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JUSTIFIED TEST FOCI DEFINITION  

AN EMPIRICAL APPROACH 

 

Since complete testing is not possible, testers have to focus their effort on those 

parts of the software which they expect to have defects, the test foci. Despite the 

crucial importance of a systematic and justified definition of the test foci, this 

task is not well established in practice. Usually, testing resources are uniformly 

distributed among all parts of the software. A risk of this approach is that parts 

which contain defects are not sufficiently tested, whereas areas that do not con-

tain defects attain too much consideration. 

In this thesis, a systematic approach is introduced that allows testers to make 

justified decisions on the test foci. For this purpose, structural as well as histori-

cal characteristics of the software’s past releases are analysed visually and sta-

tistically in order to find indicators for the software’s defects. Structural charac-

teristics refer to the internal structure of the software. This thesis concentrates 

on the analysis of bad software characteristics, also known as “bad smells”. 

Historical characteristics considered in this thesis are the software’s change his-

tory and the software’s age. Simple and combined analyses of defect variance 

are introduced in order to determine indicators for defects in software. For this 

purpose, the defect variance analysis diagram is used to explore the relation-

ship between the software’s characteristics and its faultiness visually. Then, sta-

tistical procedures are applied in order to determine whether the results ob-

tained visually are statistically significant.  

The approach is validated in the context of open source development as well as 

in an industrial setting. For this purpose, seven open source programs as well 

as several releases of a commercial program are analysed. Thus, the thesis in-

creases the empirical body of knowledge concerning the empirical validation of 

indicators for defects in software. The results show that there is a subset of bad 

smells that are well suited as indicators for defects in software. A good indica-

tor in most of all analysed programs is the “God Class” bad smell. Among the 

historical characteristics analysed in the industrial context, the number of dis-

tinct authors as well as the number of changes performed to a file proved to be 

useful indicators for defects in software. 



SYSTEMATISCHE AUSWAHL DES TESTFOKUS 

EIN EMPIRISCHER ANSATZ 

 

Da vollständiges Testen nicht möglich ist, müssen Tester ihre Testaktivitäten 

auf die Bereiche der Software fokussieren, in denen sie Fehler erwarten. Diese 

Bereiche bilden den Testfokus. Obwohl ein systematischer und auf Fakten basie-

render Ansatz bei der Auswahl des Testfokus von herausragender Bedeutung 

ist, hat sich diese Vorgehensweise in der Praxis nicht etabliert. Vielmehr wer-

den die Testaufwände gleichmäßig auf die zu testenden Software verteilt. Das 

Risiko einer solchen Vorgehensweise besteht darin, dass Bereiche der Software, 

die tatsächlich Fehler enthalten, zu wenig getestet werden, wohingegen Berei-

che, die keine Fehler aufweisen, zu viele Testressourcen verbrauchen. 

In dieser Doktorarbeit wird ein Ansatz vorgestellt, der eine systematische und 

empirisch begründete Auswahl des Testfokus ermöglicht. Um Indikatoren für 

Fehler in der Software zu finden, werden unterschiedliche Merkmale der Vor-

gängerversionen der zu testenden Software untersucht. Dabei werden struktu-

relle und historische Merkmale betrachtet. Strukturelle Merkmale beziehen sich 

auf den internen Aufbau der Software. Einen besonderen Schwerpunkt dieser 

Arbeit bildet die Analyse von schlechten Struktureigenschaften, den sogenann-

ten „Bad Smells“. Historische Merkmale umfassen die Änderungshistorie so-

wie das Alter der Software. 

Als Bestandteil des empirischen Ansatzes zur Testfokusauswahl werden einfa-

che und kombinierte Analysen der Fehlervarianz eingeführt. Dabei wird zuerst 

das Fehlervarianz-Analyse-Diagramm verwendet, um die Beziehung zwischen 

unterschiedlichen Merkmalen der Software und der Fehler visuell darzustellen. 

Anschließend werden statistische Verfahren angewendet, um die statistische 

Signifikanz der visuell erzielten Ergebnisse zu ermitteln. 

Ein wesentlicher Bestandteil dieser Arbeit stellt die umfassende Validierung des 

Ansatzes dar. Hierfür wurden empirische Studien zum einen im Bereich der 

Open Source Softwareentwicklung und zum anderen in einem industriellen 

Kontext durchgeführt. Somit trägt diese Arbeit zur Anreicherung der Wissens-

basis über empirisch validierte Indikatoren für Fehler in Software bei. 

Die Ergebnisse der empirischen Studien zeigen, dass eine Teilmenge der unter-

suchten Bad Smells als Indikatoren für Fehler geeignet ist. Dabei erwies sich 

das „Gottklasse“ Bad Smell in allen untersuchten Softwareprogrammen als gu-

ter Indikator für Fehler. Unter den historischen Merkmalen haben sich die An-

zahl der durchgeführten Änderungen sowie die Anzahl unterschiedlicher Au-

toren, die Änderungen durchgeführt haben, als die besten Indikatoren für 

Fehler erwiesen.   
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CHAPTER 1  Introduction 

 
This chapter contains an overall introduction into the topic of 

the thesis, including its motivation, goals and contributions. It 

introduces the shortcomings of currently existing approaches 

for defect prediction as well as the problems encountered in 

practice when deciding on the test foci. The test foci are those 

parts of the software that have to be tested due to the expected 

defects. Furthermore, this chapter gives an overview of the con-

tributions of this thesis to solve the problems identified before. 
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1.1 Motivation 

Spectacular software failures like the crash of the Ariane 5 rocket (Dowson 

1997), but also software failures which occur in our daily life show that testing 

activities are essential in order to detect defects before release. As software 

quality becomes more and more a competitive factor, i.e. the quality acts as a 

differentiating factor among competitors, it is essential to find as much defects 

as possible before release. At the same time, the complexity and the size of to-

day’s software increase. Since complete testing is impossible (Myers 1979) and 

testing resources are limited, it becomes more and more essential for testers to 

decide which parts of the software are to be tested, i.e. the test foci, and which 

not.  

Despite the crucial importance of a thorough and systematic definition of the 

test foci, this task is not well established in practice (Illes-Seifert and Paech 

2008). Usually, the test effort is uniformly distributed among all parts of the 

software. A thorough risk analysis by which testers estimate parts of the soft-

ware which they expect to have defects and which need intensive testing is 

missing. Another problem often encountered in practice is that the estimation 

of the faulty parts (i.e. the parts of the software that contain defects) is based on 

testers’ experience instead of on reliable facts. Therefore, the quality of the es-

timation and in general the quality of the decisions made during the testing 

process highly depend on the experience of the testers. Though experience is 

very valuable, it is based on subjective perceptions that do not always corre-

spond to the reality. In addition, this experience is usually not documented and 

therefore not accessible to novice testers. 

In literature, we find potential indicators proposed for identifying faulty parts. 

In (Kaner, Bach, and Pettichord 2002), a list is presented, containing indicators 

like new technology, late changes, and distributed teams that give hints on 

faulty parts of the software. But these indicators are not empirically validated 

and can vary from project to project so that testers can only use them as a start-

ing point for the definition of test foci in their own context. On the other hand, 

several (more and more sophisticated) approaches for predicting faulty parts 

have been presented in literature. The approaches basically differ in the models 

used for prediction. The proposed models include statistical models, tree based 

models, analogy based models, or neural networks (Lessmann et al. 2008). 

Model parameters are often structural code characteristics, for instance the 

number of lines of code or different other code metrics. Other parameters are 

process characteristics, like the number of changes performed to a software en-

tity or the number of defects detected in previous releases.  

Despite the difference in the proposed models, researchers agree to the fact that 

there is a need to find indicators for defects in code in order to allocate quality 

assurance effort appropriately. Nevertheless, there is no empirically validated 

consensus on the superiority of one modelling method over another (Myrtveit 

and Stensrud 1999), (Myrtveit, Stensrud, and Shepperd 2005), (Shepperd and 

Kadoda 2001), (Jiang, Cukic, and Ma 2008), (Holschuh et al. 2009). Results of re-
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cent research that tries to make cross-project prediction show that simply using 

results of one project in another is impossible (Zimmermann et al. 2009). Thus, 

the selection of the best indicators for defects in code along with the best pre-

diction algorithm can only be made in context. There is no “best” global predic-

tion model. A recent debate shows that there is no consensus on how to evalu-

ate different defect prediction models, i.e. how to assess their performance and 

to make detailed comparisons of several models (Zhang and Zhang 2007), 

(Menzies et al. 2007), (Jiang, Cukic, and Ma 2008), (Lessmann et al. 2008). 

Beside the issue of the diversity of the proposed models and the problem of not 

knowing which the best is, there are several other reasons which impede that 

these approaches are used in practice: 

 Little empirical validation. Few studies in software defect prediction make 

use of statistical procedures in order to empirically validate the results 

(Lessmann et al. 2008). In addition, some empirical studies use small data 

sets. Therefore, more extensive experimentation is needed instead of pre-

senting new models or model enhancements (Menzies et al. 2007). 

 Focus on more and more sophisticated algorithms instead of on their ap-

plicability in practice. Research focused on presenting more and more 

complex algorithms for defect prediction without considering their compu-

tational efficiency, ease of use and comprehensibility. In order to be applied 

in practice, defect prediction algorithms have to be, above all, easy to use 

and to understand. Interrelations encrypted in complex formulae hinder 

that the nature of the detected relationships is understood (Lessmann et al. 

2008). In (Mende and Koschke 2009), the need for new indicators for defects 

in code instead of presenting new algorithms is advocated. 

 Human in the loop needed. Prediction accuracy will never reach 100%. 

Predictors can only be used as indicators and not as “definitive oracles” 

(Menzies, Lutz, and Mikulski 2003), (Menzies et al. 2007), (Menzies et al. 

2008). Consequently, the experience of testers has to be considered. Present 

approaches neglect this issue. In (Menzies, Lutz, and Mikulski 2003), the 

authors show that human expertise usually outperforms automatic ma-

chine learning algorithms. Nevertheless, in some cases a combination of 

both human and machine learning is advocated, for instance when the data 

set is too large or too complex or when expert testers are not available 

(Menzies, Lutz, and Mikulski 2003). 

 Lack of the awareness for the importance of empirical work. Practitioners 

are not trained in the importance of validating their results empirically. For 

this reason, empirical software engineering methods are not often applied 

in practice (Juristo and Moreno 2001). 

All these issues hinder that the approaches for defect prediction are used by 

testers. Nevertheless, in practice, large amounts of data are collected but not 

used in order to gain insight into processes and in order to justify decisions. 

This is the case for several reasons: 
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 Often, a tool is used that records large amounts of data but it is not clear 

which parts of the data are useful and for which purposes.  

 The multitude of metrics makes it difficult to aggregate them to a set of a 

few but meaningful key indicators which would allow an easy interpreta-

tion and as a result assess implications and to drive conclusions based on 

the data.  

 Often, the collection of data is not driven by a clearly defined goal that 

should be achieved when analysing it. In fact, that data are collected which 

are available or which can be easily recorded by a tool. But that data are 

frequently not useful or best suited in the specific context. 

 In addition, often only a snapshot of the current state is drawn up. But the 

raw value is mostly not meaningful, for instance it is not evident whether a 

cyclomatic complexity of 10 is good or bad for a specific program. In fact, 

monitoring the trend of a metric over time is more purposeful. For exam-

ple, if the complexity of a piece of code increases abruptly, this could be a 

hint that substantial changes have been performed and that the particular 

piece of code is a candidate for code inspections. Therefore, the analysis of 

past characteristics of the software development eases the assessment of the 

current status (in reference to the past) and can give hints on how the soft-

ware will develop in the future.  

Consequently, there is a need for an approach that allows testers to make justi-

fied decisions based on concrete facts rather than on intuition, i.e. testers should 

be able to justify decisions concerning the test foci based on the data they usu-

ally collect anyway. In addition, there is a high need for extensive empirical 

studies and for better indicators of software defects. These two issues are ad-

dressed in this thesis. 

1.2 Background 

Mostly, large amounts of data, for instance contained in defect tracking systems 

(DTS) or test management tools, are available for testers. But the data are use-

less unless there are transformed into information and knowledge. In this sec-

tion, the terms “data”, “information”, and “knowledge” will be introduced. Fur-

thermore, the generic approach to find indicators for defects in software used in 

literature as well as in this thesis will be presented. 

1.2.1 From data to knowledge 

The term “data” denotes a set of discrete, objective facts or symbols. In an or-

ganisational context, it can be seen as a set of „structured records of transac-

tion” (Davenport and Prusak 1998). A defect inserted by a tester into a DTS is a 

transaction representing data. For instance, this data tells nothing about why 

the defect occurred or how likely it is that this defect will occur again. Usually, 

large amounts of data are generated during the lifecycle of software. But with-

out analysing them, they have no value.  
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Information is data processed to be useful in a specific context. In (Davenport 

and Prusak 1998), the analogy of information with a message is used, both hav-

ing a sender and a receiver. Similarly to a message, information has an impact 

on the receiver’s behaviour or judgements when reading it. Consequently, in-

formation can be determined to be real information and not data only from the 

receiver’s point of view. The sentence “For component X, 10 defects of priority 1 

have been detected during the last two months.” can be data for someone who 

does not know what component X is. For a tester, knowing that priority 1 de-

fects are critical defects in the application, the statement represents information. 

Generally, everything that has not been collected with a purpose in mind and 

which cannot be interpreted represents data and not information. 

Knowledge can be seen as information to which experience, interpretation, and 

reflection are added. Knowledge can be used in new contexts and situations, 

for instance when making decisions. For instance, knowing that in a project the 

number of changes performed to a software entity is a good indicator for its 

faultiness is useful knowledge when deciding on the testing effort to be allo-

cated to test the software: Components or parts of the software that have been 

changed frequently would be tested more thoroughly than components that 

have not been changed at all.  

Data can be transformed into information by putting it into context, by building 

categories, by aggregating or eliminating errors from data, hence, by under-

standing relationships between data. Information, on its part, can be transformed 

into knowledge by comparing information, deriving consequences on the basis 

of information, by connecting, communicating, and discussing information, 

thus by understanding patterns in information and data. From data to knowl-

edge, the original facts and symbols become more and more connected, and 

simultaneously, the understanding increases. Understanding is the process of 

synthesizing new knowledge from previously stored information and knowl-

edge (Bellinger, Castro, and Mills 2010). The relationships between data, infor-

mation and knowledge are demonstrated in Figure 1.1. 
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Figure 1.1 - Data, Information, Knowledge  
Adapted from (Davenport and Prusak 1998) and  

(Bellinger, Castro, and Mills 2010) 

1.2.2 Generic approach 

A generic goal of all approaches that aim to find indicators for defects in soft-

ware is to show how the large amount of data available for testers can be se-

lected and analysed in order to obtain knowledge essential to define the test 

foci. 

Which data are available for testers? Basically, a distinction between quantitative 

and qualitative data can be made. Qualitative data refers to non-numerical 

whereas quantitative data refers to numerical data. The number of defects in a 

file or the number of changes performed to a file represents quantitative data. 

The statement of a tester, that there is a high defect count in a file is qualitative, 

because it is not clear what the status “high” stands for. Defining that a “high” 

defect count is attributed to all files containing more than 5 defects transforms 

the qualitative statement into a quantitative one. 

Similarly to the empirical studies presented for instance in (Fischer, Pinzger, 

and Gall 2003), (Schröter et al. 2006), (Čubranić and Murphy 2003), (Sliwersky, 

Zimmermann, and Zeller 2005), (Zimmermann, Nagappan, and Zeller 2008), 

(Weyuker and Ostrand 2008), in this thesis, data contained in DTSs and in ver-

sioning control systems (VCS) as well as the application code itself are consid-

ered. Data contained in DTSs and VCSs are collected in order to get information 

about the software project’s history. In this thesis, this information is denoted as 

project history information as it describes the software’s evolution. Information 
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about the internal structure of the software is obtained by static code analysis. 

Both project history as well as product information represent quantitative in-

formation. 

The amount of data which can be collected is nearly unlimited, but only a small 

sub-set is useful and purposeful. In addition, data collection and analysis is ex-

pensive and its interpretation time consuming, thus testers’ experience is im-

portant and can be used when deciding which data have to be collected. For 

example, if testers subjectively have the impression that the defect count in-

creases with the number of authors responsible for a software entity, the infor-

mation about the number of authors that performed changes to a software en-

tity should be collected in order to analyse whether it is actually a good 

indicator for a file’s defect count. Testers’ experience can be used during data 

collection and data analysis. During data collection, experience is important in 

order to minimise the amount of data to be collected. During data analysis, 

testers can decide which analyses should be refined based on the results of pre-

vious analyses. The use of testers’ experience is neglected in research so far 

when searching for indicators for defects in software. Testers’ experience repre-

sents “tacit” or implicit knowledge that is usually “in the heads” of the testers.  

In contrast to implicit knowledge, explicit knowledge is based on the analysis of 

documented data, for example data recorded in VCSs or in DTSs. 

The empirical evidence obtained by analysing the project’s history and the 

software’s structure (as well as a combination of both) reflects explicit, empiri-

cally validated knowledge about relationships between software characteristics 

and its defects. This knowledge can be used to define the test foci.  

Figure 1.2 summarises the generic approach as presented in this section. 
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Figure 1.2 - Generic approach 

1.3 Thesis goals 

This thesis aims to achieve the following two main goals: 

GOAL 1: Definition of a lightweight approach that allows testers to find con-

text specific indicators for defects in software and therefore, to identify the test 

foci by exploring different information sources visually and empirically. Thus, 

the approach aims to support testers in deriving empirically validated knowl-

edge about indicators for defects in software. 

GOAL 2: Increase the empirical body of knowledge, particularly by analysing 

the relationship between structural and historical characteristics of the software 

and its defects empirically.  

In order to achieve the first goal, the following issues have to be addressed: 

 To be able to draw reliable conclusions, statistical procedures have to be 

integrated into the approach, in order to analyse or to show the statistical 

significance of the results obtained by analysing the data. Since testers are 

usually not familiar with statistics and they do not have the time to con-

sult numerous statistic text books, a trade-off has to be made between an 
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approach that is easy to understand and to apply on the one hand and an 

approach that uses statistical procedures on the other hand. 

 A simple visual representation which abstracts from statistical formulae 

and procedures can help interpreting and exploring the results quickly. 

 Since experience plays an important role for testers when making deci-

sions (Illes-Seifert and Paech 2008), the approach should consider and 

benefit from this experience. In addition, the approach should give guid-

ance on how to find indicators for software defects in context. 

 A stepwise refinement when analysing data ensures that first results are 

obtained quickly. In the initial stage of the analysis, raw tendencies should 

be derived which can be refined in further steps if necessary. 

The second goal of this thesis is to perform extensive experimentation in order 

to enrich the empirical body of knowledge in the area of indicators for defects 

in software. For this purpose, the approach has to be evaluated in several con-

texts and across several releases of open source as well as of industrial pro-

grams. In addition, a sub-goal of this thesis is to evaluate new indicators for de-

fects in software empirically.  

The following issues are out of the scope of this thesis. First, characteristics of 

the software’s history which are not documented in a VCS are not considered in 

this thesis. For instance, the number of changes to a requirement is not ana-

lysed, because this information is usually not quickly (and automatically) avail-

able for testers. In addition, structural characteristics of documents that are not 

part of the code itself, for instance the complexity of a requirement, are also not 

considered. The main reason is that in most of the cases, documentation that is 

not the software’s code is informal and therefore, the automatic computation of 

its structural characteristics is difficult.  

This thesis primarily aims to help testers to make justified decisions based on 

data but not to propose a particular model for defect prediction. In a further 

step, after indicators for defects in software have been identified, models for de-

fect prediction can be built. Nevertheless, the selection of the most appropriate 

defect prediction model is not addressed in this thesis.  

Beside the number of defects, the quality of the software comprises other char-

acteristics like maintainability or usability. Finding indicators for other quality 

characteristics is not addressed in this thesis. 

1.4 Contributions 

In order to define an approach that is suitable to be applied in practice as stated 

in Goal 1, the testers’ needs are analysed in a qualitative study (Contribution 1). 

The analysis is performed using a decision based framework that structures de-

cisions to be made during the testing process (Contribution 2). The empirical 

approach for the justified definition of the test foci (Contribution 3) directly 

supports Goal 1. In order to increase the empirical body of knowledge as stated 
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in Goal 2, several empirical studies are performed in the context of open source 

development (Contribution 4) and in an industrial setting (Contribution 5). 

In the following, a detailed description of the contributions of this thesis is 

given. 

 Contribution 1 – Qualitative analysis of the testing process:  In order to 

understand the needs of software testers, an empirical analysis of the state of 

the practice is performed that shows strengths and weaknesses of testing 

processes in practice. For this purpose, experienced testers in several organi-

sations are interviewed in order to determine the most valuable information 

sources for testers when making decisions during the testing process, i.e. 

which documents are often used as well as the role of communication and 

experience. The study shows that testing requires above all domain specific 

experience. In addition, previously found defects are an important informa-

tion source for testers. Finally, testers have problems in evaluating the out-

come of the testing processes. The main reason for this is that testers do not 

have approaches that allow making sound and justified decisions concern-

ing the test foci. Without having defined what to test, it is very difficult to 

evaluate whether the test goals have been achieved. The results of this 

analysis are used to define a lightweight approach to determine the test foci 

suitable to be applied in practice.  

 Contribution 2 – Decision based framework for the characterisation of 

test processes: In order to analyse the testing processes in practice, a deci-

sion based framework is proposed. Software processes often focus on arte-

facts, activities, and roles, treating decisions to be made during the software 

development process only implicitly. However, the awareness of these deci-

sions increases their quality by forcing the decision-makers to search for al-

ternatives and to trade off between them. The decision based framework 

represents a different point of view of the testing process and comprises all 

decisions made during testing and reflects dependencies between them.  

 Contribution 3 – Empirical approach for justified definition of the test 

foci. Decisions in practice are often made based on intuition and subjective 

appraisal, rather than on facts. This also applies to software testing, particu-

larly to the definition of the test foci. In this thesis, an approach is presented 

which combines visual analyses and statistical procedures in order to de-

termine those entities that are responsible for defects in software. The ap-

proach helps testers to make justified decisions that rest upon statistically 

validated facts when allocating their limited resources among particular 

parts of the software. In contrast to sophisticated algorithms presented in lit-

erature, this approach is easy to use and to understand and thus, it is appli-

cable in practice. In addition, the approach does not assume a global set of 

indicators for defects. In fact, testers have to define the most appropriate in-

dicators in their context. Finally, the approach uses testers’ intuition in order 

to select, analyse and to interpret the results.  

 Contribution 4 – Extensive experimentation in the context of open source 

development. The need for extensive empirical investigation has been for-
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mulated by several researchers, for example in (Juristo, Moreno, and Vegas 

2004), (Myrtveit, Stensrud, and Shepperd 2005), (Menzies et al. 2007), and 

(Lessmann et al. 2008). The second goal formulated for this thesis is to 

enlarge the empirical body of knowledge with extensive experimentation. 

For this purpose, the relationship between several project history character-

istics as well as structural characteristics and defects in software is analysed 

empirically both in the context of open source development (Contribution 4) 

and in an industrial context (Contribution 5). 

The main goal of the analysis performed in open source context is to explore 

the relationship between structural characteristics of software and its de-

fects. For this purpose, seven open source programs across several releases 

are considered. Particularly, the following empirical analyses are performed 

in this thesis:  

PARETO-Analysis: The Pareto Principle is a universal principle of the “vital 

few and trivial many”. According to this principle, 80% of the consequences 

originate from 20% of the causes. In this thesis, the Pareto Principle is ap-

plied to software testing in order to analyse whether a small part of the 

software’s code is responsible for most of the defects. The Pareto principle is 

also known as the 80/20 rule. The results show that defects concentrate on a 

small part of files but they do not concentrate on a small part of the applica-

tion’s code.  

BAD SMELLS-Analysis: Bad smells have been introduced as patterns for 

frequently occurring problems in code (Fowler et al. 1999), i.e. the code 

might be difficult to understand or might cause high maintenance effort. 

Thus, bad smells are commonly used as indicators for those parts of the 

software which should be refactored. Little attention has been paid to ana-

lyse the relationship between bad smells and defects in software empirically. 

Beside the study presented in (Shatnawi and Li 2006), this issue has not been 

addressed in research so far. Thus, this thesis contributes to analyse new 

indicators for defects in software. The results show that in fact there are bad 

smells that actually are good indicators for the software’s defects.  

 Contribution 5 – Experimentation in an industrial context. One main goal 

of the analysis in the industrial context is to validate the empirical approach. 

In addition, this analysis aims to explore the relationship between several 

project history characteristics and defects empirically, the HISTORY-

Analysis. 

HISTORY-Analysis: The main assumption of this empirical investigation is 

that the project’s history is a valuable information source when searching for 

indicators for defects in software. For instance, according to an expression, 

“many cooks spoil the broth”. Is this true for software development, too? 

This is one of the questions to be analysed in this context. Other characteris-

tics that are analysed include the number of authors performing changes to 

a software entity, the size of the change as well as the age of a software en-

tity. The results show that the number of changes and the number of distinct 

authors performing changes to software entities are good indicators for its 
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defects in the analysed context. The combination of these indicators shows a 

more precise view. Frequently changed entities by many distinct authors 

have the most defects.  

The results of this empirical study also show that the approach proved of 

value; the presentation of the results was intuitive and easy to understand 

by the project team. From the testers’ point of view, the empirical study was 

helpful because the results confirmed their assumptions in large parts and 

build now the foundation for justified decisions on the test foci.  

 

1.5 Thesis outline 

The thesis is structured as follows: 

Chapter 2  introduces some basic notions and general concepts used 

throughout the thesis. It includes basic terms in the area of 

software testing as well as an introduction to empirical software 

engineering. In addition, it presents an introduction to basic 

terms and concepts related to software measurement and statis-

tics.  

Chapter 3 aims at giving an overview of related work. 

Chapter 4 introduces a decision based framework for characterising test-

ing processes that is used as the basis for the evaluation of test-

ing processes in practice as described in Chapter 5. In this chap-

ter, Contribution 2 of the thesis is detailed. 

Chapter 5 presents the results of an interview study conducted with ex-

pert testers in order to identify the state of the practice with re-

spect to the most valuable sources of information for testers. 

Particularly, it identifies which documents are often used by 

testers as well as the role of experience when making testing 

decisions. In this chapter, Contribution 1 of the thesis is de-

tailed. 

Chapter 6 gives a detailed description of the empirical approach pre-

sented in this thesis that helps testers to make justified deci-

sions on the test foci. In this chapter, Contribution 3 of the thesis 

is detailed. 

 

Chapter 7 introduces the context of the empirical studies, including in-

formation on the programs that are analysed and the proce-

dures used for data collection and validation.  

Chapter 8 details the results of the analysis of the Pareto principle. In this 

chapter, Contribution 4 related to the PARETO-Analysis is de-

tailed. 
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Chapter 9  explores the relationship between bad software characteristics 

(bad smells) and defects in software. In this chapter, Contribu-

tion 4 related to the BAD SMELLS-Analysis is detailed. 

Chapter 10 presents the results of an empirical study which aims to explore 

the relationship between a file’s history and its defect count. In 

this chapter, Contribution 5 related to the HISTORY-Analysis is 

detailed. In addition, this chapter also aims to validate the ap-

proach presented in Chapter 6 in an industrial context. 

Chapter 11 summarises the results and limitations of this thesis and gives 

some directions for future research. 



CHAPTER   2 Basic terms and concepts 

 
This chapter introduces basic terms and definitions related to 

software testing, empirical software engineering, software 

measurement and statistics used in this thesis.  
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2.1 Introduction 

In this chapter, fundamental concepts used in this thesis are introduced. First, 

basic terms and concepts related to software testing are presented in Section 

2.2. At this, a definition of the term “testing” is given along with the discussion 

of the differences between the similar, but not synonymous terms “defect”, “er-

ror”, and “failure”. Section 2.3 motivates the necessity for empirical research in 

software engineering. In addition, the immature status of experimentation is 

discussed. Subsequently, basic concepts in empirical software engineering are 

presented. In the third part of this chapter, in Section 2.4, basic terms related to 

software measurement are introduced. Basic statistical terms and concepts are 

presented in Section 2.5 along with frequently used visualisations for data (Sec-

tion 2.6). Finally, Section 2.7 summarises this chapter. 

2.2 Software testing 

In the narrow sense, software testing comprises the random execution of soft-

ware to observe whether it behaves as expected. If this is not the case, correc-

tion activities have to be taken. But beyond the simple random execution of test 

cases, testing involves several other activities performed by several roles in the 

testing process. In this thesis, the following definition of software testing is 

used: 

Definition 2.1 – Testing 

Testing is the process consisting of all life cycle activities con-

cerned with planning, preparation and evaluation of software 

products and related work products to determine that they 

satisfy specified requirements, to demonstrate that they are fit 

for purpose and to detect defects (ISTQB 2007). 

In Chapter 4, a framework for characterising testing processes is introduced 

along with a detailed description of the testing process from a decisions based 

perspective. 

2.2.1 Definitions 

Often, the term “defect” is used synonymously to the terms “error” and “fail-

ure” but there are slight differences.   

Definition 2.2 – Failure 

A failure is an observable deviation of a component or a subsys-

tem from the required or expected function. 
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Definition 2.3 – Defect  

A defect is a flaw in a component or system that can cause the 

component or system to fail to perform its required function 

(ISTQB 2007). For example, a defect can be an incorrect or 

omitted statement. Often used synonyms are fault or bug. A 

defect can, but must not cause a failure. The terms defect, bug, 

and fault are used synonymously in this thesis. 

Definition 2.4 – Anomaly 

Anomalies subsume any kind of deviations of a system or 

component from expectations based on requirements specifi-

cations, design documents, user documents, standards, or 

from someone’s perception or experience (ISTQB 2007). 

Definition 2.5 – Error 

An error is a human action that produces an incorrect result 

(ISTQB 2007), for instance a defect in the code.  

 

For a defect, three conditions have to be fulfilled in order to expose a failure 

(Binder 1999): 

1) The defect must be reached, i.e. the code fragment containing the defect must 

be executed. 

2) The failure must be triggered, i.e. the system state and the input data must 

cause the code fragment containing the defect to produce an incorrect re-

sult. Depending on the system state and the input data, a code fragment 

containing a defect must not expose a failure when executed. 

3) The failure must be propagated, i.e. the failure must be observable. 

Usually, testing activities expose failures that are recorded in defect tracking 

systems. Developers analyse these records and search for the defect, i.e. the 

cause of the failure.  

Parts of the software with a poor quality are faulty if they have defects.  

The file a is more fault-prone than the file b if the defect count of the file a is 

higher than the defect count of the file b. 

2.2.2 Roles in the testing process 

Depending on the complexity and size of the software under test, several roles 

are involved in the testing process. For instance, test managers are involved in 

test planning and test monitoring activities, test designers are responsible for 

designing a set of test cases and testers usually execute them. In this thesis, the 

term “tester” is used to refer to all persons involved in the testing process. 
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2.2.3 Test strategy and test focus 

The test strategy comprises the definition of the high-level approach to testing. 

It defines what should be tested and how. In order to decide on what to test, test-

ers have to select the test foci (i.e. the parts of the software to be tested) and to 

decide with which intensity to test the test foci. In this thesis, an empirical ap-

proach to determine the test foci is presented that is based on visual and statis-

tical analyses of project history and product data. 

In order to decide how to test, testers have to define for example which testing 

techniques have to be used to test the test foci or which is the ideal order to 

perform the tests (e.g. depending on the availability of the components of the 

software under test). A detailed description of all decisions to be made during 

test strategy definition is presented in Chapter 4. 

2.3 Empirical software engineering 

Empirical software engineering research basically consists of tests that “com-

pare what we believe to what we observe” (Perry, Porter, and Votta 2006), or 

with other words it refers to “matching with facts the suppositions, assump-

tions, speculations and beliefs that abound in software construction” (Juristo 

and Moreno 2001). 

Empirical software engineering research aims to explore, describe, predict, and 

explain phenomena in the area of software engineering by using evidence 

based on observation or experience. It involves obtaining and interpreting evi-

dence for the usefulness of different methods, techniques, tools, and processes, 

for instance by experimentation, interviews, and surveys, or by the careful 

analysis of documents or artefacts (Sjoberg, Dyba, and Jorgensen 2007). 

Why is empirical software engineering important? First, similarly to “tradi-

tional sciences”, computer scientists have to observe phenomena, formulate ex-

planations and theories, and test them in order to understand the nature of in-

formation processes (Tichy 1998) and to understand what makes software good 

and how to make software well (Fenton and Pfleeger 1998). 

Engineers need a proof that a particular approach is really better than another 

(Juristo and Moreno 2001). Experimentation can help to build a reliable base of 

knowledge and helps reducing the risks and the uncertainty about proposed 

methods, techniques, tools, and processes. Therefore, experimentation helps de-

termining the effectiveness of proposed approaches (Zelkowitz and Wallace 

1998). In addition, experimentation can accelerate progress in software engineer-

ing research and practice by eliminating inadequate approaches.  

2.3.1 Immature status of empirical software engineering 

In 1993, Rubin stated: “Little is known [of] the impact of software engineering 

practices and processes. While much is written about the topic in qualitative 

terms, little quantitative information is available.”  

In spite of its importance for practice and research, the status of empirical soft-

ware engineering is considered as immature. Methods, techniques, tools, and 
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processes are judged by whether or not people use them (Juristo and Moreno 

2001). There is little empirical evidence that a particular practice, tool, or proc-

ess is better than another. 

In (Zelkowitz and Wallace 1998), the authors analyse about 600 papers pub-

lished from 1985 through 1995 in IEEE Transactions on Software Engineering1, 

IEEE Software2, and the ICSE3 proceedings according to the amount of empiri-

cal validation. They conclude that: 

 Many papers (1/3) have no experimental validation at all. 

 The most validation of the proposed methods and tools is done by “les-

sons learned” and case studies (each 10% of all papers). 

 Authors often fail to clearly state the value added by the new method or 

tool they have developed. 

The authors in (Lukowicz et al. 1994) performed a similar survey over 400 re-

search articles. They also conclude that the ratio of validated results is a “seri-

ous weakness” in computer science research. According to this study, 40% - 

50% of articles completely lack of such validation. Related to other disciplines 

(the authors compare their results with optical engineering), computer scien-

tists validate a smaller percentage of their results. 

Two more recent studies (Sjoberg, Dyba, and Jorgensen 2007) and (Wainer et al. 

2009) underline the findings obtained by (Zelkowitz and Wallace 1998) and 

(Lukowicz et al. 1994). They conclude that computer science research has not 

increased significantly its empirical or experimental component yet.  

2.3.2 Reasons for not conducting experiments  

Some of the popular fallacies (and rebuttals) when arguing not to perform em-

pirical validation from the researcher’s point of view are formulated in (Tichy 

1998). Researchers often argue that the traditional scientific method is not applica-

ble. But in order to understand the nature of information processes, computer 

scientists must observe phenomena, formulate explanations and theories, and 

test them. Another fallacy is that the current level of experimentation is good 

enough. But the results mentioned above underline the “pre-scientific status in 

software engineering” (Juristo, Moreno, and Vegas 2003). In addition, research-

ers argue that experimentation will slow progress. But the opposite is true. Mature 

sciences are characterised by using mature empirical knowledge in order to 

predict results.  

From the perspective of practitioners there are also several problems that hin-

der the application of empirical software engineering methods in practice 

(Juristo and Moreno 2001). Beside the issue related to the short-term costs, prac-

titioners are not trained in the importance and meaning of empirical studies. 

They do not understand the importance of empirical work in validating meth-

                                                      

1 http://www.computer.org/portal/web/tse/, (June 2011) 
2 http://www.computer.org/portal/web/software/home, (June 2011) 
3 International Conference on Software Engineering, http://www.icse-conferences.org/, (June 

2011) 

http://www.computer.org/portal/web/tse/
http://www.computer.org/portal/web/software/home
http://www.icse-conferences.org/
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ods, techniques, tools, and processes. In addition, they are not trained in statis-

tical procedures needed to understand the results of statistical analyses.  

In research and practice, the short-term costs and time pressure prevent seeing 

the long term benefits of experiments. For the short term, an empirical investi-

gation seems very costly. But selecting and applying the “wrong” method, 

technique, tool, or process can exceed the costs of an initial empirical validation 

many times over. 

Finally, there are several obstacles to perform thorough empirical validation re-

sulting from the discipline itself, for instance the effect of the human factor or 

the variety of contexts (Juristo and Moreno 2001). In software engineering, the 

results depend on the practitioners. Different practitioners will get different re-

sults when applying an approach or tool. In addition, there are large differences 

in contexts and thus, it is difficult to generalise results. Nevertheless, complex-

ity should not lead to neglect empirical work in the field of software engineer-

ing, because this is the building block of a mature science. 

2.3.3 Empirical strategies 

Basically, two main strategies can be distinguished for performing empirical re-

search: qualitative and quantitative strategies.  

Quantitative strategies perform (statistical) analyses on numerical data. Quan-

titative research is an “inquiry into an identified problem based on testing a 

theory, measured with numbers, and analysed using statistical techniques” 

(State Justice Institute 1999). Basic statistical definitions and techniques that can 

be applied in quantitative research are presented in Section 2.5. 

Qualitative methods use data in form of text, images, sound drawn from ob-

servations, interviews and documentary evidence, and analyse it using meth-

ods that do not rely on precise measurement to yield their conclusions. Qualita-

tive methods have originally been introduced by educational researchers and 

by social scientists in order to study human behaviour like motivation and 

communication (Seaman 1999). There are also different kinds of methods that 

can be used to collect and analyse data gathered by qualitative studies.  

Usually, software engineering research may incorporate both qualitative and 

quantitative methods (Seaman 1999). The selection of an appropriate method 

depends on factors like the problem of interest, resources available, the skills 

and training of the researcher(s), and the audience for the research. The concept 

of subjectivity and objectivity is not correlated to either of these types of inves-

tigation (Juristo and Moreno 2001). Table 2.1 summarises the differences be-

tween qualitative and quantitative research with respect to the inputs, goals, 

general characteristics, the role of the researcher, and the methods used in the 

particular research strategy. 

In this thesis, both qualitative and quantitative research strategies are applied. 

The state of the practice concerning the testing processes, as described in Chap-

ter 5, is analysed qualitatively. This research strategy is used, because it helps to 

get more experienced with the analysed phenomenon. In this case, the overall 
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goal is to get a deep understanding of the testing process along with the infor-

mation flow. The empirical studies presented in this thesis that aim to explore 

the relationship between historical as well as product characteristics of software 

and its defects are quantitative studies, since they are based on numerical data 

that are analysed with statistical (and visual) procedures. 

 

 Qualitative Research Quantitative Research 

Inputs text, images, sound drawn 

from observations, interviews 

numerical data 

Goal understand phenomena and 

different perspectives 

find facts, patterns, gener-

alisability, prediction  

Characteristics explanatory 

discovery oriented 

confirmatory 

verification oriented 

The role of  

researcher 

The researcher interacts with 

those he studies. 

The researcher remains dis-

tant of what is being re-

searched. 

Methods case studies, interviews, par-

ticipant observation, document 

reviews, etc. 

statistical analyses, experi-

ments, surveys, etc. 

Table 2.1 - Empirical software engineering research 
Adopted from (State Justice Institute 1999) 

2.3.4 Data collection and analysis in qualitative research 

In literature, several methods for collecting and analysing qualitative data have 

been proposed. Popular methods used for and during data collection are inter-

views, document analyses, and coding. Interviews are particularly useful for 

getting the story behind a participant’s experiences (Kvale 1996). The inter-

viewer can pursue in-depth information around the topic of interest. There are 

several kinds of interviews, for instance face-to-face, telephone, email, or focus 

groups. Document analysis is concerned with the analysis of textual artefacts 

(e.g. review protocols, project plans) or of visual documents (e.g. photographs, 

videotapes, art objects, film). The coding process aims at assigning “tags” to 

qualitative data. Coding facilitates the identification of trends and patters and it 

also can be used to extract quantitative data from qualitative data. Coding 

should be used throughout the process of data collection. In (Seaman 1999), it is 

emphasised that coding adds neither objectivity nor accuracy to data.  

For data analysis, several methods have been proposed. Cross case analysis parti-

tions the data into different categories by using different criteria (Seaman 1999). 

The main idea is to “look at the data in many different ways” (Seaman 1999). In 

research, several strategies for partitioning data have been presented, for in-

stance based on particular attributes like the number of people involved, the 

type of product that has been analysed, etc. Another possibility to categorise 

data is according to the data source (e.g. interviews, document analysis, etc.) or 

to compare pairs of cases. The main goal of all data analysis procedures is to 



37 

find similarities and differences between the groups identified before 

(Eisenhardt 1989). 

Ensuring validity of the methods used to generate hypotheses and conclusions 

is one of the most important ways to confirm a qualitative hypothesis or con-

clusion. One way for assuring validity is the representativeness of the experimen-

tal subjects/objects. Another way of increasing confidence in conclusions and 

hypotheses drawn from qualitative data is triangulation. Triangulation aims at 

gathering different types of evidence to support a proposition (Seaman 1999). 

In Chapter 5, methodological triangulation (uses multiple methods4) as well as 

explanatory triangulation (tries out several explanations for all results) are used 

in order to assure the validity of the results.  

2.4 Software measurement  

In this section, basic terms related to software measurement are introduced. 

Definition 2.6 –  Measurement 

Measurement is the process by which values are assigned to at-

tributes of entities in the real world in such a way as to de-

scribe them according to clearly defined rules (Morasca 2001), 

(Fenton and Pfleeger 1998). In case of software measurement, 

entities are related to software processes or to software prod-

ucts. 

Definition 2.7 –  Entity 

An entity is an object (e.g. a piece of software) or an event (e.g. 

testing phase in the software development process) in the real 

world. 

Definition 2.8 –  Attribute 

An attribute is a property of an entity. For instance, an attribute 

of a software component is its size; an attribute of the testing 

process is its duration. 

Definition 2.9 –  Metric 

A metric represents a quantitative measure of the degree to 

which a system, a component, or process possesses a given at-

tribute (IEEE Std 1990). For instance, the size of the software 

can be represented by the LOC metric, the duration of the test-

ing phase by the time interval between the beginning and the 

end of the testing activities.  

 

                                                      

4 Triangulation can also include the combination of qualitative and quantitative methods (Seaman 

1999). One example of combining qualitative and quantitative methods is to statistically validate 

a hypothesis that has been generated qualitatively. 
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In (Morasca 2001), a difference between the concept of metric and measure is 

made. Accordingly, a “measure” is a more general term than “metric”.  

Figure 2.1 illustrates the relationship between measures, metrics, attributes and 

entities. A measure can be quantified by several metrics. Metrics assign a value 

to the attributes of entities in the real world. For instance, the quality of a piece 

of software can be expressed by its fault-proneness (measure). One correspond-

ing metric to measure the fault-proneness of a file is for instance the number of 

defects reported for that piece of software after its release. An alternative metric 

for the fault-proneness of a file is the number of defects reported during system 

testing. Thus, several metrics can be defined to quantify a measure. 

 

Figure 2.1 - Measures, metrics, attributes and entities 

2.5 Statistical basics 

This section introduces some basic statistical terms and concepts. 

2.5.1 Definitions 

Definition 2.10 –  Statistic  

A statistic is a numerical summary of the sample data. Com-

monly used statistics for quantitative data are for instance 

means, variances, standard deviations, percentiles, or medi-

ans. For qualitative data, proportions or percentages can be 

used to summarise characteristics of the data (Salkind 2007). 

Definition 2.11 –  Experimental object 

In statistics, the entities on which the empirical study is run 

are called experimental units or experimental objects. The 

files of an open source program are experimental objects. 

measure

metric

attribute

entity

quantified by

assigns value to

is characteristic of
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Definition 2.12 –  Variable 

Each experimental object is measured according to various 

attributes. Each of these attributes is denoted as a variable. 

For instance, the size or the age of a file is a variable of the 

experimental object “file”. Independent variables are those 

variables that researchers can control and change in the ex-

periment. Independent variables are also called factors. De-

pendent variables are those variables that are affected during 

experimentation. The dependent variable depends on the in-

dependent variable. 

Definition 2.13 –  Observation 

The data derived or measured from an object is called obser-

vation. The concrete value of the variable of an experimental 

object is an observation. The size of a particular file (e.g. 

measured by its lines of code) represents an observation. 

Definition 2.14 –  Treatment 

A concrete value of a factor is denoted as treatment. 

2.5.2 Sample and population 

Definition 2.15 –  Population 

The population subsumes all data that could be gathered 

given infinite time. 

Definition 2.16 –  Sample 

A sample is a subset of the population. Since resources and 

time is limited, experiments use a subset of a larger popula-

tion and aim to generalise the results obtained to that larger 

population. If the sample size is large enough, the confidence 

increases that the results obtained for the sample represent 

the characteristics of the population (Fenton and Pfleeger 

1998).  

2.5.3 Types of data, measurement scales and operations 

The nature of the data influences the analysis techniques and the operations 

that can be performed on the data. One basic distinction is whether arithmetic 

operations can be performed on the data (numerical data) or not (categorical 

data). 

Different types of data have different underlying scales of measurement. In par-

ticular, following scales can be distinguished (in ascending order of precision 

and power): nominal scale (for nominal data), ordinal scale (for ordinal data), 

interval scale (for discrete data), and ratio scale (for continuous data).  
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 The nominal scale is the least powerful of the scale types. The nominal 

scale represents a list of classes to which objects can be classified, for in-

stance the classification of software defect types into one of the categories: 

data flow, control flow, etc. Variables on the nominal scale are called nomi-

nal variables. 

 The ordinal scale assigns values to objects based on their ranking with re-

spect to one another. For instance, the ordering of software requirements 

according to their priority: low, middle, high is an ordinal scale. 

 The interval scale captures information about the size of the intervals that 

separate classes. On interval scale, the difference is meaningful, but not the 

value itself.  

 The ratio scale preserves ordering, the size of intervals between entities, 

and ratios between entities. In addition, there is a zero element, represent-

ing total lack of the attribute. 

Figure 2.2 shows the different types of data along with the corresponding scales 

of measurement.  

 

Figure 2.2 - Types of data and measurement scales 

There is a hierarchy implied between the several measurement scales. At each 

level up the hierarchy, the current scale includes all of the qualities of the one 

below it and adds something new. Figure 2.3 shows the different measurement 

scales and corresponding operations as well as statistical analyses that are per-

mitted at each level. 

type of data

data

categorial numerical

nominal ordinal discrete continuous

nominal ordinal interval ratio
measurement

scale
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Figure 2.3 - Measurement scales and operations 

(Wohlin et al. 2000), (Fenton and Pfleeger 1998), (Siegel and Castellan 1988) 

2.5.4 Summarising data 

Since data collection produces large amounts of data, it is important to define 

means by which data can be summarised in order to draw conclusion or to 

compare different data sets efficiently. Basically, there are two means by which 

data can be summarised: visual representations (more details in Section 2.6) 

and statistical measures. Descriptive statistics are used to represent quantitative 

data in a manageable form. These statistical measures form the basis of every 

quantitative analysis of data. 

Measures of central location (also known as measures of central tendency) 

represent ways of summarising data with reference to its central point. Meas-

ures of central location are the mode, the median, the mean, the quartiles and 

percentiles. 
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Definition 2.17 –   Mode  

The mode represents the most frequently occurring value. 

Definition 2.18 –  Median 

The median of a distribution is the midpoint of the distribu-

tion of a variable after the observations have been sorted 

from low to high. The median can be determined as 

 Median = 
2

1n
,  

where n is the number of observations. 

 

Definition 2.19 –  Mean  

The (arithmetic) mean is the sum of all the values of a variable 

divided by the number of observations.  

The mean can be determined as 

Mean = nxi / ,  

where xi represents the i-th value of the variable of interest x, 

and n is the sample size. 

Definition 2.20 –  Average  

The term average is used to represent values that indicate the 

midpoint of a distribution (median or mean).   

Definition 2.21 –  Percentile/Quartiles  

Percentiles are defined as a system of measurement based on 

percentages, in contrast to the absolute values of a variable 

(Salkind 2007). Quartiles group observations into four equal 

sized sets according to their rank order. Each of the four sets 

forms a quartile. 

The median splits the data in half, i.e. half of the data is below and half of the 

data above the median. The median is also called the 50th percentile. Other per-

centiles can be defined. For instance, the 95th percentile indicates that 95% of the 

observations are of smaller value and the remaining 5% are larger. The 25th per-

centile is also called the 1st quartile (lower quartile); the 75th percentile is called 

the 3rd quartile (upper quartile). Accordingly, the median is denoted as the 2nd 

quartile. 

Measures of variability refer to the spread of values around the central ten-

dency (Wohlin et al. 2000). Frequency, range, variance and standard deviation 

are measures of variability. 
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Definition 2.22 –  Frequency 

Frequency shows the number of observations falling into each 

of the categories or ranges of values of a variable.  

Definition 2.23 –  Max, Min, Range, Interval of variation 

The minimum is the smallest value, the maximum is the larg-

est value, and the range is the difference between the maxi-

mum and minimum. The pair of (Min, Max) of a variable is 

denoted as interval of variation.  

Definition 2.24 –  Variance 

Variance is the average value of the squared difference be-

tween an observation and the population mean. The variance is 

calculated as: 

   
 

   
           

 

   

 

Definition 2.25 –  Standard deviation 

The standard deviation is defined as the square root of the 

variance and is calculated as: 

      
 

   
            

    

 

Variance tends to increase with increasing variability around the mean, i.e. 

large deviations from the mean contribute heavily to the variance because they 

are squared. The standard mean is therefore a more intuitive measure 

(Albright, Winston, and Zappe 1999). 

2.5.5 Hypothesis testing 

Hypothesis testing provides objective rules for determining whether a hy-

pothesis is supported by the data or not. More exactly, in hypothesis testing two 

competing hypotheses are formulated: the null hypothesis (H0) and the alternative 

hypothesis (Ha). The null hypothesis is often the reverse of what the experi-

menter actually believes. The main goal of hypothesis testing is to reject H0. 

When rejecting or accepting a hypothesis, there is always the possibility of 

making an error. In hypothesis testing, two types of errors can be made: 

 Type I Error (false positive, alpha α) means rejecting the null hypothe-

sis when it is true.  

 Type II Error (false negative, beta β) means accepting the null hypothe-

sis when it is false. 

The probability of making a type I error is equal to the significance level alpha 

α. Alpha indicates the probability level the researcher is willing to accept for in-

correctly rejecting the null hypothesis. Typical significance levels for alpha are 
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0.01 and 0.05. For an alpha level of 0.05, the probability of rejecting a true null 

hypothesis is 0.05.  

The p-value of a test is the smallest value of alpha for which the null hypothesis 

would be rejected.  

The process of hypothesis testing consists of the following steps: 

1. Formulate the null hypothesis and the alternative hypothesis. Choose a 

significance level for α.  

2. Identify the test statistic that can be used to assess the validity of the 

null hypothesis. Details on criteria are given below.  

3. Compute the p-value. The smaller the p-value, the stronger the evidence 

against the null hypothesis.  

4. Compare the p-value with the significance level defined in the first step. 

If p ≤ α, the observed effect is statistically significant and the null hy-

pothesis can be rejected. 

In the literature, several statistical tests are proposed that can be used to evalu-

ate a hypothesis. A main distinction between the tests is whether a test is para-

metric or non-parametric.  

Parametric tests assume a particular distribution of the underlying data (e.g. 

normal distribution). Non-parametric tests do not make any assumption con-

cerning the distribution of data. Since all tests performed in the empirical stud-

ies described in this thesis do not make any assumption on the distribution of 

the data, non-parametric tests are applied. A second distinction between statis-

tical tests is the type of experiment design with respect to the number of treat-

ments of the analysed factor. Table 2.2 shows different statistical tests for differ-

ent designs. 

Factor with Parametric test Non-parametric test 

one treatment  Chi-2 

two treatments t-test, F-test Mann-Whitney, Chi-2 

more than two treatments ANOVA Kruskal-Wallis, Chi-2 

Table 2.2 - Parametric and non-parametric tests for different designs  
adopted from (Wohlin et al. 2000) 

In this thesis, two non-parametric tests are applied: the Mann-Whitney test and 

the Kruskal-Wallis test. 

The Mann-Whitney test is a non-parametric test that is used to analyse the dif-

ference between the mean ranks of two data sets (Wohlin et al. 2000). The null 

hypothesis is that there is no significant difference between the two data sets. 

For instance, the Mann-Whitney test can be applied in order to analyse whether 

a particular bad smell is an indicator for defects in files. In this case, the factor is 

the bad smell. The treatment is 0 or 1, i.e. 0 if the bad smell applies to a file and 

1 otherwise. In order to perform the Mann-Whitney test, the data are classified 

into two groups: a group containing files for which the bad smell applies and 
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another group that contains files for which the bad smell does not apply. The 

null hypothesis is that there is no difference between the two groups; the alter-

native hypothesis is that there is a difference between the two groups, i.e. the 

mean defect count (more precise, the mean rank of defect counts) in the group 

for which the bad smell applies is higher than the mean rank in the “non”-bad 

smell group.  

The Kruskal-Wallis test is a non-parametric test, that is used to analyse the dif-

ference between the mean ranks of more than two data sets (Wohlin et al. 2000). 

Similarly to the Mann-Whitney test, the null hypothesis is that there is no sig-

nificant difference between the data sets. For instance, the Kruskal-Wallis test 

can be applied in order to analyse whether a file’s age affects its defect count. 

The factor is the file’s age; possible treatments are “newborn”, “young” or 

“old”5. In order to perform the Kruskal-Wallis test, the data are classified into 

one of the three groups: a group containing newborn files, another group con-

taining young files and a third group containing old files. The null hypothesis is 

that there is no difference between these groups; the alternative hypothesis is 

that the mean rank of defect counts differs in the particular groups. 

All statistical tests presented in this thesis have been performed with the soft-

ware product SPSS6, version 12. 

2.6 Data visualisation 

Visualisation is a good means of getting a first impression of the data to be ana-

lysed. In (Card, Mackinlay, and Shneiderman 1999), (information) visualisation 

refers to the use of computer-supported visual representations of abstract data 

to amplify cognition. Visual representations use attributes like location, length, 

shape, colour, size, etc., in order to display information. Abstract data usually re-

fer to quantitative data, for instance describing processes or relationships, in 

contrast to data representing physical objects. Since abstract data have no 

shape, a mapping to visual representations like shapes, colours, etc. (Few 2009) 

is necessary. Visualisations are used to amplify cognition, i.e. visualisations allow 

seeing patterns, trends, and exceptions that might be otherwise hard to dis-

cover. In addition, visualised data extend our ability to think about information, 

representing data in ways that human brains can easily comprehend. In this 

thesis, the histogram is used in order to visualise the mean defect counts in dif-

ferent categories of files, depending on the analysed independent variable. 

The histogram shows the distribution of a variable. It is obtained by categoris-

ing a variable into classes. Then, for each class, the numbers of observations 

from the data set which fall into each class are counted. On the y-axis, the fre-

quency of the data in each class is represented by bars. On the x-axis, the classes 

of the dependent variable are displayed. 

                                                      

5 Detailed definitions for the classification of files in one of the categories “newborn”, “young”, or 

“old” are presented in Chapter 10. 
6 http://www.spss.com/de/ 
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The following information can be identified in a histogram: 

 centre of the data, 

 spread of the data, 

 skewness,  

 outliers, and  

 the presence of multiple modes.  

Figure 2.4 shows several histograms with different distributions of the vari-

ables.  

 

Figure 2.4 - Histograms for different distributions 

2.7 Chapter summary 

In this chapter, basic terms and concepts related to software testing, empirical 

software engineering, software measurement, as well as statistics are presented.  

Software testing represents a crucial activity in the life-cycle of a software prod-

uct. But beyond the simple random execution of test cases to see whether the 

system under test behaves as expected, software testing involves several other 

activities performed by several roles in the testing process, like the planning 

and monitoring of testing activities, the definition of the test strategy, or the de-

sign of test cases.  

Empirical software engineering research is concerned with the analysis of phenom-

ena in the area of software engineering by using evidence, based on observation 

or experience. Empirical research in the area of software engineering is impor-

tant because it can accelerate progress by eliminating inadequate approaches. 

Basically, two main strategies can be distinguished: qualitative and quantitative 

strategies. Quantitative strategies perform analyses on numerical data and use 

statistical procedures. In contrast, qualitative strategies aim at understanding a 

social or human problem from multiple perspectives. These methods use data 

in form of text, images, or sound drawn from observations, interviews and 

documentary evidence. Both strategies are important for research and can 

complement each other. In this thesis, both strategies are used. 

For both qualitative and quantitative strategies, methods for data collection and 

analysis have been proposed in literature.  
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Software measurement is concerned with the process by which values are as-

signed to attributes of entities (software processes or software products) in such 

a way as to describe them according to clearly defined rules. A metric repre-

sents a quantitative measure of the degree to which a system, a component, or 

process possesses a given attribute (IEEE Std 1990). 

For analysing quantitative data, statistical procedures as well as visual represen-

tations can be used. The nature of the data influences the analysis techniques 

and the operations that can be performed on the data. Different types of data 

have different underlying scales of measurement. Starting point of an empirical 

study is the formulation of research hypotheses. Hypothesis testing provides 

objective rules and statistical procedures for determining whether a hypothesis 

is supported by the data or not. 

Another way of representing data is visualisation. Visualisations allow seeing 

patterns, trends, and exceptions that might be otherwise hard to discover. Visu-

alisation can be used in early stages of the data analysis and complements sta-

tistical procedures. 



 

CHAPTER 3 Related work 

 
This chapter presents research related to the topic of this thesis. 

First, the use of the terms “test strategy” and “test focus” in 

literature is discussed. Then, related work concerning risk 

based testing as well as generic frameworks for software meas-

urement and quality modelling are presented. Finally, an over-

view of models for predicting the software’s fault-proneness is 

given. 

 



3.1 Introduction 

In this chapter, topics closely related to the thesis will be presented. The follow-

ing areas have been considered to be of interest for the research work proposed 

in this thesis: 

1) Test focus and test strategy definition in literature: In literature, the terms 

“test focus” and “test strategy” are used in different contexts. A review of 

literature with respect to the aspects that are covered by the term “test fo-

cus” respectively by the term “test strategy” is presented in Section 3.2 

2) Risk based testing: Risk based testing is a heuristic generic approach to 

identify “risky” parts of the software, the test foci, which should be tested 

(intensively). A discussion of risk based testing approaches is given in Sec-

tion 3.3. 

3) Generic frameworks for software measurement and quality modelling: 

The Goal Question Metric (GQM) approach is the most established concep-

tual framework for software measurement. The approach proposes a hier-

archical, goal oriented procedure for the definition of measures and metrics 

concerning software processes and products. In addition, several frame-

works for quality modelling have been proposed in literature. These frame-

works aim to give a comprehensive view of software quality. Section 3.4 

discusses how the empirical approach presented in this thesis relates to the 

GQM framework as well as to proposed quality models. 

4) Models for the software’s fault-proneness: Research most related to the 

topic of this thesis concerns the analysis of indicators and models for the 

software’s fault-proneness. A general overview of these models is given in 

Section 3.5. 

3.2 Test strategy and test focus 

In this thesis, the definition of the test foci is part of the test strategy, whereas 

the test strategy indicates the overall approach to testing. In literature, both 

terms are used in several contexts.  

First, the term “test focus” is used to denote parts of the test strategy as defined 

in this thesis (Kaner, Bach, and Pettichord 2002),  (Spillner and Linz 2010), 

(Koomen and Pol 1999). In (IEEE Std. 1998), the IEEE standard for test docu-

mentation, the test plan is a “document that describes the technical and man-

agement approach to be followed for testing a system or component”. Typical 

contents identify the items to be tested, tasks to be performed, responsibilities, 

schedules, and required resources for the testing activity. According to this 

definition, the test foci represent the items to be tested. 

In (Gras, Gupta, and Perez-Minana 2006), the term “test strategy” is used to in-

dicate “high risk areas” in the software. Thus, the term “test strategy” is used 

synonymously with the term “test focus” as defined in this thesis. 

In another group of research work, the term “test strategy” is used to refer to 

other aspects of software testing that are not related to the test focus definition. 

For instance, in context of integration testing, “test strategy” refers to the opti-

mal order in which components of the software have to be tested, for instance 
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in (Briand, Labiche, and Wang 2003), (Jéron et al. 1999). The term “test strategy” 

is also used in the context of optimizing testing techniques. For instance, in 

(Cui, Li, and Yao 2009), strategies for the pair-wise7 test data generation are pre-

sented. Finally, in context of product line engineering, the term “test strategy” 

is used to refer to the approach to test product lines. Basically, the following 

“test strategies” can be applied: test each product line member separately, or 

test just product-specific parts and compose them with tested core assets from 

family engineering. 

3.3 Risk based testing 

Risk based testing is a generic heuristic approach to identify “risky” parts of the 

software that should be tested (intensively). Risk is defined as the product of 

damage and the probability of failure, i.e. the more probable it is that a software 

entity (e.g. a component) will fail and the higher the damage in case of failure 

is, the higher is the risk of that component. Risk based testing prioritises testing 

activities according to the risks assigned to software entities (Schäfer 2004), 

(Amland 2000), (Bach 2003), (Bach 1999), (van der Aalst 2006), (Pinkster et al. 

2004). 

The probability that a software component fails mainly depends on its usage 

frequency and the lack of quality (Schäfer 2004). The higher the usage fre-

quency of a software component, the higher is the probability that a defect will 

expose a failure. If the component is faulty, the probability is high that the exe-

cution of the software will expose a failure (see Figure 3.1 Fehler! Verweisquel-

le konnte nicht gefunden werden.).  

 

Figure 3.1 - Risk = damage x probability of failure 

(Schäfer 2004) 

In literature, several approaches have been presented, each of them addressing 

particular aspects of the software’s risk as defined in (Schäfer 2004). 

 Heuristics. This type of research proposes heuristics for faulty parts. 

These heuristics usually consider all aspects of risk as defined by (Schäfer 

2004): damage, usage frequency, and lack of quality. In (Schäfer 2004), 

                                                      

7 Pair wise testing is a test data generation technique that assumes that most of faults are caused 

by the interaction of two variables. Test cases generated by applying pair wise generation tech-

niques cover all combinations of two pairs of input parameters. 
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(Amland 2000), (Bach 1999), and (Bach 2003), several heuristics that ex-

plore software risks are given; for instance, complex or changed areas, 

the number of people involved in developing the software, the use of 

new tools or new technology, time pressure, areas that have been al-

ready defective before, geographical spread of the development team, 

etc., are risks. The main drawback of these heuristics is the lack of em-

pirical validation; they are based on the authors’ experience and must be 

validated in each particular context.  

 Prioritisation of testing activities according to requirements’ priority. 

This type of research mainly considers the damage aspect of the risk 

definition. The higher the priority of a requirement (from the customer’s 

point of view), the higher is the damage in the case that the realisation 

of that requirement exposes a failure. In (Srikanth 2006) and (Srivastva, 

Kumar, and Raghurama 2008), approaches to prioritise testing activities 

based on requirements’ priority are presented.  

 Prioritisation of regression testing activities. This type of research 

mainly addresses the probability of failure of a previously tested program. 

Regression testing is performed when the software or its environment 

changed in order to ensure that defects have not been introduced or un-

covered in unchanged areas of the software (ISTQB 2007). In order to 

reduce the cost of regression testing, software testers prioritise test cases 

so that those which are more important, by some measure, are run ear-

lier in the regression testing process. One goal of prioritisation is to in-

crease the number of defects detected by tests (Elbaum et al. 2004). 

There have been various efforts in this area to minimise the number of 

existing test cases to be re-run. Factors often used to prioritise existing 

test cases are the coverage achieved by the test cases, the defects found 

when test cases have been executed before, and the costs of re-executing 

test cases (Elbaum et al. 2004), (Do and Rothermel 2006). Recent research 

work focuses on the prioritisation of regression test cases based on the 

priority of the requirements (Jeffrey and Gupta 2008). 

 Estimation of fault-prone parts in software. This type of research is the 

most similar to the research presented in this thesis. Research in this 

area mainly focuses on exploring the relationship between several pro-

ject history as well as product characteristics and the software’s defect 

count and on estimating fault-prone parts of the software based on dif-

ferent models. An overview of typical models used to estimate the soft-

ware’s fault-proneness is given in Section 3.5.  

3.4 Generic frameworks for software measurement and qual-
ity modelling  

The most established framework for software measurement is the Goal Ques-

tion Metric approach (GQM), initially developed by (Basili and Weiss 1984). 

The roots of this approach reach back to the late seventies, where software 

measurement was in its “primitive stage” (Basili, Caldiera, and Rombach 1994). 
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As consequence of the weaknesses identified in the approaches at that time, the 

authors present a goal oriented framework for software measurement. The 

GQM approach constitutes of a hierarchical framework that can be used to de-

fine metrics related to software products and processes. The hierarchy starts 

with a goal that formulates the purpose of measurement, including the object(s) 

to measure and the viewpoint from which to take the measurement. Then, the 

goal is refined into several questions that characterise the goal. At metric level, 

the metrics to be collected in order to answer the questions are defined.  

Table 3.1 summarises the situation until the late seventies and the premises of 

the GQM approach as described in (Basili, Caldiera, and Rombach 1994).  

Immature situation of software meas-

urement until the late seventies as char-

acterised in (Basili, Caldiera, and 

Rombach 1994) 

Premises of the GQM approach aim-

ing to overcome weaknesses of ap-

proaches presented at that time 

Research concentrates on developing new 

measures and models without clearly 

defining measurement goals. Popular 

code size measures (Halstead 1977) or 

complexity measures (McCabe 1976) 

originate from this time. 

Premise 1. What to measure highly 

depends on the scope and the purpose 

of the measurement.  

Main purpose of the measurement: con-

trol product and project level properties. 

Premise 2. Purposes of measurement 

are to understand, plan and control. The 

authors emphasise the necessity to 

understand what factors influence 

product and process quality.  

Researchers search for standard sets of 

models and measures to quantify soft-

ware processes and products; environ-

mental characteristics and their impact on 

software products and processes is un-

derestimated. 

Premise 3. Models and measures for 

software products and processes 

highly depend on environmental char-

acteristics.  

Table 3.1 - Fundamental ideas of the GQM approach 

The empirical approach presented in this thesis uses basic ideas of the GQM 

approach but it goes beyond it. The usefulness of a goal oriented procedure 

when identifying indicators for defects in software is also advocated in this the-

sis (Premise 1 of the GQM approach). Furthermore, the approach focuses on 

understanding what factors influence the software’s fault-proneness (parallel to 

Premise 2 of the GQM approach). Research of past years shows that indicators 

for software defects also highly depend on the development context (Premise 3).  

The empirical approach goes beyond the GQM approach. First, it proposes de-

tailed visual and statistical procedures to collect, analyse and select justified in-

dicators for defects in software. Second, the empirical approach presented in 

this thesis integrates statistical analyses to assess the usefulness of the metrics 

empirically. The GQM approach proposes a conceptual framework for the defi-

nition of metrics. But in principle, it does not support the limitation and the 

empirical assessment of the derived measures. 
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Beside the GQM approach, several conceptual frameworks for defining soft-

ware quality have been proposed in literature, for instance in (McCall, 

Richards, and Walters 1977), (Boehm et al. 1978), (Dromey 1996), (ISO/IEC 

Standard 2001). These frameworks propose a hierarchical decomposition of the 

software quality, whereas the models basically differ in the factors and the met-

rics chosen to describe software quality. These frameworks can give guidance 

when deriving potential indicators for defects in software. But, they do not give 

advices on how to (empirically) evaluate the usefulness of the derived metrics, 

that represents the focus of the empirical approach presented in this thesis. 

3.5 Models and indicators for the software’s fault-proneness 

Several (more and more sophisticated) approaches for estimating the fault-

proneness of software have been presented in literature. The approaches basi-

cally differ in the models and model parameters used for prediction.  

The models include statistical approaches, e.g. (Zimmermann, Nagappan, and 

Zeller 2008), tree based models, e.g. (Porter and Selby 1990), (Guo et al. 2004), 

(Khoshgoftaar et al. 2000), analogy based models, e.g. (Emam et al. 2001), 

(Khoshgoftaar, Seliya, and Sundaresh 2006), or neural networks, e.g. (Thwin and 

Quah 2005). Model parameters are often structural code characteristics like the 

number of lines of code or different complexity metrics. Other parameters are 

historical characteristics, for instance the number of changes performed to a 

software entity or the number of defects detected in previous releases. Several 

approaches combine different kinds of parameters.  

Apart from few examples, most of the studies use data collected from commer-

cial products. A small part of research is conducted in the context of open 

source development, for instance research reported in (Denaro and Pezzè 2002), 

(Gyimothy, Ferenc, and Siket 2005), and (Kim et al. 2008). Nearly all approaches 

use structural characteristics of the software as model parameters. In addition, 

historical characteristics are mostly used in combination with structural charac-

teristics as model parameters. In only few cases, data from academic software 

developed by students is used (Basili, Briand, and Melo 1996), (Briand, Daly, 

and Wüst 1998), (Briand et al. 2000). Little attention has been paid on analysing 

the relationship between bad smells and defects in software empirically. Few 

studies use visual representation to explore and to analyse the data (Ostrand 

and Weyuker 2002), (Purushothaman 2005), (Pighin and Marzona 2003), 

(Andersson and Runeson 2007), (Wu, Wang, and Yang 2008).  

Despite the model used, researchers agree to the fact that there is a need to find 

indicators for defects in software in order to allocate quality assurance effort 

appropriately. Nevertheless, there is no empirically validated consensus on the 

superiority of one modelling method over another8. A recent debate shows that 

there is no consensus on how to evaluate different defect prediction models, i.e. 

how to assess their performance and to make detailed comparisons of several 

                                                      

8 (Myrtveit and Stensrud 1999), (Myrtveit, Stensrud, and Shepperd 2005), (Shepperd and Kadoda 

2001) 
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models (Zhang and Zhang 2007), (Menzies et al. 2008), (Jiang, Cukic, and Ma 

2008), (Lessmann et al. 2008).  

Main drawback of the models presented in literature is their complexity that 

hinders that the nature of the detected relationships is understood. Most ap-

proaches neglect criteria like ease of use and comprehensibility that are prereq-

uisites for a model to be applied in practice. In fact, the approaches focus on the 

model itself without putting its application in a context. Questions like: “Who 

should use the model and when, during the development process?”, “Which 

steps have to be performed in order to perform efficient analyses on defects in 

an organisation?” etc. are mostly not considered. 

Since prediction accuracy will never reach 100%, prediction models can only be 

used as indicators and not as “definitive oracles”. Therefore, testers’ experience 

is a valuable complementary information source. This fact is also neglected in 

literature.  

Table 3.2 summarises the approaches. The column “Context” indicates whether 

the research work uses data from commercial systems (COMM), academic sys-

tems (ACAD), or from open source programs (OSP) to validate the model. The 

next columns indicate the parameters used in the corresponding models (H- 

historical indicators, BS – Bad Smells in code, P – Pareto principle, S – structural 

characteristics, O – Others). This table aims to give a global overview of the re-

search work related to this thesis.  

Detailed discussions of the approaches along with a comparison of the results 

obtained by the empirical studies presented in this thesis are given in the corre-

sponding chapters. Chapter 8 discusses related work concerning the Pareto 

principle whereas Chapter 9 presents related work concerning the relationship 

between bad structural characteristics of software and its defects. In Chapter 10, 

an overview of empirical studies that explore the relationship between the his-

tory of a software entity and its defect count is given. 

Reference Context Model H BS P S O 

(Adams 1984) COMM Statistical procedures 

  

X 

  

(Andersson and 

Runeson 2007) COMM 

Statistical procedures (de-

scriptive statistics) and 

visual representations 

  

X 

  (Arisholm and 

Briand 2006) COMM 

Statistical procedures (logis-

tic regression) X 

  

X 

 

(Basili, Briand, 

and Melo 1996) ACAD9 

Statistical procedures (logis-

tic regression) 

   

X 

 

(Bell 2005) COMM 

Statistical procedures (nega-

tive binomial regression 

model) X 

  

X 

 

                                                      

9 student programs 
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Reference Context Model H BS P S O 

(Bell, Ostrand, 

and Weyuker 

2006) COMM 

Statistical procedures (nega-

tive binomial regression 

model) X 

  

X 

 (Binkley and 

Schach 1998) ACAD  

Statistical procedures (Cor-

relation analysis) 

   

X 

 (Briand, Daly, 

and Wüst 1998) 

COMM, 

ACAD 

Statistical procedures: logis-

tic regression 

   

X 

 

(Briand et al. 

2000) ACAD 

Statistical procedures (Prin-

cipal component analyses, 

descriptive statistics, logistic 

regression) 

   

X 

 (Briand, 

Devanbu, and 

Melo 1997) COMM 

Statistical procedures (logis-

tic regression) 

   

X 

 (Cartwright 

and Shepperd 

2000) COMM 

Statistical procedures (de-

scriptive statistics, regres-

sion) 

   

X 

 (Denaro, 

Morasca, and 

Pezzè 2002) COMM 

Statistical procedures (logis-

tic regression) 

   

X 

 (Denaro and 

Pezzè 2002) OSP 

Statistical procedures (logis-

tic regression) 

   

X 

 (Emam et al. 

2001) COMM 

Analogy-based (case-based 

reasoning) 

   

X 

 

(Endres 1975) COMM 

Statistical procedures (de-

scriptive statistics) 

  

X 

  

(Fenton and 

Ohlsson 2000) COMM 

Statistical procedures (de-

scriptive statistics) and 

visual representations 

  

X 

  (Graves et al. 

2000) COMM 

Statistical procedures (ex-

tends linear regression) X 

  

X 

 (Guo et al. 

2004) 

COMM 

(NASA) Tree-based  

     (Gyimothy, 

Ferenc, and 

Siket 2005) OSP 

Statistical procedures (Lin-

ear, logistic regression) 

   

X 

 (Hatton 1997) COMM Statistical 

   

X 

 

(Hatton 2008) 

SCIENTIFI

C 

Statistical (descriptive statis-

tics) 

  

X 

  (Holschuh et al. 

2009) COMM 

Statistical procedures, re-

gression X (X) X X 

 (Kaâniche and 

Kanoun 1996) COMM  

Statistical (descriptive statis-

tics), visual representations 

  

X 

  (Khoshgoftaar 

et al. 1998) COMM 

Statistical procedures (logis-

tic regression) X 

    (Khoshgoftaar 

et al. 2000) COMM Tree-based  X 

  

X X10 

(Khoshgoftaar, 

Seliya, and COMM Analogy-based 

   

X 

 

                                                      

10 execution metrics 



56 

Reference Context Model H BS P S O 

Sundaresh 

2006) 

(Kim et al. 

2008) OSP Others (algorithmic) X 

    

(Koru, Zhang, 

and Liu 2007) OSP 

Cox proportional hazards 

modelling with recurrent 

events 

   

X 

 (Koru et al. 

2008) 

COMM/ 

OSP Statistical procedures 

   

X 

 (Koru and Tian 

2003) COMM Statistical procedures 
   

X 

 (Layman, 

Kudrjavets, and 

Nagappan 

2008) COMM Statistical procedures X 

  

X 

 (Mockus, 

Zhang, and Li 

2005) COMM 

Statistical procedures (logis-

tic regression) (X) 

   

X11 

(Munson and 

Khoshgoftaar 

1992) COMM 

Statistical procedures (dis-

criminant analysis) 

   

X 

 (Nagappan, 

Ball, and Zeller 

2006) COMM Statistical procedures 

   

X 

 (Nagappan and 

Ball 2005) COMM Statistical (regression) X 

    (Ohlsson et al. 

1999) COMM 

Statistical (principal com-

ponent analysis) X 

  

X 

 (Ohlsson and 

Alberg 1996) COMM Statistical procedures 

  

X X 

 

(Ostrand and 

Weyuker 2002) COMM 

Statistical (descriptive statis-

tics) and visual representa-

tions 

  

X 

  (Ostrand, 

Weyuker, and 

Bell 2005; 

Ostrand, 

Weyuker, and 

Bell 2004) COMM 

Statistical (negative bino-

mial regression) X 

  

X 

 (Pighin and 

Marzona 2003) COMM 

Statistical (correlation 

analysis) X 

  

X 

 

(Pighin and 

Marzona 2003) COMM 

Statistical (descriptive statis-

tics) and visual representa-

tions X 

 

X X 

 (Porter and 

Selby 1990) 

COMM 

(NASA) Tree-based  X 

    

(Purushothama

n 2005) COMM 

Statistical (descriptive statis-

tics) and visual representa-

tions X 

    

                                                      

11 Hardware configurations, software platforms, amount of usage and deployment issues. 
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Reference Context Model H BS P S O 

(Schröter et al. 

2006) OSP 

Statistical procedures (cor-

relation analysis) X 

  

X 

 (Porter and 

Selby 1990) 

COMM 

(NASA) Tree-based method X 

  

X X12 

(Shatnawi and 

Li 2006) OSP 

  

X 

   (Subramanyam 

and Krishnan 

2003) COMM 

Statistical (univari-

ate/multivariate regression) 

   

X 

 (Thwin and 

Quah 2005) COMM Neural nets 

   

X X13 

(Weyuker, 

Ostrand, and 

Bell 2008) COMM 

Statistical procedures (bi-

nomial regression) X 

    (Weyuker, 

Ostrand, and 

Bell 2007) COMM 

Statistical procedures (bi-

nomial regression) X 

    

(Wu, Wang, 

and Yang 2008) COMM 

Statistical procedures (de-

scriptive statistics) and 

visual representations X 

  

X 

 (Zimmermann, 

Nagappan, and 

Zeller 2008) 

COMM/ 

OSP 

Statistical procedures (prin-

ciple component analysis, 

correlation analysis) X 

  

X 

 (Zimmermann, 

Premraj, and 

Zeller 2007) OSP 

Statistical procedures (prin-

ciple component analysis, 

correlation analysis) X 

  

X 

 Table 3.2 - Models and indicators for defects in software 

3.6 Chapter summary 

In this chapter, research related to the topic of this thesis is presented. It falls 

into four categories: definition of the terms “test strategy” and “test focus” in 

literature, risk based testing, generic frameworks for software measurement 

and quality modelling, and finally, models for estimating the software’s fault-

proneness. 

The terms “test strategy” and “test focus” are used in several contexts in litera-

ture. In some cases, test focus is seen as part of the test strategy. In some cases, 

both terms are used synonymously. But in most of the cases, the term “test 

strategy” is used to refer to particular aspects of the test strategy that are not re-

lated to the test focus.  

Risk based testing is a generic heuristic approach to identify “risky” parts of the 

software that should be tested (intensively). Risk is defined as the product of 

damage and the probability of failure, i.e. the more probable it is that a software 

entity (e.g. a component) will fail and the higher the damage in case of failure is 

                                                      

12development effort 
13memory allocation 
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the higher is the risk for that component. Several authors propose heuristics 

based on their experience for “risky” parts of the software.  

An established framework for software measurement is the Goal Question Met-

ric approach (GQM). This approach proposes a hierarchical framework that can 

be used to define metrics related to software products and processes. The em-

pirical approach presented in this thesis uses basic ideas of the GQM approach 

(goal orientation, emphasis on understanding factors that influence defects in 

software, necessity of defining context specific indicators). But it goes beyond 

the GQM approach by proposing detailed steps to identify and validate indica-

tors for defects in software. 

Research most related to the topic of this thesis concerns the analysis of models 

of the software’s fault-proneness. Models can be basically classified into statisti-

cal and machine learning models. One of the main weaknesses of the ap-

proaches presented in literature is the lack of comprehensiveness of the models 

used. In addition, the approaches do not consider testers’ experience that can be 

very valuable since 100% prediction accuracy can never be reached. 



CHAPTER 4 Testing process –               

A decision based view 

 
Software processes often focus on artefacts, activities and roles, 

treating decisions to be made during the software development 

process only implicitly. However, the awareness of these deci-

sions increases their quality by forcing the decision-makers to 

search for alternatives and to trade off between them. In this 

chapter, an overview of the testing process from a decision 

based view is given. Therefore, a decision hierarchy for the test-

ing process is presented. This hierarchy comprises all decisions 

made during testing and reflects dependencies between them.  
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4.1 Introduction 

Today’s software systems consist of numerous software components; they real-

ise countless requirements and are developed in an industrial environment lim-

ited by high time and resource constraints. In order to assess to which extent 

the software system or its parts fulfil the requirements, testing activities have to 

be performed. Since complete testing is impossible (Myers 1979), testers are 

forced to make decisions, i.e. to decide which parts of the software system have 

to be tested in which way. Usually, these decisions are made implicitly by the 

corresponding roles and often, the responsible persons are not aware of the de-

cisions they made. However, the awareness of decisions can significantly im-

prove their quality. Making a decision consciously forces the person who has to 

make this decision to search for alternatives, to establish selection criteria and 

to trade off between advantages and disadvantages of several alternatives. Con-

sequently, the awareness of decisions leads to better decisions compared with 

implicit or ad hoc decisions and increases the quality of the testing process. 

In this thesis, a decision is defined as follows (Borner, Illes, and Paech 2007a/b):  

Definition 4.1 – Decision 

A decision denotes a choice consciously or unconsciously made 

by a person or group of persons. A decision made consciously 

evolves in the process of discussing possible alternatives and 

considering existing success criteria.  

During the software development process as well as during the testing process, 

several decisions have to be made. The best alternative has to be selected from 

e.g. alternative GUI designs, architectural patterns, or testing techniques. 

The remainder of this chapter is organised as follows. Section 4.2 introduces the 

generic decision hierarchy for the testing process, containing decision levels 

and corresponding decisions. In Section 4.3, the validation of the approach is 

presented, whereas Section 4.4 gives an overview of related work. A short 

summary of this chapter is given in Section 4.5. 

4.2 Decision hierarchy 

The decision hierarchy structures decisions to be made during the testing proc-

ess. These decisions are assigned to decision levels (Borner, Illes, and Paech 

2007a/b).  

The development of the decision hierarchy involved several steps: 

Step 1: First, the tasks and roles proposed in standard textbooks such as 

(Spillner and Linz 2010) and (Mosley and Posey 2002) have been analysed. The 

decision hierarchy is mainly based on the fundamental testing process de-

scribed in (Spillner and Linz 2010) consisting of test planning and specification, 

test execution, as well as capturing and analysing test results.  

Step 2: In a next step, decisions to be made while performing testing tasks have 

been identified and grouped into seven decision levels. The result is the generic 
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decision hierarchy illustrated in Figure 4.1. Management decisions and issues 

like scheduling or training are not addressed here. 

 

Figure 4.1 - Decision levels and corresponding decisions 

(Borner, Illes, and Paech 2007a/b) 

The principles underlying the decision hierarchy can be defined by the follow-

ing rules: 

 R1 Decision dependencies: Decisions at lower levels depend on de-

cisions made on earlier levels. If decisions at top levels are left out, 

they are implicitly contained in decisions on lower levels. Leaving 

out a decision decreases the quality of this particular decision as 

well as the quality of all dependent ones. The goal of making deci-

sions in the proposed order is to facilitate the decision making proc-

ess.  

 R2 Parallelism: All decisions on the same level can be done in paral-

lel, i.e. these decisions can be made nearly independently, but they 

may influence each other. Decisions that influence each other can be 

combined to decision bundles. In Fehler! Verweisquelle konnte nicht 

gefunden werden., decision bundles are represented by a dark grey 

box behind the corresponding decision. 

The test strategy comprises all decisions of the test goal and test approach level. 

Moreover, two different perspectives on the decisions can be identified. One per-

spective contains decisions that influence the testing process (these decisions 

are process oriented), i.e. which test artefacts will be created. Another perspec-

tive contains decisions concerning the system under test (these decisions are 

system oriented), i.e. how the system will be tested. In the following, the differ-

ent decision levels are introduced along with the corresponding decisions on 

each level. 
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4.2.1 Specification level 

The specification level contains decisions that deal with the completeness of the 

test basis. The test basis includes all information needed for a successful start of 

the testing process. It refers to the documentation on which the test cases are 

based. Often, the test basis consists of the specification of the software system at 

different development stages (e.g. requirements specification or system design 

specification). Defects found in previous releases can also serve as test basis. 

At specification level, it has to be decided whether the test basis is complete or 

not. If important information is missing in the test basis, critical parts of the 

software can be overlooked and remain untested. Thus, missing information 

has to be added. The decisions on this level influence all decisions on the lower 

levels.  

4.2.2 Test goal level 

Considering that a software project is usually limited in time, not all parts of 

the test basis can be tested. Therefore, at test goal level it has to be decided 

which parts of the system have to be tested and which not. For this purpose, it 

is essential to possess a complete test basis in order to select the critical test ob-

jects. All parts of the system that have been selected to be tested are denoted as 

test foci. In this thesis, an empirical approach is presented and validated exten-

sively that guides testers in making justified decisions on test foci. 

Besides time pressure within the testing process, another constraint influences 

the decisions on this level: costs. The cost constraints lead to a limitation of re-

sources needed in the testing process. Therefore, the existing resources have to 

be split up among several test foci. To concede the correct assignment of re-

sources to the various test foci, it has to be decided which test intensity (meas-

ured e.g. by man days or funds) a single test focus has to be assigned to. 

Test end criteria define conditions that have to be fulfilled to finish the testing 

activities; for instance, they can give information on the required rate of suc-

cessful test runs.  

4.2.3 Test approach level 

The test approach level comprises decisions related to the test design tech-

niques to be used, the test model(s) and its coverage(s) as well as the ideal test 

order. One decision to be made concerns the test design technique which will 

be used to derive test cases and test data from the test basis. For each test level 

(system, integration, and unit test level), a countless number of test design 

techniques can be found in the literature (e.g. in (Beizer 1990), (Binder 1999),  

(Spillner and Linz 2010), (Myers 1979)). Therefore, existing test design tech-

niques, the defined test foci and test intensities have to be taken into account in 

order to select the most adequate test design technique(s). In parallel, decisions 

on the test model(s) have to be made. A test model facilitates the derivation of 

test cases and test data in comparison to the derivation from an informal speci-

fication. A state based model or a control flow model are examples of test mod-

els. A test design technique influences the selection of the test model and vice 
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versa. Later in the testing process, the selected test design techniques have to be 

applied in order to derive test cases and test data to achieve the given test cov-

erage and to fulfil the test coverage criteria. The test coverage is an indicator for 

the number of test cases to be derived. The test design technique influences the 

decision on coverage criteria and vice versa. 

Furthermore, on this decision level an ideal test order to test the different test 

objects has to be specified. The ideal test order represents an optimal order to 

test the different parts of the system by taking into account the information on 

the test foci and on test intensity. An example of such an ideal test order could 

be that all test objects with the highest test intensity should be tested first, fol-

lowed by the ones with the next lowest intensity and so on.  

4.2.4 Test design level 

The test design level is the most complex level of the testing process. The main 

decision on this level is how to test the different test foci, i.e. the selected test 

objects. Therefore, the given test design techniques are applied to derive logical 

test cases, also called abstract test cases (ISTQB 2007), (Spillner and Linz 2010). 

A logical test case gives an abstract description of how to test a specific aspect 

of the objects under test. In parallel to the test case design, it has to be decided 

which logical test data serve as an input for the test objects within the test case. 

The logical test data represent the abstract description of the data to be sent to 

and returned by the test object. Both the specification of a logical test case and 

the required test data, are connected. A logical test case without the required 

logical test data is not complete and vice versa. 

The third decision on this level concerns the definition of the logical test envi-

ronment. The decision comprises the kind of tools as well as software and 

hardware needed during the execution of the test cases. Similar to the specifica-

tion of the logical test cases or test data, the description of the logical test envi-

ronment is also abstract and represents the general requirements on the test en-

vironment.  

The last decision at test design level discussed here is related to the logical test 

order. This order refines the ideal test order considering dependencies between 

test cases as well as information about planned test environment factors. Execu-

tion efficiency and parallelism are main criteria influencing this decision.  

4.2.5 Test realisation level 

The test realisation level details the logical representation of the test cases, of 

the test data, as well as of the test environment. It contains all decisions that in-

fluence the execution of a test case. This level contains decisions on the concrete 

test order, on concrete test cases, concrete test data, and the concrete test envi-

ronment. Setting up the concrete test order means to identify an actual execu-

table test order considering the logical test order and the project environment 

factors. In parallel, the logical test cases are refined by concrete test cases. Thus, 

information on the specific behaviour of the test case and the test object is 

added. Concrete test cases contain all information needed to execute the test 
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case. To complete the specification of a concrete test case, the detailed descrip-

tion of concrete test data is needed. Consequently, it has to be decided which 

concrete “instances” of the logical test data are used in concrete test cases. The 

decisions on the concrete test environment consider the description of the logi-

cal test environments and the specification of the logical test cases. The concrete 

test cases need a corresponding concrete test environment (e.g. the specification 

of concrete hardware and software needed) in order to be executable.  

4.2.6 Test run level  

The test run level deals with the evaluation of test run results. After the execu-

tion of a test case, the test run evaluation decides whether the test run revealed 

a defect or not. If this is the case, a state (e.g. “open”), a priority (e.g. “critical”), 

and a weight (e.g. system crash) have to be assigned to the corresponding de-

fect (Spillner and Linz 2010). 

4.2.7 Test evaluation level  

This level contains the decision whether test activities can be finished. The deci-

sions on the test cycle evaluation check whether the test end criteria have been 

fulfilled and whether every test focus has been tested with the required test in-

tensity. Furthermore, the defects not found within the current test cycle are es-

timated by using a metric like the defect detection rate. The decision not to fin-

ish the test cycle leads to a new iteration of some (or maybe all) of the testing 

tasks and decisions. 

4.3 Validation 

The decision hierarchy has been validated in several contexts. First, it has been 

refined in order to highlight decisions of the system testing process (Borner, 

Illes-Seifert, and Paech 2007), (Borner, Illes, and Paech 2007). In addition, the 

decision hierarchy served as the basis for a test process analysis in an industrial 

case study and as a framework for classifying testing research (Illes and Paech 

2006). Furthermore, the decision framework proved of value as a framework for 

the evaluation of testing tools (Illes et al. 2006). Finally, a qualitative analysis of 

test processes from the perspective of experienced testers has been performed 

(Illes-Seifert and Paech 2008). The results of the qualitative study are detailed in 

Chapter 5. Details on the validation results are summarised in the Appendix A 

1.1 - A 1.4 of this thesis. 

4.4 Related work 

A process model that describes the main phases of the testing process consist-

ing of test planning, test design, test execution, and test evaluation activities has 

been proposed in (Spillner and Linz 2010). In comparison to the decision hier-

archy which explicitly focuses on all decisions to be made during the testing 

process, the process model described in  (Spillner and Linz 2010) does not take 

decisions into account. The IEEE standard for software test documentation 

(IEEE Std. 1998) specifies all artefacts to be created during the testing process 

(e.g. test plan, test design specification, or test case specification). The decisions 
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made within the testing process are not part of the standard. Another group of 

related work comprises test process improvement models like TPI (Test Process 

Improvement), (Koomen and Pol 1999) or test maturity assessment models like 

TMM (Testing Maturity Model), (Burnstein, Suwannasart, and Carlson 1996), or 

TMMi (Testing Maturity Model integration) (Tmmi Foundation; eds. van 

Veenendaal, E. 2009). The primary focus of these models is not the test process 

itself, but the steps for its improvement. 

A conceptual framework categorising different decisions made during re-

quirements engineering has been presented in (Paech and Kohler 2003) and in 

(Aurum, Wohlin, and Porter 2006). These approaches do not consider decisions 

to be made during other phases of the software engineering process. Further-

more, the system “Sysiphus14” supporting the documentation of decisions de-

fined in (Paech and Kohler 2003) has been realised in (Wolf and Dutoit 2004). 

Additionally, several approaches for the documentation of the decisions made 

during the software development process have been proposed in (Dutoit et al. 

2006). To the best of the author’s knowledge, there is no existing research that 

particularly addresses the decision making process within quality assurance ac-

tivities. 

4.5 Chapter summary 

In this chapter, a decision hierarchy that aims to structure the decisions made 

during the testing process is presented (Borner, Illes, and Paech 2007a/b). A de-

cision based view of the testing process is useful since the awareness of deci-

sions to be made increases the quality of the decisions, by forcing the decision-

makers, in this case the testers, to search for alternatives and to trade off be-

tween them.  

The decisions to be made in the testing process are structured in a hierarchy, i.e. 

decisions at lower levels depend on decisions made on earlier, “higher” levels. 

If decisions at top levels are left out, they are implicitly contained in decisions on 

lower levels. Leaving out a decision decreases the quality of this particular de-

cision.  

The decision hierarchy proved of value for researchers as well as for practitio-

ners. A detailed application of the framework follows in Chapter 5 where a 

qualitative analysis of testing processes in industry is described. 

Based on the experience in applying this hierarchy in several case studies, it can 

be concluded that the hierarchy is universal enough to be applied in different 

contexts. But, it is also specific enough to highlight the similarities and differ-

ences of the subject matters. Additionally, the approach is easy to be learned. 

Thus, students as well as practitioners get familiar with key issues of the testing 

process without having to get into details. Finally, the hierarchy eases the 

communication among testers by providing a common terminology. 

                                                      

14 http://sysiphus.in.tum.de/ 



CHAPTER 5 State of the practice of 

testing processes –                

A qualitative study 

 
During software testing, several decisions have to be made as 

described in Chapter 4. In this chapter, the results of an ex-

ploratory study with expert testers are presented. The main 

goal of this study is to identify characteristics of test processes 

in practice along with their strengths and weaknesses.  
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5.1 Introduction 

As seen in Chapter 4, several decisions have to be made during the testing 

process. In order to conduct all decisions thoroughly, testers need information 

that is complete and up-to-date, for instance about requirements or project 

status. The knowledge of testers’ information needs allows providing testers 

with the right information at the right time. Based on this knowledge, test proc-

ess improvements can be designed and implemented. In addition, approaches 

that address the gaps identified before can be proposed. 

In this chapter, a qualitative study is presented that analyses which documents 

are frequently used and which roles are consulted when making decisions dur-

ing testing. In addition, the role of experience needed to make sound decisions 

is investigated. The results of the study show that (a) experience plays an im-

portant role in software testing, (b) the requirements specification and previ-

ously found defects are the most important information sources for testers, and 

(c) testers lack of approaches that alleviate decisions on test goal level (Illes-

Seifert and Paech 2008c). The results of this study served as input for the thesis 

as this thesis addresses a main part of the problems identified in the qualitative 

study. 

The remainder of this chapter is organised as follows. Section 5.2 presents the 

overall goal of the study along with the research questions. Section 5.3 de-

scribes the study design. Section 5.4 presents the findings, whereas Section 5.5 

discusses the main results. Section 5.6 shows implications for this thesis result-

ing from the findings of the study. In Section 5.7, threats to validity of the study 

are discussed. Related work is presented in Section 5.8. Finally, Section 5.9 

summarises this chapter. 

5.2 Study goal and research questions 

The overall goal of this study is to analyse how testers work and which deci-

sions they make. In addition, this study analyses which of the decisions are 

made explicitly and which ones implicitly. Particularly, the following research 

questions are addressed: 

Q1: Which documents are frequently used by testers when making which 

testing decisions? The main assumption of this research question is that docu-

ments are an important information source for all participants of the software 

engineering process, including testers. To know which documents are fre-

quently used by testers is important because quality assurance activities con-

cerning information sources often consulted by testers can be intensified pur-

posefully. In addition, missing information can be identified along with 

approaches to collect and analyse it appropriately. 

Q2: What role does communication play as an information source? The main 

assumption of this question is that documentation is never completely suffi-

cient as input to the testing process so that details have to be clarified in face-to-

face discussions. And even if documentation was complete, communication is 

often favoured over reading documents. 
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Q3: What is the role of experience in testing? This is an important question to 

be analysed, because it is essential to know to what extent and for which deci-

sions testers rely on their experience instead of on documentation. Knowing 

this enables to decide which activities are suited for test automation or which 

are suited to be executed by novice testers (because they do not require much 

experience). 

5.3 Study design 

5.3.1 Participants 

The main criterion for the selection of the participants for this study is their ex-

perience in the testing area. As a consequence, all participants have at least 

three years of experience, and most of the participants have five to ten years of 

experience. Three participants have even more than ten years of experience. Ta-

ble 5.1 summarises the characteristics of the participants. The participants are 

employees of five organisations denoted in the following as organisation A-E. 

Organisation A and E develop standard software, whereas the other organisa-

tions develop individual software. Only organisation C develops software for 

in-house use. The testers in organisation A work on the same project, whereas 

the testers in the organisations C and D work on different projects. 

5.3.2 Study process  

The study is performed as a qualitative study. This research method is used be-

cause it helps to gain more experienced with the phenomenon to be analysed. 

In this case, the overall goal is to get a deep understanding of the testing proc-

ess along with its information flow.  

The study is conducted in form of seven face-to-face interviews and one tele-

phone interview. Three interviewees completed the questionnaire “offline”. The 

interviews are semi-structured, based on a questionnaire sent in advance to the 

participants. The interviews took three hours on average.  

Data Collection. In the data collection phase, field notes taken during the in-

terviews were coded and stored in a study data base. Coding is a method 

which assigns values to qualitative statements. This allows the combination of 

qualitative and quantitative methods for data analysis purposes (Section 2.3.4). 

During the offline coding process, interviewees were contacted when ambigui-

ties in the data occurred. 

To assure the validity of the results, multiple information sources have been 

used for evidence as recommended in (Yin 2003). Thus, beside interviews, 

document reviews have been performed (e.g. reviews of test plans, test case 

specification templates and test case specifications, test protocols, as well as test 

process descriptions). Furthermore, other information sources have been con-

sulted like internal discussion forums. Another aspect considered to assure va-

lidity was the representativeness of the interviewees with regard to their quali-

fication, experience, and testing tasks. All interviewees are experienced testers, 

three of them with more than ten years of testing experience. 
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Data Analysis. For data analysis, different qualitative and quantitative analysis 

methods are used. Quantitative methods are used in order to determine pat-

terns and tendencies in the data, for instance by counting which role is con-

sulted most of all during the testing process. Qualitative methods are used to 

search for an explanation for these particular tendencies. In this study, cross-

case analysis is performed. Cross-case analysis partitions the data into different 

categories by using different criteria, for example depending on the testing 

group’s organisation as an independent team or not (2.3.4).  

Experience 

(in years) 

Role(s) Main Tasks Organisation 

>10 Test designer Test planning, 

Test case design, 

Manual test execution. 

D 

 

 

>10 Test designer Test planning, 

Manual test execution. 
D 

 

>10 Test manager Establishment of a standard testing 

process including supporting tools. 

B 

>10 Tester,  

Test manager 

Test planning, 

Manual test execution. 
E 

 

10 Test manager, 

Quality engineer 

Test planning, 

Test case design, 

Monitoring system operation. 

D 

 

 

10 Test manager,  

Test designer 

Test management and control, 

Test case prioritisation, 

Human resources management and 

motivation. 

A 

5 Test manager Product development,  

Manual test execution and protocol, 

Coordination of testing activities 

Product roll-out (= deployment in the 

productive environment). 

C 

5 Test designer Supports test manager in planning 

activities, 

Test case design, 

Manual test execution and protocol. 

A 

5 Test designer Test case design, 

Execution of test cases, 

Fault localisation, 

Regression testing. 

D 

 

 

 

3 Test automation 

engineer 

Manual test execution and protocol, 

Test automation: implementation of 

the test automation framework. 

A 

3 Test manager Test planning, 

Manual test execution. 
C 

 

Table 5.1 - Participants’ characteristics 
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5.4 Results 

In this section, the analysis of the results of the study is presented. First, details 

on test process characteristics are given. Then, the documentation, communica-

tion, and experience characteristics of the analysed test processes are discussed.  

5.4.1 Test process characteristics 

Decisions on test basis level. The assessment of the testability as well as of the 

quality of the input documentation is indicated only by about half of the inter-

viewees. These decisions are mostly made by the testing team. 

Decisions on test goal level. Only about half of the interviewees cited that the 

decision on the test foci is performed. This is also the case with the decision on 

the test intensity. Nearly all interviewees indicate that the decision on test end 

criteria is made in their organisation. 

Only 4 of the interviewees report that all decisions on test goal level are in the 

testing team’s field of responsibility. Three interviewees even indicate that all 

test goal related decisions are performed by persons not belonging to the test-

ing team. In this case, the decisions are made by the project manager. In all 

other cases, test goal related decisions are partially made by the testing team. 

In nearly all cases, the decision on test intensity is understood as high level ef-

fort estimation rather than a thoroughly assigned intensity to different parts of 

the software depending on criteria like the expected number of defects or on 

the criticality of the corresponding software entity. In 5 of 6 cases, the high level 

decision on the test effort is made by the project manager. 

Decisions on test approach level. The systematic definition of the test ap-

proach is not well established within the analysed testing processes. Only few 

decisions are made explicitly. 9 interviewees indicate to decide on the ideal test 

order. In most of the cases, this decision is a high level decision, in which the 

test levels (e.g. unit test, system test, user acceptance test), as well as the kind of 

tests (e.g. regression tests, tests of quality attributes like performance or usabil-

ity tests) is defined. All other decisions are rarely indicated.  

Decisions on test design and test realisation level. Decisions on test steps (as 

part of the test case specification), on test data, and on test sequences are indi-

cated to be made by nearly all interviewees. These decisions are mostly made 

by the testing team. Within organisations not having an independent testing 

team, these decisions are performed by developers (where the “tester” is not 

the developer of that particular part of the software). 

Decisions on test run and test evaluation level. All interviewees report to 

make decisions concerning the success or failure of particular test runs. The test 

run evaluation is mostly made by testers, in some cases by the whole testing 

team.  The evaluation of a test cycle is only performed by fewer than half of the 

interviewees. 
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Figure 5.1 summarises test process characteristics as indicated by the inter-

viewees. The x-axis contains the decisions whereas on the y-axis, the number of 

interviewees that indicated to make the particular decision explicitly is shown. 

 

Figure 5.1 - Test process characteristics 

5.4.2 Documentation characteristics 

The most important documented information sources for testers are past de-

fects and the requirements specification. Figure 5.2 illustrates the documents 

needed as input during testing as mentioned by the interviewees. 

 

Figure 5.2 - Documentation needs during testing 
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Learning from defects. Previously found defects are a very valuable informa-

tion source for testers. For nearly half of the decisions, testers use information 

on previously found defects. Testers report that previously found defects are 

good indicators for defects in the software because of following reasons:  

(1) Many defects persist across different releases. Two categories of per-

sisting defects are reported by testers: permanent defects, that occur 

across all releases and “jumping” defects that regularly “jump” over a 

constant number of releases. 

(2) The correction of a defect introduces more defects. 

Knowing potential faulty areas, testers can decide on the test foci. Defects also 

serve as input for decisions on test design and test realisation level. On the one 

hand, testers select test cases to be re-executed if they revealed a defect. On the 

other hand, they develop new test cases on the basis of known defects using the 

following strategies:  

(1) Intensifying: Testers investigate the functionality that revealed a fail-

ure more intensively and usually vary the test data or the precondi-

tions of the test case.  

(2) Expansion: Testers search for parts of the software used by the func-

tionality which revealed the defect or for parts of the software that 

use the faulty functionality. 

(3) Transferring: Testers search for similar functionality (which could con-

tain the same defect).  

The role of the requirements specification. The requirements specification is 

the most important document for testers. (46% of all decisions need the re-

quirements specification as input; see Fehler! Verweisquelle konnte nicht ge-

funden werden.). On test goal and test approach level, the requirements speci-

fication is especially used for decisions concerning the test intensity and the 

ideal test order, whereas during test design and test realisation, the require-

ments specification is especially used to decide on test cases (including test data 

and the logical and concrete test order). In addition, the requirements specifica-

tion is also used during the evaluation of the test run in two contexts. First, 

when testers are pressed for time, they report to use the requirements specifica-

tion as test specification. In this case, decisions on the test design and on test re-

alisation level are made concurrently to the test execution. Second, in case of a 

failure or of an unexpected behaviour, testers consult the requirements specifi-

cation in order to analyse if it is actually a defect. All testers emphasise the im-

portance of the requirements specification to be up-to-date and complete. 

The role of the user within the testing process. Even though only few of the 

testers are in direct contact with users of the software they test, the users play 

an important role during testing. Using documentation produced for and by 

users, testers can develop more realistic and more relevant test cases. Thus, 

testers bridge the gap to the customer by using customer problem reports and 

user manuals in order to develop realistic test scenarios and to define test envi-

ronments and configurations close to real productive environments. Conse-

quently, this documentation is very valuable when deciding on test data and on 
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test steps.  One interviewee also mentioned to use the user manual to get famil-

iar with the software system. 

5.4.3 Communication characteristics 

During the testing process, most communication occurs with the requirements 

engineer and the project manager, followed by the developer. Testers have di-

rect contact with the customer only when the customer is “in-house”. Apart 

from this, there is no direct communication between testers and customers in 

spite of their request for this type of communication. Figure 5.3 shows commu-

nication characteristics of the analysed test processes. The x-axis shows the 

roles whereas the y-axis indicates the percentage of the decisions made by a 

particular role.  

Most communication is reported to take place when making decisions on test 

design and on test realisation level. In these cases, the main communication 

partners mentioned by the interviewees are requirements engineers and project 

managers. However, when evaluating a test run, there is also a great need for 

communication, above all, in case of a failure. In this case, the main contact per-

sons are requirements engineers and developers. For decisions on test goal 

level, communication occurs mostly with the project manager. However, little 

communication takes place for decisions on test approach level and during test 

cycle evaluation. 

 

Figure 5.3 - Communication characteristics 
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Among the decisions made during the testing process, the definition of test 

data is stated to be the decision which requires the system specific experience at 

most. All interviewees indicate that this decision requires very much experi-

ence. In addition, this is the only decision which solely requires system specific 

experience. The definition of the test foci and of the test intensity, as well as the 

evaluation of the test cycle are also indicated by the interviewees to require 

high system specific experience.  

In general, almost all decisions require more system specific than general ex-

perience. The interviewees mention that managerial activities like scheduling, 

resource planning, and effort estimation require the most general experience. 

5.5 Discussion 

In the following, the main problems identified in this study as mentioned by 

the interviewees are discussed. 

Testing decisions require system specific experience. Almost all decisions re-

quire more system specific than general experience. In addition, testers indicate 

to rely on their own experience, rather than on experience made by others. For 

instance, they do not consult published defect lists or other empirical studies.  

Testers rely on their own experience more than on test design techniques 

when making decisions on test approach level. Testers rely more on their own 

experience than on test design techniques which generate a high amount of test 

cases and prefer an exploratory-oriented approach. In addition, in case of time 

pressure, testers deviate from systematic approaches and reduce the set of test 

cases according to their own experience.  

The results of a test cycle cannot be assessed objectively.  Surprisingly, testers 

point out the role of experience in the evaluation of a test cycle. One would ex-

pect that the evaluation of the test results requires “only” a decision on the effi-

ciency of the test strategy, i.e. “Have the test design techniques been applied 

and have the test end criteria been met? Have the test foci been tested with the 

intended intensity?”. But since decisions concerning the test strategy are not 

well established in testing processes, these decisions have to be made later, 

namely during the test evaluation.  

Poor quality of the documents used as input, especially poor quality of the 

requirements specification is a major issue during testing. Another problem 

when making decisions during testing concerns the (poor) quality of the input 

documents, particularly the lack of quality of the requirements specification. 

Three participants require more detailed descriptions, particularly concerning 

pre and post conditions of a requirement, dependencies between requirements, 

as well as dependencies between the software and its environment (including 

the software and hardware environment). One of the main reasons for the poor 

quality of the requirements from the testers’ point of view is the lack of in-

volvement in the review process. Only half of the interviewees report that test-

ers are involved in the review process of the requirements specification. In one 

special case, the requirements specification is not reviewed at all.  
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High documentation and communication needs during test execution suggest 

incomplete descriptions of the expected outcome in test case specifications. 

Reasons for this are either quality deficiencies in the documentation that served 

as input for decisions on test cases or shortage of time when testers decided on 

test cases, leading to incomplete descriptions of the expected outcome. 

5.6 Implications 

Empirical studies are essential in understanding the nature of information 

processes. This is also the case with the testing process. By this study, previ-

ously formulated advices in literature that are not supported by empirical stud-

ies could be confirmed. For example, the outstanding role of the requirements 

specification and of previously found defects for the testing process could be 

confirmed. This study, however, also allows insights that have not been yet con-

sidered in literature, for instance the important role of the user for testers.  

This study shows several issues that current research work should address 

when developing new approaches in the area of software testing. 

 Issue 1: First, testing requires system specific experience. In addition, 

testers rely on their experience more than on external facts or infor-

mation. Thus, testing approaches should consider this. 

 Issue 2: Test design techniques are not applied “as is” because they 

generate too much test cases. Approaches to prioritise test cases, and 

generally approaches that identify the test foci, should consider test-

ers’ experience. 

 Issue 3: Previously found defects are an important information 

source for testers in order to prioritise testing activities and thus to 

define the test foci.  

 Issue 4: Another problem when making testing decisions concerns 

the evaluation of the outcome of the testing processes. The main rea-

son for this is that testers do not have approaches that allow sound 

and justified decisions on test goal level. Without having defined the 

goals of the test, it is very difficult to evaluate whether they have been 

achieved. 

 Issue 5: Finally, an issue for testing decisions concerns the (poor) 

quality of the input documents. Therefore, when defining testing 

processes in an organisation it should be considered to involve testers 

in the review process of the test basis. 

This thesis addresses the Issue 1 through 4. Issue 5, i.e. the development of high 

quality documents, is beyond the scope of the thesis and should be addressed 

by research in the area of e.g. requirements engineering. 

 

5.7 Threats to validity 

One threat to validity of this study is the fact that the results may be specific to 

the particular interviewees. This problem is addressed by selecting very experi-
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enced testers for the interviews. Another threat is the ability to generalise the 

results due to the fact that a small sample has been selected. This issue is ad-

dressed by using the following techniques that assure the validity of qualitative 

studies (Seaman 1999), (Yin 2003): 

1) Diversification: Diversity with respect to the focus of the activities 

performed by the interviewees was a key criterion when selecting the 

participants of the study.  

2) Methodological triangulation: Different methods to analyse the data 

have been used (quantitative and qualitative techniques, as described 

in Section 5.3.2).  

3) Explanatory triangulation by trying out several explanations for all 

results in Section 5.4. For example, the result that the requirements 

specification document is a key information source for testers can be 

confirmed by several facts. First, asked for main problems in the test-

ing process, almost all interviewees indicate the poor quality of the 

requirements specification. In addition, asked for required input for 

different decisions, the interviewees indicate the requirements speci-

fication as an important input for almost all decisions. Based on these 

two facts, the conclusion can be drawn that the requirements specifi-

cation is an important information source for testers. Nevertheless, 

organisations with a higher degree of test automation or which use 

more formal models (e.g. in the embedded area) may show different 

results. 

5.8 Related work 

Similar work analysing information gathering strategies of maintainers is de-

scribed in (Seaman 1999) and in (Tjortjis and Layzell 2001). Most related work 

focuses on the description of the test process. For instance, the fundamental test 

process presented in  (Spillner and Linz 2010) addresses phases and activities to 

be passed through when testing a software system. Another group of related 

work represents test process improvement models like TPI (Test Process Im-

provement) (Koomen and Pol 1999) or test maturity assessment models like 

TMMi (Testing Maturity Model Integration), (Tmmi Foundation; eds. van 

Veenendaal, E. 2009). The focus of these models is not the information flow 

within the testing process, but the steps for its improvement. None of the refer-

ences presented above contains empirical studies. The work which is most re-

lated to the content of the study presented in this chapter is described in 

(Dahlstedt 2005). The authors present guidelines for requirements engineering 

practices that facilitate testing. In contrast to the work in (Dahlstedt 2005) which 

addresses requirements engineering processes and artefacts, this study has a 

larger focus including other information sources of the software development 

project. In addition, this study analyses the role of communication, as well as 

the role of experience during testing.  
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5.9 Chapter summary 

This chapter details the results of an exploratory study with expert testers that 

has been performed in order to identify characteristics of testing processes in 

practice along with their strengths and weaknesses (Illes-Seifert and Paech 

2008c).  

The main results of this study regarding the research questions formulated in 

Section 5.2 can be summarised as follows:  

The requirements specifications as well as defect reports are the documents 

used most frequently during testing (Question 1). In addition, the requirements 

engineer and the project manager are roles consulted most frequently by testers 

(Question 2). Surprisingly, testers mention a high communication overhead 

during test execution. This fact is an indicator for the poor quality of the re-

quirements specification, confirmed as a major problem during testing by al-

most all interviewees. Experience plays an important role for testers. The defi-

nition of test data as well as decisions on test goal level require by far the most 

experience (Question 3). At first glance, the latter is unexpected, but since most 

organisations do not define a test strategy, evaluation is not easy in the absence 

of operational goals. As expected, test execution requires little experience and is 

consequently well suited to be automated.   

In this study, several issues concerning testing processes in practice have been 

identified which are largely addressed in this thesis. 



CHAPTER 6 An empirical approach to 

the justified definition of 

test foci 

 
Decisions in practice are often made based on intuition and 

subjective appraisal. The “goodness” of a process, method or 

tool is judged by whether and how many people use it rather 

than on justified facts (Juristo and Moreno 2001). This also 

applies to software testing. Testers have to decide which parts 

of the software to test and how intensively. But these decisions 

are often not justified by facts and rely on testers’ intuition. 

The empirical approach presented in this chapter proposes a 

combination of visual analyses and statistical procedures in or-

der to determine indicators for defects in software. Based on 

these analyses, testers can make justified decisions on test foci 

(Illes-Seifert and Paech 2010).  
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6.1 Introduction 

The knowledge about particular characteristics of software that are indicators 

for quality lacks in terms of defects is useful for several roles within the soft-

ware life cycle. For instance, this knowledge is very valuable for testers, because 

it helps them to focus the testing effort and to allocate their limited resources 

appropriately.  

Information about the software project can be collected from versioning control 

(VCS) and defect tracking systems (DTS). These systems contain large amounts 

of data documenting the evolution of a software product. In practice, this in-

formation is often not deeply analysed in order to gain information that facili-

tates decisions in the present. Information contained in VCSs and DTSs can also 

be combined. For example, the relationship between historical characteristics 

(e.g. a file’s age that can be determined by analysing the VCS) and software 

quality (e.g. measured by the defect count that can be determined by analysing 

the DTS) can be explored. It is very useful to know which particular historical 

characteristics are good indicators for defects. It helps testers to focus their test-

ing effort appropriately. 

The main idea of the empirical approach presented in this chapter is to collect 

data about the software under test, to analyse it by visual means, and to vali-

date the results by applying statistical procedures (Illes-Seifert and Paech 2010). 

Based on these analyses, justified decisions can be made. Particularly, the ap-

proach uses statistical procedures and visual representations of the data in or-

der to determine those software entities that are responsible for defects in soft-

ware. For this purpose, simple analyses of defect variance are performed in a first 

step. These analyses explore the relationship between one characteristic of the 

software (the independent variable) and its defect count. For instance, it can be 

evaluated whether the software’s age is a good indicator for its defect count. 

Simple analyses of defect variance include visual analyses of the data and sta-

tistical procedures that verify the statistical significance of the results obtained 

by visual analyses. 

In a further step of the empirical approach, detailed analyses are performed in 

order to get more precise results. By combined analyses of defect variance, the rela-

tionship between several independent variables and a file’s defect count is ana-

lysed. For instance, an analysis can evaluate whether a file’s age and the number 

of changes performed to a file in combination are good indicators for defects in 

software. Similarly to simple analyses, combined analyses of defect variance 

consist of both visual and statistical procedures.  

The advantage of this approach is its applicability in practice. Due to the pro-

posed visual representations, an easy interpretation of the data is possible, thus 

making this approach an intuitive one. In addition, the approach aims at deriv-

ing reliable conclusions from data by requiring statistical tests that support the 

results derived visually.   
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The remainder of this chapter is organised as follows. In Section 6.2, the empiri-

cal approach is presented in detail, whereas Section 6.3 contains the discussion 

of the approach. Section 6.4 summarises this chapter. 

6.2 Justified test foci definition – An empirical approach 

The main assumption of the empirical approach presented in this chapter is 

that the quality of a decision increases when it is supported by facts rather than 

relying only on human intuition. Accordingly, the main idea is to collect data 

about the software under test, to analyse it by visual means and to determine 

the statistical significance of the results obtained visually by applying statistical 

procedures. Based on these analyses, justified decisions can be made in prac-

tice. 

Basically, the approach consists of several steps that can be assigned to one of 

the phases “planning and design”, “data collection”, and “data analysis”. Start-

ing point of the approach is the definition of the goal that should be achieved 

by the empirical analysis. This goal has to be detailed in the subsequent phases. 

Since such an analysis is cost-intensive, it should be clearly stated which bene-

fits are to be expected for each of the stakeholders. 

During the planning and design phase, the rationale for conducting an analy-

sis is elaborated. This phase includes the definition of how quality will be 

measured, for instance in terms of the number of defects. In addition, one main 

goal of this phase is to determine indicators potentially influencing the quality 

of the software as defined in the step before. Consequently, this phase also in-

cludes the definition of measures and corresponding metrics for the identified 

quality indicators. Finally, the granularity level on which the analyses should be 

performed has to be defined.  

During the data collection phase, the software entities to be analysed have to 

be identified and all activities to prepare the measurement have to be per-

formed. For instance, all necessary tools have to be acquired or developed. 

Then, the measurement has to be carried out, and the data defined in the steps 

before have to be collected.  

Main goal of the data analysis phase is to analyse the data and aggregate the 

results in order to be able to draw conclusions and to make decisions based on 

it. In this phase, simple analyses have to be performed in order to evaluate 

whether the quality indicators proposed in the planning and design phase are 

actually good indicators for (poor) software quality. Then, detailed analyses 

have to be carried out in order to refine the results obtained in the step before. 

Finally, the results of the analyses have to be synthesised in order to be able to 

draw conclusions and to make justified decision based on the data.  

Based on the results of the synthesis, decisions on further process improve-

ments can be made by all stakeholders identified in the goal definition step. 
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The main steps of the empirical approach are illustrated in Figure 6.1. A de-

tailed discussion of each of the proposed steps is presented subsequently.  

 

Figure 6.1 - Empirical approach 

(Illes-Seifert and Paech 2010) 
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addition, code-review activities can be focused on those parts of the soft-

ware that potentially will show defects. 

A widely used template for goal definition contains the following elements 

(Wohlin et al. 2000): 

 Object of study: Entity that is studied, for instance products, processes, 

models, metrics, or theories. 

 Purpose: Intention of the study, for instance to characterise, monitor, 

evaluate, or predict. 

 Quality focus: Primary effect under study in the experiment, for in-

stance effectiveness or costs. 

 Perspective: Viewpoint from which the experiment results are inter-

preted, for instance from the viewpoint of the developer. 

 Context: Describes the environment and the circumstances of the study. 

Step 1 - Definition of quality 

In a first step, the dependent variable of the study has to be defined. The ques-

tion to be answered in this step is how should quality be expressed, i.e. which 

measures and corresponding metrics should be used to express (poor) software 

quality?  

The domain of quality metrics is among the most subjective and ambiguous 

area in the entire literature of software engineering (Jones 2008). Therefore, a 

critical evaluation of the measures and metrics should be performed. In the 

empirical studies in which this approach has been applied (Chapter 8 – Chapter 

10), quality is expressed in terms of the number of defects that are reported to a 

file. More detailed analyses that differentiate, for example, between pre-release 

defects (defects that occurred before release) and post-release defects (defects 

that occurred after release) as quality measures are also possible. In addition, 

other quality measures like measures for the maintainability of software15 can 

be considered. In this thesis, the focus is on finding indicators for defects in 

software that allow the selection of test foci. 

                                                      

15 The (ISO/IEC 2001) standard for software quality defines six quality characteristics 

and corresponding subcharacterstics for which measures and metrics can be defined. 
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Figure 6.2 - Quality and quality indicators. An example 

 a) Metrics and measures for the dependent variable software quality. Software quality is 

an attribute of the entity file. Software quality can be measured by the fault-proneness of 

a file quantified by the metric number of defects. b) Metrics and measures for the variable 

history. History is an attribute of the entity file and can be measured by the change history 

of a file that can be quantified by the metric DA (number of distinct authors that changed 

that file). 

Step 2 - Definition of quality indicators 

In this step, the independent variable(s) have to be defined. This step includes 

the formulation of hypotheses on possible indicators for the software’s (poor) 

quality as defined in the step before. Based on these hypotheses, the dependent 

variables, corresponding measures and quantifying metrics have to be derived. 

Figure 6.2 b) shows an example for a quality indicator along with correspond-

ing measures and metrics. Accordingly, Figure 6.2 a) shows an example for a 

possible measure and a corresponding metric for the variable “software qual-

ity”. 

Usually, a lot of metrics can be calculated automatically. Consequently, the se-

lection of the “right” set of variables is not easy. Testers’ experience and results 

from previous analyses can be used as input to define a manageable set of in-

dependent variables.  

This step also includes the definition of the measurement scale for the variables. 

The measurement scale determines the operations and statistical procedures 

that can be applied to the corresponding data (Details on measurement scales 

are described in Section 2.5.3). Simple and combined analyses of defect variance 

as proposed in this thesis are performed on categorical data. Numerical data 

have to be transformed into categorical data. 
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For all measures and metrics, the following criteria should be considered (Jones 

2008), (Ludewig and Lichter 2007): 

 Clear: The meaning of the information to be collected should be straight-

forward to developers and managers, so that they can provide accurate and 

precise answers in little time. 

 Complete but concise: Only information necessary to collect should be col-

lected.  

 Automated: If possible, the amount of necessary human intervention 

should be reduced. Preferable, the collection of metrics should be auto-

mated.  

 Non-intrusive: Data collection should not perturb the software develop-

ment process. 

 Available. Data should be available when needed. 

 Repeatable: Applying the same measurement procedure to measure attrib-

utes of a particular entity leads to identical values every time the metric is 

collected for that entity.  

 Relevant. The metric should be relevant in the context of the analysis. For 

instance, if the influence of the software’s size on its fault-proneness should 

be analysed, the LOC metric is a relevant metric to express the software’s 

size. Productivity metrics for the development of that particular software 

entity are not relevant metrics in this context. 

 Economic. The effort needed to collect the data should not exceed its bene-

fits. 

Step 3 - Definition of granularity 

In this step, the granularity of the analyses has to be defined. For example, 

analyses on module, file or package level can be performed. The more fine 

grained the analyses are, the more precise and differentiated are the results. On 

the other hand, the more detailed the results are, the higher is the effort needed 

to synthesise and interpret the results. 

Step 4 - Identification of software releases and software entities 

In this step, the objects of investigation have to be determined, i.e. all entities 

for which measurements should be performed have to be identified. The fol-

lowing criteria increase the success and significance of the analyses.  

 Size: The size of the software or of the analysed components guarantees 

that the results are statistically significant.  A toy project would not lead 

to statistically significant results. 

 Maturity: The maturity of software guarantees that effects will have ap-

peared if present.  

 Version controlled source code: In order to be able to identify different 

releases of software, the availability of a VCS controlled source code is a 

prerequisite. 
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 Documented history: The availability of a documented history, mostly 

in terms of a VCS, is a prerequisite for all analyses concerning the rela-

tionship between historical characteristics and software quality.  

 Documented defect history: In the case that the quality of the software 

is expressed in terms of the number of defects, the availability of a 

documented defect history is also indispensable. Usually, the defect his-

tory is documented within a DTS.  

 Source code: The availability of source code is a prerequisite for all 

analyses concerning the relationship between code characteristics and 

software quality. In the case that COTS16 components for which the 

source code is not available are part of the software to be analysed, struc-

tural analyses are difficult.  

Step 5 - Preparation 

Before any measurement can take place, the instrumentation for the analyses 

(instrumentation subsumes all instruments needed to perform the analyses) has 

to be defined, developed or acquired. Tools needed to perform the analyses 

have to be developed or acquired. Alternatively, existing tools can be adopted 

for the context of the analyses to be performed. For data collection, tools for ex-

tracting information from the VCS and from the DTS, as well as tools for com-

bining information contained in both have to be developed or acquired. In ad-

dition, tools for static analysis are needed in the case that the suitability of 

structural code characteristics as quality indicators has to be analysed. For data 

analyses, tools supporting statistical analyses will be used. These can be spe-

cialised statistic tools or conventional table calculation applications that inte-

grate statistic functionality. In addition, all points of the process at which data 

should be collected have to be determined along with the persons affected by 

and responsible for the collection of data. 

Personnel have to be familiar with the tools to be used but also with statistical 

procedures and experimental basics. Thus, training needs have to be identified 

and the trainings have to be carried out before measurement takes place. 

Step 6 - Measurement 

Main goal of this step is to collect the data defined in step 1 and step 2 for all 

identified software entities at the granularity defined in step 3. In addition, col-

lection procedures have to be validated for a randomly selected part of the data.  

For instance, in the empirical studies presented in this thesis that have been 

conducted in the context of open source development (Chapter 8 and Chapter 

9), a file’s defect count has to be determined retrospectively. For this purpose, 

information contained in the DTS and the VCS has to be mined and combined. 

A detailed description of the algorithm is presented in Section 7.7.1. In order to 

determine and improve the algorithm performance, a validation on a subset of 

the data should be performed. 

                                                      

16 Commercial off-the-shelf 
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Step 7 - Simple analyses 

In this step, analyses that explore the hypotheses formulated in step 2 have to 

be performed. In this thesis, two analyses are proposed depending on the level 

of detail on which the analysis has to be performed: simple and combined 

analyses of defect variance. 

Simple analysis of defect variance 

This analysis is used to determine the relationship between one categorial 

independent variable and a file’s defect count, i.e. for the analysis of the 

variance of the defect count in different categories of the independent variable. 

A categorial variable classifies the entities according to an attribute (see also 

Section 2.5.3 for details on types of data). For example, as defined in Chapter 

10, the “age” metric of a file classifies the entities with respect to their age into 

one of the categories: Newborn, Young or Old.  

In a first analysis step, the data is displayed in a diagram called defect variance 

analysis diagram (DVA). This diagram relates the mean defect count to each of 

the defined categories as follows: The x-axis contains the category. On the y-

axis, the mean defect count in each of these categories is indicated.  

For example, Figure 6.3 shows the DVA for the commercial system (CS) used to 

validate the approach in this thesis (details are presented in Chapter 10). The 

mean defect count for newborn files (F-N) is 5.05, for young files (F-Y) 4.08 

and for old files (F-O) 5.94.  

 

Figure 6.3 - Simple DVA: Mean defect count vs. file age.  

In order to obtain statistical evidence for the results derived visually, statistical 

tests have to be performed. The main purpose of the statistical tests is to analyse 

whether the differences between the groups that have been observed by visual 
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 Mann-Whitney test: Differences between two populations can be ana-

lysed by the Mann-Whitney test, i.e. if the categorial variable has two 

categories, the statistical evidence for differences between these two 

categories with respect to the dependent variable can be analysed (Sec-

tion 2.5.5).  

 Kruskal-Wallis test: Differences between more than two populations can 

be analysed by the Kruskal-Wallis test, i.e. if the categorial variable has 

more than two categories, the statistical evidence for differences be-

tween these categories with respect to the dependent variable can be 

analysed (Section 2.5.5).  

Both tests are recommended, because they are non-parametric, i.e. the test does 

not make any assumptions concerning the distribution of parameters (in con-

trast to parametric tests). For both tests, the null hypothesis is that the defect 

count is the same in both/all groups; the alternative hypothesis is that it is not.  

In the example, the Kruskal-Wallis non-parametric test has to be applied, be-

cause the independent variable “age” defines three categories. In this case, the 

test is performed in order to analyse whether the differences between New-

born, Young and Old files with respect to their fault-proneness are statistically 

significant. Based on the DVA, it can be concluded that Old files are the most 

fault-prone files because they have the highest defect count followed by New-

born and Young files. According to the Kruskal-Wallis test, this observation is 

statistically significant at the 0.05 level. 

Step 8 - Detailed analyses 

In order to refine the results obtained by simple analyses, the relationship be-

tween two or more independent variables and the dependent variable has to be 

analysed. Detailed analyses can be performed in order to get more in-depths 

results. In addition, results that are in contrast to initial expectations (i.e. in con-

trast to the hypotheses formulated in Step 2) motivate further analyses. 

An example for a detailed analysis is the investigation performed for the inde-

pendent variable “age” (Section 10.5.4). In this case, the simple analysis of de-

fect variance performed in the first step showed unexpected results. In this par-

ticular case, old files proved to be the most fault-prone ones, a result that 

contradicted the hypotheses formulated in advance. A detailed analysis that ex-

amines the relationship between a file’s age and the frequency of changes per-

formed to it in combination revealed a more precise view. Based on the results of 

the detailed analyses, it can be concluded that, for instance, old files that have 

been changed frequently are the most fault-prone ones. In addition, the de-

tailed analysis reveals that files that have been changed frequently are signifi-

cantly more fault-prone than files that have not been changed frequently inde-

pendently of their age. 

For detailed analyses, a combined analysis of defect variance is proposed sub-

sequently. Similarly to the simple analysis of defect variance, this analysis com-

bines visual means with statistical procedures. 
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Combined analysis of defect variance 

This analysis is performed in order to explore the relationship between two 

categorial independent variables. If the variables are numerical, a categorisation 

has to be performed in advance. For instance, files can be divided into two 

categories with respect to their FC metric (indicating the the number of changes 

performed to a file) as follows: One group (the stable files) contains all files that 

have the FC metric lower than average and another group (the unstable files) 

have the FC value above average. Alternatively, a finer grained categorisation 

can be defined. But it should be considered that the more detailed a categorisa-

tion is, the more time-consuming it is to analyse and interpret the results in 

practice. 

Having two categorial variables, the DVA is used again for the visual analysis. 

The categories needed for the DVA are obtained by combining the original ones 

and performing the analysis as described for the simple categorial analysis. For 

example, an analysis can be performed to determine the extent to which the de-

fect count of a file depends on its age and on its stability. Thus, it can be ana-

lysed, whether old files that have been changed frequently (these are old and 

unstable files) are more fault-prone than old files that have not been fre-

quently changed (old and stable files). In this example, the refined categories 

can be defined as shown in Table 6.1. 

 Stability 

stable unstable 

A
g

e 

Newborn N-stab N-unst 

Young Y-stab Y-unst 

Old O-stab O-unst 

Table 6.1 - Category definition matrix for  

age X stability 

The DVA relates the mean defect count to each of the refined categories. For in-

stance, for the analysed CS (see Figure 6.4), the mean defect count of young 

and unstable files (Y-unst) is 7,15.  

In order to confirm the results obtained by the visual analysis statistically, the 

Kruskal-Wallis test has to be applied. Similarly to the simple analysis, the null 

hypothesis is that there are no differences in the mean defect count among the 

refined categories, the alternative hypothesis is that there exist differences.  

The highest mean defect counts have old and unstable files. Stable files are 

on average less fault-prone than unstable files independent from their age. 

These observations are confirmed by the Kruskal-Wallis test. 
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Figure 6.4 - Combined DVA for Ant: Mean defect count vs. file age 

and stability 

Step 9 - Synthesis  

In this step, conclusions on the results have to be drawn. The primary goal of 

analyses in industrial environments is not to validate measures and to build 

models, but to make the results available to practitioners and to explain inter-

pretations and consequences. Thus, the following questions have to be an-

swered: Which are good indicators for software quality? Which are good indi-

cators for defects in software? Based on the results of the synthesis, it can be 

decided which measures can be taken to improve the quality and who (i.e. 

which roles) should be involved in improving it.  

The results should be presented in a final report containing recommendations 

resulting from the results of the analyses that have been performed.  

Decision making 

Based on the synthesised results and the empirical evidence obtained in the 

precedent steps, decisions on further process improvements can be made by all 

stakeholders identified in the goal definition step. For instance, testers can take 

the results of the analyses as input for the definition of the test foci; quality en-

gineers can decide which organisation-wide insights and process improvement 

activities can be started, etc. 

6.3 Discussion 

In this section, characteristics of the approach are reviewed and several aspects 

to be considered when applying this approach in practice are discussed. 

6.3.1 Characteristics of the approach 

The approach presented in this chapter has several strengths.  
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 Easy to understand. In order to be applicable in practice, the approach 

has to be intuitive and easily to understand. For this purpose, the results 

should not be encrypted within complex formulae but should allow an 

easy interpretation. For this purpose, visual representations are used to 

enable a standardised and intuitive interpretation of the results.  

 Basis for justified decisions. The approach follows statistical proce-

dures. All results obtained by visual means must be validated statisti-

cally. Thus, more reliable decisions can be made, because the probability 

of accidental effects is minimised. 

 Externalises tacit knowledge. Often, testers have a subjective impres-

sion of the factors influencing the software’s defects. They know the ar-

eas that often lead to “trouble”. By following this approach, this tacit 

knowledge can be justified by statistical means. On the other hand, 

sometimes, the subjective impression can distort the reality. Thus, this 

approach helps to minimise subjective distortion. 

 Experience based. The approach involves testers in the selection of indi-

cators for defects in software. Since usually large amounts of data can be 

computed, it is essential to select the most appropriate subset of data to 

be included in further analyses (during the planning and design steps). 

In addition, testers are involved when deciding which refined analyses 

should be performed, for instance in order to get more precise results 

(above all, when performing step 8). Figure 6.5 shows how the generic 

approach presented in Section 1.2.2 is refined in this chapter. 

 

Figure 6.5 - Testers’ experience is needed when 

making decisions on test foci 
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6.3.2 Social aspects to be considered 

Measurement usually takes place in an organisational context. Cultural and so-

cial aspects should be considered when starting a measurement program. Thus, 

measurement should not be applied to judge persons, but to help them. The 

measurement program should show advantages for all stakeholders. In addi-

tion, the transparency of the measurement goals minimises the danger that per-

sons involved do not cooperate in the data collection procedures. Without sen-

sitivity to corporate politics and sociological issues, measurement programs can 

cause more harm than good and will not achieve their true benefits of revealing 

areas of strength and weaknesses (Jones 2008). Thus, social aspects of meas-

urement should be considered in advance and persons affected by it should be 

informed in time. 

6.3.3 Other defect types 

Care should be taken when measuring software quality in terms of defects in 

source code. This procedure should not suggest that these are the only defect 

types that can occur during software development. In fact, it should be clearly 

stated that there are several other defects types, such as requirements, design or 

documentation defects that can occur during the software’s life cycle that have 

to be addressed by other complementary approaches. 

6.4 Chapter summary 

In this chapter, an empirical approach that uses statistical procedures and vis-

ual representations of the data in order to determine indicators for the soft-

ware’s quality has been presented. In this thesis, this approach is particularly 

used to determine indicators for defects in software. The main goal of this ap-

proach is to provide assistance to several roles in the software life cycle, for in-

stance to testers, developers, or maintainers in making justified decisions based 

on data (Illes-Seifert and Paech 2010). 

After establishing clear goals for empirical analyses to be performed in order to 

obtain a justified set of indicators for defects in software, several other planning 

activities have to be performed. These activities include the definition of the 

granularity on which analyses will be performed (e.g. on file level) and how 

quality should be expressed (e.g. in terms of a file’s fault-proneness expressed 

by its defect count). In addition, potential indicators for defects in software 

have to be defined (e.g. structural code characteristics like the size). The meas-

urement activity in which data are collected is then followed by several analy-

ses. For first exploratory analyses, simple analyses of defect variance are pro-

posed. The visualisation occurs in terms of a DVA (defect variance analysis 

diagram). Detailed analyses are performed in order to get more precise results. 

By combined analyses of defect variance, the relationship between more indica-

tors and the software’s defects is analysed. The last two steps of the approach 

aim to synthesise the results in order to serve as the basis for a justified decision 

on test foci and on process improvements.  



CHAPTER 7 Basic experimental design 

 
The empirical approach presented in Chapter 6 proposes a com-

bination of visual representations and statistical procedures 

that help to make justified decisions in practice. In order to 

validate this approach, several empirical studies are performed. 

One part of the empirical studies is performed in the context of 

open source development and another part in an industrial set-

ting. In this chapter, basic information on the empirical studies 

performed in the context of open source development is pre-

sented.  
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7.1 Introduction 

In order to validate the approach presented in Chapter 6, a series of empirical 

studies are conducted in the context of open source development. For this pur-

pose, seven java open source programs are analysed. In this chapter, details on 

the context of the empirical studies described in Chapter 8, Chapter 9 will be 

presented. In addition, the first steps of the approach that are common to all 

studies are detailed. 

The main goal of all empirical studies presented in this thesis is to explore the 

relationship between characteristics of software and its quality in terms of its 

defect count. As required by the approach presented in Chapter 6, this generic 

goal has to be detailed in a first step. The concretisation of the generic goal is 

shown in Section 7.3. The definition of the granularity of the analysed entities 

follows in Section 7.4. The dependent and independent variables are presented 

in Section 7.5. Characteristics of subject open source programs (OSPs) that are 

analysed are presented in Section 7.6.  

A prerequisite of all empirical studies is the computation of the number of de-

fects reported per file. Based on this information, statistical analyses can be per-

formed. For instance, the relationship between the number of defects and other 

characteristics of files can be analysed.  

Usually, defect tracking systems (DTS) do not contain any information related 

to the location of the defects. Similarly, in versioning control systems (VSC) it is 

not possible to distinguish between records that have been introduced due to 

defect correction or due to changes (e.g. by adding new functionality). Conse-

quently, information contained in both VCS and DTS, has to be combined in 

order to compute the number of defects per file. Usually, VCSs and DTSs do not 

provide support for the combination of both data sources. In order to overcome 

this problem, an algorithm is presented that relates the information contained 

in both systems and computes the number of defects per file. This algorithm 

and its empirical validation are presented in Section 7.7. Several methods for 

determining the number of defects per file have been presented in literature. 

An overview and a discussion about the advantages and drawbacks of each of 

these methods are presented in Section 7.8.  

7.2 Basic terms and concepts 

In this section, basic terms and concepts used in all empirical studies are pre-

sented. 
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Definition 7.1  Versioning Control System (VCS) 

Versioning Control Systems (VCS) are useful for recording the 

history of documents edited by several developers. In order to 

edit a file, a developer has to check out this file, edit it and to 

commit this file back into the VCS repository. Each time a de-

veloper commits a file a message describing what has been 

changed can be optionally added. CVS17, ClearCase18, Source-

Safe19 and SVN20 are examples for such systems. 

Definition 7.2 Defect Tracking System (DTS) 

Defect Tracking Systems (DTS) facilitate the recording and 

status tracking of defects and changes. They often have work-

flow-oriented facilities to track and control the allocation, cor-

rection and re-testing of defects and provide reporting facili-

ties (ISTQB 2007).  

Definition 7.3  History Touch (HT) 

A history touch (HT) is defined as one of the commit actions 

where changes made by developers are submitted. These 

changes include modifying, adding or removing files. Defect-

correcting HTs subsume all those HTs that have been recorded 

when developers corrected a defect. Accordingly, non-defect-

correcting HTs subsume all other HTs submitted, for instance in 

the case that a developer has introduced new functionality or 

in case of perfective or adaptive maintenance activities. 

Definition 7.4  Birth 

The birth of a file denotes the point of time of its first occur-

rence in the VCS, i.e. the date, the file has been added to the 

VCS.  

Definition 7.5  Death 

The death of a file denotes the point of time of its removal from 

the VCS.  

Definition 7.6  Present 

Present denotes the point in time where the empirical studies 

started. All defects and HTs recorded until Present were con-

sidered. 

  

                                                      
17

 http://www.nongnu.org/cvs/ 

18 http://www-306.ibm.com/software/awdtools/clearcase/ 

19 http://www.microsoft.com/ssafe/ 

20 http://subversion.tigris.org/ 

http://www.nongnu.org/cvs/
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Definition 7.7  System Age 

The system age is computed as Present – Birth of the 

“oldest” file contained in the VCS. 

Definition 7.8  History 

The history of a file subsumes all HTs that occurred to that file 

from its birth until present or until its death. 

Definition 7.9   Release 

A release represents a point in time in the history of a project 

which denotes that a new or upgraded release is available. In 

the empirical studies presented in this thesis, only final or ma-

jor releases of the open source programs have been consid-

ered. 

Definition 7.10  Defect Count 

The defect count is the number of defects identified in a soft-

ware entity. In this thesis, for all open source programs, the 

number of defects of a file is counted.  

7.3 Goal definition 

The overall goal of all empirical studies is to evaluate which software character-

istics are indicators for defects. Using the goal definition template described in 

Chapter 6.2, the goal can be detailed as follows: 

 Object of study: Analyse different software characteristics 

 Purpose: for the purpose of their evaluation 

 Quality focus: with respect to the efficiency as indicators for the soft-

ware’s defects  

 Perspective: from the point of view of researchers, testers, and maintain-

ers 

 Context: in the context of open source development. 

7.4 Granularity 

Since HTs are performed on file level, the empirical studies presented in Chap-

ter 8 and Chapter 9 are performed on file level, i.e. characteristics of a file are 

related to the file’s defect count. The analysis whether bad smells are good indi-

cators for defects in software is performed on class and on package level. 

7.5 Defining quality and quality indicators 

In these both steps of the approach, the dependent variable (the software’s qual-

ity) and the independent variables (quality indicators) have to be defined.  

In all empirical studies, the dependent variable is the defect count of a file that 

occurred between two consecutive releases during its history. Thus, DCURRi de-
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notes the number of defects reported for a file after release i and before release 

i+1. 

The independent variables are structural characteristics of the software that are 

supposed to indicate defects.  

Figure 7.1 illustrates how file characteristics are related to corresponding defect 

counts for particular releases. A characteristic j in release i of a file f (e.g. the 

number of changes performed to that file) is related to the defect count reported 

to that file between release i and release i+1.  

 

Figure 7.1 - Defect count and characteristics of a file 

7.6 Software entities 

In this step, the objects of investigation are identified, i.e. all OSPs are deter-

mined for which the analysis has to be performed. For this purpose, large 

repositories for open source programs, mainly SourceForge21 and Java-Source22 

are searched. As required in Chapter 6, following criteria have been applied 

when selecting the projects:  

a) size: The project is of a large size in order to permit significant results. 

This criterion guarantees that the empirical results are statistically sig-

nificant. 

b) maturity:  According to this criterion, projects with a number of HTs in 

the VCS greater than 50.000 have been selected.  

c) Version controlled source code. In order to extract historical characteristics 

automatically, only projects for which a well documented history within 

a VCS have been selected.  

d) Documented history. For each HT, at least the following information has to 

be available: author, date, and message. 

e) Documented defect history: The availability of a DTS is a prerequisite for a 

project to be considered in the empirical study. 

                                                      

21 http://sourceforge.net/ 

22 http://java-source.net/ 

timeRelease i-1

Ri-1
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f) Source code. Since some empirical studies analyse the relationship be-

tween structural code characteristics and defects, the availability of the 

source code is a criterion for an OSP to be included into the study. In ad-

dition, only projects written in Java have been considered. For compara-

bility and generalisability of the results a single programming language 

has been chosen. 

OSCache, a project that does not fulfil the criteria defined above, is included in 

order to compare the results obtained for all other projects with a smaller, but 

mature project. This project exists since 2000. 

As a result of the search, the following OSPs are used in all empirical studies.  

 Apache Ant (Ant)23 (Apache Ant) is a Java application for automating the 

build process using an XML file where the build process as well as its de-

pendencies can be described.  

 Apache Formatting Objects Processor (Apache FOP)24 is a Java application 

that reads a formatting object (FO) tree and renders the resulting pages to a 

specified output. Output formats are for example PDF, PS, XML, or PNG.  

 Chemistry Development Kit (CDK)25 is a Java library for bio- and chemo-

informatics and computational chemistry.  

 Freenet26 is a distributed anonymous information storage and retrieval sys-

tem. Users can use Freenet for instance for publishing websites, communi-

cating via message boards, or for sending emails.  

 Jmol27 is a Java molecular viewer for three-dimensional chemical structures. 

Features include: reading a variety of file types and output from quantum 

chemistry programs as well as animation of multi-frame files and computed 

normal modes from quantum programs.  

 OSCache28 is a Java application which allows performing fine grained dy-

namic caching of JSP content, servlet responses, or arbitrary objects.  

 TV-Browser 29 is a Java based TV guide.  

Table 7.1 summarises the attributes of the analysed projects. A * behind the data 

in the column “Project since” denotes the date of the registration of the project 

in SourceForge30. For the rest, the year of the first HT in the versioning system is 

indicated. The column “OSP” contains the name of the project followed by the 

project’s latest release for which the metrics “LOC” (Lines of Code) and the 

number of files have been computed (indicated in the columns 5 and 6). The 

3rd and the 4th columns contain the number of defects registered in the DTS 

and the number of HTs extracted from the VCS. The column “# Analysed re-

                                                      

23 http://ant.apache.org/ 

24 http://xmlgraphics.apache.org/fop/index.html 

25 http://sourceforge.net/projects/cdk/ 

26 http://freenetproject.org/whatis.html 

27 http://jmol.sourceforge.net/ 
28 http://www.opensymphony.com/oscache/ 
29 http://www.tvbrowser.org/ 
30 http://sourceforge.net/ 

http://ant.apache.org/
http://xmlgraphics.apache.org/fop/index.html
http://sourceforge.net/projects/cdk/
http://freenetproject.org/whatis.html
http://jmol.sourceforge.net/
http://www.opensymphony.com/oscache/
http://www.tvbrowser.org/
http://sourceforge.net/
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leases” indicates the number of subsequent releases of the corresponding pro-

gram that have been analysed, whereas the last column indicates the mean time 

interval between two consecutive releases.  

OSP Project 

since 

Defect 

count 

# HTs LOC # Files # Ana-

lysed  

releases 

Mean time 

interval 

between 

releases (in 

years) 

1. Ant (1.7.0) 2000 4.804 62.763 234.253 725 3 1,8 

2. FOP (0.94) 2002* 1.478 30.772 180.103 902 2 2,8 

3. CDK (1.01) 2001* 602 55.757 227.037 1.038 3 1,1 

4. Freenet (0.7) 1999* 1.598 53.887 68.238 464 3 1,5 

5. Jmol (11.2) 2001* 421 39.981 117.732 332 3 0,9 

6. OsCache (2.4.1) 2000 2.365 1.433 19.702 113 3  

4. TV-Browser 

(2.6) 

2003 190 38.431 169.831 827 3 1,0 

Table 7.1 - Subject programs 

7.7 Preparation 

In this step, the instrumentation of the studies has to be prepared.  

In order to analyse the relationship between the defect count and characteristics 

of files, the defect count per file has to be computed. DTSs contain information 

on the defects recorded during the lifetime of a project, amongst others the de-

fect ID and additional, detailed information on the defect. But DTSs usually do 

not give any information on which files are affected by the defect. Therefore, in-

formation contained in VCSs has to be analysed and combined with informa-

tion contained in DTSs. In the following, the procedures and algorithms for ex-

tracting the data necessary for the empirical studies are described. 

7.7.1 Computing the number of defects per file in OSPs 

For this purpose, the information contained in the VCS is extracted into a his-

tory table in a data base. Additionally, the defects of the corresponding project 

are extracted into a defect table of the same data base. Then, a 3-level algorithm 

is used to determine the defect count per file. At each level, a particular search 

strategy is applied (Illes-Seifert and Paech 2010). 

 Direct search: First, a search for messages in the history table contain-

ing defect-IDs of the defect table is performed. Messages containing the 

defect-ID and a text pattern like “fixed” or “removed”, are indicators 

for defects that have been removed. In this case, the number of defects 

of the corresponding file has to be increased.  

 Keyword search: In the second step, a search for keywords like “defect 

fixed” or “problem fixed” within the messages which have not been in-

vestigated in the step before is performed.  

 Multi-defects keyword search: In the last step, a search for keywords 

which give some hints that more than one defect has been removed (e.g. 

„two defects fixed“) is performed. In this case, the number of defects is 

increased accordingly.  
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Figure 7.2 visualises the procedure that is used to compute the defect count per 

file. 

 

 

Figure 7.2 - Computing the defect count for files in OSPs 

7.7.2 Keyword definition and validation 

The definition and validation of keywords is an iterative process consisting of 

the validation of the direct search, the validation of existing keywords and the 

search for missing keyword patterns. 

Validation of the direct search. The first validation step consists of the analysis 

whether the HTs found by direct search actually contain an indication that a de-

fect has been corrected. For this purpose, 20% of all HTs found by the first algo-

rithm step have been validated manually. Almost all messaged found in this 

step (above 99% in all projects) have been classified correctly by the algorithm. 

One reason for this is that the HT messages are simple, using standard phrases 

like: 
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“Bugfix #<BUG-ID>: <What has been done.>” 

“Fixed bug related to PR: <Problem Report-ID> submitted by <Submitter>” 

“A fix to … PR: <Problem Report-ID> submitted by <Submitter>” 

“A bug in …. Bugzilla report <BUGID> submitted by <Submitter>” 

“Correction of <What has been corrected>, #<BUGID> …. “ 

“Fix problem …. #<BUGID> submitted by <Submitter>” 

“Fix for  #<BUGID>” 

“Fix problem with ….  #<BUGID>” 

Validation of existing keywords. The main goal of this step is to determine 

whether the HTs identified by the second and third level of the algorithm actu-

ally contain an indication that a defect has been corrected. If this is not the case, 

the corresponding keyword may be too general, ambiguous or incorrect and 

must be either refined or removed. A total of 10% of the HTs found by the algo-

rithm have been selected randomly and validated in such a way. Incorrect pat-

terns have been removed and ambiguous ones refined.  

Searching for missing keyword patterns. The main goal of this validation step 

is to identify keyword patterns not included in the search so far. For this pur-

pose, HTs containing weak keywords like “fix” or “problem” have been ana-

lysed in order to determine missing complex patterns like “error fixed” or 

“problem corrected”. 

Finally, HTs that have not been selected by any of the levels of the algorithm 

have been analysed in order to determine whether some keywords are missing. 

For each project, 100-200 HTs have been selected randomly and investigated for 

additional keywords. Only in case of the OSCache project, one additional key-

word was found. 

7.7.3 Algorithm performance 

Formally, determining whether a HT is defect correcting (dc_HT) or not 

(ndc_HT) is a classification problem. Accordingly, each HT is mapped to one of 

the element of the set {positive = (dc_HT), negative = (ndc_HT)}. The algorithm 

represents a classification model that predicts whether an instance is positive or 

negative. Given a HT, there are four possibilities: 

 true positive (TP): This is the case if the HT is positive (= dc_HT) and it is 

classified as positive by the algorithm.  

 false negative (FN): The HT is positive but classified as negative (= 

ndc_HT). 

 true negative (TN): The HT is classified as negative and it is actually 

negative. 

 false positive (FP): The HT is actually negative but classified as positive. 

In order to determine the overall performance of the algorithm presented in 

Section 7.7.1, three analyses have been performed: true-positives analysis, anti-

pattern analysis, and the overall performance analysis. 
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For the true-positives analysis 10% of all HTs found by the algorithm have 

been randomly selected and analysed whether the HTs have been correctly 

classified as dc_HTs. Table 7.2 summarises the results of this analysis. For each 

project, the percentage of correctly classified dc_HTs (true positives) is indi-

cated. The results show a high classification accuracy with respect to the cor-

rectly classified dc_HTs that ranges from 97% to 99%. 

Project 

% of correctly 

classified 

dc_HTs 

1 FOP 0.993 

2 ANT 0.974 

3 CDK 0.987 

4 Freenet 0.997 

5 Jmol 0.998 

6 OSCache 0.999 

7 TVBrowser 0.995 

Table 7.2 - Algorithm performance 
Percentage of correctly classified HTs out 

of 10% of all HTs found by the algorithm 

For the anti-pattern analysis, a set of keyword “anti-patterns” has been defined 

that indicate a non-defect correcting HT, for instance “initial revision”, “refac-

toring”, or “removed warnings”. Then, the intersection set of both has been 

computed: the set of non-defect correcting HTs and the set of defect correcting 

HTs. All HTs that lie in the intersection can be a sign for an erroneous classifica-

tion. Table 7.3 shows the results of this analysis. For each project, the percent-

age of HTs lying in the intersection set is indicated (relative to the total number 

of dc_HTs identified by the algorithm). The last column indicates the percent-

age of correctly classified dc_HTs in the intersection set. 
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Project 

% of the number of 

HTs in the intersec-

tion relative to the 

number of dc_HTs 

Classification 

accuracy 

1 ANT 0.03 0.947 

2 FOP 0.06 0.941 

3 CDK 0.03 0.947 

4 Freenet 0.29 0.994 

5 Jmol 0.01 1.000 

6 OSCache 0.21 1.000 

7 TVBrowser 0.03 0.900 

Table 7.3 - Algorithm performance 
              Antipattern analysis results 

This analysis underlines the results obtained by the true positives analysis. The 

classification accuracy with respect to the correctly classified dc_HTs in the in-

tersection set ranges from 90% to 100%.  

In order to evaluate the overall performance of the algorithm, 1000 HTs have 

been randomly selected in each project and analysed whether they were TP, 

TN, FP, or FN. Then, precision and accuracy have been computed.  

The precision can be calculated as: 

FPTP

TP
precision


  

Thus, the precision indicates the probability that the HT is actually “positive” 

when the algorithm computes this. 

 

The overall accuracy of the algorithm can be calculated as:  

FNFPTNTP

TNTP
accuracy




  

 

Table 7.4 summarises the precision and accuracy for all projects. The precision 

of the algorithm is high across all projects. It ranges from 0.917 to 0.985. Thus, it 

is very probable that a HT is actually positive if this is determined by the algo-

rithm. The overall accuracy is also high and ranges from 0.958 to 0.989. In six 

cases, the overall accuracy is higher than the precision. In two other cases, both 

values (precision and accuracy) are quite similar. 
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Project Precision Accuracy 

1 ANT 0.945 0.979 

2 FOP 0.985 0.983 

3 CDK 0.917 0.968 

4 Freenet 0.977 0.958 

5 Jmol 0.968 0.981 

6 OSCache 0.964 0.972 

7 TVBrowser 0.969 0.970 

 MIN 0.985 0.989 

 MAX 0.917 0.958 

Table 7.4 - Algorithm performance 
                                       Overall performance 

7.7.4 Defect correction density 

At average, 14% of all HTs are defect-correcting HTs. The maximum is 25.7% in 

case of Freenet and the minimum is 2.9% in case of TVBrowser. Figure 7.3 illus-

trates for each OSP the percentage of defect-correcting HTs (these are messages 

that have been found in one of the steps of the algorithm presented in Section 

7.7.1). Consequently, most of the HTs have another cause than defect correction 

(e.g. initial check-in, perfective or adaptive maintenance, etc.). 

 

Figure 7.3 - Defect correction density in HTs 
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In almost all examined programs, the percentage of HTs that are found by di-

rect search makes up the biggest part of all HTs found by any level of the algo-

rithm. For example, in case of Freenet, 19.7% of all HTs (in the history table) 

contain a reference to a defect ID in the defect table, 1.2% of all messages con-

tain one of the keywords found by direct search, and 4.8% of all messages con-

tain keywords that indicate that more than one defect has been corrected 

(found by the multi-defect keyword search). Figure 7.4 illustrates for each OSP 

the percentage of defect correcting HTs per each level of the algorithm (direct 

search, keyword search, multi-defects keyword search). 

 

Figure 7.4 - Defect detection per algorithm level 

7.7.5 Threats to validity 

One threat to validity is that not all developers deliver meaningful messages 

when they check-in files. Developers, for example, can also check-in files with-

out specifying any reason, even though they had corrected a defect. Thus, the 

defect count of a file can be higher than the defect count computed by the algo-

rithm. This concern is alleviated by the size of the analysed OSPs. 
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A and C by 1 and only of file B by two. Example 7.1 shows an original check-in 

in the program Ant that contains references to 7 defect IDs. It is not clear if the 

correction of a defect affected all files that have been checked in conjointly. 

Example 7.1 – Collective check-in in Ant. “Fix label length issues Other fixes un-

earthed after major refactoring of VSS tasks PR: #11562 #8451 #4387 #12793 #14174 

#13532 #14463 Submitted by…” 

Thus, collective check-ins are a threat to validity and can lead to imprecision in 

the defect count. The assumption is that such messages are uniformly distrib-

uted among all developers and files. Additionally, the average defect count per 

HT is low in all projects. This fact diminishes the threat to validity.  

The average defect count per HT ranges from 1.02 (in case of the Jmol program) 

to 1.57 (in case of the ApacheFOP program). In case of two programs (Jmol and 

TVBrowser), the maximum defect count per HT is only 2. Only in case of two 

programs, Freenet and ApacheFOP, the maximum defect count per HT is above 

10. Table 7.5 summarises the average, maximum and the minimum defect count 

per HT for all programs. 

ID OSP 

Average 

defect count 

per HT 

Maximum 

defect count 

per HT 

Minimum 

defect count 

per HT 

1 Ant  1.06 7 1 

2 FOP 1.57 11 1 

3 CDK 1.04 3 1 

4 Freenet  1.34 19 1 

5 Jmol  1.02 2 1 

6 OsCache 1.16 4 1 

7 TV-Browser  1.04 2 1 

Table 7.5 - Average, maximum and minimum defect 

count per HT 

In almost all programs, above 90% of the HTs contain references to only a single 

defect. Only in case of Freenet, 80.7% of the HTs contain only a single defect. A 

very low percentage of the HTs contain 2 defects. Apart from ApacheFOP and 

OSCache, nearly zero percent of the HTs contain more than 3 defects. Figure 7.5 

shows the percentage of HTs for each OSP for different defect counts per HT. 
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Figure 7.5 - Percentage of HTs for different defect counts per HT31 

7.8 Related work 

A key problem when doing defect prediction is to determine the number of de-

fects that occurred in software entities. In open source as well as in commercial 

VCSs, there is usually no possibility to distinguish between a HT that reports a 

defect and a HT that reports any other change performed to the software. There 

are several methods for assigning the type (defect-correcting, non-defect-

correcting) to a HT (Weyuker and Ostrand 2008):  

Method 1, classification by explicit link in the VCS: In the case, the VCS pro-

vides the possibility to track whether a HT is a defect-correcting or non-defect-

correcting HT. This is the easiest possibility to compute the number of defects 

that occurred in a file. Unfortunately, the most VCSs do not contain such infor-

mation. Using this method, all kind of defects (pre-release as well as post-

release defects) can be considered. The main drawback of this method is that 

the type of HT (defect-correcting vs. non-defect-correcting) has to be tracked 

manually at development time and that the quality and completeness of the 

classification depends on the discipline with which developers track the type of 

HT they check-in. Despite of these drawbacks, this method is the most reliable 

of the methods. The authors in (Weyuker and Ostrand 2008) report on using 

this method to classify a part of the HTs of a voice response system. 

Method 2, classification by retrospective manual assignment: In this case, the 

HT messages are read and manually assigned to one of the types. Since the as-

signment is performed retrospectively, this method is less reliable than method 

1. In addition, due to the effort needed, this method is only applicable for 

                                                      

31 For the sake of clarity, values below 0.7 are not displayed in the chart. Nevertheless, the values 

are displayed in the data table below the chart. 
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small-sized projects. The authors in (Weyuker and Ostrand 2008) report on us-

ing this method to classify HTs of a service provisioning system with a small 

number of HTs. 

Method 3, classification by keyword analysis: In this case, the HT messages 

are automatically analysed for containing keywords (e.g. defect IDs contained 

in the DTS or keywords like “bug fixed”) indicating that a defect has been re-

moved. Main drawback of this method is the possibility of misclassification. In 

(Fischer, Pinzger, and Gall 2003), an approach for combining data of VCSs and 

DTSs is presented. The messages recorded in the VCS are searched for defect 

IDs contained in the DTS using regular expressions. In (Čubranić and Murphy 

2003), HTs are searched for keyword patterns like “Fixes bug id” or “id:”. In 

(Śliwerski, Zimmermann, and Zeller 2005) and (Zimmermann, Premraj, and 

Zeller 2007), the authors combined the defect ID search with the keyword 

search. In a first step they look for defect IDs contained in the DTS that are ref-

erenced in the text of a HT’s message. In order to increase the trust level of the 

results obtained in the first step, the messages obtained in the first step are 

search for keywords such as “fixed” or “bug”. The first step of the algorithm 

used in this thesis basically corresponds to the approach presented in 

(Śliwerski, Zimmermann, and Zeller 2005) and (Zimmermann, Premraj, and 

Zeller 2007). The second step of the algorithm corresponds to the approach de-

scribed in (Čubranić and Murphy 2003). The multi-defects keyword search has 

not been considered in literature yet. 

Method 4, classification by the number of co-changed files: In this case, the 

number of files checked-in simultaneously is used as an indicator to differenti-

ate between defect-correcting and non-defect-correcting HTs. If one or two files 

are changed simultaneously, the HT is supposed to be a defect-correcting HT. If 

more than two files are changed simultaneously, the assumption is that it is 

more likely that this change represents a “real” change and thus a non-defect-

correcting HT. The analysis occurs automatically by counting the number of co-

changed files and by categorising the HTs according to this number. The main 

drawback of this method is that it has to be analysed empirically if the assump-

tion made applies to the current project. In (Ostrand, Weyuker, and Bell 2005), 

the authors report on using this classification method for an inventory system. 

Method 5, classification by the development stage when a HT has been per-

formed.  The assumption behind this method is that changes performed during 

one of the testing stages following the unit testing phase, for instance integra-

tion test, system test, load test, operation readiness test, and user acceptance 

testing are more likely to be a defect-correcting than a non-defect-correcting 

HT. This analysis can also be automated by assigning the HT type depending 

on the development stage it has been reported. One drawback of this method is 

that only defects reported by the test team can be considered. Defects reported 

by customers are excluded. In addition, an overlapping of development and 

testing phases may lead to misclassification of HTs. (Weyuker and Ostrand 

2008) report on an empirical study that compares the classification accuracy of 

this method and of the keyword analysis method. In this special case, they re-
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port better results (in terms of misclassification errors) obtained by using the 

development stage based classification. 

Fehler! Verweisquelle konnte nicht gefunden werden. summarises the charac-

teristics of the methods for classification of HTs as defect-correcting and non-

defect-correcting HTs. The first column contains the name of the method, fol-

lowed by the assumptions made (2nd column). In the 3rd column, the degree of 

automation of the corresponding method is indicated followed by the discus-

sion of the main advantages and the main drawbacks in column 4. Finally, the 

last column contains the references where the method has been used. Since each 

of the automatically computed classification of HTs as defect-correcting or non-

defect-correcting rely on assumptions, which when violated lead to misclassifi-

cations, the manual classifications proposed in Method 1 and Method 2 are 

more reliable than the others.  

Method 3 has been mainly used for analysing open source programs because 

this is the only possibility to categorise HTs in such projects retrospectively. 

Usually, neither in case of commercial systems, nor in case of open source pro-

grams the type of HT is tracked. In addition, Method 2 can only be applied for 

very small projects. The projects analysed in this thesis have too many HTs so 

that a retrospective analysis of all HTs is impossible. The assumption about the 

locality of the defects (Method 4) can vary from project to project. In addition, in 

open source programs, usually the division of the development process into 

several sub-phases (e.g. integration testing, system testing) is missing. Conse-

quently, it is hard to apply Method 4 and Method 5 in an open source context.  

7.9 Chapter summary 

This chapter aims to provide information that builds the context for the empiri-

cal studies performed in the context of open source development presented in 

the Chapters 8 and 9. It includes the definition of basic terms and concepts used 

in the subsequent chapters. In addition, the first steps of the empirical approach 

presented in Chapter 6 that are common to all empirical studies are described.  

Main goal of the empirical studies presented in this thesis is to explore the rela-

tionship between historical and structural characteristics of software and its de-

fect count. In order to analyse whether (bad) structural characteristics can be 

used as indicators for defects in software, several open source programs are se-

lected and analysed. The following criteria have been applied when selecting 

the projects: the software’s size and maturity, the availability of a version con-

trolled source code as well as of a documented (defect) history. 

In the preparation step, the instrumentation of the analyses is defined and de-

veloped. Since most of the analyses are performed on file level, the defect count 

per file has to be determined in this step. For this purpose, information con-

tained in the defect tracking system (DTS) and in the versioning control system 

(VCS) of each open source program has to be combined because neither the 

DTS contains information on the location of a defect nor the VCS contains in-

formation on the defects for which check-ins (HTs) have been performed.  
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Method Assumption Automation  Discussion References 

Method 1 

Classification by 

explicit link in 

the VCS 

The VCS system 

provides the pos-

sibility to track 

the type of HT 

performed (de-

fect-correcting 

and non- defect-

correcting HT). 

Manual assign-

ment of a HT’s 

type when files 

are checked-in 

(at “develop-

ment time”) 

1) The quality of 

the classification 

depends on the 

discipline to 

indicate manu-

ally the type of 

correction done. 

2) The most 

reliable classifi-

cation method. 

(Weyuker and 

Ostrand 2008) 

Method 2  

Classification by 

retrospective 

manual assign-

ment 

Manual assign-

ment is the most 

reliable classifica-

tion method. 

Retrospective 

manual assign-

ment of a HT’s 

type when files 

are checked-in 

(at “analysis 

time”). 

Applicable only 

for small-sized 

projects.  

(Weyuker and 

Ostrand 2008) 

Method 3 

Classification by 

keyword analy-

sis 

HTs contain key-

words within 

their messages 

that indicate 

whether the HT is 

a defect-correcting 

or a non-defect-

correcting HT. 

Automated key-

word analysis of 

the HT mes-

sages.  

1) Misclassifica-

tion possible: 

false positives 

and false nega-

tives. 

2) Usually, the 

only possibility 

to classify HTs 

in OSPs. 

(Zimmermann, 

Premraj, and 

Zeller 2007); 

(Śliwerski, 

Zimmermann, 

and Zeller 

2005);  

(Fischer, 

Pinzger, and 

Gall 2003); 

(Čubranić and 

Murphy 2003) 

Method 4  

Classification by 

the number of 

co-changed files 

Small changes 

(affecting 1-2 files) 

are indicators for 

defect-correction. 

Larger changes 

(affecting more 

than two files) are 

indicators for 

“real” changes 

(e.g. new func-

tionality). 

Automated 

analysis of the 

number of co-

changed files. 

Empirical evi-

dence required 

for the analysed 

program in 

order to validate 

the assumption. 

Assumption that 

defects are local 

does not always 

apply. It may 

depend on the 

program/project 

if such a classifi-

cation is appro-

priate. 

(Ostrand, 

Weyuker, and 

Bell 2005) 

Method 5  

Classification by 

the develop-

ment stage  

HTs performed 

after “official” 

unit testing are 

defect-correcting 

HTs. 

Automated 

analysis of HTs 

depending on 

the phase of 

their check-in. 

Concentration 

on pre-release 

defects. Defects 

reported by 

customers are 

not considered. 

Overlapping of 

development 

and testing 

phases may lead 

to misclassifica-

tion. 

(Weyuker and 

Ostrand 2008) 

  



 

CHAPTER 8 Frequency and Pareto dis-

tribution of defects 

 
The Pareto Principle is a universal principle of the “vital few 

and trivial many (Juran and Gryna 1988). According to this 

principle, the 80/20 rule has been formulated meaning that for 

many phenomena, 80% of the consequences originate from 

20% of the causes. In this chapter, the Pareto Principle is ap-

plied to software testing. The  following hypotheses are vali-

dated:  

 Pareto distribution of defects in files: A small num-

ber of files accounts for the majority of the defects.  

 Pareto distribution of defects in files across re-

leases: The Pareto Principle applies to all releases of a 

software project.  

 Pareto distribution of defects in code: A small part 

of the code accounts for the majority of the defects. 

 Pareto distribution of defects in code across re-

leases: The Pareto Principle applies to all releases of a 

software project. 

Knowing that the Pareto Principle is valid in a specific project 

context is useful for testers because they can focus their testing 

activities on the “vital” 20% of the software.  
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8.1 Introduction 

The Pareto principle, also known as the 80/20 rule, states that a large part of ef-

fects (about 80%) come from a smaller part (about 20%) of causes. This phe-

nomenon has been originally analysed by Vilfredo Pareto (Reh, J.F. 2005) who 

observed that 80% of the income is obtained by 20 percent of the population. 

Juran (Juran and Gryna 1988) generalised this principle he called the “vital few 

and trivial many”, stating that most of the results in any context are raised by a 

small number of causes. This principle has been often applied in several con-

texts, for instance in sales, stating that 20% of the customers are responsible for 

80% of the sales volume. 

One of the first studies that translated this principle to the software engineering 

area is reported in (Endres 1975). The author analyses the distribution of defects 

in an operating system developed at IBM laboratories. The distribution of about 

430 defects over about 500 modules has been analysed and confirms the Pareto 

Principle, i.e. approximately 80% of the defects were contained in 20% of the 

modules. 

Two main hypotheses related to the Pareto Principle form the basis of the em-

pirical study presented in this chapter. A first analysis aims to determine 

whether a small part of files accounts for the majority of defects. Second, if this 

is the case, the subsequent question is whether this small part of files also con-

stitutes a small part of the system’s code size (Illes-Seifert and Paech 2009).  

Knowing that the Pareto principle is valid in the testing context is very valuable 

for testers because they can focus their testing activities on the “vital few” files 

accounting for most of the defects. From the research perspective, this study in-

creases the empirical body of knowledge in the area of defect distribution in 

software. This is one of few studies that focus on the analysis of the Pareto Prin-

ciple in detail including data from 9 large OSPs.  

The reminder of this chapter is organised as follows: The design of the study is 

described in Section 8.2. In Section 8.3, the results of the empirical study are 

presented and in Section 8.4, an overview of related work is given. Finally, the 

summary of this chapter is given in Section 8.5. 

8.2 Study design 

In this chapter, the following hypotheses related to the Pareto principle are ana-

lysed. 

 Hypothesis P1, Pareto distribution of defects in files: A small number 

of files accounts for the majority of the defects.  

 Hypothesis P2, Pareto distribution of defects in files across releases: If 

the Pareto Principle applies to one release, then it applies to all releases 

of a software program.  

 Hypothesis P3, Pareto distribution of defects in code: A small part of 

the system’s code size accounts for the majority of the defects. 

 Hypothesis P4, Pareto distribution of defects in code across releases: If 



112 

 

 

the Pareto Principle applies to one release, then it applies to all releases 

of a software program. 

8.3 Results 

8.3.1 Exploring the Pareto distribution of defects in files  

The first hypothesis related to the 80/20 rule concerns the distribution of defects 

in files. Generally, most of the files contain few defects. In four programs (ANT, 

FOP, OSCache, TVBrowser), more than 80% of the files contain no defects. In 

two programs (CDK, Freenet), about 70% of the files contain no defects. In case 

of the Jmol program, 64% of the files contain no defects.  

All OSPs presented in Section 7.6 are analysed graphically in order to verify the 

80/20 rule. Figure 8.1 shows the Alberg Diagram suggested in by Ohlsson and 

Alberg (Ohlsson and Alberg 1996) for the graphical analysis of the Pareto Prin-

ciple in the project OSCache. Accordingly, files are ordered in decreasing order 

with respect to the number of defects. Then, the cumulated number of defects is 

plotted on the y-axis of the Alberg diagram relative to the percentage of files 

(plotted on the x-axis). The dotted line shows that 80% of the defects are con-

tained in 11.55% of the files. 

 

Figure 8.1 - Pareto distribution of defects in files of the OSCache project 

Figure 8.2 (a) shows the distribution of defects of all analysed OSPs within one 

Alberg diagram and Figure 8.2 (b) shows the percentage of files accounting for 

about 80% of defects as a bar chart. 
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(a) 

 

(b) 

Figure 8.2 - Pareto distribution of defects 

(a) Distribution of defects for each OSP in an Alberg diagram; (b) Percentage of defects 

contained in 80% of the most fault-prone files 

Approximately 80% of the defects are concentrated in a range of 7.2% (in case 

of the TVBrowser program) to 17.7% (in case of the Jmol program) of the files.  

The TVBrowser program shows the strongest focus of defects on a very small 

part of the files.  
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Based on this analysis, Hypothesis P1 can be largely confirmed for OSPs: A small 

number of files account for the majority of the defects in OSPs.  

8.3.2 Exploring the Pareto distribution of defects in files across re-
leases 

In order to analyse this hypothesis, the percentage of the files containing 80% of 

the defects is computed for several releases of the OSPs.  

Table 8.1 shows the results. The first column contains the name of the OSP fol-

lowed by the number of the analysed releases. The next two columns indicate 

the absolute and respectively the relative number of releases for which about 

80% of the defects are concentrated in a small percentage (below 20%) of files. 

The column “Range” indicates the range for the concentration of defects. For 

example, the concentration of defects in the CDK program ranges from 7.03% to 

19.95% of the files depending on the considered release. 

 

 

OSP 

Number of 

analysed 

releases 

Pareto distribution holds 

for … 

 

Range 

100% of defects con-

tained in less than 25% 

of the files. This holds 

for … 

Absolute # 

of analysed 

releases 

Percentage of 

the analysed 

releases 

Absolute # 

of ana-

lysed 

releases 

Percentage 

of the 

analysed 

releases 

1. ANT 3 3 100% 
8.59% -  14.06% 

3 100% 

2. ApacheFOP 2 2 100% 8.87% - 11.93% 2 100% 

3. CDK 3 3 100% 7.03%   - 19.95% 1 33% 

4. Freenet 3 2 66% 14.66% - 36.64% 1 33% 

5. Jmol 3 3 100% 10.06% - 22.89% 1 33% 

6. OSCache 3 3 100% 8.16% - 13.98% 3 100% 

7. TVBrowser 3 3 100% 8.59% - 14.00% 2 66% 

Table 8.1 - Pareto distribution of defects in files across releases 

For all OSPs, in at least one of the analysed releases, 80% of the defects are con-

tained in less than 20% of the most fault-prone files. For six OSPs, the Pareto 

Principle holds for all analysed releases.  The concentration of the defects 

ranges from 7.03% to 36.64%. In many releases of the analysed OSPs, a high 

concentration of defects on a small number of files can be observed. Thus, an 

additional analysis determines the percentage of files that account for 100%, i.e. 

for all defects in a system. The last two columns in Table 8.1 show the absolute 

and relative number of releases for which 100% of defects are contained in less 

than 25% of the files. In two thirds of the analysed releases of the OSPs, 100% of 

the defects are concentrated in less than 25% of the files.  
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Based on the results of the analyses presented in this section, it can be concluded that 

the Pareto Principle largely persists across several releases of a software program. The 

concentration intensity can vary from release to release. 

8.3.3 Exploring the Pareto distribution of defects in code 

In order to analyse the Pareto hypothesis for code, the percentage of code that 

accounts for 80% of the defects contained in the most fault-prone files has been 

computed. Consequently, this analysis determines whether the small part of the 

files responsible for most of the defects also represent a small part of the code. 

The results of this analysis are shown in Figure 8.3. On the x-axis, the analysed 

releases of the OSPs are indicated. The line chart and the bar chart indicate for 

each release the percentage of files and the corresponding percentage of code 

that account for approximately 80% of the defects. For example, in case of the 

TVBroswer program, release 1.0, 8.65% of the files that account for 80% of the 

defects make up 16.28% of the system’s code.  

 

Figure 8.3 - Pareto distribution of defects in code 

The concentration of the majority of the defects on a small part of the system’s 

code is true only for a small part of the analysed releases. Five releases show a 

concentration of defects on less than 20% of the code. Most of the analysed re-

leases show a distribution of the defects on about 20% to 50% of the code. For a 

small part of the releases, the defects are distributed on almost the whole sys-

tem.  
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Based on this analysis, the hypothesis P3 has to be rejected. A small part of the code ac-

counts for the majority of the defects only in a few of the analysed cases.  

8.3.4 Exploring the Pareto distribution of defects in code across re-
leases 

Since the Pareto hypothesis on the distribution of defects in code has been re-

jected, the hypothesis P4 has to be adjusted. For all cases, in which the Pareto 

hypotheses could be confirmed: Does the Pareto distribution of defects in code 

hold for all or at least for the most releases of an OSP? Despite the fact that Hy-

pothesis P3 has been rejected, this research question is important to be ana-

lysed. If the hypothesis can be confirmed, it means that for a small part of OSPs, 

the Pareto Principle is valid and it is worthwhile to perform further analyses in 

order to determine characteristics of such programs and to find out factors that 

favour such a distribution.  

Figure 8.4 shows the distribution of 80% of the defects in code across releases 

for all OSPs for which at least one release shows a high concentration of defects 

on less than 20% of the code. The bar chart shows the percentage of code that 

contains 80% of the defects and the line chart shows the percentage of files ac-

counting for 80% of the defects. For all programs, only one single release shows 

a concentration of the defects on a small part of the code. For the other analysed 

releases, the defects are distributed on about 25% to 65% of the code.    

 

Figure 8.4 - Pareto distribution of defects in code across releases 

Based on the results of this analysis, the adjusted hypothesis P4 cannot be confirmed. A 

concentration of most of the defects on a small part of the code in one release does not 

mean that this concentration will persist in consequent releases.  

8.4 Related Work 

In this section, related work concerning the frequency distribution of defects as 

well as concerning the analysed hypotheses is presented. In addition, a discus-
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sion of the results reported in literature in comparison with the results obtained 

by the study reported in this chapter is given. 

8.4.1 Frequency distribution of defects 

The result that most of the files contain very few defects is supported by other 

authors in literature.  

In (Hatton 2008), the author reports on a study performed on two scientific ma-

ture systems: a FORTRAN and a C library. The first program has been devel-

oped between 1970 until 2000 and consists of about 3670 routines. The second 

program is similar to the first one with respect to its specification and has been 

developed between 1990 until 1999. (Hatton 2008) describes that 78% of the 

NAG Fortran components have no defects; similarly, 66% of the components in 

the C library are without defects. In (Kaâniche and Kanoun 1996), the authors 

analyse data collected from five consecutive releases of a commercial telecom-

munications system, including two prototype releases. The study analysed the 

distribution of 1512 defects reported by customers and validation teams on 77 

Atomic Components. Atomic components denote parts of the system “fulfilling 

elementary functions”. The authors report that 95% of the analysed atomic 

components have less than 3 defects/KLOC. 

8.4.2 Pareto distribution of defects in files 

One of the first studies that published results of an empirical investigation 

about defect distribution in programs is described in (Endres 1975). The author 

analysed about 430 defects in 500 modules of the DOS/VS operating system de-

veloped in the IBM Böblingen laboratory. The analysis confirmed the hypothe-

sis and showed that 78% of the defects are concentrated in 21% of the modules. 

The defects included in the study subsume all defects found by system testing, 

the author denotes as a "formal test period of five months" after unit testing32. 

Another early study has been performed by (Adams 1984) at IBM. His primary 

findings were that most of the defects lead very rarely to failures in practice33 

and that a very small percentage of the defects (about 10%) are worth fixing be-

cause only these lead to serious operational problems.  

In (Munson and Khoshgoftaar 1992), the authors analyse data collected from 

two large commercial systems: a command and control communication system 

and a medical imaging system. The medical system consists of about 45.000 

routines from which 390 routines have been randomly selected for analyses. 

The command and control communication system consists of two programs 

having a total of 327 modules. The defects considered in this study comprise 

                                                      

32 According to the author, the objective of this testing phase was to test the complete system with 

all its components in as many variations as possible. 
33 Most of the defects have mean times to discovery of hundreds to thousands of months when 

run on a single machine, a single defect requiring very unusual circumstances to expose a failure. 
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pre-release and post-release defects together34. The authors confirm the Pareto 

distribution with a 20-65 ratio. 

The analyses performed by (Kaâniche and Kanoun 1996) confirm the Pareto 

distribution of defects: 38% of the Atomic Components contain 80% of the de-

fects.  

In (Ohlsson and Alberg 1996), the authors analyse the distribution of defects 

from two consecutive releases of a telecommunication switching system. The 

authors analyse data from several subsystems consisting of 20 to 40 modules, 

each with a size of 1.000 – 6.000 lines of code. The defects included in this study 

comprise all defects reported during function testing, system testing, as well as 

during the first months of operation. The analyses confirm the Pareto distribu-

tion of faults. 20 percent of the modules are responsible for 60 percent of the de-

fects.  

In (Fenton and Ohlsson 2000), a study on the distribution of defects in two re-

leases of a major commercial system developed at Ericsson Telecom AB is re-

ported. For the analyses, 140 respectively 246 modules have been randomly se-

lected; the size of the selected modules ranges from 1.000 to 6.000 LOC. The 

study considers several types of defects: testing/pre-release defects (reported 

during function testing and system testing by testers) and operational/post-

release defects (reported during operation). The analyses confirm the Pareto 

distribution in all releases and for all defects types: 20% of the modules account 

for 60% of the pre-release defects. The Pareto distribution for post-release de-

fects is even stronger. Thus, 10 percent of the modules contain 100% of the de-

fects in release 1 and 80% of the defects in release 2. 

In (Ostrand and Weyuker 2002), the authors report on an empirical analysis of 

the distribution of defects in thirteen releases of a large industrial inventory 

tracking system. The latest release of the system contains about 2.000 files with 

a total of 500.000 lines of code. During all releases and all development stages, a 

total of 4.743 defects were detected, primarily by testing. For each release, the 

defects were always heavily concentrated in a relatively small number of files. 

In addition, concentration gets stronger in later releases. Thus, the Pareto dis-

tribution is confirmed by this study. The authors additionally investigate 

whether the Pareto distribution is true for pre-release and post-release defects. 

In both cases and for all analysed releases, a small number of files accounts for 

the most part of pre-release as well as of post-release defects. 

The study described in (Andersson and Runeson 2007) is a replication of the 

study presented in (Ohlsson and Alberg 1996). Empirical data from three pro-

jects from a large company in the telecommunications domain have been con-

sidered. The authors analyse both, the distribution of pre-release and of post-

release defects. The analyses confirm the Pareto hypothesis. In all three ana-

                                                      

34 Defects recorded during the system integration and test phase and for the first year of program 

deployment. 
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lysed projects, about 12 – 20 % of the post-release defects are contained in 80% 

of the modules. In addition, about 26 – 34% of the modules are responsible for 

80% of the pre-release defects. 

The results of the studies in literature are summarised in Table 8.2. Beside the 

study reported in (Ostrand and Weyuker 2002) and in (Kaâniche and Kanoun 

1996), all authors concentrate on analysing few or one release of a system. In 

contrast to the study reported in this chapter, all studies consider commercial 

software. All authors confirm the Pareto distribution of defects, i.e. most of the 

defects in commercial software concentrate on a small number of files respec-

tive of modules. This is similar to the results obtained by studying OSPs in this 

chapter. 

The type of defects analysed differs from study to study. Roughly, the defect 

types can be categorised into pre-release and post-release defects. In one study, 

only one defect type has been analysed (Endres 1975)35.  Three studies differen-

tiate between pre-release and post-release defects (Andersson and Runeson 

2007), (Ostrand and Weyuker 2002), and (Fenton and Ohlsson 2000). All other 

studies analyse pre-release and post-release defects altogether. When roughly 

categorising the defects into pre-release vs. post-release defects, the following 

conclusions can be drawn: 

 The Pareto distribution of defects is true for pre-release as well as for post-

release defects.  

 Authors, who did not make distinction between pre-release and post-

release defects, confirm the Pareto distribution of defects, too.  

 In the studies that differentiate between pre-release and post-release defects 

(Andersson and Runeson 2007), (Ostrand and Weyuker 2002), and (Fenton 

and Ohlsson 2000), the concentration of defects on a small part of mod-

ules/files is greater for post-release defects than this is the case for pre-

release defects. Ostrand and Weyuker (Ostrand and Weyuker 2002) observe 

that there is a very small part of defects reported after release and these de-

fects are concentrated in less than 1% of the files. The Pareto distribution for 

pre-release defects reported in (Ostrand and Weyuker 2002) is similar to the 

overall Pareto distribution (observed when pre-release and post-release de-

fects have been analysed altogether). The authors also distinguish between 

early pre-release and late pre-release defects. Defects detected during early 

pre-release phases accounted for the most part of the defects.  

A clear distinction between pre-release and post-release defects is not possible 

for OSPs. Since the algorithm that computes the number of defects per file pre-

sented in Section 7.7.1 considers defects reported after release and the number 

of defects found by direct search makes up the greatest part of all defects, most 

of the defects considered in the study reported in this chapter are post-release 

defects. However, there can also be defects (e.g. found by keyword search) that 

have been detected for example during integration testing. Thus, a clear distinc-

                                                      

35 The analyses consider pre-release defects. 
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tion is not possible. Consequently, the results are comparable to those studies 

that considered pre-release and post-release defects altogether. 

Reference Characteristics of the 

analysed projects 

Confir-

mation? 

Relationship Kind of defects analysed 

(Endres 1975) One release of the 

operating system 

DOS/VS.  

Yes 21 – 78 pre-release defects (i.e. defects 

found during system testing) 

(Andersson and 

Runeson 2007) 

Three projects from a 

large company in the 

telecommunications 

domain. 

Yes 20 – 87 (P1) 

20 – 87 (P2)  

20 – 80 (P3) 

post-release defects 

(It is not clear, whether post-

release defects include the 

defects reported by the test 

team only or by the customers, 

too.) 

20 – 63 (P1) 

20 – 70 (P2)  

20 – 70 (P3) 

pre-release defects 

 

(Ohlsson and 

Alberg 1996) 

Two consecutive 

releases of a telecom-

munication switching 

system. 

Yes 20 - 60 pre-release and post-release 

defects altogether 

(Kaâniche and 

Kanoun 1996) 

Five consecutive 

releases of a commer-

cial telecommunica-

tions system. 

Yes 38 – 80 pre-release and post-release 

defects altogether: defects 

recorded as “Failure Reports” 

reported from validation 

teams and from customers 

(Fenton and 

Ohlsson 2000) 

Two releases of a 

major commercial 

system developed at 

Ericsson Telecom AB. 

Yes 20-60 pre-release and post-release 

defects altogether: defects 

reported during function 

testing and system testing by 

testers 

10 – 100 1st 

release 

10 – 80 2nd 

release 

post-release defects: defects 

reported during operation 

(Munson and 

Khoshgoftaar 

1992) 

Two distinct data sets 

from large commercial 

systems: command 

and control communi-

cation system, medical 

imaging system. 

Yes 20-65 pre-release and post-release 

defects altogether: defects 

recorded during the system 

integration and test phase and 

for the first year of program 

deployment 

(Ostrand and 

Weyuker 2002) 

Thirteen releases of a 

large industrial inven-

tory tracking system. 

Yes 10 - 68 

10 -100 (for the 

last four re-

leases)36. 

pre-release and post-release 

defects altogether: all kinds of 

defects recorded in one of 

these phases development, 

unit testing, integration test-

ing, system testing, beta re-

lease, controlled release, and 

general release. The Pareto 

distribution is also true for 

pre-release and post-release 

defects 

Table 8.2 – Pareto principle, related work 

                                                      

36 Concentration of defects on a small number of files increases as system matures. 
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The study presented in (Ostrand and Weyuker 2002) is the only one that analy-

ses the Pareto distribution across several consecutive releases. The authors ob-

serve that the concentration of defects on a small part of files becomes stronger 

when the system matures. This result differs from that obtained when analys-

ing OSPs. In case of the OSPs, the concentration remains low across nearly all 

releases of the analysed OSPs but the extent to which defects are concentrated 

on a part of the files varies from release to release.  

8.4.3 Pareto distribution of defects in code 

Similarly to the results presented in this chapter, there is little evidence for the 

Pareto distribution of defects in code. The strongest concentration of defects on 

a small part of code is reported in (Ostrand and Weyuker 2002). Accordingly, 

10% of the files that account for a range of 68% - 100% of defects (depending on 

the analysed release) contain about 35% of the system’s code. But the percent-

age of the code contained in the most fault-prone files always exceeded the per-

centage of the files that contained the defects. The results reported in (Fenton 

and Ohlsson 2000), (Andersson and Runeson 2007), and (Kaâniche and Kanoun 

1996) do not provide evidence for the Pareto distribution of defects in code as 

well. This is the case for both, pre-release and post-release defects as reported 

in (Andersson and Runeson 2007).  

The only study analysing the Pareto distribution of defects in code across sev-

eral releases is reported in (Ostrand and Weyuker 2002). In contrast to a de-

creasing concentration of defects on a small part of files from release to release, 

the corresponding percentage of code does not show such a trend. 10% of the 

most fault-prone files that account for the most of the system’s defects make up 

about 35% of the code. This result is similar to the results obtained by analysing 

the Pareto distribution in code for OSPs as reported in this chapter. 

8.5 Chapter summary 

This chapter presents the results of an empirical study on the distribution of de-

fects in software. In contrast to most of the studies considering a small number 

of commercial systems, this study analyses the distribution of defects in a wide 

range of open source programs across several releases (Illes-Seifert and Paech 

2009). From the research’s point of view, this study increases the empirical body 

of knowledge. Performing a family of similar studies is advocated in order to 

gain confidence in the results, instead of relying on single studies with specific 

context (Pfleeger 2005), (Basili and Lanubile 1999). 

Two of the initial hypotheses can be confirmed: A small number of files ac-

counts for the majority of the defects (Hypothesis P1). This is true even across 

several releases of software (Hypothesis P2). The results widely correspond to 

the findings reported in literature.  

Similarly to the results reported in literature, this study did not find evidence 

for the initial hypotheses concerning the distribution of defects in code (Hy-

pothesis P3). Defects concentrate on a small part of the files but they do not con-
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centrate on a small part of the code. One reason for this could be that a consid-

erable part of an application’s logic is concentrated on few files that are fault-

prone and not well understood. These files are candidates for refactoring and 

should be considered by maintainers. In addition, unit test coverage criteria 

should be intensified for those parts of the code responsible for most of the de-

fects. These files should also be higher prioritised during regression testing. 

One of the goals of this study is to analyse the Pareto distribution of defects. If 

confirmed, advices can be given to testers on which parts of the software under 

test to concentrate their limited resources. Despite of the confirmation of the 

Pareto distribution for files, defects are not concentrated on a small part of 

code. Consequently, detecting which 20% of the files account for most of the de-

fects is useful for testers, but not enough to prioritise testing activities because 

these 20% of the files possibly account for a high part of the code and hence of 

an application’s logic. For this purpose, additional indicators, for instance a 

file’s age or its complexity, should be used in order to give reliable advices to 

testers on which parts of the software testing activities should be focused. Algo-

rithms like those presented in (Kim et al. 2008) that determine the most fault-

prone files are only useful when considering the amount of code covered by 

these files.  



 

CHAPTER 9 Bad smells 

 
Bad smells have been introduced as patterns for frequently oc-

curring problems in code (Fowler et al. 1999), i.e. the code 

might be difficult to understand or might cause high mainte-

nance effort. Thus, bad smells are commonly used as indicators 

for those parts of the software that should be refactored. In this 

chapter, the empirical approach presented in Chapter 6 is ap-

plied in order to explore the extent to which bad smells can be 

used as indicators for defects in code.  
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9.1 Introduction 

As software degenerates when it evolves, continuous refactoring activities are 

essential in order to be able to efficiently maintain large software systems. “Bad 

smells”, also called “code smells”, have been firstly introduced by Fowler and 

Beck (Fowler et al. 1999) as patterns for bad design and bad programming prac-

tices resulting in frequently occurring problems in code. Often, these parts of 

the code are used for detecting refactoring opportunities in software (Mens and 

Tourwe 2004). Consequently, bad smells serve as indicators for those parts of 

the software with high impact on its quality in terms of flexibility, maintainabil-

ity or readability.  

Little attention has been paid to analyse the relationship between bad smells 

and defects in software empirically. In general, only a few empirical studies 

have been conducted to examine the effects of bad smells (Zhang et al. 2008). 

The overall goal of this empirical study is to explore the relationship between 

(bad) structural product characteristics and software quality in terms of defects. 

Using the template presented in Section 6.2, this goal can be refined as follows. 

 Object of study: Analyse different bad structural software characteristics 

 Purpose: for the purpose of their evaluation 

 Quality focus: with respect to the efficiency of showing correlations with 

a software’s defect count 

 Perspective: from the point of view of researchers, testers, maintainers, 

and quality engineers 

 Context: in the context of open source development. 

Knowing that particular bad smells are indicators for defects in code is valuable 

for different roles in the software development process. Testers can focus the 

testing effort and to allocate their limited resources appropriately. Quality engi-

neers can initiate improvements of the development process. For instance, they 

can develop guidelines that assist developers and software designers in avoid-

ing coding style that leads to defects. Maintainers have additional support in se-

lecting parts of the software that should be refactored.  

The refactoring process consists of six steps (Mens and Tourwe 2004):  

(1) identification of what should be refactored, (2) selection of the refactoring to 

be performed, (3) guarantee that the refactoring does not change functionality, 

(4) application of the refactoring, (5) test the refactoring, and (6) modify all arte-

facts that are affected by the refactoring to provide consistency. Knowing which 

particular bad smells affect the software’s defect count, helps maintainers in 

step 1, i.e. they get decision support in prioritizing refactoring activities.  

In (Marinescu 2002), a set of well known bad smells have been quantified in 

terms of so called detection strategies. Accordingly, a strategy is the “quantifiable 

expression of a rule by which design fragments that are conforming to that rule can be 
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detected in the source code”. For example, the quantification of the rule to detect 

the bad smell “God Method” is expressed by the following rule: 

GodMethod (mi)= 

a) LOC (mi) ε {TopValues(20%)} ∧ LOC (mi) > 70 ∧ 

b) (NOP (mi) > 4 ∨ NOLV(mi) > 4) ∧ 

c) MNOB (mi) > 4 

LOC (Lines of Code) 

Number of lines of code in a method mi, including comments 

NOP (Number of Parameters) 

Number of parameters of the method mi 

NOLV (Number of Local Variables) 

Number of local variables declared in method mi 

MNOB (Maximum Number of Branches) 

Maximum number of if-else/case branches in method mi 

 

Accordingly, the God Method bad smell indicates methods that tend to central-

ize a class’ functionality, becoming more and more complex and difficult to un-

derstand and to maintain. Methods conforming to this detection strategy have 

the following characteristics and will be classified as “God Method”: 

a) The corresponding method is large (expressed by the LOC metric) AND 

b) it has a long parameter list or many local variables (expressed by the 

NOP metric) AND 

c) it has many local variables declared (expressed by the NOLV metric) 

AND 

d) it is complex, in terms of high number of branches (expressed by the 

MNOB metric). 

In this chapter, the results of an empirical study are presented that explores the 

relationship between bad smells and defects in open source programs. Particu-

larly, popular bad smells have been identified in the code of several java pro-

grams following the detection strategies presented in (Marinescu 2002). Then, 

the relationship between bad smells in code and defects is analysed visually 

and statistically.  

The reminder of this chapter is organised as follows. Basic terms are introduced 

in Section 9.2 whereas in Section 9.3, the overall hypothesis as well as the de-

pendent and independent variables are presented. Section 9.4 summarises the 

results of the empirical study. The discussion of the results is presented in Sec-

tion 9.5. An overview of the related work is given in Section 9.6. The summary 

in Section 9.7 concludes this chapter. 
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9.2 Bad smells and refactoring 

Bad smells represent a metaphor originally introduced by (Fowler et al. 1999) 

that describes patterns for re-occurring problems in code due to bad design and 

bad programming practices. These patterns have been originally proposed to 

identify code that needs to be refactored.  

Refactoring aims to restructure an existing body of code, i.e. the internal struc-

ture is altered without changing its external behaviour (Fowler et al. 1999), 

(Chikofsky and Cross II 1990)37. For this purpose, a series of small behaviour 

preserving transformations are performed, each of these transformations is 

called a refactoring. A sequence of transformations aims to produce significant 

restructuring of code. A good indicator to start refactoring is when code starts 

to "smell" (Fowler et al. 1999). Benefits of undertaking refactoring include re-

duced complexity and increased readability, extensibility, modularity, reusabil-

ity, maintainability, and efficiency (Mens and Tourwe 2004). 

9.3 Quality indicators and overall hypothesis 

In this section, details on the empirical study are presented.  

9.3.1 Overall research hypothesis 

The main goal of this empirical study is to analyse the relationship between bad 

smells and defects in software. The overall research hypothesis is that a soft-

ware entity for which a bad smell applies is more fault-prone than a software 

entity for which a bad smell does not apply. The rationale behind this hypothe-

sis is that code for which a bad smell applies is difficult to understand, it is too 

complex, inadequately subdivided or redundant. Thus, changing or introduc-

ing new functionality is expected to introduce defects.  

9.3.2 Dependent variables  

The dependent variables in this study are the defect count of a file (DCF) and 

the defect count of a package (DCP). The defect count of a package DCP is calcu-

lated by summing up the defect counts of all files that contain classes belonging 

to that package. 

9.3.3 Independent variables 

The independent variables are bad smells that apply or that do not apply to a 

software entity. In this chapter, bad smells are defined on different abstraction 

levels: method, class and package level. In the following, for each bad smell, the 

description and the corresponding research hypotheses are formulated. 

                                                      

37 In (Chikofsky and Cross II 1990), refactoring is defined as “the transformation from one repre-

sentation form to another at the same relative abstraction level, while preserving the subject sys-

tem’s external behaviour (functionality and semantics).”  
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Method level bad smells 

Description. Two method level bad smells are considered in this study: Feature 

Envy (FE) and God Method (GM). The Feature Envy bad smell indicates that a 

method seems more interested in a class, particularly in the data of that class 

other than the one the method is in (Fowler et al. 1999). Thus, the correspond-

ing method seems to be misplaced. The God Method bad smell indicates that too 

much functionality is centralised in that particular method (Fowler et al. 1999), 

(Riel 1996).  

Since it is not possible to track back the defect count on method level in OSPs, 

method level bad smells have to be aggregated to class level. For this purpose, 

this study explores whether a class is more fault-prone than another if it con-

tains at least one method for which that particular bad smell applies. 

Hypotheses. The research hypotheses are presented in Table 9.1. The first col-

umn contains the null-hypothesis and the second column the alternative hy-

pothesis. For each hypothesis, the formalised hypothesis is indicated in italic 

face.  

Null-Hypothesis Ni Alternative Hypothesis Ai 

N-FE: A file with at least one method for which the 

FE bad smell applies is no more fault-prone than 

files without at least one method for which the FE 

bad smell applies.  

DCF38 FeatureEnvy = DCFFeatureEnvy 

A-FE: A file with at least one method for which the 

FE bad smell applies is more fault-prone than a file 

that has no methods with this bad smell.  

DCF FeatureEnvy > DCFFeatureEnvy 

 

N-GM: A file with at least one method for which the 

GM bad smell applies is no more fault-prone than 

files without at least one method for which the GM 

bad smell applies.  

DCF GodMethod = DCF GodMethod 

A-GM: A file with at least one method for which 

the GM bad smell applies is more fault-prone than 

a file that has no methods for which this bad smell 

applies.  

DCF GodMethod > DCF GodMethod 

Table 9.1 - Hypotheses for method level bad smells 

Class level bad smells 

In this chapter, the following class level bad smells are analysed: 

 Data Class (DC). The Data Class bad smell indicates data containers with 

lack of responsibility in terms of functional behaviour. 

 God Class (GC). The God Class bad smell indicates that a particular class 

centralises too much of a system’s functionality. 

 Shotgun Surgery (SS). The Shotgun Surgery bad smell indicates that every 

time a change is made to a class, a lot of little changes have to be made to 

other classes, too. 

 Refused Bequest (RB). The Refused Bequest bad smell is an indicator for the 

lack of improper OO-Design, since subclasses use only parts of the mem-

bers of their ancestors. 

                                                      

38 Defect count of a file 
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 Misplaced Class (MC). The Misplaced Class bad smell indicates that a class is 

on wrong place since there are more dependencies to classes in other pack-

ages than to classes in the package the class is contained in (Marinescu 

2002). This bad smell violates the principles of package cohesion as de-

scribed in (Martin 2000). 

Table 9.2 contains the hypotheses formulated for class level bad smells. 

Null-Hypothesis Ni Alternative Hypothesis Ai 

N-GC: A file with at least one class for which the GC 

bad smell applies is no more fault-prone than files 

without at least one class for which the GC bad smell 

applies.  

DCFGodClass = DCFGodClass 

 

A-GC: A file with at least one class for which the 

GC bad smell applies is more fault-prone than files 

without at least one class for which the GC bad 

smell applies.  

DCF GodClass > DCFGodClass 

N-DC: A file with at least one class for which the DC 

bad smell applies is no more fault-prone than files 

without at least one class for which the DC bad smell 

applies.  

DCFDataClass = DCFDataClass 

 

A-DC: A file with at least one class for which the 

DC bad smell applies is more fault-prone than files 

without at least one class for which the DC bad 

smell applies.  

DCFDataClass > DCFDataClass 

N-SS: A file with at least one class for which the SS 

bad smell applies is no more fault-prone than files 

without at least one class for which the SS bad smell 

applies.  

DCFShotgunSurgery = DCFShotgunSurgery 

 

A-SS: A file with at least one class for which the SS 

bad smell applies is more fault-prone than files 

without at least one class for which the SS bad 

smell applies.  

DCFShotgunSurgery > DCFShotgunSurgery 

N-RB: A file with at least one class for which the RB 

bad smell applies is no more fault-prone than files 

without at least one class for which the RB bad smell 

applies.  

DCFRefusedBequest = DCFRefusedBequest 

 

A-RB: A file with at least one class for which the 

RB bad smell applies is more fault-prone than files 

without at least one class for which the RB bad 

smell applies.  

DCFRefusedBequest > DCFRefusedBequest 

N-MC: A file with at least one class for which the MC 

bad smell applies is no more fault-prone than files 

without at least one class for which the MC bad 

smell applies.  

DCFMisplacedClass = DCFMisplacedClass 

A-MC: A file with at least one class for which the 

MC bad smell applies is more fault-prone than 

files without at least one class for which the MC 

bad smell applies.  

DCFMisplacedClass > DCFMisplacedClass 

Table 9.2 - Hypotheses for class level bad smells 

Lack-Of-Pattern bad smells 

In (Marinescu 2002), a new type of bad smells, the “Lack-of-Patterns”, is intro-

duced. This bad smell category contains design flaws that result when not us-

ing an appropriate design pattern. The assumption is that missing a design pat-

tern leads to bad design and consequently to more defects in the corresponding 

software entities. The following “Lack-of-Pattern” bad smells are analysed in 

this chapter. 

 Lack of Bridge (LoB). The Lack of Bridge bad smell indicates that the 

“Bridge” design pattern is missing. Thus, abstraction and implementation 

are not decoupled allowing to be varied independently.  

 Lack of State (LoSta). The State design pattern allows an object to alter its 

behaviour when it’s internal state changes. The Lack of State bad smell indi-

cates that the “State” design pattern is missing.  
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 Lack of Strategy (LoStr). The Lack of Strategy bad smell indicates that the 

“Strategy” design pattern is missing. Algorithms and the clients that use 

them are not decoupled and thus cannot be changed independently.  

 Lack of Visitor (LoV). The Visitor design pattern abstracts functionality that 

can be performed on the elements of an object structure. The Lack of Visitor 

bad smell indicates that the “Visitor” design pattern is missing. 

 ISP Violation (ISP). The ISP Violation bad smell does not indicate that a de-

sign pattern has not been applied. It indicates that an OO principle, the In-

terface Segregation Principle, as introduced by R. Martin (Martin 1996), has 

been violated. The ISP principle deals with the problem of non-cohesive in-

terfaces where parts of the interface can be grouped by the member func-

tions. Thus, groups of clients use different function groups offered by the 

interface.   

Table 9.3 contains the hypotheses formulated for the lack-of-patterns bad smells 

as well as for the ISP violation bad smell. 

Null-Hypothesis Ni Alternative Hypothesis Ai 

N-LoB: A file with at least one class for which the 

LoB bad smell applies is no more fault-prone than 

files without at least one class for which the LoB bad 

smell applies.  

DCFLack of Bridge = DCFLack of Bridge 

 

A-LoB: A file with at least one class for which the 

LoB bad smell applies is more fault-prone than 

files without at least one class for which the LoB 

bad smell applies.  

DCFLack of Bridge > DCFLack of Bridge 

 

N-LoSta: A file with at least one class for which the 

LoSta bad smell applies is no more fault-prone than 

files without at least one class for which the LoSta 

bad smell applies.  

DCFLack of State = DCFLack of State 

 

A- LoSta: A file with at least one class for which 

the LoSta bad smell applies is more fault-prone 

than files without at least one class for which the 

LoSta bad smell applies.  

DCFLack of State > DCFLack of State 

 

N-LoStr: A file with at least one class for which the 

LoStr bad smell applies is no more fault-prone than 

files without at least one class for which the LoStr 

bad smell applies.  

DCFLack of Strategy = DCFLack of Strategy 

 

A-LoStr: A file with at least one class for which the 

LoStr bad smell applies is more fault-prone than 

files without at least one class for which the LoStr 

bad smell applies.  

DCFLack of Strategy > DCFLack of Strategy 

 

N-LoV: A file with at least one class for which the 

LoV bad smell applies is no more fault-prone than 

files without at least one class for which the LoV bad 

smell applies.  

DCFLack of Visitor = DCFLack of Visitor 

 

A- LoV: A file with at least one class for which the 

LoV bad smell applies is more fault-prone than 

files without at least one class for which the LoV 

bad smell applies.  

DCFLack of Visitor > DCFLack of Visitor 

 

N-ISP: A file with at least one class for which the ISP 

bad smell applies is no more fault-prone than files 

without at least one class for which the ISP bad smell 

applies.  

DCFISP Violationr = DCFISP Violation 

 

A- ISP: A file with at least one class for which the 

ISP bad smell applies is more fault-prone than files 

without at least one class for which the ISP bad 

smell applies.  

DCFISP Violation > DCFISP Violation 

 

Table 9.3 - Hypotheses for lack-of-pattern bad smells 

Package level bad smells  

In this chapter, two package level bad smells are analysed: God Package (GP) 

and Wide Subsystem Interface (WSI). Similarly to the God Method and God 

Class bad smells, the God Package bad smell indicates that a package centralises 



130 

 

 

too much of a software’s functionality. The Wide Subsystem Interface indicates 

that the interface of a package is wide, leading to a tight coupling to other 

packages. Table 9.4 contains the hypotheses for package level bad smells. 

Null-Hypothesis Ni Alternative Hypothesis Ai 

N-GP: A package for which the GP bad smell applies 

is no more fault-prone than packages for which the 

GP bad smell does not apply. 

DCPGodPackage = DCPGodPackage 

A-GP: A package for which the GP bad smell 

applies is more fault-prone than packages for 

which the GP bad smell does not apply. 

DCPGodPackage > DCPGodPackage 
 

N-WSI: A package for which the WSI bad smell 

applies is no more fault-prone than packages for 

which the WSI bad smell does not apply. 

DCPWideSystemInterface = DCPWideSystemInterface 

A-WSI: A package for which the WSI bad smell 

applies is more fault-prone than packages for 

which the WSI bad smell does not apply. 

DCPWideSystemInterface > DCPWideSystemInterface 

Table 9.4 - Hypotheses for package level bad smells 

9.4 Results 

In this section, the results of the study are presented.  

9.4.1 Exploring the relationship between method level bad smells 
and defects 

In order to analyse the first hypothesis A-FE, the Mann-Whitney non-

parametric test is performed. For this test, the data in each project are divided 

into two groups: one group consisting of files that contain at least one method 

for which the FE bad smell applies (FE-group) and a second group that consists 

of files that do not contain methods for which the FE bad smell applies (FE-

group). Differences between two populations can be analysed with the help of 

Mann-Whitney test (Section 2.5.5).  

Figure 9.1 shows the DVAs for all projects with significant results in the Mann-

Whitney test. For each group on the x-axis (FE-group, FE-group), the mean 

defect count in each of the groups is indicated on the y-axis. The results show 

that files for which the FE bad smell applies are 1.9 times (ANT 1.5.3) to 6.1 

times (OSCache 2.4) more fault-prone than files for which the FE bad smell 

does not apply. Detailed results of the Mann-Whitney test can be found in Ap-

pendix A 4. 
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Figure 9.1 - DVA: Visual mean defect count analysis for the FE bad smell 

Figure 9.2 shows the aggregated results of the bad smell analyses performed on 

method level. Fourteen of the analysed releases contain at least one method for 

which the FE bad smell applies. The results show that for ten of these fourteen 

releases, files containing methods for which the FE bad smell applies are more 

fault-prone than the other files. Consequently, the null hypothesis N-FE can be 

rejected to some part and the alternative hypothesis A-FE accepted.  
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Figure 9.2 - Method level bad smell analysis 

Accordingly, it can be concluded that a file with at least one method for which the FE 

bad smell applies is more fault-prone than a file that has no methods with this bad smell. 

In order to analyse the second hypothesis A-GM, the Mann-Whitney non-

parametric test is performed again. Similarly to the procedure applied to ana-

lyse the A-FE hypothesis, the data in each project are divided into two groups: 

one group consisting of files that contain at least one method for which the GM 

bad smell applies (GM-group) and a second group that consists of files that do 

not contain any methods for which the GM bad smell applies (GM-group).  

All analysed releases contain at least one method for which the GM bad smell 

applies. The results show that for seventeen releases, files in the GM-group are 

more fault-prone than files in the GM-group.  

Figure 9.3 shows the DVAs for all projects with significant results in the Mann-

Whitney test. For each group (GM-group, GM-group), the mean defect count 

is indicated on the y-axis. Thus, files in the GM-group are 2.1 times (Freenet 0.7) 

to 8.9 times (ANT 1.7.0) more fault-prone than classes in the GM-group. De-

tailed results of the Mann-Whitney test can be found in the Appendix A 4. 
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Figure 9.3 - DVA:Visual mean defect count analysis for the GM bad smell 

Consequently, it can be concluded that a file with at least one method for which the GM 

bad smell applies is more fault-prone than a file that has no methods with this bad smell. 
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9.4.2 Exploring the relationship between class level bad smells 
and defects 

In order to analyse the class level hypotheses, the Mann-Whitney test is per-

formed again. For this purpose, the data in each project are divided into two 

groups: one group consisting of files for which a particular class level bad smell 

applies (BSi39-group) and a second group that consists of files for which a par-

ticular class level bad smell does not apply (BSi-group). Figure 9.4 shows the 

aggregated results.  

On the x-axis, the analysed bad smells are indicated. The y-axis shows the 

number of programs for which one of the following results applies:  

 a): There are no significant differences in terms of defect count between 

the BSi-group and the BSi-group.  

 b): There are no classes for which the corresponding bad smell applies. 

As a result, the statistical test cannot be performed. 

 c): There are significant differences in terms of defect count between the 

BSi-group and the BSi-group.  

                

Figure 9.4 - Class level bad smell analysis 

The results show that in seventeen respectively fifteen of the analysed releases, 

files that contain classes for which the SS and GC bad smells apply are more 

fault-prone than files that do not contain classes for which these bad smells ap-

ply.  

For the RB bad smell, this is the case for ten of twenty analysed releases. Nine 

of the analysed releases show significant differences between files in the MC-

group and files in the MC-group. In case of the DC bad smell, six releases 
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show significant differences between the two groups. The detailed results of the 

corresponding Mann-Whitney test are shown in the Appendix A 5. 

The visual analysis shows that files for which the SS bad smell applies are 1.7 

(Freenet 0.5.0/0.7) to 8.74 (OS-Cache 2.0.1) more fault-prone than files for which 

the SS bad smell does not apply. Similarly, files for which the GC bad smell ap-

plies are 2.9 (Freenet 0.7) to 9.3 (ANT 1.7.0) more fault-prone than files for 

which the GC bad smell does not apply. The detailed results of the visual 

analyses are shown in Appendix A 7. 

Based on the results of the statistical tests and of the visual analyses, the follow-

ing conclusions can be drawn: 

 The null-hypotheses N-SS and N-GC can be largely rejected and the cor-

responding alternative hypotheses accepted. 

 The null-hypothesis N-RB can be rejected to some part and the corre-

sponding alternative hypothesis accepted. 

 The null-hypotheses N-MC and N-DC can be accepted and the corre-

sponding alternative hypotheses rejected. Files containing classes for 

which the MC or DC bad smells apply are no more fault-prone than files 

that do not contain classes for which that bad smells apply. Conse-

quently, the corresponding null hypotheses have to be accepted. 

9.4.3 Exploring the relationship between Lack-Of Pattern bad 
smells and defects 

In order to analyse the lack-of-pattern bad smell hypotheses, the Mann-

Whitney test is performed. For this purpose, the data in each project are di-

vided into two groups: one group consisting of files for which a particular lack-

of-pattern bad smell applies (BS-li40-group) and a second group that consists of 

files for which a particular lack-of-pattern bad smell does not apply (BS-li-

group). Figure 9.5 shows the aggregated results.  

                                                      

40 BS-li ε {LoB, LoSta, LoStr, LoV, ISP} 
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Figure 9.5- Lack-of Patterns 

The results show that in nineteen of the analysed releases, files containing 

classes for which the LoSta bad smell applies are more fault-prone than files 

that do not contain classes for which this bad smell applies.  

For the ISP violation bad smell, this is the case for seventeen releases. About 

half of the analysed releases show significant differences between files contain-

ing classes for which the LoStr bad smell applies and files that do not contain 

classes for which this bad smell applies. For the rest of the analysed bad smells, 

less than half of the releases (six in case of the LoB bad smell and four in case of 

the LoV bad smell) show significant differences between the two groups, one 

for which the corresponding bad smell applies and one for which the bad smell 

does not apply. The detailed results of the Mann-Whitney test are shown in the 

Appendix A 6. 

The visual analysis for the LoSta bad smell shows that files containing classes 

for which the LoSta bad smell applies are 2.2 (FOP 0.94) to 11.5 (TV-Browser 

0.9) more fault-prone than files that do not contain classes for which the LoSta 

bad smell applies. In case of the ISP bad smell, the visual analysis shows that 

files containing classes for which the ISP bad smell applies are 2.0 (FOP 0.93) to 

6.4 (TV-Browser 2.6) more fault-prone than files that do not contain classes for 

which the ISP bad smell applies. The detailed results are shown in Appendix A 

8. 

Based on the results of the statistical tests and of the visual analyses, the follow-

ing conclusions can be drawn: 

 The null-hypothesis N-LoSta and N-ISP can be largely rejected and the 

corresponding alternative hypothesis accepted. Files containing classes 

for which the LoSta/ISP bad smell applies are more fault-prone than files 

that do not contain classes for which the LoSta/ISP bad smell applies. 
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 The null-hypothesis N-Str can be rejected to some part and the corre-

sponding alternative hypothesis accepted. 

 There is little statistical evidence that files containing classes for which 

the LoV or the LoB bad smell apply are more fault-prone than files that 

do not contain classes for which the bad smells apply. Thus, the null-

hypotheses N-LoV and N-LoB can be accepted and the corresponding al-

ternative hypotheses rejected.  

9.4.4 Exploring the relationship between package level bad smells 
and defects 

In order to analyse the package level hypotheses, the Mann-Whitney test is per-

formed. For this purpose, the data in each project are divided into two groups: 

one group consisting of packages for which a particular package level bad smell 

applies (BS-pi41-group) and a second group that consists of packages for which 

a particular package level bad smell does not apply (BS-pi-group). Figure 9.6 

summarises the results.  

Accordingly, in case of thirteen releases, packages for which the GP bad smell 

applies are more fault-prone than packages for which this bad smell does not 

apply. For the WSI bad smell, there is a single release that shows significant dif-

ferences between the two groups (packages for which the WSI bad smell ap-

plies and packages for which the WSI bad smell does not apply). The detailed 

results of the Mann-Whitney test are shown in the Appendix A 9. 

 

Figure 9.6 - Package level bad smell analysis 

The visual analysis shows that packages for which the GP bad smell applies are 

1.7 (FOP 0.94) to 20.3 (CDK 2005) more fault-prone than packages for which the 

GP bad smell does not apply. The detailed results of the visual analyses are 

shown in Appendix A 10. 
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Based on the results of the statistical tests and of the visual analyses, the follow-

ing conclusions can be drawn: 

 The null-hypothesis N-GP can be largely rejected and the corresponding 

alternative hypothesis accepted. Packages for which the GP bad smell 

applies are more fault-prone than packages for which the GP bad smell 

does not apply. 

 There is no evidence that packages for which the WSI bad smell applies 

are more fault-prone than packages for which this bad smell does not 

apply. Consequently, the null-hypothesis N-WSI can be accepted and the 

corresponding alternative hypothesis rejected.  

9.4.5 Which bad smell is the best indicator for defects in code? 

In order to answer this question, two factors are defined and compared across 

all analysed projects: 

FBS The BADSMELL-factor FBS indicates the proportion between the 

mean defect count of files that contain classes for which a bad smell 

applies and the mean defect count of files that do not contain classes 

for which that particular bad smell applies.  

FAVG  The AVERAGE-factor FAVG indicates the proportion between the mean 

defect count of files containing classes for which a bad smell applies 

and the average defect count in all classes.   

In order analyse which bad smell is the best indicator for defects in code, the 

following questions have to be answered: 

a) Which bad smells show significant differences between files for which a bad 

smell applies and files for which that bad smell does not apply in most of the 

programs? 

b) Which bad smell has the highest FBS? 

c) Which bad smell has the highest FAVG? 

d) Which bad smell has the highest factors (FAVG, FBS) across all projects and all 

bad smells? 

(a) The following bad smells show significant differences in the analyses per-

formed in Section 9.4 in 15 to 19 releases: God Method (GM), God Class (GC), 

Shotgun Surgery (SS), Lack of State (LoSta), and ISP violation (ISP). These bad 

smells are considered in the following in order to answer the questions (b) – (d). 

For this purpose, the factors FAVG and FBS have to be compared. The results are 

shown in Table 9.5. The columns indicate the FBS and the FAVG factors per bad 

smell. The last two columns indicate the maximum FBS respectively FAVG com-

puted per release. 
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Table 9.5 - Which bad smells are the best indicators for defects in code?  
A comparison of the FBS and FAVG factors 

In twelve releases, the FBS is the highest for the GC bad smell (question b); in 

three cases, for the GM bad smell. For four releases, this factor could not be 

computed as there are no classes for which the GC bad smell applies. Similar 

results are obtained for question (c) and (d). In thirteen releases, the FAVG is the 

highest for the GC bad smell. In addition, the GC bad smell has the highest FBS fac-

tor across all projects and all bad smells (9.5 in case of the Freenet 0.5.1 release). 

The highest FAVG show the LoSta and the GC bad smells. It can be concluded 

that the GC bad smell and the LoSta lack-of-pattern show the strongest associa-

tion with a software entity’s defect count.  

9.5 Discussion 

The results show that some bad smells can indicate defects in code. The strong-

est associations show the “god - *” bad smells, on all analysed levels (god 

method, god class, and god package). This bad smell indicates a high centrali-

sation of too much of the application’s logic into one entity. Thus, the entities 

for which the “god - *” bad smell applies are too large and complex, not easy to 

understand and to maintain, and lead to a high defect count.  

Another bad smell that proved to be a good indicator for defects in code is the 

“Shotgun Surgery” bad smell. This bad smell refers to the lack of locality when 

making changes. When changing the entity, these changes are not local and af-

fect too many parts of the application and lead to defects. The main reason is 

that when performing changes, not all parts that are affected are considered, 

leading also to failures. 

OSP F-BS F-AVG F-BS F-AVG F-BS F-AVG F-BS F-AVG F-BS F-AVG MAX F-BS MAX F-BS

Ant 1.5.3 2,9 2,7 2,3 2,0 3,4 3,2 2,7 0,3 2,8 2,6 3,4 3,2

Ant 1.6.0 4,3 3,7 2,5 2,2 4,2 3,8 3,9 2,0 3,3 2,9 4,3 3,8
Ant 1.7.0 8,9 6,8 4,7 3,4 9,3 6,9 8,8 4,1 5,8 4,6 9,3 6,9

FOP 0.93 4,4 3,0 1,9 1,6 3,3 2,2 3,9 1,2 2,0 1,8 4,4 3,0
FOP 0.94 3,7 3,1 4,3 3,8 2,2 1,9 2,6 2,3 4,3 3,8

CDK 2005 2,8 2,5 2,8 2,4 4,9 4,7 2,3 2,3 2,7 2,5 4,9 4,7

CDK 2006 2,9 2,5 3,7 2,9 5,8 5,4 3,2 2,7 2,8 2,6 5,8 5,4
CDK 1.0.1 5,3 3,7 2,5 2,2 4,3 4,2 4,3 1,1 3,4 3,1 5,3 4,2

Freenet 0.5.0 2,7 2,5 1,7 1,5 4,5 4,3 2,5 1,9 2,1 2,0 4,5 4,3

Freenet 0.5.1 3,4 2,8 10,5 9,5 5,3 4,8 5,2 4,8 10,5 9,5
Freenet 0.7 2,1 2,0 1,7 1,5 2,9 2,8 2,8 2,0 2,0 1,9 2,9 2,8

Jmol 9 2,5 2,0 3,0 2,6 3,0 2,6

Jmol 10 4,0 3,4 4,7 3,3 4,2 3,3 4,7 3,4
Jmol 11 2,2 1,9 3,0 2,3 5,0 3,3 3,1 2,1 3,1 2,5 5,0 3,3

OSCache 2.0.1 8,8 6,6 8,7 5,4 9,5 4,9 2,3 5,7 9,5 6,6

OSCache 2.1.1 4,5 4,0 2,2 2,0 2,4 2,6 4,5 4,0
OSCache 2.4.1 6,7 5,0 8,0 5,3 5,1 6,6 6,3 4,8 8,0 6,6

TVBrowser 0.9 11,5 7,0 5,8 3,9 11,5 7,0

TVBrowser 1.0 3,8 3,3 7,8 7,0 2,6 2,2 7,8 7,0
TVBrowser 2.6 4,6 3,5 6,0 3,5 8,3 6,4 6,9 3,3 6,4 4,6 8,3 6,4

GM (17) SS (17) GC (15) LoSta (19) ISP (17)
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On class level, so called “Lack-Of” patterns introduced by (Marinescu 2002) 

have been analysed with respect to their association with the software’s defect 

count. “Lack-Of” patterns are design flaws that result when not using an ap-

propriate design pattern. Apart from the Lack-Of-State and the ISP bad smell, 

entities for which the lack-of pattern applies are not more fault-prone than enti-

ties for which that pattern does not apply.  

9.6 Related work 

Most of research related to the study presented in this chapter, analyses the re-

lationship between OO metrics and defects, e.g. in (Chidamber and Kemerer 

1994), (Szabo and Khoshgoftaar 1995), (Basili, Briand, and Melo 1996), (Fenton 

and Ohlsson 2000), (Gyimothy, Ferenc, and Siket 2005), (Subramanyam and 

Krishnan 2003), (Briand, Daly, and Wüst 1998), (Briand, Daly, and Wüst 1999), 

(Briand et al. 2000), (Cartwright and Shepperd 2000), (Emam et al. 2001), 

(Emam, Melo, and Machado 2001), (Zimmermann, Premraj, and Zeller 2007), 

(Nagappan, Ball, and Zeller 2006). Apart from the study reported in (Shatnawi 

and Li 2006), little attention has been paid to analyse the relationship between 

bad smells and defects in software empirically. In general, only a few empirical 

studies have been conducted to examine the effects of bad smells (Zhang et al. 

2008). 

In the following, a detailed comparison of the study presented in this section 

and the study reported in (Shatnawi and Li 2006) is discussed. Both studies 

consider open source programs. A basic difference is the magnitude of the 

study presented in this chapter. Whereas the study in (Shatnawi and Li 2006) 

analyses a single OSP across three releases, the study presented in this section 

considers seven OSPs across twenty releases. In addition, Shatnawi and Li 

(Shatnawi and Li 2006) consider only a part of the bad smells analysed in this 

section. Table 9.6 summarises the results of both studies. The first column indi-

cates the bad smell. In the second and third column, the results of both studies 

are compared. A “+” indicates that in the corresponding study a positive asso-

ciation between the bad smell and the defect count has been observed. A “-“ in-

dicates that no association has been observed (respectively that a very small 

part of the analysed releases show statistical significant differences between en-

tities for which the corresponding bad smell applies and entities for which that 

bad smell does not apply). A “~” indicates that an association has been ob-

served in some releases of the analysed OSPs. The third column also indicates 

the number of releases for which the association has been observed. A blank cell 

indicates that the corresponding association has not been analysed. 
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Bad smell (Shatnawi and Li 2006) This study 

Method Level 

God Method + +(17/20) 

Feature Envy  ~(10/20) 

Class Level 

Data Class - - (6/20) 

God Class + +(15/20) 

Shotgun Surgery + +(17/20) 

Refused Bequest - ~/(10/20) 

Misplaced Class  - (9/20) 

Lack-Of-Patterns 

Lack of Bridge  - (6/20) 

Lack of State  +(19/20) 

Lack of Strategy  - (11/20) 

Lack of Visitor  - (4/20) 

ISP Violation  ~(17/20) 

Package Level 

God Package  +(13/20) 

WSI  - (2/20) 

Table 9.6 – Bad smells and defects - (Shatnawi and Li 2006) vs. results of this 

thesis 
Comparing the results of the bad smell analysis in (Shatnawi and Li 2006) with the re-

sults of this study 

The results of both studies are similar. In both studies, the bad smells “God 

Method”, “God Class”, and “Shotgun Surgery” show a positive association 

with the defect count. In addition, none of the studies confirms a positive asso-

ciation of the bad smell “Data Class” and the defect count. The RB bad smell 

shows in half of the analysed releases a positive association with the defect 

count; Shatnawi and Li do not confirm any statistical significant association for 

the RB bad smell. 

Based on the results of both studies, it can be concluded that there are some bad 

smells that are useful as indicators for defects in software.  

9.7 Chapter summary 

In this chapter, the results of an empirical study exploring the relationship be-

tween bad smells and defects are presented. There are several bad smells that 

are good indicators for the software’s defects: On method level, the “God 

Method” bad smell, on class level, the “God Class” and the “Shotgun Surgery” 

bad smell, and finally on package level, the “God Package” bad smell.  

On class level, so called “Lack-Of” patterns introduced by (Marinescu 2002) 

have been analysed. The results show that the “Lack of State” and the “ISP vio-

lation” patterns are good indicators for a class’ defect count. For all other “Lack-

Of” patterns, only a small part of the analysed releases show significant differ-
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ences between parts of the software for which a particular pattern applies and 

parts of the software for which this pattern does not applies.  

The God Class (GC) and the Lack of State (LoSta) bad smells proved to be the 

“best indicators” for a software entity’s defect count. On average, entities for 

which the GC bad smell applies are six times more fault-prone than entities for 

which the GC bad smell does not apply.  



 

 

CHAPTER 10 Exploring the relationship 

of a file’s history and its de-

fect count 

 
In this chapter, the relationship between several historical char-

acteristics of files and their defect count is explored. For this 

purpose, the empirical approach presented in Chapter 6 using 

statistical procedures and visual representations of the data is 

applied in an industrial context in order to determine historical 

indicators for a file’s defect count. The results show that files 

that have been changed by a number of authors above average 

are more fault-prone than files that have been changed by a 

number of authors below average. In addition, the number of 

changes performed to a file is also a good indicator for its defect 

count. In contrast to initial expectations, the hypothesis con-

cerning a file’s age as well as the hypotheses concerning the 

number of co-changed files could be confirmed only partly. 
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10.1 Introduction 

The primary goal of the empirical study presented in this chapter is to apply 

the approach presented in Chapter 6 in an industrial context. In addition, it 

aims to analyse the relationship between a file’s history and its defect count. 

The main assumption is that the history of a software entity influences its de-

fects, i.e. there are several historical characteristics that are indicators for defects 

in code. For instance, according to an expression, “Many cooks spoil the broth”. 

Is this true for software development, too? Does the number of authors that 

change software entities influence its defect count? This is one of the questions 

analysed in this chapter.  

The goal of this study can be refined as follows: 

Object of study: Analyse different historical characteristics 

Purpose: for the purpose of their evaluation 

Quality focus: with respect to their efficiency as indicators for defects in 

software entities  

Perspective: from the point of view of practitioners and researchers (above 

all, testers and quality engineers) 

Context: in the context of commercial development. 

A main weakness of testing processes as indicated by testers in their organisa-

tions is the lack of a systematic approach when defining the test foci. Knowing 

which particular historical characteristics are good indicators for a file’s defect 

count is useful for testers, because they can focus their testing activities on those 

parts of the software. Quality engineers can initiate process improvement activi-

ties. For instance, if the number of authors that change a file proves to be a 

good indicator for defects, process guidelines should be developed that rec-

ommend not to share large parts of the code by many developers. In addition, 

code review activities can be prioritised. Parts of the software that have been 

changed by many developers would be candidates for such code reviews.  

From a researcher’s point of view it is important to know which historical charac-

teristics are indicators for a file’s defect count because (1) it increases the em-

pirical body of knowledge in this area and (2) it enables to develop methods 

and concepts that consider the results of the empirical study. For instance, re-

searchers can propose development processes that avoid characteristics that 

lead to poor software quality. 

Particularly, the following questions are addressed in this chapter:  

 Is the number of authors performing changes to files an indicator for a 

file’s defect count? 

 Is the number of changes an indicator for a file’s defect count? 

 Is the number of co-changed files an indicator for a file’s defect count? 

Co-changed files are those files that are simultaneously changed, for in-

stance because of a defect correction. 
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 Is the file's age an indicator for its defect count? 

The reminder of this chapter is structured as follows. Section 10.2 describes the 

study design including the context of the organisation and the goals of the 

study. In addition, Section 10.2 gives further details on the study (the analysed 

software entities and the granularity level). In Section 10.3, quality indicators 

are introduced whereas Section 10.4 describes how the number of defects per 

file is determined. The results of the study are presented in Section 10.5 and 

discussed in Section 10.6. Threats to validity are described in Section 10.7, an 

overview of related work is given in Section 10.8. The summary in Section 10.9 

concludes this chapter. 

10.2 Study design 

In this section, details on the study design are given including the context of the 

organisation, the main characteristics of the software that is analysed, as well as 

the granularity of the study. 

10.2.1 Organisation context 

The organisation in which the study is performed provides real-time system so-

lutions. Testers are organised within an independent testing group, whereas the 

ratio of testers to developers is 1:4. The testing process is basically organised ac-

cording to the fundamental testing process as described in (Spillner and Linz 

2010).  

10.2.2 Software entities 

According to the criteria defined in Section 6.2, a software system with the fol-

lowing characteristics is selected for this study:  

 Size: The system consists of about 180.000 LOC and 1.550 files.  

 Maturity: The system matured over several years (since 2002).  

 A documented history is available within a VCS for the source code.  

 The defects are separately tracked within a commercial defect tracking 

system. 

The core development team consists of five developers; the extended team con-

sists of about twenty developers. Table 10.1 summarises key characteristics of 

the system, in the following denoted as CS (commercial system).  
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Com-

mercial 

system 

Since Defect 

count42 

LOC43 # Files # Analysed  

major 

releases 

Mean time inter-

val between 

releases (in 

years) 

CS 2002 817 179.075 1.550 4 1,3 

Table 10.1 - Characteristics of the analysed CS 

10.2.3 Granularity 

All analyses in this study are performed on file level, i.e. characteristics of files 

are related to their defect counts. 

10.3 Quality indicators 

10.3.1 Dependent variables 

In this thesis, the change history as well as the file’s age are considered as his-

torical characteristics. (Illes-Seifert and Paech, 2010), (Illes-Seifert and Paech, 

2008a/b). 

The change history of a file comprises the number, size and author(s) of the 

HTs performed to that file. The following three change history characteristics 

are considered in this thesis: 

 DA (Distinct Authors): Number of distinct authors that performed HTs to a 

file between two consecutive releases. 

 FC (Frequency of Change): Number of HTs performed per file between two 

consecutive releases.  

 CF-SUM/AVG (Co-Changed Files): Total/average number of files that have 

been conjointly checked in with a file between two consecutive releases. 

Fluctuating files have been changed by a number of distinct authors above 

average and non-fluctuating files have a DA metric that is below average. 

Stable files have an FC metric below average; unstable files have an FC 

metric above average. 

Another dependent variable considered in this chapter is a file’s age. According 

to their age, files are classified into one of the following categories44: 

 Newborn: A file is newborn at its birthday. 

 Young: < 0.5 * SystemAge45 AND not Newborn (all files that are not 

older than the half of a system’s age and that are not classified as Newborn) 

                                                      

42 20% of the files contain about 60% of the defects. 
43 The table presents data from the last analysed release. 
44 The classification of class hierarchy histories presented in (Girba, Lanza, and Ducasse 2005) has 

been adopted. 
45 See also Section 7.2. 
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 Old: >= 0.5 * SystemAge (all files that are older than or equal to the 

half of a system’s age). 

 

Table 10.2 summarises the dependent variables used in this study. 

ID Description 

DA Distinct Authors 

Number of HTs per file performed between 

two consecutive releases. 

FC Frequency of Change  

Number of HTs per file performed between 

two consecutive releases. 

CF-

SUM/AVG 

Co-Changed Files 

Total/average number of files that have been 

conjointly checked in with a file between 

two consecutive releases. 

Age  Newborn, young, old  

Table 10.2 - Independent variables 

10.3.2 Research hypotheses 

In the following, the research hypotheses are presented. 

 H-CS-1: Fluctuating files have on average more defects than non-

fluctuating files. The rationale behind this hypothesis is that shared respon-

sibility leads to defects since no single person has an overview on the (ef-

fects of) changes.  

 H-CS-2: Unstable files have on average more defects than stable files. The 

rationale behind this hypothesis is that a large amount of changes indicates 

that particular parts of the problem are not well understood and often need 

rework resulting in fault-prone files.  

 H-CS-3: Files with the CF-metric above average have a higher defect count 

than files with a CF-metric below average. The rationale behind this hy-

pothesis is that a local change, affecting just a few files, will cause fewer de-

fects than changes affecting more files. 

 H-CS-4: A file’s age is an indicator for its defect count. Particularly, the fol-

lowing sub-hypotheses can be formulated: 

 H-CS-4.1: Newborn and young files are the most fault-prone files. 

The rationale behind this hypothesis is that newborn and young 

files represent new features that might be not well understood and 

consequently more fault-prone than old files. 

 H-CS-4.2: Old files have the lowest defect count. The rationale be-

hind this hypothesis is that old files represent stable functionality 

which matured over years so that most of the defects have already 

been removed. 
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10.4 Preparation - Computing the number of defects per file  

In this section, the procedure to determine the number of defects per files is de-

scribed. 

Starting point of the analyses are two systems: the DTS, mainly used by the 

testers to track the defects and the VCS, mainly used by developers. Each time a 

developer checks in a set of files as a result of a defect correction, an email gen-

erator is activated that generates information about the check-in process and 

sends this information to other developers and testers (registered to receive this 

information). The email contains a subject including the corrected defect(s), op-

tionally an informative text (entered by the developer), and a list of the files 

that have been checked in. Thus, testers, developers, and project managers get 

the information that a defect has been corrected via email. Unfortunately, the 

information about the corrected defect(s) and the affected file(s) is not stored in 

the VCS. Figure 10.1 shows how defects are communicated to the project team. 

 

Figure 10.1 - Communication of defects to the project team 

In order to determine the defects that occurred in particular files, the email re-

pository has to be analysed. For this purpose, a parser has been developed that 

analyses the information of the email repository. If the subject of an email con-

tains one or more defect IDs contained in the DTS, the email is further parsed in 

order to get the list of the files affected by the correction of that particular de-

fect. Consequently, for each defect, a list of affected files can be determined. The 

date on which the email is sent is used to assign the defect correction activity to 

a particular release.  

98.6% of the defect IDs found in the email repository could be assigned to de-

fects in the DTS. Few defect IDs could not be assigned, i.e. these defects could 

have been deleted from the DTS or the developer gave a wrong defect ID. 
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10.5 Analysis and results 

10.5.1 Exploring the relationship between a file’s defect count and 
the number of authors performing changes to it 

On average, 1.25 distinct authors performed HTs to a file. The minimum count 

of distinct authors is 1, whereas the maximum count is six authors. Table 10.3 

summarises basic statistical characteristics. 

 

Min Max Mean Median Standard 

deviation 

Variance 

1 6 1.25 1 0.939 0.882 

Table 10.3 - Descriptive statistics for DA 

In order to analyse the relationship between the number of distinct authors and 

the defect count, simple analyses of defect variance are conducted. For this 

purpose, the data are divided into two groups: one group contains files that 

have been changed by a number of authors above average (fluctuating files) 

and a second group containing files that have been changed by a number of 

distinct authors below average (non-fluctuating files). In each group, the 

mean defect count is computed.  

Figure 10.2 shows the corresponding DVA. Accordingly, fluctuating files 

are more fault-prone than non-fluctuating files (factor 2). Non-

fluctuating files have a mean defect count of 4.66, fluctuating files 9.20.  

 

Figure 10.2 - DVA for DA 

The Mann-Whitney test shows that there is statistical evidence that fluctuating 

files are more fault-prone than non-fluctuating files at the 0.02 significance level 

(Appendix A 11). 

The same observation can be made when detailing the categorisation into the 

following groups.  
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 Group 1: contains files that have been changed by maximum one author.  

 Group 2: contains files that have been changed by two authors. 

 Group 3: contains files that have been changed by three or more au-

thors.  

A file that is changed by three or more distinct authors is approximately 2.2 

times more fault-prone than a file that is changed only by a single author. Fig-

ure 10.3 shows the corresponding DVA. 

 

 

Figure 10.3 - DVA for DA (three groups) 

The most fault-prone files are those in Group 3 followed by Group 2 and finally 

Group 1. The Kruskal Wallis test shows that there is statistical evidence for this 

observation at the 0.02 significance level (Appendix A 11). 

The results obtained by the analyses of defect variance are confirmed by statis-

tical means. The Mann-Whitney test (performed in the first case) as well as the 

Kruskal-Wallis test (performed for the refined categories) show that the obser-

vations made by visual analyses are statistically significant. 

Based on these analyses, it can be concluded that there is statistical evidence from the 

data that fluctuating files have on average more defects than non-fluctuating files in the 

analysed context. Consequently, the initial hypothesis H-CS-1 can be confirmed. 

10.5.2 Exploring the relationship between the frequency of change 
and the defect count  

In order to analyse the relationship between the frequency of change and the 

number of defects, simple analyses of defect variance are conducted again. For 
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mean defect count is computed. Figure 10.4 shows the corresponding DVA. Ac-

cordingly, unstable files have 1.8 times more defects than stable files.  

 

Figure 10.4 - Mean defect count for stable vs. unstable files 

The Mann-Whitney test also confirms that there is statistical evidence that un-

stable files are more fault-prone than stable files at the 0.01 significance level (Ap-

pendix A 12). 

Based on the results of the analyses, it can be concluded that there is evidence from the 

data that unstable files have a higher defect count than stable files so that the hypothesis 

H-CS-2 can be confirmed.  

10.5.3 Exploring the relationship between co-changed files and de-
fect count 

In order to analyse the relationship between the number of co-changed files and 

defects, simple analyses of defect variance are performed. For this purpose, the 

data are divided into two groups: one group contains files that have been con-

jointly checked in with a number of files above average, and a second group 

containing files that have been conjointly checked in with a number of files be-

low average. Figure 10.5 shows the DVAs for the CF-SUM and the CF-MAX 

metrics.  
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Figure 10.5 - DVA for CF-SUM and CF-MAX 

Accordingly, files with a high CF-SUM and CF-MAX metric are more fault-

prone than files with a low CF-SUM and respectively with a low CF-MAX met-

ric But the Mann-Whitney test shows that this observation is not statistically 

significant (Appendix A 13). 

It can be concluded that there is no evidence from the data that the number of co-

changed files is a good indicator for the file’s defect count so that H-CS-3 has to be re-

jected.  

10.5.4 Exploring the relationship between a file’s age and its defect 
count 

In order to analyse the relationship between a file’s age and its defect count, the 

data are grouped into three categories: newborn, young and old files. Then, a 

simple analysis of defect variance is performed in order to answer the question: 

4,44 

5,99 

0,0 

1,0 

2,0 

3,0 

4,0 

5,0 

6,0 

7,0 

CF-SUM below average CF-SUM above average 

M
e

an
 d

e
fe

ct
 c

o
u

n
t 

CF--SUM 

CS 

factor 1.35 

4,78 

5,30 

4,5 

4,6 

4,7 

4,8 

4,9 

5,0 

5,1 

5,2 

5,3 

5,4 

CF-MAX above average CF-MAX below average 

M
e

an
 d

e
fe

ct
 c

o
u

n
t 

CF-MAX 

CS 

factor 1.1 



 153 

 

Have newborn and young files on average a higher defect count than old 

files?  

Figure 10.6 shows the DVA for the categories: newborn (F-N), young (F-Y), 

old (F-O). Accordingly, old files are about 1.5 times more fault-prone than 

young files. Similarly, newborn files are about 1.3 times more fault-prone than 

young files. 

 

Figure 10.6 - Simple DVA for ANT: Mean defect count vs. file age 
 

The most fault-prone files are old files, followed by newborn and young files. 

The Kruskal-Wallis non-parametric test shows that this observation is 

statistically significant at the 0.05 significance level, i.e. based on the data it can 

be concluded that the differences between the analysed groups are statistically 

significant (Appendix A 14). 

It can be concluded that there is a slight but statistically significant difference between 

newborn, young and old files with respect to their mean defect count. Accordingly, the 

research hypothesis H4 can be confirmed to some part, a file’s age is an indicator for its 

defect count. In addition, the research hypotheses H4.1 and H4.2 must be rejected. 

Newborn and young files are not the most fault-prone files.  

10.5.5 Combined analyses of defect variance 

For more detailed results, further analyses are performed. For this purpose, the 

initial categories are refined in order to answer the following questions:  

1. To what extent does the defect count of a file depend on its stability 

AND on its fluctuation? 
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3. To what extent does the defect count of a file depend on its age AND 

on its stability? 
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In order to answer the first question, a detailed analysis of the relationship be-

tween a file’s fluctuation and its stability is performed. For this purpose, the ini-

tial categories are refined in order to analyse to what extent the defect count of 

a file depends on its stability AND on its fluctuation. For example, this com-

bined analysis addresses the question to what extent non-fluctuating files 

that have been changed frequently (these are non-fluctuating and unsta-

ble files) are more fault-prone than non-fluctuating files that have not 

been changed frequently (old and stable files). Consequently, the mean de-

fect count is related to each of the refined categories presented in Table 10.4- 

Category definition matrix for stability x fluctuation.  

 Stability 

stable unstable 

F
lu

ct
u

at
io

n
 

Fluctuating 

 

F-stab F-unstab 

Non-

fluctuating 

nF-stab nF-unstab 

Table 10.4- Category definition matrix for stability x fluctuation 

Figure 10.7 shows the DVA for the refined categories. The lowest mean defect 

count have stable non-fluctuating files (stab-nF), the highest unsta-

ble non-fluctuating files. Unstable fluctuating files are about three 

times more fault-prone than stable non-fluctuating files.  

 

Figure 10.7 - Combined DVA: Mean defect count vs.  

stability x fluctuation.  
stb-nf (61% of all files), stabF (3.2%), unstab-nF (29.6%), unstab-F (5.5%)  

The most fault-prone files are the unstable fluctuating ones (unstab-F) 

followed by unstable non-fluctuating and stable-fluctuating files. 

The Kruskal-Wallis test shows that there is statistical evidence for this observa-

tion at the 0.01 significance level (Appendix A 15). 
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Unstable fluctuating files make up 5.5% of all files, i.e. a very little part of 

the files are about three times more fault-prone than stable non-

fluctuating files that make up about 60% of all files. 

To answer the second question, the mean defect count is related to each of the 

refined categories, presented in the matrix in Table 10.5.  

 

 Fluctuation 
fluctuating Non-

fluctuating 

A
g

e 

newborn N-F N-nF 

young Y-F Y-nF 

old O-F O-nF 

Table 10.5 - Category definition matrix for age x fluctuation 

Figure 10.8 shows the DVA for the refined variables resulting from the age x 

fluctuation matrix. Fluctuating old files are about 1.7 times more fault-

prone than old non-fluctuating files. Similarly, young fluctuating 

files are about 2.2 times more fault-prone than young non-fluctuating 

files. Newborn fluctuating files are about 2 times more fault-prone than 

newborn non-fluctuating files. The most fault-prone files are old 

fluctuating files. These files are about 2.5 times more fault-prone than 

young non-fluctuating files (files with the lowest defect count).  

 

 
Figure 10.8 - Combined DVA: Mean defect count vs. file age x fluctuation  

N-nf (45.7% of all files), Y-nf (21.7%), O-nf (23.9%),  

N-F (4.3%), Y-F (1.9%), O-F (2.8%) 

Thus, old fluctuating files as well as newborn fluctuating files 

are slightly more fault-prone than young fluctuating files. Among the 

non-fluctuating files, the most fault-prone files are the old ones followed 

by the newborn and young ones. The Kruskal-Wallis test shows that there is 

statistical evidence for these observations at the 0.01 significance level (Appen-
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dix A 15). The results also show that a file’s fluctuation is a better indicator for 

its defects than a file’s age. This result can be underlined by the fact that 9% of 

the files (the non-fluctuating files) are about two times more fault-prone than 

non-fluctuating files independently of their age. 

In order to answer the third question, the mean defect count is related to each 

of refined categories presented in Table 10.6 and then, the DVA is built.  

 Stability 

stable unstable 

A
g

e 

newborn N-stab N-unst 

young Y-stab Y-unst 

old O-stab O-unst 

Table 10.6- Category definition matrix for Age X Stability 

Figure 10.9 shows the DVA for the refined variables resulting from the age x 

stability matrix. Accordingly, old unstable files are about 1.5 times more 

fault-prone than old stable files. Similarly, young unstable files are 

about 2.3 times more fault-prone than young stable files. Newborn unsta-

ble files are about 1.5 times more fault-prone than newborn stable files.  

 

Figure 10.9 - Combined DVA: Mean defect count vs. file age X sta-

bility 

N-stab (32% of all files), Y-stab (18%), O-stab (15.5%),  

N-unstab (17.6%), Y-unstab (5.3%), O-unstab (12.3%) 

Basically, there is no difference between unstable files in the different “age cate-

gories”. Among the stable files, old and newborn files are more fault-prone 

than young files. Unstable old files are more fault-prone than stable old 

files, unstable young files are more fault-prone than stable young files 

and finally, unstable newborn files are more fault-prone than stable new-

born files. The Kruskal-Wallis test shows that there is statistical evidence for 

these observations at the 0.01 significance level (Appendix A 15).  
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About 1/3 of the newborn files (the unstable ones) are about 1.9 times more 

fault-prone than newborn stable files. In addition, about 1/4 of the young 

files (the unstable ones) are 2.3 more fault-prone that young stable files. 

About half of the old files (the unstable old files) are 1.5 times more fault-prone 

than old stable files. 

Nevertheless, the results show that a file’s stability is a better indicator for its 

defects than a file’s age.  

Considering the variable “age” separately,  the results show that there is a difference 

between newborn, young and old files with respect to their mean defect count. 

Combined analyses with respect to a file’s age and stability show that unstable or 

fluctuating files are significantly more fault-prone than stable or non-fluctuating files 

independently of their age. Consequently, it can be concluded that a file’s fluctuation 

and its stability are better indicators for its defects than a file’s age. 

In addition, combined analyses with respect to a file’s fluctuation and stability show 

that a very little part of the files, the fluctuating and unstable files (5.5%) are 

significantly more fault-prone than the other files. 

10.5.6 Analysis 

The results of the analyses show that two of four hypotheses could be accepted. 

A file’s fluctuation is a good indicator for the defect count in the analysed in-

dustrial context. One explanation for this observation is that files that are 

changed by many authors capture too much functionality that is used and 

changed by many authors. Thus, these files are indicators for bad design lead-

ing to a high defect count. A second possible explanation is the lack of respon-

sibility for that particular file that leads to uncoordinated and fault-prone 

changes so that “too many cooks spoil the broth”. 

A file’s stability is also a good indicator for the defect count. One possible ex-

planation of this observation is a problem domain that is not well understood 

with often changing requirements.  

Best results are obtained by the combined analysis of the variables stability and 

fluctuation. Accordingly, unstable and fluctuating files are about three times 

more fault-prone than stable and non-fluctuating files. In addition, fluctuating 

unstable files make up a very little part of all files and are significantly more 

fault-prone than all other files. 

The hypotheses concerning the file’s age could be accepted only partly. Gener-

ally, the file’s age is an indicator for its defects. There are slight but significant 

differences in the mean defect counts of newborn, young and old files. But, in 

contrast to the original hypotheses, the most fault-prone files are old files, 

followed by newborn and young files. Combined analyses of defect variance 

show that unstable or fluctuating files are more fault-prone than non-

fluctuating files independently of a file’s age. Thus, stability and fluctuation are 

better indicators for defects than the file’s age. 
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Finally, there is no statistical evidence in the analysed context for the hypothesis 

concerning the relationship between the number of co-changed files and de-

fects. 

To sum up, best indicators are the file’s stability and fluctuation. In combina-

tion, these indicators show that fluctuating files that have been changed fre-

quently are clearly the files with the highest defect count. Concurrently, these 

files make up a very little part of the system’s files.  

In order to search for explanations for the observations obtained by analysing 

historical characteristics of files, structural characteristics can be considered, 

too. For instance, size and complexity metrics can be analysed in order to ex-

plore whether structural characteristics, e.g. the file’s size measured by the LOC 

metric or its complexity are possible explanations for the observation that fluc-

tuating and unstable files are more fault-prone than other files. Is the file’s size 

a possible explanation for its fluctuation? Is the file’s complexity a possible ex-

planation for its instability? Is bad structure in terms of e.g. bad smells a possi-

ble explanation for its fluctuation? Thus, detailed analyses of defect variance 

can be performed in order to answer these questions and to get more precise 

results by combining historical and structural characteristics.  

10.6 Discussion 

In this section, advantages and disadvantages of analyses on different granular-

ity levels, for instance on file vs. on package level are discussed. In addition, the 

conclusions drawn by applying the approach in practice are presented. 

In all analyses, a simple categorisation has been chosen. The more detailed a 

categorisation is the more precise are the results. But increasing the analysis 

granularity means on the other hand that the effort to evaluate the results in-

creases, too. Therefore, a trade-off between a coarse grained (= easy to apply 

and analyse in practice) and fine grained analysis (= precise results but costly to 

analyse) has to be performed.  

Exploring the history of software projects requires the cleaning up, processing, 

transformation, analysis, and interpretation of large amounts of data. Thus, 

measurements that synthesise the evolution of a software entity have to be de-

fined (Girba, Lanza, and Ducasse 2005). For analysing the relationship between 

a file’s defect count and its age, a classification of the data into three groups 

(newborn, young and old) has been chosen. A more detailed classification 

would lead to more precise results. However, a simple categorisation has been 

chosen for the following two main reasons: 

a) Applicability in practice. The main advantage of the empirical ap-

proach presented in Chapter 6 is its applicability in practice. The 

definition of simple categories supports this approach because the 

more detailed a categorisation is, the more time-consuming is it to 

analyse and interpret in practice.  
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b) Metaphorisation: Having less but meaningful categories simplifies 

the communication and interpretation of the results. It is more diffi-

cult to find meaningful names for a higher number (e.g. for 10) of 

categories. 

A trade-off between a coarse grained categorisation (= easy to apply and ana-

lyse in practice) and fine grained categorisation (= precise results but costly to 

analyse) has to be performed. In addition, an existing categorisation can be re-

fined. This can be necessary when for instance current results differ signifi-

cantly from results obtained in past analyses. Furthermore, the testers’ experi-

ence may play an important role when deciding to perform detailed analyses. 

In cases that the results do not reflect the testers’ expectations/hypotheses, a de-

tailed categorisation would help to get more precise results. 

All analyses presented in this chapter have been performed at file level. The 

main reason for not performing analyses on a higher level, e.g. on package 

level, is that a package consists of several very heterogeneous files with respect 

to their age, number of authors performing HTs, etc. Consequently, an aggrega-

tion (by computing the sum, maximum, average, or median) is difficult and 

looses too much information. An aggregation is for instance best suited for the 

lines of code metric (LOC). The total LOC of a package has a "meaning" and can 

be computed by summing up the LOC-metrics of the files/classes contained in 

it.  

The empirical approach presented in Chapter 6 proved of value in practice. The 

concept has been easily understood by testers. Above all, the DVAs allow a 

quick overview of the data and refuted the concern of the testers that the ap-

proach is not easy to be understood. Testers reported that they assumed that 

parts of the old code cause problems. But now, they have the evidence for this 

based on the data. The results underline how important it is to have a justifica-

tion for subjective impressions. But they also show that there are other indica-

tors for a file’s defect count not considered by testers yet and that it is worth-

while to combine experience and facts in order to determine indicators for 

defects.   

Another lesson learned is that the data collection procedure is time-consuming. 

Reconstructing information from past is much more complex and inconvenient 

than when relevant information is collected and connected at creation time. 

Another recommendation with a great benefit that is easy to realise is the con-

nection of the VCS and the DTS. The restriction, that code can be checked in 

only with a valid requirement or defect ID, allows a more efficient analysis, 

since it is easy to relate defects to corresponding files. 

10.7 Threats to validity 

Similar to the open source context, a threat to validity is the problem of collec-

tive check-ins (Section 7.7.5). A collective check-in refers to HTs where a set of 

files is checked in after a developer has removed two or more defects. In this 

case, an email containing more than a single defect ID but several referenced 
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files is sent. Thus, collective check-ins are a threat to validity and can lead to 

imprecision in the defect count.  

Another threat to validity is that a developer corrects a defect, checks in the 

files but does not specify the corresponding defect ID within the email genera-

tor. Since the developers do not use the DTS to set the status of a defect, send-

ing an email is (beside direct communication) a comfortable way to notify test-

ers that particular defects have been corrected and that retesting activities can 

be started. Thus, developers are motivated to insert the (correct) defect ID and 

to send the notification email as soon as the defect has been corrected. This fact 

diminishes the threat to validity. 

10.8 Related work 

In this section, related work is presented. There are several other studies that 

focus on predicting the defect count of a software entity by combining product 

metrics and historical metrics: (Graves et al. 2000), (Arisholm and Briand 2006), 

(Khoshgoftaar, Seliya, and Sundaresh 2006), (Ostrand, Weyuker, and Bell 2004), 

(Bell 2005), (Schröter et al. 2006), (Ohlsson et al. 1999), (Pighin and Marzona 

2003), (Zimmermann, Premraj, and Zeller 2007). In contrast to the study pre-

sented in this chapter, the aim of the published studies is defect prediction. 

However, the main goal of this study is to analyse the extent to which historical 

characteristics are good indicators for the software's defect count without se-

lecting the best prediction model.  

In (Graves et al. 2000), (Khoshgoftaar et al. 1998), (Ostrand, Weyuker, and Bell 

2005), (Bell 2005), (Ohlsson et al. 1999), and (Pighin and Marzona 2003) age is 

used as an independent variable but the definitions used in these studies differ 

from the classification presented in this chapter. For instance, in (Graves et al. 

2000) and (Gyimothy, Ferenc, and Siket 2005) only two file categories are de-

fined: “new” and “pre-existing in a previous release”. In (Fenton and Pfleeger 

1998), the age of a file is measured by the number of previous releases in which 

that file appeared, whereas in (Fischer, Pinzger, and Gall 2003) the age is meas-

ured in months. All these studies confirm the hypothesis stated in this chapter 

that age is an indicator for a file’s defect count. But the results differ partly from 

those obtained in this study. Independent of the measures used for a software 

entity’s age, the studies report that the younger a file is, the higher is its defect 

count. In contrast, the results of this study show that newborn and old files are 

the most fault-prone ones. One possible cause for such different results is the 

fact that the design or architecture does not support local changes. Each new 

functionality induces changes that affect old code and thus lead to defects. 

Except the study reported in (Schröter et al. 2006), all other studies (Arisholm 

and Briand 2006), (Graves et al. 2000), (Khoshgoftaar et al. 1998), (Ohlsson et al. 

1999), (Ostrand, Weyuker, and Bell 2005), (Bell 2005), (Weyuker, Ostrand, and 

Bell 2007), (Schröter et al. 2006) support the finding of this chapter with respect 

to the relationship between the number of changes performed to a software en-
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tity and its defects. In (Schröter et al. 2006), only pre-release defects correlate 

with the number of changes performed to software entities. The authors define 

pre-release defects to be all defects found six months before release. 

The studies presented in (Bell 2005), (Weyuker, Ostrand, and Bell 2007), 

(Schröter et al. 2006), and in (Graves et al. 2000) analyse the relationship be-

tween the number of authors performing changes to files and the software’s de-

fects. The study reported in (Weyuker, Ostrand, and Bell 2007) confirms the re-

sults presented in this chapter. In (Schröter et al. 2006), only pre-release defects 

correlate with the number of authors performing changes. The results reported 

in (Bell 2005) and in (Graves et al. 2000) differ from the results of this study. It 

can be concluded that the suitability of the metric “number of authors“ as indi-

cator for defects in code highly depends on the analysed context so that it has to 

be analysed in each context whether it is applicable or not. Possible influencing 

factors could be communication characteristics, the team size or the process 

model used. 

The relationship between the number of co-changed files and defects is not re-

ported in any study. Most studies analysing this relationship are more fine-

grained, i.e. they analyse the extent to which the number of changed lines of 

code impacts on the defect count, for example in (Nagappan and Ball 2005), 

(Layman, Kudrjavets, and Nagappan 2008) and in (Purushothaman 2005). The 

results of these studies are inconsistent. In (Nagappan and Ball 2005) and 

(Layman, Kudrjavets, and Nagappan 2008), code churn metrics are reported to 

be good indicators for defects whereas the results reported in (Purushothaman 

2005) show that there is a low probability (< 4%) that  a change concerning a 

single line has defects. 

Other related research considers structural characteristics of software, e.g. its 

size or complexity and explores their relationship with defects in code. An 

overview on this kind of related work is given in Chapter 9.6. 

10.9 Chapter summary 

In this chapter, the relationship between a file’s historical characteristics and its 

defect count has been investigated (Illes-Seifert and Paech, 2010), (Illes-Seifert 

and Paech, 2008a/b). The results show that the software’s history is a good indi-

cator for its quality expressed in terms of the number of defects.  

Particularly, good indicators for defects are the file’s fluctuation and its stability. 

Fluctuation categorises files with respect to the number of distinct authors that 

performed changes to it; fluctuating files have been changed by a number of 

authors above average whereas non-fluctuating files have been changed by a 

number of authors below average. The analyses show that fluctuating files are 

more fault-prone than non-fluctuating files. Possible explanations are the lack 

of responsibility for a piece of code or its bad structure. 

Stability categorises files with respect to their change frequency; unstable files 

have been changed frequently (above average), stable ones below average. The 

analyses show that unstable files are more fault-prone than stable ones. This 
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observation indicates that particular parts of the application are not well under-

stood and often need rework. Consequently, these files are fault-prone. 

The empirical results do not support all hypotheses concerning the relationship 

between a file’s age and its defect count. In fact, a file’s age is an indicator for its 

defect count. There are slight but significant differences in the mean defect 

counts of newborn, young and old files. But in contrast to an intuitive expec-

tation, old files proved to be the most fault-prone files.  

Detailed analyses can be performed in order to get more precise results and to 

restrict the set of fault-prone files. By analysing different indicators in combina-

tion, more detailed results can be derived. Such a detailed analysis should be 

performed in order to specify the results obtained by a simple analysis. In this 

study, the relationship between a file’s stability, its fluctuation and the defect 

count has been analysed. The results show that unstable fluctuating files 

are the most fault-prone files. Consequently, the file’s stability and its fluctua-

tion are the best indicators for defects in the analysed context. In addition, un-

stable and fluctuating files make up a very small part of the system’s files so 

that the set of fault-prone files could be constrained. 

Knowing which particular historical characteristics are indicators for a file’s 

quality (e.g. expressed by its defect count) is useful for different roles in the de-

velopment process. Testers can focus their testing activities on files they expect 

to be faulty, for instance unstable and fluctuating files. Quality engi-

neers can monitor development activities and initiate reviews, for example for 

often changed files in order to prevent a high defect count. Additionally, old 

files that have been often changed by a number of authors above average cause 

high defect counts and can therefore be indicators for bad design. Thus, main-

tainers can identify candidates for refactoring. 

In order to search for explanations for the observations obtained by analysing 

historical characteristics, structural characteristics of files can be also consid-

ered. For example, the code’s size or its complexity can be analysed. The follow-

ing questions are of interest in this context: Are unstable and fluctuating files 

large files? Have unstable and fluctuating files a high complexity metric? Etc. 

All analyses presented in this chapter have been performed by applying the 

empirical approach presented in Chapter 6 that gives guidance in finding indi-

cators for (poor) software quality. Since the analyses’ results are not encrypted 

within complex formulae, the approach is easy to understand and to apply. In 

addition, visual representations for the analyses have been used. Thus, a stan-

dardised intuitive interpretation of the results is possible. All results obtained 

by visual means are statistically validated. Consequently, more reliable deci-

sions can be made because the probability of accidental effects is minimised. 

The study helped testers to justify their presumptions by facts. In addition, 

based on the results of the study several improvements of the development 

process could be proposed. Finally, the study shows how complex it is to collect 

and reconstruct information from the past and motivates a goal-oriented meas-
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urement. Having a goal in mind, all data that have to be collected can be pro-

vided at creation time. In addition, the infrastructure can be extended appro-

priately in order to allow a (semi-)automatic collection of the relevant data. 



 

CHAPTER 11 Synopsis 

 
In this chapter, a review of the main contributions of this thesis 

is given. In addition, the contributions are related to the main 

goals of the thesis. Finally, an overview of future research direc-

tions is given. 
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11.1 Summary and conclusions 

During the lifecycle of a software, large amounts of data are recorded within a 

variety of tools, for instance in defect tracking or versioning control systems. 

This information documents the whole lifecycle of the software. But in order to 

be able to draw conclusions from the data and to support the decision making 

process, the data have to be analysed thoroughly and purposefully. This is often 

not the case in practice and applies also to software testing. Since testing re-

sources are limited, testers have to decide which parts of the software to test, 

(the test foci) and which not.  

But how to decide what to test? Which parts will have defects? In practice, the 

available resources are usually uniformly distributed among all parts of the 

software with the risk that parts which really contain defects are not tested 

enough, whereas mature parts that contain no defects are tested too intensively. 

In the case that test foci are defined in practice, this decision is based on testers’ 

experience rather than on facts. Although experience is important in testing, 

testers report the lack of a systematic approach when deciding on test foci 

(Illes-Seifert and Paech 2008).  

In literature, there are two basic kinds of approaches that support the decision 

on test foci. On the one hand, text books that propose heuristics for defects, for 

instance parts of the software developed by a distributed team, new compo-

nents, new technology, etc. The main drawback of these heuristics is the lack of 

empirical validation. In addition, testers have to select those aspects that they 

think to be applicable in their context. On the other hand, another piece of re-

search work focuses on the development of more and more complex algorithms 

for defect prediction like neuronal nets or decision trees. The main drawback of 

these approaches is that they are not applicable in practice. This is the case for 

the following main reasons: 

a. The approaches propose complex algorithms that are not easy to use in 

practice because they are difficult to understand.  

b. The complex formulae hinder that the nature of the detected relation-

ships is understood. 

c. There is no empirical validated consensus over the superiority of one 

model over another. 

This thesis has two main goals. First, it aims to contribute towards a systematic 

approach for the selection of the test foci that is applicable in practice. Second, it 

aims to increase the empirical body of knowledge in the area of empirically 

validated indicators for defects in code. 

The main results of this thesis that contribute to achieve these goals are summa-

rised in Figure 11.1 and are detailed in the rest of this section. 
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Figure 11.1 - Results of the thesis 

The state of practice concerning testing processes in industry has been analysed 

in a qualitative study (Contribution 1)46. The study has been performed based 

on a decision framework that structures the testing process by a decision hier-

archy (Contribution 2)47. The results of the qualitative analysis as well as the 

evaluation of the state of the art motivate the empirical approach for the test fo-

cus selection (Contribution 3)48. Mature sciences have a solid empirical body of 

knowledge in common. The state of the art in empirical software engineering is 

still immature. Thus, extensive experimentation on indicators for defects in 

software has been performed (Contribution 4)49 and (Contribution 5). On the 

one hand, the empirical studies contribute to the enrichment of the empirical 

body of knowledge in the area of empirically validated indicators for defects in 

software. On the other hand, they serve to validate the empirical approach. Par-

ticularly, the studies explore the empirical evidence for the Pareto-Principle as 

well as the usefulness of structural and historical characteristics of software as 

indicators for defects. The empirical studies that make up Contribution 4 have 

been performed in the context of open source development. The empirical 

study that makes up Contribution 5 has been performed in an industrial set-

ting.  

Contribution 1 – Qualitative analysis of the testing process.   The main goal of 

the qualitative analysis is to identify strengths and weaknesses of testing proc-

esses in practice in order to develop solutions that address the main problems 

                                                      

46 (Illes-Seifert and Paech 2008) 
47 (Borner, Illes, and Paech 2007), (Borner, Illes-Seifert, and Paech 2007) 
48 (Illes-Seifert and Paech 2010) 
49(Illes-Seifert and Paech 2008a), (Illes-Seifert and Paech 2008b), (Illes-Seifert and Paech 2009),   

  (Illes-Seifert and Paech 2010) 
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identified by testers. The analysis is performed as an interview study with ex-

perienced testers. The benefit of a qualitative study is that it gives a detailed pic-

ture of complex characteristics and issues in software testing. The results of this 

study show the state of practice with respect to testing processes. Particularly, 

testers emphasise that testing activities require system specific experience. In 

addition, one of the main challenges for testers is the definition of the test foci. 

From the researcher’s point of view, the results are important because they 

highlight issues encountered in practice that should be considered in research. 

Particularly, it is important to consider the “man in the loop” when developing 

new methods, tools, and processes. In addition, the study shows how impor-

tant it is to involve practitioners when developing new approaches. The results 

of this analysis served as the basis for this thesis as it addresses the main issues 

mentioned by testers.  

Contribution 2 – Decision based framework for the characterisation of test 

processes. The main goal of developing the decision based framework for the 

characterisation of test processes is to structure the testing process from the 

point of view of the decisions to be made during it. The main benefit of a deci-

sion based view of processes in general, and of the testing process in particular 

is that the awareness of decisions to be made increases their quality. It forces the 

decision-makers, in this case the testers, to search for alternatives and to trade 

off between them. The result is a decision hierarchy that comprises all decisions 

made during testing and reflects dependencies between them. The hierarchy is 

useful for researchers and testers. From the practitioner’s point of view, the hi-

erarchy is useful because it highlights decisions that are often made implicitly 

and that therefore are of poor quality. In addition, practitioners get a deeper 

understanding of the complex decision making process during testing. Thus, 

the hierarchy can be used as an introducing guideline to the complex area of 

testing processes. From the researcher’s point of view, the decision hierarchy is 

useful, too. First, it enriches the body of knowledge on the subject of decision-

making in the area of testing and builds the foundation for further research in 

the area of rationale management. Rationale management research aims at 

making design and development decisions explicit to all stakeholders. As 

shown in this thesis, the decision hierarchy can be used by researchers as an 

evaluation framework in many contexts. 

Contribution 3 – Empirical approach for justified definition of the test foci. 

The main goal of the empirical approach is to provide a systematic procedure 

for the justified selection of the test foci that is applicable in practice. The result-

ing approach describes how to identify indicators for defects in software. It 

proposes a combination of statistical procedures and visual representations in 

order to analyse the program’s structure and its history and to search for em-

pirically validated indicators for defects in software. For first exploratory analy-

ses that aim to explore the data, simple analyses of defect variance are pro-

posed. The visualisation occurs in terms of a DVA (defect variance analysis) 

diagram. Then, detailed analyses are performed in order to get more precise re-

sults. By combined analyses of defect variance, the relationship between more 
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indicators and defects in software is analysed. Again, an adjusted DVA is used 

to visualise the results. The approach showed the following benefits from the re-

searchers’ as well as from the practitioners’ point of view: 

a) It is easy to understand and to use (due to visual representations);  

b) It is based on facts (statistical significance of the results is re-

quired);  

c) It is experience based, i.e. the approach involves testers in the selec-

tion and validation of indicators for defects in software. 

Contribution 4 – Extensive experimentation. The empirical approach is vali-

dated in the context of seven large open source programs. The main goals of the 

empirical analyses are the validation of the empirical approach on the one hand 

and the enrichment of the empirical body of knowledge in the area of empirical 

validated indicators for defects in software on the other hand. The results show 

that the approach is general enough to be applied in order to determine struc-

tural and historical indicators for defects. It is also specific enough to highlight 

indicators for defects in software for each analysed open source program. In the 

following, the main contributions that enlarge the empirical body of knowledge 

are presented. 

4.1 PARETO-Analysis 

The main goal of the PARETO-Analysis is to analyse whether a small part of the 

software contributes to most of the defects. The results show that a small num-

ber of files accounts for the majority of the defects. This result is confirmed by a 

high number of other empirical studies on this topic. But, there is no evidence 

that a small part of the system’s code size accounts for the majority of the de-

fects. This result is also supported by other researchers. Apart from one study, 

the analysis of the Pareto principle across several releases has not been focused 

by researchers so far. Consequently, there is some empirical evidence that the 

Pareto principle holds for all releases of software. Table 11.1 summarises the 

hypotheses considered in this thesis, as well as the results along with a com-

parison to related work. The first column indicates the ID of the corresponding 

hypothesis, the second column its description. The third column shows the re-

sults of the empirical analysis presented in this thesis. The last two columns in-

dicate the results obtained by other researchers as well as the amount of em-

pirical research that has been conducted on the corresponding topic. 

To sum up, defects concentrate on a small part of the files but not on a small 

part of the code. From the practitioner’s point of view it can be concluded that 

testers and maintainers need additional indicators to prioritise testing and 

maintenance activities. In addition, testers can use the results of the Pareto 

analysis in order to select parts of the code for which they require an intensifi-

cation of the unit testing coverage criteria. From the researchers’ point of view it is 

important to consider that algorithms that determine the most fault-prone files, 

like those presented in (Kim et al. 2008), are only useful when considering the 
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amount of code covered by these files. Finally, further empirical studies that 

address the hypotheses P2 and P4 have to be conducted in order to gain more 

empirical evidence for the validity of the Pareto principle across several re-

leases. 

H ID Hypothesis 

Description 

Result Evidence from related 

work 

   Result 

 

Number 

of studies 

  

P1 A small number of files accounts for the 

majority of the defects. 
   

P2 If P1 applies to one release, then it ap-

plies to all releases of a software project. 
   

 

P3 A small part of the system’s code size 

accounts for the majority of the defects. 
   

 

P4 If P3 applies to one release, then it ap-

plies to all releases of a software project. 
   

 

Table 11.1 - Pareto analysis summary  

Legend 

 Hypothesis is confirmed.  

 Hypothesis is rejected. 

 Hypothesis is partly confirmed. 

 A high amount of study exists to the corresponding topic (>10).  

There are very few studies to the corresponding topic (0-3). 

There are some studies to the corresponding topic (4-9).  

 

4.3 BAD SMELL-Analysis 

The main goal of the BAD SMELL-Analysis is to explore whether entities for 

which particular bad smells apply are more fault-prone than entities for which 

bad smells do not apply. The results show that there are some bad smells that 

are good indicators for defects, whereas the God Class (GC) bad smell is the 

best indicator for a class’ defects. On average, files containing classes for which 

the GC bad smell applies are 6 times more fault-prone than files that do not 

contain classes for which the GC bad smell applies. Apart from the study pre-

sented in (Shatnawi and Li 2006), there are no empirical results on this topic. 

The study presented in (Shatnawi and Li 2006) considers only a part of the bad 

smells analysed in this thesis. For this part, the results are similar to the results 

obtained in this thesis.  

From the practitioners’ point of view it is important to know which bad smells are 

good indicators for defects for several purposes. First, testers can use these in-

dicators to define the test foci and maintainers can prioritise refactoring activi-

ties not only based on factors like understandability, changeability etc., but also 

based on analyses on fault-proneness, i.e. if parts of the software for which a 

bad smell applies are more fault-prone than parts for which a bad smell does 

not apply, maintainers can use this information to prioritises maintenance ac-
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tivities. Knowing which bad smells are indicators for defects in code is also use-

ful for developers. The integration of “smell detectors” in their programming 

environment enables early warning on possible defects.  

From the researchers’ point of view it is important to replicate empirical studies 

focusing on the relationship between bad smells and defects in code. Apart 

from one study, this research area has been neglected in research. 

Table 11.2 summarises the hypotheses formulated for the BAD SMELL 

ANALYSIS along with the results obtained as well as a comparison to the study 

presented in (Shatnawi and Li 2006). 
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H ID Hypothesis 

Description 

Result Results ob-

tained by 

(Shatnawi and 

Li 2006) 

A-FE  

Feature 

Envy 
 

A file with at least one method for which the FE 

bad smell applies is more fault-prone than a file 

that has no methods with this bad smell. 

  

A-GM  

God Method 

A file with at least one method for which the GM 

bad smell applies is more fault-prone than a file 

that has no methods with this bad smell. 

  

A-GC 

God Class 

A file containing at least one class for which the 

GC bad smell applies is more fault-prone than a 

file that has no class for which the GC bad smell 

applies. 

  

A-SS 

Shotgun 

Surgery 

A file containing at least one class for which the SS 

bad smell applies is more fault-prone than a file 

that has no class for which the SS bad smell ap-

plies. 

  

A-RB 

Refused 

Bequest 

A file containing at least one class for which the RB 

bad smell applies is more fault-prone than a file 

that has no class for which the RB bad smell ap-

plies. 

  

A-MC 

Misplaced 

Class 

A file containing at least one class for which the 

MC bad smell applies is more fault-prone than a 

file that has no class for which the MC bad smell 

applies. 

 - 

A-DC 

Data Class 

A file containing at least one class for which the 

DC bad smell applies is more fault-prone than a 

file that has no class for which the DC bad smell 

applies. 

  

A-LoSta 

Lack of State 

A file containing at least one class for which the 

LoSta bad smell applies is more fault-prone than a 

file that has no class for which the LoSta bad smell 

applies. 

 - 

A-ISP 

ISP Viola-

tion 

A file containing at least one class for which the 

ISP bad smell applies is more fault-prone than a 

file that has no class for which the ISP bad smell 

applies. 

 - 

A-LoStr 

Lack of 

Strategy 

A file containing at least one class for which the 

LoStr bad smell applies is more fault-prone than a 

file that has no class for which the LoStr bad smell 

applies. 

 - 

A-LoV 

Lack of 

Visitor 

A file containing at least one class for which the 

LoV bad smell applies is more fault-prone than a 

file that has no class for which the LoV bad smell 

applies. 

 - 

A-LoB 

Lack of 

Bridge 

A file containing at least one class for which the 

LoB bad smell applies is more fault-prone than a 

file that has no class for which the LoB bad smell 

applies. 

 - 

A-GP 

God Pack-

age 

A package for which the GP bad smell applies is 

more fault-prone than packages for which the GP 

bad smell does not apply. 

 - 

A-WSI 

Wide Sys-

tem Inter-

face 

A package for which the WSI bad smell applies is 

more fault-prone than packages for which the WSI 

bad smell does not apply. 

 - 

Table 11.2 - Bad smell analysis summary 
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Legend  

 Hypothesis is confirmed.  

 Hypothesis is rejected.  
 Hypothesis is partly confirmed.  
-   Hypothesis not analysed in literature so far. 

 

Contribution 5 

The empirical approach presented in Chapter 6 has been applied in an indus-

trial context. The main goals of this study are:  

a) to increase of the empirical body of knowledge and  

b) to validate the approach in practice. 

In the following, the results of the HISTORY-Analysis are summarised along 

with the lessons learned from the application of the empirical approach. 

4.2 HISTORY-Analysis 

The main goal of the HISTORY-Analysis is to investigate whether historical 

characteristics indicate defects in software. The results show that there are some 

historical characteristics that are good indicators for a file’s defect count and 

consequently, these characteristics are good indicators for the selection of the 

test foci. Particularly, the file’s fluctuation and the file’s stability proved to be 

good indicators in the analysed industrial context.  By combining these indica-

tors, more precise results could be obtained and the set of fault-prone files can 

be restricted. Accordingly, fluctuating unstable files proved to be significantly 

more fault-prone than the other files in the analysed context. 

The file’s age can be used as indicator for defects, but the file’s fluctuation and 

its stability proved to be better indicators in the analysed context. The results of 

the study also show that there is little evidence from the data that the number 

of co-changed files is a good indicator for a file’s defects. 

The hypothesis concerning the file’s fluctuation is confirmed by results in litera-

ture only partly. In contrast, the FC metric is confirmed by a high number of 

studies as a good indicator for defects in software. For the variable “age”, there 

are too few empirical studies to be able to derive evidence in favour or against 

one indicator. In the case of the number of co-changed files, there is no empiri-

cal study that addressed the evaluation of this particular characteristic.  

From the practitioner’s point of view it can be concluded that there exist historical 

characteristics that are indicators for defects in software. Since results are often 

inconclusive, it is important to apply the empirical approach in context in order 

to determine which indicators apply in the own organisation or project. The 

best indicator that is also supported by a high number of other studies is the 

frequency of change. This is a good starting point for prioritizing testing activi-

ties.  
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From the researchers’ point of view it is important to replicate empirical studies in 

order to get a deeper understanding of factors that influence the software’s de-

fect count and to build a reliable empirical body of knowledge.  

Table 11.3 summarises the hypothesis formulated for the HISTORY ANALYSIS 

along with the results obtained as well as a comparison to similar studies re-

ported by other researchers. 

H ID Hypothesis 

Description 

Result Evidence from re-

lated work 

   Result 

 

Number 

of studies 

  

H-CS-1 
 

Fluctuating files have on average more 

defects than non-fluctuating files. 
   

H-CS-2 Stable files have on average more de-

fects than unstable files. 
   

H-CS-3 Files with a number of co-changed files 

above average are more fault-prone 

than files with a number of co-changed 

files below average.  

 -  

H-CS-4 A file’s age is an indicator for its defect 

count. 
   

H-CS-4.1 Newborn and young files are the most 

fault-prone files. 
   

H-CS-4.2 Old files have the lowest defect count.    

Table 11.3 - History analysis summary 

Legend 

 Hypothesis is confirmed.  

 Hypothesis is rejected. 

 Hypothesis is partly confirmed. 

-   Hypothesis not analysed in literature so far. 

 A high amount of study exists to the corresponding topic (>10).  

There are very few studies to the corresponding topic (0-3). 

There are some studies to the corresponding topic (4-9). 

The study performed in an industrial context also aims to validate the empirical 

approach. From the practitioners’ point of view, this study shows several benefits. 

First, the study helped testers to justify their presumptions by facts. This ap-

proach helps them to prioritise testing activities and to select the test foci for 

testing new functionality but also to select the test foci for regression testing.  In 

addition, based on the results of the study, several improvements of the devel-

opment process could be proposed above all concerning a better tool support 

for data collection and a purposeful selection of code reviewing activities. One 

improvement particularly concerns the adjustment of the VCS so that it is man-

datory to indicate the defect ID (or the requirement ID) when code is checked 

in. With this adjustment, a better analysis is possible, since it is easy to relate 

defects to corresponding software entities.  
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From the practitioners’ and researchers’ point of view, the study shows how time-

consuming it is to collect and reconstruct information from the past and moti-

vates a goal-oriented measurement. Having a goal in mind, the needed infra-

structure for a (semi-)automatic data collection can be provided. Thus, the col-

lection of the data at creation time is facilitated and avoids the time-consuming 

re-construction of lost information. 

11.2 Future research directions 

The first goal of this thesis is the definition of an empirical approach to find 

context specific indicators that allow the justified selection of the test foci. The 

approach presented in Chapter 6 is an important step towards this goal. 

Possible further improvements include the following aspects: 

 The development of concepts for tool support containing data extrac-

tors, data analysis components, as well as a visualisation dashboard 

that allow testers to quickly obtain information relevant for making 

testing decisions based on data contained in several systems, for in-

stance in defect tracking systems, versioning control systems, etc. A 

high degree of automation of the data collection and analysis process is 

prerequisite for this approach to be used in practice. 

 In addition, tool support should be developed that gives immediate 

feedback to developers about parts of the software that could contain 

defects. This enables fast feedback to developers and prevents defects. 

 The approach presented in this thesis addresses the justified selection of 

the test foci. In future research, this approach can be generalised and 

evaluated for any kind of quality characteristics like maintainability, 

testability, etc.  

 In addition, in this research work, the main focus is on the analysis of 

historical and structural characteristics of the software’s code. Further 

research should consider other characteristics. For instance, structural 

characteristics of other artefacts like the requirements specification can 

be analysed. In this context, questions like “Does a complex require-

ment lead to more fault-prone software components than a simple re-

quirement?” should be considered. Furthermore, additional historical 

characteristics of the whole software development process, for instance 

the history of a requirement, should be addressed. In this context, ques-

tions like “Does an often changed requirement lead to more fault-prone 

software components than a stable requirement?” should be analysed. 

 One issue mentioned by testers that is not addressed in this thesis con-

cerns the poor quality of the requirements specification. Research in the 

area of requirements engineering should consider the testers as stake-

holders of the requirements specification and integrate them into the 

process of requirements specification and validation. 
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The second goal of this thesis is to enrich the empirical body of knowledge in 

the area of empirical validated indicators for defects in software. The extensive 

empirical studies comprising several releases of seven open source programs as 

well as a commercial system are a step towards this goal. Nevertheless, in order 

to be able to have empirical evidence, experimentation in this area should be in-

tensified. For instance, apart from one empirical study, there is no empirical 

work on the relationship between bad smells and defects in literature. 

The approach presented in this thesis proved of value when applied in practice. 

It shows strong indications for its feasibility and efficiency. Nevertheless, re-

search work to be done in future must concentrate on putting the approach into 

practice within different organisations and project contexts (e.g. organisations 

that differ in size, application domain, development processes, etc.). This will 

make it possible to improve the approach based on the effects that its usage 

shows within several project environments. 

In future, the awareness of the importance of making empirically justified deci-

sions (e.g. for test foci definition but also in general, when deciding between al-

ternative methods and tools) will increase. Simultaneously, more and more het-

erogeneous tools will be developed that produce an immense amount of data. 

Thus, it will become more and more important for researchers and practitioners 

to be able to analyse the data produced during the lifecycle of the software 

purposefully and efficiently. This thesis proposes a generic approach that ad-

dresses some of the issues that arise when large amounts of data have to be col-

lected and analysed in order to make justified decisions on the test foci.  

 

 



 

APPENDIX 

 

A 1 Validation of the decision hierarchy 

The results of the case studies performed to validate the decision hierarchy pre-

sented in Chapter 4 are summarised below. 

A 1.1 Refinement  

The presented hierarchy is generic, i.e. it is independent from the testing level 

(e.g. system testing level or unit testing level). But the hierarchy can also be re-

fined in order to identify the specific issues and decisions by instantiating the 

generic decision hierarchy. To illustrate the refinement, the decision hierarchy 

has been applied to the system testing process (STP) 

Figure A. 1.1 shows the refined decisions. It illustrates all decision levels (left 

column) as well as the corresponding decisions of the generic testing process 

(middle column) and the specific decisions of the system testing process (right 

column). Specific decisions in the right column refine corresponding decisions 

of the generic testing process at the same decision level. This is illustrated in 

Figure A. 1.1 by using two labels within one “decision box”. The upper label of 

a box describes the decision of the generic testing process. The lower label 

specifies the corresponding specific decision of the STP. 

Within the STP, decisions concerning the test basis and test focus are refined. 

These are functional and quality requirements within the STP in order to decide 

on critical parts to be tested. On test approach level, decisions on model cover-

age and the degree of automation refine the generic decisions. 

At test design level, the kind of external systems and the automation tools to be 

used in the test execution phase are decided. In addition, decisions on the opti-

mal test case order minimizing the setup-overhead for the test cases play an 

important role.  

At test realisation level, the STP refines the decisions on concrete test data and 

concrete test cases. In addition, decisions concerning GUI steps are important in 

order to define the concrete test cases. Moreover, GUI data are used to select 

concrete test data. In parallel, the GUI layout, i.e. how the GUI data are ar-

ranged on the screen, influences the concrete test cases.  

At the last two decision levels there are no specific decisions within the STP. 
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Figure A. 1.1 - Decision refinement for the system testing process 

(Borner, Illes-Seifert, and Paech 2007a/b) 

 

A 1.2 Test process analysis for process improve-
ment 

Based on the decision hierarchy, the testing process of an organisation has been 

analysed in order to find its strengths and weaknesses. The organisation pro-

vides system solutions in the area of real-time operations. Testers in this organi-

sation are organised in an independent testing group. The ratio of testers to de-

velopers is 1:4. The test process analysis was based on document reviews as 

well as on interviews. All interviewees are experienced testers, with up to ten 

years of experience.  

All decisions at specification level are made by the requirements engineering 

team, whereas the rest of the decisions are made by the testing team. Further-

more, there are decisions made implicitly (e.g. all decisions at test goal and test 

strategy level) and decisions made explicitly (e.g. all decisions at test design 

level). Implicit decisions are not documented, whereas explicit decisions are 

(partially) documented within test artefacts. All decisions on test goal and test 

strategy level are made implicitly. The testing team does not perform a risk 

analysis in order to make sound decisions on test foci or test intensities. Thus, 

the end of testing activities is not determined by criteria defined in advance, but 

by current test results and the “feeling” of the testing team regarding the matur-

ity and quality of the product. The test team uses two “standard” test design 

techniques (domain testing and boundary value analysis). Other techniques are 

not considered and evaluated with respect to their efficiency in the project’s 

context. Thus, decisions on the test model, the design technique as well as on 
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coverage criteria are made implicitly, without a thorough analysis of alterna-

tives. 

Logical test cases and test data are explicitly defined on the basis of require-

ments and documented within a test management tool. Decisions concerning 

concrete test cases and test data are made explicitly and are mostly documented 

during test execution within test protocols. The decision on the concrete test or-

der is made explicitly, but only documented in case of a failed test run. A matrix 

of concrete test environments is also managed by the testing team. Decisions on 

logical test environments as well as on the logical test order are made implicitly 

and are not documented. 

The evaluation of a test run is made explicitly for each executed test case. If a 

failure occurs, a process concerning the life cycle of a defect is passed through, 

from its classification, localisation and correction until its retest. At the end of a 

test cycle, the test team evaluates the results. This decision is made explicitly, 

but only summarises the test results. Since the definition of test end criteria is 

not performed, the evaluation of the test cycle occurs without a reference to de-

fined criteria. 

Implications: The decision based analysis highlights the following main 

strengths and weaknesses of the testing process. Missing involvement of the 

testing team into decisions at specification level leads to input which is not well 

suited to be used in the testing process. Thus, complex user scenarios are not 

part of the documentation provided by requirements engineers. However, these 

scenarios would be very precious for system testing as they lead to realistic test 

cases.  

Another weakness concerns the unstructured decision process on test goal as 

well as on test approach level. Thus, a thorough evaluation against goals is not 

possible. Improvement efforts should concentrate on methodologies that help 

testers to define objective and measurable goals in advance. A strength of the 

testing process is the thorough documentation of decisions concerning test 

cases and test data supporting the repeatability of test runs for instance within 

regression testing. 

A 1.3 Evaluation framework for testing approaches in 
the literature 

The decision hierarchy can also be used as a framework for the comparison of 

different testing approaches. It permits the classification of approaches depend-

ing on whether they provide (automated) support for a specific decision or not. 

Table A.1.1 exemplifies how approaches for use case based testing can be com-

pared with one another on the basis of the decision hierarchy, where this exam-

ple considers only three of the seven decision levels. A complete overview of all 

approaches is presented in (Illes and Paech 2006). Comparing the approaches 

on the basis of the decision hierarchy allows the analysis of their similarities 

and differences. As illustrated in Table A.1.1, some decisions (e.g. the decision 
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concerning the test model) are supported by all approaches, whereas other de-

cisions (e.g. the decision concerning quality requirements) are partially sup-

ported by only a subset of the approaches. 

 

Table A.1.1- Applying the decision hierarchy to compare testing ap-

proaches 

 X = Approach supports decision, (X) = Approach partially supports decision 

(Illes and Paech 2006) 

[1]  (Ahlowalia 2002), [2]  (Binder 1999), [3]  (Briand and Labiche 2002) 

[4]  (Carniello, Jino, and Lordello 2004), [5]  (Grieskamp et al. 2001), 

[6]  (Nebut et al. 2003), [7]  (Rupp and Queins 2003), [8]  (Ryser and Glinz 2003) 

[9]  (Whittle, Chakraborty, and Krueger 2005) 

 

A 1.4 Evaluation framework for testing tools 

The decision hierarchy served as the basis for the design of a questionnaire used 

within a survey evaluating 13 commercial and open source test management 

tools (Illes et al. 2006). The evaluation is primarily based on the information 

provided by tool vendors who completed the questionnaire. The goal was to 

analyse to what extent a decision is supported by a test management tool. Based 

on the decision hierarchy, questions addressing the functional characteristics of 

the testing tools can easily be derived. For instance, if a test management tool 

integrates requirements management functionality, it would provide support 

for decisions on specification level by facilitating the identification of functional 

and quality requirements. 
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A 2 Pareto distribution of defects in code 

Table A.2.1 shows the frequency distribution of defects in code. For each ana-

lysed release of an OSP, the percentage of code and the percentage of the most 

fault-prone files that contain approximately 80% of the defects are indicated. 

 

OS-Project Release % of code % of files at 80% of defects 

1. Ant ant 1.5.3 22,72 8,59 80,0 

 ant 1.6 29,25 14,06 79,9 

  ant 1.7 36,57 11,09 79,9 

2. ApacheFOP ApacheFOP 0.93 31,16 11,93 79,8 

 ApacheFOP 0.94 17,93 8,87 80,0 

3. CDK CDK 2005 29,66 17,18 80,1 

 CDK 2006 42,33 17,18 80,0 

  CDK 2 17,24 7,03 79,9 

4. Freenet freenet 0.5.0 31,73 14,66 79,9 

 freenet 0.5.1 18,71 8,3 80,05 

  freenet 0.7 64,47 36,64 80 

5. Jmol Jmol 9 15,62 10,06 78,5 

 Jmol 10 44,56 15,38 79,9 

  Jmol 11.2 54,44 22,89 80,0 

6.OS Cache oscache 2.0.1. 43,14 13,98 80 

  
oscache 2.1.1. 30,25 8,16 80,6 

oscache 2.4 39,77 13,39 81,1 

7. TVBrowser tbrowser 0.9 34,09 14,0 80,4 

 tbrowser 1.0 16,28 8,65 82,0 

  tbrowser 2.6 22,72 8,59 80,0 

Table A.2.1 - Pareto distribution of defects in code 

 

  



 181 

 
 

A 3 Bad smell detection strategies 

In the following, a summary of bad smell detection strategies as presented in 

(Marinescu 2002)is given. 

Method level bad smells 

FeatureEnvy := ((AID, HigherThan(4)) and (AID, TopValues(10%)) and (ALD, 

LowerThan(3)) and (NIC, LowerThan(3)) 

AID  = Access of Import-Data 

ALS  = Access of Local Data 

NIC  = Number of Import Classes 

GodMethod := (LOC, TopValues(20%)) but not in (LOC, LowerThan(70)) and 

((NOP, HigherThan(4) or (NOLV, HigherThan(4))) and (MNOB, HigherThan(4)) 

LOC  = Lines Of Code 

NOP  = Number Of Parameters 

NOLV  = Number Of Local Variables 

MNOB  = Maximum Number Of Branches 

 

Class level bad smells 

DataClasses := ((WOC, BottomValues(33%)) and (WOC, LowerThan(0.33))) and 

((NOPA, HigherThan(5)) or (NOAM, HigherThan(5))) 

WOC  = Weight of a Class 

NOPA  = Number Of Public Attributes 

NOAM  = Number Of Accessor Methods 

GodClasses := ((ATFD, TopValues(20%)) and (ATFD, HigherThan(4))) 

and ((WMC, HigherThan(20)) or (TCC, LowerThan(0.33)) 

ATFD   = Access To Foreign Data 

WMC   = Weighted Method Count 

TCC     = Tight Class Cohesion 
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ShotgunSurgery := ((CM, TopValues(20%)) and (CM, HigherThan(10))) and 

(CC, HigherThan(5)) 

CM      = Changing Methods 

WCM  = Weighted Changing Methods 

CC       = Changing Classes 

RefusedBequest := ((AIUR, BottomValues(25%)) but not in (DIT, Lower-

Than(1))) and (AIUR, LowerThan(0.33))) 

IUR  = Inheritance Usage Ratio 

AIUR  = Average Inheritance Usage Ratio 

DIT  = Depth of Inheritance Tree 

 

MisplacedClass := (CL, LowerThan(0.33) and ((NOED, TopValues(25%)) and 

(NOED, HigherThan(6))) and (DD, LowerThan(3)) 

NOED  = Number Of External Dependencies 

CL   = Class Locality 

DD  = Dependency Dispersion  
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Lack-of-Strategy bad smells 

LackOfBridge := LackOfBridge-deep or LackOfBridge-shallow 

LackOfBridge-deep := (NOD, HigherThan(8)) and ((HIT, HigherThan(1)) and 

(LR,HigherThan(0.66))) and (NPubM, HigherThan(3)) 

LackOfBridge-shallow := (NOD, HigherThan(6)) and ((CR, HigherThan(0.75)) 

and (HIT, HigherThan(0))) and(NPubM, HigherThan(3)) 

NOD    = Number Of Descendants 

HIT    = Height of Inheritance Tree 

LR     = Leaves Ratio 

CR     = Child Ratio 

NPubM  = Number Of Public Methods 

LackOfState := (AMW, HigherThan(4)) and (NOA, HigherThan(3)) and 

((WMC, HigherThan(10)) or (NPubM, HigherThan(3))) 

AMV  = Average Method Weight 

NOA  = Number Of Attributes 

NPubM  = Number Of Public Methods 

WMC = Weighted Method Count 

LackOfStrategy := LackOfStrategy-OneClass or LackOfStrategy-

ClassHierarchy 

LackOfStrategy-OneClass := (WMC, HigherThan(20) and (WMC, TopVal-

ues(25%))) and (NOM, HigherThan(20)) or (TCC, LowerThan(33%)) 

LackOfStrategy-ClassHierarchy := (ANOM, HigherThan(1.0)) and (NPubM, 

HigherThan(3)) 

WMC  = Weighted Method Count 

TCC  = Tight Class Cohesion 

NPubM  = Number Of Public Methods 

NOM  = Number Of Methods 

ANOM  = Average Number of Overridden Methods 
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LackOfVisitor := (AOR, HigherThan(0.5) and (NOD, HigherThan(3)) and 

(NPubM, HigherThan(5)) 

OR   = Override Ratio 

AOR  = Average Override Ratio 

NOD  = Number Of Descendants 

NPubM  = Number Of Public Methods 

ISPViolation := ((CIW, TopValues(20%) butnotin (CIW, LowerThan(10))) and 

(AUF, LowerThan(0.5)) and (COC, HigherThan(3)) 

CIW  = Class Interface Width 

COC  = Clients Of Class 

AUF  = Average Use of Interface 

Package level bad smells 

GodPackage := ((PS, HigherThan(20)) and (PS, TopValues(25%)) and 

(NOCC, HigherThan(20)) and (NOCP, HigherThan(3)) 

PS         = Package Size 

NOCC = Number Of Client Classes 

NOCP = Number Of Client Packages 

PC        = Package Cohesion 

WideSubystemInterface := (PIS, HigherThan(10)) and (PUR, HigherThan(0.75)) 

PIS   = Package Interface Size 

PUR = Package Usage Ratio 
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A 4 Mann-Whitney test for the bad smell FE 
and GM  

In this chapter, the results of the Mann-Whitney non parametric test for the bad 

smell Feature Envy and God Method are presented.  

 

Table A.4.1 - Man-Whitney test for the FE bad smell 

 

OSP Group % Mean Rank Rank Sum Mann-Whitney U Z Significance FE

FE-Group 79,31 336,80 193660,50 28060,50 -6,71 1,96102E-11

FE-Group 20,69 463,43 69514,50

FE-Group 77,74 434,66 305131,50 58378,50 -4,89 9,96118E-07

FE-Group 22,26 512,56 103024,50

FE-Group 75,65 517,47 434161,00 81781,00 -10,23 1,38197E-24

FE-Group 24,35 671,61 181334,00

FE-Group 80,00 417,65 285675,00 51405,00 -3,72 0,000196005

FE-Group 20,00 469,39 80265,00

FE-Group 100,00 451,50 407253,00 n/a

FE-Group 0,00 0,00 0,00

FE-Group 100,00 483,50 467061,00 n/a

FE-Group 0,00 0,00 0,00

FE-Group 80,05 615,46 629619,50 105843,50 -5,57 2,58526E-08

FE-Group 19,95 735,93 187661,50

FE-Group 78,13 518,60 420581,00 91315,00 -0,32 0,747565056

FE-Group 21,87 522,73 118660,00

FE-Group 99,86 358,31 256189,50 219,50 -0,77 0,443653503

FE-Group 0,14 496,50 496,50

FE-Group 100,00 994,50 1977066,00 n/a

FE-Group 0,00 0,00 0,00

FE-Group 71,34 214,10 70867,00 15921,00 -4,80 1,55528E-06

FE-Group 28,66 278,29 37013,00

FE-Group 98,82 85,14 14218,00 144,00 -0,56 0,573769181

FE-Group 1,18 73,50 147,00

FE-Group 79,12 86,40 12442,00 2002,00 -3,08 0,002086516

FE-Group 20,88 110,82 4211,00

FE-Group 78,01 155,09 40169,00 6499,00 -4,39 1,13715E-05

FE-Group 21,99 206,97 15109,00

FE-Group 100,00 47,00 4371,00 n/a

FE-Group 0,00 0,00 0,00

FE-Group 100,00 49,50 4851,00 n/a

FE-Group 0,00 0,00 0,00

FE-Group 76,99 51,78 4505,00 677,00 -4,49 7,12752E-06

FE-Group 23,01 74,46 1936,00

FE-Group 100,00 25,50 1275,00 n/a

FE-Group 0,00 0,00 0,00

FE-Group 99,46 93,06 17123,50 80,50 -0,38 0,706913249

FE-Group 0,54 81,50 81,50

FE-Group 67,23 394,97 219603,00 64757,00 -5,61 2,0274E-08

FE-Group 32,77 453,04 122775,00

CDK 2005

Apache FOP 0.9.4

Apache FOP 0.9.3

ANT 1.7.0

OSCache 2.0.1

Jmol 11

Jmol 10

Jmol 9

CDK 1.0.1

CDK 2006

Freenet 0.7

Freenet 0.5.1

Freenet 0.5.0

ANT 1.5.3

ANT 1.6.0

TVBrowser 2.6

TVBrowser 1.0

TVBrowser 0.9.1

OSCache 2.4.1

OSCache 2.1.1
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Table A.4.2 - Man-Whitney test for the GM bad smell 

 

  

OSP Group % Mean Rank Rank Sum Mann-Whitney U Z Significance GM

ANT 1.5.3 GM-Group 95,31 350,93 242489,50 3403,50 -7,12 1,08368E-12

GM-Group 4,69 608,40 20685,50

GM-Group 95,35 441,71 380311,00 9220,00 -7,04 1,99226E-12

GM-Group 4,65 662,98 27845,00

GM-Group 96,03 542,50 577761,50 10116,50 -9,52 1,80071E-21

GM-Group 3,97 857,58 37733,50

GM-Group 85,61 411,44 301172,00 32894,00 -7,27 3,54931E-13

GM-Group 14,39 526,57 64768,00

GM-Group 92,68 441,93 369454,00 19588,00 -5,53 3,14826E-08

GM-Group 7,32 572,71 37799,00

GM-Group 93,37 471,03 424867,50 17614,50 -6,16 7,27723E-10

GM-Group 6,63 659,27 42193,50

GM-Group 92,49 622,55 735857,50 36704,50 -6,88 6,11821E-12

GM-Group 7,51 848,16 81423,50

GM-Group 88,63 501,88 461725,50 38065,50 -9,27 1,9499E-20

GM-Group 11,37 656,91 77515,50

GM-Group 95,25 351,45 239691,50 6788,50 -4,68 2,81116E-06

GM-Group 4,75 499,84 16994,50

GM-Group 97,89 994,50 1935297,00 40866,00 0,00 1

GM-Group 2,11 994,50 41769,00

GM-Group 92,46 226,18 97032,50 4797,50 -3,66 0,000252089

GM-Group 7,54 309,93 10847,50

GM-Group 90,53 85,08 13018,00 1211,00 -0,12 0,906512121

GM-Group 9,47 84,19 1347,00

GM-Group 93,96 88,99 15216,50 510,50 -3,08 0,002103888

GM-Group 6,04 130,59 1436,50

GM-Group 84,34 158,82 44470,50 5130,50 -3,64 0,000273721

GM-Group 15,66 207,84 10807,50

GM-Group 95,70 45,76 4072,50 67,50 -2,82 0,004866787

GM-Group 4,30 74,63 298,50

GM-Group 95,92 48,21 4532,00 67,00 -3,57 0,000352962

GM-Group 4,08 79,75 319,00

GM-Group 94,69 55,89 5980,50 202,50 -2,20 0,027824904

GM-Group 5,31 76,75 460,50

GM-Group 98,00 25,18 1234,00 9,00 -1,36 0,173990666

GM-Group 2,00 41,00 41,00

GM-Group 94,59 91,51 16015,00 615,00 -2,76 0,005842258

GM-Group 5,41 119,00 1190,00

GM-Group 92,02 407,17 309854,00 19913,00 -4,77 1,79742E-06

GM-Group 7,98 492,79 32524,00

ANT 1.6.0

ANT 1.7.0

Apache FOP 0.9.3

Apache FOP 0.9.4

CDK 2005

CDK 2006

CDK 1.0.1

Freenet 0.5.0

Freenet 0.5.1

Freenet 0.7

Jmol 9

Jmol 10

TVBrowser 2.6

Jmol 11.2.14

OSCache 2.0.1

OSCache 2.1.1

OSCache 2.4.1

TVBrowser 0.9.1

TVBrowser 1.0
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A 5 Mann-Whitney test for class level bad 
smells 

In this chapter, the results of the Mann-Whitney non parametric test for all class 

level bad smells analysed in Chapter 9.  

 

 
Table A.5.1- Man-Whitney test for the MC bad smell 

OSP Group % Mean Rank Rank Sum Mann-Whitney U Z Significance MC

ANT 1.5.3 MC-Group 78,34 337,56 191733,00 30137,00 -6,33 2,46412E-10

MC-Group 21,66 455,04 71442,00

MC-Group 78,85 428,86 305346,00 51518,00 -6,75 1,51805E-11

MC-Group 21,15 538,27 102810,00

MC-Group 80,88 541,47 485700,00 82947,00 -4,31 1,66514E-05

MC-Group 19,12 612,24 129795,00

MC-Group 85,96 422,38 310446,00 39966,00 -2,51 0,01223956

MC-Group 14,04 462,45 55494,00

MC-Group 100,00 451,50 407253,00 n/a

MC-Group 0,00 0,00 0,00

MC-Group 93,48 482,70 435876,00 27720,00 -0,40 0,689427221

MC-Group 6,52 495,00 31185,00

MC-Group 95,38 639,37 779388,00 35798,00 -0,07 0,94413601

MC-Group 4,62 642,25 37893,00

MC-Group 73,89 520,86 399500,50 102884,50 -0,43 0,666381821

MC-Group 26,11 515,65 139740,50

MC-Group 86,73 348,69 216536,50 23405,50 -3,72 0,000196979

MC-Group 13,27 422,63 40149,50

MC-Group 78,67 1126,77 2060861,00 387326,00 -8,68 3,91868E-18

MC-Group 21,33 1296,60 643114,00

MC-Group 69,18 222,52 71430,00 19749,00 -2,47 0,013369792

MC-Group 30,82 254,90 36450,00

MC-Group 51,48 87,13 7580,00 3382,00 -0,98 0,327582807

MC-Group 48,52 82,74 6785,00

MC-Group 74,73 88,80 12076,50 2760,50 -1,44 0,149548289

MC-Group 25,27 99,49 4576,50

MC-Group 61,14 160,05 32491,00 11785,00 -1,65 0,098578308

MC-Group 38,86 176,64 22787,00

MC-Group 100,00 47,00 4371,00 n/a

MC-Group 0,00 0,00 0,00

MC-Group 100,00 49,50 4851,00 n/a

MC-Group 0,00 0,00 0,00

MC-Group 59,29 52,46 3514,50 1236,50 -2,58 0,009884618

MC-Group 40,71 63,62 2926,50

MC-Group 54,00 25,00 675,00 297,00 -0,33 0,73943116

MC-Group 46,00 26,09 600,00

MC-Group 67,57 88,78 11098,00 3223,00 -2,70 0,006957197

MC-Group 32,43 101,78 6107,00

MC-Group 71,58 419,56 248378,50 66269,50 -1,82 0,069446026

MC-Group 28,42 400,00 93999,50
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Table A.5.2 - Man-Whitney test for the DC bad smell 

  

OSP Group % Mean Rank Rank Sum Mann-Whitney U Z Significance DC

ANT 1.5.3 DC-Group 91,45 355,72 235842,50 15726,50 -3,11 0,001848522

DC-Group 8,55 440,85 27332,50

DC-Group 91,58 443,69 366935,50 24557,50 -4,14 3,52959E-05

DC-Group 8,42 542,38 41220,50

DC-Group 90,35 543,16 544248,50 41745,50 -5,60 2,0827E-08

DC-Group 9,65 665,86 71246,50

DC-Group 92,87 421,07 334328,50 18713,50 -4,50 6,77854E-06

DC-Group 7,13 518,22 31611,50

DC-Group 100,00 451,50 407253,00 n/a

DC-Group 0,00 0,00 0,00

DC-Group 95,76 482,49 446299,50 18024,50 -0,63 0,526283398

DC-Group 4,24 506,38 20761,50

DC-Group 96,17 636,95 782812,50 26977,50 -1,48 0,139832848

DC-Group 3,83 703,44 34468,50

DC-Group 95,76 520,22 517098,50 21152,50 -0,64 0,519495362

DC-Group 4,24 503,24 22142,50

DC-Group 100,00 358,50 256686,00 n/a

DC-Group 0,00 0,00 0,00

DC-Group 100,00 994,50 1977066,00 n/a

DC-Group 0,00 0,00 0,00

DC-Group 100,00 232,50 107880,00 n/a

DC-Group 0,00 0,00 0,00

DC-Group 99,41 85,07 14291,50 72,50 -0,40 0,69168571

DC-Group 0,59 73,50 73,50

DC-Group 100,00 91,50 16653,00 n/a

DC-Group 0,00 0,00 0,00

DC-Group 99,10 166,50 54777,50 492,50 -0,01 0,994811985

DC-Group 0,90 166,83 500,50

DC-Group 100,00 47,00 4371,00 n/a

DC-Group 0,00 0,00 0,00

DC-Group 100,00 49,50 4851,00 n/a

DC-Group 0,00 0,00 0,00

DC-Group 100,00 57,00 6441,00 n/a

DC-Group 0,00 0,00 0,00

DC-Group 92,00 24,40 1122,50 41,50 -2,29 0,022269872

DC-Group 8,00 38,13 152,50

DC-Group 92,43 91,87 15709,00 1003,00 -1,76 0,078661187

DC-Group 7,57 106,86 1496,00

DC-Group 91,41 409,52 309597,00 23451,00 -3,01 0,002625053

DC-Group 8,59 461,70 32781,00
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Table A.5.3 - Man-Whitney test for the GC bad smell 

OSP Group % Mean Rank Rank Sum Mann-Whitney U Z Significance GC

ANT 1.5.3 GC-Group 96,69 354,94 248809,50 2758,50 -5,70 1,19312E-08

GC-Group 3,31 598,56 14365,50

GC-Group 96,23 442,82 384813,00 6798,00 -7,00 2,4749E-12

GC-Group 3,77 686,56 23343,00

GC-Group 95,85 540,10 574129,50 8613,50 -11,08 1,5655E-28

GC-Group 4,15 899,25 41365,50

GC-Group 79,53 408,88 278036,50 46496,50 -6,78 1,16888E-11

GC-Group 20,47 502,31 87903,50

GC-Group 96,23 445,76 386919,00 9773,00 -4,71 2,44894E-06

GC-Group 3,77 598,06 20334,00

GC-Group 99,07 480,44 459777,00 1374,00 -4,16 3,2222E-05

GC-Group 0,93 809,33 7284,00

GC-Group 99,22 636,46 807036,00 2490,00 -3,95 7,68961E-05

GC-Group 0,78 1024,50 10245,00

GC-Group 99,13 517,99 533009,50 3074,50 -3,04 0,002333734

GC-Group 0,87 692,39 6231,50

GC-Group 98,18 353,36 248413,50 957,50 -5,61 2,04452E-08

GC-Group 1,82 636,35 8272,50

GC-Group 98,92 1153,30 2652590,00 6440,00 -11,61 3,70482E-31

GC-Group 1,08 2055,40 51385,00

GC-Group 97,84 228,97 103952,00 667,00 -3,94 8,24136E-05

GC-Group 2,16 392,80 3928,00

GC-Group 93,49 84,25 13311,50 750,50 -1,27 0,203913068

GC-Group 6,51 95,77 1053,50

GC-Group 89,01 86,95 14086,50 883,50 -4,01 5,98934E-05

GC-Group 10,99 128,33 2566,50

GC-Group 87,35 153,04 44381,00 2186,00 -7,23 4,9676E-13

GC-Group 12,65 259,45 10897,00

GC-Group 100,00 47,00 4371,00 n/a

GC-Group 0,00 0,00 0,00

GC-Group 100,00 49,50 4851,00 n/a

GC-Group 0,00 0,00 0,00

GC-Group 100,00 57,00 6441,00 n/a

GC-Group 0,00 0,00 0,00

GC-Group 98,00 25,18 1234,00 9,00 -1,36 0,173990666

GC-Group 2,00 41,00 41,00

GC-Group 98,38 91,70 16688,50 35,50 -4,51 6,54801E-06

GC-Group 1,62 172,17 516,50

GC-Group 95,53 406,08 320801,00 8356,00 -7,53 4,92369E-14

GC-Group 4,47 583,16 21577,00
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Table A.5.4 - Man-Whitney test for the SS bad smell 

OSP Group % Mean Rank Rank Sum Mann-Whitney U Z Significance SS

ANT 1.5.3 SS-Group 91,17 347,72 229843,00 11052,00 -6,42 1,34022E-10

SS-Group 8,83 520,81 33332,00

SS-Group 90,70 441,53 361616,00 25826,00 -4,93 8,05131E-07

SS-Group 9,30 554,05 46540,00

SS-Group 89,72 536,39 533708,50 38198,50 -8,51 1,79118E-17

SS-Group 10,28 717,43 81786,50

SS-Group 81,64 419,26 292644,50 48693,50 -3,32 0,000913117

SS-Group 18,36 466,85 73295,50

SS-Group 81,93 450,68 333053,00 59623,00 -0,28 0,776848772

SS-Group 18,07 455,21 74200,00

SS-Group 90,58 468,10 409589,00 26339,00 -6,28 3,34421E-10

SS-Group 9,42 631,56 57472,00

SS-Group 89,91 622,62 715392,00 54717,00 -5,83 5,69886E-09

SS-Group 10,09 789,84 101889,00

SS-Group 89,79 514,29 479315,50 44537,50 -2,91 0,003612168

SS-Group 10,21 565,33 59925,50

SS-Group 83,52 347,30 207685,50 28584,50 -3,74 0,0001823

SS-Group 16,48 415,26 49000,50

SS-Group 90,54 1138,01 2395513,50 178948,50 -9,64 5,1706E-22

SS-Group 9,46 1402,10 308461,50

SS-Group 83,84 219,28 85301,50 9446,50 -4,98 6,31991E-07

SS-Group 16,16 301,05 22578,50

SS-Group 84,62 82,47 11793,00 1497,00 -2,65 0,007964769

SS-Group 15,38 98,92 2572,00

SS-Group 81,87 88,41 13173,50 1998,50 -2,03 0,041880513

SS-Group 18,13 105,44 3479,50

SS-Group 83,73 155,50 43228,50 4447,50 -5,10 3,40882E-07

SS-Group 16,27 223,14 12049,50

SS-Group 92,47 44,97 3867,00 126,00 -3,43 0,000605374

SS-Group 7,53 72,00 504,00

SS-Group 91,84 48,47 4362,00 267,00 -1,98 0,047198629

SS-Group 8,16 61,13 489,00

SS-Group 92,92 54,96 5771,00 206,00 -3,47 0,000514812

SS-Group 7,08 83,75 670,00

SS-Group 86,00 25,34 1089,50 143,50 -0,25 0,804352474

SS-Group 14,00 26,50 185,50

SS-Group 83,78 92,33 14310,50 2220,50 -0,68 0,496717108

SS-Group 16,22 96,48 2894,50

SS-Group 85,97 402,21 285970,00 32854,00 -6,01 1,88012E-09

SS-Group 14,03 486,28 56408,00
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Table A.5.5 - Man-Whitney test for the RB bad smell 

OSP Group % Mean Rank Rank Sum Mann-Whitney U Z Significance RB

ANT 1.5.3 RB-Group 84,28 347,89 212559,00 25593,00 -4,58 4,7379E-06

RB-Group 15,72 444,00 50616,00

RB-Group 47,95 416,80 180474,50 86513,50 -5,10 3,38103E-07

RB-Group 52,05 484,43 227681,50

RB-Group 84,13 541,22 504955,00 69244,00 -4,91 9,09553E-07

RB-Group 15,87 628,07 110540,00

RB-Group 88,65 423,63 321115,00 33454,00 -2,20 0,028076218

RB-Group 11,35 462,11 44825,00

RB-Group 88,80 459,17 367795,50 34306,50 -3,51 0,00044931

RB-Group 11,20 390,67 39457,50

RB-Group 94,62 480,32 439012,50 20857,50 -1,75 0,079428763

RB-Group 5,38 539,39 28048,50

RB-Group 93,90 646,47 775764,00 38436,00 -3,16 0,001569408

RB-Group 6,10 532,27 41517,00

RB-Group 94,12 521,44 509443,50 27906,50 -1,46 0,144534903

RB-Group 5,88 488,48 29797,50

RB-Group 92,18 358,16 236382,50 18252,50 -0,18 0,860571558

RB-Group 7,82 362,56 20303,50

RB-Group 95,44 1151,83 2555909,50 92819,50 -6,38 1,80284E-10

RB-Group 4,56 1396,84 148065,50

RB-Group 94,40 228,81 100217,50 4076,50 -2,51 0,012125261

RB-Group 5,60 294,71 7662,50

RB-Group 66,27 83,98 9406,00 3078,00 -0,64 0,523652759

RB-Group 33,73 87,00 4959,00

RB-Group 80,77 91,56 13459,50 2563,50 -0,04 0,968956256

RB-Group 19,23 91,24 3193,50

RB-Group 60,24 154,69 30938,00 10838,00 -2,97 0,002981695

RB-Group 39,76 184,39 24340,00

RB-Group 89,25 46,63 3870,00 384,00 -0,52 0,604919695

RB-Group 10,75 50,10 501,00

RB-Group 88,78 49,79 4332,00 453,00 -0,47 0,636942644

RB-Group 11,22 47,18 519,00

RB-Group 90,27 54,66 5575,00 322,00 -3,36 0,000790758

RB-Group 9,73 78,73 866,00

RB-Group 84,00 25,76 1082,00 157,00 -0,37 0,712545593

RB-Group 16,00 24,13 193,00

RB-Group 74,59 92,29 12736,00 3145,00 -0,54 0,589412711

RB-Group 25,41 95,09 4469,00

RB-Group 74,12 409,87 251252,00 63061,00 -1,44 0,150569987

RB-Group 25,88 425,82 91126,00
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Table A.5.6 - Man-Whitney test for the MC bad smell 

  

OSP Group % Mean Rank Rank Sum Mann-Whitney U Z Significance MC

ANT 1.5.3 MC-Group 78,34 337,56 191733,00 30137,00 -6,33 2,46412E-10

MC-Group 21,66 455,04 71442,00

MC-Group 78,85 428,86 305346,00 51518,00 -6,75 1,51805E-11

MC-Group 21,15 538,27 102810,00

MC-Group 80,88 541,47 485700,00 82947,00 -4,31 1,66514E-05

MC-Group 19,12 612,24 129795,00

MC-Group 85,96 422,38 310446,00 39966,00 -2,51 0,01223956

MC-Group 14,04 462,45 55494,00

MC-Group 100,00 451,50 407253,00 n/a

MC-Group 0,00 0,00 0,00

MC-Group 93,48 482,70 435876,00 27720,00 -0,40 0,689427221

MC-Group 6,52 495,00 31185,00

MC-Group 95,38 639,37 779388,00 35798,00 -0,07 0,94413601

MC-Group 4,62 642,25 37893,00

MC-Group 73,89 520,86 399500,50 102884,50 -0,43 0,666381821

MC-Group 26,11 515,65 139740,50

MC-Group 86,73 348,69 216536,50 23405,50 -3,72 0,000196979

MC-Group 13,27 422,63 40149,50

MC-Group 78,67 1126,77 2060861,00 387326,00 -8,68 3,91868E-18

MC-Group 21,33 1296,60 643114,00

MC-Group 69,18 222,52 71430,00 19749,00 -2,47 0,013369792

MC-Group 30,82 254,90 36450,00

MC-Group 51,48 87,13 7580,00 3382,00 -0,98 0,327582807

MC-Group 48,52 82,74 6785,00

MC-Group 74,73 88,80 12076,50 2760,50 -1,44 0,149548289

MC-Group 25,27 99,49 4576,50

MC-Group 61,14 160,05 32491,00 11785,00 -1,65 0,098578308

MC-Group 38,86 176,64 22787,00

MC-Group 100,00 47,00 4371,00 n/a

MC-Group 0,00 0,00 0,00

MC-Group 100,00 49,50 4851,00 n/a

MC-Group 0,00 0,00 0,00

MC-Group 59,29 52,46 3514,50 1236,50 -2,58 0,009884618

MC-Group 40,71 63,62 2926,50

MC-Group 54,00 25,00 675,00 297,00 -0,33 0,73943116

MC-Group 46,00 26,09 600,00

MC-Group 67,57 88,78 11098,00 3223,00 -2,70 0,006957197

MC-Group 32,43 101,78 6107,00

MC-Group 71,58 419,56 248378,50 66269,50 -1,82 0,069446026

MC-Group 28,42 400,00 93999,50
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A 6 Mann-Whitney test for “Lack-Of” bad 
smells 

In this chapter, the results of the Mann-Whitney non parametric test for all 

Lack-of bad smells analysed in Chapter 9 are presented.  
 

 

Table A.6.1 - Man-Whitney test for the LoB bad smell 

  

OSP Group % Mean Rank Rank Sum Mann-Whitney U Z Significance LoBr

ANT 1.5.3 LoB-Group 82,90 353,64 212535,00 31634,00 -2,70 0,007009656

LoB-Group 17,10 408,39 50640,00

LoB-Group 82,95 444,03 332582,00 51707,00 -2,65 0,007999114

LoB-Group 17,05 490,74 75574,00

LoB-Group 81,51 538,16 486500,50 77440,50 -5,47 4,4963E-08

LoB-Group 18,49 629,24 128994,50

LoB-Group 86,90 426,97 317239,00 40843,00 -0,48 0,633175054

LoB-Group 13,10 434,83 48701,00

LoB-Group 96,90 453,41 396281,50 10565,50 -1,73 0,082771316

LoB-Group 3,10 391,84 10971,50

LoB-Group 93,79 482,16 436838,00 25967,00 -0,68 0,493675233

LoB-Group 6,21 503,72 30223,00

LoB-Group 89,67 632,20 724495,50 67264,50 -2,49 0,012806005

LoB-Group 10,33 702,92 92785,50

LoB-Group 88,82 520,94 480306,50 52148,50 -0,76 0,444735414

LoB-Group 11,18 508,06 58934,50

LoB-Group 73,88 361,47 191215,00 47893,00 -0,74 0,459167035

LoB-Group 26,12 350,11 65471,00

LoB-Group 87,48 1140,99 2320764,00 251169,00 -7,26 3,8049E-13

LoB-Group 12,52 1316,88 383211,00

LoB-Group 78,66 239,72 87499,00 15431,00 -2,30 0,021711707

LoB-Group 21,34 205,87 20381,00

LoB-Group 88,76 85,32 12797,50 1377,50 -0,40 0,690857706

LoB-Group 11,24 82,50 1567,50

LoB-Group 91,76 90,84 15170,00 1142,00 -0,68 0,493481584

LoB-Group 8,24 98,87 1483,00

LoB-Group 83,13 162,66 44893,50 6667,50 -1,74 0,081412504

LoB-Group 16,87 185,44 10384,50

LoB-Group 100,00 47,00 4371,00 n/a

LoB-Group 0,00 0,00 0,00

LoB-Group 100,00 49,50 4851,00 n/a

LoB-Group 0,00 0,00 0,00

LoB-Group 100,00 57,00 6441,00 n/a

LoB-Group 0,00 0,00 0,00

LoB-Group 78,00 26,90 1049,00 160,00 -1,62 0,106199271

LoB-Group 22,00 20,55 226,00

LoB-Group 86,49 94,21 15073,00 1807,00 -1,35 0,175922183

LoB-Group 13,51 85,28 2132,00

LoB-Group 87,18 417,36 300919,50 35787,50 -1,81 0,070987346

LoB-Group 12,82 391,12 41458,50
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Table A.6.2 - Man-Whitney test for the LoSta bad smell 

  

OSP Group % Mean Rank Rank Sum Mann-Whitney U Z Significance LoState

ANT 1.5.3 LoState-Group 81,66 324,01 191811,00 16283,00 -10,76 5,30722E-27

LoState-Group 18,34 536,57 71364,00

LoState-Group 80,40 420,60 305355,50 41454,50 -9,60 7,90731E-22

LoState-Group 19,60 580,79 102800,50

LoState-Group 82,33 512,82 468203,50 50962,50 -14,09 4,63039E-45

LoState-Group 17,67 751,49 147291,50

LoState-Group 76,26 404,31 263612,00 50734,00 -7,64 2,17397E-14

LoState-Group 23,74 504,08 102328,00

LoState-Group 87,58 443,44 350315,50 37870,50 -3,48 0,000503695

LoState-Group 12,42 508,37 56937,50

LoState-Group 90,27 471,83 411438,50 30810,50 -4,68 2,93905E-06

LoState-Group 9,73 591,73 55622,50

LoState-Group 91,08 617,55 718822,50 40792,50 -8,11 4,9418E-16

LoState-Group 8,92 863,67 98458,50

LoState-Group 85,93 504,01 449576,00 51298,00 -7,21 5,64307E-13

LoState-Group 14,07 614,14 89665,00

LoState-Group 90,50 345,24 223713,50 13437,50 -6,08 1,22304E-09

LoState-Group 9,50 484,89 32972,50

LoState-Group 94,92 1133,57 2501783,50 65255,50 -15,88 8,37092E-57

LoState-Group 5,08 1713,49 202191,50

LoState-Group 83,84 213,61 83094,00 7239,00 -7,12 1,07889E-12

LoState-Group 16,16 330,48 24786,00

LoState-Group 86,39 83,38 12173,00 1442,00 -1,83 0,067545265

LoState-Group 13,61 95,30 2192,00

LoState-Group 91,76 88,64 14803,00 775,00 -2,96 0,003085137

LoState-Group 8,24 123,33 1850,00

LoState-Group 79,22 152,53 40116,50 5400,50 -5,57 2,55E-08

LoState-Group 20,78 219,73 15161,50

LoState-Group 90,32 44,05 3700,50 130,50 -4,33 1,5061E-05

LoState-Group 9,68 74,50 670,50

LoState-Group 90,82 48,02 4273,50 268,50 -2,67 0,007573499

LoState-Group 9,18 64,17 577,50

LoState-Group 89,38 54,40 5494,50 343,50 -3,55 0,000390387

LoState-Group 10,62 78,88 946,50

LoState-Group 94,00 24,15 1135,00 7,00 -3,28 0,001026086

LoState-Group 6,00 46,67 140,00

LoState-Group 89,73 91,04 15112,50 1251,50 -2,57 0,010153947

LoState-Group 10,27 110,13 2092,50

LoState-Group 85,37 397,96 280962,00 31391,00 -7,97 1,56321E-15

LoState-Group 14,63 507,57 61416,00
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Table A.6.3 - Man-Whitney test for the LoStra bad smell 

  

OSP Group % Mean Rank Rank Sum Mann-Whitney U Z Significance LoStr

ANT 1.5.3 LoStra-Group 96,69 355,03 248875,00 2824,00 -5,63 1,75404E-08

LoSt-Group 3,31 595,83 14300,00

LoStra-Group 91,81 445,76 369533,00 25498,00 -3,15 0,001607902

LoSt-Group 8,19 521,93 38623,00

LoStra-Group 95,94 543,67 578467,50 11887,50 -8,52 1,56309E-17

LoSt-Group 4,06 822,83 37027,50

LoStra-Group 87,60 425,39 318615,00 37740,00 -1,25 0,211313776

LoSt-Group 12,40 446,46 47325,00

LoStra-Group 94,46 451,68 384833,50 21144,50 -0,12 0,90258474

LoSt-Group 5,54 448,39 22419,50

LoStra-Group 95,76 479,20 443263,50 14988,50 -2,68 0,007258707

LoSt-Group 4,24 580,43 23797,50

LoStra-Group 93,11 628,66 748110,00 39465,00 -4,61 4,06234E-06

LoSt-Group 6,89 786,03 69171,00

LoStra-Group 94,12 517,78 505873,00 28120,00 -1,29 0,195507053

LoSt-Group 5,88 547,02 33368,00

LoStra-Group 95,25 352,77 240590,50 7687,50 -3,81 0,000140176

LoSt-Group 4,75 473,40 16095,50

LoStra-Group 97,81 1151,25 2617951,00 31276,00 -9,79 1,28231E-22

LoSt-Group 2,19 1686,75 86024,00

LoStra-Group 97,41 230,17 104039,00 1661,00 -2,36 0,018189266

LoSt-Group 2,59 320,08 3841,00

LoStra-Group 98,82 84,63 14132,50 104,50 -1,53 0,126374195

LoSt-Group 1,18 116,25 232,50

LoStra-Group 98,90 91,31 16435,50 145,50 -0,56 0,572769532

LoSt-Group 1,10 108,75 217,50

LoStra-Group 96,39 162,82 52103,50 743,50 -3,88 0,000105159

LoSt-Group 3,61 264,54 3174,50

LoStra-Group 94,62 46,35 4078,50 162,50 -1,32 0,187525517

LoSt-Group 5,38 58,50 292,50

LoStra-Group 93,88 48,34 4447,00 169,00 -2,61 0,009116246

LoSt-Group 6,12 67,33 404,00

LoStra-Group 94,69 54,83 5866,50 88,50 -4,32 1,58912E-05

LoSt-Group 5,31 95,75 574,50

LoStra-Group 98,00 25,64 1256,50 17,50 -0,61 0,539238966

LoSt-Group 2,00 18,50 18,50

LoStra-Group 96,76 92,86 16621,50 511,50 -0,35 0,73002059

LoSt-Group 3,24 97,25 583,50

LoStra-Group 95,53 413,35 326548,50 14103,50 -0,62 0,53809918

LoSt-Group 4,47 427,82 15829,50

ANT 1.6.0

ANT 1.7.0

Apache FOP 0.9.3

Apache FOP 0.9.4

CDK 2005

CDK 2006

CDK 1.0.1

Freenet 0.5.0

Freenet 0.5.1

Freenet 0.7

Jmol 9

Jmol 10

TVBrowser 2.6

Jmol 11.2.14

OSCache 2.0.1

OSCache 2.1.1

OSCache 2.4.1

TVBrowser 0.9.1

TVBrowser 1.0
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Table A.6.4 - Man-Whitney test for the LoV bad smell 

OSP Group % Mean Rank Rank Sum Mann-Whitney U Z Significance LoV

ANT 1.5.3 LoV-Group 89,52 360,48 233954,00 23029,00 -0,96 0,336207725

LoV-Group 10,48 384,49 29221,00

LoV-Group 93,13 449,46 377992,50 23931,50 -1,41 0,157191645

LoV-Group 6,87 486,51 30163,50

LoV-Group 88,73 548,41 539638,00 55018,00 -2,86 0,004240705

LoV-Group 11,27 606,86 75857,00

LoV-Group 87,84 426,92 320620,00 38244,00 -0,52 0,60283747

LoV-Group 12,16 435,77 45320,00

LoV-Group 99,45 451,59 405077,50 2160,50 -0,20 0,842325756

LoV-Group 0,55 435,10 2175,50

LoV-Group 90,17 484,52 422018,50 40482,50 -0,41 0,683965814

LoV-Group 9,83 474,13 45042,50

LoV-Group 98,67 638,04 804564,50 8873,50 -1,46 0,145045553

LoV-Group 1,33 748,03 12716,50

LoV-Group 86,99 521,71 471104,00 58957,00 -1,08 0,281918694

LoV-Group 13,01 504,72 68137,00

LoV-Group 99,30 358,50 254891,00 1775,00 -0,01 0,995034284

LoV-Group 0,70 359,00 1795,00

LoV-Group 90,58 1146,72 2414994,50 196323,50 -6,30 2,99703E-10

LoV-Group 9,42 1319,55 288980,50

LoV-Group 80,82 242,16 90810,50 13064,50 -3,28 0,001030493

LoV-Group 19,18 191,79 17069,50

LoV-Group 91,72 85,49 13250,50 1009,50 -0,72 0,468806256

LoV-Group 8,28 79,61 1114,50

LoV-Group 93,96 90,72 15512,50 806,50 -0,96 0,337908448

LoV-Group 6,04 103,68 1140,50

LoV-Group 87,05 164,81 47631,00 5726,00 -0,89 0,371677922

LoV-Group 12,95 177,84 7647,00

LoV-Group 97,85 47,24 4299,00 69,00 -0,78 0,433015427

LoV-Group 2,15 36,00 72,00

LoV-Group 97,96 49,65 4766,00 82,00 -0,58 0,562916342

LoV-Group 2,04 42,50 85,00

LoV-Group 98,23 57,20 6349,00 89,00 -0,69 0,48737302

LoV-Group 1,77 46,00 92,00

LoV-Group 78,00 26,90 1049,00 160,00 -1,62 0,106199271

LoV-Group 22,00 20,55 226,00

LoV-Group 88,65 93,90 15399,00 1575,00 -1,11 0,266594461

LoV-Group 11,35 86,00 1806,00

LoV-Group 89,60 417,54 309398,00 29239,00 -2,14 0,032425481

LoV-Group 10,40 383,49 32980,00

ANT 1.6.0

ANT 1.7.0

Apache FOP 0.9.3

Apache FOP 0.9.4

CDK 2005

CDK 2006

CDK 1.0.1

Freenet 0.5.0

Freenet 0.5.1

Freenet 0.7

Jmol 9

Jmol 10

TVBrowser 2.6

Jmol 11.2.14

OSCache 2.0.1

OSCache 2.1.1

OSCache 2.4.1

TVBrowser 0.9.1

TVBrowser 1.0
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Table A.6.5 - Man-Whitney test for the ISP bad smell 

 

 

  

OSP Group % Mean Rank Rank Sum Mann-Whitney U Z Significance ISP

ANT 1.5.3 ISP-Group 95,31 351,40 242819,00 3733,00 -6,84 8,01505E-12

ISP-Group 4,69 598,71 20356,00

ISP-Group 94,57 442,28 377704,00 12619,00 -6,13 8,85914E-10

ISP-Group 5,43 621,47 30452,00

ISP-Group 94,68 542,20 569308,50 17533,50 -8,36 6,49928E-17

ISP-Group 5,32 782,82 46186,50

ISP-Group 87,84 419,88 315331,50 32955,50 -3,93 8,63924E-05

ISP-Group 12,16 486,62 50608,50

ISP-Group 92,79 446,49 373712,50 23009,50 -2,92 0,00349524

ISP-Group 7,21 516,01 33540,50

ISP-Group 96,79 478,97 447835,50 10255,50 -3,27 0,001059527

ISP-Group 3,21 620,18 19225,50

ISP-Group 96,48 634,08 781826,00 21065,00 -3,28 0,001044369

ISP-Group 3,52 787,89 35455,00

ISP-Group 95,86 515,79 513206,50 17696,50 -3,36 0,000768016

ISP-Group 4,14 605,45 26034,50

ISP-Group 95,39 352,49 240748,00 7162,00 -4,06 4,88597E-05

ISP-Group 4,61 482,97 15938,00

ISP-Group 97,98 1151,70 2623577,00 27796,00 -9,81 9,75865E-23

ISP-Group 2,02 1710,60 80398,00

ISP-Group 92,03 225,32 96213,50 4835,50 -4,03 5,47751E-05

ISP-Group 7,97 315,31 11666,50

ISP-Group 92,31 83,29 12993,50 747,50 -2,65 0,008167248

ISP-Group 7,69 105,50 1371,50

ISP-Group 96,15 90,28 15799,00 399,00 -1,89 0,058489508

ISP-Group 3,85 122,00 854,00

ISP-Group 90,06 158,44 47375,00 2525,00 -4,95 7,30415E-07

ISP-Group 9,94 239,48 7903,00

ISP-Group 94,62 45,39 3994,50 78,50 -3,24 0,001181681

ISP-Group 5,38 75,30 376,50

ISP-Group 93,88 48,84 4493,00 215,00 -1,49 0,137117307

ISP-Group 6,12 59,67 358,00

ISP-Group 93,81 55,49 5882,00 211,00 -2,76 0,005731867

ISP-Group 6,19 79,86 559,00

ISP-Group 90,00 24,36 1096,00 61,00 -2,11 0,035035847

ISP-Group 10,00 35,80 179,00

ISP-Group 92,43 92,47 15812,00 1106,00 -0,82 0,409447134

ISP-Group 7,57 99,50 1393,00

ISP-Group 92,99 406,83 312854,50 16789,50 -5,37 7,84715E-08

ISP-Group 7,01 509,03 29523,50

ANT 1.6.0

ANT 1.7.0

Apache FOP 0.9.3

Apache FOP 0.9.4

CDK 2005

CDK 2006

CDK 1.0.1

Freenet 0.5.0

Freenet 0.5.1

Freenet 0.7

Jmol 9

Jmol 10

TVBrowser 2.6

Jmol 11.2.14

OSCache 2.0.1

OSCache 2.1.1

OSCache 2.4.1

TVBrowser 0.9.1

TVBrowser 1.0
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A 7 Visual analyses for class level bad smells 

Figure A. 7.1 - Figure A. 7.3 show the DVAs for all OSPs with respect to class 

level bad smells. 

Data Glass 

    

  

  

Figure A. 7.1 - Visual mean defect count analysis for the GC bad smell 
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God Glass 

    

    

    

   

 

Figure A. 7.2 - Visual mean defect count analysis for the GC bad smell 
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Shotgun Surgery 

    

    

    

    

 

   

Figure A. 7.3 - Visual mean defect count analysis for the SS bad smell 
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A 8 Visual analyses for class level “Lack-Of” 
bad smells 

Figure A. 8.1 - Figure A. 8.2 show the DVAs for all OSPs with respect to “Lack-

Of” bad smells. 

 Lack of State 

    

    

    

    

   

 

Figure A. 8.1 - Visual analysis for the LoSta bad smell 
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ISP 

    

    

    

    

 

   

Figure A. 8.2 - Visual analysis for the ISP bad smell 
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A 9 Mann-Whitney test for package level bad 
smells 

In this chapter, the results of the Mann-Whitney non parametric test for all 

package level bad smells analysed in Chapter 9 are presented. 

Table A.9.1 - Man-Whitney test for the GP bad smell 

OSP Group % Mean Rank Rank Sum Mann-Whitney U Z Significance GP

GP-Group 59,00 30,12 1777,00 7,00 -3,13 0,001731313

GP-Group 4,00 59,75 239,00

GP-Group 70,00 35,67 2497,00 12,00 -3,18 0,001451503

GP-Group 4,00 69,50 278,00

GP-Group 75,00 38,21 2866,00 16,00 -4,05 5,02402E-05

GP-Group 6,00 75,83 455,00

GP-Group 66,00 34,47 2275,00 64,00 -4,03 5,51502E-05

GP-Group 9,00 63,89 575,00

GP-Group 69,00 37,68 2600,00 185,00 -2,59 0,009481878

GP-Group 10,00 56,00 560,00

GP-Group 133,00 67,32 8953,50 42,50 -3,57 0,000356346

GP-Group 5,00 127,50 637,50
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GP-Group 1,00 11,00 11,00
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GP-Group 1,00 12,00 12,00

GP-Group 12,00 6,50 78,00 n/a

GP-Group 0,00 0,00 0,00

GP-Group 30,00 16,13 484,00 19,00 -1,08 0,280123268

GP-Group 2,00 22,00 44,00

GP-Group 127,00 65,50 8318,00 190,00 -3,38 0,000724054

GP-Group 8,00 107,75 862,00
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Table A.9.2 - Man-Whitney test for the WSI bad smell 

  

OSP Group % Mean Rank Rank Sum Mann-Whitney U Z Significance WSI

WSI-Group 63,00 32,00 2016,00 n/a

WSI-Group 0,00 0,00 0,00

WSI-Group 74,00 37,50 2775,00 n/a

WSI-Group 0,00 0,00 0,00

WSI-Group 80,00 40,77 3261,50 21,50 -0,85 0,394665759

WSI-Group 1,00 59,50 59,50

WSI-Group 71,00 37,01 2628,00 72,00 -1,75 0,079750829

WSI-Group 4,00 55,50 222,00

WSI-Group 74,00 39,12 2895,00 120,00 -1,44 0,150098719

WSI-Group 5,00 53,00 265,00

WSI-Group 134,00 68,24 9143,50 98,50 -2,32 0,020099979

WSI-Group 4,00 111,88 447,50

WSI-Group 150,00 80,10 12014,50 689,50 -1,87 0,06211495

WSI-Group 13,00 103,96 1351,50

WSI-Group 97,00 50,15 4864,50 111,50 -1,64 0,101088337

WSI-Group 4,00 71,63 286,50

WSI-Group 51,00 27,31 1393,00 67,00 -1,76 0,079135866

WSI-Group 5,00 40,60 203,00

WSI-Group 82,00 48,96 4014,50 611,50 -0,04 0,969000712

WSI-Group 15,00 49,23 738,50

WSI-Group 26,00 13,50 351,00 n/a

WSI-Group 0,00 0,00 0,00

WSI-Group 9,00 5,00 45,00 n/a

WSI-Group 0,00 0,00 0,00

WSI-Group 9,00 5,00 45,00 n/a

WSI-Group 0,00 0,00 0,00

WSI-Group 35,00 18,41 644,50 14,50 -0,29 0,771207518

WSI-Group 1,00 21,50 21,50

WSI-Group 11,00 6,32 69,50 3,50 -0,58 0,5595837

WSI-Group 1,00 8,50 8,50

WSI-Group 11,00 6,77 74,50 2,50 -0,93 0,351656707

WSI-Group 1,00 3,50 3,50

WSI-Group 13,00 7,00 91,00 n/a

WSI-Group 0,00 0,00 0,00

WSI-Group 12,00 6,50 78,00 n/a

WSI-Group 0,00 0,00 0,00

WSI-Group 30,00 16,35 490,50 25,50 -0,44 0,658608207

WSI-Group 2,00 18,75 37,50

WSI-Group 133,00 67,73 9008,50 97,50 -0,74 0,460817171

WSI-Group 2,00 85,75 171,50
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CDK 2005
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Freenet 0.5.0

Freenet 0.5.1

Freenet 0.7

Jmol 9

TVBrowser 1.0

TVBrowser 2.6

Jmol 10

Jmol 11.2.14

OSCache 2.0.1

OSCache 2.1.1

OSCache 2.4.1

TVBrowser 0.9.1
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A 10 Visual analyses for the GP bad smell 

Figure A. 10.1 shows the DVAs for all OSPs with respect to the GP bad smells. 

    

    

    

 

   

Figure A. 10.1 - Visual analysis for the GP smell 
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A 11  Statistical tests for DA  

In this chapter, the results of the Mann-Whitney non-parametric test for DA and 

and the results of the Kruskal-Wallis test for DA (for three groups) are present-

ed. The Mann-Whitney test analyses differences between files with lower than 

average (la) and higher than average (ha) DA metrics. The Kruskal-Wallis test 

analyses differences between more than two populations. In this case, the popu-

lation (files in commercial software) has been divided into three groups: 

 Group 1 – Files that have been modified by one author. 

 Group 2 – Files that have been modified by two authors. 

 Group 3 – Files that have been modified by three or more authors. 

The null hypothesis is in both cases that the defect count is the same in all ana-

lysed groups; the alternative hypothesis is that it is not.  

 

Distinct authors Mean Rank Rank Sum Mann-

Whitney-U 

Z Signifi-

cance 

la (non-

fluctuating) 

243,3777056 112440,5 5487,5 -5,07729282 0,01 

ha (fluctuating) 359,7840909 15830,5    

Table A.11.1 - Mann-Whitney test for DA 

 

 

Distinct 

authors 

Mean Rank Chi-Square Df Significance 

1 243,37770563 27.128265129 2 1,2858E-6 

2 324,4    

3 378,0862069    

Table A.11.2 -  Kruskal-Wallis test for DA, three groups 

Based on the results of both tests, the null-hypothesis has to be rejected, i.e. 

there is a significant difference within the analysed groups. 
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A 12 Statistical tests for FC 

Table A.12.1 shows the results of the Mann-Whitney non-parametric test for the 

FC metric.  

Distinct authors Mean Rank Rank Sum Mann-

Whitney-

U 

Z Significance 

stable 219,7210366 72068,5 18112,5 -7,09793206 1,2664E-12 

 

unstable 315,7443820 56202,5    

Table A.12.1 -  Mann-Whitney test for FC 

A 13 Statistical tests for CF  

Table A.13.1 and Table A.13.2 show the results of the Mann-Whitney non-

parametric test for CF-SUM and CF-MAX. 

CF-SUM Mean Rank Rank Sum Mann-

Whitney-

U 

Z Significance 

la 236,8576158

9404 

71531  3477 -3,05078248 0,209884194 

ha 277,0147783

25123 

6889    

Table A.13.1 - Mann-Whitney non-parametric test for CF-SUM 

 
CF-MAX Mean Rank Rank Sum Mann-

Whitney-

U 

Z Significance 

la 242,5021277 56988 

 

29258 -2 0,12912925 

 

ha 262,137037 70777    

Table A.13.2 Mann-Whitney non-parametric test for CF-MAX 

A 14 Statistical tests for age  

Table A.14.1 shows the results of the Kruskal-Wallis test for the variable age.  

age Mean Rank Chi-Square df Significance 

F-N 252,77272727 6,39162204893984 2 0,05 

F-Y 229,54661017    

F-O 275,8    

Table A.14.1 - Statistical test for age 
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A 15 Non-parametric tests for combined    
analyses  

Age X Stability 

Table A.15.1 shows the results of the Kruskal-Wallis test for the Age x Stability 

combined analysis.  

2  

3  

4  

5  

6  

7  

 

Table A.15.1 - Kruskal-Wallis test for Age X Stability      

Age X Fluctuation 

Table A.15.2 shows the results of the Kruskal-Wallis test for the age x fluctuation 

combined analysis.  

 

 

 

 

 

 

 

 

 

 

Table A.15.2 - Kruskal-Wallis test for Age X Fluctuation          

  

Categories Mean Rank Chi-Square df Significance 

N-unst 218,1036585 53,9611337284692 5 2,1347E-10 

 

Y-unst 202,4230769    

O-unst 244,9178082    

N-stab 316,6573034    

Y-stab 320,962963    

O-stab 312,1612903    

Categories Mean Rank Chi-Square df Significance 

N-nF 243,1709957 31,1190498476427 

 

5 8,8737E-06 

 

Y-nF 221,9045455    

O-nF 263,2933884    

N-F 353,5909091    

Y-F 334,625    

O-F 383,8928571    
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Stability X Fluctuation 

Table A.15.3 shows the results of the Kruskal-Wallis test for stability x fluctua-

tion.  

 

 

 

 

 

Table A.15.3 - Kruskal-Wallis test for Stability X Fluctuation 

  

Categories Mean Rank Chi-Square df Significance 

stab-nF 216,7852564103 66,1249753506352 3 2,882E-14 

 

stab-F 276,96875    

unstab-nF 298,69    

unstab-F 407,1071428571    
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