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On the Distribution of Luminous and Dark Matter
in Strong Lensing Galaxies

Abstract: The interplay between luminous and dark matter is essential to the formation
of galaxies. It is thought to take place in a multistage process, starting with the gravita-
tional collapse of dark matter, followed by baryonic gas falling into the potential wells. As
baryons cool down, they form stars, resulting in the first galaxies. The formation process
is still poorly understood, but observations provide empirical relations between galaxy
characteristics, such as the “fundamental plane” of elliptical galaxies, which correlates
brightness, size and velocity dispersion. This work explores aspects of galaxy formation
trough two techniques. Non-parametric modeling of gravitational lenses constrains their
total mass content. Stellar mass can be estimated via population synthesis. Both tech-
niques are applied to a sample of 21 lenses, using archival HST data. In a first step the
fundamental plane is recovered. The lensing galaxies are shown to be close to virial equi-
librium. We extract radial mass profiles (spatially resolved < 1 kpc) and find a common
radial range, where the transition from baryonic to dark matter dominated regions occurs.
For different radii R, we study the enclosed stellar (Ms(< R)) to total mass (M (< R))
plane, which can be viewed as a projection of the fundamental plane. Extrapolating dark
matter profiles, we find an extension of the concentration to virial mass relation to un-
precedented low masses. Finally we examine possible diagnostics of the baryonic cooling
process and test common prescriptions used in simulations.

Uber die Verteilung leuchtender und dunkler Materie
in starken Gravitationslinsen

Zusammenfassung: Das Zusammenspiel von leuchtender und dunkler Materie ist von
grundlegender Bedeutung fiir die Entstehung von Galaxien. Diese wird als mehrstufiger
Prozess angenommen, der mit dem gravitativen Kollaps dunkler Materie beginnt und
das Einfallen baryonischen Gases in entstandene Potentialtopfe nach sich zieht. So wie
Baryonen kalter werden, bilden sich Sterne, was die Entstehung der ersten Galaxien zur
Folge hat. Der Entstehungsprozess ist bis heute wenig verstanden, jedoch geben Beob-
achtungen Aufschluss {iber empirische Bezichungen zwischen charakteristischen Galaxie-
merkmalen, wie z.B. die Fundamentalebene elliptischer Galaxien, die eine Korrelation zwi-
schen Helligkeit, Gréfle und Geschwindigkeitsdispersion darstellt. In dieser Arbeit werden
Aspekte der Galaxienentstehung durch zwei Verfahren erkundet. Nichtparametrisches
modellieren von Gravitationslinsen ermoglicht es, die in ihnen enthaltene Gesamtmasse
einzuschrinken. Die stellare Masse kann mittels Populationssynthese abgeschétzt wer-
den. Beide Methoden werden auf eine Auswahl von 21 Gravitationslinsen, fiir die HST
Daten zur Verfligung steht, angewendet. Damit wird in einem ersten Schritt die Fun-
damentalebene reproduziert. Wie gezeigt wird befinden sich Gravitationslinsengalaxi-
en nahe am virialen Gleichgewicht. Wir extrahieren radiale Massenprofile (rdumlich
aufgelost < 1 kpc) und finden einen gemeinsamen radialen Bereich, in dem der Ubergang
vom baryonen-dominierten Gebiet zum dunkle-materie-dominierten Gebiet stattfindet.
Fiir unterschiedliche Radien R untersuchen wir die durch eingeschlossene stellare Masse
(Ms(< R)) und Gesamtmasse (M (< R)) aufgespannte Ebene, die als Projektion der Fun-
damentalebene betrachtet werden kann. Durch Extrapolation der Dunkle-Materie-Profile,
finden wir eine Erweiterung der Relation zwischen Konzentration und Virialmasse hin zu
beispiellos kleinen Massen. Schliefllich untersuchen wir mogliche Diagnoseverfahren fiir
die Kiihlung von Baryonen und testen deren Realisierung innerhalb von Simulationen.
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— The vastness of the heavens stretches
my imagination — stuck on this carousel
my little eye can catch one-million-year-old
light.

— A vast pattern — of which I am part ...

Richard Feynman,
The Feynman Lectures on Physics

Introduction

Nature provides a rich variety of light patterns caused by curved space time similar to those
well-known and understood in geometrical optics. Although the reason for the deflection
of photons is totally different - a change in material properties leading to a rotation of
a wave front in classic optics, while the underlying medium, space, through which light
propagates is distorted in general relativity - the governing theories can be expressed in
one common formalism, Fermat’s principle. It states that the time light takes to cover the
distance from one fixed point to another is an extremum. In this mathematical framework,
optics and gravitational lensing are represented by the minimal and the maximal solution
of a calculus of variations problem. Knowing this, the light patterns can be used to
constrain the properties of the lens. For astrophysical lenses the distribution of its matter
constituents can be explored.

Gravitational lensing - the early years

Gravitational lensing is part of Einstein’s theory of general relativity, which explains the
interaction of matter and space-time. In the aftermath of the solar eclipse in 1919 and
the observation of the shift of a background star close to the solar disc, which supported
Finstein’s theory, other manifestations of light deflection were considered. In 1924 Orest
Chwolson published an article on the possibility of a luminous circle caused by a deflec-
tor, e.g. a foreground star in perfect alignment with a light source, a background star
(Chwolson 1924). History gave initially little credit to his idea. A few years later Ein-
stein discussed the very same lens-like action in a brief note, published only at request
of the Czech engineer Rudi W. Mandl (Einstein 1936) and considered its direct obser-
vation “hopeless”. Despite Einstein’s doubts about Chwolson’s luminous circles they are
nowadays most commonly known as Einstein-Rings. Certainly, at that time Einstein was
thinking not of galaxies but of stellar sized objects acting as lenses, although extragalactic
nebulae were known since Hubble’s distance measurement of M33 (Hubble 1926).

It was Fritz Zwicky who first came up with the idea of clusters of galaxies acting
as giant lenses (Zwicky 1937). His visionary idea was rooted in efforts to explain the
kinematics of the Coma galaxy cluster or, more precisely, the mismatch between the
cluster mass deduced from the virial theorem and the mass inferred from the stars of
the cluster members. This resulted in the postulation of a hidden mass component, dark
matter. Zwicky figured that the masses of galaxies could be directly measured by lensing.
Moreover, he pointed out that lensing could be used as a tool to test general relativity.
Observations of galaxy clusters were not the first evidence of a hidden mass component in
galaxies. Earlier in the 30’s Jan Hendrik Oort had claimed that the kinematics of stars in
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the solar neighbourhood cannot be explained by the visible mass only (Oort 1932). The
notion was further strengthened through observations by Volders (1959) using rotation
curve measurements of spiral galaxies.

Luminous and missing mass

Little progress in either field, the “missing mass” in clusters or galaxies and the unverified
existence of lenses, was achieved until the 1970’s. Using the then-newest generation of
spectrographs, Vera Rubin was able to determine the radial motion of very faint hydrogen
emission regions at large projected distances from the centre of their host galaxies (Rubin
& Ford 1970). With their then-unprecedented radial extent many rotation curves speak
in favour of a dark matter component (Bosma 1978). Gravitational lenses as suggested by
Zwicky or Chwolson were not found until the rather accidental discovery of the lens system
Q0957 4 561 by (Walsh et al. 1979). Soon after its discovery first attempts on measuring
the mass using the lens effect were made (see e.g Young et al. 1981, Falco et al. 1985a).
With the arrival of better photometric data and the discovery of new lens systems mass es-
timates became increasingly precise. Rix et al. (1992) were the first to determine the mass
of the Huchra-lens 2223740305 assuming a fixed conversion factor between mass and light.

Since then the combination of gravitational lensing and photometric observations —
combined with the study of stellar dynamics — have been very effective at constraining
the total mass responsible for the lens effect and the total mass-to-light ratio T. However,
dynamical studies are not ideal for a direct decomposition of dark and stellar mass com-
ponents. As galaxies emit the combined light of billions of unresolved stars, assumptions
on the light distribution are necessary in order to estimate their stellar content. The total
mass-to-light ratio is mostly much different from the stellar mass-to-light ratio depending
on the galaxy type. If an average Y similar to that of the Milky Way is assumed one can
estimate the stellar mass distribution of an observed galaxy by applying this simplistic
conversion factor. Doing so, however, neglects the complex build-up of galaxies consisting
of different stellar populations and morphological components, such as bulge and disk, as
well as evolutionary trends of T.

During the 1950’s and 60’s the understanding of stellar chemistry and evolution im-
proved. Ground-breaking studies, e.g. of Eggen et al. (1962), showed for disjunct stellar
populations correlations between angular momentum and UV-excess as an indicator of age,
which was suggestive for an evolutionary sequence of events. The first studies designed
to directly express the observed galaxy light in terms of stellar mass were conducted by
Spinrad & Taylor (1971) and Faber (1972). They attempted to assemble the integrated
spectrum of a galaxy by a linear combination of individual stellar spectra. Due to the large
number of free parameters, such as the number of stars of a certain spectral type, this
approach was abandoned. More sophisticated techniques — known as stellar population
synthesis — reduce the problem to few main parameters, such as the initial mass function
(IMF), the star formation rate (SFR) and the chemical enrichment, that can be used to
compute the integrated spectral evolution (e.g. Tinsley 1978, Bruzual 1983).

2



The dark matter paradigm

From both the study of gravitational lenses and the study of stellar populations one can
hope to gain insights about structure formation and evolution within our multi-component
universe consisting of baryons, dark matter and dark energy. It must be emphasized that
despite the focus of this thesis on the dark matter paradigm, alternative explanations for
plateaued rotation curves, mass profiles of galaxy clusters and gravitational lensing are
available. Most of them attempt to modify Newtonian gravity (by amending the Poisson
equation) or general relativity (by amending the action integral) without invoking dark
matter. There are two particularly important arguments in favour of dark matter. Firstly,
weak lensing maps of cluster mergers compared with X-ray data show that the gravita-
tional potential does not trace the plasma component, which is the dominant baryonic
mass component rather than the stellar content (Clowe et al. 2006, Bradac et al. 2008).
Secondly, micro-lensing studies reveal anomalous flux ratios of lensed images that indicate
a ratio of smooth (dark matter) to clumpy matter (stars) which exceed 50%, for some
lenses even 90% (Schechter & Wambsganss 2002, Pooley et al. 2009, Bate et al. 2011).
Neither effect can be explained by modified theories of gravity alone. Nevertheless, at
present incontrovertible proofs of dark matter remain elusive.

The formation of galaxies can be largely explained by means of N-body simulations,
that model the motion of gravitationally interacting particles. Originally intended to
simulate star clusters (von Hoerner 1960) they are used today on large scales to verify
cosmological models (e.g. Springel et al. 2005). Due to limited computation time most
cosmological simulations only take into account one collisionless matter component, dark
matter. However, in these models structure formation occurs in an expanding universe
that drives matter apart. This so-called Hubble flow acts against the gravitational collapse.
In cold dark matter (CDM) simulations structures form hierarchically, i.e., smaller masses
collapse earlier than larger masses and are on average denser. Navarro, Frenk & White
(1996) found that the density distribution of simulated dark matter halos follows a charac-
teristic power law (henceforth called NFW profile). The baryonic counterpart however is
commonly added to the dark matter halos only after the simulations are completed. The
gravitational interactions between baryons and dark matter are then modeled by means
of semi-analytic prescriptions. In contrast to the purely numerical method semi-analytics
enrich the picture of hierarchical structure formation by including physical processes such
as angular momentum transport, dynamical friction and adiabatic contraction. Consid-
ering baryon-dark matter interactions and adiabatic contraction might also help to find
better agreement between simulations and observations, as they are thought to affect the
matter distribution in particular in the centre of massive galaxies.

Observations versus simulations

Comparisons between simulations and observations yield a variety of inconsistencies, which
are often attributed to model shortcomings. CDM simulations, for example seem to indi-
cate that cuspy matter distributions are favoured in dense halo centres (Flores & Primack
1994). Observations, however, tend to belie this notion (e.g. de Blok 2010). Nevertheless,
the occurrence of multiple lensed images requires the surface mass density to be large (i.e.
a central convergence larger unity), a condition always fulfilled for cuspy density profiles,
like NF'W, but not necessarily for cored profiles, as k. is inversely proportional to the

3
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core radius. Lensing statistics on the contrary seem to give evidence against a dominant
cuspy class of elliptical galaxies (e.g. Chen 2003, Li & Chen 2009). Modifying the dark
matter properties (e.g., self-interacting or warm dark matter) or including interactions
between baryons and dark matter to dissolve the cusps are commonly invoked solutions
to this problem (see e.g. Romano-Diaz et al. 2008, Peirani et al. 2008). The problem can,
however, be addressed by gravitational lens modeling in a unique way. If baryons change
the mass profiles in the central region of dark matter halos, lens models considering the
presence of baryons appear to be well suited to reproduce the mass distribution in the
poorly constrained central region of the lens system.

Lens modeling - conventional or free form

There is one critical caveat in conventional analytic models of gravitational lenses. Us-
ing mass models and model-based prescriptions for gravitational lens modeling introduces
hard-to-quantify deviations from real mass distributions. Assuming a mass model for a
lensing system excludes mass distributions, which are not accessible in the parameter-
space of the model and introduces the problem of model non-uniqueness. This holds also
for the modeling of the light distribution of a galaxy. Such fits are based on analytic
formulas whose reliability to recover the actual light or mass distribution is not always
given, as will be shown in this thesis.

Saha & Williams (1997) introduced a novel technique of free form modeling, which
permits the mass-reconstruction of lenses in a pixelated manner, without making use of
conventional pre-defined mass models, like isothermal ellipsoid, King or De Vaucouleurs
model (see e.g. Keeton 2001a). With an increasing number of observational constraints and
improved precision single-galaxy parametric models have become unacceptable (Schechter
et al. 1997). One explanation can be found for example in the impact of nearby galaxies,
which perturb the lens morphology. In view of the hard to quantify number of perturbers
a multi-component extension of the parametric modeling approach seems difficult, while
the free form models offer a viable alternative. Ferreras, Saha & Williams (2005) first
combined free form mass reconstruction of lenses with stellar population synthesis in a
pixel-based manner to get insights in the distribution of luminous and dark matter in
lensing galaxies. Directly analyzing resolved pixelated stellar and total mass maps is a
promising way of addressing problems in astronomy related to the internal structure of
galaxies.

1.1 Key problems

Due to the aforementioned shortcomings of parametric models, for which further evidence
is given in Chapter 3, extensive use is made of pixel-based mass reconstruction (Saha &
Williams 1997, 2004) throughout this dissertation to address the following key problems.

e The fundamental plane and the degree of virialization of gravitational lenses: Early-
type galaxies follow the fundamental plane, a well-known scaling relation between
effective radius, kinematic velocity dispersion and surface brightness. Theoretical
predictions of this relation based on the virial theorem, however, show a significant
deviation (‘tilt’) from observations. The reason for the fundamental plane tilt is
still to be found. Commonly offered explanations invoke variation of the stellar
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mass-to-light ratio with luminosity, varying DM content and non-homologies, such as
structural and orbital anisotropies. All these solutions address different aspects of the
interplay between the stellar and dark matter. In this framework we give answers to
the following questions, which help to narrow down the variety of explanations: Is the
lensing inferred velocity dispersion from non-parametric mass reconstruction equal to
the kinematic velocity dispersion? Is this applicable to cluster scale lensing objects?
Are the computed lens mass and the virial mass consistent with the fundamental
plane? Does the fundamental plane relation extend to galaxy clusters?

e Resolving baryonic and dark matter distributions: The combination of stellar popu-
lation synthesis (SPS) and pixel-based mass reconstruction can be used to visualize
the dark matter. The SPS process requires photometric modeling of lens galaxies in
as many spectral bands as possible in order to constrain population synthesis models.
We produce these models and use the stellar mass profiles output by the SPS routine
described in Ferreras et al. (2008) to analyze the radial dependence of stellar versus
total mass profiles for a sample of 21 lenses as well as their baryon fractions. First
intriguing insights in the set-up of lens galaxies can be given in terms of enclosed
mass ratios and novel concentration indices for stellar and total mass profiles. In
particular we investigate stellar baryon fractions and their impact on dark matter
halos on scales below 10 kpc.

o (Concentration-to-virial mass relation and testing adiabatic contraction: Previous
studies have found evidence for an inverse proportionality between concentration
and virial mass that is a natural consequence of CDM cosmologies (e.g. Bullock
et al. 2001). We deduce the concentration to virial mass relation for unprecedentedly
low virial masses for a sample of 18 lenses. Moreover, by comparing stellar baryon
fractions, baryonic length scales and concentration parameters with predictions from
synthetic, adiabatically contracted halo profiles, we test the quality of standard
prescriptions for baryonic cooling.

The questions raised and investigated in this work are directly connected with a variety
of current research topics, all of which aim to enrich our picture of structure formation
and evolution of galaxies. Results of this study may serve as benchmarks for large scale
simulations, studies of the initial mass function, baryon-dark matter interactions and the
modeling of strong gravitational lenses.

1.2 OQutline

This thesis is structured as follows. A brief introduction to the theoretical framework and
basic concepts is given in Chapter 2. The methodology chapter provides the concepts of
parametric and non-parametric lens modeling and stellar population synthesis (Chapter
3). It is followed by three chapters addressing the key problems of the fundamental plane
and the degree of virialization of gravitational lenses (Chapter 5), resolving baryonic and
dark matter distributions (Chapter 6) and the concentration-to-virial mass relation and
testing adiabatic contraction (Chapter 7). We summarize the results and give an outlook
for future work in Chapter 8.







Fundamental Concepts

The studies carried out in this thesis are closely connected to different topics in astro-
physics, such as lens modeling, galaxy scaling relations and galaxy evolution, just to
mention few. Strong lensing, as a tool to investigate the mass distribution in centres of
lens galaxies, is introduced in Section 2.1. We continue by giving a brief overview of the
diversity of lens systems in Section 2.2. The distance measures commonly used in the
framework of cosmology are explained in Section 2.3. In Section 2.4 the big picture of
hierarchical structure formation is given. Galaxies, the products of structure formation,
are briefly classified in Section 2.5. The distribution of masses of stellar populations in
galaxies is governed by the theoretical initial mass function. It is a key ingredient in the
stellar population synthesis and therefore introduced in Section 2.8. As galaxies evolve
they change not only their stellar composition but also their mass distribution. We dis-
cuss the most important processes likely to change stellar and dark matter distributions
in galaxy centres in Section 2.7. Since galaxies obey a number of underlying regulari-
ties, so-called scaling relations, we discuss a selection important to this work in Section
2.6. Finally, analytic functions used to parameterize light, stellar mass or dark matter
distributions are given in Section 2.9.

2.1 Gravitational lensing

The research field of gravitational lensing can be structured into several sub categories
with respect to its phenomenology. Strong lensing produces multiple images of the same
background object, if its light passes close enough to a dense region in space. In the case
of a pointlike background object, e.g. a quasar, which is lensed by a foreground galaxy,
two or more quasar images can be produced with typical angular separations of order one
arcsecond. If the background source is a resolved object a strong lens produces extended
distorted images of the same, so-called arcs or Einstein rings. Image distortions occur also
if the density of the region crossed by light is not sufficient to produce several images.
Latter regime is generally referred to as weak lensing. Microlensing refers to an angular
regime of the order of microarcseconds, where several lensed images with a separation
below the resolution limit are produced by stellar-sized objects. Uncorrelated brightness
variations in the lightcurves of different strongly lensed images are a consequence of this
effect. For more details on the different classes of gravitational lensing see Schneider et al.
(2006).

A more mathematically motivated distinction between strong and weak lensing will be
shown in the following. Gravitational lensing has equivalent representations in different

physical and mathematical disciplines. In the following three equivalent formulations of
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Figure 2.1: Schematic illustration of a gravitational lens in the approximation for thin lenses and small
angles. The lower part shows the scheme in a three-dimensional side view. The upper part is a projection.
The cyan dot marks the source position, the red dot the lensed image position. The green line highlights
the distance, described by the impact parameter b. All symbols are explained in the text.

gravitational lensing shall be introduced to clarify the phenomenology of strong gravita-
tional lensing. All of which give useful insights in different aspects of the one lens effect.

2.1.1 The lens equation - a vectorial approach

From the schematic illustration (Fig. 2.1) one can deduce the following relation for the
distance vector £ depending on the impact vector b, the deflection angle «, and the angular
diameter distances Dy, Ds and Dyg.

- Dg- -
£= D—Sb—DLS a(b) (2.1)
L

Note that the upper scheme in Fig. 2.1 represents the two-dimensional projection of
the three-dimensional lower scheme, which explains the henceforth used vectorial notation.
Switching to purely angular coordinates, this becomes the lens equation:

- - D ~
§=6-Z>a(DLh), (2:2)

S

which is a linear mapping from the lens to the source plane. Introducing a two-dimensional
potential 1) whose gradient is the deflection angle, Eq. 2.2 can be written as

&(Db) = V(0). (2.3)




2.1. GRAVITATIONAL LENSING

With the enclosed surface mass density S(b) = J p(b, z)dz, written as the density
integrated along the line of sight, the deflection angle (o = 4G M /bc?, with gravitational
constant G, lens mass M, impact parameter b and speed of light ¢) in the approximation
for thin lenses, i.e. their spatial extent is negligible against its distance to the observer,
can be written as

_AG [ (b= )SW) oy (2.4)
|

Using this expression in the derivative of Eq. 2.3 yields the Poisson-Equation

DiDis87G_ ~ 36
V2 _ bLrLs _
(o) = D, 2 E(6) =2 Ye

—

= 2k(0), (2.5)

~—

where k is the convergence, conveniently chosen to be a dimensionless quantity, which
serves as a source field and ¥, = ¢2Ds/4nG Dy Dyg is the critical surface density. The
latter can be regarded as a boundary between strong and weak lensing. For a mean
enclosed surface density larger than the critical one, i.e. ¥ > ¥, (k > 1) multiple images
are produced. This does not hold for the weak lensing regime, equivalently described by
Y <X (k<.

2.1.2 Wavefront picture - a geometrical method

A gravitational lens can be approximated as a slit diffraction set-up. Huygens’ principle
states that each point of a wavefront can be considered as the starting point of a spherical
wavelet, which is constituent of a new wavefront. The latter can be regarded as a super-
position of all wavelets. Kayser & Refsdal (1983) elaborated the difference in light travel
time between gravitational lens images in this framework, which comes in helpful for the
understanding of critical lines and caustics. The left hand scheme of Fig. 2.2 shows a
two-dimensional illustration of the light path. One wavefront propagates from the source
(S) to the the lens (L), which, depending on the shape of the gravitational potential,
inflicts a distortion upon the wavefront. For the given example, this can be approximated
by different wavefronts emerging from L at three different positions (A, A’, B) and time-
stamps. Their superposition results in the typical caustic-like structure. An image of S
will be seen by an observer (O) for a line-of-sight perpendicular to each wavefront. Thus
for any position between the dashed envelopes (critical curve), which connects the loca-
tions of crossing wavefronts, three images of S are seen. Outside this region the number of
observed images is reduced. As one can see in Fig. 2.2 a signal originating from S will be
seen first in image B, then in A and eventually in A’. The time delay between the signal
seen in two different images corresponds to the distance of wavefronts, which depends on
the difference in the length of the respective light paths. This difference is larger than
the purely geometrical difference of light paths, as the lens potential — speaking in terms
of general relativity — warps the space. As a three-dimensional counterpart, the right
hand panel of Fig. 2.2 shows five spherical wavefronts with time delays, four of which are
directly visible. In superposition a diamond shaped window is produced through which
an observer will see all five images.
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wavefront A

wavefront B

Figure 2.2: Left: Schematic illustration of an extended deflector in the wavefront picture according to
Kayser & Refsdal (1983). Here a non-symmetric case is shown, i.e. the upper and lower critical curves are
not symmetric with respect to the central line. Three images will be observed from any location between
the critical curves. The difference in light travel time corresponds to the distance between wavefronts.
Right: Three-dimensional analogue to left hand scheme. Instead of three positions there are five from
which spherical wavefronts emerge. The one produced by the central image (counterpart to A’) is not
visible in this illustration. The colours indicate wavefronts with comparable time-delay.

2.1.3 The arrival time surface - using Fermat’s principle

The time delay can be written conveniently as a sum of a geometrical t4e0n, and a gravi-
tational 4.4, contribution, as shown below by means of light path integration. Cooke &
Kantowski (1975) showed the same in a wavefront picture. The equivalence of light path
integration and wavefront method was shown by Borgeest (1983). However, the following
equations are an approximation for small angles and are given in the observer frame, which
explains the additional factor of (1 + z1,), where zz, denotes the redshift of the lens.

- 1
tgeom(‘gvﬁ) = 2_6(1+ZL)

taran@) = 21+ 20) [ 0(8) ds (2.7

(6 - 5)? (2.6)

—

In Equation 2.7, ¢(0) denotes the Newtonian potential, which is integrated along the line
of sight. This yields the two-dimensional potential 1) known from Eq. 2.3, which satisfies
the Poisson Eq. 2.5. Adding up Eq. 2.6 and 2.7 gives the total time delay. Using

Dprs
= 0 ¢ 2.8
(1 + ZL)DLDS ( )
this can be more conveniently written as
I D .
7(0,5) = 50— B - (@), (29)

which is called the arrival-time surface. Judging by its quality to visualize time differences,
it can be regarded as a relative of the wavefront. If we assume for a moment the potential
1 to be negligible — which means that effectively there is no lens mass — 7 is fully repre-
sented by the quadratic term. In that case the arrival-time surface looks like a paraboloid
as shown in the right hand panel of Fig. 2.3. Its rotation axis indicates the time delay,
the surface contours are isochrones. One should emphasize that the arrival time surface
cannot be directly observed, except as a relative time-delay between images. However,

10
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Figure 2.3: Illustration of the arrival time surface for large (left panel), small (middle panel) and negligible
(right panel) contributions from the gravitational potential. The rotation axis indicates the time-delay, the
contours are isochrones. Images occur where the surface has a minimum, a maximum or a saddle-point.

as we gradually increase the lens mass, i.e. ¥ < 0, the arrival-time surface will get dis-
torted, as shown in middle panel of Fig. 2.3, until eventually new extrema form (left panel).

Fermat’s principle states that the time light takes to cover the distance between two
fixed points is an extremum. As a consequence, images of a lensed background source will
be located at stationary points in the arrival time surface, meaning

= =

V() = 0. (2.10)

This is certainly fulfilled for the simple case of negligible lens mass, where we get only
one image located at the minimum of the paraboloid. Increasing the potential creates
additional extrema and saddle points which become visible for the distorted arrival time
surface. Isochrone contours passing through saddle points are of special significance as
they build figuratively the skeleton of the arrival time surface. We will come back to this
in the next section. The partial derivative of Eq. 2.9 becomes

0 = 5+ Viy(6) (2.11)

The gradient of the two-dimensional scalar potential points into the direction of the max-
imum increase, that is towards the apparent source position and its modulus is the an-
gular offset between apparent and actual source position. The latter can be expressed as
aDrg/Dg, as shown in Fig. 2.1, and Eq. 2.11 turns into the familiar lens equation 2.2.

Since mass reconstruction is a tool essential to this work the following re-writing of
the lens equation comes in handy. As the Poisson Eq. 2.5 must be solved to infer the
projected mass density X the arrival time surface can be written as

—

T(0) =

=,

(0 — B)> —2V2k(0). (2.12)

N =

Hence it is shown that Fermat’s principle and the scalar description of the arrival time
surface is an analogue to the previously introduced vector notation (Blandford & Narayan
1986).

Apart from the stationary points on the arrival time surface, there is additional in-

—

formation included in the curvature (second derivative) of 7(6). Looking at the simple

11
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parabola it becomes clear that sharp peak-like features in the surface correspond to less
photons per projected area, which defines the demagnification case. Magnification instead
occurs for broad valleys on the surface. As the second derivative of Equations 2.9 and 2.11
we get

VVr(0) =1 - VVy(d) = VB. (2.13)
As an aside, transformations like Kk — 1 — A(1— k&) and 8 — A with an arbitrary constant
A will produce the same image configuration, as they just scale the arrival-time surface.
In other words rescaling the lens mass and adding/subtracting a constant mass-sheet will
not change any observed quantity. This effect known as the ‘mass-sheet-degeneracy’ is
discussed amongst other lensing degeneracies in Gorenstein et al. (1988) and Saha (2000a).

However, from Eq. 2.13 we see already that the curvature of 7 is equal to a change in
source-position causing the image to shift. Latter image displacement is the inverse of the
magnification. Thus we can define the magnification tensor M to satisfy the equation

M~ =VVr(h). (2.14)
Like any symmetric 2 x 2 matrix M~! can be re-written in the form
_ 10 cos2¢  sin2¢
1 _ _ _
M™ = (1 —x) < 0 1 > ’y< sin2¢ —cos2¢ ) (2.15)

By comparison with 2.12 and 2.13 one finds that not coincidentally k is indeed the con-
vergence introduced in Eq. 2.5, where v is a traceless component of M~! called shear,
originating mostly from external masses influencing the shape of the lens potential and
thus . It changes the shape of an image but not the size. The scalar magnification,
the determinant of M~!, brings an interesting feature of the mathematical description of
lensing to light, the case of infinite magnification. We have

det(M) = ((1 — r)? —4*)71, (2.16)

which shows a singular behaviour for v = |1 — k|. All points in the lens plane that satisfy
this relation lie on critical lines, which — formally speaking — separate regions with same
algebraic sign of the tensor’s eigenvalues (A1,A\2), i.e. both positive, both negative or one
positive and one negative. They consequently frame regions in which 7'(5) is allowed to
have maxima, minima or saddle-points. The lens equation is a mapping from the lens to
the source plane. If critical lines are mapped to the source plane we obtain caustic curves.
Caustics separate regions in the source plane that determine the number of lens images.
The phenomenology of lenses will be discussed in the following section on basis of the

caustics, critical lines and saddle-point contours.

2.2 On the phenomenology of gravitational lenses

The arrival time surface comes along in a variety of shapes, corresponding to different lens
image configurations. All of which exhibit elementary contours which have the interesting
property to be self-crossing, which consequently means that they pass through a saddle-
point. Those saddle-point contours can be classified depending on their morphology as
lemniscates and limagons shown in the top and bottom row of Fig. 2.4 respectively. From
an initial paraboloid (circular contour) with one minimum (L) the contours can evolve to
form an outer or an inner loop. The latter case is known from Fig. 2.3 and as one can see
the inner loop encompasses a maximum in arrival-time.

12
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Figure 2.4: Self-crossing contours. Top (bottom) row
shows formation of lemniscates (limagons). Maxima (min—
ima) are marked with an H (L) for high (low) time-delay.
According to Figure by H. M. AbdelSalam in Saha &
Williams (2003).

The former case forms instead two minima. Ei-
ther way one saddle-point is produced. Eventually
saddle-point contours can form nested structures,
even more complex than the one shown in Fig. 2.5.
Critical curves, as introduced in the last section
separate regions in which maxima, minima and
saddle-points may occur (Fig. 2.6). As gradually
as saddle-point contours can form inner and outer
loops new images are created. Since they emerge in
pairs of saddle-point and minimum or maximum,
the point of their closest approach must lie on a
critical curve. This points us to another equivalent
interpretation of the critical lines where images
merge under theoretically infinite magnification.
Magnified or demagnified images are indicated by
larger or smaller red dots in Fig. 2.5. As the critical
curves are mapped to the source-plane via Eq. 2.3
they become the caustical curves shown in Fig. 2.7.
It should be noted that the inner diamond-shaped
(asteroid) caustic maps onto the outer critical line
and vice versa, indicated by the line colour. Shift-
ing the source closer to these lines affects the im-
age positions. If the source lies at the centre of the
diamond shaped caustic (asteroid caustic), a cross-
configuration of four images can be seen (Einstein-
cross). Note that a number of distinct images are
produced. Einstein-rings cannot be reproduced as
we consider point-sources (unresolved background
objects) and elliptical potentials only. However,
the closer the source gets to a caustical line the
less symmetric becomes the image configuration.
From Fig. 2.6 and 2.7 it becomes clear as the
source crosses a caustic in outward direction from
the centre images merge and vanish eventually.

Figure 2.5: Isochrone contours of the
arrival-time surface. Size of red dots
indicates (de-)magnification. The lower
saddle-point is about the original source
size.

minima
saddle—points

Figure 2.6: Critical lines in lens-plane.
Filled and open circles indicate image
positions corresponding to the source po-
sitions in Fig. 2.7.

Figure 2.7: Caustical lines in source-
plane with different source positions.
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So-called fold caustics define the edges of asteroid caustics which, when crossed by the
source, lead to a two-image merger (black filled circles in Fig. 2.6 and 2.7), whereas cusp
caustics, i.e. the sharply peaked caustics, lead to three-image mergers (open circles). A
source situated between asteroid and circular cusp produces still three images. Depending
on the properties of the projected potential of the lens mass and possible convergence and
shear contributions from the lens environment the caustic lines can diverge from the sim-
ple case discussed so far. The asteroid and circular caustics may vary in size and shape.
The inner caustic might even extend beyond the circular caustic, which means that for
source positions inside asteroid but outside circular caustic two images merge and vanish
on the inner critical line, but three remain to produce a naked cusp configuration. This is
speaking in terms of saddle-point contours the rare case of a lemniscate not encompassed
by a limagon (top row Fig. 2.4). However, more detailed studies on interesting lens mor-
phologies can be reviewed in Saha & Williams (2003). So far we have seen predictions for
lens systems that involve an odd number of images. Dyer & Roeder (1980) demonstrated
that non-pointlike lens masses produce always an odd number of lensed quasar images.
This odd-number theorem is a consequence of a general theorem for non-singular lenses,
which is commonly stated in the form

(mazxima) + (minima) = (saddle) + 1.

This can be easily verified for the lensed image systems in Fig. 2.6. Consequently the
sum over extrema and saddle points must be an odd number. Observations, however,
seem to contradict the theorem as mostly doubly or quadruply imaged quasars are found
(see Fig. 4.1). Evans & Wilkinson (1998) investigate under which conditions one of the
previously odd number of images can be lost and find that models with sufficiently steep
density cusps, i.e. p o R™7 and 1 < v < 2 do not possess radial caustics. Thus the
maximum in Fig. 2.6 vanishes. The rather few exceptions with an odd number of images
could be explained by a potential fourth image being too faint to be detected or by exter-
nal perturbations causing one image to split (Schechter & Wambsganss 2002) or by the
naked-cusp case as explained above. All cases are discussed in Oguri et al. (2008) for a
cluster lens, however it is widely believed that for standard lensing galaxies the reason for
a missing image is that the central image, as it should be produced in the maximum of
a limagon (see Fig. 2.5), is strongly demagnified by the commonly steep surface density
profile of the lens (Narasimha et al. 1986).

Up today there are about 250! lens systems known. The amount of available lenses
can be divided in resolved and unresolved lensed images of the background source. Re-
solved objects, like background galaxies, cover extended regions in Fig. 2.6. Consequently
distorted images (arcs) are produced, which may span across the critical lines. However,
lensing of quasars, which are unresolved background objects that serve as point-sources,
offers the advantage of precise determination of image positions. The large range of lens
morphologies imaginable from Figures 2.5 to 2.7 is reflected by the sample of strong lenses
provided in Fig. 4.1, Section 4.2.

!This is a rough sum over the number of quasar (point source) lenses in the compilation of the CfA-
Arizona Space Telescope LEns Survey (CASTLES) and the two galaxy lensing surveys, the Sloan Lens
ACS Survey (SLACS) and the Cosmological Evolution Survey (COSMOS).
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2.3 Basic concepts in cosmology

The theoretical basics given in this section can be found in Hogg (1999) and references
therein. The standard world model consistently used throughout this thesis is defined by
the Friedmann equation

H(a) = Ho (Qma™® + Qa2+ Q0) ", (2.17)

where H(a) = a/a defines the change of the scale factor a depending on a set of cos-
mological parameters, the present-day Hubble constant Hy in units of (km s~ Mpc™1)
and the energy densities §2; for matter (i = m), vacuum energy or dark energy (i = A)
and curvature (¢ = k). The energy densities are defined in terms of the critical density
pe = 3H?/87G. With this the total energy density is defined as €y = p/p.. The critical
density was introduced to distinguish possible geometries of the universe. For an ‘open’
universe {2 is larger than unity, that is, the universe will stop expanding and eventually
collapse. For a ‘closed’ universe {2 is less than unity, which means that the universe
expands forever. The case of )y being exactly unity corresponds to a ‘flat’ universe with
FEuclidean geometry.

The Friedmann equation is the solution for the field equations of General Relativity in
case of an isotropic homogeneous universe, defined by the Friedmann-Robertson-Walker

metric
dr?

1—kr?
The aforementioned scale factor is defined by the redshift z to be a = (1 + 2)~ %

In agreement with results from the Wilkinson Microwave Anisotropy Probe (WMAP)
(Komatsu et al. 2011) we make consistently use of

ds* = 2dt* — a(t)? ( + r2do* + T28in2¢9d¢2) . (2.18)

(Hoy Qm, Q, Q) = (72,0.3,0.7,0.0). (2.19)
Computing the dimensionless deceleration parameter ¢g defined by

o _d(to)a(to) . Q

= =—"_Q 2.20
qo alto)? 9 A (2:20)
for the given set of cosmological parameters yields go = —0.55. This determines the cur-

rently accelerating state of the universe.

For a proper treatment of cosmological length scales the following distance quantities
must be known. The proper distance is the distance light covers from source to observer
considering the expanding universe (Hubble drag), i.e.

D, = /c dt = c/%?a) - Hio/oz*(l +2)7 1 2(2) dz, (2.21)

with
1
I(z) = VA2 Lt 2) (22 12) (2.22)

The time-span 7 = D, /c is called the look-back time.
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The comoving distance is a distance measure, which is independent of the Hubble drag.
It is determined in the following way. As light trajectories are null geodesics (ds? = 0) the
radial coordinate of Eq. 2.18 becomes

dr?

2 142 2
Cdt —a(t) m,

(2.23)

which transforms to

sin~tr (k=1)

t1 dt r d /
Deomov = C/ = / ! = r (k‘ = 0) (224)
to a(t) 1= kr? sinh~lr (k= -1)

The luminosity distance is defined by the ratio of luminosity L and flux F' through the

surface of a unit sphere, that is
L
dr, =1\ —. 2.2
L=V arF (225)

The angular diameter distance is defined by the ratio of the proper size of an object and
the angle it subtends. It is linked to the luminosity distance by

da=dp/(1+2)% (2.26)

The integrand Z(z) of Equation 2.22 can be used to re-write dy, as a function of z. Similar
to the calculation of D.omey one finds for 2 = 0

(1+29)

z2
dr(z1,22) = ———5= sinn{]Qk\l/Q/ dz I(z)}, (2.27)
Ho |2, |1/ z

where sinn is a placeholder for sinh in case of a hyperspherical universe (€ > 0) and for
sin in case of a hyperbolic one (2 < 0). For a flat universe (Q; = 0) we have

dr(z1,22) = (1;—02) /Z2 dz Z(z). (2.28)

Note that Deomoy = dg holds only for the zero-curvature case.

2.4 Structure formation

In the previous sections, it was shown how massive objects produce a system of lensed
images, but not how lensing galaxies themselves form in the first place. The basic ideas
of structure formation will be given in the following.

Gaussian fluctuations in the matter distribution of the early universe provide a pri-
mordial power spectrum, which describes the density fluctuations after initial inflation.
These fluctuations may be subject to dissipation, pressure and amplification due to grav-
itational instabilities. In the standard cosmological model the history of the universe is
structured into distinct epochs dominated by different energy densities €2;. In the radia-
tion dominated epoch z = 1000 the expansion rate of the universe is too large to permit
any clumping of matter. Structure formation cannot begin prior to the matter dominated
epoch. After last scattering of cosmic microwave background (CMB) photons, at z ~ 1000,
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Figure 2.8: Illustration of a spherical collapse. In an universe with (Q2m,,Qa) = (0.3,0.7) an initially
expanding overdense region with p > p. reaches its maximal extent (dashed line), detaches from Hubble —
flow as it contracts to form gravitationally bound object. Figure according to Rich (2001).

structures formed in a star-less dark universe. It was not until z ~ 10 that the first stars
formed in the collapse of molecular hydrogen clouds, as the discovery of the oldest yet
known galaxy seems to suggest (Bouwens et al. 2011). Structure formation, however, con-
tinues to z ~ (Qa/Qn)"/3 — 1 ~ 0.3 which defines the end of the matter dominated epoch
in a Friedmann world model including dark energy A. This applies for matter density
0, = 0.3 and dark energy density Q5 = 0.7 which is in agreement with WMAP? findings
(Komatsu et al. 2011). In this context the spherical collapse of an overdense region in the
early universe can be illustrated as in Fig. 2.8. In this simple scheme gravity and universal
expansion (Hubble flow) compete. Is the gravitational drag large enough a region deter-
mined by the turn-around radius of particles decouples from the Hubble flow and contracts.

This affects naturally all matter within the collapsing sphere, which should thus have
the same baryon-to-dark matter composition as the surrounding universe. The seven years
release of WMAP (Komatsu et al. 2011) shows that the global baryon fraction, the ratio
of baryonic and total matter in the universe is ~ 0.17. Since dark matter particles are
collisionless the Jeans’ instability will not be opposed by other forces such as radiation
pressure. Certainly, the Jeans’ instability applies to dark matter, since the velocity dis-
persion of the particles can be understood as a source of pressure. Nevertheless, galaxies
will eventually form in the potential wells, which are getting steeper as mass concentrates
in their centre.

The physics driving the evolution from the collapse of gas and dark matter halos to
the formation of galaxies remains one of the open questions in astrophysics, which will be
reviewed in Section 2.7.

2Wilkinson Microwave Anisotropy Probe
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Figure 2.9: The Hubble Sequence serves as a morphological classification scheme for galaxies. Elliptical
galaxies are labelled En with the number n indicating the ellipticity. Spirals (S) are classified according
to tightness of their arms in sub-categories a to c. A capital B in the morphological type indicates the
presence of a bar. S0 at the junction of the barred and non-barred spirals refers to lenticular galaxies,
which exhibit, unlike ellipticals, a prominent disk and bulge component. Image from Ville Koistinen.

2.5 Galaxies

In 1936, Edwin Hubble introduced the first morphological classification scheme of galaxies
based on his observations over many years. He arranged the galaxies according to their
appearance in optical light in a sequence, which he believed was an evolutionary scheme
from early to late-type galaxies, as seen in Fig. 2.9, with the galaxy age decreasing to the
right. At its beginning he placed an almost spherical galaxy, he considered oldest, that
becomes gradually flattened. This is expressed by the nomenclature En for ellipticals with
n being about ten times the ellipticity € = 1 —b/a, where b and a denote minor and major
axes of the ellipse. Defined values for n range from 0 to 7. In the middle the morphological
type of lenticular galaxies (S0) marks the branch point of two sub-categories, the spiral
galaxies (S) and the barred spiral galaxy (SB). Depending on the ratio of bulge to disk
size and the tightness of the spiral arms, lower case letters a to d (the original Hubble
sequence ended with ¢) are added to the morphological type. Due to their in average lower
masses (< 102M), late-type galaxies are underrepresented among the lensing galaxies,
which is why we continue with a closer look on early-type galaxies.

2.5.1 Early-type galaxies

Although galaxy formation turned out to be more complex than Hubble’s evolutionary
scheme, it is still used for classification to the present day. Same applies to the anachronism
‘early-type galaxies’, which is based on Hubble’s interpretation of the sequence. In a recent
study, the evolution of the Hubble sequence was shown by comparing the local abundance
of galaxy morphologies with the one at z = 0.65 (Delgado-Serrano et al. 2010). The
fraction of early-types was shown to remain almost unchanged at 3 — 4% of the total
amount of galaxies. For more general studies on the morphological evolution of galaxies,
see e.g. Ilbert et al. (2006). Early-type galaxies span a stellar mass range from 107 M
(Dwarf elliptical galaxies, see Ferguson & Binggeli (1994)) to 10'2 (central dominant /
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compact diffuse (cD) galaxies, see e.g. Hughes (1989), Lewis et al. (2003)). Early-type
galaxies at the high mass end of this range constitute the majority of lensing galaxies. They
are furthermore attractive as studies of their centres allow for addressing yet unanswered
questions directly linked to structure formation, such as the cusp-core problem, discussed
in the following section.

2.5.2 Cusp-core problem

Numerical simulations in the ACDM concordance model were found to reproduce the
large scale structures in the universe very well. On galaxy scales, however, studies of
stellar kinematics (rotation curves) tend to disagree with predictions from simulations
(e.g. Gilmore et al. 2008, Primack 2009). Among other discrepancies (missing satellite
and angular momentum problem) the cusp-core problem is one of the long-lived problems
in astrophysics. It arises from observationally inferred DM density profiles p ~ r® that
are found to be much flatter than expected by simulations. The latter tend to predict
cuspy profiles with inner slopes slightly steeper than @ = —1 (NFW). There is strong
evidence, especially for low-mass disk galaxies, that the central dark matter density is
nearly constant (Kuzio de Naray et al. 2009). Discrepancies between observations and
simulations, which are found even for galaxies with low stellar mass content, speak for a
flawed dark matter model. However, interactions between baryons and cold dark matter
might be able to impede inner density cusps by feedback mechanisms (described in Section
2.7) and give thus an explanation for the problem especially for galaxy types dominated
by stars, such as giant ellipticals.

2.6 Scaling relations

Understanding scaling relations means to understand structure formation. The following
sections introduce the most important scaling relations that govern the dynamics and
distribution of matter in galaxies. They are essential for the following analysis, as they
will be addressed several times throughout this thesis (see Chapters 5 and 6).

2.6.1 The fundamental plane of early-type galaxies

The fundamental plane (FP) for early-type galaxies is a well-known scaling relation be-
tween the effective radius (or half-light radius) R,, the kinematic velocity dispersion o,
and the surface brightness I g, in logarithmic space found by Djorgovski & Davis (1987)
and Dressler et al. (1987). Not so well understood is the mismatch between theoretical
predictions for the FP on one hand and observations on the other. A simple theoretical
deduction starts with the virial theorem

2T) = —(V), (2.29)

which relates the time average of the kinetic energy per unit mass (T') = ¢%/2 and potential
energy (V) = —GM/r. This can be transformed into

M o R.0°. (2.30)

Combining the virial theorem and the universality of light profiles L oc R%I while as-
suming a constant mass-to-light ratio yields the deliberately simple-minded version of the
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Figure 2.10: Left: Projection of the fundamental plane, showing the photometric quantities R. and
(ur) plotted against the spectroscopic quantity o. Surface brightness bins are indicated by colour. The
dashed line indicates the best fit to the combined sample. Right: Kormendy relation. The colour indicates
different central velocity dispersion bins. The data set comprises 40,356 early-type galaxies from the
Spheroids Panchromatic Investigation in Different Environmental Regions (SPIDER) sample (La Barbera
et al. 2010). The given r-band data comes from the Sloan Digital Sky Survey (SDSS) sample of early-type
galaxies.

fundamental plane relation
R, o o®I 1. (2.31)

In contrast observations show a relation with slightly different power indices a and b, as
in

R. o oI°, (2.32)

with a = 1.2 and b =~ —0.8 (e.g., Jorgensen et al. 1996). The power indices are thus not in
agreement with above values (a,b) = (2, —1) for constant M /L, which is suggestive of an
underlying regularity beyond the above formulas. This deviating slope is often referred to
as the fundamental plane tilt.

In the left panel of Fig. 2.10, a projection of the three-dimensional FP parameter space
is shown. The ordinate includes all photometric quantities. Note the change in nomencla-
ture for the surface brightness quantity (u). It is equal to Ig_, but given in magnitudes,
which is already a logarithmic quantity. Thus the coefficient b,, in the Figure translates to
b from Eq. 2.32 with b,,, = b/ — 2.5. The constant ¢ denotes an offset due to the definition
of the zero point. The dashed line shows the best fit to the data. The FP parameters for
this particular sample of SDSS r-band selected early-type galaxies are given in the plot.
In Table 2.1 we provide an incomplete overview of FP studies.

The different explanations proposed for the tilt of the fundamental plane affect different
aspects of galaxy formation as a consequence of the interplay between baryonic and dark
matter. The main explanatory approaches can be summarized as follows.
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o Structural non-homologies, first addressed by Hjorth & Madsen (1995), refer in par-
ticular to a scatter in the steepness of the light profiles of early-type galaxies, which
is correlated with R., meaning that the light profile of early-type galaxies varies sys-
tematically with their size, i.e. large galaxies are more centrally concentrated than
small ones (see also Busarello et al. (1997)). Comparing non-homologous light pro-
files for Virgo early-type galaxies with estimates based on universal de Vaucouleurs
profiles produced no significant difference in the fundamental plane (Graham & Col-
less 1997a).

e Orbital anisotropies, as discussed in detail by Nipoti et al. (2002), address the under-
lying assumption of early-type galaxies being in a relaxed state. This may contribute
only marginally to the FP tilt if early-types with one matter component and initial
anisotropies are simulated. The latter lead to instabilities that cause the elliptical
galaxies to fall back to a given FP. However, if a two component model is assumed, in
particular massive and more concentrated DM halos can lead to unstable (non-virial)
galaxies well-outside the FP. This however cannot account for the whole tilt.

o Variation of the stellar mass-to-light ratio (M /L) with luminosity, addresses the
assumption of a common formation history of early-type galaxies, in particular de-
pendencies of M/L on the initial mass function (IMF) or star formation (SF) (e.g.
Jorgensen 1999). If a dependency between the SF history and mass content is es-
tablished the FP tilt could be explained (Chiosi & Carraro 2002). A systematic
variation of the IMF is disfavoured, as the lower stellar mass limit of the IMF is
forced to be unreasonably high (Renzini & Ciotti 1993).

o Variation of the DM content, refers to possibly flawed assumptions on the total mass-
to-light ratio on scales < R.. To keep objects on the FP baryonic matter has to be
the dominant mass component in the centre of early-type galaxies. This speaks
however against cuspy dark matter profiles as expected from ACDM simulations.
Indeed ACDM with its typical NF'W DM profiles predicts — in disagreement with
observations — a curved fundamental surface rather than a plane (Borriello et al.
2003). Assuming cored DM profiles and an additional stellar mass profile permits to
recover the FP tilt. In contrast to latter authors who express the slope mismatch in
terms of M /L ~ L%, Ferreras & Silk (2000) emphasize that the only plausible way
to solve the FP tilt is by “imposing a non-linear correlation between the total mass
(including dark matter) and the stellar mass” classification.

Reference a b

(Dressler et al. 1987) 1.334+£0.05 —0.83+£0.03
(Djorgovski & Davis 1987) 1.39+0.14 —0.90 £ 0.09
(Lucey et al. 1991) 1.27+£0.07 —0.78+£0.09
(Guzman et al. 1993) 1.14 —0.79
(Jgrgensen et al. 1996) 1.24 £0.07 —0.82£0.02
(Hudson et al. 1997) 1.38 £0.04 —0.82+£0.03
(Scodeggio et al. 1997) 1.25+0.02 —0.79+0.03
(Pahre et al. 1998) 1.5634+£0.08 —0.79+£0.03
(Mdiiller et al. 1998) 1.25 —0.87
(Gibbons et al. 2000) 1.39+£0.04 —0.84+£0.01
(Colless et al. 2001) 1.224+0.09 —0.84+£0.03
(Bernardi et al. 2003) 1.49+£0.05 —0.75+0.01

Table 2.1: List of previously found fundamental plane parameters.
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Figure 2.11: Concentration to virial mass relation. The data from Buote et al. (2007) comprises galaxy
systems ranging in mass from individual early-type galaxies to galaxy clusters. Their best fit is found with
a BCES method (Bivariate Correlated Erros and intrinsic Scatter), see Akritas & Bershady (1996).

2.6.2 The Kormendy relation

The correlation between the logarithm of the effective radius and the mean surface bright-
ness 4 enclosed at R,, is known as the Kormendy relation (Kormendy 1977):

(e = 1 +72log(R.). (2.33)

The Kormendy relation, shown in the right hand panel of Fig. 2.10, comes along with a
high intrinsic dispersion of ~ 0.4 mag in (u)<g, (e.g. Hamabe & Kormendy 1987, Hoessel
et al. 1987, La Barbera et al. 2010), which can be attributed to the missing third parameter
of the FP (Ziegler et al. 1999) and corrections introduced for different biases, such as K-
correction and reddening (Nigoche-Netro et al. 2008).

2.6.3 The concentration to virial mass relation

The concentration to virial mass relation (¢ — M,;,), unlike previous scaling relations,
does not directly depend on any light-related quantity. It states that less massive halos
are more concentrated than more massive halos. Figure 2.11 shows the ¢ — M,;, relation
based on studies of X-ray clusters, according to Buote et al. (2007). The relation arises
naturally in a universe with hierarchical structure formation. For measurements on X-
ray clusters, constraints on the mass-profile are inferred by temperature and gas density
profiles assuming hydrostatic equilibrium (e.g. Sarazin 1988, Buote 2004). Numerical
ACDM simulations determine the concentration ¢ and the virial mass M, directly from
fits to their dark matter halos. Moreover, simulations find a considerable intrinsic scatter,
independent of the virial mass (e.g. Bullock et al. 2001).
The correlation is commonly expressed by a simple power-law

Co MN\“
_ 2.34
“T1t: <M0> ’ (2:34)
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where ¢y and M, are reference masses. The slope is inferred to be negative, i.e. a < 0.
Studies based on observations mostly determine slopes in the range from —0.15 to —0.17
(see e.g. Comerford & Natarajan 2007, Buote et al. 2007, Johnston et al. 2007). Simulated
mass profiles however appear to differ from observationally inferred profiles. The former
yield consistently shallower slopes, i.e. a ~ —0.09 (see e.g. Duffy et al. 2008, Maccio
et al. 2008). The mismatch between observations and simulations might be due a mass
dependence of the slope. Also, a number of uncertainties enter the definition of the c-M-
relation. The concentration is commonly defined as the ratio of the virial radius R,;, and
the scale radius of the NFW profile

Rvir

S

Cyir = (2.35)
The virial radius is defined as the radius for which the mean enclosed density is equal to
a multiple A, of the critical density

pe(z) = 3H(2)?/(87G), (2.36)
ie. (p(R.i)) = Acpe(z). The values for the overdensity A, are determined by
A, = 1872 + 82z — 392> (2.37)

with 2 = (Qn(1+ 2)3/E(2)?) — 1 and E(2)? = Q,,(1 + 2)? + Q4, according to Bryan &
Norman (1998). This relation fits the solution to the collapse of spherical perturbation in
the “top-hat” scenario® (Peebles 1980). In some studies however R.; is approximated by
r200, which is defined with a characteristic overdensity A, = 200. Since R,;, is defined with
respect to a certain overdensity A the notation ra is used equivalently. This approximation
is not taking proper account of the spherical collapse. The scale radius rs in Eq. 2.35 is
often referred to as r_o, the radius at which p r~2. For an NFW profile 7, and r_o are
indeed equal. The sought-after virial mass can thus be calculated as the mass enclosed in
a sphere with radius R,

4
Mayir = Depe(z) X - (2.38)

Since the ¢ — M-relation depends on the definition of the overdensity A., redshift and
cosmological parameters comparisons between different studies must be put on the same
standard.

2.7 Galaxy evolution

Fully understanding the evolution from an initial collapse of gas and dark matter to the
formation of galaxies is a yet unreached aim of astrophysics. Star formation can also be
interpreted in terms of the stellar to total mass fraction within the virial radius of a halo.
It is highest for galaxies similar to the Milky Way and decreasing towards higher and
lower masses (Moster et al. 2010). In the process of galaxy evolution following feedback
processes are important, as they directly affect the star formation efficiency.

3In this simple scenario, a spherical overdensity of radius R is replaced by a smaller one of radius
R — AR with same enclosed mass. The annulus of AR would be, figuratively speaking, the brim of the
top-hat, which explains the name-giving. In a slightly different explanation of the name-giving, the one-
dimensional cut of the initial model of the perturbation shows a constant central region (flat-crown), and
a “low” background farther away (broad brim).
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e Stellar Feedback: The lower escape velocities in less massive galaxies allow the gas to

be ejected by stellar feedback (Larson 1974, Dekel & Silk 1986). Supernova-induced
winds are energetic enough to significantly impede galaxy formation at baryonic
masses below 101 M, (Brooks et al. 2007). Such feedback regulates the star forma-
tion efficiency, which is responsible for the mass-metallicity relation (Tremonti et al.
2004).

AGN-Feedback: For more massive galaxies, an Active Galactic Nucleus (AGN) is
believed to account for the decreasing star formation efficiency (see e.g. Di Matteo
et al. 2005). This feedback mechanism explains the exponential cut-off in the lumi-
nosity function, either by the thermal coupling of AGN outflows with gas (e.g. Tabor
& Binney 1993, Croton et al. 2006, Bower et al. 2006) or by mechanical feedback
that prevents gas cooling (Sijacki et al. 2007).

Evolution of galaxies and their properties such as mass distribution and kinematics

depends furthermore on the following.

o Mergers: A major merger is a collision between two galaxies of comparable masses.

Major mergers may play a key role in the growth of galaxies (see e.g. Toomre &
Toomre 1972). Especially gas-rich (“wet”) mergers can boost rapid star formation
(starbursts) as they can trigger gaseous inflows due to strong variations of the po-
tential (e.g. Schweizer & Seitzer 2007). Moreover the angular momentum may be
conserved in gas rich mergers to form galactic disks (Robertson et al. 2004). Merged
galaxies show long-lived imprints of their history in non-axial symmetric mass distri-
butions (Jog & Maybhate 2006). About 70% of all galaxies with present-day stellar
masses above 5 x 10!° M, have undergone a major merger since z = 1 (Bell et al.
2006). See Sanders & Mirabel (1996) for a review.

Dynamical friction: As a massive object propagates through a cloud of smaller par-
ticles, a gravitational wake is produced behind the massive object which imposes
a force opposite to its velocity vector. This effect was first investigated by Chan-
drasekhar (1943). Dynamical friction is important in the context of mergers, as it
increases significantly the merging time and delays subsequent relaxation (Boylan-
Kolchin et al. 2008).

Adiabatic contraction: As baryonic gas cools down to form stars, considerable dissi-
pation of gravitational energy occurs. Thus the distribution of baryons gets gradually
more concentrated causing the dark matter to follow its lead and steepen its inner
density profile. This process is called adiabatic contraction (AC), since angular mo-
mentum conservation is imposed, as rM (< r) (radius times total mass enclosed in a
sphere with radius r) is treated as an adiabatic invariant. Eggen et al. (1962) were
first to use adiabatic invariants in calculations of stellar motions. In context of the
interplay between dark matter and baryons Blumenthal et al. (1984) introduced the
today most commonly used AC model, which assumes spherical symmetry, conser-
vation of angular momentum, circular particle orbits and homologous contraction,
meaning that the mass distribution can be understood as a number of nested radially
contracting spheres which do not cross each other. Orbital anisotropies were taken
account of in a later AC prescription introduced by Gnedin et al. (2004). Recent
studies by (Abadi et al. 2010) gives rise to doubts about the meaning of AC in galaxy
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2.8. INITIAL MASS FUNCTION

formation. Gao et al. (2004) argued that dissipationless evolution can even erase the
AC effect on the density distribution.

In the following section we focus on elliptical galaxies (also called early-type galaxies)
as the most common galaxy type among strong lenses, which is thought to be affected by
aforementioned evolutionary processes.

2.8 Initial mass function

The initial mass function (IMF) defines the distribution of stellar masses in a new popu-

lation of stars
dN _r

dlogm e

: (2.39)

i.e. the number of stars per unit volume with a mass between M and M + dM. It is an
important link between stellar and galactic evolution and provides insights on theories of
star formation. It affects both the chemical enrichment and the stellar mass content of
galaxies. The IMF comes in useful while trying to model the evolution of stellar popula-
tions starting from an initial state. Edwin Salpeter determined first in his seminal work a
single power-law relation for the solar neighbourhood with a power index of I' = 1.35 in a
stellar mass range between 0.4 and 10My (Salpeter 1955a). Many recent studies address
its shape and possible universality (e.g. Kroupa 2001, Larson 2006, Kroupa 2008, Bastian
et al. 2010). Especially the slope of the IMF below 1M is matter of ongoing debate, as
it appears to become negative below a peak at few tenths of the solar mass. The physical
significance of such a peak can be understood as a preferred scale of fragmentation during
the formation phase of stars (e.g. Li et al. 2003). For its determination knowledge about
the present day luminosity function, the stellar mass-to-light relation and the star forma-
tion history is required. The latter is based on model assumptions.

Constraining the IMF for other galaxies however is even more challenging, as only the
integrated flux of a composition of stellar populations is observed, which are degenerate
with respect to age, metallicity and dust. Figure 2.12 gives an overview on some commonly
used IMFs (Salpeter 1955a, Kroupa 2001, Chabrier 2003).

In this work we use the Chabrier (2003) IMF, given as

AN { exp [_M (m < 1My,) (2.40)

o~ 202

dlogm m~13 (m > 1Mpg)
where m. denotes the mass at the turn-over and o is the standard deviation. It should
be noted that most of the frequently used choices of the IMF have similar declining dis-
tributions at the low mass end (see also Miller & Scalo 1979, Scalo 1986). It is only the
traditional single-power law of the Salpeter (1955b) IMF that gives significantly different
stellar mass predictions. Previous detailed work on the kinematics of nearby early-type
galaxies (Cappellari et al. 2006) or strong lenses (Ferreras et al. 2008, 2010) shows that the
low-mass end of the Salpeter IMF is ruled out as it predicts stellar mass surface densities
higher than the dynamical or lensing estimates.
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Figure 2.12: Initial mass functions with a single power-law (Salpeter 1955a), a broken power law with
turning points at 0.08 M and 0.5 Mg (Kroupa 2001) and an exponential decline below 1 Mg according
to Eq. 2.40 (Chabrier 2003).

2.9 Light and mass profiles

A couple of parameterizations of light and matter distributions are basic to this work and
will be briefly discussed in the following. See Keeton (2001a) and Coe (2010) for further
information on mass models used in gravitational lensing.

2.9.1 The Sérsic profile

A versatile fitting function for surface brightness profiles I(r) of early-type galaxies, bulges,
bars and discs to mention only a few is given by Sérsic (1963). The function

I(r) = I exp {—bn [(Ti)l/n - 1] } (2.41)

is normalized to the core brightness I. and contains a scale length which is expressed in
Eq. 2.41 in terms of the effective radius R, and a conversion factor b,. It goes furthermore
with the inverse power index n. A profile with n = 4 corresponds to a de Vaucouleurs
profile, for which b,, becomes ~ 7.67, as can be derived numerically (see Prugniel & Simien
1997).

2.9.2 The Hernquist profile

A surface mass density distribution which closely approximates the de Vaucouleurs RY/4
surface brightness profile for elliptical galaxies is given by Hernquist (1990)

_Ma 1

p(r) = T Gt a) (2.42)
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Integrating along the line of sight and once more over the area within r yields

M 2x 1
Ml (< r) = = <L> % (2.43)

Th

with

(2.44)

2.9.3 The Singular Isothermal Sphere

The singular isothermal sphere is one solution for the hydrostatic equilibrium maintained
by a spherically symmetric gas cloud with the same temperature everywhere. It is

0.2

P = orGr

with the velocity dispersion ¢ and the gravitational constant G. Its projection onto the
lens plane is then given by

(2.45)

2

g
N(b) = 5 le (2.46)

where 07,5 is the velocity dispersion along the line of sight and b is the physical distance
to its centre in the lens plane, as shown in Fig. 2.1.

2.9.4 The Singular Isothermal Ellipsoid

The generalization of an isothermal sphere to elliptical lenses can be obtained by replacing

b in Eq. 2.46 with b = /b7 + f2b3
_ \/To-los 1

S(b) = ,
RN R

where the normalization is conveniently chosen to give enclosed masses inside an elliptical
iso-density contour independent of f for fixed ¥ (Kormann et al. 1994).

(2.47)

2.9.5 The NFW profile

Navarro et al. (1996) found that simulated CDM halos are well-approximated by

p(r) = (r/rs)(lp:— YRR (2.48)

The scale parameters ps; and rg are degenerate with one another as will be shown. Both
depend on the halo mass. By integration over the radius one finds the mass enclosed in a
sphere of radius r, i.e.

,
3 r rs
Mgpn (< 1) = 4dmpsrs, {ln (1 + E) 7 _'T_ x } . (2.49)

By projecting and subsequent integration over the area within the projected radius R we
obtain the total mass enclosed in a cylinder

MET" (< R) = 4mprd x F(R,1y), (2.50)
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with . .
\/ﬁ cosh Fs (R < Ts)
R -
F(Ryrs) =lng—+4 1 (R=rs) . (2.51)
B 1 —1rs
\/ﬁ COS 1 r (R > 7"5)
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Methodology

After the theoretical foundations are given, we will introduce the mass reconstruction
methods and procedures carried out in this work. The motivation for non-parametric
mass reconstruction or free-form modeling, as an alternative to solution besides analytic
modeling is motivated in Section 3.1. The tools to create pixelated total and stellar
surface mass maps are presented in Section 3.2. Total lens mass reconstruction is basic to
the studies presented in the Chapters 5 and 6. Stellar mass reconstruction by means of
population synthesis will be employed for the analyses in Chapter 6.

3.1 Parametric and non-parametric modeling

Expressing the light and matter distribution in galaxies in terms of more or less simple
analytic parameterizations is an enticing way to study gross features of galaxy samples
with respect to their formation and evolution. However, in order to properly model dif-
ferent types of galaxies, a template function has to account for distinct features of their
build-up, such as a stellar bulge and disk. Its quality to give a proper description of an
object depends to some extent on the accuracy and size of the data sample. Mass models
motivated by numerical simulations, such as the NFW profile (Section 2.9.5), invoke as-
sumptions on the nature of the particles which are simulated. Together with the increasing
complexity of models — considering different matter components and a variety of physical
processes — uncertainties may pile up and introduce hard to quantify departures from real
matter distributions. Stacking several parametric models opens a door to the problem
of non-uniqueness of the solution, as multicomponent fitting is inherently prone to some
degree of degeneracy.

Up to now there are not many studies which help to unravel such degeneracies. Witt &
Mao (1997) found that for general elliptical potentials external shear is necessary even to
simply reproduce the observed galaxy and image positions. They also show that the lens
models are degenerate with respect to the ellipticity and the magnitude of the shear. The
larger the amounts of observational constraints the less acceptable become one-component
lens models. In many cases parametric models which take account of a single galaxy profile
only fail to reproduce time-delays (see e.g. Schechter et al. 1997, Keeton & Kochanek 1997).
In view of the growing number of model-parameters necessary to satisfy the increased num-
ber of observational constraints and possibly connected degeneracies it appears advisable
to take parametric models with a pinch of salt. Using them as a basis for extrapolations
may lead to significant deviations from studies which resolve the centre of the lens galaxy
as will be shown in the following.
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Figure 3.1: Comparison of two different modeling strategies on the lens PG11154-080. Left: A fit to
a three-component lens model (stellar, dark matter, and external group) without population synthesis.
Red dots mark the image positions and the red curve is the model critical curve. The blue dot is the
model source position and the green curves show the model caustics. The greyscale indicates stellar-mass
fraction, while the black ellipse indicates the ellipticity and position angle of the stellar component. The
length of the semi-major axis of the latter is set here to 2Riens. Right: The red and cyan dots show the
stellar and total enclosed mass respectively from the model in the left panel. The red error bars enclosing
the red dots correspond to a 1o region around the best x?. The black and grey dots with error bars are
the stellar mass and total enclosed mass from pixelated lens models and population synthesis.

In Fig. 3.1 we contrast enclosed stellar and total mass profiles from a parametric
and non-parametric analysis of the lens PG1115+080 (henceforth called PG1115). Using
GRAVLENS,a program by Keeton (20015) we model this complex lens system with an NFW
profile for the dark matter component, a de Vaucouleurs profile for the light and an SIS+~
which takes account of a nearby group. The observationally determined effective radius
R. = (0.85+0.07)" (Treu & Koopmans 2002), positions, ellipticities and position angle are
allowed to vary within small uncertainties. Multiple component models introduce degen-
eracies which are usually minimized but never fully broken by observational constraints. A
Markov Chain Monte Carlo (MCMC) search for best parameters yields best 2 NFW and
de Vaucouleurs profiles. The ratio of stellar to total mass is shown in the left hand panel of
Figure 3.1 together with the critical (red) and caustic lines (green). Azimuthal averaging
along the elliptical contour of the stellar component and subsequent summation along the
major semi-axis yields cumulative mass profiles of both stellar mass and combined total
mass as shown in the right hand panel of Figure 3.1. As one can see, the total mass
profile of the analytic (cyan dots) and the non-parametric (black dots) models are in good
agreement. The enclosed stellar mass profiles (red circles for analytic and grey circles for
pixelated profiles, however, show considerable disagreement even within the error range
here chosen to be the 1o region around the best model. Note that the red dots do not
represent the median of the distribution but the best x? model in the MCMC search. One
also needs to think about the consequences for studies which make extensive use of two-
component models without having a direct resolved view on the stellar mass distribution,
but rather constrain surface brightness profiles via kinematic velocity dispersions.
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3.2 Disentangling matter

Strong lensing permits to constrain the total mass within the central region of the lens situ-
ated crudely speaking between the quasar images. Apart from the degeneracies mentioned
in Chapter 2.1.3, model-based assumptions contribute to attempts of mass reconstruction
with considerable uncertainties. Statistical approaches must be chosen to properly address
the issue of different mass distributions creating the same lens configuration, the prob-
lem of non-uniqueness. To avoid this, free-form methods are necessary. In the following
analysis we make extensive use of the PIXELENS program! (Saha & Williams 2004, Coles
2008) to reconstruct the surface mass density of a sample of lens galaxies.

As the combined mass content of a lens system can be accessed by the above tool, the
stellar part can be deduced using population synthesis. The stellar mass estimates as used
in Chapters 6 and 7 are based on a comparison of surface brightness profiles with stellar
mass-to-light ratios (T) determined by population synthesis models for each pixel in the
photometry (Ferreras, Saha & Williams 2005, Ferreras et al. 2008). The code used for
this procedure was written by Ignacio Ferreras and relies on synthesis models and stellar
spectral libraries from Bruzual & Charlot (2003a). In a preparatory step surface bright-
ness profiles are carefully modeled on basis of given photometry using the code GALFIT
by Peng et al. (2002).

The following sections describe in detail how lensing and stellar population synthesis
are used to address the key problems elucidated in Chapter 1.

3.2.1 Total mass content

PIXELENS reconstructs the projected mass in a - - -
pixelated manner by solving a set of linear con-
straint lensing equations, according to Eq. 2.3, L]
using the image positions, the redshifts of lens
and source, the Hubble time (herein h = 0.72 is
always assumed) and optionally the time delays
between the lensed images. Multiple-image sys-
tems with the observed positions must arise as
solutions of the lens equation. The images are
considered to be unresolved; for extended images,
the peak of their surface brightness distribution
is located and considered as an unresolved image.
For lenses with measured time delays, the model
is required to reproduce them. For each lens, the  Figure 3.2: Typical surface mass map,
projected total-mass distribution is reconstructed  here shown for the lens PG1115. The box
on a circular field made up of n square tiles or pix- ~ size is 3 x 3 ?fcseCQ- The red dots mark
els, where n is either 350 or 750 for a map radius the image positions, the cyan dot indicates
the source position.

of 10 or 15 pixel, respectively. Each pixel consists

of a uniform mass distribution with a mass density of a few times the critical density.
Figure 3.2 shows an example for a surface mass map reconstructed with PIXELENS. Fol-
lowing prior conditions are imposed on the mass distribution: It has to be non-negative,

! Available from www.qgd.uzh.ch/projects/pixelens/
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centrally concentrated, with a local density gradient pointing no more than 45° away from
the centre of brightness. Since the central regions of galaxies are expected to be dominated
by stars, it seems safe to assume that the mass and light peaks coincide. Also, for few
lenses this was shown to be correct by Yoo et al. (2006). Pixels having more than twice
the mean of their neighbours are prohibited, except for the central pixel, which can be
arbitrarily high to mimic central density cusps. The circularly averaged projected density
(around the centre) is required to be R=%5 or steeper. The three-dimensional mass profiles
of galaxies are thought to be invariably steeper than 7~ so again this appears to be a
safe prior assumption. Unless the lens shows signs of asymmetry, the mass distribution is
required to be symmetric under a 180° rotation around the centre. The above constraints
(observational or prior) can be conveniently formulated as a set of linear equations or
inequalities. As a consequence of underdeterminacy, solutions of the lens equation are
highly non-unique (Falco et al. 1985b, Saha 20005, Liesenborgs et al. 2008), i.e. there
are infinitely many mass models that satisfy all the above conditions. Thus an MCMC
technique, used to sample the model space and produce an ensemble of models per lens,
seems well-suited. The algorithm defining the search strategy in model space introduces
an additional prior whose physical significance is not easily accessible. However, to obtain
a largely unbiased result the algorithm has to be insensitive to changes of dimensional-
ity and rescaling of units. Only then any weighted mean of ensemble members can be
considered an admissible model. Coles (2008) shows that this is indeed the case for the
algorithm used in PIXELENS. Hence, we can conveniently use the ensemble mean to rep-
resent a typical model. The uncertainties on any parameter can readily be derived from
the model ensemble.

PIXELENS has been extensively tested in other work:
1. for tests of the recovery of simulated galaxy lenses, see Read et al. (2007),

2. for the recovery of gross features of even extended lens structures from the informa-
tion encoded in the image positions of lensed objects, see Saha & Williams (2001),
Ferreras et al. (2008).

3. In Leier (2009) we analyze the sensitivity of o, on the size of the ensemble by
calculating the absolute deviation between the average formal velocity dispersion of
an ensemble of 100 models and one with about 10000 models, which we take as a
close to exact representation of the lens model.

4. In Chapter 5 we show how additional source-image systems alter the mass recon-
struction.

3.2.2 Light profiles

To translate pixelwise the photon counts into stellar mass we need to make sure that no
nearby objects such as lensed quasar images or intervening stars contribute to the light
profile of the lens galaxy. Separating the light which originates from the lens galaxy from
possible contaminating sources is a difficult procedure, which will be elucidated in the
following. In Fig. 3.3 the lens system PG1115 is shown consisting of an early-type galaxy
surrounded by four point sources, the lensed quasar images. Since the response of an
imaging system to a point source is the Fourier transform of the very same delta-function,
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a so-called point-spread function (PSF) is found ‘ 020

in the image at any point source position. Its O s o1
wings, the typical four-spike shape, extend even MGE
in regions far from the actual position of the ‘ 0'12‘2
point source. In the given example (Fig. 3.3) | “ | Zioé
light from the PSF wings clearly contaminates . —y 0083
the central region of the system where the lens- ' OOGE
ing galaxy is located. Therefore a light (or sur- 1" . 0088
face brightness) profile, the Sérsic profile as in- — 002
troduced in Section 2.9.1, is fitted to the avail- Skpg \ 0.00

able photometry to account for the light profile
of early-type galaxies. At the same time PSFs bhd
. lens PG1115. The elliptical lens galaxy
are fitted to the quasar images and subtracted . .
) . - in the centre is surrounded by four lensed
off (point-source reduction). As an aside, the  quasar images.
given photometry is always a convolution of the

Figure 3.3: H-band photometry of the

real light source with the instrument’s response. As a consequence, the given photometry
must be deconvolved in whole with a PSF template. The whole fitting procedure — consist-
ing of galaxy profile fit, quasar image fits and deconvolution) is carried out using GALFIT,
a code written by Peng et al. (2002). This way we obtain best-fitting surface brightness
profiles, freed from interfering light, for the given multiband data. The output, i.e. the
lens galaxy model, is used to constrain stellar populations and to estimate pixel-by-pixel
the stellar mass, which will be explained in the following section.

As for now we want to focus on the problems arising during this procedure. They can
be assigned to one of the following categories:

(a) finding an appropriate PSF for deconvolution and point-source reduction, or
(b) removing perturbing light sources that negatively affect the fitting procedure.

Since we will use photometric data in different filters, one of the following PSF-picking
procedures has to be suitably chosen for each case and spectral band.

1. Star-picking method: Sufficiently isolated
stars from the same or a contemporaneous

(as nearly as possible) image recorded by PG1115 0.00

the same instrument provide already a high ologg
quality PSF. A star can be considered as o.o7§
isolated if its sky background shows no gra- A 006 5
dient. Extracting the star together with a — . T ] 0.05->—:)‘
part of the surrounding region large enough it 0.04 2
to include the PSF wings and small enough O-OSE
to avoid light pollution by other sources is . 002 %
a matter of trial and error. Tpc 0.01

2. Iteration method: Select the image of a
lensed quasar that is most distant from the
rest of the lens system and use it for quasar
image fitting. While the lens galaxy and

Figure 3.4: H-band photometry of the
lens PG1115 after lens and PSF reduction
(residual map) via iteration method.
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the other quasar images are fitted with GALFIT (Peng et al. 2002), the residual im-
age, showing only the previously chosen outermost image without any contaminating
light, can then be taken as a qualitatively refined PSF. This step can be repeated
until we reach the desired level of enhancement. After two to four iterations the pro-
cedure converges and yields a flat residual. In some cases, when the picked quasar
image is sufficiently isolated, iteration brought no further improvement. Figure 3.4
shows the residual image after PSF reduction with the iteration method. The left-
most quasar image (compare with Fig. 3.3) is used for the reduction. Also the other
three quasar images show except for some central pixels good reduction.

3. Synthetic PSF reduction: The program stetlr PSF ntietic PSF
TinyTim is capable of simulating PSFs for
all Hubble Space Telescope cameras (Krist I .
1993). The quality of its synthetic PSFs
depends on the instrument for which it is
created. Better reduction can be achieved
with PSFs simulating the response of the
Wide Field Planetary Camera 2 (WFPC2)
rather than with the Near Infrared Camera
and Multi-Object Spectrometer (NICMOS)
PSFs. This is presumably due to the higher
stability of WFPC2 PSFs. In Fig. 3.5 we Figure 3.5: Comparison of stellar and
show this by a comparison of a quasar  Synthetic PSFs (t?p row): The bottom
image in NICMOS H-band photometry fg;&i rsil;):s the ratio of residual and orig-
reduced by a star and a synthetic PSF. The
top panels show stellar (left) and synthetic

PSF (right) and the bottom panels corresponding weighted residual maps. The
weighted residual map is computed from the original photometry and the best fit
model by (original — model)/(original). The comparison shows that the synthetic
PSF produces a non-flat residual map, i.e. it leaves structures behind that might
disturb the fit of the surface brightness profile to the lens galaxy.

Methods (1) to (3) can also be combined with other methods to remove luminous struc-
tures (such as PSF wings or foreground galaxies) interfering with the fit. Light sources
which clearly do not belong to the lens (e.g., when found to be at different redshift) can
be removed by fitting and consequent reduction of additional light profiles. Masking is
another method to avoid interfering light sources. Masked out regions are simply ignored
during the fit. Such a technique comes in helpful for example if the surface brightness
profile fit to the lens galaxy converges to a position other than the brightness peak of
the lens. This happens for instance in the case of nearby bright objects, such as stars
and quasar images. On the contrary the method can always be applied to objects with a
sufficient angular separation. Certainly, if an object’s light profile is clearly distinct from
the light profile of the lens, i.e. the photon counts per pixel between the two drops to the
level of the background noise, the fitting will hardly be affected by its presence. In Fig. 3.6
we show the lens system B2045+265 for which extensive use of masking is made. Masked
out regions are highlighted by a bluish hue. The radius of the masked regions depends on
the surface brightness profile and is defined as the radius in which 95% of the total light
(above background) of the object is enclosed.
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The lensed quasar images A, B and C as well as
the two stars (S) are masked out, as they meet
the above criterion of sufficient separation. The
inset plot shows the section of the photometry
along the red line, which crosses the quasar im-
age C, an object of unknown origin labelled x,
the lens galaxy (L), the quasar image D and fi-
nally one of two stars (S). The object = and the
image D have roughly the same angular distance
to the centre of the lens galaxy. However, since
D is known to be a very dim image, i.e. point
source for which only the first maximum of the
PSF is visible, we choose PSF reduction instead
of masking. Object x is masked as an additional
profile fit and subsequent reduction was no valid
option due to interference with the lens profile.
Other examples for masks used in this work are
shown in Fig. A.1 of the appendix. To prevent
the fit from diverging, further constraints can be
imposed via GALFIT on all free parameters of
the profiles introduced in Section 2.9, i.e. the
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Figure 3.6: Masking of quasar images,
stars and other light sources which might
affect the quality of the surface brightness
profile of the lens on the example of the
lens system B2045. The blue shaded re-
gions are masked out. The inset plot shows
the section of the surface brightness profile
along the red line.

Sérsic index n, the effective radius R,, the magnitude, as well as the position (z,y),
the axis-ratio b/a, i.e. minor over major axis, and the position angle PA, which is the
angle between the major axis of the ellipse and the y-axis increasing counterclockwise. In

particular we make use of

e fixing the sky, i.e. the background noise level to a value determined with SExtractor

(Bertin & Arnouts 1996), since estimating the background is essential to extract
a meaningful profile of the lens (H&ussler et al. 2007), (low signal-to-noise objects
are thus neglected, increasing the goodness of the fit for the generally bright lens

galaxy),

fixing the position (x,y) of the surface brightness profiles to previously determined
light centroid positions,

constraining light profile, refers to constraining R, and/or the Sérsic index n, since
both parameters are degenerate, being basically inversely related, i.e. constraining
R, to a low value causes n to diverge and vice versa,

constraining projected shape, by means of the position angle PA and the axis ratio
b/a, to a physically appropriate range of values (e.g. b/a > 0.1 (Odewahn et al.
1997)), and finally

constraining peak brightness, restricting the range of magnitudes of the point sources,
e.g., constraining image A to be at least 0.5 magnitudes brighter than image B.

Except for the first two constraints, which are necessary for only a few lensing systems,
we try to keep the number of degrees of freedom of the fit as high as possible and fix the
parameters only if there is no alternative. In cases where the best-fit PA in one band was
found to differ significantly from the PA in another band e.g. due to intervening quasar
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Figure 3.7: Upper left panel: model for lens galaxy and image D in NICMOS H-band photometry for
lens system B2045. North is left and East is down. Best fits for the lens galaxy could be obtained by
masking out images A, B, C, the stellar objects east of the lens and a “blob” west of the lens galaxy, as
shown in Fig. 3.6. Lower left panel: Residual map, i.e. original reduced by the model. Upper right panel:
Residual map (original — model) over original map. The red ellipses are centred on the brightness peak
of the lens and have the same ellipticity and position angle. Their major axes range from 2 to 18 pixels.
Lower right panel: azimuthally averaged annuli of the upper right panel versus major axis of the ellipses
taken as radial distance.

light, it was necessary to constrain PA to the less biased value. The same applies to the
axis ratio b/a. If a highly eccentric ellipse is fitted to an actual round lens galaxy due to
interfering PSF wings, the parameter space must be constrained to exclude less likely b/a
values. Since both the lensing galaxies and quasar images are in some cases too bright to
be distinguishable in H-band, but too faint in V-band, we use the shape parameters PA
or b/a from I-band as a proxy for the fits in other bands. This approach is legitimized
by the fact that different stellar populations visible in different bands do not change their
relative positions and orientations considerably. All other fitting parameters apart from
the boxiness, which is set to zero throughout the process are free. The boxiness as well
as all other parameters are defined in Peng et al. (2002). The determination of the light
centroid and the size of masked regions, as well as checks for fulfilled masking criteria are
conducted via IRAF (Image Reduction and Analysis Facility).

To minimize x? and test the stability of the fit, the fitting procedure was repeated with
slight changes to the initial parameters. For lenses with photometric data in more than
one band the I or V-band parameters for R, and n were taken as a prior to the H-band
parameters if necessary. However, x? is not the only criterion to assess the quality of a
fit. We focus on the goodness of the fit in regions most important to our analysis, i.e.
in the central region of the lens galaxy. The ratio of the residual image and the original
image yields a percentage map of the lens systems showing pixel-by-pixel the quality of
the model, as illustrated in Fig. 3.7 (upper right panel). Note that the Figure shows the
central region enlarged by a factor of two compared to Fig. 3.6. As the original image
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Figure 3.8: As in the lower right panel of Fig. 3.7, but for two different photometric models of the lens
galaxy B1422. The model with the lower x? according to GALFIT produces a residual map that exceeds
the high-x? model over a wide radial range.

of the lens system drops quickly to small pixel values, the residual/original ratio can
become extremely large. At pixel positions where the model overestimates the original
photometry the values can become negative. We note that in some cases, better x? fits
were rejected in favour of the flatness of the residual in central regions < 1R, of the lens.
This occurs in particular for lenses for which the short distance to a lensed quasar image
makes constraints mandatory. An example is given in Fig. 3.8 for two different models
of the lens system B1422. The lower x? is due to better agreement between model and
photometry in regions not important for the lens model. In general regions more distant
from the centre of the light profile affect the y? value stronger, as the amount of pixel
with same distance to the centre increases with distance. At the same time the pixel
values decline, which should countervail the impact of the increasing amount of pixels.
The quasar images leave however an imprint in the residual map, as their wings extend
mostly beyond the reduced box as one can see in Fig. 3.4. That is why the y? assessment
of the goodness of the fit needs to be verified by consideration of the residual/original
map. It should be noted that even though GALFIT does a parametric search to get the
best fit, for this analysis we are just interested in the 2D distribution that minimizes the
residuals, regardless of the parameters themselves, i.e. we are less sensitive to the inherent
degeneracies associated with parametric fits. After creating photometric models for all
available band-passes, we proceed with the stellar population synthesis process.

3.2.3 Stellar mass component

The baryonic matter component in form of stars can be inferred using the previously
modeled photometry. In early-type galaxies the baryon budget is dominated by the stel-
lar mass content. We estimate stellar masses using population synthesis models to set
constraints on the history of star formation. In this procedure an initial mass function
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¢(m) = dN/dlogm (see Section 2.8) as a starting point for a single stellar population is
assumed. A spectrum A, or spectral energy distribution, can be synthesized from a spec-
tral library, such as the one of Bruzual & Charlot (2003a), depending on the metallicity
Z, the mass and the stellar age t. So a single stellar population is defined by

S(t,Z) = / d(m)A(m, t, Z) dm. (3.1)

To obtain an evolved stellar population the single stellar population needs to be convolved
with the star formation rate. The star formation rate ¢(t — tpor) x exp —(t — tror)/T
describes the transformation of gas into stars over a typical formation timescale 7, starting
at the formation epoch trpor. The rate decreases exponentially with time as the galaxies
get depleted of gas and recycle the gas ejected by stellar remnants. Its exponential shape
is a consequence of a simple power law found to relate the density of interstellar gas to
the rate of star formation (Schmidt (1959) law).

The integrated spectrum of a stellar population in spectral band A can then be written as

toBs

Fu(trom, . 7) = / B(t — tror) % Sx(t. Z) dt. (3.2)

tFOR

Knowing the integrated spectrum F) (left hand side of Eq. 3.2) for two different spectral
bands, allows computing the colour, i.e. the difference in magnitude, by —2.5log(Fy, /F),).
Note that even if spatially resolved photometric data is available in one band only, the
colour can still be computed using the integrated flux (i.e. the total light output) of the
lens galaxy known in I-band for the whole sample. In some population synthesis mod-
els the evolution of dust is taken into account by an additional exponential term in the
integrand of Eq. 3.2. Since most of the lens galaxies are dust-poor early types, we just
consider a single constant dust screen (see also Section 3.2.4). However, we now have a
direct connection between observations and a stellar population synthesis model consisting
of the initial mass function, the spectral library, the star formation history, dust attenua-
tion and metallicity. This means also that one can directly relate colour and stellar mass,
since the spectrum A as used in Eq. 3.1 depends on the latter. As an aside, the problem
of age and metallicity of lens galaxies being degenerate cannot be solved by broadband
photometry alone. But as it turns out stellar masses are less sensitiv to the degeneracy,
when estimated via ‘red’ M /L ratios (see e.g. Ferreras et al. 2008).

Fixing the IMF to the one given in Eq. 2.40 (Chabrier 2003) the total amount of free
parameters in the colour-mass relation breaks down to three: the formation epoch trog,
which — when expressed in terms of redshift — lies in the range 2 < zppor < 10, the expo-
nential timescale 7, broadly estimated to be in the range —1 < log(7/Gyr) < 1 and the
metallicity Z, which is assumed to range from 0.1 to 275, corresponding to the relative
abundance range of —1 < [m/H] < 40.3. The range of values for formation epoch and
exponential timescale is as large as possible, i.e. the star formation can happen between
the redshift of the oldest yet known stars z = 10 and the observed star formation cut-off
at z = 2 below which it drops by one order of magnitude (Hopkins & Beacom 2006).
As for the metallicity, early-type galaxies are known to be in general of solar or slightly
super-solar metallicity (Trager et al. 2000). For robustness we include here an even wider
range.
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Figure 3.9: Colour-mass relation for a galaxy at z = 0.1 (blue), z = 0.3 (green), z = 0.5 (red) with
a formation redshift zror = 5, corresponding grey regions represent zpor = 2. Assuming an observed
colour of B —i =2.0+0.1 (dashed line) gives a ~ 0.2 dex uncertainty in stellar mass. Data from Ferreras
et al. (2008).

For each lens we ran a grid of 32 x 32 x 32 models in this three dimensional parameter
space. For each choice of the parameters, a composite population is obtained, transformed
to the redshift of the lens, and folded with the passband response to compare with the
observed colours and to extract a mass-to-light ratio in the observer-frame H-band. The
colours are furthermore corrected for Galactic extinction using the dust maps of Schlegel
et al. (1998).

Even though photometry is a poor way to determine stellar ages and metallicities, it
can give good estimates of the stellar mass for a given Initial Mass Function, as shown
in Fig. 3.9. Therein a galaxy assumed to be at redshift z = 0.5 (red); 0.3 (green) or
0.1 (blue) is observed through the B and i passbands and compared with a large grid of
exponentially decaying SFHs using the models of Bruzual & Charlot (2003a). If for this
galaxy a colour of B—i = 2.0+0.1 is observed, the stellar mass can be constrained with an
uncertainty of about 0.2 dex. The coloured regions in Fig. 3.9 correspond to two forma-
tion epoch of zror = 5, whereas the underlying grey counterparts correspond to zpor = 2.

In that way the modeled profiles are used to constrain stellar population synthesis
models and to estimate pixel-by-pixel the stellar mass via the colour-to-mass relation.
Figure 3.10 shows the end-product of the stellar population synthesis pipeline, a stellar
surface mass map (Xjy,) in a logarithmic scale. The contours enclose pixels with stellar
masses equal to or greater than the value stated in the contour labels. Knowing the total
reconstructed lens mass (shown in Section 3.2.1) and the stellar mass by means of the
photometric models (shown in Section 3.2.2) one can compute stellar mass fractions as
well as dark matter surface maps in the style of Fig. 3.10.
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log (M/M,)

Figure 3.10: Projected stellar surface mass map for the lens B2045. Note that the contours enclose pixels
of same or higher stellar mass. They do not refer to the total stellar mass enclosed. The box size is 31 x 31
pixels.

3.2.4 Dark matter component and stellar baryon fractions

The difference between total mass and stellar mass is not necessarily made up of 100%
dark matter. Baryons which did not form stars might be stored in large more or less
clumpy dust and gas reservoirs in the galaxies (e.g. van Dokkum & Franx 1995). In a
recent study the total dust mass of a sample of pre-selected dusty early-type galaxies was
found to range from 10°2 to 1072 M, (Kaviraj et al. 2011). This was done using a sample
of 352 nearby early-type galaxies with prominent dust-lanes. It should be furthermore
noted that such obviously dusty early-types represent only 4% of the early-type galaxy
population with redshifts z < 0.07 in the SDSS GALAXY catalogue. Its stellar masses
were determined to range between 10%® and 1012 M. In the same study the total gas
fraction (gas mass over stellar mass) for the local sample was determined to be between
0.2% and 8% with a median value around 1%. Since our sample contains only two galaxies
with observable dust lanes and one late-type galaxy, the dust and gas contribution to the
total mass is assumed to be negligible. The exceptions will be discussed in the sample and
analysis sections of Chapter 6.

Prior to subtracting pixel-by-pixel the stellar mass (Fig. 3.10) from the total lens mass
(Fig. 3.2), the pixel maps are rotated to the same orientation. Due to limited computation
time, the lens mass maps have pixel sizes roughly 5 to 10 times larger than the pixels of
the photometry an average value for all photometric pixels is assigned to one lens mass
pixel. Figure 3.11 shows the result of these efforts. The left map is the difference of total
and stellar mass, whereas the right map is the stellar mass over total mass ratio. Note
that there is an error attached to each pixel. However, as our analysis is based on radial
mass and stellar baryon fraction profiles, which is a stellar over total mass profile. The
profiles are obtained by azimuthally averaging along the isophote ellipses.

The radial scale of such profiles is determined by H-band photometry in a special
manner. Regardless of the best fit parameters, e.g. R, of the Sérsic profile, found by
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Figure 3.11: As in Fig. 3.10 but for projected dark matter (left) and stellar baryon fraction (right).

GALFIT, we take the photometric model (Sec.3.2.2) in H-band (as it is the main band for
the colour determination) instead to compute the Petrosian radius (Petrosian 1976). It is
determined from the Petrosian ratio n(r, z), which is simply the ratio of the mean surface
brightness I(r) of an annulus at radius r to the mean surface brightness within r. We
have or
7) fcfr 2’ I(r', 2) dr' /[ (c3 — c3)r?]
r,z) = ,
(r,2) for 2 I(r!, 2) /(m2)

where ¢; and ¢y are parameters defining the radial thickness of the annulus and z denotes
the redshift the flux is corrected for. Following Blanton et al. (2001), we choose ¢; = 0.8
and co = 1.25. One can see that P(r, z) decreases nearly monotonically down to a level
that depends on the background. It is common practice to define the Petrosian radius as
the distance at which this ratio falls to 0.2, i.e. P(Rp,z) = 0.2. This circularized radius
is taken as the full extent of the galaxy, so that we can use it to determine the half-light
radius (R,) from the curve of growth. For the analysis of the colours, we restrict all pho-
tometric measurements within R.. The effective radii of our lenses are given in Table C.2

(3.3)

in the appendix.

The introduced methods are applied to the set of gravitational lenses presented in the
following Chapter.

Fig. 3.12 summarizes the stellar and total lens mass reconstruction in form of a work-
flow diagram. The right branch of the organization chart shows input and output of
PIXELENS, which is in the focus of the following Chapter. Therein we use global light
estimates to study the fundamental plane of early-type galaxies. The left branch will
be used in Chapter 6, where we carry out a resolved analysis of the baryonic and dark
matter distribution. Its result will be used for further analyses of halo concentrations and
baryonic cooling processes in Chapter 7.
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Figure 3.12: The left branch of this organization chart illustrates the stellar population synthesis workflow
as described in Section 3.2.3 starting with the photometric models (Section 3.2.2) as an input and ending
at the stellar surface mass map 3, (Fig. 3.10). The right branch shows the lens mass reconstruction
explained in Section 3.2.1 from input parameters (image positions (z,y), lens and source redshift (zz, zs),
Hubble time (H; ') and — optional — the time delays between images (At)) to the intermediate products,
the density profile p(< R), the enclosed total mass profile M (< R), a formal velocity dispersion oiens(R)
(used only in Chapter 5) and the total surface mass map Xas,, (Fig. 3.2). Subtracting or dividing the
pixelated mass maps yields the dark matter or baryon fraction map respectively. Input/output data is
indicated by green colour, program routines are yellow, logical junctions red and intermediate products
magenta. White components are not essential to the pipeline.
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In the following we present and discuss briefly the lens sample used in the different parts
of this thesis. All lens properties important for mass reconstruction and stellar population
synthesis are given below. Furthermore, we provide detailed information about the lens
environment, which in fact influences both the mass model and the light profile and yields
important insights into the evolution of early-type galaxies.

The selection criteria for the samples are given in the respective Chapters (see Section
5.2, 6.2 and Section 7.1).

The lens sample presented in Section 4.1 is used for the studies carried out in Chapter
5. It incorporates 18 well-known early-type lensing galaxies — nine from the Sloan Lens
ACS Survey! (SLACS), another nine from the CfA-Arizona Space Telescope LEns Survey?
(CASTLES) — and two lensing clusters, ACO 1689 and ACO 2667. Reconstructed sur-
face mass maps produced via PIXELENS? and corresponding input, such as lens redshift,
source redshift, image positions and time delays, are shown in Figures B.1 and B.2 in the
appendix. A brief tutorial on how to comprehend the input files is given at the beginning
of Appendix B.

The lens sample presented in Section 4.2 is a subset of the CASTLE Survey used for
the stellar and dark matter reconstruction in Chapter 6. It consists of 21 lenses subject to
later analysis and another three objects used to highlight problems in photometric mod-
eling (Section 6.2.3). Available H-band photometry is presented in Fig. 4.1 at the end of
this chapter. Again a fraction of the sample, eighteen out of 21 lenses, is used for the
analysis in Chapter 7.

We provide the lens parameters, references and all quantities important for (and in-
ferred from) the studies carried out in Chapters 5, 6 and 7 in Tables C.1, C.2 and C.4 of
the appendix, respectively.

Throughout this chapter we will use the terminologies double or quad to refer to lens
systems with two or four lensed source images. Note that after giving the full name of the
lenses we henceforth use their abbreviated identifiers only, i.e. we skip the digits indicating
the declination.

!www.slacs.org - The full set includes about 70 lenses, but image data was only made available for a
small subset.

2cfa-www.harvard.edu/glensdata/

3 Available from www.qgd.uzh.ch/projects/pixelens/
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4.1 Lens sample |

In this section we present the lensing systems used in Chapter 5.

Lensing systems from CASTLES

CFRSO03.1077: This doubly imaged lens system was found by Crampton et al. (2002).
For its lens galaxy no effective radius is known; hence it is used for the analysis in Section
5.3 but not in Section 5.4.

HST15433: The double HST15433 was discovered by Ratnatunga et al. (1999). It has a
neighbouring galaxy companion, which is thought to only modestly perturb the estimated
mass, according to Jiang & Kochanek (2007). Also for this lens no effective radius could
be found in literature.

QO0957+561: This lensing galaxy is part of a cluster that contributes significantly to the
large image separation (Garrett et al. 1992). Q0957 was the first lens discovered (Walsh
et al. 1979) and is special also in other respects. First there is a doubly imaged galaxy
component in addition to the famous double quasar used to calculate the projected mass
map. Secondly the lens is a cD galaxy located in the centre of a cluster. The nearest
cluster member lies within 10” East of the lens galaxy. However a simple external shear
is insufficient to describe the effect of the environment on the image positions. Breaking
the degeneracy between the shape of the galaxy and the cluster shear takes advantage of
arc features (Keeton et al. 2000) and X-ray data as attempted by Chartas et al. (1998).

MG2016+112: This lens system was reported first by Narasimha et al. (1984). Accord-
ing to More et al. (2009), it exhibits quadruply imaged features of the quasar jet which
can be distinguished only in the radio band. As the pixelated models evolved MG2016 is
treated as a double in Chapter 5 and as a multiply imaged quasar system with three images
in Chapter 6. MG2016 is known to be a giant elliptical galaxy in a cluster with 69 prob-
able, photometrically selected members of many different galaxy types (Toft et al. 2003).
Among them is a significant fraction of merging cluster galaxies, which is direct evidence
for a hierarchical formation history (van Dokkum et al. 2000). Most of the neighbouring
objects within 30” lie on an east-west axis and thus explain the major shear direction.

Q0047-2808: The quadruply imaged quasar was discovered by Warren et al. (1996).
Q0047 appears to have a double component source, but this is probably not important
for macro models. It is a lens with only a small shear required by lens models. However,
Wong et al. (2011) find evidence for a galaxy group with 9 members.

PG1115+4-080: This quad was reported first by Weymann et al. (1980) and has measured
time delays (e.g. Schechter et al. 1997). The environment of the quad PG1115 is thor-
oughly analyzed by Momcheva et al. (2006). They find 13 galaxies in a local group with
elongated group emission in X-rays according to Grant et al. (2004). The brightest 4 mem-
bers of the group are located on an axis with a position angle of +60° (measured North
through East) of the lens mass which accounts well for the shear required in our lens model.
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HST14176: The lensing galaxy responsible for a quad configuration, discovered by Rat-
natunga et al. (1995), is part of a cluster which is not included in the models.

B1608+656: For the complex quad system B1608 (Myers et al. 1995), the measured time
delays (see Fassnacht, Pearson, Readhead et al. (1999)) are used and make a more signif-
icant difference to the lens models. The lens resides in the middle of a galaxy group with
8 other group members according to Fassnacht et al. (2006). The photometry shows an
object close to the main galaxy, which constitutes a second lens galaxy. This is confirmed
by the reconstructed mass map (Fig. B.3) as it predicts a conspicuously elongated mass
distribution towards NE. The image (Fig. 4.1) also show a prominent dust lane between
the two galaxies.

Q22374030: The Huchra-lens Q2237, also known as the Einstein Cross, is actually the
bulge of a barred spiral galaxy, which is responsible for the lensing (Huchra et al. 1985).
Note that in Chapter 6 the bulge is treated as an early-type galaxy. The system shows
only a mild external shear due to the disk of the spiral galaxy. For spiral galaxies the
contribution of dust to the photometry is usually more significant than for early-type
galaxies (the latter morphological type constitutes the majority of our lensing galaxies).
The impact of dust on our analysis is discussed in Section 6.2.2.

Lensing systems from SLACS

The doubly imaged systems among the SLACS lenses are:
J0037-094, J0912+002, J1330-014 and J2303+4142.

All of them are quite typical with biases according to their observation method. The
lens system J0912 takes a special position. It consists of two long arcs which are repre-
sented in this work as four doubles. Moreover, this lensing galaxy has the highest kinematic
velocity dispersion o,,, among all lenses of our sample. J1330 is the lens with smallest
redshift (z = 0.08) among the SLACS lenses and shows the smallest o,,.

Quadruply imaged systems among the SLACS lenses of our sample are:
J1205+491, J16364+470 and J2300+002.

The mean kinematic velocity dispersion (o,,.) of our SLACS sample is 10% higher
than (o,,,) of CASTLES lenses.

There are two special cases: J07374321 and J09564510.

Both are thought to be quads, but in each of these only 3 images are used, as the astrometry
of the faintest image was too uncertain. J0737 is with z = 0.32 the most distant in our
SLACS subsample and belongs to higher z lenses in the whole catalogue.

Lensing clusters

Finally we consider the two lensing clusters ACO 1689 and ACO 2667.

ACO 1689: This galaxy cluster has a very large number of multiply imaged systems
found by Broadhurst et al. (2005). In the present work this cluster is modeled by a set
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of two 5-image systems, six 3-image systems and one double. The additional systems are
known to affect only model details (Saha et al. 2007). Note that there are many more
imaged sources, but adding those to the model does not change M,,,, i.e. the mass model
is tightly constrained by this set of image systems.

The kinematic line-of-sight velocity dispersion o, = 1400 km s~! of galaxies within
the cluster was taken from Lokas et al. (2006) for a subset of 130 galaxies in the inner
region of the cluster with velocities |v| < 3000 km s~!, which contains most likely the
biggest mass fraction responsible for the lensed images. This average value applies for a
radius of around 400 kpc, a region where the formal velocity dispersion seems to be suffi-
ciently flat and in which roughly half of the projected radii of the 130 galaxies considered
in Lokas et al. (2006) are to be found. Furthermore the value is not too far away from
the Einstein radius or outermost image position of around 240 kpc. In order to estimate
the I-band magnitude of the cluster, the 130 brightest out of 840 galaxies are taken from
a cluster survey of Molinari et al. (1996) for which the Gunn g, r and i magnitudes were
provided. Together with K-correction, evolution correction and galactic extinction we ob-
tain L; = 2.82 x 10" L.

ACO 2667: For this cluster three 3-image systems and one double were known to derive
the formal mass-only related velocity dispersion curve. The kinematic velocity dispersion
Oops = 960338 km s~! of this lens was determined by Covone et al. (2006) from a sample
of 21 galaxies in the inner region of the lensing cluster with a radius of 110h7*01 kpc, which
is in the same order of magnitude as R, = 98h7_21 kpc. However, since photometric data
for estimating the total flux of galaxies within the cluster was not available, ACO 2667 is
not included in the mass-to-light plots of Section 5.4 and consequently there was no need
to determine R, for the mass estimate.

4.2 Lens sample Il

Q0047-2808: For information on Q0047 see Section 4.1.

Q0142-100: The environments of the doubly imaged quasars Q0142 have been studied by
Lehér et al. (2000), Momcheva et al. (2006) and Eigenbrod et al. (2007) and are found to
have no dominant impact on the total shear beyond a cosmological (large-scale structure)
contribution ~1,gg which is additionally confirmed by lens models. Not much is known
about the close-in group environment of Q0142, although there are some galaxies near the
line-of-sight, whose redshifts are mostly unknown. Surdej et al. (1987) speculate that a
galaxy about 10” away from the lens may be a group member.

MGO0414+0534: The quadruply imaged quasar MG0414 at z = 0.960 is the second most
distant lens of our sample. Judging by its luminosity and colour, the lens is likely to
be a passively evolving early-type galaxy (Tonry & Kochanek 1999). Schechter & Moore
(1993) find an object close to image B visible only in I-band, which might contribute to
the lensing effect. Our reconstructed mass map also shows increased surface density at
the position of the object.
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B0712+472: This quadruply imaged quasar was reported first by Jackson et al. (1998).
Lens models found in previous studies require significant external shear, which can be
attributed to 9 or more galaxies in a foreground group at z ~ 0.3 found by Fassnacht &
Lubin (2002). Their study also shows one other galaxy at the redshift of BO712 at ~ 100”
from the lens.

HS0818+1227: The image separation of this doubly imaged quasar is 2.56”. Since its
discovery by Hagen & Reimers (2000) no further insights into the environmental proper-
ties of the lens have been gained. Nevertheless, Hagen & Reimers (2000) found a galaxy
5" north of the lens which appears to have the same redshift of z = 0.39, which explains
the external shear required by our lens model. A chain of galaxies at a distance of 10"
north-east could also be associated with the lens galaxy.

RXJ0911+0551: The quad lens RXJ0911, discovered by Bade et al. (1997), is located
on the outskirts of a cluster (Morgan et al. 2001). Chandra observations of the cluster sug-
gest a complex non-spherical cluster mass distribution at a temperature of roughly 2.3 keV.

BRI10952-0115: The environments of the doubly imaged quasar BRI0952 have been
studied by Lehdr et al. (2000), Momcheva et al. (2006) and Eigenbrod et al. (2007) and
found to have no dominant impact on the total shear beyond a cosmological (large-scale
structure) contribution 7pgs, which is additionally confirmed by lens models. BRI0952
was previously thought to reside in a region loosely bound to a poor group with 5 mem-
bers (Momcheva et al. 2006); a later study discovered it is at higher redshift and thus not
connected with the group (Eigenbrod et al. 2007).

QO0957+561: For information on Q0957 see Section 4.1.

LBQS1009-0252: This double was first reported by Hewett et al. (1994). Lehar et al.
(2000) locate the lens galaxy of LBQS1009 close to quasar image B. They find that a
dominant shear contribution of the host galaxy of a nearby quasar (4.6” northwest of
the lens — unrelated to the lensed quasar) is consistent with the derived major axis of
the lens when modeled by a Singular Isothermal Ellipsoid. Using a Singular Isothermal
Sphere model Claeskens et al. (2001) determine a smaller shear. Faure et al. (2004) state
that there is no significant galaxy overdensity in the field. This is in agreement with the
free-form lens models of this study, which do not require external shear for this lens.

B1030+071: This lens was reported by Fassnacht & Cohen (1998). It exhibits average
velocity dispersions and intermediate luminosities. Observed substructures in B1030 in-
dicate the presence of an interacting galaxy system (Jackson et al. 2000) although firm
statements about the environment cannot be made (Lehér et al. 2000). However, shear is
not strongly required by our mass model.

HE1104-1805: The doubly imaged quasar HE1104 features the second highest image
separation of 3.19” and a distinct lens galaxy (the median separation is ~ 1.5”) (Wisotzki
et al. 1993). Furthermore, the lens appears to be near the bright image, which is rather
unusual and implies the presence of a group or cluster enhancing the separation (Lehar
et al. 2000). Parametric as well as free-form mass models also suggest that an external
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shear is mandatory to reproduce the image configuration (e.g. Wisotzki et al. 1998). The
lens galaxy is unaffected by quasar light, allowing for a good fit. However, the photometric
redshifts of a few neighbouring galaxies described in Faure et al. (2004) indicate that such
cluster galaxies are probable companions of the lensed quasar rather than of the lens.

PG1115+4080: For information on PG1115 see Section 4.1.

B1152+200: For the doubly imaged quasar B1152, whose discovery was reported by
Myers et al. (1999), there is no information about the composition of the environment.
Judging by the morphology of the image-source system no strong shear is expected. B1152
shows average velocity dispersions as well as intermediate luminosities.

B1422+231: The quad B1422, found by Patnaik et al. (1992), is in a poor group with
5 nearby galaxies mostly south east of the lens that cause a significant shear (Momcheva
et al. 2006, Hogg & Blandford 1994). The group is visible in X-rays at 0.5 — 2 keV (Mom-
cheva et al. 2006). In recent work by Wong et al. (2011), 12 new members were found to
be part of the group.

SBS1520+4-530: This doubly imaged quasar was discovered by Chavushyan et al. (1997).
It is a member of a galaxy group with at least 4 other members as stated in Auger et al.
(2008).

B1600+434: B1600, discovered by Jackson et al. (1995), is located in a denser group
with at least 6 late-type galaxies which cause significant shear. It should be noted that
B1600 is likely to be a late-type galaxy viewed edge-on (Auger et al. 2007). We find further
evidence for this from the study of concentration parameters in Section 6.6. The absence
of X-ray emission is suggestive of a not relaxed group, a conclusion strengthened by the
elongated morphology of the group. Furthermore the lens galaxy appears to be almost
edge-on and exhibits a prominent dust lane. B1600 shows average velocity dispersions as
well as intermediate luminosities.

B1608+4656: For information on B1608 see Section 4.1.
MG2016+112: For information on MG2016 see Section 4.1.

B2045+265: B2045, as found by Fassnacht et al. (1999), might be influenced by a group
of galaxies west of the lens. A shear in this direction is also required by the lens model.

The lens might also be affected by a close dwarf galaxy causing anomalous flux ratios
(McKean et al. 2007).

HE2149-2745: The double HE2149 was discovered by Wisotzki et al. (1996). It might
be a member of a cluster as inferred by Lopez et al. (1998), using a large number of red
non-stellar objects in R-band images of the field around the lens. Considering recent esti-
mates of the lens redshift from Eigenbrod et al. (2007) (2jens = 0.603) and the environment
survey from Momcheva et al. (2006), HE2149 could be in a group with 3 neighbouring
objects. The morphology of the lens shows no sign of strong external shear.
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Q2237+4030: For information on Q2237 see Section 4.1.

Special cases

The following three lenses are excluded from our analysis in Chapter 6, but used in Section
6.2.3 to highlight problems of photometric modeling.

B0218+357: B0218 is the system with the smallest known image separation (0.33")
(Patnaik et al. 1993). The projected lens mass map shows that external potentials induce
a shear in B0218 that was studied in Lehar et al. (2000). They find 13 possibly perturb-
ing galaxies inside a radius of 20” located roughly along the axis which connects the two
quasar images. It should be mentioned that according to Lehar et al. (2000), B0218 is a
late-type galaxy.

RXJ0921+44529: The doubly imaged quasar RXJ0921 has the highest angular image
separation (6.93”) compared to any other lens in the sample. According to Munoz et al.
(2001), it is probably a member of an X-ray cluster. From model fits of the host galaxy,
Peng et al. (2006) conclude that RXJ0921 is a binary quasar rather than a gravitational
lens. Also, Popovié et al. (2010) find quite different spectral properties in the spectra of
the two components. There are 16 objects within 20” from the lens galaxy. Only for three
of them a redshift close to that of the lens could be determined. The mass model, how-
ever, does not require any external shear. In Section 6.2.3 we find unusually low baryon
fractions for this object, which can be taken as further evidence against the lens hypothesis.

B1933+503: B1933, discovered by Sykes et al. (1998), has 10 distinct images formed
from a three-component source, promising an exceptionally well-constrained mass profile.
As of now, there is no study of the environment of the lens, but according to the mass
reconstruction, no strong shear is necessary to explain the morphology.
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A Lensing View on the Fundamental Plane

The fundamental plane (FP) of early-type galaxies is an underlying regularity, which con-
tains valuable information on how galaxies form and evolve. Understanding the origin
of its departure from simple theoretical assumptions of virial equilibrium and constant
mass to light ratio, as discussed in Sec. 2.6.1, will give clues on other questions concerning
galaxy formation and evolution yet to be answered. The following analysis can be seen as
a preparation for the studies carried out in Chapters 6 and 7. In this chapter we make
use of the integrated fluxes (meaning one global luminosity quantity per lens galaxy) and
give consequently global estimates of the baryonic and dark matter content. The analyses
in Chapters 6 and 7 concern the resolved inner structure (< 10kpc) of lens galaxies.

In the following section, we introduce a formal velocity dispersion oy.,s, based on en-
closed mass and the virial theorem (Eq. 2.30). This is calculated from an ensemble of
pixelated lens models, introduced in Section 3.2.1, which is found to be fairly model in-
dependent. We compare oy,,, with the kinematic velocity dispersion o,,,, which can be
regarded as a test of the degree of virialization (see Section 5.3). In a second step, we cal-
culate the I-band luminosity and the total mass content for the sample of lensing galaxies,
which enables us to analyze the mass-to-light (M/L) relation L oc M® (Section 5.4). As
galaxy clusters exhibit generally a much higher M /L ratio, they should lie on a different
FP. We investigate whether this is true for lens clusters.

A sample of 18 well-known early-type lensing galaxies and two clusters, introduced in
Section 4.1, is used for this analysis. It comprises 9 lensing galaxies from the Sloan Lens
ACS Survey (SLACS) and another 9 from the CfA-Arizona Space Telescope LEns Survey
(CASTLES) as well as the lensing clusters ACO 1689 and ACO 2667.

The results of this preparatory study are summarized in Section 5.5 and will be set in
a broader context of spatially resolved studies on luminous and dark matter distributions
in Chapter 8.

5.1 Introduction

With gravitational lensing as an additional, independent measure of mass one can suitably
analyse the structure of the FP, as already done in different approaches. Bolton et al.
(2007) linked lensing mass and virial mass, whereas Rusin, Kochanek & Keeton (2003),
Treu et al. (2006), Jiang & Kochanek (2007) and Ferreras et al. (2008) analyzed the
mass-to-light dependence

M®* x L, (5.1)
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which is a representation of the FP.

By repeating the step from Equation 2.30 to 2.31 (see the introduction to fundamental
plane, Section 2.6.1) for the more general definition of the mass-to-light relation in Equa-
tion 5.1, a and b in Equation 2.32 can be expressed in terms of the power index «, which
is what we need to compare the results with previous FP type studies (listed in Table 2.1
in Section 2.6.1). Equating the now a-dependent exponents of o and I yields

a(b) = —2(1 + 2b), (5.2)

which only applies for a not unique mapping from (a, b) to «, assuming Equation 5.1.

In this study we combine both the virial approach and considerations including lumi-
nosities by means of lensing masses M., from 18 early-type lensing galaxies and 2 clusters,
discussed in detail in Section 5.2. An important role is played by a formal velocity disper-

sion, which we define as
[2GM(< R)
Ulens(R) - § 7TR . (53)

For an isothermal sphere this is exactly equal to a line-of-sight velocity dispersion. The

formal velocity dispersion o,,(R) is computed from the pixelated mass maps (Figures

B.1 and B.2) as indicated in the organization chart, Fig. 3.12. A detailed description of

the lens sample is provided in Section 5.2. Additional information is provided in Table

C.1 in the appendix. We define M, and M,;, according to Eq. 2.30 as:
3T 9

Mlens = -~R.o

2G e lens (54)

and M, = S’—gReafbs, where R, is the effective radius. It must be emphasized that, unlike
in Chapter 7, M, is defined here as a dynamical mass estimate rather than the mass
enclosed in a sphere of radius R.;,.

This in hand we can consider the following questions as a rephrased puzzle of FP:

1. Is the lensing inferred velocity dispersion oy, from non-parametric mass reconstruc-
tion equal to the kinematic velocity dispersion o7

2. Is this applicable to cluster scale lensing objects?
3. Are the computed M,,,, and M., consistent with the FP?
4. Does the FP relation extend to clusters?

Bearing these questions in mind we want to give a short overview of previous findings
in addition to the overview on FP studies given in Section 2.6.1.
In the above mentioned approach by Bolton et al. (2007) to the FP problem, the authors
find that 0., ~ 0., without taking advantage of luminosities (see also Bolton et al. 2008).
Their result is supported by our findings presented in Section 5.3. Bolton et al. (2007) take
no baryonic information into account, but a different plane is introduced, which emerges
from a dimensional change in the FP space from surface brightness I to surface density
Y, giving

R, x g@mybm,
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In fact this scaling relation, named a more fundamental or mass plane, can be transformed
into the shape M~bm/R-(1+2bm) o gm which is (for a,, = 2 and b,, = —1) consistent
with our theoretical assumptions of Equation 5.3 and thus represents the virial theorem.
We like to point out that the change to ¥ introduces basically a redshift dependence,
which comes along with a grave selection effect that reduces the significance of the scaling
relation. Moreover this relation is compared to the existing FP by introducing a new
parameterization of the lensing mass

My = (G103, (R./2))°,

where ¢ denotes a structure constant and ¢ a newly introduced power index. Bolton et al.
(2007) find that by doing so “the tilt relative to the virial relation is essentially elimi-
nated”. But basically ¢ and § are again consistent with Equation 5.3. Upon choosing
d =1, ¢ becomes log 37 /2 and the new parameterization in (Bolton et al. 2007) turns into
a test of the virial theorem.

Thus the decreased scatter for a mass plane is rather a natural consequence of the
added fitting parameter and selection effects than a more fundamental scaling relation.
Implications on structure variations are hardly possible. An appropriate treatment on the
search for reasons for a tilt in the FP originating in certain structural peculiarities includes
more elaborate approaches that allow for a distinction between for instance anisotropy and
mass-dynamical structure.

Rusin, Kochanek & Keeton (2003) introduced a self-similar mass model for early-type
galaxies consisting of two components: one concentrated component, which traces the
light distribution and one more extended power-law component, which represents the dark
matter. They found a strong r~2 dominance and therefore used the velocity dispersion
Oiso f01; an isothermal model as a surrogate in the FP yielding a mass-to-light relation of
Mgfio:u o L, which was the first such result from strong lensing. The error of the slope
already excluded a constant M /L. While substituting o;s, they are effectively assuming
the virial theorem.

Jiang & Kochanek (2007) constrain the average stellar mass fraction of a halo in favour
of adiabatically compressed halo models by taking a sample of early-type galaxies which
consists partially of lensing galaxies used in this sample. By means of a two-component
model stellar and virial mass are fitted separately and an isothermal density profile is
assumed. The paper takes advantage of already K-corrected B-band magnitudes and
lensing masses and is, because of its common subset of gravitational lenses, directly com-
parable with our data. Although it is not explicitly calculated in their paper, we find
MO8E012 o T based on their published data, which is in perfect agreement with the

lens

result from Rusin, Kochanek & Keeton (2003).

Switching from the lensing point of view (considering M,.,.) to the observational one
(considering M,;,) enables us to compare the FP from previous studies which were inferred
from lensing with the FP based on stellar dynamics. Treu et al. (2006) analyze the FP by
means of virial mass and find that the velocity dispersions for their SDSS lens sample are
well approximated by o;s,, which holds also for our mixed CASTLES/SLACS sample.
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There are studies, e.g. from Graham & Colless (1997b) and Trujillo et al. (2004), which
raised hope that a solution for the FP tilt is at least partially given by broken structural ho-
mology leading to strong correlations between Sérsic index n and photometric-independent
galaxy properties. Graham & Colless (1997b) fit R'/™ profiles and make use of the spatial
velocity dispersion at spatial effective radius to show the influence of structural non-
homology, whereas Trujillo et al. (2004) quantify the contribution to the tilt caused by
variations of n for a wide range of B-band selected early-type galaxies. The results always
show that taking account of non-homology shifts the FP parameters closer but never fully
matches the virial expectations. However, by comparing the M /L — o relation of 25 E/S0
galaxies (see Hubble sequence, Fig. 2.9) from the SAURON sample with predictions and
virial estimates Cappellari et al. (2006) find that the FP tilt is exclusively due to a real
M/ L-variation, while structural and orbital non-homology has a negligible effect, a result
also verified in this study.

Furthermore, progress in estimating M,y /Mgt was recently made by comparing stel-
lar population models with the nonparametric mass profiles also used in this thesis, which
allow for scanning the dark matter distribution within a galaxy (Ferreras, Saha & Williams
2005, Ferreras et al. 2008). They found that low-mass galaxies have only little dark matter
content at all observed radii. On the contrary high-mass galaxies have little or no dark
matter inside the effective radius but at large radii they are clearly dark matter dominated.
No kinematic and virial assumptions were required.

In the following analysis, we use a combination of kinematic, photometric and lensing
inferred data to address the aforementioned puzzle. The lens sample is presented in
Chapter 4.1. The selection criteria and lens properties important for the understanding of
following studies are discussed in Section 5.2. The comparison of o,,, and o, which is
proportional to a comparison between virial mass and lens mass, is adequate for answering
the above questions 1 and 2, as will be shown in Section 5.3. In Section 5.4, we compute
the luminosities of the lenses, M, and M,,;, needed for L oc M“ and check the consistency
with other FP studies in particular with data from Jiang & Kochanek (2007), who use
a common subset of lens systems. Subsequently, the a-b-parameter plane is generated
including a wide range of recent FP studies.

5.2 Lenses and lens models

The sample consisting of nine lensing galaxies from SLACS! data, nine from CASTLES?
and two lensing clusters. We select these galaxy lenses using two criteria:

1. the lensed images were either pointlike sources or contain nearly pointlike features,
and

2. the availability of o, data.

Two cluster lenses with such properties are also included for comparison and contrast,
since prior to this work FP studies were carried out for small scale and large scale objects

lwww.slacs.org - The full set includes about 70 lenses, but image data was only made available for a
small subset.
2cfa-www.harvard.edu/glensdata,/
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combined (e.g., Schaeffer et al. 1993). As an additional motivation it is worth mentioning
that Zwicky (1937) originally introduced gravitational lensing as a method to estimate
masses of galaxy clusters.

The analysis is done for a subsample of doubles, quads and multiple object systems of
SLACS and CASTLES lenses. The CASTLES lenses turn out to be a relatively inhomo-
geneous sample, a consequence of the fact that they spread over a large range in redshift
and effective radii as well as lens radii.

For each lens detailed information is given in Section 4.1 of the previous chapter. How-
ever, the following information on the lenses seems noteworthy here: The effective radius
of CFRS03.1077 is not known; hence it is used for the analysis in Section 5.3, but not
Section 5.4. Q0957 is a special case, as there is a doubly imaged galaxy component in
addition to the famous double quasar. As it is part of a cluster, a position below the
general trend in a mass-to-light analysis is expected. This lens is an excellent example for
the consequences of possible yet unknown image systems. The considerations following in
Section 5.3 for 0,.,,-0.s are carried out for two different image configurations: on the one
hand the two double image system shown in Figure 5.1 and on the other a single double
system. For PG1115, measured time delays were not used for the models in this study; if
these are included the lens models tend to become rounder, but o.,, changes only by 5%
to 10%, which is insignificant for the present study. The lens Q2237 is actually the bulge
of a spiral galaxy. Here the bulge is treated as an early-type galaxy. Several of the lenses
in our sample have been studied individually in great detail. Different papers sometimes
disagree on the slope of the profile (e.g., Treu & Koopmans 2002, Read et al. 2007, for
PG1115), but agree on the enclosed mass. Hence the effect on o0.,, would be small.

SLACS lenses populate a redshift range from 0.05 to 0.5. Due to smaller mean effec-
tive radii and lens redshifts, as a consequence of a limited aperture (3”) radius of SDSS
fibres, the sample of 9 SLACS lenses appears to be more clustered in mass-to-light plots
than the CASTLES sample and therefore has a smaller RMS. The SLACS lenses we use
are a subset of the full SLACS sample for which pointlike features are identified (Ferreras
et al. 2008). The above lensing data are modeled using the PIXELENS program? (Saha &
Williams 2004, Coles 2008). All the uncertainties on any parameter can be derived from
this model ensemble.

For each lens, an ensemble of 100 mass maps with 21 x 21 pixels each has been com-
puted, from which the mass-profile and therewith the formal velocity dispersion o, is
derived with an 90% uncertainty, as one can see e.g. for the lens Q0957 in Figure 5.1.
In Leier (2009) we conduct a stability test of the PIXELENS output depending on the
ensemble size and find that o,.,,(R) is not sensitive to ensemble enlargement. Thus, the
number of models is fixed to 100 throughout this analysis.

Two points shall be emphasized here: Firstly, the error bars in the right panel of Figure
5.1 represent the model dependence for an ensemble of 100 models and, as one can see, it
is not large. Secondly, it is sometimes stated that the enclosed mass M (< R) is known for
R = Ry,,, the Einstein radius and unknown for any other R, but this is oversimplified. In

3 Available from www.qgd.uzh.ch/projects/pixelens/

55



CHAPTER 5. A LENSING VIEW ON THE FUNDAMENTAL PLANE

T T T T T T T T AL B B B S S R |
400 -

I ] ] 3K
° [ §§ ¢ 3

£
—o—
[ J
L

[ ]
1
formal dispersion (km/sec)
N
8
—
1

8

P N T S E | P SR TR I SR TR S SR N SR SR S S S S S R R |

10 20 30 40
radius (kpc)

Figure 5.1: Left panel: projected mass distribution of the CASTLES lens Q0957. The box size is 4 x 4
arcsec?. The red dots mark two doubly imaged systems, the cyan dots their sources. Right: formal velocity
dispersion ojens. The vertical dashes mark the radial position of the lensed images. The same curve can
be seen as second from top in Fig. 5.2.

fact M (< R) has some model dependence at all R, but is minimal at Rg;,. Oiens(R # Rein)
has a larger uncertainty than o.,.(Rgw), but is still fairly well constrained, as one can
see in Figure 5.1. The velocity dispersion at the radial position of the outermost image
Orens(Riens) as a quantity, which is as well constrained as Ry, is basic to the following
analysis.

The PIXELENS input files, the formal velocity dispersion curves as well as the mass
maps can be found in Figures B.1 and B.2 of the appendix. Note that for lensing clusters,
the velocity dispersion of the galaxies on their orbit around the centre of the cluster is
considered instead of the stellar velocity dispersion as in the case of lensing galaxies. The
references for all the lenses and further details can be seen in Table C.1 in the appendix.

5.3 Formal versus kinematic velocity dispersion

The formal velocity dispersion curves o,.,.(R), such as the one illustrated in Figure 5.1 for
the lens Q0957, are computed for all the lenses. Figure 5.2 shows all these curves except
for the clusters, which are excluded for the sake of readability and their comparatively
high o, values.

In the following, we concentrate on the formal velocity dispersion at a radius of the
outermost image position 0., (Ris) and at the effective radius oy.,s(R,). Concerning the
latter, we cannot take for granted that the velocity dispersion curve at effective radii is still
sufficiently flat. Because of this, when considering o.,.(R.) we exclude the lenses Q2237,
HST15433, J0737, J0912, CFRS03 and J0956, for which this condition is not fulfilled.

In terms of absolute values the curves for CASTLES lenses extend in average to larger
radii, whereas the curves of SLACS lenses are smaller due to a limited aperture of the
SDSS fibres. Note that 7 SLACS lenses and 3 CASTLES lenses show a clear cuspy shape
of the formal velocity dispersion curve towards inner radii as it is the case for the majority
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Figure 5.3: Olens-Oobs-plot for all the galaxy
lenses. The filled circles refer to the formal veloc-
ity dispersions olens measured at outermost image
Riens. The open circles show olens(Re). Note that
as in Figure 5.2 Q0957 is shown twice for different
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region of the velocity dispersion curve. Q0957 is
included twice, the model with one (two) doubly
imaged source(s) is labelled -1D (-2D).

1D (Q0957-2D).

of early-type galaxies also in other velocity dispersion field studies (e.g., Coccato et al.
2009). However, in some cases anomalous galaxies exhibit a rising velocity dispersion pro-
file, which might be related to the presence of a disk according to Coccato et al. (2009).
Additionally, the pixelated approach causes a variety of differently shaped velocity disper-
sion profiles differing especially in central regions. This leads consequently to large error
bars and a decreased sensitivity in the centre, rendering an interpretation of the profiles
at smaller radii rather difficult.

It should be emphasized that the comparison of either 0)s( Riens) O Olens(Re) With o,
measured within an aperture, is a proper procedure, since the R, is in average less than a
factor of 2 different from the aperture radius where o is measured and for most lenses oy,
remains unchanged. For J0737, J1205, J1330 and J2300, the formal velocity dispersion
curve ends before reaching the radius of 3 arcsec, that is, the mass does not contribute to
the lensing effect, but nevertheless o, can be taken as an indicator for the real velocity
dispersion. In other words the velocity dispersion measurements at aperture radius are
probably not representative since the main mass of the lens is smaller.

Comparing the curves labelled Q0957-1D and Q0957-2D in Fig. 5.2 shows the prob-
able effect of adding formerly undiscovered image systems. As for Q0957, 0y...(R) varies
considerably when a formerly unseen doubly imaged system is added. This also affects
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the relation between ., (Riens) OF Oiens(R.) and the kinematic velocity dispersion .
Both 01eus(Riens) and o0, (R.) plotted against o, can be seen in Figure 5.3. The com-
parison between the observed kinematic velocity dispersions and the mass-only related
velocity dispersions reveals how virialized the lenses are, because 0., =~ 0., iS another
representation of the virial theorem in Equation 5.3. We constrain the fit by fixing it
to the origin, because a bias would have no physical relevance. For o,.-values at the
effective radius instead of the radius of the outermost image position R, the scatter
around the best fit decreases considerably. Although all oy,.(R.) are within the error
bars of 0s(Riens ), changing the radii for the determination of the 0.,-0,p.-relation might
consequently be the right thing to do, since therby the relation is build on a common basis.

Furthermore, we included the two-double (2D) and the one-double (1D) system of lens
Q0957 in Figure 5.3 to demonstrate the difference in oy, of the former outlier, reducing
the RMS in the 0y.,.-0p.-plot from 55 km s~ for the oo, ( Riens )|1p-fit to 43 km s~ for the
Orens(Re)|2p-fit. We conclude that generally a more complete lens system is to be favoured
and henceforth we only consider Q0957-2D. The linear best fits fixed to the origin for
Trens(Re) and 05 (Riens) yield

Oops = (1.03£0.05) X 0pens(Re), (5.5)
O-Dbs — (]..04 :l: 0.04.) X Ulens(Rlens)’ (5-6)

As an aside, the y error bars plotted in Figure 5.3 are the observational errors taken from
Koopmans & Treu (2003), Treu & Koopmans (2004), Tonry & Franx (1999), Tonry (1998),
Ohyama et al. (2002), Koopmans et al. (2003), Koopmans & Treu (2002) and Foltz et al.
(1992) for the CASTLES lenses and Bolton et al. (2006) for SLACS lenses. The x error
bars represent the statistical errors of the formal velocity dispersion for an ensemble of
100 models of possible mass distributions. Thus, the rather small error bars can be under-
stood as a relatively model independent lensing mass and formal velocity dispersion. The
errors are taken from a radius closest to R,.,. since the pixelated approach only allows for
discrete steps in radius. One could argue about the significance of these errors, because
changes in the image positions or lost information like additional image systems or mass
contamination of the light path can lead to fairly different results.

However, the fits for o,.,(01ns) (Equations 5.5 and 5.6) make clear that a one-to-one
correlation between M., and M,, of the lensing galaxy is probable. It is important to
know whether our sample is dominated by a certain kind of model far from p(r) ~ r—2
corresponding to a constant o,.,,. For that we can study the correlation between the ratios
Otens/ Tobs a0d Ry, / R.. In consideration of the virial theorem one can state:

If there is an (anti-)correlation between o.,./0qs and Ri.../R. the density profile p(r) of
the lens should be (flatter) steeper than r—2.

Figure 5.4 shows this relation for both . (Riens) and oye.(R.). As for the first, the
best fit shows a positive trend with large error bars. For o.,.(R.) the positive trend is
insignificant and the opposite result is not excluded by the error bars. By neglecting the
outlier MG2016 with a possibly underestimated R,., as will be discussed in Section 5.4,
one finds the inverse trend to be likewise significant. Nevertheless it needs to be empha-
sized that by excluding only one of the labelled outliers in Figure 5.4 the slope is strongly
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Figure 5.5: Like Figure 5.3 but with the two
clusters ACO 1689 and ACO 2667 included. The
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relation between oops and olens extends to cluster

ple the positive trend is insignificant. The trend
inverts when excluding MG2016. In other words
there is neither correlation nor anti-correlation,
meaning that in average the density profile for all
lenses is consistent with an isothermal ellipsoid.

scales.

affected and can change its algebraic sign. Thus we cannot retrieve a strongly significant
statement. In such exclusion scenarios we obtain slopes consistent with constant o-ratio.
Our sample of early-type lensing galaxies for 0o, (Riens) (Trens(Re.)) is clustering around a
mean of 1.3+ 0.3 (1.6 £0.3) in Ry,./R. and around 0.91 £ 0.04 (0.96 & 0.06) in 0ens/Tobs
excluding MG2016 because of its extraordinarily high R,.,./R.-ratio. Since we cannot
find any type of correlation throughout our sample we can summarize that ., is model
independent.

Extending the 0,,s-01ens-plot in Figure 5.3 to 100 kpc scale, as to be seen in Figure
5.5, we can find that lensing clusters fit quite well to the previously found correlations for
Oops (T1ens) (Equations 5.5 and 5.6).

As an aside, it must be emphasized that oy, is different from the line-of-sight velocity
dispersion if the lens is not isothermal. Going from an assumed isothermal r~2 profile to
a Hernquist profile changes the velocity dispersion of Equation 5.3 to

2(R ) GM\121r (1 _52)2 {1 1
Tn {Fiens aMpn. [(2+ s2)X(s) — 3] L2(1 — s2)3

x [—3s2X(s)(8s% — 285" + 355 — 20)

—2455 + 685" + 6552 + 6] — 6775} (5.7)
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with s = R/a, where a denotes a scale length and

Vs2—1

cos~ sl po 1<s< o0

Vs2—1

sech”'s for 0<s<1
X(s) =

along the lines of Hernquist (1990). This step yields a change of less than 19% of oy,
for most lenses, apart from few exceptions like P1115, which turned out to be an outlier
already in Figure 5.4.

Furthermore, cluster ACO 2667 shows a velocity dispersion increased by 33%. In gen-
eral, central regions of galaxy clusters are best fitted by a Hernquist profile (Hernquist
1990) for the stellar component of the inner cD galaxy and a NEFW model (Navarro et al.
1996) for the dark matter component, shown by e.g. Padmanabhan et al. (2004). That is
why we can expect significant changes going from o,.,, to o, on larger scales. However, fit-
ting the 0,,-0o relation for a Hernquist profile as done before with an isothermal model
for 0., reveals a slightly steepened slope compared to Equation 5.6 of (1.13 +0.04). The
clusters still agree to this relation within the error bars.

The dynamical state of galaxy clusters is hard to determine. There are many con-
tradictory investigations on this topic. Optical and X-ray data on the one hand indicate
ongoing formation processes on substructure level (e.g., Stein 1997, Solanes et al. 1999),
which should be considered in estimates of M,;,. On the other hand, statistical compar-
isons of different mass estimates from optical and X-ray observations and weak lensing
show perfect agreement on scales much greater than the core radius R... (e.g., Wu &
Fang 1997). Still, on scales of core radii there are discrepancies between X-ray and mass
measurements by means of weak lensing. Allen (1998) suggests to consider substructure
and line-of-sight alignments of material towards the cluster cores since they will increase
the lensing masses without affecting X-ray data and to take account of the dynamical
activity, which might cause the X-ray analyses to overestimate R.,... Xu et al. (2000) take
this apparent dichotomy as an indicator of the transition from pre-virialization to virial-
ization. In this study however, we can probe the virialization state for the two clusters at
Ry..s, which is in both cases not far away from R,... The core radii of the X-ray selected
ACO 2667 and ACO 1689 are about (76 & 8) kpc (Covone et al. 2006) and (80 =+ 15) kpc
(Allen 1998) respectively. Thus with o, at R, = 98 kpc for ACO 2667 we already probe
the core region. For ACO 1689 R, is roughly 238 kpc, which is 3 times the given core
radius. By adjusting to smaller scales 0, (Reore) becomes ~ 1000 km s~! and marginally
fails the relations (5.5) and (5.6). It should be emphasized that unlike the sample of
lensing galaxies ACO 1689 R,,.. is mot in a sufficiently flat region of oy, and thus not
comparable with the relations for which this was a requirement. Since strong lensing
unveils mass regardless of underlying dynamics one can summarize that also in view of
findings from previous studies clusters in a wide range of radii can be regarded as virialized.

Nevertheless, the correlation between the kinematic velocity dispersion o, and o,
is hard to decipher. First the scatter around a best fit that is smaller (larger) than the
scatter around the FP in the (R,, o, I) parameter space can be understood as a hint on a
basically mass dependent (stellar dynamics dependent) o,,,. Of course it can also be seen
as a merely statistical scatter that is influenced by a possibly biased lens sample. This
allows for drawing the following conclusions:
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1. The small scatter and the slope of the best fit of ~ 1 makes 0., a good surrogate
for o, which is independent of a particular density profile model.

2. The included elliptical galaxies are thus virialized and

3. the relation can be extended to larger scale objects like clusters, as we can see in
Figure 5.5.

With this in hand we now want to analyze the mass-to-light relationship for the given
sample and compare it to the governing FP of early-type galaxies.

5.4 Mass-to-light ratio and the fundamental plane

As a first step to a mass-to-light relation for this sample of early-type lensing galaxies
we K-correct given I-band magnitudes (centred on 814 nm) and SDSS-i-band magnitudes
(centred on 753 nm) in AB units to rest frame I-band since they provide the most complete
set of magnitudes for our sample. These are taken from the CASTLE Survey homepage®
and Bolton et al. (2006). In the case of the galaxy cluster ACO 1689 we obtain the over-
all magnitude by summing over the fluxes of the galaxy content using the catalogue of
Molinari et al. (1996). Hence the K-correction is based on SDSS, HST and ESO spectral

templates®.

We carry out the K-correction from first-principles in preference to a black box pro-
gram. Following Oke & Sandage (1968) we compute the K-corrected flux according to

Joo F(\ ) (A) dA }
Joo FQo/(1+2))Sz(A) dA )’

where K, denotes the K-correction for the xz-Band expressed in magnitudes. The band
width is smaller in the redshifted galaxy, which leads to the first term in (5.8). A source
spectrum F'(A) is redshifted through fixed spectral-response bands S, or bandpasses re-
spectively of the detector. The flux at an effective wavelength in the rest frame of a galaxy
of redshift z, transformed from the effective wavelength Ao of the detector by Ag/(1 + z),
will differ from the flux of a galaxy at rest. This leads to the second term in 5.8. Figure
5.6 visualizes the denominator of the integrand in Equation 5.8, where the I-bandpass is
multiplied by the redshifted flux template of an elliptical galaxy taken from Kinney et al.
(1996). As an aside the apparent SDSS magnitudes are on an AB basis within 3%, which
only leads to minor corrections and is therefore neglected in the following analysis. Note
that the K-correction is realized with the exact template for A < 570 nm. For higher
wavelengths we assumed a constant flux for the sake of simplicity. The deviations result-
ing from this approximation are even in the worst case of a hardly redshifted galaxy in
the upper A-range like Q2237 of only 0.3% for L;. This leads to negligible corrections for
all following quantities. Furthermore galactic extinction corrections according to Schlegel
et al. (1998) are applied to the fluxes. The luminosities are calculated in units of solar

K, =25log(1+ z)+ 2.5log { (5.8)

‘cfa-www.harvard.edu/glensdata/

®The spectral templates for WFPC2, SDSS ACS and ESO  telescopes are
taken from the STSCI homepage www-int.stsci.edu/instruments/wfpc2/Wipc2_thru/,
www.stsci.edu/hst/acs/analysis/reference_files/synphot_tables.html and filters.1s.eso.org/efs/efs_fi.htm

61



CHAPTER 5. A LENSING VIEW ON THE FUNDAMENTAL PLANE

— MG2016 ceee B0047 - = Q2237

25 1— Spectral template FRI4WFPC2 B

F(X/(142)) xS;(A) (1077 erg s7! em™? AAI)

: \
: K \
: -l N

3000 4000 5000 6000 7000 8000 9000 10000
X (4)

Figure 5.6: Visualization of K-Correction: The black solid curve shows the flux template of an
elliptical galaxy. The grey solid line represents the HST WFPC2 I-bandpass taken from www-
int.stsci.edu/instruments/wfpc2/Wipc2_thru/. The dashed curves are showing the denominator of the
integrand in Equation 5.8 for 3 lenses: MG2016 (z = 1.01, dashed line), Q0047 (z = 0.485, dotted line)
and Q2237 (z = 0.04, dash-dotted line).

luminosities according to an AB magnitude® Io = 4.57 for WFPC2 data and ic = 4.48
for SDSS data calculated along the lines of Fukugita et al. (1995). Subsequently we correct
for passive M /L-evolution with a slope of

legM/L[

= —0.397
dz

inferred by stellar population synthesis models taken from Bruzual & Charlot (2003b).

Having the I-band luminosities L; of all lenses in units of solar luminosities L) and the
velocity dispersions from Section 5.3, we can analyze the underlying mass-to-light relation.
Figure 5.7 shows the lensing mass M., = Reains(Rlens) and the virial mass M, = Reafbs

plotted against I-band luminosity. The plot also provides a curve representing a constant
ML or according to Equation 5.1 a (o = 1)-line respectively.

A closer look at the V-band luminosities for selected galaxies reveals that HST14176,
B1608 and MG2016 emerge as outliers with mass-to-light ratios < 1. This can be explained
by nearby groups and clusters (e.g. in the case of HST14176) or mass-contamination
influencing the path of light. Another reason can be uncertainties in the effective radii,
as already mentioned in Section 5.3. If we take for HST14176 (MG2016) R, = 1.06 (0.31)
arcsec (Treu & Koopmans 2004) instead of the used 0.71 (0.22) arcsec (Rusin et al. 2003)
then M,,, = R.02 _ would increase by a factor of ~ 1.5 (1.4), since no grave changes in
o for a flat formal velocity dispersion curve are expected. This leads for HST14176 to a
lensing mass of 5.14 x 10*! M) instead of the former 3.43 x 10t M, which is then also

SListed on www.ucolick.org/~cnaw/sun.html
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Figure 5.8: Mass-versus-light plot for data from
Jiang & Kochanek (2007). The black circles denote
a subset of lenses included in our lens sample. The
grey circles are residual lenses. The dotted line rep-
resents the best fit for the whole dataset taken from
Jiang & Kochanek (2007). The dashed line refers
to the olens-fit as seen in Figure 5.7.

in the V-band clearly below the (o = 1)-line. If such uncertainties are the true cause for
comparatively high luminosities, then we also need to adjust M., and M,;, in Figure 5.7.
However, changing R, or excluding the problematic lenses from the fit has a negligible
impact on the slope a using M., and only small impact using M., changing « from
(0.80 £0.10) to (0.84 £ 0.10). It should be emphasized that we hold on to the dataset of
Rusin et al. (2003), because it provides the effective radii computed on a common basis
for the whole CASTLES subset of our lensing objects.

Both sets of data points for o,,, and for o.,,(Ri.s) are fitted for the whole sample and
reveal the slopes:

(0.70 £ 0.08) for M.,
= (080 :l: 014) fOl“ Mvir'

It shows that o = 1 is in any case clearly excluded. Figure 5.7 shows the best fit for
both M., and M,;,. Note that the fits in the plot cannot be extrapolated to lower masses,
which would mean that judging by the intersection with the (o« = 1)-line the luminous
mass would overtake the total mass content. The plot and therewith also the FP of nearby
lenses show that more massive galaxies have a larger dark matter fraction.

In Figure 5.8 the lens sample from Jiang & Kochanek (2007) together with a best fit is
shown. Their data from stellar-dynamical measurements on 22 early-type models contains
a common subset with the present study. Note that the data in their paper was given in
B-band luminosities, which explains the shift of the data points towards lower luminosities
in most cases. The fit for their whole sample yields a slope of & = 0.88 + 0.12. As in
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Figure 5.7, a curve indicating a constant mass-to-light relation is included.

From these plots we can summarize, that

1. the slope of the best fit for o, is consistent with the one for the lensing sample of
Jiang & Kochanek (2007) within error bars,

2. the slope of the fit for o, is not consistent with the fit to the data from Jiang &
Kochanek (2007), although the error bars do overlap,

3. only the fit for the Jiang & Kochanek (2007) sample is consistent with oo = 1,

4. the slopes of the 0., and o,,.-fits (for the whole dataset and for a reduced or, due
to uncertainties in R,, changed dataset) are clearly excluding v = 1 within their
error bars and thus do not agree with a constant M /L ratio.

In Figure 5.9 we extend determined mass-to-light relations to larger scales. For cluster
size objects like ACO 1689, R. is of course not defined. Nevertheless, one can still use
the mass quantity Ro? to compare the mass-to-light behaviour of early-type galaxies and
clusters. The kinematic line-of-sight velocity dispersion o.,, = 1400 km s~! of galaxies
within the cluster was taken from Lokas et al. (2006) for a subset of 130 galaxies in the
inner region of the cluster with velocities |v| < 3000 km s~!, which contains most likely
the biggest mass fraction responsible for the lensed images. This average value applies
for a radius of around 400 kpc, a region where the formal velocity dispersion seems to be
sufficiently flat and in which roughly half of the projected radii of the 130 galaxies con-
sidered in Lokas et al. (2006) are to be found. Furthermore, the value is not too far away
from the outermost image position of ~ 240 kpc. Therewith, R.02_(R.) and R.02_(Rins)
are determined.

The data points for the cluster deduced from the formal velocity dispersion o, at
R,... and R, are included in Figure 5.9. As expected, neither the relation M « L with
a = 0.70 nor with any other slope presented above does extend to clusters. As shown
by Schaeffer et al. (1993), galaxy clusters follow indeed a different FP relation. We can
make up a region in the mass-to-light plot for cluster sized objects, which lies far below
all previous lines and matches the findings of Schaeffer et al. (1993) for a FP consisting of
16 clusters. One should keep in mind that for early-type galaxies M /L can be a suitable
dark matter versus baryon estimator because L tracks pretty much all baryons. But this
is not a good approximation for clusters, whose total baryonic mass is generally believed
to be made of 80% hot diffuse gas and only 20% galaxies (Fukugita et al. 1998). In
order to correct for this discrepancy, one might add the missing 80% expressed in terms
of luminosity. Hence the luminosity of ACO 1689 is shifted to 1.4 x 1013L@. Despite
of this correction we obtain a value significantly below the given fits. Thus clusters can
nonetheless be regarded as highly dark matter dominated.

We can summarize that our results are in good agreement with most of the recent
FP-type studies, as one can see in Figure 5.10. In the two plots the FP parameter study
results of the references listed in Table 2.1 (Section 2.6.1) are presented (left panel) to-
gether with the results of this study (right panel), summarized in Table 5.1. Recovering
the FP of early-type galaxies by means of the photometric-independent oy, shows that
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Figure 5.9: Like Figure 5.7 but extended by cluster ACO 1689. As expected, clusters are not on the FP,
because they have a higher mass-to-light ratio. Solid symbols denote masses calculated with o(R.), open
symbols denote masses calculated with o(Riens).

non-homologies like structural and orbital anisotropies, which might change the photo-
metrically determined central velocity dispersion, have small to negligible impact on the
FP tilt, as also shown by Cappellari et al. (2006).

The FP parameters of our analysis are determined in consideration of the relations
a=20(2—-a)tand b= —(2-a)

a=1.08 b=-077 for o,
a = 133’ b == —083 fOr Uobs’

corresponding to a = 0.70 + 0.08 and o = 0.80 £ 0.10 respectively. Upper and lower limit
of the o,.,,-fit are also drawn into the plot and exclude plainly the M oc L case used for
Eq. 2.31.

Moreover, the FP parameters found in this study are conspicuously surrounded by
the ones found in other studies (see Table 2.1). For example in recent SDSS results for
nearly 9000 early-type galaxies in a redshift range of 0.01 < z < 0.3 the parameters
are determined to a = 1.49 £+ 0.05 and b = —0.75 £ 0.01 (Bernardi et al. 2003), and

a b

for Trons 108 —0.77
(upper limit) 1.28 —0.82
(lower limit)  0.90 —0.72

for oope 133  —0.83
(upper limit) 1.64 —0.91
(lower limit) 1.08 —0.77

Table 5.1: Fundamental plane parameters found in this analysis. Compare with previously found FP
parameters illustrated in Fig. 5.10 and listed in Table 2.1, Section 2.6.1.
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Figure 5.10: Left panel: the a-b-parameter-space according to Equation 2.32. The dashed line represents
the mass-to-light power index a for related a and b according to Equation 5.2. The plot shows FP
parameter from previous studies referenced in Table 2.1. The error bars are included as far as provided in
the references. Right panel: like left plot but with results from this study. The squares mark upper, lower
and mean value of the fit using ojens for the whole sample of early-type galaxies. The open circle denotes
the fit using oobs. The black filled circles denote other a-values, like e.g. the simplistic plane, Eq. 2.31, or
the fit for data from Jiang & Kochanek (2007). For the sake of readability and comparison the grey filled
circles corresponding to the data shown in the left panel are included.

as an aside have no common «, since Equation 5.2 does not hold. On the other hand,
Dressler et al. (1987) in one of the first FP studies present parameters, which are almost
perfectly in agreement with the fixed a to b relation and a common « of ~ 0.80, although
measured separately. We verify the value by the mass-to-light relation found for M,;,. It
can be seen that (a,b) for the slope of the o,,.-fit is close to the results of Guzman et al.
(1993), Colless et al. (2001), Jorgensen et al. (1996), Scodeggio et al. (1997), Lucey et al.
(1991) and Dressler et al. (1987) in ascending order of distance in (a, b)-space. Except for
Hudson et al. (1997), Pahre et al. (1998), Gibbons et al. (2000) and Bernardi et al. (2003)
the errors of previous (a, b)-studies, as far as they were given, overlap with the error bars
in this study. In particular the results of Jgrgensen et al. (1996) and Colless et al. (2001)
agree with the upper limit of a-values from the oy,,.-fit. However, the o estimate from the
dataset of Jiang & Kochanek (2007), which matches the result from Rusin et al. (2003)
can be excluded. Since for all previous FP type studies kinematic velocity dispersion
measurements are used, our findings suggest that the real underlying (a, b) values are even
closer to the lower right corner of Figure 5.10.

5.5 Conclusion

We can summarize our findings presented in this chapter as follows:

1. Independent of the details of lens models, the lensing masses and virial masses basi-
cally agree, since 0y.,s & 0,15, as demonstrated in Section 5.3. This verifies the virial
theorem.

66



5.5. CONCLUSION

2. The relation between the lensing inferred velocity dispersion o, and the observed
kinematic velocity dispersion o, extends to cluster sized lensing objects within
rather large uncertainties originating from a poorly defined scale radius R, as shown
for the two galaxy clusters ACO 1689 and ACO 2667.

3. Using the results for oy, (0..) in Section 5.4 the lensing mass (virial mass) is
calculated according to M ~ R.o2. We find the mass-to-light relation M2%:70+0-08 o T,
for the whole sample and M980+0-10 o« T, to be consistent with most other FP type

studies. We point out that the FP defined by using 0.,.(Riens) is based on lensing

velocity dispersions within R,..,, which is not correlated to the effective radius. In

order to render the used quantities unequivocal, we analyze the change in o,

Oobs SWitching from R, to R, and find only a marginally different slope, though

a reduced scatter in the o,-0..-plot can be seen. A few lenses are problematic

outliers due to observational uncertainties, but excluding these does not effectively

change the result. With R oc -%77077 the FP of early-type galaxies is recovered,
excluding clearly the simple plane R o< o2 _I~!. Thus also non-homology as a reason
for the FP tilt can be excluded.

4. As shown for ACO 1689, clusters are far from the FP since they have a much higher
dark matter fraction than early-type galaxies.

The FP tilt discovered by Dressler et al. (1987) and recovered in this study using o,
as a surrogate is an often discussed matter (see Table 2.1) in astrophysics. Until a consen-
sus on the explanation for the FP is found it is necessary to focus on quantities which are
unequivocally related to a certain physical entity. For this purpose, we propose 0., since
it fulfils the necessary condition of preserving the level of virialization for both elliptical
galaxies and clusters.

The reasons for the deviation from the simple plane Eq. 2.31 are hard to resolve,
because neither the mass-structure, the mass-to-light ratio nor the dark matter fraction
are directly and independently observable. Certainly, dark matter is to the present day
not directly traceable, but with the study presented in the next Chapter, we can resolve
and visualize its spatial distribution, which is important for FP studies and other problems
in galaxy formation.
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Resolving Stellar Baryon and Dark Matter
Profiles

Unlike in the previous chapter, we investigate here the radial dependence of stellar and
total lens mass profiles by means of baryon fraction curves. They are defined as the ratio of
enclosed stellar to total lens mass and derived using the stellar population synthesis tech-
nique and the pixel-based mass reconstruction method introduced in Chapter 3. Subject
to this analysis are 21 lensing galaxies of the CfA-Arizona Space Telescope LEns Survey
(CASTLES) presented in Section 4.2 (see Fig. 4.1).

In Section 6.1, we give an overview of recent studies in the field of research and point
out which problems will be addressed by this analysis. The lens sample is analyzed with
respect to its photometric properties and the subsequent modeling in Section 6.2. A gen-
eral introduction to the analysis technique is given in Chapter 3. Additional information
on the treatment of early-type galaxies, dust reddening and the choice of the initial mass
function is given in Section 6.3.

Investigating the on-sky projection of stellar and dark matter surface mass maps as
well as baryon fraction maps gives yet unprecedented insights in the distribution of matter
in the lens galaxies (Section 6.4). Averaging these maps along mostly elliptical isophotes
yields enclosed stellar mass, Ms(< R) and total lens mass profiles, M, (< R) (Section 6.5).
By examining the My and M}, dependence on the radial distance to the centre of each
galaxy we find that there are pairs of lenses on small to intermediate mass scales, which
approach at large radii the same values for their enclosed total mass, but exhibit very
different stellar masses and stellar mass (baryon) fractions, a behaviour subsiding for the
most massive lensing galaxies. We can point to a radial region common to all lenses in
which the dark matter halo overtakes the stellar content.

Furthermore, we shed light on the fundamental plane puzzle, which was addressed
in Chapter 5 and previous fundamental plane studies in terms of global light and mass
quantities. Going from small to large radii, we show how the slope of the My (< R)-to-
M;(< R) relation evolves. On basis of our findings in Chapter 5, the total-to-stellar mass
relation can be considered an equivalent representation of the mass-to-light relation and
a projection of the fundamental plane.

In Section 6.6 we continue with a closer examination of the stellar and total mass
concentrations and define a simple model to study the energetic evolution of early-type
galaxies. Novel concentration indices ¢ = R90/R50 (i.e., the ratio of radii enclosing 90%
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and 50% of the stellar or total mass) for stellar and total mass profiles are introduced and
compared to previous concentration definitions. Moreover we investigate how the dark
matter halos are influenced by the distribution of stars on resolved scales below 10 kpc.

The study of resolved baryon fraction profiles will make it possible to evaluate the
validity of star formation models as well as adiabatic contraction prescriptions commonly
used in simulations. The latter will be carried out in Chapter 7. Section 6.7 summarizes
our findings. This analysis will be discussed in the context of other results in Chapter 8.

6.1 Introduction

Observational estimates of the stellar baryon fraction are key ingredients to the under-
standing of the physics driving the collapse of gas and dark matter to form galaxies (see
Section 2.7). They provide important constraints on simulations, especially at length
scales (sub-grid) below which grid based simulation rely on semi-analytic prescriptions of
baryon physics. They also help to understand the nature of the scaling relations, such as
the fundamental plane and its projections introduced in Section 2.7.

Currently, most of the studies that resolve the central regions of galaxies on scales
below 10 kpc are based on dynamical models applied to the kinematics of stars (see e.g.
Cappellari et al. 2006, Coccato et al. 2009). Similarly, lensing studies on galaxy scales are
usually based on a parametric decomposition of the stellar and dark matter component
(see e.g. Auger et al. 2010, Trott et al. 2010), with its inherent degeneracies, described
in Section 3.1. Over larger scales, Guo et al. (2010) and Moster et al. (2010) match the
stellar mass function of SDSS galaxies with the distribution of dark matter halos from nu-
merical simulations to find stellar baryon fractions f;, ~ 3 — 4% — significantly lower than
the cosmological fraction f, = /Q,, = 0.17 (Dunkley et al. 2009) — with a maximum
for galaxies with halo masses around 10'2M. However, this approach is only valid for
masses enclosed within the virial radius and cannot resolve the radial dependence, which
offers valuable information about how baryons build galaxies. For instance, the velocity
dispersion analysis of Lintott et al. (2006) on a sample of SDSS early-type galaxies yields a
baryon fraction (f, ~ 8%) within the effective radius, which is lower than the cosmological
value, but twice as large as determined within the virial radius, illustrating the impor-
tance of a resolved estimate of the baryon fraction within galaxy halos. Galaxy formation
models combining the evolution of the dark matter and gaseous components along with
a set of sub-grid prescriptions for star formation and feedback (see e.g. Kauffmann et al.
1993, Cole et al. 1994, Croton et al. 2006) are only indirect methods with considerable
uncertainties. Indeed, robust observational estimates of the baryon fraction on galaxy
scales are needed to properly constrain the recipes included in these models.

Gravitational lensing opens a door to smaller scales on which baryonic processes are
important. For instance, one can explore concentrations and baryon fractions to study the
impact of adiabatic contraction on the mass profiles, as it is done in Chapter 7. Jiang &
Kochanek (2007) analyze the relation between stellar baryon fraction and concentration
in adiabatic and non-adiabatic models and find evidence of adiabatic contraction. Man-
delbaum et al. (2006) present a galaxy-galaxy weak lensing analysis of a large sample of
early and late-type galaxies. They obtain stellar surface masses depending on radius with
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a resolution down to 10 kpc. However, their approach is also based on a halo model to
describe the relation of galaxies and dark matter. To avoid the problems arising from
external perturbers (see e.g. Schechter et al. (1997), in case of one component models)
and degenerate multi-component modeling (non-uniqueness), as explained in Section 3.1,
free-form methods are used to reconstruct the surface mass density of the lens galaxies.
For the stellar component, which represents the vast majority of the baryons in the in-
ner regions of early-type galaxies, photometric data in V, I (HST-WFPC2) and H-band
(HST-NICMOS) is used to constrain a large volume of stellar population synthesis (SPS)
models by means of the procedure explained in Chapter 3.

Choosing a sample of moderate redshift lenses enables us to determine the lensing
profile out to a few R.. The CASTLES sample (Section 4.2) fulfils this requirement. In
the following section we focus once more on the sample properties, but now with respect
to its general environmental features and the handling of the photometry. By means of
three lens systems, arguably rather extreme, we illustrate the subtleties of photometric
modeling and the authenticity of lenses (Section 6.2.3). The latter point refers to unlensed
double quasars which mimic a lens system with a doubly imaged quasar. We will show
how a real lens can be distinguished from a spurious system in our analysis. We test
the reliability of our photometry-based results by comparing inferred stellar surface mass
densities with equivalent results from Ferreras et al. (2009) and Shen et al. (2003).

6.2 Sample properties

In this section we compare lens samples with respect to their environment. The selection
criteria for our lens sample are as follows. For the lens mass reconstruction we must have
the redshifts of the source and the lens as well as accurate image positions. The stellar
population synthesis analysis demands a sufficient separation between lens and quasar
images in order to extract uncontaminated photometric estimates from the lens. Further-
more, NIR imaging must be available, since for the redshift of most of the lenses, the
H-band maps a rest-frame region that does not change significantly for the colours found
in these galaxies. Constraining the SPS models using photometry in several bands is de-
sirable, although we note that our reference H-band is the F160W filter of HST /NICMOS.

We discuss in this section the available multiband data and respective PSF's used for
the modeling of the surface brightness distribution. Finally, we discuss outliers and special
cases for comparison. All information regarding lens galaxy properties, their environment
and photometric modeling is given in Table C.2 and Table C.3.

6.2.1 Lens environment

To describe a lens with respect to its environment, one has to keep in mind that the lens
shear required by (parametric and non-parametric) lens models can be due to physically
interacting galaxies or to line-of-sight objects. Regarding the former, one could estimate
how the environment of the lens galaxy evolved in its recent past, whereas any line-of-
sight objects are naturally unrelated to the local region of the lens. Nevertheless, these
two sources for external shear are hard to distinguish. If located in a group or cluster
environment, X-ray measurements are expected to give reliable constraints on the DM
content (Buote & Tsai 1995) and thus a hint about the direction and strength of the
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shear. Only a few lens environments have been studied so far for CASTLES lenses (e.g.
Fassnacht et al. 2006, Momcheva et al. 2006).

The environment for a sample of 70 SLACS lenses has been studied by Treu et al.
(2009); they find 174+ 5% are in overdense regions. For our sample of 21 CASTLES lenses
we find that seven galaxies are located in groups and three in clusters. Four galaxies have
one close galaxy or possible companion with which they may interact gravitationally. For
the remaining seven, no large shear contribution is required and no close-by galaxies have
been found. Thus we find that ~ 50% of our galaxies lie in overdense regions. The lower
fraction found by Treu et al. (2009) is likely due to the smaller redshift range of SLACS
(up to z = 0.5) and the property of the SDSS selection function to pick lenses whose
Einstein radius is about the fibre-radius of the SDSS spectrograph (3 arcsec).

6.2.2 Photometric modeling

The photometry of the 21 lensing systems of our sample are subject to the PSF reduction,
masking and modeling procedures described in Section 3.2.2. Subsequently, their photo-
metric models are used to constrain a large number of SPS models, which sets constraints
on the colour-to-mass relation (Section 3.2.3). For nine lensing systems all three bands
were used for stellar population synthesis. Another eight lenses could be analysed in H
and I-band. The remaining four lenses had suitable data in H-band only. See Table C.3
for details regarding the photometric modeling.

First, we describe the nine lenses with suitable data in all three spectral bands.

The lens system B0O712 is one of the few lenses for which a TinyTim PSF was sufficient to
remove quasar images in H-band. In V and I-band the quasar images could all be masked
out. The lenses B1422, B2045, Q0047, Q2237 undergo the following treatment. In both
I and V bands, TinyTim provided a suitable PSF. In the H-band, an isolated star taken
from the same or a contemporaneous NICMOS image was used for convolution and point-
source fitting if needed. For spiral galaxies the contribution of dust to the photometry is
usually more significant than for early-type galaxies. However, we note that in the case of
Q2237, the redshift of the lens is very low, which implies that our reference photometric
band (H) maps a similar wavelength range in the rest frame, where dust attenuation is less
severe. From the estimates of Eigenbrod et al. (2008) on VLT /FORSI spectra of Q2237,
we infer a contribution from dust in the H-band photometry of Q2237 at the level of 0.05
mag (Ferreras et al. 2010). For lenses BRI0952, Q0142 and PG1115, extensive use of the
iteration method described in Section 3.2.2 was made if the quasar images could not be
masked out. The lens HSO818 requires special treatment as we use an isolated quasar
image of B1030 to fit the quasar image in the H-band. In the I and V-band, the quasar
images are used for fitting. Iteration as it is used for enhancing PSFs of other lenses does
not provide better model fits for the lens due to the large separation between images and
lens. The image separation is 2.56”. Hence the reduction process is further simplified by
masking.

Next, we describe the eight lenses with suitable data in two spectral bands.
For B1608, MG2016, HE1104 and HE2149, H and I-band data could be used to isolate the
lens galaxy. For all their H-band images, a sufficiently isolated star with fitted background
extracted from the image of MG0414 was used to remove the quasar images with an ac-
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ceptable goodness of fit. Since B1608 exhibits a prominent dust lane, we analyzed the
impact of dust reddening on our results, as shown in Section 6.3.1 for B1608 and B1600.
The uncertainty on log(My) due to dust is in both cases not larger than 0.3 dex. The
lens galaxy of HE1104 is unaffected by quasar light allowing for a good fit. SBS1520 is
treated like the previous lenses but with a star from the same image file in preference to
other PSFs. For MG0414, RXJ0911 and Q0957 we obtain good residual maps by means of
the iteration method. In the lens MG0414 Schechter & Moore (1993) find an object close
to image B visible only in I-band, which might contribute to the lensing effect. Our re-
constructed mass map also shows an increased surface density at the position of the object.

Finally, we describe all the lenses with suitable data in only one spectral band.
B1030, B1152 and B1600 are treated similarly with regard to the fitting routine, i.e.
the isolated outermost quasar image was used for subtraction and convolution. B1600
appears to be almost edge-on and exhibits a prominent dust lane. As remarked above,
dust reddening changes the population synthesis input and leads to underestimated stellar
content, but even for the extreme cases in our sample the effect of dust on inferred stellar
masses cannot be larger than 0.3 dex (see Section 6.3.1). For the lens system LBQS1009
the star in the H-band image of M(G0414 is used again as a PSF with sufficient quality for
the fit.

6.2.3 Outliers and special cases

We now briefly describe three special cases, namely B0218, B1933 and RXJ(0921. With
the first two we want to demonstrate the impact properties like small image separations
and interfering luminous structures can have on the goodness of the SPS. The third lens
shows how spurious lenses, i.e. galaxies with nearby quasars which are not lensed images
of the same background object, behave in this analysis. All three lenses are excluded from
our analysis.

For B0218 as for ten other systems in our sample, a star was used to fit the quasar
images in the H-band. Since B0218 is the system with the smallest image separation
(0.33") known, it is extremely difficult to separate the lens galaxy from the images of
the background quasar. The system is an extreme case in several aspects and a good
example for showing the impact of degeneracies between the magnitudes of overlapping
objects. B0218, unlike any other lens in the sample, did not yield reasonable Sérsic profile
parameters as the wings of the quasar PSFs overlap with the lens. For an unconstrained
fit, the combined light from the quasar images and lens galaxy results most likely in an
overestimated magnitude of the PSFs. However, after attempting to fit the lens system
only by PSFs, a Sérsic profile is needed to achieve an acceptable residual map. Even
though one cannot obtain zero residuals by fitting only two point sources, there are sev-
eral combinations of Sérsic profile magnitudes and two PSF magnitudes that result in the
same total surface brightness profile. Bearing this in mind, we use the fitting parameters
with the best x2, which also yields an acceptable residual map, to carry out the SPS. It
should be mentioned that, according to Lehdr et al. (2000), B0218 is a late-type galaxy
which causes the SPS to predict a different mass content.

For B1933, a star in the same H-band image was used for convolution. The resolved
features of the lensed background object cannot be fitted by a PSF, but are taken out of
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the fitting routine by using circular masks with a 5 pixel radius, a size chosen to cover
features distinguishable from background and still show enough of the lens galaxy to allow
for a reasonable fit. The trade-off between light contamination due to minimal masking
and information loss due to aggressive masking is in any case problematic. In the case
of B1933, almost the whole inner region is surrounded by masked regions, causing the
fit parameters R, and n to diverge. Setting a constraint on the Sérsic index (n < 4) is
necessary. Despite all attempts at modeling this lens, it remained a persistent outlier, and
hence is removed from the analysis.

From model fits of the host galaxy, Peng et al. (2006) conclude that RXJ0921 is a
binary quasar rather than a gravitational lens. Also Popovié¢ et al. (2010) find quite
different spectral properties in the spectra of the two components. For now we assume the
system is a lens. Since even the smaller lens-image distance is above 3" and the quasar
images are isolated, we obtain a high-quality fit by taking the quasar image as a PSF for
both overall convolution and quasar subtraction. No constraints are necessary. In contrast
to all other lenses, RXJ0921 (when treated as a lens) turns out to exhibit an unusually low
stellar-mass fraction and an almost constant My (< R) profile. The peculiar properties
of RXJ0921 can be taken as further evidence against the lens hypothesis as suspected in
aforementioned studies.

6.3 Analysis technique

Combining stellar mass estimates and pixel-based mass reconstruction (Section 6.3.2)
yields baryon-fraction profiles for the given set of lens galaxies. In Chapter 3 we in-
troduced the general concepts of lens mass reconstruction and population synthesis. In
the following, we highlight subtleties by means of individual lenses and show how the
lensing galaxies behave compared to a typical field sample of early-type galaxies.

6.3.1 Estimating stellar mass

As explained in Section 3.2.3, a pixel-based comparison of the best fits to the surface
brightness of the lenses with stellar mass-to-light ratios (T) determined by population
synthesis models is used to estimate the stellar mass. For our sample, we extract the
stellar mass densities from the H-band image (NICMOS F160W). Whenever model fits of
the lens were available for I or V, the colours were used on a pixel-by-pixel basis to con-
strain the H-band mass-to-light ratio Y. Otherwise, we used integrated colours within
an elliptical aperture defined by the effective radius (also half-light radius) R, of the H-
band image (see Table C.2). Note that the effective radius is computed with the Petrosian
technique introduced in Section 3.2.4. The choice of the initial mass function, the presence
of dust and the degeneracy between age and metallicity of the lens galaxies are prevalent
issues for population synthesis, which shall be discussed in the following.

Stellar masses are less sensitive to the age-metallicity degeneracy when estimated via
Y (see e.g. Ferreras et al. 2008) as explained in Section 3.2.3. For comparison, we pro-
vide the total stellar mass-to-light ratio in the rest-frame V-band, M;/Ly, in Table C.2.
Colours and magnitudes are in agreement with comparable quantities in Rusin, Kochanek
& Keeton (2003). The F160W band corresponds to a rest-frame wavelength between 0.8
and 1.2um (except for Q2237, which roughly samples rest-frame H-band). Hence, for the
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sample considered here, the mass-to-light ratios are not affected by the presence of young
stars, an issue that becomes important when dealing with optical or near-ultraviolet indi-
cators (see e.g. Rogers et al. 2010). From the modeling of the old stellar populations that
these systems feature (except for the lenses Q2237), an uncertainty of AT < 0.15 dex is
expected (Gallazzi & Bell 2009).

However, dust reddening can lead to underestimated stellar mass. For starburst galax-
ies, of which we have none in our lensing sample, large deviations can be expected. In our
sample the number of lenses which exhibit dusty features (e.g. B1600) is small. In the
analysis presented in the appendix of Leier et al. (2011) we show what happens when dust
is included in the analysis of two lenses where the contribution of dust could be impor-
tant: B1600 and B1608. In particular I. Ferreras showed in this work, that one can safely
assume that the effect of dust on M does not exceed 20%. For simple stellar populations
a comparison of the best luminosity-weighted age, stellar mass, and x? as a function of
the reddening parameter E(B — V') shows that dust “conspires” with age such that an
increase in dust is compensated by a younger age to give the same colours. This yields
only a small variation of the estimated stellar mass with respect to dust reddening. Most
importantly, it was shown that the value of x? worsens for high amounts of reddening.
The other lens from our sample that could be affected by dust, Q2237 (i.e. the bulge
of a late-type galaxy) is at a very low redshift (z = 0.039), so that stellar masses are
determined from rest-frame H-band, which is, as already discussed, even less sensitive to
dust (Ferreras et al. 2010).

The most significant systematic error relates to the choice of the Initial Mass Function,
especially the low-mass end, which does not contribute to the light, but can contribute
very significantly to the total mass content. However, frequently used choices of the IMF
such as Miller & Scalo (1979), Scalo (1986), Kroupa et al. (1993) or Chabrier (2003) have
similar distributions at the low mass end. It is only the traditional single-power law of
the Salpeter (1955b) IMF that gives different stellar mass predictions. Previous detailed
work on the kinematics of nearby early-type galaxies (Cappellari et al. 2006) or strong
lenses (Ferreras et al. 2008, 2010) shows that the low-mass end of the Salpeter IMF is
ruled out as it predicts stellar mass surface densities higher than the dynamical or lensing
estimates. However, even using a Salpeter IMF does not strongly affect our results, as
they mainly focus on the scaling of the regions where dark matter dominates. Ferreras
et al. (2010) illustrate differences between five different population synthesis models based
on different prescriptions and/or stellar libraries. The predicted stellar masses — measured
in the H-band — agree to within 10% (at fixed IMF), especially given the ages of these
lenses.

To compare our lensing (early-type) galaxies with a typical field sample, we show in
Fig. 6.1 the equivalent to the Kormendy relation (this time defined with respect to the
surface stellar mass density at 1R.). We show as blue dots the sample of ACS/GOODS
early-type galaxies from (Ferreras et al. 2009), and our lensing galaxies as red filled circles
with error bars. One can see that fourteen out of eighteen lensing galaxies are located
inside a lo-band around the best fit of the GOODS sample. We also provide the SDSS
relation from Shen et al. (2003) as a local (z ~ 0.1) reference. The obvious preference of
the lens sample to be at larger effective radius and smaller surface mass density is due to
a selection bias, which is a combination of the lensing bias and additional requirements,
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Figure 6.1: Stellar surface mass density at a radius of 1R. versus effective radius. Early-type galaxies
with stellar mass above 10'° Mg, (blue dots) selected from the Hubble Space Telescope/Advanced Camera
for Surveys images of the Great Observatories Origins Deep Survey (GOODS) are shown together with
our lens sample (red filled circles). The dashed line denotes the stellar mass to size relation from SDSS
which accounts for early-type galaxies at z ~ 0.1 (Shen et al. 2003).

such as a sufficient distinguishability from surrounding quasar images. Furthermore, as
we show later in this chapter, the slope of the fundamental plane relation M7 ~ L can be
recovered from our data. Thus we consider the lens sample representative for early-type
galaxies in general.

6.3.2 Reconstructing the total-mass profiles

For each lens, the projected total-mass distribution is reconstructed on a circular field
made up of 750 square tiles or pixels, each pixel consisting of a uniform non-negative mass
distribution with a mass density of a few times the critical density. We provide mass
reconstruction maps of the sample in Fig. B.3 of the appendix. In Section 6.5, we will
consider the circularly-averaged enclosed mass profile M (< R), see e.g. Figures 6.4 and
6.5. The outermost radius to which the mass profiles are reconstructed is fixed to two
times the lensing radius R,.,,, which is defined as the radial position of the outermost
lensed image with respect to the centre of the lens. We choose 2R,.,, as a trade-off be-
tween uncertainty and common radial range for the sample. The uncertainties attached
to M(< R) are derived from the range of enclosed-mass profiles in the ensemble. The
uncertainty region has a characteristic butterfly shape, as it is visible for instance in the
bottom row of Fig. 6.4. That is to say, M (< R) is well constrained in the image region, but
becomes more uncertain farther in or out. Note that the butterfly shape is less prominent
or even distorted for less symmetric lensed image configurations (see e.g. the top panel of
Fig. 6.4). The steep limit of the butterfly shape is expected to be roughly M (< R) ~ R'?,
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resulting from the minimal steepness of R~ in the projected density. The shallow limit
of the butterfly shape is given by the steepest model in the ensemble. The lens models
do not attempt to subtract off lensing mass outside the galaxy or, to be more precise,
outside the circular pixel map. However, given that the model-ensemble technique yields
conservatively large error-bars on the mass maps, we expect that external lensing mass is
unlikely to be larger than the estimated uncertainties.

In the following section we focus on the two-dimensional on-sky projections of the mass
distributions and come back to the azimuthally averaged mass profiles in Section 6.5.

6.4 Spatial distribution of stellar and dark matter

The stellar population synthesis routine produces projected stellar surface mass maps as
demonstrated in Section 3.2.3. See also Fig. A.3 in the appendix for all stellar surface
mass maps. Subtracting them from the reconstructed total mass maps (see Fig. B.3 in
the appendix) yields difference mass maps which depict the distribution of dark matter in
the lenses. The ratio of stellar surface mass maps and total mass maps gives, on the other
hand, stellar mass fraction maps. Both dark matter (Fig. 6.2) and stellar mass fraction
maps (Fig. 6.3) will be discussed in the following.

In both figures the black circles indicate the effective radius of respective lenses. The
contours in the figures connect pixels with same pixel values. The enclosed pixels have
thus same or higher values. It must be noted that they do not indicate the enclosed mass.
Their staggered course can be explained by rounding errors of the pixel values used for
the maps. The dark matter maps contain in some cases (e.g. Q0047 and Q0147) blank
(white) pixels in the centres, which indicate that the stellar mass subtracted from the
total mass was in fact larger than total mass. At this point it is important to note that
there are error bars connected to each pixel. For the sake of simplicity of the plot these
are not taken into account. Even if some pixels are actually negative their error bars are
consistent with masses above zero with one exception. The central pixels of B1608 have
error bars not consistent with positive mass values. B1608 is in many respects a special
lens (see its description in Section 4.1) and is treated as an outlier throughout our analysis.
Blank pixels in the stellar mass fraction (Fig. 6.3) arise if a region is masked out in one of
the photometric bands or the total mass map was shifted or rescaled during the alignment
procedure.

Most lenses exhibit elliptical stellar (Fig. A.3) and fairly elliptical total mass distribu-
tions (Fig. B.3). The structures in the dark matter and stellar mass fraction maps arise
from the the elliptical distributions of stellar and dark matter not being well aligned. As
a consequence, dipole-like patterns in the stellar mass fraction maps are produced as one
can see e.g. for PG1115. The prominence of such dipoles is influenced by the observation
angle. B1600 for instance is a lens galaxy viewed almost edge-on and has the strongest
dipole shape.
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Figure 6.2: Dark matter maps of the lens sample (Section 4.2). The
colour of a pixel indicates how much dark matter in terms of Mg is
enclosed within its area. The contour lines connect pixels with same
values. The black circles (solid line) have a radius of 1R.. The box size
is 31 x 31 pixels. Angular and physical scales are defined in the panels.
North is up, east is left.
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Figure 6.3: As in Fig. 6.2, but with stellar mass fraction maps instead.
The colour of a pixel indicates the stellar-to-total mass ratio.
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Especially interesting are lenses which show significant deviations from simple ellipti-
cal shapes. PG1115 shows an extended dark matter distribution to the south-west. The
corresponding stellar mass fraction map shows especially low values in this direction. Sim-
ilar features can be found in Q0047, MG0414 and RXJ0911. Lenses with extended pixel
regions above 1011 M, in their dark matter map, like B2045, MG2016 and HE1104, display
low (blue) stellar mass fractions and almost no dipole features. Furthermore lenses with
low dark matter content (lighter blue colour in Fig. 6.2) seem to be correlated with high
stellar mass fractions (redder colour in Fig. 6.3).

Analyzing the distribution and interplay of dark matter and stars in a spatially resolved
manner is an intriguing perspective for future studies (see outlook in Chapter 8).

In the following sections, we simplify the study of matter distributions by looking at
enclosed mass profiles only. To obtain the profiles we average azimuthally along elliptical
isophotes. An ellipse is in general defined by major and minor semi-axis, i.e. two different
radial measures. Because of this we simply assign their mean value to be the radius
connected to M (< R). These cumulative profiles have the advantage that outliers among
the pixel values are marginalized. Uncertainties connected to each pixel are thus translated
into more robust errors of a single mass profile.

6.5 Radial dependence of stellar versus total mass

To compare the radial dependence of stellar and total mass, it is interesting to consider
pairs of lenses with matching My (< R) or with matching M (< R). To illustrate this, in
Fig. 6.4 we show three pairs of galaxies with the following properties (see also Table C.2):

1. small mass, matching My (< R) profiles, differing M,(< R),
2. intermediate mass, matching M (< R) profiles, differing M (< R),

3. high mass, differing My, (< R) profiles, matching M (< R).

The radial scale is R/Ry;, where Rg;, has been estimated from the pixelated mass
maps. For My(< R), error bars are 68% confidence from the population-synthesis models.
For M (< R) we use error bars corresponding to 90% of the My, (< R) range of the model
ensemble, as described in Section 6.3.2. Note that the errors attached to M (< R) and
M (< R) are correlated.

The matched pairs are, of course, only rough matches. Also, the Rg;, values are not
the same for the matched pairs of galaxies. The angular radial scale is proportional not
only to the enclosed mass but also to (drs/(drds))%® (corresponding to (drdrs/ds)%® for
the physical Einstein radius), where the d’s are the angular diameter distances between
observer and lens (L), observer and source (S) and lens and source (LS). Latter distance
ratio must be approximately equal to identify matching profiles. To enable comparison
between scales, we include Ry;,/R. in Table C.2. With these caveats, we point out some
interesting features.

Consider first the two low-mass lenses PG1115 and Q0047 (bottom panels, Fig. 6.4).
While the total mass within 2R,.,, is very similar, the stellar mass of PG1115 rises only
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Figure 6.4: Cumulative stellar mass and lens mass profiles against projected radius (in units of the
Einstein radius) for three comparable pairs of lenses. PG1115 and Q0047 (bottom row) are low mass
systems, B1030 and MG0414 (middle) are intermediate mass, and HE1104 and RXJ0911 (top) are high
mass. The grey vertical line marks 2R.. To assist comparison, each right-hand panel has the profiles from
the corresponding left-hand panel duplicated with thin dotted lines.

to 50% that of Q0047. The same qualitative behaviour is seen if these two galaxies are
compared using R/R. (Fig. 6.5) rather than R/Ry;, as the radial scale. Nevertheless,
these two low-mass lenses belong with fs = My/My, 2 0.17 to the range of high baryon
fractions. Lenses within this range can consequently be referred to as high fs lenses.

Comparing the two intermediate mass lenses B1030 and M(G0414 in the middle panels
of Fig. 6.4, we find that their cumulative total mass curves are very similar. However,
the stellar mass of B1030 is just ~ 30% that of MG0414, independent of the radius. If
we consider the stellar radial scale, we find that MG0414 has ~ 4 times the stellar mass
of B1030. Their baryon fractions approach values from f; ~ 0.05 (B1030) to fs ~ 0.17
(MGO0414) at the outermost radius to which we have estimates. In the intermediate mass
range of our sample (roughly 5 x 10! M, to 15 x 10t M) MG0414 has one of largest and
B1030 the lowest stellar-mass fraction. It should be noted that the opposite behaviour,
namely matching stellar profiles on both R, and R, scale with very different total mass
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is also possible. An example for the latter would be a comparison between B1030 (middle
row) and PG1115 (bottom row) of Fig. 6.4 with equal M(R/R.) but total mass profiles
differing by a factor of 4.5 at 3R..

The two high mass lenses RXJ0911 and HE1104 have a total stellar mass of ~ 2 x
10" M. For comparison, the total mass profiles differ slightly for radii < 1.5R, and
2 2.5R,. But it should be noted that RXJ0911 is located at the centre of a galaxy cluster
which might lead to a lens mass estimate slightly larger than the actual virial mass of
the lens galaxy. At 6.5R., i.e., ~ 2R, HE1104 has 12% less total mass than RXJ0911.
At ~ 3R., i.e. Ry the difference is still 6%. In terms of stellar-mass fraction HE1104
exhibits small values of f; &~ 0.07 and RXJ0911 of fs ~ 0.06. In the high mass regime
(> 15x 10 M) the range of possible stellar-mass fractions appears to be small compared
to low and intermediate masses, and always close to 0.05. Those two lenses are thus rep-
resentative for low f; lenses.

Comparing lens profiles on R, scales intrinsic to the luminous part of the galaxy, one
can find many lenses with similar stellar mass profiles, which is not surprising. After all
the enclosed mass values My (< 2R,.,.) cover with ~ 10! to ~ 2 x 10! a relatively small
range in contrast to a total mass range M (< 2R).,s) of ~ 2 x 1019 to ~ 2 x 10'2. However,
pairs of lenses with matching M;(< R) and M (< R) profiles over the whole radial range
as shown in Fig. 6.5 are rare. Most lenses with matching M(< R) profiles exhibit quite
different My (< R) profiles. The above lenses HE1104 and RXJ0911 are — apart from their
data points 2 6 R, — matching pairs (with respect to M) within uncertainties on R, scale
as they are on Ry, scale, a consequence of R,,./R. being equal for both objects.

In Fig. 6.5 we present the left column lenses of Fig. 6.4 now on baryonic scales, two of
them have new counterparts with similar M,(< R) and M (< R). As before we present
low to high mass galaxies from the bottom up.

For the two low mass lenses PG1115 and B0712, we find that at the outermost radius
probed for B0712, i.e. ~ 2.5R,, their baryon fraction is ~ 0.08. B1030 and LBQS1009
also match well within their error bars although the mean stellar mass profile of B1030 is
consistently below the one of LBQS1009. The error region of its lens mass profile shows
quite large error bars and thus make it easy to match. The baryon fraction at 2.7R, is
approximately f; = 0.08. If we compare lenses along the vertical direction of Fig. 6.5,
B0712 and LBQS1009 are representative for most lenses on low to high mass scales, that
is, similar M (< R), dissimilar M7 (< R) and baryon fractions.

In summary we find on both baryonic scale R, and lensing scale R,,:

e many pairs with the same enclosed total (lens) mass, but with different enclosed
stellar mass,

e a small number of pairs (decreasing with increasing M) with the same enclosed
total (lens) and stellar mass.

We can already conjecture an anti-correlation between enclosed lens mass and stellar-
mass fraction, which will be studied in detail later on. However, one should keep in mind
that our result could be influenced by the lens environment and its history. See also Table

82



6.5. RADIAL DEPENDENCE OF STELLAR VERSUS TOTAL MASS

M(<R) [10" M ]

Figure 6.5: As in Fig. 6.4, but with the effective radius R. as reference scale, shown for PG1115 and
B0712 (bottom), B1030 and LBQS1009 (middle), HE1104 and RXJ0911 (top). Here the grey vertical line
marks Riens.

C.2, column 'Env’ and Section 6.2 for information on the local lens environment. The
phenomenon of same Mj but different My becomes less prominent for larger total lens
masses, on both R, and R, scale. Nevertheless, global trends and interdependencies
might be revealed by analysing the whole set of lenses, which is done below.

Using our sample of 21 lensing objects we consider the following relations to highlight
the interdependencies in the (Mp,M,R) parameter space:

1. the enclosed total mass M (< R) as a function of enclosed stellar mass M (< R) at
a fixed radius R,

2. the stellar-mass fraction as a function of radial distance, fs(R) = Ms(< R)/Mr(<
R),

3. the stellar-mass fraction as a function of the total mass M,

4. the stellar-mass fraction as a function of redshift.
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Figure 6.6: The panels show the enclosed M against enclosed M plane for a number of apertures,
defined by the radial distance xRe to the centre of the lens galaxy, labelled by ’z’ in the bottom-right
corner of each panel. We cover a radial distance from 0.25 to 5R. from upper left to lower right panels in
conveniently chosen steps. Orange circles highlight a subset of eight lenses which are probed out to 5Re.
Grey arrows indicate the direction in which the data points move in the next 0.25R. step. The solid line
denotes the equality of total and stellar mass, whereas the grey band represents the uncertainty region
around the global baryon fraction (Hinshaw et al. 2009).

Fig. 6.6 shows the first relation for a range of radial positions from 0.25R, to 5R,, pa-
rameterized by the dimensionless quantity x = R/R,. For reference, we list in Table C.2 of
the appendix the enclosed stellar and lens mass within 2R, with error bars. The universal
baryon fraction according to WMAPS5, f, = /Q,, = 0.17+0.02 (Hinshaw et al. 2009), is
included as a grey band. The solid black line denotes a stellar-mass fraction of one, i.e. the
total mass content consists of 100% stellar mass. The grey arrows indicate the direction
in which the data point will move within the next 0.25R,. Orange data points denote
lenses with reconstructed profiles probed out to 5R, or farther. The distinction will be
used later on. Note that the data points in Fig. 6.6 refer to baryonic matter in stars and
do not account for other baryonic content like gas and dust. The gas content of our lens
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sample — mostly early-type galaxies — is expected to be small. But for the Einstein Cross
(Q2237), which is the bulge of a spiral galaxy, and B1600, which is likely to be a late-
type galaxy viewed edge-on, one can indeed expect deviations from the obtained M values.

The galaxy B1608 shows an unreasonably high stellar-mass fraction for radii < .75R,
(e.g. left panel in top row of Fig. 6.6). To take proper account of the light distribution of
B1608, we fit both the brightest galaxy and its merging companion with Sérsic profiles, but
we only use the information of the light profile of the brightest galaxy for the computation
of stellar mass. The enclosed mass values are thus taken with respect to the centre of the
brightest galaxy. As a consequence of the degeneracy between the two Sérsic profiles, the
central region of the light profile is modeled rather poorly. This causes an overestimate
of the stellar content (< 15%) in a region where the neighbouring galaxy, which is also
responsible for light deflection, interferes with the fit. The pixels with highest total mass
and highest stellar content do not match for B1608. This also causes larger deviations in
the region < 1R..

The late-type galaxies Q2237 and B1600 might be subject to dust reddening. In gen-
eral, the impact of reddening on high redshift lenses is stronger due to the bluer populations
observed in H-band and the higher absorption of dust at smaller wavelength. However, on
the basis of the analysis shown in Section 6.3.1, we do not expect departures of more than
20% towards higher M. This will shift B1600 closer to the bulk of lenses in Fig. 6.6.

The prominent fs; curve of B1422 — starting at twice the value of most other lens
galaxies — might also be caused by light contamination. This time it originates from the
innermost quasar image which lies just 0.25” away from the galaxy centre, an extreme
among the 21 lenses.

An animated version of Fig. 6.6 is provided in the ancillary material to Leier et al.
(2011) (see Section A.1). The lens galaxies reveal the following properties, which are
qualitatively assessable already from Fig. 6.6, but will be explained in detail later on:

1. Most lenses populate a band of 0.1 < fs; < 0.4 within 5R..

2. The slope of the enclosed M-to-M; relation of Fig. 6.6 within the shown radial
range becomes gradually steeper for larger enclosed radii (an effect quantified in the
following paragraph).

3. Between 2 (1.5) and 2.5R. (2R.) for most lenses with total mass below (above)
4 x 10" M), the dark matter halos overtake the stellar content, that is they move
primarily toward increasing total mass. The turning point thus depends on the halo
mass. The dark matter halos of more massive galaxies start to dominate the matter
balance at larger radii (in units of R.) than those of less massive galaxies.

Note that by ‘overtake’ we refer to the radius where dMp, /dR ~ dM,/dR rather than to
the radius where the total stellar mass contributes 50% of the total mass. As a consequence
of limited resolution, this radius can only be given with larger uncertainties (~ 0.5R,).

Point 2 can also be illustrated by plotting the slope 1 determined from M, oc M} so
that it represents light as a function of mass. We find that n asymptotically approaches
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Figure 6.7: Slope of the M-to- M, relation taken from Fig. 6.6 plotted against the distance to the centre
in terms of effective radii. The median slopes are determined via a bootstrapping fitting method with 10*
realizations to compute meaningful standard errors for a sample of 19 lenses (blue squares) and a reduced
8 lens sample (orange circles). The numbers at the filled squares give the number of lenses probed out to
the respective radius. The dotted line represents a weighted best fit of n(R) ~ 1/R+const.

0.75, as one can see in Fig. 6.7, which is in agreement with previous studies of the fun-
damental plane within error bars (e.g., Guzman et al. 1993, Jgrgensen et al. 1996, Leier
2009). A bootstrapping method for a large and a reduced sample is used to determine
the M,-to-M7, relation and its standard errors respectively. Both runs are done with 10
realizations. The 19-lens sample contains all the lenses except for the outlier B1608 and
the late-type galaxy Q2237. Farther out in radius, the number of lenses with profiles ex-
tending to a particular radius decreases. Because of that, Fig. 6.7 also shows the number
of lenses used for each fit. As a consequence of changing sample size, discontinuities ap-
pear between 2.25 and 3.5R, and at 4.5R,. The most extreme ones are caused by B0712
(2.5R,.) and B1030 (4.5R.) falling out of the sample. The behaviour of the error bars in
a bootstrap fit depends on the size of the drawn sample subset. To get more meaningful
error bars we fixed the size of the sample subset to be 50% of the available number of
lenses at each radius. The small sample instead comprises all 8 lenses being probed out
to 5R., which are highlighted in Fig. 6.6 by grey filled circles. From M, x Mi'24i0'14 at
0.25R, the reciprocal slope n(R) declines as 1/R and ends up at 5R. with the relation
My x Mg.?ﬁiom' We expect only small deviations from this slope for larger radii since
we run out of stars, and additional mass from the dark matter halo shifts the distribution
upwards, whereas possible baryonic contributions from gas shift the whole population far-
ther to the right of Fig. 6.6. Additionally, for the 19-lens sample a weighted best fit for
n(R) suggests that the function approaches asymptotically a constant value of 0.77+0.01.
Note that for the small sample n(R) declines rapidly to reach the value of 0.76 already
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Figure 6.8: Left panel: Stellar-mass fraction against radius in effective radii for lenses with M (< 2R.) <
4 x 10" M. Right panel: Similar, but for lenses with Mp(< 2R.) >4 % 101 M.

at ~ 1.5R, and thereafter shows no significant departure from it. However, the change in
slope from small to large radii is significant for both the 19-lens and the 8-lens sample.

All the stellar-mass fraction curves in the left and right hand panel of Fig. 6.8 turn
over between 1.5 and 2.5 R, to approach a similar stellar-mass fraction, a fact also re-
flected by n(R) in Fig. 6.7. The same trend is readily identifiable from the trend ar-
rows in Fig. 6.6. With increasing radius, the stellar-mass fractions of high mass galaxies
(Mp(< 2R.) 2 4 x 101 M) tend towards lower values in the majority of cases, meaning
fs £0.2. Low mass galaxies (M (< 2R.) < 4 x 1011 M) show a larger range of possible
stellar-mass fractions at high and low radii, which are in a range between 0.1 and 0.35 (see
left hand panel of Fig. 6.8). This is the reason for the large scatter of enclosed stellar-to-
total enclosed masses at small radii in Fig. 6.6.

Averaged over the whole lens sample we find that the stellar-mass fraction declines with
increasing radius from its value fs(< 1R,) enclosed in 1R, to only ~ 71% at 2R,, ~ 55%
at 3R., ~ 39% at 4R, and finally ~ 33% at 5R.. Splitting the sample with respect to total
mass as done before yields a different picture: For lenses with M (< 2R,) < 4 x 101 M,
79% of the stellar-mass fraction at 1R, remains at 2R,, 63% at 3R., 47% at 4R, and finally
40% at 5R,. For lenses with My (< 2R,) = 4 x 101 M, 64% of the stellar-mass fraction at
1R, is found at 2R,, 48% at 3R,, 33% at 4R, and finally 27% at 5R,. The uncertainties of
stellar-mass fractions at 1R, for low M, lenses are only as high as 10%. For larger radius
and mass the fs errors decline strongly to less than 1%. From this we can conclude the
following.

1. Low mass galaxies show a shallower decline in their enclosed stellar-mass fraction
than high mass galaxies: either their stellar content is less concentrated than in high
mass galaxies or their dark matter content is more concentrated. This point becomes
clearer in Section 6.6, where we calculate concentration indices of stellar and total
mass profiles,
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Figure 6.9: The stellar-mass fraction determined at 0.5, 1.0, 2.5 and 4.0 R. against total mass. The best
fits are found for the sample excluding lenses with mean stellar-mass fractions above 1 at Re, which is the
case only for B1608.

2. The relative stellar-mass fraction of high versus low mass galaxies is significantly
offset by a constant value within 5R, from the centre, i.e.

fs(< R) | fs(< R) | -
fs(< 1R,) 'ML>4E11Mg ~ fs(< 1R,) MrL<4BE11Mg

for 2R. < R < 5R..

0.15 (6.1)

The latter phenomenon becomes more evident when plotting the stellar-mass fraction
at fixed R/R, against the total mass as in Fig. 6.9. From left to right the panels show the
fs—Mp, relation at discrete radii of 0.5, 1.0, 2.5 and 4.0 R,. It should be emphasized that
the solid line fit does not imply a physical relation extendable to the high or low mass
end of the plot. Note that the relation has a tendency to steepen gradually towards lower
radii while the scatter increases. Comparing this to recent results from Guo et al. (2010),
where the ratio of total enclosed stellar mass My and halo mass My, is analyzed with an
abundance matching method, we find that their stellar-mass fraction curve f,f‘M (‘AM”
stands for abundance matching) shows a peak at a halo mass of around 6 x 10 M, and
decreasing fractions towards lower and higher halo masses. This is overplotted in the last
panel of Fig. 6.9. The actual height of the dotted curve flf‘M lies way below our results,
which is why we scale fbAM by a factor chosen to make the curve match with our data.
This is owing to the fact that flf‘M gives the stellar-mass fraction enclosed in the virial
radius. There is a significant amount of dark matter in the halo in the range from the
outermost radius we probe for the lenses up to the virial radius. The latter is defined in

Guo et al. (2010) as
GMpao \?
o= =22 . 2
B (100H2(z)> (6.2)

R, is roughly a hundred times larger than the region probed in this study. We list R.;,
values deduced from M; of this study given their M -to- My a1, relation in Table C.2, which
has additional implications on the lens environment, provided that the lens behaves like
an SDSS-Galaxy plus simulated halo counterpart of respective stellar mass. To illustrate
how the computed stellar-mass fractions change between our resolution range and the
virial radius, we multiply a constant factor by the stellar-mass fraction curve flf‘M from
Guo et al. (2010) (Fig. 6.9) and divide its total mass by the same factor (here we use
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Figure 6.10: The stellar-mass fraction determined at 0.5, 1.0, 2.0 and 4.0 R, against redshift.

7). The slope of the high mass end of their curve agrees with our best fit of M, 0-16+0.04
within error bars. Scaling to lower radii makes the mismatch for lower M} even more
prominent. However, we conclude that the Mg-to-My,), relation from Guo et al. (2010) is
scalable down to a certain level. In the 5R.-to-R,;-range, the lower-mass lensing galaxies
need to decrease their stellar-mass fractions by a larger amount than high mass galaxies in
order to match with the results from Guo et al. (2010). Note that scaling our lens sample
instead towards higher total masses and lower stellar-mass fractions yields the same result.

We should point out that this direct comparison of our results with Guo et al. (2010)
is imperfect, since Mya, and My are differently defined and the spatial distribution of
dark matter in a region not directly addressed in either paper is unknown. On the other
hand, the steepest part of the total mass profiles is already enclosed and the cumulative
mass profiles saturate, i.e. the slope of the Mp-to-f, relation is only slowly changing
beyond 5R.. These different trends for f; at lower masses could be indicative of an under-
estimated stellar-mass fraction towards smaller halo masses or an overestimated baryonic
content towards higher halo masses. If the aforementioned study of the My-to-fs; depen-
dency is correct, then our findings give rise to the question of what makes the stellar-mass
fraction of low mass galaxies decline less strongly within 5R, than in the range from 5R,
up to the virial radius, in contrast to high mass galaxies. Expressed in terms of stellar
mass content, we find a steeper decrease of stellar-mass fractions towards larger Mg than
our results predict.

The virial radius R,;, defined in Eq. eq:rvir becomes smaller for lower stellar mass
content. Low M galaxies reside in halos with larger f; than high M, galaxies, meaning
the mass in the dark matter halo relative to M, is even larger, i.e. small galaxies have
more concentrated dark matter halos than larger ones (see also Section 6.6).

In order to investigate the influence of the distance/lensing-bias, we also show the red-
shift dependence of the stellar-mass fraction in Fig. 6.10. The ordinate might be subject
to several biases. The lensing galaxies plus halo must be massive to produce an observable
signature. The galaxy should not be too faint to be seen and has to obey our selection
criterion of sufficient separation from the quasar images. Fig. 6.10 shows that the cor-
relation between stellar-mass fraction and redshift becomes more pronounced with larger
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Figure 6.11: Concentration index ¢ = R90/R50 versus redshift, where c is the ratio of the radii enclosing
90% and 50% of the total stellar mass (c¢(Ms), magenta circles) and lens mass (¢(Mr ), blue squares). For
MG2016 R50 cannot be calculated due to a lack of data points at small radii. The solid line indicates
¢ = 2.6 separating early-type (¢ > 2.6) from late-type galaxies (¢ < 2.6). Error bars for index ¢ can be
found in Fig. 6.12.

radius. However, the strongly increasing scatter below 4R, blurs the correlation and the
slope shows no uniform trend.

6.6 Baryon cooling

We now consider two different measures of the stellar and total-mass profiles, with a view
to gaining insights on the evolution of lens galaxies from formation to observation redshift.

6.6.1 Concentration index

Our spatially resolved stellar and total mass maps allow us to study the difference in con-
centration of the baryon and the total mass distribution. The concentration index as used
in observations is defined by a ratio ¢ = R90/R50, where R90 and R50 denote the radii en-
closing 90% and 50% of the Petrosian r-band luminosity (see e.g. Bershady et al. 2000). In
that case a concentration index above 2.6 indicates an early-type galaxy, whereas indices
below 2.6 refer to late-type galaxies (Ferreras et al. 2005). Previous studies based on the
surface brightness distribution use the Petrosian radius (or a given number of Petrosian
radii) to define the total brightness (see Section 3.2.4). In our case, we redefine ¢ and take
the ratio of R90 and R50 of our cumulative stellar mass and total mass profiles instead
— 100% corresponding to enclosed masses at 2R, (except for Q0957 and HS0818 where
it is 1.5R).,.). In Fig. 6.11, we show concentration versus redshift in the left-hand panel
with no obvious correlation and the frequencies per concentration bin in the right-hand
panel. Note that defining the concentration values using Rpg;, instead of Ry, will change
the concentration values slightly, but even for Ry,./Rg, = 1.5 we obtain changes in the
lens mass concentration of less than ~ 30% and only for lenses with high concentrations.
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Figure 6.12: As in Fig. 6.11 but plotted against the total mass My +o+ enclosed in 2R.. The y-axis error
bars represent for ¢(Mp) the standard errors for mean concentrations of 300 models. For ¢(M,) the error
bars correspond to the uncertainties originating from a 10% error in the flux per pixel.

From Fig. 6.11 the frequency distribution of ¢(M;) peaks between 3.0 and 3.5, which is
in agreement with most concentration studies of early-type galaxies (e.g. Yamauchi et al.
2005, Deng et al. 2010). That is, even with the redefined concentration quantities one
can distinguish the lens galaxies morphologically. Evidence is given by the two late-type
galaxies Q2237 and B1600, which indeed lie below 2.6. For the two merging galaxies
in the lens B1608, the interfering potential (for ¢(My)) or light (for ¢(M;)) causes the
concentration values to be decreased, pushing ¢(My) down to 2.6. For the same reason
we obtain rather large error bars on the lens mass. One could check in detail now if the
strong correlation between the concentration and Hubble-type is maintained for the newly
defined ¢(My), but this is beyond the scope of this work. If we define a concentration
parameter by means of the total mass profiles we expect, as our findings in Section 6.5
already suggest, a totally different distribution, which is also plotted in Fig. 6.12. Most
lenses exhibit ¢(My) values in a narrow region between 1.5 and 2. However, neither in
¢(Ms) nor in ¢(Mp) a clear evolutionary trend can be found. Figure 6.12 shows that the
concentration parameter for stellar mass c¢(M;) has a rising trend with total lens mass,
whereas ¢(Mp) clearly declines with lens mass.

Note that the error bars of ¢(Ms) and c¢(My,) are the standard errors of the R90/R50
values of each model in the ensemble multiplied by student’s ¢ for a 95% confidence inter-
val. This was done since the ensemble can be seen as being part of a normal population.
The horizontal error bars are the M, errors at the outermost radius of the reconstructed
mass profile. As we can see at low total lens masses, the distributions of M, and M,
are almost the same, which means that the My, profile approaches the distribution of the
baryonic matter. An interaction between the baryonic and dark matter distribution seems
to be a reasonable explanation, since already in Section 6.5 we find that the stellar-mass
fractions of less massive lenses are larger than for more massive lenses.

A possible interaction between baryons and dark matter is likely to influence the slope
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Figure 6.13: Power law index § of the density profile plotted against the concentration parameter ¢ =
(R90/R50)ar,, for the total lens mass distribution. Filled (open) squares indicate ¢ determined for a profile
extending to 2Riens (1Rlens). The left panel uses power law fits to the entire radial range, whereas the right
panel neglects the innermost data point. The solid black line shows the pure power law case according to
Eq. 6.3.

of the total mass distribution close to the centre of galaxy. For example adiabatic con-
traction is thought to increase the concentration of the dark matter halo as a consequence
of dissipation of gravitational energy and the feedback processes explained in Section 2.7.
If we assume a density following a pure power law p(r) ~ 7—? the enclosed mass becomes
M(< R) ~ r377/(3 — B). Thus the concentration ¢ and the density slope 3 obey the
relation

~ 1n0.9/0.5

B=3 e (6.3)
Figure 6.13 contrasts the relation between 8 and ¢ based on a pure power law (solid
line) and data for different radial extents. The 3 values represent weighted best fits to
lens mass profiles with standard errors from the fit. If the mass distribution does not
follow a pure power-law (R90/R50) might depend strongly on the radial extent of the lens
(2R)ens)- Therefore we compare in both panels of Fig. 6.13 concentration values inferred
from differently sized profiles, with a maximal radius of 1R, and 2R,,,,. The innermost
data point has rather large uncertainties and deviates in most cases strongly from the
trend at larger radius. To demonstrate its impact on the relation we contrast fits with
(left panel) and without (right panel) regard of the innermost profile point. According
to Eq. 6.3, we find that with increasing M (< 2R,) — i.e. decreasing concentration — the
slope 8 gets shallower. It is remarkable how extraordinarily well the weighted power law
fits to the data (left panel of Fig. 6.13). While neglecting the innermost point, the squares
(in the right panel of Fig. 6.13) agree with the simple £(c) model at low concentrations,
but fail to do so at large concentrations, where the data is too low with respect to the pure
power law relation. Higher values of 8 correspond to shallower My, profiles. Including the
innermost point always flattens My (< R) fits, which explains why respective [ values,
although less representative for the outer part of the profiles, are in better agreement with
Eq. 6.3 (see left panel of Fig. 6.13). We can conclude that
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Figure 6.14: The energy ratio E2/FE; versus stellar-mass fraction determined at 1.0, 2.0, 3.0 and 4.0 Re.
The solid line denotes the best fit of a power-law with slope . The fits exclude Q2237 and MG2016.

1. excluding the core region of the lenses, we obtain power law indices and concen-
tration parameters (R90/R50) indicative of a pure power-law behaviour for small
concentrations. This notion is strengthened by only small shifts of (R90/R50) going
from 2 to 1R, profiles.

2. For more concentrated total mass distributions, we find evidence for a significant
departure from pure power law behaviour. This is confirmed by significant shifts of
(R90/R50) while reducing the extent of the lens from 2 to 1R, and an increasing
(B error towards higher concentrations.

6.6.2 Energy ratio

By means of the stellar mass content, one can approach the subject of galaxy formation
from a different viewpoint. The question is, whether it is feasible to determine a char-
acteristic quantity which gives us the amount of energy lost between the collapse of an
initial sphere of homogeneously distributed baryons and its later state as a lens galaxy.
One could ask as well for a ratio of the radius of the pre-collapse sphere and an observable
spatial quantity, like the effective radius. Even though this is a rough estimate, one can
gain insight in the evolution process of galaxies.

At the time of collapse t1, a region decouples from the expansion of the surrounding uni-
verse. The baryons which are assumed to be homogeneously distributed in this sphere are
for now assumed to make up the entire stellar content of the later lens galaxy, neglecting
any kind of active evolution such as caused by mergers, ram pressure, tidal stripping, etc.
The radius r1 of such a sphere at t; is

Y 1/3
r = ( > > (1 + 2’1)_17 (6'4)

%ﬂ-prC

where € = 0.0441 £ 0.0030 is the baryonic energy density in terms of critical density
according to Hinshaw et al. (2009) and p. ~ 143.87M /kpc3. The average Newtonian
energy per unit mass at ¢ consists only of the potential energy per unit mass, which is
G M,
B = —— (6.5)

™
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Figure 6.15: The energy ratio versus enclosed stellar and enclosed total mass at 1.0, 2.0, 3.0 and 4.0 Re.

The total mass M. is defined here as

4
Miot = Qmpe(1 + 21)357”“%- (6.6)

As the collapse goes on, the baryons start to fall in to build a more tightly bound structure.
At the observation redshift, i.e. at time ty, we find mostly objects which are in virial

equilibrium, that is ¥ = —T, where T denotes kinetic energy. Thus we can determine the
total energy per unit mass of the galaxy at to to be
1
Ey=-T) = —5012%3, (6.7)
where
Olens = VGMp(< R)/R (6.8)

is an effective velocity dispersion inferred from lensing (see Table C.2). It is computed at
R = R, and assumed not to vary drastically with radius. This effective dispersion has
been shown to be an appropriate surrogate for the observed kinematic velocity dispersion
(Leier 2009). Thus,
B 2GMiy;  GQmpe(l + 21)3%77“%
- - 2 (6.9)

™ 2
E2 Ulensrl Olens

using Eq. 6.4,
Eg 0'12
— X —==. (6.10)
Eq M3/3
Therefore we get a quantity E1/Ey < Rjens X M, 52 /3 /My, or Ry, Mg 1/3 fs- This is rem-
iniscent of the Kormendy relation, except that it relates to three-dimensional rather than
projected densities. For definiteness, we assume a formation redshift z; = 5, but the value
only implies a multiplicative constant. Plotting the energy ratio against the stellar-mass
fraction we find a strong correlation (Fig. 6.14) regardless of the enclosure radius. The
slope changes only marginally, but the scatter decreases with increasing radius.

However, Fy/FE; appears to be uncorrelated with the enclosed stellar and total mass.
For different radii one obtains Fig. 6.15. The fact that Ey/FE; exhibits such a tight cor-
relation with fs, but no clear correlation to contributing masses, can be interpreted as
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insensitivity of the star formation in early-type galaxies to active evolution processes over
the time span from 2z to zjens.

6.7 Discussion

A resolved, model-independent and thus non-degenerate (with respect to My and My, for
fixed fs) estimate of stellar versus total mass within galaxy halos is crucial to constrain
current galaxy formation models and prescriptions of baryon-dark matter interactions used
therein. Besides dynamical methods to explore scales below 10 kpc, the combination of
strong gravitational lensing and population synthesis used in this study is most promising
to give robust estimates of stellar-mass fractions.

The analysis of the radial dependence of the mass profiles of 21 CASTLES lenses pre-
sented in this work allows us to draw the following conclusions. The relations between
basic galaxy properties, i.e. My, My and R, cannot simply be scaled with their mass.
The scatter in this parameter space turns out to be particularly large for galaxies of smaller
size. The study of My versus My, and of the stellar-mass fractions (f; = M,/M| ) enables
us to discriminate between lens galaxies below and above My (< 2R,) = 4 x 10 M. The
high mass class populates a lower and narrower f, regime (0.05 to 0.2) on scales studied
here and runs out of stellar mass earlier (i.e. at lower enclosed radius) than low mass
lenses. Low mass lenses (< 4 x 101 M) exhibit a more inhomogeneous behaviour with a
wider range in fs (0.1 to 0.5) and respective slopes.

We conclude that between 1.5 and 2.5R,,, dark matter halos start to dominate the mat-
ter balance depending on their total enclosed mass M, (< R). This My (< R)-dependence
causes high mass galaxies to gain mass primarily in the form of dark matter already at
lower radii than low mass galaxies. Therefore the slope of the mass-to-light relation, which
is a projection of the fundamental plane — or our equivalent representation, M oc M,
— becomes shallower with increasing radius and asymptotically approaches a slope of
n = 0.76 £ 0.07. Thus, the FP tilt can be recovered as a gradually growing process with
radius. Equivalently, the stellar-mass fraction shows a strong correlation with the total
mass. As we contrast fs(M) with a comparable curve deduced by abundance matching
from Guo et al. (2010) dissimilarities for low M}, galaxies become more evident the smaller
the enclosed region gets. This is likely to be a result of different halo definitions, physical
properties and processes, like baryon-dark matter interactions and adiabatic contraction,
which is beyond the scope of the aforementioned study. However, the fs-to- My, relation
scaled down to 4R, agrees quite well with lenses with M7 ~ 10'2M), since the biggest
part of stellar matter is still enclosed.

Another important result of this study addresses the concentration of stellar (¢(Mj))
and total (c(Mp)) mass profiles. The rule-of-thumb delimiter of ¢ = 2.6, which separates
early-type galaxies (¢ > 2.6) from late-types ¢ < 2.6), holds also for the concentration
parameter (¢(Ms)) defined by means of stellar mass instead of luminosity. In the low mass
regime M (< 2R,) < 4 x 101 M, both, ¢(M;) and ¢(My), tend to similar values around
2.6. This means that the total mass profile is likely to be influenced by the distribution
of baryonic matter in stars. From 10 Mg upwards, ¢(M;) and c¢(My) diverge, due to a
stronger confinement of stars in more massive dark matter halos. The ¢(My) values above
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4 x 10" M, remain around ~ 2 instead. Studying the interdependency of density slope and
¢(M7p) we find that the reconstructed lens profiles show deviations from a pure power-law
mass model, which is evidence for the sensitivity to the radial trends of the dark matter
distribution. Furthermore, we analyze the evolution process of our lens galaxies consider-
ing their total kinetic and potential energy at collapse time and at their observed redshift.
We find a tight correlation between the energy ratio and stellar baryon fraction, which
can be interpreted as an insensitivity of star formation to active evolution, such as mergers.

The findings of this chapter are of many-faceted interest in the field of structure for-
mation. Besides its implications on FP studies, resolved stellar and total mass profiles
can be used to constrain interaction processes between dark matter and baryons. Further-
more, extrapolating obtained mass profiles to the virial radius permits to address models
of structure formation by means of the concentration to virial mass relation. Both will be
discussed in the next chapter.
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Diagnostics of Baryonic Cooling

The cooling of baryons is a necessary requirement for the formation of stars. As baryonic
gas falls into the potential wells of dark matter halos they interact gravitationally with the
dark matter particles. The interaction is thought to lead to an increased concentration
of the dark matter distribution, a process called adiabatic contraction (AC) explained in
Section 2.7.

The concentration to virial mass relation states that more massive halos are less con-
centrated than less massive halos (see Sec. 2.6.3). Both, observations and numerical sim-
ulations agree on a power-law relation, ¢ oc My, with a negative index a. Using the
enclosed mass profiles presented in the previous Chapter 6, we can extrapolate dark mat-
ter profiles probed in the range from 0.25 to 5 R,, to the virial radius. With this we
produce a concentration to virial mass relation (Section 7.1) consisting of 18 lens galaxies
of the CASTLES catalogue, a subset of the 21 lenses used in the previous chapter. We

compare our results with abundance matching studies in Section 7.2.

Another application of our resolved stellar and total mass profiles is a test of AC
prescriptions commonly used in simulations to model the baryonic content in dark matter
halos in a semi-analytic manner, which is presented in Section 7.3. Moreover we investigate
to what extent the ¢-M,; relation is affected by AC. We finally summarize our findings
in Section 7.4.

7.1 Virial mass and concentration

Having the enclosed total M, (lensing) and stellar mass M, information for 18 lens galaxies
in a radial range from 0.25R, to several R, we can safely assume

AM(< R) = Mp(< R) — Ms(< R)

to consist largely of dark matter as all our lenses are early-type galaxies. Note that
AM (< R) is computed as the difference of two profiles and not as the profile of the differ-
ence ‘dark matter’ map as shown Sec. 6.4. Both modes give, however, comparable results.
Nevertheless, the mass difference AM (< R) is sufficiently close to a pure dark matter pro-
file. We deliberately use the word “close” since the mostly elliptical density contours of
the M- and M;-maps do not necessarily show the same orientation. Nevertheless, larger
discrepancies can be excluded, since firstly, the angle between respective orientations is
rather small and secondly, the region where the surface mass contours are not matching
is always far (2 2R,) away from the centre of the lensing galaxy, that is where the dark
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Figure 7.1: Top: x? map of NFW parameter space with scale density ps and scale radius rs. Minima are
indicated by red crosses. Fits to AM + dM|, are marked by cyan crosses. Solid contour lines indicate from
centre outwards 1-30 regions for one degree of freedom, the dashed contour a 1o region for two degrees
of freedom. Bottom: As in top panel, but for sought-after Hernquist parameters, i.e. luminosity L versus
Hernquist scale radius 5, and without cyan crosses.

matter contribution to the total mass is dominant. Furthermore, a significant contribu-
tion of baryonic matter from a gaseous component can be excluded for all lenses, since our
lensing sample contains only early-type galaxies. Note that for this reason we excluded
the Einstein Cross (Q2237), which is the bulge of a spiral galaxy, and B1600, which is
likely to be a late-type galaxy viewed edge-on from the sample introduced in Section 4.2
used in Chapter 6. Furthermore we omit B1608 in this study due to a second merging
component contributing to the lensing effect. All three excluded lenses were shown to be
outliers already in Sections 6.5 and 6.6.

To find most likely NFW profiles, which agree to AM(< R) we use the doubly in-
tegrated NFW-profile (projected and cumulative) of Eq. 2.50 as the underlying fitting
model. It gives the mass enclosed in a cylinder of radius r, depending on the scale density
ps and scale length r,. Subsequently we calculate the reduced-y? map of the parameter
space shown exemplarily for the two lenses Q0047 and HE2149 in the top row of Figure 7.1.
Note that the bottom row will be discussed in Section 7.3, but is already placed here for

better comparison. The uncertainties are determined by o = 4 /512\/& + 012\45, where dyy, is

half of the 90% confidence interval given by the ensemble of lens mass models and o/, the
standard deviation of stellar mass from population synthesis. The x? maps for the whole
lens sample are given in Fig. A.4 of the appendix.

Previous Markov-Chain Monte-Carlo (MCMC) runs® helped to constrain the parame-
ter region, which shows already the isolation of the minima. Thus the possibility of several

1100, 000 MC realizations each lens, with a conservative burning rate of 50% and thinning by taking
every fifth trace point.
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distinct minima can be excluded for physically reasonable parameters. The red crosses in
Fig. 7.1 indicate the position of minimal x?.

Despite the ostensible disadvantage of non-normally distributed errors one may take
advantage of the x? procedure to quantify the probability distribution of parameters by
means of constant Ax? contours as a boundary of the confidence region. The respective
error contours for 1 — 30 considering one degree of freedom are shown in Figure 7.1 as
solid contours, whereas the 1o region considering two degrees of freedom is indicated by
a dashed contour. The bottom panels show respective y? maps for the parameters of a
projected Hernquist profile fitted to the stellar mass profiles. We will make use of latter
results in Section 7.3.

To demonstrate the validity of the x? error regions we include (ps,rs) values found to
nicely fit the upper and lower limits of the lens mass errors within oy, as indicated by
cyan crosses in the top panels of Fig. 7.1. Note that the ordinate of the x? plots is given
in terms of p,r2 and in units of My R! to allow for conveniently probing the parameter
space. Plotting p, versus r, instead gave a much thinner elongated valley in the y? plane,
which makes the determination of an optimal x? within preferably small errors rather
difficult.

In the top panels of Figure 7.2, we show corresponding original AM (< R) = M (<
R)— M,(< R) profiles (blue circles), together with best fits to the median profile (solid red
line) with respective 1o errors (grey shaded region) as well as best fits to the error limits
(solid green lines). As before we neglect the bottom panels, which are placed here for
comparison, but return to them later in Section 7.2. Note that the 1o region corresponds
to the dashed contour shown in Figure 7.1. The results of the parameter search can be
found in Table C.4. The inflexibility of Eq. 2.50 causes the innermost data point to devi-
ate in some cases significantly from the fit. Steeper density slopes towards the core region
of halos are expected from simulations (Moore et al. 1998, Navarro et al. 2004, Diemand
et al. 2005). As a result of baryon-dark matter interaction such as adiabatic contraction
and their hard to quantify impact on the mass profile, latter results often tend to disagree
with observations. This is suggestive of a generalized NFW (gNFW) being a more appro-
priate description of AM (< R). Cardone et al. (2011) show that under the assumption of
a ¢ — My, relation a gNFW can mimic the one-parameter family of the secondary infall
model, which nicely describes cored and cuspy dark matter profiles. However, as it is our
aim to investigate the ¢ — M., we need to use two-parameter profiles. Since our mass
profiles show only mildly steeper slopes within uncertainties, we consider NF'W profiles a
good description of the dark matter profile. We will address this issue later on in Section
7.2.

For now, let us assume a projected NF'W depending on scale radius r, and the normal-
ization pg to sufficiently describe the data. We extrapolate the profile to the virial radius
R, defined as the radius for which the mean enclosed density is equal to a multiple (A,)
of the critical density p.(z), i.e. (p(Ru)) = Acpe(z). Hence we compute concentration
values cyir = Ry, /7s and the virial mass M,; (Eq. 2.38), defined as the Mass enclosed in
a sphere of radius R,;,, according to the procedure described in Sec. 2.6.3.
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Figure 7.2: Examples of disagreement and agreement with abundance matching. The grey region and
the red and green curves relate to an NFW fit to the lensing region. The outermost point in each case is
from abundance matching. The black curves are NF'W fits that include the outermost point. The vertical
dashed red line indicates R.ir as deduced from our lens data only.

Plotting ¢, against M, yields Figure 7.3. The red circles indicate our lens sample.
The errors are calculated according to the projected 1o regions of Figure 7.1. All quan-
tities are given in Table C.4. There is no data yet available showing this relation to such
small virial masses.

We compare our data with results from a study by Buote et al. (2007) of the X-ray
¢ — My, relation for 39 galaxy systems (grey dots in Fig. 7.3) which cover a range from
6 x 102 to 2 x 10" M. They find that a power-law fit to data using

(3r)

yields a slope of a = —0.172 4+ 0.026. The constants c14 and M4 indicate that all mass
quantities are normalized to 10'4M. Neglecting the 14 z~! term in Eq. 7.1 and con-
sequent fitting yields a = —0.20 4 0.03. Note that in some recent studies, (1 + 2z)77 is
used instead of (1 + 2)~!, which introduces 3 as a new fit parameter (Duffy et al. 2008,
Schmidt & Allen 2007). However, most studies based on observations keep (1+ z)~! fixed
or drop it if the sample is considered local. As done by Buote et al. (2007), we use a
bivariate fitting method for correlated errors and intrinsic scatter (hereafter BCES) by
Akritas & Bershady (1996) to see if the result is recoverable for our low-M,;. sample.
Figure 7.3 shows that the projected 1o contours cover a smaller region than x- and y-
errors only would suggest, which means that there might be more information included
accessible by appropriate tools. To contrast different approaches, we employ above BCES
method (Bivariate fit for data with correlated errors and scatter) and compare its results
with a bootstrapping study, sampling only in the 1o regions. By BCES we find a slope
of a = —0.40 4 0.06. Normalizing by (1 + 2z)~! as in Eq. 7.1 yields a marginally changed

M
My

o= C14
1+ 2

(7.1)
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Figure 7.3: Concentration versus virial mass. The red dots represent data from this study. Data from
Buote et al. (2007) is marked by grey dots. The grey contours show the lo error region from Fig. 7.1. The
red dashed line shows a bootstrapping fit to the red dots. The solid red line shows the result of a bivariate
fitting method for correlated errors and intrinsic scatter (BCES) by Akritas & Bershady (1996) applied
to our data (red dots) only. The same method was used by Buote et al. (2007) to obtain the dashed grey
line. The result of a fit to the combined sample, i.e. red and grey dots, is presented in Table 7.1.

slope of a« = —0.38 & 0.06.

Our bootstrapping analysis yields a = —0.42 + 0.08. We employ a piecewise analysis
(fitting the relation in mass intervals) to check how the slope a of the relation evolves
and to see whether fits in common mass range yield same results. Furthermore we fit a
combined sample of 57 objects. The results are shown in Table 7.1.

Going from high to low M,;., the slope increases from —0.103 £ 0.055 for M,;. >
10" My to —0.201 + 0.129 for M,; < 10 My (for data from Buote et al. (2007)) and
finally —0.401 £ 0.064 for My;. < 4 x 1013M®. For the mass range between 6 x 10'2 Mg
and 1 x 10'* M, where the two samples overlap, we do not find significant differences.
However, it should be noted that the reduced sample size and considerable scatter leads
to large errors for both samples. A two dimensional Kolmogorov-Smirnov test for the
overlapping region gives a probability of ~ 44% that the lensing and X-ray sample are
drawn from the same population. Despite this inconclusive result we use a Monte Carlo
approach to draw random-subsamples of the size of the lensing sample from the X-ray
sample and computing respective KS-probability shows that ~ 90% of the 100, 000 realized
sub-samples would yield a probability < 44% to match the parent population.

Going back to the total virial mass range, a trend of o with virial mass was first
suggested by Navarro et al. (1996) and confirmed by Bullock et al. (2001) and Eke et al.
(2001) for simulations. Higher normalization factors compared to simulations are also
known from a lensing study by Comerford & Natarajan (2007).

Up to now, we computed the ¢ — M,;, in the belief that
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Sample Size Method  M,;-range « Oa c14 Oc14
(10" Mg)]

BO7 39 BCES 0.06 — 20 —0.199 0.026 9.12 0.43
BO7 22 BCES >1 —0.103  0.055 7.71 0.58
BO7 17 BCES <1 —0.201 0.129 9.46 2.11
Coir 18 BCES 0.004 — 0.4 —0.401 0.064 7.03 1.49
Cvir 18 BS 0.004 —0.4 —0.433 0078 6.6 331
Coir 9 BCES > 0.06 —0.203 0.172 16.98 12.87
comb 57 BCES 0.004 — 20 —0.278  0.021 9.62 0.41
B07g 39 BCES 0.06 — 20 —0.172  0.026 9.0 0.4

Cyir,0 18 BCES 0.004 — 0.4 —0.381 0.062 12.02 2.57
CNT7o 62 N/K 0.4 — 100 —0.15 0.13 10.68 5.50

Table 7.1: Slope « of the ¢ — My, relation with uncertainty for different samples, sample sizes, fitting
methods and mass ranges (all errors 1o, ci14 errors are 68% confidence interval around median). B07
denotes the sample of massive early-types in Buote et al. (2007), cyir stands for the relation as in Fig. 7.3,
comb gives the combined sample fit consisting of 39 objects of BO7 and 18 lenses of the above ¢y sample,

CNT are results from Comerford & Natarajan (2007). The index 0 to a sample name denotes concentrations

normalized with (14 z)™*.

1. an NFW profile is a good representation of the dark matter profile beyond the radial
range probed for the lens galaxies in Chapter 6,

2. the dark matter profile is well constrained by pixelated studies of stellar and total
mass, meaning also that the probed radial range is sensitive to the scale radius of the
NFW profile and that the given uncertainties are a fairly well estimate of suitable
mass distributions.

In the next section, we compare the quantities extrapolated to the virial radius with
predictions using both simulations and SDSS observations.

7.2 Comparison with abundance matching

So far, we found the scale parameters for our sample of lenses by extrapolating a best
fit projected NF'W to the virial radius. Abundance matching studies like Moster et al.
(2010) and Guo et al. (2010) make use of cosmological simulation and galaxy surveys to
determine the mass dependence of galaxies and their preferred host halos. The stellar
mass enclosed in a 2R, aperture is known from population synthesis shown in Chapter
6. Beyond 2R, the stellar mass profiles do not change by much. Thus, we use the
Mpq10-to-M relation from Moster et al. (2010) to infer a virial mass and a 1o uncertainty
region. Consider the bottom panels of Fig. 7.2 showing the examples Q0047 and HE2149.
As before the red line represents the best x? fit to data only. In contrast to the upper
panels we have one more data point which is the one inferred from abundance matching
(hereafter M£7M ). The best fit of a projected NFW to the data plus the latter point (11
data points in total) is indicated by the black solid line. Together with the slope of the
inner profile (< ry), the radius of the turn-over itself increases. The virial radius of the
black line is the position of M;}TM , whereas the previously deduced R.; of the lensing
data is indicated by the vertical dashed red line. In Fig. A.6 of the appendix, we provide
Fig. 7.2 for the whole sample. As it turns out for 10 out of 18 lenses, Mqﬁfy[ lies within
the 1o error region (grey shaded) around the extrapolated data (best x?(10)). For the
18 lenses of our sample, R.; changes mostly by a smaller factor than r,. Hence adding
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Figure 7.4: Similar to Fig. 7.3, but showing how the fits change when abundance matching is included.
The arrows go from the original position (red dots in Fig. 7.3) to the position for which the parameters
include information on virial mass from Moster et al. (2010). Arrows highlighted in red mark lenses for
which an extrapolated NFW suffices the expectations of My, .

Ml‘gi‘/f to the mass profile causes c,; to decrease for most lenses. The result is illustrated

in Fig. 7.4.

The arrows point from the old best fit values (My;y,cypir) to the new ones. It should
be noted that the best x? fits to the profiles extended by Mqﬁfn\/[ are all worse than the
previous. The eight lenses with Mﬁfn\/l that do not match the simple extrapolation exhibit
the highest x? from fits to the extended data. Subsequently, due to the large errors on
M£7M , the 1o error region is highly extended and does not allow for one-by-one study.
Nevertheless, Fig. 7.4 gives an impression of the expected overall trend if we impose
constraints from abundance matching. In this plot, we highlight the ten arrows for profiles
extending to the expectations from abundance matching in red and label the remaining
black arrows to allow for a better comparison with Fig. A.6 in the appendix. Among the
latter there are three lenses (MG2016, B1422, B1030) with a notably large upwards shift,
i.e. toward higher concentrations. These are lenses for which Ml‘gi‘/f lies significantly below
the extrapolation. For MG2016 M£7{\/1 is even smaller than AM(< R) at the outermost
radius. All three have reconstructed mass profiles with small uncertainties only.

So what is the reason for this discrepancy? As it appears, there is a strong correlation
between the length of arrows and the environment of the lenses. MG2016 and B1422 belong
to large groups or clusters with many nearby galaxies (see Table C.2 in the appendix). All
eight lenses not conforming with Mﬁfn\/l are in dense environments, whereas for six out of
ten remaining conform lenses as yet no nearby objects are known.

As seen in Section 6.1, multi-component model fits yield nice agreement with the total
mass content of a lens but overestimate the stellar mass if not sufficiently constraint. Thus,
the dark matter content is underestimated which leads to an even more severe discrepancy
in the majority of cases, even though the mismatch between abundance matching and
extrapolation for the lenses MG2016, B1422 and B1030 will get slightly reduced.

The root mean square deviation (RM S D) with respect to the simple power-law best fit

almost doubles from 0.145 (lens data only) to 0.258 (lens data + M/M). The BO7 sample
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gives RMSD ~ 0.180. A mildly increased scatter can be found in simulations by Shaw
et al. (2006) for virial masses between ~ 3 x 10'® and ~ 10'® M, which is most likely due
to the indistinguishability between substructure and main halos. This, however, cannot
explain the increased RMSD. From this we can conclude that the extrapolation to Ry,
inferred in Section 7.1 gives a reasonable extension to the ¢ — M, relation. Given stellar
mass, the Mpq,(M;) relations of Moster et al. (2010) and Guo et al. (2010) fail to recover
virial masses in agreement with expectations from ¢ — M,;, studies for a smaller fraction
of lens galaxies. This may most likely be attributed to the simplistic halo definition and
the influence of the environment (external convergence). An underestimated scatter of the
abundance matching might also have a non-negligible influence.

In the following section, we want to assess to what extend the ¢ — M, relation is
caused by adiabatic contraction of the halo.

7.3 Adiabatic contraction

The concentrations deduced in Section 7.1 represent the state of the halo after adiabatic
contraction (AC). There are reasonable doubts that AC contributes significantly to the
steepness of the density profile (Abadi et al. 2010). Hence the impact of AC on dark
matter profiles might be overestimated by commonly used recipes for baryonic cooling.
To analyze this issue, we make use of a halo contraction program by Gnedin et al. (2004)
which computes the change of a dark matter profile caused by condensation of baryons in
the centre of the halo by keeping rM (< r) conserved. To take account of a wide range of
orbit eccentricities, the code invokes the power-law

F/Ro = A(r/Ros)" (7.2)

to describe the mean relation between orbit-averaged 7 and current radius r and modifies
the adiabatic invariant to rM (< 7). The case A = w = 1 corresponds to the original pre-
scription of Blumenthal et al. (1984) where the orbits are assumed to be completely radial.
This case can be understood as an upper limit to AC. The program provides the necessary
resolution for comparison with our data, i.e., down to 1072R,;,. Input parameters are
the baryon fraction f enclosed within R.;,, the baryon scale length (e.g. Hernquist scale
radius) and the concentration of the dark matter profile before contraction. We define
the baryon fraction to be My (< 2R\...)/Muyir, where My(< 2R,.,.) denotes the stellar mass
enclosed in the total reconstructed radial range. For M,;., we use the values given in
Table C.4, for which Eq. 2.38 was used. For the distribution of stellar matter we assume
a Hernquist profile and give 7 as an input parameter. Since population synthesis delivers
the stellar mass profile (see e.g. Fig. 6.4), sought-after scale length can be determined
as before by profile fits. Searching for minimal y? parameters M/Y (luminosity) and 7y,
(scale radius) in the projected cumulative Hernquist profile (Eq. 2.43) yields — as in the
NFW case — a degenerate parameter space, shown in the bottom panels of Fig. 7.1 for
Q0047 and HE2149, but this time with more concentrated probability contours. The rea-
son for this is that the cumulative stellar mass profiles contain ~ 100% of stellar mass,
whereas in case of AM (< R) only < 30% of the virial mass are enclosed. In other words,
for the NFW-fit we use data which sparsely samples the DM profile. For a Hernquist-fit,
the scale radius rp, falls well in the radial range covered by our data. It is important to
note that the effective radius can be determined for any Hernquist profile using the simple
relation R, ~ rp x 1.8153 first shown by Hernquist (1990). Nevertheless we leave 7, as a
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fit parameter for several reasons. Firstly, we do not expect the Petrosian effective radius
(see Section 3.2.4) to agree precisely with the half-light radius of Hernquist profiles. It is
worth noting that a certain radius R corresponds to the mean of semi-minor and semi-
major axes, which define the ellipse enclosing M (< R). Secondly, the Hernquist profile is
originally used for light profiles, but in here, we fit to mass profiles. The r,/R, best-fit
values turn out to be mostly lower but close to 1/1.8153. The x? maps for the whole lens
sample are given in Fig. A.5 of the appendix.

All fit parameters and R,;, are given with 1o errors in Table C.4. The dark matter
profile before contraction is assumed to be an NF'W profile with initial concentration c;,;;.
We run the contraction routine for a grid of parameters (¢init, fp, 7n/Rvi:) ranging from
(5,0.005,0.001) to (60,0.135,0.015) in steps of (1,0.01,0.002). The obtained adiabatically
contracted halo profiles should resemble the ones probed in Chapter 6 in case the im-
pact of baryonic cooling is not overrated. We fit Eq. 2.49 to the contracted profiles in a
radial aperture between ~ 0.006 and 0.12R,;, which represents an upper limit for the ra-
dial range our mass profiles are probed in. The values for 2R,/ R.;, are given in Table C.4.

There are a number of uncertainties entering the analysis:

1. since the radial extent of a reconstructed profile is limited to two times the angular
R, and a finite resolution, the aperture size changes from lens to lens,

2. in order to mimic the limited probed range one needs to convert the aperture size
from Rlens to Rvir7

3. baryon fraction as well as baryonic scale length depend on M,;,- and R,;. which are
extrapolated quantities with respective uncertainties.

To study how sensitive our results are to the radial range we discuss later on in this section
the case of aperture sizes significantly reduced with respect to the one assumed for the
synthetic profiles.

The top panels of Figure 7.5 show the results of the grid for AC according to Blu-
menthal et al. (1984) (A = 1.0, w = 1.0, i.e. no correction for anisotropic orbits). The
left hand panel shows initial versus final (contracted) halo concentration. For fixed val-
ues of f, and r,/R,;,, we provide Cyir, final(Cinit) indicated by the solid blue line. The
growing concentration towards low c¢;n;: is a consequence of the interplay between radial
aperture and the region affected by AC. The smaller the initial concentration the larger
Cuir, final [ Cinit towards small radii for same fj, (we refer to this as the AC-sensitive case).
As ¢;pir increases, the difference between final and initial profile subsides. The farther out
our radial aperture, the less affected is the fit and the extrapolation. However, for different
combinations of f; and 7, /R, similar curves fill the whole grey-shaded region. To enable
proper differentiation with respect to the initial concentration we choose different shades
of grey in all panels. The middle panel shows the final concentration versus baryon frac-
tion. The grey shaded region consists again of our grid points which have counterparts in
the left and in the right panel. If no upper limit to the grey region is shown, its cy;r finai
values exceed 120. The black dots with error bars represent our data. The right hand
panel shows, as in the middle panel, the comparison between generic contracted halos
and data, but depending on r,/R,;,. Middle and right panel clearly show disagreement
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Figure 7.5: Left column: final versus initial concentration for the given grid of input parameters. Different
grey-shades indicate different c;ns¢ bins. The grey solid line indicates ¢finai = Cinst. Middle column: As
before the grey-shades indicate different cfinai(fp) region according to the cinst bins. Our sample of lenses
is indicated by black dots with error bars. Right panel: As in middle panel, but plotted against r,/Ryir-
Top row: Adiabatic contraction according to Blumenthal et al. (1984). The blue line indicates all values
of ¢finai with fixed f, = 0.035 and 71, /Ryvir = 0.009. Middle row: AC according to Gnedin et al. (2004),
which make use of Eq. 7.2 with A = 0.85 and w = 0.8 to take account of anisotropic orbits. The magenta
line indicates all values of cfinar with fixed cinir = 20 and fp = 0.035. Bottom row: As before, but with
A = 042 and w = 0.4 instead. The orange line indicates all values of cfinai with fixed cinit = 10 and
71/ Rvir = 0.015.

between observationally inferred and contracted profiles. Especially the low-f; and low
rn/ Ry regions show significant departure from even lowest final concentrations of the
generic halos.

The middle row of Figure 7.5 shows the AC according to Gnedin et al. (2004), which
implements Eq. 7.2 with fiducial values A = 0.85 and w = 0.8 to take account of eccentric
orbits. This phenomenologically motivated fudge-formula leads to much smaller concen-
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Figure 7.6: Final concentration versus baryon fraction depending on size of radial window. Bright to dark
grey corresponds to aperture sizes (~ 0.003 — 0.06) Ryir ,(~ 0.005—0.09) Ryir and (~ 0.006 — 0.12) Ryi;. The
latter range is the default case used for Fig. 7.5. The smaller the probed radial range, the less concentrated
the fitted NFW profile, but even for the smallest aperture size a fraction of lenses falls significantly below
the region.

trations. Still, there is significant disagreement between data and simulated contraction.
The middle and right panels still show few lenses being not in agreement with any model
in the investigated parameter space. The behaviour of ¢y, fina as a function of r,/R.;,
for constant ¢y finat and fp is indicated by the solid magenta line.

For the bottom panels of Figure 7.5, we changed the pre-defined values of A and w
to 0.42 and 0.4, respectively. The orange line shows for fixed ¢;;; and rp/R,;, the final
concentration as a function of f;. These values for A and w allow even for low cjn;t
between 1 and 10 good agreement with lens data. Compared to top and middle row, the
range of final concentrations is much smaller, corresponding to a much shallower ¢y, finai-
f» relation (middle panels). One of the intriguing results of this study is that even the
simple assumption of a common mass independent initial concentration explains most of
the final concentrations if (A,w) are conveniently adjusted and ry, is allowed to vary within
uncertainties. There are a variety of minor results we summarize in the following.

e There is slight evidence for lenses with lower baryon fraction to require higher initial
concentrations.

e Both smaller ¢;,;; and smaller 7,/R,;, produce steeper cyir final(fp) curves. This
effect is independent of the AC-sensitive case at very low c¢;,;+ explained above.

e As A and w are reduced, Cyir finai(fp) and cfinai(ry) become flatter, i.e. the differ-
ently shaded c;,;+ regions of the left panel are mapped to narrower regions in middle
and right panel. Moreover, their overlap is reduced.
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Figure 7.7: As in Fig. 7.3, but with initial concentrations. The colours of the columns from dark to
bright correspond to the 68%, 95% and 99% confidence intervals of a range of (Cinit, fo, Th/Rvir) values
which produce a cfinq; in agreement with our data. For comparison we include ¢fingi(Muyir).

We also study how sensitive our results are to the radial range (aperture size) chosen
for the profile fits to the synthetic contracted profiles. Assuming reduced aperture sizes of
(~ 0.005 — 0.09)R,;, and (~ 0.003 — 0.06)R,;, in Fig. 7.6, we find that even the smallest
ranges do not yield agreement with our lens data. Larger radial apertures are unlikely as
we chose already the largest size among our lens profiles.

If we compare the number of different (cjni, rn/R.i:) combinations producing final
concentrations in agreement with our lens data, we can infer a c¢;p;-M,; plot as before,
enriched by the information of the frequency distribution of initial concentrations (see
Fig. 7.7). Although most of the data can be reproduced even by few initial concentrations
of ~ 1, most of the (¢jnit,rn/Rei:) combinations with high ¢, produce final concentration
in agreement with cy;nq and f,. The hue of the magenta column indicates the frequency
distribution of ¢;p;; values whereas the 68% (99%) confidence interval is highlighted by
strongest (faintest) colour.

Certainly, no strong quantitative conclusions can yet be drawn from these results, but
judging by the confidence regions a strongly flattened c¢;p;t (M) relation seems likely. A
flattened low-mass end of the ¢ — M,,;,- relation is expected by simulations. To show this we
include ¢t (M, z) curves in Fig. 7.7 based on a toy model by Bullock et al. (2001). They
find the curves to be in good agreement with results from N-body simulations. The toy
model includes the free parameter K, which takes account of the contraction of the inner
halo beyond that required by the top-hat formation scenario. This contraction parameter
is fixed for all halos in their simulation. The difference between simulated and observed
¢ — My;, is a well-known issue and matter of ongoing studies. It is however worthwhile to
mention that this discrepancy is even stronger for low M,;.. From the comparison between
Cinit-Myi» found in this study and simulations which investigate the redshift-dependence
we can conclude that AC alone is not enough to explain the slope of the relation.
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7.4 Conclusion

We show that pixelated mass reconstruction for two component lenses yield different re-
sults for enclosed mass quantities. As a result of a model-independent mass-reconstruction
approach, we are able to recover a c-M,;, relation by means of extrapolated NFW fits. For
the majority of lenses, this relation appears to be in agreement with virial mass predictions
from abundance matching studies MM (Moster et al. 2010, Guo et al. 2010). Departures
from latter predictions appear to be well-explained by environmental effects, such as ex-
ternal contribution to convergence, but may also be related to differing halo definitions or
an underestimated error of Mﬁfn\/[ . It is, however, surprising that concentrations of profiles
forced to fit M£7M lead to a significantly increased scatter around the best-fit power-law
for the ¢-M,;, relation and a strong disagreement with previous studies of this type. An
analysis of recent prescriptions for baryonic cooling shows that the parameters (cfinat, fo,
rp/Ry:i) inferred by data fits lie significantly below even the lowest concentrations achiev-
able with standard adiabatic cooling prescriptions. By tweaking the spherically averaged
radius even stronger than intended by Gnedin et al. (2004) we find better agreement with
our data. The much shallower Cfmal( f») compared to standard AC prescriptions can be
translated in a quantity indicating mass loss. Furthermore, a c-M,;, type study for initial
concentrations leads to the conclusion that AC has a minor impact on the overall slope of

the relation, but could reproduce the flattening for low virial masses.
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Conclusion and Outlook

The findings of this work are mainly based on free-form modeling of gravitational lenses
and stellar population synthesis (Section 3.2) and tackle a wide range of astrophysical
problems. They give important insights in the build-up of lens galaxies and point out
several misconceptions in current research. The results may also serve as benchmarks for
large scale simulations, studies of the initial mass function, baryon-dark matter interactions
and the modeling of strong gravitational lenses. In particular we can contribute to research
in galaxy formation and evolution with our studies of the fundamental plane, stellar baryon
fractions, the concentration-to-virial-mass relation and baryonic cooling using both global
and resolved estimates of light and mass distributions in lens galaxies, as summarized
below.

The fundamental plane puzzle

Until a consensus on the explanation for the fundamental plane is found it is necessary
to focus on quantities which are unequivocally related to a certain physical entity. For
this purpose we introduce a formal velocity dispersion, o, based on the reconstructed
enclosed mass. The formal velocity dispersion turns out to be a fair representation of the
kinematic velocity dispersion (Chapter 5) for the sample of 18 lens galaxies and two lens
clusters introduced in Section 4.1. Independent of the details of lens models, the lensing
masses and virial masses basically agree, verifying the virial theorem (Section 5.3). By
using o, as a surrogate for the kinematic velocity dispersion the slope of the mass-to-
light relation can be recovered (Section 5.4). Moreover we find the mass-to-light relations
for both lensing mass, MIOQ;]ZOiO'OS o L, and virial mass, M280+0-10 o 1, Both exclude
a constant M /L, consistent with most other fundamental plane type studies. The fun-
damental plane of early-type galaxies can thus be reproduced as R o< ¢:%717=077, This
rules out any attempted explanation invoking kinematics, such as orbital anisotropy (see
e.g. Nipoti et al. 2002). We find no evidence for structural non-homologies. The relation
between formal and kinematic velocity dispersion extends to cluster sized lensing objects
within rather large uncertainties due to a poorly defined scale radius R.. However, galaxy
clusters are far from the FP since they have a much higher dark matter fraction than
early-type galaxies. So far, these results address the FP puzzle based on estimates of the

integrated flux.

Using the combination of pixelated lens mass reconstruction and stellar population
synthesis, we investigate resolved stellar and total mass profiles on scales from ~ 0.5 to
10 kpc (Chapter 6) for the sample of 21 lenses presented in Section 4.2. This permits
a explore the parameter space spanned by enclosed stellar, M (< R), total lens mass,
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M (< R), and radius R. We find that the M (< R)-to-Ms(< R) relation, which can be
viewed as a projection of the fundamental plane, approaches the slope of the FP tilt —
equivalently represented by M2'76i0'07 o My — gradually with increasing radius. This
can be interpreted as evidence against variations of the stellar mass to light ratio as a
possible reason for the tilt of the FP and shows that the slope can be understood as a
consequence of a non-trivial relation between stellar and dark matter in fairly virialized,
i.e. dynamically relaxed, galaxy systems.

Baryon fractions and dark matter concentrations

Some early insights into the set-up of lens galaxies can be given in terms of enclosed mass
ratios (Section 6.5) and concentration indices for stellar and total mass profiles (Section
6.6). In particular we investigate stellar baryon fractions and their impact on dark matter
halos in the range from 0.25 to 5R, and in some cases even up to ~ 10R.. A resolved,
model-independent and thus non-degenerate (with respect to My and M, for fixed fs)
estimate of stellar versus total mass within galaxy halos is crucial for constraining current
galaxy formation models as well as the prescriptions of baryon-dark matter interactions
they employ. Other than the dynamical methods used to explore scales below 10 kpc (e.g.
Cappellari et al. 2006, Coccato et al. 2009), the combination of strong gravitational lensing
and population synthesis is the most promising method for producing robust estimates of
stellar-mass fractions, as motivated in Chapter 3.

In light of our FP studies it becomes clear that baryon physics and interactions be-
tween luminous and dark matter with a mass dependent efficiency appear to give a typical
length scale to galaxies. By examining the M, and M dependence on radial distance
to the centre of each galaxy (Section 6.5) we find that there are pairs of lens galaxies on
small to intermediate mass scales that, at large radii, approach the same values for their
enclosed total mass but exhibit very different stellar masses and stellar baryon fractions
(fs = Ms/M7p). This peculiar behaviour is not found in the most massive lensing galaxies.
All the baryon fraction profiles show that the dark matter halo becomes more massive than
the stellar content at a common radial range, between 1.5 and 2.5R,, depending on the
enclosed total mass. This My (< R)-dependence causes high mass galaxies to enclose mass
primarily in the form of dark matter at lower radii when compared to low mass galaxies.
We find evidence for a stellar baryon fraction steadily declining over the full mass range.

The study of M, versus My, and of the stellar baryon fractions also enables us to dis-
criminate between lens galaxies below and above My (< 2R,) = 4 x 10 M. The high
mass class populates a lower and narrower f, regime (0.05 to 0.2) on given scales and
runs out of stellar mass earlier (i.e. at lower enclosed radius) than the low mass lenses.
The latter exhibit a more inhomogeneous behaviour, as they populate a wider range of f;
values (0.1 to 0.5) and respective slopes. As we contrast fs(My) with comparable curves
deduced by abundance matching (Guo et al. 2010, Moster et al. 2010) we find that their
fs-to-Mya10 relation scaled down to 4R, agrees quite well with lenses with My, ~ 1012M@,
since most of the stellar matter is still enclosed. This can be taken as evidence for the
accuracy of our data at large enclosure radii.

In Section 6.6 we introduce a novel concentration index, ¢ = R90/R50, for stellar
(¢(Ms)) and total mass profiles (cpr, ). Following the definition of light concentrations
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(e.g. Bershady et al. 2000, Ferreras et al. 2005), we define the ratio of radii enclosing 90%
and 50% of the stellar or total mass. The rule-of-thumb delimiter of ¢ = 2.6 which separates
early-type galaxies (¢ > 2.6) from late-types ¢ < 2.6) also holds for ¢(M;) defined by means
of stellar mass instead of luminosity. In the low mass regime, My (< 2R,) < 4 x 101 Mg,
both ¢y, and cyy, approach similar values around 2.6. From 10 M, upwards c¢(Mj) and
c(M7p) diverge, due to a stronger confinement of stars in more massive dark matter halos.
The (M) values above 4 x 10! My, stay around ~ 2, while ¢(M) becomes roughly twice
as large. Thus we conclude that in particular less massive dark matter halos are influenced
by the distribution of stellar matter. In other words we observe central total matter con-
centrations increasing with stellar baryon fraction similar to the results from observations
of extended cores in the density profile of low surface brightness galaxies and cuspy profile
features in early-type galaxies (e.g. de Blok 2010, Li & Chen 2009). It must be noted,
however, that our lensing galaxies are much different from low surface brightness galaxies.

Furthermore we present projected two-dimensional maps of dark matter surface den-
sities and baryon fractions for the large sample of lens galaxies discussed in Section 6.4.
These maps will aid studies of the matter distributions in terms of smoothness and the
occurrence of substructures.

Baryonic cooling

Previous studies have found evidence for an inverse proportionality between concentration
and virial mass (e.g. Buote et al. 2007, Comerford & Natarajan 2007). From our analysis
of the relation between lens mass and the central concentration we see that such a trend
is true for enclosed masses even on scales far below the virial radius, more precisely in
a range from 1073 to 0.1R,,,. Using NFW profile fits we are able to extrapolate the re-
constructed dark matter profiles to the virial radius, recovering a c¢-M,;, relation for lens
galaxies that extends to unprecedentedly low virial masses (Section 7.1). The inferred
slope, a = —0.40 4+ 0.06, of the relation is in agreement with recent studies of X-ray and
weak lensing clusters (Schmidt & Allen 2007, Okabe et al. 2010) which probe the high-
mass end of the c-M,;, relation.

For the majority of lenses the relation appears to be in agreement with virial mass pre-
dictions from abundance matching studies M£7M (Moster et al. 2010, Guo et al. 2010), as
shown in Section 7.2. Departures from the latter predictions appear to be well-explained
by environmental effects, such as external contribution to convergence, but may also be
related to differing halo definitions or an underestimated error of Mﬁfn\/[ . It is surprising,
however, that concentrations of profiles forced to fit Mﬁfn\/l lead to a significantly increased
scatter around the best-fit power-law for the c-M,;, relation, in strong disagreement with
previous studies of this type.

In view of the fact that the central stellar concentration, c¢(Ms), does not follow the
trend of the global ¢ — M,;, relation and in light of the inverse relation between total
mass and baryon fraction, one is tempted to ask how the dark matter distribution is af-
fected by the presence of stars. Feedback processes, such as super novae winds (Larson
1974) and outflows from AGN (Di Matteo et al. 2005), might impede star formation and
redistribute matter in galaxy centres such that strong density cusps, as predicted by N-
body simulations (Diemand et al. 2005), hardly form. The gravitationally interacting dark
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CHAPTER 8. CONCLUSION AND OUTLOOK

matter is believed to respond to such changes in the potential. In opposition to feedback
mechanisms, baryonic cooling might be responsible for a gradual steepening of the inner
dark matter profiles during adiabatic contraction (Blumenthal et al. 1984). Focusing on
the latter, our analysis of recent prescriptions for baryonic cooling (Section 7.3) shows
that the parameters (ctinat, fo, Thern/Ruir) inferred by our data fits lie significantly below
even the lowest concentrations achievable with standard adiabatic cooling prescriptions
(Gnedin et al. 2004, Blumenthal et al. 1984). Adiabatic contraction as implemented in
these prescriptions is hence too strong.

Adiabatic contraction is based on preserving angular momentum by keeping rM (< r)
constant. By tweaking the spherically averaged radius r — a strategy used in a weaker form
by Gnedin et al. (2004) — we find better agreement with our data. The much shallower
Cfmal( f») compared to the standard AC prescriptions can be translated in a quantity
indicating mass loss. Furthermore a c-M,;,-type study for concentrations freed from the
effect of adiabatic contraction leads us to the conclusion that AC has at most a minor
impact on the overall slope of the relation but could reproduce the flattening of the ¢c— M,
relation for low virial masses found in simulations (Bullock et al. 2001, Maccio et al. 2008,
Hennawi et al. 2007).

Outlook

With the discovery of more and more gravitational lenses at high resolution, one can think
of a manifold of applications of stellar population synthesis and lens mass reconstruction
that will permit exploration of the distribution of dark matter on radial scales of < 0.1
kpc, a region where interactions between dark matter and baryons should be most efficient
and where stellar populations give hints on the star formation history of the galaxy.

e Uncertainties on individual lens profiles are hard to improve, but analyzing a much
larger sample of lenses in a quasi-automatized way will boost the statistical signifi-
cance of our findings and enable new questions to be posed. This is of course also
true for studies on the fundamental plane and the c-M,;,. relation. For example the
scatter in the c-M,; (Section 7.1) relation constrains the CDM model. If galaxies
form early the scatter in the relation is small in contrast to late formation scenarios.

e Sub-classes of lenses which show signs of recent gravitational interaction, such as
tidal streams or merging galaxies acting as one lens, are particularly intriguing study
subjects. Structural features, can be modeled by new fitting algorithms (e.g. Peng
et al. 2010). This allows for extending presented studies to lens galaxies in a larger
range of morphological types. Furthermore, resolved dark matter and baryon frac-
tion maps, as shown in Sec. 6.4, will give new insights about the interplay between
luminous and dark matter.

e Lens galaxies can be used to constrain the stellar initial mass function below 1 M.
Using the light and the reconstructed mass profile, an upper limit to the stellar
mass-to-light ratio is obtained. The maximal stellar mass can then be compared
to the output of the population synthesis, which is based on an adjustable IMF,
for example, by making the slope of the low-mass end of the IMF a free parameter
(Ferreras et al. 2010).
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e The baryon-fraction maps (Fig. 6.3) can be used in combination with microlensing
models of lensed quasars. The convergence ks, and shear « inferred by PIXELENS
and the stellar convergence x, inferred from stellar population synthesis can be input
to microlensing codes that compute the probability distribution of magnifications
and hence make statistical predictions about flux ratios for optical quasars. Previous
work in this area (e.g., Pooley et al. 2011) has treated the stellar-mass fraction as a
free parameter. A comparison with latter studies permits furthermore to investigate
how smooth or clumpy dark matter distributions in lensing galaxies are.
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Photometry, Mass Maps and Profiles

In the following we provide material necessary for a detailed study of individual lensing
galaxies of sample II (Section 4.2). Figures A.1 and A.2 are used for the photometric
modeling (Sections 3.2.2 and 6.2.2). Figure A.3 shows the output of the stellar population
synthesis (Sections 3.2.3 and 6.3.1).

The results of the best-y? search for NFW and Hernquist parameters, carried out
in Sections 7.1 and 7.3, is presented in Figures A.4 and A.5, respectively. Figure A.6
shows cumulative dark matter profiles and a comparison with abundance matching studies
(Section 7.2). Finally, in Section A.1 of this appendix, we explain the animated version of
Fig. 6.6 available online.
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Figure A.1: Overview of lenses in H-band photometry subject to masking during photometric modeling.
The blue-shaded area is ignored by GALFIT.
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Figure A.3: Stellar mass maps of the lens sample (Section 4.2). The
colour of a pixel indicates how much stellar mass in terms of Mg is
enclosed within its area. The contour lines connect pixels with same
values. The black circles (solid line) have a radius of 1R.. The box size
is 31 x 31 pixels. Angular and physical scales are defined in the panels.
North is up, east is left.
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Figure A.5: As in Fig. A.4 but for Hernquist profile parameters.
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AM(<R) [10"° M]

+ dat 1 i
R/Rc ata o region

— best y* = limits

Figure A.6: Extrapolation of mass profiles. The grey shaded area indicates the 1o region around the
best (NFW) fit (red line) to the lens data (inner 10 blue dots). The green curves relate to the fits to the
upper and lower error limits. The outermost point in each case is from abundance matching. The black
curves are NFW fits that include the outer point, i.e., 11 data points in total.
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A.1. ANIMATED RESULTS

A.1 Animated results

An animated version of Fig. 6.6 is provided as online material under
arxiv.org/src/1102.3433v2/anc/bfilg.mov.

The movie contains three panels. The left panel shows the enclosed My against enclosed
M plane depending on the size of the aperture, defined by the radial distance zR, to the
centre of the lens galaxy. The solid black line denotes the equality of total and stellar
mass, whereas the dashed lines represent the upper and lower limit of the global baryon
fraction (Hinshaw et al. 2009). The upper right panel shows the lens PG1115 which is
highlighted by a red label in the left panel. The lower right panel shows stellar baryon
fraction versus radius as in Fig. 6.8. The solid black line denotes the baryon fraction curve
of PG1115. With each time step of the movie the enclosure radius increases indicated by
the factor x in the legend of the left panel and the red lines in the two right-hand panels.
We cover a radial distance from 0.125 R, to 5 R, in 40 time steps.
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Mass Reconstruction Data

The PIXELENS input format can be read as follows. The option symm allows only symmet-
ric models, reducing the amount of equations by one half. The numbers after redshift
are lens (z) and source redshift (z5). To account for external gravity from nearby ob-
jects, the shear direction can be entered as a position angle (counted counterclockwise
from positiv x-axis). The commands double, quad and multi refer to the number of
images listed below them. After multi the number of images and z; must be given. Also,
zlens must be separatly defined in the header. The image positions are given as x- and
y-coordinate. For quads and doubles the time-delay between two consecutive images is
given as a third number right after the image position, starting in the row with the second
image. For multi the number following the image positions indicates the image parity,
i.e. 1 for a minimum, 2 for a saddle point and 3 for a maximum. The mininum steepness
is defined by minsteep with a default value of 0.5, i.e. the mass profile is R’ or steeper.
maxsteep is similarly defined. Further information on the functionality of PIXELENS
can be found on www.qggd.uzh.ch/projects/pixelens/.

The following pages contain the PIXELENS input/output for the lensing sample I
(Section 4.1) and IT (Section 4.2).
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APPENDIX B. MASS RECONSTRUCTION DATA

Figure B.1: Lens sample I: CASTLES lenses used in Chapter 5. First column includes the PIXELENS
input files, the second column shows the formal velocity dispersion curves and in the third column the
projected mass distributions (red dots mark image positions, cyan dots mark source position, green lines
are logarithmic contours in terms of critical density) are presented. IMPORTANT NOTE: The y-axes of
the velocity dispersion plots need to be multiplied by /2/7 = 0.8 to yield the true giens values.
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Figure B.2: Lens sample I: As in Fig. B.1, but for SLACS lenses and clusters used in Chapter 5.

IMPORTANT NOTE: The y-axes of the velocity dispersion plots need to be multiplied by /2/7 = 0.8 to
yield the true ojens values.
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APPENDIX B. MASS RECONSTRUCTION DATA

Figure B.3: Lens sample II: PIXELENS input data and projected mass distribution for the lens sample 2
(Sec. 4.2). The black dots mark the multiple images. All maps have a radius of 15 pixels. All mass maps
have a radius of 2 Rjens, which corresponds roughly to 2 Rgin. All lens properties as well as respective
length specifications are in Table C.2.
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Tables

This part of the appendix contains all tables essential to the Chapters 5, 6 and 7.

Lens ZL 9obs Tlens Re  Riepg lens Myir Ly Mjepns/L1  Ref.
[kms~ ']  [kms™ '] [kpe] [kpe] [10'! xMg] [10'! xMg] [10'! x Lol [Mg/Lg]
B0047-2808  0.4850 229 £ 15 189.0 £6.4 5324 7.440 2.084 £0.141 3.059 £ 0.401 0.760 2.74 ERnm
CFRS03.1077 0.9380 256 +19 306.6+£22.0 -  15.905 - - - - Emmm)
Q0957 (2D)  0.3600 2889  351.6712% 2264 25520 30.45872277 20.58 +1.29 4.922 6.19 Il
PCG11154080 0.3100 281 +25 190.8+84 2.072 6.188 0.826 +0.073 1.792 %+ 0.319 0.671 1.23 o
HST14176  0.8100 230+14 245.6+4.0 5.190 12.780 3.430 +0.112 3.008 % 0.366 3.910 0.88 o
HST15433  0.4970 108+14 156.2+28 -  4.601 - - - - Emmm)
B16084656  0.6300 247 £35 242.6+18.4 4.201 15542 2.766 £ 0.420 2.868 % 0.813 3.354 0.82 Emmm
MG2016+112 1.0100 304 £27 330.4+20.6 1.707 19.388 2.041+0.366 1.729 % 0.307 2.128 0.96 Emmm
Q22374030 0.0400 215+30 146.4+28 2993 0.743 0.703 £0.027 1.516 % 0.423 0.542 1.30 Emmm)
J0037-094 0.1954 26510 23041550 6.804 6.470 3.9561 | 759 5.234 £ 0.395 1.990 1.99 —
JO7374321  0.3223 310+ 15 233.6+6.4 9.823 5333 5.874+0.322 10.34 % 1.00 3.544 1.66 —
J09124+002  0.1642 31312 276.07112 9203 5271 7.67970:53T 9877 +0.757 2.289 3.35 —1
J0956+510  0.2405 299+16 266.877°C 8607 6.200 6.7107539  8.430 £ 0.902 2.572 2.61 —
J1205+491  0.2150 235+10 230.27.%°% 7805 5138 453170327 4722 +0.402 1.936 2.34 —
J1330-014 0.0808 178 +9 14237209 1244 1696 027670057 0.432+£0.044 0.147 1.88 —
J1636+470  0.2282 221+15  230.717%, 5256 6.150 3.06570252 2812 +0.382 1.376 2.23 —
J23004+002  0.2285 28318 230.871%°% 6256 5.278 3.042703%% 5480 +0.698 1.522 2.59 —
J2303+142  0.1553 26015 24277129 7901 5303  5.00870:52% 5851 +0.675 2.333 2.19 —
ACO 1689  0.1830 1400 +300 1188.71 300 400.0 237.6 61927220 8580 + 2187 33.48 185 —
ACO 2667 0.2330 9607190 762.0772 - 9801 - - - - 1

Table C.1: For Chapter 5: Full set of gravitational lenses used for this analysis. The first 9 lenses are
from CASTLES, the following 9 from SLACS and the last two are clusters. The image positions and flux
data have been taken from HST data (www.cfa.harvard.edu/glensdata/), Bolton et al. (2006) and Covone
et al. (2006). The symbols mark the references for the data in the columns zr, oobs and Re and refer to the
following publications: [{Rusin et al. 2003), [{Hoopmans & Treu 2003), [(Mreu & Koopmans 2004), 1
(Tonry & Franx 1999), [(Monry 1998), [{Qhyama et al. 2002), [{(Hoopmans et al. 2003), [{Hoopmans
& Treu 2002), [C(Holtz et al. 1992), [(Heeton et al. 1998), [{Bolton et al. 2006), [(Hokas et al. 2006) and
[([@ovone et al. 2006). Note that oobs is the kinematic central velocity dispersion, which is in the case of
SLACS lenses the line of sight stellar velocity dispersion measured by the 3” diameter SDSS spectroscopic
fibre. The 0lens values are determined for the projected distance Riens from the outermost lensing image
to the central lensing mass. The effective radii given in arcseconds in Rusin et al. (2003) and Bolton et al.
(2006) have been transformed into kpc. The virial mass Myi, is computed via My = g’—gReagbs and is
thus a dynamical mass estimate rather than the mass enclosed in a sphere with radius Ryir. All quantities
in the table assume Hy = 72 km s~ ! Mpc_l7 Q. = 0.3 and Qpa = 0.7.
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Lens zL  zs A0 AP Re Rions/Re  ML(< 2Re) Mz (< 2Re) Mz /Ly Olons  Ryir Env
[l lkpe] ("] [101Mg) [101°Mg]  [Mg/Lg) [kms™']  [kp]
Q0047 0.485 3.60 2.20 12.82 0.880 +£0.025 1.45+£0.04 33.270 550 11.58+0.43 5.047,00 189.2757 5384 Gr(9)
Qo142 0.490 2.72 2.23 13.10 0.703 +£0.013 2.64£0.05 45817330 13.45+205 2027099 24587108 6665 -
MG0414  0.960 2.64 2.08 16.01 0.734 £0.018 1.85+0.05 102767155 19.00+2.20 5627227 2470793 6350 1
BO712 0.410 1.3 1.29 6.82 0.702+0.016 1.15+0.03 16.13735% 546052 3.277052 16417872 2058 1
HS0818  0.390 3.21 2.56 13.15 0.679£0.013 3.27£0.06 36.8872:%%  944+097 5427010 2458799 5178 1
RXJ0911  0.769 2.8 3.22 23.16 0.725+0.011 3.09 £0.05 73.0471'1% 1452+1.87 2907709 2786755 5004 Cl
BRI0952  0.632 4.5 0.99 527 0.619+0.021 1.04+0.04 14761257  408+035 2787092 14007138 2335 Gr(5)
Q0957 0.356 1.41 6.17 20.98 1.491+0.018 3.51+£0.04 151.297517  20.92+0.96 2527532 3746715 9500
LBQS1009 0.880 2.74 1.54 11.56 0.963 £0.028 1.27+£0.04 647373097  6.62+0.96 2.1470:8% 22007178 25071 .
B1030 0.600 1.54 1.32 8.60 0.675+0.019 2.05+0.06 55.0072:11  516+080 1.1270-32 256.879:° 2772 1
HE1104  0.730 2.32 3.19 22,54 0.681+0.010 3.08+0.05 72.80735% 1443+162 3507530 30297119 6045 -
PGI115  0.310 1.72 243 10.76 0.478£0.009 2.94+0.06 16.8071'31  5.61+1.19 3.687025 10167117 3540 Gr(13)
B1152 0.439 1.02 1.56 8.60 0.691+0.013 1.62+0.03 30.43732%  857+065 284705 21607228 4314 -
B1422 0.337 3.62 1.29 6.02 0.241+0.003 4.49+0.06 5727039  201+045 6.407]2) 1629717 2313 Gr(17)
SBS1520  0.710 1.86 1.57 10.97 0.947 £0.018 1.28£0.02 41.9871'3) 11.49+1.41 2637515 1983772 4343 Gr(4)
B1600 0.420 1.59 1.38 7.45 1.015+0.007 1.00£0.01 16.38179:52  3.93+0.17 6.377185 154476} 2360 Gr(6)
B1608 0.630 1.39 2.10 13.92 0.839 +£0.047 1.82+£0.01 42.49732-50 2700+ 163 2447055 2668700 9720 aGr(8)
52 27-99£1.63 45 .

MG2016  1.010 3.3 3.36 26.22 0.406 £0.009 6.12+£0.14 52.0571%42%  6.34+1.99 0.807030 308.6757°. 242.6 CI(69)
B2045 0.870 1.28 1.93 14.46 0.950 £0.019 1.48£0.03 173.07121'0% 14.05+1.03 247753 3388710% 5172 -
HE2149  0.603 2.03 1.71 10.02 0.531+0.008 2.59+£0.04 26.8272'97  4.28+047 0797529 1912771 2426 -
Q2237 0.039 1.7 1.83 140 1.090+0.014 0.89+£0.01 2761085  115+012 4307176 1452738 2124 -

Table C.2: For Chapter 6: Full set of gravitational lenses used for this analysis. All quantities in the
table assume Ho = 72 km s~ ! Mpc_l7 Q. = 0.3 and Q4 = 0.7. The underlined values show maximum
and minimum. A# is the image separation. For systems with more than two images the maximal image
separation between two images is given. Columns Re and Riens/Re contain Petrosian radii determined in
the observed H-band with 1o error bars. The total and stellar masses enclosed within 2R, are given in
the following two columns. The stellar mass-to-light ratios in the rest-frame V-band are median values of
all models. ojens denotes the velocity dispersion at Rjens. Column Ryi, gives the virial radius calculated
using Eq. 6.2 and our stellar mass values in combination with the M;-to-Mhyalo relation from Guo et al.
(2010). The column labelled Env contains environmental information. “Cl” denotes a cluster environment,
“Gr” a group environment and “1” a lens with only one known companion. If known the number of group
members is given in parentheses. References for given values are mentioned in Section 6.2. Colours and
magnitudes are in agreement with comparable quantities in Rusin et al. (2003).
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Lens Im. Bands PSF fitting masking constraints

I vV H I Vv H 1 \4 H 1 \4 H 1 \4 H
Q0047 1 7 tt tt  A(1030) - _ _ - 4p _ _ _ B
Q0142 2 v v v ittt it 2P 1P 2p - 1P - - n -
MGO0414 4 v v tt it - 4P 4P - - m
B0712 4 v v tt tt tt - - 1P 4P 4P 3P Re Re -
HS0818 2 v v v A A A(1030) 1P 1P 2P B B - - PA -
RXJ0911 4 v v it it 4P 4P1S ; . n,S zy
BRI0952 2 v v v it it it 2P 2P 2P - - - b/a - b/a
Q0957 242 v v it it 1P 2P A - - -
LBQS1009 2 v *(0414) 2P - n
B1030 2 v A 1P1S 1P n
HE1104 2 v V| oA *(0414) 1P 2P - - b/a,PA zy
PG1115 4 v v v tt it it - - 4P 4P 4P - - n Re
B1152 2 v A 1P1S 1P -
B1422 4 v v tt tt  *(0414) 1P 1P 4P 3P 3P - Re Re,b/a b/a
SBS1520 2 v v it *(1520) 2P 2P 1% 1% Re s
B1600 2 v A 2P - -
B1608 4 v v tt *(0414) 1P1S 1P1S 3P 3P Re,S n, Re,S,zy
MG2016 244 v v tt *(0414) - 1P1S 2P 1p2* b/a -
B2045 4 v v tt tt *(2045) - - 1P 3P1b 3P 3P1b2* - - n
HE2149 2 v v it *(0414) 2P 2P - - - -
Q2237 4 v v tt tt *(1654) - - 4P 4P 4P - s PA,S s

Table C.3: For Chapter 6: List of lens systems and how they were treated to obtain surface brightness
profiles of the lens galaxies. From left to right the Lens-ID, the number of lensed images, the bands for
which fitting was feasible, the PSF picking method, fitted and masked objects and necessary constraints
are given. The column PSF includes the abbreviations ¢t for a PSF created with TinyTim, A for the
outermost and thus fairly isolated quasar image, *(0414) for an isolated star close to lens MG0414, it for
the iteration method applied to the most isolated image and A(1030) for an isolated quasar image taken
from lens B1030 used for subtracting quasar images and for the convolution of the whole image. In column
fitting we summarize the number of objects, not significantly contributing to the lens mass, which are fitted
with previously picked PSFs (P) and Sérsic profiles (S). In column masking zP refers to a number of
masked out point sources, mostly quasar images, b denotes resolved but indistinct objects which are not
necessarily connected to the lens mass and henceforth excluded from each fit. Point sources like foreground
stars indicated by * are also masked out. A,B refer to quasar images which could be masked out given
their separation from the lens galaxy. The last column states the type of constraint used if necessary
to prevent each fit from diverging. The constrained parameters are: effective radius Re, Sérsic index n,
axis ratio b/a, magnitude mag, position angle PA, sky background S and position of the Sérsic profile zy.
Parameters fixed at a certain value are underlined.
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Lens zj, rs Ps Ryir 21;1% rL % Myir Cyir M_N‘IIS;
kpe] 108 G kpc] kpe]  [10'° Lg] [10'2 M)

Q0047 0.485 3.69139% 4207807 188.437295¢ o079 2570Zr 167708 0037051 5111350 0.13870070
Qo142 0.49  40.3%3L0 010701l 45055109630 0047 1807079 10.167175 13577118 114720 0.0117800)
MG0414 0.96 6457580 435%580 2467873757 o0.085  2.58T087 27.62F351 4187221 3827303 0.0510:0%9
Bo712 0.41  3.26735% 39871399 160.37739:30  0.054 1857932 7707088 0517085 4037505 0.10610 075
HS0818 0.39  16.572%  044%05) 3607375090 0.063  1.537020 13.44%08% 5587333 219477 0.02170:01%
RXJ0911 0.769 56.8777  0.08T001 4850472035 0.067 2.057070 201171385 24347336 85738 0.00819 001
BRI0O952 0.632 3.757592  2.047251  132.54737-3%  0.065 2077939 6967083 0417361 3547118 0.007823°
Q0957 0.356 49.978:3% 0137902 6877373213 o.074  2.45702% 26.7470%% 36597735 13.8712  0.00675:901
LBQS1009 o0.88 115774 075F097 2317173924 o070 284021 8.73%125 310710 2017183 0.02175005
B1030 0.6 120752 1117052 3273672332 0.055  1.8470 7% 7.28080 5827180 272744 0.01170:00%
HE1104 0.73  26.77%%  0.2870-12 3951472771 0.075 1727853 19.737120  12.4372-80 14821 0.01577-003
PG1115 0.31 4.2775%%  37671%9% 2243675000  0.055 0897052 7.78¥099  1.8t0 7T 5257377 0.05410038
B1152 0.439 9.437.02% 08721l 2612577295 0.047 1.767035 12.007081 2307250 2777159 0.0367091%
B1422 0.337 25.972%%  0.14701%  368.43%2915  0.028 0337011 3637020 5457557 143759 0.00510-90%
SBS1520 0.71  2.357093 14577322 166.8278C% o101 2367900 14757180 00170l 7107215 0.13810-017
MG2016 1.01  28.9F75%  020%0 15 369.537310% 0105 0657028 767007 15.01730%  12.8%27  0.0057500%
B2045 0.87 107759 2457232 3395513859 0062 4.36708° 21807170 90.6373:87 318792 0.01770:007
HE2149 0.603 3.42%0-% 7867372  196.01735%  0.001 1.5370%2 5971030 1277031 576730 0.0427000%

Table C.4: For Chapter 7: Lens, redshift of the lens z;,, NFW scale radius rs, NFW scale density ps,
inferred virial radius Rvir, outermost radius of the mass profiles in terms of virial radius 2Rjens/Rvir (for
the innermost radius multiply by 1/19), Hernquist scale radius rs, Hernquist scale luminosity M/Y, the
virial mass My, as defined in Equation 2.38, the concentration c,ir as defined in Equation 2.35, total
enclosed stellar mass fraction Ms/Myir.
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