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Elektron-Phonon Wechselwirkung in Nanostrukturen und ultrakalten Quantengasen:
Die vorliegende Arbeit untersucht den Effekt der Elektron-Phonon Wechselwirkung in zwei
Klassen von mesoskopischen Systemen. Die erste Klasse umfasst molekulare Quantenpunkte. Sie
gelten als gute Kandidaten fiir zukiinftige Transistoren auf der Nanoskala. Mittels der
Ladungstransferstatistik (full counting statistics, FCS) wird der elektrische Transport fiir
verschiedene Modelle eines molekularen Transistors charakterisiert. Das Hauptaugenmerk dieser
Arbeit liegt dabei einerseits auf Systemen mit starker Elektron-Phonon Wechselwirkung und
andererseits auf Modellen mit stark korrelierten Zuleitungen in Form von Tomonaga-Luttinger
Fliissigkeiten. Basierend auf einem erweiterten Keldysh Formalismus werden verschiedene
perturbative und nichtperturbative Methoden zur Berechnung der FCS erarbeitet. Die Analogie
zu Mehrniveausystemen wird anhand eines Doppel-Quantenpunkt Modells diskutiert. Die zweite
Klasse umfasst das BEC-Polaron Problem. Hierbei wird die Analogie von Verunreinigungen in
Bose-Einstein Kondensaten mit Elektronen in einem Kristallgitter ausgenutzt. Mittels
Pfadintegral Monte Carlo Simulationen, Variationsrechnung und perturbativen Methoden wird
das effektive Frohlich Modell untersucht. Die formale Ahnlichkeit zur Cherenkov-Strahlung wird
erlautert.

Effect of electron-phonon interaction in nanostructures and ultracold quantum gases:
The subject of this thesis is the effect of electron-phonon interaction in two classes of mesoscopic
systems. The first class includes molecular quantum dots. They are believed to be good candidates
for future realizations of transistors on the nanoscale. Using the concept of full counting statistics
(FCS), the charge transfer for several models is characterized. On the one hand, the main focus of
this work lies on systems with rather strong electron-phonon interactions, on the other hand, it lies
on models with strongly correlated electrodes described by Tomonaga-Luttinger liquids. Based on
a generalized Keldysh formalism, perturbative and non-perturbative methods have been provided
to calculate the FCS. Using double quantum dot models, the analogy with multi-level systems is
discussed. The second class contains the BEC polaron problem. The BEC polaron is based on the
analogy of immersed quantum gases with electrons in crystal lattices. Using imaginary-time path
integral Monte Carlo methods, variational principles and perturbation theory, the effective
Frohlich model is investigated. The similarity to the emission of Cherenkov radiation is discussed.






Contents

1. Introduction 3
1.0.1. Electron-phonon interaction in quantum impurity systems . . . . . . . .. .. 4
1.0.2. The BEC polaron . . . . . . . . . . . . . . . . . e 4
1.0.3. Contents of this thesis . . . . . . . . . . ... ... .. ... .. ... 5

2. Transport characteristics of quantum impurity models coupled to bosonic degrees of

freedom 7
2.1. Quantum transport theory and full counting statistics . . . . . ... ... ... ... 7
2.1.1. Field theoretical implementation of the full counting statistics . . . . . . . .. 8
2.1.2. The FCS of the resonant level model . . . . . . .. ... ... ... ...... 10

2.2. Strongly coupled Holstein polaron. . . . . . . .. . ... ... o 15
2.2.1. The model and the Lang-Firsov transformation . . . . .. ... .. ... ... 16
2.2.2. Perturbative approach . . . . . . .. ... 20
2.2.3. Resummation schemes for the Holstein model . . . . . . . .. ... ... ... 22
2.2.4. Results and discussion . . . . . . . . ... 27

2.3. Effects of e-ph interaction in the IRLM . . . . . . . . . . .. ... ... ... ..... 28
2.3.1. The model and its Toulouse point . . . . . . . . . .. ... .. ... ... ... 30
2.3.2. Full counting statistics in absence of e-ph coupling . . . . . .. .. ... ... 33
2.3.3. Keldysh functions of the impurity site . . . . . .. .. ... ... ... ..., 35
2.3.4. The resonant case . . . . . . . . . e e e e e e e 37
2.3.5. The off-resonant case . . . . . . . . ... 42
2.3.6. Results and discussion . . . . . . . . ... e 47

2.4. Double quantum dot interferometer . . . . . . .. ..o 47
2.4.1. Double quantum dot spin valve . . . . . . . . ... 50
2.4.2. Spin-valve for finite temperature . . . . . . ... .. oL L. 51
2.4.3. Effect of electron-electron interactions . . . . . . .. . . .. ... ... .... 52
2.4.4. Results and discussion . . . . . . . . . ... e 55

3. Impurities in ultracold quantum gases: the BEC polaron problem 57
3.1. The BEC polaron problem . . . . . . . . . . . ... ... ... .. 57
3.2. Polaron mass, radius and Bragg spectroscopy . . . . . . . .. ... ... ... 62
3.3. BEC polaron: perturbative approach . . . . . . . . . ... ... ... .. ....... 63
3.4. Imaginary time path integral Monte Carlo simulation . . . . . . . .. ... ... ... 67
3.4.1. Monte Carlo integration, Markov processes and importance sampling . . . . . 68
3.4.2. Error analysis and correlations . . . . . . ... ... ... 70
3.4.3. Analytical continuation and Padé approximants . . . . . . .. ... ... ... 71
3.4.4. QMC simulation for the BEC polaron . . . . . ... ... .. ... ...... 72
3.4.5. Test of the Monte Carlo simulation . . . . . . . ... ... .. ... ...... 74
3.4.6. Results and discussion for interacting systems . . . . . . ... ... ... ... 76

3.5. Variational principle for the BEC polaron . . . . . ... ... ... ... ....... 77



Contents

3.6. Cherenkov radiation in ultracold binary mixtures . . . . . . .. . ... ..
3.6.1. Cherenkov radiation and critical velocity . . . . . . .. . ... ...
3.6.2. Experimental fingerprint of Cherenkov radiation . . .. ... ...

4. Conclusions and outlook

A. Non-equilibrium formalism for quantum impurity systems

A.1. Non-equilibrium Green’s functions: The Keldysh-Schwinger formalism . .
A.2. Important Keldysh functions . . . ... ... ... ... ... .. .....
A.2.1. Keldysh function of the electronic leads . . . . ... ... ... ..
A.2.2. Keldysh function for the quantum dot . . . . . . .. ... ... ..
A.2.3. Keldysh function of the bosonic degree of freedom . . . . ... ..
A.3. Functional integral formalism for the resonant level model . . . . . . . ..
A.4. Polarization loop for the TLL . . . . . . . ... .. ... ... .......
A.5. Functional integral treatment of the double quantum dot . . . . . . . . ..

B. BEC polaron: partition functions and Green'’s functions

B.1. Matsubara Green’s functions for a harmonically confined particle . . . . .

B.2. Variational principle: partition function and Matsubara Green’s functions

Bibliography

85

91
91
95
95
96
97
97
100
101

107
107
108

109



1. Introduction

Wer kann was Dummes,
wer was Kluges denken,
Das nicht die Vorwelt schon gedacht?

(J.W. von Goethe, Faust Il)

Historically, solid state theory aimed at a universal description of matter in its condensed form.
Quantum theory together with quantum statistical physics proved to provide the common framework
to address the most basic properties of solids, for example their mechanical, electric, magnetic
and thermal properties. During the last couples of decades, based on these foundations, theorists
continuously developed the very fruitful field of quantum many-particle physics. Without doubt, one
of the most important accomplishments is the notion of quantum field theory. Its rapid development
and broad acceptance certainly was supported by the close relation to a similar development in high
energy physics.

Often, solids are described by spatially periodic structures, a.k.a. lattices, which are assumed to
be formed by atoms. The electrons belonging to these atoms can play several roles. For example,
there are electrons forming directional bonds (o-bonds) with each other. These electrons strongly
participate in forming the lattice and are often strongly localized. Other electrons might only be
loosely bound to their atom. These electrons can move quasi-freely through the solid and experience
the lattice as a periodic potential. Bloch identified the wave-like nature of these electrons and
introduced the concept of band structure. Assuming a static background, however, only leads to
a partial description of a real solid. Dynamical distortions of the lattice, i.e. lattice vibrations,
account for many important properties like the propagation of sound or the formation of Cooper
pairs in a conventional superconductor. It is one of the biggest advantages of quantum many-body
theory to provide the concept of phonons, i.e. quantized lattice vibrations. Basically, phonons are
described by bosonic quasiparticles interacting with electrons or other phonons.

These days, there are still plenty of aspects involving electron-phonon interaction not fully under-
stood by theorists and experimentalists. It is highly recommended to look for systems where the
effect of electron-phonon interaction can be observed in absence of other sources of distortion. Very
interesting are mesoscopic systems, like molecular transistors: here, atoms, molecules or larger clus-
ters are coupled to electrodes. Due to their simple structure, their vibrational degrees of freedom are
much easier to describe than phonons in the bulk of a solid. This defines a very controlled system to
observe the effects of electron-phonon coupling to the transport of electrons. It is a great advantage
that well-established manufacturing techniques like lithography and molecular beam epitaxy can be
used to implement these kinds of systems on-chip.

In contrast, ultracold quantum gases belong to the cleanest and best manageable quantum many-
body systems. The control of the scattering properties of the atoms via Feshbach resonances offers
the opportunity to continuously drive a system from weak to very strong particle-particle interaction.
Interestingly, one is also able to tune a system from repulsive to attractive interactions. This allows
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for the observation of the famous BEC-BCS crossover. In this sense, experiments using cold quantum
gases are superior to most experiments in solids. Mixtures of two or more species of atoms leads
to interesting new features. One of them is the formation of the BEC polaron in a two-component
mixture where one species is a minority, i.e. represents impurities. It turns out that this system
can be described similar to the polaron system in solids, i.e. by a Frohlich Hamiltonian. Here, the
advantage is again the control over the coupling constants, which allows for arbitrary tuning of the
electron-phonon interaction strength.

1.0.1. Electron-phonon interaction in quantum impurity systems

Carbon nanotubes are ideal candidates to build nanoscale devices. For example, a single carbon
nanotube is a simple and important realization of a quantum wire, i.e. a one-dimensional electronic
device. One-dimensional systems per se are very interesting: electron-electron interaction leads to
the formation of a highly correlated system, the so-called Tomonaga-Luttinger liquid. Impurities
in carbon nanotubes can be used to build even smaller systems: 0-dimensional quantum dots. A
quantum dot embedded in a nanotube is a good candidate for a molecular transistor with very
distinct vibrational modes. The basic electronic properties of molecular transistors can be captured
by quantum impurity models with internal vibrational degrees of freedom.

In experiments, the easiest way to obtain information about the nature of charge transport in
mesoscopic devices is measuring the electric conductance and current. However, these quantities
provide by no means a complete characterization. For example, the current-current correlation, i.e.
the noise, in general reveals information which is not present in the current or the conductance:
using the famous Schottky formula S = ¢I allows for a determination of the quasiparticle charge ¢
of the participating particles by measuring the current I and the noise S.

Therefore, it is very useful to have a method at hand to address higher order current-current
(charge-charge) correlation functions: the full counting statistics. By definition, the full counting
statistics is the probability distribution function to transfer a certain amount of charge during a
fixed measurement time.

1.0.2. The BEC polaron

Mixtures of ultracold quantum gases are excellent candidates for immersed quantum systems. The
high degree of control of its scattering properties allows an investigation of many interesting effects:
for example, mixing/de-mixing phenomena can be investigated by tuning the inter-species scattering
from the attractive regime to the repulsive one.

A two-component mixtures where the concentration of one species is small compared to the other
one can be treated as a quantum impurity system: the majority species provides a background BEC
in which the impurities are embedded. It turns out that the inter-species scattering can be described
by the coupling of the impurities to the Bogoliubov modes of the background BEC. The effective
model for this kind of coupling is the Fréhlich Hamiltonian. Therefore, impurities in BEC’s can
be thought of as an analog to electrons in a crystal lattice interacting with phonons. This analogy
allows us to simulate the effects of electron-phonon interactions in a very clean and very controlled
setup.



It is well known from solid state physics, that systems with strong electron-phonon interaction tend
to form polarons as quasiparticles. However, the transition from weak to strong coupling itself is
hardly accessible in solid state experiments. It is believed that experiments with ultracold atoms
can bridge this gap.

1.0.3. Contents of this thesis

As previously mentioned, this work consists of two parts: first, the effect of electron-phonon coupling
in quantum impurity systems and, secondly, the BEC polaron problem. This is reflected in the
structure of the presentation.

In chapter 2 we investigate the effect of electron-phonon interaction in quantum dots. First, we
give a short introduction into the concepts of quantum transport theory in mesoscopic systems.
Especially, the very useful full counting statistics is formulated in a quantum field theoretical frame-
work. Secondly, we introduce the Anderson-Holstein model. Based on the Lang-Firsov (polaron)
transformation, we develop approximation schemes to handle the Anderson-Holstein model in the
strong coupling regime. We provide expressions for the various approximation schemes, discuss the
physical implications and compare the results with numerical data from the literature. Thirdly, we
introduce a quantum dot capacitively and tunneling coupled to correlated electrodes, i.e. Tomonaga-
Luttinger liquids. Using bosonization techniques and the notion of the Toulouse point, this model
can be mapped to the Majorana resonant level model which describes the propagation of collective
excitations, i.e. plasmons. We equip this system with an additional bosonic degree of freedom to
study the effect of phonons on transport of collective excitations. An important aspect occurring in
systems including electron-phonon effects can be understood in multi-level structures. For a better
understanding, we investigate transport properties in double quantum dot structures in the last
section of this chapter. The existence of sharp anti-resonances in these setups allows for interesting
applications. We propose a setup based on double quantum dots in parallel arrangement to generate
highly spin-polarized currents. We show that our setup is robust against external influences like
finite temperature and electron-electron interactions.

In chapter 3 we study the BEC polaron. In the first paragraph, we give a microscopic model
of the two-component mixture and map it to the Frohlich polaron. Secondly, we discuss several
observables like the polaron radius and the density-density correlation function (together with a
very brief introduction to Bragg spectroscopy). Thirdly, we provide a perturbative treatment of the
BEC polaron. In the fourth section, we introduce an imaginary time path integral Monte Carlo
simulation technique to give a numerically exact solution to the BEC polaron (described by the
Frohlich model). In the fifth section, the Jensen-Feynman variational principle is applied. In the
sixth section, we adapt the concept of Cherenkov radiation to the BEC polaron problem.

We close this thesis by a discussion and an outlook. The results are published in Dahlhaus et al.
[2010], Maier and Komnik [2010], Maier et al. [2011]|. The article Maier and Komnik is in prepara-
tion.






2. Transport characteristics of quantum
impurity models coupled to bosonic
degrees of freedom

The noise is the signal

(Rolf Landauer)

This chapter is devoted to quantum transport theory in quantum impurity systems. The main focus
is the effect of electron-phonon interaction on the charge transfer statistics. In the first section, we
introduce the concept of the full counting statistics (FCS). The subsequent section deals with the
local Holstein model in the strong coupling regime. The third section focuses on a weakly coupled
phonon in the Majorana resonant level model. The fourth section introduces double quantum
dot systems to illustrate the phenomenon of interference in multi-level systems. The chapter ends
with a discussion. Appendix A gives a short introduction to the non-equilibrium Green’s functions
formalism employed here and provides all necessary details on various important Keldysh functions
for quantum impurity systems.

2.1. Quantum transport theory and full counting statistics

The understanding of quantum transport processes is highly important from theoretical, experimen-
tal and practical aspects. Tunneling experiments like scanning tunneling microscopy can reveal a
lot of information about a sample which is hardly accessible by other methods. For example, the
local density of states of a high-Tc superconductor and hence the spatially resolved gap function
can be probed (Pan et al. [2001]). However, we are more interested in transport in nanostructures,
e.g. transport through molecular quantum dots (Park et al. [2000, 2002], Smit et al. [2002], Yu
and Natelson [2004], Yu et al. [2004]). The model those systems have in common is a mesoscopic
system with internal degrees of freedom which is coupled to electronic leads (see fig.2.1). Applying
a source-drain voltage Vgp across the contacts induces a current flowing through the molecule. Via
an attached gate electrode, the electronic level structure of the quantum dot can be varied. The
question arising is how the transport processes can be characterized.

In state-of-the-art experiments in mesoscopic physics, transport quantities like the linear conduc-
tance, differential conductance or the current are easily accessible. More challenging are current
fluctuations. But they can reveal information about the nature of the participating quasiparticles
which are not accessible by other methods. This, for example, is expressed by the famous Schottky
formula, S = ¢I, which connects the current I and the quasiparticle charge ¢ to the current noise
S. Using this relation, de-Picciotto and colleagues (de Picciotto et al. [1997]) find strong evidence
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Figure 2.1.: Molecular quantum dot: A molecular quantum dot (here a Cgp molecule)
is placed between two metallic leads. An applied source-drain voltage Vgp across the
contacts induces transport processes through the quantum dot. The molecular island can
be probed via measuring the transport characteristics, i.e the full counting statistics P (Q).
An attached gate electrode allows to alter the electronic level structure of the quantum
dot.

for charge e/5 quasiparticles and Saminadayar and colleagues (Saminadayar et al. [1997]) for charge
e/3 quasiparticles in fractional quantum Hall samples.

Differential conductance, current and current noise have something in common: they all can be
derived from the full counting statistics. Before we proceed by introducing the concept of the
full counting statistics, a remark about the system of units we employ is in order. Unless stated
otherwise, we use units with h = e = kg = 1 throughout this chapter.

2.1.1. Field theoretical implementation of the full counting statistics

Charge transfer can best be described in a probabilistic framework: the charge transfer statistics
P (Q) is defined as the probability to transport an amount of charge @) during a measuring time 7.
From a theoretical point of view, the Fourier transformation of P (Q),

X(\) =) 9P (Q) (2.1)
Q

is much more suitable. The logarithm of this quantity, the cumulant generating function (CGF),
produces the cumulants (irreducible moments) of the probability distribution,

n

(@) =i

/\Zoln X (A). (2.2)

The first cumulant is directly related to the current, (Q)) = >.o QP (Q) = T and the second
cumulant to the noise, (Q2) = TS where S = 3 [dt (I (t)1(0) + I(0)I(t)). In fig. 2.2, the
graphical meaning of the cumulants is depicted.

The foundation of the full counting statistics for fermionic systems have been laid by Levitov and
Lesovik in the milestone article (Levitov and Lesovik [1993]). Later on, there was a substantial
extension and a more detailed discussion by Levitov, Lesovik and Lee (Levitov et al. [1996]). Nazarov
(Nazarov [1999]) adapted the full counting statistics to the Keldysh-Schwinger formalism. These
early approaches have one thing in common: they use a fictitious measurement device to define the
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Figure 2.2.: Charge transfer statistics P (Q).

FCS. In the work by Nazarov and Kindermann [2003], the authors succeeded in reformulating the
problem in a more formal way without referring to a fictitious detector.

In the following, we give a field theoretical description of the charge transfer statistics. We begin
by writing down the Hamiltonian of the model,

H= Hleads [wa] + HM [du ¢/€] + HT + WM (23)

Hyeags is the lead contribution which may include interactions/correlations and is described by
field operators v¥,. « is a multi-index which, for example, labels lead number, spin species or
channel. The mesoscopic island is defined by a Hamiltonian Hy; consisting of a set of discrete levels
with associated creation and annihilation operators dj, d, and continua (for example a heat bath)
described by field operators ¢,. There is a redundancy in this description: the components ¢, can
also be thought of as a contribution to Hjg,gs, too. But from an experimental point of view, this kind
of separation is meaningful. The tunneling Hamiltonian Ht can be split up in two contributions,

Hr =T, +T_ (2.4)

where
T— = Zﬂyabdiwa (.T)a) + ZV(;H(?L (yﬁ) wa (‘T:x) (25)
Ty = v th (wa)d, + > vl (2),) ¢ (ux) - (2.6)

T_ populates the mesoscopic island and T’y depopulates it. The parameters z,, z/, and y, are the
coordinates where the tunneling takes place. Wy describes capacitive interactions between leads
and the island. Interactions including particle exchange are not allowed in this contribution. In our
case, we are always dealing with a system initially (in the distant past) in a state

p(—OO) = ®Pa®,0M,m®PL (27)

where the densities of the lead operators are given by grand canonical ensembles with chemical
potentials 1, and p .. We define the charge operator (), by

Qo= [ dovl(2) v (@), (2.8)
Due to particle conservation, one can easily verify the commutation relations,

[Qoqueads] = [Qa’HM] = [QQ,WM] =0. (29)
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The commutators involving the tunneling Hamiltonian are
[rQa T-]; = [rQa, T-] = rzfym g (a) + TZMN Ur) U (2h) (2.10)
[1Qa, Ty]y == [rQa, T4 = —rz%ﬂ/}a (xo)d, — TZ’}/ L) b (Y) - (2.11)
Similarly, the nested commutators [A, B, := [A, [A, B| n—l] can be calculated,
[rQa, T, =" vadiwa (za) + 1" Z Vo BL (W) Vo (0,) (2.12)
[rQa» Ty, = vawa a)d, + ( Zv b (Ys) - (2.13)

The full counting statistics can be introduced by

X ({Aa}) =Tr peiZ& )\aQa(T) = Tr peiza )\aQa
2 2 exp il B S HeT R S | TR T (2.14)

— Tr pel iy, 2ala HNT (—IH AT (i3, 2alla

x exp |iTe™

)

i AaQa . .
126 72" was introduced. Defining

where in the last equation the operator Hy =
Keldysh time dependent counting fields A, (7),

(2.15)

Ao (1) = O (1) O (T —7) <Aa+ o T€C+>

Ao- =X TECT

one can rewrite eq. (2.14) using the non-equilibrium Keldysh formalism (see Appendix A.1)

X ({Aa}) = <Tc [e‘ifc dTHA(T)D. (2.16)

Using the commutator relations above, one obtains

Hy = Hieads + Hv + Wa + Ty, (2.17)
where
Ty=Tr_ +Trs (2.18)
with
Ze T Yaudit, (Ta) + Ze bl (e) g (25,) (2.19)
oy = Ze_iT’y;L P (xa)d, + Ze Vel (2) 6 (k) - (2.20)
a

2.1.2. The FCS of the resonant level model

In order to demonstrate the power of the FCS formalism, we determine the CGF for the exactly
solvable resonant level model. In principle, there are two different ways to calculate the CGF. The
first method is based on a current-like expansion of the CGF (see Gogolin and Komnik [2006]) and

10
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is presented in this section. The second one is a functional integral approach and is presented in
appendix A.3.

There is another more educational reason to look at the resonant level model: we can introduce and
motivate the common assumptions of quantum transport theory in nanostructures. We begin by
providing a physical picture of the resonant level model. The most simple setup one could have in
mind is sketched in fig. 2.1: there are two metallic leads which are both tunneling coupled to a tiny
island, for example a buckyball. Ignoring the internal degrees of freedom of the island, it can be
described by a quantum dot, which is nothing more than a discrete ensemble of energy levels which
can be occupied by charge carriers. The energy levels can be tuned with an attached gate electrode
and an applied bias voltage to the leads allows for a current to flow through the system. As a first
approximation, one can assume the quantum dot and the electronic leads to be non-interacting. In
this case, we can model the electrodes by simple Fermi liquids which are held at different chemical
potentials ur, R,

Hleads = Z Z (Em,k - ,UJm) C,Tn,kcm,k (221)

m=LR k

where ¢, are the energy-momentum dispersion relations for free electrons! and cjﬂ jo:Cm. ke are
creation and annihilation operators for particles with momentum k. The quantum dot can be
described by a single energy level,

Hy = Aod'd (2.22)

where Ag is the energy of the level and df,d are the creation and annihilation operators of the dot
level. In real devices, a quantum dot of course consists of more than one energy level. However,
assuming the quantum dot to be sufficiently small, the level spacing can be rather large compared
to the other energy scales of the system. In these kinds of systems, tunneling effectively involves
a single energy level only?. We did not include a spin degree of freedom of the particles. To
justify this, we can think of an applied magnetic field lifting the spin degeneracy. As long as we
are not interested in the Kondo effect, i.e. do not approach the Kondo temperature, we can safely
neglect onsite interactions or treat them perturbatively. In order to describe tunneling, we have to
introduce field operators for the electronic leads. So far, we have not discussed the role of the spatial
dimension of the leads. As long as we are dealing with spatially localized, structureless tunneling
events, i.e. s-wave scattering processes, the universal low-energy behaviour can be described by one-
dimensional field theories, see Ludwig and Affleck [1994] for more details on this subject. Indeed,
these assumptions are quite reasonable and often met in experiments®. In fig. 2.3, we sketched the
mentioned mapping to a one-dimensional system. Now, we can define the field operators for the

HL HR U, puL =0

UR,UR

Figure 2.3.: The panel to the left shows the typical geometry of tunneling events in real
experiments. The right panel shows the mapping to an effective 1D low energy field theory.
Here, tunneling is described as scattering processes on a impurity.

'In interacting systems, we have to think of quasiparticles rather than bare electrons.

2 Additionally, one has to assume a sufficiently small bias voltage.

3The tunneling probability is exponentially suppressed by the width of the tunneling barrier. Therefore, tunneling
naturally occurs from within a small region in the lead.

11
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X

Figure 2.4.: Energy scales in the resonant level model. An electron tunnels from the left
lead through the quantum dot to the right lead.

leads,

dk .
U (x) = elkmcmk (2.23)

) or

and formulate the Hamiltonian for the tunneling processes,

Hp= Y. [’ydewm (x=0)+He.|, (2.24)
m=L,R

where 7, are the tunneling amplitudes. In fig. 2.4, we depicted the energy scales of the system (at
temperature 7" = 0) and sketched a single tunneling process. There is an obstacle in the picture of
non-interacting leads: what happens with the excess energy? Without interactions there is no reason
for relaxation. The mechanism of relaxation and the existence of a steady state is an interesting
and ongoing area of research of its own (see for example Doyon and Andrei [2006]). We circumvent
the problem of relaxation by assuming the leads to be of infinite length. In this case, the problem
of the excess energy does not arise. Electrons with higher energy just vanish into infinity and never
come back. In the following, we omit the x = 0 statement in the tunneling operator.

In order to calculate the CGF, we need the A-dependent tunneling operator,

= Y [rymeimk/“dT Um + He. (2.25)
m=L,R=%

where we have introduced the counting fields in a symmetric way: electrons are counted twofold.
Once when they are tunneling from the left lead to the dot, and a second time when they are
tunneling from the dot to the right lead. Therefore, we have the coefficient 1/4 in front of the
counting field instead of 1/2 as in the previous expressions (see eq. (2.20)). The notation m =
L,R = + is self-explanatory. Tunneling processes from the left lead to the dot df¢y, have to be
counted with a positive sign, i.e. m = L = 4. However, tunneling processes from the right lead to
the dot dfir have to be counted with a negative sign and therefore m = R = —.

The current-like expansion is based on the fact that the counting field A (t) is a constant on each

12
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branch of the Keldysh contour. With this in mind, we can use eq. (2.16) to find the CGF

) s <Tce—ifc dtTA(t)>
h’lX()\_,AJ,_):M/d)\_ 5)\( )

[ [ (een]) e
=-ifa [ “‘< &ﬂ>>

where in the last equation we have introduced the A-dependent expectation value,

()
X (A*a )‘+) ’
where the expectation values (-) have to be calculated with respect to H = Hjeags + Hy + Tn. The

occurrence of x (t—,t4) in the denominator is crucial. Otherwise, unconnected diagrams do not
necessarily cancel?. The functional derivative on the r.h.s of eq. (2.26) can now be rewritten to

(y = (2.27)

0T _ i im\_ /4 7t
<5)\ ) >)\ =1 Z m <Tc [’yme d" (t-) o (L) — H.c.] >>\. (2.28)
m=L,R=+
Next, it is convenient to introduce counting field-dependent Keldysh Green’s functions,
G (£ —¥) = =i (Tevm () d' () (2.29)
Gam (£ =) = =i {Ted (1) ¥}, (¥) ), (2.30

and rewrite the eq. (2.28) to

<5fii>>A:

m e G () = e G ()]
(2.31)

W = »-Mv—*

2
m=L,R=+%
Z /dw ’Ymelm)\ /4G ( ) * 7im)\_/4Gd—T; (w)} )
L,R=

m= +

In the last equation, we have introduced the Fourier transformation of the Keldysh functions. Unless
stated otherwise, the Fourier transform of a Keldysh Green’s function is always a 2 X 2 matrix in
Keldysh space. The mixed Green’s functions can be expressed in terms of the Keldysh function of
the quantum dot only,

D(t-t)=-i(Ted(®)d' () . (2.32)
A
One easily finds the relations
Gmd (t—1t') =, / d7 g (t,7) D (7,1') mAT)/4 (2.33)
C
Gam (t —t') = / A1 D (t,7) g (7, t') e mAM/A (2.34)
C

4Usually, the Keldysh formalism has a built-in cancellation of unconnected diagrams. This stems from the fact that
the Keldysh partition function is always unity. But this is no longer true in the presence of contour-dependent
counting fields.
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which, in Fourier space, transform to the matrix equations for Keldysh matrices,

Gind (W) = gm (W) Iy D (w) (2.35)
Gam (W) = D (W) Ymgm (w) (2.36)
where 4, are the matrices,
. elm)\_/4 0
Ym = Ym ( 0 _eim)\+/4> (2.37)

and g, (t —t') = —i <T(j’¢)m (t) Vi, (t’)> are the Keldysh functions of the isolated leads which are
0
calculated and listed in appendix A.2.1. Putting everything together we find

0T, - |’Ym‘ 3 B o - B .
<6A<t_>>f 2. Ty /27r |97 (@) DT (@) eV = ot (w) DY (w) V2

m=LR=+

(2.38)

with the definition A = (A_ — A1) /2. Eq. (2.38) can be thought of as an extension of the Meir-
Wingreen formula (Meir and Wingreen [1992]) of the current for the CGF. Later on, we will argue
that this formula even holds for an interacting quantum dot. In case of the non-interacting resonant
level model, we can find an exact expression for the Keldysh function D of the quantum dot by
solving the Dyson equation,

D (w) = dy (w) + dp (w) X7 (w) D (w) (2.39)

which is a purely algebraic (matrix-) equation. dy is the Keldysh function of the isolated dot level
(see appendix A.2.2), do (t — t') = —i(Ted (t) di (t’)>0 and X the self-energy due to tunneling given
by

X7 (w) = Z AYmGm (w) ’AY:n (2'40)
m=L R=+

It is now a simple exercise to obtain
1 (w— Ao) + 1 (FLTLL + I'rnr — 1) i’ (e%FLnL + e_%FRn;{)

det D1 i [e_%FL (nL—l)—i—e%l—‘R (nR—l)} —(w—AO)—l—i(FLnL—l—FRnR—l)
(2.41)

D (w) =

i

with the determinant
det D! = (w — Ag)? + [ + 4T Ty [(ei’\ - 1) nL (1 — ng) + (e—iA - 1) g (1 — nL)} L (2.42)

the hybridization parameters, I';, = Wpomfyfn, I' =T'y, + I'r, where pg,, is the density of states of
lead m near the Fermi edge. n, (w) denotes the Fermi distribution function with chemical potential
lm. Putting everything together, one finds

<5f€/\_)>/\_ /iﬁai}_lndew (W) (2.43)

Now, the remaining integrals in eq. (2.26) are trivial. The time integration reproduces the measure-
ment time 7~ and the A_ integration produces the logarithm of det D~! up to proper normalization.
The normalization can easily be restored using x (0) = 1. The CGF then takes the form,

In x (A T/ — ln 1+ 7T (w) [(ei)‘ — 1) ng, (1 —ng) + (efv‘ - 1) ngr (1 — nL)]} (2.44)
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which is the well known Levitov-Lesovik formula (Levitov et al. [1996]) with transmission coefficient
T (w) of the resonant level model,
AT Tr

T(w) = AP (2.45)

The current through the resonant level model is obtained by

idlny(X)

I= —?T‘H: / ‘;L;T (w) (nr, — nR) (2.46)

which is well known from the Meir-Wingreen formula. The current noise is given by

—i)? d2In w
S = ( 7_) d ld)\XQ()\) ’/\:0: /C;WT (w) [nL (1—=ng)+nr(l—ny)—Tw)(ny — nR)2 (2.47)

which in case of zero temperature and py, > pr simplifies to

S = / (;%T (W) [L - T ()] (n1, — ng) . (2.48)

In case of a small bias voltage V = ur, — ur, one recovers the linear response result

S=T <“L+2”R> [1 —T <”L+2“R)] V. (2.49)

In case of a symmetrically applied voltage ur = —pur, = —V/2 this further simplifies to S =
T (0)[1 —T(0)], i.e. only the transmission coefficient for small energies is relevant.

2.2. Strongly coupled Holstein polaron

The fundamental building blocks of modern day microelectronics are transistors based on conven-
tional silicon n-p junctions or for low-noise applications, two dimensional electron gases at the
interface of semiconductor heterostructures. Typical structures in these kinds of systems are of the
size of several 10 nm (state-of-the-art is the 22 nm technology). Atom and molecule based electronic
circuits can, in principle, improve this limit by at least one order of magnitude. As an example, one
can build a small island — a quantum dot — in a carbon nanotube via mechanical deformations (for
example via an STM) at two distinct points (see fig. 2.5). Effectively, the quantum dot is a zero
dimensional system and its electronic degrees of freedom can be described by a set of discrete energy
levels. Using a gate electrode, the position of the electronic levels can be shifted. Depending on this
position, an applied voltage across the nanotube can lead to a current of different magnitude.

Figure 2.5.: Quantum dot embedded in a suspended carbon nanotube.
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For molecular circuits, however, this picture is often oversimplified. For example, charging of the
molecule can lead to substantial structural deformation of the molecule itself. This leads to a cou-
pling of the conformational or vibrational degrees of freedom to the electronic ones. In this section,
we focus on quantum dots with a rather strong electron-phonon coupling. Recent experiments
(Leturcq et al. [2009]) have shown that this is indeed the case in quantum dots embedded in carbon
nanotubes.

The Anderson-Holstein model (AHM, see Anderson [1961|, Holstein [1959]) is able to describe
quantum impurities in the presence of vibrational degrees of freedom. In its full extent, the AHM
captures a huge variety of physical phenomena. Its physical properties depend on several energy
scales, e.g., temperature, charging energy, hybridization energy, level spacing, and electron-phonon
interaction strength. These define many interesting and physically distinct regimes in parameter
space. We are mainly interested in the effect of electron-phonon interactions on the charge transport
through a contacted molecule. The model can therefore be simplified to contain a single electronic
level (thus neglecting the spin degree of freedom as well as the charging energy) linearly coupled to
a local (Holstein) phonon, i.e., a bosonic oscillator degree of freedom with a single frequency. Even
this simplified model offers rich physics. The conductance and the nonlinear I-V characteristic of
such a system can be approached by a number of methods, such as diagrammatic Monte Carlo
(diagMC) schemes (Miihlbacher and Rabani [2008]), rate equations (Koch and von Oppen [2005],
Leturcq et al. [2009]), perturbation theory (de la Vega et al. [2006], Flensberg [2003], Galperin et al.
[2006], Riwar and Schmidt [2009]) and P (E) theory (Kast et al. [2011]).

Its full counting statistics (FCS) are well understood in the limit of weak electron-phonon coupling
(Avriller and Levy Yeyati [2009], Haupt et al. [2009], Schmidt and Komnik [2009]) as well as in
situations where rate equations apply (Avriller [2011], Dong et al. [2009], Koch and von Oppen
[2005]). We would like to extend these results and present a calculation of the FCS beyond these
limits. The model of our interest consists of electrodes as well as the quantum dot made of a single
carbon nanotube subject to a bias voltage V' (see fig. 2.5). The electronic level structure of the
quantum dot can be tuned by an additional backgate. The nanotube can be of such a geometry that
the relevance of the purely electronic interactions is negligible. Because of its simple structure, the
vibrational modes of such a quantum dot are well understood (see Mariani and von Oppen [2009]).
The model we employ is fairly general. Depending on the parameter regime, it also allows the
description of transport through molecules contacted using mechanically controlled break junctions
(Djukic et al. [2005], Smit et al. [2002]) and STM tips (Qiu et al. [2004], Stipe et al. [1998]) as well
as in nanoelectromechanical setups (Knobel and Andrew [2003]).

2.2.1. The model and the Lang-Firsov transformation

The starting point of our calculation is the Hamiltonian of the Anderson-Holstein model,
H=Hy+ Hp + Hefph- (250)

The contribution Hy describes the uncoupled degrees of freedom, i.e. the electrodes, the single
electronic level of the quantum dot and the bosonic mode,

Ho = Hieads [V, Y] + Aod'd + QBT B. (2.51)

The electrodes are described by non-interacting spinless electron field operators 1, g (x) which are
held at chemical potentials up, g. This is achieved by a source-drain voltage V' = ur, — pr. In many
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cases, assuming spinless particles is not a severe constraint. For example, in systems with sufficiently
strong magnetic fields, this can be a valid assumption®. In case of non-interacting electrons, all the
necessary information of Hje,gs is encoded in the local tunneling density of states p (w). For reasons
of simplicity, we work in the wide flat band limit p (w) = po, which corresponds to free fermions
with linear dispersion and infinite bandwidth. However, any other shape of p (w) can be treated
in the same way. The second contribution in eq. (2.51) describes the single electronic level of the
quantum dot with bare energy A and associated creation and annihilation operators df, d. The
last term in Hy comes from the vibrational degree of freedom which is given by a single phonon with
frequency Q and creation and annihilation operators Bf, B. As long as the vibrational modes of
the molecular quantum dot in question are energetically well separated, the assumption of a single
Einstein mode is quite reasonable. Tunneling of electrons from the leads to the quantum dot and
back is described by Hr,

Hr=Y 7 [dwa (z = 0) + H.e. (2.52)
a=L,R

where 7, are the tunneling amplitudes, which can be assumed to be real. Only in case of interference
experiments where multiple paths are possible (for example in a double quantum dot setup in
parallel arrangement), the phases can not be gauged away. In the following we assume a symmetric
coupling to both of the leads, 71, = vr = «. This substantially simplifies the expressions. An
asymmetric coupling requires only small adjustments, however, the notation becomes significantly
more complicated. As usual, we omit the x = 0 statement in the following. In order to calculate
the CGF, we need the A-dependent tunneling operator,

Th=y Y o™ [dwm n H.c.] : (2.53)
m=L,R=+

The last contribution of the Hamiltonian (2.50) is the electron-phonon interaction

E A

A

i<

en}

ol

X

Figure 2.6.: Energy scales of the Anderson-Holstein model with a bosonic degree of
freedom.

He pn = gd'd (BT n B) . (2.54)

It couples the occupation of the dot, n = d'd, to the displacement of a harmonic oscillator Q ~
B + B with a coupling strength g. In the strong coupling regime, it turns out to be convenient to

5Due to Zeeman splitting, one spin species is shifted out of resonance.
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calculate the full counting statistics via the current-like expression,

Iny (A, Ay) = /dA / dt_ <5i(€*)>A. (2.55)

Obviously, the derivative on the r.h.s. of eq. (2.55) can be expressed via Keldysh Green’s functions in
exactly the same fashion as in the case of the non-interacting resonant level model (see eq. (2.31)),

<5i<€i>>fz S [ GG @) - e G )] (250

=L,R=+

where the expectation values in the definition of the Keldysh functions have to be evaluated with
respect to the operator H = Ho+ T + He_pn. In presence of arbitrary interactions, it is in general
not possible to express G,q,Gam in terms of g,, and D, only. However, if the interaction is localized
on the quantum dot, eq. (2.34) still holds. This can easily be verified using functional integration
techniques (see appendix A.3). Therefore, again we obtain eq. (2.38),

<6j€:\—)>)\: 2 WT/(; [g;f (@) D™ (w) ™™V — g (w) DT (w) eim*/Q]. (2.57)

m=L,R==+

We proceed by applying a Lang-Firsov (polaron) transformation (Lang and Firsov [1963]) U =
exp [ade (BT — B)} to our system,

UHoU" = Hiaas + (Do + a*Q) d'd + QB'B — a0ad'd (B! + B) (2.58)

Ut =y Y [eimA/4efa(BTfB) ATy, + H‘C_} (2.59)
m=L,R=+

UH, U = gdtd (BT n B) — 2agdtd. (2.60)

Apart of being real, there is no other constraint for the parameter o. However, there is a convenient
value, a = g/Q. In this case, we have

Hy = Hieaas + AD'D + QBB + T} (2.61)
Ti=v ¥ [eimk/“Dwm + H.c.] . (2.62)
m=L,R=%

We have introduced the shifted dot level energy A = Ag— g2/, also known as polaron shift, and the
dressed dot operator, D := Xd := 9(B"=B)/2q The operator X = 9(B"=B)/2 i the phonon cloud
operator. The physical picture behind this transformed system is simple: tunneling of an electron
from the lead to the dot or vice versa excites/de-excites a phonon cloud on the quantum dot. It is
not difficult to verify that eq. (2.57) maintains its structure under the polaron transformation. One
has just to replace the Keldysh function of the bare quantum dot by the Keldysh function of the
dressed quantum dot,

D(t¢) = —i <TCD (t) Dt (75’)>A = i <Tcd(t) dt (¢') X (t) x* (t’)>)\. (2.63)

Unfortunately, the expansion of the dressed Keldysh function with respect to the tunneling ampli-
tude « is much more involved than for bare particles,

=> DO (1,1) (2.64)
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D(O) t t, & &

4 A -
DW (¢, 7

Figure 2.7.: Feynman diagrams of the contributions D, D® and D®. The solid
lines denote the free propagators of the quantum dot dy and the dashed lines the free
propagators of the electric contacts, gr, g. The vertex functions Ag, connect each time
variables with each other. Internal time integrals ¢; are integrated over.

where D3 (£, ') denotes the set of all Feynman diagrams to 2nth order in the tunneling amplitude.
The basic ingredient to the expansion (2.64) is the Keldysh time ordered expectation value of the
phonon cloud operator X,

Ao (t1, .. ton) = <TCX (t1) XT (t2) ... X (ton_1) X1 (t2n)>0 (2.65)

where the expectation value has to be evaluated with respect to UHoU. Because of the exponential
structure of the operator X, we will refer to the function Ay, as vertex function according to the
usual notation in string or conformal field theory. Because we are dealing with free bosons B, B,
expectation values of exponentials can easily be calculated using the prescription (see for example
von Delft and Schoeller [1998] and references therein)

<eaB+ﬂBT> - e<[°‘B+ﬁB*]2/2>. (2.66)

We obtain for the vertex functions of the bosons,

2n

Agn (t1, . ton) = [ [ A (8 — £5)] 7% (2.67)

1<j
where we defined o5 = (—1)" 7 and A (¢t — t') is defined on the Keldysh contour by
_ ¢ I

se-={e-nh, = (Gl ) 269
K (t) is given by

K (t) = exp {— (92/92) [(emt —1)ng + (e_im —1) (ng — 1) }. (2.69)
We introduced the uncoupled phonon occupation number ng = <BTB>O which accounts for the
initial occupation of the harmonic oscillator states. Basically, we can distinguish two different

scenarios. First, the molecule is coupled to a thermal environment (see for example Mitra et al.
[2004]). For example, this can be the coupling of the molecule to the substrate or the backgate.
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In this case, np is a temperature dependent distribution function. Then, it is often a good choice
to assume a Bose distribution function ng = 1/ (e_Q/ T_ 1). Alternatively, one can consider a
completely 'frozen’ system at T'= 0. Then ng is simply zero.

The function & (t) can be subdivided in processes involving excitation/de-excitation of n phonons.
In case of T' = 0, one obtains

K (t) = exp [(g)Q (e_im — 1)} = e_(%)2 i::é (%)Qn eI (2.70)

In case of finite temperature, the calculation is more involved. First, we rewrite « (t) as an expo-
nential of trigonometric functions,

k(1) = ef(%)Q(2nB+1)ef(%)2[(2an1) cos(2t)-+isin(02t)] (2.71)

Using the Jacobi-Anger expansion (see Watson [1996]) one finds,
_ o (&) @np+1) S _(9Y° _ ~(9N?| iomim)t
k(1) = o (& nmz::_ooln (Q) @2ng — 1)| Jn, (Q) e (2.72)

where J,, are the Bessel functions of the first kind and I,, the modified Bessel functions of the first
kind. Using addition theorems for Bessel functions (Graf’s generalization of Neumann’s formula,
see Watson [1996]) one obtains after a lengthy calculation,

— o (&) Cns+1) N 9\? nQ/2T . —nQt
k(t) =e \@ Z I, 2(9) ng(ng+1)|e e . (2.73)

n=—oo

This expression was previously derived by Mahan in the context of the spectral function of the
independent boson model (Mahan [2000]). The main difference between the 77 = 0 and finite
temperature case, is the range of summation. The implication for transport processes is obvious:
in case of zero temperature we have n > 0, i.e. phonons can only be emitted. In case of finite
temperature phonons can be emitted and absorbed during tunneling events.

2.2.2. Perturbative approach

To leading order, the Keldysh function of the dressed quantum dot is given by
DO (t—t)=dy(t—t)A(t—1). (2.74)

In leading order calculation, the electrons are tunneling, or in our case, the polarons are tunneling
through the junctions one by one without ’knowing’ about each other. Then, the CGF (eq. (2.57))
is given by

dw —im — — im
) =ThE 3 [ 52 [on @DO @)e ™2 4 gt () DO () 2] (275)
m=L,R==+

Therefore, we only need the off-diagonal components of D),

DO () = / gi dEF () AFF (10 — ) = 27 (ng — 1 — k) AFF (w — A) (2.76)
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where ng is the occupation number of the uncoupled bare quantum dot, i.e. ng = <de>0. In case
of zero temperature, we have

kk (&) > 1l/rg B
AR (w) = 2me (8) nz;) ~ (& ) (w — knQ) (2.77)
and therefore
92 > 1 2n .
Iny ()\) = 1T|7|2 ef(%) Z 7‘ <i) |:ndg:"l— (—nQ + A) e—lm)\/2
m=L,R=+ n=0 (278)

+(na—1) gy " (N4 A) ™).

The current can now be calculated as usual by performing a differentiation of the CGF w.r.t. A,

I (2= 1 g\
1256 (%) nz:;)n'<9) {nd [nL (=12 + A) —ng (—=nQ + A)] (2.79)

— (g — 1) [nr, (nQ + A) — ng (nQ + A)]}.

0.08 I —
I I of e ]
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Figure 2.8.: Current in the leading order tunneling regime. Left panel: The parameters
are A/T = =5, Q/T = 4 and ¢g/T = 8. For the black curve, the dot occupation number
nqg = 0 and, for the blue curve, nq = 1. The temperature is zero. Right panel: The
parameters are the same as for the left panel except for the temperature. The black and
blue curves show the current at temperature T/T" = 0.1 and the red and green curves at
temperature T/T" = 1.

The current for finite temperature can be obtained in complete analogy,

=g 5 nla(§) Vo]t

X {nd (1, (—n+ A) — ng (—n + A)] — (ng — 1) [nr, (02 + A) — ng (nQ + A)]}.

(2.80)

In fig. 2.8, we have plotted the current for zero and finite temperature for uncoupled dot occupation
numbers ng = 0 and nqg = 1. In case of a non-interacting resonant level model, none of the transport
quantities depend on ng. This is especially true for the leading order corrections. However, coupling
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a phonon sufficiently strong to the quantum dot completely changes the situation. For the noise at
T = 0, one obtains

INPRY 1 g 2n
S = e (%) ;}nl(g) {nd 2 =ne (=nQ+A) = ng (-0 + A)] (2.81)

— (nq — 1) [n1, (nQ + A) + ng (nQ + A)]}

and for finite temperature

_r —(&)*2np+1) - A% nQ/2T
5—46 Q ZIn 2(9) ng(ng+1)|e 25

n=—oo

x {2 —ng[nn (—nQ + A) — ng (= + A)] — (nq — 1) [nr, (02 + A) + ng (RQ + A)]}.

However, these results are not trustworthy. The reason is the following: in the leading order
correction the quantum dot does not really contain information about its coupling to the leads.
The occupation of the dot is adjusted in higher orders of the expansion. But there is a severe
problem in calculating higher order diagrams: they are all singular. This is very well known from
the singular expansion of the resonant level model. A method to work around this problem is
summing up an infinite subset of diagrams. This ensures a proper hybridization of the quantum
dot with the leads.

0.04 0.04
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S

& 002 0.02
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0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
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Figure 2.9.: Noise in the leading order tunneling regime. Left panel: The parameters
are A/T = =5, Q/T = 4 and ¢g/T = 8. For the black curve, the dot occupation number
nqg = 0 and, for the blue curve, nq = 1. The temperature is zero. Right panel: The
parameters are the same as for the left panel except for the temperature. The black and
blue curves show the noise at temperature 7/T" = 0.1 and the red and green curves at
temperature T'/T" = 1.

2.2.3. Resummation schemes for the Holstein model

In this section, we present physically motivated approximation schemes to cure the divergences in
the tunneling expansion. We begin with the single particle approximation (SPA) which is similar
to the current calculation in Braig and Flensberg [2003] or the noise calculations in Tahir and
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MacKinnon [2010]. In this approximation the Keldysh propagator of the quantum dot is given by

the expression,
DSPA (1) = & + ﬁ@& +... (2.83)
t ot 1 12 t

where the solid lines denote the free quantum dot Keldysh functions dy and the dashed lines the
free leads Keldysh functions gr,g. This kind of approximation is expected to be reasonable in
systems where electronic tunneling processes are fast compared to the atomic rearrangement of the
quantum dot (molecule). Or more precisely for I'/g > 1. In frequency space, DSPA s given as the
convolution of the vertex function A with the quantum dot Keldysh function D(® exact in tunneling,
and hence,

d
DSPAKE (i) — 2?; DOKE () ARE (15 — ) Z FaDOFE (4 — nQ) (2.84)

n=—oo

where the coefficients f,, are

fo = O me 1) 5 ()" =0 (2.85)
P P

This approximation is conserving in the sense, that the spectral function A (w) = —2Im DSPAE ()
is properly normalized. DSPA® is the retarded Green’s function DSPAE () = DSPA=— (w) —
DSPA= (). Therefore, one needs to know at least the imaginary part of one off-diagonal compo-
nent of the quantum dot’s Keldysh function. The (——) component of the vertex function is

_ = _ 1 1
A (wy_}:fnPa@-4M)+muw+nQyHPw+mﬂ-qu_nQ. (2.86)

n=oo

The principal value part does not affect the normalization property of the spectral function, because
we have

Im/ D(O)__ )|:‘P 1 Q—P 1 Q:|: 2F(W—A)ZQ
w—y+n w—y—n [(w—A)2+P2+§22 +412 (n2)*
(2.87)

which is odd with respect to (w — A). Hence,

/de = 2772 fn = 2m. (2.88)
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In case of zero temperature, ) f, = 1 is obvious. For finite temperature, one again has to use the
Jacobi-Anger relation for the modified Bessel functions. For the CGF, one finds

lnx()\):Tan/(;i{[nf(nL—l)—(nL—1)nL—n§(nR—1)— (n;{—l)nR]

T (w) - T (w)(Frxy —Faz)— (L —nr) T (w) +1
€(w) € (w)
1/n -1 n§> i T (w) 1
to(2—+B) -+ 1—ng) +ng (1 —np)] —
2 <nL—1 w) 2 Ve T el e
(2.89)
% tan—L T (w) (Fag —Fa) = (n —nr) T (w) +1 + lln(l + T (w) Fry)
& (w) 2
ng—1 nf iA T (w) 1
+ (= L> =+ 1—ng) +nr (1 —np)) — ———
<nR—1 n {2 F ) ()] e(@]
wtan—t | LW Pt A) + i =np) T+ 1) Ly g p) 70
€ (w) 2
where T' (w) is the transmission coefficient of the resonant level model,
F2
Tw=— 2.90
©) = S (2:90)
niR are shifted Fermi distribution functions,
niR (w) =nLR (wEnQ), (2.91)
the abbreviation Fj4,
Frg = (eiA - 1) i, (1 —ng) + (e_i’\ - 1) ng (1 —ny) (2.92)
and & (w),
& (w) =T%(w) (nr, — nr)? — 2T (W) [n. (1 — ng) + ng (1 — ng)] + 1. (2.93)

Although, the occurrence of the fractions n.f /n,, might indicate divergences in the case of zero
temperature, T' — 0, all cumulants are well defined. For example, one obtains for the current

dw 1 _ B
I= ;fn/%ZT (w) [2 (nf — nﬁ) + (n, + nR) (nL — nf: —ng + n;{)} (2.94)
and for the noise

§= an/ifré{if(w) [nf (1=nR) +ng (1= nr) +ng (1 -np) +nr (1 -ng)]
. (2.95)
1 () (ot — ) [2f — ) + (o -+ ) (i i+ )] }
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Figure 2.10.: Current and noise in the single particle approximation. Left panels: The
dot level energy is fixed to A/T" = 0 and the temperature is 7' = 0. The other parameters
are g/T' = 0 for the black curves, g/T' = 2, Q/T = 5 for the blue curves, g/T' =4, Q/T =5
for the red curves and ¢g/T" = 4,Q2/T" = 3 for the green curves. Right panels: The dot
level energy is fixed to A/T' =0, g/T' = 2 and Q/T' = 5. The temperature is varied from
T/T'=0.1,1,2 (black, blue and red curves).

In fig. 2.10, current and noise are depicted for several electron-phonon interaction strengths and
temperatures. Increasing interaction strengths leads to more pronounced step-like features in current
and noise when crossing multiples of the phonon resonance frequency. Also, the unitary limits of
current and noise are approached much slower than in the non-interacting case. Temperature leads
to a smearing out of the step-like features as expected. In the noise one observes a finite offset in
the noise for voltages V' — 0 which is due to thermal (Johnson-Nyquist) noise.

In the opposite limit g/T" > 1 we propose the polaron tunneling approximation (PTA) to be a
valid approximation. It is based on the assumption, that tunneling always leads to a complete
phonon cloud excitation or de-excitation, i.e. an electron drags its phonon-cloud with it. In terms
of Feynman diagrams, this approximation is represented by

P N
D (t,t)—t ,+t ,,,,,, X , (2.96)

where the solid lines denote the free quantum dot propagator dy and the dashed lines the free leads
Keldysh functions g,,. This series can be rewritten in a Dyson equation,

DP™ (w) = D (w) + DO (w) By (w) DP™ (w) (2.97)
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with the A-dependent self-energy due to tunneling

Sr= Y Amgm @) A (2.98)
m=L,R=+
with
. eim)\,/4 0
Tm =7 < 0 _eim)\+/4> : (2.99)

Hence, one obtains for the quantum dot Keldysh function,

DPTA (w) _ 1 Zn o\)_gﬁ —+ IF (nL -+ nr — 1) IF (ei)\/2nL + e—i)\/QnR)
det D1 \il [e7 V2 (np, — 1) + 2 (ng — 1)] 32, o=z +il (nL + ng — 1)
(2.100)
with
F )
det Dyt = —n @ . 2.101
€ A [zn:w_A+nQ + (+F)\+) ( 0)
Therefore, the derivative of the tunneling operator is
= — IndetD 2.102
<5A(t_)>A 1/27r ndet Dy (w) (2.102)
and hence the CGF
dw PTA
Iny(\) =T o In [14 T (w) Fag] (2.103)
with effective transmission coefficient
1‘*2
TPTA (w) — (2.104)

f -2 5
|:Zn w7A+nQ] +T

The transmission coefficient is made up of a sequence of peaks at the energies IN() for T' = 0 or ZS}
for T > 0 and it is properly normalized (see fig. 2.11). To get a rough estimate of the width of the

peaks, one can assume a Lorentzian shape. This leads to peaks of widths 9e—(9/9)° (g/Q)Qn /n!
in case of zero temperature or 20e~(9/%)°Cra+1) 1, [2 (9/0)* \/ng (ng + 1)} in case of T' > 0. The

maximum peak width must not be the one at n = 0. In fact, the maximum peak width can be
found approximately at n ~ (g/ 9)2. In case of T' = 0 this is obvious. In case of finite temperature,
the situation is slightly different. Together with the polaron shift, this leads to the well known
Franck-Condon blockade (Koch and von Oppen [2005]): The current in a system with strong-
electron phonon interaction is strongly suppressed for small voltages compared to the non-interacting
quantum dot. It is possible to have perfect transmission as well as zero transmission. This is due to
the special structure of TP™ (w), which is equivalent to the transmission coefficient of a sequence
of electronic levels in parallel arrangement with energies A +nf). This is a consequence of the PTA,
because every single electron tunneling event through the system takes away its polaron cloud
and leaves the dot exactly in the same state as before the tunneling event. Hence, the resonance
condition is given by w = nf). The anti-resonance emerges due to an interference effect similarly to
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Figure 2.11.: Transmission coefficient in the PTA approximation. Left panel: The
parameters are temperature T/T" = 0, dot level energy A/T" = 0 and phonon energy
Q/T = 5. The electron-phonon coupling constant is varied from ¢/T" = 1,5,10 (black,
blue and red curve). Right panel: The parameters are A/T' =0, Q/T' =5 and ¢g/T" = 5.
The temperature is varied from T'/T" = 1,5, 10 (black, blue, red).

the double-dot setup described later on. Current and noise can be obtained via derivatives of the
CGF with respect to A. In fig. 2.12, current and noise are depicted for several interaction strengths
and temperatures. The step-like features due to the phonon-resonances are clearly observable.
Increasing the electron-phonon coupling constant leads to a more pronounced formation of the
single steps. The noise reveals an additional plateau as a novel feature. Again, for zero voltages
thermal noise is observed.

2.2.4. Results and discussion

Finally, we would like to compare our approximation schemes to numerical data. Unfortunately,
there are not many numerically exact methods available dealing with non-equilibrium quantum
impurity systems with vibrational degrees of freedom. In fig. 2.13, we compare our approximation
schemes to the numerically exact data taken from Miihlbacher and Rabani [2008|. For reasonably
small g/ the single particle approximation agrees well with the numerical MC data. For increasing
g/ the steps in the I —V due to the phonon resonance become steeper which is not accounted for in
the single particle approximation. However, the polaron tunneling approximation is able to describe
this behaviour quite well. In case of large voltages, both the single particle approximation and the
polaron tunneling approximation tend to deviate from the numerical data. This is due to the finite
bandwidth of the diagrammatic Monte Carlo simulation which was set to 20I". In agreement with
Migdals theorem (Migdal [1958]), vertex corrections seem to play a secondary role at least in the
current. To the best of our knowledge, there are up to date no numerically exact data available for
higher cumulants like the noise. It remains a future task to investigate the role of vertex corrections
in higher cumulants.

In conclusion, we developed an approach to calculate the FCS of the Holstein polaron dot in a strong-
coupling regime. Using a polaron tunneling approximation, we derived an analytical Levitov-Lesovik
formula for the cumulant generating function with an effective, properly normalized transmission
coefficient. Our approach yields predictions for zero temperature as well as for arbitrary tempera-
tures, where the phonon is assumed to be thermally equilibrated. The results of these section are
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Figure 2.12.: Current and noise in the polaron tunneling approximation. Left panels:
The dot level energy is fixed to A/I' = 0 and the temperature is T = 0. The other
parameters are g/I' = 0 for the black curves, g/T' = 2, Q/T = 5 for the blue curves,
g/T =4, Q/T =5 for the red curves and ¢g/T" = 4,Q2/T" = 3 for the green curves. Right
panels: The dot level energy is fixed to A/T' =0, g/T' = 2 and Q/T" = 5. The temperature
is varied from T/T' = 0.1, 1,2 (black, blue and red curves).

published in Maier et al. [2011].

2.3. Effects of electron-phonon interaction in the interacting
resonant level model

In the previous section, we mainly focused on quantum dots with internal degrees of freedom coupled
to non-interacting metallic leads. In this paragraph we incorporate interactions in the reservoirs
and an additional capacitive coupling between leads and quantum dot. It is well known that for a
certain parameter constellation — the so called Toulouse limit — the transmission properties of such
systems show a rather surprising dependency on the position of the electronic dot level. The system
at resonance shows perfect transmission for small energies. An arbitrarily small detuning of the dot
level position, however, leads to a complete blocking of the system. We are asking the question how
electron-phonon interaction modifies this situation.

Probably one of the most prominent features of electron-phonon interaction in quantum impurity
models is the different behavior of the conductance which can grow or decline as soon as the applied
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Figure 2.13.: Comparison of approximation schemes with diagrammatic Monte Carlo
data. The solid lines represent the polaron tunneling approximation, the dashed lines
represent the single particle approximation and the plot markers the diagrammatic Monte
Carlo simulation results (Miihlbacher and Rabani [2008]). The dot level energy is fixed
to A = 0 and the temperature is set to T/T" = 0.2. The other parameters are g/T" =
2,Q/T = 5 black set, g/T' = 4,Q/T = 5 blue set and ¢g/T' = 4,Q/T = 3 red set. The
Monte Carlo method uses a finite bandwidth of 20I" and a slightly different definition of
the hybridization T'.

voltage gets larger than the phonon frequency (Avriller and Levy Yeyati [2009], de la Vega et al.
[2006], Egger and Gogolin [2008], Haupt et al. [2009], Mii et al. [2003], Paulsson et al. [2005], Schmidt
and Komnik [2009]). This phenomenon can be understood as follows: at zero temperature and
voltage the vibrational degrees of freedom can be safely assumed to be frozen out and one effectively
deals with the (noninteracting) resonant level with some energy Ag. The spectral function of the
quantum dot is a single Lorentzian of some width I' (which is related to the hybridization of the
dot level with the electrode) centered around Ag. For the large initial transmittance of the system,
Ag should lie in between the chemical potentials of the contacting electrodes. On the opposite,
for small transmittance, Ay is well below/above the chemical potentials. The system is virtually
insulating at |Ag| > T because then the spectral weight around the chemical potentials position,
which is necessary for transmission, is very small. When the phonon gets excited its spectral function
is known to develop equidistant sidebands (Braig and Flensberg [2003]). The central peak at Ag
persists but, due to spectral weight redistribution, its height diminishes. Therefore, the initially large
transmission drops as soon as the vibrational degrees of freedom can be excited. On the contrary,
due to the finite spectral weight in the sidebands the conductance grows for the out-of-resonance
Ag. It turns out that, in general, the crossover from enhanced to suppressed transmission does not
correspond to any universal parameter constellation apart from the limiting cases of large /small Ag
(see Egger and Gogolin [2008], Schmidt and Komnik [2009]).

Thus far, only few authors have considered the properties of such systems in case of interacting
electrodes (Fehske et al. [2008], Takei et al. [2005]). While in Takei et al. [2005] the high-temperature
regime of molecules contacted by interacting electrodes is discussed, Fehske et al. [2008] contains a
numerical treatment of the problem in equilibrium. Given the small dimensions of the corresponding
devices, it is very likely that the electrodes might in fact possess genuine one-dimensional geometry
as far as the electronic degrees of freedom are concerned. Alternatively, one might conceive a device
contacted, e.g. by armchair carbon nanotubes, which are known to host one-dimensional electrons.
In these situations one deals with the Tomonaga-Luttinger liquids (TLLs, see Egger and Gogolin
[1997], Kane et al. [1997]) instead of conventional Fermi liquids. Their most prominent feature is
the power-law singularity of the local density of states in the vicinity of the Fermi edge. Among
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other things, it results in complete suppression of transmission in presence of impurities in the low
energy sectors leading to the zero-bias anomaly (Furusaki and Nagaosa [1993|, Kane and Fisher
[1992]). As a result, the transmission through a featureless quantum dot coupled to two TLLs
vanishes toward small voltages and low temperatures (Furusaki [1998], Kane and Fisher [1992],
Komnik and Gogolin [2003b|, Nazarov and Glazman [2003], Polyakov and Gornyi [2003|). The only
exception is the perfect resonant setup when Ag = 0 and hybridizations with both electrodes are
equal to each other. Thus, contrary to the noninteracting electrodes, when the dot transmission can
smoothly interpolate between perfect and zero transmission, in the TLL setup, only two low-energy
transmission regimes are possible: either zero or unity. Applying the above line of reasoning, one
might conclude that in the former case, the current through the system starts to flow only after
the voltage gets larger than the phonon frequency. In the opposite case, one would expect that the
conductance of an initially perfectly transmitting dot would rapidly decrease above the threshold
set by the phonon frequency. In the following, we are aiming at an understanding of transport
properties of such a setup and want to quantify this heuristic picture. In order to proceed, one
needs a model which can equally well describe the off-resonant as well as the perfectly transmitting
case.

2.3.1. The model and its Toulouse point

The system can be described by the Hamiltonian
H=Hy+ Hr+ Hc+ He_pn (2.105)
where the single contributions are
Ho = Heads [, ¥r] + Aod'd + QBB (2.106)

describing the leads, the single dot level with dot level energy Ag and a phonon with frequency §2.
Y1, YR are the field operators of the leads, d the annihilation operator of the quantum dot level and
B the annihilation operator of the phonon mode. The Hamiltonian of the leads, Hjeaqs 1S described
later in the framework of bosonization (see Fabrizio and Gogolin [1995], Gogolin et al. [1998], Kane
and Fisher [1992]). Ht describes the tunneling processes from the leads to the dot and vice versa,

Hp= Y vt} (0)d+Hec, (2.107)
a=LR
with the tunneling amplitudes g, ~1,. The electrostatic interaction Hc¢ is given by
He =Ucd'd ) ¢ (0)¢a (0) (2.108)
a=L,R

with interaction strength Ug. The electron-phonon interaction is modeled via
He_pn = gd'd (BT n B) (2.109)

with electron-phonon coupling strength ¢g. As usual, a source-drain voltage is applied across the
junction in a symmetric way, i.e. uy, = —ur = V/2. In fig. 2.14, the occurring energy scales of the
model are depicted. In order to calculate the full counting statistics, the tunneling Hamiltonian has
to be equipped with counting fields,

Thn= Y 7€yl (0)d+He (2.110)
a=L,R=+
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Figure 2.14.: Energy scales of the interacting resonant level model with bosonic degree
of freedom.

where we have used the sum convention as before, « € {L =41, R = —1}. Using bosonization
procedure (see Gogolin et al. [1998]),

e (1) = —2_eida(@)/K (2.111)

\/27m0

where K is the usual Luttinger parameter, K =1/,/1 + %, Na & Klein factor to ensure fermionic
anti-commutation relations with the dot level operator and ag the lattice constant of an underlying
lattice model. U is the bare electron-electron interaction strength in the leads. The bosonic field
¢ (z) describes the slow varying component of the local electron density, i.e. plasmons. We have
chosen units where the renormalized Fermi velocity v is unity v = vp/K = 1. Instead of referring
to an underlying lattice spacing, i.e. including a momentum cut-off, we could have used normal
ordering to express the fermionic fields in terms of bosons. Both procedures, however, are equivalent.
Using eq. (2.111) and an analogous expression for the local density (see Gogolin et al. [1998]),

833¢a (.%‘)

A _
a \T) = Yo, (L) Yo \T) = 2.112
pa (2) = v (@) v (a) = 2222 (2.112)
together with the spin representation of the dot level operator,
d+df d—df 1
S, = +T Sy=i—5—,  S.= dtd — 5 (2.113)

we can associate bosonized counterparts for the single contributions of the Hamiltonian in eq. (2.105).
For the free Hamiltonian, one finds

Hy = Hicaas [61, ¢r] + DoS: + QBB (2.114)
with
Heats 00l = 1= 3 [ 4 0260 @)+ 5 [ d o @) = pr ) (2115)
leads |PL, PR] = A = T Oz P (T B T |pL (X PR (T .
where V' is the symmetrically applied source-drain voltage. The tunneling contribution transforms
to
. Yalla a2 —iga(0)/K Yalla  —ia2 ipa(0)/K
T\ = ————e'%1 S_+ 5 —— 1 2.116
A a:gzi [\/271'(106 ¢ * +\/27ra0e ¢ ( )
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where we have introduced the ladder operators S+ = S, £iS, = dt,d. The capacitive contribution
resembles the S, to density coupling term in the Kondo Hamiltonian,

Uc
Hc = S, 02| _nba . 2.117

For the electron-phonon interaction, we find
He pn = gS- <B n BT) . (2.118)

We disregarded constant shifts in energy which do not affect transport properties. Using even/odd
fields, ¢4+ = % and the Emery-Kivelson rotation (Emery and Kivelson [1992]),

UEK = exp |:lszj/b;ri[§0):| (2.119)

the transformed Hamiltonian Ugx H UEK is given by
Uc |2
V2K K

Talla  ia2 —aig_(0)/vV2K Yalla  —ia2 iag_ (0)/vV2K
T — g —_ S_+85,—— . 2.121
A |: 271'(10 e e * + 27‘(’(10 ¢ e ] ( )

Ho+ He + Hepnh — Ho + He—pn + S.0:| 0 (x) (2.120)

and

a=L,R=%4

Here, we can already draw some interesting conclusions. First, odd/even channel ¢+ completely
decouple. The dynamics of the even channel ¢ even in presence of interactions is trivial. Therefore,
it does not affect the transport properties and will be neglected in the following. Secondly, for Us =
27, the particle-particle interaction contribution in eq. (2.120) vanishes. Thirdly, if additionally
K = 1/2 holds, the refermionized model is quadratic up to the electron-phonon interaction. This
point in parameter space is one of the Toulouse points (Schiller and Hershfield [1998]) and are
extremely rare. In the following, we will always assume to be in the Toulouse limit. But first we like
to clarify, why Toulouse points besides of being a benchmark for numerical calculations are extremely
useful. Deviations from Up = 27 leads to corrections which are in the sense of renormalization group
irrelevant (Komnik and Gogolin [2003al). In the low energy regime (temperature smaller than the
Kondo temperature De~'/T% D bandwidth, T hybridization) these corrections are negligible.
Detuning of K = 1/2 is much more involved. Increasing the bare particle-particle interaction U
i.e. decreasing K in general leads to completely different behaviour. However, decreasing the bare
interaction, i.e. 1/2 < K < 1 leaves the basic properties intact. Perturbation theory in the fashion
of Weiss et al. [1995] is then applicable.

1 i . .
me , using Majorana representation of quantum

Refermionization of the bosonic field ¥_
dot and field operators

a+ib _§+in

d="-, _ 2.122
7 W 7 (2.122)

and introducing new tunneling couplings v+ = 1, + 4R lead to
H = Hiopas [€,77] + iab [AO Ty (B n BT)} +OBIB+T, (2.123)
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with

Hioas [€,7] = / da [€ (2) D€ (2) + 1 (2) B () + VE () (2) (2.124)

=i oo () —atsn ()] - s (3) women (3)] e

which is known as the Majorana resonant level model (MRLM) with an additional electron-phonon
coupling. In contrast to the IRLM we started with, the MRLM seems only to depend on the voltage
V instead of V/2.

and

2.3.2. Full counting statistics in absence of e-ph coupling

In order to calculate the transport characteristics of the IRLM one first needs the Keldysh functions
for the isolated subsystems,

gap (t—1") = =1 (Tea (t) B (') (2.126)
dpp (t—1t') = =i{Tef ()R () (2.127)

where a, 8 € {£,1} and f,h € {a,b}. We start with the Keldysh functions of the reservoirs®. This
can be achieved by reducing the calculation to the calculation of Keldysh functions of non-interacting
fermions with chemical potential =V (see eq. (2.124)),

Hyeads [V—] = /dx [wT_ (2)i0p1p— (z) + V! (z) v (x)} . (2.128)

Using eq. (2.122), the homogeneous Keldysh functions gna (o € {£,n}) can be rewritten,

oo (t 1) = —2 [{Tevl 0 (1)) +{Tev- 0l (1)) = 5 Lo (b —#) — 9 (F — )] (2129

where g was calculated in eq. (A.36) with chemical potential 4 = V' and density of states at the
Fermi edge pg = 1/27. Therefore, the homogeneous Green’s functions in Fourier space are (Komnik
and Gogolin [2003b])

_ _ifn+nr—1 np+nr
ee (@) = g () = 3 (nL +nR—2 np+ng— 1> (2.130)

with np, (w) = np (w — V) and ng (w) = np (w+ V) where we have used the relation np (—w, p) =

1—ng (w, —p) of the Fermi-Dirac distribution function. The inhomogeneous/mixed Keldysh function
of the leads can analogously be calculated:

Gey (t—1) = —gpe (t =) = % g(t—t)+g({ —1)] (2.131)

or in Fourier space

9en (W) = —gne (W) = —% G i) : (2.132)

5As usual, we are only interested in the behaviour near the impurity site, = 0.
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The next step is the calculation of the impurity Keldysh functions. We proceed as before and start
with the homogeneous one,

i 1
dey (t=t) == [<Tcd(t) dt (t’)> + <TCdT (t)d (t’)>] =5 [dt-t)—d-1)] (2133
which, in energy space takes the form,
w 1 0
daa (w) = dpp (w) = o — A2 (O _1> (2.134)
and similarly, for the mixed Greens functions,
oy (£ =) =~y (¢ — 1) = 3 [d (6 —#) = (¥ 1) (2.135)
resp. in Fourier space
B B iAg 1 0

Again, we are using the functional integral formalism to calculate the full counting statistics for the
unperturbed system. The Keldysh action is S = Sy + S [A] where the free contribution is

dw

So = /271_ [‘I’gn (w) anl (W) Pep (w) + clb (w) b;bl (w) cap (w)] (2.137)

and the contribution due to tunneling

SN = / & T () TPy (). (2.138)

We have introduced the combined Majorana Keldysh vectors W¢, = (£-,&,n-,14) and cq =
(a—,ay,b_,by), the 4 x 4 Keldysh matrices

_ (9 9en _ (daa dab)
= Vb = 2.139
S <9n£ 977?7) ’ <dba dpb ( )
and
—~_sin (f) 0 Y_ cos <7> 0
0 y_ sin ()‘—*) 0 —7— cos <>‘—+>
Ty =i 2 o 2 (2.140)
—Y4 €OS (f) 0 —74 sin (7*) 0
0 1 Ccos (7*) 0 ~4 sin (%)

As before in the resonant level model (appendix A.3), the cumulant generating function is given
by

Z [\

Inxy(\) =In ——— 2.141
where Z [A] is the Keldysh partition function (Kamenev and Levchenko [2009])
Z[\ = / D[ Wy, cap) 0, (2.142)
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The path integral of the lead degrees of freedom can easily be performed by introducing auxiliary

/
fields W}, .

1 1
W, (w) = —5 0% (W) T cap + Pg,, (w), lIlgn (w) = —ic;bI‘Aggn (W) + \Ilg? (w). (2.143)

The Keldysh action transforms to
dw T —1 1 T T -1 /
S= [ 5 qc [dm @)+ Tagen (W) T] | cap + ¥, (W) g5, (w) ¥ (@) ¢ (2.144)

Integrating out the remaining fields yields the CGF

det [0, (w) + ;Tagey (W) 7] ‘,\,:—,\+:A/2

() — I 2.145
X 1:1 det [0,," (w) + T xgey (w) T ’)\_=>\+=0 ( |
—1
- / d det [0, (@) + 3Taaen (T |y, oo (2.146)
27 det [0y (w) + ;Tagen (W) T3] [y, g

where in the last line we performed the continuum limit. The result again has Levitov-Lesovik
form,

_ dw i —iX
Iny(\) = T/zﬂln{l +T (w) [(e - 1) np (1 — ng) + (e - 1) nr (1 —nL)}} (2.147)
with transmission coefficient (Komnik and Gogolin [2003b])
AE??

T = @ ) ()t (B Bp )+

(2.148)

where we have defined

1—2a) A+ 2
E = A2 —u? Bt = ( @) Ao w, v=wya(l—a), a= % (2.149)
2 Y+ R

and all energies are measured in units of I' = 'yﬁ + 7;2{. The quantity a describes the asymmetry of
the tunneling coupling. In case of 71, = 9gr, i.e. @ = 1/2, the transmission coefficient resembles the
simple form

w2

T(w) =
@) (A%—w2)2+f‘2w2

(2.150)

with hybridization I' = ~%/2. The low energy behaviour of the transmission coefficient of the
system is fundamentally different for the resonant and off-resonant case. The first one is completely
transparent, i.e. 7'(0) = 1,A¢ = 0 and the latter one is completely opaque, i.e. T'(0) = 0,Aq # 0.
In fig. 2.15, the transmission coefficient is depicted for several values of detuning Ag.

2.3.3. Keldysh functions of the impurity site

In this section, we provide the Keldysh function of the quantum dot which are exact in tunneling.
The calculation is straightforward. Using eq. (2.144), one can immediately identify the Dyson
equation

-1

Doy (w) = |07} (w)+%ng£,7 @TI = W) - S ()]

! (2.151)
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Figure 2.15.: Transmission coefficient of the interacting resonant level in the Toulouse
limit. The dot level position is varied from Ag/T = 0,1,2,3 (black, blue, red, green).

where 3 is the self energy due to tunneling. The homogeneous and mixed Keldysh functions of the
quantum dot exact in tunneling can then be identified as components of the 4 x 4 Keldysh matrix

DalH
Dyo Dgp
D, — aa Ha ) ] 2.152
In the following we will restrict ourselves to the symmetric case, i.e. y_— = 0. In general, the

calculation can be done for the asymmetric case. However, the results are quite lengthy and less
universal. For the homogeneous Majorana a-channel we find

DiD,, (w) = —iTAf (nL +nr — 1) + w (w? — AF) + I (1 + Fay)

DyD,," (w) = —TA2]i (ng, + nr) cos (\/2) — (ng, — nr) sin (A/2)]
DAD; (w) = —TAF [i (n1, + nr — 2) cos (A/2) + (n1, — nr) sin (A/2)] (2.153)
D\D}F (w) = —iTAY (n, +ng — 1) —w (w? — Af) —wI? (1 + Fay)
with
Fao = (X = 1) (L= ng) & (7 = 1) g (1 = ) (2.154)
Dy = Do + W T?F_ (2.155)
Dy = (w? — A2)? + w?T? (2.156)
and for the Majorana b-channel
D\D;,” (w) = —iTw? (n, + ng — 1) + w (w? — A})
DyDy,t (w) = —Tw? [i (ng, + ng) cos (A/2) — (ng, — ng) sin (A/2)]
D)\Dgz_ (w) = —Tw?[i (ng, + nr — 2) cos (A\/2) + (n, — ng) sin (A\/2)] (2.157)
DADET (w) = —iTw? (ng, + nr — 1) —w (w* — AF).
The Keldysh functions for the mixed channels are
DiD,, (w) = —wl'Ag (nL, +nr — 1) —iA¢ (w* — Af)
DyD_t (w) = —wlAg [(n1, + nR) cos (A/2) + i (n, — ng) sin (A/2)]
DD}, (w) = —wlAg [(n, + nr — 2) cos (A/2) — i (n1, — ng)sin (A/2)] (2.158)
DADLT (w) = —wl'Ag (nr, +nr — 1) + 1A (w? — Af)
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and obviously Dy, = —Dy,.

2.3.4. The resonant case

In this section, we discuss the effect of electron-phonon interaction on the full counting statistics at
resonance, i.e. Ag = 0. In this case, the mixed Keldysh functions are identically zero, D, = 0. The
homogeneous Keldysh functions for the Majorana a-channel become diagonal and counting field
independent,

Lo
Daa (w) = (6) 1> (2159)
and the Majorana b-channel

W2 4+T? (1

[ (1+ Fa2)] Dy (w) =il (n, +ng — 1) +w

[w +1? (1+ Fx_ )] Dl;b+ (w) = =T'[i(ny, + nRr) cos (A/2) — (ng, — nR) sin (A\/2)] (2.160)
[w? +T2(1 —i—]—} )] Dy~ (w) = =T [i (nr, + nr — 2) cos (A/2) + (nr, — nr) sin (A/2)] .

[w +T2(1+ Fr)] Dt (w) = =il (n, + ng — 1) — w.

The full counting statistics including interaction can be calculated via
X\ = <e—i(ig) I dTa(T)b(T)[B(T)+BT(T)]> (2.161)

= Yo ()\) <e—i(ig) Jedr a(T)b(T)[B(T)-f‘BT (T)] > (2162)

A
where the expectation value in the first line (-) has to be calculated with respect to the Hamiltonian
eq. (2.123) in absence of interactions, g = 0 and in the second line, the usual A-expectation value
has been introduced. xo (A) denotes the full counting statistics in absence of interactions which was
calculated in the previous section. The leading order correction to the CGF, In x’ () can then be

-----

a) Hartree-like b) Fock-like

Figure 2.16.: Leading order Feynman diagrams. Solid lines represent D,, prop-
agators, dashed lines ----- Dy, propagators, mixed lines — - -- D, propagators and
wavy lines phonon propagators.

obtained with the linked-cluster expansion,
Iny' (A) =Inxg (A) +Inxp (N (2.163)

where the Hartree-like contribution (see Fig. 2.16) is

2
In X} = —i% > (kD) / dty dts b (t1 — t2) DEF (—k0T) DI (—10™) (2.164)
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which identically vanishes in the resonant case, and the Fock-like contribution,
/ g’ dw g kl
Inxp = TE klz:i (kl) gbo (W) 7™ (w) (2.165)

where we have introduced the polarization loop *!

dy

ot @) = =i [ 3 [D8 () Dl 0+ ) ~ DI () Dif (w+ )] (2.166)

by is the phonon Keldysh function calculated in eq. (A.45),

1 a
_ aw—Q+i w+Q+ia
bo (w> - Z a " 1 K
a=+ \w—Q+ian  aw+Q+in

1 (2.167)
:ZC’M 0 >+iﬂz<5(aw—ﬂ) 5(w+Q)>
a=+ 0 Pozw+(2 o—t d(w—9Q) 0(aw+Q)
where 7 is an infinitesimal. For the polarization loop one obtains
b () = 0 | KD (VEowBNE 2tan”! (VD) —wtanh ! 20V (w? + V)]
= T w2—|—F2n v24rz) w2 + T2
i i (2.168)
261)\/2 tanfl (Vefl)\/Q/I‘) _ wtanh*l |:2WV/ (U)Z + V2):| ﬂ-l—‘
+ w? + T2+ T2 (e - 1) EavIk

We do not have to deal with the A-independent contribution because it does not affect transport
properties. Because of the symmetry in the Keldysh indices, the remaining integration including
the phonon propagator becomes trivial: the principal parts cancel each other and we are left with
the singular part. The leading order correction to the CGF is

Tg? e T tan™! (e7*V/I') — Qtanh ™! (V/Q)

Inxy (\) =— :
nX( ) ot F2+QZ+I‘2(61)\_1)

(2.169)

Remarkably, even at zero temperature, there is no sharp threshold in any cumulant which is usually
found in phonon-affected transport for uncorrelated leads. Those are usually originated in the onset
of inelastic tunneling processes, i.e. electrons gain/loss of energy  during tunneling between the
leads for V' > Q. In case of the MRLM at resonance, one can barely think of individual /dressed par-
ticles participating in the transport processes. Moreover, the Majorana fermions describe collective
excitations in the Tomonaga-Luttinger liquid aka kinks/antikinks. The leading order correction of
the current I’ for an example are,

g2T? Vv N (I'? — Q?) tan™! (V/T) — 2I'Q tanh~! (V/Q)
or | (V2 +12) (12 +Q2) I (I2+Q2)°

(2.170)

One can easily verify that the corrections are purely negative in agreement with phonon enhanced
backscattering of an initially” perfectly transmitting channel. Especially, this is reflected in the low

voltage behaviour of the current,
r (V° V\°
r=-2-(= =) . 2.171
o (r) +o(r) eam)

more precisely, perfect transmitting in absence of electron-phonon interactions

7
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Figure 2.17.: Leading order corrections to current and noise. Left panel: The main
graph depicts finite temperature corrections to the current in the resonant case Ay = 0.
The parameters are /T' = 1 and T/T" = 0.1, 0.05 and 0.01 (black,blue and red lines).
The inset shows the correction to the current for zero temperature for I'/QQ = 1, 2, and 3
(black, blue and red lines). Right panel: Finite temperature corrections to the noise on
resonance. The parameters are /T =1 and T/T = 0.1, 0.05, 0.01 and 0 (black, blue, red
and green lines). The inset show the correction to the shot noise for zero temperature for
plotting parameters I'/Q = 0.5, 1, 2 and 3.

In case of V' — Q all cumulants logarithmically diverge at zero temperature. Finite temperature
results are best accessible in building the cumulants first, i.e. performing the derivatives with respect
to A, and calculating the integrals afterwards. In case of the current one finds,

, Tof 2T sinh (V/T)
40T | T2 + Q2 cos (I'/T) + cosh (V/T)

k) T 1 kT —iV 1 EQ—1V
2 r2(+)92 [le(2+ 27rT1 )JFW<2+1 2T >]}

k==

(2.172)

where 1 denotes the Digamma function. Explicit expressions for higher cumulants become much
more involved and lengthy. Therefore, it is recommended to perform the integration numerically.

The current and noise corrections in case of finite temperatures show a typical resonance shape
(see fig. 2.17). To cure the singular behaviour for zero temperature, we performed an RPA-like
resummation of a certain subset of diverging diagrams. To achieve this, we choose the current-like
expression for the cumulant generating function (see eq. (2.26)),

Iny (A, Ay) = —i/d)\ /C dt_ <5i(€i)>A‘ (2.173)

There are some advantages of this kind of approach. First of all, current-like expressions appear
to be more natural in the context of quantum transport theory. Secondly, approximation schemes
can be applied directly on the level of a single Keldysh function. This makes the verification of
conservation rules much simpler.
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a) Hartree-like b) Fock-like

Figure 2.18.: Self energy contributions in leading order due to electron-phonon interac-
tion. Solid lines represent D,, propagators, mixed lines — --- D,;, propagators
and wavy lines phonon propagators

The derivative of Ty in eq. (2.173) can quite easily be expressed in terms of Keldysh functions,

1) T/\ Y+ . A A_
=— [(b(t= t_ — b(t— t_ —
(7). = 5 [ (5) + @eomen,es (5
=i Gy (.t +0%) sin A + Gy (bt +07) cos 201
2 | VT 2 T 2
Below, we will omit the infinitesimal 0" as long as it is not necessary to ensure convergence. Tak-
ing into account that the electron-phonon interaction is localized on the quantum dot, the mixed

Keldysh function can be expressed in terms of the homogeneous Keldysh function Dy, (which is
exact in interaction) and free leads Green’s functions gns, o, f € {n,&} only,

Gre (W) =7+ Z [g& (w) cos (2"’) — gt (w) sin (;’“ﬂ (2.175)
Gy (W) =7+ Z [9,75 (w) cos <>\2k) — gy (w) sin (2’“)} : (2.176)

Putting all together and taking into account the symmetry of the Keldysh functions, one finds

st [ o - o iy an (A2 i o (A529)] ) )

Therefore, the knowledge of the exact Keldysh function Dy, enables us to determine the full counting
statistics of our system.

(2.174)

An RPA-approximation of Dy, can be obtained via solving the Dyson equation,
DEPA (t) = DY, (t) + /dt1 dty DY, (t — t1) [Zu (t1 — t2) + Xp (1 — t2)] D™ (ta) (2.178)

where ng denote the homogeneous Keldysh function for the Majorana a-channel exact in tunnel-
ing but without electron-phonon interactions, see eq. (2.157). In the following, we will omit the
superscript "0" to keep notation simple. The Hartree type of self-energy is given by

Sy (t—1t) = —ig”bo (t —t') Dap () (2.179)
which of course is zero in the resonant case. The Fock type is given by

Sp (t—t) = —ig?o (t —t') Daa (' — 1) (2.180)
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The Dyson equation above can be solved by Fourier transformation,

1

D™ (w) = [Dyt (W) — 03%F (w) 03]~ (2.181)

where the self energy in Fourier space is

k 1 1
Y (W) = = 2.182
P (@) 2<w+k‘Q—|—in+w—kQ—in> (2.182)

Putting all together, one finds after a lengthy calculation for the CGF

d .
Iny (A) = T/ ad [1 FT (W) (elA - 1) (n1, — nR)} (2.183)
27
with effective transmission coefficient
T2 (w2 — 02 2
T (w) = (v ) . (2.184)

B g *w? — 2¢%w? (W? — Q2) + (wW? +12) (w? — 92)2
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Figure 2.19.: Effective transmission coefficient of the interacting resonant level in the
Toulouse limit coupled to a bosonic degree of freedom. The electron-phonon coupling
parameter is set to g/T" = 0.5. The frequency of the phonon is is varied from Q/T' = 1,2, 3,4
(black, blue, red, green).

In fig. 2.19, the effective transmission coefficient is depicted for several phonon frequencies €2. There
are three maxima (perfect transmission) at w = 0, ++/¢% + Q2 and two minima at w = £. From
the diagrammatic structure one can identify the involved transport processes. The phonon mode
is (de)excited at every single tunneling vertex. That means that the incoming fermion which is
not the original physical electron but rather a collective excitation subject to fermionic statistics
tunnels into the dot exciting the phonon and deexcites the latter upon leaving the dot. This is only
the case when the (de)excitation time scales are much shorter than the fermion dwelling time on
the dot. Neglecting the processes of higher orders we then obtain one of the necessary conditions
for the validity of our approach: g > I

In fig. 2.20, current and noise are depicted for several electron-phonon coupling strengths. One

observes that for small voltages the current increases nearly linear. For voltages near €} one finds
a plateau, e.g., the current enhancement is suppressed by the electron-phonon interaction. This
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Figure 2.20.: RPA-approximation of current and shot noise. Left panel: The main
graph depicts the full current in the resonant case Ay = 0 and zero temperature. The
parameters are /' =1 and g/T" = 0, 0.5, 1 and 2 (black,blue red and green lines). The
inset shows the correction to the current (IFFPA = [RPA _ JRPA| _ 0y for the same set of
parameters and color coding. Right panel: Noise in resonance and at zero temperature.

The parameters and color coding are the same as for the left panel. The correction to the
noise is defined by SRPA = GRPA _ GRPA|

feature does not occur exactly at V = €. One finds that the maximal reduction in the current is
at V = Qy/1 + ¢2/202 or if one assumes Q > g, V =~ Q + ¢?/4Q. This kind of a shift by ¢? is
one normally produced by a polaron transformation. Similar features can be observed in the noise.
Interestingly, the correction to the noise changes sign for high voltages.

2.3.5. The off-resonant case

In this section, we are interested in the case of finite detuning Ay # 0. For this case, we have to
calculate the Hartree (see e.q. (2.164)) as well as the Fock contribution (see e.q. (2.165)). Again, we
are interested in the case of zero temperature. First, we have to transform the Keldysh functions
for the homogeneous and mixed channel to a more suitable form. Using n% = ng, n2R = ng and
nynr = nr and

Fap = Fa_ = (eiA - 1) (n1, — ng) (2.185)

Dy = (w? — Ag)” + T2 [1 + (ei)‘ - 1) (ng, — nR)} . (2.186)

we find the very interesting relation,

Dy = {w2 — A% 4+ iwl [1 + (ei/\/2 — 1) (nr, — nR)] } {w2 — A% —iwl [1 + (ei/\/2 — 1) (n, — nR)]}
(2.187)
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which we extensively use to reduce the degree of the polynomial in the denominators of the Keldysh
functions. For the diagonal components of the Majorana a-channel’s Keldysh function we find,

AZ (ng, +ng — 1) r +1 w 1
Dk — 0 ik = ) k= - -
aa [ 2w ' 2} Zi:wz—Agiin 2 zi:oﬂ—Agiin
w (ng, —nR) 1 1
g TR S 2.1
2 [zi: <w2 — A2 tiwleM2 w2 — AZ+ in)] (2.188)

P —mR) 3 Felh/2 B +1
2 T w? — AZ +iwleiV2 w2 — A2 +iwl

and for the off-diagonal components

A2 (ng, — ngR) +1 A2 + cos (\/2)
D= =0 : =0 B e 2.189
aa 2w zi: w? — A2 £ iwleiM/?2 + w B zi: w? — A2 +iwl ( )
A2 (ng, — nR) +1 A2 +cos (A\/2)
Di—=_20 : 20 (g, — 1 A (2,190
aa 2 ; F Azl ) Ty (ne = 1) g W — A2 +i0l (2.190)

All the components are of course well behaved for w — 0 as long as Ag # 0. The Keldysh functions
for the Majorana b-channel are slightly less involved,

+ng —1) +1 w 1
Dkk:w(nL — k— e —
bb 2 ng—A%iin 2 ZwQ—A%iin

= + (2.191)
w(ny, — nR) 1 1
i Y — —
2 [zi: <w2 — A2 tiwleM2 w2 — AZ+ in)
and
_ w (nL, — ngr) +1 + cos (A\/2)
Dyt = . —_— 2.192
bb 2 (; w2 — Ag i iwrev\/Z) +wnr [zi: w? — Ag + iwl ( )
- _ +1 + cos (A/2)
pi- — @ —ng) . —1 — 22 (2193
bb 2 Zj:: w? — A2 + jwlei/2 tw—1) zﬂ:: w? — A2 +iwl ( )
For the mixed channels one finds,
kk iAg (nL + NnR — 1) +1 iAg 1
Dbt = - : 2 nawr) T \ L e
(2.194)
iAg (ny, — nR) 1 1
+ kf Zi: w? — AZ + iwlelM/2 w2 — A2 +iwl
and
_ iAg (nr, — nR) +1 ) +cos (A\/2)
p—+ - 20 —nR) . —iA — = 2.195
ab 2 (%: w? — A3+ iwI‘elA/2> SR [Zi: w? — A§ £iwT ( )
_ iAO (TLL — nR) +1 . =+ cos ()\/2)
Dt — _ —iA -1 . (2.196
ab 2 ; w? — AZ + iwlelM/? 180 (nz, —1) ; w? — Af & iwl ( )
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Next, we have to determine the polarization loop, e.q. (2.166). But first, we introduce the new
quantities wf_l and Wﬁl (Majorana polarization bubbles) to simplify notation,

. [dy
i (@) = =i [ S22 () Dlf (o + ) (2197)
and
Ry — —i [ Y Ry pik 2.198
T (w) = i or aa () Dy (w + ). (2.198)

We begin with the orthogonal component, WT, where we only need to consider A-dependent contri-
butions. For the diagonal components, we find

—iAZ
mht = =0 3" {— T30 (V = @) = T8, (=V = ) + 103, (V) = 103, (=V)]

m,n==

- miko (@) 0 (] = 2V) |35, (V = w) = TX5, (-V = w)]

k0 2V = ) [Th0, (=0 (@) V) = T35, (=0 (@) V — w)]

— 0 @)V — [w]) [ThS (=0 (@) V) = Th%, (=0 (@) V) + 5, (~0 (@) V)
T (0 @)V = @) = T8, (0 (@) V = w) = T35, (0 (@) V - w)]

= ko ()0 (| - 2V) [T53, (V) = T, (- V)]
= k0 2V — [w]) [T0, (0 (@) V) = T0% (0 (@) V - w)| }
(2.199)

The occurrence of the #-functions indicates, that there might be inelastic contributions. o (w)
denotes the sign of w, i.e. o (w) = sgn (w). We have introduced the quantity Tﬁll’n (y) which is due
to its lengthy form is listed in appendix A.4 eq. (A.74). In case of the off-diagonal components we

can use the obvious identity 7" (y) = 7~ (—y). Therefore, it is enough to calculate only one of
them,
—iA2
7r1+ = ;710 Z (mn){4cos2 (A2)0 (w—2V) [Tg,;?n (=V)— T?ﬁ?n (V- w)]
m,n==

+0 (@) 02V~ [w]) [ T3, (0 (@) V = w) = T2, (—0 (@) V)|

+2c05(1/2)8 (W) 0 (2V — w) [T% (V) =0, (V — w)}
(2.200)

+ 208 (A/2) 0 (w = 2V) [ Y53, (V) = 79, (V)]

+2c08 (\/2) 60 ()0 (2V — w) [T,*,;?n (—V) =120, (—V — w)}

+2c08(2/2) 0 (w —2V) [m?n (V—w) =T (-V — w)} }
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The parallel polarization loop is more involved than the orthogonal one. Again, we begin with the
diagonal components,

|

where we have introduced the quantities T

—1i 0,A 0,A . i 0\ 0,\
kk _ = Z {T&mm (V)= T3, (=V) +imle [Tme (V) =Tomm (_V)}

m,n==%

. 2,0 A0
+imD [Tme (V—w)— T27m7n

(—V - w)] v {T’\’O

3,m,n

(V=) = Tyma (-V - )|

3,m,n

— kmAZo (w) 0 (|w| — 2V) [TM’

1,m,n

(V=)= Tima (-V - )]

(o (@) V) =T

— kmA20 2V — |w)) [TA’O (o (w)V — w)]

+0 (@) 0V = fl) [T, (0 @)V =w) = T3, (~o (@) V)

3,m,n 3,m,n

_ Ao

3,m,n 3,m,n 3,m,n

(0 @)V =) + T35, (0 @) V) = X%, (0 (@) V =) + T§n (~0 () V)]

(0(W)V—w)—ezT3 (=0 (w)V)

2,m,n

+imlo () 6 (2V — |w|) [e* A

2m,n

— Y (0 @)V —w) + T30 (=0 (w) V) = T,

(V) = T4 (<V)]

(0 @) V) = Tghn (0 @)V —w)]

2,mmn

(0 @)V =w) + T, (0 (@) V)]

+ kno (w) 0 (|| — 2V) [T“

3,m,n

3,m,n

+knf (2V — |w)) [Tf”

m"‘

kT (mn) 0 (|w| — 2V) 62 [TW

2,m,n

(V)= T3 (<1

2mmn

kT (mn) 0 2V = [wl) e [T, (0 (@) V) = T, (0 (@) V = w)] }

(2.201)

(y), i = 1,2,3 which are listed in appendix A.4

i,m,n

eq. (A.76) to (A.78). The off-diagonal components are

—iA2
Ry (mn>{—a )0V~ |]) [ X150 (~0 (@) V =) =T, (0 (@) V)

m,n==

—4cos? (V/2) 0 (—2V — w) [TO’O

1,m,n

(<V = w) = TP (V)]

— 208 (A/2) 8 (—w) 8 (w +2V) [TO’A

1,mn

(<V =) = TP (<)

~ 2008 (A/2) 0 (~2V —w) [ T3, (V) = 11, . (=V)]

1,mn
—2cos(N\/2)0 (—2V —w) [Ti’?n’n (V —w)— Ti\fnn (=V — w)}

~ 2008 (A/2) 0 () 0 2V +w) [ T35, (V = w) = T}, , (V)] }
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and
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—jiA2
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1,m,n

(V) =X (V = )]

— 2008 (A/2)0(=2V +w) [ T3, (V) = T8, . (<V)]

~2c0s(A/2) 0 (w) O (2V — w) [TA’O
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(=V) = Timn (< =)

(V=) = T, (V= w)] b

1,m,n

— 2cos (7/2) 0 (w — 2V) [T’\’O

(2.203)

In order to calculate the Fock-type corrections to the CGF, the polarization loop has to be inte-
grated together with the bare Keldysh phonon propagator. In case of off-diagonal components, this
integration is trivial, because the phonon Keldysh functions are just d-functions. In case of the
diagonal contributions, we can split the phonon propagator in its singular and principal value parts.
The contribution coming from the principal value part is best done numerically. We do not pro-
vide an explicit expression for the Fock-like corrections to the CGF because of the very demanding
structure of its constituents. The Hartree-like correction to the CGF is much easier to evaluate.
Basically, one needs the mixed Keldysh function Dg;, at times +07T,

iAo b- 3 ftan! 9V + il 6 tan! 9V + il
— |k — an —— | — an ——
my/T2 — 4A2 — VT2 — 4A2 — VT2 — A7
iAo . ( 2V + ileiM/2 )

Tk zi: [W\/eri)‘ — 4A(2) tan \/T2eir — 4A(2)

Dif (-h0") -

)

(2.204)
and for the off-diagonal components,
_ _ 1A +2V +il
D (0T) =D (=0F) = ——=2_cos(A/2) S tan~! | = ). 2.205
ab ( ) ab ( ) ﬂ_\/m ( / )zi: \/m ( )

In fig. 2.21, we have depicted the leading order current correction for several parameter constellations.
We decided to choose the parameters in such a way, that features coming from elastic and inelastic
processes are distinguishable. In case of small voltages, a peak like structure is observed. Its position
and width is independent of the phonon frequency. Its height, however, depends on 2; the higher
Q) the smaller the peak. The dot level detuning A influences both the position and the height of
the peak (left panel, fig. 2.21). For voltages approaching the phonon frequency, a double-steplike
feature is observed. This is a clear sign of inelastic processes®. The occurrence of the double-step
can be explained by the double peak like structure of the transmission coefficient. The width of the
steps is of the order of A. In contrast to the resonant case, the corrections are purely positive. This
is in agreement with the picture of phonon assisted tunneling for a weakly conducting system. In
fig. 2.22 the leading order corrections to the noise is depicted. The features are similar to those in
the current.

80ne has to be careful with this kind of interpretation, because we are dealing with complex, collective excitations
in the TLL, i.e. kinks/anti-kinks, instead of single particle excitations.
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Figure 2.21.: Leading order current correction. Left panel: current correction in leading
order for zero temperature, 7' = 0 and dot level detuning A/T" = 1. The phonon frequency
is varied from Q/T" = 9,10, 11 (black, blue and red curve). Right panel: the parameters
are T = 0 and Q/T" = 10. The dot level detuning is varied from A/T" = 1,1.5,2 (black,
blue and red curve).

2.3.6. Results and discussion

To conclude, we investigated the interacting resonant level model in presence of a harmonic degree
of freedom coupled to the quantum dot. We observe that in the resonant case, where the system is
initially perfectly transmitting, finite electron-phonon coupling leads to negative corrections to the
current. In the zero-temperature limit we identified a strongly non-perturbative regime where the
current correction is log divergent and performed an RPA-like resummation of divergent diagram
contributions, which turned out to produce a plateaulike feature in the full current-voltage charac-
teristics of the system. We believe that this behavior is generic in all setups with TLL electrodes also
beyond the chosen parameter constellation. Single-wall carbon nanotubes SWCNTs,; are known to
be typical realizations of the Tomonaga-Luttinger liquid electronic state (see for example Bockrath
et al. [1999], Egger and Gogolin [1997|, Kane et al. [1997], Yao et al. [1999]). Therefore we expect
the above strong conductance suppression phenomenon to be observable in experiments on molecu-
lar quantum dots coupled to SWCN'Ts. In the opposite off-resonant case, when the system without
the phonon has zero conductance, we observe conductance enhancement due to electron-phonon
interaction. For voltages comparable to phonon frequency we find a double-steplike feature in the
lowest order perturbation expansion in electron-phonon coupling. Contrary to the resonant case no
singularities are observed. The results of this section are published in Maier and Komnik [2010].

2.4. Double quantum dot interferometer

In this section, we focus on double quantum dot systems. Although we do not consider effects of
electron-phonon coupling, there is a striking similarity to the previous models: the existence of a
sharp anti-resonance in the transmission properties.

The Hamiltonian of our model is given by

H = Hieads [V1,0YR,0] + Hqp + Hr + Hc (2.206)
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Figure 2.22.: Leading order correction to the noise. Left panel: noise correction in
leading order for zero temperature, T = 0 and dot level detuning A/T" = 1. The phonon
frequency is varied from Q/T = 9,10, 11 (black, blue and red curve). Right panel: the
parameters are T = 0 and Q/T" = 10. The dot level detuning is varied from A/T' =1,1.5,2
(black, blue and red curve).
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Figure 2.23.: Schematics of the double quantum dot interferometer.

where Hieads V1,0 ¥R 0] describes the free leads and is, up to an additional spin degree of freedom,
the same as for the resonant level model. win,o—, Ym,o describe of course the creation and annihilation
of a particle in lead m with spin o. The contacts are held at different chemical potentials puy, g with
ur, — ur = V. The free quantum dots are modeled by,

Hop = Y (A +hipingo/2) d] ydig + Y (112d] g +viad) jd1p)  (2.207)
i=1,2 o
o=T,

where A; (i = 1,2) are the energies of the dot levels and h; are magnetic fields on the quantum dots

and 719 is a hopping amplitude describing hopping from quantum dot 1 to quantum dot 2 and vice

versa. up is Bohr’s magneton and g is the Landé factor. dz »»di,c are the creation and annihilation
operators for the single dot levels with spin ¢. Hr is the tunneling Hamiltonian,

H=Y ¥ (fmed;Ume,o +H.c.) (2.208)
m=L,R i=1,2
=T

where 7, ; are the tunneling amplitudes for tunneling from lead m to quantum dot 7. In fig. 2.23,
the tunneling couplings of the double quantum dot are depicted. The interaction Hamiltonian is

Hc = Z Uinioni—o + Z (V||711,an2,a + Viniong,—o) (2.209)
i=12 par]
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Figure 2.24.: Anti-resonance in the transmission coefficient. The parameters are 12 = 0,
h =0 and v, ; = 7. The detuning A; = —Ay = A is varied A/T' = 0.5,1,2 (black, blue,
red).

where Uj is the onsite interaction strength and V}, V| are the inter-dot interaction strengths. The
effects of V|| and V| have been perturbatively investigated in Dahlhaus [2009]. Therefore, we only
refer the results therein and focus on the effect of the onsite interaction, i.e. we set V) =V, = 0.
The A-dependent tunneling operator is obtained in the usual way,

T)\ = Z Z (eimA/47m,id3’0wm’g + HC) . (2210)
m=L,R i=1,2
o=tl

Again, the non-interacting system can best be solved using functional integration. The details to the
calculations can be found in appendix A.5. The transmission coefficient for an arbitrary parameter
constellation is quite cumbersome. We argued that a generic feature of the transmission coefficient is
the occurrence of anti-resonances which can be arbitrarily sharp. Only for very symmetric parameter
constellations the absence of the anti-resonance is observable. We are interested in the case A =
—Ao=A, hy =0, ym,i =7 and 712 = 0. In this case, one finds for the transmission coefficient the
very appealing form

T 412 r 0 02
W= 1 F1/(w—A)+1/(w+A)] 2 VAT A2 (w? +0% W24+ 02
with Q4 = 2I' + v/4I'2 — A2 and hybridization I' = mpypy? in the wide flat band limit. To ensure
the root in Q4 to be real, we have the additional constraint 2I' > A.? The meaning of the
decomposition in eq. (2.211) is obvious: there is a resonance (positive Lorentzian) of width 2
and an anti-resonance (negative Lorentzian) of width 2Q_. Again, we point out that there is no
artificial fine tuning involved. From an experimental point of view, the coupling strengths and the
position of the dot level energies can be well controlled. The transmission coefficient eq. (2.211)
is quite similar to the transmission coefficient of the Holstein polaron in the PTA approximation,
eq. (2.104). This assures our previous interpretation of the PTA approximation: the strongly coupled
phonon effectively appears as a set of energy levels with level spacing €2 individually coupled to the
leads.. The interesting fact about the anti-resonance is its width. In principle, it can be arbitrarily
small. In case of small detuning of the dots, i.e. A/I' < 1 we have approximately Q4 ~ 2I"'— %13 and

) (2.211)

9This additional constraint is only necessary for this kind of representation of the transmission coefficient. Of course,
there is a anti-resonance for 2I' < A, too.
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Figure 2.25.: Operating mode of the double quantum dot spin valve. Using an in-plane
magnetic field h, the resonance peak of one spin species is aligned with the anti-resonance
dip of the other species. We have assumed, that the quantum dots are gated in such a
way, that the transmission of one species is resonant, i.e. in between the voltage window
(green area).

O~ f—;. In fig. 2.24, the anti-resonance is depicted for several detunings A. The control via the
gate voltage allows for interesting applications. We propose to use double quantum dot structures
to build spin valves.

From a theoretical point of view, a single quantum dot is enough to produce spin-polarized currents.
The idea is simple: a magnetic field applied to the quantum dot shifts the energy level of one
distinct spin species out of resonance. Via appropriate gating the second spin species can be kept
at resonance. The problem, however, comes from the energy scales. In conventional GaAs-based
heterostructures the level splitting is of the order of 0.025meV /T and typical hybridization energies
I' ranging between 0.1 and 10meV (see Cronenwett et al. [1998], Goldhaber-Gordon et al. [1998],
Schmid et al. [1998]). In order to have a substantial current, one needs a contact transparency I" as
large as possible. Then, however, huge magnetic fields are necessary to achieve a high degree of spin
polarization. In these setups, a compromise has always to be arranged between intensity of current
and spin-polarization quality. Spin valves based on anti-resonances (see Dahlhaus et al. [2010]) in
double quantum dot structures are not afflicted by this optimization problem.

2.4.1. Double quantum dot spin valve

The operating mode of the double quantum dot spin valve is similar to the single quantum dot one.
But instead of using the Zeeman splitting to shift one spin species out of resonance, the Zeeman
splitting is used to align the resonance peak of one spin species with the anti-resonance dip of the
other one (see fig. 2.25). The transmission coefficient of the different spin species in presence of a
magnetic field A is given by

Ty (w) =T (w+0oh), (2.212)

where we have redefined the magnetic field h = pupgh/2. In order to keep one spin species, say
o, in resonance, we have to apply an appropriate gate voltage, i.e. we have to shift A = A + oh.
Effectively, this can be described by introducing the quantities Ay = 0, —2h where hy = 0 denotes
the spin species wh