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Abstract

In computer graphics, subdivision algorithms are common tools for smoothing down irregularly shaped
meshes. Of special interest, due to their simple formulations, are algorithms that generalize B-spline
subdivision. �eir conceptual simplicity is in stark contrast to the complexity of analysing their results.
A complete formal examination of smoothness properties for subdivision schemes was only recently
performed by J. Peters and U. Reif.

�is thesis presents a precise and detailed introduction to the analysis of subdivision algorithms. For
this purpose, �rst of all, the necessary background in B-spline theory is established. Building on this,
two of the most common subdivision algorithms, the Doo-Sabin and the Catmull-Clark scheme, are
motivated. �eir treatment is followed by an in-depth description of methods for analysing smoothness
properties of subdivision schemes, as developed by Peters and Reif. A�erwards, these methods are ap-
plied to the two aforementioned algorithms, thereby establishing smoothness for both algorithms in their
original form. Last, in order to demonstrate the e�ects of choosing unsuitable weights, a number of de-
generateweights, which produce irregular shapes in almost all cases, are derived for both schemes—these
have hitherto not been published.

Zusammenfassung

Unterteilungsalgorithmen sind ein gebräuchliches Werkzeug der Computergra�k zur Glättung annä-
hernd beliebig geformter Flächen. Aufgrund ihrer einfachen mathematischen Beschreibung sind jene
Algorithmen, dieUnterteilungsverfahren vonB-splines verallgemeinern, von besonderem Interesse. Ihre
konzeptionelle Einfachheit steht in krassemGegensatz zur Komplexität der Analyse ihrer Resultate. Eine
vollständige formale Untersuchung der Glattheitseigenscha�en von Unterteilungsschemata wurde erst
vor wenigen Jahren durch J. Peters und U. Reif durchgeführt.

Die vorliegendeDiplomarbeit stellt eine präzise und detailreiche Einführung in dieAnalyse vonUnter-
teilungsalgorithmen dar. Zu diesem Zweck wird zunächst der benötigte Hintergrund der�eorie der B-
Splines etabliert. Darauf au2auend werden zwei der bekanntesten Unterteilungsalgorithmen, das Doo-
Sabin- und das Catmull-Clark-Schema, motiviert. Ihrer Behandlung schließt sich eine eingehende
Beschreibung der durch Peters und Reif entwickeltenMethoden zur Analyse der Glattheitseigenscha�en
vonUnterteilungsalgorithmen an. Danachwerden dieseMethoden auf die beiden zuvorgenanntenAlgo-
rithmen angewandt, wodurch dieGlattheit für beide Algorithmen in ihrer ursprünglichen Beschreibung
festgestellt wird. Um die Auswirkungen unpassender Gewichte zu veranschaulichen, werden schließlich
degenerierte Gewichte, die in beinahe jedem Fall ungleichmäßige Formen erzeugen, für beide Schemata
hergeleitet. Diese Gewichte sind bis dato noch nicht publiziert worden.
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1 Introduction

�e subject matter of this thesis are subdivision algorithms1 for 2-dimensional manifold meshes2. When
being applied to a mesh, subdivision algorithms act as local operators with the purpose of performing a
smoothing process: Sharp edges and creases will becomemore rounded and fair. Examples of this process
are depicted in Figure 1.1 and Figure 1.2.

Figure 1.1: �ree steps of the Catmull-Clark subdivision algorithm

Taking a look at the �rst few steps of an algorithm as depicted by Figure 1.1, we may conjecture that the
algorithmwill converge against some limit surface. Proving this formally, however, is not straightforward.
Consequently, in this thesis, we will develop a framework for determining convergence properties of
subdivision algorithms. Furthermore, we will see that it is possible to predict some properties of the
limit surface. More precisely, we will at least be able to ascertain that the limit surface of an algorithm
does not contain any self-intersections.

�is chapter provides a gentle introduction into the subjectmatter. First, themotivation for the analysis
of subdivision algorithms is explained. A�er this, a brief synopsis of the history of subdivision algorithm
research is given. �is is followed by an explanation of certain notations required for subsequent chap-
ters. �e chapter then concludes with acknowledgements and an overview of the remaining chapters.
�roughout this chapter, footnotes are used to refer the reader to relevant de�nitions that appear only
much later in the thesis.

Some closing remarks about the spelling: �is thesis uses “Oxford spelling”, as employed, for example,
by the Oxford English Dictionary. �e main characteristic of this spelling is the use of the su�x “-ize”
(instead of “-ise”) for words of Greek origin, whereas the su�x “-yse” (instead of “-yze”) is retained.

1A geometrical de�nition of these algorithms is given in Chapter 3. A more formal approach is given by De�nition 4.10 on
page 54.

2We may view a mesh as a set of vertices in R3 along with a description of connectivity for the points, which yields a graph.
Manifold meshes satisfy certain requirements in their local appearance, making them easier to be handled algorithmically.
See De�nition 3.4 on page 32 for more details.
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Figure 1.2: Original mesh (le�) and mesh subdivided by three steps of the Catmull-Clark algorithm (right). �e
smoothing e�ects can be observed in particular at the transition between socket and statue. We will thoroughly analyse
the Catmull-Clark scheme in Chapter 5.

1.1 Motivation

�e appeal of subdivision algorithms is obvious from Figure 1.2, for example: Even a small number of
steps results in a visually smoother object. In addition to this, subdivision algorithms feature interesting
properties, making them indispensable tools in geometric modelling:

Almost arbitrary topologies Subdivision algorithms may be applied to 2-dimensional manifold me-
shes, thereby having less restrictions than the standard spline-based methods3.

Local operators �e smoothing process is a local operation. It can be chosen to a�ect only small parts
of the mesh. �is enables the use of adaptivemethods that are based on the shape of meshes.

Recursive de�nition Since subdivision schemes are recursive operations, they may be used as natural
level of detailmethods.

Ease of implementation Provided that appropriate data structures for storing and querying the mesh
exist, subdivision algorithms can be implemented e�ciently4.

A precondition for the analysis of subdivision algorithms is their convergence5 to a limit surface. In
several papers, the limit surface is also referred to as subdivision surface. However, in order to stress that
convergence is an essential property of a subdivision algorithm, this thesis prefers the term limit surface.

�e goal of this thesis is to provide a concise analysis of properties of the limit surface. More pre-
cisely, we will be interested in the smoothness of limit surfaces: �e desired result is to have convergent

3A discussion about the restrictions of spline-based methods is given in Chapter 3.
4A sample implementation of these algorithms is described in Chapter B of the appendix.
5See De�nition 4.4 on page 50. �is de�nition will become useful in a more rigorous mathematical framework, which we will
construct in Chapter 4.
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algorithms whose limit surface does not have any sharp edges or self-intersections6. Yet, this endeavour
is not easy—see the following section on the history of the most important analysis attempts. Conse-
quently, it took approximately 20 years a�er the �rst publication of subdivision algorithms for a detailed
analysis to be published. �is was accomplished by Peters and Reif [Rei95, Rei98, PR98, PR08] over
the course of several publications. �eir analysis, however, is quite involved and requires knowledge of
several branches of mathematics, such as algebraic and di�erential topology, abstract algebra, complex
analysis, and numerical analysis. Furthermore, due to length restrictions of the papers, some details are
notmentioned or cannot be expanded on.�ismakes comprehension of the publications a very daunting
task. Hence, this thesis was written with the following objectives in mind:

• Su�ciently establish the theoretical background in B-spline theory (upon which several popular
subdivision schemes are based).

• Focus on a detailed description of methods required for the analysis of subdivision algorithms.

• “Fill the gaps” in proofs; expand them or rewrite them based on current knowledge.

• Provide a thorough derivation of results that are known in literature but still lack details.

1.2 History of the analysis of subdivision algorithms

In this section, we will take a look at research in subdivision algorithms through the last four decades.
Many references to further publications are provided.

1970s Research in subdivision algorithms beganwith a paper of Chaikin [Cha74], which describes a fast
algorithm for calculating smooth curves by iterated subdivision rules. By a result of Riesenfeld [Rie75],
these curves were shown to be B-splines. In 1978, Catmull and Clark [CC78] presented a subdivision
scheme that generalizes bicubic B-spline subdivision. At the same time, Doo [Doo78] described an algo-
rithmgeneralizing biquadratic B-spline subdivision.�e schemewas extended byDoo and Sabin [DS78],
who also performed (in the same paper) the �rst preliminary analysis of the Catmull-Clark subdivision
scheme. However, although the comments of Doo and Sabin led to some improvements of the published
version of the Catmull-Clark scheme, in total, the analysis was rather cursory: In the end, their analysis
could only motivate, but not su�ciently explain, the cause for some artefacts in the algorithm. �is at-
tempt, however, stressed the usage of the discrete Fourier transform7 and may be rightly viewed as the
basis of subsequent analyses.

�e behaviour of subdivision algorithms is largely determined by the way they handle extraordinary
parts of a mesh8: In their publication [CC78], Catmull and Clark noted, for example, that di�erent ways

6Whether self-intersections appear depends on the input data. �e algorithm is only required to ensure that no self-
intersections occur when the input data are well-behaved. Later chapters will clarify these terms.

7Put brie�y, the discrete Fourier transform (DFT) decomposes a largematrix into smaller blocks by a similarity transformation,
thereby simplifying the calculation of eigenvalues and eigenvectors. �e DFT will be formally introduced in Section 4.3 on
page 65.

8In order to model a wide range of shapes, meshes cannot be regular tilings of the Euclidean plane at every point. A subdi-
vision algorithm for almost arbitrary topologies needs special rules for handling these irregular parts. We will clarify this in
Chapter 3.
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of creating vertex points9 may lead to surfaces that are “too pointy”. �ey admitted that their choice of
weights10 was “somewhat arbitrary” and they surmised, although there was no proof, that “the surface is
at least continuous in tangent everywhere”—a guess that would turn out to be correct.

1980s In 1988, Ball and Storry [BS88] provided the �rst analysis of tangent plane continuity for the
Catmull-Clark scheme. �eir work laid the foundation for all analysis methods that are currently in
use. Moreover, Ball and Storry introduced the natural con�guration that describes control points around
vertices of certain valencies11. �is con�guration is later used by Reif ’s characteristic map12. In addition,
Ball and Storry gave an almost correct overview of the spectrum of the subdivision matrix and created a
graphical representation of limitations for the weights of the algorithm. Ultimately, though, their proof
was shown by Reif [Rei95] to contain subtle errors. Furthermore, tangent plane continuity is a weak
smoothness criterion that still allows self-intersections.

1990s In 1995, Reif [Rei95], building on Ball and Storry’s methods, was able to derive smoothness cri-
teria that do not allow degenerate cases. He coined the term characteristic map, which describes an
invariant of subdivision schemes. At �rst, he analysed a special case of the Doo-Sabin scheme. In 1998,
in a joint paper with Peters [PR98], the �rst correct analysis of the Doo-Sabin and the Catmull-Clark
scheme was performed. Both schemes were shown to satisfy C1-smoothness13. �is analysis was ex-
panded on in Reif ’s habilitation thesis [Rei98]. Further research of Peters and Reif produced midedge
subdivision [PR97], which is a conceptually simple algorithmwith a complicated eigenstructure—namely,
the subdominant eigenvalue14 does not have a multiplicity of 2.

At the same time of the analysis of Peters and Reif for algorithms generalizing B-spline subdivision,
Reif ’s work was used to analyse di�erent subdivision schemes. In 1996, Schweitzer [Sch96] examined
Loop’s subdivision scheme15. A complete analysis of the same scheme was performed independently by
Zorin [Zor97].

2000s In 2000, Umlauf [Uml00] extended Reif ’s characteristic map to triangular subdivision sche-
mes. �is was followed by a general framework of Zorin [Zor00], which greatly simpli�es the analysis
of subdivision algorithms. Zorin used the framework to establish smoothness for the Butter�y16 scheme
as well as for an interpolatory scheme of Kobbelt. At this point, smoothness for all common subdivision

9A type of re�ned control point that occurs when applying the algorithm. See Section 3.4.2 on page 40.
10�e weights are the coe�cients for the a�ne combinations of old control points.
11�e valency of a vertex is the number of faces that meet at the vertex. We will introduce this concept, along with a detailed

examination of the topology of meshes, in Chapter 3.
12An invariant of a subdivision scheme that we will use for smoothness analysis. See Section 4.12 on page 56.
13A detailed account of smoothness properties is given in Chapter 4. In short, C1-smoothness means that the limit surface is a

C1-manifold in the sense of di�erential topology.
14�e algorithms in this thesis are assumed to be described by a matrix where the largest eigenvalue is 1 and the modulus of all

other eigenvalues is smaller. In particular, the second and third eigenvalue are required to be equal and larger than the rest.
Hence, this eigenvalue is called subdominant. See De�nition 4.14 on page 63 for more details.

15�e scheme generalizes box spline subdivision, which this thesis does not expand on. Section 3.1 contains a brief introduction
to this scheme and other schemes. Furthermore, the algorithmwas implemented for comparison purposes. Some examples
are contained in Chapter B of the appendix.

16�e masks of this subdivision scheme for triangular meshes resemble the shape of a butter�y. Since the scheme is not based
on splines, smoothness properties were indeterminable prior to Zorin’s framework.
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schemes had been shown. �us, in an e�ort to present the current state of the art in subdivision schemes,
Peters and Reif [PR08] published a book that contains extensions of their theories so that a wider range
of di�erent algorithms may be encompassed.

Present day Nowadays, research is performed in order to obtain subdivision algorithms that provide
C2-smoothness, which is also denoted by curvature continuity. �e starting point is a paper of Peters
and Reif [PR04], who investigated how to characterize the shape of limit surfaces by analysing the cur-
vature. Together with Karčiauskas [KPR04], the Catmull-Clark and Loop subdivision algorithms were
examined. A further approach to better shapes employs guided subdivision, where the distance of the
subdivided surface to a control polygon is minimized. Yet, C2-smoothness is still an open problem. Pe-
ters and Reif [PR08] aptly stated that the limit surfaces of subdivision algorithms are “fair from afar, but
far from being fair”.

1.3 Notation

Care has been taken not to deviate too much from the standard mathematical notation. �e interior of
a closed curve c is denoted by I(c), whereas the interior of a set U is denoted by Ů . For the closure of a
set, the operator cl is used, e.g. cl(U).
Row vectors are denoted by small Latin letters and normal brackets, e.g. x = (0, 1, 2). Matrices are

denoted by large Latin letters. A colon is used to indicate ranges for their rows and columns, e.g. A1∶2,3∶4,
which refers to rows 1–2 and columns 3–4 of the matrix. Transposed vectors and matrices are denoted by
a superscript T , e.g. xT for a vector and AT for a matrix. Eigenvalues are denoted by the letter λ, their
corresponding eigenvectors will be denoted by ψ. Since the characteristic map, which depends on the
eigenvectors, is denoted by Ψ, this notation is hoped to serve as a mnemonic help.

Matrix-vector multiplication is used in a generalized sense: An n×nmatrix Amay contain entries from
Rm. Multiplication with a vector from Rn is then to be understood componentwise. �is nonstandard
notation greatly simpli�es the equations of B-spline surfaces, for example.

When dealing with complex numbers, the imaginary unit is written as a simple i. �e complex con-
jugate of a number will be either displayed by an overline, e.g. x = a − ib, or, for reasons of space and
layout, by a superscript asterisk, e.g. A∗.

Further notations, in particular for the discrete Fourier transform, will be mentioned in the respective
chapters.

1.4 Chapter overview

Chapter 2 starts with a basic introduction to B-spline theory. It covers the most important properties
of B-spline basis functions and explains how to use these basis functions to obtain B-spline curves and
B-spline surfaces. Contrary to most literature, the chapter motivates matrix representations of B-spline
surface patches. We shall require these matrices for some of the derivations in Chapter 3. �e chapter
closes with some remarks about Bézier splines. �ese splines may be viewed as special forms of B-splines
and will play a central role in Chapter 5.
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Chapter 3 concisely treats subdivision algorithms. �e chapter begins with a brief historical devel-
opment of several subdivision algorithms. �is display then leads to subdivision methods for B-spline
surfaces. �is is followed by a short discussion about the misused term “arbitrary topology”, which is
unfortunately much too prevalent in literature. A�erwards, the Doo-Sabin and the Catmull-Clark sub-
division schemeswill be derived fromB-spline subdivisionmethods. Both schemes are described in great
detail. For the Catmull-Clark scheme a variant requiring only three parameters, which may be used for
“tuning” the algorithm, is introduced. Following this, the reader’s attention is called to some interesting
properties of the schemes.

Chapter 4 presents suitable methods for the analysis of subdivision algorithms. A test problem that
is su�cient for determining the smoothness of limit surfaces of subdivision algorithms is presented in
precise mathematical terms. A special function, the characteristic map Ψ, which is an invariant of the
respective subdivision algorithm, is introduced. �e properties of Ψ are analysed at length, and it turns
out that the algorithm yields smooth results if Ψ is regular17 and injective. �e rest of Chapter 4 has the
purpose of �nding criteria determining regularity and injectivity. �e main result of the last part is a
criterion concerning the signs of partial derivatives of a certain function. �is criterion will be used for
the subsequent analysis of subdivision algorithms.

In Chapter 5, all methods of the preceding chapters are put to use. Here, the smoothness of the Doo-
Sabin and the Catmull-Clark scheme is analysed. For their original weights18, the limit surfaces of both
schemes turn out to satisfy C1-smoothness. Following this result, degenerate weights for both schemes
are introduced. Using material from Chapter 4, the degenerate weights are proven to yield degenerate
surfaces. Comparisons between the schemes with original weights and with degenerate weights demon-
strate the e�ects of erroneously chosen weights. As a consequence, the range of permissible weights, i.e.
weights that do not yield degenerate surfaces, is explored. For the Doo-Sabin scheme, a result of Peters
and Reif [PR98] is cited. For the Catmull-Clark scheme, conditions for the weights are derived. �e
chapter ends with a graphical representation of permissible weights for the Catmull-Clark algorithm.

1.5 Results

Chapter 5 presents a clear and almost19 exhaustive examination of the Doo-Sabin and the Catmull-Clark
scheme. Computational results have been derived independently of the referenced papers. Comparison
of the author’s results with established results revealed several errors in the publications.20 In particular,
this thesis contains the correct derivatives of the characteristicmaps for both subdivision schemes, as well
as an accurate matrix representation of the Catmull-Clark scheme. Moreover, the thesis contains some
results whose proofs were only sketched or omitted due to length restrictions in the original publications.

17�is condition means that the Jacobian determinant of the map is nonzero. A precise formulation of the map is given by
De�nition 4.12 on page 56.

18See Chapter 3, pages 39 and 44, or the respective sections in Chapter 5.
19A special case for the Doo-Sabin scheme has not been considered. �e result is cited from Peters and Reif [PR98] instead.
20Since most publications presented very advanced research results, which had not yet been veri�ed by other sources, these

errors are to be expected.
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An example for this is the claim that the original weights21 for both algorithms lead to smooth surfaces.
�is claim requires some eigenvalue estimates22 for the Catmull-Clark scheme. In addition, this thesis
presents degenerateweights for both algorithms in order to illustrate the e�ects of violations of the theory
introduced in Chapter 4. Hitherto, these weights had not been examined. �ey are hoped to yield more
insights into the workings of subdivision algorithms.

�e thesis is rounded with an open-source implementation of the Doo-Sabin, the Catmull-Clark, and
the Loop subdivision algorithm, thereby o�ering the possibility to compare the algorithms and their
modi operandi using the same program.

1.6 Further acknowledgements

Although the results of Chapter 5 have been derived independently by the author, the thesis is inspired by
many works ofmany authors.�ey deserve to be named not only in the bibliography.�us, the following
paragraphs attempt to highlight their contributions.

Proofs �e sources of the proofs have been acknowledged in the respective chapters. All proofs have
been extended in order to be more accessible. O�en, the notation has been altered to merge proofs
from di�erent sources. �e section about permissible weights for the Catmull-Clark scheme has been
motivated by a technical report of Zorin [Zor98].

Figures All �gures were created by the author. �ey have been inspired by the works of Reif [Rei95,
Rei98], Peters and Reif [PR97, PR98, PR08], and Zorin [Zor98].

Mesh data �e meshes of platonic solids are provided by courtesy of John Burkardt of Florida State
University. �e gargoyle model is provided courtesy of Bruno Lévy and Raphaëlle Chaine by the
AIM@SHAPE Shape Repository. �e dragon and bunny meshes are taken from the StanfordUniver-
sity Computer Graphics Laboratory.

21See Section 5.2.3 and Section 5.3.4 for their exact formulæ.
22�e calculations are included in Section A.2 of the appendix.





2 B-splines and B-spline surfaces

A common problem in computer-aided design consists of drawing smooth curves that either interpolate
or approximate a given shape. Spline-based methods are one of the most successful approaches in this
area. �ey use piecewise polynomial functions in conjunction with a control polygon through which
the resulting shape of the curve can be manipulated easily. In contrast to methods based on high-order
polynomials, piecewise polynomial functions have the advantage of numerical stability and do not tend
to oscillate. Furthermore, we will see that spline-based methods allow e�cient local shape manipulation.

In this chapter, we will focus on B-spline curves and B-spline surfaces because several of the well-es-
tablished subdivision schemes, such as the algorithms developed byCatmull andClark orDoo and Sabin,
employB-spline surfaces as their underlying settings. Consequently, a basic knowledge of B-spline theory
aids in understanding details of the analysis of a speci�c subdivision scheme. Readers with a working
knowledge of B-splines may skim this chapter or even skip it completely.

In the following sections, wewill touch only brie�y on themost important theoretical aspects. Detailed
accountsmay be obtained from the books of Farin [Far96] and Yamaguchi [Yam88].�ese books present
splinemethods and the required theory in amore universal context. Readers interested inmore practical
aspects of B-splines are referred to the books of Salomon [Sal05] or Piegl and Tiller [PT96] for more
information about this very rich branch of mathematics.

2.1 B-spline basis functions

Spline methods are used in order to approximate smooth curves. To facilitate manipulation of these ap-
proximations, piecewise polynomial basis functions are de�ned. �ese basis functions may then be used
as coe�cients for sums of vectors ofR2 andR3, thereby de�ning smooth curves and surfaces. �e reason
for using polynomials is that they are easily manageable, and furthermore, their analytical properties are
well known.

�is section will follow the approach of Cox, de Boor, and Mans�eld [dB72]. �ey use a recurrence
formula in order to de�ne the basis functions.�ere are othermethods to de�ne B-spline basis functions,
such as repeated convolution, on which the section will not expand.

Definition 2.1 (B-spline basis functions). Let T = {t0, t1, . . . , tm} be an increasing sequence of real
numbers. We will refer to the ti as knots and to T as the knot vector. An interval [ti , ti+1), which is
allowed to be empty, will be called knot span. �e ith B-spline basis function of degree p is then de�ned
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0 1 2 3

Figure 2.1: An example for the B-spline recurrence formula. �e knot vector is T = (0, 1, 2, 3) and, from top to
bottom, the B-spline basis functions of order 0, 1, and 2 are shown. �e dashed lines indicate the knot spans.

recursively as:

Ni ,0(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if ti ≤ t < ti+1

0 else

Ni ,p(t) = t − ti
ti+p − ti

Ni ,p−1(t) +
ti+p+1 − t
ti+p+1 − ti+1

Ni+1,p−1(t)
(2.1)

Since the knots are not required to be distinct, a quotient 0/0 may appear in Equation 2.1. We de�ne
this quotient as 0, which is justi�ed because it does not make sense to de�ne a function over an empty
interval.

For p = 0, every basis function is the characteristic function of its corresponding knot span. For p > 0,
basis functions are combinations of basis functions with lower degree. Figure 2.1 shows an example for
the recurrence formula. We can also visualize the recursive computation of B-spline basis functions by
using a table:

N0,0 N1,0 N2,0 . . .

N0,1 N1,1

N0,2

⋮
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0

1

1 2 3 4 5

Figure 2.2: �e B-spline basis functions N1,2, N2,2, N3,2, N4,2, N5,2, and N6,2 for the knot vector T =

(1, 1, 2, 2.5, 3, 3.5, 4, 5, 5). We can observe the scalings of the di�erent basis functions. �e two middle functions,
N3,2 and N4,2, for example, are progressing di�erently than the other basis functions.

2.1.1 Properties

�e properties of the B-spline basis functions make them attractive mathematical tools: �ey o�er local
support, linear independence, and form a partition of unity. Later on, we will assume the same properties
in a more general setting for subdivision algorithms.

�is section only provides proofs for themost relevant properties. We will skip themore technical and
tedious proofs as they do not provide any deeper insight.

Lemma 2.1. Ni ,p(t), which is the ith B-spline basis function of degree p, is combined from the basis func-
tions Ni ,0(t), . . . ,Ni+p,0(t).

Proof. �e proof is by induction over p. �e claim holds by de�nition for p = 0. Let p > 0: From
Equation 2.1, we see that Ni ,p(t) is combined from Ni ,p−1(t) and Ni+1,p−1(t). By the induction hypoth-
esis, Ni ,p−1(t) is combined from the basis functions Ni ,0(t), . . . ,Ni+p−1,0(t) and likewise, Ni+1,p−1(t) is
combined from the basis functions Ni+1,0(t), . . . ,Ni+1+p−1,0(t). ∎

�e next proposition is the basis for most of the other properties. It makes the B-spline basis functions
very desirable for modelling. We will see that B-spline curves, for example, are only a�ected locally by
changes in their control polygon. �e same applies to B-spline surfaces and ultimately, as we will see, to
the results of subdivision algorithms.

Proposition 2.1 (Local support).�e support of any B-spline basis function does not extend over the
whole interval, but only over a small part of the knot vector. More precisely,

Ni ,p(t) = 0 if t ∉ [ti , ti+p+1).

Proof. Lemma 2.1 states that the ith basis function is combined from the basis functions Ni ,0(t), . . . ,
Ni+p,0. Using Equation 2.1, we see that its support must be in the interval [ti , ti+p+1), as claimed. ∎



14 2. B-SPLINES AND B-SPLINE SURFACES

Figure 2.2 shows basis functions of degree 2. We can see the e�ect of the local support property—
it limits the number of functions that are nonzero for a given knot vector. It is possible to state this
observation more precisely:

Lemma 2.2. For any knot span [t j , t j+1), at most p+1 of the Ni ,p(t) are nonzero, namely, the basis functions
N j−p,p(t), . . . ,N j,p(t).

Proof. ByProposition 2.1, the support ofN j−p,p(t) is in [t j−p , t j+1) and the support of basis functionswith
lower indices does not coincide with this knot span. Likewise, the support of N j,p(t) is in [t j , t j+p+1) and
the support of basis functions with higher indices does not coincide with this knot span. �e argument
holds for the basis functions with indices between j − p and p. ∎

Lemma 2.3 (Nonnegativity). Basis splines are nonnegative:

Ni ,p(t) ≥ 0 for all i , p, t.

Proof. �e proof is by induction. �e claim holds for p = 0 because the characteristic function of an
interval is nonnegative. For p > 0, we have by De�nition 2.1

Ni ,p(t) = t − ti
ti+p − ti

Ni ,p−1(t) +
ti+p+1 − t
ti+p+1 − ti+1

Ni+1,p−1(t).

Proposition 2.1 states that Ni ,p−1(t) = 0 for t ∉ [ti , ti+p). For t ∈ [ti , ti+p), we see that

t − ti
ti+p − ti

≥ 0.

Since Ni ,p−1(t) ≥ 0 holds by the induction hypothesis, the �rst part of the equation above is nonnegative.
For the second part, the analogous argument holds. ∎

Proposition 2.2 (Partition of unity). For any knot span [ti , ti+1), the basis functions of a �xed degree
form a partition of unity:

i
∑
j=i−p

N j,p(t) = 1 for all t ∈ [ti , ti+1)

Proof. By de�nition,

i
∑
j=i−p

N j,p(t) =
i
∑
j=i−p

t − t j
t j+p − t j

N j,p−1(t) +
i
∑
j=i−p

t j+p+1 − t
t j+p+1 − t j+1

N j+1,p−1(t)

According to Proposition 2.1, Ni−p,p−1(t) = 0 andNi+1,p−1(t) = 0.�is enables us to sum from j = i−p+1
to j = i and change the index in the second sum from N j+1,p−1(t) to N j,p−1(t) so that we arrive at:

i
∑
j=i−p

N j,p(t) =
i
∑

j=i−p+1
( t − t j
t j+p − t j

+

t j+p − t
t j+p − t j

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

N j,p−1(t)

=

i
∑

j=i−p+1
N j,p−1(t)
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By inserting the de�nition of N j,p−1(t), we can again change the summation indices. Doing this recur-
sively, we get:

i
∑
j=i−p

N j,p(t) =
i
∑

j=i−p+1
N j,p−1(t) =

i
∑

j=i−p+2
N j,p−2(t)

= ⋅ ⋅ ⋅ =

i
∑
j=i

N j,0(t) = 1

∎

�is propertywill prove central later on. Wewill be able to prove invariance of the B-spline curve under
a�ne transformations, as well as a statement about the graphical progression of the B-spline curve—it
will turn out that the control points impose a limit on the curve. Furthermore, it will allow us to prove
that a subdivision algorithm is well-de�ned and convergent.

Lemma 2.4 (Derivatives of the B-spline basis functions).�e derivative of the ith B-spline basis
function of degree p is given by:

d
dt

Ni ,p =
p

ti+p − ti
Ni ,p−1(t) − p

ti+p+1 − ti+1
Ni+1,p−1(t)

Proof. See Piegl and Tiller [PT96], pp. 59–61. ∎

�is lemma proves another interesting property about B-spline basis functions:�e derivative of a ba-
sis function of degree p can be expressed in terms of basis functions of degree p− 1. Later, when B-spline
curves are introduced, this lemma enables us to see the derivative of a B-spline curve as a B-spline curve
of lower degree.

So far, we did not take the knot vector into account. It turns out that by modifying the knot vector, the
di�erentiability properties and the shape of B-spline basis functions can be regulated. �e lemma will
enable us to prove similar properties for B-spline curves.

Lemma 2.5. Derivatives of Ni ,p exist in the interior of a knot span. At a knot of multiplicity k, the basis
function Ni ,p(t) is p − k times continuously di�erentiable.

Proof. Due to the local support property from Proposition 2.1, we only need to check the di�erentiability
in the interval [ti , ti+p+1). Using Lemma 2.4, we see that

d
dt

Ni ,p =
p

ti+p − ti
Ni ,p−1(t) − p

ti+p+1 − ti+1
Ni+1,p−1(t)

and assume that the lower-degree basis functions are di�erentiable. �e fractions

p
ti+p − ti

and
p

ti+p+1 − ti+1

are not well-de�ned anymore once ti+p = ti or ti+p+1 = ti+1. �us, for a knot of multiplicity k, only p − k
derivatives exist. ∎
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0

1

0 1 2 3 4 5 6

Figure 2.3: B-spline basis functions N1,2, . . . , N4,2 for the knot vector T = (0, 1, . . . , 6). We can observe the most
important properties. �e functions have local support and are nonnegative. Note how the functions form a partition
of unity inside the blue rectangle. Furthermore, we can see that in comparison to Figure 2.2, the B-spline basis functions
are shi�ed copies of each other. We will later prove this formally.

�e lemma above can also be used to show that the B-spline curve concept works in the sense that the
curve de�ned by control points satis�es the desired continuity constraints.

From the last two properties, we see how the degree of the basis functions and the knot multiplicity
are interlocked:

increasing the
⎧⎪⎪⎨⎪⎪⎩

degree increases
knot multiplicity decreases

⎫⎪⎪⎬⎪⎪⎭
the continuity

We will conclude this section by citing the most important property of the B-spline basis functions.
Put brie�y, the basis functions form a basis of the vector space of all piecewise polynomial functions of
degree p that satisfy certain continuity constraints at the knots—following the previous discussion of
knot multiplicities, these continuity constraints can be satis�ed by the B-spline basis functions.

Theorem 2.1 (Linear independence). Let T be a strictly increasing knot vector. �en the B-spline basis
functions of degree p are linearly independent, i.e.

n
∑
i=0

λiNi ,p(t) = 0

for λi ∈ R if and only if λi = 0 for all i.

Proof. See Farin [Far96], p. 152. ∎

Figure 2.3 depicts all properties that were listed in this section. Note that the knot vector of this �gure
yields a certain symmetry—we will examine this property in the next section.

2.1.2 Uniform B-splines

�roughout this thesis, only knot vectors with equidistant knots need to be used. �ese knot vectors are
called uniform. �ey yield simpler formulæ and allow us to concentrate on more important details.

Let a uniform knot vector be given, i.e. ti − ti−1 = c for all i and a �xed c ∈ R. Without loss of generality
(see the remarks concluding this section), we assume that the knots are given by ti = i. De�nition 2.1 is
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now equivalent to

Ni ,p(t) = t − i
p

Ni ,p−1(t) + i + p + 1 − t
p

Ni+1,p−1(t), (2.2)

which leads to the following conclusion:

Lemma 2.6. Uniform B-splines are shi�ed copies of each other, i.e.

Ni ,p(t) = N0,p(t − i).

Proof. We prove this by induction: For p = 0, the lemma is true because characteristic functions of
shi�ed intervals are shi�ed copies of each other. For p > 0 and i �xed, we have by de�nition:

Ni ,p(t) = t − i
p

Ni ,p−1(t) + i + p + 1 − t
p

Ni+1,p−1(t)

Using the induction hypothesis, the terms are replaced by their copies:

Ni ,p(t) = t − i
p

N0,p−1(t − i) + i + p + 1 − t
p

N0,p−1(t − i − 1)

= N0,p(t − i)

∎

�e use of the “default” uniform knot vector with ti = i as introduced above may be justi�ed by the
following considerations: A uniform knot vector can be written in the form ti = λi + µ with λ and µ ∈ R.
Substitution in Equation 2.1 then shows that only the parameter domain of the B-spline basis functions
is changed by using di�erent uniform knot vectors—the shape remains unchanged.

2.2 B-spline curves

We have now described the B-spline basis functions and several of their most important properties. In
this section, we combine the basis functions to describe a variety of shapes. �is leads to B-spline curves.
�e general idea behind these curves is to de�ne a weighted sum of control points. In this sum, the scalar
basis functions serve as the weights, whereas the control points are usually taken to be vectors in R2 or
R3.

Definition 2.2 (B-spline curve). Given a knot vector T = (t0, t1, . . . , tk), a B-spline curve of degree
p is de�ned by

C(t) =
n
∑
i=0

Ni ,p(t)Pi (2.3)

with a := t0 ≤ t ≤ b := tk . �e Pi ∈ R3 are the control points and Ni ,p(t) are the B-spline basis functions
as de�ned earlier.

�e e�ect of the control polygon is illustrated in Figure 2.4. It depicts a uniform B-spline curve and
the behaviour of the B-spline curve near the control polygon.
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Figure 2.4: A B-spline curve and its control polygon. For this example, a uniform knot vector has been used. Note
how the B-spline curve is “pulled towards” the control polygon, while not interpolating it.

2.2.1 Properties

In this section, we examine the properties of B-spline curves. Since B-spline curves use combinations
of B-spline basis functions, we may expect that some of the properties for the basis functions also hold
for B-spline curves. �is is indeed the case—even more, properties of the B-spline basis functions give
rise to important properties of B-spline curves. We will see that B-spline curves are a�ne invariant and
satisfy the convex hull property.

Proposition 2.3 (Affine invariance). A�ne transformations are applied to the B-spline curve by ap-
plying them to the control points.

Proof. Let ϕ ∶ R3 → R3 be an a�ne transformation, i.e. ϕ(x) = Ax + b for a real-valued 3 × 3 matrix A
and a vector b ∈ R3. For a �xed value of t, let

xt :=
n
∑
i=0

Ni ,p(t)Pi .

Applying ϕ yields:

ϕ(xt) = ϕ (
n
∑
i=0

Ni ,p(t)Pi)

= A(
n
∑
i=0

Ni ,p(t)Pi) + b

Using Proposition 2.2, we see that∑n
i=0 Ni ,p(t) = 1, so the equation can be rewritten as:

ϕ(xt) = A(
n
∑
i=0

Ni ,p(t)Pi) +
n
∑
i=0

Ni ,p(t)b
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=

n
∑
i=0

Ni ,p(t)(APi + b) (by linearity)

=

n
∑
i=0

Ni ,p(t)ϕ(Pi)

�us, an a�ne transformation applied to the curve needs only be applied to the control points. ∎

A�ne invariance of a B-spline curve is the basis for almost all transformations in computer graphics:
�e invariance proves that only the control points are a�ected by a�ne transformations. Intuitively, this
is the natural outcome—it implies that the B-spline curve simply approximates any control polygon.

Another statement about the shape of B-spline curves is made by the strong convex hull property. �is
property limits the distance of the B-spline curve to its control polygon.

Proposition 2.4 (Strong convex hull property). For t ∈ [ti , ti+1) and p ≤ i ≤ k− p− 1, the B-spline
curve C(t) is contained in the convex hull of the control points Pi−p , . . . , Pi . Consequently, the curve is
also contained in the convex hull of all control points. �is weaker statement is known as the convex hull
property.

Proof. Let t ∈ [ti , ti+1) be �xed. Using Lemma 2.2, we sumonly the nonzero basis functions.�e B-spline
curve is then given by:

C(t) =
i
∑
j=i−p

N j,p(t)Pj

�e basis functions form a partition of unity by Proposition 2.2, so∑i
j=i−p N j,p(t) = 1, and furthermore,

the basis functions are nonnegative by Lemma 2.3. �us, C(t) is a convex combination of the control
points Pi−p , . . . , Pi and by de�nition contained within the convex hull of these control points. ∎

Figure 2.5 depicts the convex hull property. Furthermore, it turns out that modi�cations of one control
point do not a�ect the whole curve.

Lemma 2.7 (Local modification). If a control point Pi is moved, the B-spline curve C(t) is only changed
in the interval [ti , ti+p+1). As a consequence, all modi�cations are local.

Proof. By Proposition 2.1, Ni ,p(t) = 0 for t ∉ [ti , ti+p+1). ∎

�e previous lemma provides another advantage of B-spline-based methods: Contrary to other at-
tempts for the interpolation of points, such as the näıve power basis approach, shape manipulation of
B-spline curves does not require a recomputation of the whole curve.

2.3 B-spline surfaces

�is section introduces B-spline surfaces. �ere are many ways to represent surfaces—themost common
approach uses tensor product surfaces. We may think of these types of surfaces as being spanned by
families of curves. As basis functions for these surfaces, we use products of univariate B-spline basis
functions. �e degrees of those basis functions are allowed to be di�erent. �is thesis only requires
surfaces of the same degree in both directions, but the general de�nition and properties are nonetheless
given below.
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Figure 2.5: A B-spline curve of degree 4 along with its control polygon. �e convex hulls of the �rst, the second, and
the last set of control points are shown. �e picture on the lower right shows the union of the convex hulls for the
respective sets of control points. Note that the convex hulls overlap as a consequence of Proposition 2.4.
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Definition 2.3 (B-spline surface). Let the control points Pi j be arranged in a matrix. LetU and V be
knot vectors with values in [0, 1]. A B-spline surface of degree (p, q) is then de�ned as

S(u, v) =
n
∑
i=0

m
∑
j=0

Ni ,p(u)N j,q(v)Pi j , (2.4)

where Ni ,p and N j,q are the basis B-spline functions of degrees p and q.

2.3.1 Properties

In this section, wewill prove some properties already known for B-spline curves, namely a�ne invariance
and the convex hull property. Furthermore, the products of basis functions will turn out to have similar
properties than the B-spline basis functions.

Proposition 2.5 (Partition of unity).�e factors Ni ,p(u)N j,q(v) form a partition of unity:

n
∑
i=0

Ni ,p(u)
m
∑
j=0

N j,q(v) = 1 for all (u, v) ∈ [0, 1]2

Proof. We prove this by applying Proposition 2.2 for each of the factors:

n
∑
i=0

Ni ,p(u)
m
∑
j=0

N j,q(v) =
n
∑
i=0

Ni ,p(u)

⎛
⎜⎜⎜⎜⎜⎜
⎝

m
∑
j=0

N j,q(v)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

n
∑
i=0

Ni ,p(u)

= 1

∎

Lemma 2.8 (Nonnegativity). Ni ,p(u)N j,q(v) ≥ 0 for all i , j, p, q, u, v.

Proof. �is follows from the nonnegativity of the basis functions, which has been proven in Lemma 2.3.
∎

Lemma 2.9 (Local support). Ni ,p(u)N j,q(v) = 0 if (u, v) is not inside the rectangle

[ui , ui+p+1) × [v j , v j+q+1).

Proof. �e interval [ui , ui+p+1) can be seen as the union of the knot spans

[ui , ui+1), [ui+1, ui+2), . . . , [ui+p , ui+p+1).

Using Lemma 2.2, we see that Ni ,p(u) = 0 if u is not in any of these knot spans. An analogous statement
holds for N j,q(v). Since the two factors are multiplied, the product vanishes whenever one of the values
is outside the topological rectangle de�ned by the Cartesian product of the knot spans. ∎
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Using the previous lemma, we may partition a larger B-spline surface into smaller patches. As a corol-
lary, we immediately see that, as in the univariate case, changes to the control points do not a�ect the
whole surface:

Corollary 2.1 (Local modification). If a control point Pi j is moved, all the changes to the structure of
the B-spline surface are contained inside the rectangle [ui , ui+p+1) × [v j , v j+q+1).

And again, the control polygon constrains the shape of a B-spline surface. �is property will prove
central for the analysis of subdivision algorithms.

Proposition 2.6 (Strong convex hull property). If the parameters (u, v) are contained inside a
rectangle, namely,

(u, v) ∈ [ui , ui+1) × [v j , v j+1),

for some valid indices i , j, then S(u, v) is contained in the convex hull of the control points Pi′ j′ , where
i − p ≤ i′ ≤ i and j − q ≤ j′ ≤ j.

Proof. By Lemma 2.9, we see that only the factors concerning the control points mentioned above are
nonzero. As in the univariate case, the B-spline surface can be viewed as a linear combination of the
control points for �xed parameters. Since the factors form a partition of unity by Lemma 2.5, the linear
combination of the control points is an a�ne combination. Last, because the factors are nonnegative by
Lemma 2.8, we see that the a�ne combination is a convex combination of the control points Pi′ j′ , with i′

and j′ as above. ∎

We have now the means to prove that the B-spline surface formulation as de�ned above provides us
with a surface that has the desired continuity properties and can nonetheless be controlled and manipu-
lated very easily:

Lemma 2.10. At a knot ofmultiplicity k, the B-spline surface S(u, v) is p−k times continuously di�erentiable
in u-direction and q − k times continuously di�erentiable in v-direction.

Proof. �is is a consequence of the di�erentiability properties of the B-spline basis functions. We have
proven them in Lemma 2.5. ∎

�e lemma shows why setting p = q makes sense: In most applications, derivatives of the same order
should exist in all directions. To conclude the list of properties for B-spline curves, we prove that the sur-
faces are a�ne invariant. Again, this property will be relevant for the analysis of subdivision algorithms.

Proposition 2.7 (Affine invariance). An a�ne transformation is applied to the surface by applying it
to the control points.

Proof. �e main argument requires Proposition 2.5. �e rest of the proof is completely analogous to the
proof of Proposition 2.3. ∎
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2.4 Matrix representations

While brief and elegant, the recursive de�nition for the B-spline basis functions cannot be easily used
for subdivision schemes because it requires many function evaluations. �e following section describes
a representation of uniform B-spline curves and B-spline surfaces by considering matrices. In later chap-
ters, we will use these matrices to represent a subdivision scheme as a linear map, which is more ap-
proachable than recursively de�ned functions.

2.4.1 B-spline curves

Given a vector of control points, we can de�ne a B-spline curve of degree p by using Equation 2.3. If t is
inside any knot span, i.e. t ∈ [ti , ti+1), we know from Proposition 2.1 that the B-spline curve inside this
knot span is given by

Ci(t) =
i
∑
j=i−p

N j,p(t)Pj .

�is equation describes the ith segment of the B-spline curve C(t). We can rewrite it to obtain

Ci(t) = (Ni−p , . . . ,Ni)
⎛
⎜⎜⎜⎜⎜
⎝

Pi−p
Pi−p+1
. . .
Pi

⎞
⎟⎟⎟⎟⎟
⎠
,

which describes the segment as a multiplication of a matrix and a vector. �e following theorem shows
how to replace the B-spline basis functions by monomials.

Theorem 2.2 (Matrix representation of aB-spline curve segment).�e uniform B-spline segment
of degree p can be written as

Ci(t) = (tp , tp−1, . . . , t, 1)Mp

⎛
⎜⎜⎜⎜⎜
⎝

Pi−p
Pi−p+1
. . .
Pi

⎞
⎟⎟⎟⎟⎟
⎠
, (2.5)

where Mp is a (p + 1) × (p + 1)matrix with entries

mi j =
1
p!
(p
i
)

p

∑
k= j
(p − k)i(−1)k− j(p + 1

k − j
). (2.6)

Proof. See Piegl and Tiller [PT96], pp. 265–271, or Yamaguchi [Yam88], pp. 327–329, for proofs.�e basic
idea is to express the B-spline curve as a piecewise combination of Bézier spline segments (Bézier splines
are a specialization of B-spline—we will brie�y introduce them in the next section). A change of basis is
then performed so that these segments are expressed as power basis functions. A�er a reparametrization,
the matrix expression from above is obtained. ∎
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We can use the previous theorem to represent B-spline curves. To this end, we gather p + 1 adjacent
control points in a vector and de�ne the curve segment-wise. In this thesis, however, we shall require
matrices M2 and M3 only. Calculations according to�eorem 2.2 then yield

M2 =
1
2

⎛
⎜⎜⎜
⎝

1 −2 1
−2 2 0
1 1 0

⎞
⎟⎟⎟
⎠

and M3 =
1
6

⎛
⎜⎜⎜⎜⎜
⎝

−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0

⎞
⎟⎟⎟⎟⎟
⎠
. (2.7)

2.4.2 B-spline surfaces

In order to �nd a matrix representation of a B-spline surface of degree (p, q), we can apply the reason-
ing from the previous section. For (u, v) �xed, with (u, v) ∈ [ui , ui+1) × [v j , v j+1), we can start from
Equation 2.4. Using Lemma 2.9, we know that a B-spline surface patch can be expressed by

Si , j(u, v) =
i
∑

i′=i−p

j

∑
j′= j−q

Ni′ ,p(u)N j′ ,q(v)Pi′ j′ ,

which we can again rewrite in a more telling form, namely,

Si , j(u, v) = (Ni−p , . . . ,Ni) P
⎛
⎜⎜⎜⎜⎜
⎝

N j−q

N j−q+1

. . .
N j

⎞
⎟⎟⎟⎟⎟
⎠
,

where P is the matrix of a subset of control points that are relevant for the patch, i.e.

P = (Pi′ j′)i−p≤i′≤i
j−q≤ j′≤ j

.

From�eorem 2.2, we can derive the corresponding theorem for B-spline surface patches.

Theorem 2.3 (Matrix representation of a B-spline surface patch).�e uniform B-spline surface
patch of degree (p, q) can be written as

Si , j(u, v) = (up , up−1, . . . , u, 1)MpPMT
q

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

vq

vq−1

. . .
v
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= UMpPMT
q V ,

where Mp and Mq are matrices as de�ned in�eorem 2.2.

Proof. �e proof is analogous to the proof of �eorem 2.2: A�er expressing the B-spline surface patch
as a Bézier spline surface patch, the B-spline basis functions can be changed into power basis functions,
which will then yield the expression from above. ∎
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2.5 Bézier splines

For the analysis of subdivision schemes, we shall require a specialization of the B-spline approach. �e
following sections provide a tour de force through the theory of Bézier curves and Bézier surfaces. We are
only interested in some treats the theory o�ers and refer the reader to Farin [Far96, FHK02] for further
details.

2.5.1 De�nition and properties

Bézier curves and surfaces constitute another class of spline-based methods. Instead of the B-spline
basis functions, they use Bernstein polynomials. Apart from that, their properties are similar to those of
B-spline curves and surfaces. In fact, it turns out that Bézier splines may be viewed as a special case of
B-splines.

More precisely, we take a knot vector of the form T = (0, . . . , 0, 1, . . . , 1) with 2 ⋅ (p + 1) knots, and
require the control polygon to have p + 1 control points. Via this procedure, the B-spline curves become
Bézier curves and the B-spline surfaces become Bézier surfaces. In particular, all the properties we have
proved in this chapter still apply. We are especially interested in a reformulation of Proposition 2.6:

Proposition 2.8 (Convex hull property for Bézier surfaces).�e Bézier surface of degree (p, p)
is contained in the convex hull of its control points.

Proof. �is is exactly the same claim from Proposition 2.6. ∎

Furthermore, we will require derivatives of Bézier patches. Just as in the case of B-spline patches,
derivatives of Bézier patches are Bézier patches of lower degree. We are solely interested in the control
points of these derived patches and have the following proposition:

Proposition 2.9 (First-order partial derivatives of Bézier patches).�e control points of �rst-
order partial derivatives of a Bézier patch are calculated by forward di�erences. For the partial derivative
in u-direction, the new control points are calculated as

P′i , j = Pi+1, j − Pi , j . (2.8)

Likewise, for the partial derivative in v-direction, the new control points are

P′i , j = Pi , j+1 − Pi , j . (2.9)

Proof. See Farin [Far96], pp. 241–242, or [FHK02], pp. 83–84. ∎

2.5.2 Matrix representations

In analogy to the matrix expressions of uniform B-spline patches, matrix expressions for Bézier patches
exist. Again, we have basis matrices de�ned by the following equation.

Proposition 2.10 (Bézier basis matrix of degree p).�e entries of the Bézier basis matrix of degree
p are de�ned by

ni j = (−1)p+ j−i(pj)(
p − j
i
),
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where i , j = 0, 1, . . . , p. We will refer to this matrix by Np.

Proof. See Farin [Far96], pp. 59–60. ∎

For the analysis of subdivision schemes, we shall require only the basis matrices of degree 2 and 3.
Proposition 2.10 yields

N2 =

⎛
⎜⎜⎜
⎝

1 −2 1
−2 2 0
1 0 0

⎞
⎟⎟⎟
⎠

and N3 =

⎛
⎜⎜⎜⎜⎜
⎝

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠
. (2.10)

�e basis matrices can be used to obtain a matrix expression of a Bézier surface patch. More precisely,
we have the following theorem, which is reminiscent of the analogous theorem for B-spline patches.

Theorem 2.4. A Bézier surface patch of degree (p, q) can be written as

Si , j(u, v) = (up , up−1, . . . , u, 1)NpPNT
q

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

vq

vq−1

. . .
v
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= UNpPNT
q V ,

where Np and Nq are basis matrices of degree p and q as de�ned by Proposition 2.10.

Proof. See Farin [Far96], pp. 248–249. ∎

2.5.3 Conversion between Bézier and B-spline control points

We now have expressions for both Bézier and B-spline surface patches. �e B-spline concept, however,
cannot produce “more” curves than the Bézier concept; see Böhm [Böh81] for an elaboration on this fact.
Consequently, given a B-spline surface patch, it must be possible to obtain a Bézier patch that describes
the same surface. In fact, we can easily express a given B-spline surface patch in terms of Bézier control
points by equating the expressions from�eorem 2.3 and�eorem 2.4. Starting with

UMpPB-splineMT
q V

!
= UNpPBézierN t

qV ,

this yields
PBézier

!
= N−1p MpPB-splineMT

q (NT
q )−1.

As an example, the biquadratic B-spline surface patch with control points Pi j can be expressed as a Bézier
surface with control points P′i j, where

P′i j =
⎛
⎜⎜⎜
⎝

P11+P10+P01+P00
4

P11+P01
2

P12+P11+P02+P01
4

P11+P10
2 P11 P12+P11

2
P21+P20+P11+P10

4
P21+P11

2
P22+P21+P12+P11

4

⎞
⎟⎟⎟
⎠
. (2.11)
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We will use this conversion for the analysis of subdivision schemes: By converting a certain B-spline
surface patch into a corresponding Bézier patch, we will be able to prove that the components of all
control points are positive. Combined with the convex hull property of Bézier patches, this implies that
the components of all points within the patch are also positive. From this simple fact, we will be able to
deduce that a subdivision scheme creates C1-continuous limit surfaces.

2.6 Summary

�is chapter introduced B-splines and some of their most relevant properties. We saw the advantages
of using them for geometric modelling, such as a�ne invariance and the convex hull property. A�er
introducing a matrix representation of B-spline patches, we de�ned Bézier splines as a special case of B-
splines. We analysed their properties and discussed how to represent them bymatrices. It turned out that
the matrix representation of Bézier splines allows a quick calculation of the control points de�ning the
�rst-order partial derivatives. We �nished the discussion of B-splines and Bézier splines by demonstrat-
ing a way how to convert B-spline patches to Bézier patches, and vice versa. In the following chapter, we
will use the matrix representation to de�ne a standard subdivision process for B-spline surface patches.
Furthermore, we will see how to generalize this subdivision process for non-spline settings.





3 Subdivision schemes

In this chapter, we will derive smoothing algorithms that operate on meshes (for now, we may think of
a mesh as a graph with vertices from Rn). �e algorithms use a�ne combinations of control points to
calculate a set of re�ned control points. In each step, more re�ned control points are generated. �ere-
fore, these algorithms are called subdivision algorithms or subdivision schemes (we will use these terms
interchangeably).

�e appeal of subdivision algorithms is that they provide easy means for transforming a coarsemesh
into a �ne and smooth mesh. In this chapter, we will thoroughly describe the Doo-Sabin and the Catmull-
Clark subdivision algorithms; both schemes are a generalization of subdivision schemes for B-spline sur-
faces. Consequently, we will start with a description of biquadratic and bicubic B-spline surface subdi-
vision and work towards inferring the formulæ of the Doo-Sabin and Catmull-Clark schemes. We will
also perform a rudimentary analysis of some properties of those schemes. �is analysis will serve as a
preparation for a more rigorous treatment of both algorithms in Chapters 4 and 5.

3.1 Historical development

�e �rst subdivision algorithm was introduced by Chaikin [Cha74]. Chaikin’s approach was purely ge-
ometrical and did not make use of B-spline theory. �e task of the algorithm was to rapidly generate
curves in R2 and R3 by making maximum use of the hardware of this time. Riesenfeld [Rie75] proved
that Chaikin’s algorithm produces quadratic B-splines. Most authors of modern computer graphics text
books, such as Farin [Far96] or Salomon [Sal05], describe a modi�ed variant of Chaikin’s algorithm that
highlights the relationship to B-spline curves. Here, the existence of a control polygon P with control
points Pi is assumed. A new control polygon P′ with control points P′i is then obtained from the old
control points Pi by calculating

P′2i =
3
4
Pi +

1
4
Pi+1

P′2i+1 =
1
4
Pi +

3
4
Pi+1

(3.1)

and drawing line segments between P′2i and P′2i+1. Figure 3.1 depicts an example of this process. �e
idea of Chaikin’s algorithm can be extended to B-spline curves of any degree. By splitting the parametric
domain of the curve, expressions in the form of Equation 3.1 may be obtained, albeit with more control
points. Subdivision of a bicubic B-spline curve, for example, results in equations that use three old control
points to de�ne one new control point.

In 1978, the two earliest subdivision methods for surfaces were introduced. �e starting point, based
on previous research by Catmull [Cat74], was an algorithm of Catmull and Clark [CC78] that general-
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Figure 3.1: �ree steps of Chaikin’s algorithm. Note how new control points are inserted in every step. �e �gure on
the lower right shows the corresponding quadratic B-spline curve, which the algorithm converges against, along with
its control polygon.
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Figure 3.2: �ree steps of Loop subdivision applied to the mesh of an icosahedron. �e �rst picture shows the initial
mesh. Note how fast the individual faces shrink.

izes bicubic B-spline surface subdivision. In the same year, Doo [Doo78] published an algorithm that
generalizes biquadratic subdivision. �is algorithm was subsequently analysed and extended by Doo
and Sabin [DS78]. �roughout the years, more methods for developing subdivision algorithms were dis-
covered. In 1987, Loop [Loo87] introduced a subdivision algorithm that generalizes subdivision of box
splines over triangular control polygons—see Figure 3.2 for an example; a detailed derivation of this al-
gorithm may be obtained from Portl [Por10]. Moreover, by extending an interpolatory scheme, Dyn,
Levin, and Gregory [DLG90] presented the Butter�y subdivision scheme. Recently, the non-polynomial√
3 subdivision scheme, which is based on topological splits, was established by Kobbelt [Kob00].

3.2 Preliminary de�nitions

In contrast to the previous algebraical approach to B-spline and B-spline surfaces, the following sections
will be rather geometrically-�avoured. Accordingly, we shall require de�nitions concerning the geomet-
rical structure of patches and surfaces.

Definition 3.1 (Mesh). A mesh is a graph similar to the control polygon of a B-spline surface. �e
graph is constructed from a set of control points inR3 along with a description of their connectivity:�e
control points are the vertices, connections between adjacent control points are the edges, and each region
that is enclosed by a loop of edges (which are not allowed to reach into the region) is a face. Contrary to
the usual de�nition in graph theory, a mesh does not have unbounded faces.

A mesh is the most basic object encountered when discussing subdivision schemes: �e schemes op-
erate on meshes and make use of adjacency relations of vertices and edges. Consequently, these relations
need to be classi�ed. As a �rst step, di�erent types of vertices are distinguished.

Definition 3.2 (Valency of a vertex).�e number of edges incident on a vertex is called its valency.

Wemay view the valency as an indicator of the regularity of meshes. A regular tiling of the plane using
quadrangles, for example, has a valency of 4 everywhere. In most cases, the following rule holds: �e
more vertices with high valency, the less regular a mesh can be. �is justi�es the next de�nition.

Definition 3.3 (Ordinary and extraordinary vertices). In a quadrangular tiling, a vertex with
valency k = 4 is called ordinary vertex. If k ≠ 4, the vertex is called extraordinary.

However, among the many �avours of meshes, some are distinguished. �ese are themanifold meshes.
We may think of these meshes as looking locally like the Euclidean space.
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Definition 3.4 (Manifold mesh of dimension n). A mesh M is called manifold mesh of dimension
n if for each point x ∈ M, there is a neighbourhood U ⊆ M such that U is homeomorphic to Rn.

�e subdivision schemes in this thesis operate on 2-dimensional manifold meshes. In the following
sections, we shall require only one consequence of this de�nition: Since a neighbourbood homeomorphic
to R2 must exist, an edge in the interior of the mesh is shared by exactly two faces.

Definition 3.5 (B-spline topology). If the vertices of a mesh can be arranged in a matrix, we may
think of them as control points Pi j of a B-spline curve or a B-spline surface. By connecting control points
with subsequent indices, the usual control polygon is formed. If such an arrangement is possible, we say
that the mesh exhibits B-spline topology.

B-spline topology is quite restrictive:�ere is, for example, no possibility tomodel surfaces of arbitrary
genus without splitting up the surface into several patches that need to be connected suitably. Moreover,
the mesh cannot contain vertices of arbitrary valencies or faces with k ≠ 4 sides. Overcoming these
restrictions was the main incentive of early researchers of subdivision algorithms.

For the description of subdivision algorithms, a very intuitive approach emerged recently. It consists of
using special masks, the subdivision scheme stencils. Unfortunately, stencils are not de�ned consistently
in literature. For the purpose of this thesis, the following de�nition will prove useful.

Definition 3.6 (Subdivision scheme stencil). A subdivision scheme stencil is a mask that can be ap-
plied to all parts of a mesh that match the topology of the stencil. Calculating the linear combination of
vertices according to the weights of the stencil yields one new point for the subdividedmesh. Subdivision
scheme stencils are unique up to rotations and re�ections of control points.

Subdivision scheme stencils can be applied to curves and surfaces. As a simple example, we may derive
the subdivision stencils for Chaikin’s algorithm. By Equation 3.1, control points are either weighted with
3/4 or 1/4. �is yields stencils as depicted by Figure 3.3.

3
4

1
4

1
4

3
4

Figure 3.3: Stencils for Chaikin’s algorithm. Note that one stencil is su�cient in order to describe the algorithm because
the topological situation remains the same.

�e appeal of stencils may not be obvious at �rst glance. Indeed, in the case of curves, the topology
of the re�ned control points is fully de�ned by their indices—there are no ambiguities. However, the
more complex subdivision algorithms for surfaces also yield more complex subdivision stencils; these
stencils help improve the understanding of a given scheme. Nonetheless, this does not spare us from
describing the new topology of the surface: Regrettably, stencils only describe the re�nement rules for a
single re�ned control point and not how to connect new control points.

3.3 B-spline surface subdivision

In this section, we will study subdivision techniques for B-spline surfaces. �ese techniques allow us
to gain insights about subdivision algorithms for topologies di�erent from the usual B-spline topology.
Ultimately, we will be able to describe the Doo-Sabin and the Catmull-Clark subdivision algorithms.
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�e idea of subdividing the control polygon of B-spline curves in order to obtain the curve itself can
be extended to B-spline surfaces. To this end, we need to split the parametrical domain I = [0, 1]2 over
which a surface patch is de�ned. By performing the necessary calculations, we will obtain control poly-
gons corresponding to smaller B-spline patches. Taking the limit, these control polygons will eventually
converge to the B-spline patch that is de�ned by the initial control polygon.

3.3.1 Subdividing a biquadratic B-spline surface patch

It is su�cient to perform the subidivision for a biquadratic B-spline surface patch only. A general proce-
dure can be derived from the resulting equations. Hence, we have a 3× 3 matrix P that holds the control
points Pi j de�ning the control polygon:

P =
⎛
⎜⎜⎜
⎝

P00 P01 P02
P10 P11 P12
P20 P21 P22

⎞
⎟⎟⎟
⎠

Following the ideas of Chaikin’s algorithm, we will split the quadrangular domain I = [0, 1]2 into four
smaller congruent quadrangles. Splitting the domain corresponds to splitting the patch into four smaller
patches. We will see that some of the new control points coincide so that these patches are described by
16 control points in total.

�e parametrical domain of the B-spline surface patch is symmetrical, thus we only need to consider
the subpatch S(u, v) where u, v ∈ [0, 1/2]. �e equations for the other subpatches will not yield new
insights. Let the new surface be de�ned as S′(u, v). We use the matrix representation of the biquadratic
B-spline patch as described by�eorem 2.3:

S′(u, v) = S (u
2
,
v
2
)

S′(u, v) = (u
2

4
,
u
2
, 1)M2PMT

2

⎛
⎜⎜⎜
⎝

v2/4
v/2
1

⎞
⎟⎟⎟
⎠

= (u2, u, 1)
⎛
⎜⎜⎜
⎝

1
4 0 0
0 1

2 0
0 0 1

⎞
⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M′

M2PMT
2

⎛
⎜⎜⎜
⎝

1
4 0 0
0 1

2 0
0 0 1

⎞
⎟⎟⎟
⎠

T ⎛
⎜⎜⎜
⎝

v2

v
1

⎞
⎟⎟⎟
⎠

We now slip in auxiliary terms that simplify the equation:

S′(u, v) = UM2M−12 M′M2PMT
2 M

′T(M−12 )TMT
2 V

T

= UM2(M−12 M′M2)P(MT
2 M

′T(M−12 )T)MT
2 V

T

= UM2SPSTMT
2 V

T

= UM2P′MT
2 V

T ,

where S = M−12 M′M2 and P′ = SPST .



34 3. SUBDIVISION SCHEMES

9
16

3
16

3
16

1
16

Figure 3.4: Stencil for subdividing a biquadratic B-spline patch. �e remaining three stencils have been omitted for
symmetry reasons.

Hence, the new patch can be written as S′(u, v) = UM2P′MT
2 VT . �is equation, however, describes a

biquadratic B-spline patch with a re�ned set of control points. In order to derive subdivision rules from
this reparametrization, we solve P′ = SPST and obtain, for example,

P′00 =
1
16
(9P00 + 3P10 + 3P01 + P11) . (3.2)

�e same coe�cients appear in the equations of all new points. Wemay interpret this equation geometri-
cally: During the subdivision process, four points of any face in the control polygon are combined using
normalized weights of (9, 3, 3, 1). �is linear combination allows the calculation of one re�ned control
point.

Equation 3.2 also allows us to determine the subdivision stencils. Since the weights of the equation are
the same for all points and since subdivision stencils are unique up to rotations and re�ections of control
points, we only have one subdivision scheme stencil. It is depicted by Figure 3.4 and completely describes
the algorithm.

Generalizing this scheme to arbitrary B-spline surface control polygons is possible by applying the
stencil to every vertex of a face. In this case, the new topology of the re�ned mesh is not ambiguous
because we may assume that the control points are indexed. Consequently, weighting a control point Pi j
with a weight of 9/16 when applying the stencil yields the control point P′i j. �us, the new control points
may also be aligned in a matrix, which de�nes adjacency relations.

A shortcoming of this algorithm is that it can be applied to quadrangular faces only. As an advantage,
though, the algorithm does not care about the valencies of vertices and can thus be applied to highly
irregular quadrangular meshes.

Figure 3.5:�ree steps of biquadratic B-spline subdivision being applied to amesh with regular B-spline topology. Note
that several patches are required in order to describe the surface created by the input control polygon. Decomposing
meshes into B-spline patches becomes very clumsywith increasingmesh size. Hence, the local operations of subdivision
stencils are appealing.
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3.3.2 Subdividing a bicubic B-spline surface patch

We can perform the procedure from the previous section for a bicubic B-spline surface patch. A bicubic
B-spline surface patch is de�ned by a 4 × 4 matrix P of control points Pi j, where

P =

⎛
⎜⎜⎜⎜⎜
⎝

P00 P01 P02 P03
P10 P11 P12 P13
P20 P21 P22 P23
P30 P31 P32 P33

⎞
⎟⎟⎟⎟⎟
⎠
.

As in the biquadratic case, we only need to consider the subpatch S′(u, v)with u, v ∈ [0, 1/2] due to sym-
metry reasons. Again, we start with the equation for the new subpatch and use the matrix representation
of�eorem 2.3:

S′(u, v) = S (u
2
,
v
2
)

= (u
3

8
,
u2

4
,
u
2
, 1)M3PMT

3

⎛
⎜⎜⎜⎜⎜
⎝

v3/8
v2/4
v/2
1

⎞
⎟⎟⎟⎟⎟
⎠

�e calculations are then similar to the ones of the previous section. We separate factors and introduce
auxiliary terms in order to simplify the equation:

S′(u, v) = (u3, u2, u, 1)
⎛
⎜⎜⎜⎜⎜
⎝

1
8 0 0 0
0 1

4 0 0
0 0 1

2 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
M′

M3PMT
3

⎛
⎜⎜⎜⎜⎜
⎝

1
8 0 0 0
0 1

4 0 0
0 0 1

2 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟
⎠

T
⎛
⎜⎜⎜⎜⎜
⎝

v3

v2

v
1

⎞
⎟⎟⎟⎟⎟
⎠

= UM3M−13 M′M3PMT
3 M

′(M−13 )TMT
3 V

T

= UM3(M−13 M′M3)P(MT
3 M

′T(M−13 )T)MT
3 V

T

= UM3SPSTMT
3 V

T

= UM3P′MT
3 V

T ,

where S = M−13 M′M3 and P′ = SPST .

As a result of this reparametrization, we may write the subpatch as S′(u, v) = UM3P′MT
3 VT , which

describes a bicubic B-spline patch with a matrix of re�ned control points. When solving the equations,
we see that the bicubic case is more complicated than the biquadratic one: In the calculations for the new
control points, three di�erent weight patterns appear. �e following expressions have been named in a
suggestive manner in order to show their connection to the stencils we are going to derive.
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Face points For each face in the mesh, the average of all its vertices, i.e. its centroid, is calculated. Here,
P′00 is a face point. Face points are generated by the same stencil as in the biquadratic case.

P′00 =
1
4
(P00 + P01 + P10 + P11)

Edge points For each edge that is adjacent to two faces in the mesh, a new point is created by averaging
the average of the two face points and the midpoint of the edge. Here, P′01 is an edge point.

P′01 =
1
2
(P
′

00 + P′02
2

+

P01 + P11
2
)

=
1
16
(P00 + 6P01 + P02 + P10 + 6P11 + P12)

Vertex points For each vertex in the interior of the mesh, i.e. for each vertex that is shared by four
faces, a new point is created by taking the average of the four face points of adjacent faces, the average of
the four midpoints of incident edges, and the interior point itself. �e new vertex is then calculated by
weighting the three expressions with a factor of 1/4. Here, P′11 is a vertex point.

P′11 =
1
4
[ 1
4
(P′00 + P′02 + P′20 + P′22)

+

1
4
(P11 + P01

2
+

P11 + P10
2

+

P11 + P12
2

+

P11 + P21
2
)

+ P11]

=
1
64
(P00 + 6P01 + P02 + 6P10 + 36P11 + 6P12 + P20 + 6P21 + P22)

Using these terms and theweights from the calculations, we obtain the stencils as depicted in Figure 3.6.
Several steps of the subdivision process are shown in Figure 3.7. Note how rapidly the re�ned surface
seems to approach a limit. When drawing the B-spline surface corresponding to the initial mesh, there
are almost no visual di�erences between the surface and the third subdivision step.

3.4 Almost arbitrary topologies

�e subdivision methods that we have seen so far are limited. First, the algorithms are only applicable
in the case of a B-spline topology. Second, the resulting surface will always be a B-spline surface of a
certain degree. For most applications, however, the control polygons are irregular. �ere may be non-
quadrangular faces or vertices with high valencies. �e reason for the appearance of irregular meshes is a
consequence of Euler’s formula for convex polyhedrons (see Chapter A, Section A.1): Polyhedrons such
as the platonic solids cannot be represented by quadrangular meshes without using vertices of valency
k ≠ 4. Consequently, we need to devise new subdivision rules for these types of meshes. In this section,
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(c) Bicubic subdivision scheme stencil for ver-
tex points. Note the symmetry of the stencil.

Figure 3.6: Stencils for subdividing a bicubic B-spline patch

Figure 3.7: �ree steps of bicubic B-spline subdivision being applied to a mesh with regular B-spline topology. As in
Figure 3.5, several bicubic patches are required for the description of the resulting B-spline surface.
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(a) Doo-Sabin subdivision scheme stencil
for regular vertices
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(b) Doo-Sabin subdivision scheme
stencil for the general case

Figure 3.8: Stencils for the Doo-Sabin subdivision scheme. Note how the stencil for the regular case corresponds to the
stencil of the biquadratic B-spline subdivision scheme as depicted by Figure 3.4.

wewill take a look at the Doo-Sabin and the Catmull-Clark subdivision schemes.�ese schemes are gen-
eralizations of the biquadratic and bicubic B-spline surface subdivision schemes introduced previously
and can be applied to any 2-dimensional manifold mesh. In general, the surface resulting from several
steps of subdivision will not be a B-spline surface.

About the term “Arbitrary topology” An unfortunate error has crept into subdivision literature: �e
original paper of Catmull and Clark [CC78] introduced the term “arbitrary topology”. �is ismisleading,
though. It will become obvious from the description of subdivision algorithms that they only work for
2-dimensional manifold meshes. �e Doo-Sabin scheme, for example, requires edges to be shared by no
more than two faces. It is easy to de�nemesheswhere this is not the case. Consequently, this thesis de�nes
subdivision schemes for almost arbitrary topologies. �e term shall signify that the mesh is allowed to be
highly irregular in terms of valencies and k-gons, but is still required to look locally like a 2-dimensional
manifold according to De�nition 3.4.

3.4.1 Doo-Sabin subdivision

�e Doo-Sabin subdivision scheme generalizes biquadratic B-spline subdivision. A preliminary version
was introduced by Doo [Doo78] in 1978. Following this publication, Doo and Sabin [DS78] gave a brief
overview of an expanded version. �is expanded version is the subdivision scheme in its currently used
form.

�e scheme is conceptually very simple. Since there is only one type of stencil for the biquadratic B-
spline subdivision, the algorithm works on faces of the mesh and does not depend on the valencies of
vertices. Consequently, the extraordinary vertices in the Doo-Sabin scheme are actually extraordinary
faces, meaning k-gons with k ≠ 4. For these kinds of faces, a stencil with user-de�nable weights is used.
In Chapter 5, we will examine permissible weights for this stencil. �e stencils for regular faces and
irregular faces are depicted in Figure 3.8. As usual, computing the weights for k = 4 yields the weights
of the biquadratic B-spline subdivision scheme. Algorithm 3.1 describes both the generation of the new
points and the creation of the new topology for the mesh.

Following Algorithm 3.1, we now take a look at the properties of the Doo-Sabin subdivision scheme.
When generating the topology of the new mesh, we have three kinds of faces. �ese are termed F-faces,
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Algorithm 3.1Doo-Sabin subdivision scheme
1: for all Vertices v in mesh do
2: for all Faces f that v is a part of do
3: Enumerate all vertices in f , starting with 0 for v and going in counter-clockwise order “around” the face

in increasing numbers.
4: Let k be the number of vertices for f .
5: α0 = (k + 5)/4k.
6: α j = (3 + 2 cos(2 jπ/k))/4k
7: Create a new vertex v′ by weighting the vertices of f according to α0 , . . . , αk−1.
8: end for
9: end for

10: for all Faces f in the mesh do
11: Connect the new vertices v′ in the order of the old vertices v of f .
12: end for

13: for all Edges e in the mesh do
14: if Edge is part of exactly two faces then
15: Connect the new vertices that correspond to the start and the end vertex of the edge. Since a new vertex

is computed for each face a vertex is part of, this yields four new vertices.
16: end if
17: end for

18: for all Vertices v in the mesh do
19: if Valency of v is greater than 2 then
20: for all Faces f that v is a part of do
21: Connect the new vertices corresponding to v and f .
22: end for
23: end if
24: end for
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E-faces, andV-faces byDoo and Sabin—the terminology re�ects fromwhich elements of themesh (faces,
edges, and vertices) they are created.

F-faces An F-face is formed by the new vertices corresponding to the old vertices of the face. �us,
each face will be replaced by a smaller version of itself. In particular, k-gons with k ≠ 4 are retained by
the algorithm. Repeated application of the algorithm shrinks these faces to points.

E-faces For manifold meshes, non-boundary edges are always part of exactly two faces. Since we have
two new vertices per face, E-faces will aways be quadrangular.

V -faces For every vertex v with valency k > 2, we connect the k new vertices corresponding to v. �us,
each V-face is a k-gon. For convex polyhedrons, Doo [Doo78] showed that all vertices of the new mesh
have valency k = 4 (this is a simple consequence of Euler’s formula).

Since irregular faces shrink to points and all new vertices have valency k = 4, the algorithm seems
“reasonably well-behaved”. In fact, we will prove later that the limit surface of the algorithm (for the
weights chosen by Doo and Sabin) is a C1-manifold for almost all input meshes.

Figure 3.9 depicts several steps of the Doo-Sabin scheme being applied to several platonic solids. �e
initial control polygons consist of triangular faceswith less than 20 vertices. We can see that extraordinary
areas of the mesh shrink but the shape remains unchanged. �e mesh in total is quite smooth a�er three
subdivision steps.

3.4.2 Catmull-Clark subdivision

�e Catmull-Clark subdivision algorithm [CC78] has been introduced in 1978. It is a generalization of
bicubic B-spline surface subdivision. Nowadays, the algorithm is one of the most common subdivision
schemes. It is included in many proprietary programs (such as ZBrush and LightWave 3D), as well as
in open-source so�ware (such as Blender and Wings 3D).

�e reason for the popularity of the Catmull-Clark scheme is twofold: First, the regular regions of the
algorithm are locally a C2-manifold, whereas the irregular regions are a C1-manifold (we will expand
on this fact later in more precise terms). Second, it can process meshes containing polygons with any
number of sides and is not restricted to triangular or quadrangular meshes only.

In this section, we will retrace the steps of the original paper. A�erwards, a parametric version of the
algorithm will be introduced—this is also the version we will be examining in later chapters.

Original description

�e scheme is a natural extension of the bicubic B-spline subdivision scheme—it uses the same formulæ
for new face points and new edge points. �e stencils are slightly modi�ed because they also need to
be applicable to k-gons. �e formula for vertex points, however, needs greater modi�cations in order to
work with vertices of arbitrary valencies.
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Figure 3.9:�ree steps of the Doo-Sabin algorithm applied to platonic solids (tetrahedron, hexahedron, icosahedron).
�e �rst row of images shows the input meshes.
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(a)Catmull-Clark subdivision scheme sten-
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(b) Catmull-Clark subdivision scheme stencil for edge points
adjacent to 2 k-gons. Note that for k = 4, the weights coincide
with the weights of the bicubic subdivision scheme as depicted in
Figure 3.6.

(c)�e “area of in�uence” in the mesh that is used in
order to calculate vertex points corresponding to ver-
tices of valency k. Here, k = 5.

Figure 3.10: Stencils for the Catmull-Clark subdivision scheme

By the original suggestion of Catmull and Clark [CC78], a new vertex point v′ corresponding to a
vertex v of valency k is calculated as a linear combination of surrounding vertices,

v′ =
F
k
+

2E
k
+

v(k − 3)
k

, (3.3)

where F is the average of the face points of the k faces adjacent to v, and E is the average of the midpoints
of the k edges incident on v. For the regular case with k = 4, Equation 3.3 yields the vertex point stencil of
the bicubic subdivision scheme as depicted in Figure 3.6. �e stencils for irregular parts of the mesh are
depicted by Figure 3.10. Note that the vertex point stencil is shown without any weights—we will soon
derive a weighted representation.

Having described the stencils, the new vertices still need to be connected correctly—this is explained
byAlgorithm3.2. Since the schemeusesmore stencils than theDoo-Sabin scheme, wemay expect that the
Catmull-Clark scheme takes greater advantage of the underlying structure of the mesh. �is is indeed
the case: We can observe that the subdivision scheme only creates quadrangular faces (which are not
planar in general), and a k-gon with k ≠ 4 will yield an extraordinary vertex of valency k. Furthermore,
extraordinary vertices of quadrangles retain their valency. As a consequence, the number of extraordinary
vertices in themesh remains �xed a�er the initial subdivision step, whereas the size and number of regular
parts of the mesh grows with each subdivision step.

Figure 3.11 shows several steps of the Catmull-Clark scheme being applied to several platonic solids.
Again, the initial control polygons consist of triangular faces with less than 20 vertices. A�er amere three
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Figure 3.11: �ree steps of the Catmull-Clark algorithm applied to platonic solids (tetrahedron, hexahedron, icosahe-
dron). �e �rst row of images shows the input meshes.



44 3. SUBDIVISION SCHEMES

Algorithm 3.2 Catmull-Clark subdivision scheme
1: for all Faces f in the mesh do
2: Create a face point as the geometrical centre of the face.
3: end for

4: for all Edges e in the mesh do
5: Create an edge point as the average of the average of the two face points that correspond to the two faces e is

a part of and the midpoint of e.
6: end for

7: for all Vertices v in the mesh do
8: Create a vertex point using Equation 3.3.
9: end for

10: for all Vertices v in the mesh do
11: for all Faces f that v is a part of do
12: Connect the vertex point corresponding to v with an edge point of an edge that is incident on v and part

of f .
13: Connect the edge point used before with the face point corresponding to f .
14: Connect the face point used before with the remaining edge point of an edge that is incident on v and part

of f .
15: Make this a face in the re�ned mesh.
16: end for
17: end for

subdivision steps, the mesh is su�ciently smooth and the irregular regions corresponding to extraordi-
nary vertices have become very small.

Parametrical description

Figure 3.10 depicts the “area of in�uence” for the calculation of vertex points. Since the weights of this
stencil depend on both the valency of the vertex and the number of edges of adjacent faces, it is rather
unwieldy. We now derive equations for the vertex point stencil in the special case that all adjacent faces
are quadrangular. Since all faces of the mesh become quadrangles a�er one step of the Catmull-Clark al-
gorithm, this condition is not a loss of generality. Hence, let v be a vertex of valency k. Using Equation 3.3,
we see that all vertices that are not part of an incident edge of v are weighted with (4k2)−1 (because they
only appear within the face points equation). Vertices that are part of an incident edge of v, however, are
part of two faces and one edge. �us, they are weighted with (4k2)−1 + (4k2)−1 + 2(2k2)−1 = 3(2k2)−1.
Finally, since v is part of k faces and k edges, it is weighted with (4k)−1+2(2k)−1+(k−3)/k = 1−7(4k)−1.

Consequently, we may describe subsequent steps of the Catmull-Clark scheme by using three weights
for all vertices around an extraordinary vertex: �e vertex itself is weighted with α, all directly incident
vertices are weighted with β/k, and all remaining vertices are weighted with γ/k. For the original scheme
of Catmull-Clark, we have

α = 1 − 7
4k

, β = 3
2k

, γ = 1
4k

, (3.4)

and obviously, α+β+γ = 1 (otherwise, a�ne invariance would not hold).�e resulting stencil is depicted
in Figure 3.12. By picking arbitrary values for α, β, and γ, the smoothness properties of the algorithm can
be changed. In Chapter 5, we will discuss feasible weights and the consequences of erroneous weights.
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Figure 3.12: Catmull-Clark subdivision scheme stencil for vertex points corresponding to a vertex of valency k (see
text for a detailed derivation). Here, k = 5. If one of the faces is not yet quadrangular, Equation 3.3 needs to be used for
the calculation. �e weights α, β, and γmust sum to unity. Catmull and Clark suggested α = 1−7(4k)−1, β = 3(2k)−1,
and γ = (4k)−1.

3.5 Summary

�is chapter gave a brief overview of the history of subdivision algorithms for curves and surfaces. We
saw how to split the parameter domain of B-spline surface patches in order to obtain re�ned patches from
the initial control polygon. �e re�ned patches converge against a B-spline surface of a certain degree.
Furthermore, we took a look at generalizations of B-spline surface subdivision, i.e. algorithms that may
be used to smooth patches of almost arbitrary topology. �ese generalizations ultimately led us to the
Doo-Sabin and the Catmull-Clark subdivision schemes. We introduced both schemes and took a brief
look at their properties. In addition, we extended their original de�nitions by introducing user-de�nable
weights, which we will analyse in Chapter 5.





4 Analysing subdivision algorithms

�is chapter introduces methods for analysing the smoothness properties of subdivision schemes. For
this purpose, we are required to switch between two di�erent viewpoints: Instead of thinking of subdi-
vision algorithms as re�nement schemes that are applied to meshes, we will also consider a subdivision
algorithm to be a linear map in the space of control points. �e main idea is to represent the surface that
results from repeated application of this linear map as the graph of a regular injective function. If this
function is known, smoothness properties can be determined rather easily.

In the following sections, we will derive criteria that are essential for thoroughly analysing the smooth-
ness properties of a given subdivision scheme: We will start by de�ning the problem in rigorous mathe-
matical terms. Next, we will derive an invariant, the characteristic map, of a subdivision scheme. Brie�y,
this is a function that solely depends on the subdivision algorithm itself and not on any input data. Using
the characteristic map, we will prove a theorem that guarantees smooth limit surfaces, provided the char-
acteristic map is regular and injective. Following this result, the remainder of this chapter is dedicated to
deriving conditions under which the characteristic map will be regular and injective. We will show that
the analysis of the characteristic map can be limited to a single segment in the complex plane. Further-
more, we will see that in some cases, checking for regularity and injectivity is as simple as checking signs
of certain functions.

�is chapter is based on a paper by Reif [Rei95], a paper by Peters and Reif [PR98], and Reif ’s habili-
tation thesis [Rei98]. Care has been taken to use a consistent notation. Most of the original proofs have
been extended to provide more details.

4.1 Preliminary de�nitions

In order to derive tools for analysing subdivision schemes, a solid mathematical foundation is essential.
�is section presents suitable parametrizations for spline surfaces and subdivision algorithms. Since we
only require a small subset of the theory, many details will only be brie�y touched upon.

4.1.1 Parameter space and representations

Let Σ0 be a parametrically smooth spline surface consisting of quadrangular patches. In addition, we
assume that Σ0 is an in�nite planar surface with a single n-sided hole as its only boundary—this enables
us to ignore the outer boundary of the surface without loss of generality, thereby simplifying the analysis
to some extent.
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Figure 4.1: Representation Φ of the parameter space Ω for Σ0.

Definition 4.1 (Parameter space of a spline surface). Let I be a �nite subset of N. �e parameter
space Ω of a parametrically smooth spline surface is de�ned by

Ω := ω × I,

where ω is the unit square, i.e. ω = [0, 1] × [0, 1]. Furthermore, a neighbourhood relation is de�ned for
pairs (ω, i) and i ∈ I by identifying adjacent edges of unit squares. �roughout this thesis, equality in
the parameter space will only be de�ned modulo the neighbourhood relation.

In order to visualize the parameter space, we de�ne a representation of Ω. �e representation is an
embedding of Ω and its topology in the real plane. A representation does not need to exist in every case
(take a cube, for example—there is obviously no planar embedding), but it certainly exists for Σ0.

Definition 4.2 (Representation of Ω). Let Φi with i ∈ I be a set of smooth injective functions from
the unit square toR2. �e functions are required to have the property that adjacent edges have a common
image, i.e. Φi needs to preserve the neighbourhood relation. With these conditions satis�ed, a represen-
tation is a map Φ with

Φ ∶ Ω ∋ (ω, i)↦ Φi(ω) ∈ R2.

We call the image Γ := Φ(Ω) of the parameter space under Φ a mesh. Figure 4.1 shows an example for
the representation of a parameter space.

We can consider the mesh Γ as a mesh in the usual sense of computer graphics, as introduced by De�-
nition 3.1: �e faces of the mesh correspond to the image of the unit squares, the edges correspond to the
image of the edges of the unit squares, and the vertices correspond to the image of the four corner points
of the unit square. In Chapter 2 and Chapter 3, we already saw that meshes with four faces meeting at
every vertex allow us to use them as control polygons of B-spline surfaces that satisfy certain smoothness
conditions. �is motivates the next de�nition.

Definition 4.3 (Regular mesh).We call an interior vertex of a quadrangular mesh Γ regular if four
faces join at the vertex. Otherwise, we call the vertex irregular. If all interior vertices of a mesh are
regular, we call the mesh Γ regular. Following Chapter 3, we will also use the terms ordinary vertex and
extraordinary vertex.

�e control net of any B-spline surface is a typical example of a regular mesh. In Chapter 3, we have
already seen that irregular meshes inevitably appear when more complex objects need to be modelled.
Peters and Reif [PR08] motivate the de�nition of regularity by de�ning generalized spline functions that
feature singularities at irregular vertices.
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Figure 4.2: Subdividing the parameter space

4.1.2 Prolongations

In our current setting, the resulting mesh is regular. However, it is impossible to add more patches to
the mesh without breaking symmetry or regularity. Hence, in order to add more patches, the parameter
space Ω needs to be re�ned. Re�nement means that a surface Σ0(Ω) is represented as a surface Σ̃(Ω̃)
that uses a set of �ner patches. We can achieve this by splitting the unit square into four smaller squares
and normalizing them. An example of this process is depicted in Figure 4.2. Reif [Rei98] showed that
subdividing the spline domain is an isomorphism, i.e. the original spline domain and the re�ned spline
domain are isomorphic. Furthermore, this isomorphism can be shown to induce an embedding of the
original spline surface in the re�ned spline surface.

Subdivision of Ω also yields a newmesh Γ̃, generated by some representation Φ̃. �e newmesh is �ner
than the oldmesh and can be prolonged, i.e. there is a new layer pr(Γ) of patches such that the subdivided
mesh S(Γ) := Γ̃ ∪ pr(Γ) remains regular. We will soon give a more rigorous de�nition of prolongations.

Due to the subdivision process, the scale of S(Γ) is halved and further prolongations will extend the
regular parts of themesh, whereas the irregular parts of themesh shrink.�us, without loss of generality,
every mesh can be assumed to contain only one irregular vertex in a su�ciently large neighbourhood.
Furthermore, since Γ and S(Γ) are topologically equivalent, S(Γ) =: S(Φ)(Ω)may be viewed as a new
representation of the parameter space. See Figure 4.3 for an example.

Since S(Γ) remains regular, we can �nd a parametrically smooth spline surface Σ1 := S(Σ0) that is
parametrized over S(Γ) such that the restriction of Σ1 to the subdivided mesh Γ̃ coincides with the orig-
inal surface Σ0. �is yields a new part of the surface, namely

pr(Σ0) := cl (Σ1 ∖ Σ0) ,

(a) Γ ⊂ Γ̃ (b) S(Γ) = Γ̃ ∪ pr(Γ)

Figure 4.3: �e le� �gure (a) shows the old mesh (black lines) as a subset of the new mesh (grey lines). �e right
�gure (b) shows the prolonged mesh that is the union of the subdivided mesh and a prolongation (shown in grey) of
the old mesh.
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which we call the prolongation of Σ0. �e prolongation of Σ0 is not uniquely de�ned because we only
require it to join smoothly with Σ0 and depend on the innermost layer of patches of Σ0, i.e.

pr(S(Σ0)) = pr(pr(Σ0)) = pr2(Σ0).

We can therefore choose any subdivision algorithm in order to generate the prolongations. As a conve-
nience, we will also write

xm := pr(Σm) = cl (Σm+1 ∖ Σm) = prm(Σ0)

for the prolongation. If the subdivision algorithm is reasonable, each iteration will createmore layers that
�ll the n-sided hole completely when taking the limit—we will state this in more precise terms shortly.

To sumupour results so far: Subdividing the parameter space creates an ascending sequence of smooth
surfaces, i.e.

Σ0 ⊂ Σ1 ⊂ . . . ,

which are supposed to converge to the limit surface

Σ = ⋃
m∈N

Σm ,

which we can also represent as
Σ = Σ0 ∪ ⋃

m∈N
xm

by a result of Reif [Rei95]. In the subsequent analysis of subdivision schemes, we will examine the prop-
erties of the limit surface Σ.

4.1.3 Convergence and continuity

Before elaborating on the precise parametrization of the subdivision process and the prolongations, we
require some de�nitions about convergence and continuity.

Definition 4.4 (Convergence of subdivision procedures). Let S be a subdivision procedure in the
general sense, as outlined above. We say that S is convergent if there is a unique limit point p such that

lim
m→∞

pm = p

for any sequence of points (pm)m∈N with pm ∈ xm = prm(Σ0). In other words, S is convergent if all
prolongations converge to a single, unique point.

Definition 4.5 (Closure of the surface).�e closure of the limit surface Σ is the surface

Σ := Σ ∪ p.

For convergent algorithms, the closure is a surface of genus 0.
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Figure 4.4: Following Peters and Reif [PR08], p. 25, this surface is parametrized by Σ(u, v) = (u2
− v2 , uv , u3).

Calculating the limit of the normalized cross product of the partial derivatives yields a limit point of (0, 0, 1) at the
origin. �us, the surface is tangent plane continuous. Yet, the surface is not regular at the origin because of the two
coinciding sheets.

Definition 4.6 (Tangent plane continuity).�e closure Σ is tangent plane continuous in p if S
converges and if there is a unique limit point n(p) for any sequence of normal vectors, i.e.

lim
m→∞

n(pm) = n(p),

for any sequence of points (pm)m∈N with pm ∈ xm = prm(Σ0).

It is important to note that n(p) is simply the limit of the normal vectors and not the normal vector of
Σ at p, which may not even exist.

Definition 4.7 (Regular surface). A tangent plane continuous surface Σ is called regular at p if there
is a regular smooth parametrization of Σ in a neighbourhood around p, which means that

Σ = Σ(u, v)

for parameters u, v such that Σ is 1-times continuously di�erentiable and the partial derivatives

∂Σ(u, v)
∂u

and
∂Σ(u, v)

∂v

are linearly independent.

From the point of view of di�erential topology, regular surfaces are di�erentiable manifolds. Conse-
quently, we will also employ this termwhenever the importance of the topology of the surface is stressed.
In particular, we only require (regular) C1-manifolds, i.e. manifolds whose transition maps are 1-times
continuously di�erentiable.

�e notion of tangent plane continuity is distinctly weaker than the notion of regularity: A surfacemay
be tangent plane continuous and still contain self-intersections, which do not permit a regular smooth
parametrization. See Figure 4.4 for an example.
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4.1.4 Parametrizing the prolongations

Wenow return to the prolongations de�ned above. In bothReif ’s habilitation thesis [Rei98] and a paper of
Peters and Reif [PR98], it was observed that the prolongations xm can be de�nedmore conveniently than
by using the parameter space Ω. �e key observation is that a prolongation consists of a ring of patches
around the n-sided hole. A parameter space that re�ects this fact is better suited as a parametrization.
�is leads us to the following de�nition:

Definition 4.8 (Parameter space for prolongations). Let ω0 := [0, 2]2 ∖ [0, 1)2 as depicted in
Figure 4.5. �e parameter space Ω0 for prolongations is de�ned as

Ω0 := ω0 ×Zn ,

where Zn is the ring of congruence classes modulo n.

Definition 4.9 (Representation of Ω0).We can de�ne representations for Ω0 in complete analogy
with De�nition 4.2 and write Γ0 := Φ (Ω0) for the corresponding mesh.

For the analysis of subdivision algorithms, we assume that it is possible to parametrize the prolonga-
tions xm over Ω0 by using K control points Bk

m ∈ R3 and K piecewise polynomial functions Nk such that

xm ∶ Ω0 ∋ (u, v , j)↦ x j
m(u, v) =

K−1
∑
k=0

Nk(u, v , j)Bk
m . (4.1)

�e functions Nk are assumed to lie in C1(Ω0), which is the space of parametrically smooth functions
over Ω0. Furthermore, they are required to be linearly independent and form a partition of unity, i.e.
∑K−1

k=0 N
k(u, v , j) ≡ 1. We call Nk the basis functions and Bk

m the control points. As an abbreviation, we
use vectors and rewrite Equation 4.1 as

x j
m(u, v) = N(u, v , j)Bm , (4.2)

where N(u, v , j) is a row vector collecting the basis functions and Bm is a column vector of points in
R3, which we may think of as a K × 3 matrix of entries from R. See Figure 4.6 for an illustration of the
previous de�nitions and equations.

It should be noted that this type of parametrization does not need to exist for every subdivision algo-
rithm, but it does exist in the case of algorithms generalizing B-spline subdivision, such as the schemes
analysed in this thesis: We have already seen in Chapter 2 that the B-spline basis functions for curves
and surfaces are linearly independent and form a partition of unity. In addition, we saw in Chapter 3
that both subdivision algorithms create B-spline surface patches for regular parts of the mesh. Conse-
quently, they can be expressed in the form of Equation 4.2. Further details may be obtained from Peters
and Reif [PR08].

With small modi�cations, Equation 4.2 also holds for subdivision schemes on purely triangular me-
shes. Umlauf [Uml00], for example, applied the methods of this chapter to the Loop subdivision algo-
rithm, which is a generalization of box spline subdivision.
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Figure 4.5: Parameter space Ω0 of the prolongations. �e dotted lines are added for visualization purposes only.
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Figure 4.6: Multiple surface layers for a mesh with a single hole of valency n > 4. �e indices are de�ned modulo n.
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4.1.5 Subdivision algorithms

Having de�ned the prolongations xm in terms of control points and basis functions, we are now able to
state the notion of a subdivision algorithm in precise terms.

Definition 4.10 (Subdivision algorithm). A subdivision algorithm is a linear and stationary map in
the space of control points, i.e.

Bm = ABm−1 = A2Bm−2 = ⋅ ⋅ ⋅ = Am−1B0,

where A is the K ×K subdivision matrix. Stationarymeans that A does not depend onm, the subdivision
level. �is assumption is reasonable and does hold for the most common subdivision schemes. Further-
more, all rows of Amust sum to unity. �is implies that AB0 is an a�ne combination of control points
and consequently, the scheme is a�ne invariant.

In the subsequent analysis, we will �nd more requirements for subdivision matrices such that the re-
sulting surfaces satisfy certain smoothness conditions—the next section will expand on this. In addition,
it needs to be stressed that the subdivision matrix is only applied to the control points of the prolonga-
tions. We do not require A to be applicable to all control points of the mesh. Hence, the subdivision
matrix A is a �nite quadratic matrix that generates a vector Bm+1 of new control points from a vector Bm

of old control points. Since most subdivision algorithms depend on a small set of control points only, A
is a sparse matrix in most cases.

4.2 Smoothness conditions

�is sectionwill put the de�nitions of the preceding sections to use. Wewill derivenecessary and su�cient
conditions for the smoothness of a subdivision scheme. To this end, we �rst discuss how to determine
whether a subdivision scheme is convergent. Following this, we will introduce the characteristic map and
prove that its properties determine the regularity of the limit surface.

Definition 4.11 (Order of sequences). Let λ ∈ R∖{0}. A sequence x1, x2, . . . , inRn is of order o(λm)
if

lim
m→∞

∥xm∥
∣λ∣m = 0

with respect to some norm ∥⋅∥ ofRn. Since norms of �nite real vector spaces are equivalent, the norm can
be chosen arbitrarily. Furthermore, sequences of functions converge uniformly by this de�nition because
all domains introduced in this chapter are compact.

Lemma 4.1. Let λ0, λ1, . . . ,λK−1 be the eigenvalues of the subdivision matrix A such that

∣λ0∣ ≥ ∣λ1∣ ≥ ⋅ ⋅ ⋅ ≥ ∣λK−1∣

and let ψ0, ψ1, . . . , ψK−1 be corresponding eigenvectors. If r is chosen as the smallest index such that ∣λr ∣ >
∣λr+1∣, then

Amψs = o(λmr )

for m →∞ and all s > r.
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Proof. It is a standard fact of numerical analysis that there is a norm in RK that di�ers from the spectral
radius of the matrix by an arbitrarily small є only (see Stoer and Bulirsch [SB96], �eorem 6.9.2, pp.
407–408). �us, ∥Amψs∥ < ∣λr ∣m + є and it follows that Amψs = o(λmr ). ∎

Theorem 4.1 (Convergence of a subdivision algorithm). Let A be a subdivision algorithm and let
its eigenvalues be sorted by modulus. If 1 = λ0 > ∣λ1∣, then A converges.

Proof. ByDe�nition 4.10, the rows of the subdivisionmatrix A sum to unity.�us, λ0 = 1 is an eigenvalue
of A and ψ0 = (1, 1, . . . , 1, 1)T is a corresponding eigenvector. Let ψ1, ψ2, . . . , ψK−1 be the remaining
eigenvectors of A. Since eigenvectors form a basis, every component B j

0, with j ∈ {0, 1, 2}, of the vector
B0 of control points can be written as

B j
0 =

K−1
∑
i=0

µ j
iψi

with coe�cients µ j
i ∈ R. Combining these coe�cients into a vector of R3, i.e.

pi =
⎛
⎜⎜⎜
⎝

µ0i
µ1i
µ2i

⎞
⎟⎟⎟
⎠
,

allows us to write the sequence of vectors of control points as

B0 =
K−1
∑
i=0

ψi pi , (4.3)

and by Lemma 4.1,
Bm = ψ0p0 + o(1). (4.4)

Using the equations from above, we can simplify Equation 4.1 and Equation 4.2, thereby obtaining:

x j
0(u, v) =

k
∑
i=1

N(u, v , j)ψi pi

x j
m(u, v) = N(u, v , j)ψ0´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

p0 + o(1) = p0 + o(1)

�is works because the functions N(u, v , j) are assumed to form a partition of unity. Since the order
function converges uniformly in (u, v), we get

lim
m→∞

x j
m(u, v) = p0.

�us, p := p0 is the limit point and the algorithm converges. ∎

�e key observation of Reif [Rei95] is that all smoothness properties of Σ can be derived from the
leading eigenvalues of the subdivision matrix A and a map Ψ, which we will describe below. �e map Ψ
depends on the eigenvectors that correspond to the leading eigenvalues and the basis functions for the
subdivision algorithm, but not on the control points. Consequently, Ψ is called characteristic map of the
subdivision scheme.
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Definition 4.12 (Characteristic map). Let A be a subdivision matrix with eigenvalues

λ0 = 1 > ∣λ1∣ = ∣λ2∣ > ∣λ3∣

and let ψ1, ψ2 be the eigenvectors corresponding to λ1 = λ2. �e characteristic map Ψ ∶ Ω0 → R2 is
de�ned by

Ψ ∶ (u, v , j)↦ N(u, v , j)V := N(u, v , j) [ψ1,ψ2] ,

where V is a K × 2 matrix with vectors ψ1 and ψ2 as its columns. Ψ is called regular if

∆(u, v , j) := det ∂Ψ(u, v , j)
∂(u, v) ≠ 0

for all (u, v , j) ∈ Ω0. In other words, Ψ is regular if its Jacobian matrix is regular.
We shall also require a complex form of the characteristic map. It will be used later on in this chapter

when we derive smoothness criteria. �e complex form of the characteristic map is given by

Ψ∗ ∶ Ω0 ∋ (u, v , j)↦ N(u, v , j)ψ∗ ∈ C,

where ψ∗ := ψ1 + iψ2. Since the properties of the characteristic map are not changed by this complexi�-
cation (R2 and C may be viewed as isomorphic vector spaces), we will switch between the real variant of
the characteristic map and its complex variant without further notice.

Following the notation for the prolongations around an n-sided hole, we will index di�erent segments
of the characteristic map by superscripts: Ψ j signi�es the jth segment of Ψ and Ψ j

∗ denotes the complex-
i�cation of said segment.

For visualization purposes, Ψ is best considered a 2-dimensional B-spline function with control points
from R2 that are determined by the rows of V . �e characteristic map may not seem well-de�ned at a
�rst glance because there is still some choice in the eigenvectors ψ1 and ψ2 that are used in its de�nition.
�e following lemma, however, proves that a particular choice of the eigenvectors does not change any
important properties of the characteristic map.

Lemma 4.2. Injectivity and regularity of the characteristic map do not depend on a particular choice of ψ1

and ψ2.

Proof. Let Ṽ := [ψ̃1, ψ̃2] be another feasible matrix for de�ning the characteristic map. Since the eigen-
vectors ψ̃1 and ψ̃2 span the same space as ψ1 and ψ2, the columns of Ṽ span the same linear space as the
columns of V . �us, a change of basis can be performed and Ṽ can be written as

Ṽ = T−1VT

for some regular matrix T . Using this equation, we obtain:

Ψ̃(u, v , j) := N(u, v , j)Ṽ = T−1Ψ(u, v , j)T (4.5)

∆̃(u, v , j) := detT−1∆(u, v , j)detT = ∆(u, v , j) (4.6)
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Since T is regular, the properties of the composite functions remain unchanged. In particular, injectivity
and regularity are preserved. ∎

Lemma 4.3. If the characteristic map Ψ is regular, then

inf
∆∈Ω0
∣∆∣ > 0.

Proof. �e determinant function is continuous, so ∆ and ∣∆∣ are also continuous. Since Ω0 is compact,
∣∆∣ attains its minimum in Ω0. �is minimum is greater than zero by assumption. ∎

Using the characteristic map, we can obtain our �rst result concerning the smoothness of Σ: We will
use the next theorem as the starting point towards better smoothness criteria.

Theorem 4.2. Let λ1 = λ2 be a real eigenvalue with algebraic and geometric multiplicity 2 such that λ0 =
1 > ∣λ1∣ = ∣λ2∣ > ∣λ3∣. If the characteristic map is regular, then Σ is tangent plane continuous for almost
every initial vector B0 of control points.

Proof. Tangent plane continuity depends on the normals of the surface. �us, we try to �nd a closed
expression for the normals and show that it is well-de�ned. For this purpose, we start with the sequence
Bm of control points as de�ned by Equation 4.2, derive expressions for the surface, and, as a last step,
calculate the limit of the normal vectors of the surface.

Let λ := λ1 = λ2. �en the sequence of re�ned control points can be expanded as

Bm = ψ0p0 + λm (ψ1p1 + ψ2p2) + o(λm),

where we have used that λm0 = 1 by assumption. �e coe�cients p1 and p2 are de�ned as in the proof of
�eorem 4.1. Using these control points for the parametrization of the prolongations x j

m(u, v), we get

x j
m(u, v) = N(u, v , j)ψ0´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

p0 + λmN(u, v , j)(ψ1p1 + ψ2p2) + o(λm). (4.7)

�e partial derivatives are given by:

x j
m,u(u, v) = λmNu(u, v , j)(ψ1p1 + ψ2p2) + o(λm) (4.8)

x j
m,v(u, v) = λmNv(u, v , j)(ψ1p1 + ψ2p2) + o(λm) (4.9)

In order to calculate the normal at (u, v), we need to take the cross product:

x im,u(u, v) × x im,v(u, v) = λ2m(Nuψ1p1 × Nvψ1p1 + Nuψ2p2 × Nvψ1p1+

Nuψ1p1 × Nvψ2p2 + Nuψ2p2 × Nvψ2p2 + o(1))

�e last term contains all terms of higher order, which we can ignore. By using the anticommutativity of
the cross product, we arrive at

x im,u(u, v) × x im,v(u, v) = λ2m2 ((Nuψ1 ⋅ Nvψ2 − Nvψ2 ⋅ Nuψ1) (p1 × p2) + o(1))
= λ2m2 (∆ (u, v , j) (p1 × p2) + o(1)) .

(4.10)
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By de�nition, the normal vectors of the surface are given by

nm(u, v , j) = x j
m,u × x

j
m,v

∥x j
m,u × x

j
m,v∥

.

�is yields

nm(u, v , j) = p1 × p2
∥p1 × p2∥ +

o(1)
∣∆(u, v , j)∣ ∥p1 × p2∥ ,

where the order function in the denominator has been ignored because its norm converges uniformly.
Since ∆(u, v , j) ≥ inf∆∈Ω0 ∣∆∣ > 0 by Lemma 4.3 because the characteristic map is assumed to be

regular, we obtain for the limit of normal vectors:

lim
m→∞

n j
m(u, v) = p1 × p2

∥p1 × p2∥ =
: n(p) (4.11)

�e norm of the cross product of p1 and p2 is nonzero for almost every set of control points (see the fol-
lowing discussion). Hence, the surface is tangent plane continuous for almost every vector B0 of control
points. ∎

In the previous lemma, the term “almost every” denotes a set of Lebesgue measure zero. If the cross-
product is zero for p1 and p2, we know that the vectors are linearly dependent, i.e.

p2 = σ p1

for some scalar σ ∈ R. If we �x p1, the set of all multiples of p1 forms a linear subspace, which has
Lebesgue measure zero. �us, ignoring these kinds of input data is justi�ed.

4.2.1 A su�cient condition for regularity

At this point, we are ready to derive the main result of Reif ’s paper [Rei95]. It gives us conditions under
which a subdivision scheme is guaranteed to produce smooth surfaces.

We will start with several auxiliary results that are required for the proof. First of all, we de�ne a
partial order for Jordan curves. �is will be used for setting up a sequence of boundary curves of the
characteristic map. Next, we show how to transform a parametrically smooth function by using the
characteristic map. It will turn out that the transformed function lies in C1(Γ0), which is the space of
continuously di�erentiable functions over the set Γ0. �is fact enables us to use tools from real analysis.
Last, we show that the set of all regular injective functions is open in C1(Γ0). �is will be useful for
approximating a certain map in the proof of�eorem 4.3.

Definition 4.13 (A relation for Jordan curves). Let c1 and c2 be Jordan curves inR2. By the Jordan
curve theorem, the interior I of the curves is well-de�ned—see Fulton [Ful95],�eorem 5.10, pp. 68–69.
We de�ne a relation between c1 and c2 by writing c1 < c2 if and only if c1 ⊆ I(c2).
Lemma 4.4.�e previous de�nition describes a partial order for Jordan curves.

Proof. A partial order is re�exive, antisymmetric, and transitive. Re�exivity holds since the curve itself
is a subset of its interior (more precisely, it is the boundary of the interior by the Jordan curve theorem).
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For antisymmetry, we assume thatwe have c1 < c2 and c2 < c1 for some curves c1 and c2. Since c1 ⊆ I(c2)
and c1 is the boundary of its interior (by the Jordan curve theorem), we have I(c1) ⊆ I(c2). Likewise, we
have I(c2) ⊆ I(c1). Putting everything together, we arrive at c2 ⊆ I(c1) ⊆ I(c2) ⊆ I(c1), which implies
I(c1) = I(c2). Since c1 and c2 do not have any self-intersections, this can only happen if c1 = c2.

In order to prove transitivity, let curves c1, c2, c3 be given such that c1 < c2 and c2 < c3. Now c2 ⊆ I(c3)
by de�nition, which implies I(c2) ⊆ I(c3) as above. Since c1 ⊆ I(c2) ⊆ I(c3), transitivity follows. �us,
De�nition 4.13 de�nes a partial order. ∎

Lemma 4.5. Let Ψ be regular and injective. If f is a parametrically smooth function over Ω0, then f̃ :=
f ○Ψ−1 lies in C1(Γ0), the space of continuously di�erentiable functions over the compact set Γ0.

Proof. Parametrical smoothness requires the cross boundary derivatives of surface segments sharing a
common boundary to be equal up to sign; see for example Farin [Far96], Section 15.6, pp. 241–242, for
more details.

Without loss of generality, we assume that the boundary curves ([1, 2] , 0, j) and ([1, 2] , 0, k) of some
patches j and k have been identi�ed by the neighbourhood relation (other boundary curves can be treated
analogously). Let f be a parametrically smooth function over Ω0. Since the neighbourhood relation
identi�es adjacent patches, we have

f (u, 0, j) = f (u, 0, k)

D f (u, 0, j) = D f (u, 0, k)⎛⎝
1 0
0 −1

⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=:M

, (4.12)

where D f is the Jacobian matrix of f . �is holds for the characteristic map Ψ, as well:

c(u) := Ψ(u, 0, j) = Ψ(u, 0, k)
DΨ(u, 0, j) = DΨ(u, 0, k)M (4.13)

Let f̃ be the composition of the inverse of the characteristic map and f , i.e. f̃ := f ○Ψ−1. �e existence of
D f̃ is plain because f̃ is the composition of di�erentiable functions. Consequently, we only need to show
that D f̃ is a continuous function over Γ0. In the interior of the patches, the inverse function theorem
implies that Ψ is a di�eomorphism. �erefore, the chain rule can be applied and yields

D f̃ (x , y) = D f (Ψ−1(x , y)) (DΨ (Ψ−1(x , y)))−1 .

If we now let (x , y) approach the boundary curve c(u) from patch j, the limit is given by

D f̃ (c(u)) = D f (u, 0, j) (DΨ(u, 0, j))−1 . (4.14)

If (x , y) approaches c(u) from patch k, however, the limit is given by

D f̃ (c(u)) = D f (u, 0, k) (DΨ(u, 0, k))−1 . (4.15)
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Starting with Equation 4.14, and using Equation 4.12 and Equation 4.13, which de�ne the relationship
between derivatives of adjacent surface segments, we obtain

D f (u, 0, j) (DΨ(u, 0, j))−1 = D f (u, 0, k)M (M−1 (DΨ (u, 0, k))−1)
= D f (u, 0, k) (DΨ (u, 0, k))−1 ,

where we used that taking the inverse of matrix expressions changes the order of their arguments. Since
the limits coincide, D f̃ is well-de�ned and continuous on Γ0 as a consequence of the inverse function
theorem. ∎

�e next lemma is a rather technical result. Wewill use it to show that a uniformly convergent sequence
of functions with an injective limit function will consist of injective functions for all but �nitely many
elements of the sequence.

Lemma 4.6.�e set of all regular injective functions is open in C1(Γ0).
Proof. We continuously embed C1(Γ0) in C0,1(Γ0), which is the space of Lipschitz continuous functions.
By de�nition of a continuous embedding, there is a constant M ∈ R such that

sup
∥g(x) − g(x̃)∥2
∥x − x̃∥2

=: ∥g∥C0,1(Γ0) ≤ M ∥g∥C1(Γ0)

for all functions g ∈ C1(Γ0). A regular and injective function f ∈ C1(Γ0) can be inverted and its inverse
will be continuously di�erentiable by the inverse function theorem. Hence, we have

f −1 ∈ C1( f (Γ0)) ⊂ C0,1( f (Γ0)).

By de�nition of Lipschitz continuity, the norm of f −1 must be �nite, i.e.

∥ f −1∥C0,1( f (Γ0)) := sup
∥ f −1(y) − f −1( ỹ)∥2

∥y − ỹ∥2
=: K <∞.

As a consequence, by setting x = f −1(y), where y = f (x), we obtain

inf
∥ f (x) − f (x̃)∥2
∥x − x̃∥2

=
1
K
. (4.16)

If we now perturb the function f by adding another function g ∈ C1(Γ0), i.e. f̃ := f + g, we have

inf
∥ f̃ (x) − f̃ (x̃)∥2
∥x − x̃∥2

≥ inf
∥ f (x) − f (x̃)∥2
∥x − x̃∥2

+ inf
∥g(x) − g(x̃)∥2
∥x − x̃∥2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0

≥ inf
∥ f (x) − f (x̃)∥2
∥x − x̃∥2

− sup
∥g(x) − g(x̃)∥2
∥x − x̃∥2

≥
1
K
− ∥g∥C0,1(Γ0)

≥
1
K
−M ∥g∥C1(Γ0) .
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Using Equation 4.16, we know that the last expression needs to be greater than zero in order for f̃ to be
an injective function. �is is certainly satis�ed if

∥g∥C1(Γ0) = ∥ f̃ − f ∥C1(Γ0) <
1

MK
.

As a result, f̃ remains injective for a function g that is su�ciently close to f .
To conclude, we prove regularity by straightforward continuity arguments: Since the determinant is

a continuous function, the set of regular functions is open in C1(Γ0). �e intersection of two open sets
remains open, so a suitable function g can always be found such that f̃ is a regular injective function. ∎

�e next theorem is the main result of this section. It constitutes the �rst precise prediction of the be-
haviour of subdivision algorithms. Following Reif ’s approach [Rei95], we choose the characteristic map
Ψ as a representation of the parameter space Ω0 and apply the transformation described by Lemma 4.5.
Consequently, the characteristic map will be transformed to the identity function on Γ0 and we write

Ψ̃ (ξ, η) = (ξ, η)

in order to clarify this. Since Γ0 ⊂ R2, the topology on Γ0 is well-de�ned and we can use all the tools from
real analysis.

Theorem 4.3. Let λ1 = λ2 be a real eigenvalue with algebraic and geometric multiplicity 2 such that 1 >
∣λ1∣ = ∣λ2∣ > ∣λ3∣. If the characteristic map is regular and injective, Σ is regular at p for almost every initial
vector B0 of control points.

Proof. We �rst transform the problem to a more canonical form. Namely, by using an a�ne transforma-
tion we can always achieve that

p0 = 0, p1 = e1, p2 = e2,

where 0 is the origin of the coordinate system and e1, e2, e3 are the unit vectors of R3. Let λ := λ1 = λ2.
As in the proof of�eorem 4.2, we use the parametrization of the prolongation and arrive at

x j
m(u, v) =

⎛
⎜⎜⎜
⎝

x(u, v , j,m)
y(u, v , j,m)
z(u, v , j,m)

⎞
⎟⎟⎟
⎠
=

⎛
⎜⎜⎜
⎝

λmN(u, v , j)ψ1 + o(λm)
λmN(u, v , j)ψ2 + o(λm)

o(λm)

⎞
⎟⎟⎟
⎠
,

where x(u, v , j,m), y(u, v , j,m), and z(u, v , j,m) refer to the coordinate functions of the prolongation
x j
m(u, v). Applying the transformation via Ψ−1 yields

x̃ j
m(ξ, η) =

⎛
⎜⎜⎜
⎝

x(ξ, η,m)
y(ξ, η,m)
z(ξ, η,m)

⎞
⎟⎟⎟
⎠
=

⎛
⎜⎜⎜
⎝

λmξ + o(λm)
λmη + o(λm)

o(λm)

⎞
⎟⎟⎟
⎠
.

In a small neighbourhood around the origin, the surface is located in the xy-plane because of the
a�ne transformation. By Equation 4.11 from �eorem 4.2, the limit of the normal vectors is given by
the unit vector e3, i.e. n(p) = e3. �us, we try to �nd a smooth parametrization of the surface Σ in a
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neighbourhood around the origin. �is is possible if the projection function

πM ∶ Γ0 ×N ∋ (ξ, η,m)↦ (x(ξ, η,m), y(ξ, η,m)) ∈ R2, (4.17)

with m ≥ M, is injective. If this is the case, πM can be inverted locally, which yields

π−1M ∶ R
2
∋ (x , y)↦ (ξ, η,m) ∈ Γ0. (4.18)

A local parametrization is then given by setting

z = h(x , y) := z(ξ, η,m) = z(π−1M(x , y)). (4.19)

For proving injectivity for πM , we return to the characteristic map: �e basis functions N(u, v , j)
and their partial derivatives are continuous functions over the compact set Γ0. �is implies that the basis
functions attain their minimum andmaximum, making them bounded functions. As a consequence, the
order functions converge with respect to the norm on C1(Γ0). �us, we have

lim
m→∞

∥λ−mπM(⋅,m) − Ψ̃∥C1(Γ0) = 0. (4.20)

Put di�erently, πM converges to Ψ̃, which is regular and injective by assumption because Ψ is assumed
to be regular and injective. Since the set of all regular injective functions is open by Lemma 4.6, πM is
injective for a �xed m ≥ M.

In order to conclude the proof, we still need to show that the images of πM(⋅,m) are essentially disjoint,
i.e. that the intersection of images of maps m and m + 1 is equal to the common boundary curve—
otherwise, the local parametrizations would coincide. Since Γ0 is the image of a representation of the
prolongations, only two closed disjoint boundary curves exist as a consequence of De�nition 4.2.

Let α be the outer curve and β be the inner curve. �e projection function πM(⋅,m) is regular, so the
boundary of πM consists solely of the disjoint curves πM(α,m) and πM(β,m) by the inverse function
theorem. �erefore, all function values of πM(⋅,m) lie in the region between the two curves. Further-
more, πM(Γ0,m) is a compact and connected set. Hence, either πM(α,m) < πM(β,m) or πM(β,m) <
πM(α,m). By de�nition, β < α, and we have

lim
m→∞

∥λ−mπM(α,m) − α̃∥C1(Γ0) = 0

lim
m→∞

∥λ−mπM(β,m) − β̃∥C1(Γ0) = 0
(4.21)

because λ−mπM(⋅,m) converges against Ψ̃, as we have seen above. �us, for m ≥ M su�ciently large,
πM(β,m) < πM(α,m). Using Equation 4.21, we can de�ne a sequence of boundary curves, namely,

πM(α,m), πM(β,m) = πM(α,m + 1), πM(β,m + 1) = . . .

�is sequence is strictly decreasing and converges to the origin because the subdivision algorithm is
assumed to converge. Each of the regions de�ned by two curves corresponds to the image of πM for
some M. �is implies that πM is injective. �e image ΠM of πM is the interior of the outermost curve
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πM(α,M) without the origin, i.e.

ΠM = I(πM(α,M)) ∖ {(0, 0)},

so ΠM ∪ {(0, 0)} is a neighbourhood of the origin. �us, we can parametrize Σ by setting

z = h(x , y) :=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

z(π−1M(x , y)) for (x , y) ∈ ΠM

0 for (x , y) = (0, 0)
.

�e function h is continuously di�erentiable for (x , y) ≠ (0, 0) by the inverse function theorem be-
cause Ψ is assumed to be regular and Σ is assumed to be a smooth surface. Hence, the local parametriza-
tion of Σ around the origin is given by

R3
∋ (x , y, z)↦

⎛
⎜⎜⎜
⎝

x
y

h(x , y)

⎞
⎟⎟⎟
⎠
. (4.22)

Using Equation 4.22 and �eorem 4.2, we can calculate the normal vector of Σ as (x , y) approaches
the origin:

lim
(x ,y)→(0,0)

n(x , y) = lim
(x ,y)→(0,0)

⎛
⎜⎜⎜
⎝

1
0

hx(x , y)

⎞
⎟⎟⎟
⎠
×

⎛
⎜⎜⎜
⎝

0
1

hy(x , y)

⎞
⎟⎟⎟
⎠

= lim
(x ,y)→(0,0)

1√
1 + ∥∇h(x , y)∥2

⎛
⎜⎜⎜
⎝

−hx(x , y)
−hy(x , y)

1

⎞
⎟⎟⎟
⎠

= e3 (by Equation 4.11)

Hence, hx(x , y) and hy(x , y) tend to zero. Furthermore, the limit of the gradient in the equation above
exists and is evaluated as

lim
(x ,y)→(0,0)

∇h(x , y) = (0, 0).

Consequently, h(x , y) is continuously di�erentiable for all (x , y) ∈ ΠM ∪ {(0, 0)}, and we have found a
smooth parametrization of the limit surface for almost every initial vector of control points. ∎

Having a su�cient smoothness condition at hand, we assume that the eigenvalues of the subdivision
matrix satisfy the conditions of�eorem 4.3 from this point on. �is leads to the following de�nition:

Definition 4.14 (Subdominant eigenvalue). Let λ0, λ1, . . . be the eigenvalues of A, ordered by mod-
ulus. If ∣λ0∣ > ∣λ1∣ = ∣λ2∣ > ∣λ3∣, we set λ := λ1 = λ2 and call λ the subdominant eigenvalue of A. From this
point on, we shall employ this notation for all remaining proofs.
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Figure 4.7: Non-injective, irregular surface that results fromusing theDoo-Sabin algorithmwith deliberately disturbed
weights. �e initial mesh is regular with a single extraordinary 6-sided face. Repeated application of the subdivision
algorithm yields a surface that is wound up around the origin. �e le� image depicts the front side of the surface (lit
from above) around the extraordinary face; the large face in the middle of the surface is not rendered properly due to
self-intersections. �e right image depicts the back side of the surface. Multiple sheets are approximating the central
face while intersecting each other.

4.2.2 A necessary condition for regularity

�eorem 4.3 describes su�cient requirements for obtaining smooth limit surfaces. In this section, we
will see that injectivity of the characteristic map is also a necessary condition for smooth limit surfaces.
Figure 4.7 depicts a non-injective, irregular surface, which is the consequence of violating this condition.

Theorem 4.4. If Ψ(u, v , j) is a point in the interior of Ψ(Ω0) such that the characteristic map is non-
injective at (u, v , j), then the limit surface Σ is not a regular C1-manifold for almost every choice of initial
data B0.

Proof. Since Ψ is not injective at (u, v , j), there is another point (u′, v′, j′) ≠ (u, v , j) such that we have
Ψ(u, v , j) = Ψ(u′, v′, j′). Let Vє be an є-neighbourhood of Ψ(u, v , j) such that Vє ⊆ Ψ(Ω0). �is
neighbourhood certainly exists because Ψ(u, v , j) is assumed to lie in the interior. Since Ψ is a continuous
function, there are neighbourhoods V and V ′ of (u, v , j) and (u′, v′, j′) with

Ψ(V) = Ψ(V ′) = Vє .

Let Ψ̃ be a continuous map that is su�ciently close to Ψ, i.e. ∥Ψ − Ψ̃∥
∞
< є/2, then, as a consequence of

the continuity of Ψ̃,
Ψ̃(V) ∩ Ψ̃ (V ′) ≠ ∅.

�us, Ψ̃ is also not injective. Expressing Bm in terms of eigenvectors yields:

B0 =
L
∑
i=0

ψi pi

⋮

Bm = p0 + λm (ψ1p1 + ψ2p2) + o(λm)
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We have already seen that the coe�cients p1 and p2 are linearly independent for almost every choice
of initial data. �us, we can apply an a�ne transformation such that p0 = 0 and p1 = e1 and p2 = e2.
Since λ ≠ 0, the surface layers can be rescaled in order to obtain simpler equations:

x̃m := λ−mxm

lim
m→∞

x̃m = e1ψ1 + e2ψ2 + o(1) =
⎛
⎝
Ψ
0
⎞
⎠ + o(1)

We now assume that Σ is a regular C1-manifold. �e equation above implies that the tangent space at
the origin is the xy-plane. Since the projection of x̃m on the xy-plane converges to Ψ, it is non-injective
for su�ciently large values of m. �us, the projection of xm to the xy-plane is non-injective near the
origin for almost every m. But the projection of a regular C1-manifold to its tangent space is locally
injective because the partial derivatives are linearly independent (this allows application of the implicit
function theorem). Consequently, Σ is not a regular C1-manifold. ∎

4.3 Discrete Fourier transform and block-circulant matrices

�e following is a digression about the discrete Fourier transform (DFT). Readers already well-versed
with the DFT may skip it without remorse.

�e DFT will prove to be an indispensable tool for the analysis of the subdivision matrix: Instead of
analysing the complete matrix A, the DFT will calculate a matrix Â that is similar to A. Consequently,
eigenvalues of Â will also be eigenvalues of A and we may calculate eigenvectors of A by a simple trans-
formation of the corresponding eigenvectors of Â.

From this point on, if not speci�cally mentioned otherwise, i denotes the imaginary unit of C rather
than an index, i.e.

i :=
√
−1.

In the following paragraphs, proofs were deliberately not included in order not to distract from the
main material. �e reader is referred to Davis [Dav94] for more details on circulant matrices and the
DFT or to Lipson [Lip81] for a general introduction to several Fourier techniques.

Definition 4.15 (Fourier block matrix). Let wn be a primitive root of unity, i.e.

wn := exp(2πin ) = cos(
2π
n
) + i sin(2π

n
) =: cn + isn , (4.23)

and 1 be the identity matrix of su�cient size (depending on the subdivision matrix and n). �en the
Fourier block matrix, which we will use in order to transform the subdivision matrix A, is de�ned as

W := (w− jkn ) j,k∈Zn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 . . . 1

1 w−1n 1 w−2n 1 . . . w1
n1

1 w−2n 1 w−4n 1 . . . w2
n1

⋮ ⋮ ⋮ ⋱ ⋮

1 w1
n1 w2

n1 . . . w−1n 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (4.24)
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�e inverse ofW is given by

W−1 = 1
n
(w jk

n 1) j,k∈Zn =
1
n

ĎW . (4.25)

Hence the jth block column ofW−1 can be expressed by

W−1j =
1
n

⎛
⎜⎜⎜⎜⎜
⎝

1

w j
n1

⋮

w(n−1) jn 1

⎞
⎟⎟⎟⎟⎟
⎠
. (4.26)

Definition 4.16 (Discrete Fourier transform). Let A be a matrix. �e discrete Fourier transform
(DFT) of A is de�ned as

Â :=WAW−1.

We now take a look at a special class of matrices, the block-circulant matrices. �ese matrices have
the helpful property that applying the DFT to them results in a block-diagonal matrix, i.e. a matrix that
consists of block matrices of equal size around the main diagonal. �e characteristic feature of block-
circulant matrices is that they are fully determined by their �rst column.

Definition 4.17 (Block-circulant matrix). Let A0, A1, . . . , An−1 be n × n matrices. A matrix A is
block-circulant if it can be written as

A =

⎛
⎜⎜⎜⎜⎜
⎝

A0 An−1 . . . A1

A1 A0 . . . A2

⋮ ⋮ ⋱ ⋮

An−1 An−2 . . . A0

⎞
⎟⎟⎟⎟⎟
⎠
.

More formally, we will also write A = circ (A0, . . . ,An−1). In some textbooks, this notation is employed
to signify a circulant matrix, i.e. a matrix where the A j have been replaced by vectors.

Wemay construct a block-circulantmatrix by writing down the initial column ofmatrices and shi�ing
each entry one row down.

Theorem 4.5. Let A = circ (A0, . . . ,An−1) be a block-circulant matrix and Â the result of the DFT. �en
Â is decomposed into blocks of matrices around the main diagonal, i.e.

Â = diag(Â0, . . . , Ân−1) =
⎛
⎜⎜⎜
⎝

Â0 0
⋱

0 Ân−1

⎞
⎟⎟⎟
⎠
.

with n × n matrices Â0, Â1, . . . , Ân−1. Put di�erently, a block-circulant matrix is “block-diagonalized” by
applying a DFT.

Proof. See Davis [Dav94],�eorem 3.2.2, pp. 72–73. ∎
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If A is a block-circulant matrix, the blocks on the diagonal of Â are obtained by applying the Fourier
matrixW to the �rst block-column of A, i.e.

⎛
⎜⎜⎜
⎝

Â0

⋮

Ân−1

⎞
⎟⎟⎟
⎠
=W

⎛
⎜⎜⎜
⎝

A0

⋮

An−1

⎞
⎟⎟⎟
⎠
.

Written more compactly, we have

Âk = ∑
j∈Zn

w− jkn A j . (4.27)

Since the matrices A and Â are similar by de�nition, we can restrict the analysis of a subdivision al-
gorithm to the blocks Â j rather than having to examine the whole matrix. We still need to see how to
determine an eigenvector of A from eigenvectors of Â j. To this end, we refer to a calculation by Peters and
Reif from [PR08], Section 5.4, p. 99: Let v̂ be an eigenvector of a block Â j.�e corresponding eigenvector
of A is given by

v =
1
n

⎛
⎜⎜⎜⎜⎜
⎝

w0
nv̂

w j
nv̂
. . .

w(n−1) jn v̂

⎞
⎟⎟⎟⎟⎟
⎠
, (4.28)

which can be abbreviated to v = W−1j v̂ by using the expression for the jth block-column of the inverse
transformation matrix.

Consequences of block-circulant matrices If the subdivision matrix of a subdivision algorithm is
block-circulant, the equation of a subdivision process as introduced by De�nition 4.10 is simpli�ed to

Bk
m+1 =

n−1
∑
j=0

Ak− jB
j
m . (4.29)

�ere is an intuitive approach to this equation: Let several patches of control points be given. We assume
that they are ordered counter-clockwise. �en, starting from a patch j, the patch to the le� (with coe�-
cients j+ 1) will be weighted with the matrix An−1, whereas the patch to the right (with coe�cients j− 1)
will be weighted with the matrix A1. At last, the central patch (with coe�cients j) will be weighted with
the matrix A0. See Figure 4.6 for an illustration. �is point of view will come in handy when analysing
subdivision schemes.

4.4 Symmetric subdivision algorithms

In the following discussions, we shall take advantage of two basic properties of characteristicmaps, which
follow from their de�nition.
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Definition 4.18 (Properties of characteristic maps). Ψ and AΨ = λΨ join smoothly. �us, we
have for t ∈ [0, 1]:

Ψ j(1, t) = λΨ j(2, 2t) (4.30)

Ψ j(t, 1) = λΨ j(2t, 2) (4.31)

Moreover, all adjacent segments of the characteristic map join continuously. Hence, we have for t ∈ [1, 2]:

Ψ j(0, t) = Ψ j+1(t, 0) (4.32)

�e subdivision algorithms analysed in this thesis are reasonable in the sense that the current labelling
of the control points is irrelevant: In order to calculate the re�ned control points, only the neighbourhood
of the point is taken into account and not, for example, the direction of traversal. �is property simpli�es
calculations—consequently, we de�ne symmetric subdivision algorithms for which it holds. Most sub-
division algorithms, such as the Doo-Sabin, the Catmull-Clark, and the Loop scheme, are symmetric
subdivision algorithms.

Definition 4.19 (Symmetric subdivision algorithms). A subdivision algorithm is symmetric if it is
invariant under both shi�s and re�ections of the labelling of the vector of control points Bm. Shi�s and
re�ections are described by matrices S and R that are characterized by:

N(u, v , j + 1)Bm = N(u, v , j)SBm (4.33)

N(v , u,− j)Bm = N(u, v , j)RBm (4.34)

Since a symmetric subdivision algorithm is invariant under both shi�s and re�ections, the subdivision
matrix A needs to commute with R and S:

SA = AS (4.35)

RA = AR (4.36)

�e matrix S can be expressed as

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 . . . 0 1

1 0 . . . 0 0
0 1 . . . 0 0

⋱

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.37)

where 1 is the identity matrix. For the matrix R, the closed form depends on the subdivision scheme.
Fortunately, we only need to assume that a matrix R does exist—its precise description is completely
irrelevant and all proofs will only require the properties outlined above.

�e reason for restricting our analysis to symmetric subdivision schemes is illustrated by the next
proposition: �e matrix of a symmetric subdivision algorithm is block-circulant, which implies that we
can diagonalize it by the DFT. More intuitively, block-circulance means that the algorithm performs the
same calculations regardless of the choice of start vertex.
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Proposition 4.1.�e subdivision matrix of a symmetric subdivision algorithm is block-circulant.

Proof. Since the algorithm is symmetric, matrices A and S commute. �is results in

(AS) j,i = A j,i+1 = A j−1,i = (SA) j,i (4.38)

for (i , j) ∈ Zn, where AS and SA have been decomposed into block matrices (AS) j,i . Using this equality,
we see that

A j := A j,0 = A j+1,1 = A j+2,2 = ⋅ ⋅ ⋅ = A j+i ,i .

�us, A = circ (A0, . . . ,An−1). ∎

By limiting the analysis to symmetric schemes, a necessary condition for the subdominant eigenvalue
emerges. �e next theorem states this in more precise terms. Following Peters and Reif [PR08], we will
call the subdominant eigenvalue the Fourier index in this context.

Theorem 4.6. Let the characteristic map Ψ of a symmetric scheme be regular. Let Â0, . . . , Ân−1 denote
the diagonal blocks of the transformed subdivision matrix Â. If the subdominant eigenvalue λ is not an
eigenvalue of Â1 and Ân−1, then Ψ is non-injective.

Proof. Matrices A and Â are similar by de�nition of the DFT. Furthermore, Â contains only blockmatri-
ces along its diagonal.�us, λ is an eigenvalue ofA if and only if it is an eigenvalue Âk for k ∈ {0, . . . , n−1}.
Since A is real, we have Ân−k = Â∗k , where in this case, Â∗k denotes the complex conjugate of Âk (for
typographical reasons). Consequently, λ is also an eigenvalue of Ân−k . Let ψ̂ be an eigenvector of Âk

corresponding to the eigenvalue λ, then

ψ∗ := [w0
nψ̂,w

k
nψ̂, . . . ,w

k(n−1)
n ψ̂] (4.39)

is a complex eigenvector of A by Equation 4.28.
Since ψ∗ contains roots of unity as coe�cients for ψ̂ and the components of ψ∗ serve as control points

for the characteristic map, all segments Ψ j
∗ of the characteristic map can be represented as multiples of

the �rst segment. More precisely,
Ψ j
∗ = w

jk
n Ψ0
∗
. (4.40)

Let τ∗ be the restriction of Ψ∗ to the outer boundary of Ω0. �en τ∗ consists of segments τ0
∗
, . . . , τn−1

∗
.

If we assume that Ψ∗ is injective, τ∗ parametrizes a Jordan curve in C. Furthermore,

Ψ0
∗
(2, 2) ≠ Ψ0

∗
(1, 1) Eq. 4.30= λΨ0

∗
(2, 2)

because Ψ∗ is assumed to be injective. �erefore, the image of τ∗ does not contain the origin. As a
consequence, we can apply the residue theorem and calculate the winding number of τ∗ with respect to
the origin as

1
2πi

¿

τ∗

dz
z
=

1
2πi ∑j∈Zn

∫τ j
∗

dz
z
=
n lnwk

n
2πi

= k.
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If k ∉ {0, 1, n−1}, the curve has self-intersections (k = n−1 would imply that the surface winds around
the origin once in clockwise direction), thereby contradicting the injectivity of Ψ∗. �e case of k = 0 can
be ignored because by Equation 4.40, all segments would have to be equal. ∎

We have already seen that injectivity is a requirement for smooth surfaces, so we can postulate that,
given all the ambiguity in choosing eigenvectors for the subdominant eigenvalue, one characteristic map
is singled out. We call this map the normalized characteristic map.

Definition 4.20 (Normalized characteristic map).We say that the characteristic map Ψ is nor-
malized if the eigenvector ψ̂ is scaled such that

Ψ0(2, 2) = (d , 0) (4.41)

with d > 0. If Ψ is injective, normalization is always possible because of the relation

Ψ0(2, 2) ≠ Ψ0(1, 1) = λΨ0(2, 2),

which implies that Ψ0(2, 2) ≠ 0. �us, there is ρ ∈ C such that ρΨ0(2, 2) = (d , 0) with d > 0.

�e appeal of normalized characteristic maps is explained by the following lemma. Note that for j = 0,
the lemma implies symmetry about the real axis.

Lemma 4.7. If Ψ∗ is a normalized characteristic map corresponding to a symmetric subdivision scheme,
then

Ψ j
∗(u, v) = Ψ− j∗ (v , u). (4.42)

Proof. �e subdivision scheme is supposed to be symmetric. Using De�nition 4.19, the following equa-
tions can be obtained:

N(u, v , j)S−1RBm = N(u, v , j − 1)RBm = N(v , u, 1 − j)Bm (4.43)

N(u, v , j)RSBm = N(v , u,− j)SBm = N(v , u, 1 − j)Bm (4.44)

Since the basis functions are assumed to be linearly independent, Equation 4.43 and Equation 4.44 imply

RS = S−1R, (4.45)

which will be useful later on.
Letψ∗ be an eigenvector ofA.�en Rψ∗ is also an eigenvector ofAor the zero vector because RA = AR

for symmetric algorithms, so
ARψ∗ = RAψ∗ = Rλψ∗ = λRψ∗. (4.46)

Since ψ∗ := ψ1 + iψ2, there must be coe�cients a, b ∈ C such that

Rψ∗ = aψ∗ + bψ∗. (4.47)
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Furthermore, shi�ing the eigenvector ψ∗ corresponds to a multiplication with wn because wn is a prim-
itive root of unity, so

Sψ∗ = wnψ∗. (4.48)

Using Equations 4.47 and 4.48, we try to determine the coe�cients a, b for Rψ∗:

S−1Rψ∗ = S−1 (aψ∗ + bψ∗) (by Equation 4.47)

= awnψ∗ + bwnψ∗ (by Equation 4.48)

RSψ∗ = Rwnψ∗ (by Equation 4.48)

= awnψ∗ + bwnψ∗ (by Equation 4.47)

By Equation 4.45, the expressions above must be equal, which yields

awnψ∗ + bwnψ∗ = awnψ∗ + bwnψ∗,

from which we conclude that a = 0 because roots of unity are nonzero and wn ≠ wn. As an intermediate
result, we now know that

Rψ∗ = bψ∗. (4.49)

In order to determine b, we take a look at Ψ0
∗
(2, 2). Since the characteristic map is assumed to be

normalized, there is d ∈ R with d > 0 such that d = N(2, 2, 0)ψ∗. By de�nition of symmetric schemes, R
can be applied and we can use the expression for Rψ∗ derived above:

d = N(2, 2, 0)Rψ∗
= bN(2, 2, 0)ψ

∗

= bd (since the basis functions are real)

�us, b = 1 and Rψ∗ = ψ∗. �is allows us to conclude the proof, starting with the de�nition of the jth
segment of the characteristic map:

Ψ j
∗(u, v) = N(u, v , j)ψ∗

Again, R can be applied and Rψ∗ = ψ∗ can be used. �is yields

Ψ j
∗(u, v) = N(u, v ,− j)Rψ∗

= N(v , u,− j)ψ
∗
,

which, by de�nition of Ψ, can be written as

Ψ j
∗(u, v) = Ψ− j∗ (v , u).

∎

Corollary 4.1. For j = 0, the previous lemma states that Ψ0
∗
(u, v) = Ψ 0

∗
(v , u).
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We now have seen that the �rst segment of normalized characteristic maps is symmetric with respect
to the real axis. Consequently, from this point on, we assume that the characteristic map of a subdivision
scheme is normalized.

4.5 Criteria for regularity and injectivity of the characteristic map

�e proofs in the remaining part of this chapter all concern the regularity and injectivity of the charac-
teristic map. We will derive several criteria that are easily veri�ed without having to resort to long and
tedious computations.

�e next lemma is very technical: We de�ne a function µ that assigns each point the number of its
preimages. A�erwards, we proceed to prove several properties of this function—this will help in later
proofs. In particular, if µ = 1 for the image of the characteristic map, injectivity holds.

Lemma 4.8. For regular Ψ, the function µ that assigns each point in Ψ0(Ω0) its number of preimages is
upper semi-continuous everywhere and lower semi-continuous on the interior. µ is de�ned by:

µ ∶ Ψ0(Ω0)→ N

(x , y)↦ #{(u, v) ∈ Ω0 ∣ Ψ0(u, v) = (x , y)}

Proof. Let y be a point in Ψ(Ω0) and xi its preimages, i.e.

Ψ(xi) = y, where i ∈ {1, . . . , µ(y)}.

By the inverse function theorem, there is an open neighbourhoodV of y and open neighbourhoodsUi of
xi such that Ψ(Ui) = V . Assume there is a sequence ( ỹn) that converges against y such that µ( ỹi) > µ(y)
for i ∈ N. We can then consider the corresponding preimages x̃i with Ψ(x̃i) = ỹi . Let U∗ := ⋃Ui be
the union of the open sets Ui as de�ned above. �e preimages x̃i are not elements of U∗ because, by
the inverse function theorem, this would imply µ( ỹi) = µ(y). Since Ψ is continuous, the accumulation
point x̃∗i of the sequence of preimages must be mapped to y, i.e. Ψ(x̃∗i ) = y. But x̃∗i cannot be an element
of U∗ because Ω0 ∖U∗ ∋ x̃i is closed. �is means that we have found another preimage of y. �us, µ(y)
is larger than we assumed—which is a contradiction.

We now show that µ is lower semi-continuous at the interior of the image. Let x be a point in the
interior of Ψ(Ω0). Since the images of the interior and of the boundary do not coincide by the inverse
function theorem, we can choose a preimage which lies in the interior. Furthermore, the neighbourhood
V as introduced above can be chosen very small such that all open sets around the preimages also lie in
the interior of Ψ0(Ω0). Hence, µ(V) ≥ µ(x). ∎

�e function µ as de�ned above will be useful for the next proof. In essence, we can show that, given
a regular characteristic map, it is su�cient to prove injectivity on the boundary only.

Lemma 4.9. Let ∂Ω0 be the boundary of Ω0 and Ψ0
∂ be the restriction of Ψ0 to ∂Ω0. If Ψ0

= [Ψ0
1 , Ψ0

2 ] is
regular, then Ψ0 is injective if and only if Ψ0

∂ is injective. Recalling the de�nition of regularity, this means
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that the Jacobian determinant is nonzero everywhere, i.e.

detDΨ0
= det

⎛
⎝
Ψ0
1,u Ψ0

1,v

Ψ0
2,u Ψ0

2,v

⎞
⎠ ≠ 0.

Proof. We assume that Ψ0 is regular and Ψ0
∂ is injective. By the inverse function theorem, points in the

interior of Ω0, which we denote by Ω̊0, are mapped into the interior of Ψ0(Ω0), i.e.

∂Ψ0(Ω0) ∩Ψ0(Ω̊0) = ∅. (4.50)

Let µ be as de�ned in Lemma 4.8. Since Ψ0
∂ is assumed to be injective, wemay use Equation 4.50 to obtain

µ(∂Ψ0(Ω0)) = 1. Furthermore, since µ is upper semi-continuous by Lemma 4.8, µ(Ψ0(Ω0)) = 1, and
thus, Ψ is injective. ∎

�e next lemma is crucial for showing injectivity for all segments of the characteristic map. Its claim is
that the segment Ψ0

∗
lies in a sector of the complex plane. Since all segments of the characteristic map are

related by rotations, this lemma will be used as a stepping stone towards proving global injectivity under
certain assumptions.

Lemma 4.10. If Ψ0 is regular and both of the partial derivatives Ψ0
1,v(1, t) and Ψ0

2,v(1, t) are positive for
t ∈ [0, 1], then Ψ0 is located in a sector of angle 2π/n in the complex plane, i.e.

Ψ0(u, v) ⊂ Sn := {x ∈ C ∣ −π/n ≤ arg x ≤ π/n}

for all (u, v) ∈ Ω0.

Proof. By Corollary 4.1, Ψ0(u, v) = Ψ0(v , u). Hence, the components of the characteristic map are
related by

Ψ0
1 (u, v) = Ψ0

1 (v , u)
Ψ0
2 (u, v) = −Ψ0

2 (v , u)
(4.51)

and in particular, Ψ0
2 (t, t) = 0 for t ∈ [1, 2].

We de�ne p∗(t) := p1(t)+ ip2(t) : Ψ0
∗
(1, t) for t ∈ [0, 1] in order to decompose the characteristic map.

Since Ψ0
2,v > 0 and p2 describes the second component of Ψ∗, the function p2 must be strictly increasing.

We have the following estimate for its values:

Ψ0
2 (1, 0) = p2(0) < p2(t) < p2(1) = Ψ0

2 (1, 1) = 0 (4.52)

Keeping in mind that multiplying by wn corresponds to a rotation by 2π/n in the complex plane, we
now calculate the argument of Ψ0

∗
(t, 0) for t ∈ [1, 2]:

wnΨ0
∗
(t, 0) Eq. 4.40= Ψ1

∗
(t, 0) Eq. 4.32= Ψ1

∗
(0, t) Cor. 4.1= Ψ0

∗
(t, 0)
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Re

Im

π/n

p2
∗

p5
∗

p1
∗

p4
∗

p3
∗

p6
∗

h(r)

Figure 4.8: A sketch of the curves p1
∗
, . . . , p6

∗
that are used in the proof of Lemma 4.11. �e ray h(r) is de�ned in the

proof of Lemma 4.10. Note that the upper and lower boundary curves have been slightly contorted because, in general,
they do not lie on a straight line.

�is implies that either argΨ0
∗
(t, 0) = −π/n or argΨ0

∗
(t, 0) = π − π/n. �e latter case implies that

p2(0) > 0, which contradicts Equation 4.52. Consequently,

argΨ0
∗
(t, 0) = −π/n (4.53)

argΨ0
∗
(0, t) = π/n, (4.54)

so Ψ0(t, 0) is a part of the ray h(r) := r exp (−iπ/n) with r > 0.
Since the partial derivatives are positive, both p1(t) and p2(t) are strictly increasing (we know this

already for p2). �us, p∗ only intersects h at the origin and it follows that

−π/n = arg p∗(0) < arg p∗(t) < arg p∗(1) (4.55)

for t ∈ (0, 1).
Summing up, we have shown that Ψ0(t, 0) ∈ Sn for t ∈ [1, 2] and Ψ0(1, t) ∈ Sn for t ∈ [0, 1]. Since

Ψ 0
∗
(t, 1) = Ψ0

∗
(1, t) by Corollary 4.1 and complex conjugation corresponds to re�ection at the real axis,

we have Ψ 0
∗
(t, 1) ⊂ Sn. Similarly, by using the scaling properties from Equation 4.30 and Equation 4.31

as well as symmetry about the real axis, we can prove that Ψ0(∂Ω0) ⊂ Sn.
It remains to be shown that Ψ0(Ω0) ⊂ Sn. Since Ψ0 is assumed to be regular, the inverse function

theorem shows that ∂Ψ0(Ω0) ⊆ Ψ0(∂Ω0). However, Ψ0(∂Ω0) ⊂ Sn, as we have already shown. Let us
assume that there is a point in the interior of Ψ0(Ω0) that does not lie in the sector. As a consequence,
all points from the interior of Ψ0(Ω0) would need to lie outside the sector because ∂Ψ0(Ω0) ⊂ Sn. Since
C ∖ S is unbounded, this would contradict the compactness of Ψ0(Ω0). Hence Ψ0(u, v) ⊂ Sn for all
(u, v). ∎

At this point, we have almost enough tools in order to prove global injectivity of the characteristicmap.
In fact, there is a handy criterion for showing that the segment Ψ0 is injective. By using the rotational
symmetry, as outlined above, global injectivity will be proven a�erwards.
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Lemma 4.11. If Ψ0 is regular and Ψ0
1,v(1, t) and Ψ0

2,v(1, t) are positive for t ∈ [0, 1], then Ψ0 is injective.

Proof. By Lemma 4.9, it is su�cient to show that the restriction of Ψ0 to the boundary of Ω0 is injective.
We denote this restriction by Ψ0

∂ . In order to prove injectivity, we de�ne several boundary curves:

p1
∗
:= Ψ0

∗
(1, t), p2

∗
:= Ψ0

∗
(1 + t, 0), p3

∗
:= Ψ0

∗
(2, 2t)

p4
∗
:= Ψ0

∗
(t, 1), p5

∗
:= Ψ0

∗
(0, 1 + t), p6

∗
:= Ψ0

∗
(2t, 2)

for t ∈ [0, 1]. Figure 4.8 depicts a sketch of these curves. Recalling the de�nition of p∗(t) = p1+ ip2 from
the proof of the previous lemma, the following relations hold:

p∗
Def.
= p1

∗

Lem. 4.7
= p4

∗

Eq. 4.30
= λp3

∗

Lem. 4.7
= λp6

∗

p2
∗

Lem. 4.7
= p5

∗

Using Equations 4.53 and 4.54, we see that

arg p2
∗
= −

π
n

and arg p5
∗
=
π
n
,

and consequently, the curves p2
∗
and p5

∗
do not have any intersections. �e curves also do not have any

self-intersections because, as we have seen in the proof of Lemma 4.10, they are regularly parametrized
parts of rays in the complex plane.

In order to state properties of the other curves, we require that arg p∗(t) is monotone. By Equa-
tion 4.52, p2(0) < 0 and p2(1) = 0. Using Equation 4.53, we see that p1(0) ≥ 0 must hold. Due to the
assumptions about the partial derivatives, p1(t) and p2(t) are strictly increasing; hence p1(t) ≥ 0 and
p2(t) ≤ 0. Since p1(t) and p2(t) do not vanish simultaneously,

d
dt
(arg p∗) = d

dt
arctan( p2(t)

p1(t) ) =
p1p′2 − p′1p2
p21 + p22

> 0.

�e monotonicity of arg p∗ has several consequences: Since arg p∗ = arg p1∗ = arg p3∗ by de�nition of
the curves and arg p∗ = − arg p4∗ = − arg p6∗ due to the complex conjugation, the curves p1

∗
, p3
∗
, p4
∗
, p6
∗

cannot have self-intersections. Additionally, the curves p1
∗
and p3

∗
cannot intersect because p1

∗
= λp3

∗

with λ ≠ 1 and their arguments are monotonically increasing. �e same argument also holds for the
curves p4

∗
and p6

∗
. Furthermore, since the argument of p2

∗
remains �xed, the only intersections of p1

∗
and

p3
∗
with p2

∗
are at the beginning and the end of the curve, i.e.

Ψ0
∗
(1, 0) = p1

∗
(0) = p2

∗
(0)

Ψ0
∗
(2, 0) = p3

∗
(0) = p2

∗
(1).

Likewise, the curves p4
∗
and p6

∗
only coincide with p5

∗
at its beginning and its end.

As a last step, we see that due to themonotonicity, the union of all lower boundary curves, p1
∗
∪p2
∗
∪p3
∗
,

only has 2 intersections with the union of all upper boundary curves, p4
∗
∪ p5
∗
∪ p5
∗
, namely,

Ψ0
∗
(1, 1) = p1

∗
(1) = p4

∗
(1) and Ψ0

∗
(2, 2) = p3

∗
(1) = p6

∗
(1).
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In conclusion, we have shown that it is possible to parametrize the boundary of the �rst segment of the
characteristic map by non-intersecting injective curves. �us, Ψ0

∂ is injective. ∎

As a culmination of the e�orts in the previous sections, we obtain a theorem that guarantees injectivity
provided that the partial derivatives are positive. Since this fact can be checked quite easily, the theorem
will become very useful when analysing a subdivision algorithm.

Theorem 4.7. If Ψ0 is regular and both Ψ0
1,v(1, t) and Ψ0

2,v(1, t) are positive for t ∈ [0, 1], then the char-
acteristic map Ψ is regular and injective.

Proof. By Lemma 4.11, the �rst segment Ψ0 of the characteristic map is regular and injective. In Equa-
tion 4.40, we have already seen that the segment Ψ j of the characteristic map can be obtained from Ψ0

by a rotation around the origin with angle 2π j/n. As a consequence of this rotational symmetry, the
segments Ψ j with j ∈ Zn are regular and injective. By Lemma 4.10, the segments Ψ j do not overlap
because

(2 j − 1) π
n
≤ argΨ j

∗ ≤ (2 j + 1) πn
for j ∈ Zn.

Since the common boundaries of adjacent segments are identi�ed by the neighbourhood relation, the
union of all segments Ψ j remains regular and injective. �us, the characteristic map Ψ is regular and
injective. ∎

Using this theorem, we can obtain a corollary that determines regularity and injectivity simultaneously
while having rather weak requirements.

Corollary 4.2. If Ψ0
1,v and Ψ0

2,v are positive for all values in Ω0, then the characteristic map Ψ is regular
and injective.

Proof. We �rst prove that the Jacobian determinant does not vanish: Using Equation 4.51, the Jacobian
matrix can be rewritten as

DΨ0(u, v) = ⎛⎝
Ψ0
1,v(v , u) Ψ0

1,v(u, v)
−Ψ0

2,v(v , u) Ψ0
2,v(u, v)

⎞
⎠ , (4.56)

which has a positive determinant if Ψ0
1,v > 0 and Ψ0

2,v > 0. �us, Ψ0 is regular and the conditions for
applying�eorem 4.7 are met. ∎

4.6 Summary

In this chapter, we derivedmethods for analysing the smoothness properties of linear stationary subdivi-
sion schemes. To this end, we introduced the characteristic map of a subdivision scheme and proved that
the scheme generates regular surfaces as long as the characteristic map is regular and injective. We then
proceeded to show that injectivity is mandatory—otherwise, the limit surface will be irregular. More-
over, we introduced the discrete Fourier transform (DFT) and showed how it simpli�es the analysis of
the subdivision matrix. It turned out that the subdominant eigenvalue of a subdivision algorithm needs
to be an eigenvalue of the transformed matrices Â1 and Ân−1. Peters and Reif [PR08] designate this the
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Fourier index of the eigenvalue. We then ended the chapter by deriving some conditions for checking
regularity and injectivity of the characteristic map. As a result, we saw that in some cases, only the sign
of the partial derivatives needs to be checked.





5 Case studies of subdivision algorithms

In this chapter, the methods that we have previously derived will be put to use: We will analyse the
smoothness properties of the Doo-Sabin and the Catmull-Clark subdivision algorithms. To this end,
we will �rst study the schemes in their originally described form. Following this, we will examine the
consequences of using degenerated weights and calculate permissible ranges for the weights of both algo-
rithms. For the Catmull-Clark scheme, we will derive a graphical representation that describes su�cient
conditions for the weights such that the limit surfaces are smooth.

We will use the problem setting as introduced in Chapter 4: A mesh with a single n-sided hole as its
only boundary. �e mesh around the hole is assumed to consist of quadrilaterals only. We will represent
the hole as either an n-sided face (for the Doo-Sabin scheme) or a vertex with valency n (for the Catmull-
Clark scheme).

Note that in this chapter, we will have to use double indices for the matrices. �e upper indices will
refer to rows and columns of the matrix, whereas the lower indices will distinguish the matrices.

5.1 Preliminary de�nitions

We recall the parametrization of the prolongations, as described by Equation 4.2: For both theDoo-Sabin
and the Catmull-Clark scheme, we have a block vector of control points, namely B := (B0, B1, . . . , Bn−1)T .
Each block Bk is a vector of control points, i.e.

Bk :=

⎛
⎜⎜⎜⎜⎜
⎝

Bk,1

Bk,2

. . .
Bk, j

⎞
⎟⎟⎟⎟⎟
⎠
,

where j is the number of control points required for expressing one patch of the prolongations and k ∈
{0, 1, . . . , n − 1}. When considering subdivision schemes that generalize B-spline surface subdivision of
degree (p, p), for example, usually j = (p + 1)2. �e Catmull-Clark scheme, however, will turn out to be
an exception to this rule: In order to force block-circulance for the matrix, each Bk needs to consist of 13
control points—we will clarify this later.
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B j+1,7 B j+1,6 B j+1,5 B j,9 B j,8 B j,7

B j+1,8 B j+1,3 B j+1,2 B j,4 B j,3 B j,6

B j+1,9 B j+1,4 B j+1,1 B j,1 B j,2 B j,5

B j−1,1 B j−1,4 B j−1,9

B j−1,2 B j−1,3 B j−1,8

B j−1,5 B j−1,6 B j−1,7

Figure 5.1: �e local part of the mesh describing an n-sided hole for the Doo-Sabin subdivision algorithm. Dotted
lines between adjacent patches indicate faces that belong to two adjacent patches. �e highlighted control points de�ne
a part of the n-sided hole, which constitutes the only extraordinary vertex in the mesh. Small circles indicate the new
control points for the re�ned mesh that correspond to the jth patch.

5.2 Doo-Sabin subdivision scheme

�e Doo-Sabin scheme as introduced in Section 3.4.1 is an extension of the biquadratic B-spline subdivi-
sion scheme. It does not distinguish between ordinary and extraordinary vertices but between ordinary
and extraordinary faces. Consequently, we represent the hole as an n-sided face. Following the remarks
of Section 5.1, we describe the inner layer of the hole by n blocks of control points that contain 9 elements
each. A local part of this mesh is shown in Figure 5.1.

Taking a look at the stencils of the Doo-Sabin scheme as depicted by Figure 3.8, we see that the Doo-
Sabin algorithm is a symmetric subdivision algorithm in the sense of De�nition 4.19 for all regular parts
of themesh—there is only one stencil for calculating new control points and neither shi�s nor re�ections
of the control points change the results of this stencil. �us, as long as the weights α j for the vertices of
an extraordinary face are nonnegative, satisfying∑n−1

i=0 αi = 1 (to ensure a�ne invariance) and a j = an− j
for j ∈ Zn, the algorithm will also be symmetric for irregular parts of the mesh.

5.2.1 Calculating the subdivision matrix

Under the assumptions from above, we now apply the Doo-Sabin subdivision algorithm to the mesh.
All faces in the mesh, except for the n-sided hole, are regular. �erefore, the new control points corre-
sponding to the re�ned jth patch can be determined from patches j− 1, j, j+ 1 only. From the remaining
patches, only the control point corresponding to one of the vertices of the n-sided hole is used. Apply-
ing the Doo-Sabin stencils results in the following matrices (recall the notation of ranges for rows and
columns for matrices, as introduced in Chapter 1):
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A1∶9,1∶4
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α0 0 0 0
9
16

3
16 0 0

9
16

3
16

1
16

3
16

9
16 0 0 3

16
3
16

9
16 0 0

3
16

9
16

3
16

1
16

1
16

3
16

9
16

3
16

3
16

1
16

3
16

9
16

3
16 0 0 9

16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, A1∶9,1∶4
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α1 0 0 0
3
16 0 0 1

16
0 0 0 0
0 0 0 0
1
16 0 0 3

16
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, A1∶9,1∶2
n−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

αn−1 0
0 0
0 0
3
16

1
16

0 0
0 0
0 0
0 0
1
16

3
16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.1)

�e remaining matrices A2, A3, . . . , An−2 only contain 1 entry that is nonzero, namely A1,1
j = α j, for

j ∈ {2, 3, . . . , n − 2}. We now apply the DFT to this system of matrices. By Equation 4.27, the kth
transformed matrix is calculated as

Âk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α̂k 0 0 0 0 0 0 0 0
9
16 +

3
16wk

3
16 0 1

16wk 0 0 0 0 0
9
16

3
16

1
16

3
16 0 0 0 0 0

9
16 +

3
16wk

1
16wk 0 3

16w 0 0 0 0 0
3
16 +

1
16wk

9
16 0 3

16wk 0 0 0 0 0
3
16

9
16

3
16

1
16 0 0 0 0 0

1
16

3
16

9
16

3
16 0 0 0 0 0

3
16

1
16

3
16

9
16 0 0 0 0 0

3
16 +

1
16wk

3
16wk 0 9

16 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (5.2)

where wk := exp (2πik/n) and wk designates the complex conjugate of wk . �e transformed weights α̂k
are then given by

α̂k :=
n−1
∑
j=0

α jw
− jk
n . (5.3)

Lemma 5.1. If k ≠ 0 and at least two weights of the Doo-Sabin scheme are nonzero, the transformed weight
α̂k has complex modulus less than one.

Proof. We have ∑n−1
j=0 α j = 1 and α j ≥ 0. Hence, Equation 5.3 is a convex combination of roots of unity.

Since the convex hull of roots of unity is an n-sided polygon, α̂k will be an inner point, which hasmodulus
less than 1—the case that α̂k is a vertex of the convex hull cannot occur because this would imply that
there is a weight α j = 1 and the remaining weights are zero. ∎

5.2.2 Eigenvalues and convergence

In this section, we will perform spectral analysis of the subdivision matrix from Equation 5.2. �e trans-
formed weights will play a decisive role in determining the smoothness properties of the algorithm.
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Convergence

Due to the similarity of the subdivision matrix A and the transformed matrix Â, we can determine all
eigenvalues of A by calculating the eigenvalues of each Âk , which turn out to be α̂k , 1/4, 1/8, 1/16, and 0.
Knowing the eigenvalues, we can prove that the Doo-Sabin algorithm converges for almost all symmetric
weights that sum to 1.�is is our �rst nontrivial result based on themachinery introduced in the previous
chapter.

Proposition 5.1 (Convergence of the Doo-Sabin scheme).�e Doo-Sabin subdivision algorithm
is a convergent subdivision scheme according to De�nition 4.4 as long as there are at least two nonzero
weights.

Proof. By Equation 5.3, we have α̂0 = ∑n−1
j=0 α j = 1, hence 1 is always an eigenvalue of the subdivision

matrix. All other eigenvalues have modulus less than one either by Lemma 5.1 (for the transformed
weights) or by the preceding paragraph. Consequently, convergence follows from�eorem 4.1. ∎

Necessary condition for eigenvalues

Returning to the general weights α j, we can �nd a necessary condition for the eigenvalues. By �eo-
rem 4.6, the subdominant eigenvalue must be

λ := α̂1 = α̂n−1 ∈ ( 14 , 1) .

Otherwise, the characteristic map would not be injective. Using �eorem 4.4, this would imply that
the algorithm does not produce regular limit surfaces. �us, we obtain a constraint for the range of
permissible weights:

1 > α̂1 > max{ 1
4
, ∣α̂2∣ , . . . , ∣α̂n/2∣} (5.4)

5.2.3 Original weights

We now examine the smoothness properties for the original weights of Doo and Sabin [DS78], i.e.

α j =
δ0, j
4
+

3 + 2 cos(2π j/n)
4n

, (5.5)

where n is the number of vertices of the face and δ0, j denotes the Kronecker delta. As a �rst step, we show
that the weights satisfy Equation 5.4. For this purpose, we need to calculate α̂k . Inserting Equation 5.5
into Equation 5.3 yields

α̂k =
n−1
∑
j=0

α jw
− jk
n

=

n−1
∑
j=0
(δ0, j

4
+

3
4n
+

2 cos(2π j/n)
4n

)w− jkn .
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We split the previous equation into three sums and treat them independently. For the �rst sum, we have

n−1
∑
j=0

δ0, j
4

w− jkn =
1
4
.

Roots of unity sum to zero, thus the second sum evaluates to

n−1
∑
j=0

3
4n

w− jkn =
3
4n

n−1
∑
j=0

w jk
n = 0.

Hence, α̂1 is given by

α̂k =
1
4
+

1
2n

n−1
∑
j=0

cos(2π j/n)w− jkn . (5.6)

In order to evaluate the sum of cosines, we shall require a lemma.

Lemma 5.2.�e sum of cosines from Equation 5.6 is nonzero for k = 1 and k = n − 1 only. More precisely,
we have

n−1
∑
j=0

cos(2π j/n)w− jkn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

n/2 for k = 1 and k = n − 1

0 else
. (5.7)

Proof. By Euler’s formula and the symmetry properties of the cosine and sine functions, we have

w− jkn = cos(−2π jk/n) + i sin(−2π jk/n)
= cos(2π jk/n) − i sin(2π jk/n)
= w jk

n .

(5.8)

We �rst consider the real part of Equation 5.7. By using Equation 5.8, we obtain:

n−1
∑
j=0

cos(2π j/n)w− jkn =
1
2

n−1
∑
j=0
( cos(2π(k + 1) j/n)

+ cos(2π(k − 1) j/n))
(5.9)

If k ≠ (n− 1), we can apply the summation formula for cosines with arguments in arithmetic progression
(see Euler [EB88], pp. 225–226, for a proof) to the �rst sum of cosines from Equation 5.9. �is results in

n−1
∑
j=0

cos(2π(k + 1) j/n) = sin(2π(k + 1)) cos(π(k + 1)(n − 1)/n)
sin(π(k + 1)/n)

= 0.

If k = (n−1), however, the �rst sum fromEquation 5.9 evaluates to n/2 because onlymultiples of cos(2π)
are summed. An analogous consideration can be done for the second sum of cosines. Hence the second
sum also evaluates to 0 (for k ≠ 1) or to n/2 (for k = 1).

Finally, application of the summation formula for sines with arguments in arithmetic progression (see
Euler [EB88], pp. 224–225, for a proof) shows that the imaginary part of Equation 5.7 is always zero. ∎
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We now return to the calculation of α̂k and apply Lemma 5.2 to Equation 5.6. For α̂k , we obtain:

α̂k =
1
4
+

1
2n

n−1
∑
j=0

cos(2π j/n)w− jkn

=
1
4
+

1
2n
⋅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

n/2 for k = 1 and k = n − 1

0 else

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1/2 for k = 1 and k = n − 1

1/4 else

Consequently, α̂k satis�es Equation 5.4. In particular, we have α̂1 = α̂n−1 = 1/2 > 1/4, which implies that
λ := α̂1 = α̂n−1 is the subdominant eigenvalue. Moreover, it turns out that the subdivision algorithm
indeed creates regular surfaces.

Theorem 5.1 (Smoothness of theoriginalDoo-Sabin subdivision scheme). If theweights are given
by

α j =
δ0, j
4
+

3 + 2 cos(2π j/n)
4n

,

then the limit surface of the Doo-Sabin subdivision scheme will be a C1-manifold for almost all input data.

Proof. We �rst calculate the eigenvector ψ∗ of the transformed matrix Â1 corresponding to the subdom-
inant eigenvalue λ := α̂1 = α̂n−1 = 1/2. Arranging the components of ψ∗ in a matrix according to the
labelling shown in Figure 5.1 (the labels have been “rotated” because of the parametrization of the char-
acteristic map, which requires ψ3, ψ6, ψ7, and ψ8 to determine the image of the boundary according to
Figure 4.5), we obtain

ψ∗ =
⎛
⎜⎜⎜
⎝

ψ1 ψ4 ψ9

ψ2 ψ3 ψ8

ψ5 ψ6 ψ7

⎞
⎟⎟⎟
⎠

=

⎛
⎜⎜⎜
⎝

7 14 + 7wn 21 + 14wn

14 + 7wn 21 + 6cn 28 + 9wn + 2wn

21 + 14wn 28 + 9wn + 2wn 35 + 12cn

⎞
⎟⎟⎟
⎠
,

(5.10)

where cn := cos(2π/n) and sn := sin(2π/n).
We have already seen that all segments of the characteristic map are related by rotations in the complex

plane. More precisely, using Equation 4.40 we can compute all control points by multiplying ψ∗ with
powers of wn. Hence, we consider the �rst segment of the characteristic map only. �e �rst segment can
be obtained by calculating control points for patches 0, 1, and n − 1, which are then connected suitably:
In order to connect segments 0 and 1, for example, we need to use one column of control points from
patch 1 and two columns of control points from patch 0.
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Connecting the segments yields three biquadratic B-spline patches that de�ne Ψ0, the �rst segment of
the characteristic map. �e real and imaginary parts of the control points are given by:

7cn
7sn

7+14cn
14sn

14+21cn
21sn

7
0

14+7cn
7sn

21+14cn
14sn

14+7cn
−7sn

21+6cn
0

28+11cn
7sn

7cn
−7sn

7
0

14+7cn
7sn

7
0

14+7cn
7sn

21+14cn
14sn

7+14cn
−14sn

14+7cn
−7sn

21+6cn
0

14+7cn
−7sn

21+6cn
0

28+11cn
7sn

14+21cn
−21sn

21+14cn
−14sn

28+11cn
−7sn

21+14cn
−14sn

28+11cn
−7sn

35+12cn
0

We now convert the B-spline control points to the corresponding Bézier-spline control points accord-
ing to Equation 2.11. �is step is a preparation for the application of the criteria derived in the preceding
chapter. Note that some of the Bézier-spline control points coincide, thus we can represent the three
patches more compactly. Converting the control points and scaling them by 1/2 yields:

14+14cn
14sn

21+21cn
21sn

28+28cn
28sn

21+7cn
7sn

28+14cn
14sn

35+21cn
21sn

14+14cn
−14sn

21+7cn
−7sn

28+10cn
0

35+13cn
7sn

42+19cn
14sn ∗

1
2

21+21cn
−21sn

28+14cn
−14sn

35+13cn
−7sn

42+12cn
0

49+17cn
14sn

28+28cn
−28sn

35+21cn
−21sn

42+19cn
−14sn

49+17cn
−7sn

56+20cn
0

We use Proposition 2.9 to calculate the partial derivatives in v-direction and obtain three quadratic-
linear patches with the following coe�cients:

7+7cn
7sn

7+7cn
7sn

7+7cn
7sn

7+7cn
7sn

7−7cn
7sn

7+3cn
7sn

7+6cn
7sn ∗

1
2

7−7cn
7sn

7−cn
7sn

7+5cn
7sn

7−7cn
7sn

7−2cn
7sn

7+3cn
7sn

Since sn > 0 and cn ≥ −1/2 for n ≥ 3, both components of the control points are positive. By the convex
hull property for Bézier surfaces, the �rst segment of the characteristic map is in the convex hull of its
control points. Since all control points are positive, the components Ψ0

1,v and Ψ0
2,v of the partial derivative
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Figure 5.2: Regular and injective characteristic map of the Doo-Sabin scheme for valencies 5, 7, and 13 (from le� to
right). Note the rotational symmetry of the segments.

in v-direction are positive for all parameter values. Hence, by Corollary 4.2, the characteristic map will
be regular and injective. Consequently, the limit surface of the algorithm is a C1-manifold for almost all
input data by�eorem 4.3. ∎

Figure 5.2 depicts the characteristic map of the Doo-Sabin scheme with original weights for valencies
3, 6, and 12.

5.2.4 Degenerate weights

Having shown the correctness of the Doo-Sabin algorithm for its original weights, we now take a look at
weights that have been intentionally chosen to generate highly irregular surfaces.

Theorem 5.2 (Degenerate version of the Doo-Sabin algorithm). Let

α j := (1 − δ0, j) 1
n − 1

be the weights for the Doo-Sabin algorithm. �en the algorithm will not produce regular surfaces.

Proof. �e weights are obviously symmetric and sum to 1. By Equation 5.3, the transformed weights that
result from applying the DFT are given by

α̂k =
n−1
∑
j=0

α jw
− jk
n =

⎛
⎝
n−1
∑
j=0

w− jkn −w0
n
⎞
⎠ α1

= −α1 = −
1

n − 1
.

�us neither sign nor modulus nor multiplicity of the eigenvalues is correct. As a consequence of�eo-
rem 4.6, the characteristic map will be non-injective. Hence the resulting surface will not be regular for
almost every set of input data by�eorem 4.4. ∎

Figure 5.3 o�ers a visual proof of the preceding theorem. It compares the degenerate weights of this
section to the original weights. Since the surfaces feature self-intersections, they cannot be regular.
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(a) 6-sided hole

(b) Tetrahedron

(c)Hexahedron

(d) Icosahedron

Figure 5.3: Results of the Doo-Sabin algorithm using degenerate weights (le�) and original weights (right) on common
meshes. �e same number of subdivision steps was applied for both weight schemes. For rendering the meshes, self-
shadowing has been disabled because all meshes contain self-intersections. �e degenerate variant of the 6-sided hole
has been magni�ed in order to show the visual artefacts around the origin—they are the reason why the hole appears
to be closed.
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Figure 5.4: Non-injective characteristicmaps for theDoo-Sabin scheme. In both cases, n = 6.�e darker parts indicate
self-intersections. In the le� example, the subdominant eigenvalue does not satisfy�eorem 4.6, i.e. its Fourier index
is incorrect. In the right example, the subdominant eigenvalue is negative.

5.2.5 Permissible weights

For general weights, the analysis of the Doo-Sabin algorithm is not straightforward and rather technical.
We cite the following theorem of Peters and Reif [PR08]:

Theorem 5.3. Let α0, α1, . . . , αn−1 be symmetric and a�ne invariant weights for the Doo-Sabin subdivision
algorithm. If and only if the subdominant eigenvalue λ := α̂1 = α̂n−1 satis�es

1 > λ > max{ 1
4
, ∣α̂2∣ , . . . , ∣α̂n/2∣} (5.11)

and

128λ2(1 − λ) − 7λ − 2 + 9λ cos(2π
n
) > 0, (5.12)

then the limit surface will be a C1-manifold for almost every set of initial control points.

Proof. See Peters and Reif [PR08], pp. 116–119, or [PR98], pp. 740–742. ∎

Figure 5.4 depicts two di�erent weight sets that yield non-injective characteristic maps. Only by the
previous theorem can these weight sets be distinguished from “good” weight sets.

5.3 Catmull-Clark subdivision scheme

We now consider the Catmull-Clark subdivision scheme and apply the methods from the previous chap-
ter in order to derive conditions for regular surfaces. In Chapter 3, we have already seen that the Catmull-
Clark scheme only generates quadrilaterals a�er the �rst subdivision step. �erefore we can assume that
the mesh consists exclusively of quadrilaterals, and the limit considerations will certainly not be changed
by this assumption.

Taking a look at the weighted stencil for extraordinary vertices as depicted in Figure 3.12, we see that
the numbering of the control points is irrelevant for the stencil because only the topological situation is
used for the calculation of re�ned control points. Furthermore, the stencils for the regular case, being
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B j+1,10
m B j+1,9

m B j+1,8
m B j ,13

m B j ,12
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m B j+1,5
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m B j+1,3
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m B j ,6
m B j ,9
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m
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m B j−1,7
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m

Figure 5.5: �e local part of a mesh based on bicubic B-spline patches. �e mesh contains a single vertex of valency
n and is regular everywhere else. Dotted lines between patches indicate faces that belong to two adjacent patches.
�e single irregular vertex and its connectivity information are highlighted in blue. When applied to this mesh, the
Catmull-Clark algorithm generates new control points that replace the old control points adjacent to the irregular
vertex. �e new control points corresponding to the jth patch are drawn as small symbols: A circle indicates a new
face point, a rectangle indicates a new edge point, and a diamond indicates a new vertex point (see Figure 3.10 and
Figure 3.12 for their de�nitions). Note that patches j − 1 and j + 1 are not completely shown due to size constraints.

de�ned by bicubic B-spline subdivision, also satisfy this condition. �us, the Catmull-Clark scheme is a
symmetric subdivision algorithm according to De�nition 4.19.

As a preparation for setting up the subdivision matrix, we take a look at the neighbourhood around
a vertex of valency n. Following Section 5.1, we have 16 control points per patch. Some of the control
points of adjacent patches overlap; hence we index 13 control points with the current patch number and
add 3 control points from the adjacent patch. Figure 5.5 shows the local part of the mesh along with the
neighbourhood relations, including type and position of the re�ned control points. Again, the mesh is
assumed to contain only one irregular vertex. Consequently, we can use the normal subdivision stencils
as depicted in Figure 3.10 for all control points save the �rst one.

For the extraordinary vertex, a trick is required: Since this vertex is shared by all patches, we create n
identical copies of the vertex. Hence we de�ne Mm := B0,1

m = ⋅ ⋅ ⋅ = Bn−1,1
m , which we may also write as

Mm =
1
n

n−1
∑
j=0

B j
m . (5.13)

�e identity described by this equation yields a block-circulant structure of the matrix (see Peters and
Reif [PR08], pp. 97–98, for more details). As a consequence, if a weight w is applied to B j,1

m during the
subdivision algorithm, we write down the value w/n in all those columns of the matrices A j,1 that a�ect
B j,1
m .

5.3.1 Calculating the subdivision matrix

We now calculate the subdivision matrix of the Catmull-Clark scheme. For this purpose, we need to
apply the stencils to the mesh and analyse the new neighbourhood relations. Applying the subdivision
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stencils according to Figure 5.5 gives us the following set of matrices, namely,

A1∶13,1∶7
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α
n

β
n

γ
n 0 0 0 0

3
8n

3
8

1
16 0 0 0 0

1
4n

1
4

1
4 0 0 0 0

1
16n

1
16

3
8

1
16 0 0 0

3
32n

9
16

3
32 0 3

32
1
64 0

1
16n

3
8

3
8 0 1

16 0 0
1

64n
3
32

9
16

3
32

1
64

3
32

1
64

0 3
8

1
16 0 3

8
1
16 0

0 1
4

1
4 0 1

4
1
4 0

0 1
16

3
8

1
16

1
16

3
8

1
16

0 0 1
4

1
4 0 1

4
1
4

0 0 3
8

3
8 0 1

16
1
16

0 0 1
4

1
4 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (5.14)

which contains the weights for the central patch, and

A1∶13,1∶5
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α
n

β
n

γ
n 0 0

3
8n

1
16 0 0 0

1
4n

1
4 0 0 0

1
16n

3
8 0 0 1

16
3

32n
1
64 0 0 0

1
16n

1
16 0 0 0

1
64n

3
32 0 0 1

64
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1

16 0 0 1
16

0 1
4 0 0 1

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, A1∶8,1∶4
n−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α
n

β
n

γ
n 0

3
8n

1
16

1
16 0

1
4n 0 0 0
1

16n 0 0 0
3

32n
1
64

3
32

1
64

1
16n 0 0 0
1

64n 0 0 0
0 0 1

16
1
16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (5.15)

where A1 contains the weights for the right patch and An−1 contains the weights for the le� patch. By
Figure 5.5, no control points from other patches are required for calculating the positions of the new
control points. �us, as a consequence of Equation 5.13, the remaining matrices only contain the weights
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for the central control point. Hence, we have

A1∶8,1∶4
j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α
n

β
n

γ
n 0

3
8n 0 0 0
1
4n 0 0 0
1

16n 0 0 0
3

32n 0 0 0
1

16n 0 0 0
1

64n 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (5.16)

with j = 2, . . . , n − 2.

We now apply the DFT to this set of matrices. Letwk be the kth root of unity, i.e.wk := exp(2πik/n) =
cn,k + isn,k . For k = 1, we will write cn and sn instead of cn,1 and sn,1.

Since the sum of all roots of unity is zero, only the transformed matrix Â0 := ∑n−1
j=0 A j will contain

nonzero entries in the �rst column and the �rst row. We denote this by the usual Kronecker delta notation
and obtain a closed expression for the kth transformed matrix, namely,

Âk =

⎛
⎜⎜⎜
⎝

Â 0,0
k 0 0

Â 1,0
k Â 1,1

k 0
Â 2,0
k Â 2,1

k 0

⎞
⎟⎟⎟
⎠
= (Â 1∶13,1∶7

k 0) , (5.17)

where the block matrices are given by

Â 1∶13,1∶7
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

αδk,0 βδk,0 γδk,0 0 0 0 0
3
8δk,0

3
8 +

1
16 ⋅ 2cn,k

1
16 (1 +wk) 0 0 0 0

1
4δ j,0

1
4 (1 +wk) 1

4 0 0 0 0
1
16δk,0

1
16 +

3
8wk

3
8

1
16

1
16wk 0 0

3
32δk,0

9
16 +

1
64 ⋅ 2cn,k

3
32 (1 +wk) 1

64wk
3
32

1
64 0

1
16δk,0

3
8 +

1
16wk

3
8 0 1

16
1
16 0

1
64δk,0

3
32 (1 +wk) 9

16
3
32

1
64 (1 +wk) 3

32
1
64

0 3
8

1
16 (1 +wk) 1

16wk
3
8

1
16 0

0 1
4

1
4 0 1

4
1
4 0

0 1
16

3
8

1
16

1
16

3
8

1
16

0 0 1
4

1
4 0 1

4
1
4

0 1
16wk

3
8

3
8

1
16wk

1
16

1
16

0 1
4wk

1
4

1
4

1
4wk 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.18)

5.3.2 Eigenvalues of the subdivision matrix

�e partition of the matrix as described by Equation 5.17 facilitates the calculation of eigenvalues of Âk :
Let 1 denote the identity matrix. By de�nition, we need to solve det (Âk − λ ⋅ 1) = 0, and in a slight
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abuse of notation, we will not care about the dimension of the identity matrices. �is yields

det (Âk − λ1) = det
⎛
⎜⎜⎜
⎝

Â 0,0
k − λ ⋅ 1 0 0
Â 1,0
k Â 1,1

k − λ ⋅ 1 0
Â 2,0
k Â 2,1

k −λ ⋅ 1

⎞
⎟⎟⎟
⎠

= det (Â 0,0
k − λ ⋅ 1)det (Â 1,1

k − λ ⋅ 1)det (−λ ⋅ 1) .

�erefore, all nonzero eigenvalues of Âk are either eigenvalues of Â 0,0
k or of Â 1,1

k . From Â 1,1
k , we get the

“usual” eigenvalues 1/8, 1/16, 1/32, and 1/64. �eir multiplicities are too high, so we do not consider them
any further.

For k = 0, however, we obtain the eigenvalue λ0 = 1 from Â 0,0
0 . Using that γ := 1 − α − β yields a pair

of eigenvalues,

λ01,2 :=
1
8
(4α − 1 ±

√
(4α − 1)2 + 8β − 4) , (5.19)

where λ01 refers to the expression with the plus sign and λ02 refers to the expression with the minus sign.
Depending on the sign of the discriminant, λ01,2 are either both real or complex conjugates.

For k ≠ 0, the transformed matrix Â0,0
k has two nonzero eigenvalues, namely

λk1,2 :=
1
16
(cn,k + 5 ±

√
(cn,k + 9) (cn,k + 1)) , (5.20)

which are real for every k. By�eorem 4.6, the subdominant eigenvalue must come from Â1 and Ân−1.
Since the multiplicities of the other eigenvalues are too high, the only candidate for the subdominant
eigenvalue is

λ := λ11 = λ
n−1
1 =

1
16
(cn + 5 +

√
(cn + 9) (cn + 1)) . (5.21)

It can be shown (see Chapter A, Section A.2) that

1 > λ ≥ 1
4
> λk2 >

1
16

for k = 1, . . . , n − 1 (5.22)

and

1 > λ > λk1 ≥
1
4

for k = 2, . . . , n − 2. (5.23)

Hence, λ is always larger than the eigenvalues of all other block matrices except Â0. As a consequence, λ
is the subdominant eigenvalue if and only if α, β, and γ are chosen such that

λ > max (∣λ01 ∣ , ∣λ02∣) . (5.24)

Having obtained a condition for λ, we are now ready to calculate the characteristic map. In the fol-
lowing sections, we will use the condition of this section and several auxiliary results concerning regu-
larity and injectivity of the characteristic map in order to derive a theorem about the smoothness of the
Catmull-Clark subdivision scheme.
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5.3.3 Calculating the characteristic map

Henceforth, we assume that λ is the subdominant eigenvalue. Since λ is independent of the weights
α, β, and γ, we may compute the characteristic map in all generality. To this end, we need to �nd an
eigenvector ψ̂ of the transformed subdivision matrix Â1. For this purpose, we use the structure of the
matrix as in Equation 5.17 and partition the eigenvector ψ̂ into three blocks such that ψ̂ = (ψ̂0, ψ̂1, ψ̂2)T .
�e eigenvector condition Â1ψ̂ = λψ̂ then yields a system of equations:

(Â0,0
1 − λ1) ψ̂0 = 0

(Â 1,1
1 − λ1) ψ̂1 = −Â 1,0

1 ψ̂0

ψ̂2 = (Â2,0
1 ψ̂0 + Â2,1

1 ψ̂1) /λ

�e �rst equation is solved by

ψ̂0 := (0, 1 +wn , 16λ − 2cn − 6)T . (5.25)

Using this vector, we now solve the remaining eigenvector equations and get an eigenvector ψ̃. Due to
the occurrences of cn and λ, the eigenvector ψ̃ is rather unwieldy. Hence, we simplify it by substitution
and scaling in the subsequent paragraphs.

Expressing cn in terms of λ

By transforming the de�nition of λ from Equation 5.21, we obtain

cn =
16λ2 − 10λ + 1

2λ
(5.26)

for λ ∈ Λ := [(9 +√17) /32, (3 +√5) /8), where Λ is the range of values for λ (the range can be obtained
by setting cn = −1/2 and cn = +1, which are the maximum values of cn for n ≥ 3; since cn = +1 is never
attained, the interval is half-open). �us, we can substitute Equation 5.26 for cn within the components
of ψ̃. As a result, ψ̃ is written exclusively in terms of λ.

�is transformation will allow us to derive a characteristic map that depends solely on λ, which greatly
simpli�es calculations because the expressions do not contain the valency n anymore.

Scaling ψ̃

Factorizing the eigenvalue ψ̃ still results in fractional expressions. As a consequence, in order to achieve
a manageable representation, we scale ψ̃ by

ψ̂ := ψ̃ ⋅ 4λ ⋅ (65536λ5 − 7168λ4 + 224λ3 − 2λ2) , (5.27)

from which we obtain the scaled eigenvector ψ̂. �e eigenvector ψ̂ can be written as

ψ̂ = (4λ − 1) ψ̂re + i2snλ (64λ − 1) ψ̂im, (5.28)
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where

ψ̂re =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
4λ2(4λ − 1)(16λ − 1)(32λ − 1)(64λ − 1)

8λ2(16λ − 1)(32λ − 1)(64λ − 1)
4λ2(64λ − 1)(928λ2 + 228λ − 31)

8λ2(4λ − 1)(4λ + 13)(16λ − 1)(64λ − 1)
4λ2(64λ − 1)(928λ2 + 228λ − 31)
80λ2(1280λ3 + 2128λ2 − 56λ − 13)

(4λ − 1)(16λ − 1)(64λ − 1)(100λ2 + 42λ − 1)
4λ(64λ − 1)(640λ3 + 688λ2 − 82λ − 1)

20λ(2048λ4 + 11040λ3 + 812λ2 − 165λ − 1)
40λ(5248λ3 + 1568λ2 − 133λ − 5)

20λ(2048λ4 + 11040λ3 + 812λ2 − 165λ − 1)
4λ(64λ − 1)(640λ3 + 688λ2 − 82λ − 1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.29)

and

ψ̂im =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0
−4λ2(16λ − 1)(32λ − 1)

0
84λ2(8λ + 1)

−8λ2(4λ + 13)(16λ − 1)
−84λ2(8λ + 1)

0
−(16λ − 1)(100λ2 + 42λ − 1)
−4λ(160λ2 + 132λ − 1)
−20λ(8λ2 + 15λ + 1)

0
20λ(8λ2 + 15λ + 1)
4λ(160λ2 + 132λ − 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.30)

Using this representation, we now check whether the patch is normalized—we have already seen that
a normalized characteristic map is necessary for injectivity. Hence, we calculate Ψ0(2, 2), which is one
corner point of the bicubic B-spline surface patch de�ned by ψ̂. We may obtain the corner point by
evaluating the central B-spline patch of Ψ0. For this purpose, we use the matrix representation of a B-
spline patch as described by�eorem 2.3. We then solve the equation for u = 1 and v = 1. Written more
compactly, this results in

Ψ0(2, 2) =
⎛
⎜⎜⎜
⎝

1/6
2/3
1/6

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

ψ̂3 ψ̂4 ψ̂13

ψ̂6 ψ̂7 ψ̂12

ψ̂9 ψ̂10 ψ̂11

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1/6
2/3
1/6

⎞
⎟⎟⎟
⎠

T

.
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w2
nψ̂2 wnψ̂3 wnψ̂6 wnψ̂9

ψ̂1 wnψ̂2 wnψ̂5 wnψ̂8

ψ̂2 ψ̂3 ψ̂4 ψ̂13

ψ̂5 ψ̂6 ψ̂7 ψ̂12

wnψ̂2 ψ̂1 wnψ̂2 wnψ̂5 ψ̂1 wnψ̂2 wnψ̂5 wnψ̂8

wnψ̂3 ψ̂2 ψ̂3 ψ̂4 ψ̂2 ψ̂3 ψ̂4 ψ̂13

wnψ̂4 ψ̂5 ψ̂6 ψ̂7 ψ̂5 ψ̂6 ψ̂7 ψ̂12

wnψ̂13 ψ̂8 ψ̂9 ψ̂10 ψ̂8 ψ̂9 ψ̂10 ψ̂11

Figure 5.6: B-spline control points for the three patches that form Ψ0, the �rst segment of the characteristic map of
the Catmull-Clark subdivision algorithm. �e points are given in the order in which they appear in the matrices that
de�ne the corresponding B-spline patch. Note that the control points overlap. �is ensures that the patches �t smoothly.

Using Equations 5.28, 5.29, and 5.30, we obtain

Ψ0(2, 2) = 8
9
λ (4λ − 1) (139264λ4 + 170496λ3 + 112λ2 − 1476λ − 11) .

�e Sturm sequences (see Chapter A, Section A.3, for an introduction) of this polynomial show that it
has no roots within the interval Λ. Since evaluation at λ = 1/2 yields Ψ∗(2, 2) = 13020, the characteristic
map is normalized.

In order to verify the regularity of the limit surface, we shall use Corollary 4.2. Starting from the
patches as displayed in Figure 5.6, we convert the B-spline control points to Bézier-spline control points
according to Section 2.5.3. By calculating the di�erences P′i , j = Pi , j+1−Pi , j, we obtain the control points of
Ψ0
v , the derivative in v-direction of the �rst segment of the characteristic map. Since Ψ0 is given by three

bicubic patches, derivation in v-direction yields three patches with 4×3 control points each. �us, we get
36 control points, which we enumerate by K j with j = 1, . . . , 36. It turns out that all K j are polynomials
in λ of the form

K j = Pj(λ) + isnQ j(λ),
where Pj and Q j are polynomials with rational coe�cients whose degrees are less than or equal to 8:

P1 =
1
9
(−8388608λ8 + 11403264λ7 − 2748416λ6 − 447232λ5 + 197056λ4 − 16528λ3 + 468λ2 − 4λ)

Q1 =
1
9
(−1048576λ7 + 901120λ6 + 172544λ5 − 25952λ4 + 872λ3 − 8λ2)

⋮

P36 =
1
36
(−4194304λ7 − 3211264λ6 + 6868992λ5 − 1421952λ4 − 54048λ3 + 12120λ2 − 110λ + 1)

Q36 =
1
36
(524288λ6 + 1073152λ5 − 24064λ4 − 9872λ3 + 284λ2 − 2λ)

For the sake of clarity, not all polynomials are shown. Instead, Figure 5.7 depicts both Pj and Q j and
their progression over Λ.
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Figure 5.7: Plots of Pj (le�) and Q j (right) over Λ ≈ [0.410, 0.655). Note that all polynomials have a common point
at λ = 1/2.

We now use Sturm sequences for the interval [0.41, 0.66] ⊃ Λ (the rational interval facilitates compu-
tation of Sturm sequences) and �nd either zero roots or one root. In the case of one root, evaluation of
the polynomials shows that the root is at (3 +√5)/8. Since this value is outside Λ, no polynomial has
roots within Λ. Evaluation at λ = 1/2 yields

Pj (1/2) = Q j (1/2) = 1085

for j = 1, . . . , 36. Since sn > 0 for n ≥ 3, both real and imaginary parts of K j are positive. Hence, we can
apply Corollary 4.2 and get the following theorem:

Theorem 5.4 (Smoothness of Catmull-Clark scheme). Let n ≥ 3 and cn := cos(2π/n). Further-
more, let

λ :=
1
16
(cn + 5 +

√
(cn + 9) (cn + 1)) (5.31)

and

λ01,2 :=
1
8
(4α − 1 ±

√
(4α − 1)2 + 8β − 4) . (5.32)

�en the limit surface of the Catmull-Clark algorithm with weights α, β, and γ := 1 − α − β is a regular
C1-manifold for almost all input data if and only if

λ > max (∣λ01 ∣ , ∣λ02∣) .

Proof. �is follows directly from the arguments of the preceding paragraphs: We have shown that we
can represent the coe�cients of Ψ0

v as polynomials that are positive on their domain. By the convex hull
property of Bézier surfaces, the polynomials (and thus the control points of Ψ0

v ) will attain positive values
only. Hence, Corollary 4.2 is applicable and proves that the characteristic map is regular and injective. By
�eorem 4.3, the limit surface is a regular C1-manifold for almost all input data. ∎
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5.3.4 Original weights

In this section, we perform the detailed analysis for the original weights of Catmull and Clark [CC78].
We show that λ is the subdominant eigenvalue and consequently, by �eorem 5.4 the Catmull-Clark
subdivision algorithm will produce regular surfaces.

Proposition 5.2 (Original weights of theCatmull-Clark subdivision scheme). Let the weights
of the Catmull-Clark scheme be

α = 1 − 7
4n

, β = 3
2n

, γ = 1
4n

, (5.33)

which are the weights originally proposed by Catmull and Clark [CC78]. �en the eigenvalue λ as de�ned
above is the subdominant eigenvalue.

Proof. We need to show that Equation 5.24 holds for λ. For the Catmull-Clark weights, the eigenvalues
λ01,2 are both positive. Starting with λ02, we have

16(λ − λ02) = 5 + cn +
√
(cn + 9)(cn + 1) − 6 + 14

n
+ 2
√

5 +
49
n2
−

30
n

> −
3
2
+

1
2
√
19 + 2

√
5 > 5.

�us, λ > λ02.
For λ01 , the proof is more technical. Calculating the values for n = 3 shows that λ > λ01 , as claimed. For

n > 3, we have an estimate of the cosine, namely

cn := cos(2πn ) > 1 −
2π2

n2
,

which follows from the power series of the cosine. Using this estimate, we obtain a lower estimate on
λ− λ01 . If we take λ− λ01 as a polynomial in n, we �nd that it has no real roots. Consequently, the function
does not change its sign. Evaluation at one point in order to determine the sign yields a value greater
zero. �erefore, λ > λ01 . ∎

Having shown that λ is the subdominant eigenvalue for the original weights, theCatmull-Clark scheme
in its original form produces regular limit surfaces as an application of�eorem 5.4.

5.3.5 Degenerate weights

Following the discussion of the original weights, we now turn to degenerate weights that will yield irreg-
ular limit surfaces.

Theorem 5.5 (Degenerate version of the Catmull-Clark algorithm). Let α = 1, β = 0, γ = 0.
�en the Catmull-Clark algorithm will not produce regular surfaces.

Proof. Calculating the eigenvalues λ01 and λ02 yields

λ01,2 =
1
8
(3 ±√5) . (5.34)



98 5. CASE STUDIES OF SUBDIVISION ALGORITHMS

�e maximum value λmax of λ, however, is given by

λmax <
1
8
(3 +√5) (5.35)

because cn = 1 is never attained. Consequently, λ01 > λ and ∣λ01 − λ∣→ 0 as n →∞. �us, Equation 5.24 is
violated and by�eorem 5.4, the algorithm will not produce regular surfaces. ∎

5.3.6 Permissible weights

We have seen that the Catmull-Clark subdivision algorithm generates smooth surfaces as long as λ is
the subdominant eigenvalue. �erefore, we conclude this chapter with an examination of permissible
weights α, β, and γ such that λ is the subdominant eigenvalue.

Using α, β ≥ 0 and 1−α−β ≥ 0, we get the constraint α+β ≤ 1, which limits the region of all permissible
weights. Solving (4α − 1)2 + 8β − 4 ≥ 0, which is the discriminant of the expression in Equation 5.19,
yields −2α2 + α + 3/8 ≤ β. Hence, the parabola β = −2α2 + α + 3/8 is the boundary of the set of weights
for which λ01 and λ02 are complex numbers. We now want to derive constraints for α and β such that
Equation 5.24 holds. �e minimum of λ is attained for cn = −1/2 and evaluates to λmin = (

√
17 + 9)/32.

�us, we need to solve λmin − ∣λ01,2∣ = 0 in order to �nd the region of weights for which Equation 5.24
cannot hold. It turns out that there are two solutions, namely β = 1/64 (144α + 45 + 5√17 + 16α√17),
which is outside the region, and β = 1/64 (−144α + 117 − 16α√17 + 13√17), which is inside the region of
permissible weights. Having obtained all required equations, we plot the region of feasible weights. �e
result is depicted in Figure 5.9. �us, if the weights are contained inside the shaded region and do not lie
outside the smaller region that starts at α ≈ 0.8, then λ is the subdominant eigenvalue.

However, this condition is not necessary. �e original weights from Catmull and Clark, for example,
lie outside the region for almost every valency. Yet, we have been able to prove that λ is the subdominant
eigenvalue. Figure 5.10 depicts this fact by showing the asymptotic behaviour of λ and λ01,2 in addition to
the original weights for di�erent valencies.

5.4 Summary

In this chapter, we analysed smoothness properties of the Doo-Sabin and the Catmull-Clark subdivision
algorithms. We started with general considerations for both schemes, examined their eigenstructure,
and formulated necessary conditions for their eigenvalues. A�erwards, we proved that the limit surfaces
produced by the original variants of both algorithms are regular C1-manifolds for almost all input data.
We then examined degenerate weights for both schemes and demonstrated their e�ects on several com-
mon meshes. At last, we gave an overview of permissible weights and, for the Catmull-Clark scheme,
characterized them graphically.

Retrospectively, it was rather unexpected that analysing the Doo-Sabin scheme required more work
than the Catmull-Clark scheme—a�er all, having only one subdivision stencil, the Doo-Sabin algorithm
is much simpler in comparison. Even the characterization of feasible weights for the Doo-Sabin scheme
is more involved than the straightforward eigenvalue criterion of the Catmull-Clark scheme.
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(a) 6-sided hole

(b) Tetrahedron

(c)Hexahedron

(d) Icosahedron

Figure 5.8: Results of the Catmull-Clark algorithm using degenerate weights (le�) and original weights (right) on
common meshes. �e same number of subdivision steps was applied for both weight schemes. �e degenerate variant
of the 6-sided hole has been scaled so that the single “spike” in the centre of the surface, which is the limit point of the
extraordinary vertex, is shown.
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Figure 5.9: A plot of the region of permissible weights for the Catmull-Clark scheme. �e dotted parabola designates
the boundary of the values for α and β such that λ01 and λ02 are complex conjugates. If the weights are inside the
grey region bounded by the blue line and the black line, then the eigenvalue λ is guaranteed to be the subdominant
eigenvalue of the Catmull-Clark subdivision algorithm. Note that this is a su�cient condition, but not a necessary
one.
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Figure 5.10: �e le� �gure shows the asymptotic behaviour of the eigenvalues λ, λ01 , and λ02 for the original weights
of the Catmull-Clark subdivision algorithm. In Section 5.3.4, we have proved that λ is the subdominant eigenvalue
for these weights. �e right �gure, however, shows the behaviour of the weights for increasing valencies—since they
approach the point (1, 0), almost all of them are outside the permissible region. �is demonstrates that the condition
derived in this section is indeed only su�cient.



A Additional mathematical background

�is appendix contains some proofs that would distract too much from the main matter. Furthermore,
it provides some background concerning Euler’s formula and Sturm sequences.

A.1 Euler’s formula for convex polyhedrons

For any convex polyhedron with V vertices, E edges, and F faces,

V − E + F = 2. (A.1)

�is result is known as Euler’s formula for convex polyhedrons. It may be used to show that extraordinary
vertices inevitably occur when trying to model more complicated shapes. Furthermore, it is employed
by Doo [Doo78] in order to prove that the new vertices created by the Doo-Sabin subdivision algorithm
have valency k = 4.

For a proof of this formula, see Fulton [Ful95], p. 244. We do not require this formula but cite it for
reference purposes only.

A.2 Proofs for eigenvalue estimates

Lemma A.1. For k = 1, . . . , n − 1, we have 1/4 ≥ λk2 > 1/16, where

λk2 :=
1
16
(cn,k + 5 −

√
(cn,k + 9) (cn,k + 1)) .

Proof. Since cn,k ∈ [−1, 1] and λk2 is decreasing for increasing values of cn,k , it is su�cient to check these
conditions at the boundaries. For cn,k = −1, we have λk2 = 1/4. Likewise, for cn,k = +1, we have λk2 =
(6 −√20) /16 > 1/16. ∎

Lemma A.2. For k = 1, . . . , n − 1, we have 1 > λ > 1/4, where

λ :=
1
16
(cn + 5 +

√
(cn + 9) (cn + 1)) .

Proof. Again, it is su�cient to check the condition at the boundaries. For n ≥ 3, we have cn > −1.
Furthermore, the eigenvalue λ is increasing for increasing values of cn. Hence, λ > 1/4 as cn → −1 and
λ = (6 +√20)/16 < 1 for cn = +1. ∎
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Corollary A.1. Since cn,k ∈ [−1, 1], the claim from Lemma A.2 can be modi�ed, thereby obtaining the
estimate 1 > λk1 ≥ 1/4, where k = 2, . . . , n − 2 and

λk1 :=
1
16
(cn,k + 5 +

√
(cn,k + 9) (cn,k + 1)) .

Lemma A.3. For k = 2, . . . , n − 2, we have λ > λk1 .

Proof. For n = 3, nothing is to be shown. For n > 3, it is su�cient to prove cn > cn,k . To this end, we
expand cn and cn,k and apply the sum-to-product formula. �is yields

cos(2π/n) − cos(2πk/n) = −2 sin(π(k + 1)
n

) sin(π(1 − k)
n

) .

Since k = 2, . . . , n − 2 and n > 3, we have sin(π(k + 1)/n) > 0 and sin(π(1 − k)/n) < 0. �erefore,

−2 sin(π(k + 1)
n

) sin(π(1 − k)
n

) > 0.

∎

A.3 Sturm sequences

�is section quotes the most important results concerning Sturm sequences. In the main matter, we
require these sequences in order to prove that certain polynomials do not have any roots within certain
intervals. �e following results are quoted from Stoer and Bulirsch [SB96].

Definition A.1 (Sturm sequence). A sequence p(x) = p0(x), p1(x), . . . , pm(x) of real polynomials
is a Sturm sequence for the polynomial p(x) if the following conditions hold:

1. All real roots of p0(x) are simple.

2. sign p1(ξ) = − sign p′0(ξ) if ξ is a real root of p0(x).

3. If ξ is a real root of pi(x), then pi+1(ξ)pi−1(ξ) < 0 for i = 1, 2, . . . ,m − 1.

4. �e last polynomial pm(x) has no real roots.

Sturm sequences yield an important theorem about the number of real roots. We will use this theorem
to prove that the characteristic map of the Catmull-Clark scheme is regular.

TheoremA.1.�e number of real roots of p(x) = p0(x) in the interval a ≤ x < b is equal to w(b)−w(a),
where w(x) is the number of changes of sign of a Sturm sequence p0(x), . . . , pm(x) at location x.

Proof. See Stoer and Bulirsch [SB96], p. 298–299. ∎

Sturm sequences can be constructed for any polynomial p(x). In [SB96], Stoer and Bulirsch provide
an algorithm for polynomials with simple real roots only. However, this algorithm can be extended to
polynomials withmultiple roots by determining the greatest common divisor q(x) of a polynomial p(x)
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and its derivative p′(x). Since p(x)/q(x) has the same roots as p(x) but no multiple roots anymore, a
Sturm sequence may be determined for this polynomial by using the aforementioned algorithm.

In this thesis, we will only use the result of this theorem. Since the calculations are rather complex, the
help of computer algebra systems is employed.





B Visualization of subdivision algorithms

In order to visualize the algorithms analysed in this thesis, the author implemented Doo-Sabin, Catmull-
Clark, and Loop subdivision (the latter was included for reference purposes). �e implementations were
combined in psalm, which is short for “pretty subdivision algorithms on meshes”. �is chapter gives a
short overview of psalm and provides algorithms for preserving the orientation of meshes. It concludes
with some example images created by psalm and Blender.

B.1 Description of psalm

psalm is a C++ command-line interface program. Its task is to process mesh input data by applying
subdivision algorithms.�e result is to be stored in a �le for further processing.�e following paragraphs
brie�y describe psalm’s features.

Mesh compiler psalm is a mesh compiler and does not contain rendering capabilities on its own. In-
stead, it produces output as PLY �les, Wavefront OBJ �les, or Geomview OFF �les (see Figure B.1 for
a quick comparison between the three formats). �e user may then use any rendering so�ware that is
able to process one of these �le formats. �e author, for example, decided to use Blender for this pur-
pose. Blender is an open-source 3D content creation suite that o�ers professional rendering algorithms
for many purposes. In this thesis, all images depicting subdivision algorithms have been rendered by
Blender.

Tuning of subdivision algorithms psalm allows the user to �ne-tune subdivision algorithms. Users
may change the weights for k-sided faces or vertices with valency k (without changing the code), or (with
small code modi�cations) even implement their own weight schemes for a subdivision algorithm. �is
feature has been exploited in Section 5.2.4, for example, where a degenerate weight function has been
added in order to perturb the Doo-Sabin algorithm.

Pruning of meshes psalm provides rudimentary pruning functions for meshes. It can delete vertices
of certain valencies or faces with a certain number of sides. Pruning is very helpful for the removal of
irregular parts of the mesh.

Orientation preservation psalm takes great care in order to preserve the orientation of input meshes.
Given a consistently oriented input mesh, re�ned parts of the mesh will be oriented according to the
initial orientation. �us, the re�ned mesh maintains its initial orientation at every subdivision step. We
will discuss the importance of preserving the orientation in the next section.
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ply

format ascii 1.0

element vertex 8

property float x

property float y

property float z

element face 6

property list uchar int index

end_header

-0.5 -0.5 0.5

0.5 -0.5 0.5

-0.5 0.5 0.5

0.5 0.5 0.5

-0.5 0.5 -0.5

0.5 0.5 -0.5

-0.5 -0.5 -0.5

0.5 -0.5 -0.5

4 0 1 3 2

4 2 3 5 4

4 4 5 7 6

4 6 7 1 0

4 1 7 5 3

4 6 0 2 4

(a) PLY data

OFF

8 6 0

-0.5 -0.5 0.5

0.5 -0.5 0.5

-0.5 0.5 0.5

0.5 0.5 0.5

-0.5 0.5 -0.5

0.5 0.5 -0.5

-0.5 -0.5 -0.5

0.5 -0.5 -0.5

4 0 1 3 2

4 2 3 5 4

4 4 5 7 6

4 6 7 1 0

4 1 7 5 3

4 6 0 2 4

(b) OFF data

v -0.5 -0.5 0.5

v 0.5 -0.5 0.5

v -0.5 0.5 0.5

v 0.5 0.5 0.5

v -0.5 0.5 -0.5

v 0.5 0.5 -0.5

v -0.5 -0.5 -0.5

v 0.5 -0.5 -0.5

f 1 2 4 3

f 3 4 6 5

f 5 6 8 7

f 7 8 2 1

f 2 8 6 4

f 7 1 3 5

(c) OBJ data

Figure B.1: Input data for a regular hexahedron. Note how all �le formats represent the same object quite di�erently.
When parsing the OBJ format, for example, the number of vertices and faces is unknown beforehand.

B.2 Implementation details

�is section expands on the most important facts of psalm’s implementation of subdivision algorithms.
�e code itself is deliberately not cited as it would be outside the scope of this thesis. Since the source
code is provided under a simpli�ed BSD licence, the interested reader is referred to http://bastian.
rieck.ru/research/diploma/psalm for more details.

B.2.1 Orientation of meshes

�e �le formats processed by psalm describe meshes by maintaining a list of vertices, which are points
in R3, and a list of faces, which are k-tuples of indices corresponding to vertices. �e edges of the mesh
are implicitly described by the k-tuples: Traversing the components of a tuple, each two adjacent vertices
form an edge. �e last vertex is supposed to be connected with the �rst one, thereby “closing” the face.
A mesh that is correctly oriented will contain each edge twice (once for both possible directions of the
edge). �us, the orientation of faces is well-de�ned.

In computer graphics, faces are assumed to be oriented in counter-clockwise order because this orien-
tation allows application of the right-hand rule.�e orientation of polygonal faces is used for lighting and
shading calculations—consequently, incorrectly oriented faces may appear unlit, thereby giving a larger
object a “faceted” appearance. Figure B.2 depicts this problem.

http://bastian.rieck.ru/research/diploma/psalm
http://bastian.rieck.ru/research/diploma/psalm
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Figure B.2: �e le� picture shows the “Stanford Bunny” mesh with correctly oriented normals. In the right picture,
the normals have been �ipped randomly. �e result is a faceted appearance when rendering the mesh.

B.2.2 Storing edges

For subdivision algorithms, caremust be taken not to store the same edge twice.�e edge point stencil for
the Catmull-Clark subdivision scheme, for example, requires that an interior edge is part of exactly two
faces. �us, an implementation of this scheme needs to contain a method for quickly determining the
two faces an interior edge is part of. Storing an edge twice (with only one adjacent face) would complicate
this—in the worst case, all edges would have to be searched for the corresponding second edge.

To avoid duplicate edges, psalm maintains an internal hash map that uses edge IDs to access the list
of edges. An edge ID of an edge (u, v) is calculated by sorting the vertex IDs such that u ≤ v, and then
taking the ID to be the pair (u, v). Upon loading a mesh, psalm uses this ID to check whether an edge
has already been added to the hash map. If this is the case, psalm signals that the edge direction must be
reversed. As a consequence, when processing the edges of a face, psalm uses pointers to mark the �rst
and (for non-boundary edges) second face an edge is part of.

Assuming that meshes are oriented counter-clockwise, we may refer to the �rst face as the “le�” face
of an edge (since the face lies to the le� of the edge’s direction) and likewise, to the second face as the
“right” face of an edge. If the mesh is oriented clockwise, the meaning of “le�” and “right” is swapped,
but nonetheless, all algorithms presented in this chapter still work.

B.3 Preserving the orientation of a mesh

Wehave seen that an inconsistent orientation of ameshmay lead to erroneous lighting calculations.�us,
every implementation of a subdivision scheme is required to preserve the orientation of the input mesh—
assuming that it has been oriented consistently. �e following sections describe the methods psalm uses
to maintain the initial orientation of the mesh when di�erent subdivision schemes are applied.

B.3.1 Doo-Sabin subdivision scheme

Recalling the description of the algorithm from Section 3.4.1, three kinds of faces appear during the Doo-
Sabin algorithm. �e strategies for preserving the orientation vary accordingly.

F-faces New vertices of every face can be connected in the order of the old vertices of the face. If the
initial mesh is oriented consistently, this procedure works—see Algorithm B.1 for details.
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Algorithm B.1 Preserving the orientation of F-faces
1: for all Face f do
2: for all Vertices v of f do
3: Connect the new vertices v′ in the order of the old vertices.
4: end for
5: end for

E-faces When loading a mesh, psalm stores the face F that is encountered when traversing the edge
(u, v). For an E-face, we require that the edge is adjacent to a second face, which we denote by G. �is is
the face that is encounteredwhen traversing the edge (v , u), which is called the “inverted edge” in psalm’s
terminology. �e procedure is described by Algorithm B.2. Figure B.3 depicts a visual explanation.

Algorithm B.2 Preserving the orientation of E-faces
1: for all Interior edges (u, v) in the mesh do
2: Find �rst adjacent face F.
3: Find second adjacent face G.
4: Form a face by connecting vertices uF , uG , vG , vF , and uF .
5: end for

V-faces Interior vertices are part of several faces.�ese faces need to be sorted in counter-clockwise or-
der around the vertex. �en the new vertices that correspond to the face and the vertex can be connected
accordingly. �e sorting process is described by Algorithm B.3.

B.3.2 Catmull-Clark subdivision scheme

In the Catmull-Clark algorithm, new faces are formed by connecting vertex points, edge points, and face
points. �us, we can determine the correct order by using the given orientation of the mesh. To this end,
edges and faces around a given vertex need to be enumerated in a consistent direction. �e enumeration
process is accomplished by Algorithm B.4.

u

v

F G

uF

vF

uG

vG

Figure B.3: Illustration of Algorithm B.2
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Algorithm B.3 Preserving the orientation of V-faces
1: for all Vertices v do
2: Enumerate all faces:
3: Store �rst face of �rst incident edge.
4: for all Incident edges e of v, starting from the second edge do
5: if First face of e is equal to one of the faces of the previous edge then
6: Store second face of edge e.
7: else
8: Store �rst face of edge e.
9: end if
10: end for
11: Check orientation of enumerated faces:
12: if v is start vertex of �rst edge then
13: Orientation is wrong if the second face is to the right of the �rst edge.
14: else
15: Orientation is wrong if the second face is to the le� of the �rst edge.
16: end if
17: If the orientation was found to be wrong, reverse the order of the list of stored faces.
18: end for

Algorithm B.4 Preserving orientation of faces in the Catmull-Clark algorithm
1: for all Vertices v do
2: for all Faces f that v is a part of do
3: Find the two incident edges e1 and e2 belonging to f .
4: if e1 does not have an edge point or e2 does not have an edge point then
5: Continue with the next face.
6: end if
7: if (v is start vertex of e1 and f is to the right of e1) or (v is end vertex of e1 and f is to the le� of

v) then
8: Swap e1 and e2.
9: else if (v is start vertex of e2 and f is to the le� of e2) or (v is end vertex of e2 and f is to the

right of v) then
10: Swap e1 and e2.
11: end if
12: Form a new face by connecting the vertex point of v, the edge point of e1, the face point of f ,

and the edge point of e2.
13: end for
14: end for
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Input mesh No. of steps Initial size Catmull-Clark

Tetrahedron 8
4 vertices 196610 vertices
6 edges 393216 edges
4 faces 196608 faces

Hexahedron 8
8 589826
18 1179648
12 589824

Icosahedron 8
12 983042
30 1966080
20 983040

Klein Bottle I 3
2500 240000
7500 480000
5000 240000

Klein Bottle II 3
2500 160000
5000 320000
2500 160000

Dragon 4
1697 646821
5088 1293267
3388 646501

6-sided hole 8
36 101395
36 200466
13 99846

12-sided hole 8
36 202771
54 400914
19 199686

Table B.1: Sizes of common meshes a�er performing a number of subdivision steps. �e three numbers in columns
“Initial size” and “Catmull-Clark” indicate the number of vertices, edges, and faces of the mesh before and a�er subdi-
vision. Note the di�erence in the meshes “Klein Bottle I” and “Klein Bottle II”.�e �rst mesh is a triangulated version
of the second mesh that consists solely of quadrangles.

B.4 Performance and examples

�is section contains examples of psalm’s performance. Since subdivision schemes require access to the
complete topology of amesh, they are rather complex algorithms. Table B.1 shows the increase in vertices,
edges, and faces for some typical meshes. �e time required for several subdivision steps applied to these
meshes is shown in Table B.2.

We conclude this chapter with an example of psalm’s capabilities. Figure B.4 depicts a simpli�ed
version of the “Stanford Dragon” mesh provided by Stanford Computer Graphics Laboratory.
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Input mesh No. of steps Doo-Sabin Catmull-Clark Loop

Tetrahedron
4 0.0078125 0.0078125 0.0078125
6 0.15625 0.140625 0.140625
8 2.64062 2.50781 2.34375

Hexahedron
4 0.0234375 0.0234375 0.0234375
6 0.46875 0.4375 0.429688
8 8.13281 7.75781 7.20312

Icosahedron
4 0.046875 0.0390625 0.0390625
6 0.804688 0.75 0.726562
8 13.6484 13.0781 12.1328

Klein bottle I
1 0.132812 0.125 0.125
2 0.695312 0.648438 0.65625
3 3.10938 2.92969 2.85156

Klein bottle II
1 0.0859375 0.09375
2 0.460938 0.4375
3 2.0625 1.94531

Dragon
2 0.46875 0.453125 0.484375
3 2.07812 1.99219 2.0
4 8.70312 8.52344 8.1875

6-sided hole
6 0.304688 0.0703125
7 1.26562 0.304688
8 5.17969 1.26562

12-sided hole
6 0.539062 0.15625
7 2.23438 0.632812
8 9.16406 2.57812

Table B.2: Performance of psalm when operating on several example meshes. �e unit of the measurements is CPU
time in seconds. Performance was measured on an Intel Celeron M 1.4 GHz processor. �e table only contains data
for subdividing the mesh. �e overhead from loading the initial mesh and storing the resulting mesh has not been
included because it would skew the results (di�erent mesh formats can be processed at di�erent speeds). Blank lines in
the Loop column indicate that the mesh does contain non-triangular faces, which makes the Loop scheme inapplicable.
As a result, we see that the Catmull-Clark is slightly faster than the Doo-Sabin algorithm, especially when being used
to �ll n-sided holes. �is is due to the fact that the new topology of meshes with n-sided holes may be determinedmuch
more quickly for the Catmull-Clark algorithm, which generates quadrangles only, than for the Doo-Sabin algorithm,
which generates non-quadrangular faces.
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(a) Original (b) Catmull-Clark

(c) Loop (d) Doo-Sabin

Figure B.4: A simpli�ed version of the “Stanford Dragon” mesh provided by Stanford Computer Graphics Laboratory.
In clockwise order, starting from the upper le� image, three steps of the Catmull-Clark, the Doo-Sabin, and the Loop
subdivision scheme are depicted. Note how the di�erent schemes smooth details of the mesh. �e Loop scheme, for
example, does not preserve the eyes and scales of the dragon very well when compared to the Catmull-Clark scheme.
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