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Abstract

In this article we define and characterize a class of asymmetric lex-

imin solutions, that contains both the symmetric leximin solution of Imai

[5] and the two-person asymmetric Kalai-Smorodinsky solution of Dubra

[3] as special cases. Solutions in this class combine three attractive fea-

tures: they are defined on the entire domain of convex n-person bargain-

ing problems, they generally yield Pareto efficient solution outcomes, and

asymmetries among bargainers are captured by a single parameter vector.

The characterization is based on a strengthening of Dubra’s [3] prop-

erty Restricted Independence of Irrelevant Alternatives (RIIA). RIIA im-

poses Nash’s [9] IIA, under the added condition that the contraction of

the feasible set preserves the mutual proportions of players’ utopia values.

Our axiom, entitled RIIA for Independent Players (RIP), says RIIA holds

for a group of players, given that the contraction of the feasible set does

not affect players outside that group.

JEL-Classification: C78

Keywords: Bargaining, asymmetric bargaining solution, leximin solution.

1 Introduction

In the literature on axiomatic bargaining, few axioms are as prolific as the one

of Anonymity. Anonymity says that the utility a bargaining solution allocates

to an individual bargainer, does not depend on that bargainer’s identity. While

desirable in many situations, such an assumption might not always be entirely
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delberg, Germany. Telephone: +49 6221 542958. Email address: bram.driesen@awi.uni-
heidelberg.de.
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appropriate, as it does not leave for the possibility to account for individual

levels of skill, effort, or commitment. The Nash bargaining solution, introduced

by Nash [9], is one example in which Anonymity has successfully been relaxed.

Harsanyi and Selten [4] and Kalai [6] defined and characterized a family of

asymmetric Nash solutions, that capture the asymmetries among bargainers in

a single parameter vector.

In this article, we present a similar generalization for the lexicographic

maxmin – or leximin – solution, which is a solution for multilateral bargaining

problems introduced by Imai [5]. It satisfies a highly attractive monotonicity

property which says that no individual bargainer can gain from destroying his

own utility. In normalized bargaining problems, it is found through the follow-

ing optimization procedure. First maximize the payoff of the worst-off agent;

among the maximizers thus obtained, maximize the payoff of the next to worst-

off agent, and so on, until no individual agent’s utility can be further increased

within the feasible set. For general bargaining problems, the solution is found

by applying the described procedure to a normalized version, and subsequently

scaling back.

We introduce an asymmetric version of this solution concept, named the

asymmetric leximin solution. It is obtained by the optimization procedure out-

lined above, with the added feature that players’ payoffs are given strictly pos-

itive weights. The interpretation is that the societal value of an individual

bargainer’s wealth, depends on that bargainer’s identity. This idea is also fun-

damental to Thomson’s [14] asymmetric version of the Kalai-Smorodinsky so-

lution (Raiffa [10], Kalai & Smorodinsky [7]). The Kalai-Smorodinsky solution

is defined as the unique point in which the boundary of the feasible set is inter-

sected by the line segment that connects the problem’s disagreement and utopia

point; Thomson’s weighted version is similarly obtained, but with a weighted

utopia point. It is wellknown that the leximin solution is a lexicographic exten-

sion of the Kalai-Smorodinsky solution. In much the same way, the asymmetric

leximin solution constitutes a lexicographic extension of Thomson’s asymmetric

variation.

An alternative asymmetric version of the Kalai-Smorodinsky solution was

proposed by Dubra [3], for the specific case of two-person bargaining problems.

Dubra’s solution is defined as the unique Pareto efficient outcome that (weakly)

Pareto dominates the outcome found by Thomson’s solution concept. He also

provides an axiomatic characterization for this solution class, that obtains by

removing Anonymity from Kalai and Smorodinsky’s [7] axiom set, and replacing
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it with a weaker version of Nash’s [9] independence axiom IIA, named Restricted

IIA (RIIA); RIIA imposes that a collective destruction of joint utility that pre-

serves the mutual proportions of the bargainers’ utopia values, does not affect

the solution outcome, whenever that outcome is still available.

On the domain of bilateral bargaining problems, the asymmetric leximin so-

lution coincides with Dubra’s solution concept, meaning that our results can be

seen as a multilateral generalization of those obtained by Dubra. Our character-

ization of the asymmetric leximin solution is based on Imai’s characterization of

the symmetric leximin solution. However, where Imai’s characterization result

depends on Anonymity, ours depends on an axiom named RIIA for Independent

Players (RIP).1 This is a strengthening of RIIA that applies to groups of bar-

gainers. In particular, whenever a group of bargainers collectively destroys its

joint utility as stipulated in Dubra’s axiom, and this does not interfere with the

solution payoffs accorded to the nonmembers of that group, then the solution

outcome should not change at all.

The rest of this article is organized as follows. Section 2 collects relevant

assumptions, notations and definitions. In Section 3 we obtain an axiomatic

characterization result for the family of asymmetric leximin solutions. Section

4 concludes.

2 Preliminaries

A bargaining problem is defined by the player set N := {1, . . . , n}, with n ≥ 2

finite, and a set S ⊂ R
N , where

• S is nonempty, closed and convex,

• contains the zero vector 0,

• there exist x ∈ S with x > 0, 2

• the set S ∩ R
N
+ is bounded.

The set of all bargaining problems is denoted B.

1In addition, we include an axiom named Strong Individual Rationality, which also ap-
peared in Harsanyi and Selten’s [4] and Kalai’s [6] axiomatization of the asymmetric Nash
solution. It ensures that weights vectors are strictly positive, and thus, that the solution is
well-defined.

2For x, y ∈ R
N , x > y denotes xi > yi for all i ∈ N , x ≥ y means xi ≥ yi for all i ∈ N .

The relations ‘<’ and ‘≤’ are similarly defined.
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A vector x ∈ R
N is called an outcome or point ; it represents a payoff profile

for the players of the game in the sense that each xi, i ∈ N , specifies the

utility realized by player i. The set S is called the feasible set ; it contains

all the outcomes available to the players. The outcome 0, the disagreement

point, is the outcome that obtains if the bargainers fail to reach agreement on

a single outcome. The condition that the feasible set holds outcomes that are

strictly larger than the disagreement point, provides an incentive for the players

to reach agreement. The agreement bargainers reach is represented by a map

ϕ : B → R
N that assigns a single outcome ϕ(S) to any problem S in B. Such a

map is referred to as a bargaining solution.

Bargaining solutions are typically characterized by a number of properties,

or axioms. Given a problem S, the set P (S) denotes the Pareto set. It is

defined as P (S) := {z ∈ S | x ≥ z implies x = z}. For x, y ∈ R
N and

S ⊂ R
N , let xy := (x1y1, . . . , xnyn) and xS := {xz | z ∈ S}. For a permutation

π : N → N of N , z ∈ R
N , and S ⊂ R

N , define π(z) := (zπ(1), . . . , zπ(n)) and

π(S) := {π(x) | x ∈ S}. The following is a list of classic axioms.

(SIR) ϕ : B → R
N satisfies Strong Individual Rationality if ϕ(S) > 0 for all

S ∈ B.

(PO) ϕ : B → R
N satisfies Pareto Optimality if ϕ(S) ∈ P (S) for all S ∈ B.

(SI) ϕ : B → R
N satisfies Scale Invariance if for all S ∈ B and b ∈ R

N
++,

ϕ(bS) = bϕ(S).

(AN) ϕ : B → R
N satisfies Anonymity if for all S ∈ B, any permutation π :

N → N , and any i ∈ N , we have ϕπ(i)(π(S)) = ϕi(S).

(IIA) ϕ : B → R
N satisfies Independence of Irrelevant Alternatives if for all

S, T ∈ B with ϕ(T ) ∈ S ⊆ T , we have ϕ(S) = ϕ(T ).

For a discussion of these properties, see Nash [9] and Roth [11].

Kalai and Smorodinsky [7] proposed a monotonicity axiom, which imposes

that an expansion of the feasible set in favor of a single player, makes that

player (weakly) better off. We present Imai’s [5] version of this property. The

utopia point of a problem S, is defined as a vector u(S) := (ui(S))i∈N where

ui(S) := max{xi | x ∈ S ∩ R
N
+} for each i ∈ N . For x ∈ R

N and nonempty

Q ⊂ N , x is equivalently written as (xQ, x−Q) where xQ denotes the vector

(xi)i∈Q, and x−Q the vector (xi)i∈N\Q. For Q = N , xQ ≡ x. Let R
∅ be a
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singleton containing the empty vector; then for Q = ∅, we say xQ ∈ R
Q. For

S ∈ B, let S−i denote the closure of the set {x−i | x ∈ S and x ≤ u(S)}.

(IM) ϕ : B → R
N satisfies Individual Monotonicity if for all S, T ∈ B with

T ⊆ S and S−i = T−i for some i ∈ N , we have ϕi(S) ≥ ϕi(T ).

In response to the criticism on IIA that it renders a bargaining solution too

irresponsive to alterations in the feasible set (cf. Luce and Raiffa [8], Kalai and

Smorodinsky [7]), Roth [12] proposed a weaker version that imposes invariance

under the conditions of IIA, if in addition the problem’s utopia point does not

change.

(IAIP) Let S, T ∈ B with T ⊆ S and u(T ) = u(S). ϕ : B → R
N satisfies IIA

other than Ideal Point if ϕ(S) ∈ T implies ϕ(S) = ϕ(T ).

Dubra [3] introduced a stronger version of Roth’s property, which rather than

equality, requires that the utopia points of the considered problems are propor-

tional.

(RIIA) Let S, T ∈ B with T ⊆ S and u(T ) = βu(S) for some β > 0. ϕ : B → R
N

satisfies Restricted IIA if ϕ(S) ∈ T implies ϕ(T ) = ϕ(S).

Dubra argues that a contraction of the feasible set as described in the axiom

definition, retains the mutual bargaining powers among the players. Then, since

the original solution outcome remains available, players should convene on the

same outcome. The following is a strengthening of RIIA, that imposes the same

reasoning on a group of players.

(RIP) Let S, T ∈ B with T = S ∩ V , where V is such that uQ(T ) = βuQ(S) for

some nonempty Q ⊆ N and β > 0, and x ∈ V implies (xQ, y) ∈ V for all

y ∈ R
N\Q.

ϕ : B → R
N satisifies RIIA for Independent Players if ϕ(S) ∈ T and

ϕ−Q(T ) = ϕ−Q(S) implies ϕ(T ) = ϕ(S).

The axiom describes a contraction of the feasible set along the axes of the players

in Q, that leaves the solution outcomes of players not in Q unaffected. If this

contraction preserves the mutual bargaining powers among the players in Q,

and the original solution values of these players are still availabe, then they

should convene on those same values.
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Figure 1: A visual illustration of RIP with N = {1, 2, 3} and Q = {1, 2}.

Next we define the asymmetric leximin solution. The set of weights vectors

is given by

∆ :=

{

w ∈ R
N
++ |

∑

i∈N

wi = 1

}

,

and for x > 0, define x−1 := (1/x1, . . . , 1/xn).

Let µ be a vector-specific permutation for N , that puts the vector elements

in ascending order. For x, y ∈ R
N , x ≻l y whenever xi > yi for some i ∈ N

and xj = yj for all j < i. The lexicographic maxmin ordering, denoted ≻, is

defined as follows: for x, y ∈ R
N , x ≻ y if and only if µ (x) ≻l µ (y). For S ∈ B

denote the unique maximum in S with respect to ‘≻’ by ξ(S).3 For w ∈ ∆, the

asymmetric leximin solution Lw : B → R
N is defined as

Lw(S) := ξ (S) , (1)

whenever u(S) = w−1. For S ∈ B with u(S) 6= w−1, Lw(S) := bξ(b−1S) where

b := wu(S). The set L := {Lw | w ∈ ∆} denotes the class of all asymmetric

leximin solutions.

The leximin solution L : B → R
N , defined in [5], is the unique symmetric

solution in L. More specifically, let 1 denote the n-dimensional vector with all

entries equal to 1; then L ≡ L
1

n
1.

3For the existence and uniqueness proof, see Lemma 4 in [5].
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Theorem 2.1 (Imai [5]). A bargaining solution ϕ : B → R
N satisfies PO, SI,

AN, IM and IAIP, if and only if ϕ = L.

Dubra [3] defined the asymmetric Kalai-Smorodinsky solution Kw, w ∈ ∆,

for the specific case of two-player problems. Lw defined on a two-player problem

coincides with Kw for each w ∈ ∆. 4

Theorem 2.2 (Dubra [3]). For N = {1, 2}, a bargaining solution ϕ : B → R
N

satisfies SIR, PO, SI, IM and RIIA if and only if ϕ = Kw for some w ∈ ∆.

Let B∗ be the class of problems S with u(S) = 1, and take S ∈ B∗. Then

Lw(S), w ∈ ∆, is obtained by the following procedure. Starting from the

disagreement point x0 ≡ 0, increase the utilities of all players simultaneously

in the direction w, until the boundary of the set is reached, say in the point

x1. There is a number of players for whom a further improvement would result

in an infeasible alternative. Fix the payoffs of these players at their x1-levels,

and continue increasing the utilities of the remaining players in the direction w.

This leads again to a point – call it x2 – from which further increase of utilities

means stepping out of S. Then once again, fix the payoffs of the problematic

players at their x2-levels, and continue the process for the players that remain.

Since the total number of players is finite, and since at each iteration a finite

number of players is excluded from further improvement, this procedure leads

in a finite number of steps to an outcome in P (S). This outcome corresponds

with Lw(S).

3 The Characterization Result

The aim of this section is to obtain a characterization result for the class of

asymmetric leximin solutions.

Theorem 3.1. A bargaining solution ϕ : B → R
N satisfies SIR, PO, SI, IM

and RIP if and only if ϕ ∈ L.

The following is the first of two propositions that establish Theorem 3.1.

Proposition 3.2. Any solution ϕ ∈ L satisfies SIR, PO, SI, IM and RIP.

4Dubra’s solution class also includes the two corner solutions, where one player’s weight
is zero. Consequently, his characterization does not include SIR. However, this extension is
trivially obtained from Dubra’s result.
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Before moving to the proof of this proposition, we introduce two helpful

lemmas. A set S is said to be comprehensive whenever x ∈ S and y ≥ x

together imply y ∈ S. In the context of bargaining, this may be interpreted as

free disposal of utility. For S ∈ B, com S denotes the smallest comprehensive

set in R
N that contains the set S. Given nonempty Q ⊆ N , a problem S ∈ B,

and a point x ∈ com S ∩R
N
+ , the set mx

Q(S) denotes the intersection of S with

the hyperplane through x, parallel to R
Q, seen as a subset of RQ. Specifically,

mx
Q(S) := {x′ ∈ R

Q | (x′, x−Q) ∈ S}.

Thomson and Lensberg [15, pp. 132–133] show that ξ satisfies a property named

Multilateral Stability. This means that given a problem, the outcome selected

by ξ is not only optimal for that problem, but also for the subproblem faced

by any subgroup of bargainers, that results when all others are paid out their

solution outcome, but do not further participate in the bargaining process. For

nonempty Q ⊆ N , let BQ be the class of bargaining problems for Q.

Lemma 3.3 (Thomson & Lensberg [15]). For S ∈ B and T ∈ BQ where T =

m
ξ(S)
Q (S) for some nonempty Q ⊆ N , we have ξ(T ) = ξQ(S).

Driesen [2, Lemma 3.4] showed that the map ξ is first-degree homogeneous.

Lemma 3.4 (Driesen [2]). For all S ∈ BQ (with Q 6= ∅) and γ > 0, we have

ξ(γS) = γξ (S).

Proof of Proposition 3.2. Consider a solution Lw ∈ L. It follows directly

from the definition that Lw satisfies SI. Let S ∈ B, and without loss of generality,

assume u(S) = w−1, such that Lw(S) = ξ(S). It is easily seen that ξ(S) > 0 and

ξ(S) ∈ P (S). Hence, Lw satisfies SIR and PO. The proof that Lw satisfies IM

is obtained by applying Imai’s [5] arguments to the problem S (i.e. a problem

with w−1 as utopia point), rather than some problem S′ ∈ B∗.

To establish RIP, consider a problem T = S ∩ V , where V is such that

uQ(T ) = βuQ(S) for some nonempty Q ⊆ N and β > 0, and x ∈ V implies

(xQ, y) ∈ V for all y ∈ R
N\Q. Assume Lw(S) ∈ T and Lw

−Q(T ) = Lw
−Q(S), and

let b be a vector such that u(T ) = bu(S). Then bi is equal to β if i ∈ Q, and

equal to 1 otherwise. We claim the following.

ξ (T ) = bξ
(

b−1T
)

. (2)
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In the generic case where Q = N , this follows directly from Lemma 3.4. Thus,

assume Q 6= N . Eq. (2) is obtained in two steps:

1. ξ−Q(T ) = b−Qξ−Q(b
−1T );

2. ξQ(T ) = bQξQ(b
−1T ).

We first establish point 1.

1. By definition of Lw we have Lw(S) = ξ(S) and Lw(T ) = bξ(b−1T ), im-

plying Lw
−Q(S) = ξ−Q(S) and Lw

−Q(T ) = b−Qξ−Q(b
−1T ). By assumption,

we have Lw
−Q(S) = Lw

−Q(T ). Hence,

ξ−Q(S) = b−Qξ−Q(b
−1T ). (3)

Since T ⊆ S, Lw(S) = ξ(S), and Lw(S) ∈ T , we have ξ(T ) = ξ(S). Thus,

ξ−Q(S) = ξ−Q(T ). (4)

Point 1 follows from (3) and (4).

Using this, we can also establish the second point.

2. By Lemmas 3.3 and 3.4, we have

ξQ(T ) = ξ
(

m
ξ(T )
Q (T )

)

= βξ

(

1

β
m

ξ(T )
Q (T )

)

.

For V ∈ B, and vectors x, y ∈ com V with x−Q = y−Q, we have m
x
Q(V ) =

my
Q(V ). By point 1 and the definition of b, we have ξ−Q(T ) = ξ−Q(b

−1T ).

Moreover, ξ(T ) ∈ com b−1T . Thus,

1

β
m

ξ(T )
Q (T ) = m

ξ(T )
Q (b−1T ) = m

ξ(b−1T )
Q (b−1T ).

By Lemma 3.3 and the above, it follows that ξQ(T ) = βξQ(b
−1T ). This

proves point 2.

By the definition of Lw and Eq. (2), Lw(T ) = ξ(T ). Since ξ(S) ∈ T ⊆ S, we

have ξ(T ) = ξ(S). Hence, Lw(T ) = Lw(S). This establishes the proof.

The property RIP imposes RIIA on a group of players under the condition

that the contraction of the feasible set does not affect the solution outcomes of
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Figure 2: T is contraction of S along the axes of players 2 and 3, with
u2(T )/u3(T ) = u2(S)/u3(S). Since player 1’s payoff is not preserved by this
contraction, RIP does not apply.

the nonmembers of that group. Figure 2 illustrates visually that this condition

cannot be dispensed with.

Next, it is shown that for any solution ϕ satisfying the axioms of Theorem

3.1, there exists a weights vector w such that ϕ = Lw.

Proposition 3.5. If a solution ϕ satisfies SIR, PO, SI, IM and RIP, then

ϕ ∈ L.

The proof requires some extra notation. Let ei be the vector for which the

i-th entry is 1, and all others 0. For nonempty Q ⊆ N , we write
∑

i∈Q ei as

e(Q). Note that e(N) = 1. For S ⊂ R
N and y ∈ S, let Q(S, y) := {i ∈ N |

y + εei ∈ S for some ε > 0}. For y ∈ S with Q(S, y) 6= ∅, define

z(S, y) := y + a(S, y) e(Q(S, y))

where

a(S, y) := max {a ∈ R | y + a e(Q(S, y)) ∈ S} .

For y ∈ S with Q(S, y) = ∅, a(S, y) := 0 and z(S, y) := 0, by convention.

For S ∈ B, let z0 := 0 and zj := z(com S, zj−1) for j ≥ 1. Let k be the

smallest integer such that zj = zj+1. Then for j = 1, . . . , k, define

Qj := Q(com S, zj−1), and aj := a(com S, zj−1).

The sequence {zj}kj=0 is referred to as the defining sequence of ξ(S).
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For x, y ∈ R
N , let x · y denote the inner product

∑

i∈N xiyi. For p ∈ R
N

and β ∈ R, let

H(p, β) :=
{

x ∈ R
N | p · x ≤ β

}

.

The following lemma collects two useful results.

Lemma 3.6 (Imai [5]). Let S ∈ B. Then

(i) ξ(S) is given by zk;

(ii) for T = S ∩ H(p, β) with p > 0 and β ∈ R such that u(S) = u(T ), we

have S−i = T−i for all i ∈ N .

The proof of Proposition 3.5 is constructed as follows. First the weights

vector w is obtained as the solution outcome of a generic problem. We fix a

normalized problem S, and obtain the defining sequence {zj}kj=0 of ξ(w−1S).

From this, a sequence {xj}kj=0 results, with xj = wzj for all j. Then auxiliary

bargaining problems are constructed for each j. By means of an induction

argument, it is established that xj is the common solution outcome of all stage-

j auxiliary problems. This implies that xk is the common solution outcome

of the final-stage auxiliary problems. The observation that xk is efficient in

the problem S is then sufficient to conclude that ϕ(S) = xk. The desired

characterization result follows by point (i) of Lemma 3.6.

The recursive structure of the proof is similar to the one found in Imai’s

characterization proof of L. However, Imai’s argument makes use of the axiom

AN to make the induction step. We achieve the same objective by redefining

his auxiliary bargaining problems, and then exploiting the axioms SI and RIP.

Roughly said, we first transform a stage j − 1 auxiliary problem, with solution

xj−1, into a problem with solution xj ; next, using RIP, the obtained problem is

reduced to a stage j auxiliary problem without affecting the solution outcome.

Proof of proposition 3.5. Let ϕ : B → R
N be a bargaining solution satisfying

SIR, PO, SI, IM and RIP. Consider the problem H := H(1, 1), and define

w := ϕ(H). Since ϕ satisfies SIR and PO, we have w ∈ ∆.

Fix a problem S ∈ B∗ with S = com S∩(1−R
N
+ ). By SI and RIP, this choice

is without loss of generality. We show ϕ(S) = Lw(S). Let {zj}kj=0, {Q
j}kj=1

and {aj}kj=1 be as in the defining sequence of ξ(w−1S), and for each j define

xj := wzj . In view of point (i) of Lemma 3.6, it is sufficient to show ϕ(S) = xk.

First we introduce a number of auxiliary bargaining problems. Define p1 := 0

and q1 := (1/a1)1. For j = 2, . . . , k, let pj := e(N \ Qj) and qj := (qji )i∈N ,
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where for each i ∈ N ,

qji :=







1/aj if i ∈ Qj

qj−1
i otherwise.

Define

S
j
:= H(qj , 1) ∩





j
⋂

j′=1

H(pj
′

, pj
′

· xj′)



 ∩ (1− R
N
+ ) j = 1, . . . , k;

Sj := S
j
∩H(pj+1, pj+1 · xj+1) j = 1, . . . , k − 1;

Sj := H(qj , 1) ∩ S j = 1, . . . , k;

S′j := S
j
∩ S j = 1, . . . , k.

Each halfspace H(qj , 1) is a rescaling of H , specifically constructed such that

its corner points are given by ajei for all i ∈ Qj, aj−1ei for all i ∈ Qj−1 \ Qj ,

aj−2ei for all i ∈ Qj−2 \ Qj−1, etc. Consequently, SI implies ϕ(H(qj , 1)) = xj

for each j. It is shown next that all auxiliary problems are normalized.

Claim 3.7. S
j
, Sj , Sj, S′j ∈ B∗ for each j.

Proof. It is sufficient to show that ei is in S
j
, Sj , Sj, and S′j for each j and i.

The claim follows from four observations.

(a) ei ∈ H(pj , pj · xj) for each i and j;

(b) ei ∈ H(qj , 1) for each i and j;

(c) ei ∈ S for all i;

(d) ei ∈ (1− R
N
+ ) for all i.

Note that (a), (b) and (d) together imply ei ∈ S
j
for each i and j. Then by (c),

we have ei ∈ S′j for each i and j; for j < k, it is implied by (a) that each ei is

in Sj . Finally, (b) and (c) together imply ei ∈ Sj for each i and j.

Observation (d) is trivial. Observation (c) follows from comprehensiveness of

S and S ∈ B∗. We now show (a) and (b). Denote N \Q2 by Q, Q2 by Q′, and for

i ∈ Q, denote Q′ ∪ {i} by Qi. Let w̄ := (w̄1, . . . , w̄n) where w̄i := wi/
∑

i′∈Q wi′

for all i ∈ N . Note that
∑

i∈Q w̄i = 1.

By the supporting hyperplane theorem and the definition of x1, it follows

that there is a p ∈ R
N
+ with pi = 0 for all i ∈ Q′, such that p · z ≤ p · x1 for all
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z ∈ S. By observation (c) it follows that p · ei ≤ p ·x1 for all i ∈ Q. Since pi = 0

for all i ∈ Q′, this implies p · e(Qi) = p · ei ≤ p · x1 for all i ∈ Q. It follows that

p ·
∑

i∈Q w̄ie(Qi) ≤ p · x1. Note that
∑

i∈Q w̄ie(Qi) = w̄ + (e(Q′) − w̄e(Q′)).

Since pi = 0 for all i ∈ Q′, we obtain p · w̄ ≤ p · x1. Note that x1 = a1w =

[a1
∑

i∈Q wi]w̄. Then p · w̄ ≤ p · x1 is equivalent to a1
∑

i∈Q wi ≥ 1. Hence,

x1 ≥ w̄.

Since p1 · ei = 0 for all i ∈ N , each ei is trivially in H(p1, p1 · x1). Consider

some j ∈ {2, . . . , k}. Note that pji = 0 for all i ∈ Qj. Hence,

pj · w̄ =
∑

i∈N\Qj

w̄i =

∑

i∈N\Qj wi
∑

i∈N\Q2 wi

≥

∑

i∈N\Q2 wi
∑

i∈N\Q2 wi

= 1.

The inequality follows from the observation that N \Q2 is a subset of N \Qj .

By the above, we have xj ≥ x1 ≥ w̄. Hence, pj · xj ≥ pj · x1 ≥ pj · w̄ ≥ 1. Since

pj · ei ≤ 1 for all i ∈ N , we obtain pj · xj ≥ pj · ei for all i ∈ N . This establishes

observation (a).

Since x1 ≥ w̄ and
∑

i∈N w̄i ≥
∑

i∈Q w̄i = 1, we have 1 · ei = 1 ≤ 1 · w̄ ≤

1 · x1 = a1 for all i ∈ N . Recall that q1 = (1/a1)1. Then q1 · ei ≤ 1, implying

ei ∈ H(q1, 1) for all i ∈ N . Since H(qj , 1) ⊂ H(qj+1, 1) for each j < k,

observation (b) follows.

The proof proceeds with an induction argument. In particular, we want to

show that

ϕ(S
j
) = ϕ(Sj) = ϕ(Sj) = ϕ(S′j) = xj (5)

for each j. First, this is established for j = 1.

Claim 3.8. ϕ(S
1
) = ϕ(S1) = ϕ(S1) = ϕ(S′1) = x1.

Proof. First observe thatH(q1, 1)∩H(p1, p1·x1) = H(q1, 1) = H(1, a1) = a1H .

Then by SI, we have ϕ(H(q1, 1)∩H(p1, p1 ·x1)) = a1w = x1. Since x1 ≤ u(S) =

1 we have x1 ∈ S
1
. By RIP this implies ϕ(S

1
) = x1. For all i ∈ N \Q2, we have

x1
i = x2

i , implying p2 · x1 = p2 · x2. Hence, x1 ∈ H(p2, p2 · x2). Since x1 ∈ S
1

as well, we have x1 ∈ S1 ⊆ S
1
. Moreover, u(S1) = u(S

1
) = 1. Then by RIP,

it follows that ϕ(S1) = x1. Since x1 ∈ S
1
and x1 ∈ S, we have x1 ∈ S′1. Since

S′1 ⊆ S
1
and u(S′1) = u(S

1
), RIP implies ϕ(S′1) = ϕ(S

1
) = x1. Observe that

S′1 = S1 ∩ (1 − R
N
+ ). Since ϕ(S1) ≤ u(S1) = 1, we have ϕ(S1) ∈ (1 − R

N
+ ).

Hence, ϕ(S1) ∈ S′1. Since S′1 ⊆ S1 and u(S′1) = u(S1) = 1, RIP implies

ϕ(S1) = ϕ(S′1). Hence, ϕ(S1) = x1.
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Fix some j ∈ {2, . . . , k}, and assume Eq. (5) holds for j − 1. As part

of the induction argument, we need to show that [ϕ(Sj−1) = xj−1] implies

[ϕ(S
j
) = xj ]. This is established in the next three claims.

Claim 3.9. ϕi(S
j
) = xj

i for all i ∈ N \Qj.

Proof. Observe that H(qj−1, 1) ⊂ H(qj , 1), and thus

Sj−1 = S
j
∩H(qj−1, 1).

By point (ii) of Lemma 3.6 this implies Sj−1
−i = S

j

−i for all i ∈ N . By n-fold

application of IM we obtain ϕ(S
j
) ≥ xj−1. By the definition, if for some x we

have xj−1 ≤ x ∈ S
j
, then xi = xj−1

i for all i ∈ N \Qj . Since xj−1
i = xj

i for all

i ∈ N \Qj , the claim follows.

Let t be a vector that gives one to all players who are not inQj , and (aj/aj−1)

to all players who are. Observe that txj−1 = xj .

Claim 3.10. S
j
= tSj−1 ∩ {x ∈ R

N | xi ≤ 1 for all i ∈ Qj}.

Proof. Since tH(pj
′

, pj
′

· xj′) = H(pj
′

, pj
′

· xj′ ) for all j′ ∈ {1, . . . , j} and

tH(qj−1, 1) = H(qj , 1), we have

tSj−1 = tS
j−1

∩ tH(pj , pj · xj)

= tH(qj−1, 1) ∩





j
⋂

j′=1

tH(pj
′

, pj
′

· xj′ )



 ∩ t(1− R
N
+ )

= H(qj , 1) ∩





j
⋂

j′=1

H(pj
′

, pj
′

· xj′ )



 ∩ t(1− R
N
+ ).

Intersecting both sides of the equation with {x ∈ R
N | xi ≤ 1 for all i ∈ Qj}

establishes the claim.

Claim 3.11. ϕ(S
j
) = xj.

Proof. By Claim 3.10 we have tSj−1 = S
j
∩ V where V := {x ∈ R

N |

xi ≤ 1 for all i ∈ Qj}. Then uQ(S
j
) = (aj−1/aj)uQ(tS

j−1). Moreover, x ∈ V

implies (xQj , y) ∈ V for all y ∈ R
N\Qj

. The following two observations show

that xj ∈ S
j
.
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• By construction, xj ∈ tSj−1.

• By definition, xj ∈ S, implying xj
i ≤ 1 for all i ∈ Qj . Thus, xj ∈ V .

Since ϕ(Sj−1) = xj−1, it follows from SI that ϕ(tSj−1) = xj . Hence, ϕ(tSj−1) ∈

S
j
. By Claim 3.9, ϕ−Qj (S

j
) = ϕ−Qj (tSj−1). The claim then follows by RIP.

This is sufficient to make the induction step, and to complete the proof.

Claim 3.12. ϕ(S
j
) = ϕ(Sj) = ϕ(Sj) = ϕ(S′j) = xj for each j = 1, . . . , k (or

j = 1, . . . , k − 1 for ϕ(Sj)).

Proof. By Claim 3.11 we have ϕ(S
j
) = xj . Using the same arguments as in

Claim 3.8, this implies ϕ(S′j) = xj . We now show ϕ(Sj) = xj . The first step is

to show that ϕ(Sj) ∈ S
j
.

• ϕ(Sj) ∈ H(qj , 1).

• Using the same arguments as in Claim 3.9, we have ϕ(Sj) ≥ ϕ(Sj−1) =

xj−1. Like before, x ∈ Sj and x ≥ xj−1 implies xi = xj
i for all i ∈ N \Qj.

Then

pj
′

· x = pj
′

· xj = pj
′

· xj′ for all j′ ∈ {1, . . . , j}.

Hence, ϕ(Sj) ∈
⋂j

j′=1 H(pj
′

, pj
′

· xj′ )

• ϕ(Sj) ≤ 1, so ϕ(Sj) ∈ (1− R
N
+ ).

Since ϕ(Sj) ∈ S
j
and ϕ(Sj) ∈ S (the latter follows from Sj ⊆ S), we have

ϕ(Sj) ∈ S′j. Since S
j
⊆ H(qj , 1), we have S′j ⊆ Sj . Then ϕ(Sj) ∈ S′j ⊆ Sj .

By RIP we obtain ϕ(Sj) = ϕ(S′j) = xj .

Finally, if j < k, then ϕ(Sj) = xj by the same arguments as in Claim 3.8.

Claim 3.13. ϕ(S) = xk.

Proof. Since Sk = S ∩H(qk, 1), point (ii) of Lemma 3.6 implies S−i = Sk
−i

for all i ∈ N . Hence, by n-fold application of IM it follows that ϕ(S) ≥ ϕ(Sk),

and thus by Claim 3.12, ϕ(S) ≥ xk. The claim follows from the observation

that xk ∈ P (S). This concludes the proof.

Theorem 3.1 is established by Propositions 3.2 and 3.5. Next we argue that the

axioms of the theorem are independent.

SIR: For n = 2, the solution F (S) := {x ∈ P (S) | x ≥ (u1(S), 0)} satisfies PO,

SI, IM and RIP, but violates SIR.
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PO: The Kalai-Smorodinsky solution (Kalai & Smorodinsky [7]) is defined as

K(S) := α∗u(S), where α∗ := max{α | αu(S) ∈ S}. This solution satisfies

SIR, SI, IM and RIP, but violates PO.

SI: The lexicographic egalitarian solution ξ satisfies SIR, PO, IM, and RIP,

but violates SI.

IM: The Nash bargaining solution (Nash [9]) is defined as the unique point x∗

that maximizes the function
∏

i∈N xi on S ∩ R
N
+ . It satisfies SIR, PO, SI

and RIP, but violates IM.

RIP: To show that RIP is independent from the other axioms, we consider a

solution D : B → R
N that improves all player’s payoffs simultaneously

in a certain direction, until the boundary is reached. Subsequently, the

players whose payoffs can be further increased within the feasible set, are

divided in two distinct groups. For one of the groups, optimization con-

tinues as usual, until no further improvement is possible. From the point

thus obtained, the payoffs of players in the second group are improved

simultaneously until no further improvement is possible. The resulting

outcome corresponds with D. Such a solution satisfies SIR, PO, SI and

IM, but violates RIP. This is illustrated by the following example.

Example. Consider the 3-person problem S defined as the convex hull

of the points (0, 0, 0), (4, 0, 0), (0, 4, 0), (0, 0, 1), (4, 0, 1) and (0, 4, 1).5 The

solution D improves players’ payoffs in the direction (1/6, 1/6, 2/3)u(S),

until the boundary is reached in the point (1, 1, 1). From there on, im-

provement of player 1’s payoff takes precedence over player 2’s. Then

D(S) = (3, 1, 1). Next, consider the problem T := S ∩ {x ∈ R
N | xi ≤

3.6 for i = 1, 2}. When optimizing in the direction (1/6, 1/6, 2/3)u(T ),

the boundary is first reached in the point (0.9, 0.9, 1). Further improve-

ment for player 1 leads to the solution D(T ) = (3.1, 0.9, 1).

4 Concluding Remarks

The method for characterizing a weighted version of Imai’s lexicographic Kalai-

Smorodinsky solution presented in this article, crucially depends on the prop-

erty SI. Therefore, it does not extend to weighted versions of the lexicographic

5This is a rescaling of the example of Roth [13].
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egalitarian solution (Thomson & Lensberg [15, pp. 139]), or the lexicographic

equal-loss solution (Chun & Peters [1]).

The property RIIA in itself is too weak to characterize the asymmetric lex-

imin solution. This is illustrated by the observation that the solution D de-

scribed in the example above – in addition to SIR, PO, SI and IM – also satisfies

RIIA. The reason it is sufficient in the case of two-player problems is that for

these, RIP is implied by the combination of PO, IM and RIIA.
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