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1  Introduction 

If you ask a psychologist to assess a person’s cognitive ability, he or she will most 

probably apply an intelligence test and make a statement based on the person's intelligence 

quotient (IQ). And there are good reasons for this since IQ is the standard measure for 

cognitive ability and has a long research tradition in psychological science. 

The foundation for the research of individual differences in cognitive abilities lies in 

the 1880s. Galton (1883) examined participants in his anthropometric laboratory with a test 

battery containing perceptual discrimination tests, memory tests, and association tests. Cattell 

and colleagues (Cattell & Farrand, 1896) continued Galton’s work and developed a battery of 

mental tests for the selection of university applicants. This battery contained reaction time 

tests, perceptual discrimination tests, and memory tests. In a similar fashion, Münsterberg 

(1891) developed mental tests for the measurement of verbal associations, calculating ability, 

reading ability, and memory ability. These early approaches to the measurement of mental or 

cognitive ability consisted of sensory perception tests and rather simple cognitive tasks. The 

performance in these tests only correlated moderately (Sharp, 1899; Wissler, 1901) which 

means that a person who showed an above average performance in one task did not 

necessarily show an above average performance in another task. This started the discussion 

about the structure of cognitive abilities. 

Spearman (1904) was one of the first who formulated a model of the structure of 

mental or cognitive abilities. He tested school children and reported that their performance in 

various sensory discrimination tasks was positively correlated. Based on this finding, he 

concluded that there is a general mental ability factor that he called g-factor that determines 

the performance in all mental tasks. This laid the foundation for characterizing cognitive 

ability with a single score which has later been called IQ (Stern, 1911). Spearman also 

suggested that there are (task-)specific ability factors that are independent of g. However, 

Spearman’s test battery contained sensory discrimination tasks only and therefore, the 

generalizability of his model may be limited. His work nonetheless laid the foundation for 

further structural models of cognitive ability. Burt (1949) and Vernon (1950) used a broader 

range of cognitive tasks (e.g., memory tests, association tests, arithmetical tests, and spatial 

tests) and refined Spearman’s model. Like Spearman, they suggested that there is a general 

cognitive ability factor. However, they further proposed that the specific ability factors do 

overlap and that this overlap can be explained by more general group factors. For example, 

Vernon (1950) suggested that the performance in cognitive tasks is determined by task 

specific ability factors. These tasks specific factors do overlap and therefore can be grouped 
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into minor group factors like mathematical ability, reading, spelling, or spatial ability. 

Likewise, the minor group factors can be combined into more general major group factors 

like a verbal-educational factor or an inductive factor. In turn, the overlap between the major 

group factors can be explained by a single g-factor that corresponds to Spearman’s general 

mental ability factor. 

The idea of a hierarchical structure of cognitive abilities was also proposed by Cattell 

(1963). He suggested that the performance in cognitive tasks is determined by specific first 

order factors like figural relations, memory spam, or induction. In turn, these first order 

factors can be grouped into second order factors that he called fluid and crystallized 

intelligence. According to Cattell, fluid intelligence is the ability to adapt to and solve new 

problems whereas crystallized intelligence is the product of learning and prior experience. 

Initially, Cattell suggested that fluid intelligence and crystallized intelligence are two 

independent factors at the top of his ability model. However, empirical investigations (e.g. 

Horn & Cattell, 1966) have shown that there is an overlap between these second order factors 

and hence Cattell suggested that this overlap may be explained by a general, third order factor 

that may be seen as equivalent to Spearman’s g-factor. 

Considering the various structural models of cognitive abilities and the various 

measurement methods involved, Jäger (1984) systematized the available tasks that have been 

used to measure cognitive ability. He suggested that these tasks can be classified by the 

cognitive operations that are necessary to solve the tasks and the task’s contents. According to 

Jäger, the cognitive operations are speed of operation, memory, creativity, and processing 

capacity and the contents can be figural, verbal, or numeric. In Jäger’s terms, a participant 

solves a numerical series task by applying his operational processing to numeric content. 

Likewise, a participant solves a number-digit test by applying his speed of operation to verbal 

content. Factor analyses (e.g., Jäger, 1982) revealed that individual performance differences 

can be explained by the four operational factors and by the three content factors. Jäger’s 

investigations further suggested the existence of a general ability factor. 

Maybe the most comprehensive structural intelligence model is Carroll’s (1993) three 

strata theory of intelligence. Based on reanalyses of over 460 factor analytic studies, he 

suggested a hierarchical model of cognitive ability. On the lowest level (stratum 1) there are 

64 different specific ability factors like reading comprehension, memory span, general sound 

discrimination, numerical facility, or simple reaction time. According to Carroll, these 

specific abilities are correlated and therefore, may be grouped into eight general ability factors 

(stratum 2) which are fluid intelligence, crystallized intelligence, general memory and 
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learning, broad visual perception, broad auditory perception, broad retrieval ability, broad 

cognitive speediness, and processing speed. On the top of the hierarchy (stratum 3) there is 

one general ability factor that explains the correlations between the stratum 2 factors. 

In summary, the majority of structural models of cognitive ability suggest a 

hierarchical structure of cognitive abilities with one single ability factor at the top of the 

hierarchy. This general ability factor or g-factor may be seen as a disposition to be successful 

in various situations or tasks and was described as the ability to be successful in a culture 

(Hofstätter, 1957), the ability to act purposeful and to think reasonable (Wechsler, 1975), or 

the ability to understand complex information, to think deductive, and learn from experience 

(Neisser et al, 1996). From a statistical point of view, the g-factor may be seen as the 

proportion of individual differences that is consistent across very different cognitive tasks. 

Sternberg and Gigorenko (2002) say that g is able to explain about 50% of the performance 

variance in very different cognitive tasks. Furthermore, g has been shown to be the most 

powerful predictor of educational attainment and professional success (e.g., Ng, Eby, 

Sorensen, & Feldman, 2005; Salgado et al, 2003; Schmidt & Hunter, 2004). This underlines 

the significance and relevance of IQ as a measure of a single general cognitive ability factor. 

The different hierarchical models of cognitive abilities have in common that there is 

one general ability factor at the top of their structure. However, they vary in the number and 

width of specific ability factors. Early investigations used quite homogeneous tasks to 

investigate cognitive ability, which led to rather simple structural models (Spearman, 1904). 

Subsequent investigations used a much wider range of tasks (e.g., Carroll, 1993; Cattell, 

1963; Jäger, 1984; Vernon, 1950), which led to more comprehensive and more fine-grained 

structural models. These hierarchical models may be seen as a framework, in which different 

ability constructs can be integrated. Such a systematization of abilities or tasks may explain 

the relation between different models of cognitive ability. In particular, Carroll’s three strata 

theory offers a very comprehensive framework to integrate various ability components. For 

example, the stratum 2 factor visual perception of Carroll's model may be seen as an 

equivalent to the grouping factor spatial ability in Vernon's model or the spatial content factor 

in Jäger's model. Likewise, memory span is a stratum 1 factor in Carroll's model as well as a 

level 1 ability factor in Cattell's model. Similarly, fluid intelligence is a stratum 2 factor in 

Carroll's model as well as an element of Cattell’s model (as a second order factor) or 

Vernon’s model (as the major group factor induction). In a similar vein, Jäger's Berlin 

intelligence model allows one to classify cognitive tasks by the contents of the tasks or by the 

cognitive operations that are used. For example, Cattell’s Culture Fair Intelligence Test which 
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was developed as an indicator of fluid intelligence may be described as a product of figural 

content and processing capacity in Jäger’s model. 

However, there are also ability factors that have not been integrated into these 

hierarchical models so far. These ability factors may characterize cognitive ability beyond IQ. 

The present thesis investigated two such constructs which were implicit learning and dynamic 

decision making. The usefulness of these constructs was evaluated in three ways. First, I 

evaluated the incremental construct validity of implicit learning and dynamic decision 

making. In particular, I evaluated whether implicit learning and dynamic decision making are 

divergent from measures of psychometric intelligence and I evaluated how they fit into 

hierarchical models of cognitive ability. Second, I evaluated the predictive validity of these 

constructs. In particular, I investigated whether implicit learning and dynamic decision 

making can incrementally predict success in real life. Third, I evaluated the psychometric 

properties of the measures of implicit learning and dynamic decision making. In particular, I 

investigated whether these measures are reliable, stable over time, and consistent across 

different tasks. The results of these investigations are reported in four manuscripts: 

 

Manuscript 1: Danner, D., Hagemann, D., Schankin, A., Hager, M., & Funke, J. (under 

review). Measuring individual differences in implicit learning with an artificial 

grammar learning task. Consciousness & Cognition. 

Manuscript 2: Danner, D., Hagemann, D., Schankin, A., Hager, M., & Funke, J. (under 

review). Can artificial grammar learning tasks measure individual differences in 

implicit learning? Journal of Individual Differences. 

Manuscript 3: Danner, D., Hagemann, D., Holt, D. V., Hager, M., Schankin, A., Wüstenberg, 

S., & Funke, J. (in press). Measuring performance in dynamic decision making: 

reliability and validity of the Tailorshop simulation. Journal of Individual Differences. 

doi: 10.1027/1614-0001/a000055. 

Manuscript 4: Danner, D., Hagemann, D., Schankin, A., Hager, M., & Funke, J. (in press). 

Beyond IQ. A latent state trait analysis of general intelligence, dynamic decision 

making, and implicit learning. Intelligence. doi: 10.1016/j.intell.2011.06.004. 

 

2  Implicit learning 

Implicit learning is most often defined as the ability to learn without being aware that 

something is learned. For example, Shanks and St. John (1994) suggest that “implicit learning 

occurs without concurrent awareness of what is being learned” (p. 369). Some authors refer to 
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the cognitive processes that take place. Mackintosh (1998) describes implicit learning as “the 

product of a basic associative system” (p. 365). Likewise, Mathews et al. (1989) characterize 

implicit learning as “an alternate mode of learning that is automatic, non-conscious, and more 

powerful than explicit thinking” (p. 1083). Other authors also refer to the kind of knowledge 

that is acquired. For example, Reber (1993) describes implicit learning as “largely 

independent of conscious attempts to learn and largely in the absence of explicit knowledge 

about what was acquired” (p.5). In essence, most definitions contain two core aspects. First, 

implicit learning is unintended or even unconscious. Second, the acquired knowledge can not 

be reported.  

Considering implicit learning as a cognitive ability raises the question how implicit 

learning is related to other ability constructs. In particular, it is a theoretically interesting 

question, whether implicit learning is an ability which is independent of psychometric 

intelligence or whether implicit learning can be integrated into a hierarchical model of 

intelligence. Mackintosh (1998) hypothesizes that implicit learning is independent of 

psychometric intelligence. According to him, there are two independent learning systems: an 

implicit, associative learning system and an explicit, hypothesis generating and testing 

system. He suggests that the explicit learning system is necessary for discovering regularities 

with intention and awareness (e.g., in a numerical series task). The implicit learning system, 

on the other hand, detects contingencies without awareness or intention (e.g., judging whether 

a sentence is grammatically correct without being able to report the respective grammatical 

rule). Mackintosh criticizes that standard intelligence tests capture individual differences in 

the explicit system but not individual differences in the implicit learning system. He proposes 

that implicit learning is independent from psychometric intelligence but nevertheless a 

determinant of success in real life. There are several findings that support Mackintosh's 

position. Several studies report low and non-significant correlations between the performance 

on intelligence tests and the performance on implicit learning tasks (Gebauer & Mackintosh, 

2007; Feldman, Kerr, & Sreissguth, 1995; Kaufman et al., 2010; McGeorge, Crawford, & 

Kelly, 1997; Pretz, Totz, & Kaufman, in press; Reber, Walkenfeld, & Hernstadt, 1991). In 

addition, there are performance differences in several domains that can not be explained by 

psychometric intelligence but may be explained by the ability to learn rules implicitly. For 

example, Ceci and Liker (1986) investigated the performance in horse-racing bets. They 

reported that individual differences in betting performance could neither be explained by 

individual differences in reported knowledge nor by individual differences in psychometric 

intelligence. Comparing successful and unsuccessful betters, Ceci and Liker found that both 
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used the same variables to make predictions (e.g., whether a horse has won the last race, the 

condition of the track, or a horse’s lifetime). However, the successful betters used more 

complex interactions between variables to make predictions (e.g., whether a horse has won 

the last race on a specific track against a specific rival). Some authors (e.g., Mackintosh, 

1998) suggest that these complex interactions may represent implicitly learned rules and the 

successful betters may be more successful in implicit learning. In a similar vein, Berry and 

Broadbent (1984) developed a task which they called Process Control. In that task, the 

participants have to control an outcome variable (e.g., amount of sugar produced in a factory) 

by manipulating an input variable (e.g., number of workers hired). Typically, the participants 

are not able to report how the input variable and the outcome variable are connected but there 

are individual performance differences. The performance differences are independent of 

psychometric intelligence (e.g., Berry & Broadbent, 1984; Gebauer & Mackintosh, 2007) and 

several authors suggested that the participants may have learned the connection between the 

variables implicitly (Berry, Broadbent, 1984; Buchner, Funke, & Berry, 1995; Mackintosh, 

1998). 

Taken together, these findings suggest that implicit learning may be independent of 

psychometric intelligence. Furthermore, there are individual performance differences in some 

cognitive tasks that can not be explained by intelligence but that fit conceptually well with 

implicit learning. Hence, implicit learning may be an interesting ability construct to describe 

and understand human cognitive ability beyond IQ.  

 

3  Dynamic decision making 

Any cognitive task can be seen as a problem that has to be solved: there is a given 

state (e.g., an unsolved item) that has to be transferred into a goal state (e.g., a solved item) 

whereby a barrier has to be overcome (e.g., find a rule). Dörner (1980, 1986) criticizes that 

standard intelligence tests only measure the speed and accuracy of the ability to solve simple 

problems (like an analogical reasoning task) but not the ability to solve complex problems in 

real life (like managing a company). Dörner suggests that real life problems are characterized 

by complexity, connectivity, non-transparency, dynamics, and polythely. For example, an 

analogical reasoning task may be seen as a simple task because there is one default solution 

for a given item and the structure of the task is rather simple (e.g., London is to England as 

Berlin is to Germany because London is the capital of England and Berlin is the capital of 

Germany). On the other hand, managing a company may be seen as a much more complex 

task because it requires considering many variables like the financial situation of the 
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company, employee satisfaction, the demands of the market, and so on. Such a task may also 

be seen as connected since several variables are interdependent (like the demands of the 

market and the financial situation of the company). Furthermore, the task may be seen as non-

transparent because not all information which is necessary to solve the task will be available 

all the time. The task may also be seen as dynamic because the variables (like the demands of 

the market) will change over time, and the task may be seen as polythelic because a problem 

solver may have to solve several subgoals (like satisfying the employees, optimizing the 

production, etc.) to reach the superior goal (manage the company successfully). Dörner’s 

critique laid the foundation for a field of research, which has been called dynamic decision 

making (Gonzalez, Vanyukov, & Martin, 2005) or complex problem solving (Funke, 2010).  

On a conceptual level, the relationship between dynamic decision making and 

psychometric intelligence is unresolved. On the one hand, dynamic decision making and 

psychometric intelligence may be seen as different because they are operationalized 

differently. In particular, Dörner suggested that the demands of items in an intelligence test 

differ from the demands of complex problems (e.g., in terms of complexity or dynamics).  On 

the other hand, dynamic decision making and psychometric intelligence may be seen as 

similar because both ability constructs are defined in a similar way. Neisser et al. (1996) 

described intelligence as the ability to understand complex information, to think deductively, 

and learn out of experience. This agrees with Dörner’s description of complex problem 

solving. Furthermore, Hofstätter (1957) suggested that intelligence is the ability to be 

successful in a culture and Dörner (1980) suggested that complex problems are valid 

representations of real-world problems. Accordingly, there should be a substantial overlap 

between dynamic decision making performance and psychometric intelligence. In line with 

that, some authors even describe intelligence as the ability to solve problems (e.g., Berg & 

Sternberg, 1985).  

Beyond similarities in their definitions psychometric intelligence and dynamic 

decision making have also been described as involving similar cognitive processes. In 

particular, Dörner (1986) suggested that making dynamic decisions requires gathering 

information, elaborating goals, planning decisions, and self-management. For example, in 

order to manage a company, the problem solver has to identify the relevant information (e.g., 

demands of the market, current production status), set objectives (e.g., increase production), 

make plans (e.g., hire more workers and buy new machines in order to increase production), 

and so on. In a similar vein, Funke (2010) suggests that dynamic decision making requires 

complex cognition, which means actively searching for information with the intention to 
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make decisions or to solve problems (see also Knauff & Wolf, 2010). Such a description of 

the problem solving process agrees with Sternberg’s (1977) analyses about what cognitive 

processes are involved in solving items of an intelligence test. In particular, Sternberg 

suggested that solving inductive reasoning items of an intelligence test requires encoding, 

inference, mapping, application, justification, and responding. In summary, despite obvious 

and considerable differences in the tasks used to measure them, dynamic decision making and 

psychometric intelligence also have a lot in common: Conceptually, both constructs are 

described in similar terms and some authors suggest that similar cognitive processes are 

involved when solving complex problems and when solving items of traditional intelligence 

tests. 

However, apart from the constructs’ relation on a theoretical level, it may be even 

more interesting to know how dynamic decision making and psychometric intelligence are 

related on an empirical level. In particular, it is interesting to know whether dynamic decision 

making is an ability that is independent of psychometric intelligence and how dynamic 

decision making fits into a hierarchical model of cognitive abilities. Previous studies found 

non-significant or only small correlations (for an overview, see Kluwe, Misiak, & Haider, 

1991), other studies report significant standardized path coefficients between β = .38 and 

β = .54 from latent intelligence to latent dynamic decision making variables (Kröner, Plass, & 

Leutner, 2005; Rigas, Carling, & Brehmer, 2002; Wittmann & Hattrup, 2004). One study 

even found a correlation between a latent intelligence and a latent dynamic decision making 

variable of r = .84 (Wirth & Klieme, 2003). Given these heterogeneous findings, it is 

undecided whether dynamic decision making is a facet of intelligence or an independent 

ability construct. The present thesis will help to clarify this issue. 

 

4  Some psychometric considerations 

Several studies reported small and non-significant correlations between implicit 

learning variables and psychometric intelligence variables. These findings were interpreted as 

preliminary evidence for the independence of implicit learning and psychometric intelligence. 

That conclusion may not be warranted. In particular, because these studies treated the 

performance measures as trait-like variables which are stable over time and consistent across 

different situations or methods (Stemmler, Hagemann, Amelang, & Bartussek, 2011). This 

might be inappropriate because the variance of a performance measure may capture additional 

factors beyond individual differences in a trait which in turn might affect the correlation with 

other variables. 
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First, a performance measure may also be influenced by the specific measurement 

situation even in standardized experiments. For example, one person may be well rested 

whereas another person may already have worked several hours before testing. One person 

may be motivated to show maximum performance whereas another person may have gotten a 

stinging rebuke by his or her supervisor that day and may not be motivated to perform well. 

This means, that performance in an implicit learning task may not only reflect individual 

ability differences but also individual situational effects. This may decrease the correlation 

between an implicit learning variable and an intelligence variable and thus the correlation may 

not reflect the relation between the ability constructs. Likewise, dynamic decision making 

variables may reflect occasion specific variance which may affect the correlation with 

psychometric intelligence variables. In particular, a dynamic decision making variable with a 

small proportion of occasion specific variance may reveal a substantial relation with an 

intelligence variable, whereas a dynamic decision making variable with a substantial 

proportion of occasion specific variance may reveal a small correlation with an intelligence 

variable. 

Second, a performance measure may be influenced by the specific method being used. 

Hence, there may be individual differences in a performance measurement which are 

triggered by the method. For example, a verbal intelligence test may capture individual 

differences in general intelligence as well as individual differences in speech comprehension 

whereas a figural intelligence test may capture individual differences in general intelligence 

and visual thinking. Thus, individual differences in speech comprehension or visual thinking 

are method specific because they can only be assessed with verbal or figural test material. 

Similarly, a particular implicit learning task may measure performance differences, which are 

specific to this particular task but not to implicit learning ability in general. Thus, method 

specificity may be an additional factor that decreases the correlation between psychometric 

intelligence variables and implicit learning variables. The same applies to dynamic decision 

making variables. A particular dynamic decision making task may not only reflect individual 

differences in dynamic decision making ability but also individual knowledge differences (as 

suggested by Hesse, 1982). A variable with a small proportion of method specific variance 

may reveal substantial correlations with psychometric intelligence variables whereas a 

variable with a substantial proportion of method specific variance may reveal small 

correlations. 
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Third, a performance measure may be influenced by unsystematic measurement error. 

For example, instructions may be ambiguous or persons may accidentally make mistakes, 

which may result in a low reliability of performance measures. These effects may contribute 

unwanted variance in implicit learning variables and dynamic decision making variables and 

hence decrease the correlation with other variables. Therefore, it seems worthwhile to 

investigate the reliability of implicit learning variables in greater detail. 

In essence, the occasion specificity, the method specificity, and the reliability of 

variables may affect the correlation with other variables. Therefore, these factors must be 

taken into account when investigating the relations between these constructs. The present 

work investigates these effects which will help to understand the validity of implicit learning 

and dynamic decision making in greater detail. 

 The consideration that a variable may reflect trait variance as well as occasion 

specific, method specific, and unsystematic variance has been formalized in Steyer and 

colleagues’ latent state-trait theory (Steyer, Schmitt, & Eid, 1999). In a nutshell, latent state-

trait theory proposes that the measurement i of a variable Y can be decomposed into a trait ξi, 

a state residual ζi, a method residual ηi, and an unsystematic error residual εi, thus 

Yi = ξi + ζi + ηi + εi. Given the independence of these factors (Steyer et al., 1999), the variance 

of this measurement can be decomposed as σ²(Yi) = σ²(ξi) + σ²(ζi) + σ²(ηi) + σ²(εi), and the 

factor variances may be estimated with a structural equation model as shown in Figure 1. As 

can be seen in this figure, the latent trait factor is defined as a variable that is consistent across 

several measurement occasions and methods, whereas the latent state residual and the method 

factor are specific to the individual measurement occasion or the assessment method. Hence, 

these models allow separating the different contributions of the trait, the measurement 

occasion, and the measurement method to the manifest variables. 
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Figure 1. Latent state-trait structural equation model. Y11 = variable on measurement occasion 

1 with method 1, Y12 = variable on measurement occasion 1 with method 2, Y21 = variable on 

measurement occasion 2 with method 1, Y22 = variable on measurement occasion 2 with 

method 2, ξ = trait variable, ζ1 = state residual 1, ζ2 = state residual 2, η1 = method residual 1, 

η2 = method residual 2, ε1-ε4 = measurement error. 

 

There have been many applications of latent state-trait models in different domains of 

personality research, which demonstrated substantial effects of the measurement occasion or 

the method on behavioral variables (e.g., Eid, Notz, Steyer, & Schwenkmezger, 1994; Schmitt 

& Steyer, 1993; Steyer, Schwenkmezger, Auer, 1990; Yasuda, Lawrenz, Whitklock, Lubin, & 

Lei, 2004; Ziegler, Ehrlenspiel, & Brand, 2009) or physiological variables (e.g., Hermes et al., 

2009; Hagemann, Hewig, Seifert, Naumann, & Bartussek, 2005). However, there have been 

no applications of latent state-trait models on performance variables yet, even if some 

findings suggest that it may be instructive to consider the occasion specificity and method 

specificity of these variables. For example, in some studies the participants completed the 

same dynamic decision making task several times (Süß, Kersting, & Oberauer, 1993; 

Wittmann & Hattrup, 2004) and the performance between subsequent tasks correlated only 

moderately (between r = .37 and r = .62). This points either towards a low reliability or 

towards a substantial occasion specificity of the variables. Moreover, Wirth and Klieme 

(2003) reported structural equation models, which implied a correlation of r = .33 between 

two dynamic decision making tasks (r = .47 when corrected for attenuation) and Gebauer and 

Mackintosh (2007) reported a correlation of r = .15 between two artificial grammar learning 

tasks (r = .21 when corrected for attenuation). This suggests a substantial method specificity 

of the performance measures.  
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Taken together, there are some findings which suggest that implicit learning variables 

and dynamic decision making variables may contain substantial proportions of occasion 

specific or method specific variance. These unwanted variance proportions may affect 

correlations with other variables such as psychometric intelligence and thus these correlations 

may be biased estimates for the relation between constructs. Therefore, one aim of the present 

thesis was to investigate implicit learning variables and dynamic decision making variables 

with latent state-trait models. Thus, these unwanted variance proportions can be controlled 

and the relation between constructs can be estimated without bias. 

As can be seen in Figure 1, a construct has to be measured with at least two different 

methods on at least two different measurement occasions in order to apply latent state-trait 

models. For the purpose of the present thesis, I therefore ran a longitudinal study and 

measured psychometric intelligence, implicit learning, and dynamic decision making with two 

different methods on two different measurement occasions. In addition, I measured several 

indicators of real life performance to investigate whether implicit learning and dynamic 

decision making are determinants of success in real life as suggested by Mackintosh (1998) 

and Dörner (1986). 

 

5  The measurement of psychometric intelligence 

Carroll (1993) has shown that the Advanced Progressive Matrices (APM; Raven, 

Court, & Raven, 1994) are an excellent marker for psychometric intelligence. Therefore, I 

selected the APM as a first indicator for psychometric intelligence. The Berlin Intelligence 

Structure Test (BIS; Jäger, Süß, & Beauducel, 1997) was used as a second indicator for 

psychometric intelligence. The BIS was used because Jäger (1973) carefully selected the tasks 

that he included in the BIS. In particular, he reviewed and systematized 289 different tasks in 

order to obtain a representative sample of available intelligence tasks. Thus, the performance 

in the BIS may be seen as a further valid indicator for psychometric intelligence. 

 

6  The measurement of implicit learning I 

While there are many investigations on how to measure individual differences in 

psychometric intelligence, there is a paucity of investigations on how to measure individual 

differences in implicit learning. However, there are tasks that have been used to investigate 

implicit learning processes and such tasks may also be suitable to investigate individual 

differences in implicit learning. In particular, artificial grammar learning tasks have become 

the standard paradigm to investigate implicit learning (e.g., Altmann, Dienes, & Goode, 1995; 
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Dulany, Carslon, & Dewey, 1984; Gebauer & Mackintosh, 2007; Knowlton & Squire, 1994, 

1996; Meuleman & Van der Linden, 2003; Perruchet & Pacteau, 1990; Pothos & Bailey, 

2000; Reber, 1967; Reber et al., 1991; Reber & Perruchet, 2003; Scott & Dienes, 2010; 

Tunney, 2005). In such a task, the participants are asked to learn a list of arbitrary letter 

strings (like WNSNXS). Afterwards they are told that these strings were constructed 

according to a complex rule system or a grammar (see Figure 2 for an example) and they are 

asked to judge new strings (like WNSNXT) as grammatical or non-grammatical. Typically, 

the participants’ judgment accuracy is above chance, which suggests that they learned 

something but they are not able to report the grammar rules, which suggests that they learned 

the rules implicitly. This operationalisation agrees with definitions of the implicit learning 

process. When the participants are asked to learn the letter strings, they do not know that these 

letter strings are constructed according to a grammar. Thus, they are not able to learn the 

grammar intentionally or consciously. In addition, they are not able to report the grammar 

rules. Accordingly, the judgment accuracy in the testing phase of an artificial grammar 

learning task may be used as a valid performance indicator for implicit learning.  

 

 

Figure 2. Example of a grammar that is used in artificial grammar learning tasks. 

Grammatical Stimuli are generated by following any path of arrows (e.g., NWSW). 

 

However, this approach may be limited, in particular, if participants complete an 

artificial grammar learning task more than once. Participants who complete an artificial 

grammar learning task for the first time do not know that the letter strings in the learning 

phase are constructed according to a grammar and thus will not search for grammar rules. 

However, participants who complete an artificial grammar learning task for the second time 

will know that the letter strings in the learning phase are constructed according to a grammar 
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and thus they may intentionally search for the grammar rules. This would violate the 

definition of implicit learning. Therefore, the learning during the second artificial grammar 

task may not be implicit any more and the performance in the second artificial grammar 

learning task may not be a valid indicator for implicit learning performance. The application 

of latent state-trait models requires the participants to complete several artificial grammar 

learning tasks several times. Therefore, I first had to investigate whether artificial grammar 

learning tasks can be used more than once for measuring individual differences in implicit 

learning. 

 

6.1  Measuring individual differences in implicit learning with an artificial grammar 

learning task (Manuscript 1) 

In order to use an artificial grammar learning task more than once, Gebauer and 

Mackintosh (2007) suggested modifying the standard procedure of artificial grammar learning 

tasks. In particular, they asked their participants to learn a list of grammatical strings in a 

learning phase. Afterwards, in a testing phase, they did not inform the participants that the 

strings were constructed according to a grammar but they asked their participants to rate the 

presented letter strings as “old” (already presented in the learning phase) or “new” (not 

presented before). Indeed all presented strings were new, but half of them were grammatical 

and the other half was not. Grammatical strings rated as “old” and non-grammatical strings 

rated as “new” were counted as correct answers. The idea behind this procedure may be that 

the participants learned something about the grammar, thus felt familiar with a grammatical 

string and this is why they classified a grammatical string as an “old” one.  

In line with this reasoning, there are several authors who suggest that novelty 

judgments and grammaticality judgments are conceptually similar. For example, Whittlesea 

and Leboe (2000) demonstrated that several heuristics (fluency, generation, and resemblance) 

influence the performance in recognition as well as classification tasks. The authors suggest 

that these heuristics affect the perceived familiarity of stimuli and that familiarity affects 

novelty judgments as well as grammaticality judgments (see also Kinder, Shanks, Cock, & 

Tunney, 2003; Scott and Dienes, 2008; Whittlesea, Jacoby, & Girard, 1990). However, as 

noted by Whittlesea and Loboe (2000) “that does not mean that classification and recognition 

decisions that are performed heuristically will ordinarily be correlated” (p. 101). Therefore, 

one aim of this study was to test whether asking subjects for novelty measures the same 

construct as asking for grammaticality. 
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Another aim of this study was to investigate whether the performance in an artificial 

grammar learning task is independent of reportable grammar knowledge when several 

artificial grammar learning tasks are completed. Therefore, I developed a bi- and trigram 

knowledge test. The bi- and trigram knowledge test was developed with reference to 

Perruchet and Pacteau (1990) who suggest that the participants may not use abstract grammar 

knowledge to make grammaticality decisions but heuristics like bigrams. In a similar fashion, 

other authors suggest that the participants may use fragments (Dulany, Carlson, & Dewey, 

1984) or chunks (Servan-Schreiber & Anderson, 1990). Therefore, I asked the participants to 

rate whether a bi- or tri-gram occurred more often in grammatical or more often in non-

grammatical strings. A zero correlation between n-gram knowledge and accuracy would 

indicate that the participants did not use bi- or trigrams for their judgments, whereas a positive 

correlation between n-gram knowledge and accuracy would indicate that the participants may 

have used bi- or trigrams for their judgments. 

I performed a series of experiments, which manipulated whether the participants had 

to rate the grammaticality of strings in the testing phase (“classical” procedure) or the novelty 

of strings in the testing phase (modified procedure). There were three central findings of these 

experiments. First, the reliability estimates of the judgment accuracy variables were rather 

small (between 0.00 and 0.66). This replicates the findings of Gebauer and Mackintosh (2007) 

and Reber et al. (1991) who also reported small reliability estimates for the performance in 

artificial grammar learning tasks. Second, the instruction to rate the novelty of letter strings 

does not allow one to measure the same construct as the instruction to rate the grammaticality 

of letter strings. This means that even if both instructions may be seen as similar on a 

conceptual level (Kinder, Shanks, Cock, & Tunney, 2003; Whittlesea, Jacoby, & Girard, 

1989; Whittlesea and Loboe, 2000), they differ substantially on an empirical level. Therefore, 

novelty judgments are not equivalent to grammaticality judgments. Third, if participants 

complete a “classical” artificial grammar learning task for the first time, there is a zero 

correlation between the judgment accuracy and the amount of reportable grammar knowledge. 

However, if participants complete a “classical” artificial grammar learning task for the second 

time, there is a substantial correlation between the judgment accuracy and the amount of 

reportable grammar knowledge. Furthermore, the performance in a first artificial grammar 

learning task does not significantly correlate with the performance in following artificial 

grammar learning tasks but the performance in a second artificial grammar learning task 

correlates significantly with the performance in a third artificial grammar learning task. This 

suggests that the performance in a first artificial grammar learning task may be seen as an 
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indicator of implicit learning whereas the performance in subsequent artificial grammar 

learning tasks may not be seen as implicit any more. 

The findings of this first study suggest that artificial grammar learning tasks may only 

be used once to measure individual differences in implicit learning. However, there is also an 

alternative interpretation. Our participants completed a knowledge test (containing bi- and 

trigrams of letter strings) after every artificial grammar learning task. Therefore, it is also 

possible that the knowledge test and not the grammar awareness changed the participants’ 

strategy and caused the low task consistency as well as the relation with reported knowledge. 

Investigating this hypothesis was the aim of a second study. 

 

6.2  Can artificial grammar learning tasks measure individual differences in implicit 

learning? (Manuscript 2) 

The initial aim of this study was to investigate whether a knowledge test increases the 

correlation between two successively completed artificial grammar learning tasks. Therefore, 

half the participants completed a bigram knowledge test after the first artificial grammar 

learning task (the bigram group) whereas the other half did not (the control group). A first 

result was that the correlation between both artificial grammar learning tasks was smaller in 

the bigram group. Likewise, there was a significant correlation between the performance in 

the second artificial grammar learning tasks and reported bigram knowledge in the bigram 

group, but not in the control group. These results suggest that a bigram knowledge test 

decreases the task consistency of artificial grammar learning tasks and increases the 

correlation between implicit learning performance and reportable grammar knowledge. This 

means, artificial grammar learning tasks may only be used once to measure individual 

differences in implicit learning if the participants complete a bigram knowledge test. 

However, artificial grammar learning tasks may be used for several times if the participants 

do not complete a bigram knowledge test. Therefore, participants can complete several 

artificial grammar learning tasks for several times and latent state-trait models can be used to 

estimate a latent implicit learning trait variable. 

There were some further findings of this study. The reliability estimates of artificial 

grammar learning performance were rather small (between 0.21 and 0.60). This replicates 

previous findings (Gebauer & Mackintosh, 2007; Reber et al., 1991) and suggests that the 

performance in artificial grammar learning tasks is substantially affected by unsystematic 

measurement error. 
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In addition, the participants in this study also completed Cattell’s Culture Fair 

Intelligence Test and they were asked to report their final school exams’ grade point average. 

Similar to previous studies (Gebauer & Mackintosh, 2007; Kaufman et al., 2010; McGeorge 

et al., 1997; Pretz et al., in press; Reber et al., 1991) there was only a moderate correlation 

between implicit learning performance and psychometric intelligence. Furthermore, the 

results of this study revealed a significant relation between participants’ final school exams 

and artificial grammar learning performance. This is in line with Kaufman et al. (2010) who 

also showed a significant association between implicit learning performance and educational 

success. However, the association, observed in the present study, became non-significant 

when intelligence was included as a further predictor. This suggests that even though the 

implicit learning variable and the psychometric intelligence variable only correlated 

moderately, the relation between artificial grammar learning performance and educational 

success was due to this overlap. 

 

6.3  The measurement of implicit learning II 

Taken together, the central finding of both studies is that artificial grammar learning 

tasks can be used several times to measure individual differences in implicit learning. The 

present findings suggest that bigram knowledge tests may turn the participants’ attention 

towards bigrams. Thus, the participants may intentionally acquire bigram knowledge in a 

subsequent artificial grammar learning task and learning may not be implicit any more. 

However, if no bigram knowledge test is completed, several artificial grammar learning tasks 

can be used to measure individual differences in implicit learning. Therefore, I used two 

different artificial grammar learning tasks (without bigram knowledge tests) to measure 

individual differences in implicit learning. 

Furthermore, both studies revealed small reliability estimates of the implicit learning 

performance variable. This replicates the findings of Gebauer and Mackintosh (2007) and 

Reber et al. (1991). As discussed, a small reliability has implications for the investigation of 

the relation between implicit learning and psychometric intelligence. In particular, a small 

reliability decreases the correlation between two variables. Hence, to investigate the relation 

between implicit learning and psychometric intelligence, I used latent state-trait models to 

control for this lack of reliability. They decompose the variances of the manifest performance 

variables into a trait proportion, a state residual proportion, a method residual proportion, and 

a measurement error proportion. 
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Finally, there is preliminary evidence for a relation between implicit learning and the 

real life criterion educational success. In the present investigation, this relation became non-

significant when psychometric intelligence was included as a predictor. Nevertheless, this 

finding suggests that it may be worthwhile to investigate the relation between implicit 

learning and real life criteria in greater detail. Therefore, I used different indicators of real life 

performance in order to investigate the relation between implicit learning and real life 

performance in the longitudinal study. 

 

7  The measurement of dynamic decision making 

Traditional paper-pencil intelligence tests have been criticized as inadequate methods 

to measure dynamic decision making (Dörner, 1980, 1986). Therefore, several authors 

suggest using computer-based simulations to measure dynamic decision performance. Over 

the years, several dynamic decision making tasks have been developed. For example, the 

Tailorshop scenario (Dörner, 1979; Funke, 1983) simulates a fictional company where the 

participants have to control several variables like the number of workers or the costs for 

advertising in order to maximize their company’s value. Other tasks simulate a forestry 

(Wagener, 2001), a power plant (Wallach, 1998), or a space flight (Wirth & Funke, 2005) 

where the participants have to control several variables to reach a given goal state. These 

simulations have in common that they simulate complex, connected, dynamic, non-

transparent, and sometimes even polythelic environments. 

The Heidelberg Finite State Automaton has become a common instrument for 

measuring individual differences in dynamic decision making, especially since it has been 

included in the Program for International Student Assessment (PISA; Wirth & Klieme, 2003). 

Therefore, I chose this simulation as one indicator of dynamic decision making. The scenario 

simulates a space flight where the participants can control a space ship and a vehicle with a 

user interface (see Figure 3). During the simulation, the participants are asked to reach several 

goal states (e.g., landing the space ship on a particular planet) whereby the number of reached 

goal states is taken as a performance indicator for dynamic decision making (Wirth & Funke, 

2005; Wirth & Klieme, 2003).  
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Figure 3. Screenshot of the graphical user interface of the Heidelberg Finite State Automaton 

(labels translated). 

 

The simulation corresponds to Dörner’s and Gonzalez’s definition of dynamic 

decision making. In particular, the simulation may be seen as complex, because it consists of 

many variables (e.g., the state of the propulsion, the state of the landing gear). The simulation 

may be seen as connected because the different variables depend on each other (e.g., the 

ability to fly with the space ship depends on the state of the propulsion, the heat shield, the 

landing gear, and the state of the vehicle). The simulation may be seen as non-transparent 

because the participants do not know how the variables in the simulation are connected but 

have to find out while exploring and controlling. Likewise, the simulations may be seen as 

dynamic because each intervention in the simulation influences the following state of the 

simulation. Finally, the simulation may be seen as a polythelic task because it is necessary to 

achieve different subgoals (e.g., controlling the landing gear, the heating shield, the state of 

the vehicle) to achieve a greater goal (e.g., landing the space ship on a particular planet).  

The Tailorshop is another well established dynamic decision making task that has 

been used for several decades (e.g., Barth & Funke, 2010; Leutner, 1988; Putz-Osterloh, 

1981, 1983; Putz-Osterloh, Bott, & Köster, 1990; Putz-Osterloh & Lüer, 1981; Süß, Kersting, 

& Oberauer, 1993; Wittmann & Hattrup, 2004). The scenario simulates a small business that 

produces and sells shirts. The participants have to manage this business for twelve simulated 

months by manipulating several variables like the number of workers, the expenses for 

advertising, etc. (see Figure 4).  
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Figure 4. Screenshot of the graphical user interface of the Tailorshop (labels translated). 

 

The Tailorshop was initially developed by Dörner (1979) according to his definition of 

complex problems. In particular, the simulation consists of many variables and connections. 

Therefore, the Tailorshop may be seen as complex. Furthermore, the variables are highly 

connected. For example, the ability to produce shirts in the Tailorshop simulation depends on 

the amount of raw material, the number of machines and workers, the workers’ satisfaction, 

and the state of the machines. In addition, the simulation may be seen as non-transparent 

because the participants do not know how the variables in the simulation are connected but 

have to find out while exploring and controlling them. The Tailorshop may also be seen as 

dynamic because each intervention in the simulation influences the following state of the 

simulation. Finally, the Tailorshop may be seen as a polythelic task because it is necessary to 

achieve different subgoals (like buying raw material, hire workers, advertising, etc.) to 

achieve the greater goal (maximize the company value). 

However, even if the simulation has become a standard paradigm to investigate 

dynamic decision making, there is a discussion which indicator should be used as a 

performance variable. Some authors suggest using the number of months with a positive trend 

in the company value to quantify dynamic decision making performance (e.g., Funke, 1983) 

whereas other authors suggest using the absolute company value at the end of the simulation 

to quantify the dynamic decision making success (e.g., Barth & Funke, 2010; Süß, Oberauer, 

& Kersting, 1993). In order to find an appropriate performance indicator for the Tailorshop 

simulation, I analyzed the data of the first measurement occasion of the longitudinal study. 
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7.1  Measuring performance in dynamic decision making: reliability and validity of the 

Tailorshop simulation (Manuscript 3) 

In this analysis, I compared two different performance indicators of the Tailorshop 

simulation: the change variable and the trend variable. The change variable corresponds to 

the sum of the changes of the company value between the simulated months (which is 

equivalent to the final company value after twelve simulated months). The trend variable 

corresponds to the number of months with a positive trend in the company value. I used 

structural equation models to test measurement models and estimate the reliability of the 

performance variables. Furthermore, the validity of the performance variables was evaluated 

with respect to their correlation with the Heidelberg Finite State Automaton (convergent 

validity), their correlation with self rated income and supervisor ratings (predictive validity), 

and their correlation with the performance in the Advances Progressive Matrices (divergent 

validity). 

The analysis revealed that the measurement models fitted the trend variables well (in 

particular, the trends between the second month and the twelfth month) but not the change 

variables. Furthermore, the results revealed good reliability and good overall validity for the 

trend of the company value. Hence, I decided to use the number of months with a positive 

trend in the company value (between the second and the twelfth month) as a performance 

measure in the Tailorshop simulation. 

 

8  The measurement of success in real life 

For the purpose of the present study, I focused on a particular aspect of success in real 

life: professional success. For one thing, the predictive validity of psychometric intelligence 

has often been evaluated by its association with professional success (e.g., Ng et al., 2005; 

Salgado et al, 2003; Schmidt & Hunter, 2004). Thus, from a theoretical point of view, 

professional success is a useful criterion to evaluate the predictive validity of implicit learning 

and dynamic decision making variables. Second, professional success is an important 

outcome variable in an economic context. Thus, in an applied context, implicit learning or 

dynamic decision making may become interesting selection criteria for university or job 

applications if they are able to predict professional success. 

Dette, Abele, and Renner (2004) systematized different indicators of professional 

success. They suggested that the different indicators may be distinguished by (1) their frame 

of reference (specific task vs. global career), (2) the type of data (e.g., neutral parameter or 

comparison with reference), and (3) the data source (document, self-rating, external rating). 
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For example, a participant’s yearly income may be characterized as an indicator with global 

career as the frame of references. Income can further be seen as a neutral parameter because it 

can be measured objectively and the data source can be either a document (e.g., payroll) or 

self-rated. 

I measured professional success in order to evaluate the relation with individual 

differences in implicit learning and dynamic decision making, which are consistent across 

different methods and stable over time. As different authors noted (e.g., Epstein, 1979; 

Wittmann, 1988), the relation between construct variables and criterion variables can only be 

evaluated accurately if the variables are measured on a similar level of abstraction. In order to 

measure individual differences that are unaffected by method specific effects (such as the type 

of data or the data source), I used indicators of different data types and data sources. In order 

to measure individual differences in professional success that are stable over time, I selected 

the participants’ global career as the frame of reference. In particular, I asked the participants 

to report their yearly income, their highest educational attainment, and I asked the participants 

to rate their social status. Yearly income and educational attainment may be seen as global 

career parameters because they refer to a rather long time period. In the same vein, social 

status may be seen as a global career indicator because it refers to a profession in general and 

not to the social status of a specific task. These three measures served as indicators of 

objective professional success. 

In addition, the participants’ supervisors rated their overall job performance. Hereto, I 

developed a supervisor rating scale. Based on a literature review, I selected 18 items from 

Goodman and Svyantek (1999), Higgins, Peterson, Pihl, and Lee (2007), Tsui and Gutek 

(1984), and Wayne and Liden (1995). Afterwards, N = 18 supervisors from different 

companies and branches rated the appropriateness of these items and I selected the nine items 

that were rated as most appropriate. Then, N = 34 other supervisors (also from different 

companies and branches) rated a total of N = 52 employees with these items. Finally, the five 

items with the greatest item-total correlation (all r it ≥ .80) were selected for the supervisor 

rating scale. 

 

9  The psychometric properties of implicit learning and dynamic decision making 

(reported in Manuscript 4) 

The longitudinal study consisted of two measurement occasions (five months apart) 

and the participants completed the Advanced Progressive Matrices, the Berlin Structure 

Intelligence Tests, the Heidelberg Finite State Automaton, the Tailorshop, and two artificial 
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grammar learning tasks (without grammar knowledge tests) on both measurement occasions. I 

used latent state-trait models to decompose the variances of the manifest performance 

variables (Y) into a trait proportion (ξ), a state residual (ζ), a method residual (η), and a 

measurement error residual (ε). Then, I evaluated the measures by their trait specificity, their 

occasion specificity, their method specificity, and their reliability. The trait specificity (also 

referred to as consistency) is the proportion of variance that is stable over time and consistent 

across different methods [σ²(ξ) / σ²(Y)]. The occasion specificity is the proportion of 

individual differences that is specific for a particular measurement situation [σ²(ζ) / σ²(Y)]. 

The method specificity is the proportion of variance that is triggered by a particular method 

[σ²(η) / σ²(Y)]. These parameters have a range between zero and one, and a greater value 

indicates a greater specificity. The reliability is the sum of these systematic variance 

proportions and indicates the proportion of systematic individual differences of the trait, the 

measurement situation, and the method [σ²(ξ) + σ²(ζ) + σ²(η)] / σ²(Y)]. These parameters are 

reported in Table 1. 

 

Table 1 

Trait-specificity, occasion-specificity, method-specificity, and reliability of the measures 

task measurement 

occasion 

trait- 

specificity 

occasion- 

specificity 

method- 

specificity 

reliability 

APM 1 0.72 0 0.14 0.86 

APM 2 0.70 0 0.13 0.83 

BIS 1 0.67 0 0.22 0.90 

BIS 2 0.71 0 0.24 0.95 

AGL1 1 0.29 0 0 0.29 

AGL1 2 0.31 0 0 0.31 

AGL2 1 0.30 0 0 0.30 

AGL2 2 0.25 0 0 0.25 

Tailorshop 1 0.36 0 0.16 0.52 

Tailorshop 2 0.29 0 0.13 0.42 

HFA 1 0.44 0 0.36 0.80 

HFA 2 0.44 0 0.36 0.80 

Note. APM = Advanced Progressive Matrices, BIS = Berlin Intelligence Structure 

Test, HFA = Heidelberg Finite State Automaton, AGL1 = artificial grammar learning task 

with grammar 1, AGL2 = artificial grammar learning task with grammar 2, N = 173. 
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As can be seen, the measures of psychometric intelligence contained great proportions 

of trait specific variances. This replicates the findings of previous investigations (e.g., Carroll, 

1993; Conley, 1984; Larsen, Hartmann, Nyborg, 2008) and demonstrates that individual 

differences in psychometric intelligence can be measured consistently with different methods 

and that these differences are stable over time.  

The analysis further revealed that the occasion specificity was zero for the implicit 

learning measures. This indicates that no occasion specific effects influenced the 

measurements. For example, the measurement of individual differences in implicit learning 

was not affected by the participants’ awareness that there is a grammar defining the strings in 

the learning phase when they completed an artificial grammar learning task for the second 

time. This replicates the results of my previous studies and suggests that artificial grammar 

learning tasks may be used several times in order to measure individual differences in implicit 

learning. The method specificities were also zero, which indicates that there were no method 

specific effects such as specific characteristics of the grammars that affected the 

measurements. Taken together, the latent state-trait analysis of the implicit learning revealed 

that different artificial grammar learning tasks can be used several times to measure individual 

differences in implicit learning. This suggests that the small reliabilities that have been 

reported in previous studies (e.g., Gebauer & Mackintosh, 2007; Reber et al., 1991) were not 

caused by occasion specific or method specific effects but due to random measurement error. 

The reliability estimates of the implicit learning variables were rather small (≤ 0.31), which 

indicates that the manifest variables contain great proportions of unsystematic measurement 

error. This indicates that the manifest variables are poor indicators of implicit learning ability. 

These results have two important implications. For one thing, the correlations between the 

performance in artificial grammar learning tasks and the performance in psychometric 

intelligence tests that have been reported in previous studies (e.g., Gebauer & Mackintosh, 

2007; McGeorge et al., 1997; Pretz et al., in press; Reber et al., 1991) are insufficient for 

drawing conclusions about the relationship between implicit learning ability and psychometric 

intelligence. The subsequent structural equation model analyses will separate the implicit 

learning trait variance from the unsystematic variance proportions and reveal insights into the 

relation between implicit learning ability and psychometric intelligence. For another thing, the 

small reliability estimates suggest that the manifest performance variables are not suitable for 

an individual assessment because a performance score will only yield an inaccurate 

measurement of a person’s implicit learning ability. 
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The dynamic decision making measures (the Tailorshop and the Heidelberg Finite 

State Automaton) also revealed trait specificities below 0.50 which indicates that less than 

half of the variance of the manifest performance variables reflect individual differences in 

dynamic decision making. The analysis further revealed that both measures contained 

substantial proportion of method specific variance (between 13% and 36%), which suggests 

that the Tailorshop and the Heidelberg Finite Automaton capture different aspects of dynamic 

decision making. In particular, the Tailorshop simulation takes place in an economic context 

where the participants have to lead a company successfully. The Heidelberg Finite State 

Automaton, on the other hand, takes place in a rather futuristic setting where the participants 

have to control a space ship. As Beckmann and Guthke (1995) and Hesse (1982) have shown, 

the semantic context of a dynamic decision making scenario has impact on the decision 

making processes that take place. Thus, the method specificity of the simulations may partly 

be explained by the semantic context in which they take place. This finding has implications 

for the manifest performance variables. For one thing, their trait specificities are too low to 

use these dynamic decision making tasks for individual assessments. A participant’s 

performance in a single task is not sufficient for making inferences about this participant’s 

dynamic decision making ability. For another thing, a correlation with a manifest dynamic 

decision making variable is not sufficient for drawing conclusions about the relation to the 

construct dynamic decision making in general. Structural equation modeling makes it possible 

to investigate the relation with a latent dynamic decision making variable, which is adjusted 

for these method specific effects. 

In sum, the latent state-trait analysis revealed that the manifest implicit learning 

variables and the manifest dynamic decision making variables are poor indicators for the 

ability constructs. Therefore, I investigated the relations between the constructs using latent 

ability variables, which were adjusted for method specific effects and measurement error.  

 

10  The relation between psychometric intelligence, implicit learning, and dynamic 

decision making (reported in Manuscript 4) 

The correlations between the latent ability variables allow one to evaluate the 

construct validity of implicit learning and dynamic decision making. The correlations between 

the latent variables are shown in Table 2. As can be seen, there was a great correlation 

between psychometric intelligence and dynamic decision making (r = .86), which indicates a 

poor divergent validity of dynamic decision making. The latent intelligence variable 

explained about 74% of the variance of the latent dynamic decision making variable. This 
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suggests that dynamic decision making only offers minor insights into cognitive ability 

beyond IQ. This result replicates the findings of Wirth and Klieme (2003) who reported a 

correlation of r = .84 between a latent intelligence variable and a latent dynamic decision 

making variable. The results of the latent state-trait analysis further suggest that the 

heterogeneous findings of previous studies may be due to the heterogeneous reliabilities or 

the heterogeneous method specificities of dynamic decision making variables. In sum, these 

findings suggest that the ability to make dynamic decisions is not much more than 

psychometric intelligence. 

 

Table 2 

Correlation between the latent variables 

 psychometric 

intelligence 

dynamic decision 

making 

implicit 

learning 

OPS 

dynamic decision 

making 
.86***    

implicit learning .32** .26*   

OPS .78*** .52*** .31*  

SR .03 .25* -.02 -.07 

Note. OPS = objective professional success, SR = supervisor ratings, *** p < .001, 

** p < .010, * p < .050, N = 173 

 

On the other hand, the relation between implicit learning and psychometric 

intelligence was less substantial (r = .32), the latent intelligence variable explained only 10% 

of the variance of the latent implicit learning variable. This replicates the findings of previous 

studies that reported low correlations between implicit learning and psychometric intelligence 

(Gebauer & Mackintosh, 2007; Feldman, et al., 1995; Kaufman et al., 2010; McGeorge et al., 

1997; Reber et al., 1991). Besides, the present study investigated the relation between latent 

trait variables which were adjusted for measurement error. Therefore, it can be ruled out that 

the low correlation is a result of the low reliability of the variables. This in turn suggests good 

divergent validity of implicit learning. The ability to learn implicitly is only weakly related to 

psychometric intelligence. 

All correlations between psychometric intelligence, implicit learning, and dynamic 

decision making were positive. Following Spearman (1904), this suggests a hierarchical 

structure of these abilities. I additionally performed a principal component analysis on the 
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correlations between the latent ability variables. This analysis revealed eigenvalues of 2.02, 

0.84, 0.14, which indicates that a single general ability factor can explain about 67% of the 

variance of the latent variables. This result is in line with Sternberg and Gigorenko (2002) 

who suggest that a general ability factor is able to explain about 50% of the variance in 

various performance tasks. To investigate this issue in a greater detail, I used a structural 

equation model. The respective model is shown in Figure 4. As can be seen, a hierarchical 

model with one single ability factor at the top of the hierarchy fitted the data well. 

Furthermore, the specific ability factors for psychometric intelligence and dynamic decision 

making were not significant and thus set to zero. This suggests that the intelligence test as 

well as the dynamic decision making tasks may be seen as indicators for general cognitive 

ability whereas the artificial grammar learning tasks capture general cognitive ability as well 

as an incremental proportion of implicit learning ability. 

 

 

Figure 4. Hierarchical ability model for psychometric intelligence, implicit learning, and 

dynamic decision making. The standardized path coefficients are reported. g = general 

cognitive ability, IQ = psychometric intelligence, DDM = dynamic decision making, 

IL = implicit learning, APM = Advanced Progressive Matrices, BIS = Berlin Intelligence 

Structure Test, HFA = Heidelberg Finite State Automaton, AGL = artificial grammar learning 

task, ε1-ε12 = measurement error variables, χ²(58) = 61.60, p = .348, RMSEA = 0.02, 

CFI = 1.00, N = 173. 
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11  The relation between implicit learning, dynamic decision making, and success in real 

life (reported in Manuscript 4) 

The predictive validity of implicit learning and dynamic decision making can be 

evaluated by their relation to criteria of success in real life. As can be seen in Table 2, there 

was a significant correlation between implicit learning and objective professional success 

(indicated by income, social status, and educational attainment). However, a latent regression 

analysis revealed that this relation decreased and became non-significant when psychometric 

intelligence was included as a predictor. In addition, the correlation between implicit learning 

and supervisor ratings was close to zero and not significant. These findings suggest that there 

is no incremental predictive validity of implicit learning. 

There was also a substantial and significant correlation between dynamic decision 

making and objective professional success. Again, a latent regression analysis revealed that 

this relation decreased and became non-significant when psychometric intelligence was 

included as a predictor. In addition, there was a significant correlation between dynamic 

decision making and supervisor ratings. More importantly, this association remained 

significant when adjusted for psychometric intelligence. This indicates the incremental 

predictive validity of dynamic decision making. Thus, even if dynamic decision making is not 

much more than psychometric intelligence, this little more offers insights into aspects of 

success in real life that can not be explained by psychometric intelligence.  

The results reported so far refer to latent variables that were adjusted for method 

specific effects or measurement error. However, in an applied context it may be worthwhile to 

know, how manifest measures can predict manifest criteria. For example, a company which is 

conducting an assessment center may wish to know how the performance scores of a 

particular task are related to supervisor ratings. Therefore, I additionally investigated the 

correlations between the manifest variables. In sum, the greatest correlations were between 

the measures psychometric intelligence and the indicators of objective professional success 

(between r = .22 and r = .48). The correlations with the manifest dynamic decision making 

variables were less substantial (between r = .05 and r = .23) as were the correlations with the 

manifest implicit learning variables (between r = -.04 and r = .19). The supervisor ratings 

only correlated significantly with the dynamic decision making tasks (between r = .12 and r = 

.20) which indicates that even if the dynamic decision making measures offer an incremental 

predictive value, their explanatory power is limited. 
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12  Summary and Conclusion 

The aim of the present work was to evaluate whether implicit learning and dynamic 

decision making are useful constructs to describe cognitive ability beyond IQ. Therefore, I 

investigated the incremental and the predictive validity of the constructs, and the 

psychometric properties of the performance measures. There are six core findings of my 

investigations. First, implicit learning is only weakly related to psychometric intelligence, 

even after adjusting for measurement error. This indicates that implicit learning captures 

individual performance differences beyond IQ and suggests a good divergent validity of 

implicit learning. Second, there is a great association between dynamic decision making and 

psychometric intelligence. This speaks against the divergent validity of dynamic decision 

making. Third, implicit learning as well as dynamic decision making can be integrated into 

hierarchical models of cognitive ability. The present findings revealed that both constructs 

load substantially on a general ability factor. In addition, implicit learning reveals a specific 

ability component whereas dynamic decision making captures no incremental variance. 

Fourth, there is no evidence for the incremental predictive validity of implicit learning. In the 

present study, there was only a weak association between implicit learning and professional 

success. Furthermore, this association vanished when adjusted for psychometric intelligence. 

Fifth, dynamic decision making can incrementally predict supervisor ratings, even though 

there is a great overlap between psychometric intelligence and dynamic decision making. This 

was true for the latent ability variables as well as for the manifest performance indicators. 

Hence, even if there are only minor individual differences in dynamic decision making 

beyond IQ, these individual differences can explain success in real life in greater detail. Sixth, 

the trait specificities of the manifest measures of implicit learning and dynamic decision 

making were too small to use these measures for individual assessments. Investigating the 

measurement of implicit learning and dynamic decision making in greater detail will make 

these constructs valuable supplements not only in research contexts but also in applied 

contexts. 

Taken together, these findings show that implicit learning as well as dynamic decision 

making are useful constructs for investigating individual differences in cognitive ability. 

Implicit learning is largely independent of psychometric intelligence and offers insights in 

cognitive ability beyond IQ. Even though there are only minor individual differences in 

dynamic decision making beyond psychometric intelligence, these ability differences play a 

significant role for achieving success in real life. However, in order to use implicit learning 
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tasks and dynamic decision making tasks for an individual assessment, the psychometric 

properties of the performance measures have to be improved. 
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Abstract 

The present study investigates whether an artificial grammar learning task may be used to 

measure individual differences in implicit learning. In three experiments, the participants had 

to rate either the grammaticality or the novelty of letter strings. The results indicate that only a 

task with the instruction to rate the grammaticality but not a task with the instruction to rate 

the novelty measures reliable and consistent individual differences in implicit learning. 

Furthermore, it is shown that when the participants are asked to rate the grammaticality of 

letter strings, the task can only be used once to measure implicit learning. Subsequently, the 

role of strategy use and implications for further and past research are discussed. 

Keywords: implicit learning, artificial grammar learning, individual differences, reliability
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Measuring individual differences in implicit learning  

with an artificial grammar learning task 

Implicit learning is a process of acquiring complex information without awareness of 

what has been learned (Frensch & Rünger, 2003; Frensch, 1998; Seger, 1993). Like in any 

learning process there may be substantive individual differences, but not much is known 

about their magnitude and meaning for a successful completion of cognitive laboratory tasks 

or mastering the challenges of everyday life. Whereas some authors reason that implicit 

learning is executed by evolutionary old systems, is essential for survival and therefore shows 

only minor individual differences (Reber, 1992), others have postulated that individual 

differences in implicit learning may be a powerful determinant of success in educational and 

work achievement and thus may have the same preponderance as general intelligence 

(Mackintosh, 1998). Recently, Kaufman, DeYoung, Gray, Jiménenz, Brown, and Mackintosh 

(2010) and Pretz, Trotz, and Kaufman (2009) reported significant associations between 

implicit learning performance and academic achievement, which supports Mackintosh’s 

hypothesis. However, beyond these investigations, there is only weak empirical evidence to 

support such claims. One of the major reasons for this may be the lack of a reliable task for 

the measurement of individual differences in implicit learning. The present paper reports on a 

series of experiments that aim to fill this gap by investigating the reliability and the task 

consistency of artificial grammar learning tasks (Reber, 1967), which is a standard procedure 

in implicit learning research. Experiment 1 and 2 will reveal that not every type of artificial 

grammar learning tasks is suitable for the measurement of individual differences. However, 

experiment 3 will demonstrate how the artificial grammar learning task can be used to 

measure reliable individual differences in implicit learning. 
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The artificial grammar learning task 

An artificial grammar learning task consists of a learning phase and a testing phase. In 

the learning phase, the participants are asked to learn a list of apparently arbitrary letter 

strings (like WNSNXS). Afterwards in the testing phase, they are told that these strings were 

constructed according to a complex rule system (a grammar) and they are asked to judge 

newly presented strings (like NWSWWN) as either grammatical or non-grammatical. 

Typically, the participants show above chance performance, which suggests that they learned 

something but they are not able to report the grammar rules, which suggests that they learned 

the rules implicitly. Therefore, implicit learning may be assessed based on two criteria: the 

judgment accuracy in the testing phase and the amount of reportable grammar knowledge.  

Judgment accuracy. The most popular indicator for implicit learning success within 

an artificial grammar learning paradigm is the judgment accuracy, which is commonly 

quantified as the percentage of correct judgments within the testing phase. In particular, a 

mean percentage of correct judgments that is significantly above chance suggests that implicit 

learning took place. 

Grammar knowledge. Artificial grammar learning tasks are labeled implicit learning 

tasks because there appears to be no relation between participants’ judgment accuracy and 

their amount of knowledge about the grammar. However, there is a lively discussion what 

kind of knowledge may be relevant for an artificial grammar learning task and how it should 

be assessed. When we ask the participants to reproduce the underlying grammar, we presume 

that people reach an above-chance accuracy because they learned something about the 

underlying grammar. However, this does not have to be true. Several authors suggested that 

the participants may not learn the grammatical rules implicitly but instead may use heuristics 

like bigrams (Perruchet & Pacteau, 1990), fragments (Dulany, Carlson, & Dewey, 1984), or 

chunks (Servan-Schreiber & Anderson, 1990). In particular, Perruchet and Pacteau 
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(1990) have conducted a series of experiments and showed that learning bigrams in the 

learning phase is as effective as learning grammatical letter strings and that the classification 

of bigrams corresponds to the classification of letter strings. In the same vein, Dulany et al. 

(1984) have shown that the participants in an artificial grammar learning task can report 

which fragments they use to make grammaticality judgments. Furthermore, they have shown 

that the reported knowledge (containing bi- and trigrams) can predict grammaticality 

judgments. In sum, these findings suggest that knowledge of n-grams (bi-and trigrams) may 

be relevant for the performance in artificial grammar learning tasks. In addition to that, an n-

gram knowledge test may also be seen as an indirect form of other forms of grammar 

knowledge. In particular, using knowledge of n-grams is just one possibility to succeed in an 

n-gram knowledge test. Another strategy may be to use more abstract knowledge and deduce 

the answers for the knowledge. Thus, an n-gram knowledge test may measure different forms 

of grammar knowledge. Therefore, we asked the participants to rate whether an n-gram 

occurred more often in grammatical or more often in non-grammatical strings. A zero 

correlation between n-gram knowledge and accuracy would indicate that the participants did 

not use n-grams for their judgments, whereas a positive correlation between n-gram 

knowledge and judgment accuracy would indicate that the participants may have used n-

grams for their judgments.  

Individual differences and reliability 

The reliability of an implicit learning measure is important for several reasons. First, 

some studies showed that there is no relation between measures of artificial grammar learning 

and measures of knowledge about the underlying grammar (e.g., Reber, & Allen, 1978) or 

general intelligence (e.g., Gebauer & Mackintosh, 2007; Kaufman et al., 2010; McGeorge, 

Crawford, & Kelly, 1997; Reber, Walkenfeld, and Hernstadt, 1991). This is often taken as an 

evidence for the divergent validity of the measurement, i.e. the proposition that individual 
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differences in implicit learning may constitute an independent ability. However, this argument 

only holds true if both measures are reliable. If not, a low correlation between the measures 

may also be explained by the low reliability of the measurement.  

Second, Mackintosh (1998) suggested that implicit learning is a powerful predictor of 

educational or professional success (see also Kaufman et al., 2010; Pretz et al., 2010). If this 

holds true, implicit learning may be a very useful construct to describe human mental ability 

or predict success in later life. However, such a construct would only be useful if it can be 

measured reliably. In particular, if an artificial grammar learning task may be used to measure 

a single person’s implicit learning ability (e.g., as part of an assessment center) then this 

measurement is only useful if it is reliable because otherwise it will yield incorrect decisions.  

Third, when implicit learning is considered as a mental ability or a trait it is also an 

important issue whether this ability can be measured with more than one method (Campbell & 

Fiske, 1959). In principle, a great correlation between several procedures that are designed to 

measure the same construct indicates a good convergent validity of the measures. However, 

such a correlation is only informative if the measurements are reliable. 

Given the importance of reliability considerations, it is surprising that there are only a 

few publications that report reliability estimates for measures of artificial grammar learning. 

Reber et al. (1991) examined N=20 students and reported a Cronbach’s alpha of α=.51 for 

100 grammaticality judgments. This result shows that it is possible to measure individual 

differences in implicit learning although this measurement is not very consistent. However, 

one limitation of this study is that only a single grammar was used. Gebauer and Mackintosh 

(2007) assessed N=605 pupils. They used two different grammars and presented 80 letter 

strings in the testing phase. Based on 80 grammaticality decisions they reported a split-half 

correlation of r=.70. Although this sample was much larger, there may be another difficulty in 

their study. Gebauer and Mackintosh conducted two artificial grammar learning tasks and 
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reported the split-half correlation pooled over both tasks. However, the mean accuracy in task 

one was 67.08%, whereas the mean accuracy in task two was 61.36%. Because both tasks 

apparently varied in their difficulty, it may be possible that the reported correlation was 

increased by the pooling and thus overestimated the true reliability of the measurement.  

Task consistency 

There is also an obstacle for any study on the task consistency of the measurement. 

The task consistency may be important in a research context. For example, to test whether the 

artificial grammar learning performance measures a trait-like ability that is stable over time. 

In an applied context, it may be important for an individual assessment (e.g., if an applicant is 

tested more than one time). Estimating the task consistency would require the same 

participants to complete at least two artificial grammar learning tasks with two different 

underlying grammars. There lies one difficulty in this approach. When participants complete 

the learning phase for the fist time, they do not know that there is a grammar behind the letter 

strings. In the testing phase they are told that there is a grammar and that they should rate the 

grammaticality of newly presented strings. Thus, when participants complete the learning 

phase for the second time, they already know about the grammar. The participants will also 

know that there will be a testing phase and that they will be asked to judge new strings as 

grammatical or non-grammatical. This may cause them not to memorize the strings but to 

search for the grammar or simple heuristics that may help them later in the testing phase. For 

that reason, Gebauer and Mackintosh (2007) modified the standard paradigm and asked their 

participants not to rate the grammaticality but the novelty of the strings in the testing phase. 

However, none of the strings were previously presented and if the participants (inadvertently) 

classified a newly presented letter string as an “old” one, this was scored as a correct decision. 

The idea behind this procedure may be that the participants learn something about the 

grammar, thus they feel familiar with the grammatical strings and therefore they classify a 
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grammatical string as an “old” one. In Gebauer and Mackintosh’s (2007) study, there was a 

significant correlation of r=.15 between the judgment accuracy of the two different artificial 

grammar learning tasks, which suggests a low task consistency. However, it remains unclear 

if rating the novelty of the strings measures the same construct than rating their 

grammaticality. 

From a conceptual point of view, novelty judgments and grammaticality judgments 

may be seen as similar. For example, Whittlesea and Leboe (2000) demonstrated that several 

heuristics (fluency, generation, and resemblance) influence the performance in recognition 

tasks as well as in classification tasks. The authors suggest that these heuristics affect the 

perceived familiarity of stimuli and that the familiarity affects novelty judgments as well as 

grammaticality judgments. In line with this suggestion, Scott and Dienes (2008) demonstrated 

that grammaticality ratings can be predicted by the perceived familiarity of strings. 

Furthermore, there are findings, which suggest that the fluency of the processing of the 

stimuli affects novelty ratings (e.g., Whittlesea, Jacoby, & Girard, 1990) as well as 

grammaticality ratings (Kinder, Shanks, Cock, & Tunney, 2003). This further  points towards 

the conceptual similarity of both measures. However, from an empirical point of view, it is 

unclear whether asking participants to rate the novelty of letter strings measures the same 

construct than asking participants to rate the grammaticality of letter strings. Therefore it is 

not known at present if this result indicates a low consistency of artificial grammar learning in 

general or just in case the participants are asked to rate the novelty instead of the 

grammaticality of the strings. 

The present study 

Taken together, there is only weak support for the measurement of reliable individual 

differences in artificial grammar learning. The task consistency of those measures is also 

unclear. Therefore, the general aim of the present study was to examine an artificial grammar 
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learning task as a measure of reliable and consistent individual differences in implicit learning 

with three experiments.  

Experiment 1 was designed to test whether asking the participants to rate the 

grammaticality of a newly presented letter string in the testing phase quantifies the same 

construct as asking the participants to judge the novelty of the letter strings. The major aim of 

experiment 2 was to test the reliability and the task consistency of an artificial grammar 

learning task when the participants were asked to judge the novelty of the letter strings. 

Experiment 3 aimed at the reliability and the task consistency of an artificial grammar 

learning task when the participants were asked to judge the grammaticality of the letter strings. 

Finally, a conjoint analysis of experiment 1, 2, and 3 was conducted in order to test whether 

individual differences may be quantified with the instruction to rate the grammaticality of 

strings as well as with the instruction to rate its novelty. 

Experiment 1 

To estimate the task consistency of the performance in an artificial grammar learning 

task, it is necessary that the same participants complete more than one task. Because this 

procedure may cause a validity problem, Gebauer and Mackintosh (2007) asked their 

participants to rate the novelty of the letter strings instead of their grammaticality.  

The idea behind this procedure may be that the participants learn something about the 

grammar, thus feel familiar with the grammatical strings and therefore classify a grammatical 

string as an “old” one. Although this idea is theoretically sound, there is no empirical 

evidence for the presumed similarity of grammaticality and novelty ratings. Hence the aim of 

experiment 1 was to test if asking participants for novelty measures the same construct as 

asking for grammaticality. Therefore two artificial grammar learning tasks were presented 

along with these two instructions. The correlation between the two tasks indicates the extent 

to which both judgments measure the same construct.  
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Method 

Participants. The participants were N=21 students from the University of Heidelberg 

who were recruited from the campus and were paid €5 for their participation. This sample size 

was chosen because it allows a detection of a population correlation of r=.50 between 

accuracy of novelty and grammaticality rating with a type-one-error probability of 0.05 (one-

tailed) and a power of 0.80 (Faul, Erdfelder, Lang, & Buchner, 2007). 

Stimulus material. The letter strings were the same as used by Gebauer and 

Mackintosh (2007). There were two grammars. For each grammar, there were 30 grammatical 

strings in the learning phase and 40 grammatical and 40 non-grammatical strings in the testing 

phase (see Appendix, Table A1 and Table A2). The grammatical strings were constructed 

according to Figure 1 and Figure 2. The non-grammatical strings contained one violation of 

the grammar at random positions of the strings. The length of the strings varied between three 

and eight letters. 

********************************** 

Please insert Figure 1 and 2 about here 

********************************** 

To test the reportable grammar knowledge of the participants, 12 n-grams were 

selected for each grammar. There were 6 n-grams which occurred in the learning phase and 

which also occurred in the testing phase more frequently in grammatical than non-

grammatical strings (NX, XS, SN, NXS, WNS, NWS for grammar 1 and MM, LM, RH, 

LMM, MMM, RHP for grammar 2, respectively). These n-grams were chosen because they 

may help to identify grammatical strings as grammatical. In addition, there were 6 n-grams 

which did not occur in the learning phase but which did occur in the testing phase more 

frequently in non-grammatical strings than in grammatical ones (NN, XN, XX, WSS, NWW, 

SSW for grammar 1 and MP, RM, LH, HHP, HPL, LMH for grammar 2, respectively). Those 
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strings were chosen because they may help to identify non-grammatical strings. The strings 

were presented on a 17“ screen of a personal computer with a standard German keyboard. 

Procedure. Each participant completed two artificial grammar learning tasks. The first 

artificial grammar learning task was run with grammar 1. In the learning phase 30 letter 

strings were presented and the participants were instructed to memorize them (e.g., 

WNSNXS). Each string was presented individually for 4 s on a 17“ screen of a personal 

computer. The participants were asked to repeat the strings correctly by pressing the 

respective letters on the keyboard. When a string was repeated correctly, the next string 

occurred. When a string was repeated incorrectly, the string was displayed again until 

repeated correctly. After a participant repeated ten strings correctly, these ten strings were 

simultaneously displayed for 90 s on the screen and the participant was asked to repeat them 

silently. After a participant repeated all 30 string correctly the learning phase was finished. In 

the testing phase 80 new strings were presented. Even though all strings were new (have not 

been presented in the learning phase), the participants were instructed to rate the strings as 

“old” (presented in the learning phase) or “new” (not presented in the learning phase). To 

judge a string as “old”, the participants had to press the A-key of the keyboard, to judge a 

string as “new” they had to press the L-key. The strings were presented in a new random 

order for each participant. Immediately after the testing phase, the participants completed the 

knowledge tests. In the n-gram knowledge test, the participants were instructed to judge 

whether an n-gram occurred more often in “old” strings or whether an n-gram occurred more 

often in “new” strings. To judge an n-gram as occurring more often in “old” strings, the 

participants had to press the A-key of the keyboard, to judge an n-gram as occurring more 

often in “new” string, they had to press the L-key. The n-grams were presented in a new 

random order for each participant.  
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The second artificial grammar learning task was run with grammar 2. The procedure 

of the learning phase was the same as in the first artificial grammar learning task. However, 

after the learning phase was finished, the participants were informed that all strings in the 

learning phase were constructed according to a complex rule system. In the testing phase 80 

new strings were presented (see Appendix, Table A2). The participants were instructed to rate 

the strings as grammatical or non-grammatical. To judge a string as grammatical, the 

participants had to press the A-key of the keyboard, to judge a string as non-grammatical, they 

had to press the L-key. The strings were presented in a new random order for each participant. 

In the n-gram knowledge test, the participants were instructed to judge whether an n-gram 

occurred more often in grammatical strings or whether an n-gram occurred more often in non-

grammatical strings. To judge an n-gram as occurring more often in grammatical strings, the 

participants had to press the A-key of the keyboard, to judge an n-gram as occurring more 

often in non-grammatical strings, they had to press the L-key. The n-grams were presented in 

a new random order for each participant. 

Measures. Judgment accuracy. The judgment accuracy was quantified as the 

percentage of correct classifications of the 80 strings in the testing phase. As suggested by 

Gebauer and Mackintosh (2007), grammatical strings which were rated as “old” strings and 

non-grammatical strings which were rated as “new” strings were counted as correct 

classifications. 

N-gram  knowledge. The amount of n-gram knowledge was quantified as the 

percentage of correct classifications of n-grams in the knowledge test. Analog to the testing 

phase, grammatical bi- and trigrams which were rated as “old” and non-grammatical bi- and 

trigrams which were rated as “new” were counted as correct classifications. 

Statistical analysis. The psychometric properties of the judgment accuracy in the 

testing phase were quantified with Cronbach’s alpha and the split-half correlation (odd-even-
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split, Spearman-Brown corrected). A t-test was used to evaluate the null hypothesis that there 

was no above-chance accuracy of grammaticality judgments in the testing phase. 

Results 

Judgment Accuracy. In task 1, the judgment accuracy was as expected above chance, 

M=61.78%, t(20)=10.18, p<.001, d=2.40, and the same was true in task 2, M=57.80% 

t(20)=4.31, p<.001, d=0.95. In task 1, Cronbach’s alpha of the 80 judgments was α=.12 and 

the split-half correlation was r=.29. In task 2, Cronbach’s alpha was α=.58 and the split-half 

correlation was r=.27. The correlation between judgment accuracy in task 1 (grammar 1, 

instruction to judge old vs. new) and task 2 (grammar 2, instruction to judge grammatical vs. 

non-grammatical) was r=.23, p=.300. A visual inspection of the frequency distributions 

revealed that the judgment accuracy variables were approximately normally distributed. 

N-gram knowledge. In task 1, the performance in the n-gram knowledge test was 

M=48.41%, SD=7.74%. Cronbach’s alpha of the twelve items of the knowledge test was α=-

2.16 and the split-half correlation was r=-.31. In this task, the correlation between judgment 

accuracy in the testing phase and n-gram knowledge was r=.59, p=.005. In task 2, the 

performance in the n-gram knowledge test was M=66.27%, SD=18.16%. Cronbach’s alpha of 

the knowledge test was α=.53 and the split-half correlation was r=.54. In this task, the 

correlation between judgment accuracy in the testing phase and n-gram knowledge was r=-.22, 

p=.329. 

Discussion 

From the perspective of cognitive psychology, this experiment successfully 

demonstrates an instance of implicit learning because the above-chance accuracy in the 

testing phase has been replicated. From an individual differences perspective, however, there 

are several critical points that need attention. 
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Reliability of judgment accuracy. The internal consistency of the judgment accuracy 

in task 1 was surprisingly low, which may indicate an unreliable measurement. However, 

according to classical test theory, Cronbach’s alpha is only a point estimation of the reliability 

if all items are homogenous (or technically spoken have the same true score), elsewhere it is 

just a lower border of reliability (Lord & Novick, 1968). The same principle applies for the 

split half correlation, i.e. only if both test halves are homogeneous (have the same true score) 

the split half correlation is a point estimate of the reliability. Of course, this does not have to 

be true in empirical applications of the classical test theory. With respect to the present 

experiment, we do not know that much about the decision processes that take place, and very 

different judgment patterns may result in equally successful response patterns. In particular, 

when the participants were instructed to rate the novelty of the letter strings, some “correct” 

judgments (grammatical strings which were rated to be “old”) were actually false alarms 

because none of the strings of the testing phase were previously presented in the learning 

phase. This may have shrunk the consistency of judgment patterns even more. To avoid this 

problem in the following experiment, we used a reliability estimation that is not biased by 

heterogeneous items or test halves, which is the retest correlation. Hence, in the following 

studies, 20 out of the 80 strings in the testing phase were presented repeatedly so that the 

retest correlation could be computed for these 20 strings. 

In addition, there is another factor that may also shrink the reliability of the 

measurement, which is the order of presentation of the strings. This order was different for 

each participant and thus may have caused different effects of order for each participant, 

which in turn may have increased the error variance. To control this potential nuisance 

variable, the order of presentation of strings was fixed across participants in the following 

experiments. 
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Task consistency. The low and insignificant correlation between the two tasks 

replicates the results of Gebauer and Mackintosh (2007) who reported a correlation of r=.15 

between two artificial grammar learning tasks in which the participants were asked to rate the 

novelty of letter strings. In the present study, the low correlation may be due to several 

reasons. First, the reliability of the measurements may be low and therefore the correlation 

between the tasks was low. Second, the two tasks did not measure the same construct because 

they used different artificial grammars. Third, the instruction to judge strings for novelty may 

measure something different than to judge for grammaticality. Clearly this low correlation 

cannot be interpreted just in the light of the results of experiment 1. Experiment 2 and 3 will 

help to clarify this point. 

The relation with n-gram knowledge. There was a substantial and significant 

correlation (r=.59) between the magnitude of n-gram knowledge and the judgment accuracy 

in task 1, which suggests that about 35% of the variance of the novelty ratings may be 

explained by n-gram knowledge. On the other hand, there was no significant correlation 

between n-gram knowledge and the judgment accuracy in task 2, which indicates that the 

grammaticality ratings could not be explained by n-gram knowledge. This may be seen as 

preliminary evidence against the similarity of both measures.1 

Taken together, the aim of experiment 1 was to test whether asking the participants for 

grammaticality or novelty measures the same construct. This question could not be answered 

properly. It remains unclear whether the low correlation between the judgment accuracy in the 

two tasks was due to a low reliability of the measurements, due to the different artificial 

grammars, or due to the different instructions to judge either for novelty or grammaticality. 

Thus, two further experiments were conducted to clarify these issues.  
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Experiment 2 

Experiment 2 was designed to follow up several questions. The first issue was to test 

whether the retest correlation offers greater reliability estimates than Cronbach’s alpha or the 

split-half correlation for the performance in the testing phase. The second issue was to test 

whether the performance in the testing phase may be consistent across two different grammars 

when the participants are instructed to rate the novelty of the strings in both instances. The 

third issue was to test whether the performance in a third task, during which the participants 

are asked to rate the grammaticality of the strings, measures the same construct as the 

performance during the first and second task. 

Method 

Participants. A total of N=21 students from the University of Heidelberg who did not 

participate in experiment 1 were recruited from the campus and were paid €7 for their 

participation. 

Stimulus material. There were three grammars. The strings of grammar 1 and 

grammar 2 were the same as in experiment 1. The grammatical strings for grammar 3 were 

constructed according to Figure 3. There were also 30 grammatical strings in the learning 

phase and 40 grammatical and 40 non-grammatical strings in the testing phase. The non-

grammatical strings contained one violation of the grammar at random positions of the strings. 

The length of these strings also varied between three and eight letters (see Appendix, Table 

A3). 

********************************** 

Please insert Figure 3 about here 

********************************** 

To test the grammar knowledge of the participants, 24 n-grams were selected for each 

grammar. There were 12 n-grams which occurred in the learning phase and which also 
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occurred in the testing phase more frequently in grammatical than non-grammatical strings. 

These n-grams were chosen since they may help to identify grammatical strings as 

grammatical. In addition, there were 12 n-grams which did not occur in the learning phase but 

which did occur in the testing phase more frequently in non-grammatical strings than in 

grammatical ones. Those strings were chosen because they may help to identify non-

grammatical strings. The n-grams are shown in Table 1. The strings were presented on a 

17“ screen of a personal computer with a standard German keyboard. 

********************************** 

Please insert Table 1 about here 

********************************** 

Procedure. Each participant completed three artificial grammar learning tasks. The 

first artificial grammar learning task was run with grammar 1. In the learning phase 30 letter 

strings were presented and the participants were instructed to memorize them (e.g., 

WNSNXS). The strings were presented in a counterbalanced order across participants. String 

one was presented to participant one first, string two was presented to participant two first, 

string three to participant three and so on. Each string was presented individually for 3 s on a 

17“ screen of a personal computer. The participants were asked to repeat the strings correctly 

by pressing the respective letters on the keyboard. When a string was repeated correctly, the 

feedback “correct” was given and the next string occurred. When a string was repeated 

incorrectly, the feedback “false” was given and the string was displayed again until repeated 

correctly. The feedback was given to increase the participants’ motivation to memorize the 

strings properly. After a participant repeated ten strings correctly, these ten strings were 

simultaneously displayed for 90 s on the screen and the participant was asked to repeat them 

silently. After a participant repeated all 30 string correctly the learning phase was finished. In 

the testing phase 80 new strings were presented (see Appendix, Table A1). Ten grammatical 
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and ten non-grammatical strings were presented twice. These strings were randomly selected 

out of the original 80 strings. Thus there were a total of 100 strings in the testing phase and 

the retest correlation of the 20 strings could be computed. Even though all strings were new 

(have not been presented in the learning phase), the participants were instructed to rate the 

strings as “old” (presented in the learning phase) or “new” (not presented in the learning 

phase). To judge a string as “old”, the participants had to press the A-key of the keyboard, to 

judge a string as new, they had to press the L-key. The order of presentation of the strings was 

fixed across participants in a random order. This was done to ensure that possible effects of 

order would affect all participants in the same way. Immediately after the testing phase, the 

participants completed the n-gram knowledge test. In the n-gram knowledge test, the 

participants were instructed to judge whether an n-gram occurred more often in “old” strings 

or whether an n-gram occurred more often in “new” strings. To judge an n-gram as occurring 

more often in “old” strings, the participants had to press the A-key of the keyboard, to judge 

an n-gram as occurring more often in “new” string, they had to press the L-key. The order of 

presentation of the n-grams was fixed across participants in a random order. All n-grams were 

presented twice so that the retest correlation could be computed. 

The second artificial grammar learning task was run with grammar 2. The procedures 

of the learning phase, the testing phase and the knowledge test were the same as in the first 

artificial grammar learning task. 

The third artificial grammar learning task was run with grammar 3. The procedure of 

the learning phase was the same as in the first and the second artificial grammar learning task. 

After the learning phase was finished, the participants were informed that all strings in the 

learning phase were constructed according to a complex rule system. In the testing phase 80 

new strings were presented. Ten grammatical and ten non-grammatical strings were presented 

twice. These strings were randomly selected out of the original 80 strings. Thus there were a 
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total of 100 strings in the testing phase. The participants were instructed to rate the strings as 

grammatical or non-grammatical. To judge a string as grammatical, the participants had to 

press the A-key of the keyboard, to judge a string as non-grammatical, they had to press the 

L-key. The order of presentation of the strings was fixed across participants in a random order. 

In the n-gram knowledge test, the participants were instructed to judge whether an n-gram 

occurred more often in grammatical strings or whether an n-gram occurred more often in non-

grammatical strings. To judge an n-gram as occurring more often in grammatical strings, the 

participants had to press the A-key of the keyboard, to judge an n-gram as occurring more 

often in non-grammatical strings, they had to press the L-key. The order of presentation of the 

n-grams was fixed across participants in a random order. All n-grams were presented twice so 

that the retest correlation could be computed. 

Measures. As in experiment 1, the judgment accuracy and the amount of n-gram 

knowledge were recorded. 

Results 

Judgment Accuracy. As expected, the judgment accuracy was above chance in task 1, 

M=64.00%, t(20)=15.79, p<.001, d=3.45, in task 2, M=63.62% t(20)=9.96, p<.001, d=2.18, 

and in task 3, M=57.29% t(20)=5.96, p<.001, d=1.30. In task 1, Cronbach’s alpha was α=-.16, 

the split-half correlation was r=-.23, and the retest correlation was r=.18. In task 2, 

Cronbach’s alpha was α=.46, the split-half correlation was r=.29, and the retest correlation 

was r=.58. In task 3, Cronbach’s alpha was α=.30, the split-half correlation was r=-.10, and 

the retest correlation was r=.07. The correlation between judgment accuracy in task 1 

(grammar 1, instruction to judge “old” vs. “new”) and task 2 (grammar 2, instruction to judge 

“old” vs. “new”) was r=-.18, p=.443. The respective correlation between task 2 and task 3 

(grammar 3, instruction to judge grammatical vs. non-grammatical) was r=-.08, p=.728. The 

correlation between judgment accuracy in task 1 and task 3 was r=.58, p=.006. A visual 
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inspection of the frequency distributions revealed that the judgment accuracy variables were 

approximately normally distributed. 

N-gram knowledge. In task 1, the performance in the n-gram knowledge test was 

M=72.94%, SD=11.18%. Cronbach’s alpha of the measured knowledge was α=.45, the split 

half correlation was r=.24, and the retest correlation was r=.50. In this task, the correlation 

between judgment accuracy in the testing phase and n-gram knowledge was r=.27, p=.245. In 

task 2, the performance in the n-gram knowledge test was M=62.70%, SD=8.17%. 

Cronbach’s alpha was α=-.29, the split half correlation was r=-.07, and the retest correlation 

was r=.49. In this task, the correlation between judgment accuracy in the testing phase and n-

gram knowledge was r=-.10, p=.653. In task 3, the performance in the n-gram knowledge test 

was M=71.63%, SD=11.53%. Cronbach’s alpha was α=.37, the split half correlation was 

r=.31, and the retest correlation was r=.64. In this last task, the correlation between judgment 

accuracy in the testing phase and n-gram knowledge was r=.16, p=.477. 

Discussion 

Reliability of judgment accuracy. One aim of experiment 2 was to examine whether 

the retest correlation provides a greater reliability estimate for the judgment accuracy than 

Cronbach’s alpha or the split-half correlation. However, this was not the case since all 

reliability estimates of the judgment accuracy were rather small. Two factors may have 

worked against a reliable measurement. First, the instruction in task 1 and task 2 was to rate 

the novelty, not the grammaticality of the strings in the testing phase. Therefore it may be 

possible that specifically the judgment accuracy of novelty ratings is not a reliable measure. 

Second, the reliability estimates in the third task were also in a low range, but at that time, the 

participants already completed two artificial grammar learning tasks during which they got 

the instructions to rate the novelty of the letter strings. Although the instruction of task 3 

explicitly states to rate the grammaticality of the strings, it may be possible that some 
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participants did not realize the change of the instruction properly whereas others did. This 

possibility is supported by the observation that some participants reported that it was boring to 

complete the same task three times after the experiment was over. To clarify this point, 

experiment 3 was conducted, in which the participants completed three artificial grammar 

learning tasks with the instruction to rate the grammaticality of the strings. 

Task consistency. Another aim of experiment 2 was to check whether the 

performance in the testing phase may converge across two tasks when the instruction is to 

judge the novelty of the strings. The low correlation between task 1 and task 2 suggests that 

the task consistency of the measurements was low and two realizations of the same paradigm 

do not appear to measure the same construct. On the one hand, the estimated reliability was 

low and therefore the small correlation should not be overstated. On the other hand, this result 

is consistent with Gebauer and Mackintosh’s (2007) work because they also report a low 

correlation between two artificial grammar learning tasks in which the participants had to 

judge the novelty of letter strings. Taken together, we conclude that the judgment accuracy in 

an artificial grammar learning task is not a consistent measure when the participants are asked 

to rate the novelty of the strings. 

Effects of the instruction. The third aim was to test whether the performance in the 

testing phase quantifies the same construct regardless whether the participants are asked to 

judge the novelty or the grammaticality of letter strings. This was checked by the correlation 

between task 1 and task 3, and the correlation between task 2 and task 3. Since the reliability 

estimates of these measurements were low, one may not expect a high correlation between the 

tasks. Not surprisingly, there was no significant correlation between task 2 and task 3. 

However, there was a significant and unexpected high correlation between judgment accuracy 

of task 1 and task 3, which is not easy to explain. Sometimes a correlation between two 

variables may be a cue for their reliability even if other reliability estimates are low. However, 
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this does not seem to be plausible here because Cronbach’s alpha, the split-half correlation as 

well as the retest correlation consistently indicated a low reliability of the measurement.2  

The relation with n-gram knowledge. Similar to experiment 1, Cronbach’s alpha of 

the knowledge measure was quite small. As discussed above, this may be due to a 

heterogeneous knowledge structure because a participant who learned a specific n-gram did 

not have to learn another n-gram necessarily. To account for that circumstance, the retest 

correlation was additionally computed. Since the retest correlations of the knowledge tests 

were in a more acceptable range (between r=.49 and r=.64), this finding suggest that the 

acquired knowledge was measured reliably. Moreover, the correlation between the judgment 

accuracy and the amount of n-gram knowledge was insignificant and rather small in all three 

tasks. This result is in line with the suggestion that the acquired knowledge, which affects the 

above-chance accuracy in the testing phase, is implicit. However, the estimated reliability for 

the judgment accuracy was low and may explain these small correlations as well. 

Once again, experiment 2 showed rather low reliability estimates for the judgment 

accuracy, regardless whether Cronbach’s alpha, the split-half correlation or the retest 

correlation was considered. The estimated consistency across tasks was also low. This speaks 

against the idea that artificial grammar learning tasks may be used to measure individual 

differences in implicit learning. However, in task 1 and task 2 the participants were asked to 

rate the novelty but not the grammaticality of the strings. This is a renunciation of Reber’s 

original paradigm. Therefore experiment 3 was conducted in which the participants were 

asked to rate the grammaticality of strings during three tasks. 

There is one additional circumstance that may have influenced the measures. In 

experiment 1 as well as in experiment 2, grammar 1 was first presented and grammar 2 

afterwards. Therefore we cannot exclude the possibility that there were effects of grammar 

order that may have influenced the participants’ judgment. That would be the case if the 
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participants still think about letter strings of grammar 1 while completing the second task. 

Since the judgment accuracy was significantly above chance in all tasks, this concern does not 

appear to be striking. However, to counteract this possible problem, the order of presentation 

of grammar 1 and grammar 2 was added as a between participant variable in experiment 3. 

Experiment 3 

Experiment 3 was conducted to test whether the judgment accuracy in the testing 

phase may be assessed reliably and consistently across different tasks when the participants 

are asked to rate the grammaticality of strings. As outlined above, there lies one difficulty in 

this approach. When the participants complete a second artificial grammar learning task, they 

already know that there is a grammar constituting the strings during the learning phase and 

they have to rate the grammaticality of strings in the testing phase. Hence, it may be possible 

that they do not only memorize the strings but also try to discover the grammar explicitly. 

Therefore three artificial grammar learning tasks were conducted. A change of the 

participants’ strategy after the first task and using the same strategy for task 2 and 3 may 

result in a low correlation between task 1 and task 2 (as well as between task 1 and task 3) and 

a great correlation between task 2 and 3. In addition, to examine possible effects of order, we 

added the order of presentation of grammar 1 and grammar 2 as a between participant variable. 

Method 

Participants. The participants were N=42 students from the University of Heidelberg 

who were recruited from the campus and were paid €7 for their participation. The order of 

presentation was added as a between participant variable and therefore the sample size was 

doubled so that the power within both order conditions was the same as in experiment 2 and 3. 

One participant already had participated in experiment 2 and therefore was excluded from the 

analysis. 
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Stimulus material. The stimuli were the same as used in experiment 2.  

Procedure. All participants completed three artificial grammar learning tasks. Half of 

the participants completed task 1 with grammar 1, task 2 with grammar 2, and task 3 with 

grammar 3 (order 1). The other half of the participants completed task 1 with grammar 2, task 

2 with grammar 1, and task 3 with grammar 3 (order 2). The order of the presentation of 

grammar 3 was not included as a between participant variable since that would have required 

a larger sample size. The procedures of the learning phase, the testing phase, and the 

knowledge test were the same for all three artificial grammar learning tasks. 

In the learning phase 30 letter strings were presented and the participants were 

instructed to memorize them. The strings were presented in a counterbalanced order across 

participants. String one was presented to participant one first, string two was presented to 

participant two first, string three to participant three and so on. Each string was presented 

individually for 3 s on a 17“ screen of a personal computer. The participants were asked to 

repeat the strings correctly by pressing the respective letters on the keyboard. When a string 

was repeated correctly, the feedback “correct” was given and the next string occurred. When a 

string was repeated incorrectly, the feedback “false” was given and the string was displayed 

again until repeated correctly. After a participant repeated ten strings correctly, these ten 

strings were simultaneously displayed for 90 s on the screen and the participant was asked to 

repeat them silently. After a participant repeated all 30 string correctly the learning phase was 

finished. After the learning phase was finished, the participants were informed that all strings 

in the learning phase were constructed according to a complex rule system.  

In the testing phase 80 new strings were presented. Ten grammatical and ten non-

grammatical strings were presented twice. These strings were randomly selected out of the 

original 80 strings. Thus there were a total of 100 strings in the testing phase. The participants 

were instructed to rate the strings as grammatical or non-grammatical. To judge a string as 
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grammatical, the participants had to press the A-key of the keyboard, to judge a string as non-

grammatical, they had to press the L-key. The order of presentation of the strings was fixed 

across participants in a random order.  

In the n-gram knowledge test, the participants were instructed to judge whether an n-

gram occurred more often in grammatical strings or whether an n-gram occurred more often 

in non-grammatical strings. To judge an n-gram as occurring more often in grammatical 

strings, the participants had to press the A-key of the keyboard, to judge an n-gram as 

occurring more often in non-grammatical strings, they had to press the L-key. The order of 

presentation of the n-grams was fixed across participants in a random order. Because of a 

software problem, only 18 out of the 24 n-grams were presented and all bi- and trigrams were 

only presented once instead of twice. 

Measures. As in experiment 1 and 2, the judgment accuracy, and the amount of n-

gram knowledge were recorded. 

Results 

Judgment accuracy. Table 2 shows the means, t- and p-values, and the effect sizes 

(Cohen’s d) for the judgment accuracy. As expected, the judgment accuracy was above 

chance in all tasks.  

********************************** 

Please insert Table 2 about here 

********************************** 

Cronbach’s alpha, the split-half correlation, and the retest correlation of the judgment 

accuracy are shown in Table 3. All coefficients are positive and considerably greater than in 

experiment 2. 
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********************************** 

Please insert Table 3 about here 

********************************** 

Table 4 reports the correlations between tasks separated by order of presentation and 

additionally pooled over both orders of presentation. As can be seen, there was a substantial 

correlation between task 2 and 3, r=.38, p=.014, but not between task 1 and 2, r=.05, p=.751, 

or task 1 and 3, r=.08, p=.631. A visual inspection of the frequency distributions revealed that 

the judgment accuracy variables were approximately normally distributed. 

********************************** 

Please insert Table 4 about here 

********************************** 

N-gram knowledge. The performance in the first n-gram knowledge test was 

M=66.12%, SD=8.94%, the performance in the second n-gram knowledge test was 

M=67.21%, SD=11.90%, the performance in the third n-gram knowledge test was M=64.90%, 

SD=11.53%. Table 5 shows Cronbach’s alpha, the split-half correlation of the measured 

knowledge, and the correlation between n-gram knowledge and the judgment accuracy. It is 

obvious from this table that there were substantial correlations between n-gram knowledge 

and judgment accuracy in task 2 and 3 but not in task 1. 

********************************** 

Please insert Table 5 about here 

********************************** 

Discussion 

Reliability of judgment accuracy. The results of the present experiment suggest that 

individual differences may be measured reliably if the participants were asked to rate the 

grammaticality of strings. Most reliability estimates were in a range between 0.40 and 0.60, 
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which is better than the reliability estimates in experiment 2. The major difference to 

experiment 2 was that the participants in experiment 3 were asked to rate the grammaticality, 

whereas the participants in experiment 2 were asked to rate the novelty of strings. These 

findings suggest that individual differences may only be quantified reliably when the 

participants are asked to rate the grammaticality of strings. To test this hypothesis statistically, 

we conducted a conjoint analysis of experiment 1, 2, and 3 (see below). 

Task consistency and the relation with n-gram knowledge. The results of 

experiment 3 suggest that the learning performance in the first artificial grammar learning task 

may be implicit because the judgment accuracy was significantly above chance and there was 

no significant relation with n-gram knowledge. The performance of the second and third task, 

on the other hand, may not be called implicit due to two reasons.  

First, the correlation between task 1 and task 2 (or task 3) was low and insignificant, 

but there was a substantial and significant correlation between task 2 and task 3. This result 

showed up for both task orders and was even more distinct if the judgment accuracy was 

computed after pooling over both orders. This finding indicates that a first realization of an 

artificial grammar learning task seems to measure something different than a second or third 

realization, which may be due to the circumstance that the participants already know that 

there is a grammar in the tasks 2 and 3. Therefore it appears to be impossible to measure 

individual differences in implicit learning consistently across different tasks if the participants 

are asked to rate the grammaticality of strings. 

Second, the correlation between n-gram knowledge in task 1 was insignificant and low 

(r=.06, p=.751), which indicates that the performance in the testing phase cannot be explained 

by knowledge about n-grams. However, there was a substantial and marginally significant 

correlation between judgment accuracy and n-gram knowledge in task 2 (r=.30, p=.060) and a 

substantial and significant correlation in task 3 (r=.34, p=.023). Since the judgment accuracies 
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in task 2 and task 3 were significantly above chance, the participants apparently learned 

something. However, the substantial correlation with the knowledge test indicates that this 

learning was not completely implicit. This finding suggests that participants process an 

artificial grammar learning task differently when they know that there is a grammar 

constituting the strings in the learning phase. 

Effects of the order of the grammars. The results show that there were only minor 

differences in the judgment accuracies and reliability estimates depending on the order of 

grammar presentation. The pattern of correlations between the tasks was the same for both 

orders of presentation and the pattern of correlations between judgment accuracy and n-gram 

knowledge became even more distinct if the results were pooled over both grammars. 

Taken together, experiment 3 showed that an artificial grammar learning task may be 

used to measure individual differences in implicit learning if the participants are asked to rate 

the grammaticality of letter strings. However, it was not possible to measure these differences 

repeatedly across different task. The correlation with the knowledge test in task 2 and task 3 

also suggest that the learning that took place in task 2 and task 3 was not implicit. 

Conjoint analysis 

The reliability estimates of the tasks in experiment 1, 2, and 3 showed a broad 

variation. However, whereas all reliability estimates for novelty judgments were unacceptably 

small, most of the reliability estimates for grammaticality judgments were satisfactory. 

Therefore, we tested the hypothesis that only grammaticality judgments quantify reliable 

individual differences. 

Method 

The units of observation were the split-half correlations for each task in experiment 1, 

2, and 3. These reliability estimates were employed because they could be computed in all 

experiments. We used the fixed-effect model for the meta-analysis of correlations of Hedges 
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and Vevea (1998). In a first step, the correlations were participated to a Fisher’s Z-

Transformation. In a second step, the transformed correlations of task 1 and 2 of experiment 2 

were averaged as well as the correlations of task 1, 2, and 3 of experiment 3, because these 

correlations resulted from the same sample and therefore were dependent from each other. In 

a third step, the Z-scores were transformed to averaged effect sizes (MZ) separately for the 

tasks in which the participants had to rate the grammaticality vs. the novelty of strings. In a 

last step, the standard errors of the effect sizes were computed. A z-test was used to test the 

null-hypothesis that the averaged effect sizes in both conditions did not differ from zero. 

Results 

The averaged effect size of the grammaticality rating tasks differed significantly from 

zero, MZ=0.32, z=2.75, p=.006. On the other hand, the averaged effect size of the novelty 

rating tasks did not differ significantly from zero, MZ =0.09, z=0.56, p=.575. 

Discussion 

The results indicate that individual differences in implicit learning may be measured 

reliably if the participants are asked to rate the grammaticality of the strings but not if they 

were asked to rate their novelty. This suggests that the variation in the judgment accuracy that 

is observed in grammaticality judgments quantifies systematic individual differences, whereas 

the variation that is observed in novelty ratings quantifies no systematic differences between 

individuals. 

General Discussion 

We conducted three experiments to investigate whether an artificial grammar learning 

task may be used to measure individual differences in implicit learning. The judgment 

accuracy in the testing phase was taken as an indicator of implicit learning success. The 

results of these experiments demonstrate that it is possible to measure individual differences 

in implicit learning when participants are asked to rate the grammaticality of strings in the 
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testing phase. This conclusion is supported by experiment 3 which showed that the judgment 

accuracy in a first realization of an artificial grammar learning task is significantly above 

chance and not systematically related with knowledge of n-grams. However, there are several 

obstacles when a repeated measurement of individual differences in implicit learning ought to 

be realized.  

First, when the participants were asked to rate the grammaticality of strings, an 

artificial grammar learning task can only be used once. Experiment 3 shows that the 

performance in a second or third realization is not related with the performance in a first 

realization, whereas the performance in a second or third realization is related with knowledge 

about n-grams of letter strings. Thus, a second completion is neither task consistent, nor 

divergent from n-gram knowledge. Second, the instruction to rate the grammaticality of letter 

strings in the testing phase cannot be replaced by the instruction to rate the novelty of letter 

strings. Experiment 1 and 2 showed that the correlation between grammaticality and novelty 

judgments is small and non-significant. Moreover, reliable individual differences can only be 

quantified when the participants were asked to rate the grammaticality of letter strings, but not 

when they are asked to rate the novelty. The conjoint analysis revealed that the reliability 

estimates of novelty judgments did not differ significantly from zero but reliability estimates 

of grammaticality judgments did. Third, the reliability estimates of the grammaticality 

judgments are too low to make inferences about the abilities of individuals. In order to use an 

artificial grammar learning task as an assessment tool, its reliability needs to be enhanced. 

 The role of strategy use. The reliability estimates of the judgment accuracy 

variables were rather small. One explanation for this may be that different strategies are used 

to make grammaticality judgments. In particular, the participants may use implicit as well as 

explicit strategies to solve implicit learning tasks (as suggested by Dienes & Berry, 1997; 
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Norman, Price, & Duff, 2006). This may affect the reliability estimates as well as the 

correlation between artificial grammar learning tasks in different ways. 

 First, some items may be solved with a greater extent of implicit strategies whereas 

other items may be solved with a greater extent of explicit strategies. Accordingly, some 

items may reflect individual performance differences in implicit strategy use whereas other 

items may reflect individual performance differences in explicit strategy use. Technically 

spoken, the items may not be τ-equivalent (Lord & Novick, 1968). This may affect the 

reliability estimates. For example, Cronbach’s alpha is a point estimate of the reliability only, 

if the items are τ-equivalent. Elsewise, it offers just a lower bound of the reliability. Likewise, 

the split-half correlation is a point estimate of the reliability only if the test-halves are τ-

equivalent. Elsewise, it underestimates the reliability. It further may affect the correlation 

between two different artificial grammar learning tasks, since the items of one grammar may 

measure implicit strategies in a greater extent than the items of another grammar.  

 Second, persons may differ in the extent in which they use implicit and explicit 

decision strategies (e.g., Buchner, Funke, & Berry, 1995). Accordingly, the judgment 

accuracy of one person may indicate the success of an implicit strategy whereas the 

judgments accuracy of another person may indicate the success of an explicit strategy. This 

means, the judgment accuracy may not only capture individual differences in implicit learning 

performance but also individual differences in strategy use. This may additionally shrink the 

consistency of judgments and the correlation between artificial grammar learning tasks.  

 Third, the use of implicit and explicit strategies may change over time (as suggested 

by Mathews, Buss, Stanley, Blanchards-Fields, Cho, & Druhan, 1989). For example, one 

participant may use an implicit strategy first and then switch to a more explicit strategy later. 

Another participant may use an implicit strategy all the time and another participant may use 

an explicit strategy all the time. Accordingly, the judgment accuracy may also capture 
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individual differences in strategy change, which may additionally shrink the correlation 

between artificial grammar learning tasks.  

 Forth, the instruction to rate the novelty of the strings may induce other judgment 

strategies than the instruction to rate the grammaticality of strings. From a theoretical point of 

view, grammaticality judgments and novelty judgments may be seen as conceptually similar 

(Gebauer & Mackintosh, 2007; Scott & Dienes, 2008; Whittesea et al, 1990, Whittlesea & 

Loboe, 2000). However, from an empirical point of view, the present results suggest that the 

instructions measure different constructs. Likewise, the conjoint analysis has shown that the 

split-half correlations are significantly above chance for the grammaticality judgments, but 

not for the novelty judgments. A possible explanation may be that the novelty instruction 

induces several independent judgment strategies, which may lead to a more heterogeneous 

performance variable. However, the results of the present study do not offer insights in the 

different judgment processes that may have been used. Identifying these processes may be a 

worthwhile goal for future research.  

 Taken together, the use of different strategies can affect the reliability estimates and 

the correlation between two artificial grammar learning tasks in several ways. The items may 

measure implicit learning success to different degrees, the participants may use implicit and 

explicit strategies in different extents, and the use of strategies may change over time. 

Furthermore, the instruction to rate the novelty of strings may induce other processes than the 

instruction to rate the grammaticality of strings. However, if artificial grammar learning tasks 

may be used as an assessment tool, then the performance variable has to be measured reliably, 

regardless of which strategies may be used. 

Implications 

Individual differences in implicit learning.  Reber (1992) and Reber and Allen (2000) 

suggested that implicit learning is such an evolutionary old system that there are only weak 
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differences between individuals. However, the present study shows that individual differences 

in implicit learning can be measured reliably. This conforms to Mackintosh (1998) who 

claims that implicit learning is an ability that varies between individuals and replicates the 

findings of Reber et al. (1991) who also reported reliable individual differences in the 

performance of an artificial grammar learning task.  

The present research differs from other approaches that investigated individual 

differences in implicit learning. In particular, the present work investigated the reliability and 

the task consistency of artificial grammar learning tasks, whereas previous studies 

investigated the relation between the implicit learning and other performance variables. Those 

studies have shown that the performance in artrificial grammar learning tasks is rather 

unrelated with general intelligence (Gebauer & Makintosh, 2007; McGeorge, Crawford, & 

Kelly, 1997; Pretz et al., 2010: Reber et al., 1991) or the performance in explicit learning 

tasks (McGeorge et al., 1997; Reber et al., 1991). These results suggest that implicit learning 

may measure an ability that is independent from traditional performance variables such as IQ.  

However, the reliability of implicit learning tasks, such as artificial grammar learning 

tasks, have only sparsely been investigated, which makes these findings difficult to interpret. 

For example, Reber et al. (1991) suggested that an insignificant correlation between the 

performance in an artificial grammar learning task and an intelligence test may be taken as an 

indicator for the divergent validity of an implicit learning ability. In this vein, they interpreted 

an insignificant correlation of r=.25 between the performance in an artificial grammar 

learning task and a general intelligence test (four subscales of the WAIS-R). However, the 

estimated reliability of their performance measurement was only 0.51 and therefore we would 

not expect a large correlation of this variable with any measure of intelligence even if their 

true-scores have a correlation close to unity. A more realistic size of the correlation between 

these two measures may be in a magnitude of r=.30, which qualifies as a medium effect size 
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according to Cohen (1988). A post-hoc power analysis reveals that the power to detect a 

medium effect was only 0.39 in the sample of Reber et al. (1991), which had a total sample 

size of 20 participants. Thus, the reported insignificance is not a compelling evidence for the 

divergent validity of the measurement. In the same vein, McGeorge et al. (1997) and Pretz et 

al. (2010) reported non-significant correlations between the performance in an artificial 

grammar learning task and the performance in cognitive ability tests. However, the authors 

did not report reliability estimates for the performance in the artificial grammar learning task. 

The findings of the present study may suggest that the non-significant correlation may be a 

result of an unreliable measurement. Gebauer and Makintosh (2007) also reported an 

insignificant correlation between several measures of intelligence and the performance in an 

artificial grammar learning task. However, Gebauer and Mackintosh asked their participants 

to rate the novelty of letter strings and our results show that novelty ratings measure not the 

same construct as grammaticality ratings. Therefore, the question how implicit learning and 

general intelligence is related is yet not answered properly. A fertile approach for future 

research may be to investigate the relation between implicit learning and other ability 

constructs with structural equation models. This would allow to separate systematic individual 

differences from unsystematic measurement error.  

Individual assessment and reliability. To make inferences about the abilities of 

individuals, the reliability of the measurement procedure has to be improved beyond the level 

that has been achieved in the present study. Gebauer and Mackintosh (2007) used an item 

analysis to select the letter strings with the greatest item-total correlation. On the one hand, 

this procedure may be useful to get homogeneous items. On the other hand, the validity of the 

measurement may shrink because the remaining items may not be a representative sample of 

the underlying grammar anymore. Another approach would be to repeat the letter strings in 
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the testing phase and enhance the reliability this way. However, whether lengthening the test 

really increases the reliability or just causes fatigue or memory effects is an open issue. 

The use of alternative instructions. When the participants are asked to rate the 

grammaticality of letter strings, an artificial grammar learning task may only be used once. 

The results of the conjoint analysis suggests that the performance is not reliable when the 

participants are asked to rate the “novelty” of letter strings. Furthermore, experiment 1 and 

experiment 2 revealed that individual differences in novelty ratings are unrelated with 

individual differences in grammaticality ratings. Thus, alternative instructions for an artificial 

grammar learning task may be considered. For example, Manza and Bornstein (1995; see also 

Helman & Berry, 2003; Zizak & Reber, 2004), suggested to use liking instead of 

grammaticality ratings in the testing phase because liking ratings would be a more implicit 

measure. This procedure would also avoid telling the participants that there is a grammar 

constituting the letter strings in the testing phase. However, there are no data available which 

would support the notion that liking ratings are a reliable and valid measurement of implicit 

learning. 

Limitations 

Measurement models of classical test theory. We used Cronbach’s alpha, the split-

half correlation, and the retest correlation as reliability estimates in the present study. These 

estimates are based on measurement models of classical test theory which make particular 

assumptions (Lord & Novick, 1968). For example, Cronbach’s alpha is a point estimate of 

reliability only if items are τ-equivalent. Elsewise, it offers just a lower bound of reliability. 

Since the reliability estimates were rather low in the present samples, it would have been a 

worthwhile goal to test these assumptions with structural equation models. However, the use 

of structural equation models would have required larger sample sizes and therefore could not 

be realized in the present study. 
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Operationalisation of implicit learning. We measured implicit learning success by 

the judgment accuracy in the testing phase of artificial grammar learning tasks. The 

generalizability of the present findings rests on this particular operationalisation. However, 

the judgment accuracy seems to be an appropriate measure for several reasons. First, it is the 

standard performance measure in artificial grammar learning studies (e.g., Altmann, Dienes, 

& Goode, 1995; Dulany et al., 1984; Gebauer & Mackintosh, 2007; Knowlton & Squire, 1994, 

1996; Meulemann & Van der Linden, 2003; Perruchet & Pacteau, 1990; Pothos & Bailey, 

2000; Reber, 1967; Reber et al., 1991; Reber & Perruchet, 2003; Scott & Dienes, 2010; 

Tunney, 2005). Second, there were also great correlations between the overall judgment 

accuracy and the signal detection parameter d’ in all tasks of the present study (all rs>.98, 

ps<.001). Third, there is empirical evidence for the validity of judgment accuracy as a 

performance measure. Dulany et al. (1984) have shown that a control group without a 

learning phase showed a significant worse judgment accuracy than experimental groups with 

a learning phase. In the same vein, Reber and Perruchet (2003) have shown that a control 

group which learned randomly generated stimuli performed worse in the testing phase than an 

experimental group which learned grammatical stimuli. Taken together, the judgment 

accuracy appears to be a valid indicator for implicit learning success. 

The measurement of n-gram knowledge. We used an n-gram knowledge test in 

order to measure the amount of reportable grammar knowledge. The development of the 

knowledge test was inspired by the work of Perruchet and Pacteau (1990) and Dulany et al. 

(1984) who suggested that the participants acquire explicit knowledge of n-grams and 

therefore show above chance performance in the testing phase. However, implicitly learned 

knowledge may also help the participants to pass the n-gram knowledge test and therefore, the 

performance in the n-gram test may reflect explicit as well as implicit knowledge. This goes 

in line with several authors (e.g., Norman, Price, Duff, & Mentzoni, 2007; Seger, 1994; 
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Tunney & Shanks, 2003) who suggested that the participants in an artificial grammar learning 

tasks acquire implicit as well as explicit knowledge. Therefore, it might have been worthwhile 

measuring the participants’ knowledge with an additional method. For example, Dienes and 

Scott (2005; Scott & Dienes, 2008) distinguish between structural knowledge (e.g., n-gram 

knowledge that indicates why a strings is grammatical) and judgment knowledge (the 

knowledge that a string is grammatical). To measure judgment knowledge, Dienes and 

colleagues (Dienes, 2008; Dienes, Altman, & Kwan, 1995; Dienes & Seth, 2010; Tunney, 

2005) have suggested to use confidence ratings. In particular, they suggested that decisions 

that are based on unconscious, implicit knowledge should be made with low confidence 

(guessing criterion) and accordingly there should be no correlation between confidence 

ratings and accuracy (zero correlation criterion). Therefore, asking the participants to rate the 

confidence of their judgments would have offered further insights in participants’ knowledge. 

Effect of the knowledge test. In experiment 3, there were low and non-significant 

correlations of performance between task 1 and task 2, and between task 1 and task 3, but 

there was a substantial and significant correlation between task 2 and task 3. There was also a 

low correlation between judgment accuracy and n-gram knowledge in task 1, but substantial 

correlations between judgment accuracy and knowledge in task 2 and task 3. We interpreted 

this result as an effect of grammar awareness. During the first task, the participants do not 

know that there is a grammar constituting the letter strings, but they do so during a second and 

third task. However, this finding could also be interpreted as an effect of the knowledge test. 

After completing a knowledge test, the participants may draw their attention towards n-grams 

and this may affect their judgments in subsequent tasks. However, if this would have been the 

case, the same pattern of results should have been found in experiment 1 and experiment 2, 

which was not the case. Nonetheless, it might be a worthwhile goal for future research to 

investigate possible effects of the knowledge test in greater detail. 
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Conclusion 

We demonstrated that an artificial grammar learning task can be used to measure 

individual differences in implicit learning. Future research may investigate whether 

lengthening the test may substantially increase reliability, whether the use of a liking 

instruction may allow to perform several realizations of the task, and how individual 

differences in implicit learning are related to intelligence, educational attainment or even 

professional success in later life. The present study provides the empirical basis for pursuing 

these questions. 
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Footnotes

                                                 
1 The performance in the second n-gram knowledge test was significantly above 

chance (t(20)=4.11, p=.001, d=0.90). This result suggests that the participants acquired n-

gram knowledge. However, it does not indicate that the participants used this knowledge for 

making grammaticality judgments. Only a positive correlation between the performance in the 

testing phase and the performance in the n-gram knowledge test would suggest that the 

participants used their n-gram knowledge for making grammaticality judgments. 

2 One possible explanation for this result may be a greater similarity between grammar 

1 and grammar 3. In particular, a detailed inspection of the grammatical strings revealed that 

the strings of grammar 1 and grammar 3 may be more similar to each other than the strings of 

grammar 1 and grammar 2 or grammar 2 and grammar 3.  
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Table 1 

N-grams used in the knowledge test 

grammar grammatical n-grams non-grammatical n-grams 

1 NS NWS NWX NX NXS NXT 

SN SSS ST WNS  XS XT 

NN NNW NNX NWN NWW SSW  

WNW WWN WWS  XN XWX XX 

2 HHH  HL HPH LM LMM  LRH 

ML MM  MMM PR  RH RHP 

HHP HPL HPM LH  LMH LPH LRM  

MHM MP  PHP PLR RM 

3 BG BGK BK BKD DG  GD GDF 

GFD  GK GKD KD KFD 

BF  DD DFF DK FDF FFD FGG GFF  

GGF KDD KFF KK 

Note. Grammatical n-grams are n-grams that occurred in the learning phase and which 

occurred in the testing phase more often in grammatical than in non-grammatical strings. 

Non-grammatical n-grams are n-grams that did not occur in the learning phase and which 

occurred in the testing phase more often in non-grammatical than in grammatical strings. 
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Table 2 

Judgment accuracy in experiment 3 

task grammar M t df p d 

1 1 59.67% 5.46 20 .000 1.19 

1 2 62.85% 10.26 19 .000 2.29 

1 1+2 

(pooled) 

61.22% 10.12 40 .000 1.58 

2 1 61.75% 7.40 19 .000 1.65 

2 2 61.76% 7.61 20 .000 1.66 

2 1+2 

(pooled) 

61.76% 10.75 40 .000 1.68 

3 3 59.15% 8.88 40 .000 1.39 
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Table 3 

Cronbach’s alpha, split-half, and retest correlation of the judgment accuracy in experiment 3 

task grammar α rsh rtt 

1 1 .66 .43 .58 

1 2 .56 .54 .41 

1 1+2 (pooled) .55 .38 .43 

2 1 .56 .54 .46 

2 2 .32 .22 .46 

2 1+2 (pooled) .54 .60 .44 

3 3 .49 .45 .18 

Note. α = Cronbach’s alpha, rsh  = split-half correlation, r tt = retest correlation. 
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Table 4 

Correlation between tasks separated by order of presentation in experiment 3. 

 order 1  order 2  pooled  

 r p r p r p 

task 1 – task 2 -.07 .759 .24 .314 .05 .715 

task 1 – task 3 -.02 .908 .14 .560 .08 .631 

task 2 – task 3 .41 .067 .39 .089 .38 .014 

Note. In order 1 the participants completed grammar 1 first and then grammar 2 and 

grammar 3. In order 2 the participants completed grammar 2 first and then grammar 1 and 

grammar 3. 
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Table 5 

Cronbach’s alpha of n-gram knowledge and correlation with the judgment accuracy in 

experiment 3 

task grammar α rsh r 

1 1 -.61 -.15 .24 (.303) 

1 2 -.08 -.08 -.09 (.704) 

1 1+2 (pooled) -.42 -.11 .06 (.715) 

2 1 .49 .40 .41 (.076) 

2 2 -.12 .05 .16 (.493) 

2 1+2 (pooled) .24 .25 .30 (.060) 

3 3 .20 .09 .34 (.023) 

Note. α = Cronbach’s alpha of measured knowledge, rsh = split-half correlation, r = 

Pearson correlation between n-gram knowledge and judgment accuracy (p-values in brackets). 
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Figure 1: Grammar 1 
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Figure 2: Grammar 2 
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Figure 3: Grammar 3 
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Appendix 

Table A1 

Letter strings for grammar 1 sorted for different parts of the experiment 

Phase Strings 

Learning phase WNSNXS NXSTWXT WNSTTWXT WXWSNXT NWXTS NXSNWXS 

WNTSSS NXSWXTX WXWSNWSN WNSNWXS NXSWXT NXSWWWW 

NWSWN  WNSNWXTX NXSWNTX NXS WNSWWWW WXWSWN 

NXSTNWS WNSTWNSW WNSWXTX WNTSSX WNSNWSW WNTX 

NXSWNSW WNSNXTS  NXTSSS NXSNWSN WNSNWSN NXSWNTSS 

Testing phase 

(correct items) 

WNSN NWSW NWSN NXSWW NWXSW NXTSX WNSWNS NXSWNT 

NWXTSS  WNSWWW WNSWNT NXTSSX WXWTSX WNSNXT 

NWSWWN  NXSNWS NXSNWXT NXTSSSX WNSTWNS NXSTNXS  

WNTSSSX WNSWXWT NXSNXTX  WXWSWXT NWXSWNS 

NWXSNWS NXSTXWNT  WNSTNWXT WXWSNWXS NXSTWNTX 

WXWSTWXT WXWSNWSW WXWSWXTX  NXSTNWSN NWXSWXWS 

WXWTSSSS WNSTNXTX  WXWSWNSW NWXSWXTX NXSNXSWN 

Testing phase 

(incorrect items) 

TXSWNT TWXTSX NTSWWN WWSWNS WNWWNT NWSXWN 

NWXSSW WXWTST TXWTSSX SWXSWNS WSSWWWN WSSWXTS 

NWWSWXT NXNTNXS WNTTSSX NWXWSSX NWXSNTS WNSNXXX 

WXWSWST  WNSWXWN WXWSWNW XNSTWNTS  TWXSWXWS 

TWSWWWWN NNXSWXWT WSSTTNXT  WNNWNSWW WNNNWXSW 

NWXWWXTX  WXWXWXTX WXWSXWXT WXWSNWSW  

NXSWWXWN WXWSWNWW  WXWSNWNS 
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Table A2 

Letter strings for grammar 2 sorted for different parts of the experiment 

Phase Strings 

Learning phase LRHMMLM LRPHLLMM RHPHR RHPHMMLM LRHL 

LPMHLLMM LPPHLM RHPRLMMM LRHMRP  RHPHMMRP 

LPPPLL RPHHHLLM RHPHL  LPPRLMMM LPR LRHRPMMM 

LPPRL  LPMMRPMM RHPHRP LPMHHLLM  LPMMRP 

RHMHLLMM LPLM  RPHHHHLL LRR LRRLMMM  RHMHHL 

LPPRLMM RPLLMMM RHPHLMM 

Testing phase 

(correct items) 

LRPHHHL RHMHHHL LRHMLMMM LPRP LPRPMM 

LPRPMMM LPLMMMM  RHPHMMML LPMR LPMRPM 

RPHHHLL  LPPHMLM LPPHMMRP RPHL LRHLMM 

RHPHMML  RHPHLMMM LPMLLMMM LPLMM LRHMML 

RPHLLMM LPMHHHLL LPPHLMMM RHPHLM LPPHMML 

RHMLLMM RPLLMMMM LPPPHLLM LPMMML  LPMLLMM 

RHMHLLM RHPHMLMM LPRPMMMM LPLMMM RHPHMLM 

RHPRLMM LRPHHHLL RHPPHLLM  

Testing phase 

(incorrect items) 

RPRL LLRPMM RHHPHHL RHMHHPL LRPHMHLL LPLR 

LPPMRP LPHMMR RHPRLMH LPMHHPLL HHMLL LPLRMM 

RPPLLMM PPLLMMMM LRHMMHPM LPHHL LPMMHM  

LPPLRPM PHPHMMML LPPHLMHM LPPLL RPHHPL  

RPHHRLL MPPHMMRP LPPPHLRM LPLMP LPMMMP 

LPPHPML LPHMMMRP  RHMHHLLP HRHLMM MHPPHLL 

LPPHPRP LPPMMRPM LPMLLMMP  LLMHHL RMPPLLM 

LPPHMHM LPPLHHHL RHPPHLLL 
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Abstract 

The present study investigates whether artificial grammar learning tasks can measure 

individual differences in implicit learning. In particular, we investigated (1) the reliability and 

the task consistency of implicit learning performance, (2) the association between implicit 

learning performance, reportable grammar knowledge, and general intelligence, and (3) 

whether implicit learning performance can predict educational attainment. N=106 participants 

completed two artificial grammar learning tasks and the Culture Fair Intelligence Test. The 

results indicate that the reliability of the performance measure is only moderate and the task 

consistency is adequate as long as no bigram knowledge test is performed. Artificial grammar 

learning performance is independent from reportable grammar knowledge and independent 

from general intelligence. Furthermore, there is a predictive but not an incremental predictive 

value on educational attainment. 

 Keywords: implicit learning, artificial grammar learning, individual differences, 

reliability, validity 
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Can artificial grammar learning tasks measure individual differences in implicit learning? 

Sometimes we make correct decisions based on our gut feeling but can not explain 

them. Regarding this, several authors suggested that we can learn implicitly, which means 

without intention and awareness (Frensch & Rünger, 2003; Reber, 1967, 1992; Seger, 1994). 

For example, sometimes we are able to classify a sentence to be grammatical correct or 

incorrect but we are not able to report the determining grammatical rule. Relating to this, 

Reber (1967) suggested that we may learn complex rules implicitly. He further suggested that 

implicit learning is an evolutionary mechanism that is independent from explicit learning 

(Reber, 1992; Reber & Allen, 2000). In the same vein, Mackintosh (2006) proposes an 

implicit associative learning system, and an explicit hypothesis generating and testing system. 

In particular, the implicit learning system may detect contingencies without awareness or 

intention whereas the explicit learning system is necessary for discovering regularities with 

intention and awareness. Mackintosh hypothesized that individual differences in implicit 

learning are independent from general intelligence but powerful predictors of educational 

success. In order to test this hypothesis, it is necessary to measure individual differences in 

implicit learning. For one thing, implicit learning may help to characterize cognitive ability in 

greater detail. For another thing, implicit learning measures may be used as selection criteria 

for university or job applications. 

To measure implicit learning, Reber and Mackintosh suggested to use artificial 

grammar learning tasks. In such a task, the participants are asked to learn a list of arbitrary 

letter strings (like KTQHXTJ). Afterwards they are told that these strings were constructed 

according to a complex rule system (grammar) and they are asked to judge new strings as 

grammatical or non-grammatical. The percentage of correct judgments is taken as an indicator 

for implicit learning success. Typically, the participants show above chance performance 



Cognitive ability beyond IQ   A2 - 5 

which suggests that they learned something but they are not able to report the grammar rules, 

which suggests that they learned the rules implicitly. 

In order to use an artificial grammar learning task for individual assessment or the 

investigation of individual differences, the performance measures must meet several 

psychometric criteria. (1) The reliability of performance measures should be acceptable. (2) 

Measures should be independent from reportable knowledge to attest that the learning 

performance is implicit. (3) Implicit learning measures should be divergent from general 

intelligence to attest their divergent validity. (4) Implicit learning performance should be 

related with real life performance to reveal its predictive validity. (5) Performance should be 

task consistent, meaning measureable with more than one artificial grammar learning task in 

order to establish sufficient generalizability. There have been only sparse attempts to 

investigate the psychometric properties of artificial grammar learning measures. Therefore, 

the purpose of the present work was to evaluate these five issues. 

(1) Reliability. There are only few studies that investigated the reliability of artificial 

grammar learning measures. Reber, Walkenfeld, and Hernstadt (1991) examined N=20 

students and reported a Cronbach’s alpha of α=.51 for 100 grammaticality judgements. 

Gebauer and Mackintosh (2007) assessed N=605 pupils and reported a split-half correlation of 

r=.70 for two artificial grammar learning tasks with 80 grammaticality judgements each. In 

addition, Danner, Hagemann, Schankin, Bechtold, and Funke (submitted) conducted a series 

of experiments with a total of N=83 students and reported Cronbach’s alphas between α=.32 

and α=.66 for grammaticality judgments in different artificial grammar learning tasks. These 

findings suggest that the performance scores of individuals should be interpreted carefully and 

the reliability of implicit learning performance variables should be taken into account when 

interpreting correlations with other variables. However, the previous findings may also be a 
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specific feature of the grammars that have been used. For the purpose of the present study, we 

developed two new grammars and investigated the reliability of the performance measures. 

(2) Relation with reportable knowledge. Reber (1967) suggested that the 

participants in an artificial grammar learning task learn the grammar rules implicitly because 

they are not able to report their grammar knowledge. However, to test whether grammaticality 

judgments are independent from reportable knowledge, it is necessary to define what kind of 

knowledge is relevant for the performance in artificial grammar learning tasks. Over the 

years, there have been controversial and fertile discussions about this topic. For example, 

Reber and Allen (1978) found that their participants were not able to report any knowledge 

about grammar rules and therefore suggested that they learned the grammar rules implicitly. 

Dulany, Carlson, and Dewey (1984) criticized that asking participants to report the grammar 

rules is too difficult and therefore the participants might not have been able to report their 

knowledge. To avoid this problem, Dulany et al. (1984) asked their participants to report 

letter string features on which they based their grammaticality judgments. They showed that 

the reported knowledge was sufficient to explain the above chance accuracy of 

grammaticality judgments and concluded that the acquired knowledge was not implicit at all. 

In a similar vein, Perruchet and Pacteau (1990) showed that knowledge of bigrams was 

sufficient to explain the above chance accuracy of grammaticality judgments. Other authors 

(e.g., Knowlton & Squire, 1996) suggested that the participants make grammaticality 

judgments based on the similarity of letter strings with previously learned strings. Having 

these different explanation attempts in mind, it seems difficult to find an appropriate 

measurement for the relevant knowledge. Shanks and St. John (1994) concluded that it is only 

possible to measure the relevant knowledge for implicit learning tasks, when the information 

criterion and the sensitivity criterion are met. Meeting the information criterion means to find 

an operationalisation that captures all kind of relevant knowledge. Meeting the sensitivity 
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criterion means to make the knowledge test as sensitive as the implicit learning task itself. 

Thus, to investigate the relation between implicit learning performance and reportable 

knowledge in the present study, we used a knowledge test that was designed to meet the 

information as well as the sensitivity criterion. 

(3) Relation with general intelligence. Reber et al. (1991) reported a correlation of 

r=.25 between the performance in an artificial grammar learning task and IQ. Gebauer and 

Mackintosh (2007) reported correlations between r=-.03 and r=.17 depending on the task and 

the instruction. Hence, there is preliminary evidence pointing towards the divergent validity 

of implicit learning measures. A further aim of the present study was to replicate these 

findings. 

(4) Predictive value. From a practical point of view, the most important characteristic 

of a measure may be its predictive value. Mackintosh (2006) hypothesizes that performance in 

artificial grammar learning may be a powerful predictor of educational attainment. However, 

there are no investigations of this hypothesis yet. Therefore, the present study will test 

whether the performance in an artificial grammar learning task can predict educational 

success. 

(5) Task consistency. A further purpose of the present work was to evaluate the task 

consistency of performance measures. This is of particular importance within the framework 

of artificial grammar learning tasks. During an artificial grammar learning task, the 

participants are asked to memorize a series of arbitrary letter strings. Only after this learning 

phase, they will be informed that there was a grammar constituting the strings and their task 

will be to classify new letter strings as grammatical or non-grammatical. During a subsequent 

artificial grammar learning task, the participants will already know that there is a grammar 

constituting the strings in the learning phase and that his or her job will be to rate the 

grammaticality of letter strings afterwards. Hence, it may be that the participants do not only 
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memorize the strings but also try to discover the grammar explicitly. To investigate this 

hypothesis, Danner et al. (submitted) performed an experiment where the participants 

completed three artificial grammar learning tasks with a subsequent knowledge test after each 

grammar learning task. They reported that there was no correlation between the performance 

in the first and the second artificial grammar learning task, which indicates a low task 

consistency of artificial grammar learning task measures. Likewise, the participants' 

performance in a first task was unrelated with the reported grammar knowledge whereas the 

performance in subsequent tasks correlated with the reported grammar knowledge. This 

finding suggests that the learning process in the second and third artificial grammar learning 

task was not implicit anymore. However, there is also an alternative interpretation of the 

results of Danner et al. (submitted). Their participants completed a knowledge test (containing 

bi- and trigrams of letter strings) after every artificial grammar learning task. Therefore, it is 

also possible that the knowledge test and not the grammar awareness changed the 

participants’ strategy and caused the low task consistency as well as the relation with reported 

knowledge. A further aim of the present study was to test the hypothesis that a knowledge test 

decreases the task consistency between two artificial grammar learning tasks and causes a 

substantial correlation between performance and reported grammar knowledge. Thus, in two 

separate conditions the participants completed either a grammar knowledge test or a dummy 

knowledge test. 

Aim of the present study. The aim of the present study was to evaluate the reliability 

and the validity of artificial grammar learning measures. Therefore, we investigated the 

reliability and the task consistency of performance measures as well as the relation with 

reportable knowledge, general intelligence and educational attainment. 
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Method 

Participants 

There were N=106 students of the University of Heidelberg participating in the present 

study. The participants were randomly assigned to either the bigram group (N=53) or the 

control group (N=53). 

Procedure 

All participants completed first an artificial grammar learning task, second a 

knowledge test, third the Culture Fair Intelligence Test (CFT3), and forth an additional 

artificial grammar learning task and a further knowledge test. 

The first artificial grammar learning task . The stimuli for the first artificial 

grammar learning task were constructed according to Figure 1. The task consisted of a 

learning phase and a testing phase. 

******************************** 

Please insert Figure 1 about here 

******************************** 

In the learning phase 39 letter strings were presented and the participants were 

instructed to memorize them. Each string was presented individually for 3 s on a 17” screen 

of a personal computer (e.g. KTQHXTJ). The participants were asked to repeat the strings 

correctly by pressing the respective letters on the keyboard. When a string was repeated 

correctly, the feedback “correct” was given and the next string occurred. When a string was 

repeated incorrectly, the feedback “false” was given and the string was displayed again until 

repeated correctly. After a participant repeated ten strings correctly, these ten strings were 

simultaneously displayed for 90s on the screen and the participant was asked to repeat them 

silently. After a participant repeated all 39 string correctly the learning phase was finished and 
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the participant was informed that all strings in the learning phase were constructed according 

to a complex rule system.  

In the testing phase 78 new strings were presented (see Appendix, Table A1). There 

were 39 grammatical strings that were constructed according to the same rule system as the 

strings in the learning phase (e.g. KXTJTTH). In addition, there were 39 non-grammatical 

strings that contained one letter at a position that violated the rule system (e.g. KXTXJK). All 

strings were presented twice so that there was a total of 156 items in the testing phase. The 

participants were instructed to judge the letter strings as grammatical or non-grammatical. To 

judge a string as grammatical, the participants had to press the A-key of the keyboard, to 

judge a string as non-grammatical, the L-key. The order of presentation of the strings was 

fixed across the participants in a random order. The percentage of correct judgments in the 

testing phase was taken as the performance indicator for implicit learning success.  

The first knowledge test. Immediately after the testing phase, the participants 

completed a knowledge test. The bigram group completed a bigram knowledge test and the 

control group completed a dummy knowledge test 

The bigram knowledge test assessed participants’ knowledge of bigrams. To meet the 

information criterion (Shanks & St. John, 1994), we designed the bigram knowledge test in a 

manner that the test was sensitive to different forms of knowledge. In particular, the test was a 

direct test of participants’ knowledge of bigrams as well as an indirect test of participants' 

performance relevant knowledge in general. For example, one participant may have acquired 

knowledge of bigrams during the learning phase (as suggested by Perruchet & Pacteau, 1990) 

and therefore achieved above chance accuracy in the testing phase as well as in the bigram 

knowledge test. Another participant may have used the similarity between previously learned 

and new strings (as suggested by Knowlton & Squire, 1996) and thus achieved above chance 

accuracy in the testing phase. However, the knowledge about the similarity of strings would 
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also help the participant to perform well in the knowledge test. In order to meet the sensitivity 

criterion, we made the instructions and response format analogous to the testing phase (as 

suggested by Shanks & St. John, 1994). 

Thus, all strings of the testing phase were decomposed into bigrams. For example, 

KXTJTTH was decomposed into KX, XT, TJ, JT, TT, and TH. The participants were 

instructed to rate a bigram as grammatical (occurring more often in grammatical strings) or 

non-grammatical (occurring more often in non-grammatical strings). To judge a bigram as 

grammatical, the participants had to press the A-key. To judge a bigram as non-grammatical, 

the participants had to press the L-key. There were 34 different bigrams for grammar 1 (see 

Appendix, Table A1). All bigrams were presented twice so that there were a total of 68 items 

in the bigram knowledge test. The order of presentation of the strings was fixed across the 

participants in a random order. The percentage of correct judgments in the bigram knowledge 

test was taken as an indicator for the amount of reportable knowledge. 

In order to make the procedure for the bigram and the control group parallel, the 

control group completed a dummy knowledge test which was unrelated with the letter strings. 

The dummy knowledge test consisted of statements like “Alberto Fujimori was president of 

Japan from 1990 to 2000” (which is right, by the way) and the participants were asked to rate 

the truth of the statements. To rate a string as true, the participants had to press the A-key of 

the keyboard, to rate a string as false, the L-key. There were 34 different statements and all 

statements were presented twice so that there were a total of 68 items in the dummy 

knowledge test. Participants’ responses in the dummy knowledge test were not analyzed. 

The Culture Fair Intelligence Test (CFT3). The CFT3 (Cattell, Krug, & Barton, 

1973) was used as an indicator for participants’ general intelligence. The test consists of 48 

different figural reasoning items. The speed version of the test was administered, which took 
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approximately 25 minutes. The number of correctly solved items was taken as the 

performance indicator for participants’ general intelligence.  

The second artificial grammar learning task. The stimuli for the second artificial 

grammar learning task consisted of completely different letters. The stimuli were constructed 

according to Figure 2. The second artificial grammar learning task also consisted of a learning 

phase and a testing phase. The procedure was identical to the first artificial grammar learning 

task. 

******************************** 

Please insert Figure 2 about here 

******************************** 

The second knowledge test. The procedure for the second knowledge test was 

identical to the first with the exception that all participants completed a bigram knowledge 

test after the testing phase and the bigram knowledge test consisted of 34 items only. The 

stimuli are shown in the Appendix (Table A2). 

In addition, the participants were asked to report their final school exams’ grade point 

average (1=very good to 6=failed) and their subject of study (psychology vs. other subject). 

Results 

Performance in artificial grammar learning tasks 

To investigate the effect of the first bigram knowledge test, we analyzed the data 

separately for the bigram group and the control group. In the bigram group, the percentage of 

correct judgments in the first artificial grammar learning task was significantly above chance, 

M=58.09%, t(52)=7.40, p<.001. The split-half correlation (between the first and the second 

presentation of strings) was r=.60. The percentage of correct judgments in the second artificial 

grammar learning task was also above chance, M=56.98%, t(52)=11.02, p<.001 and the split-
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half correlation was r=.32. The correlation between both tasks was r=.22, p=.109, which 

points towards a low task consistency. 

In the control group, the performance in the first artificial grammar learning task was 

also significantly above chance, M=59.62%, t(52)=10.68, p<.001, and the split-half 

correlation was r=.39. The percentage of correct judgments in the second artificial grammar 

learning task was M=57.28%, t(52)=12.26, p<.001, and the split-half correlation was r=.21. 

The correlation between both tasks was r=.39, p=.004, which points towards an adequate task 

consistency. 

To investigate the effect of the knowledge test on the task consistency in greater detail, 

we tested whether the correlation between the first and the second artificial grammar learning 

task differed between the bigram group and the control group. As expected, the task 

consistency in the control group was greater, r=.39, Z=.39, than in the bigram group, r=.22 

Z=.22. However, the difference between groups was not significant, z=0.94, p=.347. 

Reportable knowledge 

In the bigram group, the percentage of correct judgments in the first bigram 

knowledge test was significantly above chance, M=55.45%, t(52)=5.01, p<.001. The split-half 

correlation was r=.55. The correlation between the performance in the first testing phase and 

the first knowledge test was r=.01, p=.942. The percentage of correct judgments in the second 

bigram knowledge test was also significantly above chance, M=55.03%, t(52)=5.50, p<.001. 

The split-half correlation was r=.32. The correlation between the performance in the second 

testing phase and the second knowledge test was r=.30, p=.029.  

In the control group, there was no bigram knowledge test after the first artificial 

grammar learning task. The percentage of correct judgments in the bigram knowledge test 

after the second artificial grammar learning task was significantly above chance, M=56.40%, 
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t(52)=6.79, p<.001. The split-half correlation was r=.33. The correlation between the 

performance in the testing phase and the knowledge test was r=.02, p=.884. 

Relation with general intelligence 

To investigate the relation between implicit learning and general intelligence we took 

the performance in the first artificial grammar learning task as an indicator for implicit 

learning performance. The procedure for the bigram group and the control group was identical 

until the completion of the first artificial grammar learning task and therefore the data of both 

groups were analyzed together. The number of solved items in the CFT3 served as a measure 

of participants' general intelligence.  

The mean number of solved items in the CFT3 was M=28.69 (SD=4.76). Cronbach’s 

alpha for the 48 items was α=.73. The correlation between performance in the first artificial 

grammar learning task and the CFT3 was r=.16, p=.112. Taking the reliability estimates of the 

variables into account, this reveals a correlation corrected for attenuation of r=.25. 

Prediction of educational success 

The participants’ final school exams’ grade point averages (GPA) ranged between 1.0 

and 3.1 with a mean of M=1.81 (SD=0.66). We performed a series of linear regression 

analyses with GPA as the criterion and subject of study, the performance in the first artificial 

grammar learning task, and the performance in the CFT3 as predictors. The subject of study 

was included as a confounder because there is a severe restriction on admission for 

psychology in Germany and we expected psychology students to have a better GPA than 

students of other subjects. There were N=47 psychology students and N=59 students of other 

subjects.  

Table 1 shows the results of four regression analyses. As can be seen, the performance 

in the first artificial grammar learning task (analysis 2) as well as the performance in the 

CFT3 (analysis 3) is significantly related with educational success. However, if both 
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predictors are considered simultaneously, then only general intelligence remains significant 

(analysis 4). 

******************************** 

Please insert Table 1 about here 

******************************** 

Discussion 

The present study demonstrates that it is possible to measure individual differences in 

implicit learning with an artificial grammar learning task. In particular, there are some 

findings that need attention. 

The reliability of performance measures is only moderate. The reliability estimates 

in the present study range between 0.21 and 0.60, which suggests that performance measures 

of artificial grammar learning are not suitable for individual assessment. This replicates the 

findings of Reber et al. (1991), Gebauer and Mackintosh (2007), and Danner et al. 

(submitted). Therefore, the moderate reliability seems to be a general property of artificial 

grammar learning task measures and not a specific feature of the grammar used or the sample 

investigated.  

Implicit learning performance is divergent from general intelligence. There was a 

small correlation between the performance in an artificial grammar learning task and the 

performance in the CFT3. Even if the reliabilities of the variables were taken into account, the 

correlation corrected for attenuation was only moderate. This result replicates the findings of 

Reber et al. (1991) and Gebauer and Mackintosh (2007) and points toward the divergent 

validity of artificial grammar learning measures. 

There is a predictive value but not an incremental predictive value of artificial 

grammar learning measures. The results of the regression analysis demonstrate that 

artificial grammar learning performance is related with the participants’ graduation grade. 
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However, the regression coefficient becomes non-significant when participants’ general 

intelligence is included as a predictor. This finding suggests that even though both variables 

overlap only moderately, the relation between artificial grammar learning performance and 

educational attainment is due to this overlap. Therefore, the present findings speak against 

Mackintosh’s (2006) hypothesis that implicit learning is independent from general 

intelligence and relevant for success in real life. 

A grammar knowledge test decreases the task consistency and increases the 

correlation between performance and reportable knowledge. As expected, there was a 

substantial and significant correlation between both artificial grammar learning tasks if the 

participants did not complete a knowledge test between tasks. If the participants completed a 

knowledge test between tasks, there was no significant correlation between tasks. This result 

goes in line with the hypothesis that a knowledge test decreases the task consistency of 

artificial grammar learning task measures. The correlations between tasks did not differ 

significantly between the bigram group and the control group, but the sample size of the 

present study was only sufficient to detect a population difference in the correlation 

coefficients of q=0.50 with a one-tailed type-one-error probability of α=.05 and a power of 

1-β=.80. To detect a medium effect of q=0.30 (Cohen, 1977) a sample size of N=282 would 

have been required and to detect a small effect of q=0.10 a sample size of N=2480 would have 

been required. In addition, there was a substantial and significant correlation between the 

performance in the second artificial grammar learning task and reportable knowledge in the 

bigram group, but not in the control group. This suggests that the participants changed their 

strategy after they had completed a bigram knowledge test and this also points towards an 

effect of a grammar knowledge test on the task consistency. Taken together, this pattern of 

results suggests that the grammar knowledge test, and not the awareness of a grammar 
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constituting the letter strings decreases the correlation between subsequent artificial grammar 

learning tasks. 

Conclusion. The present findings demonstrate that artificial grammar learning tasks 

can be used to measure individual differences in implicit learning, and implicit learning 

performance is divergent from general intelligence. However, the reliability of performance 

measures is only moderate and there is no incremental predictive value of implicit learning on 

educational attainment. Furthermore, a grammar knowledge test decreases the task 

consistency and increases the correlation between performance and reportable knowledge. 

Therefore, artificial grammar learning tasks are suitable for investigating individual 

differences in implicit learning but they are not suitable for individual assessment. 
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Table 1 

Regression analyses of GPA 

Analysis Predictor β t-value df p-value  R² 

1 subject of study -.56 -6.65 1 <.001 .31 

2 subject of study -.58 -6.95 1 <.001 .34 

 AGL -.17 -2.04 1 .044  

3 subject of study -.50 -5.99 1 <.001 .36 

 CFT3 -.22 -2.67 1 .010  

4 subject of study -.52 -6.22 1 <.001 .37 

 AGL -.13 -1.62 1 .108  

 CFT3 -.20 -2.35 1 .020  

Note. β = standardized regression coefficient, AGL = performance in the first artificial 

grammar learning task, CFT3 = performance in the CFT3. 
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Figure 1: Grammar 1 that was used in the first artificial grammar learning task 
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Figure 2: Grammar 2 that was used in the second artificial grammar learning task 
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Appendix 

Table A1 

Letter strings for grammar 1 sorted for different parts of the experiment 

phase strings 

learning phase KTJ KTJH KTJHQJ KTJHQJH KTJTH KTJTT KTJTTH KTJTTT 

KTJTTTH KTQHXTJ KTQJHHK KTQJKQJ KXTJ KXTJHQJ 

KXTJTTT KXTQHTJ KXXTJ KXXTJTH KXXTQJK KXXXTJ 

KXXXTJH XHTJ XHTJTT XHTJTTH XHTQHTJ XHTQJK XHXTJT 

XHXTJTT XHXTQJK XHXXTJ XHXXTJT XJHHHHK XJHHHK 

XJHHK XJHKQJ XJKQJ XJKQJT XJKQJTT XJKQQJK 

testing phase 

(grammatical 

strings) 

KTJHQJT KTJT KTJTHQJ KTJTTTT KTQHTJ KTQHTJH KTQHTJT 

KTQJHK KTQJK KXTJH KXTJT KXTJTH KXTJTT KXTJTTH 

KXTQJHK KXTQJK KXXTJH KXXTJT KXXTJTT KXXXTJT 

KXXXXTJ XHTJH XHTJHQJ XHTJT XHTJTH XHTJTTT XHTQJHK 

XHXTJ XHXTJH XHXTJTH XHXXTJH XHXXXTJ XJHHKQJ XJHK 

XJHKQJH XJHKQJT XJK XJKQJH XJKQJTH 

testing phase 

(non-

grammatical 

strings) 

KHJT KHQJK KKTJTH KQQHTJ KTJQQJT KTJTTQT KTQHTHT 

KTQHTTH KTQJKK KXJTHQJ KXJXXTJ KXKTJT KXQJT 

KXQJTTH KXTHH KXTJJHK KXTXJK KXXJJH KXXJTT KXXTJJT 

KXXXTKT XHHKQJT XHJTJTH XHTHTTT XHTQJQK XHTTH 

XHXJJ XHXTXH XHXXQJH XJHHKXJ XJHKQTH XJKK XJKQKTH 

XJTQJH XKTJT XTK XTTJTH XTXXXTJ XXTJHQJ 

knowledge test 

(bigrams) 

HH HJ HK HQ HT HX JH JJ JK JQ JT JX KH KK KQ KT KX QH QJ 

QK QQ QT TH TJ TK TQ TT TX XH XJ XK XQ XT XX 
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Table A2 

Letter strings for grammar 2 sorted for different parts of the experiment 

phase strings 

learning phase DBWD DBWDNW DBWDNWB DBWDR DBWDRRR DBWNRBW 

DBWNRW DBWNSRW DRBBBWB DRBBWB DRBW DRBWB 

DRBWBNW DRW DRWB DRWBNBW DRWBRNW DSBWDR DSRBWB 

DSRWB DSSBWD DSSRBBW DSSRW DSSRWB DSSRWBR DSSSRBW 

DSSSSRW SWDNBW SWDNBWB SWDNW SWDRNBW SWDRNW 

SWDRRNW SWNBWD SWNBWDR SWNRBWB SWNRWB SWNSBWD 

SWNSRWB 

testing phase 

(grammatical 

strings) 

DBWDNBW DBWDRNW DBWDRR DBWNBWD DBWNRWB DRBBBBW 

DRBBBW DRBBW DRBBWBR DRBWBR DRBWBRR DRWBNWB 

DRWBR DRWBRRR DSBWD DSRBBW DSRBW DSRW DSRWBR 

DSSRBW DSSRBWB DSSSBWD DSSSRW DSSSRWB SWD SWDNBBW 

SWDNWB SWDNWBR SWDR SWDRNWB SWDRR SWDRRR SWDRRRR 

SWNRBBW SWNRW SWNRWBR SWNSRBW SWNSRW SWNSSRW 

testing phase 

(non-

grammatical 

strings) 

DBSDNBW DBSNRRWB DBWDNR DBWDRDW DBWNBSD DRBDBBW 

DRBNBW DRBWWBR DRSSBWD DRSSRW DRWBNRB DRWDRBR 

DRWNR DSBRWD DSBW DSBWBR DSBWBRR DSRRBW DSRWBW 

DSRWSR DSRWW DSSRBBB DSSSNBW DWBBW SBDNWBR SDDR 

SDNRW SNDRRR SNNSRBW SRD SWBNWB SWDRRSR SWDWNWB 

SWNNBBW SWNRBWW SWNRR SWNRWRR SWNSRRW SWSSRW 

knowledge test 

(bigrams) 

BB BD BN BR BS BW DB DD DN DR DS DW NB ND NN NR NS NW RB 

RD RN RR RS RW SB SD SN SR SS SW WB WD WN WR WS WW 
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Abstract 

The Tailorshop simulation is a computer based dynamic decision making task in which 

participants have to lead a fictional company for twelve simulated months. The present study 

investigated whether the performance measure in the Tailorshop simulation is reliable and 

valid. The participants were 158 employees from different companies. Structural equation 

models were used to test tau-equivalent measurement models. The results indicate that the 

trends of the company value between the second and the twelfth month are reliable variables. 

Furthermore, this measure predicted real-life job performance ratings by supervisors and was 

associated with the performance in another dynamic decision making task. Thus, the trend of 

the company value provides a reliable and valid performance indicator for the Tailorshop 

simulation. 

Keywords: dynamic decision making, complex problem solving, Tailorshop, 

reliability, validity 
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Measuring performance in dynamic decision making:  

reliability and validity of the Tailorshop simulation 

Real life decisions are complex and sometimes there are no well-defined solutions for 

problems. A manager has to make decisions even if he or she does not have all relevant 

information, or an employer has to pursue the interests of his staff as well as the goals of his 

company, even if both views may be conflicting. Gonzalez, Yanyukov, and Martin (2005) call 

such decisions dynamic decisions. They are characterized by dynamics, complexity, 

opaqueness, and dynamic complexity. In a similar vein, Dörner (1980) characterizes such 

problems as complex problems, which means that their structure is complex, connected, 

dynamic, and non-transparent. Recently, dynamic decision making tasks have also been 

included in the Programme for International Student Assessment (PISA; Wirth & Klieme, 

2003). Since the ability to deal with such problems may have impact on important decisions 

in real life, it is an interesting question whether there are individual differences in dynamic 

decision making and whether these differences can be measured reliably and validly (e.g., 

Baker & O’Neil, 2002; Rigas, Carling, & Brehmer, 2002; Süß, 1996, 1999; Strohschneider, 

1986; Zaccaro, Mumford, Connelly, Marks, & Gilbert, 2000). Investigating these issues was 

the aim of the present study. 

To investigate dynamic decision making, several authors suggested to study persons’ 

behavior in computer simulations. The Tailorshop is such a dynamic decision making task, 

which has been used for several decades (e.g., Barth & Funke, 2010; Putz-Osterloh, Bott, & 

Köster, 1990; Süß, Kersting, & Oberauer, 1993; Wittmann & Hattrup, 2004). The scenario 

simulates a small business that produces and sells shirts. The participants have to lead this 

business for twelve simulated months by manipulating several variables like the number of 

workers, the expenses for advertising, etc. (see Figure 1).  
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***************************** 

Please insert Figure 1 about here 

***************************** 

In total, the Tailorshop consists of 24 variables. Twenty-one variables are visible to 

the participants and three variables are invisible to the participant. Twelve variables can be 

manipulated directly (e.g., the costs for advertising) whereas other variables can only be 

manipulated indirectly (e.g., the demand). The state of a variable in a given month influences 

the state of the same and other variables in a following month. Figure 2 shows schematically 

how the variables are connected (see Funke, 1983, for an algebraic definition of all system 

variables). 

***************************** 

Please insert Figure 2 about here 

***************************** 

In order to use the performance in the Tailorshop for the investigation of individual 

differences or for individual assessment, the performance variable should be reliable and 

valid. The reliability of a performance variable is important in two ways.  

In a research context, reliability considerations are important for an understanding of 

the validity of dynamic decision making measures because the reliability of a variable affects 

its correlation with criterion variables. In an applied context, the Tailorshop may be used to 

measure a single person’s ability to solve complex problems, e.g., as part of an assessment 

center. This measurement is only useful if it is reliable because otherwise it will yield 

incorrect decisions. 
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Reliability estimation.  

In classical test theory, the reliability of a variable is defined as the proportion of the 

true score variance relative to the total variance of a variable (Lord & Novick, 1968). In the 

Tailorshop scenario, the reliability is defined as the proportion of true individual performance 

differences relative to the total individual performance differences. The true score τ of a 

measurement i of a variable Y is defined as the expected value given a particular person P 

(Lord & Novick, 1968). In the Tailorshop scenario, the true score of a performance variable is 

defined as the expected performance given a particular person, τi := E(Yi|P). In addition, the 

measurement error ε is defined as the deviation of the measured variable from the true score 

variable, εi := Yi – τi (Lord & Novick, 1968). To estimate the reliability, multiple, 

experimentally independent measurements of a variable are necessary. 

In addition, two assumptions have to be made which define the τ-equivalent 

measurement model. The first assumption is that the true score of a measurement i of a 

particular person is identical with the true score of another measurement j of this person, 

τi = τj =: τ. The second assumption is that the errors of the measurements are uncorrelated, 

cov(εi,εj) = 0, for all i ≠ j. These assumptions may be tested with a structural equation model 

(Steyer, 1989) as shown in Figure 3. If the assumptions hold, then the variance of the true 

score may be estimated and the reliability may be computed by 
var(τ)

reliability = 
var( )i

i

Y
Y

.  

***************************** 

Please insert Figure 3 about here 

***************************** 

Validity assessment 

According to Dörner (1980) and Gonzalez et al. (2005) dynamic decisions are 

characterized by complexity, connectivity, non-transparency, and dynamics. Hence, the 

content validity of a performance variable may be evaluated regarding these four criteria. The 
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convergent validity may be evaluated by the correlation with another dynamic decision 

making task. Therefore, we expected a substantial correlation with the dynamic decision 

making task Heidelberg Finite State Automaton (Wirth & Funke, 2005), which has also been 

used in the German PISA assessment in 2000 (Wirth & Klieme, 2003). The predictive validity 

may be evaluated by the correlation with real life performance. Therefore, we expected that 

the performance in the Tailorshop can predict professional success. Finally, the divergent 

validity may be attested by a low correlation with another ability construct. Hence, we 

hypothesized that there is a low correlation between the performance in the Tailorshop and 

the performance in a standard intelligence test. 

Performance measurement 

At the beginning of the simulation, the participants were instructed to maximize the 

company value. Thus, the success of dynamic decision making may be measured by the 

achieved company value. The simplest approach may be to measure the company value after 

every month. However, the company value of a particular month depends on the company 

value of the previous month, company valuei = company valuei-1 + changei. Therefore, the 

company values are not experimentally independent and the assumption of uncorrelated errors 

will be violated. On the other hand, there is no such relationship between the changes of the 

company values. Furthermore, the sum of the changes of the company values corresponds to 

the company value after twelve months because the company value at the beginning of the 

simulation is identical for all participants, company value12 = company value0 + 
12

1

changei
i=
∑ . 

Therefore, the changes of the company values after each simulated month may be taken as 

performance indicators for the Tailorshop simulation. 

As an alternative, Funke (1983) suggested to use the trends of the company value as 

performance indicators. The trends of the company value are binary variables. If the company 

value between two successive months increases, the trend is positive. If the company value 
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decreases, the trend is zero.1 This scoring may has several advantages. First, the trend 

measure is simple to interpret because each point corresponds to a month where the given aim 

(“maximize company value”) was achieved. Second, the trend measure is robust against 

outliers, whereas the change value may rise to extreme values (due to the non-linear 

relationships between the variables). And finally, the measurement model for the trend 

measure makes fewer assumptions than the measurement model for the change measures on 

how the company value develops over the months. In particular, the τ-equivalent 

measurement model for the change measures states that the (true) change of a person is 

constant over the months, τi = τj. On the other hand, the measurement model for the trend 

measures only states that a person who has a greater probability to make gain in a particular 

month, also has a greater probability to make gain in another month. 

Aim of the present study 

The aim of the present study was to investigate the reliability and the validity of (1) 

the change of the company value and (2) the trend of the company value. The reliabilities of 

these variables were investigated with τ-equivalent measurement models. Furthermore, the 

content, convergent, predictive, and divergent validities of these variables were evaluated. 

Method 

Participants 

The participants were N=158 employees (111 female, 47 male), who were recruited 

via newspaper announcement from different branches and different companies around 

Heidelberg.  The participants rated their jobs according to the International Standard 

Classification of Occupations (ISCO-88 COM). 6% rated themselves as legislators, senior 

officials, and managers, 25% as professionals, 11% as technical and associate professionals, 

14% as clerks, 40% as service workers and shop and market sales workers, 1% as craft and 



Cognitive ability beyond IQ  A3 - 9 

related trade workers, 1% as plant and machine operators and assemblers, and 1% as 

elementary occupations. The participants’ mean age was M=43.34 years (SD=11.22). 

Measures 

Advanced Progressive Matrices. General intelligence was measured using the 

Advanced Progressive Matrices (Raven, Court, & Raven, 1994). The number of solved items 

in the second set was taken as a performance indicator. Cronbach’s alpha for the 36 items was 

α=.85. 

Heidelberg Finite State Automaton. The Heidelberg Finite State Automaton (Wirth 

& Funke, 2005) was used as a second indicator for dynamic decision making. The scenario is 

computer based and simulates a space flight where the participants control a space ship and a 

ground vehicle with a graphical user interface (see Figure 4). The system variables are 

connected and dynamic. For example, the ability to fly with the space ship depends on the 

state of the propulsion, the heat shield, the landing gear, and the state of the ground vehicle. 

The performance was measured with 22 items where the participants have to reach a specified 

target (e.g., land the space ship on a particular planet). The number of solved items was taken 

as the performance variable. Cronbach’s alpha for the 22 items was α=.93. 

***************************** 

Please insert Figure 4 about here 

***************************** 

Tailorshop. The participants were given information about the meaning of the 

variables in the Tailorshop (e.g., “The account status is the amount of money in your account 

that is available anytime. A negative value signifies that you took a loan.”). Further, the 

participants were instructed to maximize the company value within twelve simulated months. 

For the purpose of the present study we measured (1) the changes of the company value and 

(2) the trends of the company value after every simulated month (English and German 
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versions of the Tailorshop simulation software are available from the website 

http://www.atp.uni-hd.de/tools/tailorshop).  

Professional success. The participants’ professional success was measured by 

supervisor ratings (Higgins, Peterson, Pihl, & Lee, 2007) with five items on a six point scale 

(“The employee achieves arranged and set objectives“, “The employee demonstrates 

competence in all job-related tasks”, “The employee meets all my expectations in his roles 

and responsibilities”, “How do you rate the quality of his work?”, “How do you rate the 

overall level of performance that you observe for this employee?”). Cronbach’s alpha for 

these five item was α=.91. In addition, the participants’ yearly income was measured with 

thirteen categories (1 = ”under €2,500”, 2 = ”€2,500 to €5,000”, 3  = ”€5,000 to €7,500”, 4 = 

“€7,500 to €10,000 €”, 5 = “€10,000 to €12,500”, 6 = “€12,500 to €15,000”, 7 = “€15,000 to 

€20,000”, 8 = “€20,000 to €25,000”, 9 = “€25,000 to €30,000”, 10 = “€30,000 to €37,500”, 

11 = “€37,500 to €50,000”, 12 = “€50,000 to €125,000”, 13 = “over €125,000”).  

Results 

Measurement models 

The τ-equivalent measurement model was specified according to Figure 2. The 

measurement model for the change variables was estimated using the maximum likelihood 

procedure implemented in Mplus 5. The measurement model for the trend variables was 

estimated using the means and variance adjusted weighted least square estimator (WLSMV) 

implemented in Mplus 5 (Muthén & Muthén, 2007). In a first step, we estimated the 

measurement models for the performance indicators of all twelve months. However, the first 

assessment in a study may be unreliable and sometimes may not measure what is intended. 

Therefore, we also estimated the measurement models for the last eleven months, then for the 

last ten months and so on.  
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Neither measurement model for the change variables fitted with the data, all 

χ²>714.41, all RMSEA>0.71, all CFI<0.45. However, the measurement models for the trend 

variables fitted better with the data. The results are reported in Table 1. As can be seen, the 

measurement model for the last eleven trend variables revealed an acceptable model fit and 

the measurement models for the last nine or fewer trend variables fitted even better. However, 

the fewer months were included, the smaller the covariance matrix was and the fewer 

covariances had to be fitted with the parameters of the model. Therefore, the better model fit 

might also be a consequence of the smaller covariance matrix. Furthermore, the dynamics 

during twelve months is greater than the dynamics in only the last few months. Therefore, the 

more months are captured by a performance measure, the greater the content validity of the 

measure will be. Therefore, we decided to accept the measurement model for the last eleven 

trend variables and use it for reliability estimation.  

***************************** 

Please insert Table 1 about here 

***************************** 

The estimated variance of the latent τ-variable was 0.70, p<.001. Therefore, the 

reliability of each trend variable may be estimated by 

var(τ) 0.70
reliability trend = 0.70

var(trend ) 1.00i
i

= = . Applying the Spearman-Brown formula to 

estimate the reliability of the sum score of these eleven items reveals a reliability estimate of 

0.96. 

Correlation between performance in the Tailorshop and other variables 

To evaluate the convergent, predictive, and divergent validity of (1) the change and (2) 

the trend of the company value, we computed the correlations between these performance 

variables and the performance in the Heidelberg Finite State Automaton, the participants’ 

income, the participants’ supervisor ratings, and the performance in the APM. The sum of the 
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change variables was used as the performance indicator change of the company value and the 

sum of the trend variables (between the second and twelfth month) was used as the 

performance indicator trend of the company value. 

The correlations between these variables are reported in Table 2. As can be seen, the 

correlation between the change variable and the trend variable was neither substantial nor 

significant, which suggests that both performance variables measure different performance 

aspects. The change of the company value only correlated significantly with the APM, which 

suggests a low overall validity of this performance variable.  

On the other hand, there was a significant and substantial correlation between the 

trend of the company value and the Heidelberg Finite State Automaton, which points towards 

the convergent validity of the trend variable. Furthermore, there was a significant correlation 

between the trend variable and the supervisor ratings, which points towards the predictive 

validity of this measure.  

***************************** 

Please insert Table 2 about here 

***************************** 

There was also a substantial correlation between the trend of the company value and 

the APM. Therefore, we additionally computed partial correlations that were adjusted for the 

performance in the APM. The partial correlation between the trend variable and the 

Heidelberg Finite State Automaton was r=.20, p=.023, the partial correlation between the 

trend variable and the participants’ income was r=.05, p=.525, and the partial correlation 

between the trend variable and the supervisor ratings was r=.22, p=.010. 

Outlier analysis 

The measurement models for the trend values fitted better with the data than the 

measurement models for the change variables. One reason for this may be that the trend 
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variables are less sensitive to outliers. To investigate the role of outliers in greater detail, we 

z-transformed the change variables for each month. There were N=7 participants with |z|>3 in 

at least one month. These z-values were trimmed to a maximum of z=3 and a minimum of 

z=-3 and the measurement models were estimated again. However, the measurement model 

for the trimmed change values also did not fit with the data, χ²(65)= 1963.52, p<.001, 

RMSEA=0.43, CFI=0.30.  

In addition, we computed the correlations between the (sum of the) trimmed change 

values and the participants’ scores of the Heidelberg Finite State Automaton, income, 

supervisor ratings, and APM. The correlation with the Heidelberg Finite State Automaton was 

r=.24, p=.003, the correlation with the participants’ income was r=.02, p=.807, the correlation 

with the supervisor ratings was r=.14, p=.102, and the correlation with the APM was r=.38, 

p<.001. Meng, Rosenthal, and Rubin’s (1992) method for comparing correlated correlations 

revealed that none of these correlations was significantly greater than the correlation with the 

trend variable.  

Discussion 

The aim of the present study was to evaluate the reliability and the validity of 

performance variables in the Tailorshop simulation. Therefore, we investigated (1) the change 

of the company value and (2) the trend of the company value. 

Reliability and measurement models 

The measurement models for the changes of the company value did not fit with the 

data. This suggests that the single change values are not suitable for the reliability estimation. 

One reason for this may be that the τ-equivalent measurement model makes rather strong 

assumptions about how the company value develops over the months. In particular, the model 

states that the “true” change of the company value in the month i is the same than the “true” 

change in the month j, τi= τi. 2 However, this assumption may be violated because different 
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persons may use different strategies to maximize their company value. For example, one 

participant may make great investments in the first month and therefore has little gain first 

and great gain later. Another participant may make constant investments and therefore have a 

constant gain across the months. Hence, investigating individual differences in dynamic 

decision making processes may be a worthwhile issue for future research. Nonetheless, the 

structural equation model analysis of the present study revealed that the sum of the trends 

between the second and twelfth month is a reliable performance variable. 

Content validity 

The Tailorshop was developed according to Dörner’s (1980) definition of dynamic 

decision making. In particular, the simulation may be seen as complex and connected because 

it consists of many variables that are connected. The tasks may also be seen as non-

transparent because the participants do not know how the variables in the simulation are 

connected and the tasks may be seen as dynamic because each intervention in the simulation 

influences the following state of the simulation. Therefore, the structure of the present 

dynamic decision making task can be seen as a valid representation of general dynamic 

decision making demands. Furthermore, the participants were instructed to maximize their 

company value and therefore, the changes in the company value as well as the trends of the 

company can be seen as content valid performance measures. 

Convergent validity 

The correlation between the trend of the company value and the performance in the 

Heidelberg Finite State Automaton was substantial and significant, which indicates the 

convergent validity of this variable. Furthermore, this correlation remained significant when 

adjusted for general intelligence, which indicates that the relation between both dynamic 

decision making tasks is incremental to the overlap with general intelligence. 
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On the other hand, the correlation between the change of the company value and the 

performance in the Heidelberg Finite State Automaton was close to zero and not significant. 

After controlling for outliers this correlation increased. However, controlling for outliers may 

be difficult, especially in small samples or in individual assessments. Furthermore, none of 

the correlations with the trimmed change variable was significantly greater than the 

correlation with the trend variable.  

Predictive validity 

The correlation between the change of the company value and the participants’ 

supervisor ratings was not significant. However, there was a significant correlation between 

the trend of the company value and the supervisor ratings, which remained significant after 

controlling for individual differences in general intelligence. This indicates the incremental 

predictive validity of the trend measure. This replicates the findings of Kersting (2001), who 

also reported an incremental predictive value of a dynamic decision making measures on 

participants’ superior ratings. Furthermore, this result points towards the practical value of 

dynamic decision making measures and suggests that they may provide insights into aspects 

of professional success, which cannot be predicted by general intelligence. 

There was no relationship with participants’ income.3 This may be due to two reasons. 

First, income may measure a different aspect of professional success than supervisor ratings. 

This is supported by the low and non-significant correlation between income and supervisor 

rating. Second, income may just be a valid indicator for professional success within an 

occupational category and not between. For example, a priest may earn less than a broker, 

even if the priest does his job better than the broker. 
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Divergent validity and the relationship between dynamic decision making and general 

intelligence 

Dörner and colleagues (e.g., Dörner, 1980; Dörner & Kreuzig, 1983), who introduced 

the construct of dynamic decision making (or complex problem solving respectively), 

proposed that general intelligence and dynamic decision making are independent abilities. 

They reported several studies where low relations between measures of general intelligence 

and dynamic decision making were observed (Dörner, Kreuzig, Reither, & Staudel, 1983; 

Putz-Osterloh, 1981; Putz-Osterloh & Lüer, 1981). However, following studies revealed 

rather heterogeneous findings. Kluwe, Misiak, and Haider (1991) presented an overview of 

early studies and reported a broad range of correlation (between r=-.52 and r=.46), whereas 

subsequent studies found stronger associations (Kröner, Plass, & Leutner, 2005; Wittmann & 

Hattrup, 2004). One study even found a correlation between a latent intelligence and a latent 

dynamic decision making variable of r=.84 (Wirth & Klieme, 2003). 

In the present study, there was a significant correlation of r=.31 between the 

performance in the APM and the performance in the Tailorshop. In addition, there was a 

significant correlation of r=.57 between the performance in the APM and the performance in 

the Heidelberg Finite State Automaton. Thus, general intelligence could explain 10% (or 32% 

respectively) of the variance in dynamic decision making performance which suggests that 

there is a partial but not a complete overlap between the constructs. 

 However, our results do not allow to draw final conclusions about the relation 

between general intelligence and dynamic decision making. In particular, Wittmann (1988; 

Wittmann & Süß, 1999) suggested that the relation between two indicators only allows 

conclusions about the relation between underling constructs if the indicators are symmetric. 

For example, the APM may be seen as an intelligence test that particularly captures individual 

differences in figural reasoning. In a similar vein, the Tailorshop may particularly capture 
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individual differences in economy related dynamic decision making. Therefore, both 

measures may contain not only systematic construct variance (e.g., general intelligence 

variance) but also “unwanted” but reliable and specific variance (e.g., specific figural 

reasoning variance in the APM). However, investigating the symmetry of the variables would 

require to measure each construct with several indicators and at several measurement 

occasions. Following this reasoning, the present findings can not provide a final answer to the 

question on how general intelligence and dynamic decision making are related. 

Performance differences between men and women 

Wittmann and Hatrupp (2004) reported that men showed a better performance in the 

Tailorshop than women (d=0.70). This finding was replicated in the present study. The 

number of months with a positive trend in the company value (between the second and the 

twelfth month) was greater for men (M=3.60) than for women (M=2.25), t(156)=2.49, p=.014, 

d=0.46. Wittmann and Hatrupp (2004) suggested that women may behave more risk-aversive 

than men and therefore construct themselves a less favorable learning environment in the 

Tailorshop and accordingly show a lower performance. Furthermore, there were no significant 

performance differences between women and men in the Heidelberg Finite State Automaton 

or the APM, which suggests that these differences are task specific for the Tailorshop. 

Conclusion 

The sum of the trends between the second and the twelfth month is a reliable and valid 

performance indicator in the Tailorshop simulation. Hence, this score may be used for the 

study of individual differences as well as for individual assessments. For example, dynamic 

decision making tasks may be a useful complement for the selection of job applicants as 

suggested by Kersting (2001). 
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Footnotes

                                                 
1 Due to the complex relations between the variables it is very unlikely to obtain a 

change in the company value of exactly zero. In the present study, there was always either a 

positive or a negative change in the company value. 

2 We additionally investigated the change variables with a τ-congeneric measurement 

model, which makes weaker assumptions than the τ-equivalent measurement model. In 

particular, the model states that the “true” change of the company in a month i can be linearly 

transformed into the true score of another month j, τi = γ*τi. (Lord & Novick, 1968; Steyer, 

1989). However, the τ-congeneric measurement model fitted neither with the non-trimmed 

change variables (χ²(54)=4582.79, p<.001, RMSEA=0.73, CFI=0.16) nor with the trimmed 

change variables (χ²(54)=1605.81, p<.001, RMSEA=0.43, CFI=0.42). 

3 Some studies (e.g. Roszkowski & Grable, 2010) report, that women earn less than 

men. Therefore, we additionally calculated this correlation separately for women and men. 

There were no significant differences. 
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Table 1 

Model fit indices for the measurement models for the trend of the company value 

Trend  χ² df p RMSEA CFI 

1 to 12 79.85 22 <.001 0.13 0.94 

2 to 12 40.10 23 .015 0.07 0.98 

3 to 12 38.08 21 .013 0.07 0.98 

4 to 12 25.35 18 .116 0.05 0.99 

5 to 12 17.77 16 .337 0.03 1.00 

6 to 12 11.93 14 .612 0.00 1.00 

7 to 12 8.51 11 .667 0.00 1.00 

8 to 12 6.19 8 .626 0.00 1.00 

9 to 12 2.29 5 .808 0.00 1.00 

10 to 12 1.24 2 .538 0.00 1.00 
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Table 2 

Correlations between performance variables (p-values in brackets) 

 Change Trend HFA Income Supervisor rating 

Trend .13 (.098)     

HFA .03 (.255) .31 (<.001)    

Income .01 (.923) .08 (.323) .05 (.561)   

Supervisor rating .15 (.085) .19 (.025) .09 (.292) -.02 (.801)  

APM .19 (.020) .31 (.001) .55 (<.001) .16 (.054) -.03 (.706) 

Note. change = sum of changes of the company value, trend = sum of trends of the 

company value (between second and twelfth month), HFA = Heidelberg Finite State 

Automaton, income = participants’ yearly income, APM = Advanced Progressive Matrices. 
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Figure 1. Screenshot of the graphical user interface of the Tailorshop (labels translated). 
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Figure 2. Schematic relation between the variables in the Tailorshop. The marked variables 

can be manipulated directly. 
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Figure 3. τ-equivalent measurement model. τ = true score variable, ε = measurement error 

variable. 
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Figure 4. Screenshot of the graphical user interface of the Heidelberg Finite State Automaton 

(labels translated). 
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The present study investigated cognitive performance measures beyond IQ. In particular, we

investigated the psychometric properties of dynamic decision making variables and implicit

learning variables and their relationwith general intelligence and professional success.N=173

employees from different companies and occupational groups completed two standard

intelligence tests, two dynamic decision making tasks, and two implicit learning tasks at two

measurement occasions each. We used structural equation models to test latent state-trait

measurement models and the relation between constructs. The results suggest that dynamic

decision making and implicit learning are substantially related with general intelligence.

Furthermore, general intelligence is the best predictor for income, social status, and

educational attainment. Dynamic decision making can predict supervisor ratings even beyond

general intelligence.
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1. Introduction

General intelligence is one of the most successful psycho-

logical constructs. Since Spearman's (1904) early investiga-

tions, there is a wealth of evidence for the reliability, stability,

and validity of intelligence measures (Carroll, 1993). Further-

more, general intelligence is a powerful predictor of success in

many domains of real life (Ng, Eby, Sorensen, & Feldman, 2005;

Salgado et al., 2003; Schmidt & Hunter, 2004). Beside its

undisputed usefulness, some researchers have suggested to use

additional constructs for characterizing individuals' cognitive

ability such as dynamic decision making and implicit learning

(Dörner, 1980; Mackintosh, 1998).

The concept of dynamic decision making was developed

by Dörner (1980, 1986) who proposed that situations in

real life are complex and solving problems in real life

requires managing complex information. He criticized that

standard measures of general intelligence only assess

whether individuals perform accurately and quickly in

rather simple tasks but not whether they show intelligent

behavior in complex tasks. Therefore, he suggested to

measure performance in computer based scenarios that

simulate complex, connected, dynamic, and non-transparent

environments. Further on, he hypothesized that individual

differences in dynamic decision making are unrelated to

general intelligence but are substantially related to profes-

sional success.

Mackintosh (1998) suggested to consider another con-

struct. He proposed that there are two independent mental

systems: an explicit, hypothesis generating and testing

system and an implicit, associative learning system. In

particular, the explicit learning system is necessary for

discovering regularities with intention and awareness (like

in a numerical series task). The implicit learning system, on

the other hand, detects contingencies without awareness or

intention (like judging whether a sentence is grammatically
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right or wrong without being able to report the respective

grammatical rule). Mackintosh suggested that standard

intelligence tests capture individual differences in the explicit

system but not individual differences in the implicit learning

system. Therefore, he suggested to take individual differences

in implicit learning into account. He hypothesized that these

differences are independent from general intelligence mea-

sures but are nevertheless important predictors of educa-

tional and professional success.

Dörner and Mackintosh's proposals raise two interesting

questions. Are there reliable individual differences in dynam-

ic decision making and implicit learning which are indepen-

dent from general intelligence? Can these differences predict

real life performance beyond IQ? Investigating these issues

will be the aim of the present study.

1.1. Previous findings

1.1.1. Dynamic decision making

Dörner's (1980, 1986) critique of standard intelligence

tests laid the foundation for a field of research, which has been

called dynamic decision making (Gonzalez, Vanyukov, &Martin,

2005) or complex problem solving (Funke, 2010). Over the years,

several dynamic decision making tasks have been developed.

For example, the Tailorshop scenario (Funke, 1983) simulates a

fictional companywhere the participants have to controlmany

variables like thenumber ofworkers or the costs for advertising

to maximize their company value. Other tasks simulate a

forestry (Wagener, 2001), a power plant (Wallach, 1998), or a

space flight (Wirth & Funke, 2005)where the participants have

to control several variables to reach a given goal state. Recently,

dynamic decision making tasks have also been included in the

Programme for International Student Assessment (PISA; Wirth

& Klieme, 2003).

Over the years, there have been many studies investigat-

ing the relation between dynamic decision making and

general intelligence. Whereas several studies found non-

significant or only small correlations (for an overview see

Kluwe, Misiak, & Haider, 1991), other studies reported

significant standardized path coefficients between β=0.38

and β=0.54 from latent intelligence to latent dynamic

decision making variables (Kröner, Plass, & Leutner, 2005;

Rigas, Carling, & Brehmer, 2002; Wittmann & Hattrup, 2004).

One study even found a correlation between a latent

intelligence and a latent dynamic decision making variable

of r=0.84 (Wirth & Klieme, 2003).

There are only two studies that investigated the predictive

validity of dynamic decision making measures. Wagener and

Wittmann (2002) assessed a sample of N=35 trainees and

reported correlations between r=0.16 and r=0.40 between

the performance in a dynamic decision making task and the

performance in different assessment center tasks. However,

the study did not report whether these relationships were

incremental or due to an overlap between dynamic decision

making and general intelligence. Kersting (2001) reported a

correlation of r=0.37 between the performance in a dynamic

decision making task and supervisor ratings in a sample of

N=73 policemen. He further reported that this correlation

remained significant after controlling for individual differ-

ences in general intelligence, r=0.29, which points towards

the incremental predictive validity of this dynamic decision

making measure.

Taken together, these findings draw a rather heteroge-

neous picture of the relation between dynamic decision

making and general intelligence and there is only preliminary

evidence for the predictive validity of dynamic decision

making variables.

1.1.2. Implicit learning

Mackintosh (1998) suggested to use artificial grammar

learning tasks (Reber, 1967) to measure performance

differences in implicit learning. In such a task, the participants

are asked to learn a list of apparently arbitrary letter strings

(like WNSNXS). Afterwards, they are told that these strings

were constructed according to a complex rule system (a

grammar) and they are asked to judge newly presented

strings as grammatical or non-grammatical. Typically, the

participants show above chance performance but are not able

to report the grammar rules. Therefore, Reber (1967)

suggested that the participants learned the grammar implic-

itly. Although Reber's interpretation released a long and

fertile discussion about implicit learning processes, there

have been only a few studies investigating the relation

between performance in artificial grammar learning tasks

and general intelligence.

Reber, Walkenfeld, and Hernstadt (1991) reported a

correlation of r=0.25 between the performance in an

artificial grammar learning task and IQ, and Gebauer and

Mackintosh (2007) reported respective correlations between

r=−0.03 and r=0.17 depending on the task and the

instruction. To our knowledge, there is no published study

investigating the relation between educational or profession-

al success and the performance in an artificial grammar

learning task. Thus, there is a paucity of evidence on the

relation between implicit learning and general intelligence as

well as on the relation between implicit learning and success

in real life.

1.2. Some psychometric considerations

Previous studies that investigated the relation between

general intelligence, dynamic decision making, and implicit

learning treated the performance measures as trait-like

variables. A trait may be defined as a variable that is stable

over several measurement occasions, consistent across

different situations, and consistent across different

methods. However, the variance of a performance measure

may capture additional factors beyond individual differ-

ences in a trait.

First, a performance measure may also be influenced by

the specific measurement situation even in standardized

experiments. For example, one person may be well rested

whereas another person may already have worked several

hours before testing. One person may be motivated to show

maximum performance whereas another person may have

gotten a stinging rebuke by his or her supervisor that day and

may not be motivated to show performance at all. Because

these effects may contribute unwanted variance, it may be

beneficial to take this occasion specificity of performance

variables into account.

2 D. Danner et al. / Intelligence xxx (2011) xxx–xxx

Please cite this article as: Danner, D., et al., Beyond IQ: A latent state-trait analysis of general intelligence, dynamic decision
making, and implicit learning, Intelligence (2011), doi:10.1016/j.intell.2011.06.004



Second, a performance measure may be influenced by

the specific method that is used for the assessment. Hence,

there may be individual differences in a performance

measurement which are triggered by the method. For

example, a verbal intelligence test may capture individual

differences in general intelligence as well as individual

differences in speech comprehension whereas a figural

intelligence test may capture individual differences in

general intelligence and visual thinking. Thus, individual

differences in speech comprehension or visual thinking are

method specific because they can only be assessed with

verbal or figural test material. Similarly, a particular

dynamic decision making task may measure performance

differences, which are specific for this particular task but not

for dynamic decision making in general.

Third, a performance measure may be influenced by

unsystematic measurement error. For example, instructions

may be ambiguous or persons may accidently makemistakes,

which may result in a low reliability of performance

measures. Because these effects may contribute unwanted

variance, it seems worthwhile to investigate these factors

with respect to dynamic decision making and implicit

learning variables in greater detail.

These considerations have been formalized in Steyer et

al.'s latent state-trait theory (Steyer, Schmitt, & Eid, 1999). In

a nutshell, latent state-trait theory proposes that the

measurement i of a variable Y can be decomposed into a

trait ξi, a state residual ζi, a method residual ηi, and an

unsystematic error residual εi, thus Yi=ξi+ζi+ηi+εi.
Given the independence of these factors (Steyer et al.,

1999), the variance of this measurement can be decomposed

as σ²(Yi)=σ²(ξi)+σ²(ζi)+σ²(ηi)+σ²(εi), and the factor

variances may be estimated with a structural equation

model as shown in Fig. 1. As can be seen in this figure, the

latent trait factor is defined as a variable that is consistent

across several measurement occasions and methods, where-

as the latent state residual and themethod factor are specific

for the individual measurement occasion and the assess-

ment method, respectively. Hence, these models allow to

separate the different contributions of the trait, the mea-

surement occasion, and the measurement method to the

manifest variables.

There have been many applications of latent state-trait

models in different domains of personality research, which

demonstrated substantial effects of the measurement

occasion or the method on behavioral variables (e.g., Eid,

Notz, Steyer, & Schwenkmezger, 1994; Schmitt & Steyer,

1993; Steyer, Schwenkmezger, & Auer, 1990; Yasuda,

Lawrenz, Whitlock, Lubin, & Lei, 2004; Ziegler, Ehrlenspiel,

& Brand, 2009) and physiological variables (e.g., Hage-

mann, Hewig, Seifert, Naumann, & Bartussek, 2005; Hermes

et al., 2009). However, there have been no applications of

latent state-trait models on performance variables yet,

even if some findings suggest that it may be instructive to

consider the occasion specificity and method specificity of

these variables.

For example, in some studies the participants completed

the same dynamic decision making task for several times

(Süß, Kersting, & Oberauer, 1993;Wittmann &Hattrup, 2004)

and the performance between subsequent task correlated

only moderately (between r=0.37 and r=0.62). This points

either towards a low reliability or towards a substantial

occasion specificity of the variables. Moreover, Wirth and

Klieme (2003) reported structural equation models, which

implied a correlation of r=0.33 between two dynamic

decision making tasks (r=0.47 when corrected for attenu-

ation) and Gebauer and Mackintosh (2007) reported a

correlation of r=0.15 between two artificial grammar

learning task (r=0.21 when corrected for attenuation).

These findings suggest a substantial method specificity of

performance measures. Therefore, a further aim of the

present study was to investigate the occasion specificity and

the method specificity of dynamic decision making and

implicit learning variables.

1.3. The present study

The present study investigated the psychometric proper-

ties of general intelligence, dynamic decision making, and

implicit learning measures within the framework of latent

state-trait theory. Therefore, each construct was measured

with two methods at two measurement occasions. A further

scope of this study was the relation between the respective

trait variables and real life performance. We expected that

general intelligence is a powerful predictor of professional

success and we further expected that there are individual

differences beyond IQ that are also able to predict profes-

sional success.

2. Method

2.1. Participants

There were N=173 employees (113 females, 47 males, 13

not reported) completing the first measurement occasion and

N=151 completing the second measurement occasion. The

participants were recruited via newspaper announcement

from different branches and different companies around

Heidelberg. The participants' jobs were rated according to the

Fig. 1. Latent state-trait structural equation model. Y11 = variable at

measurement occasion 1 with method 1, Y12 = variable at measurement

occasion 1 with method 2, Y21 = variable at measurement occasion 2 with

method 1, Y22 = variable at measurement occasion 2 with method 2, ξ = trait

variable, ζ1=state residual 1, ζ2=state residual 2, η1=method residual 1,η2=

method residual 2, ε1 = error 1, ε1 = error 2, ε1 = error 3, ε1 = error 4.
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International Standard Classification of Occupations (ISCO-88

COM). 6% rated themselves as legislators, senior officials, and

managers, 25% as professionals, 11% as technical and

associate professionals, 14% as clerks, 40% as service workers

and shop and market sales workers, 1% as craft and related

trade workers, 1% as plant and machine operators and

assemblers, and 1% as elementary occupations. The partici-

pants' mean age was M=43.34 (SD=11.22).

2.2. Measures

2.2.1. Advanced progressive matrices (APM)

The APM (Raven, Court, & Raven, 1994) were used as

an indicator for participants' general intelligence. A

computer adapted version of the test was administered.

According to the test manual, the number of solved items

of the second set was taken as a performance indicator.

These raw scores were transformed to z-scores for further

analysis, because the APM and the Berlin Intelligence

Structure Test were scaled differently.

2.2.2. Berlin intelligence structure test (BIS)

The short version of the BIS (Jäger, Süß, & Beauducel,

1997) was used as a second indicator of general intelli-

gence. The BIS consists of a variety of tasks like an

analogical reasoning task, a visual memory task, and a

numerical series task (for an English description, see Süß,

Oberauer, Wittmann, Wilhelm, & Schulze, 2002). The test

was administered and the raw scores were computed

according to the test manual. We did not compute IQ

scores because there is no adult normative sample for the

BIS. For further analysis the raw scores were transformed

to z-scores.

2.2.3. Artificial grammar learning tasks

Implicit learning was measured with two artificial

grammar learning tasks (Reber, 1967). The procedure and

the stimuli were adopted from Gebauer and Mackintosh

(2007). The artificial grammar learning tasks consisted of a

learning phase and a testing phase. In the learning phase, 30

letter strings were presented and the participants were

instructed to memorize them. Each string was presented

individually for 3 s on a 17 in. screen of a personal computer

(e.g., WNSNXS). The participants were asked to repeat the

strings correctly by pressing the respective letters on the

keyboard.When a string was repeated correctly, the feedback

“correct” was given and the next string occurred. When a

string was repeated incorrectly, the feedback “false” was

given and the string was displayed again until repeated

correctly. After a participant repeated ten strings correctly,

these ten strings were simultaneously displayed for 90 s on

the screen and the participant was asked to repeat them

silently. After a participant repeated all 30 strings correctly

the learning phase was finished and the participant was

informed that all strings in the learning phase were

constructed according to a complex rule system. In the testing

phase, 80 new strings were presented (see Appendix A).

There were 40 grammatical strings that were constructed

according to the same rule system as the strings in the

learning phase (e.g., WNSWWW). In addition, there were 40

non-grammatical strings that contained one letter at a

position that violated the rule system (e.g., NTSWWN). The

participants were instructed to judge the letter strings as

grammatical or non-grammatical. To judge a string as

grammatical, the participants had to press the A-key of the

keyboard, to judge a string as non-grammatical, the L-key.

The order of presentation of the strings was fixed across the

participants in a random order. The percentage of correct

judgments in the testing phase was taken as the performance

indicator. The stimuli for the first artificial grammar learning

task were constructed according to Fig. 2. The stimuli for the

second artificial grammar learning task were constructed

according to Fig. 3.

2.2.4. Tailorshop

The Tailorshop simulation (Funke, 1983) was used as a

dynamic decision making task. The Tailorshop is a computer

based scenario and requests the participants to lead a fictional

company which produces and sells shirts for twelve simulat-

ed months. Several variables can be manipulated like the

number of workers, the expenses for advertising etc. (see

Fig. 4). The state of a variable in a given month influences the

state of the same and other variables in the following month

Fig. 2. Grammar 1 that was used in the first artificial grammar learning task.

Fig. 3. Grammar 2 that was used in the second artificial grammar learning

task.
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but the participants do not know how the variables are

connected (for a more detailed description see Funke, 1983,

2010). The participants completed a training phase, a

knowledge test, and a control phase. In the training phase

the participants controlled the system for six simulated

months and were instructed to find out as much as possible

about the scenario. The knowledge test consisted of twelve

questions that measured how much the participants learned

about the Tailorshop so far. In the control phase the

participants were instructed to maximize their company

value during twelve simulatedmonths. For the purpose of the

present study only data from the control phase were

analyzed. The percentage of months with an increase in the

company value between the second and the twelfth month

was taken as the performance indicator, because Danner et al.

(2011) have shown that this is a reliable and valid

performance indicator.

2.2.5. Heidelberg finite state automaton (HFA)

The HFA (Wirth & Funke, 2005) was taken as a second

indicator for dynamic decision making. The scenario is

computer based and simulates a space flight where the

participants can control a space ship and a vehicle with a user

interface (see Fig. 5). The scenario consists of a training phase,

a knowledge test, and a control phase. During the 15 minute

training phase the participants were instructed to find out

how to control the space ship and the vehicle. The knowledge

test consists of 16 items and measures how much the

participants have learned about the system so far. The control

phase consists of 22 items where a target state is given which

the participants have to reach by controlling the system (e.g.,

landing the space ship on a specified planet). For the purpose

of the present study, only data from the control phase were

analyzed. The percentage of correctly solved items was taken

as the performance indicator.

2.2.6. Professional success

The participants' professional success was measured

with two instruments. Objective professional success was

measured by the participants' income (thirteen categories),

self-rated social status (seven categories), and the partici-

pants' highest educational attainment (nine categories).

To adjust for different scaling, the three variables were

z-transformed (M=0, SD=1) for further analysis. In

addition, professional success was measured by supervisor

ratings with five items (e.g., “The employee demonstrates

competence in all job-related tasks”) on a six-point Likert

scale.

2.3. Procedure

There were two measurement occasions. The first mea-

surement occasion started in July 2009 (till September 2009)

and consisted of session 1 and session 2. Both sessions took

place within one week for each participant. The second

measurement occasion started in December 2009 (till

February 2010) and consisted of session 3 and session 4,

which also took place within one week. The participants were

assessed in small groups of not more than four persons. Each

session took approximately 2.5 h.

The participants completed the same tasks at both

measurement occasions. During session 1 (and session 3)

the participants completed an artificial grammar learning

task with grammar 1, the APM, and the Heidelberg Finite

State Automaton. During session 2 (and session 4), the

participants completed an artificial grammar learning task

with grammar 2, the short version of the BIS, and the

Tailorshop simulation. After the first session, each partici-

pant received an envelope with a questionnaire for his or

her supervisor. During the third session, the participants

additionally completed a questionnaire about their profes-

sional success.

2.4. Statistical analysis

To investigate the relations between the variables, we

used structural equation models. The parameters of the

models were estimated using the maximum likelihood

Fig. 4. Screenshot of the graphical user interface of the Tailorshop (labels translated).
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algorithm implemented in Amos 18 (Arbuckle, 2006). In

a first step, we investigated latent state-trait measurement

models separately for intelligence, dynamic decision

making, and implicit learning. In a second step, we

investigated the correlation between the latent trait vari-

ables. In a third step, we performed a latent regression

analysis to investigate relations between the constructs in

greater detail.

3. Results

3.1. Raw scores

The raw scores of the measurements are reported in

Table 1. The number of solved items in the Advanced

Progressive Matrices at the first measurement occasion was

M=21.64 (SD=5.80), which corresponds to an IQ of

M=100.62 (SD=22.55). There are no normative samples

for the Berlin Intelligence Structure Test, the Tailorshop, the

Heidelberg Finite State Automaton, or the artificial grammar

learning tasks. However, the present scores are similar to

previous results. The mean score of the BIS was M=96.30

(SD=6.21) at the first measurement occasion and

M=99.21 (SD=6.38) at the second measurement occasion.

According to Jäger et al. (1997), a mean score of M=100

corresponds to an average performance. In the present

study, the participants solved M=10.79 (SD=5.80) HFA

items at the first measurement occasion and M=13.44

(SD=5.95) HFA items at the second measurement occasion.

This result is similar to Wirth and Klieme (2003), who

reported that their participants solved M=11 HFA items on

average. The judgment accuracy in the artificial grammar

learning tasks varied between M=61.58 (SD=7.11) and

M=63.90 (SD=7.24), which corresponds to the findings of

Gebauer and Mackintosh, who reported mean accuracies

between M=59.16 (SD=8.59) and M=69.93 (SD=7.52)

for the same artificial grammar learning tasks that were used

in the present study.

3.2. Measurement models

We used a basic latent state-trait model (Steyer et al.,

1999) with a state residual ζ for each measurement occasion

and a method factor η for each instrument to control for

effects of the measurement occasion and method effects (see

Fig. 1). All path coefficients were fixed to one and the

variances of all latent variables were estimated. If a first

estimation revealed negative or non-significant variances,

then these variances were fixed to zero and the model was

estimated again.

3.2.1. Intelligence

A first analysis of the basic model revealed a goodmodel fit,

χ²(1)=0.30, p=0.569, RMSEA=0.00, CFI=1.00. However,

Fig. 5. Screenshot of the graphical user interface of the Heidelberg Finite State Automaton (labels translated).

Table 1

Mean and standard deviation of raw scores.

Measurement

occasion 1

Measurement

occasion 2

Task M SD M SD

APM 21.64 5.80 22.94 7.02

BIS 96.30 6.21 99.21 6.38

Tailorshop 2.68 3.21 3.15 3.77

HFA 10.79 5.80 13.44 5.95

AGL1 61.58 7.11 62.83 6.87

AGL2 63.90 7.24 62.20 7.70

Note. APM = number of solved items in the Advanced Progressive Matrices,

BIS = scores in Berlin Intelligence Structure Test, Tailorshop = number of

months with an increase in the company value, HFA = number of items

solved in the Heidelberg Finite State Automaton, AGL1 = percent of correct

judgments in the artificial grammar learning task with grammar 1, AGL2 =

percent of correct judgments in the artificial grammar learning task with

grammar 2.
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the estimated variance for ζ1 was negative (ζ1=−14.14,

p=0.016), and the estimatedvariance for ζ2wasnot significant

(ζ2=9.60, p=0.125). Therefore, these parameters were set to

zero and the model was estimated again. The modified model

fitted the data well, χ²(3)=5.59, p=0.133, RMSEA=0.07,

CFI=1.00, and the difference in the fit of the models was not

significant, Δχ²(2)=4.29, p=0.117. Therefore, this model

could be accepted. The estimated model parameters are

reported in Table 2.

3.2.2. Dynamic decision making

The basic latent state-trait model fitted well with the data,

χ²(1)=0.9, p=0.335, RMSEA=0.00, CFI=1.00. However,

the latent state residuals were negative (ζ1=−49.20,

p=0.183) or non-significant (ζ1=48.30, p=0.257). The

modified model without latent state residuals also fitted

well with the data, χ²(3)=3.25, p=0.355, RMSEA=0.02,

CFI=1.00; Δχ²(2)=2.35, p=0.309. Thus, this model could

be accepted. The estimated model parameters are presented

in Table 2.

3.2.3. Implicit learning

The basic latent state-trait model fitted well with the data,

χ²(1)=0.13, p=0.719, RMSEA=0.00, CFI=1.00. However,

the variances of the latent state residual and the latent

method variables were non-significant (ζ1=6.57, p=0.128;

ζ2=2.35, p=0.585; η1=−0.06, p=0.988; η2=−4.96,

p=0.250). Therefore, these variances were set to zero. This

modified model fitted the data well, χ²(5)=3.19, p=0.671,

RMSEA=0.00, CFI=1.00; Δχ²(4)=3.06, p=0.548, and this

model was accepted. The estimated model parameters are

presented in Table 2.

3.2.4. LST parameters

Based on these estimates, several latent state-trait

parameters may be computed such as coefficients of

reliability, trait-specificity (also referred to as consisten-

cy), occasion-specificity, and method-specificity. These

parameters have a range between zero and one, and a

greater value indicates a greater specificity. The reliability

coefficient of a measurement i reveals how great the

proportion of systematic variance in this measurement is.

It is computed as [σ²(ξi)+σ²(ζi)+σ²(ηi)] /σ²(Yi). The

trait-specificity coefficient of a measurement i reveals

how great the proportion of trait differences in a mea-

surement is. It may be computed as σ²(ξi) /σ²(Yi). The

occasion-specificity coefficient of a measurement i indi-

cates the effects of the situation and the interaction

between the situation and the person on the measure-

ment. It may be computed as σ²(ζi) /σ²(Yi). The method-

specificity coefficient of a measurement i reveals how

great the proportion of individual differences is due to the

method (e.g., task) used. This coefficient is computed as

σ²(ηi) /σ²(Yi).
These parameters are presented in Table 3. As can

be seen, the general intelligence measurements revealed

great reliabilities, great trait-specificities, and low method-

specificities. The Heidelberg Finite State Automaton mea-

surements also showed great reliabilities, but smaller

trait-specificities and greater method-specificities. The

Tailorshop measurements revealed small reliabilities and

small trait-specificities. All implicit learning measurements

revealed very small reliabilities and trait-specificities.

Since all measurement models fitted well without state

residuals, the estimated occasion-specificity was zero for

all measurements.

3.2.4. Professional success

Objective professional success was measured with three

indicators at session 3. A measurement model with one

latent success variable, equal path coefficients (β=1), and

a latent error variable for each manifest variable was

specified. The model fitted the data well, χ²(2)=2.46,

p=0.293, RMSEA=0.04, CFI=0.98. Therefore, this model

was accepted. The composite reliability (Raykov, 1997) of

the items' mean score was 0.71. The participants' supervisor

ratings were measured with a five item questionnaire. A

measurement model with one latent success variable, equal

path coefficients (β=1), and a latent error variable for

each manifest variable fitted the data well, χ²(9)=11.93,

p=0.217, RMSEA=0.04, CFI=0.99. Thus, this model was

accepted. The composite reliability of the items' mean score

was 0.95.

Table 2

Estimated variances for measurement models (p-values in brackets).

Intelligence Dynamic decision making Implicit learning

ξ 0.73 (b0.001) 317.12 (b0.001) 14.87 (b0.001)

ζ1 0 (fixed) 0 (fixed) 0 (fixed)

ζ2 0 (fixed) 0 (fixed) 0 (fixed)

η1 0.14 (0.015) 144.66 (0.046) 0 (fixed)

η2 0.24 (b0.001) 257.37 (b0.001) 0 (fixed)

ε1 0.14 (b0.001) 425.17 (b0.001) 35.92 (b0.001)

ε2 0.18 (b0.001) 637.27 (b0.001) 33.38 (b0.001)

ε3 0.11 (b0.001) 146.00 (b0.001) 35.29 (b0.001)

ε4 0.06 (0.014) 145.21 (b0.001) 43.83 (b0.001)

Note. ξ = trait variable, ζ1 = state residual 1, ζ2 = state residual 2, η1 =

method residual 1, η2 = method residual 2, ε1 = error 1, ε2 = error 2, ε3 =

error 3, ε4 = error 4. The different scaling of the variables affects the

magnitude of the variances estimates.

Table 3

Reliability, trait- and method-specificity of measurements.

Task Measurement

occasion

Reliability Trait-

specificity

Method-

specificity

APM 1 0.86 0.72 0.14

APM 2 0.83 0.70 0.13

BIS 1 0.90 0.67 0.22

BIS 2 0.95 0.71 0.24

Tailorshop 1 0.52 0.36 0.16

Tailorshop 2 0.42 0.29 0.13

HFA 1 0.80 0.44 0.36

HFA 2 0.80 0.44 0.36

AGL1 1 0.29 0.29 0.00

AGL1 2 0.31 0.31 0.00

AGL2 1 0.30 0.30 0.00

AGL2 2 0.25 0.25 0.00

Note. APM = Advances Progressive Matrices, BIS = Berlin Intelligence

Structure Test, HFA = Heidelberg Finite State Automaton, AGL1 = artificial

grammar learning task with grammar 1, AGL2 = artificial grammar learning

task with grammar 2.
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3.3. Relations between intelligence, dynamic decision making,

implicit learning, and professional success

We specified an omnibus model, which simultaneously

tested all measurement models described above and allowed

free correlations between the latent trait variables and the

latent professional success variables. The specified model

revealed a good model fit, χ²(174)=197.74, p=0.105,

RMSEA=0.03, CFI=0.98 and thus was accepted. The

correlations between the latent variables are shown in

Table 4. As can be seen, there were significant and substantial

correlations between all performance variables. The greatest

correlation was between intelligence and dynamic decision

making, r=0.86, pb0.001. There was also a correlation of

r=0.78, pb0.001 between objective professional success and

general intelligence. There were further substantial correla-

tions between objective professional success and dynamic

decision making, r=0.52, pb0.001, and between objective

professional success and implicit learning, r=0.31, p=0.030.

The only significant correlation with supervisor ratings was

the correlation with dynamic decision making, r=0.25,

p=0.021.

3.4. Prediction of objective professional success

To investigate the relation between performance variables

and objective professional success in greater detail, we

specified a latent regression model according to Fig. 6. As

can be seen, dynamic decision making, implicit learning, and

professional success were regressed on intelligence. The

residuals of this regression are the proportions of trait

variances which are independent from general intelligence.

The dynamic decision making and implicit learning residuals

were used to predict the proportion of construct variance in

objective professional success that could not be explained by

general intelligence.

The specified model revealed a good model fit, χ²(95)=
114.44, p=0.085, RMSEA=0.03, CFI=0.98. The standard-

ized path coefficients are shown in Fig. 6. As can be seen,

dynamic decision making as well as implicit learning

revealed trait variances, which were independent from

general intelligence. In addition, general intelligence was

the only significant predictor of objective professional

success. Neither the path coefficient from the residual

dynamic decision variable to the residual professional

success variable, nor the path coefficient from the residual

implicit learning variable to the residual professional success

variable was significant. Therefore, these path coefficients

were set to zero and the model was estimated again. The

modified model also revealed a good model fit, χ²(97)=

117.62, p=0.076, RMSEA=0.04, CFI=0.98; Δχ²(2)=3.18,

p=0.204. Thus, this model was accepted.

3.5. Prediction of supervisor ratings

The relations between general intelligence, dynamic

decision making, implicit learning, and supervisor ratings

were investigated analogously to the analysis described

above. The specified model fitted the data well, χ²(126)=
125.86, p=0.487, RMSEA=0.00, CFI=1.00. The stan-

dardized path coefficients are shown in Fig. 7. As can be

seen, dynamic decision making was the only significant

predictor of participants' supervisor ratings. Neither the

path coefficient from the general intelligence variable, nor

the path coefficient from the residual implicit learning

variable was significant. A modified model, which fixed

these parameters to zero, revealed an adequate model fit,

χ²(128)=126.00, p=0.533, RMSEA=0.00, CFI=1.00;

Δχ²(2)=0.14, p=0.932. Therefore, this model was

accepted.

Table 4

Correlation between latent success and latent trait variables (p-values in brackets).

Intelligence Dynamic decision making Implicit learning Objective professional success

Dynamic decision making 0.86 (b0.001)

Implicit learning 0.32 (0.005) 0.26 (0.033)

Objective professional success 0.78 (b0.001) 0.52 (b0.001) 0.31 (0.030)

Supervisor ratings 0.03 (0.760) 0.25 (0.021) −0.02 (0.871) −0.07 (0.559)

Fig. 6. Latent Regression Analysiswith standardized path coefficients (p-values

in brackets). IQ = latent general intelligence variable, DDM = latent dynamic

decision making variable, IL = latent implicit learning variable, OPS = latent

objective professional success variable, DDMres = latent residual for dynamic

decision making, ILres = latent residual for implicit learning, OPSres = latent

residual for professional success.
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4. Discussion

The present study investigated Dörner's (1980) and

Mackintosh's (1998) hypotheses that dynamic decision

making and implicit learning are cognitive abilities that are

independent from general intelligence.

In a first step, we analyzed the psychometric proper-

ties of intelligence variables, dynamic decision making

variables, and implicit learning variables within the

framework of latent state-trait theory. All measurement

models fitted well without latent state residuals. This

indicates that the performance measures were not

affected by situational factors such as individual differ-

ences in fatigue or individual differences in the form of

the day. Furthermore, the general intelligence variables

revealed high trait specificities and low method specific-

ities, which indicate a high proportion of trait differences

in these performance measures. The dynamic decision

making and implicit learning variables, on the other hand,

revealed lower trait specificities and greater method

specificities, which suggests that these variables capture

task specific performance differences as well. However,

even if the trait specificities were small, the variances of

the latent trait variables were still significant. This

indicates that there are true individual trait differences

in dynamic decision making and implicit learning.

In a second step, we analyzed the relations between

these latent trait variables. The present results suggest that

there are substantial relations between general intelligence,

dynamic decision making, and implicit learning. In partic-

ular, there was a great correlation (r=0.86) between the

latent general intelligence variable and the latent dynamic

decision making variable. This result goes in line with

previous findings of Wirth and Klieme (2003), Wittmann

and Hattrup (2004), and Kröner et al. (2005) who also

reported great relations between measures of dynamic

decision making and measures of general intelligence.

Taken together, these findings contradict Dörner's hypoth-

esis that dynamic decision making and general intelligence

are independent variables.

The correlation between the latent implicit learning

variable and the latent general intelligence variable was of

medium size (r=0.32). This goes in line with the findings of

Reber et al. (1991) and Gebauer andMackintosh (2007) who

also reported low to medium correlations between mea-

sures of implicit learning and general intelligence. This

finding does not support Mackintosh's hypothesis that

implicit learning and general intelligence are independent

constructs. However, general intelligence could only explain

10.24% of the implicit learning trait variance, which suggests

that there are substantial individual differences in implicit

learning beyond IQ.

Taken together, this pattern of result suggests that

there are substantial relations between cognitive perfor-

mance measures, which have been developed within very

different domains. Measures of general intelligence have a

long research tradition and were developed to measure

persons' general mental ability. Measures of dynamic

decision making arose in the domain of complex problem

solving and were designed to explore persons' ability to

deal with realistic problems. And measures of implicit

learning were developed in the domain of cognitive

psychology in order to study persons' ability in making

intuitive decisions. The present findings suggests that

these performance measures share a substantial propor-

tion of common variance but also reveal variance pro-

portions that are independent from each other. This fits

well with hierarchical intelligence models like Carroll's

(1993) three-stratum theory of cognitive abilities. In

particular, Carroll suggested that the structure of human

cognitive abilities may be explained by a hierarchical

structure with three levels (three strata). On the lowest

level (stratum 1) there are 64 different specific ability

factors like reading comprehension, memory span, or

general sound discrimination. According to Carroll, these

specific abilities are not independent and therefore may

be grouped together to eight more general ability factors

(stratum 2), which are fluid intelligence, crystallized

intelligence, general memory and learning, broad visual

perception, broad auditory perception, broad retrieval

ability, broad cognitive speediness, and processing speed.

On the top of the hierarchy (stratum 3) there is a single

general ability factor that explains the correlation be-

tween the stratum 2 factors. In Carroll's model there are

no ability factors such as dynamic decision making or

implicit learning. Accordingly, these constructs may be

seen as supplementary aspects of human cognitive ability.

However, the present results fit well with the concept of a

hierarchical structure of human cognitive ability. In

particular, the results of the structural equation models

revealed that the overlap between the performance in the

Tailorshop and the Heidelberg Finite Automaton may be

Fig. 7. Latent Regression Analysiswith standardized path coefficients (p-values

in brackets). IQ = latent general intelligence variable, DDM = latent dynamic

decision making variable, IL = latent implicit learning variable, SR = latent

supervisor rating variable, DDMres = latent residual for dynamic decision

making, ILres = latent residual for implicit learning, SRres = latent residual for

supervisor ratings.
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explained by a more general dynamic decision making

ability factor. In the same vein, the overlap between the

different artificial grammar learning tasks could be

explained by an implicit learning ability factor. Further-

more, there were substantial correlations between gen-

eral intelligence, dynamic decision making and implicit

learning that could be explained by one single general

ability factor. Taken together, these results suggest that

dynamic decision making and implicit learning may be

supplementary abilities that fit well into a hierarchical

concept of human cognitive ability. However, the present

findings do not sufficiently allow to draw a conclusion on

which stratum these ability factors may be located.

Investigating this may be an interesting issue for future

research.

In a third step, we analyzed whether dynamic decision

making and implicit learning are powerful predictors of

professional success beyond IQ. The zero correlation between

objective professional success and supervisor ratings

(r=0.07) suggests that both variables capture different

aspects of professional success. One reason for this may be

that income, social status, and education attainment are

rather profit-based indicators, whereas supervisor ratings

may also capture social aspects. According to this, both

aspects were analyzed separately.

There were substantial correlations between objective

professional success and dynamic decision making

(r=0.52) as well as between objective professional success

and implicit learning (r=0.31). This suggests that both

performance measures are able to predict objective pro-

fessional success. However, when general intelligence

was included as a predictor, then general intelligence

remained the only significant predictor (β=0.78). This

finding is consistent with the literature and emphasizes the

meaningfulness and usefulness of IQ measures (e.g.,

Schmidt & Hunter, 2004).

There was a substantial relation between the participants'

supervisor ratings and dynamic decision making even when

general intelligence was simultaneously considered

(β=0.43). This replicates findings of Kersting (2001) who

also reported an incremental predictive value of dynamic

decisionmakingmeasures on participants' supervisor ratings.

Furthermore, this result points towards the practical value of

dynamic decision making measures and suggests that

dynamic decision making measures may provide insights

into aspects of professional success, which cannot be

predicted by general intelligence. Therefore, Dörner's hy-

pothesis that dynamic decision making has an incremental

predictive value is partially supported. The relation between

supervisor ratings and implicit learning was close to zero

(r=-0.02) and not significant. Thus, this result may be seen

as preliminary evidence against Mackintosh's hypothesis that

implicit learning is a useful predictor of professional success.

There was no significant correlation between supervisor

ratings and general intelligence. At first sight, this finding is

astonishing because there is a wealth of evidence for the

relation between general intelligence and supervisor rating

(e.g., Ng et al., 2005; Salgado et al., 2003; Schmidt & Hunter,

2004). However, the samples in these studies typically consist

of employees within a single department or company

whereas the sample in the present study consisted of

employees of different companies and occupational groups.

In particular, there may be a relation between general

intelligence and supervisor ratings within single companies

or occupational groups but not between. For example, a

broker with an IQ of 130may be rated as more successful than

a broker with an IQ of 100 but a journalist with an IQ of 130

may still be rated as less successful than the broker with the

IQ of 100.

4.1. Implications for assessment

The present results show that the APM as well as the

Berlin Intelligence Structure Test yield measures with good

trait specificities (0.67 to 0.72). Furthermore, there was a

strong relation (r=0.78) between general intelligence and

objective professional success. Therefore, general intelli-

gence tests seem to be a good choice for measuring cognitive

ability.

There was also a relation between the dynamic decision

making trait variable and objective professional success

(r=0.52) and between the dynamic decision making trait

variable and supervisor ratings (r=0.25). However, the

performance measures of the Tailorshop simulation and the

Heidelberger Finite State Automaton showed trait specific-

ities between 0.29 and 0.44. This suggests that less than half

of the variance in these performance measures is due to trait

differences in dynamic decision making. Therefore, the trait-

specificity of both tasks should be improved before they are

used for an individual assessment. A more theory-orientated

development of dynamic decision making tasks may help to

reach this goal.

There was a relation of medium size between the implicit

learning trait variable and objective professional success

(r=0.31). However, the latent regression analysis revealed

that this relation was due to an overlap with general

intelligence. This suggests that there is no incremental

predictive value of implicit learning measures. The trait

specificities of the artificial grammar learning measures

were between 0.25 and 0.31. There was no method

specificity of these variables, which suggests that the low

trait specificity was due to unsystematic measurement error.

Therefore, lengthening the test may help to enhance the

trait-specificity. However, whether such an approach in-

creases the reliability or rather causes fatigue effects is an

open issue.

5. Conclusion

The present findings acknowledge the overall approval

and usefulness of general intelligence measures. In

addition, the results demonstrated that there are signifi-

cant individual trait differences in cognitive performance

beyond IQ. In particular, there was a large proportion of

trait variance in implicit learning, which was independent

from general intelligence and in addition, dynamic deci-

sion making revealed an incremental predictive validity.

These findings make dynamic decision making as well as

implicit learning attractive for the research of individual

differences.
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Appendix A

Table A1
Letter strings for grammar 1 sorted for different parts of the assessment.

Phase Strings

Learning phase WNSNXS NXSTWXT WNSTTWXT WXWSNXT NWXTS NXSNWXS WNTSSS NXSWXTX WXWSNWSN WNSNWXS NXSWXT

NXSWWWW NWSWN WNSNWXTX NXSWNTX NXS WNSWWWW WXWSWN NXSTNWS WNSTWNSW WNSWXTX

WNTSSX WNSNWSW WNTX NXSWNSW WNSNXTS NXTSSS NXSNWSN WNSNWSN NXSWNTSS

Testing phase (correct items) WNSN NWSW NWSN NXSWW NWXSW NXTSX WNSWNS NXSWNT NWXTSS WNSWWW WNSWNT NXTSSX WXWTSX

WNSNXT NWSWWN NXSNWS NXSNWXT NXTSSSX WNSTWNS NXSTNXS WNTSSSX WNSWXWT NXSNXTX WXWSWXT

NWXSWNS NWXSNWS NXSTXWNT WNSTNWXT WXWSNWXS NXSTWNTX WXWSTWXT WXWSNWSW WXWSWXTX

NXSTNWSN NWXSWXWS WXWTSSSS WNSTNXTX WXWSWNSW NWXSWXTX NXSNXSWN

Testing phase (incorrect items) TXSWNT TWXTSX NTSWWN WWSWNS WNWWNT NWSXWN NWXSSW WXWTST TXWTSSX SWXSWNS WSSWWWN

WSSWXTS NWWSWXT NXNTNXS WNTTSSX NWXWSSX NWXSNTS WNSNXXX WXWSWST WNSWXWN WXWSWNW

XNSTWNTS TWXSWXWS TWSWWWWN NNXSWXWT WSSTTNXT WNNWNSWW WNNNWXSW NWXWWXTX

WXWXWXTX WXWSXWXT WXWSNWSW NXSWWXWN WXWSWNWW WXWSNWNS

Table A2
Letter strings for grammar 2 sorted for different parts of the assessment.

Phase Strings

Learning phase LRHMMLM LRPHLLMM RHPHR RHPHMMLM LRHL LPMHLLMM LPPHLM RHPRLMMM LRHMRP RHPHMMRP LPPPLL

RPHHHLLM RHPHL LPPRLMMM LPR LRHRPMMM LPPRL LPMMRPMM RHPHRP LPMHHLLM LPMMRP RHMHLLMM LPLM

RPHHHHLL LRR LRRLMMM RHMHHL LPPRLMM RPLLMMM RHPHLMM

Testing phase (correct items) LRPHHHL RHMHHHL LRHMLMMM LPRP LPRPMM LPRPMMM LPLMMMM RHPHMMML LPMR LPMRPM RPHHHLL

LPPHMLM LPPHMMRP RPHL LRHLMM RHPHMML RHPHLMMM LPMLLMMM LPLMM LRHMML RPHLLMM LPMHHHLL

LPPHLMMM RHPHLM LPPHMML RHMLLMM RPLLMMMM LPPPHLLM LPMMML LPMLLMM RHMHLLM RHPHMLMM

LPRPMMMM LPLMMM RHPHMLM RHPRLMM LRPHHHLL RHPPHLLM

Testing phase (incorrect items) RPRL LLRPMM RHHPHHL RHMHHPL LRPHMHLL LPLR LPPMRP LPHMMR RHPRLMH LPMHHPLL HHMLL LPLRMM RPPLLMM

PPLLMMMM LRHMMHPM LPHHL LPMMHM LPPLRPM PHPHMMML LPPHLMHM LPPLL RPHHPL RPHHRLL MPPHMMRP

LPPPHLRM LPLMP LPMMMP LPPHPML LPHMMMRP RHMHHLLP HRHLMM MHPPHLL LPPHPRP LPPMMRPM LPMLLMMP

LLMHHL RMPPLLM LPPHMHM LPPLHHHL RHPPHLLL

Table A3
Correlations between the manifest variables.

APM1 APM2 BIS1 BIS2 Tailor1 Tailor2 HFA1 HFA2 AGL1 AGL2 AGL3 AGL4 Income Status Education

APM2 0.83***

BIS1 0.66*** 0.65***

BIS2 0.70*** 0.69*** 0.91***

Tailor1 0.32*** 0.29*** 0.25** 0.28***

Tailor2 0.33*** 0.25** 0.30*** 0.30*** 0.48***

HFA1 0.57*** 0.54*** 0.55*** 0.54*** 0.32*** 0.41***

HFA2 0.60*** 0.59*** 0.52*** 0.56*** 0.39*** 0.43*** 0.79***

AGL1 0.24** 0.29*** 0.16* 0.27** 0.11 0.04 0.19* 0.13

AGL2 0.05 0.11 0.12 0.12 0.04 0.03 0.03 0.03 0.36***

AGL3 0.05 0.08 0.13 0.10 0.10 0.07 0.20* 0.16* 0.27** 0.27***

AGL4 0.12 0.16 0.16* 0.14 0.06 0.08 0.11 0.09 0.23** 0.32*** 0.29***

Income 0.23** 0.11 0.21** 0.22** 0.09 0.14 0.17* 0.21** 0.01 0.17* 0.13 −0.04

Status 0.31*** 0.23** 0.21** 0.29*** 0.14 0.12 0.24** 0.23** 0.12 0.05 0.08 0.04 0.29***

Education 0.43*** 0.42*** 0.47*** 0.48*** 0.11 0.05 0.18* 0.14 0.19* 0.16* 0.09 0.02 0.15 0.28*

Supervisor 0.02 0.00 0.03 0.00 0.20* 0.12 0.14 0.18* 0.00 −0.08 0.04 0.03 0.01 −0.07 −0.07

Note. *pb0.050, **pb0.010, ***pb0.001, APM1 = Advances Progressive Matrices at measurement occasion 1, APM2 = Advances Progressive Matrices at

measurement occasion 2, BIS1 = Berlin Intelligence Structure Test at measurement occasion 1, BIS2= Berlin Intelligence Structure Test at measurement occasion

2, Tailor1 = Tailorshop at measurement occasion 1, Tailor2= Tailorshop at measurement occasion 2, HFA1=Heidelberg Finite State Automaton at measurement

occasion 1, HFA2 = Heidelberg Finite State Automaton at measurement occasion 2, AGL1 = artificial grammar learning task with grammar 1 at measurement

occasion 1, AGL2 = artificial grammar learning task with grammar 2 at measurement occasion 1, AGL3 = artificial grammar learning task with grammar 1 at

measurement occasion 2, AGL4 = artificial grammar learning task with grammar 2 at measurement occasion 2, Income = participants' yearly income, Status =

participants' self rated social status, Education = participants' educational level, Supervisor = participants' supervisor ratings, N varied between N=173 and

N=151 due to dropouts between the first and the second measurement occasion.
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