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300 W, Gises

Le Livre II est consacreé aux applications analytiques du Caleul
mfinitésimal.

Le premier Chapitre traite du développement des fonctions en
sérics, et se termine par un complément aux éléments de la théorie
des guantités complexes, o sont definies les fonctions exponentielles
et circulaires de ces quantités,

Le Chapitre IT a pour objet les applications analytiques de la
différentiation: Détermination des vraies valeurs; maxima et mi:
nima; décomposition des fonctions rationnelles en fractions simples.

Le Chapitre IIT contient le développement et lapplication des
méthodes d'intégration indiquées dans le Livre 1'7; I'étude des cas
singuliers des intégrales deéfinies: la différentiation ot I'intégration
sous le signe f, avee l'emploi de ces opérations dans le calenl des
intégrales définies spéciales; le changement de variables dans les
intégrales multiples; les propriétés les plus simples des mtégrales
eulériennes, et la formule de Maclaurin pour le caleul approché des
intégrales définies.

Les deux volumes suivants contiendront les quatre derniers
Livres, qui traiteront successivement des applications de ['Analyse
infinitésimale & la Géométrie, des équations différentielles ordinaires,
des équations aux dérivées partielles, des fonetions d'une 'armble

complexe, et des éléments de la théorie des fonetions elliptiques. Le
tome II est sous presse.

Bordeaux. J. Hoiiel.

J. Willard Gibbs: On the Equilibrinm of Heterogeneous Sub-
stances. Transactions of the Connecticut Academy of Arts and
Sciences, vol. 1L pp. 108—-2438 and 343—524. 1876 —1878.)

It is an inference naturally suggested by the geueml mcrease
of entropy which accompanies the changes occurring in any isolated
material system that when the entropy ot the system has reached
a maximum, the system will be in a state of equilibrium. Although

this principle has by no means escaped the attention of ph_)«'sicists,

its importance does not appear to have been duly appreciated. Little
has been done to develop the principle as a foundation for the ge-
neral theory of thermodynamic equilibrium.
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The prineiple may be formulated as follows, constituting a
criferion of equilibrium:

L Tor the equilibriwm of any isolated system it is necessary and
sufficient that in all possible variations of the state of the system which
do not alter \its energy, the variation of its entropy shall either vanish
or bc ncgative.

The following form, which is easily shown to be equivalent
to the preceding, is often more convenient in application:

1L For the equilibrivim of any isolated system 1t is necessary and
sufficient that in all possible variations of the state of the system which
do not alter its entropy, the variation of its energy shall cither vanish
or be positive.

If we denote the energy and entropy of the system by & and
n respectively, the criterion of equilibrium may be expressed by
either of the formula
(1) (ﬂ"‘i)@ —<: 0,

(2) (8&), > 0.

Again, if we assume that the temperature of the system is
uniform, and denote its absolute temperature by #, and set
(?) P =c&— 1y,
the remaining conditions of equilibrium may be expressed by the
tormula
the suffixed letter, as in the preceding cases, indicating that the
quantity which it represents is comstant. This condition, in con-
nection with that of uniform temperature, may be shown to be
equivalent to (1) or (2). The difference of the values of ¢ for two

- different states of the system which have the same temperature re-

presents the work which would be expended in bringing the system
from one state to the other by a reversible process and without
change of temperature,

It the system is incapable of thermal changes, like the sy-
stems considered in theoretical mechanics, we may regard the en-
tropy as having the constant value zero. Conditions (2) and (4)
may then by written

de >0, dy >0, .
and are obviously identical in signification, since in this case ¢ = &.

Conditions (2) and (4), as criteria of equilibrium, may there-

fore both be regarded as extensions of the ecriterion employed in

. ordinary statics to the more general case of a thermodynamic sy-
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stem. In fact, each of the quantities — & and — 9 (relating to a
system without sensible motion) may by regarded as a kind of
force-function for the system, — the former as the force-function
for constamt entropy (i. e, when only such states of the system are
considered as have the same entropy), and the latter as the force-
function for constant temperature (i. e, when only such states of the
system are considered as have the same uniform temperature).
In the deduction of the particular condition of equilibrium for

any system, the general formula (4) has an evident advantage over
(1) or (2) with respect to the brevity of the processes of reduction,

, since the limitation of constant temperature applies to every part

of the system taken separately, and diminishes by one the number
of independent variations in the state of these parts which we have
to consider. Moreover, the transition from the systems considered
in ordinary mechanics to thermodynamic systems is most naturally
made by this formula, since it has always been customary to apply
the principles of theoretical mechanies to real systems on the sup-
position (more or less distinctly conceived and expressed) that the
temperature of the system remains constant, the mechanical pro-
perties of a thermodynamic system maintained at a constant tem-
perature being such as might be imagined to belong to a purely
mechanical system, and admitting of representation by a force-
function, as follows directly from the fundamental laws of thermo-
dynamies.

Notwithstanding these considerations, the author has preferred
in general to use condition (2) as the criterion of equilibrium, be-
lieving that it would be useful to exhibit the conditions of equi-
librium of thermodynamic systems in connection with those quan-
tities which are most simple and most general in their definitions,
and which appear most important in the general theory of such
systems. The shightly different form in which the subject would
develop itself, if condition (4) had been chosen as a point of de-
parture instead of (2), is occasionally indicated.

Equilibrium of masses in contact. — The first problem to which
the criterion is applied is the determination of the conditions of
equilibrium for different masses i contact, when uninfluenced by
gravity, electricity, distortion of the solid masses, or capillary
tensions. The statement of the result is facilitated by the following
definition.

If to any homogeneous mass in a state of hydrostatic stress
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we suppose an infinitesimal quantity of any substance so be added,
the mass remaining h@mmgenﬁoms and its entropy and volume re-
maining unchanged, the increase of the energy of the mass divided
- by the quantity of the substance added is the potential for that
substance in the mass considered.

In addition to eqmahty of temperature and pressure in the
masses in comact, it is necess&ry for equilibrium that the potential
for every substance which is an independently variable ﬁompanem;
of any of the different masses shall have the same value in all of
which it is such a component, so far as they are in contact with
one another. But if a substance, without being an actual com-
pouent of a certain mass in the given state of the system, is capable
of being absorbed by it, 1t is sufficient if the value of the potential
for that substance in that mass is not less than in any eontiguous
mass of which the substance is an actual component. We may
regard these conditions as sufficient for equilibrium with respect to
infinitesimal variations in the composition and thermodynamie state
of the different masses in contact. There are certain other con-
ditions which relate to the possible formation of masses entirely
different in composition or state from any initially existing. These
conditions are best regarded as determining the sta,bmhty of the
system, and will be mentioned under that head.

Anything which restricts the free movement. of the compo-

nent substances, or of the masses as such, may diminish the num-
ber of conditions which are necessary for ethbrmm

Lquilibrivon of osmotic forces. — If we suppose two fluid masses
to be separated by a diaphragm which is permeable to some of
the mmpment suhstames amnﬂl not to Bﬂﬁhms wof t]n«e @onditmns

“submsﬁ which rela.te tn t&mpm&tme amd ﬂ:ue potemtlali for the
substances to which the diaphragm is permeable, but those. relating
to the potentials for the substances to which the diaphragm is im-
permeable will no longer be necessary. Whether the pressure must
be the same in the two fluids will depend upon the rigidity of
the diaphragm. Even when the diaphragm is permeable to all the
cmmpanenﬁs without restriction, equality of presswre in the two
fluids is not always necessary for equilibrium.

Effect of gravily. — In a system subject to the actmn of
gravity, the potential for each substance, instead of having a uni-
form value throughout the system, so far as the substame actually

st s L et T
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oceurs as an independently variable component, will decrease uni-
formly with increasing height, the difference of its values at diffe-
rent levels being equal to the difference of level multiplied by the
force of gravity. : | . ‘
Fundamental equations. — Let &, 5, v, ¢ and p denote respect-
ively the energy, emtropy, volume, (absolute) temperature, and
pressure of a homogeneous mass, which may be either fluid or
solid, provided that it is subject only to hydrostatic pressures,
and let m,, my, ... m, denote the quantities of its independently
variable components, and w,, p,, ... g, the potentials for these
components. It is easily shown that & is a function of %, v, m,,
Mg,y ... My, and that the complete value of dz is given by the
equation. | :
(3)  de=tdy — pdv + wdmy + podmy - -+ + pndm, |
Now if £ is known in terms of %, v, m,, ... My, We can obtain
by differentiation ¢, p, p,, ... w, in terms of the same variables.
This will make # 4 3 independent known relations between the
2n + b variables, &, y, v, m,, my, . .. Mny Ty Py fyy Moy - - - iy

These are all that exist, for of these variables, n 4 2 are evidently
independent. Now upon these relations depend a very large class

of the properties of the compound considered, — we may say in
general, all its thermal, mechanical, and chemical properties, so far
as active tendencies are concerned, in cases in which the form of
the mass does not require consideration. A single equation from
which all these relations may be deduced may be called a funda-
mental equation. An equation between &, Ny, U, My, Wy, oo My 18
a fundamental equation. But there are other equations which pos-
sess the same property. ' |

If we suppose the quantity ¢ to be determined for such a

mass as we are considering by equation (3), we may obtain by
differentiation and comparison with (5)

(6) dy =—ndt — pdv + pdm; 4 mgdmy - - - - + p,dm,

If, then, v is known as a function of ¢, v, m,, m,, ... m,, we

can find %, p, u,, #y, ... g, In terms of the same variables. If

we then substitute for ¢ in our original equation its value taken
from equation (3) we shall have again # 4 3 independent relations
between the same 27 4 5 variables as before.

- - Let - ' . . '

@ : §=¢e—in-+pv,

—
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then, by (5),

(8) dt=—ndt- vdp + g, dm, + Mol iy ++ o + wodim,.

If, then, £ is known as a function of t, p, My, My ... oy,
wen can find 9, v, u,, gy, ... p, in terms of the same variables,
By eliminating ¢, we may obtain again n + 3 independent rela-
tions between the same 2n - 5 variables as at first,*) ,

If we integrate (5), (6) and (8), supposing the quantity of
the compound substance considersd to vary from zero to any
finite value, its nature and state remaining unchanged, we obtain.

(9) e =10 —pvtpum 4 pymy 4 -« + gm,
(10) p= — 90+ g+ gt gy,
.(1'1) = pym + I R on 1y .

If we differentiate (9) in the most general manner, and com- -
pare the result with (5), we obtain .
(12)  — vdp 4 ydt + mdp, + Mydps + -+ + M g,

or

‘ m. _m 'ﬂln
(18)  dp= JdtH=tdp F S duy o g, —o.

0,

Hence, there is a relation between the n - 2 guantities ¢, »,
iy, flgy =+ @n, which, if known, will enable us to find in terms
of these quantities all the ratios of the n - 2 quantities %, v, "y,
tgy - -+ M, With (9), this will make #» -+ 8 independent relations
between the same 2n - 5 variables as at first. ’

Any equation, therefore, between the quantities

Ej ﬂg 'vj Wg’l; WME" . .. QWPM,

or ¥, L ‘ v, my, Moy =« . My,
or £, t P, My, Mg, ... Ny,
or ZO S T Bn s

¥) The properties of the quantities — and — § regarded as functions of
the temperature and volume, and temperature and pressure, respectively, the
composition of the body being regarded as invariable, have been discussed by
M. Massien in & memoir entitled “Sur les fonctions carractéristiques des divers
fluids et sur la théorie des vapeurs“ (Mém. Savants Etramg. t xxii) A brief
sketche of his method in a form slightly different from that ultimately adopt.-
ed is given in Comptes Rendus t. Ixix, (1869) pp. 858 and 1057, and a report
on his memoir by M. Bertrand in Comptes Rendus, t. Isxi, p. 257. M. Massien
appears to have been the first to solve the problem of representing all the pro-
perties of & body of invariable composition which are concerned in reversible
processes by means of a single function. '
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is a fundamental equation, and any such is entirely equivalent to
any other. ‘

Coéxistent phases. — In considering the different homogeneous
bodies which can be formed out of any set of component sub-
stances, it is convenient to have a term which shall refer solely
to the composition and thermodynawic state of any such body
without regard to its size or form. The word phase has been
chosen for this purpose. Such bodies as differ in composition or
state are called different phases of the matter considered, all bodies
which differ only in size and form being regarded as different
examples of the same phase. Phases which can esist together, the
dividing surfaces being plain, in an equilibrium which does not
depend upon passive resistances to change, are called coizistent.

The number of independent variations of which a system of
coéxistent phases is capable is n -4 2 — », where » denotes the
number of phases, and n the number of independently variable
components in the whole system. For the system of phases is
completely specified by the temperature, the pressure, and the n
potentials, and between these # 4+ 2 quantities there are » indepen-
dent relations (one for each phase), which characterize the system
of phases. '

When the number of phases exceeds the number of compo-
nents by unity, the system is capable of a single variation of
phase. The pressure and all the potentials may be regarded as
functions of the temperature. The determination of these fune-
tions depends upon the elimination of the proper quantities from
the fundamental equations in p, ¢, g, w.,, etc. for the several
members of the system. But without a knowledge of these funda-
mental equations, the values of the differential co-efficients such as
dv
ar
the different bodies and the quantities of their several components.
For this end we have only to eliminate the differentials of the po-
tentials from the different equations of the form (12) relating to
the different bodies. In the simplest case, when there is but one
component, we obtain the wellknown formula

dp __n—% @

may be expressed in terms of the entropies and volumes of

dt v —v = i —v) !
in which o', v”, %, %", denote the volumes and entropies of a
given quantity of- the substance in the two phases, and @ the
heat which it absorbs in passing from one phase to the other.
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It is easily shown that if the temperature of two coéxistent
phases of two components is maintained constant, the pressure is
in general a maximum or minimum when the composition of the
phases is identical. In like manner, if the pressure of the phases
is maintained constant, the temperature is in general a maximum
or minimum when the composition of the phases is identical. The
series of simultaneous values of ¢ and p for which the composition
of two coéxistent phases is identical separates those simultaneous
values of ¢ and p for which no coéxistent phases are possible from

If the temperature of three coéxistent phases of three compo.

nents is maintained constant, the pressure is in general a maxi-
mum or minimum when the composition of ome of the phases is
such as can be produced by combining the other two. If the
pressure is maintained constant, the temperature is in general a
maximum or minimum when the same condition in regard to the
composition of the phases is fulfilled.

Stability of fluids. — A criterion of the stability of a homoge--
neous fluid, or of a system of coéxistent fluid phases, is afforded
by the expressirn - |
(14) e—t'y 4 pv—pu'm — pmyg — o — pniy :
in which the values of the accented letters are to be determined
by the phase or system of phases of which the stability. is in
question, and the values of the unaccented letters by any other
phase of the same components, the possible formation of which
18 in question. We may call the former conmstants, and the latter
variables, Now if the value of the expression, thus determined,
is always positive for any possible values of the variables, the
phase or system of phases will be "stable with respect to the for-
mation of any new phases of its components. But if the ex-
pression is capable of a negative value, the phase or system is at
least practically unstable. By this is meant that, although, strietly
speaking, an infinitely small disturbance or chamge may. mot be
sufficient to destroy the equilibrium, yet a very small change in
the initial state will be sufficient to do so. The presence of a
small portion of matter in a phase for which the above expression
has a negative value will in general be sufficient to produce this
result. In the case of a system of phases, it is of course supposed
that their contiguity is such that the formation of the new phase
does not involve any transportation of matter throngh finite distances.

L)

k3
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The preceding criterion affords a convenient point of departure
in the discussion of the stability of homogeneous fluids. Of the other
forms in which the criterion may be expressed, the following is
perhaps the most useful.

If the pressure of a flwid is greater than that of any other phase
of its independent variable components which has the same temperature
and polentials, the fiwid is stable with respect to the formation of any
other phase of these components; but if ifs pressure is not as great as
that of some such phase, it will be practically unstable.

Stability of fhads with vespect to continuous changes of phase, —
In considering the changes which may take place in any mass, we
have often to distinguish between infinitesimal changes in existing
phases, and the formation of entirely new phases. A phase of a

fluid may be stable with respect to the former kind of change, and

unstable with respect to the latter. In this case, it may be capable
of continued existence in virtne of properties which prevent the
commencement of discontinuous changes. But a phase which is un-
stable with respect to comtinuous changes is evidently incapable of
permanent existence on a large scale except in consequence = of
passive resistances to change. To obtain the conditions of stability
with respect to continuous changes, we have only to limit the appli-
cation of the variables in {14) to phases adjacent to the given
phase. We obtain results of the following nature. ,
The stability of any phase with respect to continuous changes
depends upon the same conditions with respect to the second and
higher differential coefficients of the density of energy regarded as
a function of the density of entropy and the densities of the several
components, which would make the density of energy a minimum,

if the necessary conditions with respect to the first differential

coefficients were fulfilled.

Again, it is necessary and sufficient for the stability with re-
spect to continuous changes of all the phases within any given li-
mits, that within those limits the same conditions should be ful-
filled with respect to the second and higher differential coefficients
of the pressure regarded as a function of the temperature and the
several potentials, which would make the pressure a minimum, if
the necessary conditions with respect to the first differential coeffi-
cients were fulfilled.

The equation of the limits of stability with respect to conmti-
nuous changes may be written

1
4
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o dp 3
(15) (Tl) =0, or ( d ' ) == 00,
¥/t uy, P T 1 dunlt, u,. cHm—y -

where y, denotes the density of the component specified or m, .
It is in general immaterial to what component the soffix , is re-
garded as relating, ~ o

Critical phases. — The variations of two coexistent phases are
sometimes himited by the vanishing of the difference between them.
Phases at which this occurs are called eritical phases. A eritical phase,
like any other, is capable of 21 independent variations, » denoting
the number of independently variable components. But when subject to
the condition of remaining a critical phase, it'is capable of ouly w — 1
independent variations. There are therefore two independent equations
which characterize critical phases. These may be written

dp, , ap,
16 (5 =0, (z3), =0,
Yul tpy . oty g CVn S,y i

It will be observed that the first of these equations indent identical
with the equation of the limit of stability with respect to conti-
nuous changes. In fact, stabile critical phases are situated at that
limit. They are also situated at the limit of stability with respect

to discontinuous changes. These limits are in general distinct, but -

touch each other at critical phases. . |
Geometrical illustrations. — In an earlier paper,*) the author
has described a method of representing the thermodynamic proper-
ties of substances of invariable composition by means of surfaces.
The volume, entropy, and energy of a constant quantity of the
substance are represented by rectangular cotrdinates. This method
corresponds to the first kind of fundamental equation deseribed
above. Any other kind of fundamental equation for a substance of

invariable composition will suggest an analogous geometrical me-

thod. In the present paper, the method in which the codrdinates
represent temperature, pressure, and the potential, is briefly consi-
- dered. But when the composition of the body in variable, the fun-
damental equation cannot be completely represented by any surface
or finite number of surfaces. In the case of three components, if
we regard the temperature and pressure as constant, as well as the
total quantity of matter, the relations between £, m,, m,, My may
be represented by a surface in which the distances of a point from
the three sides of a triangular prism represent the quantities m,,

*) Transactions of the Connecticut Academy, vol. ii, part 2.

PR ey
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My, My, and the distance of the point from the base of the prism
represents the quantity {. In the case of two components, analo-
gous relations may be represented by a plane curve. Such methods
are especially useful for illustrating the combinations and separa-
tions of the components, and the changes in states of aggregation,
which take place when the substances are exposed in varying pro-
portions to the temperature and pressure considered.

Fundamental equations of ideal gases and gas-miztures. — From
the physical properties which we attribute to ideal gases, 1t is easy
to deduce their fundamental equations. The fundamental equation
in & 1, v, and m for an ideal gas is

st — Em LI - T
(17) e log = — — H 1} alog pt

e cm m
that in v, ¢, v, and m is

(18) P = Em -+ mt (c — H—clogt+ alog 1:_) :
that in p, 4, and p is

H—c—a cta u—E
(19) - p=ae " 2% ¢
where ¢ denotes the base of the Naperian system of logarithms.
As for the other constants, ¢ denotes the specific heat of the gas
at constant volume, a denotes the constant value of pv—mt, E
and H depend upon the zeros of energy and entropy. The two last
equations may be abbreviated by the use of different constants,

The properties of fundamental equations mentioned above may easily

be verified in each case by differentiation.

The Jaw of Dalton respecting a mixture of different gases affords
a point of departure for the discussion of such mixtures and the
establishment of their fundamental equations. It is found convenient
to give the law the following form:

The pressure in a mizture of different gases is equal to the sum
of the pressures of the different gases as existing cach by itself at the
same temperature and with the same value of its potential.

A mixture of ideal gases which satisfies this law is called an
tdeal gas-mizture. lts fundamental equation in p, ¢, u,, w,, ete. is
evidently of the form

H—cg—a ¢4 a py — E,
(20) p= 31(@16 R SR )s
where X, denotes summation with respect to the different compo-
nents of the mixture. From this may be deduced other fundamental
equations for ideal gas-mixtures. That in v, ¢ v, m, m,, e is

=
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(21) 9= E,(El m, + m,tle, — H, — ¢, log ¢t + a, log "_5;)) :
Phases of dissipated energy of ideal gas-miztures. — When the
proximate components of a gas-mixture are so related. that some of
them can be formed out of others, although not mecessarily in the
gas-mixture itself at the temperatures considered, there are certain
phases of the gas-mixture which deserve especial attention. These
are the plases of dissipated encrgy, i. e, those phases in which the
energy of the mass has the least value comsistent with its entropy
and volume. An atmosphere of such a phase could not furnish a
source of mechanical power to any machine or chemical engine
workinrg within it, as other phases of the same matter might do.
Nor can such phases be affected by any catalytic agent. A perfect
catalytic agent would reduce any other phase of the gas-mixture to
a phase of dissipated emergy. The condition which will make the
energy a minimum is that the potentials for the proximate compo-
nents shall satisfy an equation similar to that which expresses the
relation between the units of weight of these components. For
example, if the components were hydrogen, oxygen, and water, since
one gram of hydrogen with eight grams of oxygen are chemically
equivalent to nine grams of water, the potentials for these sub-
stances in a phase of dissipated energy must satisfy the relation
g + 8po = Jpw. |
Gas-miztures with convertible componenis. — The theory of the
phases of dissipated energy of an ideal gas-mixture derives an espe-
cial interest from its possible application o the case of those gas-
mixtures in which the chemical composition and resolution of the
components can take place in the gas-mixture itself, and actually
does take place, so that the quantities of the proximate com-
* ponents are entirely determined by the quantities of a smaller
number of ultimate components, with the temperature and pressure.
These may be called gas-mivtures with convertible components. If the
general laws of ideal gas-mixtures apply in any such case, it may
easily be shown that the phases of dissipated energy are the only
phases which can exist. We can form a fundamental equation which
shall relate solely to these phases. For this end, we first form the
equation in p, {, w,, ps, ete. for the gas-mixture, regarding its pro-
ximate components as nof convertible. This equation will contain a
potential for every proximate component of the gas mixture, We
then eliminate one (or more) of these potentials by means of the
Repertorium fur reine und angewandte Mathematik, ' 22
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relations which exist between them in virtue of the convertibility
of the components to which they relate, leaving the potentials which
relate to those substances which naturally express the ultimate
composition of the gas-mixture.

The validity of the results thus obtained depends upon the
applicability of the laws of ideal gas-mixtures to cases in which
chemical action takes place. Some of these laws are generally re-
garded as capable of such application, others are not so regarded,

' But it may be shown that in the very important case in which the
components of a gas are convertible at certain temperatures, and
not at others, the theory proposed may be established without other
assumptions than such as are generally admitted. |

It is, however, only by experiments upon gas-mixtures with
convertible components, that the validity of any theorie concerning
them can be satisfactorily established.

The vapor of the peroxide of nitrogen appears to be a mixture
of two different vapors, of one of which the molecular formula is
double that of the other. If we suppose that the vapor conforms
to the laws of an ideal gas-mixture in a state of dissipated energy,
we may obtain an-equation between the temperature, pressure, and
density of the vapor, which exhibits a somewhat striking agreement
with the results of experiment.

Equilibrivm of stressed solids. — The second paper commences
with a discussion of the conditions of internal and exﬁer’nal equili-
brium for solids in contact with fluids with regard to all possible
states of strain of the solids. These conditions are deduced by
analytical processes from the general condition of equilibrium (2).
The condition of equilibrium which relates to the dissolving of the
solid at a surface where it meets a fluid may be expressed by the
equation
) p =ttt
where & 7, v, and m, denote’ respectively the emergy, entropy, vo-
lume, and mass of the solid, if it is homogenequs in nature and state
of strawn; — otherwise, of any small portion which may be treated
as thus homogeneous, — g, the potential in the fluid for the sub-
stance of which the solid consists, p the pressure in the fluid and
therefore one of the principal pressures in the solid, and ¢ the tem-
perature. It will be observed that when the pressure in the solid
is isotropic, the second member of this eguation will represent the
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potential in the solid for the substance of which it consists [see (9)],
and the condition reduces to the equality of the potential in the
two masses, just as if it were a case of two fluids. But if the stresses
in the solid are not isotropic, the value of the second member of
the equation is not entirely determined by the nature and state of
the solid, but has.iu general three different values (for the same
salid at the same ftemperature, and in the same state of strain)
corresponding to the three principal pressures in the solid. If a
solid in the form of a right parallelopiped is subject to different
pressures on its three pairs of opposite sides by fluids in which 1t
is soluble, it is in general necessary for ethhmum ﬂmat the com-
position of the fluids shall be different.

The fundamental egmatwns which have heen described above
are limited, in their application to solids, to the case in which the
stresses’ in the solid are isotropic. An example of a more geméml
form of fundamental equation for a solid, is afforded by an epuation
between the energy and entropy of a given quantity of the solid,
and the quantities which express its state of strain, or by an equa-
tion between y [see (3)] as determined for a given quantity of the
solid, the temperature, and the quantities which expressed the state
of strain. ‘ s

Capillarity. — The solution of the problems which precede may
be regarded as a first approximation, in which the peculiar state of
thermodynamic equilibrium about the surfaces of discontinuity is
neglected. To take account of the condition of things at these sur-
faces, the following method is used. Let us suppose that two ho-
mogeneous fluid masses are separated by a surface of discontinuity,
i. e, by a very thin non-homogeneous film. Now me may imagine
a state of things in which each of the homogeneous masses extends
without variation of the densities of its several components, or of
the densities of energy and entropy, quite up to a gemmeﬁmeaﬂ sur-
face (to be called the dividing surface) at which the masses meet.
We may suppose this surface to be sensibly coincident with the
physical surface of discontinuity. Now if we compare the actual
state of things with the supposed state, there will be in the former
in the vicinity of the surface a certain (positive or negative) excess
of energy, of entropy, and of «each of the eumpmnemﬁ substances,
These ,quantities are denoted by &°, %%, ’m"w m,, etc. and are treated
as belonging to the surface. The 5 is used simply as a distin-
guishing mark, amd must not be taken for an algebraic exponent,

29*
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relating to the temperature and the potentials of the homogeneous
masses, are not affected by the surfaces of discontinuity, and that
the eomplete value of de¥ is given by the equation

(23) o =tdy" 4 ods + ‘.u,lé'mf + u.0 ms + ete.

in which s denotes the area of the surface considered, ¢ the tem-
perature, u,, p,, etc. the potentials for the various components in
the adjacent masses. It may be, however, that some of tﬂ{me compo-
nents are found only at the surface of discontinuity, in which case
the letter u with the suffix relating to such a substance denotes,
as the equation shows, the rate of increase of energy at the sur-
face per unit of the substance added, when the entropy, the area
of the surface, and the quantities of the other components are un-
changed. The quantity ¢ we may regard as defined by the equation
itself, or by the following, which is obtained by integration:

(24) & =1ty 4 6s -+ u, mf -+ @zgmg-!{! ete.

There are terms relating to variations of the curvatures of the
surface which might be added, but it is shown that we can give
the dividing surface such a position as to make these terms vanish,
and 1t is found convenient to regard its position as thus determined.
It is always sensibly coincident with the physical surface of dis-
continuity. (Yet in treating of plane surfaces, this supposition in
regard to the position of the dividing surface is unnecessary, and
it is sometimes convenient to suppose that its position is deter-
mined by other considerations.)

With the aid of (23), the remaining condition of equilibrium
for contiguous homogeneous masses is found, viz:

(@5) o(e, + &) =9 — 1",
where p’, p” denote the pressures in the two masses, and ¢, ¢, the
principal curvatures of the surface. Since this equation has the
same form as if a tension equal to ¢ resided at the surface, the
quantity ¢ is called (as is usual) the superficial tension, and the
. dividing surface in the particular position above mentioned is called
the surface of tension. ‘

By differentiation of (24) and comparison with (23), we obtain
(26) de = — qdt — I'idp, — Iydp, — ete,
’W*S Hﬁf Wl\"g

where 9, I, T, ete, are written for ., L ! ete., and de-
_ 5 ! 8 & 8




J. W. Ginns. 315

note the superficial densities of entropy and of the various sub-
stances. We may regard ¢ as a function of ¢, g, #,, etc., from
which if known n,, I, I}, ete. may be determined in terms of the
same variables. An equation between ¢, ?, w,, gy, ebc. may there-
fore be called a fundamental equation for the surface bf disconti-
nuify. The same may be said of an equation between &, 7, 8,
ms, mj, ebe. _

1t is necessary for the stability of a surface of-discontinuity
that its tension shall be as small as that of any other surface

which can exist between the same homogeneous masses with the

same temperature and potentials. Beside this condition, which
relates to the nature of the surface of discontinuity, there are other
conditions of stability, which relate to the possible motion of such
surfaces. One of these is that the temsion shall be positive. The
others are of a less simple nature, depending upon the extent and
form of the surface of discontinuity, and in general upon the whole
system of which it is a part The most simple case of a system
with a surface of discontinuity is that of two coéxistent phases
separated by a spherical surface, the outer mass being of indefinite
extent. When the interior mass and the surface of discontinuity are
formed entirely of substances which are components of the sur-
rounding mass, the equilibrium is always unstable; in other cases,
the equilibrium may be stable. Thus, the equilibrium of a drop of
water in an atmosphere of vapor is unstable, but may be made
stable by the addition of a little salt. The analytical conditions
which determine the stability or instability of the system are easily
found, when the temperature and potentials of the system are ve-
garded as known, as well as the fundamental equations for the
interior mass and the surface of discontinuity. :
The study of surfaces of discontinuity throws considerable
light upon the subject of the stability of such phases of fluids as
have o less pressure than other phases of the same components
with the same temperature and potentials. Let the pressure of the
phase of which the stability is in question be i:]emo‘i@ed by ¥, and
" that of the other phase of the same temperature and potentials by

p”. A spherical mass of the second phase and of a radius deter-

mined by the equation

(27) 26 = (5 — P,

would be in equilibrium with a surrounding mass of the first phase.
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This equilibrium, as we have just seen, is instable, when the
surrounding mass is indefinitely extended. A spherical mass a littlo
larger would tend to increase indefinitely. The work required to
form such a spherical mass, by a reversible process, in the interior
of an infinite mass of the other phase, is given by the equation

(28) -’;V =G5 — (1}” —_ P’) ‘U”-

The term es represents the work spent in forming the surface, and
the term (p”"— p’)v” the work gained in forming the interior mass,
The second of these quantities is é]ways equal to two-thirds of the
first. The value of W is therefore positive, and the phase is in
strictness stable, the quantity ¥V~ affording a kind of measure of its
stability. We may easily express the value of 1 in a form which
does not involve any geometrical magnitudes, viz:
167w¢6°

(29) V= S—pr
where p”, p" and ¢ may be regarded as funetions of the tempe-
rature and potentials. It will be seen that the stability, thus
measured, is infinite for an infinitesimal difference of pressures,
but decreases very rapidly as the difference of pressures increases.
These conclusions are all, however, practically limited to the
case in which the value of », as determined by equation (27) is of
sensible magnitude. i

With respect to the somewhat similar problem of the stabil-
ity of the surface of contact of two phases with respect to the
formation of a new phase, the following results are obtained. Let
the phases (supposed to have the same temperature and potentials)
be denoted by A, B and C; their pressures by p,, pp and pg; and
the tensions of the three possible surfaces Gapy Oney, Oac. If pg is
less than

GpoPy+ G0y
6pc - 94¢ _

there will be no tendency toward the formation of the new phase
at the surface between 4 and B, If the temperature or potentials
are now varied until pc is equal to the above expression, there are
two cases to be distinguished. The tension 64, will be either equal

to 6us | gzc or less. (A greater value could only relate to an un-

stable and tlierefore unusual surface.) If 6., — o, + Gpc, a farther
variation of the temperature or potentials, making pe greater than
the above expression, would cause the phase C to be formed at




J. W. Ginss. 317

the surface between A4 and B. But if 643 < 64¢ + Gsc, the sur-
face between 4 and B would remain stable, but with rapidly di-
minishing stabilityr after pc has passed the limit mentioned.

The conditions of stability for a line where several surfaces
of discontinuity meet, with respect to the possible formation of a
new surface, are capable of a very simple expression. If the sur-
faces A-B, B-C, C-D D-A, separating the masses 4, B, C, D,
meet along a line, it is necessary for equilibrium that their tensions
and directions at any point of the line should be such that a qua-
drilateral «, 8, ¥, 0 may be formed with sides representing in
direction and length the normals and temsions of the successive
surfaces. For the stability of the system with reference to the.
possible formation of surfaces between A and C, or between B and
D, it is farther necessary that the tensions 64c and 6zp should be
greater than the diagonals ay and A& respectively. The conditions
of stability are entirely analogous in the case of a greater number -
of surfaces. For the conditions of stability relating to the for-
mation of a new phase at a line in which three surfaces of dis-
continuity meet, or at a point where four different phases meet,
the reader is referred to the original paper.

Liquid films. — When a fluid exists in the form of a very
thin film between other fluids, the gleat inequality of is " exten-
gion in different directions will give rise to certain peculiar pro-
perties, even when its thickness is sufficient for its interior to have
the properties of matter in mass. Thé most important case is
where the film is liquid and the contiguous fluids are gaseous. If
we imagine the film to be divided into elements of the same order
of magnitude as its thickness, each element extending through the
film from side to side, it is evident that far less time will in
general be required for the attamment of approximate equilibrium
between the different parts of any such element and the contiguous
gases than for the attainment of equilibrium between all the diffe-
rent clements of the film.

There will accordingly be a time, comméncing shortly after
the formation of the film, in which ils separate elements may be
regarded as satisfying the conditions of internal equilibrium, and
of equilibrium with the configuous gases, while they may not sa-
tisfy all the conditions of equilibrium with each ether. It is when
the changes due to this want of complete equilibrium take place
so slowly that the film appears to be at rest, except so far as it
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accommodates itsell to any change in the external conditions to
which it is suljected, that the characteristic properties of the film
are most striking and most sharply defined. It is from this point
of view that these bodies are discussed. They are regarded as
satisfying a certain welldefined class of conditions of equilibrium,
but as not satisfving at all certain other conditions which would
be necessary for complute equilibrium, in consequence of which they
are subject to gradual changes, + hld ultimately determine their
rupture.

The elasticity of a film {i. e. the increase of its tension when
extended), 1s casilv accounted fur. It follows {rom the general re-
lations given above that. when a film has more than one com-
ponent, those components which diminish the tension will be tound
m greater proportion on the surfaces.  When the film is extended,
there will not be enough of these substances to keep up the same
volume- and surface-densities as before, and the deficiency  will
cause a certain increase of tension. It does not {follow that a
thinner film hax always a greater tension than a thicker formed of
the same liquid. When the phases within the films us well as
without are the same, and the surfaces of the films are also the
same, thme will be no difference of tension. Nor will the
of thc same film be altered, i

tension
a part of the mterior drains away
m the course of time, without aftecting the surfaces. If the thick-
ness of the film is reduced by evaporation, its tension may be
either increased or diminished, according to the relative volatility
of 1ts different components.

Let us now suppose that the thickness of the film is reduced
until the limit is reached at which the interior ceaves to have the
properties of matter in mass. The elasticity ot the film, which
determines its stability mth 1e-peLt to extension and Lontl.mtlon
does not vanish at this limit. But a certain kind of mstability wn“
senerally arise, in virtue of which inequalities in the thickuess of
the film will tend to increase through currents in the interior of
the film. 'This probably leads to the destruction of the film, in
the case of most liguids. In a film of svap-water, the kind of
mnstability described scems to be manifested in the breaking out of
the black spots. But the sudden diminution in thickness whicl
takes place in parts of the film is arrested by some unknown cause,
possibly by viscous or gelatinous properties, so that the rupture of
the film does not mecessarily follow,

e —— i
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Islectromolive force. — The conditions of equilibrium may be
modified by clectromotive force. Of such cases a galvanic or elec-
trolytic cell may be regarded as the type. With respect to the
potentials for the ions and the electrical potential the following re-
lation may be noticed:

When oll the conditions of equilibrium are fulfilled wn a galvanic
or clectrolytic cell, the clectromotive force s equal to the difference in
the values of the potential for any ion at the swfaces of the electrodes
mulliplicd by the electro-chemical equivalent of that iom, the grealer
 polential of an anion being at the same clectrode as the greater elec-
trical polential, and the reverse being true of a cation.

The relation which exists between the electromotive force of
a perfeet electro-rhemical apparatus (1. e., a galvanic or electrolytic
cell which satisfies the condition of reversibility), and the changes
in the cell which accompany the passage of electricity, may be
expressed by the equation :

30) de = (V' — V"'yde +-tdy + d We + d W,

in which d¢ denotes the increment of the intrinsic energy in the
apparatus, dy the increment of entropy, de the quantity of electri-
city which passes trongh it, 7’ and 7" the electrical potentials in
picces of the same kind of metal connected with the anode and
cathode respectively, @ 117, the work done by gravity, and d Wp the work
done by the pressures which act on the external surface of the apparatus.
The term W7 may generally be neglected. The same is true of ¢ W,
when gases are not concerned. If no heat is supplied or withdrawn
the term ¢dy will vanish. But in the calculation of electromotive
foreces, which is the most important application of the equation, it
is convenient and customary to suppose that the temperature is
maintained comstant. Now this term ¢dxn, which represents the
heat absorbed by the cell, is frequently neglected m the considera-
tion of cells of which the temperature is supposed to remain con-
stant. In other words, it is frequently assumed that neither heat
or cold is produced by the passage of an electrical current through
a perfect electro-chemical apparatus {except that heat which may
be indefinitely diminished by increasing the time in which a given
quantity of electricity passes), unless 1t be by processes of a se-
condary nature, which are not immediately or necessarily conneected
with the process of clectrolysis,

That this assumption is incorrect is shown by the electro-
motive force of a gas battery charged with hydrogen and nitrogen,
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by the currents caused by differences in the concentration of the
electrolyte, by electrodes of zinc and mercury in a solution of sul-
phate of zine, by @ priori considerations based on the phenomena
exhibited in the direct combination of the elements of water or of
hydrochloric acid, by the absorption of heat which M. Favre has
in many cases observed in a galvanic or electrolytic cell, and by
the fact that the solid or liquid state of an electrode (at its tem-
perature of fusion) does not affect the electromotive force,

J. W. Gibbs.

Pappi Alexandrini collectionis quae supersunt e libris manu
scriptis edidit, Latina interpretatione et commentariis
instruxit Fridericus Hultsch, (Volumen I, enthaltend die
Ueberreste von Buch 2—35, Berlin, Weidmannsche Buchhandlung
1876; Volumen II, enthaltend Buch 6 und 7, 1877; Voluminis III
tomus I, enthaltend die Ueberreste des 8. Buches und verschiedene
Supplemente, tomus II, enthaltend die Indices, 1878.

Die hohe Bedeutung, welche die mathematische Sammlung dés
Pappus von Alexandria als Quelleywerk auch fiir die neuere mathe-
matische Forschung hat, ist zu keiner Zeit seit dem Wiedererwachen
der Wissenschaften verkannt worden. Nachdem Commandini im
J. 1588 1) seine lateinische Uebersetzung nebst ausfithrlichen Corn-
mentaren verdffentlicht hatte, verbreitete sich eine gewisse, freilich
nur liickenhafte Kenntniss von dem Inhalte des Werkes bei den
Forschern auf historisch-mathematischem Gebiete. Mehr als hundert
Jahre waren seit dem Erscheinen der Commandinischen Bearbeitung
vergangen, als die Erinnerung an Pappus von neuem wachgerufen
und das Studium des Originaltextes zum erstenmale versucht wurde
von Wallis und Halley.?) Insbesondere zeigte der letztere in seiner
Ausgabe der Sectio rationis (i6pov dmorous}) und der Conica des
Apollonius allenthalben, welche Wichtigkeit die Lemmen des Pappus
fiir das Verstéindniss. des Apollonius haben. Hierauf folgte die Re-

1) Das Jahr 1588 ist angegeben auf der Vorderseite des letzten Blattes,
Der Titel trigt die Jahreszahl 1589. Bald daranf ist genau dieselbe Ansgabe
unter anderem Titelblatt und mit der Jahreszsahl 1602 zum Verkauf gestellt
worden. Vergl. vol. I des hier besprochenen Werkes, Praefatio p, XVIL

2). Vergl. vol. I praef p. XIX. XXI £




