
Dissertation

submitted to the

Combined Faculties of the Natural Sciences and Mathematics

of the Ruperto-Carola-University of Heidelberg, Germany

for the degree of

Doctor of Natural Sciences

Put forward by

Dipl.-Phys. Mischa Gerstenlauer

born in: Göppingen
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Eine Analyse inflationärer Korrelationsfunktionen
— Zusammenfassung

Kosmologische Inflation, eine Phase beschleunigter Ausdehnung des frühen Universum,
hat sich in den vergangenen Jahrzehnten zu einem wesentlichen Bestandteil der modernen
Kosmologie entwickelt. In dieser Doktorarbeit präsentieren wir eine Analyse der in dieser
Phase auftretenden Quantenfluktuationen, aus welchen im Laufe der Zeit die heutigen
großräumigen Strukturen wie Galaxien und Galaxienhaufen entstanden sind. Im ersten
Teil der Arbeit diskutieren wir die seit langem bestehene Frage inwiefern Korrelations-
funktionen dieser Quantenfluktuationen von Infrarot-Divergenzen beeinflusst sind. Wir
identifizieren den Ursprung dieser Infrarot-Divergenzen und definieren infrarot-sichere Ko-
rrelationsfunktionen, die von solchen Divergenzen unbetroffen sind. Herkömmliche Korre-
lationsfunktionen können leicht durch unsere infrarot-sicheren Korrelationsfunktion aus-
gedrückt werden. Die zu den herkömmlichen Korrelationsfunktionen gehörigen Infrarot-
Divergenzen treten hierbei automatisch in einer kompakten und zu allen Ordnungen
gültigen Form auf. Darüber hinaus diskutieren wir Abweichungen der Quantenfluktu-
ationen von der Gaußschen Statistik. Namentlich untersuchen wir die Skalenabhängigkeit
dieser nicht-Gaußianitäten für Modelle mit (quasi) lokalen, nicht-Gaußschen Fluktuatio-
nen und charakterisieren diese durch neue Observablen. Zusätzlich analysieren wir die
Möglichkeit diese nicht-Gaußianitäten durch Messungen des schwachen Linseneffektes zu
messen.

An Analysis of Inflationary Correlation Functions — Abstract

Cosmological inflation, which postulates a period of accelerated expansion in the very early
universe, has become a major ingredient to modern cosmology over the past decades. In
this thesis, we present an analysis of quantum fluctuations which occur during this pro-
cess and which form the seeds for the growth of structure in our universe. We start by
discussing the long-standing question how correlation functions of these fluctuations are
affected by infrared divergences. We clarify the origin of these infrared effects and de-
fine infrared-safe correlation functions which are not plagued by this issue. Conventional
correlation functions are easily recovered from our infrared-safe definition and the corre-
sponding infrared corrections automatically emerge in a resummed, all-orders form. We
then continue to discuss deviations of inflationary fluctuations from Gaussian statistics.
In particular, we calculate the scale-dependence of this non-Gaussianity for (quasi) local
models of non-Gaussian fluctuations and characterize this scale-dependence in terms of
new observable parameters. Furthermore, we analyse the possibility of detecting non-
Gaussianity by weak lensing measurements.

v





Contents

Abstract v

Table of Contents vii

1 Preface 1

2 Introduction 7
2.1 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Cosmological perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The δN -formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Non-Gaussianity and Infrared effects . . . . . . . . . . . . . . . . . . . . . 18
2.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Inflationary Infrared Divergences: Geometry of the Reheating Surface
vs. δN-Formalism 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Hubble scale fluctuations in the δN -formalism . . . . . . . . . . . . . . . . 27
3.3 Infrared divergences from the geometry of the reheating surface . . . . . . 29
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.1 Correlator of the curvature perturbation . . . . . . . . . . . . . . . 32
3.5.2 Power spectrum in coordinate space . . . . . . . . . . . . . . . . . . 33

4 Inflationary Correlation Functions without Infrared Divergences 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Geometry of the reheating surface . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 The power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Higher correlation functions . . . . . . . . . . . . . . . . . . . . . . 42

4.3 An alternative approach within slow-roll inflation . . . . . . . . . . . . . . 43
4.4 Two-point function and the power spectrum . . . . . . . . . . . . . . . . . 47
4.5 Three-point function and the bispectrum . . . . . . . . . . . . . . . . . . . 51
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.7.1 Comparison of Pζ and P(0)
ζ . . . . . . . . . . . . . . . . . . . . . . . 56

4.7.2 Extension of δN -formalism . . . . . . . . . . . . . . . . . . . . . . . 56

5 Scale-dependent non-Gaussianity probes inflationary physics 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 General results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



5.2.1 Two point function and power spectrum . . . . . . . . . . . . . . . 66
5.2.2 Three point function and fNL . . . . . . . . . . . . . . . . . . . . . 67
5.2.3 Four point function, gNL and τNL . . . . . . . . . . . . . . . . . . . 68

5.3 General single field case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Two field models of inflation . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Limiting cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4.2 Two-field local case . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Shape dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6 Curvature perturbation in coordinate space . . . . . . . . . . . . . . . . . . 80
5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.8 Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.8.1 Explicit expressions for nf,ab and ng,ab . . . . . . . . . . . . . . . . . 82
5.8.2 On the different formulations of the δN approach . . . . . . . . . . 83

6 A weak lensing view on primordial non-Gaussianities 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Cosmology and structure formation . . . . . . . . . . . . . . . . . . . . . . 88
6.3 Non-Gaussianities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Primordial non-Gaussianities . . . . . . . . . . . . . . . . . . . . . . 89
6.3.2 Non-Gaussianities from structure formation . . . . . . . . . . . . . 91

6.4 Weak gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4.1 Convergence spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4.2 Convergence bispectrum . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4.3 Properties of the weak lensing bispectrum . . . . . . . . . . . . . . 93

6.5 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.5.1 What signal-to-noise ratio can one expect? . . . . . . . . . . . . . . 94
6.5.2 Would one misestimate fNL using the wrong bispectrum? . . . . . . 95
6.5.3 Would one notice fitting the wrong bispectrum? . . . . . . . . . . . 96
6.5.4 Do parameter constraints depend on non-Gaussianity? . . . . . . . 97

6.6 Systematics due to structure formation . . . . . . . . . . . . . . . . . . . . 97
6.6.1 Can one subtract the structure formation bispectrum? . . . . . . . 97
6.6.2 What happens if a better prior is available? . . . . . . . . . . . . . 98

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.8.1 Configuration dependence . . . . . . . . . . . . . . . . . . . . . . . 100

7 Conclusions 103

Acknowledgements 109

Bibliography 111

viii



ix





Chapter 1

Preface

“... the universe itself acts on us as a random, inefficient, and yet in the long
run effective, teaching machine. ... our way of looking at the universe has
gradually evolved through a natural selection of ideas.” ( [1], p. 158)

Since ages and ages ago humans were attracted and fascinated by the view on a clear
nighttime sky, evident by the ancient findings of images showing star constellations and
star signs in any known culture back to 15000 to 17000 BC (caves of Lascaux). Hence,
it is no surprise that, at a relatively early stage in human history, people were seeking
for explanations of the celestial mechanics and the origin of the world embedding the
earth. The first known attempts to provide these explanations date back to Babylonian
cosmology (Enuma Elish) around the 16th century BC. Even though of mythical origin
the Babylonian cosmology very likely had influence on the Greek cosmology which formed
the basis of western cosmology untill the 16th century.

Clearly, observational progress has always come hand in hand with technical progress.
For instance, celestial maps had been continuously improved by the ability of determining
the positions of stars more and more accurate with new or improved measuring instru-
ments. However, even though knowing their orbit and positions at the sky to a for the
time impressive accuracy, any progress was made by observations of celestial objects visi-
ble for the naked eye and painted already by the people in the caves of Lascaux thousands
of years ago. Thus, the beginning of the the 17th century, with the invention of the tele-
scope in the Netherlands, marks a real turning point in the history of cosmology. For the
first time in human history, people were able to make observations of objects far out in
the deep sky that are invisible to the naked eye.

Naturally, this incredible increase of new observational data, gained by the invention
of the telescope, lead to an ongoing understanding of celestial mechanics and the cor-
responding underlying physics. Already in 1676 the Danish astronomer O. Rømer was
able to demonstrate the finiteness of the speed of light by studying eclipses of Jupiter’s
moon Io. These eclipses get shorter as the earth orbiting around the sun approaches
Jupiter and longer as the earth moves further away, ruling out an infinite speed of light.
The general acceptance of this finding took until 1729 when the aberration of light was
discovered, confirming a finite speed of light. Nevertheless, it’s been known since several
centuries that, due to the finiteness of the speed of light, light from very distant objects
was emitted in the far past. Therefore, a look at distant objects is always a look into
the past itself. This logic, leading to the possibility of observing the past of our universe,
which we still apply today is surprisingly old. Still, technical limitations and the lack of a
deeper theoretical understanding prolonged the beginning of modern cosmology until the
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CHAPTER 1. PREFACE

Figure 1.1: The detailed, all-sky picture of the infant universe created from seven years
of WMAP data. The image reveals 13.7 billion year old temperature fluctuations (shown
as color differences) that correspond to the seeds that grew to become the galaxies. The
signal from our Galaxy was subtracted using the multi-frequency data. This image shows a
temperature range of ±200µKelvin.1

20th century.

Today, we are able to observe stars whose light was emitted up to 13 billion years
ago. However, the radiation which allows us to dip deepest into the universe’s history
is invisible for the human eye. The Cosmic Microwave Background (CMB), which is
strongest in the microwave region of the radio spectrum, was emitted around 13.7 billion
years ago. The discovery of the CMB and its measurement is a cornerstone of modern
cosmology and major test for the cosmological standard model. According to the latter,
the universe has been expanding from an initially very hot and dense state. In this state
matter, e.g. protons and electrons and radiation, interacted heavily with each other. Due
to the expansion, the content of the universe cooled down. At some point (around 13.7
billion years ago) it became cold enough for electrons and protons to form hydrogen
atoms. These atoms could no longer absorb radiation and, hence, the universe turned
from an opaque fog into being transparent. This moment is known as decoupling since
radiation, which beforehand interacted heavily with matter, could now travel freely as a
remnant of this initially hot and dense state. On its journey the radiation cooled further
down, due to the ongoing expansion of the universe, until we see it today as what we call
CMB radiation with a temperature of 2.725Kelvin. The discovery of the CMB is a strong
support for the assumption of the universe being initially in a hot and dense state and,
therefore, a cornerstone of modern cosmology.

Another cornerstone is the CMB’s angular variation. In Fig. 1.1 we show the all-sky
map of the 7-year data from the WMAP satellite. It shows the angular deviation from the
average temperature of the CMB. The strongest of these temperature fluctuations deviate
by about 0.1% and, hence, the CMB radiation is isotropic to a very high accuracy. This
supports the cosmological principle of an almost homogeneous and isotropic early universe,
setting the initial conditions for its later evolution. It is important to note that this initial
state cannot be perfectly homogeneous and isotropic, but has to have fluctuations. These
fluctuations, which we observe today as the aforementioned temperature fluctuations in
the CMB, correspond to the seeds that grew to become today’s galaxies.

1Fig. 1.1 and 1.2 are taken from the WMAP webpage http://map.gsfc.nasa.gov/ .
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Figure 1.2: The 7-year temperature (TT) power spectrum from WMAP. The curve is
the ΛCDM model best fit to the 7-year WMAP data: Ωbh

2 = 0.02270, Ωch
2 = 0.1107,

ΩΛ = 0.738, τ = 0.086, nζ = 0.969, Pζ = 2.38 × 10−9 and ASZ = 0.52. The plotted errors
include instrument noise, but not the small, correlated contribution due to beam and point
source subtraction uncertainty. The gray band represents cosmic variance.1

Even though we cannot look further back than to the time of decoupling, we have
precious indications of what might have happened. Again we have gotten this information
from the CMB. A theory describing the universe before decoupling has to explain the
origin of the special shape and characteristics of the CMB radiation. Among other things,
this theory must explain the origin of homogeneity and isotropy of this initial hot and
dense state. Obviously, very widely separated regions had causal contact with each other,
an observation which is difficult to explain. Furthermore, this theory must explain the
origin of the aforementioned deviations from homogeneity and isotropy, observed today
as temperature fluctuations. These temperature fluctuations (Fig. 1.1) follow a very
significant angular distribution which is shown in Fig. 1.2. Clearly, the correct theory
must reproduce this very significant spectrum. Together with other open issues like the
flatness or the relic problem whose details are not mentioned here, this sets very stringent
conditions for any pre-decoupling theory.

In the past decades cosmologists have found one and so far only one mechanism resolv-
ing all these issues simultaneously. This mechanism is called inflation [2–6]. It postulates
a period in the very early universe in which it underwent a phase of exponential or almost
exponential expansion. As a direct consequence the whole observable universe today orig-
inates from a small and causally connected region. The (quasi-) exponential expansion
made this region very rapidly almost perfectly homogeneous, isotropic and spatially flat.
Deviations occurred due to tiny quantum fluctuations present during this process. The
characteristics of the fluctuations produced in this way are precisely those to explain the
spectrum shown in Fig. 1.2 (taking also into account physical processes between the end
of inflation and decoupling). The fluctuations’ amplitude is almost scale-invariant and
their statistical distribution is at least to leading order Gaussian. Thus, the inflationary
mechanism resolves all the aforementioned ambiguities. Of course, the prize one has to
pay is to explain the physical origin of this (quasi-) exponential expansion. Consequently,
there is not a single theory of inflation. Any physical process yielding such a period
of (sufficiently long) exponential expansion may be such a theory. Therefore, a unique

3



CHAPTER 1. PREFACE

theory of inflation is far from being determined, neither from a theoretical nor from an
observational point of view.

Nevertheless, not any theory of inflation is as good as others, e.g. due to problems as-
sociated with the end of the inflationary process or with fine-tuning. The most prominent
class of inflationary theories is the category of slow-roll inflation [5, 6]. In these infla-
tionary models at least one scalar field, dominating the energy density during inflation,
slowly rolls down its potential. This process leads to a quasi-exponential expansion of the
universe continuing until the slow-roll ends, typically when the scalar field approaches its
potential minimum. The scalar field then starts to oscillate around this minimum and
decays.

The generation of fluctuations during inflation at linear order has been analysed and
investigated to a wide extend [7–13]. However, there are various reasons why it is im-
portant to extend the analysis of these fluctuations to non-linear order. First of all, it is
natural to try to obtain a deeper understanding of inflation and the underlying theory.
This clearly requires to learn about the non-linear processes during the inflationary phase.
Furthermore, the ability of making reliable statements on inflationary quantities strongly
relies on having control also over non-linear processes. Last but not least, non-linear
effects in inflationary fluctuations lead to deviations from the leading order Gaussian
statistics. Particularly in light of forthcoming observational data, e.g. from the Planck
satellite, these non-Gaussiantities are expected to be of great value by narrowing down
the number of inflation models which are in agreement with observational data.

In this thesis, we present an analysis of inflationary fluctuations and their correlation
functions with a focus on non-linear effects. After an introductive chapter we start by
discussing the long-standing question how inflationary correlation functions are affected
by infrared divergences. Such divergences explicitly arise in loop corrections to infla-
tionary observables or through the non-linear dependence of the curvature perturbation
on fluctuations of an underlying scalar field. We clarify the physical origin of these in-
frared divergences. Furthermore, we define correlation functions that are independent
of these infrared effects. The conventional correlation functions can be easily related
to our infrared-safe definition. In this relation the corresponding infrared divergences
automatically emerge in a resummed, all-orders form. We then continue to discuss the
scale-dependence of non-Gaussianity for a wide range of inflationary models. We char-
acterise this scale-dependence in terms of new observable parameters which can help to
discriminate between models of inflation since they are sensitive to properties of the infla-
tionary physics that are not probed by the standard observables. In the last part of this
thesis, we discuss the possibility of detecting primordial non-Gaussianity by weak lensing
measurements, especially with a view on the planned Euclid space telescope. Although
not as sensitive to primordial non-Gaussianity as CMB measurements or galaxy surveys,
weak lensing can place useful independent constraints.

This thesis is based on the following publications:

I Inflationary Infrared Divergences: Geometry of the Reheating Surface vs.
δN Formalism.
C.T. Byrnes, M. Gerstenlauer, A. Hebecker, S. Nurmi and G. Tasinato.
JCAP, 1008:006, 2010.
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II Inflationary Correlation Functions without Infrared Divergences.
M. Gerstenlauer, A. Hebecker and G. Tasinato.
JCAP, 1106:021, 2011.

III Scale-dependent non-Gaussianity probes inflationary physics.
C.T. Byrnes, M. Gerstenlauer, S. Nurmi, G. Tasinato and D. Wands.
JCAP, 1010:004, 2010.

IV A weak lensing view on primordial non-Gaussianities.
B.M. Schäfer, A. Grassi, M. Gerstenlauer and C.T. Byrnes
arXiv:1107.1656 [astro-ph.CO ]

Today, we are able to observe radiation emitted at the time of decoupling 13.7 billion
years ago. It may be that in the future we will observationally be able to look back even
further in time, for instance via gravitational waves. Definitely, upcoming and already
ongoing observations like the Planck satellite will improve and refine the available data
from the time of decoupling. In either case, observational and theoretical progress will
improve our knowledge and understanding of primordial fluctuations in the early universe.
We hope that this thesis and the underlying publications may make a contribution to this
process.
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Chapter 2

Introduction

In this chapter, we give a summary of the theory of inflation, the theory of cosmological
perturbations and the δN -formalism. By no means, this is meant to be an introduc-
tive review on these topics, but a collection of elements which will be important for the
following chapters. For an introductive review on the theories of inflation, cosmological
perturbations and δN -formalism, we refer the reader to the available reviews on these
subjects (e.g [14–17]). We conclude this chapter presenting an overview of the body of
this thesis in sec. 2.5.

2.1 Inflation

The simplest model of slow-roll inflation is given by

S =
m2
p

2

∫
d4x
√
−g R +

∫
d4x
√
−g
[

1

2
∇µϕ∇µϕ− V (ϕ)

]
, (2.1)

where the two integrals represent the Einstein-Hilbert action and the action of a canonical
scalar field, the inflaton, which couples to gravity via the metric gµν . At background-level,
the system is homogeneous and isotropic and the background metric is given by

ds2 = g(0)
µν dx

µdxν = −dt2 + a2(t) d~x2 , (2.2)

where a(t) is the scale factor and ~x are the comoving spatial coordinates. Homogeneity
and isotropy require the background scalar field ϕ0 to depend only on time such that the
equations of motion are given by

H2 ≡
(
ȧ

a

)2

=
1

3m2
p

[
ϕ̇2

0

2
+ V (ϕ0)

]
, (2.3)

Ḣ = − ϕ̇2
0

2m2
p

and (2.4)

0 = ϕ̈0 + 3Hϕ̇0 + Vϕ . (2.5)

Note that, here and henceforth, a subscript ϕ denotes a differentiation along the scalar
field ϕ, i.e. Vϕ = ∂V/∂ϕ, and dots denote derivatives with respect to cosmic time t.
Eqs. (2.3) and (2.4) are Friedman’s equations, written in terms of the Hubble parameter
H, and eq. (2.5) describes the evolution of the scalar inflaton field. Only two out of the
eqs. (2.3)-(2.5) are independent.

7



CHAPTER 2. INTRODUCTION

Current observations require the inflationary process to provide for at least O(60) e-
foldings of expansion during the inflationary era. This requires the Hubble parameter to
be sufficiently constant over a sufficiently long period, leading to the two conditions

ε ≡ − Ḣ

H2
� O(1)

ε̇

εH
� O(1) . (2.6)

The minus sign in the definition of the first slow-roll parameter ε is introduced for conve-
nience resulting in a non-negative value (according to eq. (2.4) Ḣ ≤ 0 during inflation).
The two conditions in eq. (2.6) are called the slow-roll conditions. The first condition
implies that the scalar field ϕ0 is rolling sufficiently slowly, ϕ̇2

0 � H2m2
p. Hence, the en-

ergy driving inflation is dominated by the potential energy of the scalar field. The second
condition further implies ϕ̈0 � ϕ̇0H. Therefore, the slow-roll conditions set restrictions
on the system of evolution equations (2.3)-(2.5) such that the first Friedman equation and
the evolution equation of the scalar field simplify to

H2 =
V

2m2
p

and (2.7)

0 = 3Hϕ̇0 + Vϕ , (2.8)

respectively. With eq. (2.7) and (2.8), it is straightforward to show that the slow-roll
conditions are fulfilled if

ε ≡
m2
p

2

(
Vϕ
V

)2

� O(1) η ≡ m2
p

Vϕϕ
V
� O(1) . (2.9)

The two definitions of ε in eq. (2.6) and (2.9) agree in the slow-roll limit and we have
introduced the second slow-roll parameter1 η. Consequently, the inflaton potential has to
be relatively flat compared to its height.

2.2 Cosmological perturbations

Cosmological perturbations describe small deviations of the universe away from some
perfectly homogeneous and isotropic universe given by the line-element in eq. (2.2). For
instance, at decoupling these perturbations were of order 10−5 [18]. Therefore, a natural
strategy is to split all quantities Q(t, ~x) into a homogeneous background Q0(t) depending
only on cosmic time and a space dependent perturbation δQ(t, ~x). For instance, scalar
field and metric perturbations are given by

ϕ(t, ~x) = ϕ0(t) + δϕ(t, ~x) gµν = g(0)
µν (t) + δgµν(t, ~x) , (2.10)

respectively. The various perturbations (scalar field, metric, energy density, . . .) are cou-
pled to each other via Einstein’s equations and the Klein-Gordon equation and, hence, it is
not possible to treat them separately. An additional subtlety for the study of cosmological

1Another definition of the second slow-roll parameter is ηH ≡ ε̇/(εH) originating from the second
slow-roll condition in eq. (2.6). Contrary to ε, the two definitions for η do not agree in the slow-roll limit,
but ηH = 4ε−2η. Defining slow-roll parameters via H and its time derivatives is more general and applies
also to other non-slow-roll mechanisms resulting in inflation and a scale-invariant power spectrum. In
this work, we mainly consider slow-roll inflation and, hence, use the definitions in eq. (2.9).

8



2.2. COSMOLOGICAL PERTURBATIONS

perturbations is the fact that the split in eq. (2.10) into background and perturbations is
not unique, but depends on the choice of coordinates also called a gauge choice. To be
more precise, a perturbations δQ is defined as the difference between the value Q defined
on the inhomogeneous, physical spacetime and the value Q0 defined on the homogeneous
background spacetime. In order to make this comparison meaningful, one must identify
points of these two different spacetimes. Specifying this identification of points (a map)
between background and physical spacetime is precisely the choice of a gauge.

It is common to decompose the metric perturbations according to their helicity with
respect to local rotations of the spatial coordinate on hypersurfaces of constant time into
scalars, divergence-free vectors and transverse, trace-free, symmetric tensors2. Vector per-
turbations are not created by the simplest models of inflation where, due to the absence
of rotational velocity fields, the only degrees of freedom are scalar field and metric fluctu-
ations. But even if they were created they would decay due to the subsequent expansion
of the universe after inflation3.

Neglecting vector perturbations and focusing on single-field inflation, we are left with
5 scalar degrees of freedom (4 metric perturbations + δϕ) and the symmetric, transverse,
trace-free tensor perturbations (denoted by γ from here on) whose degrees of freedom
are the two polarisations. The choice of a gauge allows for removing two scalars by time
reparametrisations and spatial reparametrisations of the form xi → xi + ∂jα. Other
reparametrisations would act on vector modes. At leading order, the tensor perturbation
γ is not affected by such reparametrisations and, hence, gauge invariant. This is no
longer true at subleading order due to combinations of reparametrisation parameters,
like ∂iα ∂jα, affecting γij (see e.g. [15]). For the following, this (higher order) gauge-
dependence of γ will not be of interested and, hence, neglected. Returning to scalars, it
is possible to define 3 scalar perturbations that do not change under reparametrisations
of coordinates and, hence, are gauge-invariant. At linear order in the perturbations, this
has been introduced first by Bardeen [12, 20] defining the two Bardeen potentials and
a gauge-invariant scalar perturbation. A generalisation to higher order is possible and
reviewed in [15].

Even though possibly gauge-invariant, the remaining 3 scalar perturbations are not
independent. There are two additional constraints from Einstein’s equation relating the
metric perturbations to matter perturbations, i.e. δϕ in our case. Again, the tensor γ
remains unaffected and we are left with 1 scalar and two tensor degrees of freedom. The
choice which scalar degree to maintain depends on the desired calculation. Some governing
equations are simpler in one gauge than in others. For the purpose of this paper, it is
sufficient to consider two choices: the spatially-flat gauge and the uniform-density gauge.

We start with the spatially-flat gauge. In this gauge one selects spatial hypersurfaces
on which the induced 3-metric is left unperturbed by scalar perturbations. All the scalar
fluctuations on constant-time hypersurfaces are then in the scalar field(s) [14, 15]

ϕ(t, ~x) = ϕ0(t) + δϕ(t, ~x) gij = a2(t) (eγ)ij , (2.11)

where the symmetric tensor fulfils γii = 0 = ∂iγij. Note that, here and henceforth, we
have chosen to parametrise metric perturbations using the exponential function following
[21–24] and subsequent papers. It is very convenient to calculate the evolution equation

2See particularly [16], 9.1.3 and A.2 explaining the decomposition according to helicity.
3This is true if non-linearities in the matter are absent, but not for e.g. cosmological defects (see

e.g. [19] and references therein).
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CHAPTER 2. INTRODUCTION

of scalar field perturbations in this gauge. At linear order and for the case of single field
inflation, it reads [25–28] (for a generalisation to second order and multiple fields see [29])

δ̈ϕ+ 3H ˙δϕ+

[
−∇

2

a2
+ Vϕϕ + 2

Ḣ

H

(
3H − Ḣ

H
+ 2

ϕ̈0

ϕ̇0

)]
δϕ = 0 . (2.12)

Note the term 2Ḣ/H (. . .) which is the coupling of the scalar field to gravity. It is evidently
absent in pure deSitter space. We return to eq. (2.12) in a moment in order to calculate
the mode functions of scalar field perturbations in inflationary spacetime.

Beforehand let us introduce the uniform-density gauge which is the second gauge we
apply in this thesis. Obviously, it is defined by requiring that constant-time hypersurfaces
are surfaces of constant energy-density. For the case of single-field inflation, uniform-
density hypersurfaces trivially coincide with hypersurfaces of constant inflaton, i.e. δϕ = 0.
Note that this is generally not true for multi-field models4. The importance of this gauge
for the forthcoming is that the gauge-invariant scalar curvature perturbation ζ can be
non-perturbatively identified via the spatial metric parametrisation

gij = a2(t) e2ζ (eγ)ij , (2.13)

where again γii = 0 = ∂iγij. It has been shown [23] that this is sufficient to uniquely define
the comoving curvature perturbation ζ . For single field, slow-roll inflation ζ and γ are
conserved quantities on superhorizon scales [22, 23, 31]. For multi-fields this is generally
not true.

We note that there are several definitions of the comoving curvature perturbation
ζ in the literature (see particularly the discussion in [32]). In eq. (2.13), we use the
exponential function to parametrise the spatial part in the uniform-density gauge. Other
authors prefer to work with the parametrisation

gij = a2(t) δij (1 + 2ζ̃) (2.14)

(setting γij = 0 for the moment). These two definitions are related by

ζ̃ = ζ + ζ2 + 2ζ3/3 + . . . . (2.15)

Thus, they coincide at linear order. Furthermore, also ζ̃ is gauge-invariant and conserved
on superhorizon scales due to its exclusive dependence on ζ. However, contrary to ζ̃, the
variable ζ is a an almost Gaussian variable in single field slow-roll inflation. This can be
seen as follows: In this scenario, the leading order expression of the 3-point correlator
〈 ζ3 〉 = O(ε, η) × 〈 ζ4 〉 is suppressed by slow-roll parameters [22]. By contrast, the
corresponding expression 〈 ζ̃3 〉 = 〈 ζ4 〉 � 〈 ζ3 〉 is much larger. Similar arguments also
apply to higher n-point functions that are related to deviations from Gaussian statistics5.

Though it is possible and common to define ζ non-perturbatively via the spatial metric
in the uniform-density gauge, it leaves out the aspect that ζ is a gauge-invariant variable.

4In the simplest multi-field models, one field, the inflaton ϕ, is dominant during inflation. Hence, the
uniform-density gauge corresponds to δϕ = 0 also in these models. However, during or after inflation
other scalar fields may become dominant as for instance in the curvaton scenario (see e.g. [30])

5For a discussion why it is the variable ζ being almost Gaussian and not ζ̃ or any other expression
f(ζ) see [32], sec. VI,A.
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2.2. COSMOLOGICAL PERTURBATIONS

Thus, there should be a third definition of ζ applicable in a generic slicing. Such a gauge-
invariant definition of ζ exists at first and second order in cosmological perturbation
theory [15,32] (and thus at every known order). To be more precise, for a generic slicing

gij = a2(t) e2ψ (eγ)ij (2.16)

there exists a gauge-invariant definition for ζ of the form

ζ = ψ + F (δρ, ρ0, . . .) with F (δρ = 0, ρ0, . . .) = 0 . (2.17)

Recall that ρ0(t) denotes the homogeneous background energy density. Whether this ap-
plies non-perturbatively on all scales is still an open question. However, a non-perturbative
gauge-invariant expression for the comoving curvature perturbation ζ on superhorizon
scales was found in [23]. It reads

ζ(t, ~x) = ψ(t, ~x) +
1

3

ρ(t,~x)∫
ρ0(t)

dρ̃

ρ̃+ P
, (2.18)

where ρ(t, ~x) = ρ0(t)+δρ(t, ~x) and P denotes the pressure. Obviously, the integral is zero
on slices of uniform energy density and, thus, coincides with eq. (2.13) in the uniform
density gauge.

The quantity ζ (to much weaker extend in slow-roll inflation also γ) is of great interest
since it specifies the geometry of the reheating surface (or any other surface after the end
of inflation). As such the curvature perturbation ζ is directly related to observables, e.g.
the temperature fluctuations of the CMB (Sachs-Wolfe effect [33]) or the distribution of
matter in the early universe. Hence, at least indirectly ζ and γ are observable quantities.
To calculate ζ we will make strong usage of its presence in the spatial part of the metric
in the uniform-density gauge. The technicalities of this calculation will be discussed in
sect. 2.3.

Let us now turn to the quantisation of the scalar field perturbations according to

δϕ(t, ~x) =

∫
d3k

(2π)3

(
f~k(t, ~x) a~k + f ∗~k (t, ~x) a†~k

)
, (2.19)

where a~k and a†~k are respectively annihilation and creation operators satisfying the usual

commutation relations. This requires to have knowledge on the mode functions f~k(t, ~x).
For this purpose, we return to the evolution equation of the scalar field, eq. (2.12). In
Fourier space

δϕ(t, ~x) =

∫
d3k

(2π)3
ei
~k~x δϕ~k(t) (2.20)

eq. (2.12) can be brought into the form of the Mukhanov-Sasaki equation, which can
be solved analytically in the quasi-deSitter approximation. The general solution of this
differential equation is a linear combination of Hankel’s functions of the first and second
kind, each of them solving the Mukhanov-Sasaki equation separately. To determine the
mode functions completely, we need two conditions fixing the two linearity coefficients of
the general solution.

11



CHAPTER 2. INTRODUCTION

The first condition to the mode functions is that they are orthonormal with respect
to the invariant Klein-Gordon inner product, i.e.

(
f~k, f~p

)
= −i

∫
dΣµ

(
f~k
↔
∂µ f

∗
~p

)
= (2π)3δ(3)(~k − ~p) , (2.21)

where dΣµ represents volume element and unit normal vector of the spatial hypersurface
(see e.g. [34,35]). It is precisely this normalisation that ensures the commutator of annihi-

lation and creation operator to be6 [a~k, a
†
~p] = (2π)3δ(3)(~k−~p) . For instance, in Minkowski

space this fixes the mode function of a massless scalar field to

f~k =
1√
2k

e−ikt+i
~k~x , (2.22)

where k ≡ |~k|.
The second condition that fixes the mode functions completely is more involved and

comes from vacuum selection. Due to the absence of a globally time-like Killing vector
in the inflationary spacetime, there is no canonical choice of a time variable to which
one classifies modes as being positive or negative frequency and, hence, to associate them
with creation or annihilation operators in the quantisation process. Therefore, contrary
to Minkowski space there is not a single vacuum state in the inflationary spacetime,
but a one parameter family of vacua. The standard choice is the Minkowski vacuum of
a comoving observer in the infinite past t → −∞ (when all scales are well inside the
horizon ∼ 1/H). Due to the overall expansion, the identification of mode functions with
their counterparts in Minkowski space can only be made in a comoving frame and with
comoving time τ ≡

∫
dt/a ≈ −1/[aH(1− ε)]. This imposes7

lim
τ→−∞

f~k(τ, ~x) =
1

a(τ)

e−ikτ+i~k~x

√
2k

(2.23)

which fixes both conditions and uniquely determines the mode equations. The vacuum
chosen this way is called the Bunch-Davies vacuum.

For the complete expression of the mode functions f~k, we refer the reader again to the
already mentioned reviews, e.g. [14, 16, 17]. Here, we are only interested in their limiting
behaviour on superhorizon scales. Outside the horizon, i.e. for |kτ | � 1, the expression
of the quantum perturbations simplifies to

δϕ(~x) ≈
∫

d3k

(2π)3
ei
~k~x H(k)√

2k3
â~k . (2.24)

It turns out that the factor exp(i~k~x) is the only imaginary part of the mode functions
f~k on superhorizon scales. Hence, annihilation and creation operators always appear in

the combination â~k ≡ i(a†~k − a−~k) in this limit. It is common to continue the calculation

with the operator â~k which has zero mean and variance 〈 â~k â~p 〉 = (2π)3δ(3)(~k + ~p) .
Higher correlation functions of â~k follow by Wick’s theorem. The argument of the Hubble

6For QFT in Minkowski space it is convenient to normalise modes such that the integration measure
is Lorentz invariant, leading to the slightly different commutator relation [a~k, a

†
~p] = (2π)3 2k δ(3)(~k − ~p) .

7In case of a small mass m � H, k should be replaced by
√
k2 +m2. However, this does not affect

the superhorizon regime which we are interested in.
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2.3. THE δN -FORMALISM

function H(k) denotes that it should be evaluated at horizon exit of the mode k (when
k = aH). From this point on the mode remains frozen in8.

When crossing the horizon, cosmological perturbations make a transition from a quan-
tum to a classical regime. Pragmatically, this can be seen as follows: Inside the horizon,
cosmological perturbations oscillate similar to quantum scalar fluctuations in flat space-
time. The quantum field operator of such a perturbation is expressed by annihilation and
creation operators (and their corresponding mode functions f~k and f ∗~k ). By contrast, on
superhorizon scales δϕ can be expressed in a classical way including only a single oper-
ator â~k with Gaussian statistics. It can be shown that The quantum fluctuation δϕ is
effectively equivalent to a classical fluctuation consisting of a Fourier amplitude and a
Gaussian random variable â~k. An extensive discussion on this issue is given in [36].

At leading order, eq. (2.24) is the expression of quantum scalar field fluctuations on
superhorizon scales in the spatially flat gauge. From this expression one can deduce the
curvature perturbation ζ via the δN -formalism (see sec. 2.3). In many cases, it is sufficient
to consider this leading order analysis of scalar field perturbations and we will do so in
the following. In slow-roll inflation, corrections to leading order results are suppressed by
the slow-roll parameters and the Hubble scale H/mpl. We note that there are cases where
leading-order results originate partially from higher-order calculations of δϕ, the most
prominent example being the non-Gaussianity parameter fNL [22]. In these cases, the
scalar field perturbations should be calculated to more accurate order. For this purpose,
it is very convenient to apply the In-In formalism to cosmology [22,24].

The last point to mention in this section is the analogous expression for tensor pertur-
bations γ. They are calculated in a very similar way as scalar perturbations and, hence,
we only give the result. At leading order tensor perturbations are given by

γij(~k) =
∑
s=+,×

H(k)√
k3

εsij(
~k) bs~k , (2.25)

where the polarisation tensors εsij are chosen to satisfy the transversality and tracelessness
conditions, as well as an orthogonality relation9.

2.3 The δN-formalism

In this section, we give a pedagogical introduction to the δN -formalism [23, 25, 37–39]
which is a powerful tool to calculate the primordial curvature perturbation ζ from many
inflaton models. The main observation of this formalism is that ζ can be identified as the
perturbation in the local expansion.

In Friedmann-Robertson-Walker spacetimes there exists a preferred foliation of spatial
hypersurfaces which is maximally symmetric. On these hypersurfaces, the matter density
and pressure are homogeneous and isotropic. As we have seen before in sec. 2.2, this is dif-
ferent for inhomogeneous space-times, for which we perturb around the homogeneous part
and the identification of points on homogeneous and inhomogeneous spacetime yields some

8Contrary to ζ and γ in single-field, slow-roll inflation δϕ is not conserved on superhorizon scales, but
its evolution is strongly suppressed. In the following, correlation functions of δϕ will always be evaluated
around the time of horizon exit. Hence, the evolution of δϕ outside the horizon is indeed negligible.

9Similar to â~k, the operator bs~k has zero mean and variance 〈 bs~k b
s′

~p 〉 = (2π)3 δ(3)(~k + ~p) δss
′

. The

polarisation tensor for gravitational waves satisfies εsii(
~k) = 0 = kiε

s
ij(
~k) and the orthogonality relation∑

ij ε
s
ij(
~k) εs

′

ij(−~k) = 2δss′ .
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CHAPTER 2. INTRODUCTION

additional gauge freedom which does not destroy any symmetry. Therefore, it is desirable
to have quantities that are invariant under the corresponding gauge transformations. An
example is the comoving curvature perturbation ζ. Its non-perturbative gauge-invariant
definition on superhorizon scales is already given in eq. (2.18) and reads [23]

ζ(t, ~x) = ψ(t, ~x) +
1

3

ρ(t,~x)∫
ρ0(t)

dρ̃

ρ̃+ P
. (2.26)

Furthermore, on superhorizon scales it can be shown [23] that the change in ψ, going from
one slice at time ti to another at tf , is equal to the difference of the actual number of
e-folds N and the background value N0 = ln( a(tf )/a(ti) ), i.e.

ψ(tf , ~x)− ψ(ti, ~x) = N(tf , ti, ~x)−N0(tf , ti) . (2.27)

As expected the actual number of e-folds N is equal to the background value N0 if we
choose the spatially-flat slicing where ψ = 0 at ti and tf . Another consequence of eq. (2.27)
is that for two different slicings 1 and 2 which coincide for a spatial point ~x at time ti, i.e.
ψ1(ti, ~x) = ψ2(ti, ~x), the difference of slicing 1 and 2 at the final time tf can be expressed
by the difference in the actual number of e-folds

ψ2(tf , ~x)− ψ1(tf , ~x) = N2(tf , ti, ~x)−N1(tf , ti, ~x) . (2.28)

Here, the indices 1 and 2 refer to the respective slicing.
Due to gauge invariance, there is no preferred way to evaluate eq. (2.26). However, it

is technically simplest to evaluate ζ by considering two different slicings. Slicing 1 starts
and ends on spatially flat slices, i.e. ψ1(ti, ~x) = 0 = ψ1(tf , ~x) and N1(tf , ti, ~x) = N0(tf , ti).
Slicing 2 also starts on a flat slice, but ends on a for the moment arbitrary slicing ψ2(tf , ~x).
Eq. (2.28) then yields

ψ2(tf , ~x) = N2(tf , ti, ~x)−N0(tf , ti) . (2.29)

Since slicing 1 only yields the background value N0 in this equation, we will drop the index
2 and keep in mind that the quantities ψ(tf , ~x) and N(tf , ti, ~x) refer to slicing 2. The
expression ψ(tf , ~x) can now be combined with eq. (2.26) to calculate ζ(tf , ~x). This can be
further simplified if slicing 2 ends on a uniform-density slice. In this case, the integral in
eq. (2.26) does not contribute yielding the main result of the δN -formalism [23,25,37–39]

ζ(tf , ~x) = N(tf , ti, ~x)−N0(tf , ti) ≡ δN(tf , ~x) . (2.30)

We recall that N(tf , ti, ~x) is the actual number of e-folds at the spatial point ~x from
an initial spatially-flat slice to a final slice of uniform energy density and N0(tf , ti) =
ln( a(tf )/a(ti) ) is the corresponding background value. By construction this expression
for the curvature perturbation ζ(tf ) is independent of the choice of the initial spatially
flat slice at time ti as long as one stays in the superhorizon regime where eq. (2.26) is
applicable. This property follows from the gauge-invariant definition in eq. (2.26) and
was demonstrated in [40].

Eq. (2.30) can be physically motivated by considering comoving superhorizon patches,
i.e. scales where spatial gradients and anisotropies can be safely neglected. Since they are
causally disconnected, these patches or scales evolve independently from each other and
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2.3. THE δN -FORMALISM

their evolution is well described by the Friedmann equations for a homogeneous universe
with local (homogeneous) density and pressure. This picture is known as the “separate
universe approach” [39] and may be derived from the full inhomogeneous dynamics by
a gradient expansion to first order [21, 41, 42], i.e. in the long-wavelength limit. The
only difference among different positions is a space-dependent scale factor. The curvature
perturbation then arises as the difference in the number of e-foldings, δN .

We note that the initial time ti should be chosen such that the scale of interest is
well outside the horizon. Otherwise, quantum interactions would require a more complete
treatment like the In-In formalism (first applied to cosmology in [22, 24]). By contrast,
superhorizon modes behave as c-number, possibly time-dependent background for horizon-
size, comoving patches in the In-In formalism. Hence, these can be evolved independently
and classically. It is precisely this quantum to classical transition of modes crossing the
horizon that allows for the use of the simpler and (semi-)classical calculation of the δN -
formalism instead of performing the technically by far more involved complete quantum
mechanical treatment (e.g. In-In formalism).

Nevertheless, we require knowledge of the statistics of the scalar field perturbation(s)
δϕ on the initial spatially-flat hypersurface and, hence, we need to have knowledge of
near and subhorizon fluctuations of the field(s). This requires a full quantum mechanical
treatment and in this sense δN -formalism is not completely classical. To lowest order,
all relevant scales are Gaussian on the initial surface with an amplitude given by the
amplitude at horizon crossing of the corresponding mode. In many cases it is sufficient
to restrict the calculation to this order in the scalar field fluctuations and, in most parts
of this thesis, we will make this restriction. However, this is not true in general as for
instance demonstrated by Maldacena [22] for the non-squeezed bispectrum in single-field
inflation.

As already mentioned before, the “separate universe approach” [39] models the inho-
mogeneous universe by a patchwork of locally homogeneous region and, due to causality,
these regions evolve independently from each other. Furthermore, via Friedmann equa-
tions applied locally to each region, one can determine the local expansion N in terms of
the initial scalar field value(s) ϕ(ti) + δϕ(ti, ~x) in each patch. For instance in single-field,
slow-roll inflation this relation is given to leading order by

N(ϕ) =

ϕ∫
ϕend

V

Vϕ
dϕ , (2.31)

where we have assumed that tf is some time after the end of inflation (e.g. reheating)
and ϕend denotes the field configuration at which inflation ends. Otherwise, ϕend should
be replaced by ϕ(tf ). Clearly, ϕend is a model dependent parameter and, for the case of
slow-roll inflation, is given by the field configuration along the trajectory in field space
beginning to violate the slow-roll conditions. A Taylor expansion of eq. (2.30) yields

ζ = N(ϕ+ δϕ(~x) )−N(ϕ) (2.32)

= Nϕ δϕ(~x) +
1

2
Nϕϕ δϕ

2(~x) +
1

6
Nϕϕϕ δϕ

3(~x) + . . . . (2.33)

We recall that a subscript ϕ denotes a derivative with respect to ϕ, i.e. Nϕ = ∂N/∂ϕ.
Note that we have evolved classically the unperturbed ϕ(ti) on the initial hypersurface
to the unperturbed final hypersurface, and denoted the unperturbed number of e-foldings
by N(ϕ). Contrary to the perturbed number of e-foldings N(ϕ + δϕ(x) ), N(ϕ) is a
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constant that can be shifted (for instance in order to make 〈 ζ 〉 = 0). Such a constant
shift in ζ can always be compensated by a redefinition of spatial coordinates or the scale
factor. We stress again that the set of parameters Nϕ, Nϕϕ, . . . are model dependent
quantities. Moreover, in slow-roll inflation Nϕ, Nϕϕ, . . . may be expressed by the set of
slow-roll parameters ε, η, ξ, . . . and vice versa. The first two relations are

N2
ϕ =

1

2m2
p ε

Nϕϕ

N2
ϕ

= 2ε− η . (2.34)

Working in δN -formalism it is common to express results in terms of derivatives of N
instead of slow-roll parameters to keep equations simple.

With eq. (2.33) it is then easy to express any correlator of comoving curvature pertur-
bations by a series of scalar field correlators. Typically, this is done in terms of Fourier
components ζ~k and δϕ~k. As usual, powers of δϕ(~x) yield convolutions in Fourier space,
e.g. (

δϕ2
)
~k

=

∫
d3q

(2π)3
δϕ~q δϕ~k−~q , (2.35)

which introduces also an integration over long-wavelength modes. The first terms in the
series for n-point correlators are

〈 ζ~k1 ζ~k2 〉 = N2
ϕ 〈 δϕ~k1 δϕ~k2 〉 (2.36)

〈 ζ~k1 ζ~k2 ζ~k3 〉 =
1

2
NϕϕN

2
ϕ 〈
(
δϕ2
)
~k1
δϕ~k2 δϕ~k3 〉+ 2 perm. (2.37)

...

They can be further evaluated by knowing the statistics of the scalar field fluctuations
δϕ. Strictly speaking, this is not part of the δN -formalism, but the result of an extra
quantum mechanical calculation. As already mentioned above, we will consider only
linear field perturbations on spatially flat hypersurfaces in canonical, slow-roll inflation
(see sec. 2.2), where δϕ~k = (H/

√
2k3) â~k. Recall that H is evaluated at horizon exit of

the mode k and â~k is again a Gaussian random variable. The fact that the value of H
at horizon exit is locally dependent on long-wavelength modes will be a central point in
chapter 3. With this statistics, the spectra of the comoving curvature perturbation ζ in
single-field, slow-roll inflation read10

P(0)
ζ (k) =

(
NϕH

2π

)2

(2.38)

B
(0)
ζ (k1, k2, k3) = NϕϕN

2
ϕ

[
P

(0)
δϕ (k1) P

(0)
δϕ (k2) + 2 perm.

]
(2.39)

...

where we attached the superscript (0) to indicate that these are leading order results.
Note that we used the standard notation for the bispectrum including the uncurly power
spectrum P (k) = (2π2/k3)P(k) which takes into account volume factors and the naive
scaling in k-space. Recall that ζ is conserved on superhorizon scales in single-field, slow-
roll inflation. Hence, quantities in the expression of ζ~k should be evaluated at horizon exit

10The power and bispectrum are defined in the usual way, i.e. 〈 ζ~kζ~p 〉 = (2π)3 δ(3)(~k+~p) (2π2/k3)Pζ(k)

and 〈 ζ~k ζ~p ζ~q 〉 = (2π)3 δ(3)(~k + ~p+ ~q) Bζ(k, p, q) , respectively.
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of the mode ~k making them explicitly ~k-dependent. Thus, for instance the expression of
the power spectrum in eq. (2.38) has a scale-dependence

nζ − 1 ≡ d lnPζ
d ln k

= 2η − 6ε , (2.40)

defining the spectral index nζ .

When reviewing the δN -formalism, one should also mention its critical aspects. Due to
the quantum to classical transition of modes crossing the horizon, it seems rather natural
to split the much more involved full quantum mechanical calculation into a subhorizon
part, which still has to be tackled with quantum mechanical methods, and a classical
superhorizon part. However, the technical implementation of this split is very prone to
errors. For instance, one has to carefully check which order of the subhorizon calculation
will be relevant for the final superhorizon result. The standard assumption of modes
being Gaussian at horizon exit is not sufficient in many cases and, hence, higher-order
corrections of the subhorizon part need to be included (see chapter 3).

Furthermore, one has to keep in mind that the δN -formalism is only valid on super-
horizon scales when k � aH for all scales k. This statement is to be understood as
follows: The results of the δN -formalism are in fact leading order results of an expansion
in k/(aH). Due to the exponential expansion, these leading order results quickly become
extremely accurate after horizon crossing of the scale k. However, directly at horizon
crossing (when k = aH) the δN -formalism may not be a good approximation. Thus, the
initial time ti cannot be taken to be the time of horizon crossing but slightly later when
the condition k � aH is well fulfilled. The subhorizon calculation only yields the re-
sults at horizon exit. A solution would be to extend the quantum mechanical subhorizon
calculation to the (superhorizon) time ti. However, such an extension would destroy the
simplification gained from the split and, hence, a complete quantum mechanical treat-
ment for all scales would be more appropriate. Consequently, applying the δN -formalism
implies assuming that the change of modes from horizon exit to the time ti is negligible.

An example for the aforementioned criticisms is the expression of the bispectrum in
single-field slow-roll inflation whose correct expression was not known until the In-In
formalism was applied to cosmology [22]. Nevertheless, the δN -formalism is in many
cases a simple and powerful technique to calculate the primordial curvature perturbation
ζ. One has merely to be careful in which cases it is reliable and in which cases the δN -
formalism only gives an order of magnitude estimate and the correct result has to be
calculated using a complete quantum mechanical formalism.

As a last point of this section, let us briefly discuss how the above generalises to the
case of multi-field inflation, where we have a set of scalar fields {ϕa} during inflation.
The inflaton is one of them, but can also be a linear combination of ϕa which varies as
a function of time. The other fields, which are orthogonal to the inflaton in field space,
are called isocurvatons. Again, we pick an initial spatially flat hypersurface and a final
uniform-density surface for the same reason as described above. Initially all fluctuations
are in the scalar fields ϕa + δϕa(~x) and, again, we evolve all the fields from the initial to
the final slice in order to get

ζ(~x) = δN(~x) = Na δϕ
a(~x) +

1

2
Nab δϕ

a(~x) δϕb(~x) + . . . . (2.41)

In multi-field inflation, it is common to denote a derivative along the scalar field labelled
by a with a subscript a, i.e. Na = ∂N/∂ϕa. We will also adapt the standard notation in
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this work, i.e. Nϕ for single-field and Na for multi-field inflation, and sincerely apologise
to the reader for the possible confusion. Furthermore, a summation over repeated indices
is understood in eq. (2.41). One can then proceed in a similar fashion as in single-field
inflation and express ζ-correlators in terms of correlators of field fluctuations and apply
the statistics of the fluctuations {δϕa}. Contrary to single-field inflation, the curvature
perturbation ζ is generally not conserved if more than one field is present. In this case,
the evolution of ζ has to be taken into account, resulting in slightly more complicated
expression for Nϕ, Nϕϕ, . . . (see e.g. [15,17,43]).

2.4 Non-Gaussianity and Infrared effects

In the previous section we gave a pedagogical introduction to the δN -formalism, yielding
the expression

ζ~k = Nϕ δϕ~k +
1

2
Nϕϕ

(
δϕ2
)
~k

+
1

6
Nϕϕϕ

(
δϕ3
)
~k

+ . . . (2.42)

for the curvature perturbation ζ. In order to explain current observations, it is sufficient to
consider only the leading term on the right hand-side of this equation (assuming δϕ to be
Gaussian at horizon exit). However, theoretically and in light of forthcoming observations,
it is worthwhile to additionally consider effects originating from higher order terms. In
this work, we will particularly focus on two of these effects.

The first is the generation of non-Gaussianity. Considering only the leading expression
for ζ corresponds to considering a curvature perturbation ζ which is subject to Gaussian
statistics. In this limit any n-point function of odd n obviously vanishes exactly and higher
n-point functions of even n follow the usual Gaussian expressions determined by the two-
point function. The higher order terms in the expression of ζ, eq. (2.42), cause deviations
from these Gaussian expressions and, hence, introduce non-Gaussianity. For instance, the
leading, non-zero expression of the three-point function, given in eq. (2.39), is originating
from the first and second term on the right hand-side in eq. (2.42) (plus possible non-
Gaussian parts in δϕ). It is now widely accepted that non-Gaussianity is a powerful probe
to discriminate between the many currently viable inflationary models [17,44–49].

The deviation from Gaussian statistics is commonly parametrised by dimensionless
non-Gaussianity parameters like fNL or gNL. Their precise definitions depend on the
particular form of non-Gaussianity and is based on the leading, non-zero expression of
the corresponding correlation function. For instance for non-Gaussianity of the local
form [21,50], the parameter fNL is defined by

Bζ(k1, k2, k3) =
6

5
fNL [Pζ(k1)Pζ(k2) + 2 perm.] . (2.43)

In single-field slow-roll inflation the correct expression of fNL was calculated first in [22].
We note that the non-Gaussianity parameters are defined such that they are scale-
independent at leading order. In general, they acquire scale-dependencies from higher
order terms [40, 51–54]. This behaviour will be analysed for local non-Gaussianity in
chapter 5. Other forms of non-Gaussianity are considered in chapter 6 where we also
give the corresponding definitions of fNL and summarise from which models the various
non-Gaussianity forms typically arise (see sec. 6.3.1).

Furthermore, higher-order corrections introduce a dependence on long-wavelength
background modes. Such infrared effects explicitly arise in loop corrections to inflation-
ary observables (using e.g. the In-In formalism) or through the nonlinear dependence of
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the curvature perturbation on fluctuations of an underlying scalar field (e.g. in the δN
approach). For instance, in the latter case the next-to-leading order result includes an
expression of the form

N2
ϕϕ〈 (δϕ2)~k(δϕ

2)~p 〉 = N2
ϕϕ

∫
d3q

(2π)3

d3l

(2π)3
〈 δϕ~q δϕ~k−~q δϕ~l δϕ~p−~l 〉 (2.44)

∼ N2
ϕϕH

4

∫
d3q

q3
∼ N2

ϕϕH
4 ln(kL) . (2.45)

Here, we have introduced an IR cut-off 1/L and we have assumed (in the second line) that
the power spectrum of δϕ is sufficiently scale-invariant. We have dropped the UV-part
of the integral since we are interested exclusively on the dependence on long-wavelength,
background (IR) modes. Furthermore, the UV-part can be handled by standard field
theoretical methods. Infrared divergences associated with the inflationary power spectrum
are a long-standing issue [8, 9, 55–58] which has more recently received a lot of attention
following [24, 59]. It has been argued [60] that the cut-off L should be taken as the side-
length of the region in which the measurement has been performed. As a subresult of our
findings in chapter 4 (see also [61]), we will later confirm this size of the cut-off.

The physical origin of this IR divergences/IR effects is closely related to the well-
known divergence in deSitter space [62, 63]. DeSitter space is effectively compact. Thus,
the zero mode is dynamical and diffuses similar to a quantum mechanical particle without
a potential. However, assuming that fluctuations on the reheating surface are (at least
indirectly) observable quantities, we perform a measurement and the divergence becomes
irrelevant. Nevertheless, it returns through higher order corrections.

According to the construction of the δN -formalism, the complete calculation is split
into a sub- and a superhorizon regime. The subhorizon calculation enters the curvature
perturbation ζ via the expression of δϕ at horizon exit while the superhorizon calcula-
tion is essentially given by eq. (2.42). Thus, it is important to note that each of the
aforementioned effects may enter in the sub- and in the superhorizon regime. The fact
that corrections may enter already in the subhorizon regime will play a central role in
chapter 3.

2.5 Overview

This thesis is organised as follows: Each of the main chapters 3-6 is based on a publication.
The corresponding reference is given at the very beginning of the chapter, followed by
short overview of discussion in the chapter. There is only a mild dependence among the
chapters and the reader who is particularly interested in a certain subject may directly
jump to the relevant chapter.

The content of chapter 3 “Inflationary Infrared Divergences: Geometry of the Reheat-
ing Surface vs. δN -Formalism” is published in [64]. In this chapter, we describe a simple
way of incorporating fluctuations of the Hubble scale H during the horizon exit of scalar
perturbations into the δN -formalism. As discussed in sec. 2.4, curvature perturbations
during inflation are affected by infrared divergences. We approach these IR effects start-
ing from δN -formalism. It turns out that the problem can be rather easily resolved by
a modification of the δN -formalism taking into account the aforementioned fluctuations
of the Hubble scale H. The Hubble scale is appearing in the expression of the scalar
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field perturbation δϕ~k ∼ H and, therefore, is an “external” input to the δN -formalism
in the sense that the correct expression around horizon exit has to be known by different
methods, e.g. the In-In formalism. The non-linear dependence of the scalar field per-
turbation on the number of e-folds and its derivatives Nϕ, Nϕϕ, . . . is taken into account
by higher-order terms in the δN expansion. As an “external” input the backreaction of
modes δϕ~q with ~q 6= ~k on δϕ~k itself and, hence, on H is clearly not incorporated in the
δN -formalism. This incorporation has been neglected in any δN calculation so far.

Since we are interested in IR effects, we only include fluctuations of the Hubble scale
due to long-wavelength modes δϕ~q (q � k). We note that locally the sum of long-

wavelength modes (long-wavelength compared to the mode ~k)

δϕ̄(~x) =

∫
q�k

d3q

(2π)3
ei~q~x δϕ~q (2.46)

introduces a shift on top of the homogeneous and isotropic background ϕ0. We incorporate
this shift by writing the scalar field perturbation in a quasi-deSitter background as

δϕ(~x) =

∫
d3k

(2π)3

ei
~k~x

√
2k3

H(ϕ0 + δϕ̄(~x) ) â~k . (2.47)

The calculation of ζ-correlators can then be done in the familiar way by evaluating cor-
relators of â~k. Clearly, the incorporation of fluctuations of the Hubble scale according to
eq. (2.47) leads to IR effects on top of the familiar ‘c-loops’ effects from the δN -formalism.
Combining both these contributions the first log-enhanced correction to the power spec-
trum takes the very simple form

Pζ(k) = P(0)
ζ (k) +

1

2
〈 δϕ̄2 〉 d

2

dϕ2
P(0)
ζ . (2.48)

Here, the expression 〈 δϕ̄2 〉 ∼ H2 ln(kL) corresponds to the expectation value of scalar
field perturbations measured on a length scale 1/k. Therefore, up to the order of the first
log-enhanced correction, the complete power spectrum can be expressed as the tree-level
result plus its derivatives times the variance of the background δϕ̄.

The physical significance of eq. (2.48) can be understood as follows: Disregarding
tensor modes, the geometry of the reheating surface (or any other surface of uniform
energy-density), parametrised by coordinates ~y, can be characterised by a single scalar
function ζ(~y), the comoving curvature perturbation. The power spectrum Pζ may be
defined as the logarithmic derivative of the correlation function 〈 ζ(~x) ζ(~x + ~y) 〉 with
respect to y = |~y|. Alternatively, a closely related spectrum P̃ζ based on the invariant
distance z between the pair of points in the correlator can be defined in an analogous
manner. The latter power spectrum is an entirely local quantity and its expectation value
does not depend on the size of the region in which the measurement is performed. Defining
ζ̄ as the average value of ζ characteristic for a small region containing a particular pair
of points ~x and ~x + ~y, the relation between the euclidean coordinate distance y and the
invariant distance z is given by

z = eζ̄ y . (2.49)

The two power spectra, which we denoted by Pζ(y) and P̃ζ(z), are then related by

Pζ(y) = 〈 P̃ζ(y eζ̄) 〉 , (2.50)
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where the averaging process is over the potentially large region in which the measurement
of correlation functions is performed. Clearly, the averages 〈 ζ̄ 〉 and variance 〈 ζ̄2 〉 strongly
depend on this region and lead precisely to the same log-enhancement of Pζ found earlier
in (our implementation of) the δN -formalism.

This agreement provides support for the implementation of the δN -formalism that we
advocate. Furthermore, it makes the ‘physical reality’ of large logs from IR divergences
particularly clear: The log-enhancement arises due to the use of global coordinates in a
very large region, where these deviate significantly from the invariant distance. It can
be avoided if one measures the power spectrum P̃ζ(z), which is defined using a two-point
correlation function based on the invariant distance between each pair of points appearing
in the spatial average.

Chapter 4 “Inflationary Correlation Function without Infrared Divergences” is pub-
lished in [61]. It is a continuation of the results presented in chapter 3. In chapter 4,
we define infrared-safe correlation functions directly in Fourier space taking into account
the effect from long-wavelength scalar and tensor modes. These infrared-safe correlation
functions are purely local quantities and, hence, have no sensitivity to the size L of the
box used for observations. The conventional correlators with their familiar log-enhanced
corrections, both from scalar and tensor long-wavelength modes, are easily recovered from
our IR-safe correlation functions.

The way to define IR-safe correlation functions is again by making use of the invariant
distance z on the reheating surface. For instance the power spectrum of a mode ~k can be
written by definition as the Fourier transform of the correlation function in real space:

Pζ(k) =
k3

2π2

∫
d3y e−i

~k~y 〈 ζ(~x) ζ(~x+ ~y) 〉 . (2.51)

Since, we want to interpret this formula as a practical prescription for the measurement
of the power spectrum, we view 〈 . . . 〉 as averaging process over pairs of points separated
by the coordinate-vector ~y, i.e. as average over the position ~x of the pairs. Due to the
effect of scalar and tensor long-wavelength modes, summed up in ζ̄ and γ̄ respectively, the
physical separation of a particular pair in the averaging process in eq. (2.51) is strongly
dependent on the position ~x. To be more precise, the physical separation, given by the
invariant distance z = | eζ̄ eγ̄/2 ~y |, depends on the local quantities ζ̄(~x) and γ̄(~x). Hence,
since 〈 ζ̄2 〉 and 〈 γ̄2 〉 are ∼ ln(kL), the invariant distance z is varying strongly over the
possible large region of box-size L in which the measurement of the correlation functions
is performed. Clearly, this problem is originating from the averaging process selecting
pairs of points separated by a coordinate-vector ~y whose corresponding physical distance
is only defined globally (in the whole observable region).

Our proposal to solve this problem is to define the spectrum by an average over pairs
of points all having the same physical separation z (now with varying coordinate-vector
~y(~x) ). This is implemented by the definition

P(0)
ζ (k) =

k3

2π2

∫
d3y e−i

~k~z〈 ζ(~x) ζ(~x+ e−ζ̄(~x) e−γ̄(~x)/2 ~z) 〉 . (2.52)

Obviously the relation between ~y and ~z is given by ~z = eζ̄ eγ̄/2 ~y. Therefore, the pairs
of points in the correlator of eq. (2.52) are indeed all separated by the same physical
(or invariant) distance z =

√
δij zizj. The z-dependence of this correlator is then a

background-independent object and the corresponding power spectrum P(0)
ζ is IR-safe.
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The expression for the original IR-sensitive power spectrum Pζ follows from comparing
eqs. (2.51) and (2.52) and yields

Pζ(k) =

〈 [(
e−γ̄(~x)

)
ij
k̂ik̂j

]−3/2

P(0)
ζ

(
e−ζ̄(~x)e−γ̄(~x)/2~k

) 〉
. (2.53)

Here, the vector k̂ is a unit-vector in ~k-direction and the average is performed over the
background quantities ζ̄(~x) and γ̄ij(~x). A Taylor expansion of the right hand-side yields
the familiar log-enhanced corrections of scalar and tensor perturbations to the leading-
order expression of the power spectrum. However, in our formalism corrections automat-
ically emerge in a resummed, all-orders form.

We generalise our findings for the power spectrum to higher n-point functions and
apply our results to the two- and three-point function of the comoving curvature per-
turbation ζ in single-field, slow-roll inflation. We also present a generalisation of the
δN -formalism allowing for the incorporation of corrections originating from tensor modes
(corrections originating from scalar modes are already incorporated correctly by consid-
ering fluctuations of the Hubble scale H, see chapter 3). As expected, this generalised
δN -formalism yields the same results in all cases were the formalism is applicable.

Furthermore, our resummed, all-orders expression of eq. (2.53) allows us to evaluate IR
corrections in a non-perturbative way by using statistical properties of the integrated long-
wavelength fluctuations ζ̄ and γ̄. We apply this framework to specific inflationary set-ups,
obtaining a complete expression of the power spectrum that includes all contributions of
long-wavelength modes, and to perform a convergence analysis of the perturbation series
of IR log-enhanced corrections.

Chapter 5 “Scale-dependent non-Gaussianity probes inflationary physics” is published
in [65]. While chapter 3 and 4 discuss the issue of IR effects in inflationary correlation
functions, chapter 5 discusses the scale-dependence of the bispectrum and trispectrum in
(quasi) local models of non-Gaussian primordial density perturbations. The properties
of these spectra are contained in the non-linearity parameters fNL, gNL, and τNL. It has
been recently pointed out that, both from a theoretical and observational point of view,
fNL is not necessarily a constant11. We show that the same holds true also for gNL and
τNL. Similar to the power spectrum and the spectral index, we characterise the scale-
dependence of these quantities in terms of new observable parameters nfNL

, ngNL
and

nτNL
, respectively.

In order to study these observables, we apply an approach based on the δN -formalism,
which allows us to obtain an expression for the curvature perturbation ζ that generalises
the local ansatz and contains the aforementioned scale-dependence parameters. Schemat-
ically, the curvature perturbation can be written as

ζ~k = ζG
~k

+
3

5
fp

NL (1 + nfNL
ln k)

(
ζG ? ζG

)
~k
+

9

25
gp

NL (1 + ngNL
ln k)

(
ζG ? ζG ? ζG

)
~k
+. . . ,

(2.54)
where ζG is a Gaussian variable and fp

NL and gp
NL are constants. This approach allows us

to directly calculate nfNL
, ngNL

and nτNL
in models with arbitrary inflationary potential

and number of fields, assuming slow-roll inflation.
The explicit expressions of these scale-dependence parameters depend on properties

of the inflationary potential, namely its third and fourth derivative along the direction of

11See references in sec. 5.1.
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field space generating non-Gaussianity. Generally (and in particular in all observationally
interesting cases) these do not coincide with the adiabatic direction during inflation. Con-
sequently, they are sensitive to properties of the inflationary physics that are not probed
by standard observables like the spectral index and its running. Therefore, they provide
additional powerful observables, able to offer novel information about the inflationary
mechanism.

In the first part of the chapter, we present the calculation of the quantities fNL, gNL,
and τNL and the parameters representing their scale-dependence nfNL

, ngNL
and nτNL

. At
this point we focus on equilateral configurations, i.e. k1 = k2 = k3 for fNL and analogously
for gNL and τNL. We apply our findings to the general single field case and to several two
field models of inflation showing that the scale-dependence can be significant. In certain
classes of these model, we find consistency relations of the scale-dependence parameters
helping to discriminate among inflationary models.

So far in chapter 5, we have concentrated our analysis on the scale dependence of
equilateral configurations (triangles and quadrilaterals), varying only the overall scale.
Since it may be of interest to consider more general variations in which one changes the
shape of the figure under consideration, we also analyse these cases. Furthermore, we find
the combination of shape and scale-dependence which maximises the scale-dependence,
e.g. nfNL

.

While in most of chapter 5 we work in momentum space, in the last part we also
discuss how the shape dependencies of the non-linearity parameters affect the analysis in
real space. We provide an expression for the curvature perturbation ζ in real space, that
generalises the simplest local ansatz, and that exhibits directly in coordinate space the
effect of scale-dependence of non-Gaussianity parameters.

Chapter 6 “A weak lensing view on primordial non-Gaussianities” is published in [66].
In this chapter we forecast the constraints which the weak lensing bispectrum will be
able to make on primordial non-Gaussianity, especially with a view to the Euclid space
telescope planned to be launched in 2017. So far most of the constraints on primordial
non-Gaussianities are reported using CMB observations. The latest and tightest bounds
have been obtained from the WMAP 7-year data [18]. Although the constraints from weak
lensing are not competitive with the ones from CMB or galaxy surveys, they are com-
plementary since they probe smaller scales. Hence, they provide additional, independent
constraints on primordial non-Gaussianity and its scale-dependence.

First, we predict the signal-to-noise ratio generated in the Euclid weak lensing survey.
We find the 1σ errors for fNL are 200, 575 and 1630 for local, orthogonal and equilateral
non-Gaussianities, respectively. The configuration space integrations for these calculations
can be carried out very efficiently by Monte-Carlo integration schemes at a fraction of the
computational cost. For instance, the signal-to-noise ratio of the weak lensing bispectrum
B(l1, l2, l3) can be done with accuracies below a percent with only a fraction of O(10−4)
evaluations in comparison to evaluating the direct sum over l1, l2 and l3.

We also consider misestimates of fNL by fitting the wrong bispectrum type to data.
We find that misestimates up to a factor of ±3 are easily possible. We found that one
would notice such a strong discrepancy between data and model from values of fNL of a
hundred on by looking at the χ2-function.

As a last point, we analyse degeneracies of the primordial bispectrum with other cos-
mological parameters (though only the matter density Ωm plays a significant role) and
the subtraction of the much larger, structure-formation generated bispectrum. The latter
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can be subtracted if the underlying cosmology during structure formation is known pre-
cisely enough. Propagating the uncertainty in the cosmological parameter set, assuming
a wCDM universe, we find misestimations from this subtraction process which are much
less than the statistical accuracy. Hence, any residual structure formation bispectrum
would influence the estimation of fNL to a minor degree.

Finally, in chapter 7 we draw our conclusions and describe possible continuations of
the discussed research topics.
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Chapter 3

Inflationary Infrared Divergences:
Geometry of the Reheating Surface
vs. δN-Formalism

The content of this chapter is published in [64].

In this chapter, we describe a simple way of incorporating fluctuations of the Hubble
scale during the horizon exit of scalar perturbations into the δN -formalism. The domi-
nant effect comes from the dependence of the Hubble scale on low-frequency modes of the
inflaton. This modifies the coefficient of the log-enhanced term appearing in the curvature
spectrum at second order in field fluctuations. With this modification, the relevant coeffi-
cient turns out to be proportional to the second derivative of the tree-level spectrum with
respect to the inflaton ϕ at horizon exit. A logarithm with precisely the same coefficient
appears in a calculation of the log-enhancement of the curvature spectrum based purely
on the geometry of the reheating surface. We take this agreement as strong support for
the proposed implementation of the δN -formalism. Moreover, our analysis makes it ap-
parent that the log-enhancement of the inflationary power-spectrum is indeed physical if
this quantity is defined using a global coordinate system on the reheating surface (or any
other post-inflationary surface of constant energy density). However, it can be avoided
by defining the spectrum using invariant distances on this surface.

3.1 Introduction

It is well known that curvature perturbations created during cosmological inflation [5, 6,
9–12] [14] are affected by infrared (IR) divergences [60, 67] (see [68–79] for some recent
discussions). These divergences are closely related to the familiar divergence of the scalar-
field correlator in de Sitter space [35, 62, 63]. While, at leading order, the divergence can
be absorbed into the definition of the background and is hence unobservable, higher
orders in the curvature perturbation lead to corresponding log-enhanced corrections to
the power spectrum. Since the IR cutoff appearing in these logarithms is provided by
the size of the observed universe (rather than by, for example, the size of the universe
created by inflation), these logarithms are, however, not particularly large in practice [60].
Nevertheless, it is conceivable that the power spectrum is measured by a very late observer,
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CHAPTER 3. INFLATIONARY INFRARED DIVERGENCES: GEOMETRY OF
THE REHEATING SURFACE VS. δN -FORMALISM

who has access to the entire region of the universe created in ‘our’ inflationary patch.1

For such a ‘late’ observer, the infrared logarithms can be extremely large and it is an
interesting question of principle how to achieve consistency between his and our (i.e. the
‘early’ observer’s) measurement of the power spectrum.

We approach these issues starting from the δN -formalism [23, 25, 37–39].2 It turns
out that the problem can be resolved rather easily if a simple modification of the δN -
formalism, which takes fluctuations of the Hubble scale during slow-roll inflation into
account, is implemented. In essence, this modification consists of treating the Hubble
scale, which defines the normalization of the scalar-field correlator, as a function of the
perturbed background value of ϕ relevant at the time of horizon exit of a given mode.
Since this background perturbation depends only on modes with a smaller wave number,
our proposal can be implemented in an unambiguous and straightforward way.

The Hubble-scale fluctuations discussed above lead to slow-roll suppressed but log-
enhanced contributions to the power-spectrum, similar to the familiar ‘c-loop’ effects of
the δN -formalism. Combining both these contributions, the coefficient of the first log-
enhanced correction to the power spectrum takes a very simple form. It is essentially given
by the second derivative in ϕ of the leading order power spectrum, Nϕ(ϕ)2H(ϕ)2/(2π)2.
Here the argument ϕ is the value of the inflaton corresponding to the horizon exit of the
wave number k under consideration.

The physical significance of this proposal can be understood as follows: Consider the
reheating surface (or any other surface of constant energy density after the end of infla-
tion). Disregarding vector and tensor modes, the geometry of this surface, parameterized
by coordinates ~y = (y1, y2, y3), can be characterized by a single scalar function ζ(~y), known
as the curvature perturbation. The power spectrum may be defined as the logarithmic
derivative of the correlation function 〈ζ(~x)ζ(~x+~y)〉 with respect to y = |y|. Alternatively,
a closely related spectrum based on a fixed invariant distance s between pairs of points
in the correlator can be defined. This latter power spectrum is an entirely local quantity
and its expectation value does not depend on the size of the region over which the corre-
lator is measured (i.e. on the ‘age’ of the observer). The two spectra, which we denote
by Pζ(y) and P̃ζ(s), are related by Pζ(y) = 〈P̃ζ(yeζ̄)〉, where ζ̄ is a coarse-grained value
of ζ relevant for the distance-measurement between a given pair of points. In the rela-
tion between the two spectra, the averaging is over the potentially large observed region,
with large expectation values of ζ̄ and ζ̄2 in the case of a late observer. This leads to a
log-enhancement of Pζ(y) which is easily seen to be precisely the log-enhancement found
earlier in (our implementation of) the δN -formalism.

On the one hand, this agreement provides support for the implementation of the δN -
formalism that we advocate. On the other hand, it makes the ‘physical reality’ of large
logs from IR divergences particularly clear: The log-enhancement arises due to the use
of global coordinates in a very large region, where these deviate significantly from the
invariant distance. It can be avoided if one measures the power spectrum P̃ζ(s), which
is defined using a two-point correlation function based on the invariant distance between
each pair of points appearing in the spatial average.

While our work was being finalized, Ref. [80] appeared, which overlaps with part of
our analysis. We will comment on this in more detail at the end of Sec. 3.3.

1Of course, this possibility is in practice limited by the presently observed dark energy or cosmological
constant.

2The physical importance of higher-order terms in the δN -formalism was first appreciated in [37].
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3.2. HUBBLE SCALE FLUCTUATIONS IN THE δN -FORMALISM

3.2 Hubble scale fluctuations in the δN-formalism

During inflation, the amplitude of scalar field fluctuations is controlled by the Hubble
parameterH. The latter is usually evaluated at the value ϕ(tk) of the classical homogenous
solution ϕ, where tk is the time of horizon exit of the mode k: H = H(ϕ(tk)). However,
this approach does not account for the fact that perturbations with wavelength larger than
k−1 have already left the horizon. These perturbations modify the value of the scalar field
relevant for the mode k and need to be taken into account.

We do so by writing the scalar field perturbation in a quasi-de-Sitter background as

δϕ(~x) =
∫

d3k
(2π)3

e−i
~k~x

√
2k3

H (ϕ(tk) + δϕ̄(~x)) â~k , (3.1)

where

δϕ̄(~x) =
∫
l�k

d3l
(2π)3

e−i
~l~x

√
2l3

H(ϕ(tl)) â~l , (3.2)

where â~k is a normalized Gaussian random variable 3. In writing eq. (3.1) and in the
rest of the paper, we only include the leading order contributions to the fluctuations and
neglect slow-roll corrections that are not enhanced by potentially large logarithms. The
δϕ̄(~x) contribution in the argument of the Hubble parameter accounts for the backreaction
of long wavelength modes on the scalar fluctuations δϕ(~x) generated inside the horizon.

In order to analyze their effect, we expand the Hubble parameter up to second order
in δϕ̄,

δϕ(x) =

∫
d3k

(2π)3
e−i

~k~xχ~k

1 + A1

∫
l�k

d3l

(2π)3
e−i

~l~xχ~l + A2

∫
l,m�k

d3l

(2π)3

d3m

(2π)3
e−i(

~l+~m)~xχ~l χ~m


(3.3)

where we have introduced the Gaussian field

χ~k =
H(ϕ(tk))√

2k3
â~k . (3.4)

We use the abbreviations A1 = Hϕ/H and A2 = Hϕϕ/(2H) for coefficients involving
the first and second derivative of H with respect to ϕ. Note that as a result of the
corrections proportional to A1 and A2, the scalar fluctuation in Fourier space, δϕ~k, are not
Gaussian at Hubble exit. A similar idea was considered to second order in the scalar field
perturbations, in the context of the tree-level bispectrum in [81]. Note that we neglect the
quantum mechanically generated non-Gaussianity of the fields which is present at horizon
exit [22].

We now turn to the curvature fluctuation ζ evaluated on a surface of uniform energy
density (for our purposes, the reheating surface). The δN -formalism calculates ζ starting
from scalar fluctuations on a flat surface,

ζ(~x) = N(ϕ+ δϕ(~x))−N(ϕ) = Nϕδϕ(~x) +
1

2
Nϕϕδϕ(~x)2 +

1

6
Nϕϕϕδϕ(~x)3 + · · · . (3.5)

Here Nϕ, Nϕϕ are derivatives of the number of e-folds N as a function of ϕ, evaluated
on the classical background trajectory. The resulting two point function for curvature

3It satisfies the relation 〈â~kâ~p〉 = (2π)3δ(3)(~k + ~p) .
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perturbations in Fourier space is given by

〈 ζ~kζ~p 〉 = N2
ϕ〈 δϕ~kδϕ~p 〉+NϕNϕϕ〈 δϕ~k

(
δϕ2
)
~p
〉

+
N2
ϕϕ

4
〈
(
δϕ2
)
~k

(
δϕ2
)
~p
〉+

NϕNϕϕϕ

3
〈 δϕ~k

(
δϕ3
)
~p
〉. (3.6)

Note that correlators of odd powers of δϕ are in general non-zero since δϕ~k is not Gaussian.
However, one may check that nevertheless 〈 δϕ~k 〉 = 0. We have not set < ζ >= 0, though
making this choice would not change in an essential way our results (we will discuss this
in more detail later).

We now define the spectrum Pχ through 〈χ~kχ~p〉 = (2π)3 δ3(~k+ ~p ) 2π2Pχ(k)/k3. This
implies that Pχ(k) = (H/2π)2. The spectrum of curvature perturbations Pζ is defined in
an analogous way. It follows from a straightforward evaluation of eq. (3.6) (see Appendix
3.5.1 for details) that

Pζ(k) = Pχ
{
N2
ϕ + Pχ ln(kL)

[(
A2

1 + 2A2

)
N2
ϕ + 4A1NϕNϕϕ +N2

ϕϕ +NϕNϕϕϕ

]}
(3.7)

= PχN2
ϕ + Pχ ln(kL)

1

2

d2

dϕ2

(
N2
ϕPχ

)
. (3.8)

Here it is crucial that the IR cutoff L is set by the size of the region in which the correlator
is measured. As mentioned before, we take it for granted that perturbations on even larger
scales can be absorbed in the background and are hence unobservable. In other words,
the classical evolution starts with the horizon exit of modes of scale k ∼ 1/L. Our main
interest is the dependence of the spectrum on the size L of the observed region.

We can express the second derivative along the scalar field, appearing in equation
(3.7), in terms of slow-roll parameters. We define as usual ε = V 2

ϕ / (2V 2), η = Vϕϕ/V ,
ξ2 = VϕVϕϕϕ/V

2, and we set M2
P = 8π. Using the well known relations nζ − 1 = 2η − 6ε

for the spectral index, and αζ = 16εη − 24ε2 − 2ξ2 for its running, i.e. αζ ≡ dnζ/d ln k
(all quantities evaluated at Hubble exit) we find

d2

dϕ2

(
N2
ϕPχ

)
=
PχN4

ϕ

4

[
(η − 2ε) (nζ − 1) + (nζ − 1)2 + αζ

]
(3.9)

This quantity vanishes in the case of scale invariance, i.e. when nζ = 1 and αζ = 0. In
this case logarithmic corrections to the power spectrum drop out, at leading order in the
slow-roll expansion. We will discuss an interpretation of this result in the next section.

At our level of accuracy, we can rewrite eq. (3.7) as

Pζ(k) = PχN2
ϕ + 〈ϕ2〉1/k

1

2

d2

dϕ2

(
N2
ϕPχ

)
, (3.10)

where

〈δϕ2〉1/k =

k∫
L−1

d3k′

(2π)3

H2

2k′3
= Pχ ln(kL) (3.11)

is the expectation value of δϕ2 measured on a length scale 1/k. We see that the log-
enhanced correction takes the suggestive form of the second term in a Taylor expansion.
The physical meaning of this structure will be clarified below.
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We note that the integration in eq. (3.11) was performed assuming that ϕ has an
exactly scale invariant spectrum. More generally, if the power spectrum of ϕ has a constant
spectral index nϕ, the ln(kL) term above should be replaced by

ln(kL)→ 1

nϕ − 1

(
1− (kL)−(nϕ−1)

)
. (3.12)

However, provided that we do not consider an exponentially large range of scales and the
field fluctuations are reasonably close to scale invariant, then |nϕ − 1| ln(kL) � 1, and
the more general result above is well approximated by ln(kL). Since the running of the
spectral index is expected to be of order (nϕ − 1)2, further corrections associated with
this running are suppressed by a similar argument.

3.3 Infrared divergences from the geometry of the

reheating surface

We now provide a physical interpretation for the log-enhanced correction to the power
spectrum given in eq. (3.7). An observer, in order to make a measurement, specifies a
coordinate system on the reheating surface (or on any other surface of constant energy
density after the end of inflation). This can be done as follows. Choose a coordinate
system where slices of constant time t have uniform energy density. Neglecting vector
and tensor modes, we write the metric as

ds2
4 = −dt2 + a2(t) e2ζ(x) δij dx

idxj . (3.13)

We use conventions where reheating occurs at time tf , at which the homogeneous scale
factor a(tf ) = 1. This leads to the following metric on the three-dimensional reheating
surface:

ds2
3 = e2ζ(x) δij dx

idxj . (3.14)

Important consequences for the power spectrum of ζ can be derived just from the
geometry of the reheating surface specified above. To see this, let us define the power
spectrum as the logarithmic derivative of the two point function,

Pζ(y) ≡ d

d ln y

1

2
〈(ζ(~x)− ζ(~x+ ~y))2〉 = − d

d ln y
〈ζ(~x) ζ(~x+ ~y)〉 , (3.15)

where y is the length of a coordinate vector on the reheating surface, y2 = (y1)2 + (y2)2 +
(y3)2. It is not difficult to see that eq. (3.15) gives the correct value for the power spectrum
associated with the fluctuations of a slowly-rolling scalar in quasi-de Sitter background
(see Appendix 3.5.2).

Alternatively, we can define the power spectrum averaging over pairs of points sepa-
rated by a fixed invariant distance s,

P̃ζ(s) ≡
d

d ln s

1

2

〈
(ζ(~x)− ζ(~x+ ~y(s))2〉 . (3.16)

Here ~y(s) denotes a coordinate vector with invariant length s. We have introduced a tilde
to distinguish this spectrum from eq. (3.15). It is clear that long-wavelength background
fluctuations of ζ, which affect only the parameterization but not the physics of any local
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patch of the reheating surface, are irrelevant for this new spectrum. In other words, P̃ζ(s)
is a purely local quantity which, by its very definition, cannot depend on the size L of the
observed region.

Defining ζ̄ as the average value of ζ characteristic of a small region containing a
particular pair of points ~x and ~x+ ~y(s), we can write

P̃ζ(s) ≡
d

d ln s

1

2

〈(
ζ(~x)− ζ(~x+ ~ese−ζ̄

)2
〉
. (3.17)

Here ~e is a coordinate unit vector. We see that the two spectra differ only by the selection
of pairs of points in the averaging procedure. In one case, pairs with fixed coordinate
distance y, in the other case pairs with fixed invariant distance

s = eζ̄ y (3.18)

are chosen. Hence we can express Pζ in terms of the locally defined spectrum P̃ζ through

Pζ(y) = − d

d ln y
〈ζ(~x) ζ(~x+ ~y)〉 = − d

d ln s
〈ζ(~x) ζ

(
~x+ ~e

(
yeζ̄
)
e−ζ̄
)
〉 = 〈P̃ζ(yeζ̄)〉 . (3.19)

Here the second equality holds because logarithmic derivatives in y and s agree. The third
equality relies on the fact that P̃ζ is a local quantity, as explained before. The averaging
in the last term remains non-trivial because of the variation of ζ̄ over the large patch of
size L on which Pζ was originally defined.

Expanding to second order in ζ̄, we find

Pζ(y) = P̃ζ(y) + 〈ζ̄〉 d

d ln y
P̃ζ(y) +

1

2
〈ζ̄2〉 d2

d(ln y)2
P̃ζ(y) . (3.20)

This quantifies the deviation of the observer-patch-dependent spectrum Pζ from the lo-
cally defined spectrum P̃ζ for large patches. It also clarifies the origin of the large log-
arithms of L found in the δN -formalism. They arise because the expectation values of
ζ̄ and ζ̄2 grow logarithmically with L. We note that, if the power spectrum P̃ζ is scale
independent, the two last terms in eq. (3.20) vanish. This is compatible with eqs. (3.7),
(3.9) and has a simple intuitive reason: The log-enhancement occurs because in regions
with a large background value of ζ̄ the scale of a given mode is effectively misidentified.
However, in the scale-invariant case, such a misidentification has no consequences.

We now compare eqs. (3.20) and (3.7) quantitatively. To achieve this, we can rewrite
derivatives in ln y in terms of derivatives in ϕ using d ln(y)/dϕ = Nϕ (alternatively we
can directly use the results of Appendix 3.5.2) and express expectation values of ζ̄ and
ζ̄2 in terms of ϕ-correlators using eq. (3.5). Equivalently, we can observe that eq. (3.20)
is simply a second order Taylor expansion around the classical trajectory. Since there is
an unambiguous functional relation between fluctuations in ϕ and in ζ (the latter being
equivalent to ln y), we immediately conclude that

Pζ(y) = P̃ζ(y) +
1

2

d2 P̃ζ
dϕ2

〈δϕ2〉 = P̃ζ(y) +
1

2
Pχ ln(L/y)

d2P̃ζ
dϕ2

. (3.21)

Here 〈δϕ2〉 is the zero-momentum δϕ correlator with UV cutoff y and IR cutoff L, in
analogy to 〈ζ̄2〉 above. Furthermore, we used the fact that the expectation value of δϕ
vanishes. Thus, we have achieved complete agreement with the IR divergences or, more
precisely, with the log-enhanced corrections which arise in the δN -formalism.
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3.4. DISCUSSION

To summarize, we have obtained a simple physical interpretation for the logarithmic
contributions to the power spectrum that were determined in the previous section: The
log-enhancement arises due to the use of global coordinates in a very large region, where
these deviate significantly from the invariant distance. It can be completely avoided if the
power spectrum P̃ζ is considered, which is based on the two-point correlation function
defined in terms of the invariant distance between each pair of points appearing in the
spatial average.

As mentioned in the Introduction 3.1, a discussion closely related to the present section
appeared in [80] while our paper [64] was being finalized. In particular, using an argument
slightly different from ours, a log-enhancement arising from the large-scale geometry of
the reheating surface was derived. Our findings can be brought into agreement with [80]
if we drop the term ∼ 〈ζ̄〉 in eq. (3.20) and set αζ = dnζ/d ln k to zero. This corresponds
to keeping just the (nζ − 1)2 term in our eq. (3.9). Indeed, the term proportional to 〈ζ̄〉
disappears if we rescale our coordinates on the reheating surface according to y → ye−ζ̄ .
This can be directly checked from eq. (3.20) and corresponds to the fact that, in these new
coordinates, the average of ζ vanishes. While this is certainly a rather natural coordinate
choice, it does not serve our purpose of comparing with the δN -formalism: Indeed, in this
new coordinate system the value ζ = 0 does not any more correspond to the endpoint of
the classical trajectory. Nevertheless, setting questions related to the δN -formalism aside,
the term ∼ 〈ζ̄〉 appears just to be matter of different conventions between [80] and our
discussion. By contrast, we believe that our term ∼ αζ is real and, in general, no more
slow-roll suppressed than the (nζ − 1)2 term.

The agreement of the findings of this section (and of [80], subject to the caveats
mentioned above) with the previously discussed calculation in the δN -formalism is a non-
trivial result. In particular, [80] argue that any attempt to understand the IR divergences
using the δN -approach is incomplete due to certain divergences of the δϕ correlation
function which are already present at horizon crossing. One way of interpreting our
modification of the δN -formalism is by saying that, via Eq. (3.3), we include such diver-
gences in the formalism.4 It thus appears that our purely classical modification to the
δN -formalism is sufficient to fully capture the leading logarithmic behaviour.

3.4 Discussion

We have studied IR divergences during inflation using both the δN -formalism and a sim-
ple, phenomenological approach based just on the geometry of the reheating surface. By
implementing a simple modification of the δN -formalism, we took into account the effect
of modes that left the horizon long before the scales we are observing on the Hubble
scale. Including this effect provides new log-enhanced contributions to the power spec-
trum, at the same order in H and slow-roll as the standard classical loop corrections. We
found that the combination of all contributions can be assembled in an elegant formula,
in which the log-enhanced contributions are weighted by the second derivative of the tree
level power spectrum, with respect to the inflaton field.

This result can be understood intuitively by considering two power spectra: One is
defined locally on the surface of reheating, using invariant distances to define the correla-
tor. The other is based on the coordinate distance on this surface and depends on global

4We would like to thank Martin Sloth for a conversation helping us to correct our comments on this
issue, in the first version of the paper.
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features of this surface, in particular on long-wavelength modes. When expressed in terms
of the local spectrum, this latter, global spectrum exhibits an IR divergence associated to
the size of the region on which it is measured. It is, in fact, this latter spectrum that is
calculated in the δN -formalism and the log-divergence found in both approaches is pre-
cisely the same. This provides strong support for the modification of the δN -formalism
we propose. In the case of an exactly scale invariant spectrum, the IR logarithms are
absent. For an observer dealing with a scale-dependent spectrum and having a very large
region available for his measurement, the use of the local spectrum, which is not affected
by our IR effects, appears to be clearly favored.

In single-field, slow-roll inflation the coefficient multiplying the logarithm is heavily
suppressed. While it is usually also suppressed in multi-field models, this statement does
not hold any more in complete generality. In fact, in some special cases the coefficient
could be large enough to compensate for the power spectrum suppression found in single-
field models [52, 82]. It would therefore clearly be of interest to extend our results to
multi-field inflation. In these models, which contain isocurvature perturbations during
inflation, the Hubble scale will depend on several fields, even if the primordial curvature
perturbation depends on only one field. In cases where the loop correction is not small, it
has been argued they could give an observable contribution to ζ through non-Gaussianity
[37,46,83–88], in particular through a special type of scale dependence of the bispectrum
non-linearity parameter [52,82]. For a discussion of the scale dependence of the tree level
bispectrum see [40]. It would thus be interesting to study the effect of our loop corrections
on the bispectrum (and higher order n-point correlators).

3.5 Appendices

3.5.1 Correlator of the curvature perturbation

In this appendix, we present the calculation relating the correlator of curvature pertur-
bations ζ to correlators of the Gaussian random field χ. The terms which need to be
calculated are

〈 ζ~kζ~p 〉 = N2
ϕ〈 δϕ~kδϕ~p 〉+NϕNϕϕ〈 δϕ~k

(
δϕ2
)
~p
〉

+
N2
ϕϕ

4
〈
(
δϕ2
)
~k

(
δϕ2
)
~p
〉+

NϕNϕϕϕ

3
〈 δϕ~k

(
δϕ3
)
~p
〉 . (3.22)

In the previous equations, expressions like (δϕ2)~k indicate convolutions. The terms in the
last two lines contain correlators between convolutions, that provide (see [83] for more
details)

〈
(
δϕ2
)
~k

(
δϕ2
)
~p
〉 = 4Pχ ln(kL) 〈χ~kχ~p 〉 , (3.23)

〈 δϕ~k
(
δϕ3
)
~p
〉 = 3Pχ ln(kL) 〈χ~kχ~p 〉 . (3.24)

Using the expansion of eq. (3.3), written in momentum space, the 2-point correlator of
the scalar field δϕ is given by

〈 δϕ~kδϕ~p 〉 = 〈χ~kχ~p 〉
[
1 +

(
A2

1 + 2A2

) ∫
l,m� k

d3l

(2π)3

d3m

(2π)3
〈χ~lχ~m 〉

]
(3.25)

= 〈χ~kχ~p 〉
[
1 +

(
A2

1 + 2A2

)
Pχ ln(kL)

]
. (3.26)
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Note that, after applying Wick’s theorem, only one term survives the conditions l,m� k.
The remaining correlator 〈 δϕ~k (δϕ2)~p 〉, appearing in the second term of eq. (3.22), is of
order three in δϕ. Therefore, only terms at next-to-leading order, in the expansion of eq.
(3.3), contribute to it. One finds

〈δϕ~k (δϕ2)~p〉 = A1

∫
d3q

(2π)3

∫
l�k

d3l

(2π)3
〈χ~k−~l χ~l χ~p−~q χ~q 〉

+2A1

∫
d3q

(2π)3

∫
l�q

d3l

(2π)3
〈χ~k χ~l χ~q−~l χ~p−~q 〉. (3.27)

Decomposing the four point functions appearing in the integrands by means of Wick’s
theorem, and taking care of the conditions on the size of l, one finds

〈 δϕ~k
(
δϕ2
)
~p
〉 = 4A1Pχ ln(kL) 〈χ~kχ~p 〉 . (3.28)

Putting all terms together, the final result for the spectrum of curvature perturbations
reads

Pζ(k) = Pχ
{
N2
ϕ + Pχ ln(kL)

[(
A2

1 + 2A2

)
N2
ϕ + 4A1NϕNϕϕ +N2

ϕϕ +NϕNϕϕϕ

]}
(3.29)

= PχN2
ϕ + Pχ ln(kL)

1

2

d2

dϕ2

(
N2
ϕPχ

)
. (3.30)

3.5.2 Power spectrum in coordinate space

In this appendix, we discuss properties of the power spectrum in coordinate space, defined
in eq. (3.15) as

Pζ(y) ≡ − d

d ln y
〈 ζ(~x) ζ(~x+ ~y) 〉 . (3.31)

The power spectrum in coordinate space is no more difficult to handle than the usual
power spectrum in momentum space. Moreover, as discussed in the main text, it allows
for a simpler and more direct analysis of log-enhanced contributions associated with this
quantity.

However, for the purpose of this appendix, we consider only observed regions which
are not much larger than y (i.e. IR cutoffs not much smaller than the relevant momentum
scale k). Under this assumption, Pζ and P̃ζ coincide and all that follows applies to both
spectra.

We can compare the two definitions of the power spectra as follows. Fourier expanding
the two-point function of curvature perturbations, we can write

Pζ(y) = − d

d ln y

∫
d3p

(2π)3

d3k

(2π)3
e−i[~p~x+~k(~x+~y)] 〈ζ(~p)ζ(~k)〉 (3.32)

= − d

d ln y

∫
k2 dk

2

∫ 1

−1

d(cos θ) ei k y cos θ PFζ (k) (3.33)

= − d

d ln y

∫
k0

sin(ky)

ky
PFζ (k) d ln k . (3.34)

To pass from the first to the second line, we used the definition of the power spectrum
in momentum space, given before eq. (3.7). It is labeled by an F , to distinguish it from
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the analogous quantity in real space. In the third line, we made the IR cutoff explicit
introducing a scale k0. We can expand PFζ as

PFζ (k) = PFζ (kp) + ln

(
k

kp

)
dPFζ
d ln k

(kp) + · · · , (3.35)

where kp is some pivot scale, the inverse of which is of the order of y: we can set y ' k−1
p .

The second and higher terms are slow-roll suppressed with respect to the first term.
Substituting this expansion in eq. (3.32), we find

Pζ(y) = PFζ (kp)
sin k0y

k0y
+ slow-roll suppressed terms (3.36)

where the slow-roll suppressed terms are weighted by logarithms of order ln (k0y). We
choose k0 such that k0y ' k0/kp � 1, but not as small as to lead to large logarithms
in the slow-roll suppressed terms. This implies that the power spectra in coordinate and
momentum space coincide, up to negligible slow-roll corrections:

Pζ(y) ' PFζ (1/y) . (3.37)

34



Chapter 4

Inflationary Correlation Functions
without Infrared Divergences

The content of this chapter is published in [61].

As already discussed in chapter 3, inflationary correlation functions are potentially
affected by infrared divergences. For example, the two-point correlator of curvature per-
turbation at momentum k receives corrections ∼ ln(kL), where L is the size of the region
in which the measurement is performed. In this chapter, we define infrared-safe correlation
functions which have no sensitivity to the size L of the box used for the observation. The
conventional correlators with their familiar log-enhanced corrections (both from scalar
and tensor long-wavelength modes) are easily recovered from our IR-safe correlation func-
tions. Among other examples, we illustrate this by calculating the corrections to the
non-Gaussianity parameter fNL coming from long-wavelength tensor modes. In our ap-
proach, the IR corrections automatically emerge in a resummed, all-orders form. For the
scalar corrections, the resulting all-orders expression can be evaluated explicitly.

4.1 Introduction

Infrared divergences associated with the inflationary power spectrum are a long-standing
issue [8, 9, 55–58] which has more recently received a lot of attention following [24, 59].
Our focus is on divergences which directly affect the power spectrum. According to [60]
such divergences are cut off by the size L of the observed patch of the late universe. We
are going to develop and generalize the analyses of [64, 80] (see also [89]). This approach
emphasizes the way in which long-wavelength perturbations do (or do not) influence
locally measured inflationary spectra. It may be related to earlier proposals of [71, 72]
and is clearly in line with at least part of the subsequent discussion in [90].

Infrared divergences explicitly arise in loop corrections to inflationary observables (us-
ing e.g. the in-in formalism) or through the nonlinear dependence of the curvature pertur-
bation on fluctuations of an underlying scalar field (e.g. in the δN approach). The vast
amount of literature on the subject (see e.g. [38,69,70,73–77,79,91–106]) has recently been
reviewed in [78]. More or less by definition, IR divergences are due to modes which have a
much longer wavelength than the characteristic scale of the problem under consideration.
Focussing on correlation functions, it is then clear that such IR modes left the horizon
earlier than the modes which are directly accessed via the correlation function at a given
scale. Hence a generic effect of these IR modes is a modification of the background in
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which other modes propagate and are eventually observed.

Much debate has been raised on how to interpret such IR divergences. At least in the
case of single-field slow-roll inflation, it is now widely accepted that log-divergent integrals
over soft modes have to be cut off at a kmin ∼ 1/L, where L is the typical size of the
‘box’ in which the observer measures some correlator at momentum k � 1/L [60] (see
also [37,68,83,107]). It is thus more appropriate to talk about a log-enhancement rather
than a log-divergence. The suggestion that long-wavelength modes can be absorbed in the
background and hence do not affect the correlator at momentum k has been put forward
long ago [108–113]. In this sense, the absence of IR divergences in situations where L
is not much larger than k may have been apparent to many authors even before Lyth’s
paper [60] of 2007.

We note that backreaction of long-wavelength modes in quasi-de Sitter space-times
has been considered also in other contexts [108–111, 114–122], most notably in attempts
to compensate the cosmological constant or to explain the current accelerated expansion
of the Universe. We have nothing to say concerning these topics and refer the reader
to [78] for a more extensive compilation of the relevant literature.

In this chapter, we analyse IR effects associated with the backreaction of long-wavelength
scalar and tensor modes in inflationary backgrounds, in the spirit of [64, 80]. This ap-
proach is related to the consistency relations [22,123,124]. Developing and generalizing a
suggestion made in [64] (see also [90]), we propose an IR-safe definition of correlation func-
tions involving curvature fluctuations. In doing so, we remove any sensitivity to modes
that have a much longer wavelength than the scale at which the correlator is probed. The
essential idea is to make use of the proper invariant distance on the reheating surface,
where the curvature perturbation is evaluated. Considering two points on this surface,
the dependence of the (physical) invariant distance on the coordinate vector, correspond-
ing to the separation of the two points, is affected by long-wavelength contributions from
geometrical quantities, namely the curvature and tensor perturbations. The misidentifi-
cation of the distance due to long-wavelength modes is precisely the origin of IR effects.
Consequently, by using the proper invariant distance, it is possible to construct n-point
functions for the curvature perturbation that are free from the effect of long-wavelength
modes and, hence, free from IR divergences associated with these contributions.

We show how to relate n-point functions, calculated in terms of the invariant distance,
to the conventionally defined n-point functions. This allows us to provide closed expres-
sions for the latter that manifestly exhibit the dependence on long-wavelength modes.
As a consequence, in our approach the IR corrections to n-point functions automatically
emerge in a resummed, all-orders form. When expanded at leading order in terms of
long-wavelength modes, we recover the familiar log-enhanced, IR sensitive contributions.
We apply our approach to the analysis of the two- and three-point functions for the cur-
vature perturbation in slow-roll, single field inflation. The leading IR corrections to the
power spectrum appear as log-enhanced contributions, multiplied by the power spectrum
and second order slow-roll parameters. Furthermore, our resummed, all-orders expres-
sion allows us to evaluate IR corrections in a non-perturbative way by using statistical
properties of the integrated long-wavelength fluctuation. We apply this framework to
specific inflationary set-ups, obtaining a complete expression that includes all contribu-
tions of scalar long-wavelength modes to the power spectrum. Regarding the bispectrum,
we derive the complete expression for long-wavelength scalar and tensor contributions
to fNL. We then expand the result at leading order in slow-roll, showing that tensor
modes dominate the slow-roll expansion and provide the leading log-enhanced contribu-
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tions to non-Gaussianity. Contrary to the power spectrum, we find that the leading order
correction to fNL is suppressed only by first order slow-roll parameters.

We also show that, in all cases where the δN -formalism is applicable, our results
can be equivalently obtained in terms of a suitable generalization of the δN -formalism,
extending the discussion of [64]. In the present work, we include the effects of graviton
long-wavelength modes, and we explain how to calculate IR contributions to arbitrary
n-point functions involving curvature perturbations.

Log-enhanced contributions to inflationary observables, both in the in-in formalism
and in the δN -formalism, have received much attention over the past few years. In the
case of the δN -formalism, they have been associated with infrared divergences of the
so called C-loops, and have been calculated mostly in terms of a diagrammatic expan-
sion [83, 85, 125, 126]. Although our approach is related, it is conceptually and techni-
cally different. We derive IR contributions directly from geometrical quantities. These
corrections appear automatically in a resummed, all-orders form and do not need any
diagrammatic expansion. Following arguments given in [80], the presented derivation of
IR effects from the geometry of the reheating surface matches IR contributions due to
quantum loop effects of long-wavelength modes calculated à la Weinberg [24,59], although
a direct comparison is beyond the scope of this chapter.

The chapter is organized as follows: In sec. 4.2, we present the definition of IR-safe
correlation functions and we show the emergence of IR corrections in a resummed, all-
orders form by relating conventional correlation functions to their IR-safe equivalents.
Furthermore, we show for scalars how this expression can be evaluated explicitly. In
sec. 4.3, we give an alternative approach in single field, slow-roll inflation in the language
of the δN -formalism. In sec. 4.4 and sec. 4.5, we apply our results to the power spectrum
and to the non-Gaussianity parameter fNL, respectively. We discuss our results in sec. 4.6.

4.2 Geometry of the reheating surface

In this section we provide a physical interpretation for the appearance of log-enhanced
correction to inflationary correlation functions, developing and generalizing [64, 80]. We
start from the assumption that the reheating surface (or any other surface of constant
energy density after the end of inflation), viewed as a metric manifold, represents in
principle a physical observable. Neglecting vector modes, the metric of this surface can
be written as

ds2
3 = e2ζ(~x)

(
eγ(~x)

)
ij
dxidxj . (4.1)

We choose a gauge where the symmetric matrix γ is traceless and ∂iγij = 0. Of course, ζ is
accessible only indirectly, e.g. via δT/T of the CMB radiation, but for the present paper we
simply assume that this does not limit its observability. Considering, for example, single
field slow-roll inflation, the expressions for ζ and γij (in momentum space) read [14]

ζ(~q) =
Nϕ(q)H(q)√

2q3
â~q γij(~q) =

∑
s=+,×

H(q)√
q3

εsij(~q) b
s
~q . (4.2)

These quantities are conserved on superhorizon scales [21–23]. In the equations above,
â~q and bs~q are normalized Gaussian random variables and s is the helicity index for
gravitational waves. The polarization tensors εsij are chosen to satisfy the transver-
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CHAPTER 4. INFLATIONARY CORRELATION FUNCTIONS WITHOUT
INFRARED DIVERGENCES

sality and tracelessness conditions, as well as an orthogonality relation1. Furthermore,
Nϕ(q) = V/(dV/dϕ) and H(q) =

√
V (ϕ)/3 with both quantities evaluated at the time of

horizon exit of the mode q.
Although, for definiteness, we focus on slow-roll inflation, the particular expressions

for ζ and γij given above are not essential for the formalism presented in this section.
Consequently, our arguments are largely independent of the specific inflationary set-up
under consideration. Important consequences for the n-point functions can be derived
just from the geometry of the reheating surface specified above. Focussing on corrections
to the curvature perturbation ζ, we start by discussing the power spectrum and then
generalize to spectra of n-point functions, for arbitrary n.

4.2.1 The power spectrum

Using its definition, 〈 ζ~kζ~p 〉 = (2π)3δ(3)(~k + ~p) 2π2Pζ(k)/k3, the power spectrum can be
written as the Fourier transform of the correlation function in real space:

Pζ(k) =
k3

2π2

∫
d3y e−i

~k~y 〈 ζ(~x) ζ(~x+ ~y) 〉 . (4.3)

Since we want to interpret this formula as a practical prescription for the measurement
of the power spectrum, we do not view 〈· · · 〉 as an abstract ensemble average. Instead,
the averaging is over pairs of points separated by a coordinate-vector ~y within a certain
part of the reheating surface. In other words, we are averaging over the location ~x of
such pairs. This prescription clearly relies on a certain parameterization of the reheating
surface and is hence gauge dependent. Nevertheless, given the gauge choice made earlier,
the resulting Pζ(k) is a well-defined observable.

An observer is not able to probe the whole inflationary region. We assume that the
observable patch is a box of volume L3 to which the ~x-averaging is restricted. While this
may not be immediately apparent from (4.3), the power spectrum measured by a given
observer depends on the box-size L. Qualitatively, this can be seen as follows:

Focus on a certain momentum k. Due to the Fourier transform, the power spectrum
at this k is determined by the behavior of the 〈 ζ(~x) ζ(~x + ~y) 〉 as a function of y in the
region y ∼ 1/k (here y =

√
δij yiyj is the length of ~y). However, at different ~x the same

value of y may correspond to different physical (invariant) distances between points ~x and
~x+~y at which ζ(~x) and ζ(~x+~y) are evaluated. The reason for this is the long-wavelength
background

ζ̄(~x) =

∫
L−1<q�k

d3q

(2π)3
ei~q~x ζ(~q) γ̄ij(~x) =

∫
L−1<q�k

d3q

(2π)3
ei~q~x γij(~q) , (4.4)

which varies significantly as ~x varies over a box of (sufficiently large) size L. Indeed, the
physical distance between the points ~x and ~x + ~y appearing in the average is given by
z2 = e2ζ̄ (eγ̄)ij y

iyj. Moreover, this mismatch between y and the true distance z grows
with L. This effect is at least one of the origins of the familiar IR-problems of inflationary
correlation functions. At leading order, IR-problems originate precisely from this effect.

1We use conventions such that the Fourier transform reads ζ(~x) =
∫

d3k
(2π)3 ei

~k~xζ(~k) . The Gaussian

random variables â~k and bs~k have zero mean and variance 〈 â~k â~p 〉 = (2π)3 δ(3)(~k + ~p) and 〈 bs~k b
s′

~p 〉 =

(2π)3 δ(3)(~k + ~p) δss
′

. The polarization tensor for gravitational waves satisfies εsii(
~k) = 0 = kiε

s
ij(
~k) and

the orthogonality relation
∑
ij ε

s
ij(
~k) εs

′

ij(−~k) = 2δss′ .
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To be more precise, we somewhat jump ahead and note that 〈ζ̄2〉 ∼ (NϕH)2 ln(kL),
with a similar formula holding for γ̄. In other words, the expectation value of ζ̄2 grows
logarithmically with L because of the summation over modes between 1/L and k involved
in its definition. Thus, the effect of these backgrounds on ζ-correlators at the scale k can
become large if the logarithm overcomes the suppression by the tree-level power spectrum
(NϕH)2. Such a potentially large effect can come only from the factors e2ζ̄ and eγ̄ relating
the coordinate distance y and the invariant distance z, as explained above. If we are able
to remove this effect from the definition of the power spectrum, then we have removed all
IR effects at the leading-logarithmic order. By this we mean all corrections involving as
many powers of ln(kL) as of the suppression factor (NϕH)2, at leading order in slow-roll.

To avoid this (leading-logarithmic) L-dependence (or IR-sensitivity), we propose to
use the invariant distance z for the definition of the curvature correlator [64, 90]. The
background contains, by its very definition, only modes much longer than the relevant
scales y ∼ 1/k. Hence the background is smooth at the scale y. Its presence corresponds
to a (constant) coordinate transformation ~y → ~z:

zi = eζ̄
(
eγ̄/2

)i
j
yj . (4.5)

The invariant distance z =
√
δij zizj represents the physical separation of the points ~x

and ~x+ ~y, independently of the location ~x and the background in its surroundings.

Thus, the correlator 〈 ζ(~x) ζ(~x + e−ζ̄(~x) e−γ̄(~x)/2 ~z) 〉 involves an average over pairs of
points that are separated by a certain invariant distance z. The z-dependence of this
correlator is then a background-independent object. To make this even more apparent,
we spell out the exact prescription for obtaining this correlator: The basic step consists
in picking a pair of points from the reheating surface which are separated by an invariant
distance z and multiplying the corresponding values of ζ. This in itself is not background
independent since the background can shift ζ by a constant. However, once we restrict
our interest to the z-dependence of this product of ζ-values, any such constant drops out.
Hence, the z-dependence of 〈 ζ(~x) ζ(~x + e−ζ̄(~x) e−γ̄(~x)/2 ~z) 〉 is indeed an IR-safe quantity:
While the average is in practice over a certain region of size L, the expectation value is
independent of where we are in this region. It can therefore not depend on the size L
of the underlying region. To say it yet in another way: Single-field inflation ends in the
same way in every part of the universe and hence a correlator, defined in a purely local
manner, can not depend on the size of the region from which the sample of pairs of points
is chosen.

Consequently, we can define an IR-safe power spectrum, that we denote P(0)
ζ , by

P(0)
ζ (k) =

k3

2π2

∫
d3z e−i

~k~z
〈
ζ(~x) ζ(~x+ e−ζ̄(~x) e−γ̄(~x)/2 ~z)

〉
. (4.6)

This Fourier transform at scale k is only sensitive to the z-dependence of the correlator
in the region z ∼ 1/k. It is hence IR-safe by the arguments given above.

The expression for the original IR-sensitive power spectrum Pζ given in (4.3) follows
from comparing eq. (4.3) and eq. (4.6). Starting from eq. (4.3), we express the vector ~y
in terms of the vector ~z. Notice that this also affects the argument of the exponential.
Then, we perform a coordinate transformation d3y → d3z in order to bring the integral
in a form similar to eq. (4.6). As a final step, we can express the result in terms of the

IR-safe power spectrum evaluated at e−ζ̄(~x)e−γ̄(~x)/2~k . A detailed calculation can be found
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in Appendix 4.7.1. The result reads

Pζ(k) =

〈 [(
e−γ̄(~x)

)
ij
k̂ik̂j

]−3/2

P(0)
ζ

(
e−ζ̄(~x)e−γ̄(~x)/2~k

) 〉
. (4.7)

The vector k̂ is a unit-vector in ~k-direction and the average is performed over the back-
ground quantities ζ̄(~x) and γ̄ij(~x). Neglecting tensor fluctuations in the equation above,
we recover our result [64] for corrections to the power spectrum due to scalar fluctua-

tions, i.e. Pζ(k) = 〈 P(0)
ζ (ke−ζ̄) 〉. Let us point out the presence of a prefactor, containing

only tensor fluctuations, in eq. (4.7). It is originating from the coordinate transforma-
tion d3y → d3z in the comparison of the two spectra. While scalar fluctuations receive
a contribution from this transformation, tensor fluctuations do not, due to the fact that
det eγ = 1. Expanding to leading non-trivial order in the background yields

Pζ(k) =

(
1− 1

20
〈 tr γ̄2 〉 d

d ln k
+

1

2
〈 ζ̄2 〉 d2

d(ln k)2

)
P(0)
ζ (k) , (4.8)

in agreement with [80] (see also Section 4.4). Here, we used the zero mean condition
〈 ζ̄(x) 〉 = 0 = 〈 γ̄ij(~x) 〉, which can always be realized by a rescaling of coordinates. In
principle, one may choose coordinates where this is not the case. But it is rather natural
to assume that an observer would specify coordinates in such a way that his observable
patch is not affected by a constant background shift. In the particular case of slow-roll
inflation, both corrections in eq. (4.8) are of the same order. While, according to the
scalar-to-tensor ratio, tr γ̄2 is more slow-roll suppressed than ζ̄2, it appears with only
one derivative in ln k. Hence, tensor corrections are as important as scalar corrections in
slow-roll inflation.

The remaining task is to average the background quantities, given in eq. (4.4). In
principle, we have to average ζ̄(~x) and γ̄(~x) over the large observed region of box-size
L. However, this is equivalent to an ensemble average of ζ̄(0) and γ̄(0) with IR cut-off
L. Thus, in single-field, slow-roll inflation, we are dealing with sums of Gaussian random
variables â~q, respectively bs~q,

ζ̄ =

k∫
1/L

d3q

(2π)3
ζ(~q) =

k∫
1/L

d3q

(2π)3

Nϕ(~q)H(~q)√
2q3

â~q (4.9)

γ̄ij =

k∫
1/L

d3q

(2π)3
γij(~q) =

k∫
1/L

d3q

(2π)3

∑
s=+,×

H(~q)√
q3

εsij(
~k) bs~q . (4.10)

While their averages are vanishing, 〈 ζ̄ 〉 = 0 = 〈 γ̄ij 〉, one finds a scale-dependent result
for the two-point functions. For instance under the assumption of a scale-invariant power
spectrum, they obey a logarithmic scale-dependence

〈 ζ̄2 〉 =

(
NϕH

2π

)2

ln(kL) 〈 tr γ̄2 〉 = 〈 γ̄ij γ̄ij 〉 = 8

(
H

2π

)2

ln(kL) . (4.11)

Neglecting tensor fluctuations for the moment, the background ζ̄ is a sum of Gaussian
random variables â~q. Therefore, ζ̄ itself is a Gaussian random variable, with distribution2

P
[
ζ̄
]
dζ̄ =

1√
2πσ2

ζ

exp

(
− ζ̄2

2σ2
ζ

)
dζ̄ (4.12)

2This is related to the stochastic approach [38] of Starobinsky.

40



4.2. GEOMETRY OF THE REHEATING SURFACE

where the width is

σ2
ζ = 〈 ζ̄2 〉 =

k∫
1/L

d3q

(2π)3

N2
ϕ(~q)H2(~q)

2q3
. (4.13)

Note that we do not assume a scale-invariant behavior of the power spectrum in this
expression. Typically, the n-point functions we are interested in can be expressed as
〈 f( ζ̄(~x) ) 〉, for some function f . As usual for Gaussian variables, this may be expressed
in terms of an integral over a Gaussian probability distribution

〈 f(ζ̄) 〉 =
1√

2πσ2
ζ

∫
dζ̄ exp

(
− ζ̄2

2σ2
ζ

)
f(ζ̄) . (4.14)

As an example, the power spectrum is given by

Pζ(k) =
1√

2πσ2
ζ

∫
dζ̄ exp

(
− ζ̄2

2σ2
ζ

)
P(0)
ζ (ke−ζ̄) . (4.15)

Consequently, the question of convergence of fluctuations due to long-wavelength modes
reduces to convergence properties of this single integral. The usual series expansion can
be recovered by expanding the function P(0)

ζ in the logarithm of the scale k. This yields

Pζ(k) =
∞∑
n=0

〈 ζ̄2n 〉
(2n)!

d2nP(0)
ζ (k)

d(ln k)2n
(4.16)

〈 ζ̄2n 〉 =
1√

2πσ2
ζ

∫
dζ̄ ζ̄2n exp

(
− ζ̄2

2σ2
ζ

)
= (2n− 1)!!

(
σ2
ζ

)n
, (4.17)

where n!! denotes the double factorial. This is in agreement with [80]. We emphasize,
however, that a breakdown of convergence of the series does not necessarily mean a
breakdown of convergence of the integral in eq. (4.15). We return to this point in sect. 4.4.
Notice also that in eqs. (4.9) and (4.10) we have neglected the intrinsic non-Gaussianity
of curvature and tensor perturbations. Such intrinsic non-Gaussianity is present at sub-
leading order in slow-roll. However, at every log-order, there is a term consisting solely of
Gaussian contributions. Relative to this term, contributions with intrinsic non-Gaussian
parts are suppressed by slow-roll parameters and the Hubble scale with no additional
log-enhancement. Therefore, neglecting the non-Gaussian contribution is justified in our
leading-log analysis of IR-corrections.

Attention has to be paid to the fact that inflation has ended at some point. Hence,
there exists a value kmax corresponding to modes that have never left the horizon. The
observer measuring Pζ(k) for some fixed k will have to exclude regions where ke−ζ̄ > kmax

from his averaging procedure. Technically, this implies a lower bound for the ζ̄-integral,
given by ζ̄min = − ln(kmax/k).

Pζ(k) =
1√

2πσ2
ζ

∞∫
ζ̄min

dζ̄ exp

(
− ζ̄2

2σ2
ζ

)
P(0)
ζ (ke−ζ̄) . (4.18)
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The Gaussian function in eq. (4.18) gives a non-negligible contribution only in a limited
range around zero. This range is of the order of σζ . For large L (implying large σζ)
and for k sufficiently close to kmax, the lower bound ζ̄min enters this range. Hence, in
such cases, the lower bound implies the subtraction of a significant contribution from
the integral. We finally note that the existence of kmax and ζ̄min are related to potential
convergence problems of the series expansion in eq. (4.16). This is apparent since the
slow-roll conditions, which are responsible for the smallness of derivatives of Pζ(k), break
down near kmax.

Including tensor modes is in principle straightforward, but complicated by the matrix
structure of γ̄ and the different independent polarizations involved. In order not to over-
burden formulae, we set the scalar background ζ̄ to zero in what follows. The complete
power spectrum can then be expressed as

Pζ(k) =

〈 [(
e−γ̄
)
ij
k̂ik̂j

]−3/2

P(0)
ζ

([(
e−γ̄
)
ij
k̂ik̂j

] 1
2
k

) 〉
, (4.19)

where k̂ is the unit vector parallel to ~k. We also introduce the notation

n ≡
[(
e−γ̄
)
lm
k̂lk̂m

]
. (4.20)

Note that each entry of the matrix γ̄ij, being a sum of Gaussian random variables, is a
Gaussian random variable. However, the various entries in the matrix are not statistically
independent: this implies that it is not obvious how to calculate the statistical distribution
of the entries of the exponential of (−γ̄), that enters in the definition of n. Having
this distribution, that we denote with P [n], it is straightforward to provide an integral
representation for the power spectrum subject to tensor background modes:

Pζ(k) =

∫
dn P [n] n−

3
2 (k̂)P(0)

ζ

(
n

1
2 k
)

. (4.21)

It is clear that, at least numerically, P [n] can be determined and the integral can be
calculated.

4.2.2 Higher correlation functions

To discuss n-point functions, we could try to generalize the ’almost scale-invariant’ spec-
trum of eq. (4.3) by writing

Pn(~k1, . . . , ~kn) =

〈 (
k3

2π2

)n ∫
d3y1 . . . d

3yn e
−i(~k1~y1+...+~kn~yn) ζ(~x) ζ(~x+ ~y1) . . . ζ(~x+ ~yn)

〉
.

(4.22)
However, it is not clear which particular combination of k1 . . . kn one should use to define
k in the prefactor k3n. This is not irrelevant since factors eγ̄/2 will get tangled up in this
prefactor. Hence, we choose to write the general formula for the higher-order analogue
of the conventional spectrum Pζ(k) = 2π2Pζ(k)/k3. In doing so, prefactors will arise
from the scaling of the d3ya. Since the determinant of the tensor contribution is one,
this scaling consist exclusively of ζ̄, which only depend on the overall scale. Given these
preliminaries, the generalization of our formalism is completely straightforward and the
IR-safe spectrum is defined as

P (0)
n (~k1, . . . , ~kn) =

〈 ∫
d3z1 . . . d

3zn e
−i(~k1~z1+...+~kn~zn) ζ(~x) ζ(~x+ ~y1) . . . ζ(~x+ ~yn)

〉
,

(4.23)
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where
~ya = ~ya(~za, ζ̄, γ̄) = e−ζ̄e−γ̄/2~za . (4.24)

This means that we measure the correlation function in terms of n invariant distances,
characterized by a set of vectors ~za, a ∈ [1, . . . , n]. Hence, the ~za-dependence of the
corresponding n-point function is independent of background quantities and, therefore,
IR-safe. Consequently, its Fourier transform, i.e. the spectrum P

(0)
n , is the desired IR-

safe spectrum. A straightforward generalization of the previous calculation for the power
spectrum provides the following result

Pn(~k1, . . . , ~kn) =
〈
e−3nζ̄ P (0)

n (e−ζ̄e−γ̄/2~k1, . . . , e
−ζ̄e−γ̄/2~kn)

〉
. (4.25)

As already stressed above, the prefactor e−3nζ̄ originates from the naive scaling P
(0)
n ∼

k−3n.
The log-enhancement-effects of higher correlation functions specified by eq. (4.25) can

be directly applied to observables measuring non-Gaussianity, like fNL, as we are going
to discuss in section 4.5.

4.3 An alternative approach within slow-roll inflation

In the previous section we discussed a systematic way to define IR-safe n-point functions.
We have explained how to straightforwardly obtain, from these IR-safe quantities, the
corresponding IR-sensitive objects. In this section, we present an alternative point of
view: working only in momentum space, we will directly calculate the all-orders IR-
enhancement of the conventional power spectrum. To be more specific, we will compute
the curvature perturbation ζ, by implementing a suitable extension of the δN -formalism,
in such a way as to include the effects of long-wavelength modes. The results coincide
with what we obtained in the previous section, in all cases in which δN -formalism is
applicable. So, in these cases, the two methods are equivalent.

We focus on a single, slowly rolling scalar field ϕ (the extension to multiple fields is
outlined in Appendix 4.7.2). We assume the underlying metric to be of the form

ds2 = −dt2 + a2(t) ḡijdx
idxj . (4.26)

Throughout this section, we are interested in quantities evaluated at some wave vector ~k.
To analyze contributions from the background to these quantities, we find it technically
convenient to separate the fluctuations into modes characterized by momenta larger, and
smaller, than k. For modes ~q with q = |~q| � k, we will work in a gauge with δ~qϕ =
0. While for q around k and larger, we adopt a gauge with vanishing scalar metric
fluctuations. The advantage of this splitting, and of these different gauge choices, is that
the contribution from long-wavelength modes is contained in geometrical quantities and,
therefore, contained in the 3-metric

ḡij = e2ζ̄ (eγ̄)ij . (4.27)

Here, the scalar and tensor background, ζ̄ and γ̄ij, are defined as before. It would be in-
teresting to understand whether the above construction can be done in a gauge invariant
manner. On the other hand, let us stress that we proceed in this way only for tech-
nical convenience. One could also work with a gauge characterized by vanishing scalar

43



CHAPTER 4. INFLATIONARY CORRELATION FUNCTIONS WITHOUT
INFRARED DIVERGENCES

metric fluctuations for all ~q. With this choice, however, the scalar background from long-
wavelength δ~qϕ would affect the scalar field value at the time of horizon exit (see [64] for
a treatment of background modes of the scalar field ϕ in this latter gauge choice). In con-
trast, the tensor background would still enter via the 3-metric. Therefore, the inclusion
of tensor background modes within the δN -formalism requires a treatment as outlined
in this section, contrary to the scalar background which might be calculated by different
techniques.

The appearance of background contributions in the 3-metric eq. (4.27) has important

consequences for the physical length scale associated with the wave vector ~k, i.e. on the
physical wavelength. Due to the deviation of ḡij from flatness, this scale is not the inverse
of k =

√
kikjδij, but is instead given by 1/k′ with

k′2 = e−2ζ̄
(
e−γ̄
)
ij
kikj . (4.28)

Hence, the physical scale depends on the original vector ~k and on the background quan-
tities ζ̄ and γ̄ij. This dependence on background quantities leads to a shift in the time of

horizon exit for a given scalar mode of momentum ~k, from tk to tk′ . That is, since the
time of horizon exit is defined by the relation k = a(tk)H(tk) (a being the scale factor),
at first order in slow-roll we have the relation

dtk =
1

H
d ln k . (4.29)

For small time variations, and at leading order in slow-roll, we can integrate the previous
equation and find

H (tk′ − tk) = ln
k′

k
= −ζ̄ −∆ with (4.30)

∆ ≡
(

1

2
γ̄ij −

1

4
γ̄ilγ̄lj

)
k̂ik̂j +

(
1

2
γ̄ij k̂ik̂j

)2

+O(γ̄3) . (4.31)

Here, k̂ represents a unit vector in ~k-direction. The quantity ∆ collects the leading
order contributions from the long-wavelength tensor modes, obtained from expanding the
exponential in eq. (4.28).

The form of the background metric affects the dynamics of first order, massless scalar
fluctuations. In momentum space, the equation of motion for the scalar perturbations
reads (

δ~kϕ
)..

+ 3H
(
δ~kϕ
).

+
k′2

a2
δ~kϕ = 0 , (4.32)

where dots denote derivatives with respect to time. Note that the effect of background
quantities enters via the Laplacian which leads to the k′2 instead of k2 in the third term
on the left-hand side. The solution for the fluctuation δ~kϕ results in

δ~kϕ = δ~kϕ(k′, ḡij) =
H(k′)(

det
1
4 ḡij

)
(2k′3)

1
2

â~k (4.33)

in a superhorizon regime. In our notation H(k′) indicates that this quantity is evaluated
at time of horizon exit of the scale k′, instead of k, in order to take into account the
shift due to long-wavelength contributions. The normalization of δ~kϕ, det1/4 ḡij in the

44



4.3. AN ALTERNATIVE APPROACH WITHIN SLOW-ROLL INFLATION

denominator, is obtained when imposing the usual commutation relations between the
quantized scalar fluctuation and its momentum conjugate (see, for example, [34]). Another
way to understand it is the following: the normalization of δ~kϕ is set by requiring that in
the limit of short distances y, we recover the singularity of the scalar field in Minkowski
space for 〈 δϕ(~x) δϕ(~x + ~y) 〉. On these distances, the background quantities ζ̄ and γ̄ij
are constant and, hence, need to be absorbed in a redefinition of space variables in order
to bring the metric in Minkowski-form. This redefinition is responsible for the factor
det1/4 ḡij, appearing in the normalization of δ~kϕ.

Since γ̄ij is traceless, det ḡij = exp(6ζ̄) and eq. (4.33) can be rewritten as

δ~kϕ(k′, ḡij) =
H(k′)

√
2
[
kikj (e−γ̄)ij

] 3
4

â~k

= m
1
2 (k̂)

H(k′)

(2k3)
1
2

â~k , (4.34)

where we define the function m(k̂) that depends on a unit vector k̂ along the direction of
~k:

m(k̂) ≡
[(
e−γ̄
)
ij
k̂ik̂j

]− 3
2

. (4.35)

In equation (4.34), the dependence on background quantities is limited to the overall
function m(k̂) (that depends only on the tensor background, see eq. (4.35)) and to the
‘time’ argument k′ of the Hubble parameter.

Starting from scalar fluctuations and by using δN -formalism [23, 25, 37–39], we can
express the curvature fluctuation ζ at superhorizon scales on a constant energy density
slice, that we take to be the reheating surface, in terms of δϕ. The curvature perturbation
ζ~k is related to the time integral of the local expansion parameter, providing the number
of e-foldings, from an initial hypersurface (that we take at time of horizon exit for the

mode ~k) to the final hypersurface of constant energy density. In single field inflation, we
have

ζ = N [ϕ+ δϕ]− 〈N〉 , (4.36)

where 〈N〉 is the spatial average of the first term on the right-hand side. The quantity
ϕ+δϕ corresponds to the homogeneous value for the scalar field plus its perturbation built,
as above, on a space-time geometry that includes the contributions of long-wavelength
modes. The previous schematic expression can be expanded in the scalar fluctuations,
and gives in momentum space 3

ζ~k = Nϕ(k′) δ~kϕ(k′, ḡij) + . . . . (4.37)

Notice that functions on the right-hand-side are evaluated at time of horizon exit of
the mode ~k, which is sensitive to the change in the background geometry due to long-
wavelength modes. That is, their argument is k′ instead of k. As in section 4.2, the
function Nϕ = dN/dϕ is given by Nϕ = V/(dV/dϕ). The remaining terms in the δN
expansion, understood in the dots of eq. (4.37), are slow-roll suppressed with respect to

3For the purposes of this work, we can truncate the δN expansion to the first, leading order term in
slow-roll. Including higher order terms is straightforward, as we discuss in Appendix 4.7.2.
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the first one. Using the results obtained earlier, we get for ζ~k an expression in terms of
Gaussian random variables as follows

ζ~k =
[
m

1
2 (k̂)Nϕ(k′)H(k′)

] â~k

(2k3)
1
2

. (4.38)

The dependence on long-wavelength background quantities is contained in the overall
factor between squared parenthesis. Eq. (4.38), possibly including higher order terms in
the δN -expansion, is all what we need to straightforwardly compute inflationary observ-
ables, associated to n-point functions of curvature perturbations, including the effects of
long-wavelength modes. Eq. (4.38) can be regarded as an extension of δN -formalism. It
includes the contributions of long-wavelength scalar and tensor modes in the expression
for the curvature perturbation ζ.

As an application of eq. (4.38), we rederive the expression for log-enhanced contri-
butions to the power spectrum. We start with the two-point function of the curvature
perturbation

〈 ζ~k ζ~p 〉 =
1

2 (kp)
3
2

〈 m
1
2 (k̂)m

1
2 (p̂)Nϕ(k′)H(k′)Nϕ(p′)H(p′) â~kâ~p 〉

=
(2π)3δ(3)(~k + ~p)

2k3
〈m(k̂)N2

ϕ(k′)H2(k′) 〉 , (4.39)

where for passing from first to second line, we used Wick’s theorem and contracted the
Gaussian variables â~k and â~p. Indeed, â~k is only allowed to contract with â~p, since any
other quantity depends on modes with momenta much smaller than k. One obtains the
following expression for the power spectrum:

Pζ(k) =
1

(2π)2
〈m(k̂)N2

ϕ(k′)H2(k′)〉 . (4.40)

The argument of the average on the right-hand side depends on long-wavelength scalar
and tensor contributions, which, as shown in eq. (4.11), have non-vanishing two-point
functions. In absence of contributions of long-wavelength modes, eq. (4.40) provides the
following tree-level result

P(0)
ζ (k) =

1

(2π)2
N2
ϕ(k)H2(k) , (4.41)

which also coincides with the definition of the IR-safe power spectrum provided in section
4.2. Notice that the dependence on the scale k in P(0)

ζ occurs only through the dependence
on the time of horizon exit of the right-hand side. Using this fact, eq. (4.40) can be
rewritten as

Pζ(k) = 〈m(k̂)P(0)
ζ (k′)〉 . (4.42)

Recall that k̂ represents the unit vector along the direction of ~k, while k′ in the previous
expression is associated to k via eq. (4.28). Using these formulae, eq. (4.42) can be
rewritten as

Pζ(k) =

〈 [(
e−γ̄
)
ij
k̂ik̂j

]−3/2

P(0)
ζ

(
e−ζ̄e−γ̄/2~k

) 〉
. (4.43)

Not surprisingly, this corresponds exactly to equation (4.7), obtained with the method of
section 4.2.
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4.4 Two-point function and the power spectrum

In this section, we analyze the log-enhanced corrections due to scalar and tensor long-
wavelength modes to the power spectrum of curvature perturbation. Using the results
from sec. 4.2 or sec. 4.3, the power spectrum is given by the formula

Pζ(k) = 〈m(k̂)P(0)
ζ (k′)〉 (4.44)

=

〈 [(
e−γ̄
)
ij
k̂ik̂j

]−3/2

P(0)
ζ

(
e−ζ̄e−γ̄/2~k

) 〉
. (4.45)

As explained in section 4.2, this implies that we can deal with scalar perturbations to all
orders, resumming the complete series, in case an exact expression for the tree level power
spectrum is known. We will return to this important topic at the end of this section; for the
moment we focus on calculating, in full generality, the leading log-enhanced contributions
to the power spectrum. In order to do so, it is sufficient to expand eq. (4.45) in ζ̄ and γ̄.
The following equations are useful for this purpose

m(k̂) =
[(
e−γ̄
)
ij
k̂ik̂j

]−3/2

= 1 +
3

2
γ̄ij k̂ik̂j −

3

4
γ̄ilγ̄lj k̂ik̂j +

15

8

(
γ̄ij k̂ik̂j

)2

+O(γ̄3
ij) (4.46)

ln k′ = ln k − ζ̄ −∆ (4.47)

∆ =
1

2
γ̄ij k̂ik̂j −

1

4
γ̄ilγ̄lj k̂ik̂j +

1

4

(
γ̄ij k̂ik̂j

)2

+O(γ̄3
ij) . (4.48)

Here, k′ denotes the Euclidean length of the vector e−ζ̄e−γ̄/2~k. We will also make use of
the identity (see also [80]):

〈 γ̄ij γ̄lm 〉 =
1

30
〈 tr γ̄2 〉 [ 3 (δilδjm + δimδjl)− 2 δijδlm] , (4.49)

where 〈 tr γ̄2 〉 =
∑

ij〈 γ̄ij γ̄ij 〉. From this, it is easy to check that a cancellation leads

to 〈m(k̂)〉 = 1 + O(γ̄4). We can then expand eq. (4.44) up to the first non-vanishing
contributions. We obtain

Pζ(k) = P(0)
ζ (k)

〈
m(k̂) ·

[
1−

(
∆ + ζ̄

) 1

P(0)
ζ (k)

dP(0)
ζ (k)

d ln k
+
ζ̄2

2

1

P(0)
ζ (k)

d2P(0)
ζ (k)

d(ln k)2

]〉

=

{
1−

[
〈 (m(k̂)− 1) ∆ 〉+ 〈∆ 〉

] d

d ln k
+
〈 ζ̄2 〉

2

d2

d(ln k)2

}
P(0)
ζ (k)

=

(
1− 1

20
〈 tr γ̄2 〉 d

d ln k
+

1

2
〈 ζ̄2 〉 d2

d(ln k)2

)
P(0)
ζ (k) . (4.50)

This equation was also found in [80] 4. Neglecting tensor contributions, this reproduces
the results of log-enhanced corrections to the power spectrum due to scalar fluctuations
given in [64,89].

Taking another point of view, we note that eq. (4.50) can be obtained by expanding ζ,
the curvature perturbation in uniform-energy-density gauge, in terms of δϕ, the scalar field
perturbation in flat gauge. Up to quadratic order in δϕ, the relevant gauge transformation

4Note that in [80] the result for corrections due to tensors is expressed in terms of the quantity
〈 γ̄2GS 〉 ≡ 1

4

∑
ij〈 γ̄ij γ̄ij 〉 = 1

4 〈 tr γ̄
2 〉 . Tensor contributions to inflationary observables, using different

methods, have been also considered in [124,127].
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is the one between ζ and ζn = −(H/ϕ̇)δϕ given in eq. (A.8) of [22]. If we focus on terms
that are leading order in slow-roll and neglect terms vanishing at superhorizon scales,
all IR divergences arising from the expansion in (A.8) of [22] are captured by our result.
However, the complete IR correction requires the inclusion of term ∼ δϕ3. This can be
realized using the δN -formalism, and it was shown in [64] that an appropriately modified
version of this formalism correctly computes the scalar part of eq. (4.50) (see also Sect. 4.3
of the present paper).

For a weakly scale-dependent power spectrum, the explicit values for 〈 ζ̄2 〉 and 〈 tr γ̄2 〉
were already given in eq. (4.11). Using the definitions of the spectral index of curvature
perturbations nζ , its running αζ and the tensor-to-scalar ratio r = N−2

ϕ = 2ε,

nζ − 1 =
d lnP(0)

ζ

d ln k
αζ =

d2 lnP(0)
ζ

d(ln k)2
r =
〈 tr γ̄2 〉
8〈 ζ̄2 〉

, (4.51)

the leading order correction to the power spectrum can be written as

Pζ(k) = P(0)
ζ (k)

{
1 +

1

2

[
(nζ − 1)2 + αζ −

4r

5
(nζ − 1)

]
P(0)
ζ (k) ln(kL)

}
(4.52)

The agreement5 of eqs. (4.50) and (4.52) with [80] is a non-trivial check for our approach.
We learn that long-wavelength modes provide log-enhanced contributions to the power-

spectrum that are suppressed by second order slow-roll parameters, and by a factor of
P(0)
ζ . The latter is determined by WMAP to be P(0)

ζ ' 2.3× 10−9 [18].
Let us stress the quite non-trivial fact that scalar and tensor long-wavelength modes

contribute at the same (second) order in a slow-roll expansion. This is due to the cancel-
lation leading to 〈m(k̂)〉 = 1 +O(γ̄4). In any case, this property is specific of the power
spectrum: as we will learn in the next section, corrections to non-Gaussianity parameters
do not share this property.

Having calculated the leading order correction to the power spectrum, we turn to
evaluating scalar perturbations to all orders as described in section 4.2. We start with
a inflationary potential for which the spectral index is constant. This is realized for the

famous example of power law inflation [128]. The potential is V = V0 exp
[
−
√

2
q
ϕ
]
, with

constant q, and the scale factor evolves as a(t) = a0t
q. In this set-up, the equations for

scalar fluctuations can be solved exactly without having to rely on a slow-roll approxi-
mation. For this particular model, we assume that our scale of interest k is much smaller
than kmax, reflecting the transition to scales that have never left the horizon during infla-
tion. Hence, the integral in eq. (4.18) is well approximated by setting ζ̄min to −∞. The
power spectrum of curvature perturbations reads [129,130]

P(0)
ζ (k) = P(0)

ζ (k0)

(
k

k0

)−2/(q−1)

. (4.53)

So the spectral index nζ − 1 = −2/(q − 1) is constant as desired. We then obtain

P(0)
ζ (ke−ζ̄) = P(0)

ζ (k) e−(nζ−1)ζ̄ . (4.54)

5Note that the authors of [80] chose a different parameterization of the power spectrum, namely

P(0)
ζ ∼ kn(k)−1. This leads to slightly different numerical factors. For instance, d2P(0)

ζ /d(ln k)2 =

[(n− 1)2 + 2α]P(0)
ζ in their parameterization.
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Plugging this expression into eq. (4.18), one finds an integral that can be solved analyti-
cally. We get

Pζ(k) = P(0)
ζ (k) exp

(
σ2
ζ (nζ − 1)2

2

)
. (4.55)

This expression captures at all orders the contributions of long-wavelength modes. In a
sense, we are providing the function whose series expansion has been found in [80]. Notice
that the corrections are not independent of the scale k since σ2

ζ is a function of k (e.g.

σ2
ζ = P(0)

ζ ln(kL) for a weak scale-dependence of P(0)
ζ ).

We expect a similar behavior including other contributions in more general models of
inflation, for example associated with the running of the spectral index; however, solving
the integral analytically might be more difficult in these models. For instance, the chaotic
potential investigated in [80], V (ϕ) = λϕα (α > 0), leads to the following tree-level power
spectrum:

P(0)
ζ (k) =

(
NϕH

2π

)2

=
1

(2π)2

λ

3α2
ϕα+2(k) . (4.56)

The scalar field value in dependence of the horizon-exit time of the mode k is given by
the differential equation dϕ/(d ln k) = −α/ϕ. This can be integrated to yield

ϕ(k) =

√
ϕ2(kmax) + 2α ln

kmax

k
. (4.57)

Note that the condition ζ̄ ≥ ζ̄min guarantees ϕ(e−ζ̄k) ≥ ϕ(kmax) for all possible values
ζ̄. Hence, the integral in eq. (4.18) is well-defined and finite. As already described
in sec. 4.2, the series expansion can be recovered easily from the integral expression in
eq. (4.18). For this purpose, one can expand P(0)

ζ (e−ζ̄k), as given in eq. (4.56), and make
use of the moments for the Gaussian probability distribution (see eqs. (4.16) and (4.17) ).
Derivatives of the power spectrum (4.56) w.r.t. ln k can be expressed in terms of the
spectral index nζ − 1 = −α(α + 2)/ϕ2 and the model parameter α :

Al =
1

P(0)
ζ

dlP(0)
ζ

d(ln k)l
=

(
nζ − 1
α
2

+ 1

)l l∏
i=1

(
α

2
+ 2− i) . (4.58)

Hence, the series expansion is given by

Pζ(k) = P(0)
ζ (k)

[
1 +

∞∑
n=1

(2n− 1)!!

(2n)!
A2n

(
σ2
ζ

)n]
. (4.59)

In the last part of this section, we discuss the question of convergence of the series
expansion returning to the general case (see also [80]). The series expansion in eq. (4.16)
was

Pζ(k) = P(0)
ζ (k)

[
1 +

∞∑
n=1

〈 ζ̄2n 〉
(2n)!

1

P(0)
ζ (k)

d2nP(0)
ζ (k)

d(ln k)2n

]
, (4.60)

and we have parametrically 〈 ζ̄2n 〉 ∼ 〈 ζ̄2 〉n. Since ln k′ = ln k − ζ̄, this is similar to a
Taylor expansion of the power spectrum in ln k around the scale k. At every order in the
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expansion, corrections consist of two counteracting contributions. On the one hand, there
is the factor 〈 ζ̄2 〉n , with

〈 ζ̄2 〉 =

k∫
1/L

dq

q
P(0)
ζ (q) , (4.61)

that involves a log-enhancement (even though it is suppressed by the smallness of the
power spectrum). On the other hand, there are derivatives of the power spectrum that
consist of slow-suppressed quantities and to which we will refer as late-time suppression.
The word ‘late-time’ indicates that derivatives of the power spectrum in eq. (4.60), i.e. the
slow-suppressed quantities, are evaluated at the scale k. By contrast, the quantity 〈 ζ̄2 〉
receives contributions from all modes in the range from 1/L to the scale k. Convergence
of the series expansion depends on the ability of the late-time suppression to compensate
the log-enhancement due to 〈 ζ̄2 〉.

We will perform an order of magnitude analysis and, hence, we do not distinguish
between quantities that are of the same order in slow-roll, like the slow-roll parameters
ε and η. Instead, we generically characterize the slow-roll suppression by an appropriate
power of ε. A derivative d/d(ln k) acting on P(0)

ζ precisely corresponds to one such power
of ε. Hence, the late-time suppression is given by

1

P(0)
ζ (k)

d2nP(0)
ζ (k)

d(ln k)2n
∼ ε2n(k) . (4.62)

Therefore, in our order of magnitude analysis, eq. (4.60) can be written as

Pζ(k)

P(0)
ζ (k)

− 1 ∼
∞∑
n=1

(
ε2(k)〈 ζ̄2 〉

)n
, (4.63)

and the convergence of the series expansion requires ε2〈 ζ̄2 〉 < 1.
Let us first consider a weakly scale-dependent power spectrum. Here, ‘weakly scale-

dependent’ means that the power spectrum P(0)
ζ has only a very mild scale-dependence

on the complete range from 1/L to k such that eq. (4.61) essentially yields

〈 ζ̄2 〉 = P(0)
ζ ln(kL) ∼ H2

ε
ln(kL) . (4.64)

The logarithm is given by the number of observed e-foldings N ' Ht. Therefore, it
remains to verify the relation

ε2〈 ζ̄2 〉 ∼ ε H3t < 1 . (4.65)

As shown by [131, 132], the requirement of being in a non-eternally inflating phase con-
strains the time to obey t < RS ∼ H−3, where R and S are deSitter radius and entropy,
respectively. Hence, the criterium for convergence reduces to ε < 1, which is fulfilled
by construction in slow-roll inflationary models. Therefore, under the assumption of a
weakly scale-dependent power spectrum, the series is always converging. However, this
is not surprising. The assumption of a ‘weakly scale-dependent’ power spectrum can be
made mathematically more precise by demanding that the scale-dependence of P(0)

ζ is

negligible in the integral in eq. (4.61) (such that 〈 ζ̄2 〉 = P(0)
ζ ln(kL) ). This yields

1

P(0)
ζ (k)

dnP(0)
ζ

d(ln k)n

∣∣∣∣∣
k

[ ln(kL) ]n � 1 n > 0 , (4.66)
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from which we could have concluded the convergence of the series in eq. (4.60) directly.
In spite of all that was said above, convergence breaks down for the model of chaotic

inflation characterized by the power spectrum (4.56) (see also [80]). The integration
in the expression of 〈 ζ̄2 〉 in this model needs to be performed over several orders of
magnitude in the scalar background field ϕ. Therefore the slow-roll parameter ε ∼ 1/ϕ2

is changing over several orders of magnitude. This clearly violates the approximation of
a weak scale-dependence. Consequently, convergence is not obvious in this model and
an investigation of the convergence behavior requires a more precise evaluation of 〈 ζ̄2 〉.
Indeed, 〈 ζ̄2 〉 ∼

∫
(H2/ε) dq/q is completely dominated by contributions at very early

times ti. Hence, the expansion parameter 〈 ζ̄2 〉 is much larger than P(0)
ζ (k) ln(kL). By

contrast, the coefficients in eq. (4.60), i.e. the late-time suppression, consist of slow-roll
parameters which are large compared to those at early times ti. Hence, the late-time
suppression cannot compensate the enhancement at early times leading to a breakdown
of convergence.

In principle, this effect is also present for tensor corrections, though less severe since
the power spectrum of tensor modes is not enhanced by 1/ε. Therefore, in this model
the breakdown of convergence due to scalar contributions occurs first. This observation is
also in agreement with the findings in [80], showing that the effect of scalars dominates.

We note that a breakdown of convergence implies that one cannot trust conventional
perturbation theory. However, this only applies to the conventionally defined power spec-
trum at sufficiently large L. In our philosophy, one should instead consider higher-order
corrections to IR-safe quantities like the power spectrum P(0)

ζ (k) defined in eq. (4.6). We
know that the leading-order corrections to this object will not be log-enhanced. While
we have not shown this in the present paper, we expect that also higher-order corrections
will benefit from our IR-safe definition and hence that conventional QFT perturbation
theory, based on the smallness of ζ and of slow-roll parameters, will be reliable.

4.5 Three-point function and the bispectrum

The bispectrum accounts for the simplest contribution to non-Gaussianity. Starting from
the three-point function in momentum space, one extracts the bispectrum from its con-
nected part:

〈ζ ~k1ζ ~k2ζ ~k3〉 ≡ (2π)3δ(3)(~k1 + ~k2 + ~k3) Bζ(~k1, ~k2) . (4.67)

In this section, for definiteness we focus on non-Gaussianity of local form (see [46] for a
recent review) 6. The corresponding bispectrum is well-described by

Bζ(~k1, ~k2) =
6

5
fNL(~k1, ~k2) [Pζ(k1)Pζ(k2) + perms] , (4.68)

where fNL is a slowly-varying function and we have introduced the uncurly power spectrum
Pζ(k) = 2π2Pζ(k)/k3. Here and henceforth, we indicate with perms all non-trivial cyclic

permutations of ~k1, ~k2 and ~k3 = −(~k1 + ~k2) . The dependence of Pζ(k) on the long-
wavelength background modes is characterized

Pζ(k) =
〈
e−3ζ̄ P

(0)
ζ (k′)

〉
. (4.69)

6Other forms of non-Gaussianity can also be described with techniques similar to the ones we are are
going to develop.
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With the formalism of sec. 4.2 for higher correlation functions, we may immediately write
down fNL including long-wavelength corrections:

fNL =
5

6

Bζ(~k1, ~k2)

[Pζ(k1)Pζ(k2) + perms]

=
5

6

〈 e−6ζ̄ B
(0)
ζ (~k′1,

~k′2) 〉
〈 e−3ζ̄ P

(0)
ζ (k′1) 〉〈 e−3ζ̄ P

(0)
ζ (k′2) 〉+ perms

. (4.70)

The remaining task is to evaluate (4.70). This requires knowledge on the tree-level bis-

pectrum B
(0)
ζ , which is model dependent.

As an illustrative example, we consider the form

B
(0)
ζ =

6

5

[
P

(0)
ζ (k1)P

(0)
ζ (k2) fζ(k3) + perms

]
. (4.71)

This tree-level bispectrum is motivated by a curvature perturbation which is given by a
Gaussian part, ζG, plus fζ(k) times the Gaussian part squared, i.e.

ζ~k = ζG~k + fζ(k)
(
ζG ? ζG

)
~k

. (4.72)

Here, the operator ? denotes a convolution. In concrete examples, fζ depends on the
scales k only by means of the dependence on times of horizon exit for each mode [40,65].
Note that the tree-level bispectrum (4.71) has a slightly different scale-dependence than
eq. (4.68). They only match for the popular assumption of fζ being scale-invariant or in
the squeezed limit, where one scale is much smaller than the others (say k1 � k2, k3).

Indeed, one has f
(0)
NL = fζ in these cases.

We stress that the bispectrum (4.71) neglects the presence of intrinsic non-Gaussianity
in the second order scalar field fluctuations. To include this contribution, one has to apply
the bispectrum given by Maldacena [22]. In order to keep equations simple, we will neglect
this presence of intrinsic non-Gaussianity and apply eq. (4.71).

Note that the primary field of validity of eq. (4.71) is in multi-field, e.g. curvaton-
type, models with observable non-Gaussianity. In addition, it arises in the squeezed limit
of single field slow-roll inflation. In that case, our modified δN -formalism, presented in
section 4.3, reproduces the correct result for f

(0)
NL, i.e. f

(0)
NL = 5/12 (1− nζ) (see appendix

4.7.2). This agreement shows that, contrary to the conventional δN -formalism, our mod-
ified version of δN provides correct results also for the 3-point function in the squeezed
limit. Consequently, the following calculation is correct in the squeezed limit, even though
we made the simplifying assumption of negligible intrinsic non-Gaussianity.

Proceeding as we did for the power spectrum, we perform a slow-roll expansion for the
quantities inside the averages in eq. (4.70), focussing on the non-vanishing contributions
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at leading order in slow-roll. After some calculation, this yields

fNL = f
(0)
NL

[
1 +

Ω(~k1, ~k2, ~k3) P
(0)
ζ (k1)P

(0)
ζ (k2) fζ(k3) + perms

P
(0)
ζ (k1)P

(0)
ζ (k2)fζ(k3) + perms

]
(4.73)

= f
(0)
NL

[
1 +

Ω(~k1, ~k2, ~k3) k3
3 + Ω(~k3, ~k1, ~k2) k3

2 + Ω(~k2, ~k3, ~k1) k3
1

k3
1 + k3

2 + k3
3

]
(4.74)

f
(0)
NL =

5

6

B
(0)
ζ (~k1, ~k2)

P
(0)
ζ (k1)P

(0)
ζ (k2) + perms

(4.75)

Ω(~k1, ~k2, ~k3) =
3

20
〈 tr γ̄2 〉

[
3(k̂1 · k̂2)2 − 1

]
− 1

20
〈 tr γ̄2 〉

{
2
[
3(k̂1 · k̂2)2 − 1

] 1

P(0)
ζ

dP(0)
ζ

d ln k
+ 3

[
(k̂1 · k̂3)2 + (k̂2 · k̂3)2 − 1

] 1

fζ

d fζ
d ln k

}

+
〈 ζ̄2 〉

2

 1

fζ

d2fζ
d(ln k)2

+ 2

(
1

P(0)
ζ

dP(0)
ζ

d ln k

)2

+ 4
1

fζ P(0)
ζ

d fζ
d ln k

dP(0)
ζ

d ln k

 .

(4.76)

Here k̂i·k̂j corresponds to the cosine of the angle between the vectors ~ki and ~kj. 〈 tr γ̄2 〉 and
〈 ζ̄2 〉 are defined as before. In the previous expression for Ω, the scale at which we evaluate

P(0)
ζ , fζ and their derivatives is any one of the ki: the difference among these quantities

evaluated at different scale is slow-roll suppressed with respect to the contributions we are
examining. As a result, a cancellation of corrections originating from the numerator and
the denominator in eq. (4.73) occurs. This removes terms containing second derivatives
of the power spectrum. Moreover, it is sufficient to take into account the naive scaling
P

(0)
ζ (k) ∼ k−3 in eq. (4.73), leading to the simpler form in eq. (4.74). In eq. (4.75), we

defined the leading order non-Gaussianity parameter f
(0)
NL.

In some cases, it may be useful to perform an average over directions of the vectors.
However, we note that the δ-function sets constraints on this averaging procedure. As an
example, we focus on the particular case of squeezed configurations, i.e. k1 � k2, k3. For
these configurations, one of the permutation terms can be dropped and the δ-function
requires (k̂2 · k̂3)2 = 1. The pair of unit-vectors k̂1, k̂2 or k̂1, k̂3 is statistically independent.
Hence, the directional averaging gives (k̂1 · k̂2)2 = (k̂1 · k̂3)2 = 1/3. Therefore, having
performed the directional averaging, the expression for squeezed configurations reads

fNL = f
(0)
NL

[
1 + Ω(~k1, ~k2, ~k3)

]
(4.77)

Ω(~k1, ~k2, ~k3) = − 1

20
〈 tr γ̄2 〉 1

fζ

d fζ
d ln k

+
〈 ζ̄2 〉

2

 1

fζ

d2fζ
d(ln k)2

+ 2

(
1

P(0)
ζ

dP(0)
ζ

d ln k

)2

+ 4
1

fζ P(0)
ζ

d fζ
d ln k

dP(0)
ζ

d ln k

 .

(4.78)

We stress that under the directional averaging the first term on the right-hand side in
eq. (4.76) vanishes. Indeed, we will see below that, keeping the directional information,
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precisely this term turns out to be the leading order correction. Therefore, this example
illustrates that such procedures have to be handled with care.

Neglecting tensor fluctuations, the special case of corrections to fNL in squeezed con-
figurations was also discussed in [80]. In this case, corrections are solely given by the last
line in eq. (4.76), which reads

Ω(~k1, ~k2, ~k3) =
〈 ζ̄2 〉

2

 1

fζ

d2fζ
d(ln k)2

+ 2

(
1

P(0)
ζ

dP(0)
ζ

d ln k

)2

+ 4
1

fζ P(0)
ζ

d fζ
d ln k

dP(0)
ζ

d ln k

 . (4.79)

Our result basically agrees with the findings of [80]. In order to have complete agreement,

one needs to take into account the runnings of P(0)
ζ and fζ in the calculation of the

bispectrum in [80] ( their eqs. (5.9)-(5.11) ). Including this effect, their final formula for
fNL, eq. (5.14), slightly changes. Like in our findings, the running of the power spectra
from the denominator disappears since it cancels against corresponding terms from the
numerator. The effect of the running of fζ appears precisely as the first term on the right-
hand side of eq. (4.79). The second and third term on the right-hand side of eq. (4.79)
are already present in eq. (5.14) in [80].

We now return to the general form of corrections to fNL, i.e. eqs. (4.73)-(4.76). Re-
markably, we find that in single-field, slow-roll inflation tensors provide the dominant
contribution in slow-roll, i.e. the first term on the RHS in eq. (4.76). This contribution
results in a correction proportional to first order slow-roll parameters, while the others
are of second order. Indeed, we observe that, at leading order in slow-roll, the dominant
contribution is originating from the prefactor

〈m(k̂1)m(k̂2)〉 = 1 +
3

20
〈trγ̄2〉

[
3(k̂1 · k̂2)2 − 1

]
, (4.80)

which multiplies the tree-level bispectrum. From this we find that the dominant log-
enhanced contribution to fNL, in a slow-roll expansion, reads

fNL = f
(0)
NL

[
1 +

6r

5
P(0)
ζ ln(kL)

(3(k̂1 · k̂2)2 − 1) k3
3 + (3(k̂3 · k̂1)2 − 1) k3

2 + (3(k̂2 · k̂3)2 − 1) k3
1

k3
1 + k3

2 + k3
3

]
.

(4.81)
Interestingly, these log-enhanced contributions to fNL do not depend on the tilt of the
power spectrum, and so are also present for spectral index equal to one.

In conclusion, log-enhanced contributions to fNL can be expressed in terms of observ-
able quantities. Tensor contributions are proportional to first order slow-roll parameters,
and are suppressed by the tree-level power spectrum. Very similar results hold for pa-
rameters associated to the trispectrum, gNL and τNL. It is straightforward to obtain them
proceeding exactly as done in this section.

Local non-Gaussianity in single field, slow-roll inflation turns out to be small. On the
other hand, models, in which a second field takes part in the generation of curvature per-
turbations as in the curvaton scenario, can lead to large values of fNL (see e.g. [30]). In the
approximation in which only the curvaton field is responsible for curvature perturbations,
the tree level bispectrum reads

B
(0)
ζ (~k1, ~k2) = fσ(~k1, ~k2)

[
2π2

k3
1

Pσ(k1)
2π2

k3
2

Pσ(k2) + perms

]
, (4.82)
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where σ indicates the curvaton field. Our approach can be applied also to this case,
although it requires additional work to calculate the contributions of long-wavelength
scalar modes to inflationary observables, since more than one scalar field is present. We
outline a method to do this in Appendix 4.7.2, but a more complete discussion of this issue
is left for future work. In this case, enhancement effects associated with long-wavelength
modes could turn out to be more important than the ones discussed so far.

4.6 Discussion

We have considered IR effects associated with backreaction of long-wavelength scalar and
tensor modes in inflationary backgrounds. We proposed an infrared-safe definition of cor-
relation functions involving curvature fluctuations, with no sensitivity on long-wavelength
contributions. The essential idea was to make use of the proper invariant distance on the
reheating surface where the curvature perturbation is evaluated. By using the invariant
distance, one automatically absorbs longer wavelength modes in the background and ob-
tains n-point functions for the curvature perturbation that are free from IR contributions
associated with long-wavelength modes. We showed how to re-interpret our results in
terms of conventionally defined n-point functions. This allowed us to provide closed ex-
pressions for the latter that manifestly exhibit the dependence on long-wavelength modes.
In our approach, IR corrections automatically emerge in a resummed, all-orders form. We
then applied our approach to the analysis of inflationary observables built from (conven-
tionally defined) two- and three-point functions of the curvature perturbation. We showed
how to compute the leading scalar and tensor IR effects on the power spectrum and on
the bispectrum, in single field, slow-roll inflation. Our corrections to the power spectrum
(both from long-wavelength scalar and tensor modes) and to fNL (from long-wavelength
scalar modes) agree (essentially) with Giddings and Sloth [80] (obtained by somewhat
different methods). The advantage of our approach is that it directly provides resummed,
all-orders expressions. We extend [80] by tensor corrections to fNL. This is, in fact,
the dominant piece! We also explicitly computed, in a specific inflationary model, the
complete, all-orders expression for scalar long-wavelength contributions to inflationary
observables. Furthermore, we analyzed the question of convergence of IR corrections.
Using entropy bounds given in [131,132], we found that for a weak scale-dependence the
convergence of the series of IR corrections is guaranteed. However, despite the existence
of these entropy bounds and the fulfillment of slow-roll conditions, the convergence of the
IR-correction series may break down if the scale-dependence is not sufficiently weak.

Summarizing, we have provided a simple formalism to calculate and investigate infla-
tionary IR corrections. Maybe more importantly, we have provided simple definitions of
IR-safe correlation functions which make it possible to avoid IR enhancement altogether.

We have also shown that in all cases, where the δN -formalism is applicable, our results
can be equivalently obtained in terms of a suitable generalization of the δN -formalism,
extending the discussion of chapter 3 (see also [64]). In the present work, we included
the effects of graviton long-wavelength modes, and we explained how to calculate IR
contributions to arbitrary n-point functions involving curvature perturbations.

A natural question is how to extend our results to the case in which more than one
field plays an active role in generating the curvature perturbations. In this case, IR effects
might play a role more important than the one for single field inflation. We outlined in
an Appendix a method to treat this problem, but we leave a more complete discussion
for future work.
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4.7 Appendices

4.7.1 Comparison of Pζ and P (0)
ζ

The definitions of the IR-sensitive power spectrum Pζ and the IR-safe power spectrum

P(0)
ζ are

Pζ(k) =
k3

2π2

∫
d3y e−i

~k~y 〈 ζ(~x) ζ(~x+ ~y) 〉 (4.83)

P(0)
ζ (k) =

k3

2π2

∫
d3z e−i

~k~z 〈 ζ(~x) ζ(~x+ e−ζ̄ e−γ̄/2 ~z) 〉 . (4.84)

Here, ~z and ~y are related by zi = eζ̄
(
eγ̄/2

)
ij
yj. Comparing the two yields

Pζ(k) =

〈
k3

2π2

∫
d3y e−i

~k~y ζ(~x) ζ(~x+ ~y)

〉
(4.85)

=

〈
k3

2π2

∫
d3y e−i

~k~y ζ(~x) ζ(~x+ e−ζ̄e−γ̄/2(eζ̄eγ̄/2~y) )

〉
(4.86)

=

〈
k3

2π2
e−3ζ̄

∫
d3z exp{−i(e−ζ̄e−γ̄/2~k)~z} ζ(~x) ζ(~x+ e−ζ̄e−γ̄/2~z )

〉
(4.87)

=

〈 [(
e−γ̄
)
ij
k̂ik̂j

]−3/2

P(0)
ζ

(
e−ζ̄e−γ̄/2~k

)〉
. (4.88)

In the first line, we included the integral and prefactors in the average. Note that this does
not affect the averaging process over pairs of points separated by the coordinate vector
~y. From the second to the third line, we performed a coordinate transformation of the
integration variable from y to z. Since the determinant of eγ̄ is one, tensor fluctuations do
not effect this transformation. Therefore, only scalar fluctuations appear as a prefactor in
the third line. Consequently, we need to add tensor fluctuations by hand in this prefactor,
in order to express the third line in terms of the IR-safe power spectrum P(0)

ζ . This results
in the prefactor in the last line, which only consists of tensor fluctuations. In this last
line, the vector k̂ is a unit vector in ~k-direction and the average is performed over the
background quantities ζ̄(~x) and γ̄ij(~x).

4.7.2 Extension of δN-formalism

In this appendix, we discuss in more detail how our results can be understood in terms of
a δN approach. In a previous paper [64], written in collaboration with Byrnes and Nurmi,
we showed how a suitable extension of the δN -formalism allows for the computation of
leading-log contributions to the power spectrum, due to scalar long-wavelength fluctua-
tions. Here, we extend our work to include tensor modes and to compute log-enhanced
corrections to non-Gaussianity parameters.

Let us start with single field inflation. For this purpose, we will adopt the same gauge
as in section 4.3. By means of the δN -formalism, the curvature perturbation ζ can then
be expressed in terms of the number of e-foldings evaluated on a background given by the
scalar field ϕ and its perturbation δϕ:

ζ = N [ϕ+ δϕ]− 〈N〉 . (4.89)
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The previous expression admits an expansion in terms of scalar fluctuations

ζ~k = Nϕ(k′)δ~kϕ(k′, ḡab) +
1

2
Nϕϕ(k′)

[
(δϕ ? δϕ)~k (k′, ḡab)− 〈δϕ ? δϕ〉

]
+ ... , (4.90)

where we use the notation of the main text, and the Gaussian, first-order scalar fluctuation
δ~kϕ is given in eq. (4.34). The effect of long-wavelength modes is encoded in the shift
of the time of horizon exit, and in the function m, contained in the expression of δ~kϕ.
Long-wavelength mode contributions are controlled by the averaged quantities ζ̄ and γ̄ij.

With the previous expression, we neglect intrinsic non-Gaussianity of δ~kϕ. Hence, this
formalism is only applicable in situations where this is negligible. However, this condition
is fulfilled in several models, e.g. models in which non-Gaussianity of the local form can
acquire sizeable values as in multiple field inflation or curvaton-like mechanisms [133]. In
light of these models, it is worthwhile to develop formalisms that neglect the presence of
second order fluctuations.

Using the previous formula, it is straightforward to compute n-point functions of
curvature perturbations, and compute leading log-enhanced corrections to inflationary
observables. It is important to stress that, due to the choice of a gauge with δ~qϕ = 0 for
q � k, convolutions appearing in the second term of eq. (4.90) do not involve integration
over all the modes, but have a lower cut-off slightly below the scale k. This implies that
convolutions, when appearing in n-point functions, do not provide further log-enhanced
contributions with respect to the ones associated with long-wavelength background modes.
All the IR dependence is then contained in the quantities ζ̄ and γ̄.

As an example, let us work out explicitly the expression for the three-point function in
the squeezed limit, including the effects of long-wavelength modes, using eq. (4.90). Our
method is similar to [81]. The second term on the right-hand side in eq. (4.90) is irrelevant
for squeezed configurations and will be neglected. The contribution to the bispectrum is

〈 ζ~k1ζ~k2ζ~k3 〉 =
1√

8k3
1k

3
2k

3
3

〈
[
m

1
2 (k̂1) (NϕH)(k′1) â~k1

] [
m

1
2 (k̂2) (NϕH)(k′2) â~k2

]
[
m

1
2 (k̂3) (NϕH)(k′3) â~k3

]
〉 . (4.91)

In the limit in which k1 � k2 ' k3, the size of the vector k1 is comparable to the size of
the long-wavelength modes relative to the vectors k2 and k3. The latter are included in
the shift of the time of horizon exit tk′2 and on m(k̂2), respectively, tk′3 and m(k̂3). Taking
into account this fact, and using Wick’s theorem, we can write in this limit the following
non-vanishing contribution

〈 ζ~k1ζ~k2ζ~k3 〉 = (2π)3δ(3)(~k2+~k3)
1

2k3
2

√
2k3

1

〈
[
m

1
2 (k̂1)(NϕH)(k′1) â~k1

] [
m(k̂2) (NϕH)2 (k′2)

]
〉 .

(4.92)
Since k1 � k2, the only possibility to contract â~k1 is the background contribution orig-

inating from (NϕH)2(k′2). By expanding the latter and by means of the definition of ζ̄,
this contraction yields

〈 â~k1 (NϕH)2(k′2) 〉 = −〈 â~k1 ζ̄ 〉
d (NϕH)2

d ln k

∣∣∣∣∣
k′2

= −m
1
2 (k̂1)

(NϕH)(k′1)√
2k3

1

d (NϕH)2

d ln k

∣∣∣∣∣
k′2

.

(4.93)

57



CHAPTER 4. INFLATIONARY CORRELATION FUNCTIONS WITHOUT
INFRARED DIVERGENCES

Therefore, we find for the bispectrum:

Bζ(~k1, ~k2) =
−1

4(k1k2)3
〈
[
m(k̂1)(NϕH)2(k′1)

] [
m(k̂2)(NϕH)2(k′2)

] d lnP(0)
ζ

d ln k

∣∣∣∣∣
k′2

〉 . (4.94)

At leading order, we neglect the contribution from the background (k′i → ki and m(k̂i) =
1). This provides the following tree-level result for the non-Gaussianity parameter

f
(0)
NL(k) = − 5

12

d lnP(0)
ζ

d ln k

∣∣∣∣∣
k

=
5

12
(1− nζ(k)) , (4.95)

that is Maldacena’s consistency relation [22, 123]. Hence, the complete form for fNL,

obtained from formula (4.94), can be expressed through f
(0)
NL, giving

fNL =
〈m(k̂1)P(0)

ζ (k′1) m(k̂2)P(0)
ζ (k′2) f

(0)
NL(k′2) 〉

〈m(k̂1)P(0)
ζ (k′1) 〉 〈m(k̂2)P(0)

ζ (k′2) 〉
, (4.96)

in agreement with formula (4.70) in the squeezed limit. We can then proceed as done in
the main text to extract leading log-enhanced contributions.

Let us briefly discuss the case in which multiple scalar fields affect the curvature
perturbation. The δN -formalism is very well suited to study this case, as discussed in
the original paper by Sasaki and Stewart [25]. We adopt a gauge with vanishing scalar
metric fluctuations, i.e. the long-wavelength modes of the scalar field are not vanishing.
The curvature perturbation (that in the case of multiple fields is not generally conserved)
can be expressed as an expansion in terms of all the scalar fields involved

ζ~k(tf ) = NI [tf , {ϕ0}] δ~kϕ
I [{ϕ0}]+

1

2
NIJ [tf , {ϕ0}]

{(
δϕI ? δϕJ

)
~k

[{ϕ0}]− 〈δϕI ? δϕJ〉
}

+· · · ,
(4.97)

where the capital latin indices of N denote derivatives w.r.t. the scalar fields and sum-
mation over repeated indices is understood. Here, {ϕ0} denotes the dependence on the
homogeneous values ϕI0 of the scalar fields. As in Sasaki and Stewart, we have replaced
the dependence on the time of horizon exit tk of the various functions, with the value of
homogeneous solutions of the scalar equations at tk: ϕ

I
0 ≡ ϕI0(tk) .

Then, the inclusion of the effects of scalar and tensor long-wavelength modes can be
done as in the previous sections, although the procedure is a bit more laborious. We
express a given function ϕI(t, ~x), the solution of the field equations, as

ϕI(t, ~x) = ϕI0(t) + δϕ̄I(t) + δϕI(t, ~x) , (4.98)

where δϕ̄I(t) is an average over long-wavelength modes, similar to the ones we performed
in the main text. The effect of long-wavelength scalar fluctuations is to shift the values of
ϕI0, that appear in eq. (4.97), to ϕI0+δϕ̄I . In a sense, they play the same role of shifting the
time of horizon exit, although with multiple fields there is not a one to one correspondence
between time and values of the scalar solution. After passing to momentum space, the
inclusion of long-wavelength scalar perturbations implies that the expansion in eq. (4.97)
becomes

ζ~k(tf ) = NI [tf , {ϕ0 + δϕ̄}] δ~kϕ
I [{ϕ0 + δϕ̄}]

+
1

2
NIJ [tf , {ϕ0 + δϕ̄}]

{(
δϕI ? δϕJ

)
~k

[{ϕ0 + δϕ̄}]− 〈δϕI ? δϕJ〉
}

+ · · · (4.99)
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to take into account the shifts of the homogeneous solution of the scalar fields. The
inclusion of tensor long-wavelength contribution, on the other hand, is very simple: since
correlations between tensor and scalar modes vanish, the effect of tensors is precisely
identical to that discussed in the previous sections. It can be taken into account with a
proper redefinition of the time of horizon exit of a given mode tk → tk′ . One can then
repeat in this case the very same steps that we took in the previous sections, generalizing
our results to multiple fields. This will be done in future work, where we will also discuss
in this context the possibility of having large non-Gaussianity from loop effects [83], with
sizeable scale-dependence [52,82].
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Chapter 5

Scale-dependent non-Gaussianity
probes inflationary physics

The content of this chapter is published in [65].

In chapter 5, we calculate the scale dependence of the bispectrum and trispectrum in
(quasi) local models of non-Gaussian primordial density perturbations, and characterize
this scale dependence in terms of new observable parameters. They can help to discrimi-
nate between models of inflation, since they are sensitive to properties of the inflationary
physics that are not probed by the standard observables. We find consistency relations
between these parameters in certain classes of models. We apply our results to a scenario
of modulated reheating, showing that the scale dependence of non-Gaussianity can be
significant. We also discuss the scale dependence of the bispectrum and trispectrum, in
cases where one varies the shape as well as the overall scale of the figure under consid-
eration. We conclude this chapter providing a formulation of the curvature perturbation
in real space, which generalises the standard local form by dropping the assumption that
fNL and gNL are constants.

5.1 Introduction

Inflation is the simplest framework which explains the origin of the observed power spec-
trum of temperature fluctuations in the cosmic microwave background [18]. It is now
widely accepted that non-Gaussianity is a powerful probe to discriminate between the
many currently viable inflationary models [17,44–49]. It is usually parameterized in terms
of a single constant parameter, fNL, corresponding to the amplitude of the bispectrum nor-
malized to the square of the power spectrum of primordial curvature fluctuations [21,50].
More recently it has become common to further characterize local non-Gaussianity in-
cluding the two non-linearity parameters associated to the trispectrum, called gNL and
τNL, again treating them as constants [84]. However, it has been recently pointed out,
both from theoretical [40, 51–53] and observational viewpoints [54], that fNL is not nec-
essarily constant. We show the same holds true for gNL and τNL. As happens with the
power spectrum and the spectral index, they are characterized by a scale dependence,
that which denote respectively with nfNL

, ngNL
and nτNL

. For example, if fNL is large and
positive on large scale structure scales [134–137], but has a smaller value on the largest
CMB scales then this would require that fNL is scale dependent. Any scale dependence of
the non-linearity parameters provides a new and potentially powerful observational probe
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of inflationary physics.

In this chapter, we discuss a new approach to study the scale dependence of the non-
linearity parameters, based on the δN -formalism [25, 37, 38]. This allows us to obtain
an expression for the curvature perturbation that generalizes the local Ansatz introduced
in [21, 50], and that contains the aforementioned scale-dependent parameters. For the
single field case, the curvature perturbation can be schematically written as

ζ~k = ζG
~k

+
3

5
fp

NL (1 + nfNL
ln k) (ζG ? ζG)~k +

9

25
gp

NL (1 + ngNL
ln k) (ζG ? ζG ? ζG)~k ,

where ζG
~k

is a Gaussian variable, and fp
NL and gp

NL are constants. Our approach allows us
to directly calculate nfNL

, ngNL
and nτNL

in models with an arbitrary inflationary poten-
tial and an arbitrary number of fields, assuming slow-roll inflation. We also assume the
field perturbations are Gaussian at Hubble exit. Our results depend only on the slow-roll
parameters evaluated at Hubble exit, and on the derivatives of N , the e-folding number.
In particular, we find that nfNL

and ngNL
are sensitive to third and fourth derivatives

of the potential along the directions in field space that are responsible for generating
non-Gaussianities. These do not in general coincide with the adiabatic direction (during
inflation) and such features cannot therefore be probed by only studying the spectral
index and its running [138]. In the case that a single field generates the curvature per-
turbation there is a consistency relation between nfNL

and nτNL
which is the derivative of

the consistency relation between fNL and τNL. We explicitly show how this consistency
relation is violated in multiple field models.

In the framework of slow-roll inflation, there are various ways to generate large non-
Gaussianity, in models in which more than one field play a role during the inflation-
ary process. This is the case of multiple field inflation [87, 139–147], in which two or
more fields contribute to the curvature perturbations. But there are also approaches in
which, although more than one field is light during inflation, only one of them contributes
significantly to the curvature perturbations (the most studied examples are the curva-
ton [148–164] and modulated reheating [165–167] [168] scenarios). In this work, we apply
our general findings to this last class of models. We consider set-ups in which an isocurva-
ture field remains subdominant during inflation (as required in order to have an observable
level of non-Gaussianity [169]), but represents the main source of curvature fluctuations
after inflation ends. In this case, neither the spectral index of the power spectrum of
curvature perturbations, nor its running are sensitive to the third and fourth derivative of
the potential of the subdominant field. Hence the scale dependence of non-Gaussian pa-
rameters provide a unique opportunity to probe self interactions in these scenarios. As an
example, in the modulated reheating scenario, it is possible for any of the non-Gaussian
parameters to be large. We show that if the modulaton field has self interactions, for
example a quartic potential, then all of fNL, nfNL

, gNL and ngNL
can be large and pro-

vide novel information about the mechanism which generates curvature perturbations.
We will also consider mixed scenarios in which the inflaton perturbations are not ne-
glected [170–173]. We note that the scale dependence of equilateral type non-Gaussianity
is also of theoretical and observational interest [174–177].

We have previously shown [40] that provided one scales all three sides of the bispectrum
at the same rate then nfNL

is a constant (and hence it is simplest to focus on an equilateral
configuration). We show a similar result for the trispectrum parameters. Since it may be
of interest to consider more general variations in which one changes the shape of the figure
under consideration, we also consider this case. We find the combination of shape and
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scale dependence which maximizes nfNL
and show that it is never significantly larger than

the standard result, in which one keeps the shape fixed. However we single out interesting
limits in which there is no scale dependence, corresponding to squeezed figures.

While in most of the chapter we work in momentum space, in the last part we also
discuss how to describe our results in coordinate space. We provide an expression for the
curvature perturbations in real space, that generalizes the simplest local Ansatz [50], and
that exhibits directly in coordinate space the effect of scale dependence of non-Gaussian
parameters.

The plan of this chapter is as follows: In Sec. 5.2 we extend and simplify the results
from our previous paper to give general results for the non-linearity parameters, including
those which measure the trispectrum. In Sec. 5.3 we reduce the results to general single
field models and derive a consistency relation. In Sec. 5.4 we consider simple one or
two-field models in which one field, e.g. the curvaton, generates non-Gaussianity but
we do not exclude the Gaussian perturbations from the inflaton. Many popular models
in the literature fall into this class and the reader may choose to skip straight to this
section where the results and notation are significantly simpler. As an explicit example
we study modulated reheating. In Sec. 5.5 we consider in detail the scale dependence of
the bispectrum and the trispectrum, and how this can be affected by the shape of the
triangle or quadrilaterum. In Sec. 5.6 we consider how to generalize the coordinate space
expression of the curvature perturbation to include scale dependence. Finally we discuss
our results in Sec. 5.7.

5.2 General results

In this section, we discuss a new approach to analyze the scale dependence of quasi-local
non-Gaussianity, by means of a suitable implementation of the δN -formalism. Using the
δN -formalism [25, 37, 38], the curvature perturbation for a system of n scalar fields ϕa is
given by the expression

ζ(tf , ~x) =
∑
a

Na(tf , ti)δϕ
a(ti, ~x) +

1

2

∑
ab

Nab(tf , ti)δϕ
a(ti, ~x)δϕb(ti, ~x) + · · · , (5.1)

where tf labels a uniform energy density hypersurface and ti denotes a spatially flat hy-
persurface. The result is valid on super-horizon scales where spatial gradients can be
neglected. In this work, we do not consider secondary effects on curvature perturbations
arising from late-time physics (see [178] for a review), nor the effects of possible isocurva-
ture modes during the late universe. The quantities Na and Nab denote derivatives of the
number of e-foldings along the scalar fields. We choose ti as a time soon after the horizon
crossing of all the modes of interest. Written in momentum space, Eq. (5.1) reads

ζ~k(tf ) =
∑
a

Na(tf , ti)δϕ
a
~k
(ti) +

1

2

∑
ab

Nab(tf , ti)
(
δϕa(ti) ? δϕ

b(ti)
)
~k

+ · · · . (5.2)

Here k < a(ti)H(ti), since we focus on super-horizon scales, and ? denotes a convolution:(
δϕa(ti) ? δϕ

b(ti)
)
~k
≡
∫

d3q

(2π)3
δϕa~q(ti)δϕ

b
~k−~q(ti) . (5.3)

To analyze the statistical properties of the curvature perturbation it is useful to ex-
press the results in terms of scalar perturbations evaluated at horizon crossing δϕa~k(tk).
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Assuming the fields ϕa obey slow roll dynamics during inflation and have canonical ki-
netic terms, δϕa~k(tk) are Gaussian up to slow roll corrections [22, 179]. These corrections
are irrelevant in cases where the non-Gaussianities are large, |fNL| � 1 or |gNL| � 1.
Therefore, in our analysis we take the fields δϕa~k(tk) to be Gaussian at horizon crossing,
k = a(tk)H(tk). In [40] the result (5.2) was expressed in terms of δϕa~k(tk) by setting
ti → tk(k). This makes the coefficients Nab... implicitly dependent on k. In this work, we
follow a different approach, choosing a fixed ti for all observable k modes, and explicitly
solving for the perturbations at ti as a function of δϕa~k(tk). Besides being more transpar-
ent, this method allows us to easily write down explicit results for the scale-dependence of
non-linearity parameters. The two approaches are compared in detail in Appendix 5.8.2.

We first note that, assuming slow roll, the evolution of super-horizon scale fluctuations
δϕa(t, ~x) from some initial spatially flat hypersurface at t0 < ti to the spatially flat
hypersurface at ti can be expressed in terms of the Taylor expansion

δϕa(ti, ~x) =
∑
b

∂ϕa(ti)

∂ϕb(t0)
δϕb(t0, ~x) +

1

2

∑
bc

∂2ϕa(ti)

∂ϕb(t0)∂ϕc(t0)
δϕb(t0, ~x)δϕc(t0, ~x) + · · · . (5.4)

Here we have also assumed the fields have canonical kinetic terms, i.e. the metric in field
space is flat. The result (5.4) follows directly from the application of the δN -formalism
where any super-horizon region, labeled by ~x, evolves as a separate FRW universe with its
own initial conditions. Since we assume that slow roll conditions are satisfied, the initial
conditions are set by the field values {ϕa(t0)} alone, i.e. any dependence on the field time
derivatives can be neglected. Therefore,

δϕa(ti, ~x) = ϕa(ti)({ϕb(t0) + δϕb(t0, ~x)})− ϕa(ti)({ϕb(t0)}) , (5.5)

where ϕa(ti)(...) denote FRW solutions with the initial conditions set at t0. Eq. (5.4) is
obtained by expanding this with respect to {δϕb(t0, ~x)} while keeping fixed the number
of e-foldings between t0 and ti. This corresponds to choosing t0 and ti as spatially flat
hyper-surfaces, since it amounts to comparing different realizations of FRW universes that
all undergo the same number of e-foldings between t0 and ti.

The coefficients in Eq. (5.4) can easily be computed by solving the slow roll equations
of motion, 3Hϕ̇a = −Va. We find

ϕa(ti) = ϕa(t0)−
√

2εa ln(ai/a0) +O
(
ε3/2ln2(ai/a0)

)
, (5.6)

where the slow roll parameters are evaluated at t0 and defined as usual: εa = (Va/(3H
2))2/2

and ηab = Vab/(3H
2) (with MP ≡ 1). In the following we neglect the slow-roll suppressed

corrections O(ε3/2ln2(ai/a0)), where O(ε3/2) denotes terms involving powers of εa and ηab
up to 3/2. The validity of this approximation is discussed in more detail below and also
in Appendix 5.8.1. Differentiating Eq. (5.6) once with respect to the initial field values,
and keeping ln(ai/a0) fixed, we find

∂ϕa(ti)

∂ϕb(t0)
= δab + εab ln(ai/a0) , (5.7)

where we have defined
εab ≡ 2

√
εaεb − ηab . (5.8)

The higher order derivatives in Eq. (5.6) can be computed in a similar way and the results
are given in Appendix 5.8.1.
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By substituting Eq. (5.4) into the coordinate space expression for the curvature per-
turbation (5.1), taking the Fourier transform and thereafter setting t0 = tk, we arrive at
the result

ζ~k =
∑
a

ζG,a
~k

+
∑
ab

fab(k)(ζG,a ? ζG,b)~k +
∑
abc

gabc(k)(ζG,a ? ζG,b ? ζG,c)~k + · · · . (5.9)

Here ζG,a
~k

are Gaussian fields defined as

ζG,a
~k

(ti, tk) =
∑
b

Na δϕ
b
~k
(tk)

[
δab + εab ln

aiHi

k

]
θ(aiHi − k) . (5.10)

The Gaussianity of this quantity follows from our assumption of the perturbations δϕa~k(tk)
being Gaussian at the horizon crossing. For brevity, from now on we suppress the time
arguments of the derivatives of N , denoting Nab... ≡ Nab...(tf , ti). The theta function in
Eq. (5.10) is included to constrain the convolutions to only include super-horizon scales,
k < aiHi. The matrices fab(k) and gabc(k) are given by

fab(k) =
1

2

Nab

NaNb

+
1

2

∑
c

NcF
(2)
cab

NaNb

ln
aiHi

k
, (5.11)

gabc(k) =
1

6

Nabc

NaNbNc

+
1

6NaNbNc

∑
d

(
3NdaF

(2)
dbc +NdF

(3)
dabc

)
ln
aiHi

k
, (5.12)

where k < aiHi and F
(m)
ab1...bm

denotes the k-independent part of the m:th order coefficient
in Eq. (5.4). They are proportional to combinations of slow roll parameters and their
explicit expressions are given in Appendix 5.8.1.

Our results are derived to first order in ln aiHi/k. In Eqs. (5.11) and (5.12) the terms
proportional to ln aiHi/k represent small corrections to the k-independent parts except in
the cases where fab(ki) and gabc(ki) are comparable to slow roll parameters or even smaller.
Such components, however, do not generate observable non-Gaussianity and therefore do
not play an important role in our discussion. For this reason, we can safely perform the
expansion in ln aiHi/k. Since the higher order terms arising in this expansion are further
slow roll suppressed, and since we can choose ti such that the logarithms never get larger
than O(10) for the super-horizon modes in our observable universe, we can truncate the
expansion at first order.

Instead of expanding in ln aiHi/k, we can also choose one of our observable super-
horizon modes as a pivot-scale, kp < aiHi, and expand Eqs. (5.11) and (5.12) around this
point. To first order in ln(k/kp) the results are given by

fab(k) = fab(kp)

(
1 + nf,ab ln

k

kp

)
, (5.13)

gabc(k) = gabc(kp)

(
1 + ng,abc ln

k

kp

)
, (5.14)

where we have defined1

nf,ab ≡
d ln |fab|
d ln k

= −
∑
c

NcF
(2)
cab

Nab

, ng,abc ≡
d ln |gabc|
d ln k

= −
∑
d

(
3
Nda

Nabc

F
(2)
dbc +

Nd

Nabc

F
(3)
dabc

)
.

(5.15)

1It is important to realise that nf,ab (ng,abc) is only defined in the case where fab 6= 0 (gabc 6= 0) in
the limit k → aiHi. If fab (gab) vanishes, it is convenient to define the derivative in Eq. (5.15) to be
identically zero.
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Provided that nf,ab and ng,abc are not much larger than O(0.01), truncating the above
series at first order leads to an error of a few per cents at most. Neglecting slow roll
corrections, we can write fab(kp) = Nab/(2NaNb) and gabc(kp) = Nabc/(6NaNbNc). This
precision suffices when treating the k-independent terms in our expressions, since we are
only interested in computing scale-dependencies to leading order in slow roll. In what
follows, we will therefore always write the constant terms to leading order precision in
slow roll.

Finally, using Eqs. (5.13) and (5.14), we can express Eq. (5.9) as

ζ~k =
∑
a

ζG,a
~k

+
∑
ab

fab(kp)

(
1 + nf,ab ln

k

kp

)
(ζG,a ? ζG,b)~k (5.16)

+
∑
abc

gabc(kp)

(
1 + ng,abc ln

k

kp

)
(ζG,a ? ζG,b ? ζG,c)~k + · · · .

This result is the starting point for our analysis of the scale-dependence of non-linearity
parameters. Explicit expressions for nf,ab and ng,abc are given in Appendix 5.8.1 and the

scale-dependency arising from the fields ζG,a
~k

can be computed using standard methods.

Therefore, using Eq. (5.16) we can explicitly compute the scale-dependencies of fNL, gNL

and τNL for any model with slow roll dynamics during inflation.

5.2.1 Two point function and power spectrum

Here we re-derive some well-known results for the scale dependence of the spectrum
of curvature perturbations; they will be useful in what follows for analyzing the scale-
dependence of bispectrum and trispectrum. The two point function of the scalar field
perturbations δϕa~k(tk) at horizon crossing is given by

〈δϕa~k1(tk)δϕ
b
~k2

(tk)〉 = (2π)3δ(~k1 + ~k2)
2π2

k3
1

(
H(tk(k1))

2π

)2

[δab + 2c (1− δab) εab] , (5.17)

where c = 2 − ln 2 − γ ' 0.73 with γ being the Euler-Mascheroni constant. Both the
diagonal a = b and off-diagonal a 6= b components are given to leading order in slow roll.
Note that although the off-diagonal components are slow roll suppressed compared to the
diagonal components, their scale dependence has no further suppression and therefore
gives a contribution comparable to the scale-dependence of the diagonal components.
Therefore, we need to retain the off-diagonal contributions in our analysis.

Using this together with Eqs. (5.10) and (5.16), we can express the power spectrum

of ζ, defined by 〈ζ~k1ζ~k2〉 ≡ (2π)3δ(~k1 + ~k2)P (k1), in the form

P (k) =
2π2

k3
P(k) =

2π2

k3

∑
ab

Pab(k) . (5.18)

Here

Pab(k) ≡
(
H(ti)

2π

)2

NaNb

[
δab

(
1− 2εH ln

k

kp

)
+ 2εab

(
c̃− ln

k

kp

)]
, (5.19)

and we have defined εH = −Ḣ/H2 and c̃ = c + ln(aiHi/kp). Subleading slow roll correc-
tions are again neglected in the scale-independent terms.
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Defining a quantity

nab − 1 ≡ d lnPab
d ln k

= −δab(2εH + 2εab)−
1

c̃
(1− δab) , (5.20)

we can write the spectral index as

nζ − 1 ≡ d lnP
d ln k

=
∑
ab

(
Pab
P

)
nab − 1 = −2εH − 2

∑
ab εabNaNb∑

cN
2
c

. (5.21)

This agrees with the result given in [25].

5.2.2 Three point function and fNL

We now proceed to apply our approach to derive the scale dependence of non-linearity
parameters. Using previous definitions we can write fNL in a general multiple field case
as

fNL(k1, k2, k3) ≡ 5

6

B(k1, k2, k3)

P (k1)P (k2) + 2 perms

=
5

3

∑
abcd(k1k2)−3Pac(k1)Pbd(k2)fcd(k3) + 2 perms

(k1k2)−3P(k1)P(k2) + 2 perms
, (5.22)

where the bispectrum is defined by (2π)3δ(~k1 + ~k2 + ~k3)B(k1, k2, k3) = 〈ζ~k1ζ~k2ζ~k3〉.
In the equilateral case, ki = k for i = 1, 2 and 3, this simplifies to

fNL(k) =
5

3

∑
abcdPac(k)Pbd(k)fcd(k)

P(k)2
, (5.23)

and using Eqs. (5.13) and (5.19), we find the scale dependence of fNL(k) is given by

nfNL
≡ d ln |fNL(k)|

d ln k
=

1

fNL(kp)

∑
ab

fabNL (2nmulti,a + nf,ab) . (5.24)

Here we have defined [37]

fabNL ≡
5

6

NaNbNab

(
∑

cN
2
c )2

, fNL(kp) =
∑
ab

fabNL , (5.25)

and

nmulti,a ≡ naa − nζ − 2
∑
c

(1− δac)εac
Nc

Na

(5.26)

= 2
∑
cd

εcd

(
NcNd∑
bN

2
b

− δad
Nc

Na

)
. (5.27)

All the quantities in Eq. (5.24) depend on combinations of slow roll parameters and on
the constant coefficients Na, Nab in the δN expansion (recall that the explicit expression
for nf,ab is given by Eq. (5.105)). For a given model these can all be regarded as known
quantities and the scale-dependence of fNL can therefore be directly read off from the
above result without doing any further computations.
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In Eq. (5.24) we can clearly identify two sources of scale dependence. The contribution
proportional to nf,ab follows from the non-linear evolution of perturbations outside the
horizon [40]. The part proportional to nmulti,a is associated with the scale dependence
of factors of the form Pac/P in equation (5.23). It is present only in the multi-field case
(indeed for a single field model this factor is equal to unity) and arises due to the presence
of multiple unrelated Gaussian fields ζG,a in the expansion of ζ in (5.16). This generates
deviations from the local form and makes fNL scale-dependent even if the perturbations
would evolve linearly outside the horizon. Indeed, by setting nf,ab = 0 we recover the
results of a multi-local case analyzed separately in [40].

As shown in [40], the scale dependence of fNL is given by the same result (5.24) for

the class of variations where the sides are scaled by the same constant factor, ~ki → α~ki.
For such shape-preserving variations where only the overall scale of the triangle is varied,
the result does not depend on the triangle shape. This holds at leading order in slow roll.
Generic variations changing both the scale and the shape of the triangle are considered
in Sec. 5.5.

5.2.3 Four point function, gNL and τNL

The connected part of the four point correlator of ζ can be written in the form

〈ζ~k1ζ~k2ζ~k3ζ~k4〉 = (2π)3δ(
4∑
i=1

~ki)

[
τNL(k1, k2, k3, k4, k13)

(
P (k1)P (k2)P (|~k1 + ~k3|) + 11 perm

)
+

54

25
gNL(k1, k2, k3, k4)

(
P (k1)P (k2)P (k3) + 3 perm

) ]
, (5.28)

where we have defined kij ≡ |~ki + ~kj|. The functions τNL and gNL are given by

τNL(k1, k2, k3, k4, k13) = 4
(k1k2k13)−3

∑
abcdef Pac(k1)Pbe(k2)Pdf (k13)fcd(k3)fef (k4) + 11 perm

(k1k2k13)−3P(k1)P(k2)P(k13) + 11 perm
,

(5.29)

gNL(k1, k2, k3, k4) =
25

9

(k1k2k3)−3
∑

abcdef Pad(k1)Pbe(k2)Pcf (k3)gdef (k4) + 3 perms

(k1k2k3)−3P(k1)P(k2)P(k3) + 3 perm
.

(5.30)

In the case of a square, k = ki (notice that τNL, but not gNL, is sensitive to the angles
between the vectors and different equilateral figures in general yield different results), the
above expressions reduce to

τNL(k) = 4
∑
abcdef

Pac(k)Pbe(k)Pdf (
√

2k)fcd(k)fef (k)

P(k)3
, (5.31)

gNL(k) =
25

9

∑
abcdef

Pad(k)Pbe(k)Pcf (k)gdef (k)

P(k)3
. (5.32)

The scale-dependence can be computed similarly to the analysis of the bispectrum above.
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Using Eqs. (5.13), (5.14) and (5.19), we find

nτNL
≡ d ln |τNL(k)|

d ln k
=

1

τNL(kp)

∑
abcd

τabcdNL [(2nmulti,a − (nζ − 1)− 2εH)δbc − 2εbc + 2nf,abδbc] ,

(5.33)

ngNL
≡ d ln |gNL(k)|

d ln k
=

1

gNL(kp)

∑
abc

gabcNL (3nmulti,a + ng,abc) , (5.34)

where εH = −Ḣ/H2, and [84,142]

τabcdNL =
NaNabNcdNd

(
∑

eN
2
e )3

, τNL(kp) =
∑
abcd

τabcdNL δbc , (5.35)

gabcNL =
25

54

NaNbNcNabc

(
∑

dN
2
d )3

, gNL(kp) =
∑
abc

gabcNL . (5.36)

The scale-dependencies are fully determined by the constant coefficients Na, Nab, Nabc in
the δN expression and by combinations of slow-roll parameters, which enter the results
through Eqs. (5.105) and (5.106). Although the expressions appear lengthy in their general
form, considerable simplifications typically occur when considering specific models. We
will discuss examples in Sections 5.3 and 5.4.

Similarly to nfNL
, we can again distinguish two physically different contributions in

the expressions for nτNL
and ngNL

. The parts proportional to nf,ab and ng,abc in Eqs. (5.33)
and (5.34) respectively arise from the non-linear evolution outside the horizon. The other
contributions describe deviations from the local form due to the presence of multiple fields,
similarly to what we discussed in the previous section.

The results (5.33) and (5.34) hold not only for the special case of a square, but for any

variations where all the sides are scaled by the same constant factor, ~ki → α~ki. These
variations preserve the shape of the momentum space figure and change only its overall
scale. We will prove this result in Sec. 5.5 where we also discuss generic variations that
simultaneously change both the scale and the shape.

Having presenting our formalism and the general results, we will discuss in the next
two sections applications to specific cases.

5.3 General single field case

We start by discussing models where the primordial curvature perturbation effectively
arises from a single scalar field, which does not need to be the inflaton and we call σ. In
this case, the functions fσσ(k) and gσσσ(k) appearing in the expansion of ζ, Eq. (5.16),
are up to numerical factors equal to fNL(k) and gNL(k), evaluated for the equilateral
configurations. This can be seen directly from Eqs. (5.23) and (5.32). We can therefore
rewrite Eq. (5.16) as

ζ~k = ζG
~k

+
3

5
fNL(k)(ζG ? ζG)~k +

9

25
gNL(k)(ζG ? ζG ? ζG)~k + · · · . (5.37)

As we will discuss in Sec. 5.4, this result applies for example to the curvaton scenario
and modulated reheating in the limit where the inflaton perturbations are negligible. We
therefore call all the models where the curvature perturbation can be expressed in the
form (5.37) as general single field models.
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According to Eqs. (5.13) and (5.14), the non-linearity parameters fNL(k) and gNL(k)
are now given by

fNL(k) =
5

6

N ′′

N ′2

(
1 + nfNL

ln
k

kp

)
, (5.38)

gNL(k) =
25

54

N ′′′

N ′3

(
1 + ngNL

ln
k

kp

)
, (5.39)

where the primes denote derivatives with respect to σ and nfNL
= nf,σσ, ngNL

= ng,σσσ.
Using the explicit expressions (5.105) and (5.106) in the Appendix 5.8.1, we obtain

nfNL
=

N ′

N ′′

[√
2εσ(4εσ − 3ησσ) +

V ′′′

3H2

]
, (5.40)

ngNL
= 3

N ′′2

N ′′′N ′
nfNL

− N ′

N ′′′

[
24ε2σ − 24εσησσ + 3η2

σσ +
4
√

2εσ V
′′′

3H2
− V ′′′′

3H2

]
.(5.41)

The same results can of course be directly obtained from Eqs. (5.24) and (5.34). If σ is
an isocurvature field during inflation, εσ = 0 in the above expressions.

For the general single field case Eq. (5.31) further yields

τNL(k) =

(
6fNL(k)

5

)2

, (5.42)

up to scale-independent slow roll corrections. Therefore, the scale-dependencies of τNL

and fNL are related by
nτNL

= 2nfNL
. (5.43)

This simple consistency relation is characteristic for general single field models. In multiple
field models, the relation (5.42) is in general violated and consequently the result (5.43)
is no longer true.

5.4 Two field models of inflation

After considering single field models, in this section we discuss some scenarios in which
more than one field can play an important role in the inflationary process. We focus
on a class of models that contains the most important examples of inflationary set-ups
characterized by large non-Gaussianity.

Many models of inflation that generate sizeable non-Gaussianity are characterized by
the presence of a field σ, with significant non-Gaussian perturbations, that is isocurvature
during inflation. The inflaton field ϕ also has its own perturbations, which for convenience
can be considered as Gaussian. When the inflaton perturbations provide non-negligible
contributions to the curvature fluctuation spectrum, the scenario is called a mixed scenario
[170–173]. In order to generate large non-Gaussianity by means of the field σ, it is required
that σ̇ � ϕ̇, and hence εσ � εϕ [169]. From this relation, it follows that the trajectory
in field space while observable modes exit the horizon is nearly straight. Therefore it is a
good approximation to treat the fields as uncorrelated [180]. We also make the common
assumption that the potential is separable,

W (σ, ϕ) = U(ϕ) + V (σ) . (5.44)
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Hence, the only potentially non-negligible slow roll parameters in such a scenario are the
following

εH = εϕ = − Ḣ

H2
, ηϕ =

U ′′

3H2
, ησ =

V ′′

3H2
, ξ2

ϕ =
U ′′′U ′

9H4
, ξ2

σ =
V ′′′U ′

9H4
.

(5.45)
In this case, the curvature perturbation reads2

ζ(~k) = ζG,ϕ~k
+ ζG,σ~k

+ fσ(k)
(
ζG,σ ? ζG,σ

)
~k

+ gσ(k)(ζG,σ ? ζG,σ ? ζG,σ)~k . (5.46)

Although the assumed form of ζ is simplified, in practice the vast majority of models in
the literature, characterized by large quasi-local non-Gaussianity, satisfy the above Ansatz
to a good enough accuracy for observational purposes. For this reason we will limit our
attention to models with curvature perturbation satisfying Eq. (5.46) in this section.

In the limit that fσ and gσ are independent of k, we recover the multivariate local
model [40]. In the case that ζG,ϕ = 0 we have the general single field model we have
analyzed in section 5.3, but here we assume this field was an isocurvature mode during
horizon crossing. We will consider these two cases in more detail later in this section.

The power spectrum is given by

Pζ(k) = Pϕ(k) + Pσ(k) = Pϕ(k)(1− wσ(k))−1 , (5.47)

where we have introduced the ratio

wσ(k) =
Pσ
Pζ

. (5.48)

Note that neglecting all the slow-roll corrections, and hence also the scale dependence,
wσ = N2

σ/(N
2
ϕ + N2

σ). To lowest order in slow roll, the spectral index nζ − 1 and tensor-
to-scalar ratio rT satisfy the following relations [181]

nζ − 1 = (nσ − 1)wσ + (nϕ − 1)(1− wσ)

= −(6− 4wσ)εH + 2(1− wσ)ηϕ + 2wσησ , (5.49)

rT ≡ PT
Pζ

=
8

N2
σ +N2

ϕ

= 8N−2
ϕ (1− wσ) , (5.50)

where PT = 8H2
k/(4π

2) is the power spectrum of tensor perturbations and we have defined

nσ − 1 =
d lnPσ
d ln k

, nϕ − 1 =
d lnPϕ
d ln k

, nζ − 1 =
d lnPζ
d ln k

. (5.51)

The non-Gaussianity parameter fNL in the equilateral limit, and the trispectrum non-
linearity parameters in the case of a square configuration, are given by

fNL(k) =
5

3
w2
σ(k)fσ(k) , (5.52)

τNL(k) = 4wσ(k)2wσ(
√

2k)f 2
σ(k) , (5.53)

gNL(k) =
25

9
w3
σ(k)gσ(k) . (5.54)

2We have used a simplified notation for this section compared to the rest of the paper. Since all
cross terms such as Pϕσ are negligibly small in this scenario we use only a single index ϕ or σ where
appropriate, e.g. for ησ ≡ ησσ and gσ ≡ gσσσ.
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Therefore their scale dependence is given by

nfNL
≡ d ln |fNL|

d ln k
= 2(nσ − nζ) +

d ln |fσ|
d ln k

(5.55)

= 4(1− wσ)(2εH + ησ − ηϕ) +
Nσ

Nσσ

(
V ′′′

3H2
−
√

2εH ησ

(
1

ωσ
− 1

)1/2
)

,(5.56)

nτNL
= 3(nσ − nζ) + 2

d ln |fσ|
d ln k

(5.57)

= 6(1− wσ)(2εH + ησ − ηϕ) +
2Nσ

Nσσ

(
V ′′′

3H2
−
√

2εH ησ

(
1

ωσ
− 1

)1/2
)

,(5.58)

ngNL
= 3(nσ − nζ) +

d ln |gσ|
d ln k

(5.59)

= 6(1− wσ)(2εH + ησ − ηϕ) +
3Nσσ

Nσσσ

V ′′′

3H2
(5.60)

+
Nσ

Nσσσ

(
V ′′′′

3H2
− 3η2

σ +
√

2εH
V ′′′

3H2

(
1

ωσ
− 1

)1/2
)

,

where we have used the results derived in Sec. 5.2 and the fact that Nϕϕ, Nϕσ and
their derivatives are negligible in the class of models we are considering, see Eq. (5.46).
The quantities on the right hand side of each equation should be evaluated at an initial
time ti shortly after the horizon crossing time of all the modes of observational interest.
Observe that our results for nfNL

and ngNL
depend on the derivatives of the potential, in

combinations that do not correspond to traditional slow-roll parameters. This turns out
be useful to probe these quantities, that cannot be tested by the power spectrum and its
derivatives. We are going to discuss this in detail in what follows.

Observational constraints on the bispectrum are given in [18] while constraints on gNL

are given in [182,183] (see also [184]) and for both gNL and τNL in [185]. Forecasts for future
constraints on all three parameters are given in [186,187] while forecast constraints on nfNL

are given in [54]. There are currently no forecasts for how well the scale dependence of
the trispectrum parameters could be constrained or measured. Observational constraints
on a model with the form (5.46), without considering the scale-dependence of fNL or wσ,
are given in [188].

5.4.1 Limiting cases

After presenting the general formulae for the two-field case, we discuss important examples
of general single field inflation, that arise as limiting cases of the previous discussion of
two-field inflation.

Isocurvature single field

In the case that a single field σ, which is subdominant to the inflaton during inflation,
generates the primordial curvature perturbation, one has wσ = 1 which implies nσ = n,
rT ' 0 and Nσ � 1.

In this scenario, it is useful to express the spectral index and its running up to second
order, to understand which parameters are currently constrained by observations. From
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[180], we have

nζ − 1 = −2εH + 2ησ +

(
−22

3
+ 8c

)
ε2H +

2

3
η2
σ (5.61)

+

(
8

3
− 4c

)
εHηϕ +

(
2

3
− 4c

)
εHησ ,

αζ = −8ε2H + 4εHηϕ + 4εHησ , (5.62)

where c = 2 − ln 2 − γ ' 0.73. Notice that, in the previous formulae, the slow-roll
parameters ξσ and ξϕ do not appear in the running of the spectral index, because they
are weighted by negligible quantities. This implies that third and higher derivatives of
the potential do not enter in the previous quantities.

The non-Gaussianity observables (which follow as special cases of the formulae dis-
cussed in the first part of this section, when taking the limit ωσ → 1) are

fNL =
5

3
fσ =

5

6

Nσσ

N2
σ

, gNL =
25

9
gσ =

25

54

Nσσσ

N3
σ

, (5.63)

nfNL
=
nτNL

2
' Nσ

Nσσ

V ′′′

3H2
' 5

6

sgn(Nσ)

fNL

√
rT

8

V ′′′

3H2
, (5.64)

ngNL
' 3

Nσσ

Nσσσ

V ′′′

3H2
+

Nσ

Nσσσ

(
V ′′′′

3H2
− 3η2

σ

)
(5.65)

' 5

3

sgn(Nσ) fNL

gNL

√
rT

8

V ′′′

3H2
+

25

54

1

gNL

rT

8

V ′′′′

3H2
' 2

f 2
NL

gNL

nfNL
+

25

54

1

gNL

P−1
ζ

6π2
V ′′′′ . (5.66)

Here fNL and gNL denote the non-linearity parameters evaluated for equilateral configu-
rations at some pivot scale, k = kp. As discussed in Sec. 5.2, kp can be chosen as any of
the super-horizon modes in our observable universe and the results are independent on
this choice, up to subleading slow-roll corrections.

In the previous formulae, we have presented several different ways of expressing nfNL

and ngNL
(in Eq. (5.66) we have dropped the negligible contribution η2

σrT . 10−6). This is
in order to make it easier to estimate their magnitude in different ways, depending on the
available quantities. We also note that in some cases the previous formulae might include
terms at different orders in slow roll, in which case one should neglect the subleading
terms (since additional terms at the same order might also have been neglected). In
general, they are suppressed by some combination of the tensor-to-scalar ratio, divided
by non-linearity parameters. But their size could be significant, if σ has either a large
cubic or quartic self interaction. As we mentioned earlier, the power spectrum does not
contain information on these parameters, even if the running of the spectral index can be
measured. Hence nfNL

appears to be the best way of probing the cubic self interaction,
while in principle ngNL

could probe the quartic derivative of the isocurvaton field.
Although we have written nfNL

∼ 1/fNL, the prefactor to 1/fNL will in general depend
on some of the same model parameters as fNL so one should not view the two parameters
as being inversely proportional (an explicit example is given in [51]). In the case that
fNL follows an exact power law behavior, fNL ∝ knfNL then fNL and nfNL

are of course
independent. However if fNL = A ln(k) + B where A and B are constants, then nfNL

=
A/(A ln(k) + B) = A/fNL. In this case nfNL

and fNL are not independent. Nonetheless
one can easily check that the running of nfNL

satisfies αfNL
= −n2

fNL
so it is a good

approximation to treat nfNL
as constant provided that |nfNL

| � 1.

73



CHAPTER 5. SCALE-DEPENDENT NON-GAUSSIANITY PROBES
INFLATIONARY PHYSICS

Consider, as a first example, the curvaton scenario [148–164] in the pure curvaton
limit. In this case all of the non-Gaussianity parameters will have some scale dependence
unless the curvaton has exactly a quadratic potential, in which case it can be treated
as a free test field during inflation. This is manifest from eqs. (5.64) and (5.65)3. In
[40] we computed nfNL

for curvaton models with a quartic self-interaction term, V =
m2σ2/2 +λσ4, finding a scale dependence proportional to ησ, which tends to be too small
to be of observable interest. The result might be different for other type of interactions
and it would be interesting to compute nfNL

and ngNL
for generic interacting curvaton

models. This, however, requires a numerical study and is beyond the scope of the current
work [189]. Here we will instead consider the modulated reheating scenario as an example
of isocurvature single field models. In this case there is little constraint on the form of
the modulaton potential and we can use results derived in the literature to compute the
scale dependencies.

Modulated reheating

In this scenario, an isocurvature field σ during inflation modulates the decay rate of the
inflaton field into radiation. Because the expansion rate of the universe changes after the
decay, this process can convert the initial isocurvature perturbations of the modulaton
field into the primordial curvature perturbation [165–168]. This is closely related to the
model of modulated preheating [165–167] and modulated trapping [190] (see also [191]).
This process leads to some level of non-Gaussianity, which depends on the efficiency
of the transfer, on the functional form of the decay rate Γ(σ) and on the potential of
the modulaton field V (σ). The form of the inflaton potential during horizon crossing is
unconstrained, assuming the inflaton perturbations can be neglected, but its shape around
the minimum does influence reheating and we assume it has a quadratic potential while
it is oscillating.

For simplicity we will consider the case that Γ� He, whereHe is the Hubble parameter
measured at the end of inflation te. Hence we are assuming that the inflaton decays long
after the end of inflation. In this case, the curvature perturbation in real space can be
written as [168,173]

ζ(tf , ~x) ' −1

6

Γσi
Γ
δσ(ti, ~x)+

1

2

(
−1

6

Γσi
Γ

)
σi

×δσ(ti, ~x)2 +
1

6

(
−1

6

Γσi
Γ

)
σiσi

×δσ(ti, ~x)3 +· · · ,

(5.67)
where ti is a time soon after the horizon crossing of modes of interest. Using Eq. (5.63)
we find the constant parts of fNL and gNL are given by

fNL = 5

(
1− ΓΓσiσi

Γ2
σi

)
, (5.68)

gNL =
50

3

(
2− 3

ΓΓσiσi
Γ2
σi

+
Γ2Γσiσiσi

Γ3
σi

)
. (5.69)

The scale dependencies of fNL and gNL can be computed using Eqs. (5.64) and (5.65).
From these equations it is obvious that a potentially large scale dependence, accompanied

3For a quadratic model Nσσσ = 0 (when working to first order in r = ρσ/(3H
2), i.e. considering the

curvaton as a test field) and hence gNL = 0. As explained in Sec. (5.2), in this case we define ngNL = 0
instead of using the formally divergent result (5.65).
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with large values for fNL and gNL, can arise only if the modulaton field σ has large self
interactions. For the rest of this section we will consider the case of a quartic potential

V (σ) =
λ

4!
σ4 , λ > 0 . (5.70)

In keeping with the previous literature, we neglect the energy density of the σ field after
the end of reheating, as studying this goes beyond the realms of this project.

Using Eqs. (5.64) and (5.65) we find

nfNL
' − 5

fNL

Γ

Γσi

λσi
3H2

i

∼ 0.1

√
λησ

fNLP1/2
ζ

, (5.71)

ngNL
' 2

f 2
NL

gNL

nfNL
+

50

3gNL

Γ2

Γ2
σi

λ

3H2
i

∼ 2
f 2

NL

gNL

nfNL
+ 4× 10−3 λ

gNLPζ
, (5.72)

where ησ = λσ2
i /(6H

2
i ). In the expression for ngNL

we have neglected the contribution
proportional to η2

σ in Eq. (5.65) which is negligible compared to λ/(3H2
i ) because λσ4

i �
H2
i by construction.

The quantities nfNL
and ngNL

could be large, by making a suitable choice of the pa-
rameters. At first sight, it seems easy to obtain values for these parameters of order 10−1,
large enough to be detectable, and at the same time compatible with the assumptions
that underlie our analysis of Section 5.2. This is correct, but we have to ensure that
the parameters satisfy stringent constraints in order to obtain acceptable values for the
tilt of the spectral index. Indeed, assuming inflation lasted considerably longer than 60
efoldings, a natural initial value for the field σ is [91]

σi ∼
(

3

π2

) 1
4 Hi

λ1/4
, (5.73)

(a different argument changes the power of λ from 1/4 to 1/3 and the numerical factors
[192], but the difference is not very important here). Plugging the previous estimate in
the expression for ησ = λσ2

i /(6H
2
i ), and requiring that this parameter is less than 10−2,

we find the following bound for the coupling λ:

ησ '
(

λ

12π2

)1/2

. 10−2 ⇒ λ . 10−2 . (5.74)

The condition Γ� He can place further bounds on ησ since the modulaton is assumed to
remain nearly frozen until the inflaton decay. We will not further address this issue here.

Plugging the previous results in (5.71) and (5.72), and using Pζ = 2.5× 10−9 for the
normalization of the power spectrum, we find

|nfNL
| ∼ λ3/4 600

|fNL|
.

20

|fNL|
, (5.75)

|ngNL
| ∼ λ

2× 106

|gNL|
.

2× 104

|gNL|
. (5.76)

where the inequalities are saturated for λ ∼ 10−2. In the estimate for ngNL
, we have

neglected the first term in Eq. (5.72),

2
f 2

NL

|gNL|
|nfNL

| ∼ λ3/4 103 |fNL|
|gNL|

, (5.77)
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which is subdominant compared to the second term if λ1/4 & 5× 10−4|fNL|. For |fNL| ∼
100, this corresponds to λ & 6 × 10−6. In the opposite case, λ1/4 . 5 × 10−4|fNL|, the
estimate for ngNL

is given by Eq. (5.77) instead of Eq. (5.76).
We conclude that both nfNL

and ngNL
could acquire relatively large values, even if the

values of fNL and gNL saturate their current observational bounds. It is however important
to emphasize that |nfNL

| or |ngNL
| � 0.01 is outside the regime of validity of our formulae,

since the accuracy of the expansions performed in Sec. 5.2 starts to become inadequate.

5.4.2 Two-field local case

As a last example, we briefly discuss the so called two field local case, for which fσ and
gσ are independent of k. This demonstrates an explicit violation of the relation (5.43). In
this scenario, the formulae at the beginning of this section provide

τNL =

(
6

5
fNL

)2
1

wσ
, (5.78)

which shows that, in principle, the parameter wσ is an observable. The scale dependences
of the non-linearity parameters satisfy the following relation

nτNL
= ngNL

=
3

2
nfNL

. (5.79)

So, as previously stated, we have a different consistency relation between nfNL
and nτNL

in
this case compared to the single field case, Eq. (5.43). Furthermore there is an additional
consistency relation from ngNL

. However two-field local models are likely to arise from a
test field with a quadratic potential [40], in which case the amplitude of gNL tends to be
too small to be observable.

As an explicit example we consider the mixed inflaton-curvaton scenario, assuming
the curvaton field has a quadratic potential. We discussed this model previously at the
level of the bispectrum in [40], and found that in a natural limit nfNL

= −2(nζ − 1). It
therefore follows that for this model nτNL

is even larger,

nτNL
= −3(nζ − 1) . (5.80)

In this model gNL ∼ fNL [156] which is too small to be of observational interest [187].

5.5 Shape dependence

In the previous sections, we concentrated our analysis on the scale dependence of equi-
lateral figures (triangles and quadrilatera). Moreover, we only considered the possibility
of varying simultaneously all of the sides of the figure by the same proportion. In this
section, we study more general situations in which scale dependence can arise in param-
eters characterizing local non-Gaussianity. In particular, we consider the case in which
the figure under consideration is not equilateral, and the case in which we vary the size
of only one side, keeping the lengths of the other sides fixed.

We start by studying these issues for the parameter fNL, generalizing the arguments
developed in Sec. 5.2.2, and using the same quantities introduced there. Expanding
Eq. (5.22), around a pivot scale kp using Eq. (5.13), we obtain

fNL(k1, k2, k3) =
∑
ab

fabNL

(
1 +

k3
3

(
nmulti,a ln k1k2

k2p
+ nf,ab ln k3

kp

)
+ 2 perms

k3
1 + k3

2 + k3
3

)
. (5.81)
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As in the previous sections, the result is given to first order in ln(ki/kp) and both the
scale-dependent and scale-independent parts are given to leading order in slow roll.

In this approximation, setting for simplicity kp = 1, equation (5.81) can be re-expressed
in a more elegant way as

fNL(k1, k2, k3) =
∑
ab

fabNL

(k1k2)nmulti,a k
3+nf,ab
3 + 2 perms

k3
1 + k3

2 + k3
3

. (5.82)

Indeed, since both nmulti,a and nf,ab, for each a, b, are proportional to slow-roll parameters,
an expansion of Eq. (5.82) at first order in slow-roll provides Eq. (5.81). For general single
field models, it reduces to

fNL(k1, k2, k3) = fp
NL

k
3+nfNL
1 + k

3+nfNL
2 + k

3+nfNL
3

k3
1 + k3

2 + k3
3

, (5.83)

where fp
NL denotes 5fσσ/3 evaluated at the pivot scale and nfNL

= nf,σσ. These simple
ways of expressing the parameter fNL are particularly suitable to analyze how the triangle
shape affects the scale dependence. The single field expression (5.83) is equivalent to the
analogous result given in Section 3.3 of [40], as one can easily check using Appendix 5.8.2.
Eq. (5.83) however takes a much simpler form than the result in [40] as a consequence
of cancellations that occur when explicitly writing out the results in terms of slow roll
parameters.

We note that, although (5.83) is not of the form fNL ∝ (k1k2k3)nfNL
/3 which [54] used

in order to make observational forecasts for nfNL
, the bispectrum is a sum of three simple,

product separable terms

Bζ(k1, k2, k3) ∝ (k1k2)nζ−4k
nfNL
3 + 2 perms , (5.84)

and that it only depends on one new parameter nfNL
. In the multiple field case the

bispectrum will typically depend on more parameters than just nfNL
, see (5.82). An

exception is the two-field local model discussed in Sec. 5.4.2, in which case (we also use
Eq. (5.55))

Bζ(k1, k2, k3) ∝ (k1k2)nζ+(nfNL
/2)−4 + 2 perms . (5.85)

Notice that it therefore follows from (5.84) and (5.85) that models with the same
fNL and nfNL

can have different bispectral shapes which generalise in different ways the
local shape. It is possible that observations may distinguish between these shapes and
that we could therefore learn whether nfNL

arises due to single or multi-field effects (or a
combination of the two)4.

In Sec. 5.2, we limited our considerations to the scale dependence of fNL for equilateral
triangles. On the other hand, by means of Eq. (5.82) one can observe that, considering

a common rescaling for all the three vectors, say ~ki → α~ki, our previous results remains
valid regardless of the triangle shape. Namely,

∂ ln fNL(αk1, αk2, αk3)

∂ lnα

∣∣∣
α=1

=
∑
ab

fabNL (2nmulti,a + nf,ab) . (5.86)

which is exactly our previous result.

4CB thanks Sarah Shandera for pointing this out.
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While the scale dependence of fNL, when simultaneously varying the triangle sides,
does not depend on the triangle shape, there are other situations in which it does. We
might indeed be interested on the scale dependence of fNL, when varying the size of only
one of the triangle sides, keeping the other two fixed (and the triangle closed). In this case,
the result does depend on the triangle shape. We focus for simplicity on the single-field
case, for which the analysis is particularly simple, we do not expect our results to change
much when considering multiple fields. When varying ~k1 → α~k1, equation (5.82) becomes

fNL(αk1, k2, k3) = fp
NL

α3+nfNL k
3+nfNL
1 + k

3+nfNL
2 + k

3+nfNL
3

α3 k3
1 + k3

2 + k3
3

. (5.87)

It is clear that the dependence on α, in this expression, goes to zero in the limit in which k1

vanishes. This is because the coefficients of the terms depending on α, in equation (5.82),
become very suppressed with respect to the remaining terms. This situation corresponds
to a squeezed triangle: for this shape, we then learn that the value of fNL does not change
when varying the length of the triangles shortest side.

In order to determine the triangle shape that leads to maximal scale dependence, one
is then lead to focus on the opposite limit. That is, on configurations for which k3

1 is as
large as possible, with respect to k3

2 +k3
3. In this case, indeed, the coefficients of the terms

depending on α, in equation (5.82), become dominant with respect to the other terms.

This expectation is correct, as shown by the following more detailed analysis. Taking
the logarithmic derivative of fNL along α, we find, at leading order in slow-roll:

∂ ln fNL(αk1, k2, k3)

∂ lnα

∣∣∣
α=1

=
nfNL

1 + x3 + y3

(
1− 3x3 lnx+ 3y3 ln y

1 + x3 + y3

)
, (5.88)

where we have defined x = k2/k1, y = k3/k1. We have checked that the terms inside
the parenthesis are not important for determining the location of the maxima of the
previous expression. The maxima of Eq. (5.88) are therefore determined by the prefactor
(1 + x3 + y3)−1, which is maximized for triangles that minimize the combination x3 + y3.
This corresponds, as anticipated from our previous expectation, to the shape for which
k3

1 is as large as possible, with respect to the combination k3
2 + k3

3. Calling θ the angle
between k1 and k2, we have y2 = (1− x)2 + 2x (1− cos θ). So we can write

x3 + y3 = x3 +
[
(1− x)2 + 2x (1− cos θ)

] 3
2 . (5.89)

It is easy to see that the previous expression is minimized for θ = 0 and x = 1/2, that is
for a folded triangle for which k2 = k3 = k1/2. Plugging these values in (5.88), we find

∂ ln fNL

∂ lnα

∣∣∣
α=1
' 1.1nfNL

, (5.90)

so we learn that, for the shape that maximizes the scale dependence, we gain around
ten per cent with respect to the case in which we vary simultaneously all the sides of
the triangle. Plots in Fig. 5.1 represent the logarithmic derivative of fNL along α, and
graphically show the results discussed so far. Notice that the shape which maximizes the
scale dependence is indeed given by folded triangles.

A similar procedure, that generalizes what we have done in Sec. 5.2.3, can be applied
to analyze gNL and τNL. Expanding Eqs. (5.29) and (5.30) around a pivot scale kp using
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Figure 5.1: Behavior of the quantity ∂ ln fNL/∂ lnα, as a simultaneous function of x (taken
between 0 and 1.5) and of cos θ. The two plots represent the same figure from two different
points of view, that emphasize respectively the dependence on x and on cos θ. We have
chosen nfNL

= 0.01.

Eqs. (5.13), (5.14) and (5.19), we obtain the results

gNL(k1, k2, k3, k4) =
∑
abc

gabcNL

(
1 +

k3
4

(
nmulti,a ln k1k2k3

k3p
+ ng,abc ln k4

kp

)
+ 4 perms

k3
1 + k3

2 + k3
3 + k3

4

)
,

(5.91)

τNL(k1, k2, k3, k4, k13) =
∑
abcd

τabcdNL

(
δbc +

(
δbc

(
nmulti,a ln k1k2

k2p
+ (nbb − nζ) ln k13

kp

)
k3

1k
3
2k

3
13

+
δbc

(
nf,ab ln k3k4

k2p

)
− (1− δbc)(4

√
εbεc − 2ηbc) ln k13

kp

k3
1k

3
2k

3
13

+ 11 perms

)

×
(

1

k3
1k

3
2k

3
13

+ 11 perms

)−1
)

. (5.92)

We can then proceed with arguments very similar to the ones developed for fNL.
Writing ~ki → α~ki in Eqs. (5.91) and (5.92), taking a logarithmic derivative with respect
to α and finally setting α = 1, we immediately recover the results (5.33) and (5.34),
derived in Sec. 5.2 for nτNL

and ngNL
for equilateral configurations. This shows that for

the class of shape preserving variations, ~ki → α~ki, the results are independent of the figure
shape.

In the single field case, if we vary only one of the sides, say the one labeled by k1, then
the scale dependence vanishes when k1 → 0. We numerically analyzed for which shapes
the scale dependence is maximal. For the case of gNL, the analysis is a straightforward
generalization of what we did for fNL. The shape associated with maximal scale depen-
dence corresponds to a folded polygon, in which three of the sides lie over the side whose
length is varied. That is,

k1 = 3k2 = 3k3 = 3k4 . (5.93)

Again, for maximal scale dependence we gain order ten per cent with respect to the case
in which we vary all the sides simultaneously.

We also performed a numerical analysis to study τNL, finding again maximal scale
dependence for the folded shape of Eq. (5.93). For this parameter, we gain around 20−25
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percent with respect to the case in which we vary all the sides by the same amount (this
result resonates with the consistency relation (5.43)).

5.6 Curvature perturbation in coordinate space

An additional important feature of our approach to the scale dependence of local non-
Gaussianity, is that it allows one to express the results in coordinate space. In this
section, we show how the scale dependent coefficients appearing in the momentum space
expansion of curvature perturbation (5.16) manifest themselves in coordinate space. It is
clear that scale dependence will cause deviations from the local form, for which ζ(~x) can
be expressed as a power series of a Gaussian variable ζG(~x) with constant coefficients.
Using the general single field case as an example, we work out the expression for ζ(~x) in
the scale-dependent case and quantify how it deviates from the local form.

In the general single field case, Eq. (5.9) can be written as

ζ~k = ζG
~k

+
3

5
fNL(kp)

(
1 + nfNL

θ(ki − k) ln
k

ki

)
(ζG ? ζG)~k (5.94)

+
9

25
gNL(kp)

(
1 + ngNL

θ(ki − k) ln
k

ki

)
(ζG ? ζG ? ζG)~k + · · · ,

which coincides with Eq. (5.37) up to slow roll corrections for constant terms. This form
is useful for our analysis since the horizon scale ki = aiHi appears explicitly. We have
inserted the theta functions θ(ki − k) to explicitly indicate that the result holds only for
super-horizon modes k < ki. ki > kp should correspond to a physically smaller scale
than any of the modes of interest. Recall that similar theta functions are included in
our definition of ζG

~k
, Eq. (5.10). Therefore ζG

~k
can be viewed as a smoothed quantity; in

Fourier space the window function is simply a top hat with the cutoff set at the horizon
scale ki.

Taking the inverse Fourier transform of (5.94) we find

ζ(~x) = ζG(~x) +
3

5
fNL(kp)ζG(~x)2 +

9

25
gNL(kp)ζG(~x)3 (5.95)

+
3

5
fNL(kp)nfNL

∫
d3k

(2π)3
ei
~k·~xθ(ki − k)(ζG ? ζG)~k ln

k

ki

+
9

25
gNL(kp)ngNL

∫
d3k

(2π)3
ei
~k·~xθ(ki − k)(ζG ? ζG ? ζG)~k ln

k

ki
+ · · · .

The two integrals describe deviations from the local form. They can be written more
explicitly by performing the following manipulations∫

d3k

(2π)3
ei
~k·~xθ(ki − k)(ζG ? ζG)~k ln

k

ki
=

∫
d3y

∫
d3k

(2π)3
ei
~k·(~x−~y)θ(ki − k) ζG(~y)2 ln

k

ki

=

∫
d3y ζG(~y)2 1

2π2

sin(ki|~x− ~y|)− Si(ki|~x− ~y|)
|~x− ~y|3

≡
∫
d3y ζG(~y)2 I(|~x− ~y|) , (5.96)
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and similarly for the second integral. Using this we can rewrite Eq. (5.95) as

ζ(~x) = ζG(~x) +
3

5
fNL(kp)

(
ζG(~x)2 + nfNL

∫
d3y I(|~x− ~y|) ζG(~y)2

)
(5.97)

+
9

25
gNL(kp)

(
ζG(~x)3 + ngNL

∫
d3y I(|~x− ~y|) ζG(~y)3

)
+ · · · .

This result clearly shows how the scale dependence of fσσ and gσσσ in Eq. (5.16)
renders ζ(~x) a nonlocal function of ζG(~x). Because of the integrals in Eq. (5.97), the
curvature perturbation ζ(~x) can not be expressed in terms of ζG(~x) evaluated at the same
point ~x but one needs to know ζG(~y) in the entire region where I(|~x−~y|) is non-vanishing.
The behavior of I(|~x − ~y|) is depicted in Fig. 5.2 which also displays the inverse Fourier
transform,

W (|~x− ~y|) =
sin(ki |~x− ~y|)− ki |~x− ~y| cos(ki |~x− ~y|)

2π2|~x− ~y|3
, (5.98)

of the top hat window function θ(ki − k) included in the definition of ζG
~k

, Eq. (5.10).

Both W (x) and I(x) are approximatively constant at scales x . (ki)
−1. They both fall
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Figure 5.2: Absolute values of the functions W and I plotted on logarithmic scales for the
choice ki = 4 (in arbitrary units).

off for x & (ki)
−1 but I(x) remains negative definite unlike W (x) which starts to oscillate

rapidly. Keeping in mind that a smoothing over W (x) is implicit in the definition of
ζG(~x), we therefore see that the convolutions of ζG(~x) with I(x) in Eq. (5.97) pick up a
non-trivial contribution from the superhorizon modes x & (ki)

−1 where W (x) effectively
falls off faster than I(x). This contribution makes Eq. (5.97) deviate from the local form.

The analysis can in principle be straightforwardly generalized to the multi-field case.
The difference compared to the general single field case is the appearance of several
unrelated Gaussian fields ζG,a

~k
in Eq. (5.16). This in general makes it impossible to write

ζ(~x) as a series of a single Gaussian field even if the coefficients in Eq. (5.16) would be
constants.

5.7 Discussion

We have discussed a new approach, based on the δN -formalism, for studying the scale
dependence of non-Gaussianity parameters. We have obtained explicit expressions for
the scale dependence of the quantities fNL, τNL and gNL associated with the bispectrum
and trispectrum of primordial curvature perturbations. Our results depend on the slow-
roll parameters evaluated at horizon exit, and on the derivatives of the number of e-
foldings and the inflationary potential. The parameters controlling the scale dependence

81



CHAPTER 5. SCALE-DEPENDENT NON-GAUSSIANITY PROBES
INFLATIONARY PHYSICS

of non-Gaussianity depend on properties of the inflationary potential, namely its third
and fourth derivatives, which in all observationally interesting cases cannot be probed by
only studying the spectral index of the power spectrum and its running.

As a consequence, the scale dependence of non-Gaussianity provides additional pow-
erful observables, able to offer novel information about the mechanism which generates
the curvature perturbations. We demonstrated these features in the concrete example
of modulated reheating. In models with a quartic potential for the modulating field, we
have shown that the associated non-linearity parameters, and their scale dependence, can
be large enough to be observable.

While in most of the discussion we worked in momentum space, in the last part we
also discussed how to describe our results in coordinate space. We provided an expression
for curvature perturbations in coordinate space, that generalizes the frequently used local
Ansatz, and that exhibits directly in real space the effects of scale dependence of non-
Gaussian parameters.

Our results allow us to put onto a firm basis the phenomenological parameterizations
of the scale dependence of non-Gaussian observables. In many models of observational
interest, our formulae are relatively simple and depend on a single new parameter, the scale
dependence of the non-linearity parameter. It would be interesting to use these results for
analysing or simulating non-Gaussian data. At the same time, our investigation allows us
to identify which properties inflationary models have to satisfy, in order to obtain large
non-Gaussianity with sizeable scale dependence. It would be interesting to apply it to
analyse further models, for example those in which multiple fields interact during inflation
or where the non-Gaussianity is generated by an inhomogeneous end of inflation.

5.8 Appendices

5.8.1 Explicit expressions for nf,ab and ng,ab

For a system of slowly rolling scalar fields ϕa, the equations of motion are given by
3Hϕ̇a = −Va and 3H2 = V , to leading order in slow roll. Here we are interested in the
evolution during a short time interval from t0 to ti. The slow roll equations can easily be
solved for ϕa as

ϕa(ti) = ϕa(t0)−
√

2εa ln(ai/a0) +O
(
ε3/2ln2(ai/a0)

)
, (5.99)

where we have used the identity Hdt = dln a, which holds to leading order in slow roll.
In the following we use the notation O(εn) to denote the combinations of the slow roll
parameters εa, ηab of order εn.

Differentiating Eq. (5.99) with respect to ϕa(t0) and keeping the number of e-foldings
ln(ai/a0) fixed, we can compute the coefficients appearing in Eq. (5.4). We choose the
initial time t0 as the time tk of horizon crossing of a mode k, defined by akHk = k.
Using ln(ai/ak) = ln(aiHi/k), which is valid at leading order in slow roll, the three first
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coefficients in Eq. (5.4) can be written as

∂ϕa(ti)

∂ϕb(tk)
= δab + εab ln

aiHi

k
+O

({
ε2,

ε1/2V ′′′

3H2

}(
ln
aiHi

k

)2
)

, (5.100)

∂2ϕa(ti)

∂ϕb(tk)∂ϕc(tk)
= F

(2)
abc ln

aiHi

k
+O

({
ε5/2,

εV ′′′

3H2
,
ε1/2V ′′′′

3H2

}(
ln
aiHi

k

)2
)

,

(5.101)

∂3ϕa(ti)

∂ϕb(tk)∂ϕc(tk)∂ϕd(tk)
= F

(3)
abcd ln

aiHi

k
+O

({
ε3,

ε3/2V ′′′

3H2
,
εV ′′′′

3H2
,
ε1/2V ′′′′′

3H2

}(
ln
aiHi

k

)2
)

,

(5.102)

where the primes in O(V ′′′) etc. denote derivatives with respect any of the fields ϕa, and

F
(2)
abc =

√
2

(
−4
√
εaεbεc + ηab

√
εc + ηbc

√
εa + ηca

√
εb −

1√
2

Vabc
3H2

)
, (5.103)

F
(3)
abcd = −4(ηad

√
εbεc + ηbd

√
εcεa + ηcd

√
εaεb) (5.104)

+
√
εd

(
24
√
εaεbεc − 4ηab

√
εc − 4ηbc

√
εa − 4ηca

√
εb +
√

2
Vabc
3H2

)
+
√

2εc
Vabd
3H2

+
√

2εa
Vbcd
3H2

+
√

2εb
Vcad
3H2

+ ηabηcd + ηbcηad + ηcaηbd −
Vabcd
3H2

.

Substituting these into Eq. (5.15),

nf,ab = −
∑
c

NcF
(2)
cab

Nab

, (5.105)

ng,abc = −
∑
d

(
3
Nda

Nabc

F
(2)
dbc +

Nd

Nabc

F
(3)
dabc

)
, (5.106)

we obtain fully explicit results for the parameters nf,ab and ng,abc. The results are derived
retaining only terms up to first order in ln(aiHi/k) in Eqs. (5.100) - (5.102). Higher order
terms are suppressed by slow-roll parameters and their combinations with the derivatives
of the potential. The former are small by construction and the latter also naturally remain
small, provided that the flatness of the scalar field potential during inflation is not a result
of extreme fine-tuning. Furthermore, since the logarithms never grow very large for the
observable super-horizon modes, ln(aiHi/k) . O(10), we conclude that the higher order
contributions can indeed be neglected at first order.

5.8.2 On the different formulations of the δN approach

The δN expression for the super-horizon-scale curvature perturbation

ζ~k(tf ) =
∑
a

Na(tf , ti)δϕ
a
~k
(ti) +

1

2

∑
ab

Nab(tf , ti)

∫
d3q

(2π)3
δϕa~q(ti)δϕ

b
~k−~q(ti) + · · · , (5.107)

is by construction independent of the choice of the initial spatially flat hypersurface ti ≥ tk.
This property follows from the definition of the curvature perturbation [23] as demon-
strated in [40]. A commonly used choice is to set ti equal to the time tk of horizon
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crossing of the mode k. The analysis in [40] was performed using this choice. In our
current work, we have instead chosen ti as a time soon after tk following e.g. [25]. Here we
explicitly compare the two choices. For simplicity, we consider only terms up to second
order in Eq. (5.107). Generalization to higher orders is straightforward.

Using the chain rule it is easy to switch between the coefficients Nab..(tf , ti) and
Nab..(tf , tk) in the two different formulations. For the first and second order terms shown
in Eq. (5.107) we obtain

Na(tf , ti) ≡
∂N(tf , ti)

∂ϕa(ti)
=
∑
b

∂N(tf , tk)

∂ϕb(tk)

∂ϕb(tk)

∂ϕa(ti)
, (5.108)

Nab(tf , ti) ≡
∂2N(tf , ti)

∂ϕa(ti)∂ϕb(ti)
=
∑
c

∂N(tf , tk)

∂ϕc(tk)

∂2ϕc(tk)

∂ϕa(ti)∂ϕb(ti)
(5.109)

+
∑
cd

∂ϕc(tk)

∂ϕa(ti)

∂ϕd(tk)

∂ϕb(ti)

∂2N(tf , tk)

∂ϕc(tk)∂ϕd(tk)
.

In the second equality of both equations we have replaced the time argument ti in N(tf , ti)
by tk making use of the fact that ti and tk both label spatially flat hypersurfaces. This
implies that N(ti, tk), the number of e-foldings from tk to ti, is a constant under differ-
entiation with respect to the fields. Writing N(tf , ti) = N(tf , tk) − N(ti, tk), we thus
immediately see that N(tf , ti) can be replaced by N(tf , tk) in Eqs. (5.108) and (5.109).

Substituting Eqs. (5.108) and (5.109) into Eq. (5.107), we obtain

ζ~k(tf ) =
∑
a

Na(tf , tk)

(
∂ϕa(tk)

∂ϕb(ti)
δϕb~k(ti) +

1

2

∂2ϕa(tk)

∂ϕb(ti)∂ϕc(ti)

∫
d3q

(2π)3
δϕb~q(ti)δϕ

c
~k−~q(ti)

)
+

1

2

∑
ab

Nab(tf , tk)

(
∂ϕa(tk)

∂ϕc(ti)

∂ϕb(tk)

∂ϕd(ti)

∫
d3q

(2π)3
δϕc~q(ti)δϕ

d
~k−~q(ti)

)
+ · · · . (5.110)

On the other hand, according to Eq. (5.4) we have

δϕa~k(tk) =
∂ϕa(tk)

∂ϕb(ti)
δϕb~k(ti) +

1

2

∂2ϕa(tk)

∂ϕb(ti)∂ϕc(ti)

∫
d3q

(2π)3
δϕb~q(ti)δϕ

c
~k−~q(ti) + · · · . (5.111)

In arriving at this result we have first taken the Fourier transform of Eq. (5.4) and only
thereafter set one of the time arguments equal to tk. Using Eq. (5.111) we can rewrite
Eq. (5.110) as

ζ~k(tf ) =
∑
a

Na(tf , tk)δϕ
a
~k
(tk)+

1

2

∑
ab

Nab(tf , tk)

∫
d3q

(2π)3
δϕa~q(tk)δϕ

b
~k−~q(tk)+ · · · . (5.112)

This way of writing ζ~k(tf ) is equivalent to Eq. (5.107) and the two expressions differ
formally only by the choice of the initial time ti, as expected. The relation between the
coefficients in the two formulations is given by Eqs. (5.108) and (5.109), and the field
perturbations are related by Eq. (5.111). These results explicitly show how to switch
from one formulation to another.

In [40], the result for nfNL
, measuring the scale dependence of fNL, was expressed in

terms of the parameters nI = d lnNI(tf , tk)/d ln k and nIJ = d lnNIJ(tf , tk)/d ln k, see
e.g. Eq. (69) in that paper. (Here we follow the notation of [40] and label the scalar field
species ϕI by capital letters. This also serves to distinguish the parameters nI and nIJ
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from the quantities defined in the current work.) Using Eqs. (5.108) and (5.109) together
with the results derived in Appendix 5.8.1, we readily obtain explicit expressions for these
parameters

nI =
d ln NI(tf , tk)

d ln k
= −

∑
J

NJ

NI

εIJ , (5.113)

nIJ =
d ln NIJ(tf , tk)

d ln k
= nf,IJ −

∑
K

(
NIK εKJ
NIJ

+
NJK εKI
NIJ

)
. (5.114)

In the rightmost expressions we have suppressed the time arguments ti for brevity, e.g.
NI ≡ NI(tf , ti). Using these results, it is straightforward to check that the general
expression given for nfNL

in Eq. (69) of [40] agrees with our Eq. (5.24).
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Chapter 6

A weak lensing view on primordial
non-Gaussianities

The content of this chapter is published in [66].

We investigate the signature of primordial non-Gaussianities in the weak lensing bis-
pectrum, in particular the signals generated by local, orthogonal and equilateral non-
Gaussianities. The questions we address include the signal-to-noise ratio generated in
the Euclid weak lensing survey (we find the 1σ-errors for fNL are 200, 575 and 1628 for
local, orthogonal and equilateral non-Gaussianities, respectively), misestimations of fNL

if one chooses the wrong non-Gaussianity model (misestimations by up to a factor of
±3 in fNL are possible, depending on the choice of the model), the probability of notic-
ing such a mistake (improbably large values for the χ2-functional occur from fNL ∼ 200
on), degeneracies of the primordial bispectrum with other cosmological parameters (only
the matter density Ωm plays a significant role), and the subtraction of the much larger,
structure-formation generated bispectrum. If a prior on a standard wCDM-parameter
set is available from Euclid and Planck, the structure formation bispectrum can be pre-
dicted accurately enough for subtraction, and any residual structure formation bispectrum
would influence the estimation of fNL to a minor degree. Configuration-space integrations
which appear in the evaluation of χ2-functionals and related quantities can be carried out
very efficiently with Monte-Carlo techniques, which reduce the complexity by a factor of
O(104) while delivering sub-percent accuracies. Weak lensing probes smaller scales than
the CMB and hence provide an additional constraint on non-Gaussianities, even though
they are not as sensitive to primordial non-Gaussianities as the CMB.

6.1 Introduction

As cosmological data improves, it is becoming increasingly feasible to probe models of
the early universe. In particular, primordial non-Gaussianity has emerged as a leading
window onto the physics of inflation and the early universe (for reviews, see [45, 193,
194]). Although non-Gaussian perturbations could in principle take any form, in practice
searching for just a few shapes of the bispectrum (3-point correlation function) allows one
to discriminate between entire classes of models [18,88,195]. Many alternative models to
inflation produce the same non-Gaussian shapes, and therefore can also be constrained
at the same time.
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The theory of primordial non-Gaussianities is very evolved, and predictions for non-
Gaussianities in different observational channels have been made: number counts and
large-scale structure statistics [49, 196–198], the cosmic microwave background even out-
side the Sachs-Wolfe regime [199,200] and gravitational lensing [201–204].

Most constraints on non-Gaussianities are reported using CMB-observations, either
by measuring the bispectrum of the temperature perturbation directly [183,205–211], by
measuring the skewness of weighted averaged CMB-patches [212] or by quantifying the
corresponding Minkowski functionals [213–215]. The tightest bounds on the amplitude
fNL of the bispectrum, −10 ≤ fNL ≤ 74 has been obtained by [18].

So far, observational constraints on the weak lensing bispectrum [216, 217] mainly
concerned the non-Gaussianities generated by structure formation and their breaking of
the Ωm-σ8 degeneracy [218], and first results have been obtained using the skewness of
the aperture-mass statistic [219,220].

In this chapter we forecast the constraints which the weak lensing bispectrum will be
able to make on primordial non-Gaussianity, especially with a view to Euclid. Although
the constraints are not competitive with the CMB if the non-Gaussianities are scale
independent, they are complementary since they probe smaller scales compared to the
CMB and provide constraints on a possible scale-dependence [175]. A scale dependence
of fNL at the same order as the spectral index of the power spectrum is natural [65] and
it may be much stronger, e.g. a “step–function” which is zero on large scales and large on
small scales [221]. Weak lensing also has lower systematic errors than other large scale
structure probes such as the galaxy bispectrum, scale dependent bias and cluster counts.
Because the weak shear provides a linear mapping of the cosmic matter distribution, the
statistical properties of the source field are conserved in the observable.

After a brief recapitulation of cosmology and structure formation in Sect. 6.2 we
introduce primordial and structure formation non-Gaussianities in Sect. 6.3, in particu-
lar the bispectral shapes and the motivation for studying them. The mapping of non-
Gaussianities by weak gravitational lensing is treated in Sect. 6.4, where we investigate
the properties of the weak lensing bispectrum in its scale- and configuration dependence,
and how it builds up as a function of survey depth. Statistical questions concerning the
signal strength and misestimations of the non-Gaussianity parameter are addressed in
Sect. 6.5, before we focus on systematic errors in the non-Gaussianity parameter due to
incompletely removed structure formation non-Gaussianities in Sect. 6.6. We summarise
our main results in Sect. 6.7 and provide visualisations of the weak lensing bispectrum
sourced by different non-Gaussianity shapes in Appendix 6.8.1.

The reference cosmological model used is a spatially flat wCDM cosmology with Gaus-
sian adiabatic initial perturbations for the cold dark matter density. The specific param-
eter choices are Ωm = 0.25, ns = 1, σ8 = 0.8, Ωb = 0.04 and H0 = 100 h km/s/Mpc, with
h = 0.72. The dark energy equation of state is constant in time with a value of w = −0.9.

6.2 Cosmology and structure formation

In spatially flat dark energy cosmologies with the matter density parameter Ωm, the
Hubble function H(a) = d ln a/dt is given by

H2(a)

H2
0

=
Ωm

a3
+

1− Ωm

a3(1+w)
, (6.1)

88



6.3. NON-GAUSSIANITIES

for a constant dark energy equation of state-parameter w. Comoving distance χ and scale
factor a are related by

χ = c

∫ 1

a

da

a2H(a)
, (6.2)

such that the comoving distance is given in units of the Hubble distance χH = c/H0.
For the linear matter power spectrum P (k) which describes the Gaussian fluctuation
properties of the linearly evolving density field δ,

〈δ(~k)δ(~k′)〉 = (2π)3 δ(3)(~k + ~k′) P (k) (6.3)

the ansatz P (k) ∝ knsT 2(k) is chosen with the transfer function T (k), which is well
approximated by the fitting formula

T (q) =
ln(1 + 2.34q)

2.34q
× p(q)−1/4 , (6.4)

for low-matter density cosmologies [222]. The polynomial p(q) is given by p(q) = 1 +
3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4. The wave vector k = qΓ enters rescaled by the
shape parameter Γ [223],

Γ = Ωm h exp

[
−Ωb

(
1 +

√
2h

Ωm

)]
. (6.5)

The fluctuation amplitude is normalised to the value σ8 on the scale R = 8 Mpc/h,

σ2
R =

1

2π2

∫
dk k2W 2

R(k) P (k) , (6.6)

with a Fourier-transformed spherical top-hatWR(k) = 3j1(kR)/(kR) as the filter function.
j`(x) denotes the spherical Bessel function of the first kind of order ` [224]. The linear
growth of the density field, δ(~x, a) = D+(a)δ(~x, a = 1), is described by the growth function
D+(a), which is the solution to the growth equation [225–227],

d2

da2
D+(a) +

1

a

(
3 +

d lnH

d ln a

)
d

da
D+(a) =

3

2a2
Ωm(a) D+(a) . (6.7)

6.3 Non-Gaussianities

6.3.1 Primordial non-Gaussianities

We write the primordial bispectra in terms of the Bardeen curvature perturbation Φ
[12, 20], which may be related to the primordial curvature perturbation ζ = 5Φ/3 (see
e.g. chapter 8 in [14]) and the CMB temperature anisotropy in the Sachs-Wolfe limit
∆T/T = −Φ/3 [33]. The bispectrum of Φ is defined by

〈Φ(~k1)Φ(~k2)Φ(~k3)〉 = (2π)3 δ(3)(~k1 + ~k2 + ~k3) BΦ(k1, k2, k3) . (6.8)

We will be particularly interested in three bispectral shapes, which cover the expected
shape from a wide range of inflationary models [45]. They are defined as:
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1. Local shape. This is defined by

Blocal
Φ (k1, k2, k3) = 2A2 f localNL

(
kns−4

1 kns−4
2 + (2 perm)

)
, (6.9)

where the amplitude A is defined by PΦ(k) = Akns−1. It may arise through
a simple Taylor expansion about the Gaussian (linearised) perturbation Φ(x) =
ΦG(x) + fNLΦ2

G, although this is not the most general ansatz for Φ which gives
rise to the local bispectrum. The local shape typically arises from super-horizon
evolution of the curvature perturbation (k � aH), which occurs for example in
some multifield inflation models [146,228], during modulated reheating [166], in the
curvaton scenario [30] (the last three models are closely connected [229]), as well as
the ekpyrotic scenario [230] and non-local inflation [231].

2. The equilateral shape is given by

Bequil
Φ (k1, k2, k3) = 6A2f equilNL

(
−2 (k1k2k3)2(ns−4)/3

−
[
(k1k2)(ns−4) + (2 perm)

]
+
[
k

(ns−4)/3
1 k

2(ns−4)/3
2 kns−4

3 + (5 perm)
])

. (6.10)

This shape typically arises in models with non-canonical kinetic terms, the most
studied example being Dirac-Born-Infeld inflation [232, 233]. Also various other
models can produce this shape [234–238].

3. The orthogonal shape is given by [239]

Bortho
Φ (k1, k2, k3) = 6A2f orthoNL

(
−8 (k1k2k3)2(ns−4)/3

− 3
[
(k1k2)(ns−4) + (2 perm)

]
+ 3

[
k

(ns−4)/3
1 k

2(ns−4)/3
2 kns−4

3 + (5 perm)
])

, (6.11)

and it was constructed in order to be orthogonal to both the equilateral shape and
to a lesser extent the local shape.

The local model is maximised for squeezed triangles k1 � k2 ' k3, the equilateral model
is maximised for equilateral triangles k1 ' k2 ' k3 while the orthogonal model receives
contributions from a broader range of triangles. Another frequently considered shape is
the enfolded one, which is maximised for “flattened” isosceles triangles k1 ' k2 ' k3/2,
but this can be written as a linear combination of the three shapes above. We note that
although the above three shapes cover many classes of non-Gaussian models, there do
exist other shapes which cannot be written as a combination of the above three shapes
including localised or oscillating bispectra, which may be caused by a feature in the
inflatons potential [240,241], particle production while observable modes are crossing the
horizon [242] (but a burst of particle production later in inflation generates local non-
Gaussianity, [243]), or an inflaton potential with superimposed oscillations [244,245].

Because fNL for all three shapes is normalised to an equilateral triangle, but the signal-
to-noise is maximised for different triangle shapes depending on the configuration it is not
surprising that the error bars on the three shapes are significantly different [246]. In line
with this expectation, we find that weak lensing can constrain the local model most tightly
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and the equilateral model least well. When investigating relative magnitudes between
structure formation bispectra and primordial ones, we restrict ourselves to the equilateral
case, as all primordial bispectra have equal values for this configuration. An alternative
normalisation was proposed by [246].

A mild scale dependence of fNL is natural, for both the local model [65,189,247], and
the equilateral and orthogonal models [174,248–250], and it may be much stronger, e.g. a
“step–function” which is zero on large scales and large on small scales [221]. Although we
treat fNL as constant in this chapter, the motivation for considering scale-dependence is
important because weak lensing probes smaller scales than the CMB and hence the CMB
bounds may not apply here, see Sec. 6.4. Observational probes have been considered
in [54,175,251,252].

For converting the bispectrum of the potential fluctuations to those of the density
field we use the Newtonian Poisson equation for each occurence of the potential in the
bispectrum [253],

∆Φ =
3

2

Ωm

χ2
H

δ −→ δ(k, a) =
2

3Ωm

D+(a) (χHk)2 T (k) Φ(k) . (6.12)

The horizon entry of each mode is governed by the transfer function T (k) and it grows
∝ D+(a) in the linear regime, such that

Bδ(k1, k2, k3, a) =
3∏
i=1

(
2

3Ωm

D+(a) (χHki)
2 T (ki)

)
BΦ(k1, k2, k3) . (6.13)

We choose the normalisation factor A to be consistent for each linearly evolving mode of
the density field with our definition of σ8.

6.3.2 Non-Gaussianities from structure formation

Nonlinear processes in structure formation break the homogeneity of the growth equation
and generate non-Gaussian features in the initially close to Gaussian density field. From
Eulerian perturbation theory (see [254–257]), the first order contribution to the bispec-

trum Bδ(~k1, ~k2, ~k3) (for an introduction, see [258,259]) of the density field from nonlinear
structure formation is given by:

Bδ(~k1, ~k2, ~k3, a) =
∑

i,j=1,2,3
i 6=j

D4
+(a)M(~ki, ~kj) P (ki)P (kj) , (6.14)

where the classical mode coupling function is M(~ki, ~kj)

M(~ki, ~kj) =
10

7
+

(
ki
kj

+
kj
ki

)
x+

4

7
x2 . (6.15)

x = ~ki~kj/(kikj) denotes the cosine between the wave vectors ~ki and ~kj. Due to the
fact that P (k, a) grows ∝ D2

+(a) in linear structure formation, the bispectrum scales
with D4

+(a) in lowest order perturbation theory. In terms of non-Gaussianity parameters
and configuration dependences, structure formation non-Gaussianities are strongest for
the squeezed configuration because the mode coupling function M(~ki, ~kj) assumes the
largest values for parallel wave vectors (with the cosine being one, x = 1), and therefore
resembles non-Gaussianities of the local type. Their strength in the weak shear bispectrum
corresponds to an fNL-parameter of O(104), i.e. two orders of magnitude larger than the
primordial non-Gaussianities weak lensing can probe.
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6.4 Weak gravitational lensing

6.4.1 Convergence spectrum

The weak lensing convergence κ follows from a line-of-sight integration weighted with the
lensing efficiency Wκ(χ) (for reviews, see [260,261]),

κ =

∫ χH

0

dχWκ(χ) δ (6.16)

and reflects, because of its linearity, all statistical properties of the density field δ. The
weak lensing efficiency is given by

Wκ(χ) =
3Ωm

2a

1

χ2
H

G(χ) χ , (6.17)

with the weighted distance distribution G(χ) of the lensed galaxies,

G(χ) =

∫ χH

χ

dχ′ q(z)
dz

dχ′
χ′ − χ
χ′

. (6.18)

The spectrum Cκ(`) then results from applying Limber’s equation [262],

Cκ(`) =

∫ χH

0

dχ

χ2
W 2
κ (χ)P (k = `/χ, a) . (6.19)

For the galaxy redshift distribution q(z) we assume a standard shape,

q(z) = q0

(
z

z0

)2

exp

(
−
(
z

z0

)β)
dz with

1

q0

=
z0

β
Γ

(
3

β

)
, (6.20)

with the median redshift set to 0.9, as projected for Euclid.

6.4.2 Convergence bispectrum

Similarly as in the case of the weak shear spectrum Cκ(`) we use the Limber-equation in
the flat-sky approximation,

Bκ(~̀1, ~̀2, ~̀3) =

∫ χH

0

dχ

χ4
W 3(χ)Bδ(~k1, ~k2, ~k3, a) , (6.21)

with ~kp = ~̀
p/χ, p = 1, 2, 3, for projection of the flat-sky convergence bispectrum Bκ

[219,263–267]. The spherical bispectrum Bκ(`1, `2, `3) is related to the flat-sky bispectrum

Bκ(~̀1, ~̀2, ~̀3) by [268,269]

Bκ(`1, `2, `3) '
(
`1 `2 `3

0 0 0

)√∏3
p=1(2`p + 1)

4π
Bκ(~̀1, ~̀2, ~̀3) , (6.22)

where (
`1 `2 `3

0 0 0

)2

=
1

2

∫ +1

−1

dx P`1(x)P`2(x)P`3(x) (6.23)
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denotes the Wigner-3j symbol, which results from integrating over three Legendre polyno-
mials P`(x) (x = cos θ). The Wigner-3j symbol nulls configurations which would violate
the triangle inequality, |`i − `j| ≤ `k ≤ |`i + `j| [224]. The factorials in the Wigner-3j
symbol are evaluated using the Stirling approximation for the Γ-function,

Γ(n+ 1) = n! with Γ(x) '
√

2π exp(−x) xx−
1
2 , (6.24)

for x � 1 [224]. At this point, it is appropriate to recall two important issues related
to the weak shear bispectrum as a line of sight-integrated quantity: The line-of-sight
integration causes the non-Gaussianities in the convergence to be weaker than that of the
source field, as a consequence of the central limit theorem, because many uncorrelated
lensing effects (if the Born approximation is invoked and lens-lens coupling is neglected,
see [270–273]) add up to the signal [204]. Secondly, the evaluation of the wave vector
k = `/χ in the source field bispectrum Bδ generates a mixing of scales when the distance
χ runs over the integration range such that the observed weak lensing bispectrum is a
superposition of density field bispectra of varying scale and fixed projected configuration.

6.4.3 Properties of the weak lensing bispectrum

Fig. 6.9 in Appendix 6.8.1 gives a 3-dimensional visual impression of the three different
bispectra as observed by weak shear. The weak shear bispectra are given as dimensionless
bispectra, by multiplication with the prefactor (`1`2`3)4/3 ∼ `4. There are clear differ-
ences in the configuration dependence: Local non-Gaussianities provide large amplitudes
for squeezed configurations, i.e. in the corners of the domain admissible by the trian-
gle inequality, orthogonal non-Gaussianities are largest for folded configurations and the
equilateral bispectra assume large values if the three multipole orders are equal.

Fig. 6.1 illustrates the contribution dCκ(`)/dχ to the spectrum and the contribution
dBκ(`, `, `)/dχ to the equilateral bispectrum as a function of comoving distance. For the
relevant range of multipoles, modes with wave numbers in the range 0.1 . . . 1 Mpc/h are
being probed by weak shear, which are larger than those wave numbers measurable in
the primary CMB bispectrum and emphasises the necessity of measuring fNL in its scale
dependence, in a similar way as advocated by [175] for number counts.

The skewness parameters Sκ(`) are defined as the ratio between the squared equilateral
bispectrum and the cubed spectrum,

Sκ(`) =

√
B2
κ(`, `, `)

C3
κ(`)

. (6.25)

Sκ(`) is proportional to fNL (and to σ8 to lowest order) and is independent of Ωm. It will
become relevant for the signal-to-noise ratio Σ(`) (see eqn. 6.26 in Sect. 6.5.1). These
skewness-parameters are depicted in Fig. 6.2 as a function of median redshift zmed of
the lensing survey for both the primordial and the structure formation induced weak
lensing bispectrum. The skewness parameters increase with increasing survey depth and
in case of primordial non-Gaussianities saturate at redshifts of unity, which is an effect
of the time evolution of the gravitational potential being mapped out by weak lensing, as
perturbations in the potentials decay in the dark energy-dominated phase and are constant
in the matter-dominated phase. Structure formation non-Gaussianities decrease slightly
for deeper reaching surveys, which is caused by the fact that the structure formation
skewness’s are building up during Ωm-domination, as they scale ∝ D4

+/a
3 ∼ a in contrast
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Figure 6.1: Contributions `2dCκ(`)/dχ
to the lensing spectrum (solid line), and
`4dBκ(`, `, `)/dχ to the lensing bispectra for
both primordial non-Gaussianities (dashed
line, fNL = 1) and structure formation non-
Gaussianities (dash-dotted line), for ` = 10
(thin lines), ` = 100 (medium lines) and
` = 1000 (thick lines). The bispectra are
plotted for the equilateral configuration.
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Figure 6.2: Skewness parameter Sκ(`) for
both primordial non-Gaussianities (dashed
line, fNL = 1) and structure formation non-
Gaussianities (dash-dotted line) as a func-
tion of the survey depth, for ` = 10 (thin
lines), ` = 100 (medium lines) and ` = 1000
(thick lines).

to primordial non-Gaussianities in the potential, which are constant with their scaling
∝ (D+(a)/a)3 ∼ const. The plot suggests that with the redshift range probed by Euclid
the largest-possible skewness’s are being observed.

6.5 Statistics

6.5.1 What signal-to-noise ratio can one expect?

The cumulative signal-to-noise ratio Σ(`) for the weak lensing bispectrum Bκ(`1, `2, `3)
up to multipole order ` is given by [263]

Σ2(`) =
∑̀

`1=`min

∑̀
`2=`min

∑̀
`3=`min

B2
κ(`1, `2, `3)

cov(`1, `2, `3)
. (6.26)

The summation is carried out with the condition `1 ≤ `2 ≤ `3 [266], such that the
covariance becomes

cov(`1, `2, `3) =
∆(`1, `2, `3)

fsky

C̃(`1) C̃(`2) C̃(`3) , (6.27)

where the function ∆(`1, `2, `3) counts the multiplicity of triangle configurations and is
defined as

∆(`1, `2, `3) =


6, `1 = `2 = `3

2, `i = `j for i 6= j
1, `1 6= `2 6= `3 6= `1

. (6.28)

94



6.5. STATISTICS

fsky denotes the fraction of the observed sky and is set to fsky = 1/2 for Euclid. The
observed spectra

C̃(`) = C(`) +
σ2
ε

n
, (6.29)

with the number density of ellipticity measurements per steradian n, which is set to
40 galaxies per squared arcminute, corresponding to the projected Euclid performance.
Instead of a direct summation over `1, `2, `3 we use a Monte-Carlo integration technique
and consider the evaluation of eqn. (6.26) as a three-dimensional integration, for which
we use publicly available CUBA-library [274].

The cumulative signal-to-noise ratio Σ(`) for a measurement of the weak shear bispec-
trum is depicted in Fig. 6.3 as a function of ` and for all three non-Gaussianity types. As
the signal strength Σ is proportional to the non-Gaussianity parameter fNL, it is conve-
nient to plot the ratio Σ(`)/fNL. The plot suggests that weak lensing bispectra sourced
by primordial non-Gaussianities could only be measured with Euclid for fNL significantly
larger than 100. Orthogonal bispectra are weaker by a factor of 3 compared to local bis-
pectra, and equilateral bispectra generate the weakest signal, being a factor of 8 weaker
than local non-Gaussianities. The four different MC-integration algorithms agree well
in their results for Σ(`), and when the number of sampling points is chosen to be ∝ `,
the algorithms retain accuracies, indicating that the adaptive algorithms take account
of the symmetry properties of the integrand. At ` = 1000, is is sufficient to compute
O(105) samples, which reduces the number of evaluations of the integrand by a factor of
104 compared to the exact evaluation, which would require O(109) evaluations, for preci-
sions on the sub-percent level. We will restrict `-space integrations to multipoles . 1000,
because the increase in signal when extending the `-range is marginal for primordial non-
Gaussianities and additionally, it helps to avoid scales influenced by baryonic physics and
intrinsic alignments [275,276].

The configuration dependence of the contribution to the integrated signal is given
in Fig. 6.9 (Appendix 6.8.1) for the three bispectrum types considered here. The pan-
els show the weak shear bispectrum in units of the noise, Bκ(`1, `2, `3)/

√
cov(`1, `2, `3)

as a function of `1, `2 and `3. While the local non-Gaussianity provides the largest
contributions for squeezed configurations, the orthogonal non-Gaussianity shows a much
uniformer contribution throughout `-space, and the equilateral non-Gaussianity is only
providing significant amplitudes for very small values of `. This behavior is reflected in in
the cumulative signal-to-noise ratio, as shown in Fig. 6.3. From the signal-to-noise ratios
one can already estimate the accuracy for a measurement of fNL. The conditional Cramér-
Rao bounds σfNL

= 1/
√
FfNLfNL

on the non-Gaussianity parameter (which are at the same
time the non-Gaussianities required to generate a signal of unity) are σfNL

= 200 (local),
σfNL

= 575 (orthogonal) and σfNL
= 1628 (equilateral) which is significantly weaker than

other probes such as the primary CMB, due to the Gaussianising effect of the line-of-sight
integrations [204].

6.5.2 Would one misestimate fNL using the wrong bispectrum?

The χ2-functional constructed for measuring the noise-weighted mismatch between the
true bispectrum Bt

κ and the wrongly assumed bispectrum Bw
κ for interpreting the data

reads:

χ2 =
∑̀

`1=`min

∑̀
`2=`min

∑̀
`3=`min

[αBw
κ (`1, `2, `3)−Bt

κ(`1, `2, `3)]
2

cov(`1, `2, `3)
(6.30)
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Figure 6.3: Cumulative signal-to-noise ra-
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sult from different Monte-Carlo integration
routines.

10
1

10
2

10
3

−3

−2

−1

0

1

2

3

 

 

local

ortho

equil

local

ortho

equil

multipole order ℓ

ra
ti
o
ar
si
n
h
(α
(ℓ
)
−1

)

Figure 6.4: The ratio α(`) of inferred
fNL-value to the true fNL-value as a func-
tion of maximum multipole order `. The
true non-Gaussianity model is indicated by
the line style, whereas the wrongly cho-
sen non-Gaussianity model is given by the
marker style: local (circles, solid lines), or-
thogonal (lozenges, dashed lines) and equi-
lateral (squares, dash-dotted lines) non-
Gaussianities.

and yields the best fitting α from the minimisation ∂χ2/∂α = 0.
The variable α measures the ratio between the wrongly inferred non-Gaussianity pa-

rameter fNL and the true value, and is given by Fig. 6.4 as a function of maximum multi-
pole order considered in the integration of the χ2-functional. For weak signals this ratio
is very close to unity, and differences emerge when the integration is carried out to larger
multipoles, and the signal becomes stronger. Misestimations in fNL up to half an order
of magnitude appear possible, including wrong signs for fNL-estimates. Most combina-
tions of Bt

κ and Bw
κ yield very small values for the estimated fNL-parameter (equivalently,

α ' −1) when choosing the wrong non-Gaussianity. Again, the evaluations necessary for
determining α are carried out as an MC-integration with the CUBA-library [274].

6.5.3 Would one notice fitting the wrong bispectrum?

Now, the question appears if one would notice the assumption of a wrong primordial bis-
pectrum when fitting for the non-Gaussianity parameter fNL. This can be quantified by
the probability q of obtaining data more extreme than the one at hand. This probabil-
ity q (Fisher’s p-value) is given as a function of the true fNL under the assumption of a
Gaussian likelihood, which is well justified given the very large number of degrees of free-
dom (although doubts have been raised about how accurate this is, see [277]). As shown
in Fig. 6.5 for all combinations between true non-Gaussianity types and wrongly fitted
non-Gaussianity models, this probability drops very rapidly towards very small numbers
for fNL-values of a few hundred, indicating that it would be very difficult to reconcile
non-Gaussianities of that strength with observations if the wrong non-Gaussianity model
had been chosen. For fNL-values smaller than 100 the signal is so weak that no significant
discrepancies between data and model appear, for any type of non-Gaussianity.
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6.5.4 Do parameter constraints depend on non-Gaussianity?

The Fisher-matrix formalism [278] is widely used in cosmology for deriving parameter
forecasts, and requires in the case of the bispectrum as the signal-to-noise ratio the sum-
mation over all triangle configurations:

Fµν =
∑̀

`1=`min

∑̀
`2=`min

∑̀
`3=`min

∂Bκ

∂xµ

1

cov(`1, `2, `3)

∂Bκ

∂xν
. (6.31)

The explicit summation can be replaced by a d3`-integration, which can be carried out
using the MC-technique outlined in Sect. 6.5.1. Resulting simultaneous constraints on Ωm

and fNL from the weak shear bispectrum sourced only by primordial non-Gaussianities
with no other priors are given in Fig. 6.6 for local and orthogonal models at a reference
fNL = 1000. The equilateral bispectrum does not constrain the parameter pair in a
meaningful way due to the weak signal.

6.6 Systematics due to structure formation

6.6.1 Can one subtract the structure formation bispectrum?

Naturally, the small primordial non-Gaussianities are superseded by much stronger non-
Gaussianities due to nonlinearities in the cosmic structure formation processes, which
affects the measurability of fNL. There exists an accurate description of the structure
formation bispectrum provided by Eulerian perturbation theory on the scales of inter-
est (compare Sect. 6.3.2, and [255]), if the cosmology is known – but there are always

97



CHAPTER 6. A WEAK LENSING VIEW ON PRIMORDIAL NON-GAUSSIANITIES

uncertainties in the cosmological parameter set, which would result in an uncertainty in
predicting the structure formation bispectrum. If the structure formation bispectrum is
not properly subtracted from the observed bispectrum, there will be errors in the estima-
tion of the non-Gaussianity parameter fNL for the primordial bispectrum, which can be
quantified with the χ2-functional,

χ2 =
∑̀

`1=`min

∑̀
`2=`min

∑̀
`3=`min

[αBt
κ(`1, `2, `3)−∆Bκ(`1, `2, `3)]

2

cov(`1, `2, `3)
, (6.32)

describing the fit of a primordial bispectrum Bt
κ to data ∆Bκ,

∆Bκ(`1, `2, `3) = Bt
κ(`1, `2, `3) +Bt,SF

κ (`1, `2, `3)−Bw,SF
κ (`1, `2, `3) (6.33)

which contain the true primordial bispectrum Bt
κ itself, the very large structure formation

bispectrum Bt,SF for the true cosmology, from which the structure formation bispectrum
Bw,SF has been subtracted, possibly incompletely, by assuming the wrong cosmology.
Derivation ∂χ2/∂α = 0 yields the best fitting α, which is related to the misestimated
fwNL = αfNL and the deviation from the true non-Gaussianity δ = α− 1.

Distributions p(δ)dδ have been derived for all bispectrum types by drawing 103 samples
from a Gaussian likelihood for the parameters Ωm, σ8, h, ns and w of a standard spatially
flat dark energy model. The covariance matrix has been constructed using the icosmo
resource for the Euclid weak lensing and BAO data [279], and provides an excellent prior
on the cosmological parameters. By this sampling process of δ it is possible to propagate
the entire uncertainty in the cosmological parameter set onto the estimate of fNL. As
shown by Fig. 6.7, the resulting distribution is very close to Gaussian, with zero mean
and standard deviations of σfNL

= 119 (local), σfNL
= 372 (orthogonal) and σfNL

= 511
(equilateral), which is similar to the statistical uncertainty of measuring fNL and thus
constitutes a serious error. The width of the distributions are independent of the true
value fNL, and the relative error δ/fNL scales ∝ 1/fNL. Misestimates of that magnitude
make it very difficult to assign a primordial origin to a non-zero residual bispectrum, given
the current bounds on fNL. All integrations were computed up to ` = 1000.

6.6.2 What happens if a better prior is available?

The uncertainty in predicting the weak shear bispectrum generated by nonlinear structure
formation can be reduced if a stronger prior on the cosmological parameter set is available
or if the complexity of the model is reduced, e.g. if the wCDM dark energy cosmology
would be replaced by the simpler ΛCDM cosmology. Fig. 6.8 illustrates the distributions
p(δ)dδ of the difference δ between the inferred non-Gaussianity parameter and the true
parameter, if the contamination of the bispectrum is computed by drawing 103 sample
wCDM cosmologies from a Gaussian likelihood whose covariance matrix incorporates
constraints from Euclid weak shear spectra, Euclid baryon acoustic oscillations and in
addition Planck’s constraints from the observation of primary CMB temperature and
polarisation spectra. In comparison to the distributions shown in Fig. 6.7, the width
is now much reduced, by about a factor of 4, allowing measurements down to smaller
values for fNL. The specific uncertainties are σfNL

= 29 (local), σfNL
= 98 (orthogonal)

and σfNL
= 149 (equilateral), all stated as standard deviations of the distribution p(δ)dδ.

These uncertainties are below current bounds on fNL and are small enough for studies of
primordial non-Gaussianities. Again, all integrations were carried out up to ` = 1000.
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Figure 6.7: Distributions p(δ)dδ of the bias
δ between the inferred non-Gaussianity pa-
rameter and the true parameter fNL if the
structure formation bispectrum is not com-
pletely removed, due to uncertainties in the
cosmological model, for local (circles, solid
line), orthogonal (lozenges, dashed line) and
equilateral (squares, dash-dotted line) non-
Gaussianities. As priors, Euclid weak lens-
ing and baryon acoustic oscillations were
used.
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Figure 6.8: Distributions p(δ)dδ of the bias
δ with an enhanced prior for the cosmolog-
ical model with constraints from weak lens-
ing, baryon acoustic oscillations (both Eu-
clid) and CMB temperature and polarisa-
tion spectra (Planck), for local (circles, solid
line), orthogonal (lozenges, dashed line) and
equilateral (squares, dash-dotted line) non-
Gaussianities.

6.7 Summary

The topic of this chapter are measurements of primordial bispectra in weak shear data
from Euclid, comparisons between different types of non-Gaussianity configuration depen-
dences, statistical questions concerning the inference of the non-Gaussianity parameter
fNL and the removal of the much stronger structure formation induced bispectrum. Al-
though not as sensitive as observations of the CMB-bispectrum or the galaxy bispectrum
for scale-free non-Gaussianities, weak lensing can place useful independent constraints on
non-Gaussianities, in particular on smaller scales where CMB bounds might not apply. It
is less prone to systematics than other large-scale structure probes and provides a direct
linear mapping of the density field, which conserves its statistical properties.

1. Primordial non-Gaussianities provide a rather weak signal in the weak shear bispec-
trum (because of the Gaussianising effect of the line-of-sight integration, [204]), and
signal-to-noise ratios of order unity can only be expected for fNL = 200, 575, 1628
for local, orthogonal and equilateral non-Gaussianities, respectively, where this mea-
surement is most sensitive to scales 0.1 . . . 1 (Mpc/h)−1. These bounds are weaker
than those from e.g. observations of the CMB bispectrum, but will serve never-
theless for cross validation, in particular given the absence of strong systematics in
weak shear data, or as bounds on scale-dependent non-Gaussianity, because weak
lensing maps out scales which are not constrained by the CMB and is sensitive to
scales probed by number counts.

2. Configuration space integrations can be very efficiently carried out by Monte-Carlo
integration schemes, at a fraction of the computational cost. Computations of the
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signal-to-noise ratio, of χ2-functionals or of the Fisher-matrix Fµν can be done with
accuracies below a percent with O(105) evaluations instead of O(109) evaluations
for the direct sum over `1, `2 and `3. Very good results were obtained with the
CUBA library [274].

3. Fitting the wrong bispectrum type to data yields serious misestimates in the non-
Gaussianity parameter fNL. Depending on the combination of true and false model
there are two cases: either the estimated fNL becomes very small, or the estimate
for fNL is a factor of ∼ ±3 too large. When looking at numerical values for the
χ2-functional, one would notice strong discrepancies between data and model when
fitting the wrong non-Gaussianity type from values of fNL of a few hundred on.

4. The much stronger structure formation bispectrum can be subtracted with a predic-
tion of its bispectrum from perturbation theory if the cosmology is known precisely
enough. Propagating the uncertainty in the cosmological parameter set onto the
misestimation of fNL if the structure formation bispectrum is not correctly sub-
tracted yielded typical uncertainties of 29, 98 and 149 for local, orthogonal and
equilateral non-Gaussianities, much less than the statistical accuracy. As a prior on
the cosmological parameters we assumed a Gaussian likelihood for a wCDM model
combining Euclid’s weak shear with baryon acoustic oscillations and Planck’s obser-
vations of primary CMB anisotropies. Similar ratios between the numerical value
of fNL and the standard cosmological parameters were found by [202].

Many of our investigations can be straightforwardly generalised to other probes of large-
scale structure statistics. We intend to generalise our investigations to higher polyspectra
and to apply ideas from Bayesian model selection [280,281] for assigning probabilities to
the problem of choosing the correct non-Gaussianity type.

6.8 Appendix

6.8.1 Configuration dependence

Fig. 6.9 compares the configuration dependence of the bispectrum and of the signal
strength in a weak lensing experiment. As a representation, we chose to plot the dimen-
sionless weak convergence bispectrum (`1`2`3)4/3Bκ(`1, `2, `3) and the convergence bispec-
trum in units of the noise, Bκ(`1, `2, `3)/

√
cov(`1, `2, `3), which when added in quadrature

yields the signal-to-noise ratio. The factor (`1`2`3)4/3 ∼ `4 makes the angular bispectra
dimensionless.
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Figure 6.9: Configuration dependence (`1`2`3)4/3Bκ(`1, `2, `3) (first column) and signal-to-
noise ratio Bκ(`1, `2, `3)/

√
cov(`1, `2, `3) (second column) of the weak lensing bispectrum, for

local (first row), orthogonal (second row) and equilateral (third row) non-Gaussianities. The
size of the blobs and their colour is proportional to the bispectrum, where a correct relative
normalisation in the columns is maintained. Configurations outside the grey bounding
planes violate the triangle inequality.
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Chapter 7

Conclusions

We started this thesis with an introduction in chapter 2, where we discussed the under-
lying concepts of the main part of this theses. These were: the theory of inflation, the
theory of cosmological perturbations, the δN -formalism, non-Gaussianity and IR effects
in inflationary correlation functions. Furthermore, we gave an overview over the main
part of this thesis in sec. 2.5.

The main part of this thesis has started in chapter 3 where we have studied IR di-
vergences during inflation using both the δN -formalism and a simple, phenomenological
approach based just on the geometry of the reheating surface. By implementing a simple
modification of the δN -formalism, we took into account the effect of modes that left the
horizon long before the scales we are observing on the Hubble scale. Including this effect
provides new log-enhanced contributions to the power spectrum, at the same order in
H and slow-roll parmeters as the standard classical loop corrections. We found that the
combination of all contributions can be assembled in an elegant formula, in which the
log-enhanced contributions are weighted by the second derivative of the tree level power
spectrum, with respect to the inflaton field.

This result can be understood intuitively by considering two power spectra: One is
defined locally on the surface of reheating, using invariant distances to define the correla-
tor. The other is based on the coordinate distance on this surface and depends on global
features of this surface, in particular on long-wavelength modes. When expressed in terms
of the local spectrum, this latter, global spectrum exhibits an IR divergence associated to
the size of the region on which it is measured. It is, in fact, this latter spectrum that is
calculated in the δN -formalism and the log-divergence found in both approaches is pre-
cisely the same. This provides strong support for the modification of the δN -formalism
we propose. In the case of an exactly scale invariant spectrum, the IR logarithms are
absent. For an observer dealing with a scale-dependent spectrum and having a very large
region available for his measurement, the use of the local spectrum, which is not affected
by our IR effects, appears to be clearly favoured.

In chapter 4, we continued our considerations of IR effects and generalised our anal-
ysis to the backreaction of long-wavelength scalar and tensor modes in inflationary back-
grounds. Furthermore, we proposed an infrared-safe definition of correlation functions
involving curvature fluctuations, with no sensitivity on long-wavelength contributions.
The essential idea was to make use of the proper invariant distance on the reheating sur-
face where the curvature perturbation is evaluated. By using the invariant distance, one
automatically absorbs longer wavelength modes in the background and obtains n-point
functions for the curvature perturbation that are free from IR contributions associated
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with long-wavelength modes. We showed how to re-interpret our results in terms of con-
ventionally defined n-point functions. This allowed us to provide closed expressions for
the latter that manifestly exhibit the dependence on long-wavelength modes. In our ap-
proach, IR corrections automatically emerge in a resummed, all-orders form. We then
applied our approach to the analysis of inflationary observables built from (convention-
ally defined) two- and three-point functions of the curvature perturbation. We showed
how to compute the leading scalar and tensor IR effects on the power spectrum and on
the bispectrum, in single field, slow-roll inflation. Our corrections to the power spectrum
(both from long-wavelength scalar and tensor modes) and to fNL (from long-wavelength
scalar modes) agree (essentially) with Giddings and Sloth [80] (obtained by somewhat
different methods). The advantage of our approach is that it directly provides resummed,
all-orders expressions. We extend [80] by tensor corrections to fNL. This is, in fact,
the dominant piece! We also explicitly computed, in a specific inflationary model, the
complete, all-orders expression for scalar long-wavelength contributions to inflationary
observables. Furthermore, we analysed the question of convergence of IR corrections.
Using entropy bounds given in [131,132], we found that for a weak scale-dependence the
convergence of the series of IR corrections is guaranteed. However, despite the existence
of these entropy bounds and the fulfilment of slow-roll conditions, the convergence of the
IR-correction series may break down if the scale-dependence is not sufficiently weak.

Summarising, we have provided a simple formalism to calculate and investigate infla-
tionary IR corrections. Maybe more importantly, we have provided simple definitions of
IR-safe correlation functions which make it possible to avoid IR enhancement altogether.

We have also shown that in all cases, where the δN -formalism is applicable, our results
can be equivalently obtained in terms of a suitable generalisation of the δN -formalism.
In the present work, we included the effects of graviton long-wavelength modes, and
we explained how to calculate IR contributions to arbitrary n-point functions involving
curvature perturbations.

A natural question is how to extend our results on IR effects of inflationary correlation
functions to the case in which more than one field plays an active role in generating the
curvature perturbations. In this case, IR effects might play a role more important than the
ones for single field inflation where corrections always appear suppressed by the smallness
of the (scalar and tensor) power spectrum. In Appendix 4.7.2 of chapter 4, we outlined a
method to treat this problem. One major complication, arising when considering multi-
field inflation, is that local patches do not necessarily take the same trajectory in field
space. In single-field inflation, the scalar field rolls down its potential on the given, 1-
dimensional field trajectory. Fluctuations occur exclusively along the trajectory and its
precisely these fluctuations which appear in our resummed, all-orders expression. In multi-
field inflation, there are certainly fluctuations transverse to the (background) trajectory.
In order to generalise our definition of an infrared-safe correlation function and to find
a corresponding resummed, all-orders relation to conventional spectra, it is essential to
clarify the impact of these effects. Note that the presence of transverse fluctuations and
the locally different trajectories, even though clearly related, may enter the averaging
process in different ways. In addition, it is unclear how the mismatch of number of
scalar field perturbations and number of scalar metric perturbations affects the averaging
process. In single-field inflation, there is one curvature perturbation ζ and one scalar field
perturbation δϕ, among which one can switch by a change of gauge. By contrast, in the
multi-field case there are several scalar field perturbations but still only one curvature
perturbation. At a particular time during inflation, ζ is probably related to only one
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direction in field space. It may even be for some models (sometimes denoted as “single-
source” models) that this is true for the entire time of inflation relevant to us. However,
particularly in view of turns of the inflationary trajectory the direction in field space
sourcing ζ may change over time. Consequently, originally transverse fluctuations may
become fluctuations along the inflationary trajectory, possibly effecting the curvature
perturbation ζ. As a last point, we want to mention that additional fields typically yield
an inhomogeneous end of inflation. Contrary to the single-field case, multi-field inflation
does not necessarily end at a specific, model-dependent field value of the inflaton. Instead,
additional fields can locally shift this field value denoting the end of inflation. This is
likely to cause further complications in the search for infrared-safe correlation functions
in multi-field inflation.

Furthermore, it would be desirable to adapt our results to CMB measurements. So
far, our findings are all expressed in quantities defined on a spatial hypersurface, e.g. the
reheating surface. Thus, they are applicable to observables directly measured on these
hypersurfaces. By contrast, CMB measurements observe quantities projected on a two-
sphere and evolved to the present day. The corresponding calculation of this projection
and the evolution process can be split into three parts: the evolution of these quantities
from reheating to decoupling, the transformation of these quantities into CMB tempera-
ture fluctuations at the time of decoupling and the evolution of temperature fluctuations
in the CMB from decoupling till the time of observation. Each of these three processes is
affected by non-linearities. Therefore, even though possibly simple at leading order, e.g.
on the Sachs-Wolfe plateau, this projection process is highly non-trivial for higher order
effects and also left for future work.

As a last continuation of our work on infrared effects, we would like to mention the gen-
eralisation to correlation functions of tensor perturbations γ. So far, we have considered
only n-point functions of the comoving curvature perturbation ζ (however including tensor
corrections to these n-point functions). Correlators of tensor perturbations are suppressed
by the tensor-to-scalar ratio and have not been observed yet. Still this generalisation may
be worthwile, particularly in light of stability questions in (quasi) deSitter spacetime.
Most likely a generalisation to n-point functions of tensor perturbations γ would require
to apply a complete quantum mechanical treatment like the In-In formalism. Neverthe-
less, due to the conservation of γ on superhorizon scales it is not inconceivable that an
analogous split into a quantum mechanical sub- and semiclassical superhorizon regime
may yield similar simplification to the ones for the curvature perturbation ζ.

In chapter 5 we discussed a new approach, based on the δN -formalism, for studying the
scale dependence of non-Gaussianity parameters. We have obtained explicit expressions
for the scale dependence of the quantities fNL, τNL and gNL associated with the bispectrum
and trispectrum of primordial curvature perturbations. Our results depend on the slow-
roll parameters evaluated at horizon exit, and on the derivatives of the number of e-
foldings and the inflationary potential. The parameters controlling the scale dependence
of non-Gaussianity depend on properties of the inflationary potential, namely its third
and fourth derivatives, which in all observationally interesting cases cannot be probed by
only studying the spectral index of the power spectrum and its running.

As a consequence, the scale dependence of non-Gaussianity provides additional pow-
erful observables, able to offer novel information about the mechanism which generates
the curvature perturbations. We demonstrated these features in the concrete example
of modulated reheating. In models with a quartic potential for the modulating field, we
have shown that the associated non-linearity parameters, and their scale dependence, can
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be large enough to be observable.
While in most of the discussion we worked in momentum space, in the last part we

also discussed how to describe our results in coordinate space. We provided an expression
for curvature perturbations in coordinate space, that generalises the frequently used local
ansatz, and that exhibits directly in real space the effects of scale dependence of non-
Gaussian parameters.

Our results allow us to put onto a firm basis the phenomenological parametrisation
of the scale dependence of non-Gaussian observables. In many models of observational
interest, our formulae are relatively simple and depend on a single new parameter, the scale
dependence of the non-linearity parameter. It would be interesting to use these results for
analysing or simulating non-Gaussian data. At the same time, our investigation allows
us to identify which properties inflationary models have to satisfy in order to obtain
large non-Gaussianity with sizable scale dependence. It would be interesting to apply
it to analyse further models, for example those in which multiple fields interact during
inflation or where the non-Gaussianity is generated by an inhomogeneous end of inflation.

Finally, in chapter 6 we investigated the possibility to constrain primordial non-
Gaussianity, especially with a view on Euclid. We analysed comparisons between different
types of non-Gaussianity configuration dependencies, statistical questions concerning the
inference of the non-Gaussianity parameter fNL and the removal of the much stronger
structure formation induced bispectrum. Although not as sensitive as observations of the
CMB-bispectrum or the galaxy bispectrum for scale-free non-Gaussianities, weak lensing
can place useful independent constraints on non-Gaussianities, in particular on smaller
scales where CMB bounds might not apply. It is less prone to systematics than other
large-scale structure probes and provides a direct linear mapping of the density field,
which conserves its statistical properties.

We found that a signal-to-noise ratio of order unity can only be expected for fNL =
200, 575, 1628 for local, orthogonal and equilateral non-Gaussianities, respectively, where
this measurement is most sensitive to scales 0.1 . . . 1 (Mpc/h)−1. These bounds are weaker
than those from e.g. observations of the CMB bispectrum, but will serve nevertheless for
cross validation or as bounds on scale-dependent non-Gaussianity, because weak lensing
maps out scales which are not constrained by the CMB and is sensitive to scales probed
by number counts.

Configuration space integrations can be very efficiently carried out by Monte-Carlo
integration schemes, at a fraction of the computational cost. Computations of the signal-
to-noise ratio, of χ2-functionals or of the Fisher-matrix can be done with accuracies below
a percent with O(105) evaluations instead of O(109) evaluations for the direct summation.

In addition we analysed the question if one would notice fitting the wrong bispec-
trum type to data, yielding serious misestimates in the non-Gaussianity parameter fNL.
Depending on the combination of true and false model there are two cases: either the esti-
mated fNL becomes very small or the estimate for fNL is a factor of ∼ ±3 too large. When
looking at numerical values for the χ2-functional, one would notice strong discrepancies
between data and model from values of fNL of a few hundred on.

The much stronger structure formation bispectrum can be subtracted with a prediction
of its bispectrum from perturbation theory if the cosmology is known precisely enough.
Propagating the uncertainty in the cosmological parameter set onto the misestimation of
fNL if the structure formation bispectrum is not correctly subtracted yielded uncertainties
much less than the statistical accuracy. As a prior on the cosmological parameters we
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assumed a Gaussian likelihood for a wCDM model combining Euclid’s weak shear with
baryon acoustic oscillations and Planck’s observations of primary CMB anisotropies. Sim-
ilar ratios between the numerical value of fNL and the standard cosmological parameters
were found by [202].

Many of the investigations in chapter 6 can be straightforwardly generalised to other
probes of large-scale structure statistics. Furthermore, it is desirable to generalise our
analysis of the bispectrum to higher polyspectra and to apply ideas from Bayesian model
selection [280,281] for assigning probabilities to the problem of choosing the correct non-
Gaussianity type.
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