
Inaugural-Dissertation

zur
Erlangung der Doktorwürde

der
Naturwissenschaftlich-Mathematischen Gesamtfakultät

der
Ruprecht-Karls-Universität

Heidelberg

vorgelegt von
Diplom-Mathematikerin Bärbel Janssen

aus Aurich

Tag der mündlichen Prüfung:

Adaptive Coupling of Finite Element Methods
for Simulation of Hydrodynamics and

Pollutant Transport in Lakes

Gutachter: Prof. Dr. Dr. h. c. Rolf Rannacher

Dedicated to my father,
who was never able
to read this thesis.

Abstract

Subject of this work is the development of new numerical methods for the solution of problems occurring
in hydrodynamics of lakes. The computation of transport processes of pollutants demands to resolve
sharp fronts accurately. This requires a high accuracy in certain parts of the domain.

To achieve the necessary accuracy and to keep the computational costs moderate, we do not resolve the
whole three dimensional domain. In parts of the domain in which the required accuracy is marginal, a
two dimensional solution is sufficient. In those parts of the domain in which a better accuracy is to be
achieved, we add a three dimensional correction to the two dimensional solution. This way, we accomplish
a more accurate, three dimensional solution in certain parts of the domain with moderate additional
expenses. We derive the equations that arise according to the coupling of different dimensions.

As a preconditioner of the coupled system, we apply a block preconditioner. For each of the diffusion
dominated blocks, we developed a multilevel preconditioner for continuous finite elements on adaptively
refined meshes. The smoothing is only applied locally. By the means of numerical examples we show
the efficiency for higher order finite elements.

Zusammenfassung

Gegenstand dieser Arbeit ist die Entwicklung neuer numerischer Methoden zur Lösung von Problemen
der Hydrodynamik in Seen. Für die Berechnung von Transportprozessen von Schadstoffen ist es wichtig
Fronten scharf aufzulösen. Dies erfordert eine hohe Genauigkeit in bestimmten Bereichen des Gebiets.

Um die erforderliche Genauigkeit zu erreichen und gleichzeitig die Kosten bei der Berechnung moderat
zu halten, lösen wir das dreidimensioale Gebiet nicht überall komplett auf. In den Teilen des Gebiet, in
denen nur geringe Genauigkeit gefordert wird, genügt eine zweidimensioale Lösung. Für die Bereiche in
unserem Gebiet, in denen wir bessere Genauigkeit erzielen wollen, addieren wir zu der zweidimensionalen
Lösung eine dreidimensionale Korrektur. Auf diese Weise erreichen wir in gewissen Teilen des Gebiets
eine genauere, dreidimensional Lösung bei moderatem Mehraufwand. Die Gleichungen, die durch diese
Kopplung entstehen, werden hergeleitet.

Für die Vorkonditionierung des gekoppelten Systems verwenden wir einen Block-Vorkonditionierer.
Für die einzelnen Blöcke haben wir einen Mehrgitter-Vorkonditionierer für stetige Finite Elemente
auf adaptiv verfeinerten Gittern entwickelt. Dabei geschieht die Glättung nur lokal. Anhand von
numerischen Beispielen zeigen wir die Effizienz für Elemente höherer Ordnung.

Contents

1 Introduction 1

2 Basic notations 7
2.1 Basic notation . 7

2.1.1 Sobolev spaces on a fixed domain . 7
2.1.2 Continuous function spaces . 8
2.1.3 Sobolev spaces on a time dependent domain 8

3 Equations 9
3.1 Basic equations describing fluid flows . 9

3.1.1 Navier-Stokes equations . 9
3.1.2 Boussinesq approximation . 11
3.1.3 Variational formulation of the Boussinesq equations 12
3.1.4 Shallow-Water equations . 13
3.1.5 Variational formulation of the Shallow-Water equations 14

3.2 Equations for free surface flows . 14
3.2.1 Arbitrary Lagrangian Eulerian (ALE) formulation 15
3.2.2 Spacial and temporal derivatives in ALE formulation 15
3.2.3 Construction of the ALE mapping . 16
3.2.4 Equations formulated in ALE framework 18

4 Coupling of models in 2D and 3D 19
4.1 Coupling of 2D and 3D Poisson problem . 19

4.1.1 Decomposition of the space W . 20
4.1.2 Discussion of the coupling terms . 21
4.1.3 Discussion of the boundary term . 22
4.1.4 Numerical results . 23
4.1.5 Discussion of the numerical results . 29

4.2 Coupling of 2D Shallow-Water and 3D Boussinesq model 30
4.2.1 First equation . 31
4.2.2 Second equation . 32
4.2.3 Discussion of the linear coupling terms 32
4.2.4 Discussion of the non-linear coupling terms 35

5 Discretization 43
5.1 Discretization in time . 43

5.1.1 Preliminaries on time stepping schemes 43
5.1.2 Temporal regularity . 48

i

Contents

5.1.3 Temporal discretization of the Boussinesq equations 50
5.1.4 Temporal discretization of the Shallow-Water equations 51
5.1.5 Temporal discretization of the Boussinesq equations in ALE formulation 53

5.2 Issues on meshes . 54
5.2.1 Splitting of adaptive meshes into levels 54
5.2.2 Hanging nodes . 58

5.3 Discretization in space . 59
5.3.1 Galerkin finite element discretization . 60

5.4 Stabilization . 62
5.5 Coupling discretization in 2D and 3D . 63

5.5.1 Connecting meshes in 2D and 3D . 63

6 Algorithm 67
6.1 Basic algorithms . 67

6.1.1 Newton’s method . 67
6.1.2 Solving linear systems . 67
6.1.3 Block preconditioning with Schur complements 68

6.2 Multilevel algorithm . 69
6.2.1 Splitting of level spaces . 71
6.2.2 Prolongation and restriction . 72
6.2.3 Local smoothing . 73
6.2.4 Overlapping Schwarz smoother . 74
6.2.5 Complexity of the algorithm . 75
6.2.6 Memory requirements . 76
6.2.7 Numerical experiments . 76

6.3 Details on the implementation . 81
6.3.1 Fully discrete coupled problem . 81
6.3.2 Integration of coupled terms on active cells 82
6.3.3 Integration of coupled terms on inactive cells 83

7 Numerical results 85
7.1 Numerical example . 85
7.2 Initial and boundary conditions . 87
7.3 Choice of parameters . 87
7.4 Discussion of numerical results . 94

8 Conclusions 95
8.1 Conclusion . 95
8.2 Outlook . 95

Acknowledgments 97

List of Figures 99

List of Tables 101

List of Algorithms 103

ii

Contents

Bibliography 105

iii

1 Introduction

The prediction of water quality requires a good knowledge of the mechanisms of free surface
flows. Although the technical progress allows us to solve more and more complex problems,
we have to ensure that this is possible on today’s computers.

The purpose of this work is to develop efficient algorithms for simulations of hydrodynamics in
lakes. To predict the water quality it is important to use the most complex model to capture
sharp fronts in transport processes of pollutants, for example. We restrict ourselves to carry
out the simulations on a desktop computer. This means we have to come up with a fast solver
on the one hand and a way to achieve the accuracy of the most complex model on the other
hand.

One way to reduce the computational costs but to keep the required accuracy at the same time,
is to use adaptivity. In this thesis we solve the complex problem in a monolithic formulation.
This means the whole system of nonlinear coupled equations has to be solved all at once.
This will be the starting point to apply a posteriori error analysis for goal oriented mesh
adaptivity.

It is very costly to solve a fully coupled nonlinear time dependent problem in a three dimensional
space. We focus also on how to reduce the computational cost in various ways.

Physical phenomena are often localized in specific portions of the domain. For the mathematical
modeling of these phenomena it is reasonable to utilize a model that is computationally cheap
enough, but sufficiently accurate at the same time. The idea behind this approach is to use
the full three dimensional model only in areas of the domain where a better approximation of
the solution is necessary to accurately solve for the unknown.

A novel strategy to couple a three dimensional model with a model in two dimensions is
introduced. We define the part of the domain that is solved with the more complex model a
priori. One can also think of applying an automatic tool to choose the area of the domain
where the three dimensional model has to be applied.

There has been work in this direction for a systematic model reduction based on a posteriori
error estimates as already realized in the context of reactive flow models [15]. Model coupling
techniques using a posteriori error analysis were presented in [14], [46], [47] and [52]. Our
approach differs from the techniques presented in those articles since we couple different models
in various finite element spaces. The equations that arise due to this kind of coupling are
derived.

One main issue of this work is the geometric multilevel preconditioner using continuous finite
elements on adaptively refined meshes. The novelty of this algorithm is its applicability to
adaptive meshes with hanging nodes as well as higher order finite elements. Due to the local

1

1 Introduction

smoothing of overlapping Schwarz type it has optimal computational complexity. This makes
the preconditioner well suited for solving three dimensional complex coupled problems in
reasonable time.

In our setting the multilevel preconditioner is used in a block-Schur type preconditioner for
inverting diffusion dominant blocks.

The formulation of the fully coupled nonlinear system is presented and the technical details on
how to implement this in a finite element code are described.

Simulations for hydrodynamics in lakes

When dealing with hydrodynamics a crucial point is the model used for simulations. The flow
and the transport of particles in lakes is described by the general Navier-Stokes equations for
the fluid and thermodynamics and a transport equation for the species concentration in the
full three dimensional domain.

∂tv + (v ·∇)v − 1
%
∇·σ − γg%(T) = g + f,

1
%
∂t%+∇·v = 0,

∂tT + v ·∇T −∇·(νT∇T) = qT ,

∂tS + v ·∇S −∇·(νS∇S) = qS ,

% = %(T, p).

(1.1)

where the stress tensor is given as

σ = −p Id +%ν(∇v +∇vT).

The variables v, p, T, S stand for velocity, pressure, temperature, and species concentration,
respectively. The coefficients ν, γ and νT denote the kinematic viscosity, volume expansion,
and thermal diffusivity of water, respectively. g denotes the negative acceleration of gravity.

A reduced model called Shallow-Water model for v and p can be derived from the first two
equations in (1.1). This is vertically averaged and therefore only two dimensional. The
equations are given as

h∂tw2D + h(w2D · ∇)w2D − ν∇ · (h∇w2D) + gh∇h = F,

∂th+ w2D∇h+ h∇ · w2D = 0.
(1.2)

The unknowns are the vertically averaged velocity w2D = (w1
2D, w

2
2D) and the height h. The

pressure of the Navier-Stokes equations (1.1) has dropped out and can be expressed in terms
of the height:

p = %g(h− x3).

The main drawback of two dimensional models is the accuracy. Vertical mixing is not taken
into account and due to the fact of pressure depending only on the weight of the column of

2

water in the Shallow-Water model we will not get satisfying results. To capture sharp fronts
in transport processes a resolution in three dimensions is required. This means we have to use
the full Navier-Stokes equations (1.1) for a better resolution.

A coordinate transformation form Cartesian coordinates to so called σ coordinates was
introduced in [11]. This makes the domain movement in three dimensional free surface flow
possible. It is extensively used e.g. in [63]. We follow a different approach as is explained in
[29].

In order to solve the Navier-Stokes equations on the time dependent domain we apply a
transformation to a fixed reference domain. This technique is called ALE formulation and is
well established for solving fluid structure interaction problems, see [31], [56], and [37]. Using
this approach we end up with a monolithic formulation of the problem. This means we do not
use an operator splitting but rather get a fully coupled system to be solved.

There are several groups that work in this field, e.g. [36], and also commercial codes are
available: Delft3D [30] and Telemac [63]. In the former SFB 359 “Reactive Flows, Diffusion and
Transport” there was a project in which numerical simulations were done for lake Willersinn
[70].

Shortcomings in existing numerical approaches are unsatisfactory accuracy and enormous com-
puting times. Either the mathematical model used is too much simplified or the discretization
is too coarse to capture local effects properly. Alternatively some of the existing software based
on the full model uses large parallel computers to cope with the huge computational costs.

The idea would be to develop code for supporting limnologists to take their measurements.
This is the reason why in this thesis we develop new numerical tools for performing numerical
simulations with sufficient accuracy on desktop computers.

Solving discrete problems

The fully coupled problem in 3D has to be solved efficiently. The resulting linear problems are
preconditioned by so called block preconditioners introduced by Elman, Silvester, and Wathen
for Stokes problems [32].

As part of this block preconditioner we present a multilevel preconditioner introduced in [39]
for H1- and Hcurl-conforming high order finite element methods. We apply it to the diffusion
dominated blocks that occur in the linear block systems.

In this thesis we only describe the application to continuous higher order finite element methods
on adaptively refined meshes. We restrict smoothing only to the most refined part of the
domain. We note that qualitatively, it is clear from work by Bramble [17], Griebel and Oswald
[34], and Xu [73], that local smoothing, if correctly implemented, yields convergence rates
independent of the mesh size. Nevertheless, it is a priori not clear whether the constants in
these estimates deteriorate in the presence of refinement edges. Furthermore, the estimates
are usually not uniform in the polynomial degree of the finite element shape functions. In
Section 6.2.7, we provide numerical evidence that these rates are quantitatively not worse than
those obtained on uniform meshes and depend only weakly on the polynomial degree.

3

1 Introduction

We discuss the artificial boundary conditions that have to be imposed on the boundary
between two regions of the domain with different refinement levels. For the application to
Hcurl-conforming high order finite element methods we refer to [39].

When we consider adaptively refined meshes for multigrid methods, we have to distinguish
between meshes with hanging nodes and conforming meshes. The latter can either be generated
by red-green refinement [57] or bisection [48, 61], and often appear with simplicial meshes. In
that case, the question of dealing with hanging nodes does not arise. Local adaptive multigrid
methods for these meshes can be found for instance in [6–8, 58].

On meshes with hanging nodes, several types of optimal multilevel preconditioners have been
devised. These are:

1. Local smoothing inside the region of local refinement, but not at the interface between
refined and coarser region was introduced by Brandt [19] for finite difference methods.
In McCormick’s monograph [45], this method is discussed for the finite volume element
method under the name of multilevel composite grid scheme. These methods are used in
applications that allow for dynamically changing meshes in the multigrid procedure [65].
We extend these methods to higher order finite element methods in the H1-conforming
case.

2. Local smoothing in the region of local refinement, including the interface between fine
and coarse cell and the support of basis functions associated with node values on the
interface [9]. In [45], this scheme is applied to finite volume methods as bordered multilevel
scheme.

3. The method of global coarsening avoids the problem of setting a border to the subdomain
for smoothing by introducing a hierarchy of level spaces where each space covers the
whole computational domain. By choosing the levels carefully, these methods still
maintain optimal complexity. They share the drawbacks of the bordered scheme, but
offer advantages in problems with global constraints like the zero mean value property of
the pressure in incompressible flow problems. This method has been applied for instance
in [10, 12, 41, 42, 60]. In [9], it is compared to the bordered scheme. Global smoothing
does not yield optimal complexity [8] of the multilevel algorithm but in this case no
artificial boundary has to be created.

The usage of this multilevel preconditioner speeds up the computation, especially when dealing
with a three dimensional domain. In these cases the use of a direct solver is no longer
feasible.

Coupling models in different dimensions

To reduce the high computational costs we present a novel approach in dealing with fluid flows.
The technique we present has been used in solid mechanics, see [54]. The idea is to decompose
the solution of the problem in 3D into a sum as

u = u2D + u3D, (1.3)

4

where u2D is a solution of the Shallow-Water model and u3D is understood as a correction
which is only computed in certain parts of the domain in 3D. This approach allows us to
prescribe areas of the 3D domain where a higher accuracy is needed. In those areas where a
2D solution is sufficiently accurate the Shallow-Water model is used.

To be more precise, we do not only split the function u as in (1.3), but the whole space in
which we are looking for a solution of our problem described using a semi-linear form a(u)(ϕ).
When the original problem reads: Find u ∈ V such that

a(u)(ϕ) = (f, ϕ) for all ϕ ∈ V,

the coupled problem reads: Find u2D ∈ V2D and u3D ∈ V3D such that

a(u3D + u2D)(ϕ3D + ϕ2D) = (f, ϕ3D + ϕ2D) (1.4)

for all ϕ2D ∈ V2D and for all ϕ3D ∈ V3D. The subscript indicates that V3D consists of functions
on a domain in R3, whereas functions in V2D are defined on two dimensional domain.

As a first step we apply this coupling to a test case, namely the coupled Laplace problem.
We derive the equations in two dimensions as well as in three dimensions. Numerical tests
are carried out to show the convergence of this approach by means of the gained numerical
results.

In a next step we adopt the same techniques to the generalized Navier-Stokes problem (1.1).
The derivation of the coupling terms in this case is a little more crucial due to the nonlinear
terms than for the linear Laplace problem.

Implementational aspects

As can be seen in (1.4) the coupling of models in 2D and 3D requires to discretize forms and
residuals such as

a(u2D)(ϕ3D), a(u3D)(ϕ2D), (r2D, ϕ3D), (r3D, ϕ2D). (1.5)

From a computational point of view we explain how the coupling is realized in a framework of a
finite element software library. The concept of the MeshWorker in deal.II offers the possibility
to incorporate the coupling between meshes, cells and functions, etc.

We explain the general use of the MeshWorker and based on the concept of the MeshWorker
we present how the implementation of the coupling can be done in an elegant way.

For example we explain how the meshes in 2D and 3D are connected and how refinement is
realized such that it “matches” between the meshes in different dimensions.

The outline of this thesis is as follows:
In Chapter 2 we introduce the basic notation that will be used throughout this thesis. In
Chapter 3 we present the governing equations and derive the equations we will later use.

5

1 Introduction

In Chapter 4 the new technique for coupling of different models is explained for the Laplace
problem as well as for the equations describing fluid flows.

In Chapter 5 the discretization of the coupled variational problem is introduced. Principal
aspects of the discretization in space and time are explained. Furthermore we describe the
coupling of the meshes.

In Chapter 6 the algorithms used for the whole solution process are provided. The multilevel
algorithm is explained in detail.

We end this thesis with Chapter 8. The presented results are summarized and possible
extensions and future work are pointed out.

6

2 Basic notations

In this chapter we briefly introduce the notation used throughout this thesis. Furthermore we
present the requirements for a discretization of our computational domain Ω.

2.1 Basic notation

In this section we introduce the notation we use in this thesis. Let Ω(t) ⊂ R3 be an open
bounded time dependent domain with boundary ∂Ω(t). Due to the free surface we allow the
boundary at the top to be time dependent. In this thesis we restrict ourselves to fixed vertical
boundaries and a fixed bottom. The projection of the time dependent domain Ω(t) onto the
horizontal plane is denoted by Ω2D. This two dimensional domain is no longer time dependent
since we only allow the surface of Ω(t) to evolve in time. The boundary of Ω(t) is assumed to
be Lipschitzian for all t ∈ I. The outer unit normal vector is denoted be n(t).

2.1.1 Sobolev spaces on a fixed domain

For a fixed domain in time Ω we denote the space of measurable functions which are Lebesgue-
integrable to the p-th power as Lp(Ω), 1 ≤ p ≤ ∞. For the special case p = 2 the space L2(Ω)
becomes a Hilbert space with the inner product

(u, v)L2(Ω) :=
∫
Ω
u(x)v(x) dx.

The Sobolev space Wm,p(Ω),m ∈ N, 1 ≤ p ≤ ∞, is the space of functions in Lp(Ω) with
distributional derivative of order up to m in Lp(Ω). For p = 2, Hm(Ω) := Wm,p(Ω) is a Hilbert
space with the inner product

(u, v)Hm(Ω) :=
∑
|α|≤m

(∂αu, ∂αv)L2(Ω).

If it is clear from the context we drop the subscripts and write

(u, v) := (u, v)Ω := (u, v)L2(Ω), ‖u‖ :=‖u‖Ω :=‖u‖L2(Ω) .

For a detailed introduction to Sobolev spaces we refer to [1].

7

2 Basic notations

2.1.2 Continuous function spaces

For k ∈ N we denote with Ck(Ω) the space of functions whose derivatives up to order k are
continuous on Ω. We set

C∞(Ω) =
⋂
k∈N

Ck(Ω).

For simplicity we set C(Ω) := C0(Ω). The space Ck(Ω) consists of all functions from
Ck(Ω) whose derivatives up to order k possess continuous extensions onto Ω. The space
C∞0 (Ω) ⊆ C∞(Ω) is the subspace of functions which are non-zero only in a compact subset
of Ω. The closure of C∞0 (Ω) in Wm,p(Ω) is denoted by Wm,p

0 (Ω) or Hm
0 (Ω) if p = 2. The

dual space of any space X is indicated by an asterisk X∗, the dual space of Hm
0 (Ω) is denoted

by H−m(Ω). The corresponding spaces of d-dimensional vector functions are denoted by
Lp(Ω)d,Wm,p(Ω)d and Hm(Ω)d. They are equipped with the usual product norm. The norms
and inner products on these spaces are denoted in the same way as for scalar functions.

Let I := (0, T) with 0 < T < ∞ be a bounded time interval. For any Banach space X and
1 ≤ p ≤ ∞, Lp(I,X) denotes the space of Lp-integrable functions w from I into X. For a
detailed derivation of these spaces by means of the Bochner integral, we refer to [72].

2.1.3 Sobolev spaces on a time dependent domain

In the case of a domain varying in time we carry over the definitions of the previous section.
The space Ck(I,X), k ∈ N consists of functions from I into X that are k times continuously
differentiable on I and whose derivatives ∂itf(t) of order 0 ≤ j ≤ k possess continuous extensions
onto I. For convenience we set C(I,X) := C0(I,X).

8

3 Equations

In this chapter we present the governing equations. For the full model we use the Navier-
Stokes equations in three dimensions. After making some assumptions we derive the reduced
Shallow-Water model in two dimensions.

3.1 Basic equations describing fluid flows

For the simulation of hydrodynamics in lakes we use the Boussinesq equations derived from well
known Navier-Stokes equations. These equations are valid on a three dimensional domain.

The equations are transformed to a fixed computational domain via an ALE transformation.
We introduce a height describing the position of the free surface. The height is determined by
the Shallow-Water equations.

3.1.1 Navier-Stokes equations

This section introduces the Navier-Stokes equations as well as equations describing the transport
of a tracer. Throughout this thesis the temperature T is the only tracer that couples back to
the Navier-Stokes equations. For the transport of pollutants we assume that the species that
are transported do not couple back to the system. These kind of tracers are called passive
tracers, whereas the temperature is an active tracer, because it influences the Navier-Stokes
equations.

A derivation of the Navier-Stokes equations can be found in [25]. The equations are valid for a
domain Ω(t), t ∈ I = [0, T] with 0 < T <∞, varying in time.

The conservation of mass is described by

∂t%+∇·(%v) = 0

and called the continuity equation where % describes the density and v the velocity of the fluid.
The balance of momentum leads to the momentum equation

%∂tv + %(v ·∇)v −∇·σ = %f + %g (3.1)

with the stress tensor σ and external forces f . For the cases we consider in the thesis the stress
tensor is given as

σ = −p Id +%ν(∇v +∇vT).

9

3 Equations

The pressure is denoted by p. The transport equation which holds for any tracer is

∂tT + v · ∇T − νT∆T = qT . (3.2)

For the density there holds an equation of state:

% = %(T, p). (3.3)

These equations are simplified after some assumptions are applied. The following reasoning is
taken from [38]. The first step is to treat water as an incompressible fluid. This is based on the
assumption that the water density is independent of pressure. The variations are only taken
into account through the equation of state (3.3). Then the continuity equation becomes

∇·v = 0, (3.4)

which means that the velocity field is solenoidal. We state the weak formulation of the
Navier-Stokes equations for constant density:

Problem 3.1. For f ∈ L2(I, V ∗) and v0 ∈ H find v ∈ L2(I, V) with

d
dt(v, ϕv) + ν(∇v,∇ϕv) + ((v ·∇)v, ϕv) = 〈f, ϕv〉 ∀ϕv ∈ V,

v(0) = v0.

The existence of a corresponding pressure is ensured by the following lemma:

Lemma 3.1 (Inf-Sup Condition). For each f ∈ H−1(Ω)d with 〈f, ϕ〉 = 0 ∀ϕ ∈ V there is
a unique p ∈ L2(Ω)/R such that

f = ∇p, i.e., 〈f, ϕ〉 = 〈∇p, ϕ〉 = −(p,∇·ϕ) ∀ϕ ∈ H1
0 (Ω)d.

Furthermore the inf-sup stability condition holds:

‖p‖L2(Ω)/R ≤‖∇p‖H−1(Ω) = C sup
ϕ∈H1

0 (Ω)d

∣∣(p,∇·ϕ)
∣∣

‖∇ϕ‖
.

Proof. A proof of this fundamental property can be found, for instance, in [33] or [64].

Under additional assumptions on the data one can show that the weak solution of Problem 3.1
possesses more regularity and that the pressure can be viewed as an almost everywhere defined
function rather than only a distribution. The results for the three dimensional case are
presented in the following proposition:

Proposition 3.2. Let Ω be a bounded domain in R3 with boundary of class C2 and v0 ∈ V .
For f ∈ L∞(I,H) there exists T ′, 0 < T ′ ≤ T such that Problem 3.1 possesses a unique
solution v on I ′ := (0, T ′). Moreover,

v ∈ L2(I ′, H2(Ω)3 ∩H1
0 (Ω)3) ∩ L∞(I ′, V) and ∂tv ∈ L2(I ′, H).

For the corresponding pressure we obtain p ∈ L2(I ′, H1(Ω)3).

10

3.1 Basic equations describing fluid flows

Proof. We refer to [64] for a proof of this regularity and uniqueness result.

Remark 3.1. The requirements concerning the regularity of the boundary ∂Ω can be weakened.
The statement of Proposition 3.2 remains true if Ω is a polygonally bounded and convex
domain or its boundary is of class C1,1.

For simplicity we will write I ′ = I in the following.

3.1.2 Boussinesq approximation

As a next step we apply the Boussinesq approximation to the Navier-Stokes equations. In
natural water bodies as rivers, lakes and seas, the variations of density are relatively small.
Based on this fact the variations of density are taken into account only in those terms of the
momentum equation (3.1).

The density is assumed to be a sum of a constant average density %0 and a variable density
variance ∆% in the form

% = %0 +∆%.

Then it holds
1
%

= 1
%0 +∆%

= 1
%0(1 + ∆%

%0
)
. (3.5)

Taking into account that ∆%
%0
� 1 we can linearize (3.5) to

1
%
≈ 1
%0

(
1− ∆%

%0

)
. (3.6)

The hydrostatic pressure pH results from the average density %0 as

pH = %0g(h− x3),

where h(x1, x2, t) is the position at the free surface. Thus we can write the pressure as a sum
of the hydrostatic pressure and the pressure variation ∆p:

p = pH +∆p. (3.7)

Using what we got for the density % in (3.6) and the pressure in (3.7) we derive

1
%
∇p = 1

%0

(
1− ∆%

%0

)
∇p = 1

%0
∇p− ∆%

%2
0
∇p

= 1
%0
∇p− ∆%

%2
0
∇p

= 1
%0
∇p− ∆%

%2
0
∇pH −

∆%

%2
0
∇(∆p)

= 1
%0
∇p− ∆%

%0
g − ∆%

%0
g∇h− ∆%

%2
0
∇(∆p)

(3.8)

11

3 Equations

where g = (0, 0,−g) denotes the gravity. The idea of the Boussinesq approximation is to
neglect the last two terms in (3.8) which leads to

1
%
∇p = 1

%0
∇p− ∆%

%0
g.

The equation for the conservation of momentum (3.1) transforms after applying the Boussinesq
approximation into

∂tv + (v ·∇)v + 1
%0
∇p− ν∆v − %

%0
g = f. (3.9)

This means we end up with the following set of equations to be solved

∂tv + (v ·∇)v + 1
%0
∇p− ν∆v − %

%0
g = f,

∇·v = 0,
∂tT + v · ∇T − νT∆T = qT ,

% = %(T),

(3.10)

subject to boundary and initial conditions for the velocity

v(0) = v0, v = 0 on ∂Ω × [0, T],

as well as for the temperature

T (0) = T0, n∇T = 0 on Γv × [0, T], T = gT on Γs × [0, T].

In the case we impose boundary conditions for the velocity on the whole boundary of the
domain, the pressure is determined up to a constant. To fix the pressure uniquely we require∫

∂Ω
p ds = 0.

From this point we are able to set up a variational formulation including boundary and initial
conditions.

3.1.3 Variational formulation of the Boussinesq equations

We take the density to be a function of the temperature %(T) and set γ := 1
%0
. The solution

u := (v, p, T) ∈ X(t) of (3.10) satisfies v(0) = v0 and T (0) = T0 and for almost all t ∈ I it
fulfills

(∂tv, ϕv) + ((v ·∇)v, ϕv) + γ(∇p, ϕv) + (ν∇v,∇ϕv)− γ(%(T)g, ϕv) + (∇·v, ϕp)
+(∂tT, ϕT) + (v · ∇T, ϕT) + νT (∇T,∇ϕT)

= (f, ϕv) + (qT , ϕT) ∀ϕ = (ϕv, ϕp, ϕT) ∈ X̃(t),
(3.11)

12

3.1 Basic equations describing fluid flows

where

X(t) :=
{
u = (v, p, T)

∣∣∣ v(t) ∈ H1
0 (Ω(t))3, ∂tv(t) ∈ L2(Ω(t))3,

p(t) ∈ L2(Ω(t))/R, T (t) ∈ H1
0 (Ω(t)), ∂tT (t) ∈ L2(Ω(t)) for almost all t ∈ I

}
,

(3.12)

and

X̃(t) :=
{
u = (v, p, T)

∣∣∣ v ∈ H1
0 (Ω(t))3, p ∈ L2(Ω(t))/R, T ∈ H1

0 (Ω(t))
}
. (3.13)

If we are interested in the transport of tracers which do not couple back to the system (3.11)
we have to solve additional equations of type

∂tS + v · ∇S − νS∆S = qS (3.14)

for each tracer. We call the tracers that do not couple back to the system a passive tracer.
The temperature denoted by T e.g. is an active tracer. The variational formulation for the
tracer equation (3.14) reads: Find S(t) ∈ Y (t) such that S(0) = S0 and such that for almost
all t ∈ I it holds

(∂tS, ϕS) + (v · ∇S, ϕS) + νS(∇S,∇ϕS) = (qS , ϕS) ∀ϕS ∈ Ỹ (t),

where

Y (t) :=
{
S
∣∣∣ S(t) ∈ H1

0 (Ω(t)), ∂tS(t) ∈ L2(Ω(t)) for almost all t ∈ I
}
,

and

Ỹ (t) :=
{
S
∣∣∣ S ∈ H1

0 (Ω(t))
}
.

3.1.4 Shallow-Water equations

In this section we present the Shallow-Water equations. By assuming hydrostatic pressure and
small velocity in the vertical direction in the Navier-Stokes equations

∂tv + (v ·∇)v + γ∇p− ν∆v − %(T)γg = f

∇·v = 0
(3.15)

the Shallow-Water equations (3.16) can be derived by integration from bottom to the free
surface. A detailed derivation can be found in [51] or [71]. The Navier-Stokes equations valid
on the domain Ω(t) transform into the Shallow-Water equations which are stated on a two
dimensional domain Ω2D which is a projection of the three dimensional domain Ω(t) onto the
horizontal plane. Since only the free surface in 3D is evolving with time the two dimensional
domain is not time dependent.

In non-conservative form the Shallow-Water equations read

h∂tv2D + h(v2D · ∇)v2D − ν∇·(h∇v2D) + gh∇h = F,

∂th+ v2D∇h+ h∇·v2D = 0.
(3.16)

13

3 Equations

Here, h = h(x1, x2, t) denotes the height of the water body. We assume that h is defined
pointwise for all x1, x2 ∈ Ω2D and for all t ∈ I. The two dimensional velocity v2D =
v2D(x1, x2, t) is the averaged velocity of the Navier-Stokes equations (3.15):

vi2D = 1
h

∫ h

0
vi dz, i = 1, 2, (3.17)

and the pressure can be expressed using the height h as

p = %g(h− x3) + pA,

where pA denotes the atmospheric pressure which is constant. For later purposes we also state
the Shallow-Water equations in conservative form:

∂t(hv2D) + (v2D ·∇)(hv2D) + h(v2D ·∇)v2D − ν∇·(h∇v2D) + 1
2g∇h

2 = F,

∂th+∇ · (hv2D) = 0.
(3.18)

3.1.5 Variational formulation of the Shallow-Water equations

The variational problem for the Shallow-Water equations reads: Find u2D = (v2D, h) ∈ X2D
such that v(0) = v0 and h(0) = h0 and such that for almost all t ∈ I it holds

(h∂tv2D, ϕv2D) + (h(v2D ·∇)v2D, ϕv2D)− ν(h∇v2D,∇ϕv2D) + (gh∇h, ϕv2D)
+(∂th, ϕh) + (v2D∇h, ϕh) + (h∇·v2D, ϕh)

= (F,ϕv2D), ∀ϕ = (ϕv2D , ϕh) ∈ X̃2D,

(3.19)

where

X2D :=
{
u = (v2D, h)

∣∣∣ v2D ∈ L2(I,H2(Ω2D) ∩H1
0 (Ω2D)2), ∂tv2D ∈ L2(I, L2(Ω2D)2),

h ∈ L2(I,H2(Ω2D) ∩H1
0 (Ω2D)), ∂th ∈ L2(I, L2(Ω2D))

}
,

and

X̃2D :=
{
u = (v2D, h)

∣∣∣ v2D ∈ H1
0 (Ω2D)2, h ∈ H1

0 (Ω2D)
}
.

3.2 Equations for free surface flows

With regard to the discretization of the problems stated in Section 3.1, we make use of the
concept of the ALE formulation. This approach is often used in fluid-structure interaction
problems, see [31], [50], [56] and [37].

14

3.2 Equations for free surface flows

3.2.1 Arbitrary Lagrangian Eulerian (ALE) formulation

Let At be a family of mappings which at each time t ∈ [0, T] associate a point x of a reference
configuration Ω to a point xt on the current domain configuration Ω(t):

At : Ω → Ω(t), xt(x, t) = At(x).

We assume At to be an homeomorphism, that is At is invertible with continuous inverse
(At)−1 =: A and At is also two times continuously partially differentiable.

Let f t : Ω(t) × I → R be a function defined on the Eulerian frame and f := f t ◦ At the
corresponding function on the ALE frame, defined as

f : Ω × I → R, f(x, t) = f t(At(x), t)

With the help of the mapping At functions and operators in Ω(t) can be rewritten as such in
the domain Ω. For this reason we introduce the transformation identities. By F and J we
denote the Jacobian matrix of the mapping At and its determinant respectively:

F := ∇At, J := detF. (3.20)

3.2.2 Spacial and temporal derivatives in ALE formulation

Spacial derivatives of f can be obtained by the chain rule:

∂if(x, t) =
∑
j

∂tjf
t(At(x), t)∂iAtj(x, t),

where ∂ti is a partial derivative on the domain Ω(t). Thus the gradient of a scalar function can
be written as

∇f = F∇tf,

with ∇t being the gradient on Ω(t). Applying this identity to each component of a vector field
we obtain

∇v = ∇tvF.

We present also the transformed temporal derivatives. For a proof of the identities we refer to
[31]:

∂ttv = ∂tvt − (F−1∂tAt ·∇)v
dttv = ∂tvt + (F−1(v − ∂tAt)·∇)v.

This means we have to following identities for the transformation of spacial and temporal
derivatives. Here f denotes a scalar function whereas v denotes a vector field:

∇tf t = F−T∇f, ∇tvt = ∇vF−1,

∂ttf
t = ∂tf − (F−1∂tAt ·∇)f, ∂ttv

t = ∂tv − (F−1∂tAt ·∇)v,
dttf

t = ∂tf + (F−1(v − ∂tAt)·∇)f, dttv
t = ∂tv + (F−1(v − ∂tAt)·∇)v.

(3.21)

15

3 Equations

With f(x) = f t(At(x)) = f t(xt) ∈ L2(Ω) we transform the volume integral in Ω(t) to an
integral in Ω as ∫

Ω(t)
f t(xt) dxt =

∫
Ω
f(x)J dx.

Prior to define the ALE mapping we mention the regularity conditions we address to At.

Proposition 3.3. Let Ω be a bounded domain with Lipschitzian boundary and let At be
invertible in Ω. For each t ∈ I let the following conditions be satisfied

(i) Ωt = At(Ω) is bounded and ∂Ωt is Lipschitzian.

(ii) At ∈W 1,∞(Ω) and (At)−1 ∈W 1,∞(Ωt).

Then, vt ∈ H1(Ωt) if and only if v = vt ◦ At ∈ H1(Ω). Moreover,
∥∥∥vt∥∥∥

H1(Ωt)
is equivalent to

‖v‖H1(Ω) ∀v ∈ H1(Ω).

Proof. The proof can be found in [50].

Concerning the time regularity of the mapping we assume that the function xt(x, t) satisfies

xt ∈ H1(I,W 1,∞(Ω)). (3.22)

Proposition 3.4. Under the assumption (3.22), we have that if v ∈ H1(I,H1(Ω)) then,
vt = v ◦ (At)−1 ∈ H1(I,H1(Ωt)) and

∂tv ∈ L2(I,H1(Ωt)).

Proof. The proof can be found in [50].

3.2.3 Construction of the ALE mapping

The widely used technique, especially in the atmospheric and oceanographic communities,
referred to as the sigma transformation [53], is used to construct the ALE mapping. The sigma
transformation performs a transformation in the vertical coordinate to follow the free surface.
This is shown in Figure 3.1. We define the ALE mapping as

Ω(t)Ω

At

Figure 3.1. Transformation to a fixed domain

16

3.2 Equations for free surface flows

At(x, t) =

1 0 0
0 1 0
0 0 h


x1
x2
x3

 . (3.23)

The function h(x1, x2, t) denotes the height from the bottom to the free surface of the domain
Ω(t). It remains to rewrite the equations of the previous section on the fixed reference domain
Ω taking the relations (3.21) into account. We use the variational formulation for discretization
and therefore we present the rewritten equations in weak formulation.

Using the definitions (3.20) and the relation J = detF = h, we get for the continuity equation
(3.4)

(∇t ·vt, ϕtp)Ω(t) = (h∂1v1 + h∂2v2 − x3∂1h∂3v1 − x3∂2h∂3v2 + ∂3v3, ϕp)Ω. (3.24)

We have for the three terms in the momentum equation (3.9)

(∂ttvt + vt ·∇tvt, ϕtv)Ω(t) = (h∂tv + h(F−1(v − ∂tAt)·∇)v), ϕv)Ω
(σt,∇tϕtv)Ω(t) = (hσF−T ,∇ϕv)Ω

−γ(%(T)tg, ϕtv)Ω(t) = −γ(h%(T)g, ϕv)Ω.
(3.25)

The terms in the temperature equation (3.2) transform into

(∂ttT t + vt · ∇tT t, ϕtT)Ω(t) = (h∂tT + h(F−1(v − ∂tAt)·∇)T, ϕT)Ω
νT (∇tT t,∇tϕtT)Ω(t) = (νThF−1F−T∇T,∇ϕT)Ω.

(3.26)

Before we can write the coupled system in ALE formulation we have to require an additional
equation for the height h that was introduced with the definition of the ALE mapping in
(3.23). One choice is to take the so called kinematic boundary condition at the free surface:

∂th+ vS1 ∂1h+ vS2 ∂2h− vS3 = 0. (3.27)

The superscript S indicates that the velocity components are taken at the free surface. Instead
one could use the free surface equation in conservative form, which is given as

∂th+ ∂1(hv1
2D) + ∂2(hv2

2D) = 0, (3.28)

where vi2D is defined in (3.17). For more information about these equations and their derivation,
we refer to [38].

For sake of completeness we present the variational formulation of (3.27) and (3.28). For a
given velocity at the surface we require h ∈ Y2D to satisfy h(0) = h0 and for almost all t ∈ I it
holds

(∂th+ vS1 ∂1h+ vS2 ∂2h− vS3 , ϕh)Ω2D = 0, ∀ϕh ∈ Ỹ2D, (3.29)

where

Y2D :=
{
h
∣∣∣ h ∈ L2(I,H2(Ω2D) ∩H1

0 (Ω2D)), ∂th ∈ L2(I, L2(Ω2D))
}
,

and

Ỹ2D :=
{
h
∣∣∣ h ∈ H1

0 (Ω2D)
}
.

17

3 Equations

With Ω2D we denote the vertical projection of Ω onto the plane x3 = 0. Instead one could
require h ∈ Y2D to satisfy h(0) = h0 and for almost all t ∈ I

(∂th+ ∂1(hv1
2D) + ∂2(hv2

2D), ϕh)Ω2D = 0, ∀ϕh ∈ Ỹ2D. (3.30)

We use one of these equations posed on the free surface to complete the set of equations for
the coupled ALE formulation.

3.2.4 Equations formulated in ALE framework

In the following we omit the subscript Ω since we only consider integrals on the fixed domain.
We make use of a subscript in those cases where the domain of integration differs from Ω.
Taking into account the equations (3.24), (3.25), (3.26) and (3.29), the full coupled system in
ALE formulation (3.11) reads: Find u := (v, p, T, h) ∈ X such that v(0) = v0, T (0) = T0 and
h(0) = h0 and such that for almost all t ∈ I it holds

(h∂tv + h(F−1(v − ∂tAt)·∇)v, ϕv)− γ(hpIF−T ,∇ϕv) + (νh∇vF−1F−T ,∇ϕv)
−γ(%(T)hg, ϕv) + (h∂1v1 + h∂2v2 − x3∂1h∂3v1 − x3∂2h∂3v2 + ∂3v3, ϕp)

+(h∂tT, ϕT) + (h(F−1(v − ∂tAt)·∇)T, ϕT) + (νThF−1F−T∇T,∇ϕT)
+(∂th+ vS1 ∂1h+ vS2 ∂2h− vS3 , ϕh)Ω2D

= (f, ϕv) + (qT , ϕT)

(3.31)

for all ϕ = (ϕv, ϕp, ϕT , ϕh) ∈ X̃, where

X :=
{
u = (v, p, T)

∣∣∣ v ∈ L2(I,H2(Ω)3 ∩H1
0 (Ω)3), ∂tv ∈ L2(I, L2(Ω)3),

p ∈ L2(I, L2(Ω)/R), T ∈ L2(I,H2(Ω) ∩H1
0 (Ω)), ∂tT ∈ L2(I, L2(Ω)),

h ∈ L2(I,H2(Ω2D) ∩H1
0 (Ω2D)), ∂th ∈ L2(I, L2(Ω2D))

}
,

and

X̃ :=
{
u = (v, p, T)

∣∣∣ v ∈ H1
0 (Ω)3, p ∈ L2(Ω)/R, T ∈ H1

0 (Ω), h ∈ H1
0 (Ω2D)

}
.

Note that in contrast to the definition of the spaces X(t) and X̃(t) in (3.12) and (3.13),
respectively, the definition of X and X̃ is based on a fixed domain Ω whereas the spaces X(t)
and X̃(t) rest on a moving domain Ω(t).

Results concerning existence and uniqueness of solutions of free surface flows are discussed in
[23] for one and two dimensional domains.

18

4 Coupling of models in 2D and 3D

The chapter is devoted to the development of coupling models in different dimensions. First
we describe how we achieve this coupling for a model problem (Laplace problem). Later on we
adapt these ideas to coupling different models for fluid flow.

A way to reduce the model but keep the accuracy at the same time is to couple models in
different dimensions. In a first step we introduce the idea of this coupling for a Poisson model
problem. The same techniques are then applied in a second step to the models we consider for
describing fluid flows, namely the three dimensional Navier-Stokes equations and the reduced
version which are the Shallow-Water equations.

4.1 Coupling of 2D and 3D Poisson problem

Let us consider the Poisson problem on a domain Ω = (−1, 1)3 in R3. With Γtop and Γbottom
we denote the top and bottom boundary of Ω, respectively. The remaining part of the boundary
is denoted by Γ . The weak formulation reads: Find u ∈W = {u ∈ H1(Ω), u = 0 on Γ} such
that

(∇u,∇ϕ) + 〈α,ϕ〉Γtop∪Γbottom = (f, ϕ) for all ϕ ∈W, (4.1)

with α defined as

α(x1, x2) =

10, if − 1
4 ≤ x, y ≤

1
4 ,

0, else.

Since this is very costly to solve in three dimensions we reduce the model to two dimensional
model. Only in areas where the accuracy of the two dimensional model is not satisfactory we
apply the three dimensional model. As an example let us consider the cube in three dimensions.
The original problem (4.1) we want to solve is reformulated on the reduced domain shown in
Figure 4.1 on the right.

The idea is to solve the problem on the two dimensional domain extended by a cube in an area
defined a priori. The solution is then understood as a solution on the two dimensional domain
and the solution on the part in three dimensions is treated as a correction to the solution on
the square. Thus we can write the solution u ∈W as u = u2D + u3D where u2D is defined on
the square and u3D lives on the cube in the middle. Since we understand the part u3D as a
correction of the solution on the square domain we impose zero boundary conditions for u3D
on the vertical faces of the cube.

19

4 Coupling of models in 2D and 3D

(a) Cube in 3D (b) Cube in 2D with a 3d
cube

Figure 4.1. Reduction from a 3D cube to a 2D cube with a 3D cube in the middle.

4.1.1 Decomposition of the space W

This means that we decompose the space of test and trial functions W into a sum of two
spaces with such that

W = W2D +W3D

holds and the weak formulation (4.1) then reads: Find u = u2D + u3D ∈ W = W2D + W3D
such that (4.1) holds. This means we understand a function v ∈W2D as a function in W3D:

v = v(x1, x2) ∈W2D =̂ v(x1, x2, x3) ∈W3D. (4.2)

If it is clear from the context we write differential operators in three dimensions for functions
in W2D by taking the corresponding function in W3D. As an example the gradient is given
as

∇v =

∂1v
∂2v
0

 .
We define a bilinear form a : W ×W → R as

a(u, ϕ) = (∇u,∇ϕ) + 〈α,ϕ〉Γtop∪Γbottom (4.3)

and examine it on the decomposed spaces a : W2D +W3D ×W2D +W3D → R. Inserting the
sum for test and trial functions leads to

a(u, ϕ) = a(u2D + u3D, ϕ2D + ϕ3D). (4.4)

The original problem (4.1) using the bilinear form on the decomposed spaces then reads: Find
u = u2D + u3D ∈W = W2D +W3D such that

a(u2D + u3D, ϕ2D + ϕ3D) = (f, ϕ2D + ϕ3D) for all ϕ2D ∈W2D and ϕ3D ∈W3D.

We can vary the test functions ϕ2D and ϕ3D independently and we arrive at two equations:

a(u2D + u3D, ϕ3D) = (f, ϕ3D) for all ϕ3D ∈W3D,

a(u2D + u3D, ϕ2D) = (f, ϕ2D) for all ϕ2D ∈W2D,

20

4.1 Coupling of 2D and 3D Poisson problem

or equivalently

(∇u2D +∇u3D,∇ϕ3D) + 〈α,ϕ3D〉Γtop∪Γbottom = (f, ϕ3D) for all ϕ3D ∈W3D,

(∇u2D +∇u3D,∇ϕ2D) + 〈α,ϕ2D〉Γtop∪Γbottom = (f, ϕ2D) for all ϕ2D ∈W2D.

This means we have couplings between functions in W2D and W3D which appear in the bilinear
form, namely

(∇u2D,∇ϕ3D) and (∇u3D,∇ϕ2D).

Furthermore we have to give meaning to the term 〈α,ϕ2D〉Γtop∪Γbottom .

4.1.2 Discussion of the coupling terms

(∇u2D,∇ϕ3D)Ω:

This term arises in the first equation and is integrated over the part of the domain which is
three dimensional. We have to provide the function u2D in the three dimensional domain.
The function is extended into the third dimension constantly as explained in (4.2). For the
coupling we derive

(∇u2D,∇ϕ3D)Ω =
∫
Ω
∇u2D · ∇ϕ3D dx

=
∫
Ω
∂1u2D∂1ϕ3D + ∂2u2D∂2ϕ3D dx.

This is an integral on the three dimensional domain Ω. The two dimensional function needs to
be transferred to the three dimensional space to perform this integration. In Section 6.3 we
comment on the technical details how this is achieved in the implementation.

(∇u3D,∇ϕ2D)Ω:

To simplify the coupling in the second equation we express the integral in three dimension as
an integral in two dimensions:

(∇u3D,∇ϕ2D)Ω =
∫
Ω
∇u3D · ∇ϕ2D dx

=
∫
Ω
∂1u3D∂1ϕ2D + ∂2u3D∂2ϕ2D dx

=
∫
Ω2D

∫ 1

0
∂1u3D∂1ϕ2D dx3 dx1x2 +

∫
Ω2D

∫ 1

0
∂2u3D∂2ϕ2D dx3 dx1x2.

(4.5)

Since ϕ2D is only a function of x1 and x2 we can write the integrals as∫
Ω2D

∫ 1

0
∂1u3D∂1ϕ2D dx3 dx1x2 =

∫
Ω2D

∂1ϕ2D

∫ 1

0
∂1u3D dx3 dx1x2,∫

Ω2D

∫ 1

0
∂2u3D∂2ϕ2D dx3 dx1x2 =

∫
Ω2D

∂2ϕ2D

∫ 1

0
∂2u3D dx3 dx1x2.

(4.6)

21

4 Coupling of models in 2D and 3D

We are allowed to switch integration and differentiation and we get∫
Ω2D

∂1ϕ2D

∫ 1

0
∂1u3D dx3 dx1x2 =

∫
Ω2D

∂1ϕ2D∂1

∫ 1

0
u3D dx3 dx1x2,∫

Ω2D
∂2ϕ2D

∫ 1

0
∂2u3D dx3 dx1x2 =

∫
Ω2D

∂2ϕ2D∂2

∫ 1

0
u3D dx3 dx1x2.

(4.7)

With the definition
ui2D :=

∫ 1

0
ui3D dx3, i = 1, 2

and (4.5), (4.6), and (4.7) we can write the integral, we started from, as an integral in two
dimensions:

(∇u3D,∇ϕ2D)Ω =
∫
Ω2D

∂1ϕ2D∂1u2D dx1x2 +
∫
Ω2D

∂2ϕ2D∂2u2D dx1x2

= (∇u2D,∇ϕ2D)Ω2D .

In the same way we interpret the remaining terms (∇u2D,∇ϕ2D)3D and (f, ϕ2D)3D as integrals
in two dimensions.

4.1.3 Discussion of the boundary term

〈α,ϕ2D〉Γtop∪Γbottom:

This term translates into a reaction term in two dimensions:

〈α,ϕ2D〉Γtop∪Γbottom = 〈α,ϕ2D〉Γtop + 〈α,ϕ2D〉Γbottom ,

= (α,ϕ2D)Ω2D + (α,ϕ2D)Ω2D .

This means we end up with solving the following problem: Find (u3D, u2D) ∈ W3D ×W2D
such that

(∇u3D,∇ϕ3D)Ω + (∇u2D,∇ϕ3D)Ω + 〈α,ϕ3D〉Γtop∪Γbottom = (f, ϕ3D)Ω, (4.8)
2(∇u2D,∇ϕ2D)Ω2D + 2(α,ϕ2D)Ω2D = (f, ϕ2D)Ω2D , (4.9)

for all (ϕ3D, ϕ2D) ∈W3D ×W2D.
Remark 4.1. A boundary term on the top or the bottom of the three dimensional domain
results in a reaction term in the two dimensional equation.

Integrating the three dimensional equation by parts we recover the equation in strong form as
well as the boundary conditions

(∇u3D +∇u2D, ϕ3D) + 〈α,ϕ3D〉Γtop∪Γbottom = (∇u,∇ϕ3D) + 〈α,ϕ3D〉Γtop∪Γbottom

= −(∆u, ϕ3D) + 〈∂nu, ϕ3D〉+ 〈α,ϕ3D〉Γtop∪Γbottom .

Therefore we obtain

〈∂nu, ϕ3D〉Γtop∪Γbottom + 〈α,ϕ3D〉Γtop∪Γbottom = 0,

since the test function ϕ3D vanishes on all the vertical boundaries.

22

4.1 Coupling of 2D and 3D Poisson problem

4.1.4 Numerical results

As a test case we consider a problem in three dimensions. This reads: Find u ∈W such that

(∇u,∇ϕ) + 〈α,ϕ〉Γtop∪Γbottom = (f, ϕ) for all ϕ ∈W. (4.10)

on a domain Ω = (−1, 1)3 subject to homogeneous boundary conditions on the vertical faces.
We take the right hand side to be f ≡ 1. To show that the coupled method works and yields

Figure 4.2. Reference solution of three dimensional Poisson problem

results that converge towards the three dimensional solution we compare the L2 and the H1

semi-norm as well as point values of the solution. We take a look at the points p1 = (0.5, 0.5, 0),
p2 = (0, 0, 0), p3 = (0.5, 0.5, 0.5), p4 = (0, 0, 0.5), p5 = (0.5, 0.5, 1), p6 = (0, 0, 1).

The solution is computed using trilinear finite elements and it is shown in Figure 4.2. In
Section 5.3 we explain the finite element spaces more detailed. Results for global refinement
are stated in Table 4.1 and Table 4.2. We applied the residual based error estimator from [69]
for local refinement. Those results are shown in Table 4.3 and Table 4.4. The corresponding
meshes obtained for adaptive refinement are shown in Figure 4.3.

We show three different coupled problems for the solution of (4.10).
Test 4.1. For the first numerical test we choose the part for the three dimensional domain to
be the whole cube. We solve for u = (u2D, u3D)∈W2D×W3D such that

(∇u3D,∇ϕ3D) + (∇u2D,∇ϕ3D) + 〈α,ϕ3D〉Γtop∪Γbottom = (f, ϕ3D), in Ω,
2(∇u2D,∇ϕ2D) + 2(α,ϕ2D)Ω2D = (f, ϕ2D), in Ω2D = (−1, 1)2,

for all ϕ = (ϕ2D, ϕ3D) ∈W2D ×W3D. The spaces W3D and W2D are defined as follows

W3D = {u ∈ H1(Ω) | u = 0 on Γ = ∂Ω \ (Γtop ∪ Γbottom)}, (4.11)
W2D = {u ∈ H1(Ω2D) | u = 0 on ∂Ω2D}. (4.12)

23

4 Coupling of models in 2D and 3D

(a) 4 steps (b) 5 steps (c) 6 steps

(d) 7 steps (e) 8 steps (f) 9 steps

Figure 4.3. Sequence of adaptively refined meshes after various refinement steps

Table 4.1. Results in the L2 norm and H1 semi norm for the Poisson problem
computed in three dimensions on a globally refined mesh

cells # DoFs ‖u‖ ‖∇u‖

1 27 3.2503 · 10−1 8.0393 · 10−1

8 125 3.9638 · 10−1 9.4696 · 10−1

64 729 3.7560 · 10−1 9.2638 · 10−1

512 4913 4.0605 · 10−1 9.7045 · 10−1

4096 35937 4.0668 · 10−1 9.7203 · 10−1

32768 274625 4.0687 · 10−1 9.7251 · 10−1

262144 2146689 4.0692 · 10−1 9.7265 · 10−1

24

4.1 Coupling of 2D and 3D Poisson problem

Table 4.2. Point values for the Poisson problem computed in three dimensions on a
globally refined mesh

cells # DoFs u(p1) u(p2) u(p3) u(p4) u(p5) u(p6)

1 27 0.1536 0.2730 0.1258 0.2237 0.0426 0.0758
8 125 0.1705 0.2402 0.1607 0.2512 0.1452 -0.0248
64 729 0.1647 0.2597 0.1557 0.2318 0.1375 0.0634
512 4913 0.1705 0.2713 0.1651 0.2498 0.1564 0.0838

4096 35937 0.1706 0.2716 0.1653 0.2502 0.1568 0.0772
32768 274625 0.1706 0.2716 0.1654 0.2504 0.1569 0.0770
262144 2146689 0.1706 0.2717 0.1654 0.2504 0.1569 0.0770

Table 4.3. Results for the Poisson problem computed in three dimensions on an
adaptively refined mesh

cells # DoFs ‖u‖ ‖∇u‖

1 27 3.2503 · 10−1 8.0393 · 10−1

8 125 3.9638 · 10−1 9.4696 · 10−1

29 407 3.8721 · 10−1 9.3508 · 10−1

50 621 3.8001 · 10−1 9.2880 · 10−1

78 936 3.8264 · 10−1 9.3639 · 10−1

120 1469 4.0621 · 10−1 9.6999 · 10−1

211 2637 4.0658 · 10−1 9.7093 · 10−1

589 7019 4.0686 · 10−1 9.7187 · 10−1

848 9089 4.0677 · 10−1 9.7221 · 10−1

1779 19607 4.0690 · 10−1 9.7252 · 10−1

3109 32753 4.0691 · 10−1 9.7256 · 10−1

5153 49335 4.0690 · 10−1 9.7258 · 10−1

8870 88697 4.0693 · 10−1 9.7266 · 10−1

19181 200062 4.0694 · 10−1 9.7268 · 10−1

32859 331139 4.0694 · 10−1 9.7268 · 10−1

51276 473601 4.0694 · 10−1 9.7268 · 10−1

94823 924048 4.0694 · 10−1 9.7269 · 10−1

25

4 Coupling of models in 2D and 3D

Table 4.4. Point values for the Poisson problem computed in three dimensions on
an adaptively refined mesh

cells # DoFs u(p1) u(p2) u(p3) u(p4) u(p5) u(p6)

1 27 0.1536 0.2730 0.1258 0.2237 0.0426 0.0758
8 125 0.1705 0.2402 0.1607 0.2512 0.1452 -0.0248

29 407 0.1662 0.2403 0.1563 0.2401 0.1356 -0.0023
50 621 0.1650 0.2454 0.1559 0.2388 0.1354 -0.0016
78 936 0.1664 0.2622 0.1616 0.2383 0.1533 0.0660
120 1469 0.1704 0.2710 0.1652 0.2490 0.1572 0.0838
211 2637 0.1705 0.2712 0.1653 0.2493 0.1562 0.0772
589 7019 0.1706 0.2711 0.1651 0.2494 0.1569 0.0773
848 9089 0.1706 0.2716 0.1653 0.2503 0.1569 0.0770
1779 19607 0.1706 0.2716 0.1654 0.2504 0.1569 0.0770
3109 32753 0.1706 0.2716 0.1654 0.2504 0.1569 0.0770
5153 49335 0.1706 0.2717 0.1654 0.2504 0.1569 0.0770
8870 88697 0.1706 0.2717 0.1654 0.2504 0.1569 0.0770

19181 200062 0.1706 0.2717 0.1654 0.2504 0.1569 0.0770
32859 331139 0.1706 0.2717 0.1654 0.2504 0.1569 0.0770
51276 473601 0.1706 0.2717 0.1654 0.2504 0.1569 0.0770
94823 924048 0.1706 0.2717 0.1654 0.2504 0.1569 0.0770

Results for Test 4.1 are shown in Table 4.5 and Table 4.6 for global refinement in 3D. According
to the refinement of the mesh in three dimensions, the two dimensional mesh is refined. The
solution of the coupled problem was obtained using bilinear finite elements in two dimensions
and trilinear finite elements in three dimensions.

Table 4.5. Results in the L2 norm and H1 semi norm for the coupled Poisson
problem on a globally refined mesh obtained for the first test

cells # DoFs ‖u‖ ‖∇u‖

8 27 2.3470 · 10−1 6.3217 · 10−1

64 125 3.7709 · 10−1 9.1092 · 10−1

512 729 3.9462 · 10−1 9.4605 · 10−1

4096 4913 4.0322 · 10−1 9.6450 · 10−1

32768 35937 4.0583 · 10−1 9.7020 · 10−1

262144 274625 4.0661 · 10−1 9.7195 · 10−1

2097152 2146689 4.0685 · 10−1 9.7247 · 10−1

For the next coupled solution we choose the three dimensional domain to be a little bit more
narrow than in Test 4.1.
26

4.1 Coupling of 2D and 3D Poisson problem

Table 4.6. Point values for the coupled Poisson problem on a globally refined mesh
obtained for the first test

cells # DoFs u(p1) u(p2) u(p3) u(p4) u(p4) u(p6)

8 27 0.0938 0.3750 0.0589 0.2356 0.0240 0.0961
64 125 0.1822 0.2882 0.1745 0.2854 0.1630 0.0478
512 729 0.1724 0.2744 0.1658 0.2535 0.1548 0.0506
4096 4913 0.1709 0.2721 0.1653 0.2507 0.1563 0.0750

32768 35937 0.1707 0.2717 0.1653 0.2504 0.1567 0.0762
262144 274625 0.1706 0.2717 0.1654 0.2504 0.1568 0.0768
2097152 2146689 0.1706 0.2717 0.1654 0.2504 0.1569 0.0770

Test 4.2. We solve for u = (u2D, u3D) ∈W2D ×W3D such that

(∇(u3D + u2D),∇ϕ3D) + 〈α,ϕ3D〉Γtop∪Γbottom = (f, ϕ3D), in Ω =
(
− 1

2 ,
1
2

)2
× (−1, 1),

2(∇u2D,∇ϕ2D) + 2(α,ϕ2D)Ω2D = (f, ϕ2D), in Ω2D = (−1, 1)2,

for all ϕ = (ϕ2D, ϕ3D) ∈W2D ×W3D. The spaces W3D and W2D are defined in (4.11).

The solution of the coupled problem using bilinear finite elements in two dimensions and
trilinear finite elements in three dimensions is shown in Figure 4.4. We used global refinement

Figure 4.4. Coupled solution of the three dimensional Poisson problem obtained for
the second test

of the three dimensional mesh. The mesh in 2D was refined accordingly as described in

27

4 Coupling of models in 2D and 3D

Section 5.5.1. The results we obtained for Test 4.2 in the L2 norm are shown in Table 4.7 and
the H1 semi-norm is presented in Table 4.8. Point values for Test 4.2 are given in Table 4.9.

Table 4.7. Results in the L2 norm for the coupled Poisson problem on a globally
refined mesh obtained for the second test

cells # DoFs ‖u2D‖ ‖u3D‖ ‖u‖

8 27 2.0577 · 10−1 2.6339 · 10−1 4.6917 · 10−1

64 125 1.5867 · 10−1 2.7182 · 10−1 4.3048 · 10−1

512 729 1.7229 · 10−1 2.7373 · 10−1 4.4602 · 10−1

4096 4913 1.7300 · 10−1 2.7470 · 10−1 4.4771 · 10−1

32768 35937 1.7229 · 10−1 2.7507 · 10−1 4.4737 · 10−1

262144 274625 1.7178 · 10−1 2.7520 · 10−1 4.4698 · 10−1

2097152 2146689 1.7150 · 10−1 2.7524 · 10−1 4.4674 · 10−1

Table 4.8. Results in the H1 semi norm for the coupled Poisson problem on a
globally refined mesh obtained for the second test

cells # DoFs ‖∇u2D‖ ‖∇u3D‖ ‖∇u‖

8 27 6.2818 · 10−1 2.3177 · 10−1 8.5995 · 10−1

64 125 7.4572 · 10−1 2.6138 · 10−1 1.0071 · 100

512 729 9.4619 · 10−1 2.7756 · 10−1 1.2238 · 100

4096 4913 1.2292 · 100 2.8235 · 10−1 1.5116 · 100

32768 35937 1.6544 · 100 2.8400 · 10−1 1.9384 · 100

262144 274625 2.2778 · 100 2.8457 · 10−1 2.5624 · 100

2097152 2146689 3.1767 · 100 2.8476 · 10−1 3.4614 · 100

Table 4.9. Point values for the coupled Poisson problem on a globally refined mesh
obtained for the second test

cells # DoFs u(p1) u(p2) u(p3) u(p4) u(p5) u(p6)

8 27 0.1597 0.3336 0.1597 0.2016 0.1597 0.0697
64 125 0.1593 0.2513 0.1593 0.2525 0.1593 0.0609
512 729 0.1526 0.2452 0.1526 0.2331 0.1526 0.0702

4096 4913 0.1511 0.2435 0.1511 0.2298 0.1511 0.0719
32768 35937 0.1507 0.2431 0.1507 0.2292 0.1507 0.0725
262144 274625 0.1506 0.2431 0.1506 0.2291 0.1506 0.0726

2097152 2146689 0.1506 0.2431 0.1506 0.2291 0.1506 0.0727

In the last test case we use an even smaller domain in three dimensions.
Test 4.3. We solve for u = (u2D, u3D) ∈W2D ×W3D such that

(∇(u3D + u2D),∇ϕ3D) + 〈α,ϕ3D〉Γtop∪Γbottom = (f, ϕ3D), in Ω3D =
(
− 1

3 ,
1
3

)2
× (−1, 1),

2(∇u2D,∇ϕ2D) + 2(α,ϕ2D)Ω2D = (f, ϕ2D), in Ω2D = (−1, 1)2,

28

4.1 Coupling of 2D and 3D Poisson problem

for all ϕ = (ϕ2D, ϕ3D) ∈W2D ×W3D. The definition of the spaces is given in (4.11).

The results we obtained for Test 4.3 in the L2 norm are displayed in Table 4.10 and the results
in the H1 semi-norm are shown in Table 4.11. Point values are given in Table 4.12 for Test 4.3.

Table 4.10. Results in the L2 norm for the coupled Poisson problem on a globally
refined mesh obtained for the third test

cells # DoFs ‖u2D‖ ‖u3D‖ ‖u‖

1 8 1.7778 · 10−1 1.5085 · 10−1 3.2863 · 10−1

8 27 2.1068 · 10−1 2.1740 · 10−1 4.2809 · 10−1

64 125 2.1199 · 10−1 1.8034 · 10−1 3.9234 · 10−1

512 729 2.1513 · 10−1 1.8053 · 10−1 3.9567 · 10−1

4096 4913 2.1495 · 10−1 1.8088 · 10−1 3.9583 · 10−1

32768 35937 2.1458 · 10−1 1.8100 · 10−1 3.9558 · 10−1

262144 274625 2.1435 · 10−1 1.8104 · 10−1 3.9540 · 10−1

2097152 2146689 2.1423 · 10−1 1.8106 · 10−1 3.9529 · 10−1

Table 4.11. Results in the H1 semi norm for the coupled Poisson problem on a
globally refined mesh obtained for the third test

cells # DoFs ‖∇u2D‖ ‖∇u3D‖ ‖∇u‖

1 8 4.1312 · 10−1 2.3440 · 10−16 4.1312 · 10−1

8 27 7.0249 · 10−1 1.5412 · 10−1 8.5661 · 10−1

64 125 7.8734 · 10−1 2.0658 · 10−1 9.9392 · 10−1

512 729 9.9631 · 10−1 2.1057 · 10−1 1.2069 · 100

4096 4913 1.3167 · 100 2.1341 · 10−1 1.5301 · 100

32768 35937 1.7931 · 100 2.1442 · 10−1 2.0075 · 100

262144 274625 2.4856 · 100 2.1480 · 10−1 2.7004 · 100

2097152 2146689 3.4791 · 100 2.1494 · 10−1 3.6940 · 100

4.1.5 Discussion of the numerical results

For a first example we choose an easy problem with a three dimensional solution. The results
we obtained for the Test 4.1 are in really good agreement with the real three dimensional
solution, see Table 4.1 and Table 4.2 and Table 4.5 and Table 4.6. While the L2 norm is still
very good as the three dimensional part shrinks, the H1 semi norm is a little worse, as can be
seen in Table 4.8 and Table 4.11.

This means the coupling between different dimensions as we introduced it for the Poisson
problem works well and we carry the method over to the three dimensional problem we derived
for simulation of fluid flows in Chapter 3. In the following section we derive the coupled
method for fluid flows with a free boundary.

29

4 Coupling of models in 2D and 3D

Table 4.12. Point values for the coupled Poisson problem on a globally refined mesh
obtained for the third test

cells # DoFs u(p2) u(p4) u(p6)

1 8 0.1600 0.1600 0.1600
8 27 0.3336 0.2290 0.1245
64 125 0.2225 0.2339 0.0756

512 729 0.2199 0.2170 0.0725
4096 4913 0.2192 0.2138 0.0728
32768 35937 0.2190 0.2131 0.0730

262144 274625 0.2190 0.2130 0.0731
2097152 2146689 0.2189 0.2130 0.0731

4.2 Coupling of 2D Shallow-Water and 3D Boussinesq model

This section describes the coupling of two fluid flow models. We start from the most complex
model in three dimensions, the Boussinesq equations. We recall the variational formulation
Multiplying with a test-function and integration by parts yields

(∂tv, ϕv) + ((v ·∇)v, ϕv) + (γ∇p, ϕv) + (ν∇v,∇ϕv)− (%γgT, ϕv) = (f, ϕv),
(∇·v, ϕp) = 0,

(∂tT, ϕT) + (v ·∇T, ϕT) + (νT∇T,∇ϕT) = (qT , ϕT),

where g = (0, 0,−g).

We define a semi-linear form a : X × X̃ → R. Since we end up with the same test and trial
space after time discretization, we restrict this discussion to X = X̃.

a(u)(ϕ) = (∂tv, ϕv) + ((v ·∇)v, ϕv) + (γ∇p, ϕv) + (ν∇v,∇ϕv) + (∇·v, ϕp)
−(%γgT, ϕv) + (∂tT, ϕT) + (v ·∇T, ϕT) + (νT∇T,∇ϕT).

(4.13)

The problem then reads: Find u = (v, p, T) ∈ X such that

a(u)(ϕ) = (f, ϕv) + (qT , ϕT) =: (F,ϕ), for all ϕ = (ϕv, ϕp, ϕT) ∈ X.

The explicit definition of the spaces X and X̃ is given in (3.12) and (3.13), respectively. We
apply the splitting of the space X in which we are looking for the solution into a sum:

X = X2D +X3D. (4.14)

The solution of the coupled problem then reads

u = u2D + u3D. (4.15)

For the coupled problem we look for a coupled solution u = u2D + u3D such that

a(u)(ϕ) = (F,ϕ), for all ϕ ∈ X,

30

4.2 Coupling of 2D Shallow-Water and 3D Boussinesq model

or equivalently

a(u2D + u3D)(ϕ2D + ϕ3D) = (F,ϕ2D) + (F,ϕ3D),

for all ϕ2D ∈ X2D and for all ϕ3D ∈ X3D. This means we understand a function v ∈ X2D as a
function in X3D by setting the third component to zero:

v =
(
v1
v2

)
∈ X2D =̂ v =

v1
v2
0

 ∈ X3D.

If it is clear from the context we write differential operators in three dimensions for functions
in W2D by taking the corresponding function in W3D. As an example the Jacobian matrix is
given as

∇v = ∇

v1
v2
0

 =

∂1v1 ∂2v1 0
∂1v2 ∂2v2 0

0 0 0

 .
We understand a vertically averaged velocity and the height in two dimensions as

u2D = 1
h

∫ h

0
u3D dx3, p3D = %g(h− x3). (4.16)

Varying the test functions ϕ2D and ϕ3D independently we arrive at two equations:

a(u2D + u3D)(ϕ3D) = (F,ϕ3D) for all ϕ3D ∈ X3D,

a(u2D + u3D)(ϕ2D) = (F,ϕ2D) for all ϕ2D ∈ X2D,

We further investigate the two equations independently.

4.2.1 First equation

We start to consider the first equation

a(u2D + u3D)(ϕ3D) = (F,ϕ3D) for all ϕ3D ∈ X3D.

Since we test only with ϕ3D we omit the subscript and write ϕ instead:

a(u2D + u3D)(ϕ) = (∂t(v3D + v2D), ϕv) + (((v3D + v2D)·∇)(v3D + v2D), ϕv)
+(γ∇(p3D + h), ϕv) + (ν∇(v3D + v2D),∇ϕv) + (%γg(T3D + T2D), ϕv)

+(g∇h, ϕv) + (∇·(v3D + v2D), ϕp) + (∂t(T3D + T2D), ϕT)
+((v3D + v2D)·∇(T3D + T2D), ϕT) + (νT∇(T3D + T2D),∇ϕT).

Here we leave the semi-linear form as it is. The two dimensional functions ensure the correct
coupling.

31

4 Coupling of models in 2D and 3D

4.2.2 Second equation

It remains to take a look at the second equation

a(u2D + u3D)(ϕ2D) = (F,ϕ2D) for all ϕ2D ∈ V2D.

Since we test only with ϕ2D we omit the subscript and write ϕ instead:

a(u2D + u3D)(ϕ) = (∂t(v3D + v2D), ϕv) + (((v3D + v2D)·∇)(v3D + v2D), ϕv)
+(γ∇(p3D + h), ϕv) + (ν∇(v3D + v2D),∇ϕv) + (%γg(T3D + T2D), ϕv)

+(g∇h, ϕv) + (∇·(v3D + v2D), ϕp) + (∂t(T3D + T2D), ϕT)
+((v3D + v2D)·∇(T3D + T2D), ϕT) + (νT∇(T3D + T2D),∇ϕT).

We are interested to investigate the coupling between the functions in 2D and 3D. In the
following section we consider the linear terms contributing to the semi-linear form.

4.2.3 Discussion of the linear coupling terms

We start with the original term as an integral on the three dimensional domain Ω. In order to
keep the notation short we write dx for dx1 dx2 dx3 and dxij for dxi dxj in the following.

(∂tv3D, ϕv2D)Ω:

Changing the order of differentiation and integration and using the definition in (4.16) we
get

(∂tv3D, ϕv2D)Ω =
∫
Ω
∂tv3D · ϕv2D dx,

=
∫
Ω
∂tv

1
3Dϕ

1
v2D dx+

∫
Ω
∂tv

2
3Dϕ

2
v2D dx,

=
∫
Ω2D

ϕ1
v2D ∂t

∫ h

0
v1

3D dx3 dx12 +
∫
Ω2D

ϕ2
v2D ∂t

∫ h

0
v2

3D dx3 dx12,

=
∫
Ω2D

ϕ1
v2D ∂t(hv1

2D) dx12 +
∫
Ω2D

ϕ2
v2D ∂t(hv2

2D) dx12,

= (∂t(hv2D), ϕv2D)Ω2D .

The same procedure is applied to the next term including the pressure.

(γ∇p3D, ϕv2D)Ω:

For the investigation of this term we recall the relation between the pressure and the height:

p3D = %g(h− x3).

32

4.2 Coupling of 2D Shallow-Water and 3D Boussinesq model

The gradient of the pressure can be expressed as

∇p3D = %g

∂1h
∂2h
−1

 .
Taking this into account we can rewrite the integral as

(γ∇p3D, ϕv2D)Ω = γ

∫
Ω
∂1p3Dϕ

1
v2D dx+ γ

∫
Ω
∂2p3Dϕ

2
v2D dx,

= γ

∫
Ω2D

∫ h

0
%g∂1hϕ

1
v2D dx3 dx12 + γ

∫
Ω2D

∫ h

0
%g∂2hϕ

2
v2D dx3 dx12,

= γ

∫
Ω2D

h%g∂1hϕ
1
v2D dx12 + γ

∫
Ω2D

h%g∂2hϕ
2
v2D dx12,

= (γ%gh∇h, ϕv2D)Ω2D .

(ν∇v3D,∇ϕv2D)Ω:

(ν∇v3D,∇ϕv2D)Ω =
∫
Ω
ν∇v3D : ∇ϕv2D dx,

=
∫
Ω
ν∂1v

1
3D∂1ϕ

1
v2D dx+

∫
Ω
ν∂2v

1
3D∂2ϕ

1
v2D dx

+
∫
Ω
ν∂1v

2
3D∂1ϕ

2
v2D dx+

∫
Ω
ν∂2v

2
3D∂2ϕ

2
v2D dx,

=
∫
Ω2D

ν∂1ϕ
1
v2D ∂1

∫ h

0
v1

3D dx3 dx12 +
∫
Ω2D

ν∂2ϕ
1
v2D ∂2

∫ h

0
v1

3D dx3 dx12

+
∫
Ω2D

ν∂1ϕ
2
v2D ∂1

∫ h

0
v2

3D dx3 dx12 +
∫
Ω2D

ν∂2ϕ
2
v2D ∂2

∫ h

0
v2

3D dx3 dx12,

=
∫
Ω2D

ν∂1ϕ
1
v2D ∂1(hv1

2D) dx12 +
∫
Ω2D

ν∂2ϕ
1
v2D ∂2(hv1

2D) dx12

+
∫
Ω2D

ν∂1ϕ
2
v2D ∂1(hv2

2D) dx12 +
∫
Ω2D

ν∂2ϕ
2
v2D ∂2(hv2

2D) dx12,

= (ν∇(hv2D),∇ϕv2D)Ω2D .

(%γgT3D, ϕv2D)Ω:

This term vanishes since the test function is two dimensional:

(%γgT3D, ϕv2D)Ω =
∫
Ω
%γgT3Dϕv2D dx = −

∫
Ω
%γgT 3

3Dϕ
3
v2D dx = 0.

33

4 Coupling of models in 2D and 3D

(∇·v3D, ϕp2D)Ω:

Using Leibniz formula

∂i

∫ h

0
f dx3 =

∫ h

0
∂if + f(x1, x2, h)∂ih, i = 1, 2.

we find

(∇·v3D, ϕp2D)Ω =
∫
Ω
∇·v3Dϕp2D dx =

∫
Ω2D

∫ h

0
∇·v3Dϕp2D dx3 dx12,

=
∫
Ω2D

ϕp2D∂1

∫ h

0
v1

3D dx3 − v1
3D(x1, x2, h)∂1h dx12

+
∫
Ω2D

ϕp2D∂2

∫ h

0
v2

3D dx3 − v2
3D(x1, x2, h)∂2h dx12

+
∫
Ω2D

ϕp2D

(
v3

3D(x1, x2, h)− v3
3D(x1, x2, 0)

)
dx12.

The function Φ(x1, x2, x3, t) := x3 − h(x1, x2, t) describes the surface elevation. For the total
time derivative it holds

dtΦ = ∂tΦ+∇Φ · ∂tx = ∂tΦ+∇Φ · v,
= −∂th− ∂1hv

1
3D − ∂2hv

2
3D + v3

3D,

= −∂th+ v3D · n = 0.

Taking the boundary conditions v(x1, x2, h) · n = 0 at the free surface and v(x1, x2, 0) = 0 at
the bottom into account, it follows that

(∇·v3D, ϕp2D)Ω =
∫
Ω2D

ϕp2D∂1(hv1
2D) dx12 +

∫
Ω2D

ϕp2D∂2(hv2
2D) dx12

+
∫
Ω2D

ϕp2D∂thdx12,

= (∂th+∇·(hv2D), ϕp2D)Ω2D

(∂tT3D, ϕT2D)Ω:

For the time derivative of the temperature we can rewrite the three dimensional integral as

(∂tT3D, ϕT2D)Ω =
∫
Ω
∂tT3D · ϕT2D dx =

∫
Ω2D

ϕT2D ∂t

∫ h

0
T3D dx3 dx12,

=
∫
Ω2D

ϕT2D ∂t(hT2D) dx12 = (∂t(hT2D), ϕT2D)Ω2D .

34

4.2 Coupling of 2D Shallow-Water and 3D Boussinesq model

(νT∇T3D,∇ϕT2D)Ω:

For the remaining linear term we derive

(νT∇T3D,∇ϕT2D)Ω

=
∫
Ω
νT∇T3D · ∇ϕT2D dx =

∫
Ω
νT∂1T3D∂1ϕT2D dx+

∫
Ω
νT∂2T3D∂2ϕT2D dx,

=
∫
Ω2D

νT∂1ϕT2D ∂1

∫ h

0
T3D dx3 dx12 +

∫
Ω2D

νT∂2ϕT2D ∂2

∫ h

0
T3D dx3 dx12,

=
∫
Ω2D

νT∂1ϕT2D ∂1(hT2D) dx12 +
∫
Ω2D

νT∂2ϕT2D ∂2(hT2D) dx12,

= (νT∇(hT2D),∇ϕT2D)Ω2D .

In the following we investigate the non-linear coupling terms that arise in the semi-linear
form.

4.2.4 Discussion of the non-linear coupling terms

(((v3D + v2D)·∇)(v3D + v2D), ϕv2D)Ω:

Before we can rewrite these terms as integrals in two dimensions, we write it as a sum of four
terms. Each of these terms is treated separately.

(((v3D + v2D)·∇)(v3D + v2D), ϕv2D)Ω = ((v3D ·∇)v3D, ϕv2D)Ω
+((v3D ·∇)v2D, ϕv2D)Ω + ((v2D ·∇)v3D, ϕv2D)Ω + ((v2D ·∇)v2D, ϕv2D)Ω

For the first term in this sum we derive

((v3D ·∇)v3D, ϕv2D)Ω:

((v3D ·∇)v3D, ϕv2D)Ω

=
∫
Ω
v1

3D∂1v
1
3Dϕ

1
v2D dx+

∫
Ω
v2

3D∂2v
1
3Dϕ

1
v2D dx+

∫
Ω
v3

3D∂3v
1
3Dϕ

1
v2D dx

+
∫
Ω
v1

3D∂1v
2
3Dϕ

2
v2D dx+

∫
Ω
v2

3D∂2v
2
3Dϕ

2
v2D dx+

∫
Ω
v3

3D∂3v
2
3Dϕ

2
v2D dx,

=
∫
Ω2D

∫ h

0
v1

3D∂1v
1
3Dϕ

1
v2D dx3 dx12 +

∫
Ω2D

∫ h

0
v2

3D∂2v
1
3Dϕ

1
v2D dx3 dx12

+
∫
Ω2D

∫ h

0
v3

3D∂3v
1
3Dϕ

1
v2D dx3 dx12 +

∫
Ω2D

∫ h

0
v1

3D∂1v
2
3Dϕ

2
v2D dx3 dx12

+
∫
Ω2D

∫ h

0
v2

3D∂2v
2
3Dϕ

2
v2D dx3 dx12 +

∫
Ω2D

∫ h

0
v3

3D∂3v
2
3Dϕ

2
v2D dx3 dx12.

35

4 Coupling of models in 2D and 3D

Further manipulation shows

((v3D ·∇)v3D, ϕv2D)Ω

=
∫
Ω2D

ϕ1
v2D

1
2

∫ h

0
∂1((v1

3D)2) dx3 dx12

+
∫
Ω2D

ϕ1
v2D

∫ h

0
∂2(v2

3Dv
1
3D)− v1

3D∂2v
2
3D dx3 dx12

+
∫
Ω2D

ϕ1
v2D

∫ h

0
∂3(v3

3Dv
1
3D)− v1

3D∂3v
3
3D dx3 dx12

+
∫
Ω2D

ϕ2
v2D

∫ h

0
∂1(v1

3Dv
2
3D)− v2

3D∂1v
1
3D dx3 dx12

+
∫
Ω2D

ϕ2
v2D

1
2

∫ h

0
∂2((v2

3D)2) dx3 dx12

+
∫
Ω2D

ϕ2
v2D

∫ h

0
∂3(v3

3Dv
2
3D)− v2

3D∂3v
3
3D dx3 dx12.

Using the definition of the divergence this results in

((v3D ·∇)v3D, ϕv2D)Ω

=
∫
Ω2D

ϕ1
v2D

∫ h

0
∂1((v1

3D)2) dx3 dx12 +
∫
Ω2D

ϕ1
v2D

∫ h

0
∂2(v2

3Dv
1
3D) dx3 dx12

+
∫
Ω2D

ϕ1
v2D

∫ h

0
∂3(v3

3Dv
1
3D) dx3 dx12 +

∫
Ω2D

ϕ2
v2D

∫ h

0
∂1(v1

3Dv
2
3D) dx3 dx12

+
∫
Ω2D

ϕ2
v2D

∫ h

0
∂2((v2

3D)2) dx3 dx12 +
∫
Ω2D

ϕ2
v2D

∫ h

0
∂3(v3

3Dv
2
3D) dx3 dx12

−
∫
Ω2D

ϕ1
v2D

∫ h

0
v1

3D∇·v3D dx3 dx12

−
∫
Ω2D

ϕ2
v2D

∫ h

0
v2

3D∇·v3D dx3 dx12.

Since (∇·v3D, ϕ)Ω = 0 and under the assumption that v3
3D is small and can be neglected we

have that

((v3D ·∇)v3D, ϕv2D)Ω

≈
∫
Ω2D

ϕ1
v2D∂1

∫ h

0
(v1

3D)2 dx3 dx12 +
∫
Ω2D

ϕ1
v2D∂2

∫ h

0
v2

3Dv
1
3D dx3 dx12

+
∫
Ω2D

ϕ2
v2D∂1

∫ h

0
v1

3Dv
2
3D dx3 dx12 +

∫
Ω2D

ϕ2
v2D∂2

∫ h

0
(v2

3D)2 dx3 dx12.

36

4.2 Coupling of 2D Shallow-Water and 3D Boussinesq model

We need to approximate this further as

((v3D ·∇)v3D, ϕv2D)Ω

≈
∫
Ω2D

ϕ1
v2D∂1(h(v1

2D)2) dx12 +
∫
Ω2D

ϕ1
v2D∂2(hv2

2Dv
1
2D) dx12

+
∫
Ω2D

ϕ2
v2D∂1(hv1

2Dv
2
2D) dx12 +

∫
Ω2D

ϕ2
v2D∂2(h(v2

2D)2) dx12,

= (∂1(h(v1
2D)2), ϕ1

v2D)Ω2D + (∂2(hv2
2Dv

1
2D), ϕ1

v2D)Ω2D

+ (∂1(hv1
2Dv

2
2D), ϕ2

v2D)Ω2D + (∂2(h(v2
2D)2), ϕ2

v2D)Ω2D .

Using the product rule we get

((v3D ·∇)v3D, ϕv2D)Ω
= 2(v1

2D∂1(hv1
2D), ϕ1

v2D)Ω2D + 2(∂2(hv2
2D), ϕ2

v2D)Ω2D + (v2
2D∂2(hv1

2D), ϕ1
v2D)Ω2D

+ (v1
2D∂2(hv2

2D), ϕ1
v2D)Ω2D + (v1

2D∂1(hv2
2D), ϕ2

v2D)Ω2D + (v2
2D∂1(hv1

2D), ϕ2
v2D)Ω2D ,

= ((v2D ·∇)(hv2D), ϕv2D)Ω2D + (∇·(hv2D)v2D, ϕv2D)Ω2D .

The following three non-linear terms are rewritten as integrals in two dimensions in the usual
manner.

((v3D ·∇)v2D, ϕv2D)Ω:

((v3D ·∇)v2D, ϕv2D)Ω =
∫
Ω

(v3D ·∇)v2Dϕv2D dx,

=
∫
Ω
v1

3D∂1v
1
2Dϕ

1
v2D dx+

∫
Ω
∂2v

1
2Dϕ

1
v2D dx+

∫
Ω
∂1v

1
2Dϕ

1
v2D dx,

+
∫
Ω
∂1v

2
2Dϕ

2
v2D dx+

∫
Ω
∂2v

2
2Dϕ

2
v2D dx+

∫
Ω
∂1v

2
2Dϕ

2
v2D dx,

=
∫
Ω2D

ϕ1
v2D∂1v

1
2D

∫ h

0
v1

3D dx3 dx12 +
∫
Ω2D

ϕ1
v2D∂2v

1
2D

∫ h

0
v2

3D dx3 dx12

+
∫
Ω2D

ϕ1
v2D∂1v

1
2D

∫ h

0
v3

3D dx3 dx12 +
∫
Ω2D

ϕ2
v2D∂1v

2
2D

∫ h

0
v1

3D dx3 dx12

+
∫
Ω2D

ϕ2
v2D∂2v

2
2D

∫ h

0
v2

3D dx3 dx12 +
∫
Ω2D

ϕ2
v2D∂1v

2
2D

∫ h

0
v3

3D dx3 dx12,

=
∫
Ω2D

ϕ1
v2D∂1v

1
2D(hv1

2D) dx12 +
∫
Ω2D

ϕ1
v2D∂2v

1
2D(hv2

2D) dx12

+
∫
Ω2D

ϕ1
v2D∂1v

1
2D(hv3

2D) dx12 +
∫
Ω2D

ϕ2
v2D∂1v

2
2D(hv1

2D) dx12

+
∫
Ω2D

ϕ2
v2D∂2v

2
2D(hv2

2D) dx12 +
∫
Ω2D

ϕ2
v2D∂1v

2
2D(hv3

2D) dx12,

= (((hv2D)·∇)v2D, ϕv2D)Ω2D .

37

4 Coupling of models in 2D and 3D

((v2D ·∇)v3D, ϕv2D)Ω:

((v2D ·∇)v3D, ϕv2D)Ω =
∫
Ω

(v2D ·∇)v3Dϕv2D dx,

=
∫
Ω
v1

2D∂1v
1
3Dϕ

1
v2D dx+

∫
Ω
v2

2D∂2v
1
3Dϕ

1
v2D dx+

∫
Ω
v3

2D∂1v
1
3Dϕ

1
v2D dx

+
∫
Ω
v1

2D∂1v
2
3Dϕ

2
v2D dx+

∫
Ω
v2

2D∂2v
2
3Dϕ

2
v2D dx+

∫
Ω
v3

2D∂1v
2
3Dϕ

2
v2D dx,

=
∫
Ω2D

ϕ1
v2Dv

1
2D∂1

∫ h

0
v1

3D dx3 dx12 +
∫
Ω2D

ϕ1
v2Dv

2
2D∂2

∫ h

0
v1

3D dx3 dx12

+
∫
Ω2D

ϕ1
v2Dv

3
2D∂1

∫ h

0
v1

3D dx3 dx12 +
∫
Ω2D

ϕ2
v2Dv

1
2D∂1

∫ h

0
v2

3D dx3 dx12

+
∫
Ω2D

ϕ2
v2Dv

2
2D∂2

∫ h

0
v2

3D dx3 dx12 +
∫
Ω2D

ϕ2
v2Dv

3
2D∂1

∫ h

0
v2

3D dx3 dx12,

=
∫
Ω2D

ϕ1
v2Dv

1
2D∂1(hv1

2D) dx12 +
∫
Ω2D

ϕ1
v2Dv

2
2D∂2(hv1

2D) dx12

+
∫
Ω2D

ϕ1
v2Dv

3
2D∂1(hv1

2D) dx12 +
∫
Ω2D

ϕ2
v2Dv

1
2D∂1(hv2

2D) dx12

+
∫
Ω2D

ϕ2
v2Dv

2
2D∂2(hv2

2D) dx12 +
∫
Ω2D

ϕ2
v2Dv

3
2D∂1(hv2

2D) dx12,

= ((v2D ·∇)(hv2D), ϕv2D)Ω2D .

((v2D ·∇)v2D, ϕv2D)Ω:

((v2D ·∇)v2D, ϕv2D)Ω =
∫
Ω

(v2D ·∇)v2Dϕv2D dx,

=
∫
Ω
v1

2D∂1v
1
2Dϕ

1
v2D dx+

∫
Ω
v2

2D∂2v
1
2Dϕ

1
v2D dx

+
∫
Ω
v1

2D∂1v
2
2Dϕ

2
v2D dx+

∫
Ω
v2

2D∂2v
2
2Dϕ

2
v2D dx,

=
∫
Ω2D

hv1
2D∂1v

1
2Dϕ

1
v2D dx12 +

∫
Ω2D

hv2
2D∂2v

1
2Dϕ

1
v2D dx12

+
∫
Ω2D

hv1
2D∂1v

2
2Dϕ

2
v2D dx12 +

∫
Ω2D

hv2
2D∂2v

2
2Dϕ

2
v2D dx12,

= (h(v2D ·∇)v2D, ϕv2D)Ω2D .

((v3D + v2D)·∇(T3D + T2D), ϕT2D)Ω:

For the coupling terms in the temperature equation we approach the same way as for the
velocity equation and write the coupling as a sum of four terms which are rewritten separately.

((v3D + v2D)·∇(T3D + T2D), ϕT2D)Ω = (v3D ·∇T3D, ϕT2D)Ω
+(v3D ·∇T2D, ϕT2D)Ω + (v2D ·∇T3D, ϕT2D)Ω + (v2D ·∇T2D, ϕT2D)Ω.

38

4.2 Coupling of 2D Shallow-Water and 3D Boussinesq model

(v3D ·∇T3D, ϕT2D)Ω:

(v3D ·∇T3D, ϕT2D)Ω =
∫
Ω
v3D ·∇T3DϕT2D dx,

=
∫
Ω
v1

3D∂1T3DϕT2D dx+
∫
Ω
v2

3D∂2T3DϕT2D dx+
∫
Ω
v3

3D∂3T3DϕT2D dx,

=
∫
Ω2D

ϕT2D

∫ h

0
∂1(v1

3DT3D) dx3 dx12 +
∫
Ω2D

ϕT2D

∫ h

0
∂2(v2

3DT3D) dx3 dx12

+
∫
Ω2D

ϕT2D

∫ h

0
∂3(v3

3DT3D) dx3 dx12,

=
∫
Ω2D

ϕT2D∂1

∫ h

0
(v1

3DT3D) dx3 dx12 +
∫
Ω2D

ϕT2D∂2

∫ h

0
(v2

3DT3D) dx3 dx12

+
∫
Ω2D

ϕT2D∂3

∫ h

0
(v3

3DT3D) dx3 dx12,

Here, we need to approximate this as

(v3D ·∇T3D, ϕT2D)Ω ≈
∫
Ω2D

ϕT2D∂1(hv1
2DT2D) dx12 +

∫
Ω2D

ϕT2D∂2(hv2
2DT2D) dx12,

=
∫
Ω2D

ϕT2D{v
1
2D∂1(hT2D) + T2D∂1(hv1

2D)} dx12

+
∫
Ω2D

ϕT2D{v
2
2D∂2(hT2D) + T2D∂2(hv2

2D)} dx12,

= (v2D · ∇(hT2D), ϕT2D)Ω2D + (T2D∇·(hv2D), ϕT2D)Ω2D .

(v3D ·∇T2D, ϕT2D)Ω:

(v3D ·∇T2D, ϕT2D)Ω =
∫
Ω
v3D ·∇T2DϕT2D dx,

=
∫
Ω
v1

3D∂1T2DϕT2D dx+
∫
Ω
v2

3D∂2T2DϕT2D dx,

=
∫
Ω2D

ϕT2D∂1T2D

∫ h

0
v1

3D dx3 dx12 +
∫
Ω2D

ϕT2D∂2T2D

∫ h

0
v2

3D dx3 dx12,

=
∫
Ω2D

ϕT2D∂1T2D(hv1
2D) dx12 +

∫
Ω2D

ϕT2D∂2T2D(hv2
2D) dx12,

= ((hv2D)·∇T2D, ϕT2D)Ω2D .

39

4 Coupling of models in 2D and 3D

(v2D ·∇T3D, ϕT2D)Ω:

(v2D ·∇T3D, ϕT2DT)Ω =
∫
Ω
v2D ·∇T3DϕT2D dx,

=
∫
Ω
v1

2D∂1T3DϕT2D dx+
∫
Ω
v2

2D∂2T3DϕT2D dx+
∫
Ω
v3

2D∂3T3DϕT2D dx,

=
∫
Ω2D

ϕT2Dv
1
2D∂1

∫ h

0
T3D dx3 dx12

+
∫
Ω2D

ϕT2Dv
2
2D∂2

∫ h

0
T3D dx3 dx12

+
∫
Ω2D

ϕT2Dv
3
2D∂3

∫ h

0
T3D dx3 dx12,

=
∫
Ω2D

ϕT2Dv
1
2D∂1(hT2D) dx12 +

∫
Ω2D

ϕT2Dv
2
2D∂2(hT2D) dx12

+
∫
Ω2D

ϕT2Dv
3
2D∂3(hT2D) dx12,

= ((v2D ·∇)(hT2D), ϕT2D)Ω2D .

(v2D ·∇T2D, ϕT2D)Ω:

(v2D ·∇T2D, ϕT2D)Ω =
∫
Ω
v2D ·∇T2DϕT2D dx,

=
∫
Ω
v1

2D∂1T2DϕT2D dx+
∫
Ω
v2

2D∂2T2DϕT2D dx,

=
∫
Ω2D

hv1
2D∂1T2DϕT2D dx12 +

∫
Ω2D

hv2
2D∂2T2DϕT2D dx12,

= (hv2D ·∇T2D, ϕT2D)Ω2D .

To this end, the coupling terms were rewritten as integrals in two dimensions.

Summing up the results

The second equation

a(u2D + u3D)(ϕ2D) = (F,ϕ2D) for all ϕ2D ∈ V2D

40

4.2 Coupling of 2D Shallow-Water and 3D Boussinesq model

is considered. We collect the results we gained in the previous paragraphs. First of all we sum
up the terms tested with ϕv2D :

a(u2D + u3D)(ϕv2D) = (∂t(v3D + v2D), ϕv2D)Ω + (((v3D + v2D)·∇)(v3D + v2D), ϕv2D)Ω
+ (γ∇(p3D + p2D), ϕv2D)Ω + (ν∇(v3D + v2D),∇ϕv2D)Ω
+ (%γg(T3D + T2D), ϕv2D)Ω + (g∇h, ϕv2D)Ω,
= (∂t(hv2D), ϕv2D)Ω2D + (h∂tv2D, ϕv2D)Ω2D + (ν∇(hv2D),∇ϕv2D)Ω2D

+ (hν∇v2D,∇ϕv2D)Ω2D + 2((v2D ·∇)(hv2D), ϕv2D)Ω2D

+ (∇·(hv2D)v2D, ϕv2D)Ω2D + 2(h(v2D ·∇)v2D, ϕv2D)Ω2D

+ (%γghT2D, ϕv2D)Ω2D + 2(γ%gh∇h, ϕv2D)Ω2D .

(4.17)

The terms tested with ϕp2D sum up to

a(u2D + u3D)(ϕp2D) = (∇·(v3D + v2D), ϕp2D)Ω,
= (∂th+∇·(hv2D), ϕp2D)Ω2D + (h∇·v2D, ϕp2D)Ω2D ,

=: a(u2D)(ϕp2D).
(4.18)

These equations are closely related to the Shallow-Water equations introduced in Section 3.1.4.
Collecting the results for the temperature equation, this leads to

a(u2D + u3D)(ϕT2D) = (∂t(T3D + T2D), ϕT)Ω + ((v3D + v2D)·∇(T3D + T2D), ϕT)Ω
+ (νT∇(T3D + T2D),∇ϕT)Ω,
= (∂t(hT2D), ϕT2D)Ω2D + (h∂tT2D, ϕT2D)Ω2D + (νT∇(hT2D),∇ϕT2D)Ω2D

+ (νTh∇T2D,∇ϕT2D)Ω2D + 2(v2D · ∇(hT2D), ϕT2D)Ω2D

+ (T2D∇·(hv2D), ϕT2D)Ω2D + 2(hv2D ·∇T2D, ϕT2D)Ω2D .

(4.19)

Taking into account that
a(u2D + u3D)(ϕp2D) = 0

holds we can simplify (4.17) to

a(u2D + u3D)(ϕv2D) = 2(∂t(hv2D), ϕv2D)Ω2D + 2(hν∇v2D,∇ϕv2D)Ω2D + (v2D∇h,∇ϕv2D)Ω2D

+ 2((v2D ·∇)(hv2D), ϕv2D)Ω2D + 2(∇·(hv2D)v2D, ϕv2D)Ω2D

+ 2(h(v2D ·∇)v2D, ϕv2D)Ω2D + 2(γ%gh∇h, ϕv2D)Ω2D ,

=: a(u2D)(ϕv2D).
(4.20)

and (4.19) becomes

a(u2D + u3D)(ϕT2D) = 2(∂t(hT2D), ϕT2D)2D + 2(νTh∇T2D,∇ϕT2D)2D

+ (νTT2D∇h,∇ϕT2D)2D + 2(v2D · ∇(hT2D), ϕT2D)2D

+ 2(T2D∇·(hv2D), ϕT2D)2D + 2(hv2D ·∇T2D, ϕT2D)2D,

+ (T2Dh∇·v2D, ϕT2D)2D

=: a(u2D)(ϕT2D).

(4.21)

41

4 Coupling of models in 2D and 3D

This shows that the part of the semi-linear form which is tested by a function in V2D no longer
consists of couplings with functions in V3D and the integrals are two dimensional integrals:

a(u2D + u3D)(ϕv2D) = a(u2D)(ϕv2D),
a(u2D + u3D)(ϕp2D) = a(u2D)(ϕp2D),
a(u2D + u3D)(ϕT2D) = a(u2D)(ϕT2D).

The definition of these semi-linear forms is given in (4.18), (4.20), and (4.21). From this follows
that for the second equation it holds

a(u2D + u3D)(ϕ2D) = a(u2D)(ϕ2D).

The fully coupled problem reads: Find u2D = (v2D, h, T2D) ∈ X2D and u3D = (v3D, p3D, T3D) ∈
X3D such that

a(u2D + u3D)(ϕ3D) = (F,ϕ3D) for all ϕ3D ∈ X3D,

a(u2D)(ϕ2D) = (F,ϕ2D) for all ϕ2D ∈ X2D.

For the simulations which are described in Chapter 7, we further approximated the two
dimensional equation since we used the original Shallow-Water equations given in (3.16).

42

5 Discretization

The discretization of the equations presented in Chapter 3 will be laid out in this chapter.
The finite element method will be used to discretize the equations in space. For temporal
discretization we discuss different methods that may be taken. Due to the coupling of 2D and
3D equations in the problem we will focus on the combination of discretization in 2D with
equations discretized in 3D. In Chapter 6 details of this discretization in view of algorithms
will be discussed.

5.1 Discretization in time

This section is devoted to the discretization of the Navier-Stokes equations as well as the
Shallow-Water equations. Since we introduced the ALE formulation in Section 3.2.4 we can
restrict ourselves to a fixed domain for all times.

5.1.1 Preliminaries on time stepping schemes

We divide the desired time interval I = [0, T] into subintervals such that

0 = t0 < t1 < · · · < tN = T, In := (tn−1, tn], kn := tn − tn−1,

and
I = {0} ∪ I1 ∪ I2 ∪ · · · ∪ In ∪ · · · ∪ IN .

A sketch of such a discretization is given in Figure 5.1. Note that the step size kn does not
necessarily have to be the same on each subinterval.

ttntn−1 tn+1

Figure 5.1. Discretization in time from tn−1 to tn+1.

Inspired by the work in [55], we analyzed the properties of various time stepping schemes.
Based on the following linear test case

∂tx−Ax = 0, x(0) = x0,

43

5 Discretization

where A a positive definite and (symmetric) n× n matrix independent of t, we investigate the
behavior as t→∞ for equidistant step size kn = k. The solution of the system is given as

x(t) = eAtx0, xi(t) = eλitx0i.

The conclusions can be carried over to an operator which is non-selfadjoint, non-autonomous
and weakly non-linear, e.g. the operator related to the Navier-Stokes problem.

Depending on the parameters λi the behavior of the solution x(t) for t→∞ is characterized
by the amplification factor ω = ω(z). For one-step schemes we have xni = ω(λik)nx0i, with
xn = x(tn) being the sequence of values generated by the application of a time stepping
scheme.

One-step θ-schemes

With the decomposition

A = A1 +A2, A1 = θA and A2 = (1− θ)A,

we derive one-step θ-schemes via

1
kn

(xn+1 − xn)− θAn+1 − (1− θ)An = 0,

where Ai = Axi. For the generated sequence and the amplification factor we achieve

xni =
(

1 + (1− θ)kλi
1− θkλi

)n
x0i, ω(z) = 1 + (1− θ)z

1− θz .

For the explicit Euler scheme (θ = 0) we have a restriction on the step size k ≤ 1
λ to get

stability. Furthermore it strongly amplifies free oscillations since
∣∣ω(ik)

∣∣ > 1. In the case θ = 1
we have a strongly A-stable scheme because of the fact that ω(z) → 0 as Reλ → ∞. The
implicit Euler scheme damps out free oscillations as

∣∣ω(ik)
∣∣ < 1. The implicit and explicit

Euler scheme are of first order only.

The choice θ = 1
2 yields the second order accurate Crank-Nicolson scheme, but it has only

weak damping properties, since
∣∣ω(z)

∣∣→ 1 as Re z →∞. However, free oscillations are well
preserved due to the fact that

∣∣ω(ik)
∣∣ = 1.

Fractional-step θ-schemes

For the fractional-step θ-scheme a time step tn−1 → tn is divided into three sub-steps, see also
Figure 5.2:

tn−1 → tn−1+θ → tn−θ → tn.

With the decomposition A = A1 +A2 the fractional-step θ-scheme reads as follows

44

5.1 Discretization in time

ttn−1+θ tntn−1 tn−θ

Figure 5.2. Discretization via fractional steps from tn−1 to tn.

1
θkn

(xn+θ − xn)−An+θ
1 −An2 = 0,

1
θ′kn

(xn+1−θ − xn+θ)−An+θ
1 −An+1−θ

2 = 0,

1
θkn

(xn+1 − xn+1−θ)−An+1
1 −An+1−θ

2 = 0,

(5.1)

where θ ∈ (0, 1
2), θ′ = 1− 2θ. We take A1 = αA, A2 = βA with α+ β = 1, 0 < α, β < 1 to

derive the fractional-step θ-scheme. Now it remains to choose θ, α, and β. For the generated
sequence with constant step-size k and the amplification factor we derive

xni = (1 + βθkλi)2n(1 + αθ′kλi)n

(1− αθknλi)2n(1− βθ′knλi)n
x0i, ω(z) = (1 + βθz)2(1 + αθ′z)

(1− αθz)2(1− βθ′z) .

The rational function ω(·) in the neighborhood of z = 0 can be expressed as

ω(z) = 1 + z + z2

2 [1 + (β − α)(2θ2 − 4θ + 1)] +O(z3).

A comparison to the exponential function yields

α = β (= 1
2 from α+ β = 1) or θ = 1− 1/

√
2,

as necessary conditions for second order accuracy. Due to the fact that

lim sup
Re z→∞

∣∣ω(z)
∣∣ = lim sup

Re z→∞

∣∣∣∣∣(1 + βθz)2(1 + αθ′z)
(1− αθz)2(1− βθ′z)

∣∣∣∣∣ = β

α
,

we have to choose α > β since this is necessary for strong A-stability. If we set αθ = βθ′ =
β(1− 2θ) we get the same matrix in each partial step. This leads to the choice

α = 1− 2θ
1− θ , β = θ

1− θ , θ = 1− 1/
√

2.

We have
∣∣ω(ik)

∣∣ < 1 and |ω| ≈ 0.99987 for k = 0.8.

45

5 Discretization

Another variant of the fractional-step θ-scheme can be derived if we take A1 = A and A2 = 0
in (5.1). This leads to

1
kn

(xn+θ − xn)− θAn+θ = 0,

1
kn

(xn+1 − xn)− θAn+1 − (1− θ)An+θ = 0,

where θ′ = 1− 2θ. This scheme has been analyzed for incompressible flow simulations in [67].
For the generated sequence with constant step-size k and the amplification factor we derive

xni = (1 + θ′kλi)n

(1− θkλi)2nx
0i, ω(z) = 1 + θ′z

(1− θz)2 .

Again we compare the rational function ω(·) in the neighborhood of z = 0

ω(z) = 1 + z + z2

2 (4θ − 2θ2) + z3

6 (6θ2(3− 2θ)) +O(z4)

to the exponential function. A necessary condition for second order accuracy leads to the
choice

θ = 1− 1/
√

2.

It holds lim supRe z→∞
∣∣ω(z)

∣∣ = 0 as well as
∣∣ω(ik)

∣∣ < 1 and |ω| ≈ 0.9986 for k = 0.8.

To visualize the damping properties of the introduced schemes we consider the following simple
test problem

x : [0, T]→ R4, x′(t) +Ax(t) = 0, x(0) = 1.

The non-diagonal 4× 4-matrix is constructed to have the eigenvalues

λ1 = 10γ , λ2 = i, λ3 = −i, λ4 = 1.

Thus, the solution contains a stiff component for γ � 1 (rapid exponential decay) and periodic
components (free oscillations). Given the matrix A as

A =


0 10γ −1 0
0 10γ 0 0
1 −1 0 0
0 0 0 1

 ,

the exact solution is known to be

x(t) =


e−10γt + sin(t)

e−10γt

cos(t)
e−t

 .

46

5.1 Discretization in time

Numerical results for free oscillations

In the following, we show the damping behavior by showing the computed solution x3(t) and
the error e3(t) between the exact and the computed solution. To have a fair comparison
between the one-step and the fractional-step schemes we choose the step size accordingly. For
the Crank-Nicolson scheme shown in Figure 5.3 the free oscillations are well preserved and the
error increases only slightly towards the end time point. Nearly the same behavior is exhibited
in Figure 5.4. We note that the error at the end is larger than in the solution computed by

-1

-0.5

0

0.5

1

0 20 40 60 80 100
time t

x3(t) e3(t)

Figure 5.3. Crank-Nicolson with kn = 0.042

the Crank-Nicolson scheme. With a fair choice of the step size in the variant of the fractional

-1

-0.5

0

0.5

1

0 20 40 60 80 100
time t

x3(t) e3(t)

Figure 5.4. Fractional step θ with kn = 0.125

47

5 Discretization

step θ-scheme, we get a behavior as in the case for the original fractional step θ-scheme. This
is shown in Figure 5.5.

-1

-0.5

0

0.5

1

0 20 40 60 80 100
time t

x3(t) e3(t)

Figure 5.5. Fractional step variant with kn = 0.083

Numerical results for exponential decay

As a next crucial point, we investigate the exponential decay in the first solution component.
Again we present results for the computed solution x1(t) as well as the error e1(t). In Figure 5.6,
we demonstrate the weak damping property of the Crank-Nicolson scheme at the beginning,
whereas at the end, the free oscillations are captured again. For the fractional step-θ scheme,
Figure 5.7, we also observe an error at the beginning. The variant of the fractional step-θ
scheme damps out the exponential decay at the beginning very well. This is shown in Figure 5.8.
This clearly shows that we favor to use one of the fractional step θ-schemes for the numerical
simulation in the case of fluid flows.

5.1.2 Temporal regularity

For discretization with finite differences we have to make sure that the regularity is sufficiently
high. We are concerned with discretization in time of the space

Z :=
{
u = (v, p, T)

∣∣∣ v ∈ L2(I,H1
0 (Ω)3), ∂tv ∈ L2(I, L2(Ω)3),

p ∈ L2(I, L2(Ω)/R), T ∈ L2(I,H1
0 (Ω)), ∂tT ∈ L2(I, L2(Ω))

}
.

For convenience of the reader we recall the definition of the test space

Z̃ :=
{
u = (v, p, T)

∣∣∣ v ∈ H1
0 (Ω)3, p ∈ L2(Ω)/R, T ∈ H1

0 (Ω)
}
. (5.2)

48

5.1 Discretization in time

-1

-0.5

0

0.5

1

0 20 40 60 80 100
time t

x1(t) e1(t)

Figure 5.6. Crank-Nicolson with kn = 0.042

-1

-0.5

0

0.5

1

0 20 40 60 80 100
time t

x1(t) e1(t)

Figure 5.7. Fractional step θ with kn = 0.125

49

5 Discretization

-1

-0.5

0

0.5

1

0 20 40 60 80 100
time t

x1(t) e1(t)

Figure 5.8. Fractional step variant with kn = 0.083

Assuming the data admits a higher regularity of the solution, the following proposition ensures
that we are allowed to take point values and point values of gradients in time:

Proposition 5.1. For w ∈ L2(I,H1
0 (Ω)) with ∂tw ∈ L2(I,H−1(Ω)) it holds

w ∈ C(I, L2(Ω)).

Furthermore for w ∈ L2(I,H2(Ω) ∩H1
0 (Ω)) with ∂tw ∈ L2(I, L2(Ω)) it holds

w ∈ C(I,H1
0 (Ω)).

Proof. The proof can be found in [28].

5.1.3 Temporal discretization of the Boussinesq equations

First of all we discretize the non-linear equations derived in Section 3.2.4 resulting from the
Navier-Stokes equations. For time discretization we apply either a one step- or a fractional-
step θ-scheme. Based on the variational formulation (3.11) we introduce a semi-linear form
A : Z × Z̃ → R. This semi-linear form is defined as

A(u)(ϕ) :=(∂tv, ϕv) + ((v ·∇)v, ϕv) + γ(∇p, ϕv)
+ (ν∇v,∇ϕv)− γ(g%T, ϕv) + (∇·v, ϕp)
+ (∂tT, ϕT) + (v · ∇T, ϕT) + νT (∇T,∇ϕT).

50

5.1 Discretization in time

For discretization in time we split this into a sum of semi-linear forms and introduce a discrete
form At : Z̃ × Z̃ → R as

At(u)(ϕ) = at(u, ϕ) + a(u)(ϕ) + b(u, ϕ) + c(u, ϕ)
at(u, ϕ) := (v, ϕv) + (T, ϕT)
a(u)(ϕ) := ((v ·∇)v, ϕv) + (ν∇v,∇ϕv)− γ(g%T, ϕv) + (v · ∇T, ϕT) + νT (∇T,∇ϕT)
b(u, ϕ) := γ(∇p, ϕv)
c(u, ϕ) := (∇·v, ϕp)

(5.3)

with at : Z̃ × Z̃ → R, a : Z̃ × Z̃ → R, b : Z̃ × Z̃ → R and c : Z̃ × Z̃ → R. In this case the form
at(·, ·), b(·, ·), and c(·, ·) are linear in both arguments.

Given the previous solution uk−1 = (vk−1, pk−1, T k−1) we are concerned with solving the
following problem in each sub-step: Find u = (v, p, T) := uk = (vk, pk, T k) ∈ Z̃ such that

1
kn
at(u, ϕ) + θ1a(u)(ϕ) + θpb(u, ϕ) + c(u, ϕ)

= 1
kn
at(uk−1)(ϕ)− θ2a(uk−1)(ϕ)

+ θ3{(fk−1, ϕv) + (qk−1
T , ϕT)}+ θ4{(fk, ϕv) + (qkT , ϕT)

(5.4)

holds for all ϕ = (ϕv, ϕp, ϕT) ∈ Z̃. For the special choice given in Table 5.1 we obtain the
one-step θ-schemes. In the following Table 5.2 we present two variants of the fractional-step

Table 5.1. Choice of parameters to obtain one-step θ-schemes.

θ1 θ2 θ3 θ4 θp tk−1 tk

explicit Euler scheme 0 1 1 0 1 tn−1 tn
implicit Euler scheme 1 0 0 1 1 tn−1 tn
Crank-Nicolson scheme 0.5 0.5 0.5 0.5 1 tn−1 tn

θ-scheme. Both are of second order, see [49]. The step-size kn is divided into three sub-steps.
Let

θ = 1−
√

2
2 , θ′ = 1− 2θ, α = θ′

1− θ , β = 1− α,

be the choice of the parameters introduced in Table 5.2. Solving three sub-steps of (5.4) with
this choice of parameters gives the fractional step θ-scheme.

5.1.4 Temporal discretization of the Shallow-Water equations

We apply the same time-stepping schemes to the nonlinear Shallow-Water equations (3.16).
For this reason we recall the spaces X2D and X̃2D

X2D :=
{
u = (v2D, h)

∣∣∣ v2D ∈ L2(I,H1
0 (Ω2D)2), ∂tv2D ∈ L2(I, L2(Ω2D)2),

h ∈ L2(I,H1
0 (Ω2D)), ∂th ∈ L2(I, L2(Ω2D))

}
,

(5.5)

51

5 Discretization

Table 5.2. Choice of parameters to obtain fractional-step θ-schemes.

θ1 θ2 θ3 θ4 θp tk−1 tk

FS0 αθ βθ βθ αθ θ tn−1 tn−1 + θkn
βθ′ αθ′ αθ′ βθ′ θ′ tn−1 + θkn tn − θkn
αθ βθ βθ αθ θ tn − θkn tn

FS1 αθ βθ θ 0 θ tn−1 tn−1 + θkn
βθ′ αθ′ 0 θ′ θ′ tn−1 + θkn tn − θkn
αθ βθ θ 0 θ tn − θkn tn

and

X̃2D :=
{
u = (v2D, h)

∣∣∣ v2D ∈ H1
0 (Ω2D)2, h ∈ H1

0 (Ω2D)
}
.

Based on the the weak formulation (3.19) we introduce a semi-linear form A on X2D × X̃2D.

A(u2D)(ϕ2D) :=(h∂tv2D, ϕv2D) + (h(v2D ·∇)v2D, ϕv2D)− ν(h∇v2D,∇ϕv2D)
+ (gh∇h, ϕv2D) + (∂th, ϕh) + (v2D∇h, ϕh) + (h∇·v2D, ϕh).

To apply the above presented time stepping schemes we decompose the corresponding semi-
linear form and introduce a time discrete form At : X̃2D × X̃2D as

At(u2D)(ϕ2D) = at(u2D)(ϕ2D) + a(u2D)(ϕ2D)
at(u2D)(ϕ2D) := (hv2D, ϕv2D) + (h, ϕh)
a(u2D)(ϕ2D) := (h(v2D ·∇)v2D, ϕv2D)− ν(h∇v2D,∇ϕv2D)

+ (gh∇h, ϕv2D) + (v2D∇h, ϕh) + (h∇·v2D, ϕh),

(5.6)

where at : X̃2D × X̃2D → R and a : X̃2D × X̃2D → R. Since nonlinear terms also occur in the
form at(u)(ϕ) we adjust the time discretization to obtain second order of convergence in the
case of the Crank-Nicolson scheme and the fractional-step θ-schemes.

Given the previous solution uk−1
2D = (vk−1

2D , hk−1) we are concerned with solving the following
problem in each sub-step: Find u2D = (v2D, h) := uk2D = (vk2D, hk) ∈ X̃2D such that

1
kn

{
(hk−

1
2 (v2D − vk−1

2D), ϕv2D) + (h, ϕh)
}

+ θ1a(u)(ϕ) = 1
kn

(hk−1, ϕh)− θ2a(uk−1)(ϕ)

+ θ3(F k−1, ϕv2D) + θ4(F k, ϕv2D), ∀ϕ = (ϕv2D , ϕh) ∈ X̃2D,

(5.7)

where hk−
1
2 = hk−hk−1

2 . The terms b(·, ·) and c(·, ·) in (5.4) do not occur because of the absence
of pressure.

52

5.1 Discretization in time

5.1.5 Temporal discretization of the Boussinesq equations in ALE formulation

For the time discretization of the Boussinesq equations in ALE formulation we recall the
definition of the spaces

X :=
{
u = (v, p, T)

∣∣∣ v ∈ L2(I,H1
0 (Ω)3), ∂tv ∈ L2(I, L2(Ω)3), p ∈ L2(I, L2(Ω)/R),

T ∈ L2(I,H1
0 (Ω)), ∂tT ∈ L2(I, L2(Ω)), h ∈ L2(I,H1

0 (Ω2D)), ∂th ∈ L2(I, L2(Ω2D))
}
,

and

X̃ :=
{
u = (v, p, T)

∣∣∣ v ∈ H1
0 (Ω)3, p ∈ L2(Ω)/R, T ∈ H1

0 (Ω), h ∈ H1
0 (Ω2D)

}
. (5.8)

Based on the variational formulation in the ALE framework (3.31) we apply the discretization
in time. We introduce a semi-linear form A : X × X̃ → R defined as

A(u)(ϕ) :=(h∂tv, ϕv) + (h(F−1(v − ∂tAt)·∇)v, ϕv)− γ(hpIF−T ,∇ϕv)
+ (νh∇vF−1F−T ,∇ϕv)− γ(%hgT, ϕv)
+ (h∂1v1 + h∂2v2 − x3∂1h∂3v1 − x3∂2h∂3v2 + ∂3v3, ϕp)
+ (h∂tT, ϕT) + (h(F−1(v − ∂tAt)·∇)T, ϕT) + (νThF−1F−T∇T,∇ϕT)
+ (∂th+ vS1 ∂1h+ vS2 ∂2h− vS3 , ϕh)Ω2D .

Again we split the terms into sums to apply the time discretization (5.4). A new form
At : X̃ × X̃ → R for the time discretization is introduced:

At(u)(ϕ) =at(u)(ϕ) + a(u)(ϕ) + b(u)(ϕ) + c(u)(ϕ),
at(u)(ϕ) :=(hv, ϕv) + (h, ϕT) + (h, ϕh)Ω2D

− (h(F−1∂tAt ·∇)T, ϕT)− (h(F−1∂tAt ·∇)v, ϕv),
a(u)(ϕ) :=(h(F−1v ·∇)v, ϕv) + (νh∇vF−1F−T ,∇ϕv)− γ(%hgT, ϕv)

+ (h(F−1v ·∇)T, ϕT) + (νThF−1F−T∇T,∇ϕT)
+ (vS1 ∂1h+ vS2 ∂2h− vS3 , ϕh)Ω2D ,

b(u)(ϕ) :=− γ(hpIF−T ,∇ϕv),
c(u)(ϕ) :=(h∂1v1 + h∂2v2 − x3∂1h∂3v1 − x3∂2h∂3v2 + ∂3v3, ϕp).

(5.9)

All the introduced forms are nonlinear and map from X̃× X̃ into the real numbers. In contrast
to the time discretization of the Boussinesq equations without the ALE transformation,
nonlinear terms also occur in the forms at(·)(·), b(·)(·) and c(·)(·). So we follow the same way
for time discretization as in the previous section.

Given the previous solution uk−1 = (vk−1, pk−1, T k−1, hk−1) we are concerned with solving the
following problem in each sub-step: Find u = (v, p, T, h) := uk = (vk, pk, T k, hk) ∈ X̃ such
that

1
kn

{
(hk−

1
2 (v − vk−1), ϕv) + (hk−

1
2 (T − T k), ϕT) + (h, ϕh)Ω2D

}
+ θ1a(u)(ϕ) + θpb(u)(ϕ) + c(u)(ϕ) = 1

kn
(hk−1, ϕh)Ω2D − θ2a(uk−1)(ϕ)

+ θ3{(fk−1, ϕv) + (qk−1
T , ϕT)}+ θ4{(fk, ϕv) + (qkT , ϕT)}

(5.10)

53

5 Discretization

holds for all ϕ = (ϕv, ϕp, ϕT) ∈ X̃, where hk−
1
2 = hk−hk−1

2 .

5.2 Issues on meshes

So far, we have only considered semi-discretization in time. Prior to discretize via the finite
element method in space we discuss the requirements for meshes in two and three space
dimensions. In regard to the multilevel method that will be explained in detail in Section 6.2
we need to emphasize also on the hierarchy of meshes.

Due to the ALE formulation which was introduced in Section 3.2.4 we assume the computational
domain Ω ⊆ R3 to be polygonal. This domain is partitioned into open cells T . If the domain
is three dimensional we use hexahedron. In the case that the domain is two dimensional the
cells are quadrilaterals. All cells together form the mesh Th = {T} of the domain, where the
parameter h is given as a cell-wise constant function h

∣∣∣
T

= hT := diam(T) with the diameter
hT of a cell. The symbol h also denotes the maximum cell diameter, that is

h := max
T∈Th

hT .

Following the standard literature [16], [21] or [26] we define the regularity of a mesh.

Definition 5.1. A mesh Th = {T} is called regular if the following conditions are fulfilled:

(i) Ω =
⋃

T∈Th
T .

(ii) T1 ∩ T2 = ∅ for all cells T1, T2 ∈ Th with T1 6= T2.

(iii) Any face of any cell T1 ∈ Th is either a subset of the boundary ∂Ω or a face of another
cell T2 ∈ Th.

By one step of refinement we obtain a new mesh Th from the mesh T2h. We will often write T`
instead of T2`h with ` indicating the number of refinements.

For our purposes we have to weaken the last condition since we explicitly want to allow for
adaptive refinement. In order to incorporate adaptive meshes we introduce so called hanging
nodes. More details about hanging nodes will be discussed later in Section 5.2.2.

5.2.1 Splitting of adaptive meshes into levels

The meshes considered in this thesis are obtained from a quasi-uniform, conforming coarse
mesh T0 by consecutively refining mesh cells. In order to achieve high resolution in regions
where required, refinement may be restricted to these areas of the domain; examples for
controlling this refinement can be found in the rich literature on adaptive mesh refinement,
see e.g. [5, 24, 69].

We introduce the notion of an active cell of the hierarchy {T`} (see e.g. [2]). These are the
cells which are not refined further in any of the triangulations T`. We give an example in
Figure 5.9.

54

5.2 Issues on meshes

1.0 1.1

1.3
2.3

2.12.0

3.1

3.3

3.0

3.2
0.0

3.2 3.3

2.0 2.2

1.0 1.1 1.2 1.3

2.1 2.3

3.0 3.1

Figure 5.9. Example of active cells in a 2D mesh and corresponding tree graph.

The shape functions of all active cells constitute the space VL on the finest level. We can also
consider the hierarchy of meshes as a tree graph where the grid cells correspond to nodes of
the graph and “refinement” corresponds to edges. Then, the cells of T0 correspond to the roots
of the tree (or rather forest) and active cells are the leaves (shaded in Figure 5.10).

The level `T of the cell T in the triangulation hierarchy {T`} is defined recursively as follows: if
a cell belongs to the coarse mesh T0, its level is zero. Otherwise, it was obtained by refinement
of another grid cell Tp and we set `T = `Tp + 1. Since there is no notion of coarsening in a
single hierarchy {T`}, this level is uniquely defined. The level `F of a face is defined to be the
highest level of the adjacent mesh cells.

We remark that a triangulation T` does not consist of cells on level ` only, but covers the
whole domain Ω. Therefore, a single grid cell T with level `T can belong to several meshes
T`, T`+1, . . . as shown in Figure 5.10. For instance, the shaded cells on the intermediate level

Figure 5.10. A hierarchy of three meshes with local refinement (active cells shaded).

55

5 Discretization

(cell level 1) belong to the meshes T1 and T2, the white cell on that level to T1 only.

Each triangulation T` will be partitioned into the set of cells strictly on level `

T S` =
{
T ∈ T`

∣∣∣ `T = `
}
,

and the set of cells on lower levels

T L` =
{
T ∈ T`

∣∣∣ `T < `
}
.

This partitioning is explained in Figure 5.11, where T S2 is shaded and cells in T L2 are white.
We remark that cells in T L` may contain grid cells of several lower levels. Obviously, there

Figure 5.11. Splitting of T` into T S` (shaded cells) and T L` (white cells).

holds

T S` ∪ T L` = T`, T S` ∩ T L` = ∅.

By F`, we denote the set of all faces of cells in T`. In particular, the set of interior faces Fi` is
the set of faces Fij = T i ∩ T j , where Ti and Tj are two cells of T`. We call the faces between
the sets T S` and T L` the refinement edge FEl between levels ` and `− 1, that is

FE` =
{
F ∈ Fi`

∣∣∣∣ F ∩⋃
T S
`

T = F and F ∩
⋃
T L
`

T = F

}

Mostly for technical reasons, we limit the jump of cell levels `T across the refinement edge. To
this end, we introduce the following two notions:

Definition 5.2. A mesh is one-irregular, if the levels of all active cells sharing a face differ
by a maximum of one.

56

5.2 Issues on meshes

Figure 5.12. Violated one-Irregularity on the left and resolved one-irregular mesh
on the right.

In Figure 5.12 we indicate with an arrow where the shown mesh is not one-irregular. Further
refinement of the mesh leads to a one-irregular mesh as can be seen on the right mesh in
Figure 5.12.

Definition 5.3. A mesh is v-one-irregular, if the levels of all active cells sharing a vertex
or a face differ by a maximum of one.

Figure 5.13. Violated v-one-Irregularity on the left and resolved v-one-irregular
mesh on the right.

An arrow in Figure 5.13 indicates the vertex where the shown mesh is not v-one-irregular.
This can be resolved by refining cells. The v-one-irregular mesh obtained is shown on the left
in Figure 5.13.

The notion of one-irregular meshes is ubiquitous in the literature on adaptive refinement with
hanging nodes. The additional requirement of being v-one-irregular only acts at corners of the

57

5 Discretization

refinement edge. While one-irregularity was the only condition on the mesh for discontinuous
Galerkin methods [44], it is not sufficient, if there are degrees of freedom located on vertices. In
this case, we require the mesh to be v-one-irregular. We point out that, while these conditions
are not really necessary for the analysis or for the implementation (see e.g.[62]), they are
convenient, because they ensure that refinement edges on different levels are separated. In our
experience, they are not harmful, since (a) they will not cause global spread of refinement and
(b) they are consistent with a uniform approximation quality in most cases.

5.2.2 Hanging nodes

We treat refinement edges by introducing hanging nodes on the refined side, not by introducing
additional refinement on the coarse side. These correspond to nominal degrees of freedom in

Figure 5.14. Two- and three-dimensional meshes with hanging nodes.

the discretization, but are constrained through the requirement that finite element functions
must be conforming across the refinement edge. One option to deal with those degrees of
freedom would be eliminating them completely from the linear system. We do not use this
technique, since it involves a numbering of degrees of freedom which is not easily represented
in the mesh anymore. Instead, we follow [2, 3, 43] in keeping the degrees of freedom in the
linear system.

If hanging nodes are used, additional equations are needed to deal with them. These equations
are obtained from the continuity condition of the finite element space. This condition essentially
states that along the refinement edge, the trace of a function on the refined part of the mesh
must be equal to the one on the coarse part. In general, it is the trace operator that ensures
conformity of the finite element space.

Thus, we obtain a small linear system of equations, which allows us to eliminate some of the
degrees of freedom on the refinement edge [2]. After doing so, a convention has to be found
how to represent a function by a coefficient vector. In the implementation in deal.II, two forms
are used:

condensed: all degrees of freedom corresponding to hanging nodes are always zero. This is
the natural representation for linear forms, since there is no basis function in the finite
element space.

58

5.3 Discretization in space

distributed: the coefficients on the refined side are set such that the functions on both sides
coincide. This is the natural representation for finite element functions, since they are
conforming.

As an example, for shape functions linear on edges in two dimensions, the distributed form
assigns the mean value of the two neighbors to the hanging node. In order to convert from the
distributed form to the condensed form, half of the value in the hanging node is added to its
neighbors and its value itself is set to zero. The condensed form is used for the vectors in a
linear solver, so as not to spoil the residual by artificial values. Then, whenever multiplication
with the system matrix, which was built cell-wise and does not know about the hanging node,
is needed, a conversion to distributed and back is needed.

We point out that the concept of hanging nodes is not restricted to linear and bilinear finite
elements. Details of its application to higher order elements can be found in [2], its application
to local hp-refinement in [4]. It has been implemented in the deal.II library [3].

5.3 Discretization in space

The temporal discretized systems that we derived in Section 5.1 are further discretized in space.
For spatial discretization of the temporal discrete systems we use the finite element method.

Through semi-discretization in time we obtained spaces Z̃ in (5.2), X̃2D in (5.5) and X̃ in
(5.8). They all contain continuous spaces as L2(Ω)/R and H1

0 (Ω), for example. To this end
we introduce finite dimensional subspaces V s

h ⊆ H1(Ω) of piecewise polynomial functions up
to order s.

Following [21] and [26] we define continuous H1-conforming finite element spaces V s
h by

V s
h :=

{
ϕh ∈ C(Ω)

∣∣∣ ϕh∣∣∣
T
∈ Qs(T) ∀ T ∈ Th

}
⊆ H1(Ω).

Here, Qs(T) denotes the space of polynomial-like functions on T ∈ Th. To give a more precise
definition of Qs(T), we introduce the space Q̂s(T̂) of tensor product polynomials up to order
s on the reference cell T̂ = (0, 1)d given as

Q̂s(T̂) := span
{

d∏
i=1

x̂αii

∣∣∣ αi ∈ {0, 1, . . . , s}
}
.

The space Qs(T) is obtained by transformations κT : T̂ → T , see Figure 5.15, by

Qs(T) :
{
ϕh : T → R

∣∣∣ ϕh ◦ κT ∈ Q̂s(T̂)
}
.

For ensuring approximation properties of finite element spaces, additional conditions on the
geometry of the cells are required. We state two classical assumptions in this context, namely
the so-called uniformity and the weaker quasi-uniformity, see, for example, [16]:

Definition 5.4 (Quasi-Uniformity). A family of meshes {Th | h ↓ 0} is called quasi-uniform
if there is a constant K such that the following two conditions are fulfilled:

59

5 Discretization

TT̂

κT

Figure 5.15. Transformation κT from the reference cell T̂ to a computational cell T

(i) For each transformation κT : T̂ → T it holds

sup
{∥∥∇κT (x̂)x

∥∥ ∣∣∣ x̂ ∈ T̂ ,‖x‖ = 1
}

inf
{∥∥∇κT (x̂)x

∥∥ ∣∣∣ x̂ ∈ T̂ ,‖x‖ = 1
} ≤ K ∀ T ∈⋃

h

Th.

(ii) With the diameter %T of the biggest ball inscribed into the cell T there holds

hT
%T
≤ K ∀ T ∈

⋃
h

Th.

Definition 5.5 (Uniformity). A quasi-uniform family of meshes {Th | h ↓ 0} is called uniform
if there is a constant K such that

h

%T
≤ K ∀ T ∈

⋃
h

Th.

For the meshes we use throughout this thesis we assume Quasi-Uniformity. With these
preliminaries we are able to formulate the fully (in space and time) discretization of the semi-
discretized problems presented in Section 5.1. Due to the formulation via semi-linear forms for
each problem considered we just have to replace each function by its discrete counterpart.

5.3.1 Galerkin finite element discretization

We begin with formulating the discretization in space of the Boussinesq equations.

Boussinesq equations

Based on the time-discretized problem (5.4) we formulate the fully discrete problem:
Find u = (v, p, T) := uh = (vh, ph, Th) ∈ Z̃h such that

1
kn
at(u, ϕ) + θ1a(u)(ϕ) + θpb(u, ϕ) + c(u, ϕ)

= 1
kn
at(uk−1

h)(ϕ)− θ2a(uk−1
h)(ϕ)

+ θ3{(fk−1, ϕv) + (qk−1
T , ϕT)}+ θ4{(fk, ϕv) + (qkT , ϕT)

60

5.3 Discretization in space

holds for all ϕ = (ϕv, ϕp, ϕT) := ϕh = (ϕh,v, ϕh,p, ϕh,T) ∈ Z̃h, where

Z̃h :=
{
uh = (vh, ph, Th)

∣∣∣ vh ∈ (V q
h ∩H

1
0 (Ω))3, p ∈ V r

h ∩ L2(Ω)/R, T ∈ V s
h ∩H1

0 (Ω)
}
.

The definition of the bilinear and semi-linear forms are given in (5.3).

Shallow-Water equations

For the Shallow-Water equation (5.7) the finite element discretization reads:
Find u2D = (v2D, h) := uh,2D = (vh,2D, hh) ∈ X̃h,2D such that

1
kn
{(hk−

1
2 (v2D − vk−1

2D), ϕv2D) + (h, ϕh) + θ1a(u2D)(ϕ)

= 1
kn

(hk−1, ϕh)− θ2a(uk−1
2D)(ϕh) + θ3(F k−1, ϕv2D) + θ4(F k, ϕv2D).

holds for all ϕ = (ϕv2D , ϕh) := ϕh = (ϕh,v2D , ϕh,h) ∈ X̃h,2D where

X̃h,2D :=
{
uh = (vh,2D, hh)

∣∣∣ vh,2D ∈ V s
h ∩H1

0 (Ω2D)2, h ∈ V r
h ∩H1

0 (Ω2D)
}
.

For the definition of the semi-linear form a(·)(·) we recall (5.6).

Boussinesq equations in ALE formulation

We are concerned with solving the following problem:
Find u = (v, p, T, h) := uh = (vh, ph, Th, hh) ∈ X̃h such that

1
kn
{(hk−

1
2 (v − vk−1), ϕv) + (hk−

1
2 (T − T k), ϕT

)
+ (h, ϕh)Ω2D}

+ θ1a(u)(ϕ) + θpb(u, ϕ) + c(u, ϕ) = 1
kn

(hk−1, ϕh)Ω2D − θ2a(uk−1)(ϕ)

+ θ3{(fk−1, ϕv) + (qk−1
T , ϕT)}+ θ4{(fk, ϕv) + (qTk , ϕh,T)},

(5.11)

holds for all ϕ = (ϕv, ϕp, ϕT , ϕh) := ϕh = (ϕh,v, ϕh,p, ϕh,T , ϕh,h) ∈ X̃h, where

X̃h :=
{
uh = (vh, ph, Th)

∣∣∣ vh ∈ (V q
h ∩H

1
0 (Ω))3, p ∈ V r

h ∩ L2(Ω)/R,

T ∈ V s
h ∩H1

0 (Ω), h ∈ V t
h ∩H1

0 (Ω2D)
}
.

The forms occurring in (5.11) are defined in (5.9). For the discretization of the pair (v, p)
we use an inf − sup stable Taylor-Hood element. We choose vh ∈ (V 2

h ∩H1
0 (Ω))3 and ph ∈

V 1
h ∩ L2(Ω)/R. The remaining functions are discretized with bi- or trilinear finite element

functions.

61

5 Discretization

5.4 Stabilization

Since the momentum equation as well as the transport equations have mainly hyperbolic
character with small or vanishing diffusion, we apply stabilization when using standard finite
element methods as developed in [22].

Based on the fully discretized formulation we add stabilization terms. For the momentum
equation the additional terms are given as

s(u)(ϕv) =
∑
T∈Th

(∂tv + (v ·∇)v + γ∇p− ν∆v − γg%T − f, δT (v ·∇)ϕv)T .

The term δT ((v·∇)v, (v·∇)ϕv)T is a streamline diffusion term. All the other terms are added to
preserve consistency. This means that these additional terms vanish if we insert the continuous
solution u = (v, p).

In the case of interpolation pairs V q
h × V r

h with q = r + 1 the parameter δT is given cell-wise
as

δT = h2
T

q2ν + 1 .

This includes inf − sup stable Taylor-Hood pairs with r = q − 1 for spatial discretization of
velocity and pressure. More details on how to choose the parameter δT can be found in [13].

The stabilization terms have to be transformed via the ALE mapping. We only take the
streamline diffusion term into account as all the other terms were added for consistency. This
term then becomes

s(u)(ϕ) =
∑
T∈Th

((v ·∇)v, δT (v ·∇)ϕv)T =
∑
T∈Th

δT (h(F−1v ·∇)v, (F−1v ·∇)ϕv)T .

The terms to be added for stabilization of transport equations are given as

s(S)(ϕS) =
∑
T∈Th

(∂tS + (v ·∇)S − νS∆S − qS , δT (v ·∇)ϕS)T .

Again we drop the terms that occur due to consistency and we transform the remaining
streamline diffusion term via the ALE mapping:

s(S)(ϕS) =
∑
T∈Th

((v ·∇)S, δT (v ·∇)ϕS)T =
∑
T∈Th

(h(F−1v ·∇)S, δT (F−1v ·∇)ϕS).

The fully discretized and stabilized problem reads:
Find u = (v, p, T, h) := ukh = (vkh, pkh, T kh , hkh) ∈ X̃h such that

1
kn
{(hk−

1
2

h (v − vk−1
h), ϕv) + (hk−

1
2

h (T − T k−1
h), ϕT

)
+ (h, ϕh)Ω2D}

+ θ1a(u)(ϕ) + s(u)(ϕv) + s(T)(ϕT) + θpb(u, ϕ) + c(u, ϕ)

= 1
kn

(hk−1
h , ϕh)Ω2D − θ2a(uk−1

h)(ϕ)

+ θ3{(fk−1, ϕv) + (qk−1
T , ϕT)}+ θ4{(fk, ϕv) + (qkT , ϕT)},

(5.12)

62

5.5 Coupling discretization in 2D and 3D

holds for all ϕ = (ϕv, ϕp, ϕT , ϕh) = (ϕv,h, ϕp,h, ϕT,h, ϕh,h) ∈ X̃h.

One could also think of stabilizing the two dimensional equations. Since it is more important
to use stabilization in three dimensions, we leave the two dimensional equations as they are. Of
course, the terms of the stabilization need to be applied to the coupled solution u = u3D + u2D
as explained in Section 4.2.

5.5 Coupling discretization in 2D and 3D

In Chapter 4 we developed the coupled model. In this section we present the ideas how to
realize the coupling for the discretization.

5.5.1 Connecting meshes in 2D and 3D

First of all we discretize the equation in 2D. The whole domain in 2D is triangulated with
quadrilaterals. In those parts of the 2D domain where a better accuracy is required we add a
triangulation in 3D. A main issue is the connection between these meshes. Functions that are
needed are

(i) Identify the corresponding 2D cell to each cell in the 3D triangulation.

(ii) If a cell in 3D has to be refined the matching 2D cell should be refined accordingly.

In Figure 5.16 we show a 2D mesh. On the shaded (light blue) cells we placed two 3D cells.
The 3D cells are refined into the lower left corner as shown in Figure 5.17. We present the
resulting 2D meshes in Figure 5.18 and the combination of the two dimensional and three
dimensional meshes is presented in Figure 5.19.

Figure 5.16. Position for two 3D cells on a 2D mesh are colored

Furthermore we have to be able to integrate a 2D finite element function in 3D. This means
we have to realize couplings between two dimensional and three dimensional finite element
functions as

(u2D, ϕ3D), and (ϕ2D, ϕ3D).

63

5 Discretization

Figure 5.17. Sequence of meshes in 3D refined into a corner

Figure 5.18. Sequence of meshes in 2D refined according to 3D mesh

64

5.5 Coupling discretization in 2D and 3D

Figure 5.19. Sequence of coupled meshes

These integrals appear in residuals as well as in the semi-linear forms. In the finite element
code we used, these kind of couplings was not yet taken into account. We had to come up
with new kinds of tools which are

(i) sparsity patterns for coupling finite element functions of different space dimension,

(ii) assembling routines for matrices and residuals for coupling finite element functions of
different space dimension,

(iii) matrices that deal with constraints such as boundary conditions and hanging nodes for
functions in 2D and 3D at the same time.

All realizations of the mentioned items were implemented in the software library deal.II. In a
later Section 6.3 we will comment on the new functionality in detail. To this end we need to
mention how residuals and matrices are built between cells and functions in 2D and 3D.

To derive a priori error estimates for the coupled approach, it is necessary to control the error
in the two and the three dimensional part. Work on a priori error estimates for free surface
flows in one and two dimensions can be found in [23]. The results therein rely on a splitting
approach.

65

6 Algorithm

This chapter describes the algorithms used to solve the discretized problems in Chapter 5. All
the occurring problems are nonlinear. We use Newton’s method and solve linear systems in
each Newton step starting from an initial guess. Depending on the discretized problem we
have to deal with a saddle point problem.

This is preconditioned by a block-Schur preconditioner as explained for flow problems in [32].
The saddle point structure is resolved by the application of this preconditioner.

6.1 Basic algorithms

The algorithms explained in this section are either part of the software library deal.II[3] or
implemented in the framework of this software package. Let us assume a coupled systems
which is fully discretized in space and time as derived in Section 5.1. Then it remains to treat
the non-linearities.

6.1.1 Newton’s method

Starting from a nonlinear system of equations given as

a(U)(Φ) = (F,Φ) ∀ Φ ∈ W. (6.1)

we apply a Newton like method. Given an initial guess U0, we compute updates δU ∈ W such
that

a′(U)(δU, Φ) = (F,Φ)− a(U)(Φ) ∀Φ ∈ W. (6.2)

The next iterate Un+1 of Newton’s method is then defined by Un+1 = Un + λδU , where λ is a
damping parameter to apply a line search. The directional derivatives are defined as

a′(U)(δU, Φ) := lim
ε→0

1
ε

{
a(U + εδU)(Φ)− a(U)(Φ)

}
= d

dεa(U + εδU)(Φ)
∣∣∣
ε=0

.

6.1.2 Solving linear systems

By Newton’s method we obtain linear systems in each step. These systems are solved by
Krylov-space solvers like GMRES or Bicgstab. Usually we use the preconditioned versions of
these algorithms. As a preconditioner we apply a geometric multilevel directly Section 6.2 or
we use block preconditioners. The multilevel preconditioner is then used as a part of the block
preconditioner. This will be explained in detail in the following section.

67

6 Algorithm

6.1.3 Block preconditioning with Schur complements

After linearization of the non-linear system we have to solve a system of linear equations in
each step of the Newton iteration. The block preconditioners we use. are presented on the
level of algebraic systems.

As described in Section 4.2 we solve a system for the unknown

U = (v3D, p, T3D, v2D, h, T2D).

In Table 6.1 we show the couplings between test and trial functions of a fully coupled system.

Table 6.1. Couplings arising from the fully coupled and transformed problem.

v3D p T3D v2D h T2D

ϕv3D * * * * * *
ϕp3D * 0 0 0 0 0
ϕT3D * 0 * * * *
ϕv2D 0 0 0 * * 0
ϕp2D 0 0 0 * * 0
ϕT2D 0 0 0 0 * *

This results in a fully discretized linear algebraic problem which reads:

A11 A12 A13 A14 A15 A16
A21 0 0 0 0 0
A31 0 A33 A34 A35 A36
0 0 0 A44 A45 0
0 0 0 A54 A55 0
0 0 0 0 A65 A66





δv3D
δp
δT3D
δv2D
δh
δT2D


=



f1
f2
f3
f4
f5
f6


. (6.3)

Following the ideas laid out in [40] we present a block preconditioner for (6.3). To solve system
(6.3) we precondition by a matrix P−1 and arrive at

P−1Ax = P−1b,

with x = (δv3D, δp, δT3D, δv2D, δh, δT2D) and b = (f1, f2, f3, f4, f5, f6). If we find appropriate
entries for P−1 such that the condition number of P−1A is moderate, then the whole systems
will converge in a few iterations. The derived preconditioner should be close to the inverse
of the block system in (6.3), but simple to compute as well. So we neglect some of the off
diagonal blocks. We can write the system as(

A3D,3D A3D,2D
0 A2D,2D

)
,

68

6.2 Multilevel algorithm

and therefore we can approximate the inverse by(
A3D,3D A3D,2D

0 A2D,2D

)−1

≈
(
A3D,3D 0

0 A2D,2D

)−1

=
(
A−1

3D,3D 0
0 A−1

2D,2D

)
.

This means we have to find approximates for

A−1
3D,3D =

A11 A12 A13
A21 0 0
A31 0 A33


−1

, and A−1
2D,2D =

A44 A45 0
A54 A55 0
0 A65 A66


−1

.

We propose to use

P−1 =



A−1
11 0 0

Σ−1A21A
−1
11 −Σ−1 0

0 0 A−1
33

A−1
44 0 0
0 A−1

55 0
0 0 A−1

66


as a preconditioner. The matrix Σ is called Schur complement and is defined as

Σ := A21A
−1
11 A12.

For a detailed analysis of the Schur complement approach we refer to [66]. To approximate
the inverse of diagonal blocks, we perform a multilevel cycle.

6.2 Multilevel algorithm

To be able to solve three dimensional problem in a reasonable time we apply a multilevel as a
preconditioner when solving linear systems with a Krylov-space solver.

In weak formulation, problems we are concerned to solve read find u ∈ V such that for all
ϕ ∈ V holds:

a(u, ϕ) = (f, ϕ),
a(u, ϕ) = (∇u,∇ϕ).

(6.4)

We approximate solutions to this problem by a conforming finite element method, for instance
conforming finite elements with tensor product shape functions of degree k (referred to as Qk).
To this end, we introduce a hierarchy of quadrilateral/hexahedral meshes {T`}, 0 ≤ ` ≤ L,
obtained from a coarse mesh T0 by consecutive, possibly local, refinement. Let us point out here
that, while the process of generating such a hierarchy may involve refinement and coarsening
of cells, the final hierarchy can be understood as a quadtree/octree graph only oriented from
coarse to fine cells. See Figure 5.10 for an example of such a hierarchy.

In order to compute the approximation of u` on the mesh T`, we introduce a basis of finite
element functions on T` to generate a “discrete” linear system (see e.g. [20, 27]). Restricting

69

6 Algorithm

the bilinear form a(·, ·) and the linear form in (6.4) to the finite element spaces V` of dimension
n`, we obtain linear systems denoted as

A`u` = f`. (6.5)

Here, u` and f` are vectors in Rn` and A` is a quadratic matrix of dimension n`. We will refer
to the system on the finest level L as the “global” system in order to distinguish it from the
level problems introduced later.

In order to solve this system, typically a Krylov-space solver is employed. In a Krylov-space
method, new iterates are formed from residual rk of the current iteration step k. While these
methods use orthogonalization techniques to obtain minimization properties of the next iterate
and speed up performance (see e.g. [59]), they slow down on fine meshes. To understand this,
it is sufficient to consider the Richardson iteration

uk+1
` = uk` + ωrk` (6.6)

as a prototype, denoting that the operation (6.6) is also a part of the cg-method. Here,
rk` = A`e

k
` = f` −A`uk` is the residual of step k and ek` = u` − uk` is the error between true and

iterative solution in step k. While the addition in (6.6) looks straight forward from the point
of view of linear algebra, it is all but this in the function space setting of elliptic problems.
There, the function uk is in the space H1(Ω), while the residual is in the space H−1(Ω) of
bounded linear forms on H1(Ω) (subject to boundary conditions). The norms of both spaces
have very different scaling behavior if applied to oscillating functions. In a nutshell, this is the
reason why iterative solvers do not have uniform convergence properties with respect to the
refinement level ` and slow down considerably on finer meshes.
Remark 6.1. For convenience, we remark that a discrete element of the dualspace is understood
as a vector in the sense li = (l, vi) for all vi ∈ Vh.

In order to speed up convergence, a preconditioner is introduced, which maps the residual back
into a function, transforming for instance the Richardson iteration (6.6) into its preconditioned
form

uk+1
` = uk` + ωP−1

` rk` . (6.7)

For the purpose of this work, P is the multigrid preconditioner studied extensively in the
literature (see, e.g., [17, 35, 73]) and discussed here on locally refined meshes. Given smoothers
S

(i)
` and embedding operators RT` : V` → V`+1, the action of P−1

` on a residual vector d` can
be recursively denoted by

We consider two variants of the V-cycle:

classical V-cycle m` is fixed to the same number independent of the level `; for elliptic
problems, typically one or two steps are enough.

variable V-cycle The numbers m` grow geometrically when the level ` decreases. Namely,
for ` = 1, . . . , L exist 1 < β0 ≤ β1 such that

β0m` ≤ m`−1 ≤ β1m`. (6.8)

70

6.2 Multilevel algorithm

Algorithm 6.1. Multilevel (V-Cycle)

Let P0 = A0. Set x(0) = 0 and compute P−1
` d` by the following steps:

1. (Pre-smoothing) Compute x(m`) iteratively by

x(i) = x(i−1) + S
(i)
` (d` −A`x(i−1)), i = 1, . . . ,m`.

2. (Coarse grid correction) Let

y(0) = x(m`) +RT`−1P
−1
`−1R`−1(d` −A`x(m`)).

3. (Post-smoothing) Compute y(m`) iteratively by

y(i) = y(i−1) + S
(m`+i)
` (d` −A`y(i−1)), i = 1, . . . ,m`.

4. Set P−1
` d` = y(m`).

A typical choice is β0 = β1 = 2, which results in doubling the number of smoothing steps
when reducing the level and leads to a complexity comparable to the W-cycle. This
method is known to yield a uniform preconditioner for any number of smoothing steps
on the finest level [17].

In the following subsections, we will first fix a smoother and then recast Algorithm 6.1 in the
context of adaptively refined meshes and local smoothing.

Accordingly, the residual is in condensed form and the vector must be returned in the same
representation. With this information, we can start rewriting Algorithm 6.1 for locally refined
meshes. We will first have to determine, what we consider a “level” in such a case and then
determine the subspaces for smoothing.

Following [17, 45], we perform the multilevel method on the complete level spaces V`, but
we restrict the smoother to the part that is really refined to level `, namely the subspace of
functions with support covered by T S` .

6.2.1 Splitting of level spaces

Partitioning of the spaces V` into subspaces follows the splitting of T`:

V` = V S
` ⊕ V E

` ⊕ V L
` , (6.9)

where V S
` and V L

` are the functions in V` with support in T S` and T L` , respectively. V E
` is the

remainder of V`. It consists of the functions with support in T S` and T L` and is spanned by
the basis functions corresponding to node functionals on the refinement edge (see Figure 6.1).
Note that in the case of discontinuous Galerkin methods, V E

` is empty. A basis for the other
subspaces is obtained by restricting the definition of the basis of V` to the subsets of the
triangulation. We will assume that the basis is ordered in a way that functions in V S

` are
before those in V E

` and those before all in V L
` . Then, a function u ∈ V` is represented by

71

6 Algorithm

Figure 6.1. The subspaces V S
` (green), V E

` (yellow), and V L
` (white).

a coefficient vector u` of the form (uS` , uE` , uL`)T . Using the splitting of spaces, (6.5) can be
partitioned into the systemASS` ASE`

AES` AEE` AEL`
ALE` ALL`


uS`uE`
uL`

 =

fS`fE`
fL`

 , (6.10)

where uS` ∈ V S
` and uL` ∈ V L

` and uE` ∈ V E
` . The parts of the right hand side belong to

the according dual spaces. The matrices ASS` , ALL` and AEE` are the result of restricting the
bilinear form a(·, ·) to the spaces V S

` , V L
` and V E

` , respectively. In particular, ASS` corresponds
to a matrix assembled for the interior degrees of freedom of the fine cells with homogeneous
Dirichlet boundary conditions on the refinement edge. The matrices ASE` and AES` consist
of coupling terms from V S

` to V E
` and vice versa. Since we expect the degrees of freedom of

V E
` to be a small number compared to the whole mesh, these matrices only have few nonzero

entries and can be stored efficiently.

Due to the elimination of hanging nodes on the refinement edge, all actual degrees of freedom
in V E

` are coarse level degrees of freedom. The other ones are those set to zero by condensing
hanging nodes. Therefore, in the actual implementation, the splitting (6.9) reduces to the two
spaces V S

` and V L
` only, where V E

` has been added to the latter. Nevertheless, for the sake of
presentation, we will continue using a splitting in three spaces.

6.2.2 Prolongation and restriction

The prolongation of a coarse grid vector to the next finer mesh in finite element context is
usually the embedding operator. It will be used here as well, but we have to study its action
on the different subspaces. It amounts to representing a coarse grid function by fine grid basis

72

6.2 Multilevel algorithm

functions. This operation is usually performed with a stencil computed by interpolation on
each coarse mesh cell. Since the result of this operation is a coarse grid function, values in
hanging nodes will automatically conform to the coarse side of the face. Nevertheless, our goal
is representing the vector in condensed form. Therefore, an additional condense operation is
necessary. Thus, the structure of the prolongation operator RT`−1 : V`−1 → V` is:

• Identity for functions in V`−1, which are in V L
` as well.

• Standard embedding from V`−1 into V S
` taking boundary conditions into account

• For those functions in V`−1, which require functions in V S
` and V E

` for their representation
in V`, we use the standard embedding as well, taking into account that the basis functions
in V E

` after condensation of hanging nodes have non-standard shapes and that there are
no basis functions for the node functionals on the refinement edge which do not belong to
the coarse grid. To make sure that the function is still in condensed form we incorporate
boundary conditions to the restriction matrix.

The restriction operator R`−1 : V` → V`−1 is chosen as the transpose of the prolongation
operator in order to preserve symmetry of the method.

6.2.3 Local smoothing

In order to bound the overall complexity of the algorithm linearly by the number of degrees
of freedom, we restrict the smoothing method to the subspace V S

` , that is, to functions with
support inside the region T S` . Since the fine grid degrees of freedom on the refinement edge are
eliminated from the global system as “hanging nodes” (see e.g. [43]), they do not contribute to
the fine level and can be smoothened on the coarser level. Smoothing on V L

` will be performed
on a coarser level as well. We follow the concept for local smoothing in [44]. Differing from
the discontinuous Galerkin methods discussed there, the matrix ASS` does not originally exist
in our data structures, since the actual level space includes V S

` and all fine grid degrees of
freedom on the refinement edge. We denote this level space by Ṽ . While Ṽ does not appear
in the analysis of the method, it is the space that actually shows up in the implementation.
Instead of ASS` , we generate the matrix

Ã` =
(
ASS` 0

0 I

)
, (6.11)

which corresponds to the fine level matrix after eliminating “boundary values” on the refinement
edge. Here, I is the identity on the space of all fine grid basis functions (including the hanging
nodes) on the refinement edge. Then, the smoother in the local version of the algorithm is
given as

S̃
(i)
` =

S(i)
`;S 0
0 I

 , S
(i)
` =

S
(i)
`;S 0 0
0 0 0
0 0 0

 ,

73

6 Algorithm

where S(i)
`;S is the restriction of the smoother, for instance the Gauss-Seidel method, to the

space V S
` . Entering the definitions of grid transfer and smoothing operators for locally refined

grids into Algorithm 6.1 and simplifying yields

Algorithm 6.2. Multilevel with local smoothing

Let P0 = A0 and x(0) = 0. Then, the action of the operator P−1
` on a vector d` is defined by:

1. (Pre-smoothing) On the subspace V S` only, compute x̃(m`) iteratively by

x̃(i) = x̃(i−1) + S̃
(i)
` (d̃` − Ã`x̃(i−1)), i = 1, . . . ,m`,

with d̃` = (dS` , 0)T . Let x(m`) = (x(m`)
S , 0, 0)T with x(m`)

S the restriction of x̃(m`) to V S` . Since,
due to the form of S̃(i)

` and Ã`, the boundary values of x̃(m`) are equal to zero, we have
x(m`) = (x̃(m`), 0)T .

2. (Coarse grid correction) Let

y(0) = x(m`) +RT`−1P
−1
`−1
(
RS`−1(dS` −ASS` x

(m`)
S) + dE` −AES` x

(m`)
S

)
.

3. (Post-smoothing) Compute y(m`) iteratively by

ỹ(i) = ỹ(i−1) + S̃
(m`+i)
` (g̃` − Ã`ỹ(i−1)), i = 1, . . . ,m`.

where g̃` = (dS` , 0)T − (ASE` y
(0)
E , 0)T

4. Set P−1
` d` = (y(m`)

S , y
(0)
E , y

(0)
L).

6.2.4 Overlapping Schwarz smoother

It is well known, that standard Jacobi and Gauss-Seidel smoothers deteriorate dramatically,
when the polynomial degree of the finite element discretization is increased. Therefore, we
are looking for a smoother, which is nearly as simple, but overcomes this problem. This
smoother can be found by using a multiplicative Schwarz method with subspaces related to
cells or patches of cells. Let {V`,k} with k = 1, . . . , N` be such a set of subspaces in V S

` which
will be specified in detail below. Then, instead of defining the action of the operator S`, the
following algorithm describes directly how to obtain x(i) from x(i−1) in the pre-smoothing step
of Algorithm 6.2 (for details on the relation to S`, see for instance [73]): Here, A`,k is the
projection of the matrix ASS` onto the subspace V`,k. Additionally, we define the symmetric
version of Algorithm 6.3 as the modification where the loop k = 1, . . . , N` is followed by a loop
k = N`, . . . , 1. The post-smoothing is done accordingly.

It remains to specify the subspaces V`,k. In the elliptic case, the inversion of cell matrices has
proven very successful for discontinuous Galerkin methods [44]. There, a block Gauss-Seidel
smoother based on inverting cell matrices yields preconditioners with very weak dependence
on the polynomial degree. With continuous elements, an overlapping smoother is more natural.
Thus, for a cell Tk on level ` let V`,k be the subspace of functions in V S

` which are not identically
zero on Tk. Computational results for this smoother are reported in Section 6.2.7.

74

6.2 Multilevel algorithm

Algorithm 6.3. Multiplicative Schwarz smoother

One step of the multiplicative Schwarz smoother with right hand side d` is defined by

1. Let y(0) = x̃(i−1).

2. For each k = 1, . . . , N`, compute ỹ(k) ∈ V`,k as the solution of

A`,kỹ
(k) = Pk

(
d` −ASS` y(k−1)

)
,

where Pk is the `2-projection from V` to V`,k, and let

y(k) = y(k−1) + ỹ(k).

3. Let x̃(i) = y(k) for the last value of k.

6.2.5 Complexity of the algorithm

We show, that the number of operations of Algorithm 6.2 grows linearly with the number of
degrees of freedom in the hierarchy, if the classical V-cycle is chosen. To this end, we have to
assume that the complexity of the smoother S(i)

`;S is linear with respect to the dimension of the
space it acts on, which holds for standard relaxation methods as well as incomplete LU and
Choleski factorization with limited fill-in. It holds for the smoother outlined in Section 6.2.4.

First, we note that the pre- and post-smoothing steps operate on V S
` only, thus in the whole

recursive cycle, every degree of freedom will be touched only once by these operations. The
exception from this are the degrees of freedom in V E

` , which are part of the space Ṽ`, thus
involved in smoothing on level `, although not actually smoothened themselves. Additionally,
they will be smoothened on level `− 1. Due to the restriction to one-irregular meshes, they
will be in V S

`−1 and not be smoothened on any coarser mesh. Thus, they might be operated
on at most twice per smoothing. Figure 6.2 shows, that the number of faces with hanging
nodes is not necessarily of lower order than the degrees of freedom, but bounded by them.
This concludes that the contribution of the two smoothing steps is linear with respect to the
total number of degrees of freedom in the hierarchy {T`}.

The situation in Figure 6.2 is extreme and representing the worst case. In actual adaptive
refinement cycles, it is much more likely, that the refinement edges form a small subset of the
total set of edges. In that case, the additional work due to multiplication with the matrices
ASE and AES becomes negligible.

It remains to study complexity of the grid transfer. According to step 2 of Algorithm 6.2, this
transfer consists of three parts: first, the restriction of the initial residual dL onto all lower
level meshes, which is of the order of the total degrees of freedom in the hierarchy. Second,
we need to restrict the local residuals after local smoothing. This involves only the result of
ASS` xS , which, summed up over all levels, gives again the number of degrees of freedom in the
hierarchy. The same holds for the prolongation operator RT` , such that we can conclude, that
the whole intergrid transfer is of the order of the number of degrees of freedom in the mesh
hierarchy.

75

6 Algorithm

Figure 6.2. A mesh hierarchy with the same number of degrees of freedom on each
level. Half of the interior edges bear hanging nodes.

The complexity analysis of standard multigrid methods without local refinement continues
by noting that the number of degrees of freedom increases geometrically by factors of four
and eight from one level to the next in two and three dimensions, respectively. Thus, it is
concluded that the complexity of the V-cycle, variable V-cycle, and W-cycle is bounded linearly
by the number of degrees of freedom on the finest level. Such an argument is invalid here. In
particular in hierarchies obtained through adaptive iterations before saturation is achieved,
this condition is usually violated. An extreme example is the hierarchy in Figure 6.2, which
exhibits the same number of degrees of freedom on each level. Thus, we conclude that on
general hierarchies we can only show optimal complexity for the V-cycle with respect to the
total number of degrees of freedom in the hierarchy.

6.2.6 Memory requirements

The situation for memory requirements is similar to the computational complexity. A standard
multigrid method without hanging nodes only involves the matrices ASS` , since the triangulation
subsets T L` and FE` are empty. The only additional matrices stored in the local method are
ASE and AES . In the worst case example of Figure 6.2, these matrices are of about the same
size as ASS` . Under the more reasonable assumption, that FE` is a small subset of the set of
faces, these matrices can be stored in a compact way only involving degrees of freedom in V E

` ,
thus with negligible memory overhead.

6.2.7 Numerical experiments

Elliptic problems

We test our algorithm with the following model problem: Let Ω = (−1, 1)d, choose f ≡ 1
in (6.4). Starting with a single grid cell T0 = {Ω̄}, we apply three (artificial) refinement

76

6.2 Multilevel algorithm

strategies:

1. Refinement of each grid cell (global refinement) in each step for comparison.

2. Refinement of all cells in the positive quadrant/octant. Figure 6.3 shows the resulting
grids with finest cells on levels 2, 3 and 6. The grids are made v-one-irregular (see
Definition 5.3) to accommodate for the multilevel method.

Figure 6.3. Refinement of the positive quadrant, levels 2, 3 and 6, with v-one-
irregular closure.

3. Refinement of all cells intersecting the circle of radius 1/(4π). The resulting grids on
levels 3, 4 and 9 are shown in Figure 6.4. Again, the refinement is smoothened to assure
that the grid is v-one-irregular.

Figure 6.4. Refinement of a circle, levels 3, 4 and 9, with v-one-irregular closure.

The linear systems resulting from the weak formulation (6.4) on these meshes are solved by
the conjugate gradient (cg) method with the multilevel preconditioner developed above. First,
we use tensor product polynomials of degree one to three on each cell, denoted by Q1 to Q3.
The start vector is u(0) = 0 on each mesh. The values displayed in the tables are the number
of steps n10 needed to reduce the norm of the residual r by a factor of 1010 and the average

77

6 Algorithm

logarithmic convergence rate according to Varga [68]

r̄ := 1
n

log10
|r0|
|rn|

,

where |rn| is the Euclidean norm of the residual vector rn after the n-th cg step. Note that
while r̄ is approximately 10/n10, it is not rounded to a single digit and thus a finer measure of
convergence speed.

In Table 6.2, we report results for the classical V-cycle with one symmetric pre- and post-
smoothing steps on each level for the different refinement cases; global refinement is included

Table 6.2. Iteration steps and convergence rates for the preconditioned cg method.
One symmetric pre- and post-smoothing step on each level with Q1-
elements in two dimensions.

global quadrant circle

L n10 r̄ n10 r̄ n10 r̄

2 1 16.00 1 16.00 1 16.00
3 3 4.83 1 15.99 3 4.83
4 4 2.84 4 2.56 5 2.29
5 5 2.25 6 1.69 6 1.83
6 5 2.15 7 1.61 6 1.76
7 5 2.12 7 1.60 7 1.44
8 5 2.08 7 1.60 7 1.61
9 6 2.06 7 1.60 7 1.57
10 6 2.02 7 1.60 7 1.59
11 6 1.96 7 1.60 7 1.59
12 6 1.92 7 1.60 7 1.59

as a benchmark. As can be seen, the number of steps is independent of the refinement level in
all three cases. Moreover, on locally refined meshes the method performs only slightly worse.
When we turn to the variable V-cycle (where the smoother is applied in the symmetric fashion
suggested in [18]), Table 6.3 shows that this is actually reverted if we only use one smoothing
step on the finest level and choose β0 = β1 = 2 in (6.8). We compared the same methods to
higher order polynomials and obtained the same results. In Table 6.4 we report convergence
rates for refinement of a circle and polynomial spaces up to Q9. They are independent of the
refinement level or of the existence of hanging nodes for increasing polynomial degree.

In three dimensions, we compute the same test cases on the cube (−1, 1)3 for examples of the
resulting locally refined meshes we refer to Figure 6.5. Convergence rates of the preconditioned
conjugate gradient method for this case are shown in Tables 6.5 and 6.6. Again, we see that
the convergence rates are independent of the refinement level and nearly independent of the
presence of hanging nodes on all meshes. Table 6.7 show thats the convergence rates in three
dimensions as well are independent of the refinement level or of the existence of hanging nodes
for increasing polynomial degree.

78

6.2 Multilevel algorithm

Table 6.3. Iteration steps and convergence rates for the preconditioned cg method
for Q1-elements. Variable smoothing with 1 pre- and post-smoothing
step on the finest level.

global quadrant circle

L n10 r̄ n10 r̄ n10 r̄

2 1 16.00 1 16.00 1 16.00
3 4 2.53 1 15.99 4 2.53
4 9 1.15 6 1.96 6 1.68
5 9 1.16 8 1.39 6 1.78
6 8 1.28 7 1.46 6 1.82
7 8 1.33 7 1.51 7 1.48
8 8 1.35 7 1.56 7 1.58
9 7 1.43 7 1.59 7 1.57
10 7 1.44 7 1.62 6 1.69
11 7 1.44 7 1.64 6 1.73

Table 6.4. Convergence rates for the preconditioned cg method. Refinement into a
circle in 2d. Variable smoothing with 1 pre- and post-smoothing step on
the finest level.

L Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

2 16.0 1.9 1.9 1.6 1.7 1.5 1.5 1.5 1.5
3 2.5 1.3 1.3 1.5 1.5 1.5 1.4 1.5 1.4
4 1.7 1.4 1.5 1.5 1.5 1.5 1.4 1.5 1.5
5 1.8 1.5 1.6 1.6 1.6 1.6 1.5 1.5 1.5
6 1.8 1.7 1.7 1.7 1.6 1.6 1.6 1.6 1.5
7 1.5 1.5 1.6 1.5 1.5 1.5 1.5 1.5 1.4
8 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.5
9 1.6 1.6 1.6 1.7 1.6 1.6 1.6 1.6 1.5
10 1.7 1.7 1.7 1.7 1.7 1.7 1.6 1.6 1.6
11 1.7 1.7 1.7 1.8 1.7 1.7 1.7 1.7 1.6
12 1.7 1.7 1.7 1.7 1.7 1.8 1.7 1.7 1.6

Table 6.5. Performance of the preconditioned cg method in three dimensions. One
symmetric pre- and post-smoothing step on each level.

Q1-elements Q2-elements

global octant ball global octant ball

L n10 r̄ n10 r̄ n10 r̄ n10 r̄ n10 r̄ n10 r̄

2 1 16.00 1 16.00 1 16.00 3 4.76 3 4.76 3 4.76
3 2 5.38 1 16.85 2 5.38 4 2.99 5 2.70 4 2.99
4 4 3.13 5 2.28 5 2.08 5 2.51 6 1.72 6 1.73
5 5 2.28 7 1.60 6 1.94 5 2.35 7 1.58 6 1.70
6 5 2.15 7 1.58 6 1.89 5 2.28 7 1.57 6 1.70
7 5 2.08 7 1.58 8 1.37 5 2.27 7 1.57 8 1.35
8 5 2.03 7 1.58 7 1.52 7 1.57 7 1.50

79

6 Algorithm

Figure 6.5. Locally refined meshes in three dimensions. First octant refined to level
4 (left) and ball refined to level 6 (right).

Table 6.6. Performance of the preconditioned cg method in three dimensions. Vari-
able block smoothing with 1 pre- and post-smoothing step on the finest
level.

Q1-elements Q2-elements

global octant ball global octant ball

L n10 r̄ n10 r̄ n10 r̄ n10 r̄ n10 r̄ n10 r̄

2 1 16.00 1 16.00 1 16.00 5 2.39 5 2.39 5 2.39
3 4 2.99 1 16.85 4 2.99 7 1.57 5 2.17 7 1.57
4 8 1.32 6 1.94 6 1.84 7 1.46 7 1.58 7 1.55
5 8 1.30 7 1.50 6 1.89 7 1.44 7 1.52 6 1.70
6 8 1.32 7 1.51 6 1.94 7 1.51 7 1.56 6 1.76
7 7 1.44 7 1.57 7 1.46 7 1.55 7 1.60 8 1.41
8 7 1.47 7 1.62 7 1.57 6 1.69 7 1.55

80

6.3 Details on the implementation

Table 6.7. Convergence rates for the preconditioned cg method. Refinement into
a ball in 3d. Variable block smoothing with 1 pre- and post-smoothing
step on the finest level.

L Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

2 16.0 2.4 2.0 1.8 1.7 1.5 1.5 1.43
3 3.0 1.6 1.5 1.4 1.6 1.5 1.4 1.44
4 1.8 1.6 1.5 1.5 1.5 1.5 1.4 1.44
5 1.9 1.7 1.6 1.6 1.6 1.6 1.5 1.52
6 1.9 1.8 1.7 1.7 1.7 1.7 1.5 1.58
7 1.5 1.4 1.4 1.4 1.4 1.4 1.4
8 1.6 1.6 1.6 1.6 1.6 1.7 1.6
9 1.4 1.4 1.5 1.5 1.4 1.5
10 1.5 1.4 1.5 1.5
11 1.4 1.4

6.3 Details on the implementation

Due to the coupling of finite element functions in different dimension in the same equation
we had to modify the functionality of deal.II. We use the concept of the MeshWorker that is
part of deal.II. In the following section we describe how the MeshWorker is used and that the
environment that the MeshWorker creates makes it easy to adapt it to the case we have to
deal with.

6.3.1 Fully discrete coupled problem

We explain the details on the coupling of meshes in two dimensions and three dimensions and
the resulting coupling of the finite element functions by considering an example. Let us take a
look at the Poisson problem (4.1) again: Find u ∈W such that

(∇u,∇ϕ) = (f, ϕ) for all ϕ ∈W.

We recall the coupled discrete model which reads: Find (uh,3D, uh,2D) ∈Wh,3D ×Wh,2D such
that

(∇u3D,∇ϕ3D)Ω + (∇u2D,∇ϕ3D)Ω = (f, ϕ3D)Ω,
2(∇u2D,∇ϕ2D)Ω2D = (f, ϕ2D)Ω2D ,

for all (ϕ3D, ϕ2D) ∈W3D ×W2D. We introduce a bilinear form

a(u, ϕ) =(∇u3D,∇ϕ3D)Ω + (∇u2D,∇ϕ3D)Ω
+ 2(∇u2D,∇ϕ2D)Ω2D .

Using this bilinear form we have to solve the problem

a(u, ϕ) = (f, ϕ3D)Ω + (f, ϕ2D)Ω2D .

81

6 Algorithm

Since we also need to be able to solve nonlinear problems we apply a step of defect correction.
This would be one step in the Newton algorithm. Given a starting value we solve for δu such
that

a′(u, δu, ϕ) = (f, ϕ3D)Ω + (f, ϕ2D)Ω2D − a(u, ϕ)

holds. This means after discretization with finite elements we have to solve the following
problem: Find (δuh,3D, δuh,2D) ∈Wh,3D ×Wh,2D such that

(∇δuh,3D,∇ϕh,3D)Ω + (∇δuh,2D,∇ϕh,3D)Ω + 2(∇δuh,2D,∇ϕh,2D)Ω2D

= (f, ϕh,3D)Ω + (f, ϕh,2D)Ω2D − (∇uh,3D,∇ϕh,3D)Ω
− (∇uh,2D,∇ϕh,3D)Ω − 2(∇uh,2D,∇ϕh,2D)Ω2D ,

(6.12)

for all (ϕh,3D, ϕh,2D) ∈Wh,3D ×Wh,2D.

Let us assume that a part of the coupled mesh looks like Figure 6.6.

Figure 6.6. Part of a coupled mesh

6.3.2 Integration of coupled terms on active cells

The full discrete system (6.12) has to be integrated. As in every finite element program we
perform loops over all cells in the given mesh. In the finite element software we use, this is
done by a framework called MeshWorker.

Based on a set of cells in a mesh and an inner integration loop, the MeshWorker assembles
the terms. The local contributions on each cell are automatically sorted and added into a
global matrix. Various classes provide quadrature rules and finite element functions. The
MeshWorker updates all the required information on a cell of a mesh, before the integration is
accomplished.

82

6.3 Details on the implementation

For our purpose we perform the integration based on the three dimensional mesh. This means
we loop over all cells in the triangulation of the 3D mesh. Additionally to the basic functionality
of the MeshWorker, we need to be able to provide all the information of corresponding two
dimensional cell as well. In Figure 6.7 we duplicated the two dimensional mesh to show the
correspondence between the three dimensional and two dimensional cells.

Figure 6.7. Corresponding cells

This figure also exhibits that we need to make sure that the two dimensional mesh is as refined
as the three dimensional mesh. Otherwise we would not be able to provide the information for
the integration loop. With the corresponding active 2D cell to a cell in the three dimensional
mesh we identify the quadrature points on them. The values or gradients of solution variables
are extended constantly into the third dimension. This way, we are able to compute both
residuals and matrix contributions as

(∇δuh,2D,∇ϕh,3D)T , and (∇uh,2D,∇ϕh,3D)T .

This situation is given in the eight cells on the top of the three dimensional mesh in Figure 6.7.
A different situation applies in the lower 3D cell. The corresponding cell in the two dimensional
mesh is not an active cell.

6.3.3 Integration of coupled terms on inactive cells

The integration of coupled terms on inactive cells is due to local refinement in three dimensions.
This way, it happens that an active cell in 3D has a corresponding cell in two dimensions
which is not active this means that the 2D cell is further refined. This causes problems in the
implementation.

Let us project this situation to a two dimensional sketch, see Figure 6.8. The crosses refer to

83

6 Algorithm

Figure 6.8. Coupling of 3D dofs (×) of an active cell to 2D dofs (•) of a possibly
inactive cell

degrees of freedom for the three dimensional cell, whereas the dots refer to degrees of freedom
in two dimensions.

In the coupling terms we have to take into account all couplings between two dimensional
and three dimensional degrees of freedom in order not to loose information. This requires the
knowledge of all children of the corresponding two dimensional cell.

A way to incorporate all these kind of couplings would be to perform the integration on a two
dimensional cell and multiply this with the correct three dimensional integral. This is possible
due to the tensor product structure of the quadrature rule and the finite element functions.
This has not been incorporated yet and is subject to future research.

84

7 Numerical results

In this chapter we present numerical simulations for the coupled problem for fluid flows.

7.1 Numerical example

We consider the fully coupled problem which reads: Find u2D = (v2D, h, T2D) ∈ X2D and
u3D = (v3D, p3D, T3D) ∈ X3D such that

a(u2D + u3D)(ϕ3D) = (F,ϕ3D) for all ϕ3D ∈ X3D,

a(u2D)(ϕ2D) = (F,ϕ2D) for all ϕ2D ∈ X2D.

The definition of the semi-linear forms is given in (4.18), (4.20), and (4.21). This is discretized
in time and space as explained in Chapter 5. The stabilized form of the three dimensional
equation is given in (5.11).

Figure 7.1. Mesh in 2D (blue and red) and mesh in 3D (red)

The two dimensional domain is a circle with center (0, 0) and radius r = 4, while the three
dimensional cube has the coordinates (−a,−a, 0) with a = d

1+
√

2 , d = r√
2 at the lower left

85

7 Numerical results

Figure 7.2. Coupled mesh in 2D and 3D

corner and (a, a, 2) at the top right corner. A two dimensional sketch is shown in Figure 7.1
and the full coupled mesh is displayed in Figure 7.2.

86

7.2 Initial and boundary conditions

7.2 Initial and boundary conditions

For the initial condition we impose for x ∈ Ω2D

h(0, x) = 1,

v2
2D(t, x) =

0.01(x2 − 0.5)(x2 + 0.5), if− 0.5 ≤ x1 ≤ 0.5, x2 = 1,
0, else,

T2D(0, x) =

22 + 2x2, if− 0.5 ≤ x1 ≤ 0.5, x2 ≤ 0,
20, else,

for x ∈ ∂Ω2D we require for t ∈ (0, T] that v1
2D(t, x) = 0, and

v2
2D(t, x) =

0.01(x2 − 0.5)(x2 + 0.5), if− 0.5 ≤ x1 ≤ 0.5, x2 ≤ 0,
0, else,

T2D(t, x) =

22 + 2x2, if− 0.5 ≤ x1 ≤ 0.5, x2 ≤ 0,
15, else.

S2D(t, x) =

1, if− 0.5 ≤ x1 ≤ 0.5, x2 ≤ 0,
0, else.

For the three dimensional correction we impose homogeneous boundary conditions at vertical
walls and at the bottom for the velocities v3D and the three dimensional temperature and
tracer T3D and S3D. In the case of natural boundary conditions on the top and homogeneous
Dirichlet conditions at the bottom we have a reaction term in the two dimensional equation.
But here α = 0 so the reaction term vanishes.

7.3 Choice of parameters

The viscosities are ν = 0.001 and νT = 0.0001 and νS = 0. The right hand side is zero. The
other parameters are % = 1000 and γ = 0.00001. For the time interval we choose I = [0, T]
with T = 20 and we set the time discretization parameter to k = 0.01.

In Figure 7.3 and Figure 7.4 we present streamlines of the correction velocity and the cou-
pled velocity, respectively. At the end, we show the transport and diffusion of a tracer in
Figure 7.6 and the temperature in Figure 7.7. We used a fractional-step θ-scheme for the time
discretization. For the finite element discretization of the velocity in three dimensions we used
tri-quadratic polynomials. All the other unknowns were discretized using bilinear and trilinear
finite elements in two or three space dimensions, respectively.

In order to get an impression of the three dimensional part of the simulation, we displayed the
cube on top of the two dimensional part. This is only for presentation purposes. The three
dimensional part is added to simulate a deep water reservoir and really is below the surface.

87

7 Numerical results

Shallow parts of the domain do not need to be resolved in three dimensions. We leave them to
the two dimensional part only. It suffices to use the two dimensional model on the shallow
part of the lake.

In Figure 7.8 we show the vorticity
∥∥∇× v(t)

∥∥
ω computed on a patch of cells ω. This patch

consists of all cells at the bottom with a center (c1, c2, c3) that satisfies |c1| ≤ 0.75, and
|c2| ≤ 0.75. For the area that covers about 11% of the three dimensional domain we choose the
setting described in Section 7.1. We compare the results with a 100% coverage of the three
dimensional domain and a pure two dimensional computation which was extended constantly
into the third dimension.

88

7.3 Choice of parameters

(a) t = 0

(b) t = 3

(c) t = 6

(d) t = 9

Figure 7.3. Streamlines in x, y, and z-direction at different time points

89

7 Numerical results

(a) t = 12

(b) t = 15

(c) t = 18

(d) t = 20

Figure 7.4. Streamlines in x, y, and z-direction at different time points, ctd.

90

7.3 Choice of parameters

(a) t = 0 (b) t = 3

(c) t = 6 (d) t = 9

(e) t = 12 (f) t = 15

(g) t = 18 (h) t = 20

Figure 7.5. Height at different time points

91

7 Numerical results

(a) t = 0 (b) t = 3

(c) t = 6 (d) t = 9

(e) t = 12 (f) t = 15

(g) t = 18 (h) t = 20

Figure 7.6. Tracer at different time points

92

7.3 Choice of parameters

(a) t = 0 (b) t = 3

(c) t = 6 (d) t = 9

(e) t = 12 (f) t = 15

(g) t = 18 (h) t = 20

Figure 7.7. Temperature at different time points

93

7 Numerical results

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.1 0.2 0.3 0.4 0.5 0.6

∥ ∥ ∇×
v
(t

)∥ ∥ ω

time t

100%
11%
0%

Figure 7.8. Vorticity for various three dimensional covered areas

7.4 Discussion of numerical results

The numerical results we showed in the previous section exhibit that the tracer is transported
with a sharp front. Due to the coupling we have a really three dimensional velocity in the
inner cube. Also in the temperature and tracer we have a real three dimensional behavior
which can not be seen well since the correction in 3D is quite small.

Especially in the Figure 7.8, we clearly see that we get better results if we cover already 11%
of the three dimensional area than we get if we only use a two dimensional approximation.

This means the coupling meets the demands we required. For more involved problems the
three dimensionality would be more prominent.

An important possibility for further research is to determine the region of three dimensionality
adaptively.

94

8 Conclusions

In this chapter we come to conclusions and give possible directions for future work.

8.1 Conclusion

In this work we developed a method to couple models in different dimensions for simulation of
fluid flows in hydrodynamics. These were coupled in such a way that not the whole domain has
to be meshed in three dimensions. It is sufficient to solve a cheaper model in two dimensions
and to add a three dimensional correction to this two dimensional solution on parts of the
domain where a better accuracy is required.

This is a very big step to reduce the computational costs for three dimensional flow problems.
In the case that the area where a higher regularity is required, is known, a lot of computation
time can be saved by applying this coupling approach.

Likewise, by the development of the multilevel solver for continuous finite element methods,
we also save computation time. The direct solvers that are really fast for problems in two
dimensions slow down considerably in three dimensions. Therefore it was unavoidable to design
a good preconditioner for the fully coupled problem.

8.2 Outlook

The multilevel preconditioner could be extended to different finite elements. So far it can be
applied to higher order continuous finite elements and to Nédélec elements.

To this end, we build the multilevel matrices without the coupling terms. If the coupling could
be taken into account also in the multilevel matrices, the convergence of the linear solver would
be faster.

Still, for the coupling it is not yet possible to adaptively refine the three dimensional mesh.
This would be very important to incorporate since this would also reduce the computation
time.

As far as the coupling of models in concerned, the area of the three dimensional extension has
to be determined beforehand. With some modifications in the code, it should be possible to
choose the cells for an extension to three dimensions. Therefore one would need an a posteriori
error estimator which estimates the coupling error. Due to the monolithic formulation of the
fully coupled problem this should be feasible.

95

Acknowledgments

First of all I would like to express my gratitude to my supervisor Rolf Rannacher for giving
me the opportunity to work on this interesting subject and for the enduring support during
the last years.

This work has been supported by the German Research Foundation (DFG) through Interna-
tional Graduiertenkolleg 710 “Complex processes: Modeling, Simulation and Optimization”. As
a member of this Graduiertenkolleg and later as a member of the “Heidelberg Graduate School
of Mathematical and Computational Methods for the Sciences” I was given the possibility to
attend several conferences and to stay abroad in Warsaw and College Station.

My special thanks are addressed to Guido Kanschat for his enduring support, for countless
fruitful discussions, as well as for many valuable suggestions concerning my work. Besides, I
want to thank him for the productive and agreeable collaboration in software development
and paper writing.

Further I would like to thank my office mates Helke and Thomas and the whole Numerical
Analysis Group at the University of Heidelberg for always open doors and a nice atmosphere
making my time at work enjoyable and unforgettable.

My gratitude goes to the developers of deal.II, who helped me with my programming questions,
in particular Guido, Wolfgang, Timo, and Martin.

Vielen lieben Dank möchte ich an dieser Stelle meiner Familie und Stefan sagen, die immer für
mich da waren und mich unterstützt haben.

I would like to thank all my friends who encouraged me working and also thanks to all my
friends who kept me away from working. I am grateful to all those of you who believed in me
even at those times when I did not.

Many thanks to Adrian, Agnieszka, Anna, Anna-Maria, Christian, Cockie, Dominik, Eva,
Helke, Jevgeni, Julia, Kathrin, Matthias, Michael, Michael, Tom, Thomas, Thomas, Uli, and
Winni.

97

List of Figures

3.1 Transformation to a fixed domain . 16

4.1 Reduction from a 3D cube to a 2D cube with a 3D cube in the middle. 20
4.2 Reference solution of three dimensional Poisson problem 23
4.3 Sequence of adaptively refined meshes after various refinement steps 24
4.4 Coupled solution of the three dimensional Poisson problem obtained for the

second test . 27

5.1 Discretization in time from tn−1 to tn+1. 43
5.2 Discretization via fractional steps from tn−1 to tn. 45
5.3 Crank-Nicolson with kn = 0.042 . 47
5.4 Fractional step θ with kn = 0.125 . 47
5.5 Fractional step variant with kn = 0.083 . 48
5.6 Crank-Nicolson with kn = 0.042 . 49
5.7 Fractional step θ with kn = 0.125 . 49
5.8 Fractional step variant with kn = 0.083 . 50
5.9 Example of active cells in a 2D mesh and corresponding tree graph. 55
5.10 A hierarchy of three meshes with local refinement (active cells shaded). 55
5.11 Splitting of T` into T S` (shaded cells) and T L` (white cells). 56
5.12 Violated one-Irregularity on the left and resolved one-irregular mesh on the right. 57
5.13 Violated v-one-Irregularity on the left and resolved v-one-irregular mesh on the

right. 57
5.14 Two- and three-dimensional meshes with hanging nodes. 58
5.15 Transformation κT from the reference cell T̂ to a computational cell T 60
5.16 Position for two 3D cells on a 2D mesh are colored 63
5.17 Sequence of meshes in 3D refined into a corner 64
5.18 Sequence of meshes in 2D refined according to 3D mesh 64
5.19 Sequence of coupled meshes . 65

6.1 The subspaces V S
` (green), V E

` (yellow), and V L
` (white). 72

6.2 A mesh hierarchy with the same number of degrees of freedom on each level.
Half of the interior edges bear hanging nodes. 76

6.3 Refinement of the positive quadrant, levels 2, 3 and 6, with v-one-irregular closure. 77
6.4 Refinement of a circle, levels 3, 4 and 9, with v-one-irregular closure. 77
6.5 Locally refined meshes in three dimensions. First octant refined to level 4 (left)

and ball refined to level 6 (right). 80
6.6 Part of a coupled mesh . 82
6.7 Corresponding cells . 83

99

List of Figures

6.8 Coupling of 3D dofs (×) of an active cell to 2D dofs (•) of a possibly inactive cell 84

7.1 Mesh in 2D (blue and red) and mesh in 3D (red) 85
7.2 Coupled mesh in 2D and 3D . 86
7.3 Streamlines in x, y, and z-direction at different time points 89
7.4 Streamlines in x, y, and z-direction at different time points, ctd. 90
7.5 Height at different time points . 91
7.6 Tracer at different time points . 92
7.7 Temperature at different time points . 93
7.8 Vorticity for various three dimensional covered areas 94

100

List of Tables

4.1 Results in the L2 norm and H1 semi norm for the Poisson problem computed
in three dimensions on a globally refined mesh 24

4.2 Point values for the Poisson problem computed in three dimensions on a globally
refined mesh . 25

4.3 Results for the Poisson problem computed in three dimensions on an adaptively
refined mesh . 25

4.4 Point values for the Poisson problem computed in three dimensions on an
adaptively refined mesh . 26

4.5 Results in the L2 norm and H1 semi norm for the coupled Poisson problem on
a globally refined mesh obtained for the first test 26

4.6 Point values for the coupled Poisson problem on a globally refined mesh obtained
for the first test . 27

4.7 Results in the L2 norm for the coupled Poisson problem on a globally refined
mesh obtained for the second test . 28

4.8 Results in the H1 semi norm for the coupled Poisson problem on a globally
refined mesh obtained for the second test . 28

4.9 Point values for the coupled Poisson problem on a globally refined mesh obtained
for the second test . 28

4.10 Results in the L2 norm for the coupled Poisson problem on a globally refined
mesh obtained for the third test . 29

4.11 Results in the H1 semi norm for the coupled Poisson problem on a globally
refined mesh obtained for the third test . 29

4.12 Point values for the coupled Poisson problem on a globally refined mesh obtained
for the third test . 30

5.1 Choice of parameters to obtain one-step θ-schemes. 51
5.2 Choice of parameters to obtain fractional-step θ-schemes. 52

6.1 Couplings arising from the fully coupled and transformed problem. 68
6.2 Iteration steps and convergence rates for the preconditioned cg method. One

symmetric pre- and post-smoothing step on each level with Q1-elements in two
dimensions. 78

6.3 Iteration steps and convergence rates for the preconditioned cg method for
Q1-elements. Variable smoothing with 1 pre- and post-smoothing step on the
finest level. 79

6.4 Convergence rates for the preconditioned cg method. Refinement into a circle
in 2d. Variable smoothing with 1 pre- and post-smoothing step on the finest level. 79

101

List of Tables

6.5 Performance of the preconditioned cg method in three dimensions. One sym-
metric pre- and post-smoothing step on each level. 79

6.6 Performance of the preconditioned cg method in three dimensions. Variable
block smoothing with 1 pre- and post-smoothing step on the finest level. 80

6.7 Convergence rates for the preconditioned cg method. Refinement into a ball in
3d. Variable block smoothing with 1 pre- and post-smoothing step on the finest
level. 81

102

List of Algorithms

6.1 Multilevel (V-Cycle) . 71
6.2 Multilevel with local smoothing . 74
6.3 Multiplicative Schwarz smoother . 75

103

Bibliography

[1] R. A. Adams. Sobolev spaces. Pure and applied mathematics ; v. 140. Academic Press,
Amsterdam ; Boston, 2nd edition, 2003.

[2] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II — a general purpose
object oriented finite element library. ACM Trans. Math. Softw. 33(4), 2007. doi:
10.1145/1268776.1268779.

[3] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II Differential Equations
Analysis Library, Technical Reference, 6th edition, 2010. URL http://www.dealii.org.
First edition 1999.

[4] W. Bangerth and O. Kayser-Herold. Data structures and requirements for hp finite
element software. ACM Trans. Math. Softw. 36(1), pp. 4/1–4/31, 2009.

[5] W. Bangerth and R. Rannacher. Adaptive Finite Element Methods for Solving
Differential Equations. Birkhäuser, Basel, 2003.

[6] R. E. Bank. PLTMG: a software package for solving elliptic partial differential equations.
SIAM, Philadelphia, 1998. Users’ guide 8.0.

[7] P. Bastian. Load balancing for adaptive multigrid methods. SIAM J. on Sci. Comput.
19(4), pp. 1303–1321, 1998. doi:10.1137/S1064827596297562.

[8] P. Bastian and C. Wieners. Multigrid methods on adaptively refined grids. Computing
in Science and Engg. 8(6), pp. 44–54, 2006. ISSN 1521-9615. doi:http://dx.doi.org/10.
1109/MCSE.2006.116.

[9] R. Becker and M. Braack. Multigrid techniques for finite elements on locally refined
meshes. Numer. Linear Algebra Appl. 7, pp. 363–379, 2000. Special Issue.

[10] M. Berger, M. Aftosmis, and G. Adomavicius. Parallel multigrid on Cartesian
meshes with complex geometry. In Parallel computational fluid dynamics (Trondheim,
2000), pp. 283–290. North-Holland, Amsterdam, 2001.

[11] A. F. Blumberg and G. L. Mellor. A description of a three-dimensional coastal ocean
circulation model. In Three-Dimensional Coastal Ocean Models, edited by N. Heaps, pp.
1–16. American Geophys. Union, 1987.

[12] F. Boyer, C. Lapuerta, S. Minjeaud, and B. Piar. A local adaptive refine-
ment method with multigrid preconditionning illustrated by multiphase flows simu-
lations. Technical report, INRIA a CCSD electronic archive server based on P.A.O.L
[http://hal.inria.fr/oai/oai.php] (France), 2008. URL http://hal.archives-ouvertes.
fr/hal-00307186/en/.

105

http://www.dealii.org
http://hal.archives-ouvertes.fr/hal-00307186/en/
http://hal.archives-ouvertes.fr/hal-00307186/en/

Bibliography

[13] M. Braack, E. Burman, V. John, and G. Lube. Stabilized finite element methods for
the generalized oseen problem. Computer Methods in Applied Mechanics and Engineering
196(4-6), pp. 853 – 866, 2007.

[14] M. Braack and A. Ern. A posteriori control of modeling errors and discretization
errors. Multiscale Model. Simul. 1(2), pp. 221–238, 2003.

[15] M. Braack and A. Ern. Adaptive computation of reactive flows with local mesh
refinement and model adaptation. In Proc. ENUMATH 2003, the 5th European conference
on numerical mathematics and advanced applications, Prague, Czech Republic, edited by
M. Feistauer, V. Dolejsí, P. Knobloch, and K. Najzar, pp. 159–168. Springer,
2004.

[16] D. Braess. Finite Elemente. Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg,
vierte, überarbeitete und erweiterte edition, 2007.

[17] J. H. Bramble. Multigrid Methods. Number 294 in Pitman research notes in mathematics
series. Longman Scientific, 1993.

[18] J. H. Bramble and J. E. Pasciak. The analysis of smoothers for multigrid algorithms.
Math. Comput. 58(198), pp. 467–488, 1992.

[19] A. Brandt. Multi-level apative solutions to boundary-value problems. Math. Comput.
31(138), pp. 333–390, 1977.

[20] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods.
Springer, 2nd edition, 2002.

[21] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods.
Number 15 in Texts in applied mathematics ; 15 ; Texts in applied mathematics. Springer,
New York, NY, 3rd edition, 2008.

[22] A. N. Brooks and T. J. Hughes. Streamline upwind/petrov-galerkin formulations for
convection dominated flows with particular emphasis on the incompressible navier-stokes
equations. Computer Methods in Applied Mechanics and Engineering 32(1-3), pp. 199 –
259, 1982.

[23] A. Caboussat. Analysis and Numerical Simulation of Free Surface Flows. Ph.D. thesis,
Universität Lausanne, 2003.

[24] J. M. Cascon, C. Kreuzer, R. H. Nochetto, and K. G. Siebert. Quasi-optimal
convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), pp.
2524–2550, 2008. ISSN 0036-1429. doi:10.1137/07069047X.

[25] A. Chorin and J. Marsden. A mathematical introduction to fluid mechanics. Texts in
applied mathematics. Springer-Verlag, 1990.

[26] P. G. Ciarlet. The finite element method for elliptic problems. Studies in mathematics
and its applications ; v. 4. North-Holland Pub. Co ; sole distributors for the U.S.A. and
Canada, Elsevier North-Holland, Amsterdam ; New York ; New York, 1978.

[27] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, 1978.

106

Bibliography

[28] R. Dautray and J.-L. Lions. Evolution problems i. In Mathematical Analysis and
Numerical Methods for Science and Technology. Springer-Verlag, 1992.

[29] A. Decoene and J. F. Gerbeau. Sigma transformation and ale formulation for three-
dimensional free surface flows. International Journal for Numerical Methods in Fluids 59,
pp. 357–386, 2009.

[30] Delft3D. http://delftsoftware.wldelft.nl/.

[31] T. Dunne. Adaptive Finite Element Approximation of Fluid-Structure Interaction Based
on Eulerian and Arbitrary Lagrangian-Eulerian Variational Formulations. Ph.D. thesis,
Universität Heidelberg, 2007.

[32] H. Elman, D. Silvester, and A. Wathen. Finite elements and fast iterative solvers:
with applications in incompressible fluid dynamics. Numerical mathematics and scientific
computation. Oxford University Press, 2005.

[33] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes equations.
Number 5 in Springer series in computational mathematics ; 5 ; Springer series in
computational mathematics. Springer, Berlin ; Heidelberg [u.a.], 1986.

[34] M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative
schwarz algorithms. Numer. Math. 70, pp. 163–180, 1995.

[35] W. Hackbusch. Multi-grid Methods and Applications. Springer, 1985.

[36] J.-M. Hervouet. Hydrodynamics of free surface flows, modelling with the finite element
method. Wiley, 2007.

[37] J. Hron and S. Turek. A monolithic fem/multigrid solver for ALE formulation of fluid
structure interaction with application in biomechanics. In Fluid-Structure Interaction
- Modelling, Simulation, Optimization, edited by H. Bungartz and M. Schäfer,
number 53 in Lecture Notes in Computational Science and Engineering, pp. 146–170.
Springer, 2006. ISBN 3-540-34595-7.

[38] J. A. Jankowski. A non-hydrostatic model for free surface flows. Ph.D. thesis, Universität
Hannover, 1999.

[39] B. Janssen and G. Kanschat. Adaptive multilevel methods with local smoothing for
H1- and Hcurl-conforming high order finite element methods. SIAM J. Sci. Comput 33(4),
2011.

[40] B. Janssen and T. Wick. Block preconditioning with schur complements for monolithic
fluid-structure interactions. In V. European Conference on Computational Fluid Dynamics
ECCOMAS CFD 2010, edited by J. Pereira and A. Sequeira. 2010.

[41] A. C. Jones. A Projected Multigrid Method for the Solution of Nonlinear Finite Element
Problems on Adaptively Refined Grids. Dissertation, The University of Leeds, 2005.

[42] A. C. Jones and P. K. Jimack. An adaptive multigrid tool for elliptic and parabolic
systems. Int. J. Numer. Meth. Fluids 47, pp. 1123–1128, 2005.

107

Bibliography

[43] G. Kanschat. Parallel and Adaptive Galerkin Methods for Radiative Transfer Problems.
Dissertation, Universität Heidelberg, 1996. URL http://archiv.ub.uni-heidelberg.
de/volltextserver/volltexte/2006/6331/. Preprint SFB 359, 1996-29.

[44] G. Kanschat. Multi-level methods for discontinuous Galerkin FEM on locally refined
meshes. Comput. & Struct. 82(28), pp. 2437–2445, 2004. doi:10.1016/j.compstruc.2004.04.
015.

[45] S. F. McCormick. Multilevel Adaptive Methods for Partial Differential Equations,
volume 6 of Frontiers in Applied Mathematics. SIAM, Philadelphia, 1989.

[46] E. Miglio, S. Perotto, and F. Saleri. Model coupling techniques for free-surface flow
problems: Part i. Nonlinear Analysis 63(5–7), pp. e1885–e1896, 2005.

[47] E. Miglio, S. Perotto, and F. Saleri. Model coupling techniques for free-surface flow
problems: Part ii. Nonlinear Analysis 63(5–7), pp. e1897–e1908, 2005.

[48] W. F. Mitchell. Parallel adaptive multilevel methods with full domain partitions. 2003.

[49] S. Müller-Urbaniak. Eine Analyse des Zwischenschritt-θ-Verfahrens zur Lösung der
instationären Navier-Stokes-Gleichungen. Ph.D. thesis, Universität Heidelberg, 1994.

[50] F. Nobile. Numerical approximation of fluid-structure interaction problems with applica-
tion to haemodynamics. Ph.D. thesis, Lausanne, 2001. URL http://library.epfl.ch/
theses/?nr=2458.

[51] J. Pedlosky. Geophysical fluid dynamics. Springer study edition. Springer-Verlag, 1987.

[52] S. Perotto. Adpative modeling for free-surface flows. M2AN Math. Model. Numer.
Anal. 40(3), pp. 469–499, 2006.

[53] N. A. Phillips. A coordinate system having some special advantages for numerical
forecasting. Journal of Meteorology 14, pp. 184–185, 1957.

[54] E. Rank, H. Bröker, A. Düster, R. Krause, and M. Rücker. The p-version of
the Finite Element Method for Structural Problems. In Error-controlled Adaptive Finite
Elements in Solid Mechanics, edited by E. Stein, pp. 263–308. Wiley, 2003.

[55] R. Rannacher. Numerical analysis of nonstationary fluid flow (a survey). Technical
Report 492, Institut für Angewandte Mathematik, Universität Heidelberg, 1988.

[56] T. Richter and T. Wick. Finite elements for fluid-structure interaction in ALE and
fully Eulerian coordinates. Computer Methods in Applied Mechanics and Engineering
199(41–44), pp. 2633 – 2642, 2010.

[57] M.-C. Rivara. Design and data structure of fully adaptive, multigrid, finite-element
software. ACM Trans. Math. Softw. 10(3), pp. 242–264, 1984. ISSN 0098-3500. doi:
http://doi.acm.org/10.1145/1271.1274.

[58] U. Rüde. Mathematical and Computational Techniques for Multilevel Adaptive Methods,
volume 13 of Frontiers in Applied Mathematics. SIAM, Philadelphia, 1993.

[59] Y. Saad. Iterative Methods for Sparse Linear Systems. Oxford University Press, 2nd
edition, 2000.

108

http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2006/6331/
http://archiv.ub.uni-heidelberg.de/volltextserver/volltexte/2006/6331/
http://library.epfl.ch/theses/?nr=2458
http://library.epfl.ch/theses/?nr=2458

Bibliography

[60] R. S. Sampath and G. Biros. A parallel geometric multigrid method for finite elements on
octree meshes. SIAM J. Sci. Comput. 32(3), pp. 1361–1392, 2010. doi:10.1137/090747774.

[61] A. Schmidt and K. Siebert. Design of Adaptive Finite Element Software - The Finite
Element Toolbox ALBERTA, volume 42 of Lecture Notes in Computational Science and
Engineering. Springer, Heidelberg, 2005.

[62] P. Šolín, J. Červený, and I. Doležel. Arbitrary-level hanging nodes and automatic
adaptivity in the hp-FEM. Math. Comput. Simulation 77(1), pp. 117–132, 2008. ISSN
0378-4754. doi:10.1016/j.matcom.2007.02.011.

[63] Telemac. http://www.telemacsystem.com/.

[64] R. Temam. Navier-Stokes equations. AMS Chelsea Publ., Providence, RI, reprinted with
corr. edition, 2001.

[65] U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press,
London, 2001.

[66] S. Turek. Efficient Solvers for Incompressible Flow Problems: An Algorithmic and
Computational Approach. Springer, Berlin, 1999.

[67] S. Turek, L. Rivkind, J. Hron, and R. Glowinski. Numerical analysis of a new time–
stepping theta–scheme for incompressible flow simulations. Technical report, Fakultät
für Mathematik, TU Dortmund, 2005. Ergebnisberichte des Instituts für Angewandte
Mathematik, Nummer 282.

[68] R. S. Varga. Matrix Iterative Analysis. Series in Computational Mathematics. Springer,
2nd edition, 1999.

[69] R. Verfürth. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement
Techniques. John Wiley/Teubner, 1996.

[70] C. von Rohden, A. Hauser, K. Wunderle, J. Ilmberger, G. Wittum, and
K. Roth. Lake dynamics: Observation and high-resolution numerical simulation. In
Reactive Flows, Diffusion and Transport, from experiments via mathematical modeling
to numerical simulation and optimzation, edited by W. Jäger, R. Rannacher, and
J. Warnatz, pp. 559–581. Springer, 2006.

[71] C. Vreugdenhil. Numerical methods for shallow-water flow. Water science and technol-
ogy library. Kluwer Academic Publishers, 1994.

[72] J. Wloka. Partielle Differentialgleichungen. Mathematische Leitfäden. Teubner,
Stuttgart, 1982.

[73] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review
34(4), pp. 581–613, 1992.

109

	1 Introduction
	2 Basic notations
	2.1 Basic notation
	2.1.1 Sobolev spaces on a fixed domain
	2.1.2 Continuous function spaces
	2.1.3 Sobolev spaces on a time dependent domain

	3 Equations
	3.1 Basic equations describing fluid flows
	3.1.1 Navier-Stokes equations
	3.1.2 Boussinesq approximation
	3.1.3 Variational formulation of the Boussinesq equations
	3.1.4 Shallow-Water equations
	3.1.5 Variational formulation of the Shallow-Water equations

	3.2 Equations for free surface flows
	3.2.1 Arbitrary Lagrangian Eulerian (ALE) formulation
	3.2.2 Spacial and temporal derivatives in ALE formulation
	3.2.3 Construction of the ALE mapping
	3.2.4 Equations formulated in ALE framework

	4 Coupling of models in 2D and 3D
	4.1 Coupling of 2D and 3D Poisson problem
	4.1.1 Decomposition of the space W
	4.1.2 Discussion of the coupling terms
	4.1.3 Discussion of the boundary term
	4.1.4 Numerical results
	4.1.5 Discussion of the numerical results

	4.2 Coupling of 2D Shallow-Water and 3D Boussinesq model
	4.2.1 First equation
	4.2.2 Second equation
	4.2.3 Discussion of the linear coupling terms
	4.2.4 Discussion of the non-linear coupling terms

	5 Discretization
	5.1 Discretization in time
	5.1.1 Preliminaries on time stepping schemes
	5.1.2 Temporal regularity
	5.1.3 Temporal discretization of the Boussinesq equations
	5.1.4 Temporal discretization of the Shallow-Water equations
	5.1.5 Temporal discretization of the Boussinesq equations in ALE formulation

	5.2 Issues on meshes
	5.2.1 Splitting of adaptive meshes into levels
	5.2.2 Hanging nodes

	5.3 Discretization in space
	5.3.1 Galerkin finite element discretization

	5.4 Stabilization
	5.5 Coupling discretization in 2D and 3D
	5.5.1 Connecting meshes in 2D and 3D

	6 Algorithm
	6.1 Basic algorithms
	6.1.1 Newton's method
	6.1.2 Solving linear systems
	6.1.3 Block preconditioning with Schur complements

	6.2 Multilevel algorithm
	6.2.1 Splitting of level spaces
	6.2.2 Prolongation and restriction
	6.2.3 Local smoothing
	6.2.4 Overlapping Schwarz smoother
	6.2.5 Complexity of the algorithm
	6.2.6 Memory requirements
	6.2.7 Numerical experiments

	6.3 Details on the implementation
	6.3.1 Fully discrete coupled problem
	6.3.2 Integration of coupled terms on active cells
	6.3.3 Integration of coupled terms on inactive cells

	7 Numerical results
	7.1 Numerical example
	7.2 Initial and boundary conditions
	7.3 Choice of parameters
	7.4 Discussion of numerical results

	8 Conclusions
	8.1 Conclusion
	8.2 Outlook

	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

