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Summary 

Biological membranes are a main component of living organisms. They separate the inside of 

cells from their surrounding and act as selective permeable barriers. Those membranes are 

build up by lipid molecules by self-organization processes. Model membranes of that type 

can not only be used for improved understanding of fundamental structural principles like 

phase transition behaviour, but also for the investigation of biological phenomena such as 

joint lubrication. For both purposes, the response of substrate-supported lipid membranes 

were studied at the solid-liquid interface at varied external parameters and membrane 

interactions with organic molecules. 

 

The spin-coating and air-brush technique were applied as straightforward and reliable 

preparation methods for these model membranes. The structure of the prepared membranes 

was characterized in X-ray (XR) and neutron reflectometry (NR) experiments. Fourier 

transform infrared spectroscopy (FTIR) was employed in the surface sensitive attenuated 

total reflectance (ATR) geometry to characterize the vibrational modes of the investigated 

systems in contact with liquids. The unrestricted comparability of ATR-FTIR and NR results 

was ensured by unified experiments on the same sample at the same time. This required the 

design of an external ATR-FTIR beam line, which was combined with a neutron 

reflectometer, resulting in the BioRef instrument at the BER II neutron source at the 

Helmholtz-Zentrum Berlin. Differential scanning calorimetry (DSC) was applied as a 

complementary method in order to study the phase transitional behaviour of the 

corresponding bulk systems. Besides varied environmental conditions including temperature 

and pressure changes, different solutions were used as incubating liquid phases. Furthermore, 

the effects of applied shear load on the prepared model membranes were studied. 

 

The performed NR experiments revealed the limits of stability of the prepared DMPC lipid 

coatings incubated in pure water (D2O): The coatings are stable in the ripple phase Pβ‘ of the 

lipid molecules. That could be shown for various combinations of applied temperature and 

hydrostatic pressure up to physiologically relevant temperatures and approximately 100 MPa, 

upon exposure to an external shear force and for lipid layers on both silicon and titanium-

coated surfaces. However, in the fluid-like L phase of the lipid molecules, the oligolamellar 

DMPC coatings detached irreversibly from the substrates.  



  

The strong impact of the main phase transition on the structure of the coating was further 

seen in a multi-layered lipid system. In the Pβ‘ phase, the lipid chains were in all-trans 

conformation, resulting in an increased lipid membrane thickness. In comparison, in the Lα 

phase with molten lipid chains, a decreased lipid membrane thickness was found. In addition, 

structural changes of the coating (as seen by NR) were observed, which could not be 

correlated to the lipid chain melting alone (as seen by ATR-FTIR): An anomalous swelling of 

the lipid stack of 1-2 Å occurred upon approaching the main phase transition temperature. 

 

 

 

 

 

 

 

 

Figure 1: Model for oligolamellar lipid 

coatings in pure D2O (left) and after 

incubation in a solution of HA in D2O (right). 

 

 

Further to measurements performed in pure water, solid-supported lipid membrane systems 

were also studied in solutions of hyaluronic acid (HA) in water. These systems were used as a 

more elaborate model for mammalian joints. It was found that HA provokes pronounced 

effects on the lipid model membranes: At room temperature and ambient pressure a new 

lamellar phase developed in which the lipid stack drastically increased in thickness by 380% 

with the lamellar order of the lipid molecules preserved (Figure 1). A detailed analysis of the 

scattering curves revealed an agglomeration of HA molecules outside the individual lipid 

lamellae, close to the head group regions. Crossing the main phase transition from Pβ‘ to the 

Lα phase of the lipid molecules within the coating did not result in unbinding of the lipid 

membranes: they remained stable on the substrate. Furthermore, the lipid coating increased in 

thickness (as seen by NR) with the lipid chains in their molten state (as seen with ATR-

FTIR). It was shown that the swelling of the lipid coating could be suppressed by screening 

the electrostatic interactions of the system by adding salt to the incubating solution of HA in 

water. The effects on the solid-supported lipid membranes induced by HA could qualitatively 

be understood on the bases of the DLVO theory taking into account additional steric 

interactions. 



 

Zusammenfassung 

Biologische Membranen sind ein Hauptbestandteil von lebenden Organismen. Sie trennen 

das Zellinnere von dessen Umgebung und wirken als selektiv permeable Barrieren. Solche 

Membranen können durch Selbstaggregation von Lipiden gebildet werden. Modell-

Membranen dieses Typs können verwendet werden um grundlegende strukturelle Prinzipien 

im Nahbereich von Phasenübergängen zu verstehen und um biologische Phänomene wie die 

Gelenkschmierung zu untersuchen. Zu diesem Zweck wurden Lipidbeschichtungen an der 

Fest-Flüssig-Grenzfläche präpariert und vermessen. Dabei wurden die Reaktionen der 

Membranen auf unterschiedliche äußere Parameter und die Wechselwirkung mit organischen 

Molekülen in den Mittelpunkt der Untersuchungen gestellt. 

 

Die Rotationsbeschichtung (spin-coating) und die Luftdruckbeschichtung (air-brush) wurden 

als einfache und zuverlässige Herstellungsverfahren für Modellmembranen eingesetzt. Die 

Struktur der hergestellten Membranen wurde in Röntgen- (XR) und Neutronenreflektometrie 

(NR) Experimenten verifiziert. Die Fourier-Transformations-Infrarotspektroskopie (FTIR) 

wurde in der oberflächenempfindlichen, abgeschwächten Totalreflexions (ATR) Geometrie 

eingesetzt, um die Schwingungsmodi der untersuchten Systeme in Kontakt mit Flüssigkeiten 

zu charakterisieren. Die uneingeschränkte Vergleichbarkeit zwischen ATR-FTIR- und NR-

Ergebnissen wurde durch gleichzeitige Messungen an derselben Probe gewährleistet. Dies 

erforderte die Konstruktion einer externen ATR-FTIR Strahlführung, welche am BioRef-

Neutronenreflektometer der BER II Neutronenquelle am Helmholtz-Zentrum Berlin realisiert 

wurde. Die dynamische Differenzkalorimetrie (DSC) wurde als eine ergänzende Methode 

angewandt, um das Verhalten von Membranen in Lösung am Phasenübergang zu 

untersuchen. Neben vielfältigen Umgebungsbedingungen wie Temperatur- und 

Druckänderungen, wurden die Beschichtungen in unterschiedlichen Lösungen inkubiert. 

Darüber hinaus wurde der Einfluss von äußerer Scherung auf die Modellmembranen getestet.  

 

Die Stabilität der präparierten DMPC-Lipidbeschichtungen wurde zuerst in reinem Wasser 

(D2O) verifiziert: Die Beschichtungen sind stabil in der Rippel-Phase Pβ‗ der 

Lipiddoppelschichten. Dies konnte für verschiedene Druck- und Temperaturbedingungen bis 

hin zu physiologisch relevanten Temperaturen und etwa 100 MPa gezeigt werden. Zudem 

reagierten die Beschichtungen stabil auf äußere Scherkräfte und hafteten sowohl auf reinen 

Silizium-Oberflächen als auch auf Oberflächen mit Titanbeschichtung.  



  

In der flüssigen Phase L der Lipide hingegen lösten sich die oligolamellaren Beschichtungen 

irreversibel vom Substrat. Der Einfluss des Hauptphasenübergangs auf die Struktur der 

Beschichtungen wurde mittels einer multilamellaren Lipidbeschichtung gemessen. In der Pβ‗-

Phase sind die Lipidketten in all-trans Konformation, was zu einer erhöhten Schichtdicke der 

Lipidmembranen beiträgt. Im Vergleich dazu wurde in der L-Phase mit geschmolzenen 

Lipidketten eine verminderte Schichtdicke gemessen. Darüber hinaus wurden strukturelle 

Veränderungen der Beschichtung mittels NR beobachtet, die nicht auf das Schmelzen der 

Lipidketten (gemessen durch ATR-FTIR) zurückgeführt werden können: ein anormales 

Quellverhalten der Lipiddoppelschichten bei Annäherung an den Hauptphasenübergang. 

 

 

 

 

 

 

Abbildung 1: Modell von Lipidbeschichtungen auf 

Silizium in reinem D2O (links) und in einer Lösung 

aus HA in D2O (rechts). 

 

Neben den Messungen in reinem Wasser wurden Lipidbeschichtungen auch in Lösungen aus 

Hyaluronsäure (HA) in Wasser (D2O) untersucht. Dieses System wurde als ein Modell für 

Säugetiergelenke verwendet. Es wurde festgestellt, dass HA tiefgreifende Veränderungen der 

Lipidmembranen  verursacht: Bei Raumtemperatur und Umgebungsdruck entstand eine neue 

lamellare Phase, in der die Lipiddoppelschichten drastisch an Dicke zugenommen haben 

(Abbildung 1). Eine detaillierte Analyse der Streukurven ergab, dass sich HA-Moleküle 

außerhalb der einzelnen Lipidlamellen in der Nähe der Kopfgruppen anlagern. Das 

Überschreiten des Hauptphasenübergangs von Pβ'-Phase in die Lα-Phase der Lipidmoleküle 

führte nicht zum Ablösen der Lipidbeschichtung. Darüber hinaus wurde nachgewiesen, dass 

die Lipiddoppelschichten mit Lipidketten in geschmolzenem Zustand (gemessen mit ATR-

FTIR) an Dicke zunehmen (gemessen mit NR). Es konnte gezeigt werden, dass das Quellen 

der Lipidbeschichtung durch Zugabe von 1 M Kochsalz in die  HA-Wasser-Lösung 

unterdrückt werden kann. Hiermit verbunden ist die Abschirmung der elektrostatischen 

Wechselwirkungen im System. Der Einfluss von HA auf die Lipidmembranen wurde 

qualitativ auf der Basis der DLVO-Theorie unter Berücksichtigung zusätzlicher sterischer 

Wechselwirkungen diskutiert. 
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1. Introduction 

The most disabling disease of the western world is osteoarthritis [1]. It affects around 66% of 

the population older than 65 years [2]. Osteoarthritis is a degenerative joint disease, which 

can affect any joint of the body. It mostly occurs on the heavy weight bearing joints like hips 

and knees [3]. In natural joints the two opposing surfaces are covered with cartilage to which 

lipids are adsorbed in a graphite-like oligolamellar structure [4]. The two opposing surfaces 

are separated by a liquid phase, the synovial fluid (Figure 2) [5]. A main component of 

synovial fluid is hyaluronic acid (HA), a high molecular weight polysaccharide [6]. HA is 

known to be also involved in other processes in the human body, such as wound healing [7] 

and tumour progression [8] further to its unique role in joints [9].  In particular the 

combination of phospholipids and HA is claimed to play an important role in joint lubrication 

[10-12]. Recent investigations show that injected mixtures of phospholipids and HA reduce 

friction in animal joints [11] and in human systems [13]. 

 

 

Figure 2: Radiograph of a human knee joint (left) [14]. Schematic diagram (right), showing a close up of the 

opposing bones, covered with cartilage and lipid layers, separated by synovial fluid.  

Even though the interaction of phospholipids and hyaluronic acid is essential for the 

understanding of joint lubrication, little is known about these interactions on a molecular 

scale. Investigations on the behaviour of lipids and HA would further be beneficial for an 

improved medical treatment of arthritis or for the design of artificial joints [15]. Lipid 

membrane coatings are in addition proposed as biomimetic interfaces for long lasting body 

implants [16]. Based on above motivations, molecular organization between solid-supported 

lipid membranes and HA solutions on a molecular scale have been investigated in the present 

work.  
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The successful preparation of oligolamellar lipid coatings on silicon substrates was the 

starting point for the present investigations. Due to physiological relevance, measurements 

were performed in-situ, first against pure water for reference and second against solutions of 

HA in water (Figure 3). Neutron reflectivity and infrared spectroscopy were applied as the 

main methods for surface sensitive and complementary in-situ measurements. The stability of 

the lipid coatings with increasing temperature was investigated, particularly in the vicinity of 

the main phase transition temperature of the lipid molecules. In independent experiments, the 

main phase transition was induced by changing hydrostatic pressure at a fixed temperature. 

Samples incubated in solutions of HA in water were examined in long term studies and the 

importance of system intrinsic electrostatic contributions to the interaction of lipids and HA 

crosschecked. Structural changes of the lipid coating were investigated under external shear, 

in order to mimic the forces acting on lipid membranes in human joints. In addition, the 

influence of the underlying substrate on the lipid coating was analyzed. As titanium is a 

promising material for artificial body implants, the stability of lipid membranes on titanium-

coated silicon substrates was studied at various temperatures and external shear load.  

 

In their dried state against air the prepared lipid coatings on solid silicon support were 

characterized by X-ray reflectivity in order to verify coating thicknesses and orientation, and 

tuning the number of substrate-bound membranes by applying different coating parameters.  

Fourier transform infrared spectroscopy (FTIR) was applied to identify the main molecular 

groups of the adsorbate as well as conformational changes in the films. For the required 

surface sensitivity, FTIR was performed in attenuated total reflection (ATR) mode. With 

differential scanning calorimetry (DSC) measurements, the main phase transition temperature 

was measured in the bulk systems, i.e. lipid molecules dispersed in D2O and lipid molecules 

dispersed in a solution of HA in D2O, respectively.  

 

The main focus of the present work is on substrate-bound coatings, incubated in 

corresponding liquid phases. Neutron reflectivity (NR) is a powerful method for the 

investigation of support-solution interfaces. Detailed membrane profiles along the z direction 

are obtained due to the different neutron scattering length densities (SLD‘s) of the individual 

components (lipids, HA and liquid phase). D2O was used instead of H2O as a liquid phase to 

enhance the neutron scattering contrast between protonated lipid molecules and liquid phase. 

NR experiments have been performed at different reflectometers, hosted at different neutron 

sources.  
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NR is sensitive to structure and the molecular organization of the lipid ensembles, while 

FTIR is probing local environment and conformation of the lipid molecules. In that respect 

the two techniques probe different aspects of the molecular systems under study here and 

complement each other. Therefore, a substantial part of the present work was to construct and 

implement a specialized ATR-FTIR facility into the BioRef neutron reflectometer at the 

Helmholtz-Zentrum Berlin. That instrumental development made it possible to perform in-

situ NR and ATR-FTIR experiments on the same sample at the same time. Thus, structural 

changes of the investigated lipid coatings, as measured by NR, could be directly correlated to 

changes in the vibrational states of the participating components, as measured by ATR-FTIR. 

In particular, the main phase transition of the lipid molecules and potential interactions 

between lipids and HA were subject of these investigations.  

 

 

 

 

Figure 3: Model systems: Lamellar lipid membranes as coatings on a silicon substrate, incubated in pure 

water as a reference (left) or incubated in a model synovial fluid, consisting of a solution of hyaluronic acid 

(HA) in water (right).  
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2. Theory and status quo of joint components   

The main characteristics of the investigated joint components are given in this chapter:     

phospholipids (chapter 2.1) and hyaluronic acid (chapter 2.2). 

2.1 Phospholipids 

Phospholipids are naturally occurring molecules with an amphiphilic character: They consist 

of a hydrophilic (water-loving) head group and a hydrophobic (water-fearing) tail group. 

When exposed to water, the molecules tend to form clusters in order to shield of the tail 

groups from the water phase, with the head groups aligned towards the polar water 

molecules, known as the hydrophobic effect [17]. With increasing lipid concentration the 

formation of larger aggregates becomes more favourable, resulting in extended bilayers. 

Lipid bilayers form the basis of biological membranes found in any life form. A bilayer 

consists of two opposing monolayers, where the hydrophobic lipid tails face each other. The 

repeat distance d in a stack of lipid bilayers can be described by a simplified model based on 

the thickness of a bilayer and a separating inter solution layer with thickness dsolution (Figure 

4). The lipid bilayer thickness is defined by the thickness of the hydrophobic chain groups 

dchains with hydrophilic head groups of thickness dheads on either side. The measured repeat 

distance d is the sum of all contributions: 

                                    
       

           Equation 2.1 

 

 

 

Figure 4: Sketch of a stack of lipid membranes (bilayers). A bilayer consists of hydrophobic lipid chains 

(dchains) with hydrophilic lipid heads (dheads) on either side. Neighbouring membranes are separated by an inter 

water layer (dsolution). The repeat distance (d) is measured by scattering experiments. The figure is inspired by 

[18].  
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Katherine Burr Blodgett developed (together with Irving Langmuir) the Langmuir-Blodgett 

technique which enables one to coat solid substrates with lipid monolayer, bilayer or even 

multibilayer systems [19]. Irving Langmuir‘s work in surface chemistry was well recognized 

and awarded the Nobel Prize in 1932. Multi-bilayers, or simply multilayers, consist of a stack 

of bilayers. For a multilayer system at least two different forces must be taken into account to 

describe the interactions between the individual lipid membranes according to the DLVO 

theory [20, 21]:  

 

 The hydration forces due to the repulsion of the opposing hydrated head group 

layers decays as               , with dsolution being the width of the interstitial 

water layer between the membranes and a decay length  0 of about 2 Å [22, 

23]. Its contribution is purely short ranged [24]. 

 

 The attractive Van der Waals forces are due to dipole-dipole attraction of 

opposing membranes. The force scales with dsolution
-3

 [23]. 

 

In addition, thermodynamic fluctuations result in a repulsive fore: 

 

 The repulsive undulation force is generated by undulations in the membranes 

and scales with the inverse of the bending rigidity κ  [25]. 

 

Furthermore, the adsorption of charged molecules at the former neutral lipid membrane leads 

to an additional repulsive contribution between individual lipid membranes [24]: 

 

 Electrostatic repulsions between charged molecules, adsorbed at opposing 

membranes have to be taken into account. 

 

Above contributions have been confirmed by X-ray diffraction experiments on 

dipalmitoylphosphatidylcholine (DPPC) membrane systems [26]. In pure water without any 

further additions the membranes have a thickness of 65 Å [26]. After incubation of DPPC 

lipid membranes in a solution of 10 mM MgCl2 in water a lamellar swelling of around 150 Å 
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was observed [26]. Here, the adsorption of Mg
2+

 ions on opposing membranes increased the 

electrostatic repulsion. It could also be shown in theoretical studies that the combination of 

attractive van der Waals forces with repulsive electrostatic interactions can even yield a static 

repeat distance of around 250 Å [24, 27].  

Lamellar phases 

Lipid bilayers (membranes) occur in different lamellar phases, depending on water content, 

temperature and pressure (Figure 5). The phase transitions are connected to hydrocarbon 

chain-melting. In general it can be stated, that with increasing temperature the probability for 

rotations in the hydrocarbon chains increases, resulting in decreasing order of the lipid chains 

and increasing lateral diffusion [28]. This transitional behaviour is typical of second order 

phase transitions [29]. However, at critical points in the phase diagram first order phase 

transitions occur, accompanied with sharp changes of the system entropy and ordering [18, 

30, 31]. In the following some of the main lamellar phases with their common nomenclature 

are listed in order of their appearance with increasing temperature [32, 33].  The Latin letters 

describe the type of long range order: L stands for one-dimensional lamellar and P for two-

dimensional inclined. The lower case Greek letters describe the conformation of the chains:  

stands for disordered (fluid) and β‘ for ordered and tilted (gel). 
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Figure 5: Calorimetric melting profile of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid vesicles  

in pure  D2O. The used calorimetric setup is described in chapter 3.2.1 (on page 24) and the measurement 

itself in chapter 6.2 on page 117. Inserted sketches, displaying the membrane structure, are from [34].   
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 Lβ‘ phase: In the gel phase the bilayers appear almost flat, with a long-range in 

plane order. The lipid chains are mostly ordered in an all-trans configuration 

and tilted with respect to the membrane normal.  

 Pβ‘ phase: This phase, the ripple phase, is characterized by periodic 

undulations in the membrane surface [35], the long-range order is lost. The 

origin of the ripples is probably due to the coexistence of lipid patches in the 

Lβ‘ phase and patches in the L phase [35].  

 L phase: This is the fluid phase or liquid-disordered phase with chain 

disorder. The chains show kink conformations, resulting in a shortened chain 

layer thickness by 1.27 Å and an increased cross-sectional area per lipid 

molecule [31, 36]. Here, the average bilayer thickness decreases, accompanied 

by the appearance of free volume in the bilayer, thus the diffusion of 

individual lipids or small molecules through the bilayer increases. However, 

the membrane appears almost flat. 

The first order phase transition from the Lβ‘ to Pβ‘ phase is a pre-transition, which transfers the 

planar bilayer to the ripple phase [37]. In the present work we shall only be concerned with 

the main phase transition from Pβ‘ to L phase, which occurs at a critical temperature Tm. 

Anomalous swelling 

Concerning the bilayer structure, a swelling behaviour around the phase transition takes 

place. Interestingly, the swelling cannot be explained by changes in the hydrocarbon chains 

alone [38]. As the origins of the additional swelling by 1 to 2 Å (for DMPC) [18, 39] and a 

nonlinear swelling behaviour [40] are not fully understood, a challenging puzzle remains, 

which is discussed widely in the literature and is referred to as anomalous swelling [38, 39, 

41-43]. Many studies emphasize that the anomalous swelling results from an increase of the 

water layer thickness dsolution [44, 45]. It is reported  that undulations or fluctuations in the 

bilayer membrane around the phase transition increase [43, 44]. Consequently, the steric 

repulsion between two bilayers is enhanced when approaching the phase transition 

temperature, resulting in a swelling of the water layer [41]. In contrast, other groups report, 

that the swelling is caused by a critical straightening of the hydrocarbon chains. Furthermore, 

it is reported that only little change of membrane undulations takes place [46]. The discussion 

about the origins of the anomalous swelling is still ongoing and controversially held [43]. 
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Unbinding  

One would expect a bilayer to unbind irreversibly from its neighbouring membranes once the 

attractive van der Waals interaction is overcome by the repulsive undulation force (compare 

DLVO theory on page 18), resulting from a softening of the bilayer with increasing 

temperature [20, 21]. Although the term ―unbinding‖ is used frequently in literature, it often 

also refers to the swelling of lipid bilayers [47]. However, here the term is used to describe 

the irreversible process, which provokes freely dispersed bilayers and reduces the number of 

substrate-bound membranes. 

DMPC 

The present study is focused on the phospholipid 1,2-dimyristoyl-sn-glycero-3-

phosphocholine (DMPC). The polar head group contains a phosphate and a choline group. 

The tail group consists of two aliphatic hydrocarbon chains, each having 14 saturated carbon 

atoms (Figure 6). DMPC lipid molecules undergo a first order phase transition from the 

ripple phase Pβ‘ to a liquid-like phase Lα between 21.5 °C and 24.2 °C [29, 48-50]. The 

manufacturer quotes a transition temperature of 23 °C for the material used in this work [51]. 

The main phase transition temperature increases when lipids are dissolved in heavy water 

(D2O) to a value of 24.5 °C [46, 50]. The authors suggest, that this observation is an indicator 

of water present close to the hydrocarbon chain groups of the lipids: An increase in enthalpy 

and therefore in the transition temperature is caused by melting of structured water around the 

lipid chain groups. 

 

 

 

 

Figure 6: Schematic structure of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) taken from [51].  
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2.2 Hyaluronic acid  

In 1934 Karl Meyer and John W. Palmer reported about a substance ―unique in higher 

animals, and may be best compared with some of the specific polysaccharides of bacteria.‖ 

They discovered an acid from the vitreous humour of a ―fresh cattle‖ for which they 

proposed, ―for convenience, the name ‗hyaluronic acid‘, from hyaloid (vitreous) + uronic 

acid.‖ [52]  

 

Hyaluronic acid (HA), also called hyaluronan, is found in the extracellular matrix of 

mammals as soft connective tissue. In 1954, 20 years after its announcement, Meyer 

published an article with the chemical structure of HA [53]: Altering units of glucoronic acid 

and N-acetylglucosamine, linked with glycosidic bonds, make up this high molecular weight 

polysaccharide (Figure 7). The disaccharide has an average length of ≈ 1 nm. The molecular 

weight can range from 6000 – 8000 kDa [54], with an approximated end-to-end length of 

15 µm [55]. In solution, at  pH = 6.0, HA is negatively charged, because 90% of the carboxyl 

groups are ionized [56]. A HA molecule forms random coil structures, counterbalancing the 

electrostatic repulsion of hydrogen bonds and hydrophobic interactions [57]. At higher 

concentrations, HA molecules can form network-like structures through interactions of 

hydrophobic patches of different molecules [58].   

 

HA is a major component of the synovial fluid in natural joints, with a concentration of 2 to 

4 mg/mL [59].  As a natural occurring molecule synthesized by cultured streptococci, HA is 

used in a number of medical applications. For example, HA is injected in the knees of 

patients for the treatment of osteoarthritis [60] and for a variety of applications in ophthalmic 

medicine [61].   

 

 

 

Figure 7: Schematic structure of hyaluronic acid (HA) from [62]. 
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3. Experimental section  

The technical aspects of the performed experiments are presented in this chapter. First, a list 

of the used chemicals is given (chapter 3.1). Second, the theoretical framework and the 

experimental setups are described (chapter 3.2). In the third part, different preparation 

methods for lamellar lipid coatings are introduced (chapter 3.3).  

3.1 Used Chemicals and substrates 

Lipids 

1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid was purchased from Avanti 

Polar Lipids [51] and used without further purification. 

Hyaluronic Acid 

Hyaluronic acid (HA, sodium salt, streptococcus sp.) within a molecular weight range of 

Mw = 769000 was purchased from Merck [63] and used without further purification. Liquid 

phases were either pure D2O or solutions of 3 mg/mL hyaluronic acid (HA) in D2O. HA was 

dissolved in D2O by stirring for 20 minutes with a magnetic stirrer. 

Solvents 

Ultrapure Water (H2O) was obtained by using a Milli-Q purification system (resistance > 

18.2 MOhm·cm) [64]. Deuterium dioxide (D2O, purity ≥ 99.9 atom % D) and ethanol 

(absolute puriss. p.a.) was purchased from Sigma-Aldrich [65]. Chloroform (Uvasol grade) 

was purchased from Merck [66]. 

Substrates 

Disc-shaped silicon substrates (60 mm in diameter and 10 mm thickness) were used for 

measurements in a pressure cell. For measurements in a shear setup, disc-shaped silicon 

substrates with a diameter of 100 mm and a thickness of 10 mm have been employed. In 

addition, for temperature dependent measurements, block-shaped silicon wafers (80 mm 

length x 50 mm width x 15 mm thickness) were used. Special substrates for combined 

measurements on the neutron reflectometer V18 are described in chapter 4.1 on page 57. All 

substrates were supplied by Siliziumbearbeitung Andrea Holm (Tann/Ndb., Germany, [67]). 

Before use, all substrates were cleaned for one hour in an ethanol bath and subsequently 

rinsed for 10 min in ultrapure water, resulting in a purely hydrophobic surface.  
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3.2 Sample characterization 

As a straightforward method to study the interrelation of the selected joint components 

DMPC and HA, differential scanning calorimetry was used and is described in chapter 3.2.1. 

Infrared spectroscopy was employed to obtain a more detailed picture. Here, interactions of 

HA and DMPC and the impact of HA on the phase transition of DMPC can be probed on a 

molecular scale (chapter 3.2.2). In the present work the samples were mainly characterized by 

the use of X-rays and neutrons. Both kinds of probes obey the general laws of wave optics, 

which will be described in chapter 3.2.3. On the basis of these general laws, the reflectometry 

technique will be introduced in chapter 3.2.4. Here, X-rays and neutrons are introduced as the 

probing ―waves‖. Furthermore, the instruments utilized for neutron reflectometry 

measurements are described in chapter 3.2.5. In addition, different sample environments for 

neutron reflectivity measurements have been provided by the use of a shear setup (chapter 

3.2.6) and a high pressure cell (chapter 3.2.7). The utilized X-ray reflectometer is introduced 

in chapter 3.2.8. 

 

3.2.1 Differential scanning calorimetry 

Differential scanning calorimetry (DSC) is a technique for studying the thermotropic phase 

behaviour of hydrated lipid dispersions [68]. The measurements are performed by 

simultaneously heating a sample and a reference. The reference should be of comparable heat 

capacity without thermotropic events in the temperature range of interest. Sample and 

reference cells are equipped with independent heating units and thermo elements (Figure 8). 

Upon simultaneously heating, the temperature of sample and reference is equal, if far from 

any thermotropic events of the sample. In the case of a thermotropic event, a temperature 

difference between sample and reference appears. In order to compensate the different rates 

in heat flow the instrument actively changes the power input for the sample cell to approach a 

zero temperature difference between the two cells. The difference in heat output    is the 

DSC measuring signal, displayed as the difference in heat capacity     as a function of 

temperature or time: 

 

    
  

 
 

Equation 3.1 

 

using the heating rate  . In case of non-thermotropic events a straight, horizontal baseline is 
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seen. An endothermic event is reflected by a positive peak, while an exothermic event by a 

negative peak. 

 

 

Figure 8: Schematic diagram of a differential scanning calorimetry (DSC) instrument. 

 

Differential scanning experiments were performed on a microcalorimetry system (MicroCal 

Inc., Northampton, MA) at the Max Planck Institute of Colloids and Interfaces 

(Golm/Germany) [69]. The reference cell and the sample cell had a volume of 1.2 mL. The 

lipid sample solutions were prepared by dissolving DMPC in chloroform in a glass beaker. 

Afterwards the solvent was evaporated under vacuum, leaving behind a thin film of lipids at 

the glass wall. In the following step the lipids were diluted again to a final concentration of 

2.5 mg/mL, either in pure D2O or in a solution of 3 mg/mL HA in D2O. After hydration the 

lipid solutions were mixed for 5 min using a vortex mixer. The lipid solutions were prepared 

one day before the measurements and stored at room temperature. Reference solutions were 

either pure D2O or a solution of 3 mg/mL HA in D2O. Shortly before the measurement, 

reference and sample solutions were degassed for 10 min by slow stirring under vacuum. The 

heating rate   for the measurements was set to 1 °C per minute.  
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3.2.2 Infrared spectroscopy 

 

In infrared (IR) spectroscopy the interaction of electromagnetic waves with molecules is 

utilized as a tool for structural analysis. In general, molecules can absorb energy of an 

electromagnetic wave in the infrared region. The amount of absorbed energy is specific for 

the vibrational modes of a molecule. Therefore, the type of bonds and atoms involved can be 

identified. Furthermore, infrared spectroscopy makes it possible not only to identify certain 

molecules, but to obtain knowledge about deformation of its bonds. A detailed description of 

the technique can be found elsewhere [70, 71].  

Vibrational modes 

A vibrational mode can be compared to the motion of two bodies, with masses m1 and m2, 

connected with a spring, as described by the theory of harmonic oscillators. While in the 

spring-mass system the resonance frequencies depend on the reduced mass and the spring 

constant, the vibrational modes in a molecule can be qualitatively described by the reduced 

mass and the strength of the atomic bonds. In general, the resonance frequency of the 

oscillation is higher for stronger bonds or lighter masses. As a molecule lies within the 

boundaries of quantum mechanics, a more realistic description of the possible resonant states 

of a molecule can be obtained by the quantum mechanical description of a harmonic 

oscillator. Here, a harmonic oscillator can only take up discrete energy levels. A solution for 

Schrödinger‘s equation for the vibrational energy levels of a molecule in the harmonic 

approximation is: 

          
 

 
  Equation 3.2 

     

with n being the vibrational quantum number (n = 0, 1, 2, …),   the frequency and h Planck‘s 

constant. Within this description the resonance condition is only fulfilled, if the energy of a 

light quantum     (photon) matches the energy difference       of two discrete energy levels 

of a molecule (      : 

 

         Equation 3.3 

  

                  Equation 3.4 

 The vibration frequency   of a molecule depends on the reduced mass   of the system and 
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the strength of the bond  : 

 

  
 

  
 
 

 
       

     

     
 Equation 3.5 

 

Furthermore, six different types of vibrational modes in a molecule with more than two atoms 

are known: Scissoring, δs, rocking, νro, wagging, νwa, twisting, νtw, and symmetric, νs and 

asymmetric, νas stretching. An animated overview can be found in [72].    

FTIR 

Fourier transform infrared spectroscopy (FTIR) enables probing a sample simultaneously 

with a whole spectrum of frequencies. A main component of an FTIR spectrometer is a 

Michelson interferometer, which was introduced by Albert Michelson in 1887 [73]. In a 

Michelson interferometer an electromagnetic wave is guided to a beam splitter, which 

transmits part of the wave and reflects the other (Figure 9). The transmitted part will then be 

reflected from a static mirror, while the reflected part will be reflected from a mirror moving 

with a constant velocity. Afterwards both parts will be superimposed again at the beam 

splitter. Depending on the path difference, g, set by the position of the moving mirror, 

electromagnetic waves can interfere in a constructive or destructive way. The measured 

intensity S as a function of path difference g is called an interferogram, described by the 

following relation [71]: 

 

                    

 

 

    Equation 3.6 

 

with      being the intensity of the infrared spectrum as a function of the frequency  . 

According to Jean Baptiste Joseph Fourier (1768 – 1830) it is possible to describe every 

mathematical function with the superposition of sine and cosine functions, also known as 

Fourier analysis [74]. An interferogram is a superposition of the cosine functions of the 

original wavelength spectrum     , which can be obtained by applying a Fourier 

transformation: 

                      

  

  

 Equation 3.7 



3.EXPERIMENTAL SECTION  

 

  
     28  

 

 

 

 

Figure 9: Schematic diagram of a FTIR setup with a Michelson interferometer. 

 

In order to verify the interaction of the sample with the infrared light its absorbance is 

determined, defined by the Beer-Lambert law [75, 76]:  

 

                   
    

     
  Equation 3.8 

 

with the initial intensity I0 of the incoming wave. It is common to display the absorbance as a 

function of the wavenumber   , as it is proportional to the energy E of the electromagnetic 

wave [75]: 

 

    
 

   
  

 

 
 Equation 3.9 

 

with c being the speed of light in vacuum and h Planck‘s constant.    is given in units of cm
-1

. 
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ATR 

For surface sensitive measurements at a solid–liquid interface the attenuated total reflectance 

(ATR) sampling technique is widely used. It was introduced by N.J. Harrick in 1960 [77]. 

Here, the existence of an evanescent electric field in total reflection geometry is used in order 

to analyze the penetrated medium. Even if a wave is totally reflected at an interface between 

two media, the reflected wave penetrates the adjacent medium. Upon penetration the wave 

interacts with the medium and energy can be absorbed according to the resonance conditions 

(Equation 3.3 - Equation 3.4). The ATR technique is sensitive to an interface within the 

penetration depth dp, which is defined as the depth at which the amplitude of the evanescent 

wave has only 
 

 
 (~ 37%) of its initial amplitude [77] 

 

    
    

             
  
  
 
 
 

Equation 3.10 

 

(cf. Figure 11 on page 32). Here,  n1 is the wavelength of the reflected wave in the initial 

medium with a refractive index of n1. The refractive index of the opposing medium is n2 and 

α   is the angle of incidence. As a rule of thumb, a totally reflected electromagnetic wave 

penetrates the interfacial region of the opposing medium by about one tenth of its 

wavelength. For example, if an electromagnetic wave with a wavelength of   = 6.45 µm 

travels through silicon (n1 = 3.4) and is reflected at a water interface (n2 = 1.3) at an angle of 

θ = 45°, the wave penetrates dp = 0.51 µm into the water. 

 

Used lab setup 

ATR-FTIR experiments were in part performed with a commercially available in situ unit 

(BioATR II, Bruker Optik GmbH, Germany), as shown in Figure 10. Here, a special mirror 

setup guides the infrared wave through a silicon internal reflection crystal. After 11 internal 

reflections and a total path length of 6-8 µm in the liquid phase, the beam leaves the crystal at 

the inclined exit surface (45°) to the detector. The crystal has a circular sampling area of 

2 mm and is the bottom part of a sample chamber. For in situ measurements the sample 

chamber can be filled with up to 30 µl of liquid phase. The sample cell can be tempered by 

using an independent closed water circuit, which is connected to an external water bath. The 

ATR unit was integrated in the measurement chamber of a Tensor 27 FTIR spectrometer 

from Bruker Optik GmbH, Germany. ATR-FTIR spectra were recorded with a liquid nitrogen 
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cooled mercury cadmium telluride (MCT) detector using a spectral resolution of 4 cm
-1

 and 

128 scans per spectrum. Data processing was carried out with the Opus 6.5 software package 

(Bruker Optik GmbH, Germany).  For coating the silicon crystal with lipids, the sample 

chamber was filled with 20 µl of a 10 mg/mL solution of DMPC in chloroform, with the 

chloroform evaporating overnight. This resulted in a lipid multilayer film. For in situ 

measurements the sample chamber was afterwards filled with 30 µl of liquid phase and 

closed. 

 

 

 

 

Figure 10: Photograph of BioATR II setup for ATR-FTIR measurements. 
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3.2.3 The general laws of wave optics 

 

When an electromagnetic wave hits an interface it can be absorbed, reflected or refracted 

[75]. The angle between incident wave and interface,    , equals the angle between reflected 

wave and interface,    (Figure 11): 

 

        Equation 3.11  

 

The scattering geometry for the refracted wave is described by Snell-Descartes‘ law: 

 

                     Equation 3.12 

 

with n1 and n2 being the refractive indices of the initial and traversed medium, respectively, 

   the angle between transmitted wave and surface. Equation 3.12 implies the existence of a 

critical angle   :  

 

          
  
  
                    

  
  
  Equation 3.13 

 

In this case, the transmitted wave propagates parallel to the surface (     ). The refractive 

index n describes in general the ratio between the phase velocity of a wave in vacuum c 

(speed of light for electromagnetic waves) and the velocity in the transmitted medium v: 

 

     
 

    
 Equation 3.14 

 

with   being the wavelength of the wave. As v is wavelength dependent, dispersion occurs 

for the refracted wave.  
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Figure 11: Scattering geometry at a smooth surface for n1 < n2. 

 

Scattering at a smooth surface 

The amplitude of the reflected wave R at a smooth surface is given by Fresnel‘s equations, 

which Fresnel derived by applying the wave theory of light at an interface between air 

(n1 = 1) and a reflecting medium (n2 > 1) [78]:  

 

       
     

  
      

 
 

Equation 3.15 

 

using Fresnel‘s reflectivity coefficient, which is for small grazing angles of incident 

independent of the electric field polarization of the wave [78] and given by  

 

    
                 
                 

 
Equation 3.16 

 

As the angle of incident     is usually the experimental parameter, Equation 3.16 can be 

written as  
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Equation 3.17 

 

by applying Snell-Descartes‘ law (Equation 3.12). If no absorption occurs, the transmittance 

satisfies the relation 

 

      Equation 3.18 

 

3.2.4 Reflectometry 

 

In 1895 W.C. Röntgen published an article about a new kind of rays. The rays seemed not to 

be useful for scattering experiments, since he could ―not conclude any regular reflection or 

refraction of the X-rays‖ [79, 80]. This was not questioned until Compton pointed out in 

1924, that the refractive index n of a medium for X-rays can be less than unity [81]. 

According to the laws of optics it should be therefore possible to reflect X-rays at a surface 

between two media in a predictable way. X-ray reflectometry (XR) at a smooth surface was 

first demonstrated in 1927 by J.A. Prins [82]. 

 

―The one to one correspondence between reflection of electromagnetic waves and particle 

waves is well known‖ [83]. Following this approach, the laws of optics as described in 

chapter 3.2.3 are adaptive for X-rays and neutrons. Here, neutrons can be described by the 

Compton wavelength   of a quantum mechanical particle: 

 

   
 

    
 

Equation 3.19 

 

with  n the wavelength of a neutron with mass mn. If no magnetization occurs, the refractive 

index n for X-rays and neutrons can be written as: 

 

         Equation 3.20 

  

with   describing the dispersion and   being the absorption coefficient. The latter is 

neglected in the present work, as it is small for the samples investigated. The relation for δ is 
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different for X-rays and neutrons, which is not surprising, since X-rays interact with the 

electron shell of an atom and neutrons with the core of an atom. 

 

 δ for X-rays: δ for neutrons:  

 

 

 

   
  
 

  
     

 

 

   
  
 

  
    

 

 

Equation 3.21 

 

with re the electron radius, ρe the electron density,   the coherent scattering length for 

neutrons and ρn the atomic density [78]. In vacuum and approximately in air n = 1 for X-rays 

and neutrons. For X-rays the values for ρe increase linearly with the atomic number of an 

atom in its non-ionized state and are always smaller than one in a medium. For neutrons on 

the other hand such a trend for b does not exist, since the neutrons interact with the nuclear 

potential of the atoms. This has the effect, that b varies for different isotopes, which is used as 

an advantage for probing biological samples: The large difference in b for hydrogen (H) and 

deuterium (D) allows contrast variation measurements [84]. Here, the contrast of different 

parts of a sample can be enhanced by changing specific H atoms against D atoms. 

 

Scattering length density 

Equation 3.21 fully characterizes δ for layers of a pure material, if b is known (for 

measurements using neutrons). However, in the case of liquids and polymers,     can be 

replaced by an averaged coherent scattering length, the scattering length density (SLD): 

     
   
 
   

 
 

 

Equation 3.22 

with bi being the coherent scattering length of the i
th

 atom, n the total number of atoms and V 

the volume for a unit cell or molecule [85, 86]. For X-rays,     can be replaced by SLD 

calculated with Zi·re instead of    with Zi being the atomic number of the i
th

 atom. SLD is 

given in units of [Å
-2

]. 

 

Furthermore, the SLD of a layer or colloid, consisting only of substance A with a volume 

fraction φA and substance B with a volume fraction φB, can be calculated: 
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                                    Equation 3.23 

 

with φ
 
 φ

 
  . Typically, SLD(A) and SLD(B) are calculated by using Equation 3.22 and 

SLD(layer) is measured in a scattering experiment, in order to obtain φ
 

 and φ
 

.  

 

Momentum transfer Q 

Since X-rays and neutrons can be described by the theory of quantum mechanics, in the 

following the formalism introduced 1926 by E. Schrödinger will be used [87]. This has the 

advantage of being able to describe all reflectivity measurements independent of wavelength 

and angle as a function of the wavevector transfer Q (Figure 11). In quantum mechanics X-

rays and neutrons are described by wave functions: 

 

                   Equation 3.24 

 

with       being the position in three dimensional space at time t and the amplitude I. The 

wavevector        has an absolute value of: 

 

          
  

 
 

Equation 3.25 

 

The momentum of a wave is defined by: 

 

    
 

   
    

Equation 3.26 

 

using Planck‘s constant h. Reflection at an interface results in a change of the propagation 

direction and therefore in a momentum transfer    : 

 

                Equation 3.27 

 

with       and      being the wavevector of the incident wave and reflected wave, respectively.  

For the elastic specular reflectivity, i.e. in the plane of incidence with αin = αr,     simplifies to 

[78]: 
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       Equation 3.28 

 

which is the projection of the momentum transfer on the z-axis (Figure 11). In the following 

Qz is denoted Q.  

 

For completeness, the reflectivity R for αin  > αc  can be written as a function of Q: 

 

       
         

         
 

 

 Equation 3.29 

 

using the critical momentum transfer Qc: 

 

   
   

 
       

Equation 3.30 

 

which can be approximated by [88]: 

 

                      
Equation 3.31 

  

 

 

 

 

 

 

 

 

 

 

 

 



3.EXPERIMENTAL SECTION 

 
                 37 

 

The reflectivity for neutrons with   = 4.66 Å at a smooth air / silicon surface is shown as an 

example in lab space (angle dependent) and Q-space (Q-dependent) in Figure 12. Here, the 

angle dependent reflectivity curve can be divided into two parts:  

 

1. For αin ≤ αc total reflection (R=1) occurs. The critical angle αc is defined by 

Equation 3.13. If   
  

  
  is greater than one, then total reflection does not occur. 

2. At αin > αc, the reflectivity drops drastically. Therefore, the ordinate is usually 

shown on a logarithmic scale. An asymptotic behaviour is observed, known as 

Fresnel reflectivity. 
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Figure 12: Theoretically calculated neutron reflectivity curves from a smooth interface between air (SLD = 0) 

and silicon (SLD = 2.07 x 10
-6

 Å
-1

) as a function of Q (bottom abscissa) and in addition as a function of 

incident angle in with a neutron wavelength of λ = 4.66 Å (top abscissa). The curve in black results from a 

scattering geometry where the neutron hit the surface from the air-side of the sample and in red from the 

silicon side. The green curve results from the reflectivity of a 150 Å thick polystyrene (SLD = 1.42 x 10
-6

 Å
-1

) 

coating on a silicon substrate, illuminated from the silicon side. The scattering geometry is displayed in Figure 

13. 
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Reflectivity of thin films 

The reflectivity of a surface can change drastically, if a thin layer is adsorbed. Figure 12 

shows an example of a reflectivity curve for a 150 Å thick polystyrene (PS) layer on a silicon 

wafer measured with neutrons of a wavelength of 4.66 Å. Here, additional features due to 

interference of detected waves appear in the reflectivity curve: Kiessig oscillations (K). The 

frequency of the oscillations depends on the total layer thickness. In the case of a thin 

adsorbed layer, e.g. PS, one has to take the reflectivity of an additional interface into account: 

First, the interface between air and PS, and second, that between PS and silicon. Waves 

which get transmitted through the first interface can get reflected at the second interface 

(Figure 13). The reflected waves interfere with each other and an interference pattern is 

observed at the detector. 

 

Figure 13: Scattering geometry for thin films with n1 < n2 < n3. 

 

Bragg analysis 

According to Bragg‘s law the total film thickness t can be calculated by: 

 

    
  

   
 

Equation 3.32 

 

with the distance ΔQK between adjacent Kiessig maxima or minima (Figure 12).  

For multilayer coatings, in addition to Kiessig oscillations, a Bragg peak (B) can appear at 

QB. While the total film thickness t is still described by Equation 3.32, the lamellar spacing d 

can be extracted from QB by applying Bragg‘s law:  
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Equation 3.33 

 

In the case where higher order Bragg peaks QB,h are visible, the following equation is used: 

 

  
  

 
 

Equation 3.34 

 

with m being the slope of a plot of QB,h versus the diffraction order h:  

 

         Equation 3.35 

 

The number N of repeated units, making up a stack of layers, can now be calculated by: 

 

  
 

 
  

Equation 3.36 

Peak shape  

It is not only the Bragg peak position    that contains information about the multilayer 

coating, but also width and amplitude of the Bragg peak. Following a relation introduced by 

Paul Scherrer and initially used for diffraction experiments on single crystals, the full width 

at half maximum (FWHM) is related to the number of coherent scattering domains N within 

the sample [89]: 

 

      
    

   
 

Equation 3.37 

 

with K = 0.88 being a shape factor for crystalline systems and d the lattice constant [90]. For 

reflectivity measurements (d  ) can be understood as the correlation length perpendicular to 

the sample surface with a number of N layers. The amplitude of the Bragg peak is 

proportional to N
2
 with a constant o: 

 

                  Equation 3.38 

 

From Equation 3.37 and Equation 3.38 follows, that the integrated area of a Bragg peak is 
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directly proportional to N: 

 

       
      

 
    

Equation 3.39 

 

In the following, the number of coherent scattering domains N is indexed, depending on the 

relation used in order to calculate N, namely as NBK (Equation 3.36), NFWHM (Equation 3.37), 

Namp (Equation 3.38) and Narea (Equation 3.39). An illustrated example for the above relations 

is given in chapter 5.1 on page 67. These relations are derived for purely crystalline systems. 

For samples with a weak crystalline order, due to roughness or undulations within the 

scattering domains, additional influences on the Bragg peak shape have to be considered [91].

         

Optical matrix method 

In 1954 Parratt introduced a description for calculating the reflectivity of a multilayer system 

[92]. He proposed to describe each layer i with a certain thickness di and refractive index ni. 

Having a number of i = N layers, i = 0 is defined as the medium of the incoming wave with 

infinite thickness and layer i = N+1 represents the substrate. For each layer the reflectivity 

coefficient of the interface between layers i and i+1 can be calculated by using Fresnel‘s 

equation (Equation 3.15). Please note, that in the following Fresnel coefficient no multiple 

reflection is implied: 

 

      
   

       

       
 

Equation 3.40 

 

with Qi, according to Equation 3.27 on page 35 being 

 

                Equation 3.41  

 

using the wavevector       and      of the incoming (in) and reflected (r) wave in the i
th

 layer, 

respectively. Starting from the interface between substrate (i=N+1) and the attached layer 

(i=N) the reflectivity coefficient        can be calculated simply by applying: 

 

             
   

       

       
 

Equation 3.42 
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For the following interface between layer i=N and i=N-1 multiple reflections have to be taken 

into account, as here the reflected waves from both interfaces interfere: 

 

       
      
            

 

      
            

 
Equation 3.43 

 

With a phase difference of: 

 

              . Equation 3.44 

 

By following this recurrence relation the reflectivity coefficients of each layer have to be 

calculated. Finally the reflectivity of the multilayer system is given: 

 

             
 
 

Equation 3.45 

 

Parratt‘s approach was implemented by C. Braun in the software package Parratt32 which 

enables to analyze reflectivity curves for X-ray and neutron measurements [93]. In the 

presented work Version 1.6.0 of the software package was used to obtain density profiles of 

the measured sample. 

 

Fourier analysis 

Reflectivity curves containing higher order Bragg peaks can be further evaluated by classical 

Fourier analysis, known from diffraction experiments [94]. That way it is possible to obtain a 

scattering length density profile of a single unit cell, Sexp(z), independently from the box-

model fitting: 

        
 

  
   

    

   

     
      

  
  

 

Equation 3.46 

with z = 0 being the centre position of a layer and nmax the number of appearing Bragg peaks. 

The scaled structure factor Fn was calculated by using the Lorentz corrected integral intensity 

of a single Bragg peak of order n [94].  
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3.2.5 Two ways to build a neutron reflectometer 

In general the aim of a reflectometer is to measure the reflectivity R(Q) of a given surface. 

Since Q (Equation 3.28) is not only depending on the neutron wavelength  , but also on the 

incident angle α, different instrumental setups are realized. While the angles can be set by the 

use of rotation tables with an accuracy of up to 0.001°, the selection of a well-defined neutron 

wavelength is more sophisticated. Two approaches are used to select neutrons with a known 

wavelength from the polychromatic neutron beam coming from a neutron source: 

 

1. A beam of monochromatic neutrons can be obtained by using a single crystal as a 

monochromator, as realized at the V6 instrument. Only neutrons with a certain 

wavelength   are reflected under a certain take-off angle   with respect to the 

crystal lattice of the monochromator (mc) as defined by Bragg‘s law, with dMC 

denoting the lattice spacing: 

             Equation 3.47 

 

2.  A pulsed white beam approach can be used in a time-of-flight (TOF) instrument 

as realized at the V18 instrument (BioRef). By measuring the TOF of the neutrons 

over the distance L from the pulsed source to the detector, the wavelength   can be 

determined for every detected neutron through the following relation [95]: 

 

  
     

   
 

Equation 3.48 

 

  with   being Planck‘s constant and m the mass of a neutron. 

 

The V6 and V18 instruments are located at the reactor neutron source BER II of the 

Helmholtz-Zentrum Berlin (Germany). 

 

 

https://www.helmholtz-berlin.de/
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The V6 neutron reflectometer 

A detailed description of the V6 instrument is given elsewhere [88, 96]. In summary, a 

monochromatic beam with a wavelength   = 4.66 Å, selected by a graphite monochromator, 

is used to measure the reflectivity R(Q) (Figure 14). In addition, the instrument is equipped 

with a spin polarizer and analyzing setup in order to enable investigations of magnetic 

interfaces, which was not used for studies presented here. The instrumental resolution is on 

the one hand limited by the monochromatisation provided by the monochromator and was on 

the other hand set by a slit system on the incident side to 0.001 Å
-1

 for Q < 0.0518 Å
-1

 and 

0.002 Å
-1

, otherwise. The reflectivity curves were recorded step by step (sample rotation) by 

a 
3
He-detector with a complete run from 0.0047 Å

-1
 to 0.1646 Å

-1
 consuming typically 

7 hours of beam time. The measured intensities were footprint corrected and normalized to 

the primary intensities [97]. A photograph of the instrument is shown in Figure 15. 

 

 

 

Figure 14: Schematic diagram of the V6 instrument. A graphite monochromator is used to select a wavelength 

of   λ = 4.66 Å. The angular resolution can be set by the slit system. The neutrons can be detected with several 

single counters or with a position sensitive detector (PSD). 
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Figure 15: Photograph with beam line scientists at the V6 instrument. 

 

 

The V18 neutron reflectometer (BioRef) 

At the V18 instrument (Figure 16 on page 47), measurements were performed by using 

pulses of a polychromatic neutron beam, created by a TOF setup [98, 99]. The heart of the 

instrument is a chopper system (FZJ, Jülich, Germany), consisting of three discs, which cut 

the continuous neutron beam coming from the cold neutron source into pulses (Figure 17). 

All three chopper discs are made of aluminium with a boron carbide (
10

B4C) coating, having 

a diameter of 600 mm and rotating around an axis parallel to the neutron beam. Windows in 

the chopper discs allow the neutrons to pass.  The first chopper, the master chopper (MC), 

chops the continuous neutron beam into pulses and defines the beginning of the time 

measurements.  

Here, each pulse still contains the whole wavelength spectrum transmitted from the cold 

neutron source. In general, the wavelength resolution for a specific wavelength and a certain 

distance from the pulse source to the detector is determined by the burst time   of one pulse: 

 

  

 
 

 

      
 Equation 3.49 

 

In order to achieve a fixed   resolution, which enhances the efficiency of the instrument, a 
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 -dependent burst time      is required that fulfils the condition that 
    

      
 is constant for 

all  , i.e.    . For this reason a second chopper, slave chopper 1 (SC1), is used. SC1 is 

mounted downstream on a linear translation stage with a variable distance z0 to MC. These 

choppers  are operated in such a way, that MC closes exactly when SC1 opens [95]. In such 

an optical blind mode the burst time   and the transmission for neutrons increases linearly 

with   up to a maximum wavelength of  0 which is defined by (Figure 18 on page 48): 

 

   
 

    
 

   

           
 

Equation 3.50 

 

with    being the velocity of passing neutrons with the wavelength   , w the window width 

in degrees,    the distance between MC and SC1 and   the chopper frequency. The result is a 

burst time depending on wavelength, yielding a constant wavelength resolution up to   , 

calculated by: 

 

  

 
 

    

      
 
  
 
          

Equation 3.51 

 

 

with L being the flight path from the point half way between the choppers MC and SC1 to the 

detector. Different resolutions can now be obtained by changing the position of SC1 and 

hence the distance    between the choppers: Typically, the SC1-MC distance is set to values 

between z0 = 80 mm and z0 = 400 mm, corresponding to wavelength resolutions of 1% and 

5%, respectively. For optimum performance, the slit system is set to corresponding values of 

angular resolution [95, 99]. MC and SC1 have a real single window of w = 26°.  An increase 

in chopper frequency for MC and SC1 does not influence the wavelength resolution, but 

decreases the passing wavelength bandwidth. In addition, the neutron flux per time increases 

for the shorter wavelengths, which compensates the shorter wavelength bandwidth. To cover 

the whole Q-range up to Q ≤ 0.4 Å
-1

, a different number of angular sample positions have to 

be used, depending on the selected chopper frequency. An overview of the instrumental 

parameters is given in Table 3.1. A more detailed description of parameters is given in [99].  
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chopper 

frequency 

wavelength 

bandwidth 

Number of  

angular settings 

for Q ≤ 0.4 Å
-1

 

 

 

of 1% 

z0 for a    

resolution  

of 3% 

 

 

of 5% 

90 Hz 3.9 – 7.9 12 80 mm 240 mm 400 mm 

45 Hz 3.9 – 11.9 6 80 mm 240 mm 400 mm 

25 Hz 3.9 – 18.3 3 80 mm 240 mm 400 mm 

Table 3.1:  Overview of instrumental parameters for different operational settings at V18. [99] 

 

A third chopper (SC2), a so-called bandwidth chopper, is installed 3200 mm downstream 

from MC with a real single window of 126°. SC2 is installed for mainly three reasons (Figure 

18 on page 48): first, a wavelength band is chosen such that the passing wavelengths do not 

exceed     and therefore only neutrons with a constant wavelength resolution are transmitted, 

second, to prevent neighbouring pulses to overlap at the detector and third, to choose a range 

of the spectrum with maximum neutron flux (i.e. to cut the wavelength band at a minimum 

wavelength of about 4 Å). In addition, an optional frame overlap mirror (not shown) is 

mounted in between SC1 and SC2, in order to filter out wavelengths longer than 12 Å. A 

more detailed description of the setup is given elsewhere [95, 98, 99]. 

 

In the work presented here, the following instrumental parameters were used in the performed 

experiments: With the selected chopper speed of 45 Hz, a sample was measured at 5 different 

angular positions to cover a full Q-range from 0.0050 Å
-1

 to 0.3563 Å
-1

 consuming typically 

1 h of beam time. The relative Q-resolution was selected by the chopper position and the slit 

system to be 7% over the whole Q-range probed. The scattered neutrons were recorded with a 

position sensitive area detector (PSD) using a 
3
He filled wire chamber.  

 

In addition, the V18 instrument is equipped with an infrared spectrometer. The 

implementation of this feature was an essential part of the present thesis. This additional 

FTIR option opens the unique possibility to measure the infrared absorption at total reflection 

(ATR) and the neutron reflectivity of one sample at the same time. A detailed description of 

the setup and its implications are given in chapter 4 on page 56. 
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Figure 16: Schematic diagram of the V18 instrument (BioRef). A chopper system enables time-of-flight (TOF) 

measurements with variable wavelength resolutions. The slit system is set to corresponding values of angular 

resolutions. A wide range of angular sample positions can be obtained by using a goniometer, in order to cover 

a Q-range up to 0.4 Å
-1

in our case. Finally, the neutrons are detected with a position sensitive detector (PSD). 

[100]    

 

 

 

 

Figure 17: Top view of chopper SC2 at the V18 neutron beam line. On the left side is the chopper housing. The 

neutrons are incident from the right side through a neutron guide (dark green). 
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Figure 18: Transmission of SC1: Wavelength dependent burst time     , normalized by the maximum burst 

time       , as a function of passing wavelength λ, normalized to λ0. Only for λ ≤ λ0 the wavelength resolution is 

constant (green line), while it is changing for λ > λ0 (blue line). The third chopper, SC2, blocks wavelengths 

longer than λ0 (black pattern) and in addition prevents overlapping of neutrons with very short and long 

wavelengths from neighbouring pulses (red pattern).The diagram is inspired by [95]. 
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3.2.6 Shear setup employed at AMOR 

In order to study the mechanisms of joint lubrication using the above model surfaces a shear 

setup for neutron reflectivity measurements was used. The setup enables one to apply an 

external force to a coated silicon substrate by applying a variable shear force on a solution in 

contact with the sample surface. The construction and the design of the setup was part of the 

dissertation submitted to the University of Heidelberg by Thomas Kaltofen [102].  

 

The setup is illustrated in Figure 20: A coated silicon substrate is pressed against an 

incubating solution. As substrates, polished silicon discs with a diameter of 100 mm and a 

thickness of 10 mm were used. A lipid coating was either prepared by spin coating or by the 

air brush technique as described in chapter 3.3 on page 52. In order to apply a shear force on 

the sample surface, the solution can be sheared by a rotator. To achieve a constant shear flow 

at the sample surface, the used rotator has a conical shape in such a way, that the distance to 

the sample increases linearly with the radius. Rotation frequencies of up to 20 Hz can be 

applied. In addition, the solution housing and the substrate can be temperature controlled by 

an external water bath. A more detailed description can be found elsewhere [102]. 

       

 

  

 

Figure 20: Schematic diagram of the shear setup 

for neutron reflectivity measurements. 

 

Figure 21: Photograph of the shear setup.[102] 

 

Neutron reflectivity measurements with the shear setup were performed at the time-of-flight 

reflectometer AMOR at the Swiss spallation neutron source (SINQ) hosted at the Paul–

Scherrer Institute (PSI), Villigen [103, 104]. The instrument is designed to perform 

measurements in horizontal sample geometry using a pulsed cold neutron beam produced by 

a chopper system. Measurements were performed with a chopper frequency of 33 Hz, 

choosing a wavelength band from 2 Å to 8 Å, with a Q-resolution of δQ = 10%. 
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3.2.7 High pressure cell  

Experiments under high hydrostatic pressure conditions were performed in a pressure cell, 

designed for in situ neutron reflectivity measurements [96]. Hydrostatic pressure between 

0.1 MPa and 100 MPa in the temperature range from 5 °C to 60 °C can be applied to a 

substrate with a sample area of 28 cm
2
. The reflectivity of disc shaped silicon, graphite or 

sapphire substrates with a maximum diameter of 60 mm can be probed against noncorrosive 

sample solutions. In the present work, silicon substrates with a diameter of 60 mm and a 

height of 10 mm were used. The sample compartment with 55 mL of sample solution is 

separated from an independent compartment hosting a hydraulic fluid (H2O). Using a manual 

syringe pump, pressure can be built up upon the hydraulic fluid, which is directly conveyed 

to the sample solution, as the two compartments are connected by a movable piston (Figure 

22). A detailed description of the pressure setup has already been published [96]. 

 

Figure 22: Schematic diagram of the pressure cell for neutron reflectivity measurements.  A piston separates 

the sample solution from the hydraulic fluid.  

3.2.8 X-Ray reflectometer 

X-ray reflectometry measurements were performed with an in-house made reflectometer at 

Helmholtz-Zentrum Berlin [105]. The polychromatic beam from a copper (Cu) anode was 

monochromatized with a graphite crystal monochromator. The wavelength of   = 1.541 Å of 

the Cu K doublet was chosen as the probing X-ray wavelength. The beam geometry was 

defined by a (0.004 x 8.000) mm slit in front of the sample, followed by a (2 x 10) mm slit 

after the sample position, resulting in an experimental resolution of δQ = 0.003 Å
-1

. The low 

Q-range region up to Q = 0.143 Å
-1

 was measured by attenuating the beam with a nickel (Ni) 

absorber in order to protect the detector. If not noted otherwise, all data are footprint 

corrected and normalized to the primary intensities [97].  



3.EXPERIMENTAL SECTION  

 

  
     52  

3.3 Preparation of lamellar lipid coatings 

For reflectivity measurements of solid-supported lipid coatings, two different preparation 

techniques were used. The spin-coating technique (chapter 3.3.1) results in oligolamellar lipid 

coatings and the air brush technique (chapter 3.3.2) produces multilamellar lipid coatings. 

3.3.1 Spin coating 

Oligolamellar lipid coatings were prepared on pre-cleaned substrates by spin-coating 

(Figure 23). Before coating, the substrates were cleaned three times with pure chloroform: 

after covering the surface with chloroform, the substrates were rotated for 10 sec with 

4000 rpm in order to spin-of the chloroform. Subsequently the lipid coatings were generated 

by covering the substrate surface with lipid solution in chloroform: the surface was 

completely covered with lipid solution in chloroform (1-2 mL) with different concentrations 

c(DMPC). By rotating the substrate afterwards at a speed of 4000 rpm for 60 sec, the solution 

spins off leaving behind a dry substrate surface. A spin-coater (Model 6708D, SCS, US) was 

used, following a procedure described by Mennicke and Salditt [106].  

 

 

Figure 23: Schematic diagram of the spin-coating technique. 

The technique has the great advantage of being able to produce oligolamellar lipid coatings 

with a tuneable number of bilayers: The use of coating solutions with different lipid 

concentrations results in a predictable number of bilayers. In order to calibrate the procedure, 

a series of silicon wafers with an area of 25 x 25 mm
2 

were spin-coated with different 

solutions. Solutions of DMPC solved in chloroform with concentrations between 0 mg/mL 

and 50 mg/mL were used. The resulting number of substrate bound bilayers N was 

determined by X-ray reflectometry (Figure 24). Applying Equation 3.38 (on page 39) reveals 

the number of bilayer NBK (Figure 25), taking the Bragg peak (B) and the Kiessig oscillations 

(K) into account. The bilayer spacing could be read out best from the sharpest Bragg peak, 
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measured with c(DMPC) = 50 mg/mL, yielding QB = (0.1205 ± 0.0002) Å with a d-spacing 

of d = (52.1 ± 0.4) Å. Interestingly, NBK shows a parabolic behaviour as a function of the 

used concentration c(DMPC) (Figure 25). 
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Figure 24: X-ray (XR) reflectivity of spin-coated silicon wafers, measured in air. As a coating solution the 

lipid molecule DMPC was solved in chloroform in different concentrations c(DMPC). 
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Figure 25: Resulting number of lipid bilayers NBK on a spin-coated silicon wafer.  NBK was calculated by 

using the values of the Bragg peak position (B) and the Kiessig oscillations (K). Solutions with different 

DMPC concentrations c(DMPC) in chloroform were used as coating solution. The red line represents a fit of 

a second order polynomial function to the data points.  

 



3.EXPERIMENTAL SECTION  

 

  
     54  

3.3.2 Air brush 

Multilamellar lipid coatings were prepared by the air brush technique (Figure 26). Here, 

10 mL of a 10 mg/mL lipid solution in chloroform were sprayed at a constant flow (0.1 bar) 

of nitrogen onto the pre-cleaned substrates. By keeping a distance of around 400 mm from air 

brush to sample surface at constant flow rate, generated by only 1 bar of nitrogen pressure, an 

optically homogeneous film was obtained.  

 

 

Figure 26: Schematic diagram of the air-brush technique. 

An example for a reflectivity curve from an air-brushed sample is shown in comparison to a 

spin-coated sample in Figure 27. The appearance of a Bragg peak at QB = 0.1198 ± 0.0003 Å
-

1
 clearly shows the presence of a multilamellar lipid stack, with a bilayer repeat thickness of 

d = 54.5 ± 0.4 Å. The total thickness t of the stack cannot be determined in this case, since no 

Kiessig oscillations appear. This is due to the limited resolution of the experiment. However, 

the minimum at Q = 0.02 Å
-1

 belongs to a second critical momentum transfer Qc (cf. chapter 

3.2.4 on page 35), due to the micrometer thick lipid coating. In addition, the absence of total 

reflection for Q < 0.03 Å
-1

 and the less pronounced higher order Bragg peaks, indicate a high 

surface roughness of the multilamellar coating. The high surface roughness could also be 

shown by an increase of the off-specular scattering [107], measured around the Bragg peak 

position: A comparison of so-called sample angle (αin) scans (or rocking scans) around the 

first Bragg peak position (0° ≤ αin ≤ 2°) at fixed detector position (αdet = const.) is displayed 

in Figure 28. For the air-brushed sample, the background is more than one order of 

magnitude higher than that of the spin-coated sample. In contrast, the Bragg peak amplitude 

is more than one order of magnitude lower for the air-brushed sample than that of the spin-

coated sample. Background level and Bragg peak amplitude indicate a better layer alignment 

and reduced roughness of the spin-coated oligolamellar lipid coating, as compared to the air-

brushed multilamellar lipid coating.    
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Figure 27:  X-ray reflectivity of DMPC lipid coated silicon wafers. The coatings were achieved by two different 

techniques: Spin-coating a solution of 10 mg/mL DMPC in chloroform (green) or by the air-brush technique. 

The inset shows a magnification of the low Q-region. 
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Figure 28:  Scans around the first Bragg peak position with a fixed detector position (rocking scan). Both 

curves are normalized to measurement time (40 sec/point) and to incident intensity I0.The minor differences in 

maximum positions are probably due to differences in temperature and humidity during the measurements. 
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4. Instrument Development at BioRef 

A major part of the present thesis was the design and implementation of an infrared beam line 

at the V18 neutron beam line. The challenge was to design a substrate, a sample cell and an 

external infrared beam line which enables combined neutron reflectivity (NR) and ATR-

FTIR measurements at the same time on the same sample. In addition, the setup should 

facilitate temperature dependent measurements. Furthermore, the option of in-situ 

measurements and measurements against vapours were realized. The setup was designed in 

collaboration with the HZB engineering department. A summary of the setup has already 

been published [98].  

 

 

Figure 29: Picture with an overview of the infrared setup: A spectrometer mounted to an item holder (item 

Industrietechnik GmbH, Germany) above the sample position.  
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4.1 Substrates  

For combined NR and ATR-FTIR measurements it is necessary to use substrates which are 

especially designed for this purpose (Figure 30). As for both techniques different constraints 

have to be considered, the BioRef substrates are designed accordingly to be able to employ 

both techniques simultaneously and to exploit their full potentials. Silicon was the material of 

choice for all integrative substrates, as it is transparent for both neutrons and infrared light in 

the desired range of the spectra [108]. Silicon blocks with 100 mm length and 80 mm width 

were fabricated, resulting in a sample surface of 8000 mm². In order to have IR entrance and 

exit windows perpendicular to the infrared beam forward direction, the two opposing long 

sides of the crystal were inclined under an angle of 45° without affecting the probed sample 

surface (Figure 30).  

 

  

 

Figure 30: Sketches of the integrative silicon substrate ATR13 for combined infrared (IR) spectroscopy and 

neutron reflectivity measurements at BioRef. Left: ATR13 in the horizontal position with a sketched IR beam in 

magenta. Right: ATR13 in a vertical position with the IR beam shown in the realistic position for a combined 

measurement, passing through the centre of the substrate. The neutron beam is sketched in green. 

A critical parameter for an integrative substrate is its thickness t. For ATR-FTIR decreasing t 

increases the number of internal reflections M at the sample surface, which is proportional to 

the IR absorbance of the probed surface. In order to obtain a high IR absorbance signal t 

should be minimized. On the contrary a decreased t limits the Q-range which can be probed 

in NR as t defines the maximum height of the entrance window for the NR beam. The 

entrance window has to be high enough to let the whole NR beam enter, even at high incident 

angles αi. As Q is proportional to αi, the accessible Q-range is confined by t.  
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substrate notation t [mm] Qmax [Å
-1

] M 

ATR13 13.3 0.36 3 

ATR8 8.0 0.20 5 

ATR5 5.0 0.13 8 

 

Table 4.1: Summary of available silicon samples for combined measurements at V18 with thickness (t), 

maximum accessible Q–range for neutrons (Qmax) and number of internal reflections at the sample surface for 

infrared light (M). 

In order to cover a variety of experimental situations, three different integrative substrates 

were fabricated (Table 4.1). A first substrate, ATR13, with t = 13.3 mm allows to probe a 

large Q-range up to Qmax = 0.36 Å
-1

. Qmax was calculated according to Equation 3.47 for a 

neutron wavelength of 4.66 Å. Basic geometrical considerations reveal that for ATR13 the IR 

beam reflects only M = 3 times at the sample surface. A second substrate, ATR8, with 

t = 8 mm allows to probe only up to Qmax = 0.22 Å
-1

 with M = 5. And the third one, ATR5, 

with t = 5 mm reduces Qmax to a minimum value (Qmax = 0.13 Å
-1

) with a maximum in M 

(M = 8).  

 

4.2 Sample cell 

A fixed substrate height and length made it possible to use one sample cell for all substrates 

described before (Figure 31). The sample area of the silicon substrate was pressed against a 

Teflon trough, which was sealed with flat sealing material made of Viton. The substrate and 

the Teflon trough were then sandwiched between two temperature adjustable aluminium 

plates connected to an external water bath (Figure 32). To measure the temperature closest to 

the silicon-solution interface a thermometer (PT100) was placed inside the Teflon slab. 

Through tubes connected to the top and bottom of the Teflon trough it is possible to inject 

and change a liquid phase for in-situ measurements. The trough has a depth of 3 mm and can 

be filled with a total volume of 10 mL liquid phase, including excess solution in the inlet and 

outlet tubes. The shape of the trough makes it possible to avoid air bubble formation when 

filled. 
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Figure 31: Design drawing of the sample cell for combined infrared and neutron reflectivity measurements at a 

solid-liquid interface. The top aluminium plate is not shown. The silicon ATR substrate is marked transparent. 

 

 

 

 

Figure 32: Photograph of the sample cell connected to an external water bath. 
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4.3 External FTIR setup 

An infrared spectrometer (Vertex70, Bruker Optik GmbH, Germany) was installed above the 

sample position to provide the FTIR signal. The spectrometer was advantageously mounted 

in a vertical position in order to bring the IR source closest to the sample position, between 

the slits of the neutron pathway (Figure 35). The spectrometer has an exit window to enable 

IR analysis in external beam geometry. In order to guide the IR beam through the sample, 

such external pathway had to be designed (Figure 33).  

 

 

Figure 33: External beam pathway with sample cell (centre) on a translation table (right side) and a nitrogen 

cooled  mercury cadmium telluride detector in dark red (left side) 

 

The IR beam, coming in parallel rays from the spectrometer, is focused via a lens f1 with a 

focal length of f1 = 400 mm to the centre of the sample position (Figure 34). The focusing 

lens with f1 = 400 mm diminishes the cross section of the IR beam at the substrate and makes 

it possible to pass the whole beam through the inclined entrance window of the substrate. 

After the IR beam is reflected several times inside the ATR substrate, the beam leaves the 

sample at the inclined exit window of the substrate. A second lens with f2 = 400 mm 

reconstitutes a parallel beam geometry. The now parallel beam is focused with an f3 = 43 mm 

lens into the detector window. The detector is connected with a data cable to the 

spectrometer. The detector can either be a liquid nitrogen cooled mercury cadmium telluride 

(MCT) or a deuterated triglycine sulphate (DTGS) detector, depending on the experimental 
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needs. All lenses used have a gold-coated surface. 

 

  

Figure 34: Side view (left picture) and front view (right picture) of IR guide system, with the IR beam in violet. 

The lenses (green) are gold-coated and have focal lengths of f1 = f2 = 400 mm and f3 = 43 mm, respectively. The 

lens f1 focuses the beam on the sample and f2 reconstitutes a parallel beam after being transmitted through the 

sample. The lens f3 focuses the beam on the detector plate. 

 

The sample cell equipped with one of the silicon substrates is mounted on a linear translation 

stage in order to be able to correctly position substrates of different thickness in the IR beam 

(Figure 33). By only changing the z-position of the translation table all three types of 

substrates (ATR5, ATR8 and ATR13) can be positioned in the fixed IR beam geometry 

without further alignment.  

 

A beam path cover, of flexible length mounted to the spectrometer can be adjusted such that 

only a gap of a few millimetres remains between the cover and the inclined top entrance 

window of the substrate. At the inclined beam exit window at the bottom a similar beam path 

is mounted, which leads to an external detector. In order to eliminate water vapour, it is 

possible to flush the top beam path and the spectrometer with a stream of dry nitrogen. In 

addition, the bottom beam path can be evacuated. Potassium bromide (KBr) is used as 

window material. 
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Figure 35: Infrared (IR) setup on the neutron reflectivity (NR) sample stage at the V18 beam line at Helmholtz-

Zentrum Berlin. The red spot marks the sample position. 

 

The V18 instrument has been designed with a horizontal neutron scattering geometry. 

Therefore, the sample has to be mounted vertically, such that grazing incidence of the neutron 

beam can be achieved. In addition, the whole IR setup including spectrometer, lenses, sample 

holder with sample cell and substrate, linear translation stage and detector are mounted on a 

static item (item Industrietechnik GmbH, Germany) frame. For NR measurements, the item 

frame is mounted on a second linear translation stage on the V18 goniometer to adjust the 

sample surface with respect to the neutron beam (Figure 35). This setup has the great 

advantage that changes in the sample surface position with respect to the neutron beam do not 

alter the IR beam alignment. 
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4.4 Resulting IR intensities 

As a first test of the designed infrared beam line, the absorbance of an integrative silicon 

sample (ATR8) was measured. ATR-FTIR spectra were recorded with a DTGS detector 

using a spectral resolution of 2 cm
-1

 and 5 scans per spectrum. Data processing was carried 

out with the Opus 6.5 software package (Bruker Optik GmbH, Germany).  

First, a polished silicon wafer was installed at the sample position, in order to guide the 

incoming IR beam with a single reflection along the external beam line (Figure 36). This 

setup allowed recording the reference signal I0 (see Equation 3.8 on page 28). In the 

following the sample signal I was recorded with substrate ATR8 in the beam path, instead of 

the silicon wafer. By aligning the z-position of the ATR crystal the fixed infrared beam 

geometry could be kept. Here, the IR beam is guided through the sample, following 5 internal 

reflections at the sample surfaces. The measurements were performed in ambient humidity, 

without evacuation of the beam path. Therefore, both signals, I and I0, show pronounced 

water vapour bands between 3500 cm
-1

 and 4000 cm
-1

 and between 1500 cm
-1

 and 2000 cm
-1

 

(Figure 37). Also a pronounced absorption of carbon dioxide (CO2) at 2340 cm
-1

 appeared. 

The changes in water and CO2 absorption band intensities are due to stochastic changes in 

humidity along the not-evacuated beam path.   

 

The multiple reflection setup with the ATR crystal yields a higher signal intensity than the 

single reflection setup, which is due to further alignment of the infrared beam geometry in 

order to obtain a maximum in intensity. Measurements with the liquid nitrogen cooled 

mercury cadmium telluride (MCT) detector showed in addition the good transmission for 

infrared light through the ATR crystals with the designed beam geometry: A beam aperture 

of 2 mm has to be used, in order to prevent saturation of the detector. For wavenumbers 

smaller than 1500 cm
-1 

the intensity drops drastically due to the high photon absorption cross 

section of silicon in this wavenumber range [108]. However, even the region between 

1500 cm
-1

 and 900 cm
-1

 is accessible for ATR-FTIR measurements. 
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Figure 36: Schematic diagram of the used infrared beam geometry (red), with the two focusing lenses f1 and f2, 

in order to measure an absorbance spectrum of the silicon ATR crystal (ATR8). For the reference signal I0, a 

polished silicon wafer was used to provoke a single ―external‖ reflection, without ATR crystal in the beam 

path, followed by a measurement of the sample signal intensity I in ATR geometry. Here, all infrared light is 

guided through the ATR crystal, resulting in nine internal reflections.     
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Figure 37: Infrared signals measured at the BioRef setup: First, by using a polished silicon wafer to provoke a 

single ―external‖ reflection (blue line) yielding a reference signal I0, and second, by guiding the infrared beam 

through a silicon ATR crystal (black line), as a sample measurement I. The resulting absorbance spectrum of 

the silicon ATR crystal, calculated by Equation 3.8 (on page 28), is shown in the bottom graph (green line). 

The silicon crystal does not absorb between 6000 cm
-1

 and 1500 cm
-1

. For wavenumbers smaller than 

1500 cm-
1
,
 
the intensity drops drastically due to the high photon absorption cross section of silicon in this 

wavenumber range. The infrared beam geometries are illustrated in Figure 36 and described in the text.  
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5. Lipid membranes in pure aqueous solutions 

Lipid membranes show characteristic properties, depending on the surrounding environment 

(e. g. humidity, pH, temperature, pressure). As the liquid phase is the natural environment for 

lipid membranes, the investigations were started in purely aqueous solutions. First, a box 

model for an oligolamellar lipid coating was introduced and a reflectivity experiment 

simulated (chapter 5.1). The stability of the prepared oligolamellar lipid coatings was studied 

under the influence of different parameters (e.g. temperature, pressure, shear and substrate) as 

described in chapter 5.2. Second, the phase transition of multilamellar lipid coatings was 

investigated using the BioRef instrument for combined infrared spectroscopy and neutron 

reflectivity measurements (chapter 5.3). All studied lipid membrane systems are solid-

supported interfacial coatings, measured against pure liquid D2O. 

 

 

 

Figure 38: Model for an oligolamellar lipid coating in excess D2O on a silicon substrate. The individual layers 

are described in the text on page 67. [109] 
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5.1 A simulated neutron reflectometry experiment 

In order to demonstrate the viability and the constraints of a reflectometry experiment, 

neutron reflectivity curves have been simulated with the Parratt32 software package. For this 

purpose a model for an oligolamellar lipid coating on a silicon substrate in excess D2O was 

introduced (Figure 38 on page 66). The model was the basis of the simulated curves and is 

furthermore used for the analysis of measured reflectivity curves, as shown in the subsequent 

chapters. In addition, the simulated curves have been analyzed by the Bragg peak analysis as 

described before (on page 38). The extracted values are compared to the input values in the 

simulations.  

The model 

The analysis of a measured reflectivity with the optical matrix approach for a lipid coating on 

a silicon substrate is based on a box model displayed in Figure 38. The reliability of the 

model was already demonstrated in earlier studies [96, 110]. Silicon was used as a solid 

support, covered with a layer of silicon oxide (0). An oligolamellar lipid coating was 

modelled by subdividing the system into three parts: First, an inner lamella (1) is directly 

attached to the silicon oxide layer. The inner lamella is followed by several core lamellae (2), 

which have the same thickness d and SLD. Finally, this stack of layers is covered by a 

terminal lamella, the outer lamella (3). Each lipid lamella is represented by a bilayer of 

hydrophobic lipid chains or tail groups (5) with a hydrophilic head group layer at each side 

(6). Two neighbouring lamellae are separated by a solution inter-layer (4). Thickness and 

SLD of each layer were subject to fitting. Roughness of the different interfaces was set to 

zero: This turned out to be a reasonable approach for the Q-range addressed within the 

experiments and further cut down the number of variable parameters.  

 

Since SLD‘s of head group layers and solution inter-layers differ only slightly, a simplified 

model was used when appropriate [96]. Here, the head group layer and solution inter-layer of 

the core part were represented in a unified layer, the interlayer. This simplified approach 

additionally reduces the number of variable parameters. All used parameters for d and SLD 

are listed in Table 5.2 on page 77 (first column).  
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Peak shape analysis of simulated reflectivity curves 

A number of up to N = 65 bilayers on the substrate were simulated. For comparison with 

experiments, the resolution δQ of the simulations was set to a value typical for measurements 

at the V6 neutron reflectometer (chapter 3.2.5): constant resolutions of ΔQ = 0.0001 Å
-1

 from 

Q = 0 Å
-1

 to Q = 0.0520 Å
-1

 and ΔQ = 0.0002 Å
-1

 from Q = 0.0520 Å
-1

 to the probed Q value 

of Qmax = 0.1600 Å
-1 

were used. In addition, the background was set to a constant value of 

3 x 10
-5

. 
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Figure 39: Simulated neutron reflectivity curves according to the model of a multi-layered lipid coating on a 

silicon substrate in excess D2O. The first curve in the very front with a number of N = 0 bilayers represents the 

Fresnel reflectivity of the uncoated silicon substrate.  

 

 

For N = 0, the Fresnel reflectivity of an uncoated silicon substrate simply shows a decaying 

reflectivity. For N = 2, already a broad maximum appears at Q = 0.1 Å
-1

. With an additional 

bilayer (N = 3) an additional maximum appears at a lower Q value. The frequency of these 

Kiessig oscillations increases, indicating an increase of the total coating thickness t, 

according to Equation 3.32. Additionally, the maximum of the Kiessig oscillation at 
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Q = 0.1 Å
-1

 emerges into a Bragg peak. The fixed position
 
corresponds to the thickness of the 

repeating bilayer with d = 64 Å, according to Equation 3.33. The peak shape also changes 

with increasing N: the full width at half maximum (FWHM) decreases and its maximum 

intensity increases. 
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Figure 40: Exemplary Gaussian fit (red line) to the Bragg peak (black squares) simulated with N = 10 bilayers 

at QB = (0.0966 ± 0.0001) Å
-1

 with FWHM = (0.0080 ± 0.0003) Å
-1

 and an area of (0.60 ± 0.03) x10
-4

 Å
-1

. 

 

In order to analyze the Bragg peak quantitatively, a Gaussian curve was fitted to the data 

(Figure 40). As seen in Figure 41 the full width at half maximum (FWHM) decreases up to 

N = 20. The fitted values follow the predictions according to Equation 3.37 almost within the 

error. A different behaviour is observed for values for N ≥ 25: here, the fitted values reach a 

constant value of FWHM ≈ 0.003 Å
-1

 and differ severely from the predictions. In this range 

the Bragg peak width is dominated by the limited resolution of the simulations. This 

assumption does not count for the peak area: Here, the effect of restricted resolution is 

compensated by the significant increase of the amplitude, according to Equation 3.38. 

Therefore, the area of the fitted Gaussian profiles increases linearly with increasing N up to 

N = 50 (Figure 42).  
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Figure 41: Blue points indicate the FWHM derived 

from a Gaussian fit to the Bragg peak at Q = 0.1 Å
-1

. 

The green line is guide to the eye calculated by 

y = K*(Q/N) according to Equation 3.37.   
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Figure 42: Red points represent the area of a 

Gaussian fit to the Bragg peak at Q = 0.1 Å
-1

.  The 

green line is guide to the eye. 

 

Using the fitted values for FWHM and peak area, the values for N were calculated according 

to Equation 3.37 and  Equation 3.38, respectively, and displayed as a function of given N, 

which was implemented in the simulations (Figure 43). While for N < 25 the given N could 

be reproduced by the calculations, for N > 25 the calculated NFWHM values disagree, when 

using the FWHM. However, the calculated Narea using the peak area reproduces the given N 

within the error.     

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

 N (FWHM)

 N (area)

 

c
a

lc
u

la
te

d
 N

given N 
 

Figure 43: Calculated number of bilayers NFWHM according to Equation 3.37 for the blue points and according 

Narea according to Equation 3.39 for the red points with the constant o = 6.9 x 10
-5

. The green line is guide to 

the eye with calculated N = given N. 

 



5. LIPID MEMBRANES IN PURE AQUEOUS SOLUTIONS 

 
                 71 

5.2 Stability of oligolamellar lipid coatings 

Once we succeeded in the preparation of oligolamellar lipid films on solid substrates, the 

question arose, whether these films maintain their structure when incubated in aqueous 

solution. The stability of lipid coatings was essential for further experiments and is also an 

important prerequisite for a successful application of lipid coated implants [16]. Neutron 

reflectivity measurements were performed with oligolamellar and multilamellar lipid coatings 

against pure excess D2O in the vicinity of the main phase transition, first by a temperature 

dependent approach (chapter 5.2.1) and second, by a pressure dependent approach (chapter 

5.2.2). In addition, the influence of an external shear force was investigated (chapter 5.2.3). 

Due to the importance of titanium for body implants, the stability of lipid coatings on 

titanium was investigated (chapter 5.2.4). A discussion is given in chapter 5.2.5. 

 

5.2.1 Effect of temperature 

Disc shaped silicon substrates (samples A, B, C and D) with a diameter of 60 mm were coated 

with lipid layers. Samples A, B and C were prepared with an oligolamellar coating by using 

the spin-coating technique with different concentrations. For sample A a concentration of 

5 mg/mL and for sample B and C of 10 mg/mL DMPC in chloroform was used. Sample D 

was coated with a multilamellar coating using the air brush technique. Here, 10 mL of a 

10 mg/mL solution of DMPC in chloroform was used. The samples were mounted in a liquid 

cell and exposed to pure liquid D2O at 21°C for neutron reflectivity measurements. 

Subsequently the temperature was increased to 24 °C, followed by further increase of the 

temperature in steps of 2 °C up to 30°C. For every temperature the neutron reflectivity was 

measured two times. All measurements were performed at the V6 instrument as described in 

chapter 3.2.5 (on page 43). Parts of this chapter have already been published in [109]. 

 

Bragg peak analysis 

All samples were first measured at 21 °C after incubation in pure D2O and revealed a Bragg 

peak (B) around 0.1 Å
-1 

(Figure 44). Differences in the Bragg peak positions might be due to 

differences in the alignment of the lipid lamellae, as the samples have not been annealed 

before the measurements. The spin-coated samples revealed in addition Kiessig oscillations 

(K), which allowed calculating the number of bilayers NBK on the substrate, according to 

Equation 3.38 (on page 39). Sample A consisted of NBK = 5.0 ± 0.3 bilayers. As samples B 
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and C were coated with a higher concentrated lipid solution in CHCl3, they were 

consequently coated with a higher number of bilayers: NBK = 8.2 ± 0.9 for sample B and 

NBK = 7.6 ± 0.7 for sample C. For sample D the number of bilayers NBK could not be 

extracted, as any Kiessig oscillations appeared. The results are summarized in Table 5.1. 

 

Sample d in Å t in Å NBK NFWHM 

A 66.89 ± 0.04 334 ± 20 5.0 ± 0.3 6.12 ± 0.27 

B 73.36 ± 0.11 600 ± 65 8.2 ± 0.9 7.38 ± 0.34 

C 65.48 ± 0.05 495 ± 45 7.6 ± 0.7 8.07 ± 0.26 

D 65.31 ± 0.25 -- -- -- -- 8.52 ± 4.10 

Table 5.1: Results from measurements at 21 °C with repeat distance (d), total coating thickness (t), and number 

of bilayers calculated from the Bragg peak position and the Kiessig oscillations (NBK), and by using FWHM 

(NFWHM). 

 

Changes of the first order Bragg peak were subsequently traced, raising the temperature in 

2 °C steps for sample A, B and D (Figure 47), starting from 24 °C. Sample C was heated in 

1 °C steps starting at 21 °C (Figure 48 on page 75). For each temperature the neutron 

reflectivity was measured two times around the Bragg peak position from Q = 0.075 Å
-1

 to 

Q = 0.110 Å
-1

. As a result of heating, the Bragg peaks decreased drastically for the spin-

coated samples A, B and C after passing the main phase transition at 26 °C. In contrast, the 

Bragg peaks intensity increased drastically at elevated temperature for the air-brushed sample 

D. The resulting reflectivity profiles are shown in Figure 45. In order to quantify these 

results, a Gaussian profile was fitted to each Bragg peak. The numbers of bilayers N, which 

contribute to the Bragg peak signal, were calculated by using the resulting FWHM (Equation 

3.37, page 39). A comparison between NBK and NFWHM is shown in Table 5.1 for the 

measurements at 21 °C. NBK and NFWHM for sample A differ by one layer. For samples B and 

C the values agree within the experimental uncertainty. All calculated values for NFWHM are 

displayed in Figure 46. After heating to 26 °C, i.e. above the main phase transition 

temperature all samples show a drastic change in the number of layers contributing to the 

Bragg peak signal. The Bragg peaks vanish completely for the oligolamellar coatings with 

increasing temperature. When the reflectivity curves were too flat to be fitted with any 

Gaussian profile, NFWHM was set to zero and no error bar was attached in the figure (Figure 

46). These findings are in strong contrast to the development of NFWHM for sample D: With 
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increasing temperature NFWHM increases until a plateau of NFWHM ≈ 26 is reached. The 

increase is due to a better alignment of the coherent scattering domains upon heating, as 

discussed in more detail in chapter 5.3. That maximum value of NFWHM is limited by the 

resolution of the experimental setup. A combined discussion of the results is given in chapter 

5.2.5 on page 93. 
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Figure 44: Neutron reflectivity of lipid-coated silicon 

substrates incubated in pure D2O at 21 °C. The curves 

are shifted along the vertical axis for clarity. 
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Figure 45:  Neutron reflectivity after crossing the 

phase transition. The curves are shifted along the 

vertical axis for clarity. 
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Figure 46: Number of bilayers (NFWHM) as a function of temperature. For each temperature two measurements 

were performed. While for the oligolamellar coatings (sample A, B and C) an unbinding process starts for 

T > 24 °C,  the number of coherent scattering domains increases for the multilamellar cast film (sample D).       
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Figure 47: Neutron reflectivity profiles at different temperatures for sample A, B and D incubated in pure 

D2O.  At each temperature two measurements were performed. 
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Analysis by the optical matrix approach 

In order to study the behaviour close to the phase transition, sample C was measured in 1 °C 

temperature steps between 21 °C and 26 °C (Figure 48). Here, in addition to the Bragg 

analysis, an analysis by the optical matrix approach was performed for several reflectivity 

curves (Figure 49), utilizing the model for an oligolamellar lipid coating (Figure 38 on page 

66), which was therefore implemented in the Parratt software package. First, the reflectivity 

curve of the freshly prepared sample at 21 °C was fitted. Implementing a total number of 8 

lamellae and varying the thickness d and SLD of the individual layers resulted in a calculated 

reflectivity curve which was in good agreement with the measured reflectivity curve (Figure 

49). The corresponding SLD profiles are displayed in Figure 50 (on page 76) and the fitting 

parameters are summarized in Table 5.2 (on page 77). 
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Figure 48:  Neutron reflectivity profiles at different temperatures of Sample C, incubated in pure D2O.  At each 

temperature step two measurements were performed. 

At 25 °C (meas. 1) a drastic change in reflectivity was observed (Figure 49). The measured 

reflectivity curve could be described by the original model, only reducing the number of the 

core lipid membranes from 6 to 3, resulting in a total number of 5 bilayers. In order to 

minimize the free fitting parameters, changes in d-spacing and SLD were not considered. The 

second measurement at 25 °C (meas. 2) showed an even more smeared-out Bragg peak 

profile. That profile was represented by the model profile when further reducing the number 

of core lipid membranes from 3 to 1, resulting in a total number of 3 bilayers. A full 

reflectivity profile over the whole Q-range was measured again at 26 °C. Here, the profile 
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shows a continuous decay. The intensities between 0.03 Å
-1

 and 0.14 Å
-1

 are higher than the 

Fresnel reflectivity of an uncoated silicon surface, indicating that not all lipid membranes 

underwent the unbinding process. The whole profile could be fitted with the model profile by 

assuming only one single lipid membrane on top of the silicon substrate. A combined 

discussion of the results is given in chapter 5.2.5 on page 93. 
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Figure 49: Neutron reflectivity of a lipid coated silicon substrate (sample C) against excess D2O.[109] 
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Figure 50: Scattering length density profiles across the solid-liquid interface of a lipid coated silicon substrate 

(sample C) against excess D2O corresponding to the fits in Figure 49.Upon increasing temperature the lipid 

bilayer unbind from the solid support. All values are listed in Table 5.2 on page 77.  
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 Temp.: 

 

21 °C 

meas.  1  

25 °C 

 meas.  1 

25 °C 

 meas.  2 

26 °C 

meas. 1 

 

 

 

param.: 

 

[param.]: 

d 

 

[Å] 

SLD 

x10
6 

[Å
-2

] 

 d 

 

[Å] 

SLD 

x10
6 

[Å
-2

] 

d 

 

[Å] 

SLD  

x10
6 

[Å
-2

] 

d 

 

[Å] 

SLD  

x10
6 

[Å
-2

] 

substrate 
Silicon N/A 2.07  N/A 2.07 N/A 2.07 N/A 2.07 

SiOx 24 3.48  24 3.48 24 3.48 24 3.48 

inner 

lamella 

Heads 7 1.90  7 1.90 7 1.90 7 1.90 

Tails 32 1.73  32 1.73 32 1.73 33 0.73 

 ..          

core 

lamellae 

Interlayer 32 4.77 
x6 x3 x1 x0 

Tails 32 1.56 

 ..          

outer 

lamella 

Interlayer 36 5.24  36 5.24 36 5.24 - - 

Tails 32 1.89  32 1.89 32 1.89 - - 

Heads 6 5.12  6 5.12 6 5.12 6 3.46 

solution D2O N/A 6.27  N/A 6.27 N/A 6.27 N/A 6.27 

goodness 

of fit 
χ² 3.10 x10

-2
 1.74 x10

-1
 2.85 x10

-2
 1.28 x10

-2
 

 

Table 5.2: Fitting parameters for sample C, according to the fits in Figure 49. The ―Interlayer‖ represents a 

combined layer of lipid head groups and solution, as described in chapter 5.1 on page 67. [109] 

 

Comparison of Bragg peak analysis and optical matrix approach 

Up to 25 °C (meas. 1) each Bragg peak was fitted by a Gaussian function. The resulting 

d-spacings, FWHMs and amplitudes are displayed in Figure 51 (on page 78). During increase 

of the temperature for T ≤ 24 °C, an increase in amplitude was observed, while FWHM and 

d-spacing was constant within error for T ≤ 24 °C. Between 24 °C and 25 °C a drastic change 

in all parameters can be seen.  The increase in d is a widely discussed phenomenon called the 

anomalous swelling (introduced in chapter 2.1 on page 20). This effect was further 

investigated by complementary FTIR measurements, presented in chapter 5.3 (on page 97). 

In Figure 52 (on page 79) the resulting values for N are displayed in comparison to the fitting 

results by the more elaborated optical matrix approach. The analysis shows that the number 



5. LIPID MEMBRANES IN PURE AQUEOUS SOLUTIONS 

 

  
     78  

of contributing bilayers N can be calculated by the use of FWHM and amplitude. The values 

gained from the different methods are in good agreement within ΔN = ± 1.5 bilayers. 
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Figure 51: Bragg peak analysis for sample C. The red lines are guides to the eye, showing the average slope for 

the amplitude and the average values for FWHM and d, for the temperature range between 21°C and 23°C. At 

25°C a drastic change in all three parameters is clearly visible.   
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Figure 52: Calculated number of lipid bilayers N by using amplitude (blue points) or FWHM (green points) of 

Gaussian fits to the first Bragg peak. The red stars show values for a best fit by using the optical matrix 

approach and the Parratt software package 
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5.2.2 Effect of pressure 

Introduction 

The stability of oligolamellar lipid coatings in excess solution was further investigated with 

respect to changes in hydrostatic pressure. Lipids have been shown to respond to changes in 

hydrostatic pressure with phase transitions similar to phase transitions induced by 

temperature changes [34, 111] providing the opportunity to study lamellar phase transitions at 

fixed temperatures [112, 113]. In addition, there are pressure-induced phase transitions that 

could not be seen by temperature changes [114, 115]. Furthermore, lamellar phases are non-

congruent for different pressure and temperature regions. For example, the main phase 

transition of DMPC from the ripple phase Pβ‘ to the fluid phase L increases by a rate of 

≈ 0.2 °C/MPa [116]. In contrast to the effect of pressure on the bulk lipid system, very little is 

known about solid supported, oligolamellar lipid coatings. For that reason NR measurements 

were performed at the V6 instrument in a high pressure cell [96] in excess D2O. The 

experiments covered a temperature range between 21 °C and 38 °C and a pressure range from 

0.1 MPa (ambient pressure) to 90 MPa. The aim of the experiment was to cross the main 

phase transition from a high pressure region (90 MPa) to a low pressure region (45 MPa) at a 

fixed temperature of 38 °C. Some of the results have already been published in [96]. The 

experimental cycle was performed with a freshly prepared sample (sample E) with a diameter 

of 60 mm using the spin-coating technique as described previously. Here, a 10 mg/mL 

solution of DMPC in chloroform was used. 

Results 

A first reflectivity curve of sample E was collected at 21 °C and 0.1 MPa (Figure 53). It 

features the typical reflectivity of an oligolamellar lipid coating on silicon in excess D2O: A 

first Bragg peak at 0.0963 Å
-1

 and well-resolved Kiessig oscillations with a spacing of 0.0107 

Å
-1

 were observed. The Bragg analysis revealed a lamellar spacing of d = (65.2 ± 0.3) Å with 

a total film thickness of t = (587 ± 5) Å, resulting in a number of NBK = 9 lamellae making 

up the whole oligolamellar stack. In addition, optical matrix fitting of the measured 

reflectivity curves with the model of an oligolamellar lipid coating revealed a detailed picture 

of the scattering length density profile of the lipid coating (Figure 54). Using a number of 7 

core lamellae and varying the thickness d and SLD of the individual layers resulted in a 

calculated reflectivity curve which was in good agreement with the measured reflectivity 

curve at 0.1 MPa and 21 °C.  
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The fitting parameters are summarized in Table 5.3 (on page 83). Raising the pressure to 90.0 

MPa resulted in an immediate decrease in Bragg peak amplitude by 40%, which could be 

reproduced in a second measurement of the Bragg peak 7 h later. However, the peak position 

as well as the Kiessig oscillations did not alter. Increasing the temperature to 38 °C, while 

keeping the pressure at 90.0 MPa, revoked the intensity loss from the Bragg peak. Again, the 

same Bragg peak position and Kiessig oscillations were measured. The reflectivity of the 

substrate changed drastically after a pressure release to 45.0 MPa, keeping the temperature 

constant at 38 °C: The Bragg peak and the pronounced Kiessig oscillations vanished. As 

already described in the previous chapter, also here the reflectivity curve could be fitted with 

a model of one remaining lipid lamella on the silicon substrate. A summary of the performed 

experimental cycle is given in Figure 55 (on page 82). Further discussion of the results is 

given in chapter 5.2.5 on page 93. 
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Figure 53: Neutron reflectivity curves (symbols) of an oligolamellar lipid coating on silicon (sample E), 

measured against pure D2O. Solid lines are Parratt fits to the data, with corresponding SLD profiles shown in 

Figure 54. [96] 
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Figure 54: Scattering length density (SLD) profiles perpendicular to the solid-liquid interface, corresponding to 

the fits in Figure 53. [96]   

 

 

 

 

Figure 55: Phase diagram of DMPC with a summary of the experimental findings. The red line indicates the 

main phase transition for the bulk system, taken from [111]. One experimental cycle was performed along the 

arrows starting at 0.1 MPa and 20 °C. All three measurements in the ripple phase Pβ’ revealed a repeat distance 

of 65 Å. After crossing the phase transition at 38 °C unbinding of lipids occurred (stars). [96] 
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  0.1 MPa 90.0 MPa 90.0 MPa 45.0 MPa 0.1 MPa 

  21 °C 21 °C 38 °C 38 °C 38  °C 

 param. d SLD d SLD d SLD d SLD d SLD 

Nr. [param.] 
 

[Å] 

x10
6
 

[Å
-2

] 

 

[Å] 

x10
6
 

[Å
-2

] 

 

[Å] 

x10
6
 

[Å
-2

] 

 

[Å] 

x10
6
 

[Å
-2

] 

 

[Å] 

x10
6
 

[Å
-2

] 

0 Si N/A 2.07 N/A 2.07 N/A 2.07 N/A 2.07 N/A 2.07 

 SiOx 13 3.34 13 3.33 13 3.34 13 3.34 13 3.34 

1 Heads 8 3.47 8 3.34 8 4.04 8 4.00 8 4.50 

 Tails 32 1.13 32 1.45 32 1.29 32 0.60 32 0.48 

 …           

2 Interlayer 32 3.93 32 3.69 32 4.02 - - - - 

(x7) Tails 32 1.05 32 1.45 32 1.24 - - - - 

 …           

3 Interlayer 38 4.32 38 4.30 38 4.55 - - - - 

 Tails 30 1.36 30 1.52 30 1.23 - - - - 

 Heads 11 3.92 11 3.30 11 4.65 12 4.00 12 4-.50 

4 D2O N/A 6.13 N/A 6.38 N/A 6.28 N/A 6.25 N/A 6.16 

 D2Oth  6.36  6.60  6.57  6.45  6.33 

 

Table 5.3: Table of parameters (param.) extracted from model fits measured with sample E. The coloured 

columns correspond each to one measurement shown in Figure 53, respectively. The numbers in the left column 

correspond to the nomenclature according to the model of an oligolamellar lipid coating (Figure 38).The 

―Interlayer‖ represents a combined layer of lipid head groups and solution, as described in chapter 5.1 on page 

67. The core membranes (Nr. 2) are repeated 7 times in the fitting routine in order to give the best fit. A 

theoretical SLD of D2O (D2Oth) for the measured temperature and pressure was calculated according to [117]. 

All data have already been published in [96]. 

   

The position of the critical momentum transfer Qc can be used as an indicator for the pressure 

change inside the sample cell [117]. For a thin organic coating, the reflectivity in the low Q-

range is exclusively determined by the scattering length densities (SLD) of the bulk materials, 

i.e. silicon substrate, and the liquid fronting phase, i.e. D2O. As the density of the silicon does 

not alter significantly within the probed pressure range [118], a shift in Qc directly 

corresponds to a density change of the D2O liquid phase. The position of Qc was read out at 
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R = 0.5 to avoid the influence of surface roughness, when plotted on a linear scale (Figure 

56). With increasing pressure at 21 °C a pronounced shift to higher Q-values from 0.0146 Å
-1

 

(0.1 MPa) to 0.0151 Å
-1

 (90 MPa) was observed. By increasing the temperature to 38 °C, Qc 

shifted back to 0.0149 Å
-1

 (90 MPa). Upon full pressure release at 38 °C, Qc shifted back to 

0.0148 Å
-1

. After every change of pressure the sample was newly aligned, which underlines 

the significance of the measured shifts in Qc. The value of Qc can be determined with an 

accuracy of 0.0001 Å
-1

, taking into account the accuracy in angular movements of i of 

0.002° for angular dispersion at V6. Hence, the shifts of Qc are above the experimental error.  

In addition, the relative shifts of SLD for the D2O bulk phase upon pressure changes, 

resulting from the analysis of Qc by the Parratt software package, correspond well to 

theoretical values from the literature [117]. A comparison of calculated SLD values for D2O 

(D2Oth) and values extracted from the experiment (D2O) is shown in Table 5.3. 
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Figure 56: Close-up region of the critical momentum transfer Qc on a linear scale. The total reflection edge 

shifts to higher Q-values with increasing pressure. [96] 

5.2.3 Effect of shear 

Introduction 

Keeping in mind the potential use of lipid layers as a biocompatible coating for movable and 

mechanically stressed implants such as artificial joints [16], the stability of the lipid coatings 

under external shear forces is a key parameter for a successful application. Therefore, 

oligolamellar lipid coatings were investigated under applied load using a shear setup. In order 
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to study the stability of the coating in excess solution, neutron reflectivity measurements have 

been performed at the AMOR reflectometer at the Paul-Scherrer-Institute (PSI, Villigen, 

Switzerland). The investigated sample was an oligolamellar lipid coating on silicon (sample 

F), prepared by spin-coating a solution of 10 mg/mL DMPC in chloroform. The temperature 

range between 21 °C and 30 °C was subject of the investigation. The coating was incubated 

and measured against D2O solution. In order to mimic the shear force on a knee joint for a 

rather pronounced strain, for example resulting from a short distance sprint of a person, a 

frequency of 5 Hz was estimated and applied. Starting at 21°C, the temperature was increased 

to 24°C and subsequently increased in steps of 2°C up to 30°C. For each temperature step 

two reflectivity curves were recorded in order to distinguish between temperature and time 

effects. All measurements are displayed in Figure 57. Each first order Bragg peak was fitted 

with a Gaussian profile. The resulting vales (amplitude, FWHM and d-spacing) are shown in 

Figure 58 on page 87, including the uncertainties of the Gaussian fits.   

 

Results 

The first measurements at 21 °C with no shear force applied showed the already well-known 

reflectivity of an oligolamellar lipid coating with a d-spacing of d = (65.21 ± 0.02) Å. A 

second measurement showed an identical result. After a shear force was applied, using a 

frequency of 5 Hz, the d-spacing increased slightly to d = (65.35 ± 0.01) Å. Furthermore, up 

to 24 °C the reflectivity of the sample did not show any variations beyond the experimental 

uncertainties. For T ≤ 24 °C only a slight increase in amplitude by 0.0012 was recorded from 

0.0087 ± 0.0001 to 0.0099 ± 0.0001. Above 24 °C the d-spacing dropped to 

d = (64.49 ± 0.02) Å, the FWHM increased from (0.0089 ± 0.0001) Å
-1

 to 

(0.0093 ± 0.0001) Å
-1

, and the amplitude reached its maximum at 0.0111 ± 0.0001. For T 

> 26 °C the amplitude decreased continuously to 0.0014 ± 0.0001. In addition, FWHM 

increased, until a maximum of FWHM = (0.0110 ± 0.0002) Å
-1

 was reached for the first 

measurement at 28 °C. In subsequent measurements FWHM decreased to 

FWHM = (0.0105 ± 0.0005) Å
-1

, reached at the second measurement at 30 °C. The d-spacing 

directly scaled with the temperature for T > 24 °C: for every 2 °C the d-spacing dropped by 

around 1 Å to a final value of d = (63.07 ± 0.11) Å. A combined discussion of the results is 

given in chapter 5.2.5 on page 93. 
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Figure 57: Neutron reflectivity curves of an oligolamellar lipid coating on silicon (sample F) in excess D2O. 

After the first two measurements at 21 °C a shear force was applied with a frequency of 5 Hz. Subsequently the 

temperature was increased up to 30 °C. At each temperature step two reflectivity measurements were made. 
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Figure 58: Results of the Bragg peak analysis of the first order Bragg peaks, displayed in Figure 57. 
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5.2.4 Effect of substrate 

Introduction 

In the last decade, the search for biocompatible materials has become a major topic in 

medical research. While the durability of implants has been improved significantly, the need 

for permanent and long-lasting implants is steadily growing [119]. For biomedical 

applications, titanium-based alloys are most suitable [120]. The combination of suitable 

metallic implant surfaces with lipid coverage is most promising for forthcoming implant 

modifications [16]. Here, one of the fundamental requirements is the reliable preparation of 

stable lipid coatings on the implant surfaces.  In the following, the stability of oligolamellar 

lipid coatings on silicon substrates with titanium cover is quantified. Measurements were 

performed against excess D2O in the temperature range between 20 °C and 30 °C (sample 

TiA). Starting at 21 °C, the temperature was increased to 24 °C and consequently increased in 

steps of 2 °C up to 30 °C. For each temperature step two successive reflectivity curves were 

recorded in order to distinguish between temperature and time effects. In addition, the 

stability under load was studied (sample TiB) using the shear setup as described in chapter 

3.2.6.   

 

For sample preparation, three silicon substrates (TiA, TiB and TiC) were first covered with a 

90 Å thick titanium coating by the sputtering technique [121]. X-ray reflectivity 

measurements of the samples revealed identical titanium layer thicknesses within the 

experimental resolution, calculated by the appearing Kiessig oscillations (Figure 59): for 

sample TiA t = (148 ± 4) Å and for sample TiB t = (149 ± 4) Å. In addition, Bragg peaks 

measured for TiA and TiB at QB = (1.0241 ± 0.0002) Å
-1 

with a lattice parameter of 

6.13 ± 0.04 Å are measured. For sample TiC the Bragg peak was not observed. The origin of 

these additional Bragg peak is not clear, as they do not appear for sample TiC and do not 

result from the titanium lattice parameters (a = 2.96 Å, c = 4.71 Å) [122]. Subsequently the 

samples TiA and TiB were coated with an oligolamellar stack of lipid layers, by spin-coating 

a solution of 10 mg/mL DMPC in chloroform.   

Results of the effect of temperature 

After the incubation of sample TiA in pure D2O, the sample was measured at the V6 neutron 

reflectometer in a solid-liquid cell (Figure 60). The first order Bragg peak, resulting from the 

oligolamellar lipid coating of the first measurement at 21 °C, revealed a d-spacing of 

d = (66.10 ± 0.77) Å. The Kiessig oscillations revealed a total coating thickness of 
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t = (525 ± 50) Å. With a measured titanium layer thickness of 149 Å, a number of N = (6 ± 1) 

lipid bilayers was extracted. Already the second measurement at 21 °C revealed a decreasing 

Bragg peak amplitude. In the following the Bragg peak amplitudes decreased further. At 

30 °C, a total coating thickness of t = (162 ± 5) Å remained, calculated by the minimum 

positions of the first Kiessig oscillation. All measured reflectivity curves are shown in Figure 

61. The fitted Bragg peak amplitudes are shown in Figure 66 on page 96 and discussed on the 

same page.   
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Figure 59: X-ray reflectivity measurement of sample TiA, TiB and TiC, before lipid coating, in order to 

characterize the titanium layers on the silicon substrates. The Kiessig oscillations revealed a d-spacing of 

t = (148 ± 4) Å. The Bragg peaks with unknown origin at QB = (1.0241 ± 0.0002) Å
-1

 appeared only for TiA 

and TiB, but not for TiC.   
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Figure 60: Neutron reflectivity of sample TiA in excess D2O at elevated temperatures.  
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Figure 61:  Neutron reflectivity profiles of sample TiA in excess D2O, measured in the temperature range 

between 20 °C and 30 °C. At each temperature step two measurements were performed. 

Results of the effect of temperature and shear 

Sample TiB was measured following the same protocol as described before for sample F 

(Figure 57 on page 86). The lipid-coated sample was incubated in pure D2O and measured in 

the shear setup at the neutron reflectometer AMOR at PSI in Switzerland at elevated 

temperatures between 21 °C and 30 °C. A first measurement at 21 °C revealed a d-spacing of 

d = (68.03 ± 0.13) Å. The poorly resolved Kiessig oscillations are probably due to a less 

homogeneous coating and do not allow for the calculation of the total coating thickness 

(Figure 62). All measured reflectivity curves are shown in Figure 63 on page 91. A complete 

analysis of the first order Bragg peak is shown in Figure 64 on page 92. Upon employing the 

shear force with a frequency of 5 Hz, an increase of the d-spacing by 1.26 Å to 

d = (69.29 ± 0.13) Å was measured. The FWHM, seen from the following analysis, does not 

show a clear trend beyond the uncertainties of the measurement. Also the d-spacing did not 

change further until temperature was increased to 26°C. Here, the d-spacing decreased by 3 Å 

to d = (66.10 ± 0.04) Å, accompanied by an increase in Bragg peak amplitude from 

0.0041 ± 0.0001 at 24°C to 0.00633 ± 0.0001 at 26°C. With increasing temperature to 28°C 

the amplitude started to drop, accompanied by a further decrease in d-spacing to 

d = (64.47 ± 0.05) Å. For the second measurement at 28°C, the Bragg peak was already so 

weak, that it was not possible to distinguish between the Bragg peak, resulting from the lipid 
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coating, and the Kiessig oscillations, resulting from the titanium coating. A final 

measurement of the whole reflectivity curve after an additional increase in temperature to 

40°C is shown in Figure 62. The remaining Kiessig oscillations revealed a total coating 

thickness of t = (169 ± 5) Å. A combined discussion of the results is given in chapter 5.2.5 on 

page 93. 
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Figure 62:  Neutron reflectivity of sample TiB at elevated temperatures, measured with the shear setup.  As 

opposed to sample TiA, sample TiB was sheared at 5 Hz during the increase in temperature. 
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Figure 63: Neutron reflectivity curves of sample TiB, measured in the shear setup at elevated temperatures. All 

plots illustrated with a blue border are measured under a constant shear force at a frequency of 5 Hz. 
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Figure 64: Bragg peak analysis of sample TiB. 
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5.2.5 Discussion on the stability of lipid coatings 

An overview on the samples measured in this section is given in Table 5.4. 

Sample 
coating 

technique 

used 

solution 
coating 

d-spacing at 

21°C in Å 

investigated 

parameter 

A spin coating 5 mg/mL oligolamellar 66.89 ± 0.04 temperature 

B spin coating 10 mg/mL oligolamellar 73.36 ± 0.11 temperature 

C spin coating 10 mg/mL oligolamellar 65.48 ± 0.05 temperature 

D air brush 
10 x 

10mg/mL 
multilamellar 65.31 ± 0.25 temperature 

E spin coating 10 mg/mL oligolamellar 65.20 ± 0.30 pressure 

F spin coating 10 mg/mL oligolamellar 65.19 ± 0.02 shear 

TiA spin coating 10 mg/mL oligolamellar 66.10 ± 0.77 substrate 

TiB spin coating 10 mg/mL oligolamellar 68.03 ± 0.13 substrate/shear 

TiC - - - - titanium coating  

Table 5.4:  Overview of investigated samples of chapter 5. The d-spacings are results of measurements on the 

DMPC lipid coatings, when incubated in a pure D2O liquid phase at 21 °C. 

As proved by the above listed samples, the spin-coating technique yields reproducible and 

highly ordered lipid coatings: Beside the appearing Bragg peaks, the measured reflectivity 

curves showed in addition Kiessig oscillations. The lamellar spacing between 65 Å and 68 Å 

found at 21 °C for the samples A, C, D, E, F, TiB and TiB correspond well with the d-spacing 

reported for the ripple-like phase Pβ‘ of fully hydrated DPMC multilayers at 21 °C [29, 112]. 

Sample B, in contrast, with d = (73.36 ± 0.11) Å at 21 °C deviates significantly in d-spacing. 

Differences in the structure of the lipid coating might be due to differences in the alignment 

of the lipid lamellae, as the samples have not been annealed before the measurements. It is 

reported in literature, that lipid multilayer were annealed before the measurements, in order to 

obtain well oriented samples [123]. In addition, other groups report of variations in the d-

spacings for nominally equally prepared samples [124]. The analysis of samples C and E by 

the optical matrix approach revealed a more detailed picture of the oligolamellar lipid 

coatings (Figure 50 on page 76, Figure 54 on page 82). Samples C and E were fitted by the 

model of an oligolamellar lipid coating. The differences seen for inner lamella, core lamellae 

and outer lamella are due to the fact, that these lamellae are restricted by different physical 
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conditions: The inner head groups, directly attached to the substrate, are confined by the 

silicon support, while the outer head groups do not experience this confinement. In addition, 

inner and outer lamellae miss one opposing lamella.  

 

A major change in the structure of the lipid coating was observed with increasing temperature 

for samples A, B, C and D and decreasing pressure for sample E, namely, when heated to 

26°C or upon pressure release at 38°C from 90 MPa to 45.0 MPa. The oligolamellar lipid 

coatings follow an unbinding process, leaving only one lipid membrane attached to the 

silicon substrate. While the temperature-induced unbinding process was followed with 

intermediate temperature steps, pressure-induced unbinding was only measured for its final 

state. The unbinding from the samples observed for all oligolamellar lipid coatings (sample 

A, B, C and E) occurred after crossing the main phase transition to the liquid-like Lα phase. 

We associate the present unbinding process of the lipid films from its solid support with the 

phase transition from Pβ‘ to Lα.  

 

In many experiments only a swelling process was observed experimentally in the vicinity of 

Tm measured by neutron and X-ray diffraction [29, 125] and nuclear magnetic resonance 

measurements [18, 125]. A total unbinding of a multilamellar thick DMPC coating was 

observed by X-ray reflectivity measurements at a critical temperature of 95°C [126]. All 

these studies focused on thick multilamellar bulk systems and did not show an unbinding 

transition around Tm. The stability of a multilayered lipid system around Tm was also 

confirmed by measurements with a multilayered coating (sample D) in this work.  Here, the 

presence of at least 26 bilayers on the sample surface was measured up to 30°C.  Due to the 

restricted resolution of the experiment, a higher number of bilayers could not be resolved.  

In contrast, the measurements on the oligolamellar lipid coatings show that an unbinding 

process is initiated with the phase transition into the fluid-like Lα phase. The described 

unbinding transition has already been proposed in 1986 by a theoretical work of Lipowsky 

and Leibler [47]. After initiation of the process by increasing temperature, all investigated 

oligolamellar samples showed an unbinding transition with intermediate steps, until finally 

only one bilayer remained on the substrates (compare Figure 52 on page 79 and Table 5.2 on 

page 77). The high sensitivity of neutron reflectometry for the outer membranes of a lipid 

stack was achieved by preparing only a thin oligolamellar lipid coating. In 2006 Lecuyer and 

Charitat studied a multilamellar thick lipid coating by fluorescence microscopy [127]. The 

applied technique allowed in particular studying the behaviour of the outer membranes of the 
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lipid stack. By approaching the main phase transition, the authors followed an unbinding of 

these outer layers. These results are in good agreement with the measurements on 

oligolamellar lipid coatings by neutron reflectometry. They show an unbinding transition, 

staring at the main phase transition, which proceeds layer by layer (compare Figure 52 on 

page 79 and Table 5.2 on page 77). It is assumed that the sharp decrease in the bending 

rigidity κ, when approaching the main phase transition, is followed by the formation of lipid 

vesicles (Figure 65) [127]. The decrease in κ has been shown in independent studies [29, 44, 

45]. Once the lipid vesicles are built, they disperse irreversibly in the surrounding solution.  

 

 

Figure 65: Sketch of the unbinding process of a lipid coating from a silicon substrate in excess D2O by vesicle 

formation.  

About the effect of substrate and shear 

For sample TiA the reflectivity changed within the first two measurements already at 21°C. 

The second sample on titanium support, sample TiB, did not show these changes in 

reflectivity at 21°C. As these two samples show contradictory results, further measurements 

are necessary in order to verify the stability of oligolamellar lipid coatings on titanium 

support. In addition, up to 24°C, shear force and titanium sub-layer did not alter the 

reflectivity of the lipid coatings F and TiB. The resulting reflectivity curves (Figure 57 on 

page 86, Figure 61 on page 90 and Figure 63 on page 91) are almost identical to curves 

measured without shear, but with identical temperature steps, as described before (Figure 47 

on page 74 and Figure 48 on page 75). Interestingly, even when exposed to an external force, 

the coating TiB showed a stable lamellar structure up to 26°C, i.e. for T  2°C higher than Tm, 

the main phase transition temperature of bulk DMPC. Only at 28 °C the structure started to 

change. For the non-metalized sample F, structural changes were already observed for the 

second measurement at 26 °C, i.e. somewhat earlier. From the decrease in d-spacing, 

observed for both samples, F and TiB, starting at 24°C, it is clear, that the main phase 
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transition occurred at 24°C, as the decrease in d-spacing is due to the chain melting of the 

lipid tail groups [36].  
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Figure 66: Comparison of all measured first order Bragg peak amplitudes as a function of temperature. Taking 

the amplitude as a measure for the number of solid-bound lipid layers, the graph shows clearly that all 

oligolamellar lipid coatings unbind from the substrate: Without shear between 24 °C and 26 °C (Sample A, B, 

C), with shear between 26 °C and 28 °C (Sample F and TiB). The oligolamellar coating of sample TiA was not 

stable, in strong contrast to sample D, for which the multilamellar coating remained bound to the substrate 

over the measured temperature and time range. 
 

In the following the Bragg peak amplitude of the lipid coatings is taken as a parameter to 

describe the number of substrate bound bilayers; a comparison is shown in Figure 66. The 

decreasing amplitudes of oligolamellar samples measured without shear (A, B and C) for 

T > 26 °C indicate the trend for the oligolamellar lipid lamellae to unbind from the solid 

support after crossing the main phase transition of DMPC in D2O at Tm = 24.5 °C. In 

contrast, for the multilamellar lipid coating (sample D) a pronounced increase in amplitude 

for T > 24 °C without shear is observed, due to an increase of coherent scattering domains 

upon further alignment of the lipid lamellae (compare detailed discussion in chapter 5.3). 

Therefore, within the resolution of the experiment, i.e. 26 lipid membranes, no unbinding 

could be observed for a multilamellar lipid coating. For the oligolamellar lipid coatings, 

measured at 5 Hz (sample F and TiB), an increase in amplitude could be observed for 

T > 24 °C, which might be due to a better alignment of the lipid membranes. The applied 

shear force stabilizes the oligolamellar lamellar system above the main phase transition for 

24 °C < T < 28 °C, which was not reported before. The following decrease in amplitude for 

T > 28 °C is the result of the unbinding of the lipid membranes. The instant decrease of 

amplitude of sample TiA is an exception.  
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5.3 Phase transition of multilamellar lipid coatings 

 As described previously (chapter 2.1 on page 17), DMPC lipid 

molecules undergo a first order phase transition from the ripple 

phase Pβ‘ to a liquid-like phase Lα between 21.5 °C and 24.5 °C 

[29, 48-50].  Reported main phase transition temperatures Tm for bulk systems as measured 

by different techniques disagree concerning the value of the phase transition temperature 

[128]. Crossing the main phase transition temperature has a pronounced impact on the 

conformation of the hydrocarbon chains (for more details see chapter 2.1): While in the ripple 

phase the hydrocarbon chains are more extended and ordered, a chain melting induces 

conformationally disordered chains in the liquid-like state for T > Tm [34]. The chain melting 

has an impact on the vibrational modes of the hydrocarbon groups of the individual lipids as 

can be seen by ATR-FTIR. On a larger scale the chain melting influences the structural state 

of a lipid bilayer: Due to the chain melting the bilayer thickness decreases. Consequently, a 

change of the lamellar structure can be probed by NR.  

 

With the tools of BioRef at hand, we were able to address the question on the correlation 

between chain melting of individual lipid molecules and the impact on a solid-supported lipid 

multilayer coating. Consequently, temperature dependent combined ATR-FTIR and NR 

studies were performed simultaneously on the same sample. The temperature range around 

the main phase transition between 20°C and 30°C of DMPC multilayer system against excess 

D2O liquid phase was probed. A silicon ATR crystal (ATR5) was used as integrative support 

(introduced in chapter 4.1 on page 57). A lipid multilayer coating was prepared with the air 

brush technique. After evaporation of chloroform the sample was incubated in pure D2O in 

the sample cell. The experimental cycle covered four scans in the respective temperature 

range from 20°C to 30 °C: First, the sample was heated from 20°C to 30°; second, the sample 

was directly cooled again to 20°C. The described cycle of heating and cooling was repeated 

one more time. In the following the four scans are referred to as heating1, cooling1, heating2, 

cooling2. Temperature was changed every 100 minutes in 0.5 °C steps. At each temperature 

two subsequent NR measurements were performed and 5-6 IR absorbance spectra recorded.  
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5.3.1 Infrared absorption of a multilamellar lipid coating 

The conformational changes of lipid molecules were studied by ATR-FTIR using the setup 

described in chapter 4. A measurement consisting of 124 full scans was performed every 20 

minutes, resulting in 5-6 absorbance spectra per temperature step. 

Results 

The most pronounced temperature induced changes on infrared absorption are changes seen 

in the absorption bands of the hydrocarbon groups (CH2). The asymmetric νas(CH2) and 

symmetric νs(CH2) stretching bands show high peak amplitudes and sharp peak shapes 

(Figure 67). The following analysis is focused on the νs(CH2) band, since it is less altered by 

neighbouring vibrational modes of methyl groups [129]. In the gel-like phase at 20°C the 

νs(CH2) band absorbs at 2851 cm
-1

. When heated to 30°C the band shifts 2 cm
-1

 to 2853 cm
-1

. 

In addition, its full width at half maximum (FWHM) increases, while the amplitude 

decreases. Cooling the system again to 20°C reproduces the original absorption band position 

and FWHM. 

 

The absorption bands νs(CH2) after 80 minutes of equilibration time were fitted for all four 

temperature cycles. The fitting results (wavenumber, FWHM and amplitude) are shown in 

Figure 68 on page 100. The maximum uncertainties are δwavenumber = 0.01 cm
-1

, 

δFWHM = 0.12 cm
-1

 and δamplitude = 0.011, given from the Gaussian fitting profiles. For 

legibility reasons they are mentioned only at the beginning of the following paragraph. The 

values for wavenumber, FWHM and amplitude are almost identical at each temperature, 

regardless of the type (heating or cooling) of the cycles. Pronounced jumps in wavenumber, 

FWHM and amplitude between 24.0 °C and 24.5 °C are clearly visible and reproducible. 

These jumps are characterized by drastic changes in wavenumber 

(Δ                      ), FWHM (Δ FWHM = (0.47 ± 0.12) cm
-1

) and amplitude 

(Δamplitude = 0.029 ± 0.011) and are a clear sign for a first order phase transition. Here, it is 

the phase transition from the ripple phase Pβ‘ to the fluid-like phase Lα upon heating of the 

sample.  
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Figure 67: Infrared absorption of a multilamellar lipid coating on a silicon substrate (ATR5) against pure 

D2O. Shown is the absorbance of the CH2 groups, measured after 80 minutes of equilibration time. 

Temperature was cycled from 20 °C to 30 °C to 20 °C and back to 30 °C. 

Discussion on IR results  

In general, for increasing (decreasing) temperature the values for wavenumber and FWHM 

are increasing (decreasing), while the values for amplitude are decreasing (increasing) 

(Figure 68 on page 100). This is due to the fact, that upon administering of thermal energy to 

the lipid system the chain mobility increases, resulting in a broadening of the absorption 

bands, as well as in a decrease of the absorption amplitudes [129]. Only recently it was 

proposed, that the ν(CH2)  bands of the hydrocarbon groups can be divided in two 

components by singular value decomposition analysis [30, 130]: One component refers to 

vibrations of the trans segments (lower wavenumber) and the other to vibrations of the 

gauche segments (higher wavenumber). Within this approach a change of the maximum 

position of the absorption band, FWHM and amplitude is due to a change in the relative 

intensity of the two components. The chain melting results in a higher number of gauche 

segments, resulting in a bigger intensity of the gauche-component of the absorption band. 

Since this component has a higher wavenumber than the trans-component, the maximum 

position shifts to higher wavenumbers, the FWHM increases and the overall amplitude 

decreases. The chain melting is most pronounced at a critical temperature between 24.0 °C 

and 24.5 °C, which corresponds to the main phase transition of fully hydrated DMPC in D2O, 

reported to be at Tm = 24.5 °C [50].  
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Figure 68: Infrared absorption band analysis by fitting Gaussian profiles to the νs(CH2) absorption band. 

Shown are the results of measurements, performed after 80 minutes of equilibration time. For legibility, error 

bars are displayed only for the first data point taken at 20  C (δwavenumber = 0.12 cm
-1
, δFWHM = 0.12 cm

-1
 

and δamplitude = 0.011). 
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Figure 69: Neutron reflectivity results (meas. 2) of the Bragg peak analysis of the first order Bragg peak at 

Q ≈ 0.1 Å. Error bars are not shown, if smaller than the symbols. 
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5.3.2 Neutron reflectivity of a multilamellar lipid coating 

In order to follow temperature-induced changes in the lamellar structure of the multilayer 

system, the neutron reflectivity of the solid-liquid interface was measured. With a selected 

chopper frequency of 45 Hz at BioRef the sample was measured at 5 different angular 

positions αi to cover a Q-range from 0.005 Å
-1

 to 0.227 Å
-1

 in total. The resolution was set to 

a constant value of 7% over the Q-range probed. At each temperature step two complete 

reflectivity curves (meas. 1 and meas. 2) were recorded. The second measurement (meas. 2) 

was conducted in order to distinguish between changes due to time dependent and 

temperature dependent effects. One measurement took 50 minutes of measurement time. 

Temperature was changed every 100 minutes. 

 

Figure 70: Neutron reflectivity resulting from a multilamellar lipid coating in excess D2O. Shown are the first 

order Bragg peaks of the second measurements of all four temperature cycles between 20 °C and 30 °C. 

Results 

In each reflectivity curve two Bragg peaks are clearly visible in the probed Q-range, which 

are the first and second order peaks of a lamellar phase. At 20 °C the peaks at Q1 = 0.0980 Å
-1

 

and Q2 = 0.1967 Å
-1

 belong to a repeat distance of d = 64.11 Å (Figure 71). The analysis was 

focused on the first order Bragg peak, since position, height and width of the peak reveal the 

desired information about the lamellar structure of the multilayer system. Each peak was 

fitted by a Gaussian function. The maximum uncertainties are δd = 0.01 Å, 

δamplitude = 0.0009 and δFWHM = 0.00004 Å
-1

, as a result from the Gaussian profile fits. 
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For legibility reasons they are only mentioned at the beginning of the following paragraph. 

The resulting repeat distances, FWHM and amplitudes are displayed in Figure 69 on page 

101. 
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Figure 71: Neutron reflectivity (meas.2) of a multilamellar lipid coating on a silicon substrate (ATR5) against 

pure D2O. Temperature was cycled from 20 °C to 30 °C to 20 °C and back to 30 °C. 

 

Heating the first time from 20 °C to 30 °C (heating1) showed three distinctive regions: First, 

between 20 °C and 24 °C the repeat distances increased slowly from d = (64.10 ± 0.01) Å to 

d = (64.40 ± 0.01) Å, accompanied with an increase of amplitude from 0.0509 ± 0.0009 to 

0.0620 ± 0.0009 and a decrease of FWHM from (0.00758 ± 0.00004) Å
-1

 to 

(0.00752 ± 0.00004) Å
-1

. Second, at 24.5 °C a jump in repeat distance to 65.15 Å and in 

amplitude to 0.1643 was clearly visible. The third region between 25 °C and 30 °C was 

characterized by a decrease in repeat distance to a minimum of 62.07 Å. The amplitude 

decreased slowly to 0.1540, while the FWHM increased to a value of 0.0078 Å
-1

. Upon 

cooling (cooling1) the system passed through all three regions in reverse order: First, in the 

region between 30 °C and 24.5 °C, the d-spacing, FWHM and amplitude returned to the 

initial values. Second, at 24.5 °C the d-spacing reached a maximum of 65.63 Å, accompanied 

with a maximum in FWHM of 0.0081 Å
-1

 and a minimum in amplitude of 0.0697. Third, 
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upon cooling the system to 20 °C, the d-spacing reached a constant value of 65.06 Å with a 

FWHM of 0.0081 Å
-1

 and an amplitude of 0.0837. In heating2 the measured values started 

off at different starting points. However, for T > 24 °C the cycle is identical to heating1. 

Furthermore, cooling2 was identical to cooling1. After the sample was heated for the first 

time to 24.5 °C, the structure of the membrane system could be reproduced, depending on 

temperature and type of cycle (heating or cooling). For a graphical summary of the effects 

described see Figure 69 on page 101. 

 

It shall be highlighted, that between 24.5 °C and 30 °C all measured values were identical for 

a given temperature, not depending on type of cycle or measurement number. Time 

dependent effects could only be measured at 24 °C in the cooling cycles (Figure 73 on page 

106). Here, the d-spacing for measurement 1 reached a maximum. For the subsequent 

measurement 2, on the contrary, the d-spacing was lower. For both measurements in both 

cooling cycles, the d-spacings at 24 °C are anomaly large, compared to the values of the 

heating cycles.  

Discussion on NR results  

The Bragg peak amplitude is an excellent parameter to follow the main phase transition 

between Pβ‘ and L phase. Most pronounced changes are visible at a critical temperature 

between 24.0 °C and 24.5 °C (Figure 69 on page 101). Here, the main phase transition 

between the Pβ‘ phase and Lα phase appears, as also confirmed by other groups [38, 50]. The 

rapidly changing slope of the d-spacing and its peak behaviour upon approaching the phase 

transition temperature Tm show the anomalous swelling as reported earlier [18, 37] and 

described in chapter 2.1. (on page 20). After heating, a pronounced change is also visible in 

FWHM. As described in chapter 3.2.4 (on page 38) amplitude and FWHM of the Bragg 

peaks are linked to the correlation length of the lipid bilayers of the system: The number of 

correlated bilayers is proportional to             and 
 

    
 (Equation 3.37 and Equation 

3.38 on page 39). These relations are derived for crystalline systems, with stacks of perfectly 

flat layers and identical d-spacing. In the multilayer system investigated here, stacking 

disorder and bending fluctuations are present, which result in variations of the Bragg peak 

shape. A review on such effects is given in [91]. Small variations in d-spacing or stacking 

disorder are described within the paracrystalline theory (PT).  The long–range order is lost, 

resulting in decreasing Bragg peak amplitudes and increasing FWHM. In a second theory, 

bending fluctuations of the layers are considered, described by the modified Caillé theory 
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(MCT). Here, the decrease in Bragg peak amplitude and increase in FWHM are less 

pronounced (cf. Figure 5 in [131]). In the Pβ‘ phase, the substrate-bound lipid layers exhibit a 

high bending rigidity κ, resulting in a static stacking disorder in their gel state and the PT 

theory should be applicable for T < Tm. As the bending fluctuations increase with temperature 

and become prominent in the Lα phase, the MCT theory should be applied for T > Tm. In 

order to display the different effects on the Bragg peak shape, the ratio between            

and 
 

    
 was calculated and is displayed in Figure 72.  
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Figure 72: Ratio between             and 
 

    
  as a function of temperature. 

 

In the Pβ‘ phase between 20.0 °C and 24.0 °C the ratio            / 
 

    
 does not show a 

constant value. Hence, there is stacking disorder in the lipid multilayer stack, and the long 

range crystalline order is lost [91]. Upon approaching the main phase transition from below, 

the long range order increases with the increase of the domain size, i.e. the number of 

coherently scattering individual lipid layers, resulting in increasing Bragg peak amplitudes. 

The main phase transition from Pβ‘ to L between 24.0 °C to 24.5 °C induces a chain melting 

with an increasing mobility of the individual lipid molecules within the lipid layers, that 

allows the system to correct for stacking disorder. The constant value between 24.5 °C and 

30.0 °C is a result of the good alignment of the lipid stack with respect to the interface [38]. 

Here, an increase in amplitude, accompanied with a decrease in FWHM, has its origins in an 
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increasing correlation between the lipid bilayers, hence an increasing coherence length 

perpendicular to the sample surface.  

In addition, the chain melting at the transition from 24.0 °C to 24.5 °C is accompanied with 

an increase in gauche conformations [31], which results in a decrease of bilayer thickness 

along the bilayer normal [36]. Also the reverse, the transition from gauche back to trans 

conformers, resulting in an increasing repeat distance, can be followed by cooling the system. 

At a critical temperature of 24.0 °C a time dependent effect was observed upon cooling. Here, 

the first of two subsequent measurements at 24 °C revealed a different d-spacing 

(d = (65.63 ± 0.02) Å) as compared to the second measurement at the same temperature 

(d = (65.44 ± 0.02) Å). Even though the difference of 0.2 Å is small, it is beyond the 

experimental uncertainty.  
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Figure 73: The d-spacings for the cycle cooling1. Displayed are the values for both measurements (meas. 1 

and meas. 2) measured with a time difference of 50 min.   

 

Furthermore, this time dependent effect was measured for both cooling cycles (cooling1 and 

cooling2). In addition, for all other temperatures, the measured values for first and second 

measurement are identical within the error. The d-spacings for cycle cooling1, the first and 

second measurement, are shown in Figure 73. The d-spacings around the critical temperature 

are reported with differing values in the literature. In addition, the variations of the d-spacings 

with temperature upon approaching the critical temperature are reported with different slopes. 

A summary of literature data is given in [18]. The discrepancies reported might have their 

origin in the partly long equilibration time (> 50 min) of the investigated systems, as seen in 

the present work (Figure 73).      
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5.3.3 Phase transition in the light of IR and NR – a comparative discussion  

The performed experiment gave the unique possibility to correlate the lipid phase behaviour 

on different length scales. The combined IR and NR experiment at BioRef showed clearly the 

relation between the order of the individual lipid chains and the resulting order of the lipid 

layers (Figure 74).  

 

 

Figure 74: Measurements at BioRef comprise structural orders on different length scales. While the lamellar 

lipid order on the mesoscopic scale is probed by neutron reflectivity, the lipid chain order on the molecular 

length scale is probed by infrared spectroscopy.      

 

 

Both techniques, IR and NR, revealed a drastic change in the corresponding signals between 

24.0 °C and 24.5 °C, that corresponds to the main phase transition between the ripple phase 

Pβ‘ and the liquid phase Lα of DMPC fully hydrated in D2O [132]. Taking the peak 

amplitudes of each technique as an order parameter, an inverse behaviour is observed (Figure 

75 on page 109). While the IR amplitude of the νs(CH2) absorption band is correlated with 

the order of the lipid chains, the Bragg peak amplitude from NR is correlated with the order 

of the layered system. A direct comparison of the amplitudes upon heating shows that a 

decreasing order of the individual lipid chains results in an increasing order of the layered 

system when crossing the phase transition temperature between 24.0 °C and 24.5 °C. Upon 

cooling the inverse effect can be seen: the order of the individual lipid chains increases, while 

the order of the layered system decreases when the phase transition is crossed. 

 

In addition, the combined measurements assist the ongoing discussion about the origins of the 

swelling behaviour of the multilayered system in the vicinity of the main phase transition [39, 
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42-44]. In line with literature observations the present measurements show (Figure 76 on 

page 109), that changes (anomalies) in the repeat distance arise (as seen by NR), which 

cannot be explained by changes in the chain conformation of the lipid molecules (as seen by 

IR): For T < 24 °C an increase in wavenumber upon approaching the main phase transition 

temperature indicates additional gauche conformers in the lipid bilayers, which result in an 

decreasing bilayer thickness [36]. In contrast, the total d-spacing increased in the same 

temperature range. These discrepancies are most pronounced between 24.0° and 24.5 °C: The 

drastic increase in gauche conformers, upon heating, does not result in a decrease in total d-

spacing. Quite the contrary effect was measured in the first heating cycle (heating1): An 

increase in total d-spacing was observed. In addition, these discrepancies are visible upon 

cooling the system. As the change in repeat distance cannot be explained by a change in the 

conformation of the hydrocarbon chains, an additional effect must be taken into account. 

Keeping the model for fully hydrated lipid bilayers in mind (Figure 4 on page 17), it is 

assumed, that the increase in total d-spacing is a result of an increase in water layer thickness 

(dsolution) in between two neighbouring lipid membranes [44, 45]. A decrease in the bending 

rigidity κ upon approaching the main phase transition temperature at Tm = 24.46 °C, induces 

an increase in steric repulsions between two bilayers and hence results in the observed 

increase of dsolution [43]. 
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Figure 75: Comparison between neutron reflectivity (NR) and infrared absorption (IR) data. Shown are the 

Bragg peak amplitude from NR (green) and the absorption amplitude from IR (red). While the NR amplitude is 

proportional to the lipid bilayer order, the IR amplitude is proportional to the chain order of the individual lipid 

molecules. The signals show inverse behaviour. The values for the IR amplitude are within an uncertainty of 

± 0.011, as is illustrated for the first point only. The uncertainties of the NR amplitudes are smaller than the 

symbols. 
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Figure 76: Comparison between neutron reflectivity (bottom) and infrared spectroscopy (top) data. Shown are 

the d-spacings (bottom) of a multilamellar lipid coating on silicon support and the corresponding wavenumbers 

(top) of the  s(CH2) absorption band. The temperature range between 20 °C and 30 °C was investigated in four 

successive temperature cycles. The values for the wavenumbers are within an uncertainty of ± 0.12 cm
-1

, as is 

illustrated for the first point only. The uncertainties of the d-spacings are smaller than the symbols. 



5. LIPID MEMBRANES IN PURE AQUEOUS SOLUTIONS 

 

  
     110  

5.4 Summary of chapter 5 

 

This chapter addressed the structure of solid-supported lipid membranes incubated in pure 

D2O. At first, the expected neutron reflectivity (NR) of the systems was simulated as a 

function of the number of lipid bilayers. Subsequently, the stability of the experimental 

systems was examined under varied environmental parameters such as temperature (T), 

pressure (p), shear rate and substrate chemistry. At third, the main phase transition of the 

experimental lipid systems was investigated simultaneously on different length scales by 

combined NR and ATR-FTIR measurements.  

 

A box model of an oligolamellar lipid coating in D2O was developed and the viability and 

constraints of a single Bragg peak analysis were verified by the analysis of simulated NR 

experiments. 

 

Experimentally it was found, that the measured DMPC lipid coatings at the solid-D2O 

interface were stable in their ripple phase, Pβ‘, both on Si/SiO2 and Ti surfaces, also upon 

application of external shear forces. In their Lα phase (at higher T or elevated p at higher T) 

unbinding of the lipids from support occurred layer-by-layer. 

 

The main phase transition of multilamellar lipid coatings incubated in pure D2O, monitored 

as a function of temperature and time, was accompanied by drastic changes in both neutron 

reflectivity and infrared absorption signals. An anomalous swelling was found in the vicinity 

of the main phase transition that could not be explained by the concurrent lipid chain melting. 

It is suggested that a decrease in bending rigidity κ of the lipid membranes is the origin of the 

observed effects. 
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6. Lipid membranes at physiological conditions 

After completion of all necessary reference measurements against pure D2O, we now turn to 

measurements in a more natural environment. Important in the contexts of lipid membranes 

under load and joint lubrication is the combination of phospholipids with hyaluronic acid 

(HA). In mammal joints HA is one of the most abundant components [133]. In a first 

approach, infrared absorption spectra of HA, DMPC and mixtures of both were analyzed 

(chapter 6.1). Next, the influence of HA on DMPC phase transitions was investigated by 

calorimetry (chapter 6.2). Subsequently, the impact of HA on supported lipid membranes at 

the solid-liquid interface was examined by neutron reflectivity measurements (chapter 6.3). 

In order to approach physiological conditions, the influence of HA on a lipid membrane 

system was further studied at 39 °C (chapter 6.4). In addition, the stability of the interfacial 

lipid coatings under load was investigated by using a shear setup (chapter 6.5) and a pressure 

cell (chapter 6.7) for neutron reflectometry measurements. The studies were extended to a 

multilamellar lipid coating in order to study the phase transition of the system around the 

main phase transition of DMPC by infrared spectroscopy and neutron reflectivity 

simultaneously (chapter 6.8).   
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6.1 Vibrational modes of DMPC and HA 

Introduction 

Infrared spectroscopy is a well-developed tool to study chemical bonds of various molecules. 

Furthermore, molecular interactions can be detected. In order to study interactions between 

lipid molecules (DMPC) and HA on a molecular scale, the infrared absorbance of mixtures 

with three different DMPC:HA weight ratios (1:1, 1:0.1 and 1:0.01) were recorded. The 

absorbance spectra of the DMPC and HA mixtures were compared to absorbance spectra of 

the pure components.  

Pure DMPC 

To get an insight in the chemical structure of the lipid molecule DMPC in the lamellar phase, 

ATR-FTIR measurements were performed. For this purpose 30 µL of a solution of 10 mg/mL 

DMPC in chloroform were injected in the BioATR II sample cell. A detailed description of 

the setup used is given in chapter 3.2.2 (on page 29). After the chloroform was evaporated 

overnight an infrared spectrum of the resulting multilamellar lipid coating was measured at 

room temperature in ambient humidity. A spectrum of the clean sample cell was used as a 

reference spectrum. The resulting absorbance spectrum shows a number of characteristic 

absorption peaks of DMPC (Figure 77). The most pronounced peaks with corresponding 

wavenumbers   DMPC are summarized in Table 6.1 on page 116 including vibrational modes of 

the respective functional groups and references from literature (  lit). The characteristic 

absorption bands of the lipid head groups are clearly visible: the asymmetric and symmetric 

stretching mode of the phosphate groups (PO2) at 1233 cm
-1

 and 1089 cm
-1

 as well as the 

absorption of the nitrogen groups (N
+
(CH3)3) at 970 cm

-1
. The carbonyl groups (C=O) absorb 

at 1736 cm
-1

. The strongest bands result from the lipid chain groups: The methylene groups 

(CH2) have prominent absorption bands at 2917 cm
-1

, 2849 cm
-1

 and 1468 cm
-1

 

corresponding to the asymmetric and symmetric stretching, and the scissoring mode, 

respectively.  

Pure HA 

With the same protocol the infrared absorption of a thick coating of hyaluronic acid (HA) 

was measured: For this purpose, 20 µL of a solution of 3 mg/mL HA in D2O was injected in 

the clean BioATR II sample cell. After evaporation of the solution, a spectrum was measured 

the next day at room temperature in ambient humidity, using a spectrum of the clean sample 

cell as a reference spectrum (Figure 77). The most pronounced infrared absorption results 

from the carboxyl groups at 1035 cm
-1

 and the amide groups at 1604 cm
-1

. The absorption 
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bands at 946 cm
-1

, 1149 cm
-1

 and 1074 cm
-1

 show the existence of CO-O-C bonds. In 

addition, typical absorption bands of HA are at 1645 cm
-1 

( (C=O)), 1407 cm
-1

 ( (C-N), 

δ(N-H)) and 1375 cm
-1 

( (C=O)) [134, 135].   

Mixtures of DMPC and HA 

Finally, the infrared absorption of a three mixtures of DMPC and HA were measured. For 

this purpose, three different glass beakers were each filled with 3 mg DMPC dissolved in 

chloroform. In the following the solvent was evaporated under vacuum. The resulting thin 

films of DMPC were dissolved in 1 mL of different HA solutions, using a vortex mixer. The 

different concentrations were 3 mg/mL, 0.3 mg/mL and 0.03 mg/mL HA in D2O. This 

procedure resulted in different DMPC to HA weight ratios of 1:1, 1:0.1 and 1:0.01. For ATR-

FTIR measurements, 20 µL of a mixed solution was filled in the BioATR II sample cell. 

Afterwards the sample chamber was left open for 7 h, in order to let the D2O solvent 

evaporate. This resulted in strong absorption bands of the composite films. A spectrum of the 

clean sample cell was used as a reference spectrum. An analysis of the 1:1 mixture showed, 

that the resulting absorption bands consist of a superposition of the individual absorption 

bands of DMPC and HA (Figure 78). The amplitudes of the HA absorption bands are in 

general higher than the amplitudes of the absorption bands of DMPC for the 1:1 mixture. A 

change in spectral position of the infrared absorption of any quasi molecular group could not 

be detected, as compared to the absorption of the pure components. Keeping the 

reproducibility of the individual absorption bands in mind, an interaction between DMPC 

molecules and HA molecules in terms of HA binding to the head group or tail group region 

of the lipid molecules could not be. The spectra of mixtures with lower HA fraction, showed 

decreasing HA absorption bands. This can be best followed at the strongest absorption bands 

of HA for ν(C-N, N-H) at 1604 cm
-1

 and ν(C-O) at 1035 cm
-1

, labelled 4 and 9, respectively, 

and marked with a green line in Figure 78. For the 1:0.01 mixture, the absorption of HA is 

not recognizable anymore. In addition, when the dried mixtures got re-hydrated with 20 µL 

D2O, the influence of HA on the absorption spectra vanished, even though the infrared 

absorption of DMPC is still clearly visible. HA might have dissolved into the solution and 

was therefore outside the penetration depth of the IR beam. 
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Figure 77: Infrared absorbance spectra of DMPC (top), HA (middle) and a mixture (bottom) of DMPC:HA 

(1:1), measured at 20 °C in ambient humidity. Spectra of the clean sample cell were used as reference spectra. 

An analysis of the spectra is shown in  

Table 6.1.on page 116.  
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Figure 78: Infrared absorbance spectra of mixtures of DMPC and HA at different ratios. The black lines 

correspond to the absorption of the dried components, while the blue lines show the absorption, after the 

samples were hydrated with 20 µl of pure D2O. The labels of the absorption bands in the top plot correspond to 

lipid absorption bands (characters) and HA absorption bands (numbers).The decreasing absorption of HA with 

decreasing concentration can be best followed at the marked positions (green line). 
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From the performed measurements, one can estimate that a DMPC to HA mass ratio of 

around 1:0.1 is necessary in order to distinguish clearly between the infrared absorption of 

the two components. For lower HA concentrations, the absorption spectra are dominated by 

the DMPC infrared absorption bands. Furthermore, no molecular interaction could be 

detected. 

 

DMPC 

label 

  DMPC 

in cm
-1

 

  lit 

[48, 136] 

vibrational 

modes 

HA- 

label 

  HA 

in cm
-1

 

  lit 

[134, 135] 

vibrational 

mod
s 

A ≈3363   (H2O) 1 ≈3300 ≈3400  (H2O) 

B 
3040 

3028-

3050
 

 as(CH3)  
   

C 2955 2956
  as(CH3)     

D 2917 2920
  as(CH2) 2 2893 2889  as(CH3) 

 284 2850
  s(CH2)     

F 1736 1740
  (C=O)     

G 1651 1650
  (C=C) 3 1645 1639  (C=O) 

 
  

 4 
1604 


1603-

1611 
 as(COO

-
) 

H 1468 1468
 

δs(CH2)     

I 
1416 1418

 
δs(CH2) 5 

1407 1411 
 (C-N), δ(N-

H) 

J 1377 1378
 δ(CH3) 6 1375 1377  (C=O) 

K 1233 1250
  as(PO

-
2     

L 
1172 1170

 
 as(CO-O-

C) 

7 
1149 1150  (CO-O-C) 

M 108 1092
  s(PO

-
2) 8 1074 107  (CO-O-C) 

  
  9 1035 1044  (C-O) 

N 
970 970

 
 as(C-N

+
-

C) 

10 
946 947  (C-C) 

 

Table 6.1: Analysis of infrared absorption bands of DMPC (  DMPC) and HA(  HA), as seen in Figure 77 on page 

115, shown in comparison with values from literature (  lit), with the symmetric (s) and asymmetric (as) 

stretching  , the deformation vibration δ, the scissoring vibration δs  
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6.2 Differential scanning calorimetry on multilamellar lipid vesicles 

DSC measurements were conducted on fully hydrated DMPC multilayer vesicles diluted in 

pure D2O or in a solution of 3 mg/mL HA in D2O. DMPC was used in a concentration of 

2.5 mg/mL. The temperature range between 15 °C and 45 °C was scanned (heated) several 

times with a rate of 1 °C per minute, until the system responded with reproducible line shapes 

(4. scan). Results for the first and fourth scan are shown in Figure 79. Upon heating both 

samples showed an endothermic pre-transition at (16.8 ± 0.1) °C and an endothermic main-

transition at (24.38 ± 0.02) °C. As described in chapter 2.1 (on page 17), the pre-transition is 

the transition from the gel phase Lβ‘ to the ripple phase Pβ‘ of the multilamellar lipid system. 

In addition, the value for the main transition agrees well with the transition from the ripple 

phase Pβ‘ to the fluid phase L of the multilamellar lipid system in D2O [50]. Interestingly, for 

the HA in D2O solution a shoulder at the positive side of the main transition appears with a 

maximum at (24.55 ± 0.02) °C, indicating a third transition. As this shoulder also appears 

with the system measured in pure D2O (1. scan), the third transition is not provoked by the 

presence of HA. Reports about a third transition could not been found elsewhere. However, 

HA seems to stabilize the third transition of the DMPC multilayer system. 
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Figure 79: Differential scanning calorimetry data of 2.5 mg/mL DMPC dissolved in pure D2O (light blue and 

dark blue line) or in a solution of 3 mg/mL HA in D2O (black and red line).Shown are first and fourth scan of 

the measurements.  
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6.3 Effect of hyaluronic acid on the lamellar structure of surface bound 

lipid films 

Introduction 

A freshly prepared oligolamellar lipid coating on a disc-shaped silicon substrate (sample 1) 

was incubated in a solution of 3 mg/mL HA in D2O and monitored over time at the BioRef 

neutron beam line. With a selected chopper frequency of 45 Hz the sample was measured at 5 

different angular positions to cover the full Q-range from 0.0050 Å
-1

 to 0.3563 Å
-1

. The 

resolution was set to a constant value of 7%, resulting in a measurement time of 3 h over the 

probed Q-range. Certain parts of this chapter have already been published [109]. 

 

Bragg peak analysis 

The first reflectivity curve shows a measurement conducted 6.7 h after incubating sample 1 in 

the HA solution at 20 °C (Figure 80). The Bragg peak at Q1=0.0949Å
-1

 reveals a repeat 

distance of d1 = (66.22 ± 0.06) Å. Subsequent reflectivity curves show a continuous decrease 

of the Bragg peak intensity at Q1 = 0.0949 Å
-1

 (Figure 81). For a more detailed look on the 

lamellar system the Bragg peak area, A, was analyzed. A is proportional to the number of 

layers contributing to the Bragg peak signal, as outlined in chapter 3.2.4 on page 39. In order 

to analyze the scattering curves independently from the influence of the reflectivity of the 

silicon substrate (Fresnel reflectivity) the curves were normalized by a simulated Fresnel 

reflectivity (RFresnel) curve from the bare silicon substrate (Figure 82). Afterwards, the Bragg 

peak area was integrated numerically. The integrated Bragg peak area A1 from the peak at 

Q1 = 0.0949 Å
-1 

is shown as a function of time in Figure 84. The decreasing amplitude as well 

as the decreasing Bragg peak area indicates that the lipid film undergoes a structural change: 

lamellae with the lamellar spacing d1 disappeared with time.  

 

Two additional Bragg peaks appeared between 0.025 Å
-1

 and 0.050 Å
-1

 (QP1) and between 

0.055 Å
-1

 and 0.075 Å
-1 

(QP2), respectively (Figure 80). They are the first (n=1) and second 

(n=2) order Bragg peaks of a new lamellar phase Lp with a repeat distance dp. With evolving 

time these Bragg peaks became more and more pronounced, while their maximum positions 

shifted to smaller Q-values (Figure 83). The integrated Bragg peak area of the first and 

second order peak of the Lp phase, AP1+P2, is shown in Figure 84. In addition to an increase in 

the Bragg peak area, the d-spacing increased with time (Figure 85). Starting with an already 

large repeat distance of dp = (137.12 ± 0.80) Å after 6.7 h, a constant swelling rate was 
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observed after 19 h of incubation with a slope of 0.23 ± 0.01 Å per h. A final measurement 

was performed after 89.5 h, showing a repeat distance of dp = (166.27 ± 0.58) Å.  

Discussion  

The presence of HA has a strong impact on the oligolamellar lipid coating. Upon incubation 

in a solution of 3 mg/mL HA in D2O, the structure of the coating starts to change drastically: 

A new lamellar phase Lp appears. The d-spacing of the new phase Lp showed at first 

detection, after 6.7 h of incubation, a value twice that of the d-spacing of the original Pβ‘ 

phase. In addition, during the observation time, the lamellar Pβ‘ phase was still present. The 

comparison of the integrated Bragg peak areas of the Lp phase and the Pβ‘ phase reveals a 

reverse behaviour of the phases: While the scattering intensities for the Lp phase increases 

linearly with time, the scattering intensities for the Pβ‘ phase decreases linearly on the same 

time scale (Figure 84). This indicates a re-ordering of the lipid coating from Pβ‘ phase to the 

new Lp phase. Moreover, the constant sum of the peak areas Atot = A1+Ap1+Ap2 over time 

shows that as many lamellae with lamellar spacing d1 disappear as many lamellae with 

lamellar spacing dp appear.  Thus, no unbinding of lamellae is observed. From the fact that 

Atot is constant with time and from the respective linear growth behaviour of Ap1 + Ap2 one 

estimates completion of transition of the lipid layer from Pß‘ to Lp phase at a constant 

temperature of 20°C after 328 h (~14 days). 
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Figure 80: Neutron reflectivity curves of an oligolamellar lipid coating on silicon (sample 1) incubated in a 

solution of HA in D2O. The figure shows the first (black) and the last (red) reflectivity curve of a series of 

measurements performed after the sample was incubated in the solution. The Bragg peak positions of the two 

different lamellar phases are highlighted in grey: QP1 and QP2 indicate the first and second order Bragg peak 

of the new lamellar phase Lp. The peak at Q1 refers to the lamellar phase Pβ’ of fully hydrated DMPC.      
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Figure 81:  A series of neutron reflectivity curves of the oligolamellar lipid coating on silicon, sample 1, 

incubated in a solution of HA in D2O as a function of  incubation time. [109] 



6. LIPID MEMBRANES AT PHYSIOLOGICAL CONDITIONS 

 
                 121 

0.080 0.085 0.090 0.095 0.100 0.105 0.110

0

10

20

30

40

50
 6.7h

 9.7h

 12.8h

 15.9h

 19.0h

 22.1h

 51.2h

 54.3h

 57.4h

 60.5h

 63.6h

 66.7h

 69.8h

 77.4h

 88.5h

 89.4h

R
/R

F
re

s
n

e
l

Q in Å
-1

 

Figure 82: Neutron reflectivity (R) of the Bragg peak at Q1 normalized to the Fresnel reflectivity (RFresnel) of the 

planar silicon substrate (sample 1). The peak vanishes with increasing time. 
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Figure 83: Neutron reflectivity (R) of the Bragg peak at QP1 normalized to the Fresnel reflectivity (RFresnel) of the 

planar silicon substrate (sample 1). The peak becomes more and more pronounced with increasing time. 
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Figure 84: (top) Integrated Bragg peak area A1 of the peak at Q1 and the sum (Ap1+Ap2) of the Bragg peak 

areas of the peaks at QP1 and QP2. (bottom) The total sum of A1, Ap1 and Ap2 is constant with time. [109] 
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Figure 85: d-spacings resulting from Gaussian profiles fitted to the first order Bragg peaks of the Lp phase 

(black points). After 19 h a linear regime with a slope of 0.23 ± 0.01 Å/h is reached (red line).  
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6.4 Effect of time and temperature 

Introduction 

In order to investigate the structure of the lamella phase Lp found in supported DMPC 

coatings after incubation with HA at physiologically relevant temperatures, a freshly prepared 

oligolamellar lipid coating was prepared and measured. For this purpose, a block-shaped 

silicon substrate (sample 2) was spin-coated with a solution of 10 mg/mL DMPC in 

chloroform and incubated in a solution of 3 mg/mL HA in D2O. Measurements were 

performed at 21°C and 39°C. Parts of this chapter have already been published [109]. A 

summary of the performed measurements is shown in Figure 86. 
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Figure 86: Neutron reflectivity of the oligolamellar lipid coating on a silicon substrate (sample 2), incubated in 

a solution of 3 mg/mL HA in D2O as a function of incubation time and temperature. For clarity the plots are 

shifted vertically. 

Bragg peak analysis 

A first measurement, performed 9 h after incubation, showed a Bragg peak at 

Q1 = (0.0959 ± 0.0002) Å
-1

, corresponding to a repeat distance of d1 = (65.52 ± 0.14) Å. The 

appearance of a Kiessig oscillation at QK = 0.0217 Å
-1

 with ΔQK = 0.0085 Å
-1 

reveals a total 

layer thickness of t = (739 ± 40) Å, built up by 11 lipid bilayers. An additional measurement 

after 48 h showed already the swelling of the lamellar system with Bragg peaks appearing at 

Qp1 and Qp2, resulting a repeat distance of dp = (198.21 ± 0.63) Å. Finally, after 1032 h, 24 h 

after temperature increase to 39 °C, the reflectivity of the sample revealed five well- 

pronounced Bragg peaks. The series of Bragg peaks (n = 1…5) corresponds to the repeat 

distance dp of the new lamellar phase Lp. An analysis of the Bragg peak positions corresponds 

to a repeat distance of dp = (247 ± 1) Å at 39 °C. 
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Analysis by the optical matrix approach 

The lipid bilayer model, described in chapter 5.1 on page 66, is used as a starting point for 

further analysis of the reflectivity curve measured at 39°C (Figure 86): Lipid bilayers are 

modelled by a layer of hydrophobic lipid chains, sandwiched between hydrophilic lipid head 

group layers. Two neighbouring bilayers are separated by solution interlayers. The total 

number of 11 bilayers, resulting from the analysis of Bragg peak position and Kiessig 

oscillations, taken from the first measurement at 21°C, was taken as a pre-condition for the 

model fit, assuming that no unbinding occurred. Due to the influence of the silicon substrate 

on the one hand, and the missing opposing layer on the other hand, the first and last bilayer of 

the oligolamellar stack of bilayers was fitted with values which are decoupled from the 9 core 

membranes. The model had to be re-adjusted, due to the drastic change in reflectivity upon 

incubation in the HA solution, compared to the reflectivity of an oligolamellar lipid coating 

incubated in pure D2O: Two additional layers, close to the head groups of the lipids, have to 

be taken into account, in order to model the measured reflectivity curve (Figure 87). Each 

layer has a thickness of d = 22 Å and a scattering length density of SLD = 5.39 x 10
-6

 Å
-1

 as 

determined from the model fit. The lower SLD, as compared to the pure solution with 

SLD = 6.03 x 10
-6

 Å
-1

, results from a higher proton density. Hence, this layer is composed of 

a binary mixture of HA and D2O. For this reason the additional layer is labelled HA layer. By 

applying Equation 3.23 (on page 35) the volume fraction of HA can be extracted, using the 

experimentally determined scattering length density of the solution SLD(D2O) = 6.03·10
-6

 Å
-2 

and the calculated value for HA by applying Equation 3.22 on page 34, presuming isotopic 

exchange of all displaceable H by D for HA in D2O. Based on a mass density of 1 g/cm
3
 and 

11 potentially displaceable hydrogen atoms per HA monomer, the scattering length density 

shifts from SLD(HA in H2O) = 1.46·10
-6

 Å
-2

 to SLD(HA in D2O) = 3.19·10
-6

 Å
-2

. The volume 

fraction of HA in the HA layer could be determined to 23 % HA in 77 % D2O.  

The drastic increase in total d-spacing was taken care of by re-adjusting the water layer 

thickness (dsolution) in between two membranes from formerly 10 Å to 142 Å. The resulting 

theoretical curve, modelled by the optical matrix approach, fits well to the measured data 

points with χ
2 

= 2.38 x10
-2

 (Figure 88). The adjusted model is sketched in Figure 87. The 

resulting scattering length density profile (Figure 89) shows the detailed coating profile along 

the z-direction, perpendicular to the sample surface. The figure shows alternate regions with a 

high SLD (6.03·10
-6

 Å
-2

) of the solution and low SLD (2.88·10
-6

 Å
-2

) of the lipid tail groups. 

All fitting parameters are summarized in  

Table 6.2 (on page 127). 
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Figure 87: Model of a fully swollen, oligolamellar lipid coating on a silicon substrate, incubated in a solution 

of HA in D2O.  Silicon was used as a solid support, covered with a layer of silicon oxide (0). An oligolamellar 

lipid coating was modelled by subdividing the system into three parts: First, an inner lamella (1) is directly 

attached to the silicon oxide layer. The inner lamella is followed by several core lamellae (2), which have the 

same d and SLD. Finally, this stack of layers is covered by a terminal lamella, the outer lamella (3). Each lipid 

lamella is represented by a layer of hydrophobic lipid chains (5) with a hydrophilic head group layer at each 

side (6). Two neighbouring lamellae are separated by a solution interlayer (4). In addition, a HA layer (7) is 

attached to the outer surfaces of each membrane. Thickness and SLD of each layer were subject to fitting. 

[109] 

 

For comparison of the extracted structural parameters with the reference system measured in 

pure D2O, the neutron reflectivity curve of sample C (chapter 5.2.1 on page 77) was fitted 

with the more elaborated model: The combined interlayer was separated into two different 

layers, namely a head group layer (heads) and a solution interlayer (solution). As expected, 

the higher number of fit parameters resulted in a better fit: the χ
2
 of the fit changed from 

3.10 x10
-2

 to 2.58 x10
-2

. The basic picture of the oligolamellar coating as shown in Figure 38 

on page 66 is not affected by such procedure. The resulting values are in good agreement 

with earlier findings [110]. All parameters are listed in  



6. LIPID MEMBRANES AT PHYSIOLOGICAL CONDITIONS 

 

  
     126  

Table 6.2 on page 127. 
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Figure 88: Neutron reflectivity of the oligolamellar lipid coating on a silicon substrate (sample 2) incubated for 

43 days (1032 h) in a solution of 3 mg/mL HA in D2O and measured at 39 °C.  Bragg peaks are caused by a 

lamellar repeat distance of dp = (247 ± 1) Å.  Solid line: Fit to the data. Parameters are listed in  

Table 6.2. [109] 
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Figure 89: Scattering length density (SLD) plotted versus distance from the silicon substrate, z, of sample 2. The 

measurement was performed at 39 °C in a solution of 3 mg/mL HA in D2O after 43 days (1032 h) of incubation. 

The plot is the real space representation of the fit in Figure 88. The parameters are listed  in  

Table 6.2 [109] 
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  Sample C 

in D2O 

@21 °C 

 Sample 2 

1032 h in HA+D2O 

@39 °C 

  d  

 

[Å] 

SLD   

x 10
-6 

[Å
-2

] 

  d  

 

[Å] 

SLD  

x 10
-6 

[Å
-2

] 

 

substrate 
silicon N/A 2.07  N/A 2.07  

silicon oxide 18 3.48  10 3.48  

inner lamella 

heads 8 4.01  12 3.93  

tails 35 1.50  36 1.53  

heads 14 4.14  9 4.89  

HA layer - -  26 5.91  

core lamellae 

..       

solution  10 6.25 

x6 

142 6.03 

x9 

HA layer - - 22 5.39 

heads 10 3.64 10 3.92 

tails 34 1.79 33 2.88 

heads 10 3.64 10 3.92 

HA layer - - 22 5.39 

..       

outer lamella 

solution  16 6.25  142 6.03  

HA layer - -  19 5.39  

heads 11 3.75  12 4.10  

tails 34 2.07  34 3.18  

heads 8 5.89  12 4.10  

HA layer - -  19 5.39  

solution 
bulk solution 

    

N/A 6.25  N/A 6.03  

goodness of fit χ² 2.58 x10
-2

  2.38 x10
-2

 

 

Table 6.2:  Fitting parameters for sample 2, incubated for 43 days (1032 h) in a solution of 3 mg/mL HA in 

D2O, measured at 39°C (green column). For comparison the corresponding values for sample C, incubated in 

pure D2O at 21°C (blue column) are also listed.  The resulting scattering length density profile of sample 2 is 

shown in Figure 89. A detailed description of measurements on sample C is given in chapter 5.2.1 on page 71. 

[109] 
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Fourier analysis 

In addition to above analysis, a Fourier analysis of the measured Bragg peaks up to the fifth 

order (nmax = 5) revealed a scattering length density profile Sexp(z) of the 1D unit cell 

according to Equation 3.46 (on page 41), independent of the optical matrix approach. The 

result is shown in Figure 90 on page 129. For comparison with the optical matrix approach a 

theoretical scattering length density profile of a DMPC lipid membrane in pure D2O was 

constructed, according the procure described by Wiener et al. in 1991 [137]. In brief [109], 

the unit cell is modelled as a lipid bilayer, sandwiched between two water layers (cf. Figure 4 

on page 17) with the hydrophobic chain groups in the centre of the unit cell. The model 

bilayer is subdivided into a number of five quasi-molecular groups: methyl (CH3), myristoyl 

(2x C12H24), glycerol (C5H5O4), phosphate (O4P) and choline (C5H13N). The water layers a 

represented by cylinders of pure D2O molecules as conjunctions between two neighbouring 

membranes.  The length of the cylinder is the difference between the total lamellar spacing 

dp = 247 Å resulting from the measurements and the thickness of the pure bilayer with dbilayer 

= 48 Å [138]. With an area ADMPC of a DMPC molecule of 63 Å and a volume of a water 

molecule of 30 Å
3
, 418 water molecules were calculated to be contained in a cylinder 

between two neighbouring membranes. For the centrosymmetric unit cell model, half of the 

water molecules are attributed to one lipid molecule and represented by 10 quasi-molecular 

groups, each with the SLD of 21 D2O molecules. According to Wiener et al., each quasi-

molecular group i at a position zi can be represented by a Gaussian distribution and multiplied 

by its group neutron scattering length Si. The sum over all distributions results in the 

theoretical scattering length profile Stheo(z) of a single unit cell, taking the experimental 

resolution res into account: 

 

          
  

      

 

   

       
      

   
 
 

  Equation 6.1 

 

     
  

      
 Equation 6.2. 

 

All values are summarized in Table 6.3. A comparison of Sexp(z) and Stheo(z), including the 

profile resulting from the difference between them, is shown in Figure 90 on page 129. All 

profiles are normalized by the area ADMPC of one DMPC molecule, resulting in a SLD profile. 

The maximum difference between the two profiles arises at z = ± 44 Å, indicating protonated 
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regions close to the head groups of the lipid molecules. With the resulting SLD at z = 44 Å 

for SLD(theo) and SLD(exp) a volume fraction of 16% HA could be calculated for that 

position in the profile according to Equation 3.23 (on page 35). 

 

 

 

 

Figure 90: Scattering length density profiles resulting from a Fourier analysis of the measured Bragg peaks 

Sexp(z)(red line, left abscissa) and from theoretical considerations Stheo(z) (blue line, left abscissa), the later 

including only pure D2O. The difference profile is shown in green (right abscissa).[109] 

 

 

 

 

 

i 1 2 3 4 5 6 … 15 

quasimolecular 

group 
CH3 2xC12H24 C5H5O4 O4P C5H13N 21xD2O … 21xD2O 

Si in 10
-5

 Å -9.14 -19.97 37.70 28.34 -6 400 … 400 

zi in Å 0 7 15 20 23 30 … 120 

Table 6.3:  Parameters for SLD profile calculation by Fourier analysis. Values for scattering length Si and 

position zi are taken from literature [86, 137].[109] 
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Discussion 

Even though a drastic change in reflectivity has been measured, the detailed analysis of the 

reflectivity data ( 

Table 6.2 on page 127) shows that lipid bilayer formation is not altered by the presence of 

HA in the incubating solution. The drastic increase in total repeat distance by 380 % did not 

destruct the lamellar order of the lipid molecules. In addition, the correlation between the 

individual membranes is high, resulting in five sharp Bragg peaks. Hence, with both 

incubating liquid phases, pure D2O and the solution of HA in D2O, the reflectivity of 

repeating lipid bilayers with a well-defined d-spacing appear clearly in the reflectivity data. 

The thickness of the hydrophobic core of one single DMPC bilayer membrane is 34 Å in pure 

D2O and 33 Å in the solution of HA in D2O. The values match theoretical predictions 

presuming a sequence of 2 × 12 × 1.27 Å + 2 Å=32.48 Å for the (CH2)11–CH3 H3C–(CH2)11– 

acyl chain region in all-trans conformation and the van der Waals radii of the terminal H 

atoms within a confidence level of 95 %. The deviations of measured SLD from expectation 

are more pronounced. The extracted value of 1.79·10
-6 

Å
-2

 in pure D2O and 2.88·10
-6 

Å
-2 

in 

the solution of HA in D2O for the tail strata compares less favourable with the expected SLD 

of -0.28·10
-6

 Å
-2

 for a uniform condensed acyl chains layer [139]. The likely explanation for 

the observed increase in SLD in our case is the intrusion of pure water into the tails strata for 

the system measured against pure D2O. Based on Equation 3.23 (on page 35) one calculates a 

volume fraction of D2O of 32 % within the hydrophobic core of the lipid membranes in pure 

D2O in line with observations reported from other solid-supported lipid membrane systems 

[140, 141]. For the system measured in the solution of HA in D2O, the increase in SLD is 

potentially caused by the contribution of both, D2O and HA to that volume fraction. In this 

case the description of the SLD of the respective layer contains the two unknown volume 

fractions D2O and HA of D2O and HA, respectively, within one equation. Hence, D2O and 

HA cannot be further disentangled within the available set of data.  

 

Although testified by computer simulation [142] the large amount of water (or aqueous HA 

solution) observed, is unlikely distributed homogenously within the alkane slabs. Formation 

of water channels across the individual lipid membranes seems more reasonable and has also 

been observed in other lipid and surfactant systems [143, 144]. Those water channels would 

fragment the oligolamellar lipid coating parallel to the substrate and generate a patchwork 

morphology of aligned lipid membrane platelets. The latter structure corresponds to a brick-

and-mortar model as proposed for stratum corneum on a larger length scale [145, 146]. The 
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water channels must be smaller than the coherence length of the incoming neutrons, i.e., 

smaller than ∼1 μm, as approaches of fitting the data by incoherent superposition of plain and 

lipid covered surface areas were out by a factor of 10, i.e., they yielded χ
2
 values that were 

one order of magnitude larger than those of the best coherent (box model) fit. The thickness 

of the lipid head groups matches closely with the value of 9 Å reported by Büldt and co-

workers for hydrated DMPC membranes [147]. 

 

The additional HA layer, close to the outer head group region of the lipid membranes, is 

composed of a binary mixture of HA and D2O. By applying Equation 3.23 (on page 35) the 

corresponding volume fraction of HA in that layer is 23 % HA in 77 % D2O, using the 

extracted values from the box model fit ( 

Table 6.2 on page 127). The enrichment of HA in the boundary layer adjacent to the lipid 

head groups is also revealed by the Fourier analysis of the neutron reflectivity experiments. 

From the difference profile shown in Figure 90 (on page 129) HA concentration is highest in 

the interstitial water layer adjacent to the lipid membrane at z = 43.8 Å (16 % HA) with 

decaying amounts of HA through the head group region into the tail strata (z  0 Å) and also 

decaying amounts of HA into the large aqueous interlayer (z  ±100 Å). For comparison, the 

volume fraction of HA calculated from the box model is 7 % higher. In addition, the distance 

of the centre position of the HA layer from the centre of a bilayer membrane calculated from 

the box model fit is 33/2+10+22/2 = 37.5 Å (Table 6.3 on page 129). Hence, the positions of 

maximum HA concentration differ by z = 6.3 Å dependent on type of analysis. We attribute 

the uncertainties in position and amount of HA to the limited experimental resolution. 

 

It is relevant to ask how stability is achieved in the lipid coating in its Lp state, keeping in 

mind that the same oligolamellar lipid coating detaches from the substrate when heated above 

Tm in the absence of HA. The major counterpart of the van de Walls (vdW) force must be the 

electrostatic double layer repulsion generated by charging up opposing bilayer membranes 

(introduced in chapter 2.1 on page 17). This is achieved by the enrichment of the negatively 

charged HA in the opposing HA layers. In addition, long-ranged steric repulsion of the 

confined macromolecules might contribute in the same direction. Charging up and 

subsequent swelling of bulk lyotropic lipid phases was reported before. In the system 

dipalmitoylphosphatidylcholine (DPPC)/water a repeat distance of about 150 Å was observed 

in the lamellar phase in the presence of 10 mM MgCl2 by X-ray diffraction [26]. A modified 
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DLVO theory taking into account vdW-interaction of the membranes, hydration interaction 

of the membrane surfaces and electrostatic interactions caused by the Me
2+

 ions adsorbed to 

the membrane surfaces was able to reproduce the experimental results [24]. The theory 

predicted possible static repeat distances up to 250 Å [24, 27]. The lamellar repeat distance of 

our system of 247 Å at 39°C falls within that range and could be caused by such effect. The 

repeat distance of 247 Å was measured after 43 days of incubation time and hence is 

presumably the swelling limit of our system.  

 

 

Figure 91: Bridging (1) and looping (2) conformation of a polymer chain, anchored in two opposing lipid 

membranes. The sketch is inspired by [148] and already published in [109]. 

 

HA, as other polymers, is expected to adopt looping and bridging conformations [57], which 

give rise to additional repulsive and steric (attractive) interactions. Figure 91 (above) 

illustrates possible configurations of the interfacial system DMPC + HA against excess water 

in its Lp state. Within that model, one side of the HA polymer anchors in the hydrophilic or 

hydrophobic slab of a lipid membrane and the other side either anchors in the same 

membrane (looping) or the adjacent membrane (bridging) [149, 150].  

We observed high HA concentration, by a factor above 50 larger than the bulk concentration, 

in the boundary region of the lipid membranes (HA layer) and the respective interstitial water 

layers. That enrichment could be due to looped and/or anchored HA chains. Maximum 

swelling, on the other hand, was expected to be of the order of the end-to-end distance RE of a 

free HA-chain in solution, which according to Kuhn [151] scales as  

 

          
 
  

Equation 6.3 

with the size a of a monomer unit and the degree of polymerization, N.  From the measured 

mass density of 1 g/cm
3
 [152] and the molecular weight of a monomer unit of 378 Da we 

estimate a to be 10.6 Å presuming spherical shape. The hydrodynamic radii RH of HA 
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reported from literature are RH = 116 ± 10 Å for Mw = 85.000 g/mol and RH = 170 ± 20 Å for 

Mw = 160.000 g/mol, respectively. With RE = 2RH the corresponding end-to-end distances RE 

are 232 ± 20 Å (85.000 Da) and 340 ± 40 Å (160.000 Da) [153]. By applying Equation 6.3 

with a = 10.6 Å we calculate respective values RE of 272 Å (85.000 Da) and 398 Å (160.000 

Da) in reasonable agreement with the measured values. In our experiments we used HA with 

an average Mw of 769.000 Da. According to Equation 6.3 RE is thus 1024 Å in our case. That 

number is by a factor of 4 larger than the measured repeat distance of 247 Å. Hence, the 

individual lipid lamellae are not simply separated by Gaussian coils of HA entering the 

interstitial water layers.  

 

Weather HA anchors in the head group regions or the chain group region of the lipid 

membrane is not clear. Both options seem possible. Anchoring at and in the head group 

region of the lipid membrane is likely from the observed variations in SLD in the 

corresponding slabs and is also known from other di- and polysaccharides [22, 154, 155]. HA 

also forms hydrophobic patches [57], which could be anchored in the hydrophobic tail 

regions of lipid membranes. This way a single polymeric HA chain of about 2000 monomer 

units on average as in our case could easily span and thus crosslink several adjacent DMPC 

membranes in the heavily swollen state of the oligolamellar coating at the solid-liquid 

interface at temperatures above Tm. Different stretching of HA molecules in the hydrophobic 

lipid core and in the boundary region of lipid head groups and aqueous interlayers would then 

hold for the observed enrichment of HA in the latter boundary region. The intruding HA 

would transform the lipid coating into a spatially restricted lamellar hydrogel coating. Such 

network-like structures are reported for bulk lyotropic phases of DMPC in the presence of 

double-end anchored polymer-surfactants and aqueous suspensions of phospholipid vesicles 

in the presence of HA [10, 148]. The observed swelling limit is ¼ of the end-to-end distance 

of our high molecular weight HA. Thus it is rather likely that HA chains do bridge adjacent 

bilayers leaflets.  

 

From the conducted experiment it is evident that high molecular weight HA stabilizes the 

oligolamellar DMPC coating on its solid support against the excess fluid phase at 

physiological temperature where – in absence of HA – detachment and irreversible loss of the 

lipid coating is observed. The HA-induced stabilization will be of importance wherever 

artificial solid implants are to be covered with lipid coatings for protection or 

biocompatibility reasons.  
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6.5 Effect of HA and salt 

Introduction 

The question remains open, what are the driving forces for the incorporation of HA 

molecules into an ordered lipid coating? In solution of neutral pH, HA is negatively charged 

[56]. Therefore, electrostatic interactions with the zwitterionic head groups of the DMPC 

molecules might take place. In order to screen the negative charges of HA, salt was added to 

the HA solution. Potential subsequent structural changes of a lipid coating were followed by 

performing neutron reflectivity measurements at V6 after incubation of a freshly prepared 

sample (sample 3) in a solution of 1 M NaCl and 3 mg/mL HA in D2O. The sample consisted 

of a silicon disc that was spin-coated with a solution of 10 mg/mL DMPC in chloroform. 

Starting with incubation at 21°C for 9 h, temperature was increased to 38°C and the sample 

was measured again at 22 h (additional 11 h at 38 °C) and 37 h (additional 26 h at 38 °C). 

Results 

The neutron reflectivity of sample 3 at 21°C after 9 h  revealed a well-ordered, oligolamellar 

lipid coating with a d-spacing of d = (67.77 ± 0.07) Å (Figure 92). From the Kiessig 

oscillations a total layer thickness of t = (488 ± 43) Å was extracted. With the d-spacing and 

Equation 3.36 (on page 39) it was calculated that the oligolamellar coating consisted of 

N = 7.2 ± 0.6 lipid bilayers. A second measurement, performed after 11 h of incubation at 

38°C, resulted in a reflectivity curve with the same characteristics. The Bragg peak amplitude 

revealed a d-spacing of d = (66.02 ± 0.10) Å. The Kiessig oscillations maintained their 

frequency, indicating that the number N of substrate bound bilayers did not change. A final 

measurement (Figure 92) after 37 h of incubation, i.e. 26 h after temperature was increased to 

38°C, showed identical results.    

Discussion 

In contrast to measurements with pure HA solutions, the lipid coating did not change its 

structure upon the addition of salt to the incubating solution. Even after 37 h of incubation 

time no swelling could be observed. Therefore, an interaction between the lipid coating and 

HA could not be observed. It is known that salt (NaCl) screens the electrostatic charges along 

polymer chains. This has two effects on a polymer: First, the charge density of a polymer–salt 

system is reduced and subsequently, a polymer transforms from a linear to a globular shape, 

because originally repulsive segments along the polymer chains vanish due to the screening 

of salt ions [156, 157]. The increase of the specific volume of HA upon increasing NaCl 

concentration could be proven by density measurements of HA in different media [152]. The 
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suppressed interaction of HA with the lipid coating could have on one hand its origins in 

reduced electrostatic interactions between HA and lipid coating. On the other hand, 

interactions between lipid coating and HA could have been prevented by the changed 

conformation of the HA molecules, hence, due to the coiled structure the HA molecules could 

not diffuse into the lipid coating, as their specific volume increased. 

 

From the conducted experiments, as described in chapter 5.2, an unbinding transition in the 

Lα phase at 38 °C was expected. However, the addition of salt seems to stabilize the lipid 

coating in the Lα phase. This might be due to the fact, that the diffusion and mobility of lipid 

molecules within the bilayer is suppressed by the presence of NaCl [158] and therefore the 

unbinding process was not initiated. 

 

The performed experiment shows clearly, that charges play an essential role for the 

characteristics of the lipid – HA system. 
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Figure 92: Neutron reflectivity curves of an oligolamellar lipid coating on silicon (sample 3), incubated in a 

solution of 3 mg/mL HA in D2O, with 1 M NaCl added to the solution. 
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6.6 Effect of shear 

Introduction 

The stabilizing effect of HA on a DMPC lipid coating on silicon at 39°C has already been 

proven by experiments described above (chapter 6.4 on page 123). In order to mimic the 

forces acting on a lipid coating in joints, an external force was applied to oligolamellar lipid 

coatings, which were incubated in HA solutions by using the shear setup (described in 

chapter 3.2.6 on page 50). Structural changes of the coatings were followed by neutron 

reflectivity measurements accomplished with the AMOR instrument at PSI (Switzerland). 

Two different samples (sample 4 and 5), each coated with the spin-coating technique, using a 

solution of 10 mg/mL DMPC in chloroform, were prepared and measured under different 

shearing conditions. In order to mimic the shear force on a knee joint for a moderate load, a 

shear frequency of 1 to 2 Hz was estimated and applied to sample 4. For a more pronounced 

strain on a knee joint, for example resulting from a short distance sprint of a person, a 

frequency of 5 Hz was estimated and applied to sample 5.  

 

Moderate load 

A first sample (sample 4) was measured 0.5 h and 2.0 h after incubation at 21°C without 

shear force (Figure 93). Bragg peak analysis results in a d-spacing of d = (64.92 ± 0.07) Å. In 

addition, the well-resolved Kiessig oscillations reveal a total layer thickness of 

t = (640 ± 74) Å, built up by N = 10 ± 1 bilayers. Until then, no swelling effect was observed. 

In order to catalyse the swelling process and the transformation of the lipid coating into the 

Lp phase, temperature was increased to 39 °C. A measurement 41.0 h after incubation showed 

the provoked effect: The transformation of the oligolamellar lipid coating, with the 

appearance of a Bragg peak in the lower Q-range, is clearly visible. A d-spacing of 

d = (155.5 ± 0.2) Å is calculated, which implies a swelling of the lipid coating by 240%. In 

addition, the second order Bragg peak is well-resolved. In the following, the coating was 

exposed to an external shear force in order to study the stability of the swollen membrane 

system. The first order Bragg peak amplitudes were used as a parameter for quantifying the 

number of substrate bound lipid membranes (compare to chapter 3.2.4 on page 33). Right 

after application of a shear force with a frequency of 1 Hz, the amplitude increased by a 

factor of 3 from 0.111 ± 0.005 to a value of 0.333 ± 0.012, measured at 41 h and 43 h after 

incubation in the HA solution, respectively. However, a second measurement at 1 Hz after 

47 h of incubation already showed a reduced Bragg peak amplitude of 0.210 ± 0.009. An 
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increase of shear frequency to 2 Hz, induced a further decrease of the Bragg peak amplitude 

to a value of 0.169 ± 0.009 after 48 h and to a value of 0.054 ± 0.009 after 49 h. In order to 

verify, whether the reduction of amplitude is independent of the applied shear force, the shear 

force was interrupted for 3 h. Subsequent measurements showed that the downward trend of 

the peak amplitude was stopped. Within this time period, the Bragg peak gained intensity up 

to a value of 0.076 ± 0.008 after 52 h of incubation. However, the re-application of the 

external shear force with a frequency of 4 Hz resulted in a total loss of the Bragg peak, 55 h 

after incubation of the sample. The appearing Kiessig oscillations revealed the existence of a 

residual coating on the silicon substrate with a total layer thickness of t = (175 ± 6) Å. Further 

measurements did not show any more changes in the reflectivity of the sample. Even an 

increase of shear frequency to 20 Hz did not alter the reflectivity curves anymore, measured 

75 h after of incubation.                 

 

Pronounced load 

Sample 5 already shows a transformation into the Lp phase at 21°C, 4 h after incubation in 

the solution (Figure 95). Two occurring Bragg peaks belong to a d-spacing of 

d = (135.5 ± 0.3) Å. After 24 h of incubation time, the swelling proceeded further to a value 

d = (163.9 ± 0.3) Å. Furthermore, 6 h after temperature was increased to 39°C, i.e. 34 h after 

incubation, a d-spacing of d = (170.2 ± 0.3) Å was measured. Application of a shear force 

with a frequency of 5 Hz immediately resulted in the loss of most of the lipid membranes as 

indicated by measurements performed 37 h after incubation. The fact that the remaining 

reflectivity of the silicon surface is still higher than the Fresnel reflectivity of the plain silicon 

substrate clearly indicates the presence of adsorbed material on the otherwise plain surface. A 

subsequent measurement without shear force did not show any further change in reflectivity 

of sample 5.  
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Figure 93: Neutron reflectivity measurements of sample 4 in the shear setup. A silicon substrate with an 

oligolamellar lipid coating was incubated in a solution of 3 mg/mL HA in D2O. From top to bottom the curves 

are displayed with increasing incubation time. Temperature was increased from 21 °C to 39 °C after 8.5 h of 

incubation. In addition, after the transformation of the lipid coating in a HA rich Lp phase (43 h), an external 

shear was applied. For clarity, the reflectivity curves are shifted vertically. 
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Figure 94: First order Bragg peak amplitudes of sample 4, measured after different times of incubation in a 

solution of 3 mg/mL HA in D2O and at different shear rates. Upon application of a shear frequency of 4 Hz, the 

amplitude drops drastically. The corresponding reflectivity curves are shown in Figure 93. 
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Figure 95: Neutron reflectivity curves of sample 5: An oligolamellar lipid coating on a silicon substrate, 

incubated in a solution of 3 mg/mL HA in D2O as a function of incubation time, temperature and subsequent 

shear load. 

Discussion 

In independent experiments using the shear setup, the swelling process of oligolamellar lipid 

coatings upon incubation in solutions of 3 mg/mL HA on D2O was followed. As expected, 

even below the main phase transition of bulk DMPC at 21°C an excessive swelling of the 

coating was observed without shear. Furthermore, the swelling of the lipid coating is 

accompanied with a stabilizing influence on the coating above the main phase transition of 

bulk DMPC at 39°C: A total unbinding of the lipid lamellae did not occur. In addition, the 

swollen coating resists a total unbinding upon a moderate applied shear force: Within 4 h of 

shear with a frequency of 1 Hz, the Bragg peak amplitude, resulting from the lipid coating, 

was always larger than the initial intensity, measured without shear. When sheared with 2 Hz 

for more than one hour, the Bragg peak amplitude decreased significantly. However, relaxing 

the system (0 Hz) stopped the decrease in amplitude and, therefore, the unbinding process.  

 

Keeping the high viscosity of the used HA solution in mind, the stability of the highly 

swollen coating (by 240 %) upon a moderate shear rate is astonishing. However, the exertion 

of a more pronounced strain on the system, by applying 4 Hz or 5 Hz, resulted in immediate 

destruction of the coating with only film residues still bound to the surface.         
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6.7 Effect of pressure 

Introduction 

The influence of hydrostatic pressure on the HA-induced swelling behaviour of an 

oligolamellar lipid coating was studied. An experimental cycle was conducted on the basis of 

the pressure dependent experiment described in chapter 5.1.2 on page 77. The difference was 

in using a solution of 3 mg/mL HA in D2O as the liquid phase, instead of pure D2O. NR 

measurements were performed at the V6 instrument with the high pressure cell [96]. The aim 

of the experiment was to follow structural changes in the lipid coating when crossing the 

main phase transition from the high pressure region (90 MPa) to the low pressure region 

(45MPa) at 38°C. A freshly prepared oligolamellar lipid coating was prepared using the spin-

coating technique with a solution of 10 mg/mL DMPC in chloroform (sample 6).   

 

Results 

Directly after exposing sample 6 to the liquid phase in the pressure cell a reflectivity curve 

was taken at 21°C and 0.1 MPa (Figure 96). The sample showed a Bragg peak at 

QB = (0.0970 ± 0.0005) Å
-1

, resulting in a d-spacing of d = (64.77 ± 0.33) Å. Kiessig 

oscillations appeared, but are not pronounced enough to be resolved in order to determine the 

total film thickness within reasonable accuracy. Analysis by the optical matrix method 

produced a matching fit by assuming 12 lipid membranes making up the whole lipid film. In 

the fitting routine essentially the same parameters were used as for sample E described in 

chapter 5.1.2 (Table 5.3 on page 83). Differences occur in the number of layers and the SLD 

of the bulk solution, which was increased from 6.13 Å
-2

 to 6.37 Å
-2

. Increasing the pressure to 

90 MPa (at 21°C) resulted in a loss of Bragg peak amplitude by 75%. Here, only a Q-range 

around the Bragg peak from 0.078 Å
-1

to 0.108 Å
-1 

was measured. Increase in temperature to 

38°C (at 90 MPa) reversed the intensity loss almost completely: 83% of the initial value at 

0.1 MPa was reached. In addition, a slight increase in reflectivity was observed between 

0.04 Å
-1 

and 0.05 Å
-1

. The subsequent pressure release changed the reflectivity of the lipid 

coating dramatically: the Bragg peak shifted to smaller Q values. This swelling of the lipid 

coating, as described in the previous chapter, was only seen after pressure release to 45 MPa 

at a constant temperature of 38°C (see Figure 96). 
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Figure 96: Neutron reflectivity curves of the oligolamellar lipid coating, sample 6, on silicon, measured against 

a solution of HA in D2O. After crossing the phase transition by releasing the pressure from 90 MPa to 45 MPa 

at 38 °C a pronounced shift of the first Bragg peak to lower Q-values occurred. The incubation times are shown 

in brackets. For clarity the curves are shifted vertically. 

 

In order to follow the swelling process of the lipid coating with time, the Q range between 

0.024 Å
-1 

and 0.104 Å
-1 

was measured every 1.2 h over a total time interval of 46 h (Figure 

97). A Bragg peak analysis of the first order Bragg peak is shown in Figure 98. The 

increasing area and decreasing FWHM indicate an ordering of the lipid lamellae with time. 

After 8 h the d-spacing increases almost linearly with a constant value of 0.390 ± 0.003 Å/h. 

After 46 h a d-spacing of d = (152.06 ± 0.32) Å was measured. A last reflectivity curve was 

measured under these conditions 10 days after the pressure was released from 90 MPa to 

45 MPa (Figure 96). During these 10 days the pressure and temperature were kept constant 

(at 45 MPa and 38°C). Bragg peak analysis of the first order Bragg peak at QB = 0.0359 Å
-1 

revealed a d-spacing of d = (175.02 ± 0.20) Å
-1

. After the pressure was fully reduced to 

0.1 MPa (at 38°C) the d-spacing increased further to d = (190.34 ± 0.30) Å and Bragg peaks 

up to the fourth order became visible. A summary of the finally measured d-spacings is given 

in Figure 99.  
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Figure 97: Time dependent neutron reflectivity curves of the oligolamellar lipid coating, sample 6, on silicon, 

measured against a solution of HA in D2O at 45 MPa and 38 °C. A measurement of the displayed Q-range took 

1.2 h and was repeated until 46 h after releasing the pressure from 90 MPa to 45 MPa. A pronounced shift of 

the first and second Bragg peak to lower Q-values occurred with time. 
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Figure 98: Bragg peak analysis of the first order Bragg peak after releasing the pressure to 45 MPa at 38 °C. 

The red line represents a linear fit with a slope of 0.390 ± 0.003 Å /h. The Bragg peaks are shown in Figure 97. 
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Figure 99: Phase diagram of bulk DMPC lyotropic phases with the performed experimental cycle. The repeat 

distances shown were measured against a solution of 3 mg/mL HA in D2O. After crossing the phase boundary 

for fully hydrated DMPC bulk phases at 69 MPa and 38 °C (red line, from [111]) by pressure release, a 

pronounced swelling occurred from 65 Å to a final value of 190 Å. 

 

 

Analysis of intermediate states 

Many reflectivity curves displayed so far have been recorded for non-equilibrium states of 

the lipid systems (for example Figure 97 on page 142). Using the model of a fully swollen 

lipid coating in the HA rich Lp phase (Figure 87 on page 125), the reflectivity curve of a non-

equilibrated lipid coating during swelling was fitted. Here, the reflectivity curve of sample 6, 

recorded at 38°C, 10 days after the pressure was released to 45 MPa, was taken as a 

representative example (Figure 100, bottom). The broad and non-symmetric Bragg peak 

shapes already reveal an incoherent superposition of reflectivity curves, resulting from a 

variety of d-spacings within the probed lipid coating at the time of the measurement. It is 

assumed that the lipid bilayers are still present at that stage of transformation. Therefore, for a 

model of a non-equilibrated lipid coating, a variety of reflectivity curves were simulated 

considering bilayers which were separated by of solution interlayers with different thickness 

dsolution (compare to Table 6.3 on page 129 and Figure 87 on page 125). Figure 100 (top) 

shows simulated reflectivity profiles, based on the model for a fully swollen lipid coating in 

the Lp phase as described in  

Table 6.2 on page 127. The difference between the individual simulations is the thickness of 

the solution layers, dsolution, in between the bilayers. Here, eleven reflectivity curves with 
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dsolution varying from 100 Å to 150 Å were simulated. Otherwise the same fitting parameters 

as displayed in  

Table 6.2 on page 127 were implemented for the simulations in the Parratt32 software 

package. Subsequently, an incoherent superposition of the simulated reflectivity curves was 

calculated, using different weight factors for each simulated curve. The best congruency 

between the measured curve and the calculated superposition was achieved with the set of 

reflectivity data displayed in Figure 101 and Table 6.4. The resulting reflectivity curve is in 

good agreement with the measured reflectivity curve, indicating the validity of the above 

described approach. 
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Figure 100: The reflectivity curve of sample 6 (bottom graph, green line), measured 11 days of incubation in a 

solution of 3 mg/mL HA in D2O, was approximated by a superposition (bottom graph, black line) of 11 

simulated reflectivity curves (top graph). For the simulated reflectivity curves solution interlayer thicknesses 

dsolution between 100 Å (top graph, blue line) and 150 Å (top graph, purple line) were used with different 

proportions in order to result in the best approximation. 
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Figure 101: Used fractions for a superposition of simulated reflectivity 

curves with different solution interlayer thicknesses dsolution. 

dsolution in Å used fraction 

100 2.5 % 

105 4.0 % 

110 9.0 % 

115 50.0 % 

120 15.0 % 

125 7. 5 % 

130 6.0 % 

135 3.0 % 

140 2.0 % 

145 1.0 % 

150 0.0 % 

Table 6.4: Corresponding values to 

the diagram of Figure 101. 

 

Discussion 

Even after 10 h of incubation in a solution of HA in D2O at 0.1 MPa and 21°C, the lipid 

coating revealed a d-spacing of 65 Å, typical of DMPC in the ripple phase Pβ‘. This result 

contradicts previous measurements showing that even at 20°C after 6.7 h the swelling process 

can be initiated. A pressure increase to 90.0 MPa may have stabilized the system further as 

still no swelling was observed (see Figure 99 on page 143). The loss in intensity of the Bragg 

peak amplitude is due to a loss in scattering contrast between the inter-layers and the tail 

group layers (compare to model in Figure 38 on page 66), initiated by additional D2O 

molecules in the DMPC chain group region. Raising temperature to 38°C seemed to relocate 

D2O molecules out of the tails group strata and the initial neutron contrast re-appears. This 

D2O movement within the DMPC lamellae has been observed before [50, 96]. However, its 

origin is still unclear. The additional temperature increase to 38°C did not alter the Bragg 

peak position, and thus the d-spacing of the system. Only a pressure release to 45.0 MPa 

initiated swelling with 0.390 ± 0.003 Å/h, which is about twice as fast as the swelling 

behaviour observed earlier at 21°C and 0.1 MPa with 0.23 ± 0.01 Å/h (chapter 6.3 on page 

122). A comparison is shown in Figure 102. Measurements made after 10 days show a strong 

deviation from a linear swelling behaviour, with a d-spacing of 175 Å. After an additional 

pressure drop to 0.1 MPa, the d-spacings of the coating increased further by 9%, to a repeat 

distance of 191 Å. It cannot be ruled out, that the swelling process would have continued, but 
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due to the end of the beam time it was not possible to perform further measurements. The 

broad Bragg peak of the final measurement at 0.1 MPa and 38°C (Figure 96 on page 141) 

indicates a coating with a distribution of d-spacings, typical of a non-equilibrium state.  

 

The presumption of a distribution of d-spacings was validated by above analysis (Figure 100 

on page 144). Unfortunately, the analysis does not reveal the special sequence of the d-

spacing distribution. But it is assumed, that the swelling of the oligolamellar lipid coating 

progresses with the diffusion of HA molecules into the coating, starting at the outer 

membranes. The resulting gradient in HA concentration then provokes different stages of the 

swelling process. It shall be pointed out, that a d-spacing below 125 Å has not been measured 

for the described system. There could be two different reasons: First, the primary diffusion of 

HA molecules into the coating took place in a time interval too short to be resolved by the 

performed measurements, or second, the structure of the lipid coating changed instantly upon 

HA molecules entering the interlayer space between two neighbouring membranes.  
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Figure 102: Comparison of d-spacings in HA solutions as a function of incubation time for sample 1, 

measured at 0.1 MPa and 21 °C (from chapter 6.3  on page 122), and sample 6, measured at 45 MPa 

and 38 °C. For comparison, the d-spacing for sample 6, measured at 38 °C after pressure reduction to 

0.1 MPa is shown. The error bars are smaller than the symbols. 
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6.8 Phase transition of multilamellar lipid systems 

The aim of this chapter is to correlate changes of a lipid 

multilayer system as seen by different techniques on 

different length scales. First, the question about 

intramolecular changes of lipid molecules is addressed. On 

that length scale, Fourier transform infrared spectroscopy (FTIR) was performed on the lipid 

system in an ATR setup. Secondly, structural changes of the lipid multilayer on the length 

scale of the lipid bilayer were addressed. The study of those structural changes was 

performed by neutron reflectometry (NR). With the tools of BioRef at hand we were able to 

perform ATR-FTIR and NR measurements simultaneously on the same multilayer system. A 

combined ATR-FTIR and NR experiment was conducted on a solid supported lipid 

multilayer system, incubated with a 3 mg/mL solution of HA in D2O.  The experiment was 

performed according to the measurements on the reference system, performed in pure D2O 

(compare to chapter 5.3 on page 97):  A silicon ATR crystal (ATR5) was used as integrative 

sample support, with  a lipid multilayer coating, prepared with the air brush technique., In 

contrast to the reference system, the sample was incubated in a solution of 3 mg/mL HA in 

D2O in the sample cell after evaporation of chloroform. In order to promote the interaction 

between HA and the DMPC multilayer, the system was tempered two times between 20°C 

and 30°C and set to 50°C six days before the measurements were started. The temperature 

range around the main phase transition between 20°C and 30°C of the DMPC multilayer 

system was probed. The experimental cycle covered two scans in the respective temperature 

interval from 20°C to 30 °C: First, the sample was heated from 20°C to 30° (heating); second, 

the sample was directly cooled again to 20°C (cooling). Temperature was changed every 100 

minutes in 0.5°C steps. At each temperature two subsequent NR measurements were 

performed and 5-6 IR absorbance spectra recorded. 

 

First, the infrared absorption signals are analyzed (chapter 6.8.1), followed by an analysis of 

the neutron reflectometry results (chapter 6.8.2). In the last part, the results of the two 

techniques are compared and discussed (chapter 6.8.3).  
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6.8.1 Infrared absorption of a multilamellar lipid coating 

Conformational changes of lipid molecules were studied by ATR-FTIR using the setup 

described in chapter 4. A measurement consisting of 124 full scans was conducted every 20 

minutes, resulting in 5-6 absorbance spectra per temperature step. 

Results 

The asymmetric νas(CH2) and symmetric νs(CH2)  stretching bands show high peak 

amplitudes and sharp peak shapes, as shown in Figure 103 (below) for 20°C and 30°C of the 

heating cycle, and for 20°C of the cooling cycle. To follow the main phase transition of the 

DMPC lipid molecules, the analysis was focused on the νs(CH2) absorbance bands. 

For each temperature step, the absorption band was fitted by a Gaussian profile. The results 

are shown in Figure 104 (on page 150). Compared to the reference system measured against 

pure D2O, the absorbance of the νs(CH2) vibration shows the same temperature behaviour: A 

pronounced change in wavenumber, FWHM and amplitude between 24.0°C and 24.5°C. A 

main difference between the two measured systems was observed in the peak amplitudes: 

The amplitudes appear smaller by a factor of 2.4 for the system incubated in a 3mg/mL 

solution of HA in D2O compared to the reference system, indicating that less material is 

within the penetration depth of the infrared beam, due to the swelling of the coating. A 

discussion is given on page 154. 
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Figure 103: Infrared absorption of a multilamellar lipid coating on a silicon substrate (ATR5) incubated in a 

solution of 3 mg/mL HA in D2O.Shown is the absorbance of the CH2 groups at elevated temperatures, measured 

after 80 minutes of equilibration time. Temperature was cycled from 20 °C to 30 °C and back to 20 °C. 
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Figure 104:  Infrared absorption band analysis by fitting Gaussian profiles to the νs(CH2) absorption band of a 

multilamellar DMPC lipid coating on silicon (ATR5) in comparison against pure D2O (grey symbols, from 

Figure 68 on page 100) or incubated in a solution of 3 mg/mL HA in D2O (red and blue symbols). The shown 

results are measured after 80 minutes of equilibration time. For better legibility error bars 

(δwavenumber = 0.12 cm
-1

, δFWHM = 0.2 cm
-1

 and δamplitude = 0.006) are displayed only for the first data 

points taken at 20 °C. 
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Figure 105: Neutron reflectivity results (meas. 2) of the heating and cooling cycle. Shown are results of 

Gaussian fits to the first order Bragg peak. Error bars are not shown, if smaller than the symbols. 
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6.8.2 Neutron reflectivity of a multilamellar lipid coating 

In order to follow temperature-induced changes in structure and organization of the 

multilayer system, the neutron reflectivity of the solid-liquid interface was measured. With a 

selected chopper frequency of 45 Hz at BioRef, sample ATR5 was measured at 5 different 

angular positions θ to cover a Q-range from 0.005 Å
-1

 to 0.200 Å
-1

 in total. The resolution 

was set to a constant value of 7% over the Q-range probed. For each temperature step two 

complete reflectivity curves (meas. 1 and meas. 2) were recorded. The second measurement 

(meas. 2) was performed in order to distinguish between time dependent and temperature 

dependent effects. One measurement took 50 minutes of measurement time.  

Results 

In each reflectivity curve three Bragg peaks are clearly visible in the probed Q-range, which 

are the first, second and third order peak of the lamellar phase Lp (Figure 106). As in chapter 

5.3.2, the analysis was focused on the first order Bragg peak, since position, height and width 

of the peak reveal the desired information about the lamellar structure of the multilayer 

system. Each peak was fitted by a Gaussian function. The resulting repeat distances, FWHM 

and amplitudes are displayed in Figure 105 on page 151. 

 

The heating cycle shows three distinct regions: First, between 20.0°C and 23.5°C, the repeat 

distance d increases almost linearly from (161.5 ± 0.1) Å to (163.1 ± 0.1) Å. In the same 

interval the FWHM decreases from (0.0056 ± 0.0001) Å
-1

 to (0.0052 ± 0.0001) Å
-1

 and the 

amplitude increases from 0.328 ± 0.004 to 0.432 ± 0.005. Second, between 24.0°C and 

24.5°C a jump in repeat distance occurs from (164.4 ± 0.2) Å to (170.7 ± 0.1) Å. The 

FWHMs and amplitudes of the Bragg peaks do not show a similarly significant change in that 

temperature regime. In the third region, between 24.5°C and 30.0°C, the repeat distance is 

almost constant at a value of (170.9 ± 0.3) Å. In addition, the FWHMs and amplitudes are 

almost constant within error.  

 

Upon cooling the system from 30.0°C to 24.5°C the repeat distances fall below the 

corresponding repeat distances of the heating cycle for each temperature step. At 24°C the 

repeat distance is (166.0 ± 0.1) Å. Again, the FWHMs and amplitudes are almost constant in 

this temperature region. However, the FWHMs are in general slightly smaller, as compared to 

the heating cycle. Between 23.5°C and 20°C the repeat distances decrease almost linear to a 

final value of (152.5 ± 0.1) Å, which is 9 Å smaller than the starting value. Also the FWHM 
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and amplitude show a linear behaviour: the FWHM increases to a final value of 

(0.0056 ± 0.007) Å
-1

 which is identical to the starting value. The amplitude decreases to a 

value of 0.419 ± 0.005. In that temperature region the amplitudes are always higher, then the 

ones of the heating cycle.  A discussion is given on page 154. 
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Figure 106: Neutron reflectivity (meas. 2) of a multilamellar lipid coating on a silicon substrate (ATR5) 

incubated in a solution of 3mg/mL HA in D2O as a function of temperature and time.  
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6.8.3 Discussion 

Already the first combined measurement at 20°C clearly shows the strong influence of HA on 

the DMPC lipid coating: Compared to the reference measurements (with d ≈ 65 Å), 

conducted against pure D2O, the repeat distance of d = 161.5 Å is around 250 % higher 

(Figure 107).  However, the broad peak shapes (Figure 106 on page 153) indicate that the 

system is not yet in its fully swollen and equilibrated state, despite the excessive temper 

protocol performed before the actual measurements. This might be due to the fact, that in 

contrast to an oligolamellar coating, the coating analyzed here is composed of a micrometer 

thick, multilamellar film. Therefore, more time might be needed, to swell the system to 

equilibrium and to transform all lipid lamellae into the Lp phase. However, higher order 

Bragg peaks are already clearly visible, indicating the presence of the Lp phase. Interestingly, 

non-swollen layers are no longer present or below the detection limit of the measurement, 

since no Bragg peak at Q = 0.1 Å
-1

 appears.   

 

Even though the structure of the coating is strongly affected by the presence of HA already at 

temperatures below Tm, the DMPC phase transition has a further impact on the temperature 

response of the system. In the reference system, the repeat distance of the multilamellar lipid 

coating against pure D2O does not exhibit a drastic change between 24.0°C and 24.5°C, but 

started shrinking above 24.5°C (Figure 107, bottom). This decrease in d-spacing is due to 

chain melting of the lipid molecules in the Lα phase [36]. In contrast, the d-spacing of the 

system incubated in HA solution instantaneously increased by 4 % upon heating from 24.0°C 

to 24.5°C and stayed constant up to 30°C (Figure 107, top). This instantaneous change in d-

spacing upon heating from 24.0°C to 24.5°C is directly correlated to the instantaneous change 

in wavenumber as measured by ATR-FTIR for the same temperature step (Figure 104 on 

page 150).  

 

The performed measurements show that the phase transition temperature Tm between 24.0°C 

and 24.5°C does not change in the presence of HA, but structural changes upon crossing the 

phase transition are significantly different in the presence of HA. An increase in the partial 

specific volume of HA by of 4% in the temperature range from 25°C and 30°C was reported 

by Gómez-Alejandre et al. [152]. The origins of the additional swelling of the multilamellar 

lipid coating above Tm might be due to changes of the partial specific volume of HA. Here, 

the question remains open, how the main phase transition of the lipid molecules affects the 

conformation of HA. 
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Another reason for the additional swelling of the lipid coating might be due to a change in the 

electrostatic charge density of opposing membrane surfaces: Upon a better alignment of the 

lipid membranes in the Lα phase, as discussed in chapter 5.3.2 on page 102, the adsorbed and 

negatively charged HA molecules might follow this alignment and subsequently, the surface 

charge density might increase. This would result in an increase of repulsive electrostatic 

forces of opposing membranes and hence, an increase in d-spacing upon crossing the main 

phase transition.  
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Figure 107: Neutron reflectivity results (meas. 2) for d-spacings as a function of temperature, calculated from 

the first order Bragg peak position. The Bragg peaks resulted from multilamellar lipid coatings on a silicon 

ATR substrate (ATR5) incubated in pure D2O (bottom) or in a solution of 3 mg/ml HA in D2O (top). Error bars 

are not shown, if smaller than the symbols.  
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6.9 Summary of chapter 6 

Chapter 6 dealt with the investigation of solid-supported DMPC lipid membranes closer to 

physiological conditions i.e. incubated in solutions of hyaluronic acid (HA) in D2O. The 

focus was on the interactions of DMPC with HA as probed by neutron reflectivity and ATR-

FTIR as a function of the external control parameters temperature (T), pressure (p) and shear 

rate.  

 

Reference infrared absorption spectra of DMPC, HA and mixtures of both were recorded in 

the ATR-FTIR mode and the absorption peaks were correlated to the vibrational modes of the 

molecules. An interaction between DMPC and HA was not detected with the experimental 

setup. 

 

A pronounced impact of HA on the structure of DMPC layers was revealed by neutron 

reflectivity experiments. A tremendous swelling of the oligolamellar coatings took place with 

time over a period of several days. The final d-spacing of the lipid lamellae was about 4 times 

larger than the initial one. Besides the provoked swelling HA stabilized the lipid coating in its 

Lα phase so that no unbinding occurred in that case. The swollen lipid layer system was found 

to be stable against moderate applied shear (1 Hz). Increased shear load (4 Hz) induced 

unbinding of the lipid coating from support. Addition of NaCl to the incubating solution of 

HA in D2O or application of elevated hydrostatic pressure suppressed swelling. The results 

were discussed in the context of classical DLVO theory including additional repulsive 

electrostatic contributions. 

  

Combined NR and ATR-FTIR measurements on a DMPC multilayer coating revealed an 

additional and reversible increase in thickness of the coating upon crossing the main phase 

transition Pß‘→L of the lipid system. Although the effect of HA on structure and stability of 

the interfacial lipid coatings was most pronounced, a direct interaction on the molecular scale 

of the molecules could not be traced. FTIR and DSC measurements documented undisturbed 

main phase transitions of the lipid assemblies with and without HA present. 
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7. Conclusions and Outlook 

Oligolamellar lipid coatings were successfully prepared and structurally characterized by 

X-ray reflectometry in the dry state of the coating and by neutron reflectometry against 

different aqueous solutions for complementary in-situ measurements. The systems served as 

model lipid coatings for two purposes: 1) To study fundamental membrane principles and 

their structural organization and 2) to investigate more applied functionalities related to 

protection wear of artificial body implants and joint lubrication. The design and 

implementation of an external attenuated total reflection - Fourier transform infrared 

spectroscopy (ATR-FTIR) beam line in the BioRef neutron reflectometer, proved to be 

extremely supportive. 

 

At first, the stability of solid-supported DMPC lipid membranes was investigated against 

pure D2O (Figure 108). The coatings remained stable on their solid support in the ripple 

phase Pβ‘ of the lipid molecules below the main phase transition. This could be shown for 

various environmental conditions such as increasing temperature, elevated hydrostatic 

pressure, application of external shear force, for silicon and titanium supports. By neutron 

reflectometry measurements on oligolamellar lipid stacks a profound reduction in stability for 

the liquid-like phase Lα of the lipid molecules was found. Upon heating above the main phase 

transition temperature all investigated oligolamellar lipid coatings unbound irreversibly from 

the solid support. In the vicinity of the main phase transition between the ripple phase Pβ‘ and 

the liquid-like phase Lα drastic changes in neutron reflectivity and infrared absorption signals 

were also observed for multilamellar lipid coatings. The combined IR and neutron reflectivity 

measurements at BioRef revealed the appearance of an anomalous behaviour of the d-spacing 

upon approaching the main phase transition, independent of the lipid chain melting process. It 

is supposed, that a decrease in bending rigidity κ of the lipid membranes is the origin of the 

observed anomalous swelling.    

 

At second, investigations of DMPC lipid membranes under physiological conditions close to 

that in knee joints have been performed. Here, the main interest was in the study of 

interactions between solid-supported lipid membranes and hyaluronic acid (HA), which is a 

main component of the synovial fluid in mammalian joints. A major impact of HA on the 

structure and stability of the lipid layers was observed (Figure 108). Their d-spacing 



7.CONCLUSIONS AND OUTLOOK 

 
                 159 

increased by a factor of four and the stability extended to physiological relevant temperatures. 

Furthermore, an increase in d-spacing was accompanied with a chain melting process upon 

crossing the main phase transition temperature (Pß‘→L). 

 

 

Figure 108: Model for oligolamellar lipid coatings on silicon in pure D2O (left) and after incubation in a 

solution of HA in D2O (right). 

 

The impact of HA on DMPC lipid coatings could be suppressed by screening the electrostatic 

charges of HA with salt ions. The origin of the interactions between DMPC and HA was 

further elucidated by replacing HA with negatively or positively charged synthetic 

polyelectrolytes of different charge densities.  

 

The observed stabilization of substrate-bound oligolamellar lipid layers by HA might 

contribute to lubrication in mammalian joints and the protection of cartilage by the formation 

of HA/DMPC hydrogel networks. A lamellar hydrogel phase in a system of polymers and 

lipid membranes has already been reported in literature [148], and it has also been shown that 

phospholipid vesicles in solutions containing HA build up network-like structures [10].  

 

With the successful combination of ATR-FTIR and NR with BioRef at hand, further model 

systems for biological interfaces and processes, such as protein adsorption at model 

membranes, can now be investigated simultaneously with the two complementary methods. 
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Appendix A:  Summary of the measured samples 

 

Sample coating type instrument d-spacing in Å subject of investigation 

 

(measured in pure D2O, chapter 5) 

@ 21 °C (Pβ‗) 

A oligolamellar V6 66.89 ±  0.04 effect of temperature 

B oligolamellar V6 73.36 ±  0.11 effect of temperature 

C oligolamellar V6 65.48 ±  0.05 effect of temperature 

D multilamellar V6 65.31 ±  0.25 effect of temperature 

E oligolamellar V6 65.20 ± 0.30 effect of pressure 

F oligolamellar AMOR 65.19 ± 0.02 effect of shear 

TiA Ti + oligolamellar V6 66.10 ± 0.77 effect of substrate 

TiB Ti + oligolamellar AMOR 68.03 ± 0.13 effect of substrate/shear 

ATR5 multilamellar BioRef 64.10 ± 0.01 combined IR and NR 

 

(measured in a solution of 3 mg/mL HA in D2O, chapter 6) 

1 oligolamellar BioRef 66.22 ± 0.06 effect of HA 

2 oligolamellar V6 65.52 ± 0.14 effect of temperature 

3 oligolamellar V6 67.77 ± 0.07 effect of NaCl 

4 oligolamellar AMOR 64.92 ± 0.07 effect of shear 

5 oligolamellar AMOR - - effect of shear 

6 oligolamellar V6 64.77 ± 0.33 effect of pressure 

ATR5 multilamellar BioRef - - combined IR and NR 

      

       66.35 ± 2.31 (± standard deviation) 
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Appendix B:  Mechanical test of the pressure cell 

The functional efficiency of the high pressure cell was verified in an independent experiment. 

The pressure cell for neutron reflectometry experiments was introduced in chapter 3.2.7 on 

page 51. The impact of external mechanical pressure was studied on a 60 mm needle of a 

syringe including its cover (Figure 109). During the experiment the needle was placed in the 

separation cell housing a steal piston on the side connected to the sample volume. When the 

pressure of 90 MPa was applied, the piston pressed against the needle. Strong deformations 

of the needle were observed after the experiment. The performed experiment demonstrated 

successfully the pressure build-up in the sample volume of the pressure cell.  

 

 

 

 

 

 

 Figure 109: Effect of pressure on a needle including its cover. The picture shows the needle before (A) 

and after (B) the exposure to 90 MPa along the longitudinal axis. 
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Abbreviations 

 description introduced… 

absorbance infrared absorbance on page 28 

AMOR neutron reflectometer at PSI on page 50 

ATR attenuated total reflectance on page 29 

B Bragg peak on page 38 

BioRef neutron reflectometer at HZB on page 44 

DLVO 
theory named after Derjaguin, Landau, Verwey and 

Overbeek 

on page 18 

DMPC lipid: 1,2-dimyristoyl-sn-glycero-3-phosphocholine on page 21 

DSC differential scanning calorimetry on page 24 

c speed of light on page 28, on page 33 

d repeat-distance or d-spacing on page 17, on page 38 

dp penetration depth on page 29 

ν frequency on page 26 

FTIR Fourier transform infrared spectroscopy on page 27 

FWHM full width at half maximum on page 28, on page 69 

h Planck constant on page 26, on page 33 

HZB Helmholtz-Zentrum Berlin  

I0 initial intensity on page 28 

I resulting intensity on page 28 

IR infrared spectroscopy on page 26 

κ bending rigidity  on page 18 

K Kiessig fringe or Kiessig oszillation on page 38 

Lα liquid like phase on page 19 

M number of internal reflections at the sample surface on page 57 

N number of lipid lamellae on page 38 

NBK N calculated according to Equation 3.38 on page 38 

Namp N calculated according to Equation 3.40 on page 39 

Narea N calculated according to Equation 3.41 on page 39 

NFWHM N calculated according to Equation 3.39 on page 39 

http://de.wikipedia.org/w/index.php?title=Boris_Derjaguin&action=edit&redlink=1
http://de.wikipedia.org/wiki/Lew_Dawidowitsch_Landau
http://de.wikipedia.org/w/index.php?title=Evert_Verwey&action=edit&redlink=1
http://de.wikipedia.org/wiki/Theodoor_Overbeek
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NR neutron reflectometry on page 33 

Q momentrum transfer on page 35 

Qc critical momentum transfer on page 36 

Pβ‘ ripple phase on page 19 

PSI Paul-Scherrer Institute in Switzerland on page 50 

R reflectivity on page 32 

γ heat rate on page 24 

SINQ Swiss spallation neutron source on page 50 

SLD scattering length density on page 34 

t total coating thickness on page 38 

Tm main phase transition temperature  on page 20 

   wavenumber on page 28 

V6 neutron reflectometer at HZB  

V18 alternative for BioRef on page 44 

XR X-ray reflectometry on page 33 

 



 

 
                 191 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  
     192  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ich erkläre hiermit, dass ich die vorgelegte Dissertation selbst verfasst und mich keiner 

anderen als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe. An 

keiner anderen Stelle habe ich ein Prüfungsverfahren beantragt und die Dissertation nicht in 

dieser oder anderer Form bereits anderweitig als Prüfungsarbeit verwendet oder einer anderen 

Fakultät als Dissertation vorgelegt. 

 

 

 

Berlin, den    Dezember 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 Martin Kreuzer 

 

 


	Summary
	Zusammenfassung
	Acknowledgements
	Contents
	Introduction
	Theory and status quo of joint components
	Phospholipids
	Lamellar phases
	Anomalous swelling
	Unbinding
	DMPC

	Hyaluronic acid

	Experimental section
	Used Chemicals and substrates
	Lipids
	Hyaluronic Acid
	Solvents
	Substrates

	Sample characterization
	Differential scanning calorimetry
	Infrared spectroscopy
	Vibrational modes
	FTIR
	ATR
	Used lab setup

	The general laws of wave optics
	Scattering at a smooth surface

	Reflectometry
	Scattering length density
	Momentum transfer Q
	Reflectivity of thin films
	Bragg analysis
	Peak shape
	Optical matrix method
	Fourier analysis

	Two ways to build a neutron reflectometer
	The V6 neutron reflectometer
	The V18 neutron reflectometer (BioRef)

	Shear setup employed at AMOR
	High pressure cell
	X-Ray reflectometer

	Preparation of lamellar lipid coatings
	Spin coating
	Air brush


	Instrument Development at BioRef
	Substrates
	Sample cell
	External FTIR setup
	Resulting IR intensities

	Lipid membranes in pure aqueous solutions
	A simulated neutron reflectometry experiment
	The model
	Peak shape analysis of simulated reflectivity curves

	Stability of oligolamellar lipid coatings
	Effect of temperature
	Bragg peak analysis
	Analysis by the optical matrix approach
	Comparison of Bragg peak analysis and optical matrix approach

	Effect of pressure
	Introduction
	Results

	Effect of shear
	Introduction
	Results

	Effect of substrate
	Introduction
	Results of the effect of temperature
	Results of the effect of temperature and shear

	Discussion on the stability of lipid coatings
	About the effect of substrate and shear


	Phase transition of multilamellar lipid coatings
	Infrared absorption of a multilamellar lipid coating
	Results
	Discussion on IR results

	Neutron reflectivity of a multilamellar lipid coating
	Results
	Discussion on NR results

	Phase transition in the light of IR and NR – a comparative discussion

	Summary of chapter 5

	Lipid membranes at physiological conditions
	Vibrational modes of DMPC and HA
	Introduction
	Pure DMPC
	Pure HA
	Mixtures of DMPC and HA

	Differential scanning calorimetry on multilamellar lipid vesicles
	Effect of hyaluronic acid on the lamellar structure of surface bound lipid films
	Introduction
	Bragg peak analysis
	Discussion

	Effect of time and temperature
	Introduction
	Bragg peak analysis
	Analysis by the optical matrix approach
	Fourier analysis
	Discussion

	Effect of HA and salt
	Introduction
	Results
	Discussion

	Effect of shear
	Introduction
	Moderate load
	Pronounced load
	Discussion

	Effect of pressure
	Introduction
	Results
	Analysis of intermediate states
	Discussion

	Phase transition of multilamellar lipid systems
	Infrared absorption of a multilamellar lipid coating
	Results

	Neutron reflectivity of a multilamellar lipid coating
	Results

	Discussion

	Summary of chapter 6

	Conclusions and Outlook
	Appendix A:  Summary of the measured samples
	Appendix B:  Mechanical test of the pressure cell
	Appendix C:  List of selected publications
	Journals
	Pictures
	Conference contributions

	Table of Figures
	References
	Abbreviations

