures in tendon, sheet-like structures in skin, and in bone collagen I makes up

to 90% of the total protein matrix which is aligned and reinforced by calcium hy-

droxyapatite. Thus, it provides the essential scaffold for ordered mineralization and

provides bone a certain degree of elasticity. The molecular structure of collagen I is

dominated by a long uninterrupted triple helical domain built by heterotrimers of two

α1(I) and one α2(I) chain, also an α1(I)3 isoform exists but at low abundancy. Intra-

cellularly synthesized heterotrimeric procollagens are secreted and propeptide regions

are removed by N- and C-proteinases in the extracellulare space. These mature triple-

helical molecules assemble into cross-banded fibrils, stabilized by further cross-linking
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1.2 The extracellular matrix and the stem cell niche

of specific lysine/hydroxylysine residues and non-helical as well as helical domains. Di-

rect interactions of collagen I and cells is mainly mediated via integrin α1β1 and α2β1

(Staatz et al., 1991; Mecham, 2011).

Collagen Type IV, a major component of basement membranes, is a network-

forming collagen and consists of variable combinations of six different α chains. The

major part of type IV collagen is made up by a hetero-trimeric isoform consisting of

two α1(IV) and one α2(IV) chain. Two further combinations of α-chains are found,

which are from minor incidence: α3(IV)α4(IV)α5(IV) and α5(IV)α6(IV). Structurally

the α-chains can be separated into 3 domains: the N-terminal cysteine rich (7S) do-

main, a central triple helical domain and a non-triple helical domain (NC-1) at the

C-terminal end of the molecule (Khoshnoodi et al., 2008). Network assembly of col-

lagen IV is initiated by covalent cross-linking through its 7S domains, forming dimers

and in a further step tetramers. Aggregation of tetramers is accomplished through

end-to-end interactions of the C-terminal NC1-domains, finally forming a chicken-wire

like network. Additionally, the network is stabilized by lateral associations between

triple helical domains (Timpl et al., 1981). While the α1(IV)2α2(IV)-form is highly

abundant, the α3(IV) to α6(IV)-chains are found only in specialized BMs. Thus, the

α3(IV)α4(IV)α5(IV) network is expressed in lung, kidney and neuromuscular junctions

and the α5(IV)α6(IV) chains are restricted to BMs lining epidermal and smooth muscles

cells, adipocytes, and kidney tubules (Kühn, 1995; Miner, 2011). In BMs the networks of

collagen IV are closely linked, which is largely mediated by nidogen, further stabilizing

BM structure (Breitkreutz et al., 2004; Nischt et al., 2007).

1.2.1.2 Laminin

Up to now, of the large glycoyprotein family of laminins at least 15 members are known.

Each isoform consists of an α-, β- and γ-polypeptide chain, forming a heterotrimeric

glycoprotein. Five different α-chains, four β-chains and three γ chains have been iden-

tified, which give the laminins a large variety of functional and biological activities.

Nomenclature of laminins was revised in 2005 changing names from numeral ordered

laminins according to their discovery to a 3-digit system based on their chain compo-

sition (Aumailley et al., 2005). So, laminins-5, -6 and -10, being most abundant in the

basement membrane zone of adult skin (McMillan et al., 2003; Miner and Yurchenco,
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2004), have been renamed laminin-332 (Lm-322), Lm-311, and Lm-511 for examples.

Apparently β- and γ- chains are assembled first in the cell, while the addition of the

α-chain is required for secretion. Genuine, i.e. unprocessed laminins have a cross- or

T-shaped structure. The rod-like arm consists of the coiled-coil domains of the three

different chains, held together by hydrophobic and polar interactions, and five globu-

lar laminin G-like domain (LG)-modules (LG1-LG5) at the C-terminus of the α-chain.

The two or three short arms, are contributed by either the β and γ or all three chains,

containing repeats of laminin type EGF (epidermal growth factor)-like domain (LE)-

modules, interrupted by one or two globular L4 modules which are all individually sta-

bilized by interchain disulphide bonds (Kreis and Vale, 1999; Ghohestani et al., 2001;

Aumailley and Rousselle, 1999). The first step of polymeric self-assembly and network

formation is mediated by interactions of the N-terminal ’sticky’ ends (LN domains) of

the short arms. In the BM zone, connection to the collagen IV networks occurs through

nidogen binding at the γ1III4-module of laminin though nidogen-binding presumably

also adapts laminin conformation for interactions (Breitkreutz et al., 2004). Laminins

not only contribute to the formation of networks but are also directly involved in cell

adhesion via integrins, especially the integrins α3β1, α6β1, α6β4 and α7β1 (Miner,

2011). The function of the individual laminins is considerably modified by proteolytic

processing, especially clipping off LG4 and LG5 or N-terminal parts of the α and γ short

arms. This processing is particularly extensive on Lm-332. While Lm-111 is prominent

(mostly in the BM) during embryonic development, the most abundant laminin in hu-

man adults is Lm-511. Whereas the α1 and α5 chain apparently cannot compensate for

each other despite of high sequence homology, the β1 and γ1 chains are essential in BM

formation. Defects in the expression of α5-chain are related to various developmental

defects which are generally embryonic lethal (Miner and Yurchenco, 2004; Rebustini

et al., 2007). Though the underlying mechanisms are not fully understood, this clearly

points out that a functional basement membrane is essential for proper tissue function

and signaling to adjacent cells.

1.2.1.3 Fibronectin

Another major protein of the extracellular matrix is the ubiquitous glycoprotein fi-

bronectin (Fn). Two large subunits connected through disulfide bonds on the C-terminal
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end form the basic dimeric structure of fibronectin. Each subunit can be divided into

several domains which in turn contain different functional modules, responsible for

crosslinking of fibronectin molecules, binding of cells or other ECM molecules like col-

lagens, fibrin and heparin. Various isoforms of fibronectin-subunits are found which

is caused by alternative splicing giving rise to 20 different fibronectin mRNAs. Cell

binding of fibronectin occurs mainly through an RGD motif in the ’type III fibronectin

(FnIII) repeat’ in the cell binding module which is interacting with various integrins,

primarily α5β1 integrins, on the cell surface (Mao and Schwarzbauer, 2005). Bind-

ing of a LDV sequence motife with integrins α4β1 or α4β7 to a LDV sequence motif

could be also detected in the alternatively spliced FnV region (Humphries et al., 2006;

Leiss et al., 2008). In contrast to the self-assembling networks of collagens or laminins,

these interactions of fibronectin with cells are a prerequisite for fibril formation in the

extracellular matrix of tissues. As long as not bound to cells the cryptic binding site

for fibronectin self-assembly is hidden in the molecular structure. Getting bound to

cells the fibronectin molecules are stretched by cell mediated tension via integrins and

intracellular actin stress fibers, which is exposing the binding module. The fibronectin

molecules can now interact with other to form fibrilar networks around cells, thus con-

necting neighboring cells and contributing to matrix (ECM) organization (McDonald,

1988; Singh et al., 2010). This function is essential for keeping fibronectin monomeric

and soluble e.g. to prevent formation of clumps in the bloodstream by spontaneous

self-assembly (Alberts et al., 2007; Xu et al., 2009). Defects in fibronectin expression

have severe effects particularly on the interactions of vascular cells with the ECM. Mice

not expressing fibronectin are unable to form mature blood vessels and die at an early

embryonic stage (George et al., 1993). Furthermore, fibronectin participates in wound

healing, where conditional knockout of fibronectin was shown to provoke impairment of

thrombus formation, growth and stability after injuries (Ni et al., 2003).
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1.3 Impedance measurements

The principle of impedance measurement to monitor cell behavior electrically in tissue

culture was first reported by the pioneering work of Giaever and Keese (1984) and was

further developed into an own field of biosensors using this method called electric cell-

substrate impedance sensing (ECIS) (Giaever and Keese, 1993). Based on this principle

today several systems, each equipped with its own specific features like additional sen-

sors for pH, temperature, glucose or oxygen-consumption evolved (Kirstein et al., 2006;

Thedinga et al., 2007; Wiest et al., 2006). To monitor cell behavior electrically cells

are grown in tissue culture vessels in which bottom (gold) electrodes are incorporated.

Cell-free electrode

Cells attach on electrode reducing current and thus increasing 
impedance

Current flow

Cells spread on electrode further increasing impedance

Figure 1.1: Principle of impedance
measurement

An alternating current (AC) signal of

several kHz is applied on the electrodes

and the resulting voltage can be mea-

sured to calculate the impedance, the AC

equivalent to electric resistance. There-

fore its unit is also Ohms (Ω). When cells

are seeded in these culture wells and start

to attach on the electrodes they serve

mainly as insulators and restrict the cur-

rent flow, thus increasing the impedance

(Fig. 1.1). In general, impedance is

closely related with the covered area of

the electrodes, thus mainly influenced by

the cell number and size of the cells at-

tached to the electrodes, but also cell-cell

and cell-substrate/ECM interactions fur-

ther contribute to the overall impedance values. Therefore, the impedance profiles,

varying in magnitude and initial slopes depending on cell morphology and attachment

of the cells, reflect cell type and cell state and this method may be used as a valuable

tool to characterize cells in a continuous but non-invasive manner (Giaever and Keese,

1993). Further interpretation of impedance data can be obtained if the phase of voltage
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is also considered. Measuring voltage and the phase of the voltage, impedance can be

broken down into a pure resistive part R

R = V (inphase)
I

and a capacitive portion Xc

Xc = V (outphase)
I

with

I electric current

and finally the impedance Z is given as

Z =
√
R2 +X2

c

herein Xc depends on the applied frequency of the AC, this parameter allows calculation

of the capacitive proportion C of the impedance

Xc = 1
2πfC

with

f frequency of the applied alternating current.

Based on this, a mathematical model was developed which determines three parameters

further describing impedance data (for details see Giaever and Keese (1991) and Lo et al.

(1995)). Therein, the current flows beneath the cells are defined by the cell-substrate

parameter α which mainly depends on the cell size and the space between the cells

and the substratum. The spaces and formed junctions between the cells determines the

current flowing through the cell layer and defines the barrier resistance Rb. Finally, due

to the plasma membrane the membrane capacitance Cm can be considered as well.

However, in this thesis two different impedance based systems were used both only

measuring the parameter of impedance Z without regard to other parameters. The

ECIS system (Applied Biophysics) allows microscopic evaluation of the cells but only a

small fraction of the bottom of the well is covered with measuring electrodes, whereas

the xCELLigence system (Roche) covers approximately 80% of the growth area but

microscopy is hardly restricted due to the close gold layers. Further description of the

systems can be found in 3.4.
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2 Aims of this work

In the last decade multipotent mesenchymal stromal cells (MSCs) developed more and

more to attractive candidates for therapeutical applications and tissue engineering. This

is closely related to their mesodermal differentiation potential but also to further charac-

teristics like immunomodulary properties. Differentiation of cells is often accompanied

by changes in cell morphology, adhesion and changes of interactions with their environ-

ment including extracellular matrix- and cell-to-cell contacts.

This present thesis evaluates how cell adhesion is influenced during differentiation

processes by interactions with proteins of the extracellular matrix or vice versa how

these cell-matrix interactions further contribute to direction of cell differentiation. The

process of differentiation of MSCs is monitored in a non invasive manner using real time

impedance measurements in live cell chips. Impedance mainly reflects cell layer resis-

tance against alternating current and, to a minute extent, cell surface electric capacity.

For the present work the question was raised if impedance-based assays can determine

changes in cell morphology and interactions during differentiation processes of MSCs

and how this correlates to differentiation of the cells, determined by traditional histo-

chemical staining, gene, and protein expression profiling. Furthermore, mobilization or

migration from their stem cell niche and the guidance of migration into sides of injured

tissue is mainly triggered by secretion of certain factors from inflammatory tissue. The

migratory properties of MSCs during differentiation and in response to certain extrinsic

factors were studied.

Overall this thesis aims on further characterization of MSC differentiation and, fur-

thermore, cell-matrix interplay during differentiation and evaluates the readiness of

impedance tools for studying cell differentiation mainly via changes in cell morphology

and adhesive properties.
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3 Materials and Methods

The present thesis was accomplished in a molecular-biological laboratory, classified

biosafety level S1, considering all safety precautions. All used chemicals were of an-

alytical grade or met the requirements for cell culture.

3.1 Materials

3.1.1 General materials

Name Information / Supplier
Camera Digital true color camera, ColorView212; SIS
Camera Digital b/w camera F-View; SIS
Camera Digital camera Camedia C-2020; Olympus
Devoloper Agfa
Electrophoresis chamber MiniVE System; Hoefer
Electrophoresis chamber Model H5; Bethesda Research
Film processor Classic E.O.S Typ 5270; Agfa
Fixer Agfa
Fluorescence - and Lightmicroscope AX-70; Olympus
Fluorescence - and Lightmicroscope DM RD; Leica Microsystems
Spectrophotometer Fluoroskan; Ascent Labsystems
Incubator CO2-Incubator CB210; Binder
Light Cycler 480 Roche
Lightmicroscope BX-51; Olympus
Lightmicroscope IX-70; Olympus
NanoDrop NanoDrop 3300; Thermo Scientific
pH Meter PB-11; Sartorius
Power supply PowerPac Basic; BioRad
Power supply GPS200/400; Pharmacia
Thermal Cycler PTC-200; BioRad
Transfer system BioRad
UV illuminator MultiImage Light Cabinet; Fisherbrand
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3.1.2 Materials for the cell culture

Name Information / Supplier
µ-Slide µ-Slide 8 well coated; ibidi
8W10E+ ibidi / Applied Biophysics
8W1E ibidi / Applied Biophysics
Cell counter Casy® Modell TTC; Schärfe Systme GmbH
Cell culture flasks T25-, T75, T175 cell culture flasks; Greiner BioOne
Cell culture dishes 15 cm-, 10 cm- 6 cm-, 3.5 cm- tissue culture treated

dishes; BD Bioscience
Coverslips 24x60mm; Menzel Gläser
Coverslips round, 13 mm diameter; Neolab, Karl Hecht GmbH
ECIS instrument ECIS Model 1600; ibidi / Applied Biopyhsics
E-plate 16 Roche
Freezing container Mr. Frosty Freezing Container; Nunc
Freezing vials Cryotube; Nunc
Microscope slide 76x26mm; R.Langenbrinck
MSA-Slide Multiple Substrate Array; Biocat
Multi-well plates 6-well, 24-well, 96-well plate; BD Biosciences
Polypropylen-falcon 15 mL vials; BD Biosciences
Polypropylen-falcon 50 mL vials; BD Biosciences
Cell lifter Costar
Silicon inserts ibidi
xCELLigence instrument Real time cell analyzer (RTCA); Roche

3.1.3 Chemicals and solutions for the cell culture

Chemical Information / Supplier
Acetic Acid Sigma-Aldrich
AIM Adipogenic Induction Medium containing dexametha-

sone, h-insulin (recombinant), indomethacine, IBMX,
L-glutamine, Growth Supplements, Gentamicin, Am-
photericin B; Lonza

AMM Adipogenic Maintenance Medium containing h-Insulin
(recombinant), L-glutamine, Growth Supplements,
Gentamicin, Amphotericin B; Lonza

Blasticidin S Invitrogen
CASYton Schärfe System GmbH
Collagen type I from rat tail tendon; Roche
Collagen type IV from human placenta; Sigma-Aldrich
Collagenase Type I Sigma-Aldrich
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DMEM Dulbecco’s Modified Eagle’s Medium, 4.5g/l glucose,
with L-glutamine; Lonza

DMSO Dimethyl sulfoxide; Sigma-Aldrich
Doxycycline Sigma-Aldrich
EDTA 0.05% in PBS + 1µl/ml phenol red; Serva
FCS fetal calf serum; Gibco
Fibronectin from human plasma; Roche
Ficoll-Hypaque-Plus GE Healthcare BioScience;
Glycerol Roth
Laminin from Engelbreth-Holm-Swarm sacroma (mouse);

Roche
MSC-GM Mesenchymal Stem Cell Growth Medium containing

L-glutamine, Gentamicin, Amphotericin B; Lonza
OIM Osteogenic Induction Medium, containing dexametha-

sone, β-glycerophosphate, ascorbate, L-glutamine,
Growth Supplements, Penicillin/Streptomycin; Lonza

PBS Serva
PDGF recombinant human PDGF-AB; Peprotech
Penicillin/Streptomycin 10000 U/10000 µg/ml; Biochrom
SDF-1α recombinant human SDF-1α; Peprotech
TNFα recombinant human TNFα; Peprotech
Triton X-100 Gerbu
Trypsin 0.1% in 0.05% EDTA/PBS; Roche
Zeocin Invitrogen

3.1.4 Chemicals and solutions for staining

Chemicals Information / Supplier
Alizarin Red S Solution 40 mM Alizarin Red S (Sigma-Aldrich) in H2O, pH 4.1

adjusted with 10% ammonium hydroxide
Antibody solution 2% BSA in PBS
Blocking solution 5% BSA, 0.02% Tween20 in PBS
BSA Bovine serum albumine; PAA
Formaldehyde 3.7% Paraformaldehyde; Merck in PBS
Hoechst33258 Serva
Isopropanol Sigma-Aldrich
Mounting medium Dako
Oil Red O Stock Solution I 3% Oil Red O (w/v) (Sigma) in isopropanol
Oil Red O Stock Solution II 0.5% Oil Red O (w/v) (Sigma) in 60% Triethyl phos-

phate (v/v) (Fluka)
Phalloidin FITC-labeled phalloidin; Sigma-Aldrich
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Pyrogallol solution Sigma-Aldrich
Silver nitrate Sigma-Aldrich
Sodium thiosulfate Merck
Triton X-100 0.5%, Gerbu
Tween20 MP Bio
Whatman paper 42 Whatman

3.1.5 Primary antibodies for immunofluorescence staining

antigen produced in dilution Cat-# Supplier
Nidogen-1 rabbit 1:500 n/a gift from R. Nischt, Cologne
Vimentin guinea pig 1:100 GP53 Progen
Cytokeratin guinea pig 1:100 GP14 Progen

3.1.6 Secondary antibodies for immunofluorescence staining

produced in dilution Cat-# Supplier
anti-guinea pig Cy3 donkey 1:800 706-165-148 Dianova
anti-rabbit Cy3 donkey 1:1000 111-165-144 Dianova

3.1.7 Chemicals and solutions for protein analysis

Information / Supplier
Acrylamide 40% Acrylamide/Bis solution 37.5:1 (2.6%C); BioRad
Aprotinin Sigma-Aldrich
APS ammonium persulfate; Serva
β-mercaptoethanol Merck
Blocking buffer 5% skim milk powder in TBS-T
Blot membrane Nitrocellulose membrane; Whatman
Bradford reagent Protein Assay; Biorad
Bromphenol blue Serva
BSA Bovine serum albumine; PAA
Collection gel 0.95 ml collection gel buffer, 2.6 ml H2O, 0.3 ml acry-

lamide, 22.5 µl 10% APS, 7.5 µl TEMED
Collection gel buffer 0.5 M Tris-HCl pH 8.8, 0.4% SDS
ECL Enhanced Chemiluminescense, GE Healthcare
EDTA Serva
Glycerol Roth
Glycine Gerbu
Leupeptin Biomol
Loading buffer 20% glycerol, 10% β-mercaptoethanol, 25% collection

gel buffer, 6% SDS, bromphenol blue in dH2O

18



3.1 Materials

Lysis buffer 10 mM Tris pH 7.2, 150 mM NaCl, 1% Triton X-100,
0.1% sodium desoxycholate, 0.1% SDS, 5 mM EDTA,
containing 100 nM sodium orthovanadate, 10 nM Pefa-
bloc, 1 µg/µl Leupeptin, 1 µg/µl Pepstatin, 1 µg/µl
Aprotinin

Methanol Sigma-Aldrich
Pefa bloc Biomol
Pepstatin Biomol
Ponceau S 5x Concentrate solution; Fluka
Protein Marker PeqGold Protein Marker V, PeqLab
Running buffer 30 mM Tris, pH 8.3, 500 mM glycine, 0.1%SDS
Separation gel, 10% 2.5 ml separation gel buffer, 0.75 ml 50% glycerol, 4.25

ml H2O, 2.5 ml acrylamide, 100 µl 10% APS, 10 µL
TEMED

Separation gel, 6% 2.5 ml separation gel buffer, 0.75 ml 50% glycerol, 5.25
ml H2O, 1.5 ml acrylamide, 100 µl 10% APS, 10 µl
TEMED

Separation gel buffer 1.5 M Tris-HCl, pH 6.8, 0.4% SDS
Skim milk powder Roth
Sodium chloride Sigma-Aldrich
Sodium desoxycholate Merck
Sodium dodecyl sulfate
(SDS)

Gerbu

Sodium ortho vanadate Sigma-Aldrich
Strip buffer 62.5 mM Tris, pH 6.7, 2% SDS, 1% β-mercaptoethanol
TBS 150 mM NaCl, 20 mM Tris
TBS-T TBS, 0.1% Tween 20
TEMED N,N,N’,N’-Tetramethylethylenediamine; Sigma-

Aldrich
Transfer buffer 30 mM Tris, 500 mM glycine, 20% methanol
Tris Sigma-Aldrich
Tris-HCl Sigma-Aldrich
Triton X-100 Gerbu
Tween 20 MP Biomedicals
X-Ray films Super RX Fuji medical x-ray film; Fujifilm
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3.1 Materials

3.1.8 Primary antibodies for protein detection

antigen produced in dilution Cat-# Supplier
ACT rabbit 1:1000 sc-1616 Santa Cruz
ADRP mouse 1:1000 AP125 Progen
BSP mouse 1:1000 ab58825 Abcam
OPN rabbit 1:1000 ab8448 Abcam
PER guinea pig 1:2000 GP29 Progen
TUB mouse 1:200 T4026 Sigma-Aldrich

3.1.9 Secondary antibodies for protein detection

produced in dilution Cat-# Supplier
anti-guinea pig POX rabbit 1:10000 A-5545 Sigma-Aldrich
anti-mouse POX donkey 1:10000 715-035-150 Dianova
anti-rabbit POX donkey 1:10000 711-035-152 Dianova

3.1.10 Chemicals for PCR
Chemicals Information /Supplier
Agarose Biozym
cDNA synthesis Transcriptor High Fidelity cDNA Synthesis Kit; Roche
CoralLoad PCR buffer Qiagen
DNA ladder 100 bp Plus DNA ladder, Fermentas
dNTPs Sigma-Aldrich
Omniscript RT Kit Qiagen
Primer Thermo Scientific
Probes Human Universal Probe Library; Roche
QIAshredder Qiagen
RNase Inhibitor Protector RNase Inhibitor; Roche
RNeasy Mini Kit Qiagen
RT-qPCR reaction Light Cycler 480 Probes Master; Roche
SYBRSafe Invitrogen
TAE 40 mM Tris base, 20 mM acetic acid and 1 mM EDTA

buffer
Taq DNA-Polymerase Qiagen
96-well plates for RT-qPCR, FrameStar; Axon
96-well cover foil Axon
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3.2 Cells and cell lines

3.2.1 Mesenchymal stromal cells

Mesenchymal stromal cells (MSCs) were generously provided by Karen Bieback’s labora-

tory at University Hospital Mannheim. Cells were isolated from bone marrow (BMSCs,

3 donors) or adipose tissue (ASCs, 2 donors) as described previously, complying eth-

ical standards (Kern et al., 2006). In brief, bone marrow aspirates were diluted with

2 mM EDTA-PBS and mononuclear cell fractions were isolated by centrifugation on

Ficoll-Hypaque-Plus density gradients. Lipoaspirates were digested with 0.075% col-

lagenase type I for 30-45 minutes at 37℃, blocking activity with basal medium, and

stromal fractions were peletted, resuspended and filtered through gauze. Both BMSCs

and ASCs suspended in complete mesenchymal stem cell growth medium (MSC-GM)

were seeded at a density of 1 x 106 cells/cm2 into T75 or T175 culture flasks. Non-

adherent cells were removed with first medium change within 3 days after plating and

the resulting fibroblastoid cells expanded in MSC-GM. All MSC isolates used herein

fulfilled the minimal criteria defined by the ISCT (Dominici et al., 2006; Kern et al.,

2006; Bieback et al., 2010).

3.2.2 Fibroblasts

Human fibroblasts were isolated from the dermis of healthy human skin obtained from

the Department of Dermatology, University of Heidelberg (Smola et al., 1993). Wild

type mouse fibroblasts were isolated from adult mice by outgrowth from explants of

back skin samples (Angstmann, 2007). Its counterparts double knock out mouse fibrob-

lasts isolated from newborn mice, deficient in nidogen-1 and nidogen-2 were generously

provided by R. Nischt, Cologne (Nischt et al., 2007).

3.2.3 The human epidermal cell line HaCaT

The human epidermal cell line HaCaT was developed from a long-term primary cul-

ture of human adult skin keratinocytes, isolated from non-affected skin of a 62 year old

melanoma male patient (Boukamp et al., 1988). Culturing in low calcium medium (0.2

mM) resulted in reduction of terminal differentiation of the keratinocytes. Furthermore,

elevation of culture temperature to 38.5℃ caused increased proliferation and prolonged
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the average life span, presumably by inducing genetic instability. Those modified culture

conditions led to a spontaneous, immortalized human keratinocyte line, still restoring

high differentiation potential while being not tumorigenic or invasive. At least in part,

immortalization was due to the later found independent, distinct mutations in the p53

gene in both alleles. The name HaCaT indicates the initial culture conditions for estab-

lishing the cell line: human, adult, low calcium, and elevated temperature. Based on

this immortalized cell line, HaCaT-ND1 cells, inducible in nidgogen-1 expression, were

generated. Upon addition of tetracycline using the T-REx-system (Invitrogen) the ex-

tracellular matrix protein nidogen-1 (also entactin) is expressed (Angstmann, 2007; Regl

et al., 2002; Yao et al., 1998).

3.3 Cell culture

All cells, mesenchymal stromal cells, HaCaT cell lines, mouse and human fibroblasts

were cultured under standard conditions in a humified atmosphere at 37℃, 5% CO2,

95% air.

Mesenchymal stromal cells were cultured in complete MSC-GM optimized for MSC

cultivation containing antibiotics. MSCs were split at about 80-90% confluency by

washing two times with phosphate buffered saline (PBS) and incubation with 0.1%

trypsin. The trypsin reaction was stopped by adding equal amounts of complete growth

medium. For subcultivation MSCs were seeded at densities of 2000 cells/cm2 in fresh cell

culture flasks. Skin derived keratinocytes and fibroblasts were cultured in 1x Dulbecco’s

modified eagle medium (DMEM) containing 10% fetal calf serum (FCS), 100 U/ml

penicillin and 100µ/ml streptomycin. Fibroblasts were split when reaching confluency

at a ration of 1:3 - 1:5 and HaCaT cells at a ratio of 1:10. To remove residual serum and

ECM with bound calcium and magnesium, fibroblasts were washed twice with 0.05%

EDTA while keratinocytes were incubated first in 0.05% EDTA for 15 minutes at room

temperature. Fibroblasts were detached by incubation with 0.1% trypsin at 37℃ for

3-5 minutes. HaCaT cells were incubated in 0.05% trypsin for about 7 minutes and

trypsin reaction was stopped by adding complete growth medium. For maintenance

of selection pressure on transfected HaCaT-ND1 cells medium was supplemented with

6 µg/ml Blasticidin S and 25 µg/ml Zeocin. For keratinocyte cultures designated for

nidogen expression, 1 µg/ml of the inducing agent doxcycline was added.
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3.3 Cell culture

3.3.1 Cell Counting

If desired, cells were counted using the automatic cell counter system CASY®-1. Rou-

tinely, 50 µl of trypsinized cell suspension were diluted 1:200 in isotonic CASYton

solution. Cell numbers were calculated by the CASY®-1 system automatically.

3.3.2 Cryopreservation of cells

Cells were detached from culture dishes as described above for regular subcultivation.

After inactivation of trypsin cell suspensions were centrifuged for 5 min at 1000 x g. The

supernatant was removed carefully and cell pellets were resuspend in freezing medium.

Keratinocytes and fibroblasts were frozen in 1xDMEM, 20% FCS, 10% glycerol at a

final concentration of 2 x 106 cells/ml. For MSCs final concentration was set to 0.5 x

106 cells/ml in FCS containing 20% DMSO. Aliquots of 1 ml were transferred into cryo-

tubes and pre-cooled for 1 h at 4℃. The freezing was performed gradually, decreasing

temperature 1℃ per minute in a freezing container. Frozen samples were stored in

liquid nitrogen. For recultivation, cells were thawed in a 37℃ water bath rapidly and

transferred immediately to a 100 mm culture dish containing complete growth medium.

To remove residual cryoprotectant medium was changed 24 h after thawing.

3.3.3 In vitro differentiation of MSCs

For gene and protein expression as well as histochemical analysis 3-4 x 103 cells/cm2 were

seeded and kept in MSC-GM for 24 hours. Adipogenic differentiation was induced in

confluent cultures by adipogenic induction medium, containing recombinant human in-

sulin, dexamethasone, indomethacin, and 3-isobutyl-l-methyl-xanthine (IBMX) (AIM).

Three days later, AIM was replaced by adipogenic maintenance medium lacking dexam-

ethasone, IBMX and indomethacine (AMM) for 2 days. After 3 induction/maintenance

cycles and 4-7 additional day in AMM, adipogenic differentiation was fully developed.

Uninduced control cultures were kept in MSC-GM throughout. For osteogenesis conflu-

ent cultures were incubated in osteogenic induction medium, containing dexamethasone,

ascorbate and β-glycerophosphate (OIM). Fresh OIM was added twice a week for 21

days, while negative controls were fed with MSC-GM on the same schedule.
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3.4 Impedance measurements

Measurements were done in two different systems, recording changes in electrical resis-

tance of cell layers on sensing gold electrodes (Atienza et al., 2005). Using the ECIS

Model 1600 and appropriate software, cells were analyzed in eight well-plates, each well

(0.8 cm2) with 40 electrodes of 250 µm diameter (ECIS 8W10E+ arrays). For mea-

surement an oscillator sets an AC signal of 1-V amplitude at a frequency of 45 kHz

in series with a 1 MΩ resistor resulting in an approximately constant current of 1 µA.

Measuring signals are obtained through a lock-in amplifier and impedance data are

collected at a computer. ECIS device allowed microscopic observation of samples, but

titration curves revealed that cells had to be seeded at high densities for effective mea-

surements. To improve cell attachment, wells were incubated with complete MSC-GM

for 4 hours. Medium was removed and 0.5 ml cell suspension was applied to each well

(0.5 - 1 x 105 cells/well equal to 0.6125 - 1.25 x 105 cells/cm2), suspending fibroblasts

or MSCs directly in differentiation media (AIM or OIM) or control media (MSC-GM).

Accordingly, for impedance data of keratinocyte cultures wells were preincubated with

DMEM, 10%FCS for 4 hours and cells were seeded at densities of 2 x 105 cells/well (2.5

x 105 cells/cm2). Directly after cell plating arrays were placed in an incubator (37℃,

5% CO2) and impedance was recorded in duplicate samples at 45 kHz. Secondly, the

xCELLigence RTCA DP instrument was employed. In this 3 x 16 well-device (E-Plate

16; 0.2 cm2/well), cell containments have a much higher electrode density covering 80%

of the surface area (Atienza et al., 2005). Here cell titration revealed that much lower

seeding densities were required, but light microscopy was not possible. Cell prepara-

tion and conditioning of xCELLigence wells was as described above except that 5 x 103

cells/well (2.5 x 104 cells/cm2) were seeded and first allowed to settle for 30 min at

room temperature (RT) before transfer to the incubator. Measurements were done in

quadruplicates at 50 kHz (37℃, 5% CO2).

For comparative analysis, ECIS impedance data were normalized by dividing recorded

impedance values by the impedance measured at time zero of recording or at the point

of adding induction media, respectively. Defining these reference values as 1.0, the later

time points indicate changes in the relative impedance which is dimensionless. Due to

the supplier-defined readout of the xCELLigence system the corresponding values had
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3.4 Impedance measurements

to be recalculated first, as detailed in 3.4.1, to obtain profiles which are comparable for

both systems.

3.4.1 Normalization of xCELLigence impedance data

The xCELLigence readout is defined by the manufacturer as "Cell Index"

CI = Rtn−Rt0
F

with

Rt0 Background resistance measured at time point zero

Rtn Resistance measured at time point "n"

F Frequency dependent constant of the instrument

According to supplier’s information F is 15 Ω. Based on the background value Rt0
determined beforehand, Rtn can be calculated from the CI values for each measured

time point using the rearranged formula from above.

Rtn = CI ∗ F +Rt0

As for ECIS recording, normalized curves (relative impedance, dimensionless) were

obtained by dividing the recorded impedance values (Rtn) by the background impedance

at time zero (Rt0), so by definition the relative impedance at time point zero is again

1.0.
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3.5 Coating of ECM-proteins

Cell adhesion, growth and differentiation was monitored on the extracellular matrix

proteins collagen type I, collagen type IV, fibronectin, and laminin. For stock solutions

collagens were dissolved in 0.2% sterile acetic acid (2 mg/ml) over night at 4℃ and fi-

bronectin in sterile water (1 mg/ml), while laminin was supplied in solution (0.5 mg/ml).

For denaturing of type I collagen, stock solution of collagen I was heated to 56℃ for

8 hours. For impedance measurements, the wells of E-plate 16 were coated with 100

µl/cm2 of 50 µg/ml protein in PBS at RT for 45 minutes (corresponding to 5 µg/cm2),

adding plain PBS to control wells. Liquids were aspirated, wells washed twice with

PBS, and cells plated on freshly coated, non-dried surfaces, measuring impedance in

quadruplicates. For comparison cells were seeded on coated cover slips at comparable

densities.

3.6 Multiple Substrate Array

Cell attachment on a variety of ECM proteins was determined on multiple substrate

arrays (MSA). The assembled culture devices contain 14 wells with the proteins col-

lagens I-VI, laminin, fibronectin (all those from different tissue sources), vitronectin,

and heparan sulfate proteoglycan, each microspotted in quadruplicates on a glass sur-

face. To evaluate the influence of differentiation media on cell adhesion and spreading

1 x 104 BMSCs per well were seeded on MSA slides in AIM, OIM, and in MSC-GM

as control. For comparison fibroblasts and HaCaT cells were seeded on MSA slides

in DMEM, 10% FCS. After 4 hours incubation at 37℃ (95% air, 5% CO2) cells were

washed in PBS, fixed with 3.7% formaldehyde and further processed for staining and

immunofluorescence as described in 3.8.

3.7 Migration assays

For migration studies, cells were seeded in duplicates as described above in ECIS 8W1E

arrays containing only one central single sensing electrode (250 µm diameter) in each

well (Keese et al., 2004). 5 x 104 MSCs and fibroblasts or 2 x 105 keratinocytes were

seeded and grown to plateau values of impedance recordings. These confluent cell layers
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were wounded by a pulse of 4V (45 kHz) for 20 seconds for MSCs and fibroblasts or

3 times 20 second pulses for keratinocyte cultures, respectively, causing complete cell

detachment from the electrode. Recordings were resumed immediately after the pulse to

monitor repopulation of the wounded area. To study the influence of soluble factors on

migration, media were supplemented with 100 ng/ml SDF-1, 10 ng/ml platelet derived

growth factor (PDGF)-AB or 50 ng/ml tumor necrosis factor α (TNFα), respectively.

In parallel, µ-slides equipped with removable silicon-inserts providing two separated

growth areas were used. 8,000 cells per insert well were seeded and after reaching

confluency, silicon inserts were removed to allow cells to migrate into the artificial

cell-free gap. To document closing of the gap, microscopy pictures were taken every

24 hours and newly populated area was determined by image analysis using ImageJ

software (http://rsbweb.nih.gov/ij/).

3.8 Light microscopy and immunofluorescence

Cells grown on cover slips or in ECIS arrays were fixed with 3.7% formaldehyde for

15 minutes, washed with dH2O and treated with 0.5% Triton X-100 for 5 minutes.

After two washes with PBS, samples were blocked in blocking buffer composed of 5%

BSA, 0.02% Tween20 in PBS, and then incubated with guinea pig antibodies against

vimentin or keratin (1:100) in 2% BSA for 90 minutes at RT. After three washes in

PBS and incubation in blocking buffer for 15 minutes, Cy3-labeled secondary donkey

antibodies against guinea pig, were applied for 45 minutes in the dark, together with

Hoechst 33258 (1:50) for nuclear staining. For actin filament staining, samples were

incubated with FITC-conjugated phalloidin (1:50 dilution). After three washes in PBS

for 10 minutes samples were covered with mounting medium.

For staining of lipid droplets, fixed samples were washed in 60% isopropanol for 3

minutes and stained for 5 minutes in Oil Red O (ORO) in isopropanol. Therefore,

three parts of ORO stock solution I were diluted with two parts of dH2O, filtrated

through whatman paper. Excessive dye was removed and samples washed in tap water

several times. Nuclei were counterstained in hematoxylin solution for 5 minutes and

samples were washed again in tap water until wash solution remained clear. ORO

staining protocol was modified for fluorescence detection of lipid droplets as reported

previously (Koopman et al., 2001). Three parts of ORO stock solution II were diluted
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3.9 Protein analysis

with 2 parts of dH2O, filtrated through whatman paper. Before mounting, processed

immunofluorescence samples were incubated with ORO stain for 30 minutes, rinsed with

dH2O and finally under running tap water for 10 minutes. Pictures were taken with a

Leica DM RD microscope equipped with Analysis software (Olympus).

Osteogenic differentiation was determined by staining fixed cells with 40 mM Alizarin

red S, pH 4.1 for 20 minutes (Gregory et al., 2004). Samples were washed four times

with dH2O for 5 minutes and micrographs taken as above. Alternatively, for osteogenic

von Kossa staining (Majumdar et al., 1998) fixed samples were incubated in 5% silver

nitrate for 15 min, 2 times washing in dH2O before developping in 1% pyrogallol solution

for 5 min in the dark, washed twice with dH2O and fixated in 5% sodium thiosulfate for

5 minutes. The intensity of red ORO or Alizarin staining was evaluated together with

nuclear Hoechst stain in 21 day cultures using ImageJ software. At least 10 pictures

were analyzed and statistical significance was determined by Student’s t-test.

3.9 Protein analysis

For protein extraction, MSCs grown in the different media (MSC-GM, adiopgenic in-

duction medium (AIM), osteogenic induction medium (OIM)) were harvested at day 0,

2, 5 and 14. After washing with ice-cold PBS, cells were scraped with a cell lifter and

centrifuged for 5 min at 250 x g, 4℃. Cell pellets were suspended in lysis buffer, supple-

mented with protease inhibitors and incubated on ice for 60 minutes. Cell debris was

removed by centrifugation for 10 min at 10,000 x g, 4℃ and supernatant was transfered

into a new vial. Protein concentrations were determined by colorimetric assay accord-

ing to Bradford. The protein content of protein lysates was calculated from a standard

BSA curve as reference, covering the range of 0-4 µg/ml protein. The standards and

1:10 diluted samples with Bradford reagent were measured in a spectrophotometer at

595 nm.

Total protein (100 µg) was mixed with sample loading buffer, heated at 95℃ for 5

minutes and proteins were separated by electrophoresis in a 10% SDS-polyacrylamide

gel. Proteins were transferred onto nitrocellulose membranes and protein transfer was

checked with Ponceau S. Ponceau was removed by washing in blocking buffer and after
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additional blocking for 1-2 hours, membranes were incubated with primary antibod-

ies (guinea pig anti-perilipin, mouse anti-adipophilin, mouse anti bone sialoprotein,

rabbit anti-osteopontin) at 4℃ over night. Unbound primary antibodies were re-

moved by 3 times washing in blocking buffer for 10 minutes before incubation with

peroxidase (POX)-conjugated secondary antibodies for 45 minutes at RT. Enhanced

chemiluminescence (ECL) reaction was detected on x-ray films, developed in an AGFA

film processor.

Mouse wild-type fibroblasts and keratinocytes, 3 days induced for nidogen-1 expres-

sion and uninduced controls were lysed as described above and 30 µg of total protein

were separated in a 6% SDS-polyacrylamide gel. After protein transfer and blocking,

membranes were incubated with rabbit anti-nidogen-1 antibody and detected with anti-

rabbit POX-conjugated secondary antibodies. For loading controls bound antibodies

were removed by incubation in 62.5 mM Tris, pH 6.7, 2% SDS, 1% β-mercaptoethanol

at 56℃ for 10 minutes followed by several washing steps with blocking buffer to remove

residues of β-mercaptoethanol. Membranes were incubated with rabbit anti-β actin or

mouse anti-β-tubulin antibodies and detected as above.
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3.10 Gene expression analysis

For isolation of RNA, cells were lysed in 350 µl RLT buffer containing 1% β-mercaptoethanol

and RNA was isolated using the RNeasy Mini Kit from QIAgen. Concentrations of iso-

lated RNA samples were determined using a NanoDrop fluorospectrometer.

3.10.1 PCR for nidogen-1 gene expression

Reagents for reverese transcription were from the Omniscript RT Kit. Two µg of RNA

were incubated in 1x reverse transcription buffer, containing 0.5 mM of dNTP mix, 1

µM Oligo-dTs, 4 U Omniscript RT enzyme, and 10 U RNase-Inhibitor in a total volume

of 20 µl. Reverse transcription reaction was carried out in a thermal cycler at 37℃ for

60 minutes. For detection of nidogen-1 gene expression, 2 µl of reverse transcriptase

reaction were used in 1x CoralLoad PCR buffer containing 1.5 mM MgCl2, 0.2 mM

of each dNTP, 0.4 µM of each primer (table 3.6) and 1.5 U Taq DNA polymerase.

Conditions of PCR are described in tabel 3.7. PCR-product was separated in a 2%

agarose gel in 1xTAE buffer, containing 1:10000 SYBR Safe and detected using an UV

illuminator.

Table 3.6: Nidogen-1 primer
Primer Sequence
Forward 5’-TGG CAG CAG AGT ATG TCC AG
Reverse 5’-GCT CCG TTG CTC TTC CAT AG

Table 3.7: PCR program
Temperature [℃] Time Cycles

Pre-incubation 95 5 min 1
95 1 min

Amplification 60 45 s 35
72 1 min

Extension 72 10 min 1
Cooling 4 ∞
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3.10.2 RT-qPCR of adipogenic marker genes

The relative expression of adipogenic marker genes (table 3.9) was analyzed after 24, 48

and 72 h, as well as 5, 7 and 14 days. One µg RNA was reverse transcribed using 2.5 µM

anchored-oligo(dT)18 primer and the Transcriptor High Fidelity cDNA Synthesis Kit.

For RT-qPCR a 20 µl reaction mix of 50 ng transcribed RNA, 0.2 µM primer and 0.1

µM probe (table 3.9) and 10 µl Light Cycler 480 Probes Master was applied to a Light

Cycler 480 as indicated in table 3.8. Three genes (table 3.9), identified with geNorm

(http://medgen.ugent.be/∼jvdesomp/genorm/index.php) as the most stable expressed

genes out of five tested, were taken to calculate a normalization factor. Primer efficiency

has been determined and relative expression based on efficiency and the normalization

factor was calculated as described in (Vandesompele et al., 2002). A cDNA mix of three

adipocyte samples served as positive control to normalize PCR plates and RNase-free

water as negative control.

Table 3.8: RT-qPCR program
Temperature [℃] Time Ramp rate [℃/s] Cycles

Pre-incubation 95 10 min 4,8 1
95 10 s 4,8

Amplification 60 30 s 2,2 45
72 1 s 4,4

Cooling 40 10 s 1,5 1
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Table 3.9: Primer sequences with specified probe numbers

Gene Primer sequence Probe 1

TATA box binding protein (TBP) 2 F: 5’-cccatgactcccatgacc-3’ 51
R: 5’-tttacaaccaagattcactgtgg-3’

beta-2-microglobulin (B2M) 2 F: 5’- ttctggcctggaggctatc-3’ 42
R: 5’-tcaggaaatttgactttccattc-3’

glyceraldehyde-3-phosphate F: 5’-tccactggcgtcttcacc-3’ 45
dehydrogenase (GAPDH) 2 R: 5’-ggcagagatgatgaccctttt-3’
peroxisome proliferative activated F: 5’-caggaaagacaacagacaaatca-3’ 7
receptor γ (PPARγ) R: 5’-ggggtgatgtgtttgaacttg-3’
perilipin F: 5’-ggacacagtggtgcattacg-3’ 64

R: 5’-gtcccggaattcgctctc-3’
adiponectin (ADPQ) F: 5’-ggtgagaagggtgagaaagga-3’ 85

R: 5’-tttcaccgatgtctcccttag-3’

1 Human Universal Probe Library (Roche)
2 Reference genes
F, forward; R, reverse
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4 Results

4.1 Discrimination between cell type and cell number by
impedance monitoring

To optimize conditions for impedance measurements different cell types were seeded at

various densities. Immortalized human keratinocytes, skin derived human fibroblasts

and human mesenchymal stem cells were used. Direct correlation with cell morphology

was made in the electric cell-substrate impedance sensing (ECIS) system (see methods

3.4). The impedance recordings (xCELLigence) revealed nearly complete saturation for

BMSCs at a seeding density of 5 x 103 cells/well (2.5 x 104 cells/cm2), only marginally

increasing at higher cell densities (Fig. 4.1). After an initial very rapid increase which

matched with nearly full cell spreading within the first 4 hours (Fig. 4.2), at 10 hours

curves tended to decrease, rising slowly but steadily again after approximately 24 hours

(Fig.4.1 A). Seeding 2.5 x 104 fibroblasts/cm2 showed a comparable peak, while the

maximum was nearly doubled with 5 x 104 cells/cm2, profiles declining later on to a

lower plateau depending on the initial cell number (Fig. 4.1 B). With similar numbers of

HaCaT cells (5 x 104 cells/cm2) impedance rose markedly slower and reached plateaus

with considerable delay after 45 hours (Fig. 4.1 C), well correlating to generally slower

and less intense spreading of keratinocytes (Fig. 4.2). Thus, by plating more HaCaT

cells sensing electrodes were covered within 5 to 10 hours giving rise to strong impedance

values. This emphasizes that both cell number and spreading or morphology strongly

influence impedance profiles. But the smaller surface and higher coverage with gold

electrodes in the xCELLigence system allowed lower cell seeding (factor 10-20) and

thus was used for statistical analysis. The ECIS system (cell titration not shown) in

contrast allows the direct correlation with cell morphology and thus was used to monitor

differentiation by cellular staining after recording.
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Figure 4.1: Cell density and cell type affect impedance profiles - For optimizing
impedance measurements BMSCs (A), fibroblasts (B) and keratinocytes (C) were seeded
at various densities in growth medium. Impedance profiles of means of quadruplicates
(normalized values) were recorded continuously over 60 h (xCELLigence system).

For evalutation of cell morphology and spreading cells were seeded on protein spots

(MSA-Slide). After 4 hours cells were stained for actin and vimentin or keratin, revealing

generally good attachment and spreading of BMSCs and fibroblasts (both vimentin

positive) on most ECM components (shown for collagen I; Fig. 4.2 A and B). For

keratinocytes (stained for keratin) spreading was minimal at this point throughout (Fig.

4.2 C). Spreading of cells corresponded to impedance profiles which were less steep for

keratinocytes compared to bone marrow derived mesenchymal stromal cell (BMSC)s

and fibroblasts (Fig. 4.1).

Actin - Vimentin - Hoechst Actin - Vimentin - Hoechst Actin - Keratin - Hoechst

Figure 4.2: Attachment of cells on MSA - Attachment of BMSCs (A), fibroblasts
(B) and keratinocytes (C) on rat tail collagen I spot (MSA-slide). 1 x 104 cells per MSA-
well after incubation for 4 hours at 37℃. All cells were stained for actin-filaments (green),
BMSCs and fibroblasts were stained for vimentin (red) (A and B) or keratinocytes for
cytokeratine (red) (C). Nuclei, Hoechst dye (blue); scale bar = 50µm.
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4.1 Discrimination between cell type and cell number by impedance
monitoring

4.1.1 Monitoring changes in cell adhesion

To show cell adhesion effects on impedance measurement cells with altered expression of

adhesion molecule were used in ECIS-system. HaCaT keratinocytes, naturally negative

for nidogen expression, were stably transfected with the Tet-on system (Invitrogen)

for inducible nidogen expression (Angstmann, 2007). For impedance measurements

2.5 x 105 cells per cm2 were seeded and nidogen-1 expression was induced by addition

of doxycycline. As controls non-induced cells were measured in parallel. Induction of

nidogen-1 led to an increasing slope of impedance compared to not-induced nidogen-

1 cells, indicating for changed adhesion properties of the cells in response to nidogen

expression (Fig. 4.3).
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Figure 4.3: Impedance profiles of nidogen-inducible cells. - Nidogen-1 expressing
cells (green line) show steeper profile compared to not-induced nidogen-1 transfected cells
(red).

4.1.1.1 Confirmation of molecular switch by gene and protein expression analysis

For confirmation of nidogen expression in stable transfected HaCaT cells, gene and pro-

tein expression of nidogen-1 were verified by PCR and western blot analysis, as well as

immunofluorescence staining of cultured cells. Although clones from single cell colonies

were selected, heterogeneous not selected cell populations of stable transfected cells

showed best expression of nidogen-1 compared to clonal cells (not shown). Nidogen-

1 gene expression could be demonstrated by PCR revealing positive detection of 307

bp nidogen-1 product in induced cells (Fig. 4.4 A). Inducible expression of nidogen

protein was shown in western blot experiments and immunofluorescence staining of cul-

tivated cells. Western blot experiments showed hardly detectable nidogen-1 expression
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monitoring

in selected ND1-clones but was clearly detectable in unselected cultures (Fig. 4.4 B).

Nidogen-1 expressing cells were stained for cytoskeleton protein actin (Phalloidin stain)

and nidogen-1. As shown previously (Angstmann, 2007) nidogen was not expressed in

all cells but nidogen is expressed in positive clusters (Fig. 4.4 C).

dko +_wt

ND1

TUB

wt - +

A C
Actin - Nidogen - Hoechst

B

Figure 4.4: Expression of nidogen - (A) PCR of cDNA from wild-type mouse fibrob-
lasts (wt) and induced HaCaT cells (+) showing nidogen-1 gene expression while samples
from mouse with total knock out of nidogen expression (dko) and not induced HaCaT
cells (-) were negative. (B) Western blot data confirmed nidogen-1 (ND1) protein expres-
sion in samples from wild-type mouse fibroblasts (wt) and induced keratinocyte cells (+),
which was not detectable in not induced keratinocytes (-); loading control stained for β-
tubulin (TUB) below. (C) Immunofluorescence staining for filamenteous actin (Phalloidin,
green) and nidogen-1 (red) showing heterogeneous nidogen expression in induced HaCaT
populations. Nuclei counterstained with hoechst dye (blue); scale bar: 25 µm.
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4.2 Monitoring of MSC differentiation

4.2 Monitoring of MSC differentiation

4.2.1 Differentiation potential of MSCs is dependent on passage number

In order to follow early changes after induction of differentiation, BMSCs (passage

6), suspended in adiopgenic induction medium (AIM), osteogenic induction medium

(OIM) or mesenchymal stem cell growth medium (MSC-GM) (two samples each) were

seeded on ECIS chips at a density of 0.5 - 1 x 105 cells/well (0.6125 - 1.25 x 105

cells/cm2) and impedance was monitored over 25 hours (Fig. 4.5). Over the first 5-8

hours impedance strongly increased under any conditions, though for cultures in AIM

the slope was less steep (Fig. 4.5 A). After this early phase, profiles of osteogenic

cells remained at a constant plateau, whereas those of adipogenic or non-induced cells

decreased. Contrarily, the profiles of later BMSC passages (p15) did not substantially

differ between AIM, OIM, and control media (Fig. 4.5 B).

A B

Figure 4.5: MSC differentiation induces early and specific changes in impedance
Impedance of low (A) and high passaged (B; population doublings higher 25) BMSCs in
AIM (blue line), OIM (red), MSC-GM (black) and growth medium without cells (green).

4.2.2 Induction of differentation reflected by impedance

Seeding cells (p6) in GM and adding OIM or AIM after 3.5 hours indicated early in-

fluences of induction media, independent of initial cell adhesion (Fig. 4.6 A). While

adipogenic induced cells develop less steep profiles as already seen before (Fig. 4.5

A) immediately after adding differentiation factors, slopes of osteogenic induction and

control medium increased faster initially. In further progress, osteogenic cells remained

at high level or are further increasing impedance while profiles of adipogenic induction

and control medium declined. In vitro differentiation of MSCs is based on addition of
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4.2 Monitoring of MSC differentiation

specific factors into the cell culture medium which induce the process of differentiation

(see 1.1.1 and 3.3.3). Culturing of MSCs in adipogenic medium lacking one of these fac-

tors produce impedance profiles reflected the importance of these factors in adipogenic

differentiation (Fig. 4.6 B). While lack of dexamethasone or insulin resulted in still

declining impedance profiles similar to differentiation medium containing complete set

of differentiation factors, whereas the lack of indomethacine or IBMX showed profiles

with a steeper initial slope without the adipogenic typical decrease resembling more the

profile of growth medium without any differentation factors.

0.4
0 10 20 30 40 50 60 70 80 90 t [h]
0

1

2

3

4
BA Influence of adipogenic differentiation factorsInduction of MSC differentiation

Figure 4.6: Induction of MSC differentiation - (A) Profiles of differentiating MSCs
diverged after adding medium containing differentiation factors (arrow) to pre-plated BM-
SCs (p6). Differentiation was induced in AIM (blue line), OIM (red) and controls were
cultured in MSC-GM (black). Graphs were normalized to the time point of induction, (B)
BMSCs seeded in adipogenic differentiation medium lacking single factors usually included
for differentiation: AIM without IBMX (green), without Indomethacine (purple), without
dexamethasone (light blue) and without insulin (red). Controls of complete adipogenic
differentiation medium in blue and growth medium in black.

4.2.3 MSCs behavior depends on donor tissue

To monitor MSC differentation from different tissues in long-term experiments, impedance

was recorded for 14 days with BMSCs and ASCs from three and two donors, respec-

tively. Cells were kept in MSC-GM for 26 hours before adding differentiation media

(Fig. 4.7). Overlapping impedance profiles diverged after induction revealing typically

a steeper slope in OIM, delayed slope in GM, and no increase rather than a decrease

in AIM. With repeating adipogenic induction cycles the impedance profiles showed al-

ternating a steep increase with subsequent plateau in adipogenic maintenance medium

and in turn a decrease after adding AIM. Plain media effects could be excluded by
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4.2 Monitoring of MSC differentiation

impedance measurements without cells (not shown). The more advanced profiles of

BMSC-1, -2, -3 (Fig. 4.7 A; mean of three), and ASC-2 (Fig. 4.7 D) exhibited signifi-

cant differences between osteogenic, adipogenic, and non-induced cells. But for ASC-1

(Fig. 4.7 C) osteogenic and control profiles were largely overlapping. BMSCs cultivated

in vitro for more than 25 population doublings (p13) did not show the typical impedance

profiles when exposed to differentiation medium (Fig. 4.7 B). Neither the continuously

rising osteogenic profile even declining profile after initial peak, nor typical alternating

impedance profile seen before during adipogenic differentiation were developed during

differentiation of in vitro aged MSCs.
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Figure 4.7: MSC differentiation from different sources - Impedance profiles of (A)
low passaged BMSCs (mean of three donors), (C) ASC-1 and (D) ASC-2 (all ECIS system)
compared to (B) high passaged BMSC in xCELLigence system recorded in duplicates for
14 days; Inducing differentiation after 26h, or immediately (B), (OIM: red line; AIM: blue)
and non-induced controls (black); profiles over at least 10 days after induction. Medium
changes are indicated by arrows, the switch from AIM to AMM is marked by black and
back to AIM by white arrows.
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4.2 Monitoring of MSC differentiation

4.2.4 Confirmation of impedance data by specific staining, protein and
RNA analysis

To correlate impedance to cell number and morphology cultures were examined by

microscopy. Staining at the endpoint (day 5) for actin filaments and cell nuclei showed

that cells completely covered the electrodes in all media (Fig. 4.8 A-C). Seeding identical

cell numbers in all media at high densities producing confluent cell layers immediately

after seeding minimized differences of impedance values which are due to cell numbers

but mainly reflects cell morpholoy and adhesion properties.
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Figure 4.8: Cells on electrodes - Fluorescence microscopy of differentiating BMSCs on
ECIS electrodes (red circles) after growth for 5 days in MSC-GM, AIM and OIM. Staining
of actin filaments with phalloidin-FITC (green) and of cell nuclei (blue; Hoechst). Scale
bar: 50 µm. (D) Cell numbers of BMSCs on ECIS electrodes after 5 days in MSC-GM,
AIM and OIM determined by counting of Hoechst dye stained cell nuclei.

Determination of cell numbers on electrodes after cultivating cells for 5 days did show

only neglitable, not significant variations of cells on the electrodes between the different

media (Fig. 4.8 D). Generally, cell densities appeared slightly higher on gold than on the

plastic surface, though reliable evaluation was hampered by the different plane of focus.

While in MSC-GM cells were more spread than in AIM or OIM, apparent by flattened
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4.2 Monitoring of MSC differentiation

nuclei and an extended actin cytoskeleton, in AIM cells appeared smaller and more

roundish. The actin network was most pronounced in OIM revealing predominantly

spindle shaped, often overlapping cells, whereas the heterogeneous morphology in MSC-

GM was accompanied by sparser actin filaments.

Importantly, the impedance profiles fully corresponded to the differentiation levels at

day 14, indicated by Oil Red lipid stain or mineralization (mainly calcium phosphates)

by von Kossa stain and molecular markers (Fig. 4.9). While ORO was strongly positive

throughout (Fig. 4.9 A-C), ASC-1 kept in OIM revealed at best marginal von Kossa

staining (Fig. Fig. 4.9 F) compared to deposited calcium stained in BMSCs and ASC-2

samples (Fig. 4.9 E and G).

A B C D

E F G H

Figure 4.9: ORO and von Kossa stain of BMSCs and ASCs - ORO (A-D) and von
Kossa (E-H) staining in ECIS-wells, respectively at end point (d14), for BMSCs (A, E),
ASC-1 (B, F) and ASC-2 (C, G); negative controls shown for ASC-2 (D, H). Scale bar:
100 µm.

Western blots confirmed the actual course of differentiation at the protein level, as

exemplified for BMSCs (ASC-2 similar, not shown), by detection of adipose differen-

tiation related protein (ADRP) and perilipin (PERI) for adipogenic differentiation or

late osteogenic marker bone sialoprotein (BSP) and osteopontin (OPN) for osteogenic

differentiation (Mizuno and Kuboki, 2001), respectively (Fig. 4.10). Validating the

value of impedance as measure for differentiation, in ASC-1 the low osteogenic profile

(compare Fig. 4.7) correlated also to low expression of the osteogenic markers BSP and
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4.2 Monitoring of MSC differentiation

osteopontin.

BSP

PERI

ADRP

OPN

BMSC ASC

ACT

GM AIM GM AIM

GM OIM GM OIM

Figure 4.10: Western blot of differentiated MSCs - Western blots of 14 days cultures
(induced vs. uninduced) showing adipophilin (ADRP) and perilipin (PERI) as adipogenic
marker and for osteogenic differentiation bone sialoproten (BSP) and osteopontin (OPN)
with β-actin (ACT) as loading control for the BMSC and the ASC-1 samples. Note that
low OIM profile of ASC-1 corresponds to only marginal von Kossa stain and low BSP and
osteopontin.

Specificity of adipogenic differentiation was underlined by RNA data (RT-qPCR) from

cultures grown in alternating AIM and AMM, corresponding to significant time points

of impedance profiles. This revealed a marked AIM-dependent induction of peroxisome

proliferative activated receptor (PPAR)γ, and also for perilipin shown for samples of

BMSC-1, -2, and -3 and ASC-1 (Fig. 4.11 A and B), which was inversely related to the

oscillating impedance signals. Gene expression of late adipogenic marker adiponectin

was highly expressed in all samples only in 14 day AIM-cultures (Fig. 4.11 C). The

expression of all examined adipogenic differentiation related genes was quite variable

between the samples, in general. RT-qPCR of osteogenic genes did not give reliable

results although several primers and probes and combination of them have been tested.
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Figure 4.11: Adipogenic gene expression of BMSCs and ASCs - Relative gene
expression (induced minus uninduced) of adipogenic markers (A) PPARγ, (B) perilipin
and (C) adiponectin at different timepoints of the 3 different BMSC isolates (days 1, 2, 3,
5, 7 and 14) and ASC-1 (days 2, 5 and 14). After 3 days, induction medium was switched
to maintenance medium (black arrow) and back to AIM again (white arrow), indicating
the effect of induction/maintenance medium, obvious also in impedance profiles. All cells
have been analyzed at population doublings below 20.
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4.3 Cell adhesion on ECM proteins monitored by
impedance measurements

Next the influence of interactions with proteins of the ECM on MSC behavior with

consequences on impedance profiles was examined.

4.3.1 Extracellular matrix proteins affect MSC differentiation

For studying differentiation of MSCs on ECM proteins, BMSCs were cultured in vessels

coated with collagen I, collagen IV, fibronectin or laminin. Seeding 2.5 x 104 cells/well

(xCELLigence) impedance was measured for 96 hours (Fig. 4.12). Osteogenic induction

caused steeply rising impedance profiles on collagen I or IV, while reaching markedly

lower values with somewhat flattened slopes on fibronectin and particularly laminin,

correlating to early morphological appearance of the cells (see also 4.16 and 4.17).

Beyond 20 hours the shape of osteogenic curves was similar. Showing an almost as strong
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Figure 4.12: Extracellular matrix molecules influence impedance differentiation
profiles of MSC - Impedance profiles of differentiating BMSCs on various ECM coatings:
2.5 x 104 cells/cm2 were seeded on collagen I, collagen IV, fibronectin and laminin. Profiles
are means of quadruplicates in differentiation media (OIM: red, AIM: blue) and control
medium (black).

increase on the collagens, the adipogenic impedance profiles dropped on all matrices to

levels far below the endpoints of osteogenic tracks. However, the initial reduction of

the adipogenic curve was much less pronounced on fibronectin, exceeding the largely
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reduced osteogenic profile for about 30 hours, before it dropped below the osteogenic

profile which was steadily increasing. On laminin both curves reached similar, but

further reduced levels while their shapes corresponded to those on fibronectin. Skin

fibroblasts did not show very distinct profiles on those matrices in the various media,

though the initial attachment peak was highest on collagens (Fig. 4.13 A and B) and

markedly reduced on fibronectin in osteogenic medium (Fig. 4.13 C and D).

no
rm
. i
m
pe
da
nc
e

no
rm
. i
m
pe
da
nc
e

A Fibroblasts on collagen I

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90t[h]

C Fibroblasts on fibronectin

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90t[h]

Fibroblasts on lamininD

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90t[h]

B Fibroblasts on collagen IV

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90t[h]

Figure 4.13: Fibroblasts on extracellular matrix molecules monitored via
impedance - Impedance profiles of fibroblasts on various ECM coatings: 2.5 x 104

cells/cm2 were seeded on (A) collagen I, (B) collagen IV, (C) fibronectin and (D) laminin.
Profiles are means of quadruplicates in differentiation media (OIM: red, AIM: blue) and
control medium (black) (xCELLigence system).

4.3.1.1 Adhesion on Collagen I depends on coating density

Impedance profiles of BMSCs were also affected by coating with different concentrations

of collagen I. Adipogenic and osteogenic differentiation of BMSCs was induced in ECIS

wells coated with 5, 10, 25 and 50 µg/cm2 collagen I and impedance was recorded as

described before. Impedance values rose with rising collagen I concentration peaking at

25 µg/cm2 throughout all media and was very low for high concentration of 50 µg/cm2

suggesting inhibiting influences on cell adhesion due to dense collagen coating. While

in MSC-GM and AIM uncoated controls (Fig. 4.14 A and B) were quite similar to

10-25 µg/cm2 coated samples, for osteogenic differentiation impedance of samples are

in sequential order to rising collagen concentration, excepting highest collagen density
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4.3 Cell adhesion on ECM proteins monitored by impedance measurements

of 50 µg/cm2, suggesting a supportive role of collagen I for adhesion of osteogenic cells.

Quantification of lipid accumulation with Oil Red revealed further influence of collagen

I on adipogenic differentiation of BMSCs being highest at 10 µg/cm2, somewhat lower

at 5 and 25 µg/cm2 and low at 50 µg/cm2 collagen I. High impedance values on 25

µg/cm2 in AIM (Fig. 4.14 B) inversely correspond to low ORO staining after 5 days

(Fig. 4.20).
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Figure 4.14: Concentration of collagen I affects impedance profiles - BMSCs were
seeded on various collagen I concentration (5 (green), 10 (purple), 25 (orange) and 50 (gray)
µg/cm2) in AIM (B) and OIM (C) differentiation media and MSC-GM (A) as controls.
Controls in uncoated wells were run in parallel in MSC-GM (A, black line), AIM (B, blue)
and OIM (C, red).

To evaluate the influence of conformational state of proteins, wells were coated with

collagen I in its native form as before, neither denatured nor being air-dried, and in

contrast with collagen I which has been denatured by heating before coating. Impedance

data of both conformations display similar profiles, where denatured collagen I resulted

in higher initial peaks and higher impedance values in general compared to native

collagen I (Fig. 4.15).
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Figure 4.15: Denatured vs. native collagen I coating in impedance measure-
ment - BMSCs were seeded in adipogenic (blue colors) and osteogenic (red colors) differ-
entiation and control media (black or gray) on native and denatured collagen I coated wells.
Impedance data of both conformations display similar profiles, with denatured collagen I
having higher impedance values in general (AIM: light blue; OIM: orange; MSC-GM: gray,
compared to native collagen I (AIM: blue; OIM: red; MSC-GM: black).

4.3.2 Confirmation and quantification of adipogenesis and osteogenesis

As possible morphological correlates phase contrast images of BMSCs revealed at 8

hours well spread cells without noticeable differences between applied media or matrices

(Fig. 4.16 A, D, G and J). While after 24 hours spindle shaped morphology was largely

retained, adipogenic cells showed prominent extensions and osteogenic cells markedly

increased in density (Fig. 4.16 B, E, H and K). The differences became more striking at

day 5, some cells in AIM containing also small lipid inclusion bodies (Fig. 4.16 C and F).

These morphological manifestations were similarly seen on collagen I and fibronectin.

Additionally, for evaluation of cell morphology at early time points, cells suspended

in the various media were plated on MSA containing ten different micro-spotted ECM

proteins. After 4 hours cells were stained for actin and vimentin. Shape and quantity

of attached BMSCs were further affected by differentiation media (examples of collagen

I, collagen IV and fibronectin are shown in Fig. 4.17). While in GM high numbers of

compact BMSCs were found on both collagens, on collagen I cells were widely spread in

AIM and OIM. On collagen IV the attachment rate was higher, cells appearing smaller

in OIM, much like in GM. By contrast, on fibronectin much fewer cells being extremely

spread attached in all three media.

Adipogenic and osteogenic differentiation markers were determined for BMSCs grow-
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Figure 4.16: Phase contrast microscopy of BMSCs on ECM proteins - BMSCs
were seeded on Collagen Type I and fibronectin in differentiation media and photos were
taken after 8, 24 and 120 hours. Scale bar: 100 µm.

Figure 4.17: Attachment of BMSCs on MSA on different ECM-proteins - After
incubation with 1 x 104 MSCs per well for 4 hours at 37℃ cells were stained for actin
(green), vimentin (red) and nuclei (blue; Hoechst dye). Cells on collagen I (left panel),
collagen IV (middle) and fibronectin (right) were grown in GM, AIM and OIM; scale bar:
100 µm.
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ing on ECM-coated cover slips. Five days after induction by AIM the highest number

of cells with lipid droplets (ORO staining) was observed on fibronectin and collagen I

followed by collagen IV, and being lowest on laminin (Fig. 4.18).

AIM Ctrl

Col I

AIM Ctrl

Col I

AIM Ctrl

Col IV

AIM Ctrl

FN

*** **
** ***

**

**

***

Fibroblasts BMSCs

AIM Ctrl

LN

10%

8%

6%

4%

2%

0%

BMSC d5 - Oil Red positive cellsI

A BCol I - AIM Col IV - AIM C DFN - AIM LN - AIM

E FCol I - AMM Col IV - AMM G HFN - AMM LN - AMM

Figure 4.18: Matrix influence on early adipogenic differentiation - Fluorescence
microscopy of adipogenic differentiation of BMSCs on ECM proteins 5 days after induction
(A-D), showing ORO positive lipid droplets (nuclei, Hoechst stain) compared to controls
(E-H); scale bar: 50 µm. (I) Histogram of percentage of positive cells (induced vs. unin-
duced) on various ECM coatings is at this stage already significantly different from controls.
Fibroblast staining does not exceed levels of controls (* p<0.05; ** p<0.01; *** p<0.001;
n=10).

But after 21 days positive cells rose to more than 80% on fibronectin and laminin,

compared to about 60% on collagen I and IV showing also less lipid accumulations.

Unexpectedly, without coating (PBS control) nearly 80% of cells were finally ORO pos-

itive presumably for soluble fibronectin and vitronectin in the media, firmly adhering to

glass surfaces. These results were corroborated by strongly increased staining intensity

at 21 days (Fig. 4.19 A-L) and image analysis which revealed a significantly stronger
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signal on fibronectin compared to the other samples (Fig. 4.19 M). The staining of the

high passaged BMSC (p16) was very low like seen in fibroblasts (compare Fig. 4.18).
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Figure 4.19: ORO staining of d21 samples - Fluorescence microscopy of lipid ORO
staining (nuclei counterstained) of BMSCs after 21 days in AIM and control medium (Ctrl)
cultivated on collagen I (A and B), collagen IV (E and F), fibronectin (I and J), laminin
(C and D) and controls without protein coating (G and H) as well as high passaged (P16)
cells (K and L); scale bar 50 µm. Intensity of ORO staining of BMSCs determined by
image analysis. Intensity was significant higher on induced fibronectin samples compared
to other matrices. High passaged MSCs showed significantly reduced intensity (* p<0.05;
** p<0.01; *** p<0.001; n=10).
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Intensities of ORO staining of BMSCs 5 days after adipogenic induction on various

collagen I concentrations (0-50 µg/cm2) did not differ significantly. However, after 21

days of adipogenesis, ORO intensity of uncoated controls exceeded that of collagen

I coated samples, which exhibit decreasing lipid staining when coating density was

increased (Fig. 4.20).
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Figure 4.20: Quantification of ORO staining on various collagen I concentrations
ORO staining of BMSCs differentiated into adipogenic cells was quantified after 5 and 21
days revealing influences of collagen I concentration on lipid accumulation in adipogenic
cells.
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Generally, the visible appearance of osteogenic markers took considerably more time.

After 21 days in OIM cells showed distinct staining of calcium deposits on collagens, in

general, partially less intense on collagen I, whereas staining was weaker on fibronectin

and laminin (Fig. 4.21). This was compatible with the more pronounced impedance

profiles of BMSCs on collagens in OIM (shown in Fig. 4.12). Although by and large

reflecting microscopic observations, differences seen in quantification of Alizarin staining

are not significant due to a very heterogeneous deposition of calcium throughout the

culture resulting in high deviations (Fig. 4.21 M). Similar, quantification of calcium

deposition on varying densities of collagen I coatings in ECIS wells reflect differences

seen during impedance measurements (Fig. 4.14) but are not significant (Fig. 4.21 M).

M N

ARS-quantification of coated wells ARS-quantification of collagen type I coated wells

A dCol1 - OIM B nCol1 - OIM C Col4 - OIM D FN - OIM E LN - OIM F PBS - OIM

G dCol1 - Ctrl H nCol1 - Ctrl I Col4 - Ctrl J FN - Ctrl K LN - Ctrl L PBS - Ctrl

Figure 4.21: Extracellular matrix molecules influence MSC differentiation: os-
teogenesis - Light microscopy of Alizarin Red S staining detecting calcium deposits of
osteogenic BMSCs on protein matrices (A-F) compared to not induced controls (G-K) af-
ter 21 days in culture; scale bar: 500 µm. (M) Quantification of alizarin staining shows
differences on osteogenic differentiation of BMSCs on protein coatings. (N) Osteogenic in-
duced cells compared to not induced cells on various concentrations of collagen 1 coatings
(5-50 µg/cm2) and uncoated control.
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4.3 Cell adhesion on ECM proteins monitored by impedance measurements

Again, expression of adipogenic genes were also determined in RT-qPCR experiments

using the differentiation markers PPARγ, perilipin and adiponectin. While uncoated

control samples resembled the expression profiles of PPARγ and perilipin as seen be-

fore (compare Fig. 4.11), decreasing expression of those genes in adipogenic mainte-

nance medium (AMM), whereas high during induction cycle (AIM (Fig. 4.22 A and

B blue bars), on ECM protein coats this oscillating expression was only detected for

perilipin but not for PPARγ gene expression. After 14 days, also late adipogenic marker

adiponectin could be detected at high levels (Fig. 4.22 C). Although surprising weak

expression of adipogenic differentiation genes after 14 days for control samples compa-

rable with laminin coated samples was detected, highest levels of gene expression was

seen on fibronectin, followed by collagen I and somewhat weaker collagen IV, confirming

quantification data of ORO lipid staining (Fig. 4.19).
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4.3 Cell adhesion on ECM proteins monitored by impedance measurements
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Figure 4.22: Relative gene expression of adipogenic markers on ECM coatings
- Relative gene expression (induced minus uninduced) of adipogenic markers (A) PPARγ,
(B) perilipin and (C) adiponectin at different timepoints during differentiation process on
ECM proteins collagen I (green bars), collagen IV (orange), fibronectin (black), laminin
(white) and uncoated control (blue). After 3 days, induction medium was switched to
maintenance medium (black arrow) and back to AIM again (white arrow). All cells have
been analyzed at population doublings below 20.
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4.4 Cell migration monitored by impedance

4.4 Cell migration monitored by impedance

To examine cell adhesion, migration and growth after wounding, cells were grown in

multi-wells with one single electrode and after reaching confluence cell layers were

wounded by a high voltage pulse resulting in a defined cell-free area surrounded by unaf-

fected living cells. Repopulation of the cell free-electrodes were monitored by impedance

recording.

4.4.1 Expression of adhesion molecule affects cell migration

Studying migration of keratinocytes into electrically wounded area further points on

effects of nidogen-1 on cell adhesion and therefore migratory properties, reflected by

prolonged recovery phase after wounding of nidogen-1 expressing keratinocytes com-

pared to not induced cells (Fig. 4.23 A). Similar negative effects of nidogen expression

on migration were also seen using mouse fibroblasts. Wild-type fibroblasts expressing

nidogen were slower compared to double knockout fibroblasts in which expression of

nidogen was abolished (Fig. 4.23 B).
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4.4 Cell migration monitored by impedance

C D E F

A BKeratinocytes HacaT-ND1 mouse fibroblasts

Figure 4.23: Wounding of HaCaT cells and fibroblasts - After reaching counfluency
HaCaT ND1 cells were exposed to high voltage pulses (4V, 3x 20s) and repopulation of
the electrodes was recorded. (A) Keratinocytes induced for nidogen-1 expression (green)
migrated slower compared to non-induced cells (red). (B) Similar migratory behavior
was observed in mouse fibroblasts. Repopulation of the electrodes took longer with wild-
type fibroblasts naturally expressing nidogens (green) when compared to fibroblasts which
lack nidogen-expression (red). Phasencontrast pictures of keratinocytes on electrodes (C)
before, (D) immediately, and (E) 3 hours after wounding, and (F) when electrodes where
fully repopulated after 10 hours; scale bar: 100 µm.

4.4.2 Migration of MSCs

Subjecting confluent BMSC (p6) cultures in the respective differentiation media to

electrical wounding generated impedance signals like during initial cell attachment with

flatter slope for adipogenic than for osteogenic cells (Fig. 4.24 A). For comparison,

cells were grown upon confluency separated by a silicon insert. After removal of the

separating wall, cells started to migrate into the gap to populate the cell-free area.

Closing of cell layer was documented by microscopy followed by picture analysis. Results

were similar to electrical wounding: adipogenic cells seem to be inhibited in growth and

migration when compared to osteogenic and control cells (Fig. 4.24 B).
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4.4 Cell migration monitored by impedance
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Figure 4.24: Migration of differentiating MSCs - BMSCs were seeded in differen-
tiation medium (adipogenic: blue, osteogenic: red, control: black). For wounding (A)
confluent cells were detached from electrodes by a 4V pulse (arrow), recording recovery by
growth of BMSCs over the electrode, impedance data are normalized to start value. (B)
BMSCs migration into the area of artificial gap from silicon inserts.

Furthermore, influence of single factors on MSC migration can be monitored by

impedance. Therefore, factors like SDF-1, PDGF and tumor necrosis factor (TNF)α,

which are closely related with MSC migration was monitored by electrical wounding

but also again by insert-based migration assays. While SDF-1 and PDGF did not show

significant differences to controls without additional factors, migration of cells treated

with TNFα was significantly delayed in both assays (Fig. 4.25).
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Figure 4.25: Migration factors influence on MSCs - BMSC in growth medium (black)
and supplemented with SDF-1 (green), PDGF (purple) and TNFα (orange) were detached
from electrodes by a 4V pulse (arrow), recording recovery by growth of BMSCs over the
electrode. (B) MSCs migrate into the area of artificial gap from silicon inserts.
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5 Discussion

Since their discovery, multipotent mesenchymal stromal cells (MSCs) have become at-

tractive candidates for the regeneration of soft and solid tissues and their reconstruction

in vitro by bioengineering. Thus, the ability of MSCs to differentiate ex vivo into multi-

ple lineages upon specific induction has been shown in numerous studies (Prockop, 1997;

Pittenger et al., 1999; Gregory et al., 2005; Nombela-Arrieta et al., 2011). Besides bone

marrow, other tissues, like adipose tissue, umbilical cord blood or umbilical cord matrix

were identified to harbor MSCs (Zuk et al., 2002; Bieback et al., 2004; Erices et al.,

2000) and isolates of MSCs underwent extensive comparative analysis of proliferation,

protein and gene expression, cell surface markers, or histochemical evaluation of their

differentiation potential (Baksh et al., 2007; Wagner et al., 2005; Shetty et al., 2010;

Banfi et al., 2000; Majumdar et al., 1998; Feldmann et al., 2005; Kern et al., 2006).

Although the ISCT has defined minimal criteria for MSCs (Dominici et al., 2006), an

unambiguous immunophenotype of MSCs can hardly be defined. Cell sorting of MSC

isolates is hampered by the complexity of surface markers and particularly low cell yields

due to the rare incidence of MSCs in tissue. Therefore descending from tissue isolates,

MSC are commonly separated from their haematopoietic counterparts simply by their

adhesive properties, resulting in mixtures of multipotent cells and progenitor or lineage

committed cells. Isolates of MSCs vary depending on the donor, the donor age and the

tissue MSCs originate from (Kretlow et al., 2008; Wagner et al., 2006), but also on the

method of isolation and in vitro cultivation. Furthermore, extensive expansion of MSCs

in vitro is often accompanied by the loss of differentiation potential (Kretlow et al.,

2008). Opposing in vitro ’aging’, maintenance of stemness is closely related to interac-

tions with the environment, en gros defining the stem cell niche, and therein the role of

cell interactions with the extracellular matrix (ECM) play a pivotal role (Volloch and

Kaplan, 2002; Mauney et al., 2004, 2006). While differentiation in several directions,

giving rise to osteogenic, adipogenic or chondrogenic lineages for example, has been
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successfully established for in vitro cultures of MSCs (Prockop, 1997; Pittenger et al.,

1999; Gregory et al., 2005; Nombela-Arrieta et al., 2011), the underlying mechanisms of

the inducing chemical factors are not fully understood, since in vivo cells are apparently

triggered by orchestration of many different stimuli. In addition, MSCs, transplanted

into certain body sites, are not immune to differentiate into irregular or pathological

tissue types (Breitbach et al., 2007) and occasionally MSCs have been also associated

with conversion into CAFs in tumor stroma (Galiè et al., 2008; Mishra et al., 2009).

Nevertheless, due to their versatile properties, ranging from immunosuppression and

tissue regeneration to trophic functions, MSCs are a promising source for cell therapy

(Sensebé et al., 2010; Zhao et al., 2010). However, this requires an improved under-

standing of how these cells maintain their stemness, how differentiation processes are

guided and the assessment of risks, e.g. for developing cancer. Last not least stan-

dardized procedures and good manufacturing practices (GMPs) have to be established

before broader usage of MSCs in regenerative medicine is indicated for safety and the

unambiguous benefit of the patients.

In this thesis the differentiation of MSCs from different sources has been investigated

in regard to specific inducing factors and cell-interactions with different ECM-molecules.

For this purpose, the novel method of non-invasive impedance measurements on living

cell layers was applied which allowed to monitor in real time early and late changes in

MSC cultures undergoing differentiation. MSC cultures have been analyzed according

to currently used clinical settings, being aware that they are heterogeneous mixtures of

multipotent to lineage-committed progenitor cells, and their progeny.

Changes in morphology and adhesion during MSC differentiation

Morphology and adhesion properties of different cell types vary depending on their in

vivo function. Thus, the overall cell-cell contacts of epithelial cells like keratinocytes

in vitro are stronger than cell-substratum or cell-matrix interactions, respectively, due

to the formation of high numbers of intercellular adherens and tight junctions and

especially desmosomes. The situation is inverse for cells derived from connective tissue

like fibroblasts or (multipotent) mesenchymal stromal cells. These cells secrete high

amounts of various ECM proteins and form strong interactions with the substratum

while direct cell-cell contacts are merely or not at all developed. These differences in cell
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morphology, cell-cell and cell-matrix interactions are utilized for impedance monitoring

of cell behavior.

For setting up the system, in a first round of experiments, cells of different cell types

were seeded at various densities and impedance profiles were recorded (see Fig. 4.1).

The impedance measurements showed over a wide range a strong correlation to cell

numbers for each cell type but revealed also marked differences between MSCs, skin

fibroblasts, and keratinocytes, underlining the effect of cell type-specific adhesion and

shape in concord with the predictions and assay principle.

Accordingly, cells in the process of differentiation are subjected to rearrangements

of cytoskeletal elements and adhesion structures both together leading to profound

changes in cell morphology and interactions according to their differentiation fate. In

order to explore this on multipotent stromal cells MSCs, isolated from bone marrow

or adipose tissue, were seeded at high densities in media directing distinct tracks of

differentiation or lacking inducing factors and impedance was recorded continuously.

Samples from different donors and tissues as well as in vitro aged cells were compared

and impedance profiles were correlated to the degree of differentiation, estimated by

histochemical staining, gene expression profiling, and protein analysis.

Adipogenic differentiation

MSCs induced for adipogenic or osteogenic differentiation yielded highly specific and

discriminatory impedance profiles. Shallower profile slopes in adipogenic medium (AIM)

in the initial phase indicated delayed cell spreading, i.e. slower or less intense forma-

tion of adhesion contacts than in the other media (see Fig. 4.5 A). The effect and the

responsiveness of cells became most apparent by following a cycling protocol for adi-

pogenic differentiation. The impedance steeply increased when adding the maintenance

medium AMM and promptly decreased upon switching again to AIM (Fig. 4.7). On the

molecular basis, this was paralleled by inverse PPARγ and perilipin expression (shown

by RT-qPCR; Fig. 4.11), which were determined at the corresponding time points.

This strongly argues for fluctuations in cell interactions, whereas effects due to massive

cell loss could also be excluded by counting nuclei positioned on the electrodes (Fig.

4.8). As a mechanistic explanation, IBMX and indomethacine in AIM reduces turnover

of cAMP and the increased cAMP activates PKA. The observed impact on the actin
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cytoskeleton may promote retraction of MSCs (Tio et al., 2010; Nombela-Arrieta et al.,

2011), but in addition the stimulated synthesis of hyaluronan and chondroitin sulfate

proteoglycan by activated PKA lowers cell contacts or widens spacing of cell-matrix

adhesion (Calvo et al., 1991; Zizola et al., 2007). Underlining these mechanisms, the ef-

fects on cytoskeleton and cell morphology were only marginal for MSCs in AIM lacking

IBMX or indomethacine, as judged by impedance recordings which rather resembled

profiles of uninduced MSCs (see Fig. 4.6). Thus, according to the profiles the lack of

the other inducing agents, dexamethasone and insulin did not affect adipogenic differ-

entiation per se, indicating a more supportive or enhancing role, e.g. by stimulating the

clonal amplification of committed cells.

The observed changes in cell morphology and cell-cell interactions during differen-

tiation are in total agreement with a very recently published study further elucidat-

ing impedance measurements of MSC differentiation (Bagnaninchi and Drummond,

2011). By applying a more sophisticated ECIS-system impedance values could be broken

down into their main contributing parameters of barrier resistance (Rb), cell membrane

capacitance (Cm) and cell-substrate parameter α (Giaever and Keese, 1991; Lo et al.,

1995; Bagnaninchi and Drummond, 2011). This uncovered definitely that the initial

increase in OIM after induction was more due to enhanced cell-substrate interactions

reflected by parameter α2 but differences to adipogenic-induced cells were diminished

over time. Supporting the here presented impedance data on fluctuations in cell inter-

actions during cycling adipogenic differentiation, Bagnaninchi and Drummond (2011)

demonstrated that after one day impedance was dominated by Rb values, reflecting the

established intercellular junctions. In AIM this value was almost zero but regained af-

ter medium change to maintenance medium presumably by reestablishing loose cell-cell

contacts due to changes in the cytoskeleton. This would explain why in AIM the MSCs

spread initially more slowly and acquired finally a roundish, adipocyte-like morphology.

The finally really advanced adipogenic stage was confirmed in these experimental

settings by intense ORO staining of lipid droplets, presence of ADRP and perilipin on

western blots, and expression of the late adipogenic marker gene adiponectin besides

PPARγ and perilipin. All those were detected by RT-qPCR in the MSC samples induced

for adipogenesis at the end points (Fig. 4.9 - 4.11).
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Osteogenic differentiation

The initially steeper osteogenic profiles reflect formation of strong cell adhesion, as

demonstrated by high cell-substrate parameter α (Bagnaninchi and Drummond, 2011).

Later on impedance is rising mostly due to firmly established intercellular junctions

but also enhanced ECM deposition by osteogenic cells which further increases layer

resistance Rb. This was confirmed by an additional report on higher impedance values

of MSCs in OIM (Hildebrandt et al., 2010; Bagnaninchi and Drummond, 2011).

In this work, differentiation was finally verified histologically by Alizarin red S or von

Kossa staining as well as detection of osteopontin and of late osteogenic marker BSP

on western blots at end points. In this context, it has to be emphasized that the initial

cell density matters tremendously when comparing results from different experimental

settings. Seeding MSCs at densities beyond confluency apparently saturates coverage of

the cell substratum or matrix support while also minimizing proliferation due to contact

inhibition, which is leading to signal saturation visible by impedance plateaus. Contrar-

ily, gain of impedance was much higher under conditions allowing to start with lower

number of MSCs (2.5 x 104 cells/cm2; xCELLigence system). Presumably both delayed

contact inhibition of proliferation and less restricted spreading contributed to steeper

impedance curves shown herein, a view supported by reports on enhanced expression of

adhesion receptors (e.g. integrins) in OIM (Mizuno et al., 2000; Warstat et al., 2010).

Underlining the value of this method, impedance curves clearly distinguished non-

differentiated from differentiating osteogenic or adipogenic cells and allowed a level of

quantification at early time points of differentiation (Fig. 4.7). This was true for high

passage versus low passage cells as well as for the comparison of MSCs from different

tissues or donors. Thus, comparing two MSC strains from adipose tissue, ASC-1 cells

showed in contrast to the fully potent ASC-2 cells merely a weak osteogenic impedance

profile (Fig. 4.7 C and D) which correlated to the at best marginal von Kossa staining

after 14 days (Fig. 4.9) and only a very faint osteopontin band on western blot.

Application of cells from different tissues

Up-to-now, only cells from bone marrow or adipose tissue were successfully used in

impedance-monitored differentiation experiments. Since cells from umbilical cord blood
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tested so far, showed distinct growth behavior, rather colony-like pattern than forming

confluent cell layers (not shown), no reliable impedance measurements for umbilical cord

blood cells was applicable. Therefore, the usage of impedance measurements has to be

tested for other cell sources than bone marrow or adipose tissue. Whether the height

or profile course of impedance can also be extrapolated to the degree of differentiation

potential has to be evaluated in future studies with larger sample cohorts and with

samples from various tissues.

As proof of principle for concept of impedance sensing even minutes changes due to

small molecular variations, a keratinocyte line (HaCaT cells), with inducible expression

was employed. These epidermal cells usually not expressing nidogen, could be forced

to express this adhesion molecule (present in BM) via doxycycline inducible vector. Se-

cretion of nidogen provided the cells increased adhesive properties, which were reflected

by impedance measurements (Fig. 4.3). Furthermore, like the induced HaCaT cells

also wild-type fibroblasts expressing genuine nidogen showed delayed repopulation of

the wounded electrodes compared to non-induced cells or nidogen-knock out fibroblasts

(Fig. 4.23). As a caveat, differences seen for fibroblasts should be considered with

some caution since those cells can vary from isolate to isolate and in addition undergo

changes during cultivation. Contrarily, the results of migration experiments with stable

HaCaT cell line, representing a rather homogeneous cell population, apparently just

evoked from their response to nidogen induction. Certainly, the molecular processes

in these manipulated nidogen-expressing keratinocytes need to be addressed in future

studies to elucidate the role of nidogen on changes in adhesion, cytoskeletal rearrange-

ments, and further consequences like delayed migration. Nevertheless, this emphasizes

the sensitivity of impedance measurement, being able to detect little changes caused on

the molecular level.

Migration of MSCs during differentiation

Differentiation finally leading to a basic change in cell functions, not only has a high

impact on morphology or adhesion of cells but also on their migratory behavior. Though

being one of the major characteristics of MSCs, their ability to differentiate into multiple

lineages might not be their major contribution to tissue repair in vivo. Rather than

being a source of new tissue or cell mass, there are cues that MSC contribution to
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tissue repair may largely occur through a more indirect, trophic functional manner.

Thus, upon recruitment to injured or inflammatory tissue MSCs secrete cytokines or

growth factors which stimulate resident stromal cells to proliferate and to secrete ECM

and other proteins, thus participating in or enhancing wound healing. But for this

scenario, first of all MSCs have to be either mobilized from their stem cell niche or

recruited from the blood flow to the wounded tissue, followed by final attachment and

homing there. To accomplish that, chemokines and growth factors are released from

inflammatory sites and distributed via the blood flow towards the stem cell niches

where they mobilize the MSCs (Ji et al., 2004; Sordi et al., 2005). The recruitment

of circulating MSCs to wound or inflammatory sites may occur by mechanisms shared

with lymphocytes, the elucidation of which will require further extensive research. To

study certain aspects of the migratory behavior of MSCs, cells were seeded at confluent

densities and repopulation of electrically wounded cell-free areas (high voltage pulse at

sensing electrode) was monitored by impedance recordings. Alternatively closing of an

artificial cell free area by surrounding MSCs was recorded at certain time points by

photomicrographs. Both showed distinct migratory behavior in response to initiation

of differentiation or to agents for stimulating cell migration (Fig. 4.24 and 4.25).

A key player in cell migration is RhoA, a member of the RhoGTPase family. It reg-

ulates the cross-linking of actin and myosin filaments into stress fibers and functions

in actin stabilization. RhoA also takes part in the formation of focal contacts by clus-

tering integrins and associated molecules, which are essential processes for migration,

too. Accordingly, inhibition of RhoA was leading to reduced MSC migration (Lee et al.,

2008; Raheja et al., 2011). In contrast, overstimulation with forced constitutively active

RhoA inhibited MSC migration (Jaganathan et al., 2007). While high levels of RhoA

correlated with osteogenic differentiation, the levels were lowered during adipogenesis

(McBeath et al., 2004). In turn this might contribute to decreased migratory properties

in adipogenic cells, in accord with the migration assays presented herein (Fig. 4.24).

For this test, the high seeding numbers gave rise to confluent cell layers which did not

reveal any significant variations in cell numbers in the different media as evaluated by

counting cell nuclei (Fig. 4.8). Therefore the number of cells surrounding the wound

area was very similar in all media and thus, the delay in wound recovery directly cor-

related to lower MSC migration in AIM (Fig. 4.24.The other way around, the impact

on the actin cytoskeleton, seen by fluorescence microscopy, accompanying adipogenic
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differentiation could be indirectly influenced by expression of RhoA, apart from regu-

lating cell migration. Lower migration of adipogenic cells compared to osteogenic or

undifferentiated cells replicates the in vivo situation. While there is no further need for

adipogenic cells to migrate within adipose tissue, the initial function of MSCs crucially

depends on migration towards injured tissue sites which could be also modulated by

ECM composition as discussed below. What osteogenesis is concerned, the continuous

turnover of bones relies on a fine-tuned interplay of osteoblasts and osteoclasts. Bone

matrix gets degraded by osteoclasts, followed by immigration of osteoblasts into the

degraded bone mass. The osteoblasts then rebuild bone structure by deposition and

reassembly of new organic and inorganic matrix material.

Low chemokinetic effects on MSC migration

To recruit cells, like MSCs, macrophages or neutrophils, for wound healing, chemokines

and cytokines but also specific growth factors are secreted from tissue cells at injured

or inflammatory sites in vivo. Several factors have been connected to the promotion of

MSC migration including SDF-1α, PDGF-AB, epidermal growth factor (EGF), insulin-

like growth factor-1, hepatocyte growth factor (HGF), interleukin (IL)-8, CCL5 (also

known as RANTES), monocyte chemotactic protein 1 (MCP-1) or vascular endothelial

growth factor (VEGF) (Ponte et al., 2007; Ringe et al., 2007; Spaeth et al., 2008).

However, the effects of the examined factors PDGF-AB or SDF-1α on migration were

quite low compared to standard growth medium (Fig. 4.25). This was in marked

contrast to previous studies claiming that these factors are highly potent inducers of

MSC migration (Ponte et al., 2007; Ringe et al., 2007; Ryu et al., 2010; Xu et al., 2010).

But in general, former studies have been performed in trans-well chambers, studying cell

migration towards a gradient of chemotactic agents. Contrarily, migration assays herein

were more likely to reflect chemokinetic or adhesion related effects on the cells apparently

hardly or not at all influenced by PDGF or SDF-1 (Fig. 4.25). Whether these factors act

on mobilization of MSCs from the stem cell niche or direct only circulating cells from the

peripheral blood has not been clarified yet. TNFα seems to act more indirectly on MSC

migration. It upregulates the expression of several chemokine receptors increasing the

response of MSCs to several factors and cytokines like CCL5 or TNF-related apoptosis-

inducing ligand (TRAIL) which increase cell migration (Corallini et al., 2010; Hemeda

65



et al., 2010; Ponte et al., 2007). But the role of TNFα on adhesion molecules seems

to be of ambivalent nature. It increases expression of ICAM-1 which can activate

Rho-like GTPases and it interacts on actin organization, both being important players

in migration themselves (Fu et al., 2009). Contrarily, TNFα increased homing of rat

MSCs to cardiac microvascular endothelium which as shown to be mediated by VCAM-

1 (Segers et al., 2006). Therefore, the application of TNFα solely, without addition

of other chemokines might increase the adhesion of MSCs whereas Rho-like GTPase

activation is less efficient through TNFα leading to slower repopulation of ’wounded’,

cell free areas as indicated by the MSC migration assays herein (Fig. 4.25).

Results of MSC migration experiments in response to chemokine stimulation show

the limits of electric wounding assay. Since MSC migration is usually more towards a

gradient of chemokines, this assay is more dedicated to study adhesion-related effects

on migration and to identify involved receptors than to evaluate chemokine stimulation

of MSCs. However, studies with impedance measurements in transwell chamber ex-

periments are also under development or even already available and may facilitate the

analysis of chemokine-mediated migration and high-throughput screening of various

factors.

ECM proteins affect MSC differentiation

For studying the influence of specific cell-matrix interactions during differentiation, the

concept of monitoring MSC differentiation with impedance recording was extended:

Culture vessels were precoated with the ECM proteins collagen I, collagen IV, fi-

bronectin, or laminin before the cells were seeded and differentiation was initiated. For

MSCs, interactions with ECM proteins are crucial for the maintenance of their differ-

entiation potential in vitro (Mauney et al., 2005, 2006), which mirrors the role of ECM

in the stem cell niche or also for homing in target tissues. But ECM interactions can

also promote or inhibit distinct differentiation pathways (Mizuno et al., 2000; Mizuno

and Kuboki, 2001; Salasznyk et al., 2004; Mauney and Volloch, 2009, 2010), according

to some reports even without addition of specific inducing factors (Mizuno et al., 2000;

Klees et al., 2005). This is in line with herein presented findings that impedance val-

ues increased when inducing the osteogenic track in OIM on collagen I or IV coatings,

whereas the drop of profiles in AIM typical for adipogenic differentiation was far less
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pronounced (Fig. 4.12). Reduced adipogenesis on collagen matrix was confirmed by the

weak ORO staining after 21 days, whereas Alizarin Red S staining was more pronounced

on collagens (see Figs. 4.19 and 4.21). These data were in accordance with previous

reports on the effect of collagen I and IV on osteogenic and adipogenic differentiation

(Mauney and Volloch, 2009, 2010).

Applying collagen I in different densities, ranging from 0-50 µg/cm2 revealed only

marginal differences in ORO stain 5 days after adipogenic induction, whereas lipid

accumulation was lowered after 21 days at all collagen concentrations, supporting pre-

vious results of negative effects of collagen I on adipogenesis. Corresponding impedance

data in AIM or MSC-GM were more ambiguous, coating with 25 µg/cm2 showed high-

est impedance values in all media, likely reflecting best adhesion on this matrix (Fig.

4.14). Higher coating density using 50 µg/cm2 reversed this effect, showing surpris-

ing low impedance data, pointing to oversaturation of matrix coating and blocking of

cell adhesion sites instead of providing support. This is also reflected in OIM, were

impedance profiles are in sequential order to increasing collagen matrix density, ex-

empted 50 µg/cm2, and although not significant, the same tendencies were observed

by Alizarin Red S staining for calcium deposition. Overall this provides further evi-

dence for the hypothesis that increased adhesive properties which are reflected by high

impedance values might be supportive for osteogenic differentiation.

The situation is even more complex for fibronectin, which has been thought formerly

to be a negative effector of adipogenesis due to its strong cell spreading effect. But

this inhibition can be principally reversed by high insulin levels (Spiegelman and Ginty,

1983) as it is applied in our experiments by AIM. Apparently, fibronectin supported long

lasting spreading of MSCs reflected by the delayed decrease of impedance in the first

40 hours. Differentiation into adipogenic lineage was initiated afterwards, changing

morphology into round cell bodies over time and correlating to continuously declin-

ing impedance. For comparison, similar curves but lower impedance levels on laminin

inferred weaker adhesion as observed for other mesenchymal cells like fibroblasts. Prin-

cipally, the degree of cell adhesion and spreading is inversely related to adipogenic

differentiation where a more roundish cell shape is acquired which correlates with lipid

droplet accumulation (McBeath et al., 2004; Park et al., 2009). Interestingly, numbers

of ORO positive cells on fibronectin and laminin coats after 21 days of differentiation
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in AIM did not differ from uncoated controls, which presumably reflects deposition of

fibronectin or vitronectin from the FCS containing media as well as ECM secretion by

the MSCs themselves. The effect became even more striking by image analysis of the

average intensity of ORO staining which was markedly higher on fibronectin than on the

other matrices. Thus, fibronectin coating in our experiments did not prevent but rather

delayed adipogenic differentiation by increasing cell-substrate interactions, reflected by

an extended plateau and delayed drop of the impedance profile.

The degree of differentiation or its inhibition apparently depends, apart from possi-

ble concentration effects, on conformation or structure of protein coatings (Mauney and

Volloch, 2009, 2010). For those experiments, wells were coated with a film of native

ECM proteins and in addition for comparison of protein conformation with denatured

collagen I. Compared to its native counterpart denatured collagen I exhibits a more re-

laxed conformation, exposing other ’cryptic’ binding site for αvβ3 integrin while binding

sites for α1β1 and α2β1 integrins are masked (Davis, 1992). Altered adhesion proper-

ties match the impedance data of native versus denatured collagen I coating, while the

overall profile of the graphs on both conformations remained identical. But on the latter

matrix higher impedance values were noted in all media, which argues for increased ad-

hesion of MSCs on denatured collagen I in general (see Fig. 4.15). As already discussed

above, increased adhesion is related to a decrease in adipogenesis and improved osteo-

genesis, as confirmed by lipid and calcium staining, respectively. However, these results

are in contrast to a previous study, claiming efficient p38 kinase regulated adipogenesis

but inefficient osteogenesis in a Hsp90-independent manner on denatured collagen I.

One explanation of this discrepancy be a harsher treatment for collagen denaturation

in that study, possibly leading to molecular damage and a gelatin like material with

adverse properties. The finding of an inverse relation on native collagen I by the au-

thors (Mauney and Volloch, 2009) is in line with the data for native collagen I presented

above. Also in harmony with the results on collagen IV Mauney and Volloch (2010)

found a negative influence of native collagen IV on adipogenesis, though it was again

highly efficient on denatured collagen IV matrices.

68



Requirements for cell therapies with MSCs

The herein presented results support former findings of varying potential of MSC isolates

and underline the regulatory role of cell-matrix contacts for maintenance of stemness

and differentiation processes. Thus, to generate more homogeneous, standardized MSC

populations for research and therapeutic application, methods for MSC isolation and

conditions for in vitro cultivation need to be optimized and better standardized. This

also implicates the general need for the development of GMPs. On the one hand, op-

timized media and a growth environment for the maintenance of stem cell properties

like self-renewal and differentiation potential are required, which on the other hand

the development of culture conditions for most efficient lineage commitment and dif-

ferentiation, e.g. for cell replacement therapies, are desirable. Therein, the quality

of cultivation medium plays a pivotal role. Although in vitro propagated, autologous

MSCs do not provoke alloreactivity themselves after in vivo transplantation, some re-

cipients of MSCs formed antibodies against FCS, a common supplement of standard

media for ex vivo culturing of cells (Sundin et al., 2007), which might provoke side-

effects in patients. This underlines the necessity to optimize and standardize in vitro

cultivation, which ensures MSC functionality without bearing biohazards. Chemically

defined media, human AB serum or thrombin-activated platelet-rich plasma as alterna-

tives to FCS supplemented media, are currently under investigation (Kocaoemer et al.,

2007) and will gain importance in future MSC research and especially for cell therapy.

Herein, impedance based assays can not only be used for studying proliferation, but

furthermore impedance can help to assess the impact of distinct media on stemness and

differentiation potential. As far as shown in this thesis, the fate of MSCs - maintenance

of stemness, tissue homing and differentiation - also depends on extracellular matrix

contacts. Structured coating with RGD peptide, generating a pattern with defined

molecular spacing has demonstrated that this governs outside-in signaling through the

integrins bound to these ligands which can have dramatic consequences for cellular fate

(Selhuber-Unkel et al., 2010). Future experiments with combinations of varying proteins

of the ECM or with bioactive peptides and synthetic compounds will help to identify

receptor molecules to correlate impedance profiles with patterns of cell receptors re-

sponsible for maintenance of stemness or guiding MSC differentiation. Identification of

these receptors, e.g. by blocking with specific antibodies or RNAi techniques, will not

69



only improve the definition of the stem cell niche but also provide information how cells

maintain vitality and their properties while traveling in the circulation. For that goal

mimicking of more in vivo-like conditions is required. Thus, more complex ECM scaf-

folds, MSC growth and differentiation in three-dimensional cultures or cultivation under

hypoxic conditions need to be tested and which may provide new insights especially into

cell-matrix interactions.
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Conclusions

In this work the behavior and differentiation potential of multipotent mesenchymal

stromal cells (MSCs) have been investigated in response to inducing agents and un-

der particular consideration of cell adhesion and cell-matrix interactions. For this task

monitoring live cells by electrical cell impedance sensing (ECIS) was adapted and op-

timized, verifying the tracks of adipogenic or osteogenic differentiation by light mi-

croscopy, analysis of gene expression and marker proteins as well as histological and

fluorescence staining. Establishing this continuous real-time and non-invasive method

with different cell types clearly showed distinct impedance profiles closely correlating

to cell numbers in general and specifically adhesive properties of the various cells types

which were changing according to the specific differentiation modes as shown herein

in great detail for MSCs. Furthermore, according to those ECIS recordings a marked

variation of differentiation potential has been found depending on donors, tissue of ori-

gin and number of cell passages in vitro confirming former findings by other methods

(Sekiya et al., 2002; Bonab et al., 2006; Kretlow et al., 2008).

During differentiation MSCs change, together with function and morphology, their

contacts with neighboring cells and matrix proteins both of which adding to the fate of

MSCs in return. As shown herein, osteogenesis is favored on collagen matrices, while fi-

bronectin was promoting adipogenic differentiation in vitro, an issue under controversial

debate in the past. Corresponding to overall changes in expression of genes and proteins

in each stage of differentiation, patterns of matrix receptor molecules, largely integrins,

undergo profound alterations. These cell-matrix interactions trigger further signaling

pathways (outside-in signaling) which in turn contribute to differentiation modes and

cell behavior in general. Identification of these receptors and the changes within recep-

tor expression is essential to gain new information on the mechanism involved in homing

of MSCs at specific tissue sites or stem cell niches, including the maintenance of stem-

ness and guidance of differentiation. The fact that also very early changes with onset of

MSC differentiation are detectable by impedance measurements, which can neither be

addressed reliably by histochemistry nor by profiling of gene expression or cell surface

markers, recommends this method for further research on these processes involving cell

attachment and specific interactions. A better understanding of the underlying cell

biology will certainly boost therapeutic applications.
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However, for treatment of patients in particular but also to make research results

of MSC preparations better comparable, methods for isolation and in vitro cultivation

have to be further optimized and standardized, generally implied in the development

of good manufacturing practices (GMPs). This emphasizes the importance of specific

cell isolation procedures and especially directed amplification (e.g. by cell-matrix inter-

actions) with regard to maintenance or lineage commitment of the cells before broader

application in research or clinical trials. For this purpose impedance sensing qualifies

as particularly suitable quality control for the screening of larger MSC sample cohorts,

which can also be combined with microscopy directly or in parallel applying advanced

imaging techniques.

In this thesis the impedance measurements have been demonstrated to represent a

non-invasive real time technique for monitoring early steps in cell attachment and fur-

ther interactions and the fate of MSCs. Based on the stability of the method to clearly

discriminate MSCs from other cell types and to display typical profiles of osteo- and

adipogenic differentiation, this method may be considered as a valuable tool for screen-

ing large panels of inducing factors or support matrices, but last not least for quality

control of MSC preparations. This work should also provide a basis for future inves-

tigations on adhesion related cell behavior and identification of receptors contributing

to the intracellular signaling, analyzing these processes in a label-free and continuous,

non-invasive manner.
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