
I N A U G U R A L – D I S S E RTAT I O N

zur

Erlangung der Doktorwürde

der

Naturwissenschaftlich–Mathematischen Gesamtfakultät

der

RU P R E C H T – K A R L S – U N I V E R S I T Ä T

H E I D E L B E RG

vorgelegt von

Tan Khoa Vo, M.Eng.

aus Ninh Thuan, Vietnam

Tag der mündlichen Prüfung

5. Oktober 2011





Exact and Heuristic Solutions

to the Bandwidth Minimization Problem

Gutachter

Prof. Dr. Gerhard Reinelt

Prof. Dr. Klaus Ambos-Spies





Abstract
The bandwidth minimization problem is a classical combinatorial optimization prob-
lem studied since about 1960. It is formulated as follows. Given a connected graph
G = (V,E) with n vertices, the task is to find a permutation π of the vertices (also
called a labeling), i.e., a bĳection between V and {1, 2, . . . , n}, such that the maxi-
mum difference |π(u)− π(v)|, for uv ∈ E, is minimized. This problem is NP-hard,
even for binary trees. Applications of the bandwidth problem can be found in many
areas: solving systems of linear equations, data storage, electronic circuit design,
and recently in compression of topological information from digital road networks.

In this dissertation we report our contributions of both heuristic and exact methods
for the bandwidth problem. On the heuristic side, we start by modifying a heuristic
method which exploits properties of the graph. Next we propose an approximate
objective function for the bandwidth problem. It is very sensitive to alterations
in a permutation and can thus be used efficiently in global optimization heuristic
methods. A simulated annealing method using the approximate objective function
is reported. We also present an application of the bandwidth problem to the com-
pression of topological information of digital road networks.

For exact methods, which are our main focus, we formulate the concept of a partial
permutation, i.e., a bĳection between S ⊂ V and L ⊂ {1, 2, . . . , n}. Based on this
concept, we introduce new constraints for the bandwidth problem and apply them ef-
ficiently in a branch-and-bound algorithm. We analyze the relation between certain
partial permutations and show that some partial permutations are dominated by
others. Therefore, they can be eliminated in the branch-and-bound tree and this re-
duces the search space and running time. Furthermore, we enhance the use of partial
permutations in branch-and-bound algorithms with a 2-labeling scheme, supported
by the dominance rule. Instead of extending the partial permutation one-by-one,
our scheme uses two vertices simultaneously.

We evaluate our algorithms on a popular benchmark suite which comprises 113
instances with less than 1,000 vertices each. In many cases our work improves on
the best known lower bound in the literature. Moreover, our exact algorithms are
capable of computing lower bounds for much larger instances. We perform compu-
tational experiments on a second suite of 36 instances with more than 1,000 vertices
each, whose best known lower bound so far is the generic theoretical one. We can
improve this bound for some instances in this suite, the largest such instance having
about 15,600 vertices. Finally, we parallelize our branch-and-bound algorithms and
run the solver on a parallel cluster with 256 processors, improving the lower bound
for some instances in the first benchmark suite even further.





Zusammenfassung
Das Bandwidth Minimization Problem ist ein klassisches kombinatorisches Opti-
mierungsproblem, das bereits seit etwa 1960 untersucht wird: Zu einem gegebenen
zusammenhängenden Graphen G = (V,E) der Ordnung n ist eine Permutation π der
Knoten (auch Labeling genannt) gesucht, d.h. eine Bĳektion von V auf die Menge
{1, 2, . . . , n}, für welche die maximale Differenz |π(u)− π(v)| über alle uv ∈ E min-
imal ist. Das Problem ist bereits auf Binärbäumen NP-schwer. Anwendungen des
Problems finden sich beispielsweise beim Lösen großer linearer Gleichungssysteme,
in der Datenspeicherung, beim Entwurf von Schaltkreisen und jüngst auch bei der
Komprimierung topologischer Daten von digitalen Straßennetzen.

In der vorliegenden Arbeit stellen wir unsere Beiträge zur näherungsweisen sowie zur
exakten Lösung des Problems vor. Zunächst verbessern wir durch geeignete Mod-
ifikationen eine bestehende Heuristik, die sich Eigenschaften des Graphen zunutze
macht. Anschließend schlagen wir eine approximative Zielfunktion vor, welche sen-
sibler auf Veränderungen in den Permutationen reagiert und sich dadurch vor allem
für globale Heuristiken eignet. Wir beschreiben einen Simulated-Annealing Algorith-
mus, der diese Approximation verwendet. Wir präsentieren ferner eine Anwendung
des Problems auf die Komprimierung topologischer Daten von digitalen Straßennet-
zen.

Unser Hauptaugenmerk liegt jedoch auf exakten Lösungsverfahren. Für diese führen
wir den Begriff der Teilpermutation ein; dies ist eine Bĳektion zwischen S ⊂ V

und L ⊂ {1, 2, . . . , n}. Darauf basierend entwickeln wir neue gültige Nebenbedin-
gungen, welche wir effizient in einen Branch-and-Bound Algorithmus einbinden.
Wir analysieren die Beziehung bestimmter Teilpermutationen zueinander und be-
weisen, dass einige Teilpermutationen durch andere dominiert werden. Dominierte
Teilpermutationen können dabei im Branch-and-Bound-Suchbaum vernachlässigt
werden, wodurch sich die Laufzeit reduzieren lässt. Des Weiteren präsentieren wir
mit dem sogenannten 2-Labeling-Schema eine verbesserte Methode zur Verwendung
von Teilpermutationen in Branch-and-Bound Algorithmen. Hierbei nutzen wir die
obige Dominanzbeziehung und vergrößern die Teilpermutation in jedem Iterationss-
chritt um zwei statt nur um einen Knoten.

Wir testen unsere Algorithmen mit einer gängigen Sammlung von 113 Benchmark-
Instanzen mit jeweils weniger als 1000 Knoten. In vielen Fällen können wir hierbei
die besten bekannten unteren Schranken aus der Literatur verbessern. Darüber-
hinaus können wir mit unseren Methoden untere Schranken für weitaus größere
Instanzen bestimmen. Wir belegen dies anhand von Rechenexperimenten auf einer
zweiten Benchmark-Sammlung. Diese umfasst 36 Instanzen mit jeweils mehr als 1000
Knoten. Die beste bekannte untere Schranke jeder dieser Instanzen ist durch eine
allgemeine Abschätzungsformel gegeben. Die größte Instanz, für welche wir eine



viii

erstmalige Verbesserung dieser unteren Schranke erzielen können, besitzt 15600
Knoten. Schließlich parallelisieren wir unseren Branch-and-Bound Algorithmus und
testen ihn auf einem Cluster mit 256 Prozessoren. Hierdurch können wir die unteren
Schranken für einige Instanzen mit weniger als 1000 Knoten noch weiter verbessern.



Contents

1 Introduction 1
1.1 Contributions 2
1.2 Outline 3
1.3 Acknowledgments 4

2 Preliminaries 5
2.1 Graph theory 5
2.2 Complexity theory 6
2.3 Combinatorial optimization 7
2.4 Parallel computing 8

3 The Bandwidth Minimization Problem 11
3.1 Literature review 11
3.2 Lower bounds 16
3.3 The canonical IP formulation 17
3.4 Partial permutation 17
3.5 Branch-and-bound approaches 25

4 Heuristics and applications 32
4.1 The iGPS heuristic 32
4.2 An approximate objective function 35
4.3 A simulated annealing method 38
4.4 Compression of topological information 40

5 Exact methods 44
5.1 The new constraints 44
5.2 The dominance relation 54
5.3 The 2-labeling scheme 61

6 Implementation and Parallelization 68
6.1 A solver for the bandwidth problem 68



x Contents

6.2 The parallel solver 72

7 Computational results 77
7.1 Introduction 77
7.2 Performance evaluation 81
7.3 The lower bounds 86
7.4 Parallel computation 95
7.5 The upper bounds 103

8 Conclusions and Discussion 108

A Detailed computational results 111

Symbols and Notation 128

References 129

Index 135



1 Introduction

The bandwidth minimization problem is a classical combinatorial optimization prob-
lem which has been studied since about 1960. It is formulated as follows. Given a
connected graph G = (V,E) with n vertices, the task is to find a permutation π

of the vertices (also called a labeling), i.e., a bĳection between V and {1, 2, . . . , n},
such that maximum difference |π(u) − π(v)|, for uv ∈ E, is minimized. The name
itself originates from an equivalent matrix problem. Given an (n, n)-matrix M the
bandwidth problem consists of finding a simultaneous permutation of the rows and
columns of M such that the maximum distance of nonzero elements to the main
diagonal is as small as possible, i.e., to obtain a permuted matrix of minimum band-
width. Figure 1.1 shows an example with the original matrix1 on the left and the
permuted matrix of optimal bandwidth on the right. The equivalence between the
two formulations can be observed when forming the adjacency matrix of the graph.
Then the minimum bandwidth of this matrix corresponds to an optimal permutation
of the vertices of the graph.

 10

 20

 10  20

(a) A sparse matrix

 10

 20

 10  20

(b) A matrix of minimum bandwidth

Figure 1.1: Matrix bandwidth minimization.

Applications of the bandwidth problem can be found in many areas. The primary
application is in solving systems of linear equations [7], because the running time for

1The matrix was introduced in [23].



2 CHAPTER 1. I N T R O D U C T I O N

Gaussian elimination reduces from O(n3) to O(nb2) if the matrix is permuted to have
bandwidth b. Since matrices in practice are often very sparse, bandwidth minimiza-
tion can lead to substantial running time reduction. Further applications [32] [13]
include storage of data, electronic circuit design, and information retrieval. Recently,
we have applied the bandwidth problem to the compression of topological informa-
tion of digital road networks [54].

The problem is NP-hard [42], surprisingly even for binary trees [20]. In addition, the
popular branch-and-cut method, which is based on a direct integer linear formulation
and its relaxation (the original integer formulation whose integrality constraints are
removed), seems not to be useful with the bandwidth minimization problem. This
makes the problem even harder to solve.

Because of its important applications, the bandwidth problem has been the subject
of extensive research. The reported approaches usually divide into two categories:
exact and heuristic methods. Exact methods aim to improve the lower bound and
find the provably optimal solution. In contrast, heuristic methods try to find a good
solution (upper bound) in a reasonable time, without being able to guarantee its
optimality. There is a large body of literature on heuristic methods for the problem,
but only a few exact algorithms are known. Methods for solving the bandwidth
problem are often evaluated on a popular benchmark suite which comprises 113
instances with less than 1,000 vertices each. For many instances in this suite, the
gap between the best known lower bound and upper bound is still huge.

As we shall review in Chapter 3, recent heuristic methods have reported upper
bounds of nearly equivalent solution quality for instances in the popular suite. It
seems that the computation of upper bounds has reached a mature state, but this
could not be proven so far due to the lack of good lower bounds. Therefore, powerful
methods for computing lower bounds, in particular for large instances, are needed.
This is the main motivation of our research.

1.1 Contributions

In this dissertation we report on our contributions of both heuristic and exact meth-
ods for the bandwidth problem. On the heuristic side, we start by modifying a
heuristic method which exploits properties of the graph. Next we propose an ap-
proximate objective function for the bandwidth problem, which is very sensitive to
alterations in a permutation and can thus be used efficiently in global optimization
heuristic methods. A simulated annealing method using the approximate objective
function is reported. We also present an application of the bandwidth problem to
the compression of topological information of digital road networks.

For exact methods, which are our main focus, we formulate the concept of a partial



CHAPTER 1. I N T R O D U C T I O N 3

permutation, i.e., a bĳection between S ⊂ V and L ⊂ {1, 2, . . . , n}. Based on this
concept, we introduce new constraints for the bandwidth problem and apply them
efficiently in a branch-and-bound algorithm. We analyze the relation between cer-
tain partial permutations and show that some partial permutations are dominated
by others. Therefore, they can be eliminated in the branch-and-bound search tree
and this reduces the running time. Furthermore, we enhance the use of partial per-
mutations in branch-and-bound algorithms with a 2-labeling scheme, supported by
the dominance rule. Instead of extending the partial permutation one-by-one, our
scheme uses two vertices simultaneously.

We evaluate our algorithms on 113 instances from the popular benchmark suite. Our
work can solve more instances to optimality, and in many cases obtains a better lower
bound, compared with the best known results in the literature. Moreover, our exact
algorithms are capable of computing the lower bound for much larger instances. We
perform computational experiments on a second suite of 36 instances with more
than 1,000 vertices each. Here, the best known lower bound so far is the generic
theoretical one. We can improve this bound for some instances in this suite, the
largest such instance having about 15,600 vertices.

Finally, we parallelize our branch-and-bound algorithms and run the solver on a
parallel cluster [26] with 256 processors. The same parallel framework as in our
previous work [55] is used, but the new solver is more efficient due to the introduction
of new constraints and the dominance rule. The lower bounds for some instances in
the first benchmark suite are improved even further.

1.2 Outline

The dissertation is organized as follows. Chapter 1 gives a high level overview.
Chapter 2 summarizes the basic concepts used throughout this dissertation from
graph theory, complexity theory, combinatorial optimization, and parallel comput-
ing. Chapter 3 reviews previous methods which have made improvements to the
problem over time. We introduce some new definitions and describe the previous
exact algorithms in detail, so that they can be used as a basis for our own later
improvements.

In Chapter 4, we report the improvement of a heuristic method which exploits prop-
erties of the graph. An approximate objective function named Sigma is introduced,
followed by a description of a simulated annealing method which applies the Sigma
function. The chapter is finished with an application of the bandwidth problem to
the compression of topological information of digital road networks.

Our contributions to exact methods are introduced in Chapter 5. Here the new
constraints for the bandwidth problem are presented, followed by the analysis of the



4 CHAPTER 1. I N T R O D U C T I O N

dominance relation between certain partial permutations. We also present a new
branching scheme named 2-labeling. The implementation of the branch-and-bound
algorithm and its parallelization are described in Chapter 6.

We report our computational results in Chapter 7 and close the dissertation with
our conclusions and discussion in the last chapter. The full computational results
are given in Appendix A.

1.3 Acknowledgments

This dissertation has been completed with contributions and support, directly or
indirectly, from many people. I would like to take this opportunity to express my
gratitude to them.

First of all, I would like to thank my supervisor Prof. Gerhard Reinelt for the
direction and support during my doctoral work. I appreciate his straight and useful
comments to the dissertation.

I acknowledge my colleague Marcus Oswald for initiating the idea of dominant sub-
problems and many fruitful discussions in the beginning phase of my doctoral work.
I thank Prof. Christoph Schnörr for his lectures which inspired me to develop the
approximate objective function Sigma. Thanks to Martin Pfeifle for the interesting
collaboration project on the compression of digital road networks. I am also grateful
to the work of Prof. Alberto Caprara and Prof. Salazar-González which provides a
good basis for approaching the bandwidth problem.

I appreciate colleagues who helped proofread parts of this dissertation and provided
useful comments: Cara Cocking, Thorsten Bonato, and Stefan Wiesberg. Thanks to
Christian Kirches for a nice dissertation template.

I acknowledge many former and current members of the research group Discrete Op-
timization, the Institute of Computer Science, and the IWR Heidelberg for a friendly
working environment as well as pleasant social events. Thanks to the administrative
support from Georgios Nikolis, Catherine Proux-Wieland, and Karin Tenschert in
the research group, and Stefan Friedel from IWR Helics.

I would also like to thank Dr. Stefan Reineck for the encouragement during my
doctoral work and many practical lessons.

Finally, thanks to family members and relatives for encouraging and keeping me in
touch with home: Luong Thi Trinh, Vo Tan Khanh, Vo Thi Luong Tran, Vo Tan
Khoi, Vo Tan Khue, and Le Trinh Thong.



2 Preliminaries

In this chapter we review the basic concepts that will be used throughout this disser-
tation. In particular, they are from graph theory, complexity theory, combinatorial
optimization, and parallel computing. Concepts with a limited scope will be intro-
duced later at the appropriate place.

2.1 Graph theory

An undirected graph G = (V,E) consists of a finite set V of vertices and a finite
set E of edges, each edge being an unordered pair of distinct vertices. A vertex v
is incident with an edge e if v ∈ e. Two vertices incident with an edge are its
endvertices. An edge {v, w} is written as vw, and vw = wv. In this case v and w are
said to be adjacent and are called neighbors. The adjacency matrix A = (aij)|V |,|V |
is defined by setting aij = 1 if vertex i is adjacent to vertex j and 0 otherwise.

A path is a set of edges {v0v1, v1v2, . . . , vk−1vk} where the vi are all distinct for i < k,
and is denoted P = v0 . . . vk. The number of edges of a path is called its length. The
distance in G of two vertices v and w, denoted d(v, w), is the length of the shortest
path between v and w in G. A graph is said to be connected if there is a path
between every pair of its vertices. The greatest distance between any two vertices
in G is the diameter of G, denoted by d(G).

If P = v0 . . . vk is a path and v0 = vk, then P is called a cycle. A cycle in a graph G
visiting all vertices in G is called a Hamiltonian cycle. A forest is an edge set in a
graph which does not contain any cycle. A connected forest containing all vertices
is called a tree.

We denote by Nk(v), k ¶ d(G), the set of vertices at distance at most k from v,
not including v. In line with that definition, N1(v) is the set of neighbors of v. The
degree of a vertex is the number of its neighbors, denoted by |N1(v)|. Given a set
F ⊂ V , N1(F ) = ⋃v∈F N1(v).

Two edges with the same endvertices are called parallel. Graphs without parallel
edges are called simple. In the scope of this dissertation, we always refer to undi-
rected, simple, and connected graphs, unless otherwise stated.

Further subjects in graph theory can be found in Diestel [14].



6 CHAPTER 2. P R E L I M I N A R I E S

2.2 Complexity theory

Complexity theory allows us to know the relative efficiency of an algorithm as well as
the difficulty of a problem. We only review concepts which will be used in our work. A
comprehensive guide to complexity theory can be found in Garey and Johnson [21].

2.2.1 Running time of algorithms

The running time is defined by the number of elementary steps an algorithm needs
to solve a problem, usually depending on the size of the input to the algorithm.
Because the running time might be different for several instances of the same input
size, we are interested in the worst-case measure. The time complexity function for
an algorithm is defined by giving, for each possible input size, the maximum running
time required by the algorithm to solve a problem instance of that size.

A function r(n) is said to be O(f(n)) if there exists a constant c > 0 such
that r(n) ¶ c × f(n) for all values of n ¾ 0. We also say the running time of an
algorithm is O(f(n)) if its time complexity function is O(f(n)). A polynomial time
algorithm is one whose time complexity function can be bounded by a polynomial,
e.g., O(n log(n)), O(n2). Any algorithm whose time complexity function cannot be
bounded by a polynomial, such as O(2n), is called an exponential time algorithm.
The difference in running time between a polynomial time algorithm and an expo-
nential time algorithm becomes huge when the problem size is large, for example a
few seconds versus years.

2.2.2 Complexity classes

Classes of problems in complexity theory are based on decision problems. A decision
problem has only two possible solutions, either “yes” or “no”. For example, the
question whether a graph G = (V,E) has a Hamiltonian cycle is a decision problem.

The complexity class P consists of decision problems which can be solved by a
polynomial time algorithm. A decision problem is said to be in class NP if the
solution of a yes instance can be verified by a polynomial time algorithm. Referring
to the question whether a graph has a Hamiltonian cycle again, whenever the answer
to a problem instance is “yes”, a set of edges can be produced by the algorithm and
the statement that it is a Hamiltonian cycle can be verified in polynomial time.

Since a polynomial time algorithm for any decision problem in P can be used for
the verification, P ⊆ NP. It is suspected that P 6= NP, but whether this is true is
not known.



CHAPTER 2. P R E L I M I N A R I E S 7

Assuming that P 6= NP, there are some problems in NP but not in P, and they are
the “harder” problems. The satisfiability problem is the “hardest” problem in NP, as
proved by Cook [8]. Some other problems have been shown to be equivalently “hard”
as the satisfiability problem, and these “hardest” problems belong to the class of
NP-complete problems. If an NP-complete problem can be solved in polynomial
time, so can all the problems in NP. If some problem in NP cannot be solved in
polynomial time, then neither can all NP-complete problems. We can also say that
if a decision problem π is NP-complete, then π ∈ P if and only if P = NP.

There are other types of problems in complexity theory. An optimization problem
aims at finding among possible solutions the best solution with respect to some
specified sense. A decision problem can be derived from the optimization problem.
For example, if the optimization problem asks for a structure of minimum “cost”, it
can be associated with a decision problem asking whether there exists a structure
whose cost is no more than a certain value.

A search problem can be considered as a more general type of a decision problem.
Given a problem instance I, an algorithm for solving this search problem returns
some solution belonging to the solution set of I if this is a yes instance and other-
wise returns “no”. Any decision problem can be formulated as a search problem by
defining the solution set for each yes instance of the search problem with only “yes”.

The complexity class NP-hard refers to optimization problems and search problems
whose corresponding decision problem is NP-complete. These problems are hard to
be solved. The bandwidth minimization problem is NP-hard [42] [20].

2.3 Combinatorial optimization

2.3.1 Integer Programming

An Integer Programming problem (IP) can be stated as follows. Given a matrix
A ∈ Zm×n, a vector b ∈ Zm, and a vector c ∈ Zn, find a vector x ∈ Zn such that
Ax ¶ b and cTx is minimum. A short form of an IP is min{cTx : Ax ¶ b, x ∈ Zn}.

The linear function cTx is called the objective function of the IP. A feasible solution
of an IP is a vector x ∈ Zn with Ax ¶ b. A feasible solution x∗ is called an optimal
solution if cTx∗ ¶ cTx for all feasible solution x. Integer programming is NP-hard.

If the integrality constraints of an integer program are removed, the IP becomes
a Linear Programming problem (LP), the so-called LP relaxation of the IP. Linear
programming problems can be solved efficiently in practice using methods such as
the simplex algorithm [10]. As a result, LP relaxation is used in many techniques for
solving IP problems, among them branch-and-cut [28] is a powerful method. How-



8 CHAPTER 2. P R E L I M I N A R I E S

ever, using LP relaxation does not seem to be useful with the known IP formulations
of the bandwidth minimization problem, as will be explained later. Therefore, we do
not discuss further these topics, but rather focus on the branch-and-bound method.

2.3.2 Branch-and-bound

Branch-and-bound is an exact solution technique for solving integer problems. It
uses a divide-and-conquer strategy to partition the original problem into smaller
problems, the so-called subproblems, and then recursively solves each subproblem.
The hierarchy of the problems looks like a tree, the so-called branch-and-bound tree.
In this tree, the root vertex is associated with the original problem and each vertex
is associated with a subproblem.

A branch-and-bound algorithm requires two basic procedures. The first one is the
partitioning of a problem into smaller subproblems, called branching, and then
adding them to the list of active subproblems, the so-called subproblem queue. The
second procedure is to compute the bounds of each subproblem, which is called
bounding. A branch-and-bound algorithm is illustrated in Algorithm 2.1, we con-
sider a minimization problem for explaining the bounding procedure.

During execution, the algorithm maintains the best feasible solution found, which
provides a global upper bound on the original problem. While the subproblem queue
is not empty, a subproblem is selected from it for processing. The selection method
is called the search strategy. For each processed subproblem X, if we can prove that
X has no feasible solution at all or that its feasible solution cannot be better than
the best feasible solution, then there is no need to continue and subdivide X. In
that case we say X is fathomed. If the feasible solution of the subproblem is better
than the best feasible solution, the global upper bound and the corresponding best
feasible solution are updated. If a subproblemX cannot be fathomed, it must be split
into smaller subproblems X1, . . . , Xq such that ⋃i=1,...,qXi = X. These subproblems
X1, . . . , Xq are then added to the queue.

The branch-and-bound algorithm terminates when there is no subproblem left in
the queue. The current best feasible solution is the optimal solution.

Further topics in combinatorial optimization can be found in the comprehensive
textbook of Korte and Vygen [31].

2.4 Parallel computing

In parallel computing, programs are executed on parallel computers. A parallel com-
puter consists of processors that are able to work together to solve a problem.



CHAPTER 2. P R E L I M I N A R I E S 9

Algorithm 2.1: A general branch-and-bound algorithm.
Initialize the subproblem queue with the original problem.
while the subproblem queue is not empty do
Select a subproblem X and remove it from the queue. Process X and
determine:
(1) If X has no solution then it is fathomed.
(2) If the lower bound of X is greater than the global lower bound then X
is fathomed.
(3) If X has a feasible solution better than the current best solution then
the global upper bound is updated with the new feasible solution and X is
fathomed.
(4) If none of the three cases above applies, X is split into smaller
subproblems which are then added to the queue.

end while
The best feasible solution is the optimal solution.

Parallel computers can be characterized by the communication mechanism between
processes. In the shared-memory model, processors share a common memory and the
communication between processes is performed via shared variables. In the message-
passing model, processes (usually on different processors) communicate with each
other by sending and receiving messages.

A cluster is a parallel computer consisting of computer nodes that are physically in-
terconnected via a network. Each computer node can be either a personal computer
(PC) or a shared-memory parallel computer. A node may have one or more pro-
cessors. Processes in a cluster communicate with the others using message-passing
protocols.

Many message-passing protocols have been developed, two among the most popular
are MPI [24] [38] and PVM [22]. MPICH [39] is a good implementation of MPI and
is freely available.

In this dissertation, we limit one processor to one process, unless otherwise stated.

The goal of a parallel system, including the parallel computer and the parallel algo-
rithm, is to achieve higher computing power. Therefore one would be interested in
knowing how stronger it is compared with the single-processor system. The speedup
factor is such a metric.

Definition 2.1
Speedup is defined as:

Sp = ts
tp
, (2.1)

where ts is the execution time by the single-processor system and tp is the execution
time by the parallel system having p processors. 4



10 CHAPTER 2. P R E L I M I N A R I E S

Another important metric to evaluate the performance of a parallel system is scal-
ability, which tells whether the system performance is still “good” at larger scales
(or numbers of used processors). The system’s scalability is relatively expressed by
the efficiency factor.

Definition 2.2
Efficiency is defined as:

Ep = Sp
p
, (2.2)

where Sp is the speedup of the parallel system having p processors. 4

A parallel algorithm is called scalable if it can maintain well the performance of the
parallel system at different scales and sizes of problem instances.

Further details in parallel computing and parallel systems can be found in Hwang
and Xu [27]. Another introduction to parallel computing is given in Foster [19].



3 The Bandwidth Minimization
Problem

We begin the chapter with a review of previous approaches which have made im-
provements to the bandwidth problem over time. The canonical IP formulation of
the bandwidth minimization problem and the known lower bounds are presented.
We then introduce the so-called partial permutation concept. Previous exact algo-
rithms are described in detail based on this concept so that they can be used as a
basis for our own later improvements.

In the remaining chapters of this dissertation, we always assume the graph of interest
is an undirected graph G = (V,E), |V | = n and |E| = m.

3.1 Literature review

The developed algorithms for the bandwidth problem usually divide into two groups:
heuristic and exact methods. We begin with the heuristic approaches. Since there
is a large body of literature on the heuristic side, in this section we refer to typical
methods only. On the other hand, we will review all known exact methods before
going into detail in the next section.

3.1.1 Heuristic methods

One of the first published methods is the reverse CM algorithm formulated by Cuthill
and McKee [9]. It uses breadth-first search to construct ordered levels of vertices, so-
called level structures, and labels the vertices according to these level structures. The
GPS algorithm by Gibbs, Poole, and Stockmeyer [23] also uses level structures, but
introduces additional steps to find endpoints of a pseudo-diameter of certain graphs,
and then minimizes the number of vertices on all levels before labeling. Thus the
GPS algorithm achieves solution qualities comparable to the CM algorithm, however
in shorter time. It should be noted that the GPS algorithm works particularly well
on certain graphs of some special patterns.

Esposito, Malucelli, and Tarricone [17] proposed the Wonder Bandwidth Reduction
Algorithm (WBRA) which is a variant of the CM method achieving better qualities.



12 CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M

CM, GPS and WBRA are able to compute fairly good solutions, but do not give
a guarantee on their quality. In some cases, even for small problems, the quality
is only moderate. There are also approximation algorithms giving solutions within
a polylogarithmic multiplicative factor of the optimum by Feier [18] and Blum,
Konjevod, Ravi, and Vempala [1]. The results of Blum et al. also imply the lower
bound γ(G) for the bandwidth problem, whose usage can be found later in the text.

Martí, Laguna, Glover, and Campos [37] proposed a tabu search method (TS). It
uses a candidate list strategy to avoid the expensive computation of the objective
function. The solution quality obtained with tabu search is better than with previous
algorithms. However, as it is usually the case for such approaches, it is considerably
more time consuming than pure construction heuristics like the GPS algorithm.
Further studying metaheuristics methods, Piñana, Plana, Campos, and Martí [43]
developed a greedy randomized adaptive search procedure (GRASP) coupled with
a path relinking strategy. It uses GPS in the constructive phase, and then applies
tabu search and path relinking to improve the results. Computations showed that
GRASP achieves slightly better results than TS, but is slower in speed. In line with
these meta-heuristic methods, Campos, Piñana, and Martí [4] proposed a method
using scatter search combined with tabu search (SS_TS). The results are somewhat
better than those of GRASP.

Lim, Rodrigues, and Xiao [34] introduced the node-shift heuristic (NS). Here weights
of vertices are computed according to their adjacent vertices, then the vertices are
labeled in a non-decreasing order of their weights. The procedure incorporates a
local hill climbing search and is repeated until no more label changes are found. Lim
et al. also introduced a genetic algorithm (GA), having an initial population phase
based on a level structure like GPS and using local hill climbing search. GA uses
a middle-point crossover operator for generating new solutions. NS obtains better
upper bounds than GA and also improves the results of GRASP to a small degree.

Rodriguez-Tello, Hao, and Torres-Jimenez [47, 48] proposed an evaluation function
named alpha. The important meaning of alpha is that it takes into consideration all
the label differences, instead of only the maximal label difference like the original
objective function. This evaluation function is applied to a simulated annealing
method (SA-σ). They reported both the worst-case and best-case results, where the
average results are slightly worse than those of GRASP and TS on small graphs up
to 199 vertices, but slightly better on large graphs having more than 200 vertices.

Safro, Ron, and Brandt [50] later used the multigrid and multilevel methods for the
bandwidth problem. According to their report, the upper bounds on the popular
benchmark suite (113 instances with less than 1,000 vertices each) is comparable to
those of Lim et al. [34], but the average running time is at least 28 times faster.
They also reported the upper bounds on another benchmark suite of 51 very large
instances, whose number of vertices ranging from a few hundreds up to about 217,000



CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M 13

vertices. Their upper bounds show an improvement of at least 23% compared to the
best known results on the second benchmark suite.

3.1.2 Exact methods

It turns out that known exact methods for the bandwidth minimization problem are
based on the same concepts. They will be formally described later, but here we try
to give a rough overview.

Given an undirected graph G = (V,E) and a permutation π of its vertices, we define
the bandwidth of G under π is the maximum difference |π(v)− π(u)| for all uv ∈ E.
If there exists a permutation π such that the bandwidth of G under π is ϕ, we say G
has a bandwidth ϕ.

The bandwidth minimization problem is approached by solving a sequence of search
problems. For each ϕ in the range from 1 to n − 1, a search problem, denoted by
BANDWIDTH (BW), asks whether G has a bandwidth ϕ. The optimal solution is
the smallest ϕ for which the answer is “yes”.

The algorithms for solving BW are also based on the same concept, the so-called
partial permutation, which means that a set of k vertices, k < n, is assigned to
consecutive labels from 1...k and/or n− k + 1...n. The assigned vertices impose re-
strictions on label domains for the remaining unassigned, or free, vertices. A label
domain defines the possible labels that a free vertex can be assigned to, without vio-
lating the bandwidth constraint |π(v)− π(u)| ¶ ϕ for all uv ∈ E. The extendability
of a partial permutation, telling whether it can be extended to a full permutation π
such that the bandwidth of G under π is ϕ, is tested by checking if all free vertices
can be assigned to the remaining labels in accordance with their label domains. If
so, the partial permutation is continuously extended. This procedure is repeated
until a partial permutation becomes full, having all vertices assigned. In that case
a permutation for the “yes” answer has been found. If none of partial permutations
can be extended to such a full permutation, it can be concluded that G does not
have a bandwidth ϕ.

The first known exact method, which uses dynamic programming, was given by
Saxe [51]. He showed that BW can be solved in O(f(ϕ)nϕ+1), where f(ϕ) depends
only on ϕ. His work was then improved by Gurari and Sudborough [25], in which BW
can be solved in time O(nϕ) using O(nϕ) memory space. Gurari and Sudborough
tested the extendability of a partial permutation πL, where L is the set of assigned
vertices and |L| = k, by three conditions. The first one is obvious, |π(v)−π(u)| ¶ ϕ
for u, v ∈ L and uv ∈ E. Second, there are at most ϕ assigned vertices in πL that are
adjacent to a free vertex. If this condition did not hold, at least one edge connecting
an assigned vertex to a free vertex would have a label difference greater than ϕ.
The third condition states that, the vertex assigned to label k − i+ 1, 1 < i < ϕ, is



14 CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M

adjacent to at most ϕ− i+ 1 free vertices. Again the idea is to keep the bandwidth
constraint between two adjacent vertices, one in the assigned set and one is still free.

Later Del Corso and Manzini [12] proposed two branch-and-bound algorithms. The
first one uses a depth first search strategy within a so-called iterative deepening
framework (MB_ID), while the second one uses a so-called perimeter search ap-
proach (MB_PS). Both MB_ID and MB_PS start with a trivial lower bound and
test if the graph has a bandwidth of this value. If it is not the case, then the
lower bound is increased by 1 and the procedure continues. The algorithm stops
when an optimal solution has been found or when a CPU time limit is exceeded.
MB_ID extends the partial permutations by assigning labels in the direction from 1
to n. MB_PS first creates a set of all possible partial permutations having d ver-
tices being assigned to labels n − d + 1, ..., n. It then uses the same procedures as
in MB_ID to extends these partial permutations by assigning remaining vertices
to labels 1, ..., n − d. To tighten the label domains, both algorithms also used the
bandwidth constraint between adjacent vertices like the algorithm of Gurari and
Sudborough. However, the bounds on the free vertices, set by the assigned vertices,
are numerically computed and then used for the extendability test. Experimental
results showed that these algorithms are able to treat small graphs having up to 100
vertices, with a solution quality better than that of WBRA.

A remarkable work with respect to exact methods was done by Caprara and Salazar-
González [6]. The authors proposed two lower bounds named γ(G) and α(G) which
can be computed in 0(nm) time. For each partial permutation, the bandwidth con-
straint is applied in a stronger way, in that an assigned vertex has effect on the
label domains of all free vertices, not only on those of its neighbors. Therefore, their
approach works more efficiently on sparse graphs than the procedures by Del Corso
and Manzini. In addition, they have developed efficient procedures for the extend-
ability test. Furthermore, they proposed a constraint to tighten the label domains
of free vertices based on the bounds of vertices closer to the assigned set. By using
the label domains as integer variables, they are able to perform the bounding and
testing procedures numerically. The work of Caprara and Salazar-González therefore
has set an advanced step in solving the bandwidth problem.

Caprara and Salazar-González employed their procedures in two branch-and-
bound algorithms, the LeftToRight extends the partial permutations from left-
to-right direction only, which means that vertices are assigned to consecutive la-
bels 1, 2, ..., k, while the BothWay can extend from the other direction with labels
n, n − 1, ..., n − q + 1 as well. The algorithms start searching from a good lower
bound blow = max{γ(G), α(G)} instead of a trivial bounds, and going upwards until
either an optimal solution is found or the time limit is exceeded. LeftToRight and
BothWay are able to solve 24 out of 30 problem instances with less than 200 vertices
to optimality, while MB_ID and MB_PS can achieve this in only 10 cases. For
instances not solved to optimality, better lower bounds are obtained in shorter time.



CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M 15

Martí, Campos, and Piñana [36] proposed an improvement of LeftToRight, namely
BB, in which a single branch-and-bound tree is used instead of a series of branch-
and-bounds. The reason is that they tested values ϕ downward, starting from the
initial upper bound. Clearly, partial permutations which failed the extendability
test with a large ϕ cannot be “extendable” with smaller ϕ. GRASP is used to
compute the first upper bound and also the initial solution. They also proposed a
new constraint to tighten label domains of free vertices. By adding this constraint
BB achieves better lower bounds than did BothWay and LeftToRight.

3.1.3 Computational experiments

Benchmark instances from the library Matrix Market organized by Boisvert, Pozo,
Remington, Barrett, and Dongarra [2] are often used to perform computational
experiments. Many methods have been evaluated on a popular benchmark suite
which was introduced in Martí et al. [37] and consists of 113 instances with less
than 1,000 vertices. To date, best known lower bounds for these instances are re-
ported in Martí et al. [36]. The best known upper bounds are obtained by taking
the best values from different methods reported in Martí et al. [37, 36], Piñana et al.
[43], Campos et al. [4, 5], and Lim et al. [34]. These are the best known results ob-
tained with a non-parallel computer for instances in the popular suite (also referred
to as the first suite).

In addition to the popular suite, some heuristic methods also used another one
for their computational experiments. The second benchmark suite contains 51 very
large instances with size ranging from a few hundreds up to 217,000 vertices. The
instances are taken from The University of Florida Sparse Matrix Collection which
is maintained by Davis and Hu [11]. The best known upper bounds for instances
in this suite are obtained by Safro, Ron, and Brandt [50]. We do not know if there
exists any work reporting lower bounds for instances with more than 1,000 vertices
from this suite.

On the popular benchmark suite, the gap between best known lower and upper
bound is still huge for many instances. For the reader to have an idea of how large
these gaps are, some hard instances are listed in Table 3.1, along with their best
known lower bounds (LB) and upper bounds (UB).

In our previous work [55], we have parallelized the algorithm BothWay (developed
by Caprara and Salazar-González [6]) and ran the solver on a parallel cluster [26]
using 508 processors (127 computer nodes with 4 processors each). We also used the
first benchmark suite, but performed computational experiments on only 33 small
instances with less than 200 vertices. Compared with the best known results, we
found optimal solutions for 2 more instances which are listed in Table 3.1: impcol_b
and bcsstk22. In addition, lower bounds for 3 other instances are improved.



16 CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M

Table 3.1: Best known bounds for some hard instances.

Instance Vertices Edges LB UB Gap(%)
impcol_b 59 281 19 20 5.26%
bcsstk22 110 254 9 10 11.11%
west0132 132 404 25 33 32.00%
gre__185 185 650 17 21 23.53%
str__600 363 3244 101 132 30.69%
gre__512 512 1680 30 36 20.00%
nos7 729 1944 43 65 51.16%
bp__1600 822 4809 199 300 50.75%
west0989 989 3500 123 210 70.73%

Table 3.1 shows the best known lower and upper bounds from the literature for
some hard instances using a non-parallel computer. The huge gaps indicate that the
bandwidth minimization problem belongs to the class of difficult problems. As re-
viewed in the previous section, many heuristic methods have reported upper bounds
of nearly equivalent solution quality for instances in the popular benchmark suite.
We wonder if the computation of upper bounds has reached a mature state, but this
can only be answered with stronger lower bounds. Therefore, powerful methods for
computing lower bounds are still needed.

3.2 Lower bounds

Caprara and Salazar-González [6] defined the lower bound γ(G) and also derived
from the result of Blum et al. [1] another lower bound α(G). The bounds are defined
as follows:

α(G) = max
v∈V

max
h∈{1,...,d(v,V )}

⌈
|Nh(v)|

2h

⌉
(3.1)

γ(G) = min
v∈V

max
h∈{1,...,d(v,V )}

⌈
|Nh(v)|
h

⌉
(3.2)

where Nh(v) is the set of vertices whose distance from v is at most h, not including v
itself. d(v, V ) is the maximum distance from v to any vertex in V .

Both of these bounds above can be efficiently computed in time 0(nm).



CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M 17

3.3 The canonical IP formulation

Given an undirected graph G = (V,E), |V | = n, the canonical IP formulation of the
bandwidth minimization problem is defined as follows:

min Φ
Φ ¾ π(u)− π(v), for all uv ∈ E,
Φ ¾ π(v)− π(u), for all uv ∈ E,
π ∈ Π,

(3.3)

where Π is the set of all permutations π of {1, ..., n}. As stated in Caprara and
Salazar-González [6], a permutation π can be mathematically described by the con-
straints: ∑

u∈V
π(u) = n(n+ 1)

2 ,
∑
u∈S

π(u) ¾ |S|(|S|+ 1)
2 , for all S ⊂ V , S 6= ∅,

π integer.

(3.4)

We observe that the LP relaxation of formulation (3.3), i.e., the integrality con-
straints and π ∈ Π are removed from a combination of (3.3) and (3.4), is of no use
at all. The reason is that its optimal objective function value is zero, with solution
values π(u) = n(n + 1)/2 for all u ∈ V . We also notice that the objective function
in (3.3) is not a linear function of π.

For the reason outlined above, the branch-and-cut method, which is very efficient
in solving integer problems, does not seem to be useful with the bandwidth mini-
mization problem. One often uses the classical branch-and-bound method, trying to
define the branching and bounding procedures in such a way that the bandwidth
constraint is applied as efficiently as possible. This is the approach used in previ-
ous exact methods as well as in our improvement. They will be described in detail
shortly.

3.4 Partial permutation

In this section we introduce the partial permutation concept and describe how it is
used to find solutions for the bandwidth minimization problem.



18 CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M

3.4.1 Definitions

Definition 3.1
Given a graph G = (V,E), a permutation π of V is a bĳection between V and
{1, 2, . . . , n}. π(v) is called label of v under π. 4

Definition 3.2
The bandwidth of a graph G under permutation π is the maximum of label differ-
ences between any pair of adjacent vertices. That is: Φπ(G) = max |π(v)− π(u)| for
all uv ∈ E. 4

We say that a graph G has a bandwidth ϕ if there exists a permutation π such that
the bandwidth of G under π is ϕ.

Since it is hard to be solved directly from the known IP formulation (3.3), the band-
width minimization problem can be approached by a sequence of search problems.
For each ϕ from 1 to n − 1, the search problem asks whether the graph G has
a bandwidth ϕ. When the search sequence is finished, the optimal solution is the
smallest ϕ for which the answer is yes. Such a search problem is formally defined as
follows.

Definition 3.3
BANDWIDTH (BW)
Instance: An undirected graph G = (V,E) and an integer ϕ, 1 ¶ ϕ < n.
Question: Does G have a bandwidth ϕ?
Task: If the answer is yes, find a permutation π such that the bandwidth of G under π
is ϕ and return true, otherwise return false. 4

In the context of BW, we call ϕ the search parameter . BW can be solved by ex-
haustively testing all possible permutations to check whether G has a bandwidth ϕ.
This can be done more efficiently in a branch-and-bound algorithm, where ver-
tices are successively assigned first to label 1, then label 2, and so on. After each
assignment, which is equivalent to a branch-and-bound subproblem, labels of as-
signed vertices can be used in combination with the basic bandwidth constraint, i.e.,
|π(v) − π(u)| ¶ ϕ for all uv ∈ E, to reduce the set of possible labels that an unas-
signed or free vertex can be assigned to. If there is no possible label remaining for
any vertex, we know that the assignment cannot be extended to a (full) permuta-
tion such that the bandwidth of G under it is ϕ. This enables the elimination of
subproblems in the search tree and reduces the running time of the algorithm.

The idea of the branch-and-bound algorithm for solving BW is based on the sequence
of assigning some vertices to consecutive labels. Such a sequence is called a partial
permutation, and is formally defined as follows.



CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M 19

Definition 3.4
A partial permutation on the left, denoted as πL, is a one-to-one mapping from a
set of k vertices L = {v1, v2, ..., vk} to consecutive labels 1, 2, ..., k with πL(v1) = 1,
πL(v2) = 2,..., πL(vk) = k. 4

A permutation can also be viewed as a linear layout of n vertices which assigns them
to n distinct labels 1, 2, ..., n from left to right. In Definition (3.4), the vertices are
assigned to labels 1, 2, ..., k on the left side of the layout. This can be done on both
sides. In addition to k vertices on the left, we can assign q other vertices to labels
n, n− 1, ..., n− q + 1 on the right side.
Definition 3.5
A partial permutation on both sides, denoted as πL,R, is a one-to-one mapping
from a set of k vertices L = {v1, v2, ..., vk} to consecutive labels on the left with
πL,R(v1) = 1, πL,R(v2) = 2,..., πL,R(vk) = k, and another set of q vertices
R = {vn−q+1, vn−q+2, ..., vn} to consecutive labels on the right with πL,R(vn−q+1) =
n− q + 1, πL,R(vn−q+2) = n− q + 2, ..., πL,R(vn) = n. 4

For convenience, we write left partial permutation for a partial permutation on the
left, and both-sided partial permutation for a partial permutation on both sides. A
partial permutation in general refers to either types. In a partial permutation, the
set of possible labels that a free vertex can be assigned to without violating the
bandwidth constraint is called the label domain of that vertex. We call the set of
assigned vertices assigned set and the set of unassigned vertices free set. We denote
the free set F , i.e., F = V \ L in πL and F = V \ {L ∪ R} in πL,R. In a partial
permutation L is called the left set and R the right set.

In a branch-and-bound algorithm, BW is solved by checking all possible partial
permutations whether they can be extended to a feasible permutation, i.e., a per-
mutation π such that the bandwidth of G under π is ϕ. Recall that in each partial
permutation label domains of free vertices can be reduced, or tightened, by the basic
bandwidth constraint using labels of the assigned vertices. If some vertex cannot
be assigned to any remaining label due to its label domain, a violation has been
found. In that case further extensions would result in new partial permutations that
violate the bandwidth constraint, so it is sufficient to stop here. If no such violation
is found, πL,R is continuously extended. The algorithm stops if none of the partial
permutations can be extended fully, in that case G does not have a bandwidth ϕ.
Otherwise, there will be at least one partial permutation that can be extended to
the size of n vertices, meaning that a feasible permutation has been found.

The label domains of free vertices can be tightened not only by the basic bandwidth
constraint, but also through the other constraints derived from the graph properties.
The stronger the constraints and the more efficient to compute the bounds, the fewer
number of partial permutations have to be processed and the faster the running time.



20 CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M

The following exact methods focus on finding new constraints which can tighten the
bounds as strongly and efficiently as possible. We first describe how to test the
extendability of a partial permutation.

3.4.2 Extendability problems

We begin with the extendability problem for left partial permutations. The infor-
mation about the undirected graph G = (V,E) is implied in the problem instance.

Definition 3.6
Left Partial Permutation Extendability (LPPE)
Instance: A left partial permutation πL, |L| = k, and an integer ϕ.
Question: Can πL be extended to a permutation π such that the bandwidth of G
under π is ϕ? 4

In the two branch and bounds proposed by Del Corso and Manzini [12], LPPE is
implicitly used with the constraint:

πL(v)− πL(u) ¶ ϕ, u ∈ L, v ∈ F , uv ∈ E (3.5)

LPPE together with (3.5) basically check whether πL can be extended to a feasible
permutation in such a way that the basic bandwidth constraint is satisfied between
any two adjacent vertices: one in the assigned set and the other is still free.
Proposition 3.1
The LPPE problem with constraint (3.5) can be solved in time O(m). 4

Proof First, compute dv = min{πL(u) + ϕ : u ∈ L ∩ N1(v)} for all v ∈ F. If
N1(v) ∩ L = ∅ then set dv = n. Second, sort values dv non-decreasingly. Third, for
each dv let S = {s : ds ¶ dv}. If |S|+k > dv then at least one vertex will be assigned
to a label outside its domain, which clearly shows that πL will violate the bandwidth
constraint after some further extensions.

The running time for computing dv is O(m), sorting values dv with bucket sort
is O(n), and testing the values dv in the third step is O(n), thus yields a total
running time O(m). �

Note that we describe the procedure for solving LPPE with bucket sort because this
is how it is used in the original work of Caprara and Salazar-González [6]. In fact
one can apply any efficient sorting technique here.

Constraint (3.5) works well for dense graphs, in which a vertex is adjacent to many
others, thus an assigned vertex can restrict the label domains of many free vertices.
However for sparse graphs it is not the case because the constraint cannot bound to



CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M 21

further vertices which are more than one distance unit away from labeled vertices.
Caprara and Salazar-González [6] resolved this problem for sparse graphs with a
stronger bounding. It is formulated in constraint (3.6). For each assigned vertex, the
bandwidth constraint is applied to any free vertex, not only to adjacent ones as in
constraint (3.5).

πL(v)− πL(u) ¶ ϕd(u, v), u ∈ L, v ∈ F (3.6)

Proposition 3.2
The LPPE problem with constraint (3.6) can be solved in time O(m). 4

Proof Define lv as the largest possible label in πL that a vertex v can be assigned
to, i.e.,

lv = min{hϕ+ πL(u) : u ∈ L ∩Nh(v)}, (3.7)

where v ∈ F is at distance h from u ∈ L, h = d(u, v). We call lv the max label of v
in πL.

The label domain of an unassigned vertex v in πL is defined by the range [k+1, lv]. A
partial permutation πL can be extended to a feasible permutation only if πL(v) ¶ lv
for all v ∈ F . This condition is tested as follows. First, compute lv for all v ∈ F .
Second, sort values lv non-descendingly. Third, for each lv, let S = {ls : ls ¶ lv}. If
|S|+k > lv then at least one vertex will be assigned to a label outside of its domain,
which means that πL cannot be extended to any feasible permutation.

The time for computing lv is O(m), sorting values lv with bucket sort is O(n), and
testing values lv in the third step is O(n), thus the total running time is O(m). �

We now describe how to test the extendability of a both-sided partial permutation.
The problem is formulated as follows.
Definition 3.7
Both-sided Partial Permutation Extendability (BPPE)
Instance: A both-sided partial permutation πL,R, |L| = k, |R| = q, and an integer ϕ.
Question: Can πL,R be extended to a permutation π such that the bandwidth of G
under π is ϕ? 4

In their work, Caprara and Salazar-González [6] used the BPPE problem and applied
the bandwidth constraint from both (left and right) assigned sets to the free set.
The constraint is formulated in (3.8).

πL,R(v)− πL,R(u) ¶ ϕd(u, v), u ∈ L, v ∈ F
πL,R(w)− πL,R(v) ¶ ϕd(w, v), w ∈ R, v ∈ F

(3.8)

Proposition 3.3
The BPPE problem with constraint (3.8) can be solved in time O(m+ n2). 4



22 CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M

Proof In a both-sided partial permutation πL,R, we keep the definition of lv in (3.7),
i.e., the largest possible label that vertex v can be assigned to. Define fv as the
smallest possible label in πL,R that a vertex v ∈ F can be labeled to, i.e.,

fv = max{πL,R(w)− hϕ : w ∈ R ∩Nh(v)}, (3.9)

where v ∈ F is at distance h from w ∈ R, h = d(w, v). We call fv the min label of v
in πL.

Notice that by definition values lv are determined only by the left set and similarly
values fv are determined by the right set. The partial permutation πL,R can be
extended to a feasible permutation only if fv ¶ πL,R(v) ¶ lv for all v ∈ F . In other
words, the range [fv, lv] defines the label domain of vertex v. The extendability test
for a both-sided partial permutation thus comprises of three steps.

The first step checks whether πL,R(v) ¶ lv for all v ∈ F . The running time of this
step is O(n). To start with, free vertices are sorted non-decreasingly according to
their lv with bucket sort in O(n). Notice that more than one vertex may have the
same lv. Then, for each lv we check whether all free vertices s having ls not greater
than lv can be assigned to label range [k+1, lv]. If not then violation has been found.
The pseudo code is described in Algorithm 3.1.

Algorithm 3.1: Testing values lv.
Input: πL,R, |L| = k.
Output: True if πL,R(v) ¶ lv for all v ∈ F and false otherwise.
sort vertices v ∈ F non-decreasingly according to lv;
put sorted vertices into list Fl;
numSmallerEqual = 0;
nextLeftLabel = k + 1;
{start from the smallest lv to the largest}
for each value lv of vertices in Fl do
S = {s ∈ Fl : ls = lv};
numSmallerEqual += |S|;
if lv - (numSmallerEqual− 1) < nextLeftLabel then
return false;

end if
end for
return true;

The same test is performed in the second step, checking whether fv ¶ πL,R(v) for
all v ∈ F . The running time of this step is also O(n). It is done by first sorting
values fv non-decreasingly. Starting with the largest fv, for each fv we check if all
free vertices whose fv not smaller than fv can be assigned to label range [fv, n− q],
if not then violation has been found, as outlined in Algorithm 3.2.



CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M 23

Algorithm 3.2: Testing values fv.
Input: πL,R, |R| = q.
Output: True if fv ¶ πL,R(v) for all v ∈ F and false otherwise.
sort vertices v ∈ F non-decreasingly according to fv;
put sorted vertices into list Ff ;
numLargerEqual = 0;
nextRightLabel = n− q;
{start from the largest fv down to the smallest}
for each value fv of vertices in Ff do
S = {s ∈ Ff : fs = fv};
numLargerEqual += |S|;
if fv + (numLargerEqual− 1) > nextRightLabel then
return false;

end if
end for
return true;

Finally, after testing separately fv and lv for all v ∈ F against the remaining labels,
one needs to test the main condition fv ¶ πL,R(v) ¶ lv. For each label l in the
range [k+1, n−q], inserting all vertices w having fw ¶ l into a heap, then removing w
with smallest lw from the heap and assigning w to l. Violation is found in two cases:

1. The heap is empty, meaning that there is no vertex w whose min label fw less
than or equal to l.

2. The currently smallest lw is smaller than l. This means that vertex w cannot
be assigned to any remaining label starting from l upwards.

The pseudo code of the final test is described in Algorithm 3.3, except for line 1
and line 15 are for an upper bound heuristic which will be described shortly. The
heap is actually an array of integers. It is initialized with a set of vertices w having
fw ¶ nextLeftLabel at the first iteration of the for loop. For each increased value of l,
only vertices w with fw = l are inserted to the heap. Then all vertices w in the heap
are scanned to find the vertex with the smallest lw.

The running time for sorting free vertices is O(n). Actually the sorted list can be
reused from the second test. The complexity for testing all remaining labels with
the for loop is O(n2). Thus the running time of the final test is O(n2).

Combining all three tests and adding O(m) for computing fv and lv, the running
time for testing the extendability of a both-sided partial permutation is O(m+n2).�

It should be remarked that these three extendability tests including the implemen-
tation for bucket sort have been developed by Caprara and Salazar-González [6].
They work efficiently and we continue using them in our implementations.



24 CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M

Algorithm 3.3: Testing both values lv and fv.
Input: πL,R, |L| = k, |R| = q.
Output: True if fv ¶ πL,R(v) ¶ lv for all v ∈ F and false otherwise.
1: πh(u) = πL,R(u) : u ∈ {L ∪R}; {heuristic for upper bound}
2: nextLeftLabel = k + 1;
3: nextRightLabel = n− q;
4: sort vertices v ∈ F non-decreasingly according to fv;
5: put sorted vertices into list Ff ;
6: heap = ∅;
7: for each label l in nextLeftLabel, ..., nextRightLabel do
8: W = {w ∈ Ff : fw ¶ l}; heap = heap ∪W ; Ff = Ff \W ;
9: if heap = ∅ then
10: return false;
11: else
12: select vertex w having smallest lw in heap;
13: heap = heap \ {w};
14: if lw < l then
15: return false;
16: else
17: πhw = l; {heuristic for upper bound}
18: end if
19: end if
20: end for
21: return true;



CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M 25

3.4.3 The rounding heuristic

In Algorithm 3.3, line 1 and line 17 are marked with a comment about a heuristic for
upper bound. If the graph G does have a bandwidth ϕ, some partial permutation
will be extended to a feasible permutation. If this is the case, for some partial
permutations πL,R, especially ones with a large assigned set, the domain labels of
free vertices become so “narrow” that a simple “rounding” which fills the remaining
labels with free vertices may result in a feasible permutation.

Line 1 of Algorithm 3.3 initializes a heuristic permutation πh with the assigned set
of πL,R. The assignment of the “most possible” vertex w, which has the smallest lw
in the heap, to the current label l is done in line 17. When the for loop on line 7 is
finished, πh has become a full and valid permutation. The bandwidth of G under πh
is computed and if it is not greater than ϕ, the algorithm will accept πh as a new
upper bound of the original bandwidth minimization problem.

This turns out to be a useful heuristic in practice. In some cases it can find a feasible
permutation quickly because the algorithm does not have to wait until all vertices
are assigned to obtain a feasible permutation.

It could be more appropriate to introduce this heuristic in the branch-and-bound
section, but we leave it here for the reader’s convenience of referring to the pseudo
code. The other reason is that it is embedded in the extendability test. The heuristic
was also developed by Caprara and Salazar-González [6].

3.5 Branch-and-bound approaches

In this section, we review the basic branch-and-bound algorithm for solving BW.
Two constraints for the BW problem from previous works are then presented.

3.5.1 The basic branch-and-bound algorithm

Having the procedures for testing the extendability of a partial permutation avail-
able, we can now describe the basic branch-and-bound algorithm for solving BW
which was used in Caprara and Salazar-González [6]. Its pseudo code is outlined in
Algorithm 3.4.

The main function bandwidth(G, ϕ) creates an empty partial permutation πL,R at
the root vertex of the branch-and-bound tree, initializes label domains of the ver-
tices, and then passes πL,R to the function labeling. Here, the partial permutation
is extended by having one more vertex assigned. The label domains of its free ver-
tices are tightened with the basic bandwidth constraint, and then its extendability
is tested.



26 CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M

Depending on the side of the extension, either left or right, the label domains are
tightened by the function updateBasicBounds using the label of the newly assigned
vertex. Its pseudo code is outlined in Algorithm 3.5, basically applying the definitions
of fv and lv in (3.9) and (3.7).

The partial permutations are recursively extended until either all vertices are as-
signed, i.e., a feasible permutation has been found, or all extensions stop in the
middle because of failing the extendability test.

The correctness of the algorithm is proved shortly.

Proposition 3.4
BW is correctly solved by Algorithm 3.4. That means, if the graph G = (V,E) has a
bandwidth ϕ, at least one permutation π such that the bandwidth of G under π is ϕ
has been found and the algorithm returns true, otherwise it returns false. 4

Proof Proposition 3.4 is proved for the case the partial permutations are extended
in both directions, where variable direction is set to BothSides in Algorithm 3.4.
The proof for the case of extending partial permutations only from left to right is
included.

The branch-and-bound algorithm starts with a root vertex having an empty partial
permutation, i.e., both left and right sets are empty. The free set F is initialized
with all vertices, whose min labels fv are set to 1 and max labels lv are set to n.

For each partial permutation πL,R, where |L| = k and |R| = q, two labels are
considered for extending the partial permutation: k+ 1 on the left and n− q on the
right. It is obvious that only vertices whose fv ¶ k + 1 can be assigned to the left
side, and similarly lv ¾ n − q can be assigned to the right side. Aiming at a small
branch-and-bound tree, the algorithm chooses to extend on the side producing a
smaller number of partial permutations. The extendability of each newly extended
partial permutation πe is tested. If no violation is found, πe is recursively extended.

If G does really have a bandwidth ϕ, there will be at least one course of the search
that leads to a feasible permutation because no violation can be found in all partial
permutations of that search course. Otherwise, all courses stop in the middle because
of failing the extendability test. �

Depth-first search strategy is used in Algorithm 3.4 for ease of reading. In practice
other strategies can also be used. This is only the core algorithm, where fv and
lv are calculated using the basic definitions (3.9) and (3.7). These values can be
tightened more strongly by valid constraints for the BW problem, thus violation of
partial permutations can be detected early and the branch-and-bound tree has fewer
number of subproblems. This reduces the search space and speeds up the running
time significantly.



CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M 27

Algorithm 3.4: A branch-and-bound algorithm for solving BANDWITH.
Input: An undirected graph G = (V,E) and an integer ϕ.
Output: True if G has a bandwidth ϕ and false otherwise.
bool bandwidth(G, ϕ)
begin
direction = BothSides;
initialize πL,R: L = ∅; R = ∅; F = V ;
for each v ∈ V do
fv = 1; lv = n;

end for
return labeling(πL,R, ϕ);

end
{Recursively extend πL,R until either all vertices are assigned}
{or all extensions stop in the middle because of failing the extendability test}
bool labeling(πL,R, ϕ)
begin
if |L|+ |R| = |V | then
return true;

end if
k = |L|; q = |R|;
nextLeftLabel = k + 1; nextRightLabel = n− q;
leftCandidates = {v ∈ F : fv ¶ nextLeftLabel};
rightCandidates = {v ∈ F : lv ¾ nextRightLabel};
if direction = LeftToRight or |leftCandidates| ¶ |rightCandidates| then
for each v ∈ leftCandidates do
πe = πL,R; πe(v) = nextLeftLabel;
return testAndExtend(πe, v, ϕ, LEFT);

end for
else
for each v ∈ rightCandidates do
πe = πL,R; πe(v) = nextRightLabel;
return testAndExtend(πe, v, ϕ; RIGHT);

end for
end if

end
{Update bounds and test πL,R. Extend further if no violation found}
bool testAndExtend(πL,R, v, ϕ, side)
begin
updateBasicBounds(πL,R, v, ϕ, side);
if extendabilityTest(πL,R, ϕ) = false then
return false;

else
return labeling(πL,R, ϕ);

end if
end



28 CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M

Algorithm 3.5: Update basic bounds.
void updateBasicBounds(πL,R, v, ϕ, side)
begin
if side = LEFT then
∀u ∈ F : update lu = min{lu, πL,R(v) + ϕd(v, u)};

else
∀u ∈ F : update fu = max{fu, πL,R(v)− ϕd(v, u)};

end if
end

Figure 3.1: An example partial permutation.

3.5.2 Constraint and illustration convention

In many sections of the dissertation, we will describe how label domains of free ver-
tices in a partial permutation are tightened. The tightening is based on constraints,
which apply the basic bandwidth constraint to specific properties of the graph.

We normally use example graphs to illustrate the idea in which a partial permutation
is used. In such a graph, a vertex is drawn as a circle with the vertex number (or
vertex identifier) inside. A vertex having a square box next to it is already assigned
to a label, whose value is shown in the square box. For each unassigned vertex v, its
min label fv and max label lv are shown above the vertex as a pair fv, lv.

Consider the partial permutation πL,R in Figure 3.1. Here we have a graph G =
(V,E) where V = {a, b, c, d, e, f, g}. There is a box next to vertex a, indicating
that a has been already assigned to label 1, i.e., L = {a}, πL,R(a) = 1, and R = ∅.
The free set F = {b, c, d, e, f, g}. There is a pair 2, 7 above vertex d, it means fd = 2
and ld = 7. Therefore [2, 7] defines the label domain of d. In other words, the valid
possible labels that d can be assigned to in πL,R are {2, 3, 4, 5, 6, 7}.

Two graphs are often used to illustrate the idea of each constraint: one with “loose”
bounds and the other showing bounds tightened with that constraint. The search
parameter ϕ is always 3 in these cases, unless otherwise stated.



CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M 29

Figure 3.2: Max labels set by the definition.

3.5.3 The first constraint

Recall that lv is defined as the largest possible label in a permutation πL,R that
a vertex v can be assigned to. For the basic bandwidth constraint to be satisfied,
the definition also implies that lv = min{hϕ + lw : w ∈ Nh(v)}, letting lw = πL,Rw

for w ∈ L. Since each vertex can be assigned to only one distinct label, lv can be
tightened more strongly.

For a free vertex v and the set N1(v) of its neighbors, if there are more than one
vertex w ∈ N1(v) having the same lw, for example lw = l, by definition the max
label lv is still weakly constrained to l + ϕ. In fact, for all of vertices w such that
lw = l, each of them can be assigned to only one label and a stronger lv should have
the value constrained from the smallest lw.

This constraint was developed by Caprara and Salazar-González [6] and presented
as IP formulations in a minimization problem. In the context of the BW problem,
it can be formulated as in (3.10).

lv ¶ min
{
(lw − (|S| − 1) + ϕ) : w ∈ N1(v), S = {t ∈ N1(v) : lt ¶ lw}

}
(3.10)

We consider the example in Figure 3.2, which has been explained in the illustration
convention section. Here, the max label of d is originally 7 by its definition. We have
N1(d) = {b, c, e, f}, where lb = 4, lc = 4, le = 7, and lf = 7. In N1(d), two max labels
are 4 and 7. The constraint is first evaluated with max label 7, for which there are
four vertices w whose fw ¶ 7, and l1d = 7 − (4− 1) + 3 = 7. The second evaluation
with max label 4 would result in l2d = 4− (2− 1)+3 = 6. At the end, ld is tightened
to 6 by taking the minimum of l1d and l2d , as shown in Figure 3.3.

The min label is similarly tightened as in (3.11).

fv ¾ max
{
(fw + (|S| − 1)− ϕ) : w ∈ N1(v), S = {t ∈ N1(v) : ft ¾ fw}

}
(3.11)

Notice that in [6], the authors did not use the full set N1(v), but only the set
of vertices which are free and one distance unit closer to the assigned set. In the



30 CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M

Figure 3.3: Max labels are tightened by the first constraint.

Figure 3.4: A graph arranged as layers away from the left set.

example above, that set is {b, c}. They reported that using N1(v) requires longer
evaluation time while the results are the same on their instances.

3.5.4 The second constraint

Given a left partial permutation πL, Martí, Campos, and Piñana [36] proposed
a constraint to tighten the min labels by arranging free vertices into layers NL

h ,
where NL

h is the set of vertices whose shortest distance to any vertex u ∈ L is h.

For each NL
h , let NL = {NL

h ∪ NL
h−1 ∪ . . . ∪ L}. If the largest max label of vertices

v ∈ NL, namely lcv, is equal to |NL|, then vertices in NL will certainly use all
possible labels in the range [1, lcv], which is the union of all domain labels in this set.
Therefore, vertices of the next layers must be labeled above that range, and their
min labels are tightened to f cv + 1.

The constraint is best described with an example. We consider the partial permu-
tation πL in Figure 3.4. The left set L consists of two vertices a and b, assigned to
labels 1 and 2 respectively. The remaining free vertices are arranged into two layers.
The first layer NL

1 = {c, d, e}, having lc = 4, ld = 4, and le = 5. The next layer
NL

2 = {f, g} having lf = 7 and lg = 7. All free vertices v has the same fv = 3. This
bound is trivial because with |L| = 2 obviously the next label for any free vertex
must be 3.

In layer NL
1 , since le = 5 and is equal to |L| + |NL

1 |, three vertices {c, d, e} will



CHAPTER 3. T H E B A N DW I D T H M I N I M I Z AT I O N P RO B L E M 31

Figure 3.5: Min labels are tightened by the second constraint.

certainly be assigned to the labels {3, 4, 5}, regardless of what label for each vertex.
This leaves no label in the range [3, 5] available to other vertices. Therefore, vertices
in layer NL

2 = {f, g} must be assigned above that range and their min labels are
tightened from 3 to 6, as shown in Figure 3.5.



4 Heuristics and applications

This chapter presents our contributions of heuristic methods for the bandwidth
problem and one of its applications. We begin with a modification of a heuristic
method which exploits properties of the graph. An approximate objective function
named Sigma is then introduced. Next, we describe a simulated annealing method
applying Sigma. We conclude the chapter with an application of the bandwidth
problem to the compression of topological information of digital road networks.

For convenience, in this chapter we refer to the bandwidth of the graph of interest
under a valid permutation π as the bandwidth of π.

4.1 The iGPS heuristic

The GPS heuristic was proposed by Gibbs, Poole, and Stockmeyer [23]. It is based
on the CM algorithm developed by Cuthill and McKee [9]. We first review the GPS
heuristic and then introduce our modified version named iGPS .

4.1.1 The GPS heuristic

Given an undirected graph, the GPS heuristic constructs level structures which are
composed of ordered levels of vertices. A permutation can be obtained from each level
structure by consecutively assigning labels to vertices level by level. The bandwidth
of this permutation depends on the structure of the levels and the label assignment
procedure. The concepts are described as follows.

A level structure is a partition of V into sets L0, L1, . . . , Lk called levels such that if
a vertex u is adjacent to a vertex v then u and v must belong either to the same level
or two adjacent levels. That means, if uv ∈ E, u ∈ Li and v ∈ Lj then |i− j| ¶ 1.

A level structure Lv(G) rooted at v satisfies L0 = {v} and, for every i ¾ 1 Li is the
set of vertices which are at distance i from v. Recall that Nk(v) is the set of vertices
at distance at most k from v not including itself. We can say Nk(v) = L1 ∪ . . .∪Lk.
Since the sets Nk(v) are required for computing lower bounds in exact methods, we
can make use of their availability for the GPS heuristic.



CHAPTER 4. H E U R I S T I C S A N D A P P L I C AT I O N S 33

Figure 4.1: A level structure rooted at v.

Figure 4.1 illustrates a level structure rooted at v, where L0 = {v}, L1 = {b, c},
L2 = {d}, and L3 = {e, f, g}.

We define the width of level Li as the number of vertices contained in Li. The width
of a level structure is the maximum width among its levels and its depth is the
number of its levels. In the example in Figure 4.1, Lv(G) has width 3 and depth 4.

The GPS heuristic comprises of three steps.

(1) Find endpoints of a pseudo diameter: This step attempts to locate two vertices
with nearly maximal distance. The algorithm selects a vertex v of minimal degree
and generates a level structure rooted at v and supposedly has depth k. Then it
chooses a vertex u in the last level of Lv(G) such that Lu(G) has the same depth k
and the smallest width. If there exists any u in the last level of Lv(G) such that
the depth of Lu(G) is greater than k then the procedure is started over with u

replacing v. This step returns u and v, assumed to be two endpoints of the pseudo
diameter.

(2) Reduce level width: The algorithm generates two level structures rooted at u
and v and then combines them into a new level structure which usually has smaller
width. The reason is that with the vertex numbering procedure introduced in
step (3), permutations of smaller bandwidths can usually be obtained from level
structures of smaller width.

(3) Vertex numbering: A permutation is obtained by assigning labels to vertices in
the combined level structure consecutively from 1 to n level by level. In the first
level, label 1 is assigned to the first endpoint of the pseudo diameter v. Next labels
are given first to unassigned vertices which are adjacent to an assigned vertex. If that
priority is the same, to vertices with a smaller degree. This procedure is repeated
until all vertices in the level are assigned. Starting at the second level, the priority
are given first to vertices adjacent to ones in the previous level and then to vertices
adjacent to assigned ones in the same level. In case of having the same priority,
vertices of smaller degree are selected first.



34 CHAPTER 4. H E U R I S T I C S A N D A P P L I C AT I O N S

Regarding the complexity, at first vertices of minimal degree need to be determined
in O(n). Given a vertex v, the running time for finding a pseudo diameter is O(nm).
The procedure for combining two level structures in step (2) requires time O(m)
and so does the one for assigning labels in step (3). Thus the overall complexity of
the algorithm is O(nm).

In practice, usually the other end point of the pseudo diameter can be found imme-
diately in the last level of Lv(G) without starting over. As a result, this step can be
finished in O(m). In this case the running time of the GPS algorithm is only O(m),
explaining why it is a very fast heuristic.

4.1.2 The improvement

In our previous work [54], the improvement uses the fact that the set Nh(v), which
contains levels of a level structure rooted at v, has to be computed for each vertex v
to compute the lower bounds α(G) and γ(G) as described in section 3.2. Therefore,
we used level structures with exact minimal width, instead of near minimal width
as in the original algorithm. Having the list of vertices generating level structures of
minimal width, we apply steps (2) and (3) of the original algorithm and select the
permutation having the smallest bandwidth.

In exact methods based on the partial permutation concept, we have seen that as-
signed vertices have effect on the label domains of free vertices as well as the band-
width of the full permutation. This also means that deciding what vertex to assign
to label 1 is an important step to obtain a permutation having a good bandwidth.

In fact, more candidates can be exploited from the list of level structures generated
during the computation of theoretical lower bounds. Consider vertices whose rooted
level structure has one of the following properties:

(i) Minimal width

(ii) Longest depth

(iii) Smallest sum of the widths of two adjacent levels.

The rationale of the third property is that the bandwidth of a permutation, which
is constructed from a level structure using the GPS heuristic, is not larger than the
sum of the widths of two adjacent levels. In addition, two vertices that constitute
the lower bounds are also considered:

(i) vertex vα that creates lower bound α(G):

vα =
{
v ∈ V : max

h∈{1,...,d(v,V )}

⌈
|Nh(v)|

2h

⌉
is largest

}



CHAPTER 4. H E U R I S T I C S A N D A P P L I C AT I O N S 35

(ii) and vertex vγ that creates lower bound γ(G):

vγ =
{
v ∈ V : max

h∈{1,...,d(v,V )}

⌈
|Nh(v)|
h

⌉
is smallest

}
While computing the lower bounds using level structures rooted at each vertex, the
algorithm records five vertices satisfying each of the five properties above. For each
vertex the iGPS heuristic applies three steps of the original GPS. This includes
finding the other endpoint of the pseudo diameter, combining two level structures
into a new one, and applying the vertex numbering procedure to the combined level
structure. Finally, the permutation with smallest bandwidth is selected.

Now we consider the running time. Since each level structure Lv(G) is generated
in O(m), all of them are done in O(nm). The selection of the five mentioned ver-
tices is embedded during the generation of level structures. For each selected vertex
the running time to obtain a permutation is the same as in GPS. Therefore, the
complexity of the iGPS heuristic is still O(nm). It cannot be reduced to O(m) in
practical cases like the original heuristic due to the time for generating all level
structures. However, if the lower bound computation must be done first as in the
cases of exact algorithms then iGPS can make use of that information and needs
only O(m) to finish.

The solution quality of iGPS is slightly better than that of the original version. It is
somewhat slower, however. A comparison of the two versions on the two benchmark
suites is given in Chapter 7.

4.2 An approximate objective function

The original objective function of the bandwidth minimization problem evaluates
the bandwidth value of the graph under valid permutations of the vertices. It is
defined as Φπ = max{|π(u) − π(v)| : uv ∈ E} for a permutation π. We notice
that the number of possible objective function values is only n, which is very small
compared with the huge number n! of possible permutations. Therefore, neighbor
permutations obtained by changing labels of the current permutation π are very
likely to have the same bandwidth as π. As a result, it is not so efficient to use Φπ

in a global optimization heuristic such as the simulated annealing method.

We propose an approximate objective function for the bandwidth minimization prob-
lem. It is named Sigma, denoted as σ, and composed of two parts. The integral part
preserves the original bandwidth value and the fractional part is very likely to change
if the labels in the current permutation are permuted. With this property Sigma can
be used efficiently in global optimization heuristic methods.



36 CHAPTER 4. H E U R I S T I C S A N D A P P L I C AT I O N S

4.2.1 The approximate objective function Sigma

Sigma is derived from the original objective function by smoothing the max function
to a sum function. We were introduced to the concept of the smoothing function [46,
pp. 27] in a lecture on digital image processing [52] in which the function is used for
solving a clustering problem. It is described as follows.

Suppose that we have a set S of integers. S = {x1, x2, ..., xu} and xmax = max{x :
x ∈ S}. With k ∈ Z large enough, we have:

u∑
i=1

bkxi ≈ bkxmax (4.1)

Since kx = logb (bkx), from (4.1) the maximum element in S can be approximated
in terms of a sum function:

xmax = 1
k
kxmax = 1

k
logb (bkxmax) ≈ 1

k
logb (

u∑
i=1

b(kxi)) (4.2)

Recall that the bandwidth of a graph under a permutation π is the maximum of
all label differences of two adjacent vertices. Each label difference is an integer in
the range [1,Φπ], where Φπ = max{|π(u)− π(v)| : uv ∈ E}. The function Sigma is
derived as follows.

Given a permutation π, denote C = bk and nd the number of edges uv having label
difference |π(u)− π(v)| = d, from (4.2) we have:

max
uv∈E
|π(u)− π(v)| = max{1, 2, . . . ,Φπ}

≈ 1
k

logb (n1b
k + n2b

2k + . . .+ bΦπk)

= 1
k

logb (n1C + n2C
2 + . . .+ CΦπ)

= 1
k

logbCΦπ( n1

CΦπ−1 + n2

CΦπ−2 + . . .+ nΦπ−1

C
+ 1)

= 1
k

logbCΦπ + 1
k

logb (
Φπ−1∑
i=1

ni
CΦπ−i

+ 1)

= 1
k

logb bkΦπ + 1
k

logb (
Φπ−1∑
i=1

ni
CΦπ−i

+ 1)

= Φπ + 1
k

logb (
Φπ−1∑
i=1

ni
CΦπ−i

+ 1) = σ′(π)

(4.3)

The function σ′(π) in (4.3) is a real approximation of the original objective func-
tion of the bandwidth minimization problem. The deviation from the exact value,
expressed by the fractional part, takes into consideration all label differences less



CHAPTER 4. H E U R I S T I C S A N D A P P L I C AT I O N S 37

than Φπ. To make the use of such a function in a simulated annealing method even
more effectively, we introduce a slightly changed version in (4.4). The function is
named Sigma and its fractional part considers all label differences, including those
equal to Φπ.

σ(π) = Φπ + 1
k

logb (
Φπ∑
i=1

ni
CΦπ−i

) (4.4)

where k and b are constants, C = bk, and nd = |D|, D = {uv ∈ E : |π(u)−π(v)| = d}.

The approximate objective function is named Sigma because the term is also used
as the notations for some relevant mathematical functions. First, this is an approx-
imation of the original objective function in terms of a deviation from the original
bandwidth. Here, the deviation is expressed by the fractional part. We usually de-
note the lower case σ as the deviation in statistics. Second, the upper case sigma ∑
is often used to denote a sum, which is the result of the smoothing idea in our case.

The fractional part of Sigma in (4.4) takes into account all label differences. This
makes it very likely to change when the permutation π changes and enables the
function Sigma to work effectively in global optimization heuristic methods.

4.2.2 Computing Sigma

The function Sigma in (4.4) can be computed inO(Φπ) as described in Algorithm 4.1.
The value of b is chosen to be the Euler’s constant for the programming convenience,
since basic C/C++ libraries already support the power and log functions of this base.
The value of constant k is chosen by experiment and k = 20 makes Sigma the most
sensitive for our implementation.

Algorithm 4.1: Computing Sigma.
Input: A permutation π.
Output: σ(π).
b = e; {Euler’s constant}
k = 20;
C = bk;
denom = 1;
sigmaFraction = nΦπ ;
for i = Φπ − 1 downto 1 do
denom = denom/C;
sigmaFraction = sigmaFraction + ni × denom;

end for
sigmaFraction = (1/k)× logb (sigmaFraction);
sigma = Φπ + sigmaFraction;
return sigma;



38 CHAPTER 4. H E U R I S T I C S A N D A P P L I C AT I O N S

4.3 A simulated annealing method

To improve the solution obtained by iGPS and also to test the function Sigma, we
apply it in a simulated annealing (SA) method. We first review the SA algorithm
and then describe our implementation.

4.3.1 The SA algorithm

SA is a heuristic method which provides some means of escaping local minima. A
reference text can be found in [49, pp. 115]. We briefly describe SA as follows.

The SA algorithm starts with an initial solution and goes through many iterations
to reach an acceptable solution. The iterations are controlled by a temperature T ,
which is initialized with a high value and decreased over iterations according to the
so-called cooling model. At each iteration, the algorithm considers some neighbor of
the current solution. The neighbor is accepted as a new solution if it is better than
the current one, or in case it is not, with a probability specified by an acceptance
probability function. In this way the algorithm can escape from local minima. The
algorithm stops when T reaches a specified value or some stopping condition is met.

We use Sigma as the objective function in our implementation and call it SA-σ to
differentiate from other SA methods. The initial solution is a permutation obtained
from the result of iGPS. SA-σ is described in Algorithm 4.2. Here, the function
sigma realizes the Algorithm 4.1. Searching for neighbors of a solution is handled
by the function neighbor. The acceptance probability function is e−∆σ

T .

Algorithm 4.2: The SA-σ algorithm.
Input: An initial permutation πiGPS obtained from the iGPS heuristic.
Output: A permutation π, expected to have a smaller bandwidth.
T = Tstart;
πc = πiGPS;
while T > Tend and runningTime() < timeLimit do
σc = sigma(πc);
πn = neighbor(πc);
σn = sigma(πn);
∆σ = σn − σc;
if σn < σc or e

−∆σ
T > random() then

π = πn;
end if
T = T * r; {r is the cooling rate}

end while
return π



CHAPTER 4. H E U R I S T I C S A N D A P P L I C AT I O N S 39

Figure 4.2: A permutation and its rotation.

4.3.2 The neighbor functions

Neighbor candidates can be searched for by two methods. The first one is swap, which
randomly chooses two labels and exchanges two vertices assigned to the labels. The
second method is called rotation. It also picks two labels randomly, but performs
a round-shift of the vertices between two labels. The rotation method has been
introduced in Rodriguez-Tello, Hao, and Torres-Jimenez [48].

Figure 4.2 illustrates an example rotation for a permutation of 7 vertices. The linear
layout is depicted as a dashed line with integer labels below it. Each assigned vertex
is depicted as a circle on the line at its label. The original permutation is shown
on the left (l). When a rotation(3,5) is performed, three vertices e, b, and f are
round-shifted, as shown in the permutation on the right (r).

As presented in Rodriguez-Tello et al. [48], the rotation function can be expressed
as as a product of swap operations. If we define swap(i,j) as the exchange of two
vertices at label i and label j, then rotation(i,j) where i < j can be defined as
in (4.5):

rotation(i,j) = swap(i,j)× swap(i,j-1)× swap(i,j-2)× . . .× swap(i,i+1) (4.5)

Clearly, a rotation is a combination of swaps. In [48], the authors did confirm the
dominance in term of quality of the rotation method over the swap method. It is a
bit different in our case.

We would like to test our methods on the same instances used in previous works
with which our results are compared. The reason is that with the same matrix
instance, different conversions to graphs may result in different bandwidth values.
Such a case can be seen in Chapter 7. Therefore, for instances in the popular suite
we use the files prepared in Martí, Campos, and Piñana et al. [37, 43, 4, 36]. In
these files, we observe that the graph properties are preserved the same as in the
original instance but vertices have been randomly reordered. Our SA-σ which uses
swap obtains better results than the one with rotation on these instances. However,
on instances taken directly from the library Matrix Market rotation is the better
method. Given the instance files, we use swap for this benchmark suite.



40 CHAPTER 4. H E U R I S T I C S A N D A P P L I C AT I O N S

For the second benchmark suite introduced in Safro, Ron, and Brandt [50], we used
instances taken directly from the collection [11]. Here SA-σ with swap produces
comparable results to the one with rotation. Intuitively, rotation is likely to create
more diversity and expected to produce better quality than swap. Probably on very
large instances, the number of swaps in each rotation operation should be limited
to make it more efficient.

4.3.3 The SA-σ implementation

For the implementation of the SA-σ algorithm, we used the parallel simulated an-
nealing library parSA developed by Kliewer and Klohs [29, 30]. This looks to be a
well-designed framework in C++, supporting MPI [38] and a variety of cooling and
acceptance models. We initially wanted to configure and run our algorithm in the
parallel mode. Since our time for heuristic methods is limited, we only run SA-σ
in the non-parallel mode using the simplest cooling model, the so-called geometric
schedule. This is equivalent to Algorithm 4.2.

Concerning the parameters for SA-σ, we used the values reported in [48]. In par-
ticular, we set the starting temperature Tstart = 1.0 × 10−2 and the cooling rate
r = 0.92. The stop temperature is chosen small enough so that the algorithm can
fully use the specified running time. More specifically, the time limit is set to 180
seconds for small instances having less than 200 vertices and 30 minutes for larger
instances. The computational results will be reported in Chapter 7.

Since SA is an experimental method, we will need many configurations and tests
to select the best parameters. We may even need a set of parameters specific to
each benchmark suite. As exact methods are our main focus in this dissertation, we
could not spend too much time on this. However, with the availability of the SA
framework there is space for improvement in future work.

4.4 Compression of topological information

In this section, we describe an application of the bandwidth problem to the com-
pression of topological information of digital road networks. It is the result of a
collaboration project [54] on new approaches for the compression of digital map
databases. Here we only focus on the application of the bandwidth problem, the
other approaches can be found in the original work. We use again the data and
computational results in [54] for the illustration purpose.



CHAPTER 4. H E U R I S T I C S A N D A P P L I C AT I O N S 41

junction nodes

- at tile borders additional junction nodes are created

- junction nodes of original and compressed database are identical

shape points describing the shape of link segments

- original road segment and compressed one

have always the same amount of shape points

- shape points of the compressed segments have a certain

maximum error to the respective shape points of the

uncompressed segment

- maximum error between original segment (n6, n7)

and compressed one. 

n
1

n
2

n
3

n
4

n
5

n
6

n
7

n
8n

10

n
9

original link segments

compressed link segments

one tile containing 10 nodes n1 to n10 and 10 edges

junction nodes

- at tile borders additional junction nodes are created

- junction nodes of original and compressed database are identical

shape points describing the shape of link segments

- original road segment and compressed one

have always the same amount of shape points

- shape points of the compressed segments have a certain

maximum error to the respective shape points of the

uncompressed segment

- maximum error between original segment (n6, n7)

and compressed one. 

n
1

n
2

n
3

n
4

n
5

n
6

n
7

n
8n

10

n
9

original link segments

compressed link segments

one tile containing 10 nodes n1 to n10 and 10 edges

Figure 4.3: Road network within one tile.

4.4.1 Topological information

In digital map databases, topological information of road networks is used for route
calculation and is stored in the routing building block of the databases, along with
additional geometric information on the positions of vertices and the shapes of links.
For having efficient loading units, the road network is often partitioned into small
cells called tiles, each containing a subgraph of the complete road network. Fig-
ure 4.3 illustrates an example tile of a road network. We will only use its topological
information, i.e., the junction nodes (subgraph vertices) and the links (edges).

The topological information of road networks is often encoded using adjacency lists
since the corresponding graphs are sparse. The graph is considered to be undirected
and additional information for each link such as direction is stored separately.

Given an arbitrary vertex ordering which is equivalent to a permutation, traditional
approaches would store the graph as follows. The first data entries are the number
of vertices n and the maximum vertex degree dmax. Then, for each vertex they store
its degree and incident edges encoded by the list of its neighbors (sorted according
to their labels in the permutation). Notice that an edge is stored only once at the
vertex with the smaller vertex number. The vertex degree requires dlog2 (dmax + 1)e
bits, while each entry in the list of its neighbors needs dlog2 (n + 1)e bits.

Table 4.1 shows the topological information, the values, and the corresponding num-
bers of bits required for storing the graph in Figure 4.3. Here we use 2 bytes for the
number of vertices per tile and 1 byte for the maximum vertex degree.



42 CHAPTER 4. H E U R I S T I C S A N D A P P L I C AT I O N S

Table 4.1: Storage of the topological information.

Data Values (Number of bits) Remarks
n 10(16)
dmax 4(8)
vertex 1 1(3) 2(4) degree 1, one edge: (n1, n2)
vertex 2 3(3) 3(4) 4(4) 10(4) three edges: (n2, n3), (n2, n4), (n2, n10)
vertex 3 0(3) no edge: (n2, n3) is already included
.. .. ..

In the approach described above, the edge information can be stored more compactly
using the delta information, or the difference of two vertex numbers, instead of the
absolute vertex numbers. (Delta encoding is used in many applications such as video
codecs or image processing.) This can be improved even further. If the maximum
delta is reduced, we can use a smaller number of bits for encoding an edge.

In Figure 4.3, the delta value of the edge (n2, n10) is 8. If the vertex numbers of n10

and n7 are exchanged, the maximum delta in the graph is decreased from 8 to 5.
Therefore, each edge can be encoded using only 3 bits instead of 4 bits. A vertex
ordering with a reduced maximum delta can be obtained from the solution of the
bandwidth problem.

4.4.2 A compression approach

The traditional approaches require dlog2 (n+ 1)e bits for storing a single edge within
a tile containing n vertices. Using the solution of the bandwidth problem, the max-
imum delta can be reduced to a value Φu. As a result, the edge can be stored with
only dlog2 Φu + 1)e bits. Interestingly, in this application an optimal gap is sufficient
and we do not need to find the optimal bandwidth of the graph. Since binary encod-
ing is used, a bandwidth of 63 produces the same compression ratio as a bandwidth
of 32. If the lower bound for the bandwidth of a graph is 2k−1 and the upper bound
is 2k − 1 then the optimal solution for encoding the edges requires k bits.

The upper bound Φu of the solution gap and the corresponding vertex ordering
can be obtained using a heuristic for the bandwidth problem. Since a road network
database is huge and may contain up to a hundred thousand tiles, fast heuristics
such as GPS and iGPS are required. In [54], we used the first improvement of the
GPS algorithm to obtain the upper bound for the bandwidth of each tile. The lower
bound was computed by taking the maximum of α(G) in (3.1) and γ(G) in (3.2). It
is only for knowing whether the solution gap is optimal and not necessarily required
for the edge encoding.



CHAPTER 4. H E U R I S T I C S A N D A P P L I C AT I O N S 43

4.4.3 Experimental evaluation and conclusion

The evaluation in [54] is based on real-world European road network data. A data
set DB consisting of 10,000 arbitrarily chosen tiles is used. Each tile contains be-
tween 163 and 296 vertices. The experiments were performed on a 3 GHz PC hav-
ing 2 GB RAM running Linux. The algorithms were coded in C/C++.

Table 4.2: Evaluation of the topological compression approach.

n m dmax Φl Φu time St Sc Rc (%)
163 212 6 7 11 0.05 2209 1369 38.03
221 301 7 9 15 0.10 3095 1899 38.64
296 397 7 12 21 0.19 4485 2905 35.23

The results of the topological compression for some arbitrarily chosen tiles of DB
are shown in Table 4.2. For each tile, n is the number of vertices, m is the number
of edges, dmax is the maximum vertex degree, Φl is the lower bound, and Φu is the
upper bound for its bandwidth. The running times are in seconds.

St is the number of bits required for storing the graph using the traditional approach
and Sc is the number used by the compression approach. As shown in Table 4.1,
St = 3× 8 + n× dlog2 (dmax + 1)e+m× dlog2 (n+ 1)e. Since one additional byte is
needed for encoding the value Φu, we have Sc = 4× 8 +n×dlog2 (dmax + 1)e+m×
dlog2 (Φu + 1)e. The compression ratio is Rc = (St − Sc)/St.

We observe noteworthy compression ratios in Table 4.2. Since Φu is less than 16 in
most of the tests, an edge can be encoded with only 4 bits instead of 8 or more bits.
For the 10,000 tiles, an average compression ratio of 37.98% is achieved.

In summary, a technique for compression of topological information from digital
road networks using the solutions of the bandwidth problem has been described. It
allows encoding each edge with a small number of bits. We hope that the technique
can inspire similar applications of the bandwidth problem where an reordering of
vertices may lead to an efficient storage or computation.



5 Exact methods

This chapter presents our contributions of exact methods for the bandwidth problem.
They are based on the partial permutation concept introduced in Chapter 3. First,
new constraints for the bandwidth problem are introduced. In the next section, we
analyze the dominance relation between certain partial permutations and describe
how it can be used in a branch-and-bound algorithm with a hash-table. The chapter
is closed with a new branching scheme named 2-labeling.

Notice that in the examples, partial permutations and constraints are illustrated
with the convention described in Section 3.5.2.

5.1 The new constraints

The new constraints are derived by applying the basic bandwidth constraint to spe-
cific properties of the graph. Since they tighten label domains of the free vertices, the
size of the branch-and-bound tree can be reduced and violated partial permutations
can be detected early. This speeds up the running time significantly.

5.1.1 The fitting constraint

The bandwidth of a graph under a permutation is ϕ only if any pair of adjacent
vertices are not assigned to two labels more than a distance ϕ away. If the degree of
a vertex v is larger than ϕ, v cannot be assigned to a label which is completely on
the left (or on the right) of its neighbors, instead it must be fitted between them. We
use this fact as a way to tighten the label domains, and call it the fitting constraint.

Tightening max labels

Consider the example in Figure 5.1. The graph has 7 vertices, vertex a has been
assigned to label 1, and max labels of all free vertices are set by the definition. In
addition, the max label of v has been tightened by the first constraint (3.10). For
simplicity, we only focus on the max labels for now and ignore the min labels, whose
values are all 2.



CHAPTER 5. E X A C T M E T H O D S 45

Figure 5.1: Max labels already tightened by the first constraint.

Figure 5.2: Max labels are tightened further by the fitting constraint.

Since vertex v has degree 5 and the search parameter ϕ is 3, v cannot be assigned on
the right of more than three neighbors. In other words, the label of v must be smaller
than those of at least two adjacent vertices. The constraint can be formulated as
follows:

if (|N1(v)| > ϕ) then
lv ¶ lmw − (|N1(v)| − ϕ) : lmw = max{lw : w ∈ N1(v)}

(5.1)

Notice that w does not have to be a free vertex. Applying the fitting constraint to
the current example, because v has 5 adjacent vertices, we have lv ¶ 7 − (5 − 3).
Therefore, the max label of v is now tightened from 6 to 5, as shown in Figure 5.2.

If we apply the same idea to the list of vertices which are more than one distance
unit away from v, the fitting constraint can be generalized as follows:

if (|Nh(v)| > hϕ) then
lv ¶ lmw − (|Nh(v)| − hϕ) : lmw = max{lw : w ∈ Nh(v)}

(5.2)

We denote by excess-range the value of (|Nh(v)| − hϕ). Notice that the fitting con-
straint is applicable only if the excess-range is positive. In many cases, the max labels
lw of free vertices are the same. Since these vertices must be assigned to unique la-
bels in a permutation, we can exploit this fact to get even stronger bounds with the
fitting constraint in a way similar to that of the first constraint. First, max labels of
w ∈ Nh(v) are sorted non-decreasingly. Given this sorted list, the algorithm starts



46 CHAPTER 5. E X A C T M E T H O D S

with the largest lw and re-evaluated lv according to (5.2), and then the value of the
excess-range is reduced with an amount equal to the number of vertices having that
max label. This procedure is repeated until the excess-range is not positive anymore,
and through that loop the smallest lv, or the strongest, is selected.

Since layers Nh(v) are fixed for each vertex v, the excess-range should be evaluated
only once for each ϕ. Before solving each BW problem, the algorithm checks and
records vertices v which have positive excess-ranges, i.e., |Nh(v)| − hϕ > 0, and
for each vertex the layer hheu which makes the excess-range largest. For all later
computations, the fitting constraint (5.2) is applied only to recorded vertices having
positive excess-ranges and directly with their layers hheu. This makes the procedure
more efficient.

Finally, to save the cost of the sorting procedure, only free vertices will be used.
Therefore, we use the computation as in (5.3).

if (|NF
h (v)| > hϕ) then

lv ¶ lmw − (|NF
h (v)| − hϕ) : lmw = max{lw : w ∈ NF

h (v)},
(5.3)

where NF
h (v) = Nh(v) ∩ F .

The layer hheu computed in advance may not always generate the best excess-range
when (5.3) is used. However, it is still more efficient than re-evaluating the excess-
range before applying the constraint for every partial permutation.

Tightening min labels

The same idea is used to tighten the min labels fv. We continue using the example
in Figure 5.2. Here, the max label of v has been tightened, but its min label remains
unchanged at 2.

Since |N1(v)| = 5 and the search parameter ϕ = 3, v cannot be assigned to the left
of more than three of its adjacent vertices, which means that its label must be larger
than those of at least two adjacent vertices. Because all of its adjacent vertices have
min label 2, the min label of v is tightened from 2 to 4, as shown in Figure 5.3. We
notice that the fitting constraint has tightened the label domain of v quite strongly
in this case, from [2, 6] to [4, 5].

The fitting constraint for min labels is formulated as follows:

if (|N1(v)| > ϕ) then
fv ¾ fmw + (|N1(v)| − ϕ) : fmw = min{fw : w ∈ N1(v)}

(5.4)

The generalized version of the fitting constraint, in which free vertices are more than



CHAPTER 5. E X A C T M E T H O D S 47

Figure 5.3: Min labels tightened by the fitting constraint.

one distance unit away from a vertex v, is formulated in (5.5).

if (|NF
h (v)| > hϕ) then

fv ¾ fmw + (|NF
h (v)| − hϕ) : fmw = min{fw : w ∈ NF

h (v)},
(5.5)

where NF
h (v) = Nh(v) ∩ F .

We use the same procedures for improving the efficiency as in the case of tightening
max labels. The fitting constraint is applied only to vertices v having positive excess-
ranges and for each vertex the layer hheu with which the excess-range is largest.
These values are computed once in advance before solving each BW problem. The
evaluation of fv is also based on the sorted list of fw, for w ∈ NF

h (v), to utilize the
fact that each vertex can be assigned only to one label. With these procedures the
constraint can tighten fv more strongly.

5.1.2 The pulling constraint

This is not a completely new constraint, in fact it is a generalization of the first
constraint developed by Caprara and Salazar-González [6] in which only adjacent
vertices are considered in tightening the label domain of a free vertex v. The authors
did mention an extension of their constraint which uses a set of free vertices whose
shortest distance to an assigned vertex is closer than that of v. However they did
not use it in the end because on their benchmark instances, stronger bounds did not
compensate for the computational cost and this resulted in longer running time.

We propose a generalization of this constraint in a way similar to that of the fitting
constraint, so that it can be used efficiently. The name pulling is given to this
constraint because it tends to “pull” free vertices closer to the assigned set. The
pulling constraint for max labels is formulated as follows.

lv ¶ min
{
(lw − (|S| − 1) + hϕ) : w ∈ Nh(v), S = {t ∈ Nh(v) : lt ¶ lw}

}
(5.6)

The idea of constraint (5.6) is the same as that of the first constraint. Since each



48 CHAPTER 5. E X A C T M E T H O D S

vertex w in the set Nh(v) can be assigned to one label only, the label of v must be
constrained from the smallest label of a vertex in Nh(v). This can be done by first
sorting values lw non-decreasingly. Then, for each value lw, let S = {t ∈ Nh(v) :
lt ¶ lw}. The smallest label of a vertex t ∈ S is lw − (|S| − 1), keeping v from being
assigned to a label larger than lw − (|S| − 1) + hϕ since v is at a distance at most h
from w.

Similarly, the pulling constraint for min labels is formulated in (5.7).

fv ¾ max
{
(fw + (|S| − 1)− hϕ) : w ∈ Nh(v), S = {t ∈ Nh(v) : ft ¾ fw}

}
(5.7)

In the generalized version of the pulling constraint, we consider the set of free vertices
whose distance is at most h from v. The choice of an effective layer h is heuristically
selected by finding a layer hm such that (lw − (|S| − 1) + hmϕ) is smallest, or
(|S|−hmϕ) is largest. This coincidently happens to be the same layer hheu described
in the section on the fitting constraint. Therefore, the pulling constraint can be
applied efficiently. The reason is that it can reuse the sorted lists of min and max
labels of vertices in Nhheu(v), which has been prepared for the computation of the
fitting constraint.

Finally, to save the cost of the sorting procedure, we consider only free vertices as
in the case of the fitting constraint. Because both fitting and pulling constraints use
the same set of free vertices, we need to sort only once. The version of the pulling
constraint used is formulated in (5.8) and (5.9).

lv ¶ min
{
(lw − (|S| − 1) + hϕ) : w ∈ NF

h (v), S = {t ∈ NF
h (v) : lt ¶ lw}

}
, (5.8)

and,

fv ¾ max
{
(fw + (|S| − 1)− hϕ) : w ∈ NF

h (v), S = {t ∈ NF
h (v) : ft ¾ fw}

}
, (5.9)

where NF
h (v) = Nh(v) ∩ F .

5.1.3 The density cut constraint

We review the second constraint by Martí, Campos, and Piñana [36] which is detailed
in Section 3.5.4. Given a left partial permutation πL, the min labels can be tightened
by arranging free vertices into layers NL

h , where NL
h is the set of vertices whose

shortest distance to any vertex u ∈ L is h. For each layer NL
h , let NL = {NL

h ∪
NL
h−1 ∪ . . .∪L} and lcv = max{lv : v ∈ NL}. If lcv = |NL| then we know that vertices

in NL will be assigned to all labels in the range [1, lcv], regardless of the assignment
order. Therefore, vertices of the remaining layers must be assigned to labels above
that range, and their min labels are tightened to f cv + 1.



CHAPTER 5. E X A C T M E T H O D S 49

Figure 5.4: Min labels are tightened by the second constraint.

Figure 5.5: Further tightening by the density cut constraint.

Figure 5.4 shows again the example illustrating the second constraint. Here, L =
{a, b} and NL

1 = {c, d, e}. Due to lcv = 5 for NL = {NL
1 ∪L}, min labels of vertices in

NL
2 = {f, g} have been tightened from 3 to 6. On the linear layout, label 5 separates

c, d, e to the left side and f, g to the right side. We call such a separation a cut.
Notice that the label domain of e is unchanged and fe = 3.

To use the second constraint, layers NL
h must be generated and a cut can be formed

if the size of NL is equal to the largest max label of vertices in this set. The cuts
can be found more naturally by sorting vertices according to their max labels and
finding label ranges which are fully used by some vertices due to their label domains.
This is the idea of the new constraint called density cut.

Assume that πL,R is a partial permutation whose left set has just been extended
and |L| = k. Since this tightens max labels of the free vertices, the density cut
constraint can be used to strengthen the min labels as follows. First we sort free
vertices non-decreasingly according to their max labels. Starting with the smallest ls
upward, for each max label ls let S = {v ∈ F : lv ¶ ls}. If k+ |S| = ls, obviously all
vertices v ∈ S must be assigned to labels in the range [k + 1, ls], regardless of the
assignment. Therefore, remaining vertices can only be assigned to a label not less
than ls + 1. In this case, a new cut has been found at ls.

Consider the example in Figure 5.4 again, after sorting free vertices according to
their max labels we have three values ls: 4, 5, and 7. We find a cut immediately
at the first max label ls = 4 because S = {c, d} and |L| + |S| = 4. Since vertex e
must be assigned to a label above that range, its min label is tightened to 5 instead



50 CHAPTER 5. E X A C T M E T H O D S

of 3 as in the second constraint. When the next max label ls = 5 is considered,
another cut is found, tightening the min labels of f and g to 6. Figure 5.5 show the
partial permutation with stronger bounds. Compared with the second constraint,
the density cut constraint generates one more cut and tightens the min label of one
more vertex.

Computing the density cut constraint requires a sorting procedure. However, in
practice it often leads to stronger bounds than does the second constraint since
more cuts are generated. The pseudo code for applying the constraint is outlined in
Algorithm 5.1.

Algorithm 5.1: The density cut algorithm.
Input: πL,R, |L| = k.
Output: tightened fv if possible.
Sort v ∈ F non-decreasingly according to lv;
minLabelRange = k + 1;
numSmallerEqual = k;
for each max label ls in the sorted list do
let S = {v : lv = ls};
for v ∈ S do
if fv < minLabelRange then
fv = minLabelRange;

end if
end for
numSmallerEqual += |S|;
if numSmallerEqual = ls then
minLabelRange = numSmallerEqual + 1;

end if
end for

A similar procedure can be used to tighten max labels of a partial permutation πL,R
whose right side has just been extended. Assume that |R| = q. First we sort the min
labels of free vertices non-ascendingly. Starting with the largest value downward, for
each min label fs let S = {v ∈ F : fv ¾ fs}. If fs + (|S| − 1) = n − q, all vertices
v ∈ S must be assigned to labels in the range [fs, n − q] and a new cut has been
found at fs. In this case, max labels of the remaining free vertices v ∈ {F \ S} will
be tightened to fs − 1.

5.1.4 The density near-cut constraint

In certain cases the density cut constraint cannot be used, simply because of the
values of the max labels. Figure 5.6 shows such an example. Here, we have a graph
of 9 vertices. Vertex a is assigned to label 1 and the remaining free vertices have



CHAPTER 5. E X A C T M E T H O D S 51

Figure 5.6: A density cut cannot be formed.

Figure 5.7: Tightening by the density near-cut constraint.

label domains as shown. After sorting vertices according to their max labels, we
have max labels 4, 6, 7, and 9. Let us consider fs = 7 and the set S = {b, d, e, c, g},
where fv ¶ fs : v ∈ S. Since k + |S| = 1 + 5 < fs, a density cut cannot be formed.
Similar cases are observed for other max labels.

We notice that the gap between the cut fs and k + |S| is only 1. Therefore, a cut
can be created if a free vertex not in S is assigned to a label not greater than fs. We
call that a near-cut, graphically illustrated by the dashed line cn = 7 on the graph.

In the example in Figure 5.6, if vertex f is assigned to a label not greater than 7,
a cut will be formed. In this case, the smallest label such that i can be assigned
to is 8 because the smaller labels has been fully used by f and v ∈ S. Since i is
adjacent to f , it constrains the min label of f to 5. Therefore, ff can be tightened
to 5 instead of 2, as shown in Figure 5.7. Vertices h and i are tightened similarly. It
is even stronger for i. Since i has two adjacent vertices on the right of the near-cut,
one of them must be assigned to label 9, which constrains fi to 6.

In the implementation, near-cuts cn are located by finding label ranges which still
lack one vertex to form a density cut. For each vertex v above the label range, i.e.,
those whose max labels are larger than cn, the number of its adjacent vertices which
are also outside the range are counted, and the new min label of v is constrained to:



52 CHAPTER 5. E X A C T M E T H O D S

fv = max{fv, cn + |S| − ϕ}, where S = {w : w ∈ N1(v) and lw > cn}.

The pseudo code for the density near-cut constraint is outlined in Algorithm 5.2.
Notice that the near-cuts are tried in a descending order; if a vertex v has been
tightened with a large near-cut, all the later tightenings can hardly be better because
the later near-cuts are always smaller. Therefore if a vertex has ever been tightened,
it should not be tried again.

Algorithm 5.2: The density near-cut algorithm.
Input: πL,R.
Output: tightened fv if possible.
1: for all v ∈ F : tightened[v] = false;
2: find all near-cuts cn and put into set Cn in a descending order;
3: for each near cut cn ∈ cn do
4: for v ∈ F do
5: if tightened[v] = true then
6: continue;
7: end if
8: S = {w : w ∈ N1(v) and lw > cn};
9: if |S| > 0 then
10: newMinLabel = min{n, cn + |S| − ϕ};
11: if fv < newMinLabel then
12: fv = newMinLabel;
13: tightened[v] = true;
14: end if
15: end if
16: end for
17: end for

The density near-cut constraint can be considered as a supplementary version of the
density cut constraint and both should be used together to utilize the sorted list and
the procedure for detecting cuts and near-cuts. Having free vertices sorted according
to their max labels, for each label range the condition of a real cut is tested. If a
cut is found, max labels of the remaining vertices are tightened. Otherwise, the
label range is checked if it lacks only one element to form a cut. If so, a near-cut
is found and recorded in the list Nc. After the tightening procedure of the density
cut constraint is finished, max labels are tightened using near-cuts in a descending
order. In Algorithm 5.2, this starts at line 3.

Like in the case of the density cut constraint, a procedure similar to what described
above can be used to strengthen the max labels lv when the partial permutation is
extended on the right side.



CHAPTER 5. E X A C T M E T H O D S 53

5.1.5 Branch-and-bound algorithms with constraints

The new constraints can easily be used in a branch-and-bound algorithm for BW
like Algorithm 3.4. For efficiency, these constraints are hierarchically applied, one
by one in the order of their computational complexity. Extendability of the input
partial permutation is tested after applying a group of constraints using the same
data. In particular, extendability test is called after updating basic bounds using
the definitions of lv and fv, after applying the pulling constraint and the fitting
constraint, and finally after applying the density cut constraint and the density
near-cut constraint.

The pseudo code is outlined in Algorithm 5.3. Compared with Algorithm 3.4, only
the function testAndExtend is changed to include the new constraints, other func-
tions remain the same.

Algorithm 5.3: Applying constraints in a branch-and-bound algorithm.
bool testAndExtend(πL,R, v, ϕ, side)
begin
updateBasicBounds(πL,R, v, ϕ, side);
if extendabilityTest(πL,R, ϕ) = false then
return false;

end if
apply pulling constraint and fitting constraint on side;
if extendabilityTest(πL,R, ϕ) = false then
return false;

end if
apply density cut constraint and density near-cut constraint on side;
if extendabilityTest(πL,R, ϕ) = false then
return false;

end if
return labeling(πL,R, ϕ);

end

5.1.6 Tightening bounds from the side not being extended

In the work of Caprara and Salazar-González [6] and the later improvement by
Martí, Campos, and Piñana [36], the constraints are applied only once on the side
where the partial permutation is extended. With the introduction of the density cut
and the density near-cut constraints, we observe that when a partial permutation
is extended on the left, which can only update max labels lv by definition, its min
labels fv can also be tightened. Therefore, after applying the density cut and the
density near-cut constraints we check if there is any update made to the min labels.



54 CHAPTER 5. E X A C T M E T H O D S

If this is the case then the pulling constraint and the fitting constraint are applied
again for tightening bounds, but on the other side of the partial permutation.

This procedure is applied similarly when a partial permutation is extended on the
right side. The general pseudo code is outlined in Algorithm 5.4.

Algorithm 5.4: Tightening bounds from the side not being extended.
bool testAndExtend(πL,R, v, ϕ, side)
begin
updateBasicBounds(πL,R, v, ϕ, side);
if extendabilityTest(πL,R, ϕ) = false then
return false;

end if
apply pulling constraint and fitting constraint on side;
if extendabilityTest(πL,R, ϕ) = false then
return false;

end if
apply density cut constraint and density near-cut constraint on side;
if extendabilityTest(πL,R, ϕ) = false then
return false;

end if
if density cut or density near-cut made any update on side then
if side = LEFT then
otherSide = RIGHT;

else
otherSide = LEFT;

end if
apply pulling constraint and fitting constraint on otherSide;
if extendabilityTest(πL,R, ϕ) = false then
return false;

end if
end if
return labeling(πL,R, ϕ);

end

5.2 The dominance relation

In this section we analyze the relation between certain partial permutations and
show that some partial permutations are dominated by others, and can therefore be
eliminated in a branch-and-bound search tree. The data structure and algorithms
to employ this relation in a branch-and-bound algorithm are then presented.



CHAPTER 5. E X A C T M E T H O D S 55

5.2.1 The dominance concept

In the BW problem for a graph G, all possible permutations must be tested to prove
that G does not have a bandwidth ϕ. On the other hand, it is sufficient to conclude
that G has such a bandwidth if one can find a feasible permutation π such that
|π(i) − π(j)| ¶ ϕ for all ij ∈ E. Among two partial permutations having the same
assigned set, in certain cases it is guaranteed that if a partial permutation can be
extended to a feasible permutation then so can the other. This leads to an interesting
property of the BW problem: the dominance relation between partial permutations
having the same assigned set. It is defined as follows.

Definition 5.1
πL1 and πL2 are two left partial permutations having the same assigned set L. If the
fact that πL2 can be extended to a feasible permutation also guarantees that πL1 can
be extended to a feasible permutation, then πL1 is said to dominate πL2 . 4

In many places in this section we illustrate the dominance relation between two
partial permutations. Figure 5.8 shows such an example. Here, two left partial per-
mutations πL1 and πL2 have the same assigned set L = {a, b, c, d}. The linear layout
is depicted by the horizontal dashed line with labels 1, 2, . . . drawn below the line.
Vertices are depicted as circles on this line, each with its vertex number above the
circle. Edges are curved lines connecting adjacent vertices. Consider πL1 , we have
πL1 (a) = 4, πL1 (b) = 3, πL1 (c) = 2, and πL1 (d) = 1. There is a vertical dashed line
separating the assigned set L and the free set F . (In Figure 5.8, this separator is on
the right of vertex a.) We do not show the vertex numbers of free vertices because
it is not necessary.

In this section, we always assume that a partial permutation already satisfies the
basic bandwidth constraint on vertices in the assigned set. For left partial permu-
tations, this means that |πL(i)− πL(j)| ¶ ϕ, ij ∈ E for all i, j ∈ L. For both-sided
partial permutations, |πL(i)− πL(j)| ¶ ϕ, ij ∈ E for all i, j ∈ L,R. This condition
can be met in the outlined branch-and-bound algorithms, where violated partial
permutations have been eliminated.

Proposition 5.1
πL1 and πL2 are two left partial permutations having the same assigned set L.
If πL1 (v) ¾ πL2 (v) for all v ∈ {L ∩N1(F )} then πL1 dominates πL2 . 4

Proposition 5.1 defines the dominance rule for two left partial permutations having
the same left set. It states that the dominance relation is determined by the set of
assigned vertices v ∈ L which are adjacent to a free vertex. The idea is illustrated
in Figure 5.8, in which partial permutation πL1 dominates πL2 . Here, such a set L ∩
N1(F ) = {a, b, c}.



56 CHAPTER 5. E X A C T M E T H O D S

Figure 5.8: The dominance relation between two partial permutations.

Proof Assuming that the partial permutation πL2 can be extended to a feasible
permutation π such that π(v) = πL2 (v) : v ∈ L, it follows that πL1 can also be
extended to a feasible permutation π1 such that:

π1(v) =

 πL1 (v) if v ∈ L,
π(v) if v ∈ F.

We need to show that for any pair of adjacent vertices i and j the difference of their
labels in π1 is not larger than ϕ. Both vertices can be either in the same set L or F ,
or one in L and the other in F .

First, by the assumption we have |πL1 (i)− πL1 (j)| ¶ ϕ for all i, j ∈ L.

Since π is a feasible permutation itself, |π1(i) − π1(j)| = |π(i) − π(j)| ¶ ϕ for all
i, j ∈ F .

If πL1 (v) ¾ πL2 (v) : v ∈ N1(F ) ∩ L, for j ∈ L and i ∈ F we have π1(i) − π1(j) ¶
π1(i) − πL2 (j) = π(i) − π(j) ¶ ϕ. Since the bandwidth constraint is satisfied in all
cases, π1 is a feasible permutation. �

The dominance relation between two both-sided partial permutations is described
as follows.
Definition 5.2
πL,R1 and πL,R2 are two both-sided partial permutations having the same assigned
sets L and R. If the fact that πL,R2 can be extended to a feasible permutation also
guarantees that πL,R1 can be extended to a feasible permutation, then πL,R1 is said to
dominate πL,R2 . 4

Proposition 5.2
πL,R1 and πL,R2 are two both-sided partial permutations having the same assigned sets



CHAPTER 5. E X A C T M E T H O D S 57

Figure 5.9: The dominance relation between both-sided partial permutations.

L and R. If πL,R1 (v) ¾ πL,R2 (v) : v ∈ {L ∩ N1(F )} and πL,R1 (v) ¶ πL,R2 (v) : v ∈
{R ∩N1(F )} then πL,R1 dominates πL,R2 . 4

Extending Proposition 5.1, Proposition 5.2 defines the dominance rule for two both-
sided partial permutations having the same assigned set. It also states that the set
of assigned vertices which are adjacent to a free vertex determines the dominance
relation between the two partial permutations. The idea is illustrated in Figure 5.9,
in which πL,R1 dominates πL,R2 . For simplicity, we only draw edges connecting an
assigned vertex and a free one, not between assigned vertices. Thus two vertices d
and g stand on their own.

Consider the example in Figure 5.9, the sets of interest are {a, b, c} on the left and
{e, f} on the right. We observe that in πL,R1 , labels of vertices in these sets are either
equal to or closer to the remaining free labels than those of the same vertices in πL,R2 .
As a result, the label difference between a vertex v ∈ L ∪ R and a vertex u ∈ F in
πL,R1 is not larger than that in πL,R2 . Therefore, if πL,R2 can be extended to a feasible
permutation then so can πL,R1 . The formal proof follows.

Proof Proposition 5.2 is proved similarly to Proposition 5.1. If πL,R2 can be extended
to a feasible permutation π such that π(v) = πL,R2 (v) : v ∈ {L ∪ R}, it follows that
πL,R1 can also be extended to a feasible permutation π1 such that:

π1(v) =


πL,R1 (v) if v ∈ L,
πL,R1 (v) if v ∈ R,
π(v) if v ∈ F.

We need to show again that in π1 the bandwidth constraint between two adjacent
vertices i and j is always satisfied. The two vertices can either be in the same set,
assigned or free, or one vertex is assigned and the other is free.



58 CHAPTER 5. E X A C T M E T H O D S

First, by the assumption in the branch-and-bound algorithm, for all i, j ∈ {L ∪ R}
we have |π1(i) − π1(j)| ¶ ϕ. Since π is a feasible permutation, |π1(i) − π1(j)| =
|π(i)− π(j)| ¶ ϕ for all i, j ∈ F .

If πL,R1 (v) ¾ πL,R2 (v) : v ∈ {L ∩N1(F )}, for all i ∈ F, j ∈ L we have π1(i)− π1(j) ¶
π1(i)− πL,R2 (j) = π(i)− π(j) ¶ ϕ .

Similar result holds for the right side. If πL,R1 (v) ¶ πL,R2 (v) : v ∈ {R ∩ N1(F )}, for
all i ∈ F, j ∈ R we have π1(j)− π1(i) ¶ πL,R2 (j)− π1(i) = π(j)− π(i) ¶ ϕ .

Since in π1 the bandwidth constraint is satisfied between any two adjacent vertices,
π1 is a feasible permutation. �

5.2.2 The hash-table

Employing the dominant concept in a branch-and-bound algorithm requires the
following information. First, given an assigned set one needs to know the most
dominating partial permutation, i.e., the one which dominates others in the group
of partial permutations having this assigned set. Second, how this permutation can
be accessed later for analyzing its dominance relation with others. We describe the
necessary data structure as follows.

A unique set of vertices needs to be mapped to a unique integer. We do that by
encoding each vertex v ∈ 1 . . . n as an integer pv = 2v−1. A set L of vertices is
encoded into a unique integer pL = ∑v∈L pv. We can also imagine pL as the value of
an unsigned integer composed of n bits, in which the vertex numbers of vertices v ∈ L
define the positions of 1-bits. For example, pL = 5 for L = {1, 3}.

For each group of partial permutations πL,R having the same left set L and right
set R, we keep track of the most dominating one by maintaining its pointer (address
in the memory) in a cell of a two-dimensional array called hash-table. The cell is
addressed in the array by two indices: one is the hashed value of the integer encoding
the left set and the other is that of the right set. Let Sl be the predefined size of the
dimension for the left set and similarly Sr for the right set, the hashing function for
a left set L is defined as follows:

hl(L) = pL mod Sl =
∑
v∈L

2v mod Sl,
(5.10)

and for a right set R:

hr(R) = pR mod Sr =
∑
v∈R

2v mod Sr
(5.11)



CHAPTER 5. E X A C T M E T H O D S 59

Figure 5.10: An instance of the hash-table.

The hash-table is initially constructed with only |Sl| pointers to cells. Only until the
first partial permutation having a hashed left set as h(L) is inserted into the hash-
table that a column containing Sr cells is created at hl(L). In this way computer
memory can be saved until it is actually needed. In the hash-table, a cell at position
(hl(L), hr(R)), if ever created, contains a list of pointers of partial permutations
whose hashed value of the left set is hl(L) and of the right set is hr(R).

In our implementation, we set Sl = 49, 999 and Sr = 999. They are experimental
numbers and should be tuned for an efficient operation of the hash-table according
to the size of instances. Sl is larger than Sr because we choose the left side to be the
main side in our case. Recalling that at the branching step in the branch-and-bound
algorithm, if sizes of two candidate sets for both sides are equal then the left side
is selected for extension. It also means that the label of the first assigned vertex is
always 1. Therefore, more space for hashed left sets will be more efficient.

Figure 5.10 shows how the pointers of three partial permutations πL,R1
1 , πL,R2

2 ,
and πL,R2

3 are stored in the hash-table. Since they all have the same left set, the
cells containing their pointers are located at left set index hl(L). πL,R2

2 and πL,R2
3



60 CHAPTER 5. E X A C T M E T H O D S

have the same right set R2, thus their pointers are stored in the same list at cell
(hl(L), hr(R2)). The pointer of πL,R1

1 stands alone. In the picture, the pointers are
depicted as empty rectangles.

5.2.3 Algorithms

With the dominance concept and the data structure outlined above, we can now
describe the algorithm for using them in a branch-and-bound algorithm for BW.

During execution, each newly generated subproblem in a branch-and-bound tree,
or a new partial permutation πL,R, is checked against the hash-table. How the new
subproblem is processed depends on the result of this check.

First, the assigned set of πL,R is checked if it has ever been tracked in the hash-table
If not, the result is Non-existent and the pointer of πL,R is inserted into the hash-
table. The branch-and-bound algorithm proceeds as usual. Otherwise, we check the
dominance relation between πL,R and the reference partial permutation πL,Rm stored
in the hash-table. With our storing scheme πL,Rm is the partial permutation that
dominates the others which also have the same assigned set until that time.

The dominance relation between πL,R and πL,Rm is determined according to the dom-
inance rule in Proposition 5.2. For each assigned vertex which is adjacent to a free
vertex, the algorithm verifies if its label in πL,R is equal or closer to the remaining
free labels compared with its label in πL,Rm . If at least one label is closer and the re-
maining are the same, the result is Dominating, meaning that πL,R dominates πL,Rm .
If at least one is further away and the others are the same, the result is Dominated.
If some label is closer and some is further, an Inconsistent case is found. Otherwise,
it is Undecided.

Depending on the dominance relation result between πL,R and πL,Rm , the branch-and-
bound algorithm processes πL,R as follows:

1. Dominated: πL,R is eliminated because it can never lead to a better permuta-
tion than can πL,Rm .

2. Dominating: πL,R replaces the reference in the hash-table.

3. Undecided, or Inconsistent: The pointer of πL,R is inserted into the hash-table.

The modification of function testAndExtend(πL,R, v, ϕ, side) to include the domi-
nance concept is outlined in Algorithm 5.5. Similar to the way the constraints are
applied, the dominance relation is also processed hierarchically in two steps.

In the first step, the new partial permutation is only checked if it is dominated by
the reference, if so it is fathomed. This is done by function lightProcessDominance,
outlined in Algorithm 5.6, in which neither updating nor inserting to the hash-table
is allowed.



CHAPTER 5. E X A C T M E T H O D S 61

Only after πL,R passes all the extendability tests, including the bound tightening
procedures with constraints, that it can be processed by the function processDom-
inance, outlined in Algorithm 5.7. Here, πL,R is inserted into the hash-table if its
assigned set has not been there, or if an inconsistency is found. If πL,R dominates the
reference partial permutation then it replaces the reference in the hash-table. The
function checkDominance(πL,R, πL,Rm ) determines the dominance relation between
πL,R and πL,Rm as described above.

Algorithm 5.5: The dominance relation in a branch-and-bound algorithms.
bool testAndExtend (πL,R, v, ϕ, side)
begin
updateBasicBounds(πL,R, v, ϕ, side);
{only check hash-table and fathom πL,R if it is dominated }
if lightProcessDominance(πL,R) = Dominated then
return false;

end if
if extendabilityTest(πL,R, ϕ) = false then
return false;

else
{apply appropriate constraints, each followed by a feasibility test}
apply constraints;
if extendabilityTest(πL,R, ϕ) = false then
return false;

end if
{check πL,R and update to hash-table if necessary}
if processDominance(πL,R) = Dominated then
return false;

else
return labeling(πL,R, ϕ);

end if
end if

end

5.3 The 2-labeling scheme

In this section we present a new branching scheme named 2-labeling for branch-and-
bound algorithms for the BW problem. We first introduce the concept and then
describe the algorithm.



62 CHAPTER 5. E X A C T M E T H O D S

Algorithm 5.6: Light process of the dominance relation.
Input: A partial permutation πL,R.
Output: Dominance relation between πL,R and the reference.
integer lightProcessDominance (πL,R)
begin
if (L,R) does not exist in hash-table then
return Non-existent;

end if
{get the most dominating partial permutation having L,R}
πL,Rm = HashTable(hl(L), hr(R));
{only check the dominance relation, no update}
dominance = checkDominance(πL,R, πL,Rm );
return dominance;

end

Algorithm 5.7: Processing the dominance relation.
Input: A partial permutation πL,R.
Output: Dominance relation between πL,R and the reference. Hash-table is
updated if necessary.
integer processDominance (πL,R)
begin
if (L,R) does not exist in hash-table then
insert pointer of πL,R into HashTable(hl(L), hr(R));
return Non-existent;

end if
{get the most dominating partial permutation having (L,R)}
πL,Rm = HashTable(hl(L), hr(R));
dominance = checkDominance(πL,R, πL,Rm );
if dominance = Inconsistent then
insert pointer of πL,R into HashTable(hl(L), hr(R));
return Inconsistent;

end if
if dominance = Dominating then
{update πL,R as the most dominating in the hash-table}
replaceHashTable(hl(L), hr(R), πL,R);

end if
return dominance;

end



CHAPTER 5. E X A C T M E T H O D S 63

5.3.1 The 2-labeling concept

In previous branch-and-bound algorithms which are based on the partial permuta-
tion concept, partial permutations are extended with one vertex at the branching
step as outlined in Algorithm 3.4. In principle the extension can be done with two
or more vertices. This is the idea of the multi-labeling scheme, or s-labeling where s
is the number of vertices used to extend a partial permutation at each branching
step. We discuss the advantage as well as the drawback of this scheme, and report
our realization for a 2-labeling scheme for the BW problem.

In the traditional one-by-one extension called single-labeling, if an extendability test
was not used for fathoming subproblems, the complexity for solving BW would
be O(n!).

If the extendability test was not used in the case of the 2-labeling scheme, there would
be n(n− 1)/2 possibilities for the first two labels, multiplying (n− 2)(n− 3)/2 for
the next two labels, and so on. Of course, for each pair of vertices one has to try
twice to decide the vertex for the smaller label, so in the worst-case the complexity
will end up being the same as that of the single-labeling scheme. However, if there
is a way to determine in one step the labels of the two vertices used for extending,
the complexity would be reduced to approximately O( n!

2n/2 ). With the introduction
of the dominance rule in Section 5.2, the idea becomes feasible. We may not reach
that ideal improvement, but we can expect a reduced number of subproblems in the
branch-and-bound tree. This turns out to be the case for many real instances.

The drawback of the 2-labeling scheme is the rapid increase of memory usage. Imag-
ine that the branch-and-bound tree grows with a width of n subproblems in the
single-labeling scheme, it becomes n(n − 1)/2 in case of 2-labeling scheme. There-
fore, to use 2-labeling in a branch-and-bound algorithm one needs strong dominance
rules in combination with a compact data structure.

To employ the 2-labeling scheme in a branch-and-bound algorithm, we need to state
the dominance rule in Section 5.2 again, but in a slightly different context. We start
with the extension of a partial permutation on the left side.

Proposition 5.3
πL,R is a both-sided partial permutation, |L| = k, |R| = q, and two vertices v, w ∈ F
will be assigned to the next labels on the left k + 1, k + 2. Let πL

′,R
1 and πL

′,R
2 be two

extended partial permutations, πL
′,R

1 (v) = k + 2, πL
′,R

1 (w) = k + 1 and πL
′,R

2 (v) =
k + 1, πL

′,R
2 (w) = k + 2, where L′ = L ∪ {v, w} and πL

′,R
1 (u) = πL

′,R
2 (u) = πL,R(u)

for all u ∈ L ∪ R. If v is adjacent to a free vertex and w is not, then πL
′,R

2 can be
eliminated in the branch-and-bound tree. 4

Proof Since πL
′,R

1 (v) ¾ πL
′,R

2 (v) for all v ∈ {L′∩N1(F ′)} and πL
′,R

1 (v) = πL
′,R

2 (v) for
all v ∈ {R∩N1(F ′)}, πL

′,R
1 dominates πL

′,R
2 according to Proposition 5.2. Therefore,



64 CHAPTER 5. E X A C T M E T H O D S

Figure 5.11: Extending partial permutations with the 2-labeling scheme.

πL
′,R

2 can be eliminated in the branch-and-bound tree. �

The idea of Proposition 5.3 is illustrated in Figure 5.11, in which the extended
partial permutation πL

′,R
1 dominates πL

′,R
2 . The illustration convention is almost the

same as in the previous section, except that we only show the vertex numbers of
vertices v, w used for the extension and edges connecting them to free vertices.

The 2-labeling scheme is used similarly for extending partial permutations on the
right side. The dominance rule is stated in Proposition 5.4.

Proposition 5.4
πL,R is a both-sided partial permutation, |L| = k, |R| = q, and two vertices v, w ∈ F
will be assigned to the next labels on the right n − q − 1, n − q. Let πL,R

′

1 and πL,R
′

2
be two extended partial permutations, πL,R

′

1 (v) = n − q − 1, πL,R
′

1 (w) = n − q and
πL,R

′

2 (v) = n − q, πL,R
′

2 (w) = n − q − 1, where R′ = R + {v, w} and πL,R
′

1 (u) =
πL,R

′

2 (u) = πL,R(u) for all u ∈ L ∪ R. If v is adjacent to a free vertex and w is not,
then πL,R

′

2 can be fathomed in the branch-and-bound tree. 4

Proof Proposition 5.4 is proved similarly to Proposition 5.3. �

5.3.2 The 2-labeling algorithm

A branch-and-bound algorithm using the 2-labeling scheme is basically the same as
those using the single-labeling scheme, except for the branching procedure.

After the candidate set and the side for extending a partial permutation have been
determined at the branching step, unique pairs of vertices from the candidate set
are selected for being assigned to the next two labels. For each pair, if a vertex v
is adjacent to any of the remaining free vertices and the other is not then v is
assigned to the label closer to the free set, according to the rule in Propositions 5.3 or



CHAPTER 5. E X A C T M E T H O D S 65

Propositions 5.4. In this case only one new partial permutation is created. Otherwise
two partial permutations are generated, each includes an order of these two vertices.
Of course if the candidate set has only one vertex, it will be assigned to the next label
as in the single-labeling scheme. The pseudo code is outlined in function Labeling in
Algorithm 5.8.

The procedures for initializing the branch-and-bound tree’s root vertex, updating
basic bounds, applying constraints, and testing extendability are the same as those
in the single-labeling scheme. For the reader’s convenience, they are outlined again
in Algorithm 5.9. One can also use the hash-table with the dominance rule, but for
the focus on the 2-labeling scheme we do not include it here. There is a small change
in the pseudo code. The function testAndExtend(πL,R, U, ϕ, side) now accepts a set U
of newly assigned vertices in πL,R instead of only one vertex as in the single-labeling
scheme.



66 CHAPTER 5. E X A C T M E T H O D S

Algorithm 5.8: Branching with the 2-labeling scheme.
bool labeling(πL,R, ϕ)
begin
if |L|+ |R| = |V | then
return true;

end if
k = |L|; q = |R|;
leftCandidates = {v ∈ F : fv ¶ nextLeftLabel};
rightCandidates = {v ∈ F : lv ¾ nextRightLabel};
if direction = LeftToRight or |leftCandidates| ¶ |rightCandidates| then
if |leftCandidates| = 1 then
πe = πL,R; πe(v) = k + 1 : v ∈ leftCandidates;
return testAndExtend(πe, {v}, ϕ, LEFT);

else
for each unique pair {v, w} ∈ leftCandidates do
if v ∩N1(F ) 6= ∅ and w ∩N1(F ) = ∅ then
πe = πL,R; πe(w) = k + 1; πe(v) = k + 2;
return testAndExtend(πe, {v, w}, ϕ, LEFT);

else
πe1 = πL,R; πe1(v) = k + 2; πe1(w) = k + 1;
testAndExtend(πe1 , {v, w}, ϕ, LEFT);
πe2 = πL,R; πe2(v) = k + 1; πe2(w) = k + 2;
return testAndExtend(πe2 , {v, w}, ϕ, LEFT);

end if
end for

end if
else
if |rightCandidates| = 1 then
πe = πL,R; πe(v) = n− q : v ∈ rightCandidates;
return testAndExtend(πe, {v}, ϕ, LEFT);

else
for each unique pair {v, w} ∈ rightCandidates do
if v ∩N1(F ) 6= ∅ and w ∩N1(F ) = ∅ then
πe = πL,R; πe(w) = n− q; πe(v) = n− q − 1;
return testAndExtend(πe, {v, w}, ϕ, RIGHT);

else
πe1 = πL,R; πe1(v) = n− q; πe1(w) = n− q − 1;
testAndExtend(πe1 , {v, w}, ϕ, RIGHT);
πe2 = πL,R; πe2(v) = n− q − 1; πe2(w) = n− q;
return testAndExtend(πe2 , {v, w}, ϕ, RIGHT);

end if
end for

end if
end if

end



CHAPTER 5. E X A C T M E T H O D S 67

Algorithm 5.9: The 2-labeling scheme in a branch-and-bound algorithm.
Input: An undirected graph G = (V,E) and an integer ϕ.
Output: True if G has a bandwidth ϕ and false otherwise.
bool bandwidth(G, ϕ)
begin
direction = BothSides;
initialize πL,R: L = ∅; R = ∅; F = V ;
for each v ∈ V do
fv = 1; lv = n;

end for
return labeling(πL,R, ϕ);

end
{testing extendability of πL,R. Extend further if no violation found}
bool testAndExtend(πL,R, U, ϕ, side)
begin
for each newly assigned vertex v ∈ U do
updateBasicBounds(πL,R, v, ϕ, side);

end for
if extendabilityTest(πL,R, ϕ) = false then
return false;

end if
apply pulling constraint and fitting constraint on side;
if extendabilityTest(πL,R, ϕ) = false then
return false;

end if
apply density cut constraint and density near-cut constraint on side;
if extendabilityTest(πL,R, ϕ) = false then
return false;

end if
return labeling(πL,R, ϕ);

end
{Update bounds lv and fv by definitions }
void updateBasicBounds(πL,R, v, ϕ, side)
begin
if side = LEFT then
∀u ∈ F : update lu = min{lu, πL,R(v) + ϕd(v, u)};

else
∀u ∈ F : update fu = max{fu, πL,R(v)− ϕd(v, u)};

end if
end



6 Implementation and
Parallelization

This chapter describes the implementation and the parallelization of our exact algo-
rithms. First, technical details of the solver for the bandwidth problem are outlined.
We then discuss the choice of a parallel branch-and-bound framework for our solver
and report the realization of our algorithms based on the chosen framework.

Throughout the chapter we use the term node to refer to a subproblem generated
by the branch-and-bound algorithm.

6.1 A solver for the bandwidth problem

We begin with a review of the branch-and-bound algorithm specific to BW. The
choice of a search strategy is then discussed. We conclude the section with the
description about a scheme searching for the optimal bandwidth.

6.1.1 The algorithm review

We have described in Chapter 3 that the bandwidth minimization problem can be
approached by solving a sequence of search problems. For each ϕ from 1 to n−1, the
search problem BW asks whether the graph G has a bandwidth ϕ. When the search
sequence is finished, the optimal solution is the smallest ϕ for which the answer is
“yes”. The BW problem can be solved by a branch-and-bound algorithm.

The execution of the branch-and-bound algorithm for BW, whose algorithms are
outlined in Chapter 3 and Chapter 5, can be illustrated as follows. For simplicity,
we use the traditional single-labeling scheme which is detailed in Algorithm 3.4.
The partial permutations are always extended on the left side. One can imagine a
similar execution for other configurations such as applying the constraints, using the
2-labeling scheme, and/or exploiting the dominance rule with the hash-table.

An example branch-and-bound tree is illustrated in Figure 6.1. The search tree is
initialized with a root node having an empty permutation, meaning that none of the
vertices is assigned. From the root node, a number of n subproblems are generated



CHAPTER 6. I M P L E M E N TAT I O N A N D PA R A L L E L I Z AT I O N 69

Figure 6.1: A branch-and-bound search tree.

and added to the queue, each is associated with a left partial permutation πL in
which each vertex is assigned to label 1. In the tree, these nodes are of depth 1.

A node, or a subproblem associated with a partial permutation, is selected from the
queue and processed by applying the constraints and testing the extendability of the
partial permutation. If the node fails this test then it is fathomed. If no violation is
detected, this node is split into child nodes, each extending the partial permutation
by assigning a candidate vertex to the next label on the left. In the tree in Figure 6.1,
we see that node x is split into child nodes y and z, whose partial permutations have
two assigned vertices. We consider the partial permutation of node y. Here, vertex u
is assigned to label 1 and the new vertex v is assigned to label 2.

This procedure is repeated until a decision is reached. In the case the graph G has a
bandwidth ϕ, there is one path on the tree that constitutes a feasible permutation.
That path has a length of exactly n and so does the height of the search tree. The
search is finished here because the answer has been found. If G does not have a
bandwidth ϕ, all paths in the search tree will be traversed and none of them will
have a length of n.

The differences of the branch-and-bound algorithm for BW from the relaxation-
based method can be summarized as follows. First, if the graph G has a bandwidth ϕ
then a feasible permutation should be returned as quickly as possible. On the other
hand, the full search space needs to be examined to prove that the answer is “no”.
In the case of the relaxation-based method, the optimal solution is always sought
throughout the full search space.

The second difference is that we do not fathom nodes using bounds obtained by
solving LP relaxations. Instead we use the constraints of the bandwidth problem



70 CHAPTER 6. I M P L E M E N TAT I O N A N D PA R A L L E L I Z AT I O N

and the extendability test. BW is a search problem and we can derive neither lower
bound nor upper bound of a node, or the associated partial permutation, during the
search. This may be an issue for the deployment of some search strategies. Except
for these two differences, the characteristics of a branch-and-bound algorithm for
BW are the same as those of the relaxation-based method. Therefore, we can realize
the algorithms for BW using standard branch-and-bound frameworks.

6.1.2 The search strategy

The order in which a node is selected for processing among other candidates in
the queue is defined by the search strategy. It has a large influence on the per-
formance of the solver in both non-parallel and parallel modes. A detailed survey
of search strategies for branch-and-bound methods can be found in Linderoth and
Savelsbergh [35].

The basic strategies are breadth-first, best-first, and depth-first. The breath-first
approach processes and expands all nodes at each depth in the search tree before
proceeding to nodes in the next depth. Since it requires much memory while cannot
find feasible solutions efficiently, this approach is rarely used in branch-and-bound
algorithms. The best-first strategy selects the best node, i.e., the subproblem with
the smallest lower bound in the queue. This reduces the unnecessary processing of
nodes whose lower bounds are larger than the optimal value. However, the search
tree tends to expand on different branches and thus requires more memory.

In contrast to best-first search, nodes at the largest depth in the search tree are
favored in the depth-first approach. This requires less memory than the best-first
approach since the number of unprocessed nodes stored in the search tree is small.
In the case of parallelization, it has another advantage of saving communication
overhead since branching can be done locally. In addition, feasible solutions (often
associated with nodes stored at large depths in the tree) can be found quickly with
depth-first search. The main disadvantage of this method is that it may wasting time
processing nodes whose lower bounds are larger than the optimal value. In the case
of the BW problem, if G has a bandwidth ϕ and the current partial permutation
is being extended on the path of a feasible solution then it can be extended to a
feasible permutation quickly. However it is hard to get back to a “feasible” path if
the search is on a “wrong” path.

The hybrid search strategy tries to combine the advantages of both best-first and
depth-first searches. An example implementation can be found in Xu et al. [56, 57].
Here, the search is initialized with the node having the smallest lower bound. The
search continues expanding the tree using the depth-first strategy until either the
current node is fathomed or the depth of the current subtree exceeds a predefined
value. The search then resumes to process the best node which is still unprocessed in



CHAPTER 6. I M P L E M E N TAT I O N A N D PA R A L L E L I Z AT I O N 71

the local queue. In this way the algorithm can use memory efficiently while reduces
the risk of processing unnecessary nodes and getting “stuck” in “wrong” paths.

Given its advantages the hybrid search strategy is favored for our branch-and-bound
algorithms. The problem is that we do not have any lower bound computation for a
node. We did try to apply the function Sigma (4.4) to compute the lower bound of
a partial permutation using only labels of the assigned vertices. However, the solver
ran out of memory on some large instances of more than 800 vertices. Therefore, in
the end we apply the hybrid search strategy for our branch-and-bound algorithms
but skip the use of lower bounds.

6.1.3 Searching for the optimal bandwidth

The optimal solution for the bandwidth minimization problem is obtained by solving
a sequence of BW problems, each for a value of ϕ from 1 to n−1. Usually this can be
done efficiently by a binary search, but it is not the case for the bandwidth problem.
When the search parameter ϕ is increased by 1, the search tree for BW gets much
larger, almost exponentially. The reason is that the constraints for BW are based
on the fact that label differences of adjacent vertices in a partial permutation are
allowed to be at most ϕ. When this value is increased, the label domains become
larger. Therefore, more partial permutations can pass the extendability test and
more candidate nodes are generated. This can be seen more clearly by observing the
search space of BW when ϕ is increased, which will be reported in Section 7.2.2.

For the reason above, in searching for the optimal bandwidth it is more efficient to
start with a lower bound and increase ϕ until a feasible permutation is found for
that ϕ, rather than using binary search. The scheme can be described as follows.

The search is started with the iGPS heuristic, followed by the simulated annealing
method SA-σ. After running these two heuristics, we have an initial upper bound.
We first improve the upper bound by solving BW for smaller ϕ in a predefined
time limit for upper bounds. If a feasible permutation is found, the upper bound is
updated, ϕ is decreased by 1, and the search continues. Each search is initialized
by arranging vertices in an order according to their labels in the last found feasi-
ble permutation (i.e., the one with the smallest upper bound). The upper bound
improvement procedure stops if the upper bound is equal to the lower bound, i.e.,
optimality is found. It also stops if no feasible permutation can be found in a search
within the time limit. In that case we switch to improve the lower bound.

The initial lower bound is computed by taking the maximum of α(G) in (3.1) and
γ(G) in (3.2). The search parameter ϕ is always set to the current lower bound. For
each ϕ, the solver for BW is applied. If a feasible permutation is found, it becomes
the optimal solution and the solver stops here. Otherwise, if the solver concludes
that G does not have a bandwidth ϕ then the lower bound is increased by 1. The



72 CHAPTER 6. I M P L E M E N TAT I O N A N D PA R A L L E L I Z AT I O N

upper bound solution becomes the optimal solution if the lower bound is equal to
the upper bound. This procedure is continued until either optimality is found or
the total running time exceeds a global time limit. In that case the solver stops and
accepts a gap between lower and upper bound for the problem instance.

During the improvement of either the upper bound or the lower bound, we always
apply the rounding heuristic embedded in the extendability test (detailed in Sec-
tion 3.4.3) to find new upper bounds. In addition, initializing the search with an
initial solution helps to find feasible permutations more quickly, since vertices have
been arranged in an order which is near to the feasible solution being searched. For
example, if we initialize the solver for BW with a solution obtained by iGPS, the
upper bounds for instances impcol_b (59 nodes) and west0156 (156 nodes) can be
found in a few seconds while the program without iGPS takes longer than 1 hour.

For solving each BW problem, we use the branch-and-bound algorithms outlined in
the previous chapters. They are realized based on a branch-and-bound framework
which can run in both parallel or non-parallel modes, as described in the next section.

6.2 The parallel solver

For the time and resource constraints, we want to develop the parallel solver based
on a good open-source framework rather than starting all the implementation from
scratch. In this section we first review popular parallel frameworks and discuss the
choice of a framework suitable for our purposes. We then describe in detail the
realization of our algorithms based on the chosen framework.

6.2.1 Parallel branch-and-bound frameworks

The parallel framework must support the hardware and the software configuration
of the parallel cluster at the IWR computing center [26] which will be used for our
benchmarks. It consists of 156 computer nodes, each equipped with two Dual Core
AMD 2.8 GHz processors with 8 GB RAM memory running Debian 4.0. The cluster
uses Myricom 10G for the network layer with MPICH-MX.

The criteria for choosing the parallel framework are summarized as follows. It should
be well designed for Linux cluster systems using MPI, supporting branch-and-bound
for the current need and branch-and-cut for future use, in addition to having a
continuous support from the framework developers.

Many parallel frameworks have been introduced. The popular ones which are open-
source and still supported are SYMPHONY [45], PEBBL [15, 16], and ALPS [56, 57].
Both SYMPHONY and ALPS are COIN-OR projects [3]. SYMPHONY is devel-
oped by Ralphs, Güzelsoy, and Mahajan for solving MILP programs. It works in



CHAPTER 6. I M P L E M E N TAT I O N A N D PA R A L L E L I Z AT I O N 73

the PVM environment. The framework employs a master-worker scheme for work
distribution and load balancing, using a central node pool controlled by the master.
This enables effective load balancing but somewhat limits the system’s scalability.
The framework also supports the differencing scheme for storing data compactly.
One of SYMPHONY’s applications is the capacitated vehicle routing problem [44].

PEBBL (formerly PICO) is a parallel framework for realizing branch-and-bound
algorithms. It is developed by Eckstein, Phillips, and Hart [15, 16]. In PEBBL pro-
cessors are grouped into clusters, each consists of a hub processor and some worker
processors. Note that “cluster” in PEBBL is a software concept and different from
the Linux cluster which is a real parallel computer. Work distribution within a clus-
ter is controlled by the hub. Load balancing can be dynamically handled within a
cluster or between clusters. PEBBL does not use a “global” master for controlling
hubs. One of its important features is checkpointing which saves the system’s inter-
nal state to disk every given interval and computation can be restarted from the
checkpoint.

ALPS is designed by Xu, Ralphs, Ladányi, and Saltzman [56, 57] as a framework
for implementing parallel algorithms based on tree search. Its architecture was in-
fluenced by PEBBL. Developed by the same authors, the CHiPPS framework [57]
with layers built on top of ALPS supports the implementation of relaxation-based
branch-and-bound as well as branch-and-cut algorithms. ALPS works in the MPICH
environment and uses a master-hub-worker scheme for solving the bottle-neck prob-
lem for the master in load balancing. Developed later, ALPS uses good designs from
its predecessors and is able to avoid their limitations.

We chose ALPS as the framework to realize our parallel solver because of its good
design and the MPICH-based working environment. In addition, the support of
CHiPPS for branch-and-cut methods and CLP (the open-source COIN-OR LP
solver) may be helpful for us later to approach either the bandwidth problem or
another. More details about ALPS will be described in the next section.

6.2.2 Implementation

The parallel solver for BW is based on the ALPS framework and implements the
heuristics and exact algorithms described previously in Chapter 4 and Chapter 5. It
is named HEBAS , short for Heuristic and Exact BAndwidth Solver.

The design of Hebas can be explained with the class diagram in Figure 6.2 which
follows the architecture of ALPS. There are two types of relationships between
classes depicted by arrows in the diagram: the first one with an empty triangle
indicates an inheritance relationship, and the second one with a diamond indicates
a containing relationship. For example, the class BwNodeDesc inherits from the class
AlpsNodeDesc and contains a pointer to an object of the class PartialPermutation.



74 CHAPTER 6. I M P L E M E N TAT I O N A N D PA R A L L E L I Z AT I O N

Figure 6.2: The class diagram of the parallel solver.



CHAPTER 6. I M P L E M E N TAT I O N A N D PA R A L L E L I Z AT I O N 75

Information in an ALPS-based program is denoted as knowledge and derived from
the class AlpsKnowledge. There are four types of knowledge: model, solution, tree
node, and subtree. A subtree contains a hierarchy of nodes in part of the search tree.
During the search, processes in ALPS use subtrees instead of nodes to share work
between each other. By doing that ALPS can store and transfer a group of nodes
efficiently, and thus fewer communications are required. This knowledge is already
realized in the original class AlpsSubTree.

The other three knowledges are prototyped in ALPS and need to be realized for
each specific problem. A model describes the problem data. It is realized in the class
BwModel to describe the graph instance and properties of the bandwidth problems.
A solution describes a feasible solution and is realized in the class BwSolution to
characterize a permutation. A tree node describes the data and methods for a branch-
and-bound tree node. The data of a node is realized in the class BwNodeDesc. Its
associated methods are realized in the class BwTreeNode. Here, the member function
process performs bounding procedures on the node and determine its status for
further processing. This can be either fathomed, solution found, or waiting for being
split. The function branch splits the current node into child nodes.

The fundamental data of the BW problem, the partial permutation, is implemented
in the class PartialPermutation. For a partial permutation, this class keeps label
domains of all vertices and provides supporting functions such as the extendability
test or the analysis of the dominance relation with another partial permutation.
The member function labeling updates basic bounds of the partial permutation and
applies constraints along with extendability tests. It returns one of the following
results: the partial permutation has become a feasible permutation, the extendability
test is failed, or no violation is detected.

Searching is driven by the functions process and branch of the class BwTreeNode
and labeling of the class PartialPermutation. Three of them constitute all the
procedures in the function labeling of Algorithm 3.4 and Algorithm 5.8. In particular,
the solver selects a node from the queue and call process to determine the status of
the associated partial permutation. This function gets the answer from the function
labeling. Depending on the answer, process fathoms the node if a feasible permutation
has been found or violation is detected, or marks the node for branching. In the latter
case, the function branch is called to extend the partial permutation and add child
nodes to the queue.

Knowledge in ALPS is stored in repositories called knowledge pools. They do not
communicate directly with each other, but through agents called knowledge brokers.
Each process has a knowledge broker which is responsible for sending, receiving, and
routing any kind of knowledge. Communication protocols can be supported via the
implementation of these broker objects. ALPS supports two protocols: single-process
(non-parallel) and MPICH on Linux clusters.



76 CHAPTER 6. I M P L E M E N TAT I O N A N D PA R A L L E L I Z AT I O N

ALPS uses a master-hub-worker scheme to overcome the bottle-neck problem at the
master process when scaling up the parallel system. In this scheme, the master still
functions as the central controller, but does not manage the workers directly. Instead
an intermediate management level with hubs is inserted in between. Depending on
how many workers are allocated, an appropriate number of hubs will be used. The
master initializes the data and communication protocol, establishes the hubs, and
passes them with initial search nodes. The hubs allocate jobs to the workers and
control the search of its portion.

The execution of a parallel search program in ALPS can be divided into three phases:
ramp-up, primary, and ramp-down. In the ramp-up phase, work is initialized and
distributed to all workers. Searching for the solution is conducted in the primary
phase. The final phase is ramp-down. It executes the termination procedures and
reports the results.

A very important task of the parallel solver is load balancing. It attempts to allocate
work to all workers during the ramp-up phase and balance the workload between
them during the search. In ALPS, this task is called static load balancing in the
ramp-up phase and dynamic load balancing in the primary phase.

Two static load balancing schemes are supported in ALPS. In the spiral scheme,
the master generates child nodes from the root node and distributes them to the
hubs. The hub in turn generates child nodes and allocates them to its workers. The
static balancing procedure stops when all knowledge pools have received at least one
node. In the two-level root initialization scheme, the master generates a predefined
number of child nodes and distributes them to the hubs, which in turn generates
another predefined number of child nodes for the workers. We simply use the spiral
static load balancing and let the master and the hubs define the necessary number
of child nodes based on the sizes of the candidate sets.

During the search, due to the bounding and branching procedures some workers
may have little work left while the others are overloaded. Dynamic load balancing is
thus important to ensures that all workers have work to do and the work is useful.
ALPS supports two dynamic load balancing schemes. The intra-cluster dynamic
load balancing scheme controls the workload between workers within a cluster. The
request for donating or receiving work can be initiated by either the hub or a worker.
The second scheme called inter-cluster dynamic load balancing is used for balancing
the workload between clusters. In the primary phase, the hubs periodically report
their workload status to the master. Based on these information, the master work
with the hubs to reallocate and balance the load between their portions. The two
dynamic schemes work cooperatively for an effective load balancing of the whole
system. We enable both schemes in our ALPS-based solver.

We perform an evaluation of the system performance and report about it in Sec-
tion 7.4, in particular Section 7.4.1 and Section 7.4.2.



7 Computational results

This chapter presents our computational results for the bandwidth problem. The
first section introduces the benchmark suites, the hardware, the notation used in
the chapter, and the solver configurations. We then report an evaluation of the
solver’s performance over different configurations of constraints and running modes.

In the next sections we report our computational results and compare them with
the best known results from the literature. First, lower bounds for small and large
instances in the popular benchmark suite and for very large instances in the second
suite are presented. The results of the parallel computation are then introduced. The
last section reports the results of our heuristic methods on both benchmark suites.

For the reader’s convenience of reading and focusing on the topic, in this chapter
we only present selective results which represent the trends of the solver and the
statistics. The detailed computational results can be found in Appendix A.

7.1 Introduction

7.1.1 Benchmark suites and comparison results

We performed computational experiments on two benchmark suites. The popular
suite has 113 instances which are divided into two sets. The first set consists of 33
small instances with less than 200 vertices each. The second set consists of 80 large
instances whose number of vertices is larger than 200 and smaller than 1000. These
instances were originally matrices in the library Matrix Market [2]. They were con-
verted to graphs by Martí et al. [37] and used in different publications since then.
The best known lower bounds for instances in this suite are reported in Martí et
al. [36]. The best known upper bounds are obtained by taking the best values from
different methods in Martí et al. [37, 36], Piñana et al. [43], Campos et al. [4, 5], and
Lim et al. [34]. For convenience, in this chapter we refer to the work in [37, 43, 4, 36]
as MCP and the work in [34] as LRX .

Our experiments for instances in the popular suite are performed directly on the
available graph files introduced in [37]. One reason is that the original matrix of
some instances contains zero-edges, i.e., edges whose weight is zero in the matrix file.



78 CHAPTER 7. C O M P U TAT I O N A L R E S U LT S

Depending on whether these zero-edges are included in the graph or not, the graph
properties may be different and so is the bandwidth. We will see such an example
in Section 7.3.3. Another reason is that the corresponding graph of some matrix
instances is disconnected and usually the authors [37] chose the largest component
as the final graph. In addition, vertices are randomly rearranged in their graph files.
This changes the initial bandwidth upper bound and thus affects the solution quality
of heuristic methods. Therefore, we think it is reasonable to use the same instance
data for comparing our results and their results.

The second benchmark suite is based on the work of Safro, Ron, and Brandt [50].
This suite consists of 51 very large instances and the largest one has about 217, 000
vertices. The instances are taken from The University of Florida Sparse Matrix
Collection which is maintained by Davis and Hu [11].

We notice that some instances having less than 1000 vertices are already included
in the first suite. For this reason and the ones mentioned in the case of the first
suite, for evaluating our exact algorithms we select a set of 36 instances whose
corresponding graph is connected and has more than 1000 vertices. On the other
hand, our heuristics will be experimented on all 51 instances. The heuristic results
will be compared with the best known upper bounds obtained by Safro, Ron, and
Brandt [50]. We will refer to their work in this chapter as SRB.

When we refer to very large instances, for evaluating the exact Hebas solver we mean
the set of 36 connected instances with more than 1,000 vertices each. For heuristic
methods we mean the set of all 51 instances used in the reference work [50]. The
instance files are downloaded directly from the collection [11].

7.1.2 Hardware

In non-parallel modes, the experiments are performed on PC computers running De-
bian 4.1 for computing upper bounds for all instances and lower bounds for instances
in the first suite. Each has 4 dual-cores 2.5 GHz and the entire physical memory
is 2.5 GB RAM. Since the PC has 8 processors, to save time we run 8 non-parallel
jobs simultaneously, so on the average each job uses a memory of 0.3 GB. Notice
that this is not parallel computation, here each job processes a different instance.

We use a stronger computer to compute the lower bounds for very large instances
in the second suite. It also runs Debian 4.1 and has 4 dual-cores 2.5 GHz, but is
equipped with a physical memory of 16 GB RAM. We run 4 single jobs at a time,
so in this case each job can use up to 4 GB of memory on the average.

The parallel computation were carried out on the cluster of the Interdisciplinary
Center for Scientific Computing (IWR) in Heidelberg [26]. This cluster consists of 156
computer nodes, each is equipped with two Dual Core AMD 2.8 GHz processors



CHAPTER 7. C O M P U TAT I O N A L R E S U LT S 79

with 8 GB RAM memory running Debian 4.0. The cluster uses Myricom 10G for
the network layer with MPICH-MX.

The software programs are written in C++ and built with compiler gcc version 4.1.2
for both non-parallel and parallel versions.

7.1.3 Notation

For each instance in the report tables, n is the number of vertices of the graph and
m is the number of edges. Notice that m is usually different from the number of
value entries of the original matrix. Φt is the initial lower bound for a graph. Φl is
the lower bound and Φu is the upper bound obtained by a solution method.

Φt is computed by taking the maximum of two lower bounds γ(G) and α(G) which
have been described in section 3.2. Since Φt is fixed and can be easily computed for
all graphs, we choose it as the standard value to evaluate the lower bound and the
upper bound obtained by a certain method.

We denote by LB Improvement, abbreviated as imp, the amount that a lower bound
has been improved from the initial lower bound. It is computed according to for-
mula (7.1). The larger the LB improvement, the stronger the lower bound obtained
by an exact method.

imp (%) = 100× (Φl − Φt)
Φt

(7.1)

Similarly to the evaluation of the lower bound, we denote by UB Deviation, abbre-
viated as dev, the amount an upper bound deviates from the initial lower bound.
It is computed as in (7.2). The smaller the UB deviation, the better the obtained
upper bound.

dev (%) = 100× (Φu − Φt)
Φt

(7.2)

In addition, we use the factor gap to know whether an instance has been solved
to optimality and if not, how large is the gap between the lower bound and upper
bound. It is computed as in (7.3).

gap (%) = 100× (Φu − Φl)
Φl

(7.3)

7.1.4 Solver configurations

To distinguish different configurations of constraints and running modes used for
the Hebas solver, we assign a code to each configuration. Actually, for the final com-



80 CHAPTER 7. C O M P U TAT I O N A L R E S U LT S

putation we will apply the strongest configurations for the single-labeling scheme,
the 2-labeling scheme, and their parallel versions. The other configurations are only
used to evaluate the effect of the constraints, the dominance rule, the 2-labeling
scheme, as well as the system’s performance.

The configuration whose code start with 1., such as Hebas 1.1, uses the single-
labeling scheme. Those whose code starts with 2. refer to the 2-labeling scheme.
A parallel configuration has a code begins with the numbers of its non-parallel
mode and ends with a letter “p”. For example, Hebas 1.4p is the parallel version
of Hebas 1.4 which uses the single-labeling scheme and applies all the constraints
as well as the dominance rule with the hash-table. The configurations are listed in
Table 7.1.

Table 7.1: Hebas configurations.

Code Constraints and running mode
0.9 Basic branch-and-bound algorithm (Algorithm 3.4)

and the first constraint (3.10) (3.11)
1.0 Hebas 0.9

+ fitting constraint using only adjacent vertices (5.1) (5.4)
1.1 Hebas 1.0

+ density cut constraint (Algorithm 5.1)
+ density near-cut constraint (Algorithm 5.2)

1.2 Hebas 1.1
+ tightening at the non-extended side (Algorithm 5.4)

1.3 Hebas 1.2 and only if at least 70% of vertices have positive excess-ranges:
+ generalized fitting constraint (5.3) (5.5)
+ generalized pulling constraint (5.8) (5.9)

1.3.1 Hebas 1.2
+ (always) generalized fitting constraint (5.3) (5.5)
+ (always) generalized pulling constraint (5.8) (5.9)

1.4 Hebas 1.3
+ dominance relation the with hash-table (Algorithm 5.5)

1.4.1 Hebas 1.3.1
+ dominance relation with the hash-table (Algorithm 5.5)

2.3 Hebas 1.3 in 2-labeling mode (Algorithm 5.8)
2.4 Hebas 1.4 in 2-labeling mode
1.4p Parallel version of Hebas 1.4
2.3p Parallel version of Hebas 2.3
2.4p Parallel version of Hebas 2.4

The configurations 1.3 and 1.3.1 may need a bit more explanation. As described in
section 5.1.1, before solving each BW problem for a given ϕ we check and record
vertices v having positive excess-ranges, i.e., |Nh(v)| − hϕ > 0, and for each vertex



CHAPTER 7. C O M P U TAT I O N A L R E S U LT S 81

the layer hheu such that the excess-range is largest. For some small instances the gen-
eralized fitting constraint is not effective. The number of subproblems is smaller but
the solver requires longer running time. We will see such an example in section 7.2.

Therefore, in configuration 1.3 the generalized fitting constraint and the generalized
pulling constraint are applied only if the number of vertices having positive excess-
ranges is at least 70% of n. On the other hand, these constraints are always applied
in configuration 1.3.1. This is used for computing the lower bound for very large
instances.

7.2 Performance evaluation

We evaluate the performance of the bandwidth solver over different configurations by
observing the number of subproblems generated during the search and the running
time required to solve each single BW problem. The graphs are selected among small
instances in the popular suite and the search parameter ϕ is intentionally chosen
to be smaller than the optimal value. Therefore, there is no feasible solution for
every BW problem in this section and the total number of generated subproblems
characterizes the full search space.

As mentioned previously, we only introduce representative data here. The full data
can be found in Appendix A, where the numbers of subproblems are reported in
Table A.7 and the running times are reported in Table A.8. In these two tables,
BW(ϕ) denotes the BW problem for the given ϕ. The running times are in seconds. A
value marked with “_” indicates that the solver is not able to solve the corresponding
BW problem in a reasonable time.

For convenience, we briefly summarize the constraint configurations as follows. We
start with the first constraint developed by Caprara and Salazar-González [6] in
Hebas 0.9. The new constraints are then gradually added from Hebas 1.0 until
Hebas 1.3. The dominance relation is implemented with the hash-table in Hebas 1.4.
The single-labeling scheme is used from Hebas 0.9 to Hebas 1.4, while Hebas 2.3 and
Hebas 2.4 employ the 2-labeling scheme.

7.2.1 The development of the solver

A view of the solver’s development can be seen with the numbers from instance
bcsstk22. It is depicted with the chart in Figure 7.1. This instance has 110 vertices
and the optimal bandwidth is 10. The chosen search parameter is ϕ = 9.

We can observe that while the lower bound ϕ = 9 could not be solved by Hebas 0.9,
it becomes possible by Hebas 1.0 with 7.88×108 subproblems in 37,020 seconds.



82 CHAPTER 7. C O M P U TAT I O N A L R E S U LT S

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

Hebas 0.9

Hebas 1.0

Hebas 1.1

Hebas 1.2

Hebas 1.3

Hebas 1.3.1

Hebas 1.4

Hebas 2.3

Hebas 2.4

Lo
g(

va
lu

es
)

Configuration

Number of subproblems

7.88×108

1.17×108

9.34×106 9.34×106
5.36×106 7.91×106

5.17×105 4.97×105

Running time(s)

3.70×104

5.75×103

5.98×102 6.04×102 1.24×103

4.96×102

2.40×101 2.30×101

Figure 7.1: Solving instance bcsstk22 for ϕ = 9.

These numbers are gradually reduced in later configurations. With Hebas 2.4, the
problem can be solved with 4.97×105 subproblems in only 23 seconds.

There are also a few instances that the new constraints have negative effect, i.e.,
Hebas obtains worse lower bounds when these constraints are applied. These in-
stances will be mentioned explicitly in the computational reports.

We notice the case of Hebas 1.3.1 (the generalized pulling and fitting constraints
are always applied) in Figure 7.1. The number of subproblems is reduced about
a half, but the running time is almost doubled when compared with Hebas 1.3 in
which these constraints are not applied. This issue happens to some instances like
bcsstk22. To address it, for small and large instances we use the heuristic that these
constraints are applied only if at least 70% of the vertices having positive excess-
ranges. For very large instances we need the constraints to be as strong as possible.
This allows the branch-and-bound tree to generate fewer subproblems and require
less memory. Thus Hebas 1.3.1 will be used.

7.2.2 The search space of the BW problem

Figure 7.2 depicts the numbers of subproblems generated by Hebas 0.9 for solving
some graph instances with different ϕ whose values are shown on the horizontal axis
of the chart. For each instance, a set of increasing values ϕ are chosen to observe



CHAPTER 7. C O M P U TAT I O N A L R E S U LT S 83

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

... 16 17 18 ... 22 23 24 25 ... 30 31 32

Lo
g(

nu
m

be
r 

of
 s

ub
pr

ob
le

m
s)

Lower bound

lns__131 (n=123)

2.96×102

6.60×105

2.26×108

gent113 (n=104)

8.83×102

7.52×103

5.59×104

4.66×106

west0156 (n=156)

1.63×104

2.83×106

3.12×108

Figure 7.2: Number of subproblems generated by Hebas 0.9.

how the search space expands when ϕ is increased only by 1.

The numbers of subproblems for instance gent113 show a typical expansion of the
search space of BW. Starting with ϕ = 22 only 883 subproblems are generated.
This number is increased to 7.52×103 for solving ϕ = 23. The significant change
starts at ϕ = 24 where Hebas 0.9 generates 5.59×104 subproblems. This goes up
to 4.66×106 for solving ϕ = 25. In other words, the increase is approximately equiv-
alent to the size of the graph. We have similar observation with the other instances
lns__131 and west0156.

This quick increase of the number of subproblems reminds us the algorithm by
Saxe [51] whose running time is O(f(ϕ)nϕ+1) and the improvement to O(nϕ) by
Gurari and Sudborough [25]. In brief, the search space of the bandwidth solver gets
much larger if ϕ is increased only by 1. This makes it difficult to improve the lower
bound if the solver does not have a constraint which is useful for the graph.

The number of subproblems shows only one dimension of the solver’s performance.
It also depends on the running time for solving the problem, or in other words
the efficiency of the solver. If a constraint is strong but requires too much time for
a certain instance, it may be possible that the problem can be solved with fewer
subproblems but the total running time is higher. We have observed this situation
previously with instance bcsstk22 in Figure 7.1. When the generalized pulling and
fitting constraints are always applied in Hebas 1.3.1, the problem can be solved with



84 CHAPTER 7. C O M P U TAT I O N A L R E S U LT S

 0

 1

 2

 3

 4

 5

 6

Hebas 0.9

Hebas 1.0

Hebas 1.1

Hebas 1.2

Hebas 1.3

Hebas 1.3.1

Hebas 1.4

Hebas 2.3

Hebas 2.4

Im
pr

ov
em

en
t t

o 
lo

w
er

 b
ou

nd
 b

y 
H

eb
as

 0
.9

Configuration

fs_183_1 west0132

Figure 7.3: Lower bound improvement compared to Hebas 0.9.

approximately a half of the number of subproblems but in almost doubled running
time, compared to the case of without using these constraints.

7.2.3 The effect of the constraints

If the solver has a constraint which is useful for the graph, the problem can be
quickly solved because label domains can be effectively tightened by that constraint.
This can be demonstrated by the chart in Figure 7.3. The vertical axis shows the
improvement made by later Hebas configurations compared with the lower bound
obtained by Hebas 0.9. The detailed numbers of subproblems and the running times
can be found in Table A.7 and Table A.8, respectively.

Consider instance fs_183_1(183 vertices). The lower bound obtained by Hebas 0.9
is 52, i.e., Hebas 0.9 is able to solve ϕ = 51 but cannot make a conclusion for ϕ = 52
in a reasonable time. This becomes possible with Hebas 1.0. Here BW for ϕ = 52
can be solved with approximately 6.42×108 subproblems in about 9 hours. Since the
constraints added in Hebas 1.1 and Hebas 1.2 are not useful for this instance, they
only make the running time longer and even ϕ = 52 cannot be solved anymore.

However, when the generalized pulling and fitting constraints are applied as in
Hebas 1.3 the problem can be solved for ϕ = 52 up to ϕ = 56. Only 184 subprob-
lems are generated for ϕ = 52, i.e., exactly one root subproblem and the other 183



CHAPTER 7. C O M P U TAT I O N A L R E S U LT S 85

subproblems of the first depth of the branch-and-bound tree. In other words, all
these 183 subproblems are immediately solved without branching. The running time
is only a few milliseconds and the lower bound is improved from 52 to 57.

We have the same observation with instance west0132. The lower bound obtained
by Hebas 0.9 is 25. This remains unchanged from Hebas 1.0 to Hebas 1.2. When the
generalized pulling and fitting constraints are applied in Hebas 1.3, the lower bound
is improved from 25 to 28.

7.2.4 The effect of the dominance rule

The dominance concept is first applied in the branch-and-bound algorithm with
the hash-table in Hebas 1.4 which still uses the single-labeling scheme. It is then
applied in Hebas 2.3 and Hebas 2.4 within the 2-labeling scheme. To begin with, we
examine the effect of the dominance rule by looking at the numbers of subproblems
in Table 7.2.

Table 7.2: The effect of the dominance rule: Numbers of subproblems.

Instance n m BW(ϕ) Hebas 1.3 Hebas 1.4 Hebas 2.3 Hebas 2.4
bcsstk22 110 254 9 9,340,176 7,907,288 516,781 497,142
impcol_b 59 281 19 676,113,799 676,040,314 12,934,039 12,934,039
impcol_c 137 352 26 864,365 864,325 60,759 60,749
lns__131 123 275 18 225,320,091 205,923,411 34,416,427 33,684,015

fs_183_1 183 701 52 184 184 16,654 16,654
gre__185 185 650 17 186 186 17,021 17,021
lund_a 147 1,151 18 148 148 10,732 10,732

west0167 167 489 30 168 168 13,862 13,862
31 _ _ 31,860,757 31,860,757

The instances in Table 7.2 can be divided into three groups. The first group consist-
ing of instances bcsstk22, impcol_b, impcol_c, and lns__131 shows a clear im-
provement made by the dominance concept. In ideal cases such as instance bcsstk22,
the solver with the hash-table in Hebas 1.4 reduces a noteworthy number of sub-
problems compared with the solver without it in Hebas 1.3. The improvement is
made even further by the 2-labeling scheme.

In contrast to the first group, the second one with instances fs_183_1, gre__185,
and lund_a shows a significant increase on the number of subproblems when the
2-labeling scheme is used. When instance fs_183_1 is solved for ϕ = 52, only 184
subproblems are generated by Hebas 1.3. However, Hebas 2.3 and Hebas 2.4 gener-
ate up to 16,654 subproblems, equal to one root subproblem and exactly n(n− 1)/2



86 CHAPTER 7. C O M P U TAT I O N A L R E S U LT S

subproblems where n = 183 as mentioned in Section 5.3. The width of the search
tree becomes much wider compared with that of the solver using the single-labeling
scheme, and this causes the solver to run out of memory when the 2-labeling scheme
is used for solving large instances. The issue can only be solved with stronger dom-
inance rules or by using computers with large memory capacity such as a parallel
cluster.

The second group, however, does not draw a complete picture of the 2-labeling
scheme. Even though approximately n(n− 1)/2 subproblems are generated at each
branching step, the dominance concept can still be helpful for large ϕ. This can be
seen with instances in the last group. Consider instance west0167. The solver with
the 2-labeling scheme Hebas 2.3 generates many more subproblems than does the
single-labeling scheme for solving ϕ = 30. However, it can solve the larger ϕ = 31 in
about 7,500 seconds while the solver using the single-labeling scheme cannot make
this in a reasonable time.

Now we look at the running times of the solver using the dominance concept over
different configurations in Table A.8. Compared with Hebas 1.3, Hebas 1.4 does
speed up the running time for solving some instances. In fact this will be the case for
most large instances. Hebas 2.3 is clearly the best configuration for small instances
with respect to the lower bound improvement as well as the running time.

Between Hebas 2.3 and Hebas 2.4 (the solvers using the 2-labeling scheme without
and with the hash-table) we observe that for some instances, in particular west0156,
west0167, and will199, Hebas 2.4 generates the same number of subproblems but
requires much larger running time. Since the hash-table can make no further effect
to the elimination of subproblems than the 2-labeling branching procedure (which
already exploits the dominance rule), its processing procedures only makes the run-
ning time longer on these instances. Therefore, for the final computation in the non-
parallel mode we use Hebas 1.4 as the configuration for the single-labeling scheme.
For the case of the 2-labeling scheme Hebas 2.3 will be used.

We also observe that with the current dominance rule, the hash-table and/or the
2-labeling scheme can help the solver to reduce the running time only linearly (in
cases of improvement). Therefore, the task of finding stronger lower bounds still re-
lies on the constraints. On the other hand, the hash-table within the single-labeling
scheme can help the solver find feasible permutations more quickly because domi-
nated partial permutations are eliminated in the branch-and-bound tree.

7.3 The lower bounds

In this section we report the lower bounds computed for instances in both benchmark
suites. As mentioned previously, only selective instances which represents typical



CHAPTER 7. C O M P U TAT I O N A L R E S U LT S 87

characteristics of the solver are shown. In addition, the new optimal solutions and
the statistics on the results for each suite are reported.

7.3.1 Lower bounds for small instances

For small instances the running time of the exact solver is limited to 4 hours. Ta-
ble 7.3 reports the computational results for 12 instances whose lower bounds are
different from those of MCP. We obtain the same lower bounds for the other 21 in-
stances. The full results for 33 instances can be found in Table A.1 in Appendix A.

For each instance in Table 7.3, two values under MCP show their lower bound and
the corresponding improvement from the initial lower bound. Values under VR08
are the results from our previous work [55] which was obtained by the parallel
computation at a large scale with 508 processors. There are four values under Hebas:
Φl of 1.4 and 2.3 report the lower bounds obtained by Hebas 1.4 and Hebas 2.3
respectively, Best takes the maximum of these two, and imp shows the lower bound
improvement of this best value.

We format the values Φl of VR08, Hebas 1.4 and Hebas 2.3 for ease of comparison.
For all of them, an italic value Φl means that the computed lower bound is worse
than that of MCP. A bold value Φl by VR08 and Hebas 1.4 indicates an improvement
compared with MCP. The value Φl by Hebas 2.3 is in bold type if it gives better
lower bound than both Hebas 1.4 and MCP.

In our previous work [55], when Hebas 0.9 was run on a large-scale parallel cluster
with 508 processors it could improve the lower bounds for 5 instances (including 2
new optimal solutions) compared with MCP. The non-parallel Hebas 1.4 can improve
the lower bounds for 3 other instances. In particular, the lower bound for instance
fs_183_1 is increased from 52 to 57, for west0132 from 25 to 28, and for impcol_c
from 26 to 27. The reason is that the generalized pulling and fitting constraints
are useful for these instances. On the other hand, the lower bounds for instances
west0156 and will199 computed by Hebas 1.4 are worse than those of MCP partly
because of these constraints.

The 2-labeling scheme works effectively on small instances. Hebas 2.3 continues to
improve the lower bound for instance west0167 from 31 to 32. In addition, it in-
creases the lower bound for two instances west0156 and will199. Therefore, com-
pared with MCP will199 is the only instance that Hebas 2.4 has a worse lower
bound. It obtains either equally good or better lower bounds for all other instances.
The lower bounds for instances lund_a and lund_b are not improved here, but we
will see that in the parallel mode.

Hebas 1.4 also finds two more optimal solutions compared with the best known
results. They are listed in Table 7.4. Actually these optimal solutions have been



88 CHAPTER 7. C O M P U TAT I O N A L R E S U LT S

Table 7.3: Lower bound for selective small instances.

Instance MCP VR08 Hebas
Best Best 1.4 2.3 Best

Name n m Φt Φl imp Φl imp Φl Φl Φl imp
bcsstk22 110 254 8 9 12.50 10 25.00 10 10 10 25.00
fs_183_1 183 701 52 52 0.00 52 0.00 57 57 57 9.62
gre__115 115 267 16 20 25.00 21 31.25 20 20 20 25.00
gre__185 185 650 16 17 6.25 18 12.50 18 18 18 12.50
impcol_b 59 281 15 19 26.67 20 33.33 20 20 20 33.33
impcol_c 137 352 21 26 23.81 26 23.81 27 27 27 28.57
lund_a 147 1151 17 19 11.76 19 11.76 19 19 19 11.76
lund_b 147 1147 17 19 11.76 19 11.76 19 19 19 11.76
west0132 132 404 23 25 8.70 25 8.70 28 28 28 21.74
west0156 156 371 27 34 25.93 34 25.93 33 34 34 25.93
west0167 167 489 28 31 10.71 31 10.71 31 32 32 14.29
will199 199 660 44 57 29.55 59 34.09 53 55 55 25.00

obtained in [55], but this is the first time they have been proven by a non-parallel
algorithm.

Table 7.4: New optimal solutions for small instances.

Instance MCP & LRX Hebas
Name n m Φt Φl Φu Φl Φu
bcsstk22 110 254 8 9 10 10 10
impcol_b 59 281 15 19 20 20 20

The statistics on the lower bounds for small instances are reported in Table 7.5.
The first three rows depict the average of improvement of lower bound from the
initial value, as well as the largest and the smallest. With the new constraints and
the dominance rule, the lower bound improvement made by the new solver in the
non-parallel mode is even better than that of the previous solver which used a large-
scale parallel cluster [55]. Hebas 1.4 is able to find two new optimal solutions and
Hebas 2.3 makes the best lower bound improvement with an average of 15.79%.
Compared with MCP, Hebas 2.3 obtains better lower bounds for 7 instances and
worse result for 1 instance. This only worse case will be improved again in the
parallel mode.

7.3.2 Lower bounds for large instances

The running time of the solver is also limited to 4 hours for large instances. Ta-
ble 7.6 shows the results for selective instances. The detailed results can be found



CHAPTER 7. C O M P U TAT I O N A L R E S U LT S 89

Table 7.5: Statistics on lower bounds for small instances.

MCP VR08 Hebas 1.4 Hebas 2.3
LB Improvement (%)

Average 14.22 15.32 15.44 15.79
Largest 30.00 34.09 33.33 33.33

Smallest > 0 1.61 1.61 1.61 1.61
Optimal solutions

Number 18 20 20 20
Versus MCP

Number of better 5 6 7
Number of worse 0 2 1

in Table A.3 in Appendix A.

The meaning of the values in Table 7.6 is the same as in Table 7.3. We refer to the
results of MCP only since parallel computation was not performed for large instances
in [55]. We also format the values Φl for the convenience of comparison. An italic
value Φl means that the computed lower bound is worse than that of MCP. A bold
value Φl by Hebas 1.4 indicates a lower bound improvement compared with MCP.
The value Φl by Hebas 2.3 is in bold type if it obtains better lower bound than both
Hebas 1.4 and MCP.

We begin to experience the memory issue with the 2-labeling scheme on some large
instances. They are marked with a “_” at the value Φl. This happens when running
the solver on a computer with moderate memory (as described in Section 7.1.2).
The issue may not exist any more on computers with much larger memory capacity
such as a parallel cluster.

Based on the results obtained by the solver, the instances are divided into four
groups in Table 7.6. The first group consists of instances which have been solved
to optimality for the first time. The dominance rule with the hash-table works
effectively if the graph has a bandwidth ϕ for which BW is being solved. It reduces
the search space and thus speeds up the time to reach a feasible solution, which is
the optimal solution in these cases.

The second group includes three instances that Hebas 1.4 obtains worse lower bounds
than MCP. They are dwt__419, str__600, and west0655. Actually, these are the
only three instances for which Hebas 1.4 yields worse results than MCP. It obtains
either equally good or better lower bounds for all other large instances. On the
other hand, Hebas 2.3 using the 2-labeling scheme works well on these instances.
In particular, the lower bound for dwt__419 is increased from 22 to 23 and that of
instance str__600 is improved to 101, equally good as those of MCP. The lower
bound for instance west0381 is improved from 118 to 120 which is even better than
the result of MCP. By combining the results of Hebas 1.4 and Hebas 2.3, Hebas in



90 CHAPTER 7. C O M P U TAT I O N A L R E S U LT S

Table 7.6: Lower bounds for selective large instances.

Instance MCP Hebas
Best 1.4 2.3 Best

Name n m Φt Φl imp Φl Φl Φl imp
fs_760_1 760 3518 35 36 2.86 37 37 37 5.71
nos6 675 1290 15 15 0.00 16 16 16 6.67

dwt__419 419 1572 21 23 9.52 22 23 23 9.52
str__600 363 3244 79 101 27.85 98 101 101 27.85
west0381 381 2150 100 119 19.00 118 120 120 20.00

mbeacxc 487 41686 243 248 2.06 249 250 250 2.88
west0655 655 2841 100 109 9.00 124 125 125 25.00

bp__1600 822 4809 192 199 3.65 201 _ 201 4.69
dwt__918 918 3233 27 27 0.00 29 _ 29 7.41
west0989 989 3500 121 123 1.65 165 _ 165 36.36

the non-parallel mode already obtains either equally good or better lower bounds
for large instances than does MCP.

The third group consists of instances on which both single-labeling and 2-labeling
schemes work effectively. Consider instance west0655. The lower bound is improved
from 109 by MCP to 124 by Hebas 1.4 and Hebas 2.3 makes an even better improve-
ment to 125. Similar patterns can be observed with instance mbeacxc.

The last group lists instances that work effectively with the single-labeling scheme
but have memory problem with the 2-labeling scheme on computers having moder-
ate memory. Due to the large number of subproblems generated by the 2-labeling
scheme, Hebas 2.3 cannot reach a good lower bound as does the solver using the
single-labeling scheme. However, only the solver using the single-labeling scheme al-
ready makes noticeable improvement. Consider the second largest instance in this set
west0989 with 989 vertices. The lower bound is improved from 123 by MCP to 165
by Hebas 1.4. In other words, a lower bound improvement from 1.65% to 36.36%
has been made.

The new optimal solutions for large instances are reported in Table 7.7, showing the
initial lower bounds, the best known results, and the bounds computed by Hebas.

Figure 7.4 illustrates the matrix versions of different bandwidths of the largest in-
stance in the first suite: dwt__992 (n = 992). Figure 7.4(a) shows the original matrix
downloaded from the library Matrix Market whose bandwidth is 513. The instance
is converted to a graph by MCP whose matrix version is shown in Figure 7.4(b).
Since they randomly reorder vertices of the graph, the bandwidth is changed to 977.



CHAPTER 7. C O M P U TAT I O N A L R E S U LT S 91

Table 7.7: New optimal solutions for large instances.

Instance MCP & LRX Hebas
Name n m Φt Φl Φu Φl Φu
bcspwr05 443 590 25 25 28 26 26
dwt__245 245 608 21 21 22 21 21
fs_760_1 760 3518 35 36 38 37 37
nos6 675 1290 15 15 16 16 16

We can solve both versions of this instance to optimality. The optimal bandwidth
is 35 and a matrix of optimal bandwidth is depicted in Figure 7.4(c).

Finally, the statistics on the lower bounds for the set of 80 large instances are
reported in Table 7.8. The average lower bound improvement of 5.75% by MCP
is first increased by Hebas 1.4 to 9.28%. When combining the results of Hebas 1.4
and Hebas 2.3, the average is improved to 9.49%. As already mentioned, there are
four new optimal solutions and this increases the total number of optimal solutions
from 8 to 12. For this set of 80 large instances, Hebas 1.4 obtains better lower bounds
than MCP in 52 cases and only 3 worse cases are observed. For some instances
such as west0989 the improvement is very strong. Hebas, combining Hebas 1.4 and
Hebas 2.3, increases the number of better cases to 54 and leaves no instance whose
lower bound is worse than that of MCP.

Table 7.8: Statistics on lower bounds for large instances.

MCP Hebas 1.4 Hebas
LB Improvement (%)

Average 5.75 9.28 9.49
Largest 30.43 36.36 36.36

Smallest > 0 0.53 1.08 1.08
Optimal solutions

Number 8 12 12
Versus MCP

Number of better 52 54
Number of worse 3 0

We have seen that Hebas with the new constraints and the dominance rule works
effectively on instances with less than 1,000 vertices. This is not all, the solver can
improve the lower bound for instances of much larger size, as reported in the next
section.



92 CHAPTER 7. C O M P U TAT I O N A L R E S U LT S

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  100  200  300  400  500  600  700  800  900

(a) The original matrix (Φπ = 513)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  100  200  300  400  500  600  700  800  900

(b) Randomized by MCP (Φπ = 977)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  100  200  300  400  500  600  700  800  900

(c) Optimal bandwidth (Φπ = 35)

Figure 7.4: Instance dwt__992 (n = 992)

7.3.3 Lower bounds for very large instances

We first introduce the necessary changes made to the solver so that it can work on
very large instances. The results on lower bounds are then reported.

Implementation changes

The implementation of the exact solver needs some changes to enable Hebas to
work on very large instances. First, solving them requires much computer’s memory
so we want to reduce the number of generated subproblems as much as possible.
Thus the solver uses the strongest configuration of the constraints within the single-
labeling scheme. In addition, it employs the dominance rule implemented with the
hash-table. The generalized pulling and fitting constraints are always applied, i.e.,
the configuration of Hebas 1.4.1 is used, instead of Hebas 1.4 as in the case for



CHAPTER 7. C O M P U TAT I O N A L R E S U LT S 93

instances in the first suite. Second, previous extendability test procedures employ
bucket sort which has complexity O(n) and is relatively fast. The problem is that in
our implementation it needs O(n2) memory. This would cause the solver to run out
of memory for very large instances. Therefore, we switch to use the sorting function
of the Standard Template Library (STL) [53]. It implements introsort [41] whose
complexity is O(n log(n)). This sorting procedure is relatively slower than bucket
sort but requires less memory.

The third change that significantly affects the solver’s performance is the compu-
tation of the distance between two vertices. Recall that the work of Caprara and
Salazar-González [6] is effective on sparse graphs because it applies the basic band-
width constraint not only to adjacent vertices but also to those more than one
distance unit away from each other. In Hebas, the generalized pulling and fitting con-
straints also apply that idea and their effectiveness has been proven with the lower
bound improvement for large instances. In the normal implementation of Hebas for
instances in the first suite, the distances between vertices are calculated in advance
and recorded in a distance matrix. However, this is impossible for very large in-
stances because the memory required for such a matrix is O(n2). Consider a graph
having 16,000 vertices. Only the distance matrix already needs 256×106 memory
slots, equivalent to 1024×106 bytes or approximately 1 GB because an integer vari-
able in C++ uses 4 bytes. Since they cannot be recorded, the distances between a
vertex and remaining vertices have to be recalculated every time the label domain
of that vertex is tightened.

These three changes cause the new solver to be slower for solving a small instance
compared with the normal implementation mentioned in the previous sections, but
it can now work on very large instances. For this set of very large instances, Hebas
means the solver using the configuration of Hebas 1.4.1 including the three changes
described above.

The conversion from a matrix to a graph needs to be noticed as well. In a matrix
file of the Matrix Market format, the information about an edge in the equivalent
graph is described by one line containing two vertices and the weight of that edge.
Usually the weight is different from zero, but it is not the case for some instances.
Depending on whether zero-edges, i.e., edges whose weight is zero in the matrix file,
are included in the converted graph or not, the graph properties will be different in
two cases and so are the bandwidths. Since the lower bound for an instance might
be helpful to evaluate the upper bounds obtained by a heuristic which may accept
or not the zero-edges, we apply two ways of conversion and reported the results in
both cases.



94 CHAPTER 7. C O M P U TAT I O N A L R E S U LT S

The lower bounds

We use the computer with large memory capacity as described in Section 7.1.2 to
compute lower bounds for instances in this suite. The solver is initialized with the
solution first obtained by iGPS and improved further by SA-σ. The maximal running
time is 12 hours including 30 minutes for the SA method. The detailed results can
be found in Table A.5 in Appendix A. Here we only show selective instances.

The results for some very large instances are shown in Table 7.9. The meaning of
values in the table is explained as follows. For each instance, the first three values
describe the basic information of the matrix: its name, the number of columns (which
is the same as the number of rows), and the number of edge entries (which might
include zero-edges or duplicated edges). The next four values under Without zero-
edges describe the information about the graph converted from the original matrix
if zero-edges are skipped and the lower bound computed by Hebas. Similar to the
report for small and large instances, m is the number of edges, Φt is the initial lower
bound, Φl is the lower bound obtained by Hebas, and imp is the improvement from
the initial lower bound. The last four values under With zero-edges show the same
information for the converted graph which includes zero-edges.

We also format the values in Table 7.9 so that the report contains more information.
For each instance, an italic value m indicates that the matrix contains zero-edges
and the converted graphs in two cases will have different numbers of edges. For
example, the converted graph of instance add32 has 7,444 edges if zero-edges are
skipped, but the number of edges is 9,462 edges if zero-edges are included. This
makes the graph properties different and naturally leads to different bandwidths.
A bold value Φl means that Hebas is able to work on that instance and improve
the lower bound. The problem that Hebas runs out of memory on the mentioned
computer is marked by an italic value Φl.

The selected instances in Table 7.9 are divided into three groups. The first group
consists of instances add20, add32, and msc10848. Their original matrices contain
zero-edges; therefore, the numbers of edges in the converted graphs are different.
Instance add32 is a special case. The work SRB reported an upper bound of only 21
while the upper bound of their reference work is 669. If the graph takes zero-edges
then the initial lower bound is already 276 and this makes the SRB’s upper bound 21
invalid. However if zero-edges are skipped then the graph becomes more sparse and
the initial lower bound is only 19. That is the reason why we think reporting the
lower bounds in both cases might be helpful.

The second group consists of instances that Hebas runs out of memory when im-
proving the lower bound. It starts with instance gupta having 16,783 vertices up to
the largest instance pwtk with 217,918 vertices. Notice that the initial lower bound
for these instances is already pretty large. This makes the search space for solving



CHAPTER 7. C O M P U TAT I O N A L R E S U LT S 95

larger ϕ becomes huge as already discussed in Section 7.2.2. Hebas stops at the
initial lower bounds for these instances.

The last group includes instances that Hebas is able to process and improve the
lower bound. Here we present five instances whose sizes are in the range from three
thousands to more than fifteen thousands. In particular, bcsstk24 with 3,562 ver-
tices, bcspwr10 with 5,300 vertices, shuttle_eddy with 10,429 vertices, vibrobox
with 12,328 vertices, and barth5 with 15,606 vertices. The largest instance in this
group is barth5. It has the lower bound improved from 163 to 180, about 10,43%
from the initial lower bound.

It should be noticed that if the running time is limited to 12 hours, the lower
bound for instance barth5 is only 178 and shuttle_eddy is only 100. In the case
of including zero-edges, in 12 hours Hebas can only improve the lower bound for
instance add20 to 392 and vibrobox to 1,573. However the improvement continues.
Since stronger lower bounds might be helpful to evaluate heuristic methods and also
to show that the solver is not yet “saturated” for larger ϕ in these cases, we let the
solver run longer. Therefore, the final lower bounds reported in Table 7.9 as well as
in Table A.5 in Appendix A for these four instances (add20, barth5, shuttle_eddy,
and vibrobox) are computed in 48 hours.

For instances in this set, usually Hebas does not run out of memory and is able to im-
prove the lower bound for an instance if the initial bound is smaller than 500. There
are some exceptions. Instance msc10848 with 10,848 vertices has the lower bound
increased from 790 to 792 in both cases. Another very large instance is vibrobox. It
has 12,328 vertices and the lower bound is improved from 1,360 to 1,476 or from 1,497
to 1,609, depending on whether zero-edges are skipped or not.

The statistics on the lower bound computation for 36 very large instances are re-
ported in Table 7.10. Hebas can improve the lower bounds for 21 instances. The
largest such instance is barth5 with 15,606 vertices. The smallest instance in this
set that Hebas cannot improve the lower bound is add32 with 4,960 vertices. We
can find no optimal solution for instances in this set.

We look at the lower bound improvement before finishing the section. In the case
zero-edges (ZE) are skipped the average improvement is 4.38%. This average value
is 4.51% if the graph includes zero-edges. The largest improvement is found at in-
stance shuttle_eddy (10,429 vertices) with 31.65% in both cases.

7.4 Parallel computation

To improve the lower bound further for some benchmark instances, we run the
parallel versions of Hebas on the parallel cluster of the Interdisciplinary Center for



96 CHAPTER 7. C O M P U TAT I O N A L R E S U LT S

Table
7.9:Low

er
bounds

for
very

large
instances.

M
atrix

W
ithout

zero-edges
W

ith
zero-edges

G
raph

H
ebas

G
raph

H
ebas

Instance
n

entries
m

Φ
t

Φ
l

im
p

m
Φ
t

Φ
l

im
p

add20
2,395

17,319
5,378

323
328

1.55
7,462

369
396

7.32
add32

4,960
23,884

7,444
19

19
0.00

9,462
276

276
0.00

m
sc10848

10,848
620,313

609,464
790

792
0.25

609,465
790

792
0.25

gupta3
16,783

4,670,105
4,653,322

7,336
7,336

0.00
4,653,322

7,336
7,336

0.00
ct20stif

52,329
1,375,396

1,273,983
1,436

1,436
0.00

1,323,067
1,436

1,436
0.00

tw
otone

120,750
1,224,224

1,012,970
7,727

7,727
0.00

1,029,429
7,732

7,732
0.00

pw
tk

217,918
5,926,171

5,653,257
814

814
0.00

5,708,253
814

814
0.00

bcsstk24
3,562

81,736
78,174

151
158

4.64
78,174

151
158

4.64
bcspw

r10
5,300

13,571
8,271

132
135

2.27
8,271

132
135

2.27
shuttle_

eddy
10,429

57,014
46,585

79
104

31.65
46,585

79
104

31.65
vibrobox

12,328
177,578

144,686
1,360

1,476
8.53

165,250
1,497

1,609
7.48

barth5
15,606

61,484
45,878

163
180

10.43
45,878

163
180

10.43



CHAPTER 7. C O M P U TAT I O N A L R E S U LT S 97

Table 7.10: Statistics on lower bounds for very large instances.

Without ZE With ZE Instance
LB Improvement (%)

Average 4.38 4.51
Largest 31.65 31.65 shuttle_eddy

Smallest > 0 0.25 0.25
Optimal solutions

Number 0 0
Improvement

Number 21 21
Largest size 15,606 15,606 barth5

No improvement
Number 15 15

Smallest size 4,960 4,960 add32

Scientific Computing (IWR) in Heidelberg [26]. The hardware has been detailed in
Section 7.1.2.

We use a cluster of 256 processors (64 computer nodes with 4 processors each) and
perform computational experiments on all 113 instances in the popular suite. The
running time is limited to 1 hour and the solver is initialized with the solution of the
iGPS heuristic. For the time constraint, we do not include the second suite consisting
of very large instances in this parallel computation.

This section consists of three parts. The first part describes how parameters of the
parallel solver are chosen to make it work efficiently. The performance evaluation
of the parallel system is then given. The final part reports the results on the lower
bounds for instances in the popular suite.

7.4.1 Tuning system parameters

Since ALPS [56, 57] introduces the intermediate layer of hubs for an effective dy-
namic load balancing, we need to know how many hubs should be used so that
Hebas can work efficiently. In addition, we need to determine whether the 2-labeling
scheme will be used with (Hebas 2.4) or without (Hebas 2.3) the hash-table.

The decision is based on the running times required to solve a set of single BW
problems. The instances and the search parameter ϕ are chosen in such a way
that they can be solved quickly by the parallel system but in much longer time by
the non-parallel solver. Similarly to the performance evaluation in Section 7.2, the
value ϕ is intentionally smaller than the optimal bandwidth and each BW problem
characterizes the full search space.



98 CHAPTER 7. C O M P U TAT I O N A L R E S U LT S

The four problems satisfying our selection criteria are shown in Table 7.11 along with
the running times required to solve them in different configurations. Since Hebas 2.3
is the most efficient for small instances in the non-parallel mode and can solve these
four BW problems in a reasonable time, it results will be used to compare with those
of the parallel version.

The solver’s configurations are listed in the first row of Table 7.11. These include
Hebas 2.3, its parallel version Hebas 2.3p, and Hebas 2.4p (the parallel version using
the 2-labeling scheme with the hash-table). The second row shows the number of
used processors (abbreviated proc in this section). The running times are in seconds.

Table 7.11: The running times.
Hebas 2.3 Hebas 2.3p Hebas 2.4p

Instance n m BW(ϕ) 1 proc 64 proc 128 proc 256 proc 256 proc
gre__115 115 267 20 30,942 709 367 231 208
impcol_b 59 281 19 172 13 9 9 7
west0156 156 371 33 22,199 509 255 161 137
west0167 167 489 31 7,558 75 46 39 29

From the results in Table 7.11, it can be observed that Hebas 2.4p is relatively
faster than Hebas 2.3p. The reason is that even requires more computational time,
Hebas 2.4 with the hash-table generates fewer number of subproblems than Hebas 2.3
for these instances. We have commented in Section 7.2 that fewer number of sub-
problems but more computational work may result in larger running time. It may
not be the case in parallel modes because here fewer number of subproblems means
less communication overhead and less work on load balancing.

We now consider the number of hubs that should be configured for our cluster of 256
processors. Hebas 2.4p is experimented with three different hub configurations: 1-
hub, 8-hubs, and 16-hubs. The corresponding running times are given in Table 7.12.

Table 7.12: The running times with different hub-configurations.

Instance BW(ϕ) 1 hub 8 hubs 16 hubs
gre__115 20 207 529 546
impcol_b 19 7 17 25
west0156 33 137 245 355
west0167 31 29 49 72

Surprisingly, Hebas 2.4p requires the least running time when only one hub is con-
figured. This can be understood that our current configuration for the dynamic load



CHAPTER 7. C O M P U TAT I O N A L R E S U LT S 99

balancing only creates more work for the parallel solver and further improvement on
the dynamic load balancing needs to be considered. In any case, we need to choose
the most suitable configuration for the solver. Therefore, all the following parallel
computations will be done using 1 hub.

7.4.2 The performance of the parallel solver

The performance of the parallel system is evaluated by measuring the speedup ratios
and the efficiency factors which have been described in Section 2.4. The speed up
ratios are reported in Table 7.13. It should be noted that the hardware in two cases
are not precisely the same. The PC in non-parallel mode has CPU of 2.5 GHz, while
the computer nodes in the parallel cluster has CPU of 2.8 GHz. Here we only want
to know approximately how faster the parallel system is.

Being computed with the running times in Table 7.11, the speedup ratios are re-
ported in Table 7.13. On the cluster of 256 processors, except for the case of instance
impcol_b whose running time is too short, the running time for solving these in-
stances is about 133 to 193 times faster compared with the non-parallel cases. Notice
that the speedup ratio may be larger than the number of used processors, since the
CPU of computer nodes in the cluster is stronger than that of the non-parallel
computer.

Table 7.13: The speedup ratios Sp.
Instance BW(ϕ) 64 proc 128 proc 256 proc
gre__115 20 43.64 84.31 133.95
impcol_b 19 13.23 19.11 19.11
west0156 33 43.61 87.05 137.88
west0167 31 100.77 164.30 193.79

The scalability of the parallel system is computed at three scales: 64, 128, and 256
processors. The results are reported in Table 7.14. We observe that the efficiency of
the system decreases when the system is scaled up from 64 to 128 processors, and
then to 256 processors. Probably the dynamic load balancing of the system needs
to be improved. On the other hand, with this parallel cluster a speedup factor of
approximately 133 to 193 is still helpful to improve the lower bounds further for
some instances.

7.4.3 Results on the lower bound

It is clear now that using one hub is more suitable for our parallel cluster and the
2-labeling scheme will be used with the hash-table. We performed computational



100 CHAPTER 7. C O M P U TAT I O N A L R E S U LT S

Table 7.14: The efficiency Ep.
Instance BW(ϕ) 64 proc 128 proc 256 proc
gre__115 20 0.68 0.66 0.52
impcol_b 19 0.21 0.15 0.07
west0156 33 0.68 0.68 0.54
west0167 31 1.57 1.28 0.76

experiments on instances in the first suite using the strongest configuration of the
single-labeling and 2-labeling schemes, i.e., Hebas 1.4p and Hebas 2.4p.

The lower bounds for selective small instances are reported in Table 7.15. The de-
tailed results can be found in Table A.1 in Appendix A. Here Hebas means the best
results of both single-labeling and 2-labeling schemes in the non parallel mode, and
Hebasp means the best results of both schemes in parallel mode. The meaning of
the values is exactly the same as in the similar table in the non-parallel mode. For
ease of following the lower bound improvement we show again the results of MCP
and the best results obtained in the non-parallel mode.

There is no new lower bound for small instances obtained by Hebas 1.4p compared
with the non-parallel solver using the single-labeling scheme. The lower bounds of
two instances west0156 and will199 continue being worse than those of MCP.
However, Hebas 2.4p does show its efficiency for small instances. In particular, it
can improve the lower bound for instances gre__115 from 20 to 21 and for lund_a
and lund_b from 19 to 20. There is no instance whose lower bound is worse than
the reference any more; the lower bound for instance will199 is increased to 57 and
Hebas 2.3 already proved the lower bound 34 for instance west0156.

The statistics on the lower bounds for 33 small instances computed by the parallel
solvers are given in Table 7.16. The average improvement of lower bound by MCP
is 14.22%. It is increased to 15.79% by the solver in the non-parallel mode and
then to 16.48% by the parallel solver. The number of optimal solutions remains 20.
Comparing with MCP, Hebas 1.4p using the single-labeling scheme still has worse
lower bounds in two cases. However, Hebas 2.4p leaves no worse results and the
number of better cases is increased to 10.

We continue the parallel computation for 80 large instances. Similar to the non-
parallel case, only the results of selective instances are introduced in Table 7.17 and
the detailed results can be found in Table A.3 in Appendix A. For ease of following
the lower bound improvement, the same set of selective instances reported in the
non-parallel mode is presented again, except for the ones which have been solved to
optimality.

The first group shows the only three instances that Hebas 1.4 in non-parallel mode
obtained worse lower bounds than MCP. These are reduced to two cases since



CHAPTER 7. C O M P U TAT I O N A L R E S U LT S 101

Table 7.15: Parallel computation on selective small instances.

Graph MCP Hebas Hebasp
Best Best 1.4p 2.4p Best

Instance n m Φt Φl imp Φl imp Φl Φl Φl imp
bcsstk22 110 254 8 9 12.50 10 25.00 10 10 10 25.00
fs_183_1 183 701 52 52 0.00 57 9.62 57 57 57 9.62
gre__115 115 267 16 20 25.00 20 25.00 20 21 21 31.25
gre__185 185 650 16 17 6.25 18 12.50 18 18 18 12.50
impcol_b 59 281 15 19 26.67 20 33.33 20 20 20 33.33
impcol_c 137 352 21 26 23.81 27 28.57 27 27 27 28.57
lund_a 147 1151 17 19 11.76 19 11.76 19 20 20 17.65
lund_b 147 1147 17 19 11.76 19 11.76 19 20 20 17.65
west0132 132 404 23 25 8.70 28 21.74 28 28 28 21.74
west0156 156 371 27 34 25.93 34 25.93 33 34 34 25.93
west0167 167 489 28 31 10.71 32 14.29 31 32 32 14.29
will199 199 660 44 57 29.55 55 25.00 55 57 57 29.55

Table 7.16: Statistics of parallel computation results for small instances.

MCP Hebas 1.4p Hebasp
LB Improvement (%)

Average 14.22 15.79 15.57 16.48
Largest 30.00 33.33 33.33 33.33

Smallest > 0 1.61 1.61 1.61 1.61
Optimal solutions

Number 16 20 20 20
Versus MCP

Number of better 7 6 10
Number of worse 1 2 0



102 CHAPTER 7. C O M P U TAT I O N A L R E S U LT S

Table 7.17: Parallel computation on selective large instances.

Graph MCP Hebas Hebasp
Best Best 1.4p 2.4p Best

Instance n m Φt Φl imp Φl imp Φl Φl Φl imp
dwt__419 419 1572 21 23 9.52 23 9.52 22 23 23 9.52
str__600 363 3244 79 101 27.85 101 27.85 103 102 103 30.38
west0381 381 2150 100 119 19.00 120 20.00 118 121 121 21.00

mbeacxc 487 41686 243 248 2.06 250 2.88 249 251 251 3.29
west0655 655 2841 100 109 9.00 125 25.00 124 125 125 25.00

bp__1600 822 4809 192 199 3.65 201 4.69 203 _ 203 5.73
dwt__918 918 3233 27 27 0.00 29 7.41 29 _ 29 7.41
west0989 989 3500 121 123 1.65 165 36.36 165 _ 165 36.36

Hebas 1.4p can improve the lower bound for instance str__600 to 103 compared
with 101 of MCP. Recall that Hebas 2.3 (the 2-labeling scheme) already obtains ei-
ther equally good or better results for these three instances in the non-parallel mode.
Hebas 2.3p continues improving the lower bound for instance west0381 from 119 by
MCP to 121.

We also observe further improvement by the parallel solver in the second group.
The last group consists of instances that the non-parallel solver using the 2-labeling
scheme runs out of memory. Hebas 2.4p does not encounter this memory problem
on the parallel cluster. However, we still leave a dash “_” here because Hebas 2.4p
cannot prove the lower bound obtained by Hebas 1.4 in the specified time (one hour).

The statistics on the lower bounds for large instances obtained by the parallel com-
putation are given in Table 7.18. Recall that the average improvement of lower
bound achieved by MCP is 5.75% and is improved solely by the non-parallel Hebas
solver to 9.49%. Hebas 1.4p can improve this value to 9.53%. The best results in the
parallel mode improve it further to 9.68%. No new optimal solution has been found.

We notice that even the parallel computation can improve the results of the non-
parallel solver, the change is pretty small. This has been already explained in Sec-
tion 7.2.2 about the problem’s search space; if the solver does not have a constraint
useful for the graph then the search space of BW expands very quickly when the
search parameter ϕ is increased. Since the speedup ratios of this parallel system are
limited by approximately 256, the small improvement for large instances is under-
standable.

Compared with the results of MCP, Hebas 1.4p obtains better lower bounds for 54
instances and has worse results in two cases. When these are combined with the



CHAPTER 7. C O M P U TAT I O N A L R E S U LT S 103

Table 7.18: Statistics of parallel computation results for large instances.

MCP Hebas 1.4p Hebasp
LB Improvement (%)

Average 5.75 9.49 9.53 9.68
Largest 30.43 36.36 37.19 37.19

Smallest > 0 0.53 1.08 1.08 1.08
Optimal solutions

Number 5 12 12 12
Versus MCP

Number of better 54 54 55
Number of worse 0 2 0

results of Hebas 2.4p, there is no more worse result and better lower bounds are
observed for 55 instances among the total of 80 large instances.

7.5 The upper bounds

In this section we report the results of our heuristic methods for instances in two
benchmark suites and compare them with the best known results from the literature.

The experimented heuristics include the original GPS heuristic implemented by
us, its modified version iGPS, the simulated annealing heuristic SA-σ which uses
the approximate objective function Sigma, and the exact solver Hebas. For each
instance, the best lower bound obtained by Hebas is used for computing the factor
gap between it and the upper bounds obtained by these heuristics. Notice that SA-σ
is initialized with a feasible solution obtained by iGPS and Hebas also starts with
an initial upper bound provided by SA-σ.

Recall that the best known upper bounds for small and large instances are obtained
by taking the best value from many individual methods in MCP [37, 43, 4, 36] and
LRX [34]. We use the lower bounds from MCP [36] for computing the factor gap
for these upper bounds. For very large instances, the best known upper bounds are
obtained from SRB [50] and their gaps are computed using the best lower bounds
obtained by Hebas.

7.5.1 Heuristic results for small instances

For small instances SA-σ is set to run at most 3 minutes and the neighbor function
is the swap method. Since the amount of data is large, only the statistics of the
results are included in this section in Table 7.19. The detailed results can be found
in Table A.2 in Appendix A.



104 CHAPTER 7. C O M P U TAT I O N A L R E S U LT S

Table 7.19: Statistics of heuristic results for small instances.

MCP & LRX GPS iGPS SA-σ Hebas
UB Deviation (%)

Average 21.76 62.63 54.60 27.81 22.16
Largest 50.00 131.82 109.09 75.00 52.27

Smallest > 0 1.61 12.50 12.50 4.84 1.61
Optimal solutions

Number 18 4 4 13 20
Gap (%)

Average 6.63 39.24 32.40 9.38 4.75
Largest 32.00 105.26 71.93 33.33 21.43

Smallest > 0 3.85 10.00 7.69 3.17 3.85

We begin with the GPS heuristic which is one of the early published methods. Its
average deviation from the initial lower bound is 62.63% and the largest deviation
is 131.82%. iGPS improves the solution quality a bit further in that the average
deviation is reduced to 54.60%. The two heuristics can find optimal solutions for 4
among 33 instances in this set. Both GPS and iGPS are very fast; they finish every
instance in this set in far less than 1 second. SA-σ continues improving the upper
bounds and reduces the average deviation to 27.81%. This is still worse than the
best known values by MCP and LRX whose average deviation is 21.76%.

Since we really want to reduce the gaps between lower and upper bounds for small
instances, in cases that Hebas in the non-parallel mode does not have good upper
bounds as those of MCP and LRX (such as instances gre__115, fs_183_1, and
will199) we try to obtain them with the parallel solver. Hebas can reduce the
average deviation to 22.16%.

The known number of small instances which can be solved to optimality is increased
by Hebas from 18 to 20. Now we look at the gaps between lower and upper bounds
to see how far the bandwidth problem has been solved. The best known average gap
by MCP and LRX is 6.63% and has been improved by Hebas to 4.75%.

7.5.2 Heuristic results for large instances

For large instances SA-σ is set to run at most 30 minutes and the neighbor function is
also the swap method. The statistics of the upper bounds are reported in Table 7.20.
The detailed results can be found in Table A.4 in Appendix A.

For 80 large instances with less than 1000 vertices the solution quality of GPS begins
to decrease. Its results are worse than those on the small instances. In particular, the
average deviation given by GPS is 92.50% and the average gap to Hebas lower bounds
is 75.55%. iGPS improves the solution quality of the original heuristic about 14.50%;



CHAPTER 7. C O M P U TAT I O N A L R E S U LT S 105

Table 7.20: Statistics of heuristic results for large instances.

MCP & LRX GPS iGPS SA-σ Hebas
UB Deviation (%)

Average 29.87 92.50 78.00 37.53 35.76
Largest 85.71 227.78 171.43 171.43 171.43

Smallest > 0 3.67 6.67 6.67 4.35 4.00
Optimal solutions

Number 8 3 3 7 12
Gap (%)

Average 22.55 75.55 62.16 25.05 23.31
Largest 70.73 218.92 137.50 137.50 137.50

Smallest > 0 2.01 7.69 7.69 1.59 1.59

it reduces the average deviation to 78.00%. The average gap is reduced by iGPS
to 62.16%. GPS again finishes all these instances in less than 1 second. The average
running time by iGPS for these instances is 6.83 seconds.

SA-σ can reduce the average deviation to 37.53%. Hebas continues to improve the
upper bound for some instances and reduces the average deviation to 35.76%. The
upper bounds from MCP and LRX are still the best known results for large instances
with an average UB deviation of 29.87%.

There are two reasons that the results of Hebas for these instances are worse than the
best known upper bounds. First, the solution quality of SA-σ whose output is used
as the initial solution for Hebas is not as good as the best known results. Second,
for some large instances the initial upper bounds are pretty large and cannot be
improved further by the exact solver Hebas. Recall that the search space of BW is
huge if the search parameter ϕ is large. This makes it hard for Hebas to search for
a feasible permutation.

Both GPS and iGPS can find optimal solutions for 3 instances in this set. The best
known results from MCP and LRX reported 8 cases of optimality. SA-σ can obtain
the optimal solution for 7 instances since it is initialized with the solution by iGPS.
Hebas with strong exact algorithms can solve 12 instances to optimality. Now we
consider the gaps between lower and upper bounds. The average gap of best known
results by MCP and LRX is 22.55%. Even having stronger lower bounds, Hebas can
only reduce the average gap to 23.31%.

We observe that even though more optimal solutions are found and the lower bounds
for many instances have been improved, the gaps between the lower and upper
bounds are still huge for many large instances. The bandwidth problem is challenging
and more improvements are still needed.



106 CHAPTER 7. C O M P U TAT I O N A L R E S U LT S

7.5.3 Heuristic results for very large instances

We experimented our heuristics on 51 very large instances whose matrix files are
downloaded directly from the collection [11]. As we have mentioned in the report on
lower bounds in Section 7.3.3, the SRB work must have excluded zero-edges in the
matrix files since otherwise their upper bounds for some instances will be invalid.
Therefore, our heuristics also skip zero-edges when converting these matrices to
graphs for computing the bandwidth.

Only GPS, iGPS, and SA-σ are applied for instances this suite. Hebas cannot be used
for improving upper bounds because the instances’ size and the initial upper bounds
are too large. The upper bound for each disconnected instance is obtained by taking
the largest bandwidth among all of its connected components. For instances in this
suite, SA-σ is set to run 30 minutes and the neighborhood function is the rotation
method. We observe that SA-σ with rotation gives equivalent solution quality as the
one with swap.

The detailed computational results can be found in Table A.6 in Appendix A. The
running times are reported in seconds. The statistics of the upper bounds obtained
by our heuristics and SRB are given in Table 7.21. The first two columns show
the results of two configurations in SRB work. The upper bounds by SRB-M5 are
reported with the running time and those by SRB-M100 are their best results.

Table 7.21: Statistics of heuristic results for very large instances.

SRB-M5 SRB-M200 GPS iGPS SA-σ
UB Deviation (%)

Average 54.26 32.57 100.63 90.13 80.36
Largest 188.58 118.49 285.10 284.05 283.14
Smallest 8.85 4.14 9.68 9.68 9.68

Optimal solutions
Number 0 0 0 0 0

Time (seconds)
Average 230.21 _ 4.31 53.41 1800

Gap (%)
Average 48.93 27.80 93.44 83.39 74.14
Largest 188.58 118.49 285.10 284.05 283.14
Smallest 6.96 3.80 8.00 8.00 8.00

The GPS heuristic gives an average deviation of 100.63%. This value is improved
by iGPS to 90.13% and SA-σ reduces it to 80.36%. The results by SRB-M5 (the
first configuration in SRB) yield an average deviation of 54.26%. This is improved
further by their finer configuration SRB-M200 to 32.57%. Clearly SRB has the best
upper bounds for instances in this suite.



CHAPTER 7. C O M P U TAT I O N A L R E S U LT S 107

The running times are worth noticing. The average running time of SRB-M5 is 230.21
seconds. The average running time of GPS is only 4.31 seconds and that value of
iGPS is 53.41 seconds. (The mentioned running time of iGPS does not include the
time for computing initial lower bounds whose average value is 1,100 seconds.) This
confirms again the fastness of the GSP heuristic which might be useful for obtaining
initial solutions for some solution methods. For exact methods which requires initial
lower bounds, iGPS is a better choice because it can make use of the data structures
generated during the lower bound computation to obtain a better initial solution.

No optimal solution has been observed for instances in this suite. Obviously we need
stronger lower bound as well as upper bound methods. Concerning the gaps between
lower and upper bounds, SA-σ can achieve an average gap of 74.14%. The reported
upper bounds by SRB-M200 are clearly the best; their average gap is 27.80%.

We observe that for very large sparse graphs, an SA method which uses simple
neighbor functions without considering the graph properties is not effective any-
more. Neighbor functions which create more diversity are required for improving
the solution quality of the SA method. Since the graph is very sparse and usually
consists of subgraphs connecting with each other through a few edges, divide-and-
conquer strategies might be useful because they can exploit the graph properties.

Another remark is that heuristics exploiting graph properties such as GPS can pro-
vide initial solutions in very short time. In addition, we observe that the vertex
numbering procedure of GPS and iGPS, i.e., the steps that assign labels to vertices
in a level structure, is somewhat similar to the procedure extending a partial permu-
tation. One may consider improving the solution quality of GPS and iGPS further
by using a numbering procedure which takes into account the constraints for the
bandwidth problem.



8 Conclusions and Discussion

In this dissertation we have studied the bandwidth minimization problem from many
angles: heuristics, applications, and exact methods. We focused on improving the
lower bound for benchmark instances using exact methods.

We presented an application of the bandwidth problem to the compression of topo-
logical information of digital road networks. On an evaluation set of real-world Euro-
pean road network data, a noteworthy compression ratio of topological information
was achieved by reordering the graphs’ vertex numbers using the solution of the
bandwidth problem. The compression technique may inspire similar applications
where a vertex reordering makes the storage of some data more efficient.

The GPS heuristic was adapted to exploit the data structure available during the
lower bound computation of exact algorithms. Our version, named iGPS, is some-
what slower but gives better solution quality than the original one. We observe that
the vertex numbering procedure of GPS is quite similar to the extension of a par-
tial permutation. Thus one may consider improving its solution quality by using a
vertex numbering step which takes into account the constraints for the bandwidth
problem.

We introduced an approximate objective function named Sigma. It is composed of
two parts. The integral part preserves the original bandwidth value. The fractional
part considers all label differences in a permutation; thus it is very likely to change
when the permutation is altered. We applied Sigma to a simulated annealing im-
plementation named SA-σ and it is able to improve the upper bounds obtained by
iGPS. The current solution quality of SA-σ is not as good as that of the best known
results, but there is room for improvement with the availability of the SA framework.

While a method for solving the bandwidth problem using IP formulations is not
yet available, the problem can be efficiently approached using branch-and-bound
methods. It turns out that known exact methods are based on the same concepts:
the partial permutation, the search problem BW, and the extendability problems.
We reviewed previous exact algorithms based on these concepts and used them as
a basis for our improvement. The further development includes: new constraints
for the bandwidth problem, the analysis of the dominance relation between certain
partial permutations which allows eliminating dominated partial permutations, and
a new branching scheme named 2-labeling which exploits the dominance rule.



CHAPTER 8. C O N C L U S I O N S A N D D I S C U S S I O N 109

The new constraints are the main engine to improve the lower bound for most
instances. Using label domains as integer intervals in a partial permutation allows
them to be numerically tightened by constraints for the bandwidth problem. The
constraints can be derived by applying the basic bandwidth constraint to specific
properties of the graph, like the fitting constraint or the pulling constraint. They are
strong constraints and can tighten label domains effectively. Other constraints, such
as the density cut and the density near-cut constraints, can be derived by analyzing
the distribution of label domains on the linear layout and finding label ranges which
are fully used. These constraints also enable label domains to be tightened on the
side where the partial permutation is not being extended.

We observe that the search space of the BW problem expands quickly when the
search parameter ϕ is increased by only 1. This makes it difficult to improve the
lower bound for a graph instance if the solver does not have a constraint which is
useful for that graph.

Among two partial permutations having the same assigned set, in some cases it is
guaranteed that if a partial permutation can be extended to a feasible permutation
then so can the other. This leads to an interesting property of the BW problem: the
dominance relation between partial permutations having the same assigned set. We
explained the dominance concept and showed that dominated partial permutations
can be eliminated. We also described how to use the dominance rule in a branch-
and-bound algorithm with a hash-table. This implementation usually speeds up the
running time.

Furthermore, the dominance rule can be applied at the branching step. In the 2-
labeling scheme two vertices are used simultaneously to extend partial permutations
instead of one-by-one. On small instances (less than 200 vertices), this scheme speeds
up the running time in most cases. The main disadvantage of this scheme is its mem-
ory usage because the width of its branch-and-bound tree is larger than that of the
normal single-labeling scheme. Therefore, it has memory problem on some large in-
stances (between 200 and 1,000 vertices). On computers having much larger memory
capacity such as a parallel cluster, the memory issue may not happen anymore. De-
spite that issue, the 2-labeling scheme still contributes to the improvement of the
lower bound for some large instances.

Notice that the current dominance rule is derived by analyzing labels of assigned
vertices which are adjacent to a free vertex. In other words, these rules are based on
certain sets of adjacent vertices like the constraints for the bandwidth problem in
the 1980s. We think that it can be strengthened further, like the way the constraints
have been improved, by considering sets of vertices which are more than one distance
unit away from each other in addition to the adjacent ones. The first applications
are obvious: being used in a branch-and-bound algorithm either directly with the
hash-table and/or the 2-labeling scheme.



110 CHAPTER 8. C O N C L U S I O N S A N D D I S C U S S I O N

Parallelizing the branch-and-bound algorithm and then running the solver on a
powerful cluster of 256 processors also help to improve the lower bound for some
instances. However, parallelization can only reduce the running time within a linear
speedup factor while the BW problem’s search space increases rapidly for solving
larger ϕ. As a result, the lower bound for many instances can only be improved
to a small degree, or even not improved at all, when compared with the results
of the non-parallel solver. On the other hand, a parallel cluster can be seen as a
“special” computer with high computing power and large memory capacity, which
is useful for solving very large instances or for methods requiring much memory like
the 2-labeling scheme.

The new constraints and the dominance rule have shown their effectiveness. On the
popular benchmark suite consisting of 113 instances with less than 1,000 vertices
each, we are able to solve more instances to optimality and obtain better lower
bounds for many instances, compared with the best known results from the litera-
ture. Since the branch-and-bound algorithms are stronger with the new constraints
and the dominance rule, the solver can work on instances of much larger size. On
the second suite consisting of 36 instances with more than 1,000 vertices, the largest
instance whose lower bound can be improved by our solver has about 15,600 vertices.

In summary, the bandwidth minimization problem has practical applications since
its solutions can make the storage or computation of some data more efficient. The
problem is hard and still challenging: the gap between the lower and upper bound is
still large for many instances in the popular benchmark suite. We have introduced
some additional tools for approaching the problem. The approximate objective func-
tion Sigma can be useful for some heuristics. For exact methods, our contributions
include the formulation of the partial permutation concept, the new constraints,
and the analysis of the dominance relation between partial permutations having the
same assigned set. The exact methods for the bandwidth problem presented in this
dissertation, in combination with Caprara and Salazar-González’s work [6], provide
a framework and some efficient tools for further research.



Appendix A

Detailed computational results



112 APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S

Ta
bl
e
A
.1
:L

ow
er

bo
un

ds
fo
r
sm

al
li
ns
ta
nc

es
.

In
st

an
ce

M
C

P
V

R
08

H
eb

as
P

ar
al

le
l

H
eb

as
B
es
t
kn

ow
n

B
es
t

1.
4

2.
3

1.
4p

2.
4p

N
am

e
n

m
Φ
t

Φ
l

im
p

Φ
l

im
p

Φ
l

im
p

Φ
l

im
p

Φ
l

im
p

Φ
l

im
p

ar
c1
30

13
0

71
5

62
63

1.
61

63
1.
61

63
1.
61

63
1.
61

63
1.
61

63
1.
61

as
h8

5
85

21
9

8
9

12
.5
0

9
12
.5
0

9
12
.5
0

9
12
.5
0

9
12
.5
0

9
12
.5
0

bc
sp
w
r0
1

39
46

4
5

25
.0
0

5
25
.0
0

5
25
.0
0

5
25
.0
0

5
25
.0
0

5
25
.0
0

bc
sp
w
r0
2

49
59

6
7

16
.6
7

7
16
.6
7

7
16
.6
7

7
16
.6
7

7
16
.6
7

7
16
.6
7

bc
sp
w
r0
3

11
8

17
9

9
10

11
.1
1

10
11
.1
1

10
11
.1
1

10
11
.1
1

10
11
.1
1

10
11
.1
1

bc
ss
tk
01

48
17
6

15
16

6.
67

16
6.
67

16
6.
67

16
6.
67

16
6.
67

16
6.
67

bc
ss
tk
04

13
2

17
58

32
37

15
.6
3

37
15
.6
3

37
15
.6
3

37
15
.6
3

37
15
.6
3

37
15
.6
3

bc
ss
tk
05

15
3

11
35

16
20

25
.0
0

20
25
.0
0

20
25
.0
0

20
25
.0
0

20
25
.0
0

20
25
.0
0

bc
ss
tk
22

11
0

25
4

8
9

12
.5
0

10
25
.0
0

10
25
.0
0

10
25
.0
0

10
25
.0
0

10
25
.0
0

ca
n_

_
14
4

14
4

57
6

12
13

8.
33

13
8.
33

13
8.
33

13
8.
33

13
8.
33

13
8.
33

ca
n_

_
16
1

16
1

60
8

16
18

12
.5
0

18
12
.5
0

18
12
.5
0

18
12
.5
0

18
12
.5
0

18
12
.5
0

cu
rt
is
54

54
12
4

8
10

25
.0
0

10
25
.0
0

10
25
.0
0

10
25
.0
0

10
25
.0
0

10
25
.0
0

dw
t_

_
23
4

11
7

16
2

10
11

10
.0
0

11
10
.0
0

11
10
.0
0

11
10
.0
0

11
10
.0
0

11
10
.0
0

fs
_
18
3_

1
18
3

70
1

52
52

0.
00

52
0.
00

57
9.
62

57
9.
62

57
9.
62

57
9.
62

ge
nt
11
3

10
4

54
9

20
26

30
.0
0

26
30
.0
0

26
30
.0
0

26
30
.0
0

26
30
.0
0

26
30
.0
0

gr
e_

_
11
5

11
5

26
7

16
20

25
.0
0

21
31
.2
5

20
25
.0
0

20
25
.0
0

20
25
.0
0

21
31
.2
5

gr
e_

_
18
5

18
5

65
0

16
17

6.
25

18
12
.5
0

18
12
.5
0

18
12
.5
0

18
12
.5
0

18
12
.5
0

ib
m
32

32
90

9
11

22
.2
2

11
22
.2
2

11
22
.2
2

11
22
.2
2

11
22
.2
2

11
22
.2
2

im
pc

ol
_
b

59
28
1

15
19

26
.6
7

20
33
.3
3

20
33
.3
3

20
33
.3
3

20
33
.3
3

20
33
.3
3

im
pc

ol
_
c

13
7

35
2

21
26

23
.8
1

26
23
.8
1

27
28
.5
7

27
28
.5
7

27
28
.5
7

27
28
.5
7

ln
s_

_
13
1

12
3

27
5

15
19

26
.6
7

19
26
.6
7

19
26
.6
7

19
26
.6
7

19
26
.6
7

19
26
.6
7

lu
nd

_
a

14
7

11
51

17
19

11
.7
6

19
11
.7
6

19
11
.7
6

19
11
.7
6

19
11
.7
6

20
17
.6
5

lu
nd

_
b

14
7

11
47

17
19

11
.7
6

19
11
.7
6

19
11
.7
6

19
11
.7
6

19
11
.7
6

20
17
.6
5

m
cc
a

16
8

16
62

32
32

0.
00

32
0.
00

32
0.
00

32
0.
00

32
0.
00

32
0.
00

no
s1

15
8

31
2

3
3

0.
00

3
0.
00

3
0.
00

3
0.
00

3
0.
00

3
0.
00

no
s4

10
0

24
7

9
10

11
.1
1

10
11
.1
1

10
11
.1
1

10
11
.1
1

10
11
.1
1

10
11
.1
1

C
on

ti
nu

ed
on

th
e
ne
xt

pa
ge



APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S 113

Ta
bl
e
A
.1
:L

ow
er

bo
un

ds
fo
r
sm

al
li
ns
ta
nc

es
.

In
st

an
ce

M
C

P
V

R
08

H
eb

as
P

ar
al

le
l

H
eb

as
B
es
t
kn

ow
n

B
es
t

1.
4

2.
3

1.
4p

2.
4p

N
am

e
n

m
Φ
t

Φ
l

im
p

Φ
l

im
p

Φ
l

im
p

Φ
l

im
p

Φ
l

im
p

Φ
l

im
p

po
re
s_

1
30

10
3

6
7

16
.6
7

7
16
.6
7

7
16
.6
7

7
16
.6
7

7
16
.6
7

7
16
.6
7

st
ea
m
3

80
42
4

7
7

0.
00

7
0.
00

7
0.
00

7
0.
00

7
0.
00

7
0.
00

w
es
t0
13
2

13
2

40
4

23
25

8.
70

25
8.
70

28
21
.7
4

28
21
.7
4

28
21
.7
4

28
21
.7
4

w
es
t0
15
6

15
6

37
1

27
34

25
.9
3

34
25
.9
3

33
22
.2
2

34
25
.9
3

33
22
.2
2

34
25
.9
3

w
es
t0
16
7

16
7

48
9

28
31

10
.7
1

31
10
.7
1

31
10
.7
1

32
14
.2
9

31
10
.7
1

32
14
.2
9

w
ill
19
9

19
9

66
0

44
57

29
.5
5

59
34
.0
9

53
20
.4
5

55
25
.0
0

55
25
.0
0

57
29
.5
5

w
ill
57

57
12
7

6
6

0.
00

6
0.
00

6
0.
00

6
0.
00

6
0.
00

6
0.
00

A
ve

ra
ge

14
.2

2
15

.3
2

15
.4

4
15

.7
9

15
.5

7
16

.4
8



114 APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S

Ta
bl
e
A
.2
:U

pp
er

bo
un

ds
fo
r
sm

al
li
ns
ta
nc

es
.

In
st

an
ce

M
C

P
&

L
R

X
O

ur
re

su
lt

s
B
es
t
kn

ow
n

H
eb
as

G
P
S

iG
P
S

SA
-σ

H
eb
as

N
am

e
n

Φ
t

Φ
l

Φ
u

de
v

ga
p

Φ
l

Φ
u

de
v

Φ
u

de
v

Φ
u

de
v

Φ
u

de
v

ga
p

ar
c1
30

13
0

62
63

63
1.
61

0.
00

63
10
1

62
.9
0

10
1

62
.9
0

65
4.
84

63
1.
61

0.
00

as
h8

5
85

8
9

9
12
.5
0

0.
00

9
10

25
.0
0

10
25
.0
0

10
25
.0
0

9
12
.5
0

0.
00

bc
sp
w
r0
1

39
4

5
5

25
.0
0

0.
00

5
7

75
.0
0

6
50
.0
0

5
25
.0
0

5
25
.0
0

0.
00

bc
sp
w
r0
2

49
6

7
7

16
.6
7

0.
00

7
11

83
.3
3

11
83
.3
3

7
16
.6
7

7
16
.6
7

0.
00

bc
sp
w
r0
3

11
8

9
10

10
11
.1
1

0.
00

10
16

77
.7
8

16
77
.7
8

10
11
.1
1

10
11
.1
1

0.
00

bc
ss
tk
01

48
15

16
16

6.
67

0.
00

16
25

66
.6
7

23
53
.3
3

20
33
.3
3

16
6.
67

0.
00

bc
ss
tk
04

13
2

32
37

37
15
.6
3

0.
00

37
46

43
.7
5

43
34
.3
8

41
28
.1
3

37
15
.6
3

0.
00

bc
ss
tk
05

15
3

16
20

20
25
.0
0

0.
00

20
25

56
.2
5

24
50
.0
0

22
37
.5
0

20
25
.0
0

0.
00

bc
ss
tk
22

11
0

8
9

10
25
.0
0

11
.1
1

10
12

50
.0
0

12
50
.0
0

11
37
.5
0

10
25
.0
0

0.
00

ca
n_

_
14
4

14
4

12
13

13
8.
33

0.
00

13
18

50
.0
0

14
16
.6
7

13
8.
33

13
8.
33

0.
00

ca
n_

_
16
1

16
1

16
18

18
12
.5
0

0.
00

18
18

12
.5
0

18
12
.5
0

18
12
.5
0

18
12
.5
0

0.
00

cu
rt
is
54

54
8

10
10

25
.0
0

0.
00

10
13

62
.5
0

13
62
.5
0

10
25
.0
0

10
25
.0
0

0.
00

dw
t_

_
23
4

11
7

10
11

11
10
.0
0

0.
00

11
14

40
.0
0

13
30
.0
0

11
10
.0
0

11
10
.0
0

0.
00

fs
_
18
3_

1
18
3

52
52

60
15
.3
8

15
.3
8

57
11
7

12
5.
00

98
88
.4
6

64
23
.0
8

61
17
.3
1

7.
02

ge
nt
11
3

10
4

20
26

27
35
.0
0

3.
85

26
33

65
.0
0

33
65
.0
0

28
40
.0
0

27
35
.0
0

3.
85

gr
e_

_
11
5

11
5

16
20

23
43
.7
5

15
.0
0

21
33

10
6.
25

28
75
.0
0

28
75
.0
0

23
43
.7
5

9.
52

gr
e_

_
18
5

18
5

16
17

21
31
.2
5

23
.5
3

18
21

31
.2
5

21
31
.2
5

21
31
.2
5

21
31
.2
5

16
.6
7

ib
m
32

32
9

11
11

22
.2
2

0.
00

11
13

44
.4
4

13
44
.4
4

11
22
.2
2

11
22
.2
2

0.
00

im
pc

ol
_
b

59
15

19
20

33
.3
3

5.
26

20
29

93
.3
3

29
93
.3
3

25
66
.6
7

20
33
.3
3

0.
00

im
pc

ol
_
c

13
7

21
26

30
42
.8
6

15
.3
8

27
46

11
9.
05

41
95
.2
4

31
47
.6
2

31
47
.6
2

14
.8
1

ln
s_

_
13
1

12
3

15
19

20
33
.3
3

5.
26

19
30

10
0.
00

30
10
0.
00

20
33
.3
3

20
33
.3
3

5.
26

lu
nd

_
a

14
7

17
19

23
35
.2
9

21
.0
5

20
23

35
.2
9

23
35
.2
9

23
35
.2
9

23
35
.2
9

15
.0
0

lu
nd

_
b

14
7

17
19

23
35
.2
9

21
.0
5

20
23

35
.2
9

23
35
.2
9

23
35
.2
9

23
35
.2
9

15
.0
0

m
cc
a

16
8

32
32

37
15
.6
3

15
.6
3

32
53

65
.6
3

53
65
.6
3

37
15
.6
3

37
15
.6
3

15
.6
3

no
s1

15
8

3
3

3
0.
00

0.
00

3
3

0.
00

3
0.
00

3
0.
00

3
0.
00

0.
00

no
s4

10
0

9
10

10
11
.1
1

0.
00

10
11

22
.2
2

11
22
.2
2

10
11
.1
1

10
11
.1
1

0.
00

C
on

ti
nu

ed
on

th
e
ne

xt
pa

ge



APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S 115

Ta
bl
e
A
.2
:U

pp
er

bo
un

ds
fo
r
sm

al
li
ns
ta
nc

es
.

In
st

an
ce

M
C

P
&

L
R

X
O

ur
re

su
lt

s
B
es
t
kn

ow
n

H
eb
as

G
P
S

iG
P
S

SA
-σ

H
eb
as

N
am

e
n

Φ
t

Φ
l

Φ
u

de
v

ga
p

Φ
l

Φ
u

de
v

Φ
u

de
v

Φ
u

de
v

Φ
u

de
v

ga
p

po
re
s_

1
30

6
7

7
16
.6
7

0.
00

7
7

16
.6
7

7
16
.6
7

7
16
.6
7

7
16
.6
7

0.
00

st
ea
m
3

80
7

7
7

0.
00

0.
00

7
7

0.
00

7
0.
00

7
0.
00

7
0.
00

0.
00

w
es
t0
13
2

13
2

23
25

33
43
.4
8

32
.0
0

28
47

10
4.
35

47
10
4.
35

37
60
.8
7

34
47
.8
3

21
.4
3

w
es
t0
15
6

15
6

27
34

37
37
.0
4

8.
82

34
55

10
3.
70

55
10
3.
70

40
48
.1
5

37
37
.0
4

8.
82

w
es
t0
16
7

16
7

28
31

34
21
.4
3

9.
68

32
64

12
8.
57

49
75
.0
0

34
21
.4
3

34
21
.4
3

6.
25

w
ill
19
9

19
9

44
57

66
50
.0
0

15
.7
9

57
10
2

13
1.
82

92
10
9.
09

70
59
.0
9

67
52
.2
7

17
.5
4

w
ill
57

57
6

6
6

0.
00

0.
00

6
8

33
.3
3

8
33
.3
3

6
0.
00

6
0.
00

0.
00

A
ve

ra
ge

21
.7

6
6.

63
62

.6
3

54
.6

0
27

.8
1

22
.1

6
4.

75



116 APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S

Ta
bl
e
A
.3
:L

ow
er

bo
un

ds
fo
r
la
rg
e
in
st
an

ce
s.

In
st

an
ce

M
C

P
H

eb
as

P
ar

al
le

l
H

eb
as

B
es
t
kn

ow
n

1.
4

2.
3

B
es
t

1.
4p

2.
4p

B
es
t

N
am

e
n

m
Φ
t

Φ
l

im
p

Φ
l

im
p

Φ
l

Φ
l

im
p

Φ
l

im
p

Φ
l

Φ
l

im
p

49
4_

bu
s

49
4

58
6

24
25

4.
17

26
8.
33

26
26

8.
33

26
8.
33

26
26

8.
33

66
2_

bu
s

66
2

90
6

36
36

0.
00

37
2.
78

37
37

2.
78

37
2.
78

37
37

2.
78

68
5_

bu
s

68
5

1,
28
2

29
30

3.
45

31
6.
90

31
31

6.
90

31
6.
90

31
31

6.
90

as
h2

92
29
2

95
8

16
16

0.
00

17
6.
25

17
17

6.
25

17
6.
25

17
17

6.
25

bc
sp
w
r0
4

27
4

66
9

23
23

0.
00

23
0.
00

23
23

0.
00

23
0.
00

23
23

0.
00

bc
sp
w
r0
5

44
3

59
0

25
25

0.
00

26
4.
00

26
26

4.
00

26
4.
00

26
26

4.
00

bc
ss
tk
06

42
0

3,
72
0

32
38

18
.7
5

39
21
.8
8

39
39

21
.8
8

39
21
.8
8

39
39

21
.8
8

bc
ss
tk
19

81
7

3,
01
8

12
13

8.
33

13
8.
33

_
13

8.
33

13
8.
33

_
13

8.
33

bc
ss
tk
20

46
7

1,
29
5

7
8

14
.2
9

8
14
.2
9

8
8

14
.2
9

8
14
.2
9

8
8

14
.2
9

bc
ss
tm

07
42
0

3,
41
6

32
37

15
.6
3

39
21
.8
8

39
39

21
.8
8

39
21
.8
8

39
39

21
.8
8

bp
_
_
_
_
_
0

82
2

3,
26
0

17
4

17
4

0.
00

17
4

0.
00

17
4

17
4

0.
00

17
4

0.
00

17
4

17
4

0.
00

bp
_
_
_
20
0

82
2

3,
78
8

18
6

18
6

0.
00

18
8

1.
08

_
18
8

1.
08

18
8

1.
08

_
18
8

1.
08

bp
_
_
_
40
0

82
2

4,
01
5

18
8

18
8

0.
00

19
3

2.
66

_
19
3

2.
66

19
5

3.
72

_
19
5

3.
72

bp
_
_
_
60
0

82
2

4,
15
7

18
9

19
0

0.
53

19
5

3.
17

_
19
5

3.
17

19
7

4.
23

_
19
7

4.
23

bp
_
_
_
80
0

82
2

4,
51
8

19
0

19
7

3.
68

20
0

5.
26

_
20
0

5.
26

20
1

5.
79

_
20
1

5.
79

bp
_
_
10
00

82
2

4,
63
5

19
1

19
7

3.
14

20
0

4.
71

_
20
0

4.
71

20
2

5.
76

_
20
2

5.
76

bp
_
_
12
00

82
2

4,
69
8

19
3

19
7

2.
07

20
1

4.
15

_
20
1

4.
15

20
2

4.
66

_
20
2

4.
66

bp
_
_
14
00

82
2

4,
76
0

19
3

19
9

3.
11

20
1

4.
15

_
20
1

4.
15

20
3

5.
18

_
20
3

5.
18

bp
_
_
16
00

82
2

4,
80
9

19
2

19
9

3.
65

20
1

4.
69

_
20
1

4.
69

20
3

5.
73

_
20
3

5.
73

ca
n_

_
29
2

29
2

1,
12
4

33
34

3.
03

35
6.
06

35
35

6.
06

35
6.
06

35
35

6.
06

ca
n_

_
44
5

44
5

1,
68
2

42
46

9.
52

46
9.
52

46
46

9.
52

46
9.
52

46
46

9.
52

ca
n_

_
71
5

71
5

2,
97
5

52
54

3.
85

56
7.
69

56
56

7.
69

56
7.
69

56
56

7.
69

ca
n_

_
83
8

83
8

4,
58
6

75
75

0.
00

81
8.
00

_
81

8.
00

81
8.
00

81
8.
00

dw
t_

_
20
9

20
9

76
7

20
21

5.
00

22
10
.0
0

22
22

10
.0
0

22
10
.0
0

22
22

10
.0
0

dw
t_

_
22
1

22
1

70
4

11
12

9.
09

12
9.
09

12
12

9.
09

12
9.
09

12
12

9.
09

dw
t_

_
24
5

24
5

60
8

21
21

0.
00

21
0.
00

21
21

0.
00

21
0.
00

21
21

0.
00

C
on

ti
nu

ed
on

th
e
ne
xt

pa
ge



APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S 117

Ta
bl
e
A
.3
:L

ow
er

bo
un

ds
fo
r
la
rg
e
in
st
an

ce
s.

In
st

an
ce

M
C

P
H

eb
as

P
ar

al
le

l
H

eb
as

B
es
t
kn

ow
n

1.
4

2.
3

B
es
t

1.
4p

2.
4p

B
es
t

N
am

e
n

m
Φ
t

Φ
l

im
p

Φ
l

im
p

Φ
l

Φ
l

im
p

Φ
l

im
p

Φ
l

Φ
l

im
p

dw
t_

_
31
0

31
0

1,
06
9

11
11

0.
00

11
0.
00

11
11

0.
00

11
0.
00

11
11

0.
00

dw
t_

_
36
1

36
1

1,
29
6

14
14

0.
00

14
0.
00

14
14

0.
00

14
0.
00

14
14

0.
00

dw
t_

_
41
9

41
9

1,
57
2

21
23

9.
52

22
4.
76

23
23

9.
52

22
4.
76

23
23

9.
52

dw
t_

_
50
3

50
3

2,
76
2

29
29

0.
00

34
17
.2
4

34
34

17
.2
4

34
17
.2
4

34
34

17
.2
4

dw
t_

_
59
2

59
2

2,
25
6

22
22

0.
00

22
0.
00

_
22

0.
00

22
0.
00

_
22

0.
00

dw
t_

_
87
8

87
8

3,
28
5

23
23

0.
00

23
0.
00

_
23

0.
00

23
0.
00

_
23

0.
00

dw
t_

_
91
8

91
8

3,
23
3

27
27

0.
00

29
7.
41

_
29

7.
41

29
7.
41

_
29

7.
41

dw
t_

_
99
2

99
2

7,
87
6

35
35

0.
00

35
0.
00

_
35

0.
00

35
0.
00

_
35

0.
00

fs
_
54
1_

1
54
1

2,
46
6

27
0

27
0

0.
00

27
0

0.
00

_
27
0

0.
00

27
0

0.
00

_
27
0

0.
00

fs
_
68
0_

1
68
0

1,
46
4

17
17

0.
00

17
0.
00

17
17

0.
00

17
0.
00

17
17

0.
00

fs
_
76
0_

1
76
0

3,
51
8

35
36

2.
86

37
5.
71

37
37

5.
71

37
5.
71

37
37

5.
71

gr
_
30
_
30

90
0

3,
42
2

31
31

0.
00

31
0.
00

_
31

0.
00

31
0.
00

_
31

0.
00

gr
e_

_
34
3

34
3

1,
09
2

23
23

0.
00

25
8.
70

25
25

8.
70

25
8.
70

25
25

8.
70

gr
e_

_
51
2

51
2

1,
68
0

30
30

0.
00

31
3.
33

31
31

3.
33

31
3.
33

31
31

3.
33

gr
e_

21
6a

21
6

66
0

17
17

0.
00

18
5.
88

18
18

5.
88

18
5.
88

18
18

5.
88

ho
r_

_
13
1

43
4

2,
13
8

42
46

9.
52

47
11
.9
0

47
47

11
.9
0

47
11
.9
0

47
47

11
.9
0

im
pc

ol
_
a

20
6

55
7

23
30

30
.4
3

31
34
.7
8

31
31

34
.7
8

31
34
.7
8

31
31

34
.7
8

im
pc

ol
_
d

42
5

1,
26
7

34
36

5.
88

36
5.
88

36
36

5.
88

36
5.
88

36
36

5.
88

im
pc

ol
_
e

22
5

1,
18
7

34
34

0.
00

36
5.
88

36
36

5.
88

36
5.
88

36
36

5.
88

ja
gm

es
h1

93
6

2,
66
4

22
24

9.
09

25
13
.6
4

_
25

13
.6
4

25
13
.6
4

_
25

13
.6
4

jp
w
h_

99
1

98
3

2,
67
8

79
82

3.
80

84
6.
33

_
84

6.
33

84
6.
33

_
84

6.
33

ln
s_

_
51
1

50
3

1,
42
5

30
33

10
.0
0

35
16
.6
7

35
35

16
.6
7

35
16
.6
7

35
35

16
.6
7

m
be

ac
xc

48
7

41
,6
86

24
3

24
8

2.
06

24
9

2.
47

25
0

25
0

2.
88

24
9

2.
47

25
1

25
1

3.
29

m
be

afl
w

48
7

41
,6
86

24
3

24
6

1.
23

24
9

2.
47

25
0

25
0

2.
88

24
9

2.
47

25
1

25
1

3.
29

m
be

au
se

49
2

36
,2
09

24
5

24
9

1.
63

25
1

2.
45

25
2

25
2

2.
86

25
2

2.
86

25
2

25
2

2.
86

m
cf
e

73
1

15
,0
86

11
2

11
2

0.
00

12
1

8.
04

12
1

12
1

8.
04

12
1

8.
04

12
1

12
1

8.
04

nn
c2
61

26
1

79
4

20
22

10
.0
0

23
15
.0
0

23
23

15
.0
0

23
15
.0
0

23
23

15
.0
0

C
on

ti
nu

ed
on

th
e
ne
xt

pa
ge



118 APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S

Ta
bl
e
A
.3
:L

ow
er

bo
un

ds
fo
r
la
rg
e
in
st
an

ce
s.

In
st

an
ce

M
C

P
H

eb
as

P
ar

al
le

l
H

eb
as

B
es
t
kn

ow
n

1.
4

2.
3

B
es
t

1.
4p

2.
4p

B
es
t

N
am

e
n

m
Φ
t

Φ
l

im
p

Φ
l

im
p

Φ
l

Φ
l

im
p

Φ
l

im
p

Φ
l

Φ
l

im
p

nn
c6
66

66
6

2,
14
8

32
33

3.
13

35
9.
38

35
35

9.
38

35
9.
38

35
35

9.
38

no
s2

63
8

1,
27
2

3
3

0.
00

3
0.
00

3
3

0.
00

3
0.
00

3
3

0.
00

no
s3

96
0

7,
44
2

43
43

0.
00

43
0.
00

43
43

0.
00

43
0.
00

43
43

0.
00

no
s5

46
8

2,
35
2

51
53

3.
92

57
11
.7
6

57
57

11
.7
6

57
11
.7
6

57
57

11
.7
6

no
s6

67
5

1,
29
0

15
15

0.
00

16
6.
67

16
16

6.
67

16
6.
67

16
16

6.
67

no
s7

72
9

1,
94
4

38
43

13
.1
6

46
21
.0
5

46
46

21
.0
5

46
21
.0
5

46
46

21
.0
5

or
si
rr
_
2

88
6

2,
54
2

54
62

14
.8
1

69
27
.7
8

_
69

27
.7
8

69
27
.7
8

69
69

27
.7
8

pl
at
36
2

36
2

2,
71
2

28
29

3.
57

30
7.
14

30
30

7.
14

30
7.
14

30
30

7.
14

pl
sk
z3
62

36
2

88
0

14
15

7.
14

15
7.
14

15
15

7.
14

15
7.
14

15
15

7.
14

po
re
s_

3
45
6

1,
76
9

12
13

8.
33

13
8.
33

13
13

8.
33

13
8.
33

13
13

8.
33

sa
yl
r1

23
8

44
5

10
12

20
.0
0

12
20
.0
0

12
12

20
.0
0

12
20
.0
0

12
12

20
.0
0

sa
yl
r3

68
1

1,
37
3

31
35

12
.9
0

37
19
.3
5

37
37

19
.3
5

37
19
.3
5

37
37

19
.3
5

sh
er
m
an

1
68
1

1,
37
3

31
35

12
.9
0

37
19
.3
5

37
37

19
.3
5

37
19
.3
5

37
37

19
.3
5

sh
er
m
an

4
54
6

1,
34
1

21
21

0.
00

22
4.
76

22
22

4.
76

22
4.
76

22
22

4.
76

sh
l_

_
_
_
0

66
3

1,
68
2

21
1

21
1

0.
00

21
1

0.
00

21
1

21
1

0.
00

21
1

0.
00

21
1

21
1

0.
00

sh
l_

_
20
0

66
3

1,
72
0

22
0

22
0

0.
00

22
0

0.
00

22
0

22
0

0.
00

22
0

0.
00

22
0

22
0

0.
00

sh
l_

_
40
0

66
3

1,
70
9

21
3

21
3

0.
00

21
3

0.
00

21
3

21
3

0.
00

21
3

0.
00

21
3

21
3

0.
00

st
ea
m
1

24
0

1,
76
1

26
32

23
.0
8

32
23
.0
8

33
33

26
.9
2

33
26
.9
2

33
33

26
.9
2

st
ea
m
2

60
0

6,
58
0

48
54

12
.5
0

55
14
.5
8

55
55

14
.5
8

55
14
.5
8

55
55

14
.5
8

st
r_

_
_
_
0

36
3

2,
44
6

70
87

24
.2
9

88
25
.7
1

88
88

25
.7
1

88
25
.7
1

89
89

27
.1
4

st
r_

_
20
0

36
3

3,
04
9

72
90

25
.0
0

91
26
.3
9

91
91

26
.3
9

93
29
.1
7

92
93

29
.1
7

st
r_

_
60
0

36
3

3,
24
4

79
10
1

27
.8
5

98
24
.0
5

10
1

10
1

27
.8
5

10
3

30
.3
8

10
2

10
3

30
.3
8

w
es
t0
38
1

38
1

2,
15
0

10
0

11
9

19
.0
0

11
8

18
.0
0

12
0

12
0

20
.0
0

11
8

18
.0
0

12
1

12
1

21
.0
0

w
es
t0
47
9

47
9

1,
88
9

76
84

10
.5
3

91
19
.7
4

91
91

19
.7
4

91
19
.7
4

91
91

19
.7
4

w
es
t0
49
7

49
7

1,
71
5

69
69

0.
00

79
14
.4
9

79
79

14
.4
9

79
14
.4
9

79
79

14
.4
9

w
es
t0
65
5

65
5

2,
84
1

10
0

10
9

9.
00

12
4

24
.0
0

12
5

12
5

25
.0
0

12
4

24
.0
0

12
5

12
5

25
.0
0

w
es
t0
98
9

98
9

3,
50
0

12
1

12
3

1.
65

16
5

36
.3
6

_
16
5

36
.3
6

16
5

36
.3
6

_
16
5

36
.3
6

A
ve

ra
ge

5.
75

9.
28

9.
49

9.
53

9.
68



APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S 119

Ta
bl
e
A
.4
:U

pp
er

bo
un

ds
fo
r
la
rg
e
in
st
an

ce
s.

In
st

an
ce

M
C

P
&

L
R

X
O

ur
re

su
lt

s
B
es
t
kn

ow
n

H
eb
as

G
P
S

iG
P
S

SA
-σ

H
eb
as

N
am

e
n

Φ
t

Φ
l

Φ
u

de
v

ga
p

Φ
l

Φ
u

de
v

Φ
u

de
v

Φ
u

de
v

Φ
u

de
v

ga
p

49
4_

bu
s

49
4

24
25

31
29
.1
7

24
.0
0

26
62

15
8.
33

53
12
0.
83

30
25
.0
0

30
25
.0
0

15
.3
8

66
2_

bu
s

66
2

36
36

40
11
.1
1

11
.1
1

37
11
8

22
7.
78

70
94
.4
4

41
13
.8
9

41
13
.8
9

10
.8
1

68
5_

bu
s

68
5

29
30

34
17
.2
4

13
.3
3

31
77

16
5.
52

53
82
.7
6

42
44
.8
3

42
44
.8
3

35
.4
8

as
h2

92
29
2

16
16

20
25
.0
0

25
.0
0

17
28

75
.0
0

24
50
.0
0

20
25
.0
0

19
18
.7
5

11
.7
6

bc
sp
w
r0
4

27
4

23
23

25
8.
70

8.
70

23
38

65
.2
2

38
65
.2
2

24
4.
35

24
4.
35

4.
35

bc
sp
w
r0
5

44
3

25
25

28
12
.0
0

12
.0
0

26
66

16
4.
00

43
72
.0
0

28
12
.0
0

26
4.
00

0.
00

bc
ss
tk
06

42
0

32
38

46
43
.7
5

21
.0
5

39
50

56
.2
5

49
53
.1
3

45
40
.6
3

45
40
.6
3

15
.3
8

bc
ss
tk
19

81
7

12
13

14
16
.6
7

7.
69

13
18

50
.0
0

18
50
.0
0

15
25
.0
0

15
25
.0
0

15
.3
8

bc
ss
tk
20

46
7

7
8

13
85
.7
1

62
.5
0

8
20

18
5.
71

19
17
1.
43

19
17
1.
43

19
17
1.
43

13
7.
50

bc
ss
tm

07
42
0

32
37

46
43
.7
5

24
.3
2

39
56

75
.0
0

51
59
.3
8

45
40
.6
3

45
40
.6
3

15
.3
8

bp
_
_
_
_
_
0

82
2

17
4

17
4

23
9

37
.3
6

37
.3
6

17
4

41
6

13
9.
08

40
3

13
1.
61

24
1

38
.5
1

24
1

38
.5
1

38
.5
1

bp
_
_
_
20
0

82
2

18
6

18
6

26
8

44
.0
9

44
.0
9

18
8

44
6

13
9.
78

43
5

13
3.
87

27
2

46
.2
4

27
2

46
.2
4

44
.6
8

bp
_
_
_
40
0

82
2

18
8

18
8

27
6

46
.8
1

46
.8
1

19
5

53
0

18
1.
91

46
1

14
5.
21

28
1

49
.4
7

28
1

49
.4
7

44
.1
0

bp
_
_
_
60
0

82
2

18
9

19
0

28
0

48
.1
5

47
.3
7

19
7

54
1

18
6.
24

46
3

14
4.
97

29
0

53
.4
4

29
0

53
.4
4

47
.2
1

bp
_
_
_
80
0

82
2

19
0

19
7

29
2

53
.6
8

48
.2
2

20
1

52
6

17
6.
84

43
2

12
7.
37

29
9

57
.3
7

29
9

57
.3
7

48
.7
6

bp
_
_
10
00

82
2

19
1

19
7

29
0

51
.8
3

47
.2
1

20
2

53
5

18
0.
10

43
6

12
8.
27

30
6

60
.2
1

30
6

60
.2
1

51
.4
9

bp
_
_
12
00

82
2

19
3

19
7

29
5

52
.8
5

49
.7
5

20
2

47
2

14
4.
56

47
0

14
3.
52

30
7

59
.0
7

30
7

59
.0
7

51
.9
8

bp
_
_
14
00

82
2

19
3

19
9

29
7

53
.8
9

49
.2
5

20
3

54
5

18
2.
38

47
0

14
3.
52

30
9

60
.1
0

30
9

60
.1
0

52
.2
2

bp
_
_
16
00

82
2

19
2

19
9

30
0

56
.2
5

50
.7
5

20
3

56
1

19
2.
19

47
1

14
5.
31

31
0

61
.4
6

31
0

61
.4
6

52
.7
1

ca
n_

_
29
2

29
2

33
34

39
18
.1
8

14
.7
1

35
56

69
.7
0

54
63
.6
4

44
33
.3
3

41
24
.2
4

17
.1
4

ca
n_

_
44
5

44
5

42
46

54
28
.5
7

17
.3
9

46
74

76
.1
9

73
73
.8
1

70
66
.6
7

70
66
.6
7

52
.1
7

ca
n_

_
71
5

71
5

52
54

72
38
.4
6

33
.3
3

56
10
3

98
.0
8

99
90
.3
8

78
50
.0
0

78
50
.0
0

39
.2
9

ca
n_

_
83
8

83
8

75
75

88
17
.3
3

17
.3
3

81
10
9

45
.3
3

10
5

40
.0
0

92
22
.6
7

92
22
.6
7

13
.5
8

dw
t_

_
20
9

20
9

20
21

23
15
.0
0

9.
52

22
37

85
.0
0

30
50
.0
0

27
35
.0
0

23
15
.0
0

4.
55

dw
t_

_
22
1

22
1

11
12

13
18
.1
8

8.
33

12
16

45
.4
5

15
36
.3
6

14
27
.2
7

13
18
.1
8

8.
33

dw
t_

_
24
5

24
5

21
21

22
4.
76

4.
76

21
38

80
.9
5

38
80
.9
5

21
0.
00

21
0.
00

0.
00

C
on

ti
nu

ed
on

th
e
ne

xt
pa

ge



120 APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S

Ta
bl
e
A
.4
:U

pp
er

bo
un

ds
fo
r
la
rg
e
in
st
an

ce
s.

In
st

an
ce

M
C

P
&

L
R

X
O

ur
re

su
lt

s
B
es
t
kn

ow
n

H
eb
as

G
P
S

iG
P
S

SA
-σ

H
eb
as

N
am

e
n

Φ
t

Φ
l

Φ
u

de
v

ga
p

Φ
l

Φ
u

de
v

Φ
u

de
v

Φ
u

de
v

Φ
u

de
v

ga
p

dw
t_

_
31
0

31
0

11
11

12
9.
09

9.
09

11
15

36
.3
6

14
27
.2
7

13
18
.1
8

12
9.
09

9.
09

dw
t_

_
36
1

36
1

14
14

14
0.
00

0.
00

14
14

0.
00

14
0.
00

14
0.
00

14
0.
00

0.
00

dw
t_

_
41
9

41
9

21
23

26
23
.8
1

13
.0
4

23
33

57
.1
4

32
52
.3
8

28
33
.3
3

28
33
.3
3

21
.7
4

dw
t_

_
50
3

50
3

29
29

42
44
.8
3

44
.8
3

34
56

93
.1
0

52
79
.3
1

51
75
.8
6

51
75
.8
6

50
.0
0

dw
t_

_
59
2

59
2

22
22

30
36
.3
6

36
.3
6

22
42

90
.9
1

42
90
.9
1

35
59
.0
9

35
59
.0
9

59
.0
9

dw
t_

_
87
8

87
8

23
23

26
13
.0
4

13
.0
4

23
27

17
.3
9

27
17
.3
9

26
13
.0
4

26
13
.0
4

13
.0
4

dw
t_

_
91
8

91
8

27
27

33
22
.2
2

22
.2
2

29
48

77
.7
8

48
77
.7
8

35
29
.6
3

35
29
.6
3

20
.6
9

dw
t_

_
99
2

99
2

35
35

35
0.
00

0.
00

35
40

14
.2
9

40
14
.2
9

38
8.
57

35
0.
00

0.
00

fs
_
54
1_

1
54
1

27
0

27
0

27
0

0.
00

0.
00

27
0

52
9

95
.9
3

52
9

95
.9
3

27
0

0.
00

27
0

0.
00

0.
00

fs
_
68
0_

1
68
0

17
17

17
0.
00

0.
00

17
20

17
.6
5

20
17
.6
5

17
0.
00

17
0.
00

0.
00

fs
_
76
0_

1
76
0

35
36

38
8.
57

5.
56

37
41

17
.1
4

41
17
.1
4

39
11
.4
3

37
5.
71

0.
00

gr
_
30
_
30

90
0

31
31

31
0.
00

0.
00

31
49

58
.0
6

49
58
.0
6

48
54
.8
4

31
0.
00

0.
00

gr
e_

_
34
3

34
3

23
23

28
21
.7
4

21
.7
4

25
28

21
.7
4

28
21
.7
4

28
21
.7
4

28
21
.7
4

12
.0
0

gr
e_

_
51
2

51
2

30
30

36
20
.0
0

20
.0
0

31
36

20
.0
0

36
20
.0
0

36
20
.0
0

36
20
.0
0

16
.1
3

gr
e_

21
6a

21
6

17
17

21
23
.5
3

23
.5
3

18
21

23
.5
3

21
23
.5
3

21
23
.5
3

21
23
.5
3

16
.6
7

ho
r_

_
13
1

43
4

42
46

56
33
.3
3

21
.7
4

47
78

85
.7
1

65
54
.7
6

65
54
.7
6

65
54
.7
6

38
.3
0

im
pc

ol
_
a

20
6

23
30

32
39
.1
3

6.
67

31
48

10
8.
70

48
10
8.
70

33
43
.4
8

33
43
.4
8

6.
45

im
pc

ol
_
d

42
5

34
36

40
17
.6
5

11
.1
1

36
65

91
.1
8

51
50
.0
0

46
35
.2
9

46
35
.2
9

27
.7
8

im
pc

ol
_
e

22
5

34
34

42
23
.5
3

23
.5
3

36
62

82
.3
5

62
82
.3
5

43
26
.4
7

43
26
.4
7

19
.4
4

ja
gm

es
h1

93
6

22
24

27
22
.7
3

12
.5
0

25
27

22
.7
3

27
22
.7
3

27
22
.7
3

27
22
.7
3

8.
00

jp
w
h_

99
1

98
3

79
82

90
13
.9
2

9.
76

84
14
7

86
.0
8

14
1

78
.4
8

97
22
.7
8

97
22
.7
8

15
.4
8

ln
s_

_
51
1

50
3

30
33

45
50
.0
0

36
.3
6

35
57

90
.0
0

57
90
.0
0

47
56
.6
7

47
56
.6
7

34
.2
9

m
be

ac
xc

48
7

24
3

24
8

26
2

7.
82

5.
65

25
1

48
1

97
.9
4

39
7

63
.3
7

27
3

12
.3
5

27
3

12
.3
5

8.
76

m
be

afl
w

48
7

24
3

24
6

26
2

7.
82

6.
50

25
1

48
1

97
.9
4

39
7

63
.3
7

27
3

12
.3
5

27
3

12
.3
5

8.
76

m
be

au
se

49
2

24
5

24
9

25
4

3.
67

2.
01

25
2

47
2

92
.6
5

47
2

92
.6
5

25
6

4.
49

25
6

4.
49

1.
59

m
cf
e

73
1

11
2

11
2

12
7

13
.3
9

13
.3
9

12
1

18
1

61
.6
1

17
8

58
.9
3

13
5

20
.5
4

13
5

20
.5
4

11
.5
7

nn
c2
61

26
1

20
22

24
20
.0
0

9.
09

23
38

90
.0
0

38
90
.0
0

24
20
.0
0

24
20
.0
0

4.
35

C
on

ti
nu

ed
on

th
e
ne
xt

pa
ge



APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S 121

Ta
bl
e
A
.4
:U

pp
er

bo
un

ds
fo
r
la
rg
e
in
st
an

ce
s.

In
st

an
ce

M
C

P
&

L
R

X
O

ur
re

su
lt

s
B
es
t
kn

ow
n

H
eb
as

G
P
S

iG
P
S

SA
-σ

H
eb
as

N
am

e
n

Φ
t

Φ
l

Φ
u

de
v

ga
p

Φ
l

Φ
u

de
v

Φ
u

de
v

Φ
u

de
v

Φ
u

de
v

ga
p

nn
c6
66

66
6

32
33

41
28
.1
3

24
.2
4

35
64

10
0.
00

64
10
0.
00

44
37
.5
0

44
37
.5
0

25
.7
1

no
s2

63
8

3
3

3
0.
00

0.
00

3
3

0.
00

3
0.
00

3
0.
00

3
0.
00

0.
00

no
s3

96
0

43
43

43
0.
00

0.
00

43
71

65
.1
2

52
20
.9
3

48
11
.6
3

43
0.
00

0.
00

no
s5

46
8

51
53

64
25
.4
9

20
.7
5

57
70

37
.2
5

70
37
.2
5

67
31
.3
7

67
31
.3
7

17
.5
4

no
s6

67
5

15
15

16
6.
67

6.
67

16
16

6.
67

16
6.
67

16
6.
67

16
6.
67

0.
00

no
s7

72
9

38
43

65
71
.0
5

51
.1
6

46
65

71
.0
5

65
71
.0
5

65
71
.0
5

65
71
.0
5

41
.3
0

or
si
rr
_
2

88
6

54
62

87
61
.1
1

40
.3
2

69
11
3

10
9.
26

11
1

10
5.
56

93
72
.2
2

93
72
.2
2

34
.7
8

pl
at
36
2

36
2

28
29

34
21
.4
3

17
.2
4

30
39

39
.2
9

38
35
.7
1

37
32
.1
4

37
32
.1
4

23
.3
3

pl
sk
z3
62

36
2

14
15

18
28
.5
7

20
.0
0

15
24

71
.4
3

23
64
.2
9

21
50
.0
0

21
50
.0
0

40
.0
0

po
re
s_

3
45
6

12
13

13
8.
33

0.
00

13
14

16
.6
7

14
16
.6
7

13
8.
33

13
8.
33

0.
00

sa
yl
r1

23
8

10
12

14
40
.0
0

16
.6
7

12
14

40
.0
0

14
40
.0
0

14
40
.0
0

14
40
.0
0

16
.6
7

sa
yl
r3

68
1

31
35

47
51
.6
1

34
.2
9

37
57

83
.8
7

54
74
.1
9

53
70
.9
7

53
70
.9
7

43
.2
4

sh
er
m
an

1
68
1

31
35

47
51
.6
1

34
.2
9

37
57

83
.8
7

54
74
.1
9

53
70
.9
7

53
70
.9
7

43
.2
4

sh
er
m
an

4
54
6

21
21

27
28
.5
7

28
.5
7

22
27

28
.5
7

27
28
.5
7

27
28
.5
7

27
28
.5
7

22
.7
3

sh
l_

_
_
_
0

66
3

21
1

21
1

23
2

9.
95

9.
95

21
1

41
2

95
.2
6

41
2

95
.2
6

22
8

8.
06

22
8

8.
06

8.
06

sh
l_

_
20
0

66
3

22
0

22
0

23
8

8.
18

8.
18

22
0

42
6

93
.6
4

42
6

93
.6
4

23
6

7.
27

23
6

7.
27

7.
27

sh
l_

_
40
0

66
3

21
3

21
3

23
5

10
.3
3

10
.3
3

21
3

42
5

99
.5
3

42
5

99
.5
3

23
5

10
.3
3

23
5

10
.3
3

10
.3
3

st
ea
m
1

24
0

26
32

44
69
.2
3

37
.5
0

33
50

92
.3
1

50
92
.3
1

47
80
.7
7

47
80
.7
7

42
.4
2

st
ea
m
2

60
0

48
54

63
31
.2
5

16
.6
7

55
67

39
.5
8

67
39
.5
8

67
39
.5
8

67
39
.5
8

21
.8
2

st
r_

_
_
_
0

36
3

70
87

11
8

68
.5
7

35
.6
3

89
18
2

16
0.
00

17
6

15
1.
43

12
0

71
.4
3

12
0

71
.4
3

34
.8
3

st
r_

_
20
0

36
3

72
90

12
6

75
.0
0

40
.0
0

93
21
4

19
7.
22

18
5

15
6.
94

13
0

80
.5
6

13
0

80
.5
6

39
.7
8

st
r_

_
60
0

36
3

79
10
1

13
2

67
.0
9

30
.6
9

10
3

25
0

21
6.
46

20
2

15
5.
70

13
7

73
.4
2

13
7

73
.4
2

33
.0
1

w
es
t0
38
1

38
1

10
0

11
9

15
3

53
.0
0

28
.5
7

12
1

25
2

15
2.
00

23
1

13
1.
00

15
6

56
.0
0

15
6

56
.0
0

28
.9
3

w
es
t0
47
9

47
9

76
84

12
2

60
.5
3

45
.2
4

91
21
0

17
6.
32

19
4

15
5.
26

12
2

60
.5
3

12
2

60
.5
3

34
.0
7

w
es
t0
49
7

49
7

69
69

86
24
.6
4

24
.6
4

79
14
2

10
5.
80

14
2

10
5.
80

87
26
.0
9

87
26
.0
9

10
.1
3

w
es
t0
65
5

65
5

10
0

10
9

16
1

61
.0
0

47
.7
1

12
5

25
3

15
3.
00

25
3

15
3.
00

15
9

59
.0
0

15
9

59
.0
0

27
.2
0

w
es
t0
98
9

98
9

12
1

12
3

21
0

73
.5
5

70
.7
3

16
5

32
8

17
1.
07

32
5

16
8.
60

21
0

73
.5
5

21
0

73
.5
5

27
.2
7

A
ve

ra
ge

29
.8

7
22

.5
5

92
.5

0
78

.0
0

37
.5

3
35

.7
6

23
.3

1



122 APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S

Ta
bl
e
A
.5
:L

ow
er

bo
un

ds
fo
r
ve
ry

la
rg
e
in
st
an

ce
s.

In
st

an
ce

W
it

ho
ut

ze
ro

-e
dg

es
W

it
h

ze
ro

-e
dg

es
G

ra
ph

H
eb

as
G

ra
ph

H
eb

as
N
am

e
n

en
tr

ie
s

m
Φ
t

Φ
l

im
p

m
Φ
t

Φ
l

im
p

11
38
_
bu

s
1,
13
8

2.
60
×

10
3

1,
45
8

44
47

6.
82

1,
45
8

44
47

6.
82

3d
tu
be

45
,3
30

1.
63
×

10
6

1,
58
4,
14
4

1,
39
8

1,
39

8
0.
00

1,
58
4,
14
4

1,
39
8

1,
39

8
0.
00

ad
d2

0
2,
39
5

1.
73
×

10
4

5,
37

8
32
3

32
8

1.
55

7,
46

2
36
9

39
6

7.
32

ad
d3

2
4,
96
0

2.
39
×

10
4

7,
44

4
19

19
0.
00

9,
46

2
27
6

27
6

0.
00

ba
rt
h

6,
69
1

2.
64
×

10
4

19
,7
48

10
1

10
3

1.
98

19
,7
48

10
1

10
3

1.
98

ba
rt
h4

6,
01
9

2.
35
×

10
4

17
,4
73

94
10

0
6.
38

17
,4
73

94
10

0
6.
38

ba
rt
h5

15
,6
06

6.
15
×

10
4

45
,8
78

16
3

18
0

10
.4
3

45
,8
78

16
3

18
0

10
.4
3

bc
sp
w
r0
8

1,
62
4

3.
84
×

10
3

2,
21
3

53
60

13
.2
1

2,
21
3

53
60

13
.2
1

bc
sp
w
r0
9

1,
72
3

4.
12
×

10
3

2,
39
4

55
61

10
.9
1

2,
39
4

55
61

10
.9
1

bc
sp
w
r1
0

5,
30
0

1.
36
×

10
4

8,
27
1

13
2

13
5

2.
27

8,
27
1

13
2

13
5

2.
27

bc
ss
tk
13

2,
00
3

4.
29
×

10
4

40
,9
40

20
7

23
7

14
.4
9

40
,9
40

20
7

23
7

14
.4
9

bc
ss
tk
24

3,
56
2

8.
17
×

10
4

78
,1
74

15
1

15
8

4.
64

78
,1
74

15
1

15
8

4.
64

bc
ss
tk
30

28
,9
24

1.
04
×

10
6

1,
00
7,
28
4

1,
03
8

1,
03

8
0.
00

1,
00
7,
28
4

1,
03
8

1,
03

8
0.
00

bc
ss
tk
32

44
,6
09

1.
03
×

10
6

98
5,
04
6

96
8

96
8

0.
00

98
5,
04
6

96
8

96
8

0.
00

bc
ss
tk
33

8,
73
8

3.
00
×

10
5

29
1,
58
3

45
8

45
8

0.
00

29
1,
58
3

45
8

45
8

0.
00

bc
ss
tk
35

30
,2
37

7.
40
×

10
5

70
9,
96
3

67
7

67
7

0.
00

70
9,
96
3

67
7

67
7

0.
00

bc
ss
tk
36

23
,0
52

5.
83
×

10
5

56
0,
04
4

60
6

60
6

0.
00

56
0,
04
4

60
6

60
6

0.
00

bc
ss
tk
37

25
,5
03

5.
83
×

10
5

55
7,
73
7

58
6

58
6

0.
00

55
7,
73
7

58
6

58
6

0.
00

bc
ss
tk
38

8,
03
2

1.
82
×

10
5

17
3,
71
4

32
8

33
4

1.
83

17
3,
71
4

32
8

33
4

1.
83

ca
n_

10
54

1,
05
4

6.
63
×

10
3

5,
57
1

77
79

2.
60

5,
57
1

77
79

2.
60

ca
n_

10
72

1,
07
2

6.
76
×

10
3

5,
68
6

99
10

6
7.
07

5,
68
6

99
10

6
7.
07

ct
20
st
if

52
,3
29

1.
38
×

10
6

1,
27

3,
98

3
1,
43
6

1,
43

6
0.
00

1,
32

3,
06

7
1,
43
6

1,
43

6
0.
00

dw
t_

10
07

1,
00
7

4.
79
×

10
3

3,
78
4

23
24

4.
35

3,
78
4

23
24

4.
35

dw
t_

26
80

2,
68
0

1.
39
×

10
4

11
,1
73

44
46

4.
55

11
,1
73

44
46

4.
55

fin
an

51
2

74
,7
52

3.
36
×

10
5

26
1,
12
0

92
5

92
5

0.
00

26
1,
12
0

92
5

92
5

0.
00

gu
pt
a3

16
,7
83

4.
67
×

10
6

4,
65
3,
32
2

7,
33
6

7,
33

6
0.
00

4,
65
3,
32
2

7,
33
6

7,
33

6
0.
00

C
on

ti
nu

ed
on

th
e
ne
xt

pa
ge



APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S 123

Ta
bl
e
A
.5
:L

ow
er

bo
un

ds
fo
r
ve
ry

la
rg
e
in
st
an

ce
s.

In
st

an
ce

W
it

ho
ut

ze
ro

-e
dg

es
W

it
h

ze
ro

-e
dg

es
G

ra
ph

H
eb

as
G

ra
ph

H
eb

as
N
am

e
n

en
tr

ie
s

m
Φ
t

Φ
l

im
p

m
Φ
t

Φ
l

im
p

ja
gm

es
h9

1,
34
9

5.
23
×

10
3

3,
87
6

26
28

7.
69

3,
87
6

26
28

7.
69

m
em

pl
us

17
,7
58

1.
26
×

10
5

41
,5

34
2,
86
5

2,
86

5
0.
00

54
,1

96
2,
95
3

2,
95

3
0.
00

m
sc
10
84
8

10
,8
48

6.
20
×

10
5

60
9,

46
4

79
0

79
2

0.
25

60
9,

46
5

79
0

79
2

0.
25

m
sc
23
05
2

23
,0
52

5.
89
×

10
5

55
9,

81
7

60
6

60
6

0.
00

56
5,

88
1

60
6

60
6

0.
00

na
sa
18
24

1,
82
4

2.
05
×

10
4

18
,6
92

11
8

12
9

9.
32

18
,6
92

11
8

12
9

9.
32

na
sa
47
04

4,
70
4

5.
47
×

10
4

50
,0
26

17
1

18
3

7.
02

50
,0
26

17
1

18
3

7.
02

pw
tk

21
7,
91
8

5.
93
×

10
6

5,
65

3,
25

7
81
4

81
4

0.
00

5,
70

8,
25

3
81
4

81
4

0.
00

sh
ut
tl
e_

ed
dy

10
,4
29

5.
70
×

10
4

46
,5
85

79
10

4
31
.6
5

46
,5
85

79
10

4
31
.6
5

tw
ot
on

e
12
0,
75
0

1.
22
×

10
6

1,
01

2,
97

0
7,
72
7

7,
72

7
0.
00

1,
02

9,
42

9
7,
73
2

7,
73

2
0.
00

vi
br
ob

ox
12
,3
28

1.
78
×

10
5

14
4,

68
6

1,
36
0

1,
47

6
8.
53

16
5,

25
0

1,
49
7

1,
60

9
7.
48

A
ve

ra
ge

4.
38

4.
51



124 APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S

Ta
bl
e
A
.6
:U

pp
er

bo
un

ds
fo
r
ve
ry

la
rg
e
in
st
an

ce
s.

In
st

an
ce

H
eb

as
SR

B
-M

5
SR

B
-M

20
0

G
P

S
iG

P
S

SA
-σ

N
am

e
n

Φ
t

Φ
l

Φ
u

de
v

Φ
u

de
v

ga
p

Φ
u

tim
e

de
v

Φ
u

tim
e

de
v

Φ
u

de
v

ga
p

11
38
_
bu

s
1,
13
8

44
47

65
47
.7
3

55
25
.0
0

17
.0
2

12
2

1
17
7.
27

12
2

1
17

7.
27

80
81
.8
2

70
.2
1

3d
tu
be

45
,3
30

1,
39
8

1,
39
8

2,
07
8

48
.6
4

1,
89
1

35
.2
6

35
.2
6

2,
37
2

20
69
.6
7

2,
35
7

83
68

.6
0

2,
35
7

68
.6
0

68
.6
0

68
5_

bu
s

68
5

29
31

40
37
.9
3

35
20
.6
9

12
.9
0

72
1

14
8.
28

53
1

82
.7
6

43
48
.2
8

38
.7
1

ad
d2

0
2,
39
5

32
3

32
8

42
7

32
.2
0

35
6

10
.2
2

8.
54

88
9

1
17
5.
23

75
1

1
13

2.
51

52
6

62
.8
5

60
.3
7

ad
d3

2
4,
96
0

19
19

21
10
.5
3

21
10
.5
3

10
.5
3

37
1

94
.7
4

35
1

84
.2
1

32
68
.4
2

68
.4
2

ba
rt
h

6,
69
1

10
1

10
3

15
2

50
.5
0

12
8

26
.7
3

24
.2
7

17
0

1
68
.3
2

16
7

1
65
.3
5

16
5

63
.3
7

60
.1
9

ba
rt
h4

6,
01
9

94
10
0

12
8

36
.1
7

11
8

25
.5
3

18
.0
0

23
8

1
15
3.
19

17
1

1
81

.9
1

16
6

76
.6
0

66
.0
0

ba
rt
h5

15
,6
06

16
3

18
0

24
1

47
.8
5

21
1

29
.4
5

17
.2
2

29
6

1
81
.6
0

29
6

1
81
.6
0

29
3

79
.7
5

62
.7
8

bc
sp
w
r0
8

1,
62
4

53
60

83
56
.6
0

70
32
.0
8

16
.6
7

10
8

1
10
3.
77

10
8

1
10

3.
77

10
1

90
.5
7

68
.3
3

bc
sp
w
r0
9

1,
72
3

55
61

84
52
.7
3

71
29
.0
9

16
.3
9

11
8

1
11
4.
55

11
8

1
11

4.
55

85
54
.5
5

39
.3
4

bc
sp
w
r1
0

5,
30
0

13
2

13
5

19
6

48
.4
8

15
0

13
.6
4

11
.1
1

26
0

1
96
.9
7

26
0

1
96
.9
7

22
2

68
.1
8

64
.4
4

bc
ss
tk
12

1,
47
3

51
51

67
31
.3
7

63
23
.5
3

23
.5
3

76
1

49
.0
2

61
1

19
.6
1

61
19
.6
1

19
.6
1

bc
ss
tk
13

2,
00
3

20
7

23
7

37
7

82
.1
3

32
8

58
.4
5

38
.4
0

42
7

1
10
6.
28

36
8

1
77

.7
8

36
4

75
.8
5

53
.5
9

bc
ss
tk
24

3,
56
2

15
1

15
8

18
0

19
.2
1

18
0

19
.2
1

13
.9
2

22
7

2
50
.3
3

22
7

1
50
.3
3

22
6

49
.6
7

43
.0
4

bc
ss
tk
29

13
,9
92

45
1

45
1

57
0

26
.3
9

52
8

17
.0
7

17
.0
7

87
4

1
93
.7
9

73
7

3
63
.4
1

72
9

61
.6
4

61
.6
4

bc
ss
tk
30

28
,9
24

1,
03
8

1,
03
8

1,
25
6

21
.0
0

1,
08
1

4.
14

4.
14

2,
50
9

21
14
1.
71

2,
50
9

34
14
1.
71

2,
49
2

14
0.
08

14
0.
08

bc
ss
tk
31

35
,5
58

67
0

67
0

1,
25
9

87
.9
1

86
2

28
.6
6

28
.6
6

1,
08
9

1
62
.5
4

1,
08
9

8
62
.5
4

1,
08
3

61
.6
4

61
.6
4

bc
ss
tk
32

44
,6
09

96
8

96
8

2,
26
9

13
4.
40

1,
66
1

71
.5
9

71
.5
9

2,
60
0

3
16
8.
60

2,
31
3

13
13
8.
95

2,
30
3

13
7.
91

13
7.
91

bc
ss
tk
33

8,
73
8

45
8

45
8

58
2

27
.0
7

51
4

12
.2
3

12
.2
3

51
4

1
12
.2
3

51
4

5
12
.2
3

51
4

12
.2
3

12
.2
3

bc
ss
tk
35

30
,2
37

67
7

67
7

1,
21
8

79
.9
1

97
1

43
.4
3

43
.4
3

1,
76
4

8
16
0.
56

1,
44
4

13
11
3.
29

1,
43
2

11
1.
52

11
1.
52

bc
ss
tk
36

23
,0
52

60
6

60
6

1,
03
0

69
.9
7

83
9

38
.4
5

38
.4
5

1,
25
4

1
10
6.
93

1,
24
0

3
10

4.
62

1,
24
0

10
4.
62

10
4.
62

bc
ss
tk
37

25
,5
03

58
6

58
6

1,
03
0

75
.7
7

81
1

38
.4
0

38
.4
0

1,
36
4

2
13
2.
76

1,
36
2

9
13

2.
42

1,
35
3

13
0.
89

13
0.
89

bc
ss
tk
38

8,
03
2

32
8

33
4

42
9

30
.7
9

36
8

12
.2
0

10
.1
8

54
0

1
64
.6
3

54
0

1
64
.6
3

53
2

62
.2
0

59
.2
8

bc
ss
tm

13
2,
00
3

93
93

10
7

15
.0
5

10
3

10
.7
5

10
.7
5

14
1

1
51
.6
1

13
8

1
48
.3
9

13
0

39
.7
8

39
.7
8

bl
ck
ho

le
2,
13
2

93
93

12
1

30
.1
1

10
1

8.
60

8.
60

10
2

2
9.
68

10
2

1
9.
68

10
2

9.
68

9.
68

ca
n_

10
54

1,
05
4

77
79

90
16
.8
8

82
6.
49

3.
80

11
2

1
45
.4
5

10
9

1
41
.5
6

93
20
.7
8

17
.7
2

ca
n_

10
72

1,
07
2

99
10
6

12
9

30
.3
0

11
8

19
.1
9

11
.3
2

17
8

1
79
.8
0

15
6

1
57
.5
8

13
4

35
.3
5

26
.4
2

C
on

ti
nu

ed
on

th
e
ne
xt

pa
ge



APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S 125

Ta
bl
e
A
.6
:U

pp
er

bo
un

ds
fo
r
ve
ry

la
rg
e
in
st
an

ce
s.

In
st

an
ce

H
eb

as
SR

B
-M

5
SR

B
-M

20
0

G
P

S
iG

P
S

SA
-σ

N
am

e
n

Φ
t

Φ
l

Φ
u

de
v

Φ
u

de
v

ga
p

Φ
u

tim
e

de
v

Φ
u

tim
e

de
v

Φ
u

de
v

ga
p

ca
n_

44
5

44
5

42
46

60
42
.8
6

56
33
.3
3

21
.7
4

74
1

76
.1
9

74
1

76
.1
9

72
71
.4
3

56
.5
2

ca
n_

83
8

83
8

75
81

98
30
.6
7

90
20
.0
0

11
.1
1

14
1

1
88
.0
0

10
5

1
40
.0
0

98
30
.6
7

20
.9
9

ct
20
st
if

52
,3
29

1,
43
6

1,
43
6

4,
14
4

18
8.
58

2,
55
0

77
.5
8

77
.5
8

3,
10
8

1
11
6.
43

3,
10
8

9
11
6.
43

3,
09
5

11
5.
53

11
5.
53

dw
t_

10
07

1,
00
7

23
24

29
26
.0
9

29
26
.0
9

20
.8
3

33
1

43
.4
8

33
1

43
.4
8

33
43
.4
8

37
.5
0

dw
t_

26
80

2,
68
0

44
46

64
45
.4
5

56
27
.2
7

21
.7
4

69
1

56
.8
2

69
1

56
.8
2

69
56
.8
2

50
.0
0

dw
t_

91
8

91
8

27
29

36
33
.3
3

34
25
.9
3

17
.2
4

49
1

81
.4
8

49
1

81
.4
8

40
48
.1
5

37
.9
3

ex
27

97
4

11
3

11
5

12
3

8.
85

12
2

7.
96

6.
09

18
1

1
60
.1
8

17
9

1
58
.4
1

15
1

33
.6
3

31
.3
0

fin
an

51
2

74
,7
52

92
5

92
5

1,
21
2

31
.0
3

1,
11
9

20
.9
7

20
.9
7

1,
20
9

1
30
.7
0

1,
20
9

6
30
.7
0

1,
20
8

30
.5
9

30
.5
9

ge
ar
bo

x
15
3,
74
6

1,
86
6

1,
86
6

4,
26
5

12
8.
56

4,
07
7

11
8.
49

11
8.
49

4,
20
9

2
12
5.
56

4,
05
0

52
11
7.
04

4,
04
5

11
6.
77

11
6.
77

gu
pt
a3

16
,7
83

7,
33
6

7,
33
6

8,
77
5

19
.6
2

8,
27
4

12
.7
9

12
.7
9

9,
32
9

57
27
.1
7

9,
01
3

1,
99

6
22
.8
6

8,
79
4

19
.8
7

19
.8
7

ja
gm

es
h1

93
6

22
25

33
50
.0
0

30
36
.3
6

20
.0
0

27
1

22
.7
3

27
1

22
.7
3

27
22
.7
3

8.
00

ja
gm

es
h9

1,
34
9

26
28

40
53
.8
5

40
53
.8
5

42
.8
6

40
1

53
.8
5

40
1

53
.8
5

40
53
.8
5

42
.8
6

m
em

pl
us

17
,7
58

2,
86
5

2,
86
5

4,
63
0

61
.6
1

3,
21
4

12
.1
8

12
.1
8

11
,0
33

2
28
5.
10

11
,0
03

12
28
4.
05

10
,9
77

28
3.
14

28
3.
14

m
sc
10
84
8

10
,8
48

79
0

79
2

1,
05
3

33
.2
9

86
4

9.
37

9.
09

1,
23
5

1
56
.3
3

1,
23
5

8
56
.3
3

1,
20
6

52
.6
6

52
.2
7

m
sc
23
05
2

23
,0
52

60
6

60
6

1,
06
7

76
.0
7

85
4

40
.9
2

40
.9
2

1,
31
6

4
11
7.
16

1,
21
9

11
10
1.
16

1,
21
0

99
.6
7

99
.6
7

na
sa
18
24

1,
82
4

11
8

12
9

16
4

38
.9
8

15
0

27
.1
2

16
.2
8

26
3

1
12
2.
88

23
2

1
96
.6
1

22
0

86
.4
4

70
.5
4

na
sa
47
04

4,
70
4

17
1

18
3

23
4

36
.8
4

20
9

22
.2
2

14
.2
1

34
5

1
10
1.
75

33
6

1
96
.4
9

33
6

96
.4
9

83
.6
1

pw
t

36
,5
19

13
7

13
7

31
2

12
7.
74

25
8

88
.3
2

88
.3
2

34
1

1
14
8.
91

34
0

2
14
8.
18

33
8

14
6.
72

14
6.
72

pw
tk

21
7,
91
8

81
4

81
4

1,
95
0

13
9.
56

1,
68
7

10
7.
25

10
7.
25

2,
03
5

10
15
0.
00

2,
03
5

82
15
0.
00

2,
03
5

15
0.
00

15
0.
00

sh
ut
tl
e_

ed
dy

10
,4
29

79
10
4

12
8

62
.0
3

11
9

50
.6
3

14
.4
2

17
6

1
12
2.
78

17
3

1
11
8.
99

17
3

11
8.
99

66
.3
5

sk
ir
t

12
,5
98

11
2

11
2

18
6

66
.0
7

15
5

38
.3
9

38
.3
9

31
4

1
18
0.
36

31
4

2
18
0.
36

31
4

18
0.
36

18
0.
36

ss
tm

od
el

3,
34
5

53
53

79
49
.0
6

69
30
.1
9

30
.1
9

87
1

64
.1
5

85
1

60
.3
8

84
58
.4
9

58
.4
9

tw
ot
on

e
12
0,
75
0

7,
72
7

7,
72
7

15
,0
45

94
.7
1

13
,0
91

69
.4
2

69
.4
2

21
,8
47

49
18
2.
74

21
,8
47

34
2

18
2.
74

21
,7
19

18
1.
08

18
1.
08

vi
br
ob

ox
12
,3
28

1,
36
0

1,
47
6

2,
37
7

74
.7
8

1,
82
3

34
.0
4

23
.5
1

4,
05
3

1
19
8.
01

3,
71
2

1
17
2.
94

3,
59
9

16
4.
63

14
3.
83

A
ve

ra
ge

54
.2

6
32

.5
7

27
.8

0
4.

31
10

0.
63

53
.4

1
90

.1
3

80
.3

6
74

.1
4



126 APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S

Ta
bl
e
A
.7
:S

ol
ve
r
pe

rf
or
m
an

ce
ev
al
ua

tio
n:

N
um

be
rs

of
su
bp

ro
bl
em

s.

In
st

an
ce

n
m

B
W

(ϕ
)

H
eb

as
0.

9
H

eb
as

1.
0

H
eb

as
1.

1
H

eb
as

1.
2

H
eb

as
1.

3
H

eb
as

1.
3.

1
H

eb
as

1.
4

H
eb

as
2.

3
H

eb
as

2.
4

bc
ss
tk
22

11
0

25
4

9
_

7.
88
×

10
8

1.
17
×

10
8

9.
34
×

10
6

9.
34
×

10
6

5.
36
×

10
6

7.
91
×

10
6

5.
17
×

10
5

4.
97
×

10
5

fs
_
18
3_

1
18
3

70
1

52
_

6.
42
×

10
8

_
_

1.
84
×

10
2

1.
84
×

10
2

1.
84
×

10
2

1.
67
×

10
4

1.
67
×

10
4

53
_

_
_

_
2.
94
×

10
2

2.
94
×

10
2

2.
94
×

10
2

1.
67
×

10
4

1.
67
×

10
4

54
_

_
_

_
3.
14
×

10
2

3.
14
×

10
2

3.
14
×

10
2

1.
93
×

10
4

1.
93
×

10
4

55
_

_
_

_
1.
21
×

10
3

1.
21
×

10
3

1.
21
×

10
3

1.
94
×

10
4

1.
94
×

10
4

56
_

_
_

_
3.
74
×

10
5

3.
74
×

10
5

3.
74
×

10
5

2.
70
×

10
6

2.
70
×

10
6

ge
nt
11
3

10
4

54
9

24
5.
59
×

10
4

5.
59
×

10
4

4.
81
×

10
4

4.
02
×

10
4

4.
02
×

10
4

8.
19
×

10
3

4.
02
×

10
4

3.
03
×

10
4

3.
03
×

10
4

25
4.
66
×

10
6

4.
66
×

10
6

4.
36
×

10
6

3.
75
×

10
6

3.
75
×

10
6

3.
70
×

10
6

3.
75
×

10
6

3.
80
×

10
5

3.
80
×

10
5

gr
e_

_
11
5

11
5

26
7

19
1.
97
×

10
6

1.
97
×

10
6

2.
74
×

10
5

3.
00
×

10
4

3.
00
×

10
4

3.
12
×

10
4

3.
00
×

10
4

1.
83
×

10
4

1.
83
×

10
4

20
_

_
_

_
_

_
_

1.
17
×

10
9

_
gr
e_

_
18
5

18
5

65
0

16
3.
10
×

10
3

3.
10
×

10
3

2.
46
×

10
3

1.
64
×

10
3

1.
86
×

10
2

1.
86
×

10
2

1.
86
×

10
2

1.
70
×

10
4

1.
70
×

10
4

17
_

_
_

_
1.
86
×

10
2

1.
86
×

10
2

1.
86
×

10
2

1.
70
×

10
4

1.
70
×

10
4

im
pc

ol
_
b

59
28
1

19
4.
82
×

10
8

4.
82
×

10
8

1.
03
×

10
9

6.
76
×

10
8

6.
76
×

10
8

_
6.
76
×

10
8

1.
29
×

10
7

1.
29
×

10
7

im
pc

ol
_
c

13
7

35
2

26
_

_
_

_
8.
64
×

10
5

8.
64
×

10
5

8.
64
×

10
5

6.
08
×

10
4

6.
07
×

10
4

ln
s_

_
13
1

12
3

27
5

17
6.
60
×

10
5

6.
60
×

10
5

6.
60
×

10
5

3.
67
×

10
4

4.
37
×

10
4

4.
37
×

10
4

3.
93
×

10
4

2.
83
×

10
4

2.
83
×

10
4

18
2.
26
×

10
8

2.
26
×

10
8

2.
25
×

10
8

2.
25
×

10
8

2.
25
×

10
8

_
2.
06
×

10
8

3.
44
×

10
7

3.
37
×

10
7

lu
nd

_
a

14
7

11
51

18
1.
36
×

10
5

1.
36
×

10
5

1.
10
×

10
5

8.
97
×

10
4

1.
48
×

10
2

1.
48
×

10
2

1.
48
×

10
2

1.
07
×

10
4

1.
07
×

10
4

lu
nd

_
b

14
7

11
47

18
1.
36
×

10
5

1.
36
×

10
5

1.
10
×

10
5

8.
97
×

10
4

1.
48
×

10
2

1.
48
×

10
2

1.
48
×

10
2

1.
07
×

10
4

1.
07
×

10
4

w
es
t0
13
2

13
2

40
4

24
2.
93
×

10
4

2.
93
×

10
4

1.
50
×

10
3

6.
32
×

10
2

1.
33
×

10
2

1.
33
×

10
2

1.
33
×

10
2

8.
65
×

10
3

8.
65
×

10
3

25
_

_
_

_
1.
96
×

10
2

1.
96
×

10
2

1.
96
×

10
2

8.
65
×

10
3

8.
65
×

10
3

26
_

_
_

_
7.
96
×

10
2

7.
96
×

10
2

7.
96
×

10
2

1.
05
×

10
4

1.
05
×

10
4

27
_

_
_

_
5.
05
×

10
3

5.
05
×

10
3

5.
05
×

10
3

8.
35
×

10
4

8.
35
×

10
4

w
es
t0
15
6

15
6

37
1

31
2.
83
×

10
6

2.
83
×

10
6

2.
04
×

10
6

1.
35
×

10
6

1.
35
×

10
6

6.
41
×

10
5

1.
35
×

10
6

1.
14
×

10
6

1.
14
×

10
6

32
3.
12
×

10
8

3.
12
×

10
8

1.
26
×

10
8

4.
63
×

10
7

4.
63
×

10
7

1.
93
×

10
7

4.
63
×

10
7

1.
60
×

10
7

1.
60
×

10
7

33
_

_
_

_
_

_
_

5.
61
×

10
8

_
w
es
t0
16
7

16
7

48
9

30
2.
69
×

10
6

2.
69
×

10
6

8.
58
×

10
2

3.
94
×

10
2

1.
68
×

10
2

1.
68
×

10
2

1.
68
×

10
2

1.
39
×

10
4

1.
39
×

10
4

31
_

_
_

_
_

_
_

3.
19
×

10
7

3.
19
×

10
7

w
ill
19
9

19
9

66
0

53
1.
22
×

10
8

1.
22
×

10
8

1.
05
×

10
8

7.
79
×

10
7

7.
79
×

10
7

7.
61
×

10
7

_
1.
18
×

10
8

1.
18
×

10
8

54
_

_
_

2.
36
×

10
8

2.
36
×

10
8

_
_

2.
61
×

10
8

2.
61
×

10
8



APPENDIX A. D E TA I L E D C O M P U TAT I O N A L R E S U LT S 127

Ta
bl
e
A
.8
:S

ol
ve
r
pe

rf
or
m
an

ce
ev
al
ua

tio
n:

R
un

ni
ng

tim
es

(in
se
co
nd

s)
.

In
st

an
ce

n
m

B
W

(ϕ
)

H
eb

as
0.

9
H

eb
as

1.
0

H
eb

as
1.

1
H

eb
as

1.
2

H
eb

as
1.

3
H

eb
as

1.
3.

1
H

eb
as

1.
4

H
eb

as
2.

3
H

eb
as

2.
4

bc
ss
tk
22

11
0

25
4

9
_

37
,0
20
.0

5,
75
1.
0

59
8.
0

60
4.
0

1,
24
4.
0

49
6.
0

24
.0

23
.0

fs
_
18
3_

1
18
3

70
1

52
_

32
,7
79
.0

_
_

0.
1

0.
1

0.
1

0.
6

0.
6

53
_

_
_

_
0.
1

0.
1

0.
1

0.
6

0.
6

54
_

_
_

_
0.
1

0.
1

0.
1

2.
3

2.
3

55
_

_
_

_
1.
0

0.
9

0.
9

3.
1

3.
1

56
_

_
_

_
45
1.
0

44
1.
0

45
1.
0

2,
83
6.
0

3,
05
4.
0

ge
nt
11
3

10
4

54
9

24
1.
6

1.
8

1.
6

1.
4

1.
5

1.
1

1.
4

0.
8

0.
8

25
13
0.
0

13
3.
0

12
7.
0

12
2.
0

12
3.
0

29
5.
0

11
7.
0

11
.0

11
.0

gr
e_

_
11
5

11
5

26
7

19
55
.0

55
.7

8.
0

1.
4

1.
5

4.
2

1.
4

0.
6

0.
6

20
_

_
_

_
_

_
_

30
,9
42
.0

_
gr
e_

_
18
5

18
5

65
0

16
0.
2

0.
2

0.
2

0.
1

0.
1

0.
1

0.
1

0.
6

0.
6

17
_

_
_

_
0.
1

0.
1

0.
1

0.
6

0.
6

im
pc

ol
_
b

59
28
1

19
7,
65
6.
0

7,
84
8.
0

18
,8
19
.0

15
,8
64
.0

15
,9
85
.0

_
15
,8
31
.5

17
2.
0

17
5.
0

im
pc

ol
_
c

13
7

35
2

26
_

_
_

_
19
8.
0

19
7.
0

19
8.
0

7.
6

7.
5

ln
s_

_
13
1

12
3

27
5

17
23
.8

23
.5

23
.5

2.
0

6.
8

6.
7

5.
9

1.
6

1.
6

18
6,
19
5.
0

6,
21
4.
0

6,
27
1.
0

6,
73
1.
0

7,
01
7.
0

_
5,
92
7.
8

80
1.
0

78
7.
0

lu
nd

_
a

14
7

11
51

18
13
.7

16
.0

12
.8

10
.8

0.
1

0.
1

0.
1

0.
3

0.
3

lu
nd

_
b

14
7

11
47

18
13
.7

16
.0

12
.9

10
.8

0.
1

0.
1

0.
1

0.
3

0.
3

w
es
t0
13
2

13
2

40
4

24
1.
0

1.
0

0.
1

0.
1

0.
1

0.
1

0.
1

0.
3

0.
3

25
_

_
_

_
0.
1

0.
1

0.
1

0.
3

0.
3

26
_

_
_

_
0.
2

0.
2

0.
2

1.
0

1.
0

27
_

_
_

_
0.
6

0.
6

0.
6

3.
6

3.
6

w
es
t0
15
6

15
6

37
1

31
10
4.
0

10
5.
0

77
.0

55
.0

55
.0

67
.0

92
.0

38
.7

40
.0

32
12
,4
33
.0

12
,5
89
.0

5,
31
8.
0

2,
14
8.
0

2,
13
9.
0

2,
73
1.
0

7,
48
5.
0

56
5.
0

60
0.
0

33
_

_
_

_
_

_
_

22
,1
99
.0

_
w
es
t0
16
7

16
7

48
9

30
11
5.
0

11
5.
0

0.
1

0.
1

0.
1

0.
1

0.
1

0.
4

0.
7

31
_

_
_

_
_

_
_

7,
55
8.
0

13
,0
79
.0

w
ill
19
9

19
9

66
0

53
5,
38
3.
0

5,
44
2.
0

4,
62
1.
0

3,
73
3.
0

3,
80
8.
0

3,
98
4.
0

_
4,
79
0.
0

31
,4
36
.0

54
_

_
_

11
,5
82
.0

11
,8
65
.0

_
_

10
,7
07
.0

74
,4
12
.0



Symbols and Notation

G An undirected graph G = (V,E).
V Set of vertices.
E Set of edges.
n Number of vertices in G.
m Number of edges in G.
d(u, v) Distance between u and v.
N1(v) Set of vertices adjacent to v (not including v).
Nh(v) Set of vertices at distance at most h from v (not including v).
π A permutation of the vertices.
πL A left partial permutation.
πL,R A both-sided partial permutation.
π(v) Label of vertex v under π.
fv Min label of v in a partial permutation.
lv Max label of v in a partial permutation.
ϕ Search parameter in a BANDWIDTH (BW) problem.
α(G) Lower bound Alpha. Refer to formula (3.1).
γ(G) Lower bound Gamma. Refer to formula (3.2).
Φt Initial lower bound. Φt = max{α(G), γ(G)}.
Φl Lower bound obtained by a solution method.
Φu Upper bound obtained by a solution method.
imp Lower bound improvement (in %). Refer to formula (7.1).
dev Upper bound deviation (in %). Refer to formula (7.2).
gap Gap (in %) between lower and upper bound. Refer to formula (7.3).
Sp Speedup factor of a parallel system. Refer to formula (2.1).
Ep Efficiency factor of a parallel system. Refer to formula (2.2).



References

[1] Blum, A., Konjevod, G., Ravi, R., and Vempala, S. (2000). Semidefinite re-
laxations for minimum bandwidth and other vertex-ordering problems. Theo-
retical Computer Science, 235(1), 25–42.

[2] Boisvert, R. F., Pozo, R., Remington, K., Barrett, R. F., and Dongarra, J. J.
(1997). Matrix market: A web resource for test matrix collections. In R. F.
Boisvert (Ed.), The Quality of Numerical Software: Assessment and Enhance-
ment (pp. 125–137). London: Chapman and Hall.

[3] Computational Infrastructure for Operations Research (COIN-OR). Project
Home Page: http://www.coin-or.org.

[4] Campos, V., Piñana, E., and Martí, R. (2011). Adaptive memory programming
for matrix bandwidth minimization. Annals of Operations Research, 183(1),
7–23.

[5] Campos, V., Piñana, E., and Martí, R. (no date). Bandwidth minimization
problem. Computational Results. Retrieved December 7, 2010 from http://
www.uv.es/rmarti/paper/results/Best BRP Results.pdf.

[6] Caprara, A. and Salazar-González, J.-J. (2005). Laying out sparse graphs with
provably minimum bandwidth. INFORMS Journal on Computing, 17(3), 356–
373.

[7] Chinn, P. Z., Chvátalová, J., Dewdney, A., and Gibbs, N. (1982). The band-
width problem for graphs and matrices - a survey. Journal of Graph Theory,
6(3), 223–254.

[8] Cook, S. A. (1971). The complexity of theorem-proving procedures. Proceed-
ings of the 3rd Annual ACM Symposium on Theory of Computing, 151–158.
New York: ACM.

[9] Cuthill, E. and McKee, J. (1969). Reducing the bandwidth of sparse symmetric
matrices. Proceedings of the 1969 24th National Conference, 157–172. New
York: ACM.

http://www.coin-or.org
http://www.uv.es/rmarti/paper/results
http://www.uv.es/rmarti/paper/results


130 REFERENCES

[10] Dantzig, G. B. (1951). Maximization of a linear function of variables subject to
linear inequalities. In T. C. Koopmans (Ed.), Activity Analysis of Production
and Allocation (pp. 339–347). New York: John Wiley & Sons.

[11] Davis, T. A. and Hu, Y. (in press). The University of Florida Sparse Matrix
Collection. ACM Transactions on Mathematical Software. Collection Home
Page: http://www.cise.ufl.edu/research/sparse/matrices.

[12] Del Corso, G. M. and Manzini, G. (1999). Finding exact solutions to the
bandwidth minimization problem. Computing, 62(3), 189–203.

[13] Díaz, J., Petit, J., and Serna, M. (2002). A survey of graph layout problems.
ACM Computing Surveys, 34(3), 313–356.

[14] Diestel, R. (2005). Graph Theory (3rd ed.). Springer-Verlag Berlin Heidelberg.

[15] Eckstein, J., Phillips, C. A., and Hart, W. E. (2000, August). Pico: An object-
oriented framework for parallel branch and bound. RUTCOR Research Re-
port RRR 40-2000, Rutgers University. http://rutcor.rutgers.edu/pub/rrr/
reports2000/40.ps.

[16] Eckstein, J., Phillips, C. A., and Hart, W. E. (2006, August). PEBBL 1.0
User’s Guide. RUTCOR Research Report RRR 19-2006, Rutgers University.
http://rutcor.rutgers.edu/pub/rrr/reports2006/19_2006.ps.

[17] Esposito, A., Malucelli, F., and Tarricone, L. (1998). Bandwidth and profile
reduction of sparse matrices: an experimental comparison of new heuristics.
In R. Battiti and A. A. Bertossi (Eds.), Proceedings of “Algorithms and Ex-
periments” (ALEX98), Trento, Italy, 19–26.

[18] Feige, U. (2000). Approximating the bandwidth via volume respecting embed-
dings. Journal of Computer and System Sciences, 60(3), 510–539.

[19] Foster, I. (1995). Designing and Building Parallel Programs. Reading, MA:
Addison-Wesley.

[20] Garey, M. R., Graham, R. L., Johnson, D. S., and Knuth, D. E. (1978). Com-
plexity results for bandwidth minimization. SIAM J. on Applied Mathematics,
34(3), 477–495.

[21] Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York: W. H. Freeman.

[22] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam,
V. (1994). PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for
Networked Parallel Computing. Cambridge, MA: MIT Press.

http://www.cise.ufl.edu/research/sparse/matrices
http://rutcor.rutgers.edu/pub/rrr/reports2000/40.ps
http://rutcor.rutgers.edu/pub/rrr/reports2000/40.ps
http://rutcor.rutgers.edu/pub/rrr/reports2006/19_2006.ps


REFERENCES 131

[23] Gibbs, N. E., Poole, W. G., and Stockmeyer, P. K. (1976). An algorithm
for reducing the bandwidth and profile of sparse matrix. SIAM Journal on
Numerical Analysis, 13(2), 236–250.

[24] Gropp, W., Lusk, E., and Skjellum, A. (1999). Using MPI: Portable Parallel
Programming with the Message Passing Interface (2nd ed.). Cambridge, MA:
MIT Press.

[25] Gurari, E. M. and Sudborough, I. H. (1984). Improved dynamic programming
algorithms for bandwidth minimization and the MinCut Linear Arrangement
problem. Journal of Algorithms, 5(4), 531–546.

[26] Heidelberg Linux Cluster System (HELICS). Home page: http://helics.uni-hd.
de.

[27] Hwang, K. and Xu, Z. (1998). Scalable Parallel Computing: Technology, Ar-
chitecture, Programming. Boston, MS: WCB/McGraw-Hill.

[28] Jünger, M., Reinelt, G., and Thienel, S. (1995). Practical problem solving
with cutting plane algorithms in combinatorial optimization. In W. Cook, L.
Lovász, and P. Seymour (Eds.), Combinatorial Optimization: Papers from the
DIMACS Special Year (Volume 20 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science) (pp. 111–152). Providence, RI: American
Mathematical Society.

[29] Kliewer, G. and Tschöke, S. (2000). A general parallel simulated annealing
library and its application in airline industry. Proceedings of the 14th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2000), Cancun,
Mexico, 55–61.

[30] Kliewer, G. and Klohs, K. (no date). Parallel Simulated Annealing Library
(parSA): User Manual Version 2.2. Library Home Page: http://www2.cs.
uni-paderborn.de/fachbereich/AG/monien/SOFTWARE/PARSA.

[31] Korte, B. and Vygen, J. (2008). Combinatorial Optimization: Theory and Al-
gorithms (4th ed.). Springer-Verlag Berlin Heidelberg.

[32] Lai, Y.-L. and Williams, K. (1999). A survey of solved problems and applica-
tions on bandwidth, edgesum, and profile of graphs. Journal of Graph Theory,
31(2), 75–94.

[33] Land, A. H. and Doig, A. G. (1960). An automatic method for solving discrete
programming problems. Econometrica, 28(3), 497–520.

[34] Lim, A., Rodrigues, B., and Xiao, F. (2006). Heuristics for matrix bandwidth
reduction. European Journal of Operational Research, 174(1), 69–91.

http://helics.uni-hd.de
http://helics.uni-hd.de
http://www2.cs.uni-paderborn.de/fachbereich/AG/monien/SOFTWARE/PARSA
http://www2.cs.uni-paderborn.de/fachbereich/AG/monien/SOFTWARE/PARSA


132 REFERENCES

[35] Linderoth, J. T. and Savelsbergh, M. W. P. (1999). Computational study
of search strategies for mixed integer programming. INFORMS Journal on
Computing, 11(2), 173–187.

[36] Martí, R., Campos, V., and Piñana, E. (2008). A branch and bound for the
matrix bandwidth minimization. European Journal of Operational Research,
186(2), 513–528.

[37] Martí, R., Laguna, M., Glover, F., and Campos, V. (2001). Reducing the band-
width of a sparse matrix with tabu search. European Journal of Operational
Research, 135(2), 450–459.

[38] MPI. Home Page: http://www.mcs.anl.gov/research/projects/mpi.

[39] MPICH2. Home Page: http://www-unix.mcs.anl.gov/mpi/mpich.

[40] Mueller, C. (2004). Sparse matrix reordering algorithms for cluster identi-
fication. Research Report, Indiana University. http://osl.iu.edu/~chemuell/
projects/bioinf/sparse-matrix-clustering-chris-mueller.pdf.

[41] Musser, D. R. (1997). Introspective sorting and selection algorithms. Software:
Practice and Experience, 27(8), 983 – 993.

[42] Papadimitriou, C. H. (1976). The NP-completeness of the bandwidth mini-
mization problem. Computing, 16(3), 263–270.

[43] Piñana, E., Plana, I., Campos, V., and Martí, R. (2004). GRASP and Path
relinking for the matrix bandwidth minimization. European Journal of Oper-
ational Research, 153(1), 200–210.

[44] Ralphs, T. K. (2003). Parallel branch and cut for capacitated vehicle routing.
Parallel Computing, 29(5), 607–629.

[45] Ralphs, T. K., Güzelsoy, M., and Mahajan, A. (2010). SYMPHONY
5.2.3 User’s Manual. Project Home Page: https://projects.coin-or.org/
SYMPHONY.

[46] Rockafellar, R. T. and Wets, R. J.-B. (2004). Variational Analysis (2nd ed.).
Springer-Verlag Berlin Heidelberg.

[47] Rodriguez-Tello, E., Hao, J. K., and Torres-Jimenez, J. (2004). An improved
evaluation function for the bandwidth minimization problem. Lecture Notes
in Computer Science, 3242/2004, 652–661.

[48] Rodriguez-Tello, E., Hao, J. K., and Torres-Jimenez, J. (2008). An improved
simulated annealing algorithm for bandwidth minimization. European Journal
of Operational Research, 185(3), 1319–1335.

http://www.mcs.anl.gov/research/projects/mpi
http://www-unix.mcs.anl.gov/mpi/mpich
http://osl.iu.edu/~chemuell/projects/bioinf/sparse-matrix-clustering-chris-mueller.pdf
http://osl.iu.edu/~chemuell/projects/bioinf/sparse-matrix-clustering-chris-mueller.pdf
https://projects.coin-or.org/SYMPHONY
https://projects.coin-or.org/SYMPHONY


REFERENCES 133

[49] Russell, S. J. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach
(2nd ed.). Upper Saddle River, NJ: Prentice Hall.

[50] Safro, I., Ron, D., and Brandt, A. (2009). Multilevel algorithms for linear
ordering problems. ACM Journal of Experimental Algorithmics, 13, 1.4:1–
1.4:20.

[51] Saxe, J. B. (1980). Dynamic-programming algorithms for recognizing small
bandwidth graphs in polynomial time. SIAM. J. on Algebraic and Discrete
Methods, 1(4), 363–369.

[52] Schnörr, C. (2010, winter semester 2009-2010). Digital Image Processing. Class
Lecture. University of Heidelberg.

[53] SGI. Standard Template Library. Home Page: http://www.sgi.com/tech/stl.

[54] Suh, J., Jung, S., Pfeifle, M., Vo, K. T., Oswald, M., and Reinelt, G. (2007).
Compression of digital road networks. Lecture Notes in Computer Science,
4605/2007, 423–440.

[55] Vo, K. T. and Reinelt, G. (2009). Parallel computation for the bandwidth
minimization problem. In B. Fleischmann, K.-H. Borgwardt, R. Klein, and
A. Tuma (Eds.), Operations Research Proceedings 2008, 481–486. Springer-
Verlag Berlin Heidelberg.

[56] Xu, Y., Ralphs, T. K., Ladányi, L., and Saltzman, M. (2005). ALPS: A
framework for implementing parallel search algorithms. The Proceedings of
the Ninth INFORMS Computing Society Conference, 319–334. Project Home
Page: https://projects.coin-or.org/CHiPPS.

[57] Xu, Y. (2007). Scalable Algorithms for Parallel Tree Search. Doctoral
dissertation, Lehigh University. http://coral.ie.lehigh.edu/~ted/files/papers/
YanXuDissertation07.pdf.

http://www.sgi.com/tech/stl
https://projects.coin-or.org/CHiPPS
http://coral.ie.lehigh.edu/~ted/files/papers/YanXuDissertation07.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/YanXuDissertation07.pdf


134 REFERENCES



Index

N1(F ) . . . . . . . . . . . . . . . . . . . . . . . . 5
N1(v) . . . . . . . . . . . . . . . . . . . . . . . . . 5
Nk(v) . . . . . . . . . . . . . . . . . . . . . . . . . 5
O(f(n)) . . . . . . . . . . . . . . . . . . . . . . . 6
Φl . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Φt . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Φu . . . . . . . . . . . . . . . . . . . . . . . . . . 79
α(G) . . . . . . . . . . . . . . . . 14, 42, 71, 79
γ(G) . . . . . . . . . . . . . . . . 14, 42, 71, 79
πL . . . . . . . . . . . . . . . . . . . . . . . . . . 19
πL,R . . . . . . . . . . . . . . . . . . . . . . . . . 19
dev . . . . . . . . . . . . . . . . . . . . . . . . . . 79
gap . . . . . . . . . . . . . . . . . . . . . 79, 103
imp . . . . . . . . . . . . . . . . . . . . . . . . . 79
d(v, w) . . . . . . . . . . . . . . . . . . . . . . . . 5
fv . . . . . . . . . . . . . . . 22, 29, 46–48, 53
lv . . . . . . . . . . . . . . . . 21, 29, 45–48, 53
2-labeling . . . . . . . . . 63, 80, 86, 108, 109

algorithm . . . . . . . . . . . . . . . . . . . 64
drawback . . . . . . . . . . . . . . . . . . . 63

adjacency matrix . . . . . . . . . . . . . . . . 5
adjacent vertices . . . . . . . . . . . . . . . . . 5
applications . . . . . . . . 1, 2, 40, 108, 110
approximate objective function 35, 37, 108
assigned set . . . . . . . . . . . . . . . . . . . 19

BANDWIDTH (BW) . . . . . . . . . 13, 18
bandwidth constraint . . . . . . . . . . . .

. . 14, 18, 19, 29, 55, 57, 58, 93, 109
bandwidth minimization problem 1, 13, 108

approximate objective function . . . 35
optimal solution . . . . . . . . . 18, 71, 72
original objective function . . see IP

formulation, of bandwidth problem
bandwidth under permutation π 13, 18, 32

benchmark instances
large . . . . . . . . . . . . . . . . . . . . . . 77
small . . . . . . . . . . . . . . . . . . . 77, 87
very large . . . . . . . . . . . . . . . . . . 78

benchmark suite
the first . . . . . . . . . . see the popular
the popular . . . . . . . . 15, 39, 77, 110
the second . . . . . . . . . 15, 40, 78, 110

best known results
for some hard instances . . . . . . . . 15
lower bounds . . . . . . . . . . . . . 15, 77
LRX . . . . . . . . . . . . . . . 77, 103–105
MCP . . . . . . . . . . 77, 87–91, 100–105
SRB . . . . . . . . . . . . . . . 78, 103, 106
upper bounds . . . . . . . . . . 15, 77, 103

binary search . . . . . . . . . . . . . . . . . . 71
branch-and-bound . . . . . . . 8, 18, 64, 108

bounding . . . . . . . . . . . . . . . . . 8, 76
branching . . . . . . . . . . . . . . . . 8, 76
general algorithm . . . . . . . . . . . . . . 9

branch-and-bound for BW
algorithm with 2-labeling . . . . 66, 67
algorithm with constraints . . . 53, 54
algorithm with dominance rules 61, 62
basic algorithm . . . . . . . . . . . . . . 27

branch-and-bound tree . . . . 8, 26, 68, 86
branch-and-cut . . . . . . . . . . . . 7, 17, 73
BW . . . . . . . . . 13, 18, 19, 25, 26, 46,

47, 53, 55, 60, 63, 68, 70, 71, 81, 108
search space . . . . . . . . . . . 71, 82, 109

child nodes . . . . . . . . . . . . . . . . . . . . 69
cluster . . . . . . . . . . . . . . . . . . . . . . . . 9
COIN-OR . . . . . . . . . . . . . . . . . . . . . 72
complexity

of bandwidth problem . . . . . . . . . . 2



136 INDEX

theory . . . . . . . . . . . . . . . . . . . . . . 6
complexity class
NP . . . . . . . . . . . . . . . . . . . . . . . . 6
NP-complete . . . . . . . . . . . . . . . . . 7
NP-hard . . . . . . . . . . . . . . . . . . . . 7
P . . . . . . . . . . . . . . . . . . . . . . . . . 6

compression of topological information
. . . . . . . . . . . . . . . . . . . . . 42, 108

traditional approaches . . . . . . . . . 41
computational results

benchmark suites see benchmark suite
hardware . . . . . . . . . . . . . . . . . . . 78
lower bounds
large instances . . . . . . . . 88, 90, 91
parallel computation 95, 99, 101–103
small instances . . . . . . . . . . 87–89
very large instances . . 92, 94, 96, 97

optimal solutions . . . . . . . . 88, 91, 92
upper bounds . . . . . . . . . . . . . . . 103
large instances . . . . . . . . . 104, 105
small instances . . . . . . . . . 103, 104
very large instances . . . . . . . . . 106

computer node . . . . . . . . . . . . . . . . . . 9
constraint . . . . . . 19, 25, 44, 75, 108, 110

hheu . . . . . . . . . . . . . . . . . . 46–48, 81
constraint . . . . . . . . . . . . . . . . . . 80
cut . . . . . . . . . . . . . . . . . . . . 49, 51
density cut constraint . 49–53, 80, 109
density near-cut constraint . . . . . .

. . . . . . . . . . . . . . . . 52, 53, 80, 109
effect on the solver . . . . . . . . . . . . 84
excess-range . . . . . . . . . 45–47, 80–82
fitting constraint . . . . . . . . . . . . .

. . . . . . . . 44–47, 80, 81, 84, 93, 109
generalized . . . . . . . . . . . . . 45, 46

illustration convention . . . . . . . . . 28
near-cut . . . . . . . . . . . . . . . . . . . . 51
pulling constraint . . . . . . . . . . . . .

. . . . . . . 47, 48, 80, 81, 84, 93, 109
generalized . . . . . . . . . . . . . . . . 48

the first constraint . . . . . . . . . 29, 80
the second constraint . . . . . 30, 48–50

cycle . . . . . . . . . . . . . . . . . . . . . . . . . 5
Hamiltonian . . . . . . . . . . . . . . . . . . 5

degree . . . . . . . . . . . . . . . . . . . . . . . . 5
delta information . . . . . . . . . . . . . . . 42
dense graph . . . . . . . . . . . . . . . . . . . 20
diameter . . . . . . . . . . . . . . . . . . . . . . . 5
distance . . . . . . . . . . . . . . . . . . . . 5, 93
dominance relation . . . . . . . . . . . . . .

. . . . . . . 55–58, 60, 75, 80, 108, 109
effect on the solver . . . . . . . . . . . . 85
illustration convention . . . . . . . . . 55
processing . . . . . . . . . . . . . . . . . . 60
processing algorithm . . . . . . . . . . . 62
results . . . . . . . . . . . . . . . . . . . . . 60

dominance rule . . . . . . . . . . . . . . . . .
. . . . 55–57, 60, 63, 64, 85, 108–110

dominate . . . . . . . . . . . . . . . . 55–58, 63
dominating . . . . . . . . . . . . . . . . . . . . 58

edge . . . . . . . . . . . . . . . . . . . . . . . . . . 5
parallel edge . . . . . . . . . . . . . . . . . 5

efficiency . . . . . . . . . . . . . . . . . . . . . 10
endvertex . . . . . . . . . . . . . . . . . . . . . . 5
exact methods . . . . . . . . . . . . . . 2, 108

BB . . . . . . . . . . . . . . . . . . . . . . . 15
BothWay . . . . . . . . . . . . . . . . . . . 14
dynamic programming . . . . . . . . . 13
Hebas . . . . . . . . . . . . . . . . . . . . . 73
LeftToRight . . . . . . . . . . . . . . . . . 14
MB_ID . . . . . . . . . . . . . . . . . . . . 14
MB_PS . . . . . . . . . . . . . . . . . . . . 14
Parallel BothWay . . . . . . . . . . . . . 15

exponential time . . . . . . . . . . . . . . . . . 6
extendability problem . . . . . . . . 20, 108

BPPE . . . . . . . . . . . . . . . . . . . . . 21
LPPE . . . . . . . . . . . . . . . . . . . . . 20

extendability test . . 14, 22, 23, 61, 63, 75
algorithm . . . . . . . . . . . . . . . . 22–24
violation . . . . . . . . . . . . . . 19, 26, 75

fathomed . . . . . . . . . . . . . . . . . . . 8, 69
feasible permutation . . . . . . . . . . . . .

. . . . . . . . 19, 25, 26, 56, 57, 69, 75
forest . . . . . . . . . . . . . . . . . . . . . . . . . 5
free set . . . . . . . . . . . . . . . . . . . . . . . 19
free vertex . . . . . . . . . . . . . . . . . . . . 18

global upper bound . . . . . . . . . . . . . . . 8



INDEX 137

GPS . . . . . . . . . . . . . 11, 32, 42, 103, 108
pseudo diameter . . . . . . . . . . . . . . 33
running time . . . . . . . . . . . . . . . . 34
vertex numbering procedure 33, 107, 108

graph
connected . . . . . . . . . . . . . . . . . . . 5
simple . . . . . . . . . . . . . . . . . . . . . . 5
undirected . . . . . . . . . . . . . . . . . . . 5

hash-table . . . . . . . . 58, 59, 80, 86, 109
Hebas . . . . . . . . . . . . . . . . . . . . . 73, 79

changes for very large instances . . . 92
class diagram . . . . . . . . . . . . . . . . 74
configurations . . . . . . . . . . . . 79, 81
implementation . . . . . . . . . . . . . . 73
parallel version . . . . . . . . . . . . . . . 80
performance evaluation . 81, 82, 84, 85
parallel version . . . . . . . 97, 99, 100

heuristics . . . . . . . . . . . . . . . . . . 2, 108
CM . . . . . . . . . . . . . . . . . . . . 11, 32
GA . . . . . . . . . . . . . . . . . . . . . . . 12
GPS . . . . . . . . . . . . . . . . . . . 11, 32
GRASP . . . . . . . . . . . . . . . . . . . . 12
iGPS . . . . . . . . . . . . . . . . . . . 32, 35
multilevel . . . . . . . . . . . . . . . . . . . 12
NS . . . . . . . . . . . . . . . . . . . . . . . 12
SA-σ . . . . . . . . . . . . . . . . . . . 12, 38
SS_TS . . . . . . . . . . . . . . . . . . . . 12
TS . . . . . . . . . . . . . . . . . . . . . . . . 12
WBRA . . . . . . . . . . . . . . . . . . . . 11

iGPS . . . . . . . . . . . . . . . 42, 71, 72, 103
running time . . . . . . . . . . . . . . . . 35
solution quality . . . . . . . . . . . . . . 35

incident . . . . . . . . . . . . . . . . . . . . . . . 5
Integer Programming (IP) . . . . . . . . . . 7
IP formulation

of bandwidth problem . . . . . . . . . 17

label . . . . . . . . . . . . . . . . . . . 13, 18, 26
max . . . . . . . . . . . . . . . see max label
min . . . . . . . . . . . . . . . see min label

label domain . . . . . 13, 19, 21, 71, 75, 109
tightened . . . . . . . . . . . . . . . . . . . 19

LB Improvement . . . . . . . . . . . . . . . . 79
left set . . . . . . . . . . . . . . . . . . . . 19, 26

level structure . . . . . . . . . . . . . . . . . . 32
depth . . . . . . . . . . . . . . . . . . . . . 33
rooted at v . . . . . . . . . . . . . . . . . . 32
width . . . . . . . . . . . . . . . . . . . . . 33

linear layout . . . . . . . . . . 19, 49, 55, 109
Linear Programming (LP) . . . . . . . . . . 7
load balancing . . . . . . . . . . . . . . 73, 76

dynamic . . . . . . . . . . . . . . . . . . . . 76
static . . . . . . . . . . . . . . . . . . . . . . 76

lower bound
initial . . . . . . . . . . . . . . . . . . . . . 71

lower bounds . . . . . . . . . . . . . . . . . . 14
α(G) . . . . . . . . . . . . . . . . . . . 14, 16
γ(G) . . . . . . . . . . . . . . . . . . . 14, 16

LP relaxation . . . . . . . . . . . . . 7, 17, 69

Matrix Market . . . . . . . . . . . . . . 15, 77
max label . . . . . . . . . . . . . 26, 29, 44, 50
min label . . . . . . . . . . 26, 29, 30, 46, 48
MPI . . . . . . . . . . . . . . . . . . . . . . . . . . 9
MPICH . . . . . . . . . . . . . . . . . . . . 9, 73
multi-labeling . . . . . . . . . . . . . . . . . . 63

neighbor . . . . . . . . . . . . . . . . . . . . . . . 5
node . . . . . . . . . . . . . . see subproblem

objective function . . . . . . . . . . . . . 7, 17

parallel computer . . . . . . . . . . . . . . . . 8
message-passing model . . . . . . . . . . 9
shared-memory model . . . . . . . . . . . 9

parallel framework . . . . . . . . . . . . . . 72
ALPS . . . . . . . . . . . . . . . . . . . . . 73
CHiPPS . . . . . . . . . . . . . . . . . . . . 73
PEBBL . . . . . . . . . . . . . . . . . . . . 73
SYMPHONY . . . . . . . . . . . . . . . . 72

parallel system . . . . . . . . . . . . . . . . . . 9
hub . . . . . . . . . . . . . . . . . . . . 73, 76
master . . . . . . . . . . . . . . . . . . 73, 76
master-hub-worker scheme . . . 73, 76
master-worker scheme . . . . . . . . . . 73
worker . . . . . . . . . . . . . . . . . . 73, 76

parSA . . . . . . . . . . . . . . . . . . . . . . . 40
partial permutation . . . . . 13, 18, 75, 108

assigned set . . . . . . . . . . . . . . . . . 19
both-sided partial permutation . . . 19



138 INDEX

extendability . . . . . . . . . . . . . 13, 26
extended . . . . . . . . . . . 19–22, 25, 26
free set . . . . . . . . . . . . . . . . . . . . 19
free vertices . . . . . . . . . . . . . . . . . 13
illustration convention . . . . . . . . . 28
label domain . . . . . . . . . . . . . . . . 19
left partial permutation . . . . . . . . 19
left set . . . . . . . . . . . . . . . . . . . . . 19
right set . . . . . . . . . . . . . . . . . . . . 19

path . . . . . . . . . . . . . . . . . . . . . . . . . . 5
length of path . . . . . . . . . . . . . . . . 5

permutation . . . . . . . . . . . 13, 18, 32, 33
polynomial time . . . . . . . . . . . . . . . . . 6
problem

decision . . . . . . . . . . . . . . . . . . . . . 6
optimization . . . . . . . . . . . . . . . . . 7
search . . . . . . . . . . . . . . 7, 13, 18, 70

PVM . . . . . . . . . . . . . . . . . . . . . . 9, 73

relaxation-based . . . . . . . . . . . . . 69, 73
right set . . . . . . . . . . . . . . . . . . . 19, 26
root vertex . . . . . . . . . . . . . . . . . . 8, 26
rotation . . . . . . . . . . . . . . . . . . . 39, 40
rounding heuristic . . . . . . . . . . . . 25, 72
running time . . . . . . . . . . . . . . . . . . . 6

SA . . . . . . . . . . . . . . . . . . . . . . . . . . 38
SA-σ . . . . . . . . . . . . 38, 40, 71, 103, 108

algorithm . . . . . . . . . . . . . . . . . . . 38
neighbor functions . . . . . . . . . . . . 39
parameters . . . . . . . . . . . . . . . . . . 40

scalability . . . . . . . . . . . . . . . . . . 10, 73
scalable . . . . . . . . . . . . . . . . . . . . . . 10

search parameter ϕ . . . . . . . . . . . 18,
28, 45, 46, 71, 81, 97, 102, 105, 109

search strategy . . . . . . . . . . . . . . . 8, 70
best-first . . . . . . . . . . . . . . . . . . . 70
breath-first . . . . . . . . . . . . . . . . . 70
depth-first . . . . . . . . . . . . . . . 26, 70
hybrid . . . . . . . . . . . . . . . . . . 70, 71

Sigma . . . . . . . . . . . . 36–38, 71, 103, 108
computing . . . . . . . . . . . . . . . . . . 37

single-labeling . . . . . . 63, 64, 68, 86, 109
smoothing function . . . . . . . . . . . . . . 36
sorting

bucket sort . . . . . . . . . . . . . 20–23, 93
introsort . . . . . . . . . . . . . . . . . . . 93

sparse graph . . . . . . . . . . . 14, 21, 41, 93
speedup . . . . . . . . . . . . . . . . . . . . . . . 9
Standard Template Library (STL) . . . 93
subproblem . . . . . . . . . . . . . . . . . . . . . 8

fathomed . . . . . . . . . . . . . . . . . . . . 8
queue . . . . . . . . . . . . . . . . 8, 70, 75
split . . . . . . . . . . . . . . . . . . . . . 8, 69

swap . . . . . . . . . . . . . . . . . . . . . 39, 40

The University of Florida Sparse Matrix
Collection . . . . . . . . . . . . . . 15, 78

time complexity function . . . . . . . . . . . 6
topological information . . . . . . . . 41, 43
tree . . . . . . . . . . . . . . . . . . . . . . . . . . 5

UB Deviation . . . . . . . . . . . . . . . . . . 79

vertex . . . . . . . . . . . . . . . . . . . . . . . . 5
vertex number . . . . . . . . . 28, 41, 42, 55

zero-edge . . . . . . . . . . . . . 77, 93, 96, 97


	Contents
	1 Introduction
	1.1 Contributions
	1.2 Outline
	1.3 Acknowledgments

	2 Preliminaries
	2.1 Graph theory
	2.2 Complexity theory
	2.3 Combinatorial optimization
	2.4 Parallel computing

	3 The Bandwidth Minimization Problem
	3.1 Literature review
	3.2 Lower bounds
	3.3 The canonical IP formulation
	3.4 Partial permutation
	3.5 Branch-and-bound approaches

	4 Heuristics and applications
	4.1 The iGPS heuristic
	4.2 An approximate objective function
	4.3 A simulated annealing method
	4.4 Compression of topological information

	5 Exact methods
	5.1 The new constraints
	5.2 The dominance relation
	5.3 The 2-labeling scheme

	6 Implementation and Parallelization 
	6.1 A solver for the bandwidth problem
	6.2 The parallel solver

	7 Computational results
	7.1 Introduction
	7.2 Performance evaluation
	7.3 The lower bounds
	7.4 Parallel computation
	7.5 The upper bounds

	8 Conclusions and Discussion
	A Detailed computational results
	Symbols and Notation
	References
	Index

