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Abstract 

Natural d-(+)-camphor represents a privileged and structural versatile motif originating from 

the chiral pool and is often employed for the development of novel ligands and catalysts, 

which are broadly applicable in asymmetric synthesis, catalysis and separation science. 

Besides their use as chiral auxiliaries, as lewis-acid catalysts and as N-heterocyclic ligands in 

asymmetric transformations they are known to be powerful selectors for the separation of 

enantiomers and stereoisomers of various compounds. Discrimination of enantiomers can be 

realized in homogeneous and heterogeneous systems. Camphor-based NMR-shift reagents are 

well established auxiliaries for enantiomer analysis in the liquid-liquid phase, but camphor 

derivatives can also be employed for chromatographic separations in gas-liquid (GC, CGC), 

liquid-liquid phases (LC) and super-critical-phases (SFC). This thesis is intended to further 

extend the scope of camphor and camphor-derived building blocks in the synthesis of chiral 

ligands, catalysts and selectors, their successful application in catalysis and in 

enantioseparation sciences.  

The thesis is divided into four chapters each focusing on the development of novel 

camphor-based compounds and their application as catalysts or selectors. A short introduction 

is given in each chapter dealing with recent progress in the field of interest as well as 

providing essential basics of the affected chemistry, like Pd-catalysis, polymer and separation 

science. 

In chapter 1, after an introduction about general aspects of chiral stationary phases (CSPs) and 

their application in complexation gas chromatography (CGC), the total synthesis of novel, 

extended CSPs derived from 1S-(+)-camphorsulfonic acid is presented. The developed 

Chirasil-Metal-OC3 phases are synthesized with overall high yield in only six steps. Two 

different approaches towards Chirasil-Metals featuring either an oxypropyl- or propylsulfanyl 

linker is presented. Furthermore, a new protocol for the fluoroacylation, which is one of the 

key steps in synthesis of 3-(perfluoroalkanoyl)-(1R)-camphorate metal complexes, is 

presented to improve the isolation and overall yield. Besides synthesis of the polysiloxane 

CSPs, this chapter focuses on the immobilization step furnishing the polymer-supported chiral 

ligand. Therefore, a detailed study for three different selector-concentrations on the polymer 

is given for the immobilization step and for the metal incorporation to the target metal-

selectors using IR- and NMR spectroscopy. Overall seven different Chirasil-Metal polymers 

with different separation capabilities are reported by metal-incorporation of nickel(II), 

oxovanadium(IV), europium(III ), lanthanum(III ) and variation of the amount of ligand content 
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on the polymer (3.5%, 10.2% and 20.0%). Their performance in enantioselective 

complexation gas chromatography (CGC) is studied in terms of selector-type, selector-

concentration, polymer film thickness, polymer composition and column length. Superior 

activity and separation of 29 small-sized compounds, encompassing inter alia epoxides, 

derivatized alkenes and alkynes as well as alcohols and amides, is presented, throughout with 

high separation factors α. The thermal stability and the broad applicability, synthetic 

versatility and efficiency of the newly derived Chirasil-Metal-OC3 phase is reported. 

Furthermore, the separation of enantiomers and epimers of the four stereoisomers of 

chalcogran, the principle component of the aggregation pheromone of the bark beetle 

pityogenes chalcographus, is reported and the kinetic data (∆Gǂ, ∆Hǂ and ∆Sǂ) for the 

interconversion barrier for the epimerization process of chalcogran obtained by temperature-

dependent measurements using dynamic complexation gas chromatography (DCGC) is 

presented. By comparison with results obtained by dynamic inclusion GC on Chirasil-β-Dex 

stationary phases an explanation for the differences in activation parameters is given. 

Moreover, a unique, novel approach to an efficient assignment of enantiomer configuration 

and determination of enantiomeric excesses via on column gas chromatography (dynamic 

elution profiles by CSP-coupling) is developed and presented. The advantages of this 

approach concerning sample purity, injection quantities and accessibility to enantiopure 

compounds is discussed. Furthermore, the separation of the major components of an 

interconversion plateau into separated peak areas by coupling of different separation columns 

is presented. Finally, the synthetic value and versatility of the camphor building block is 

demonstrated by a two-step procedure with stereoselective introduction of two new chiral 

centers (S-, R-) by coupling of two camphor molecules – an approach towards the 

development of acyclic chiral stationary phases (cf. Scheme 1).  

Polysiloxane
support

Selectors for Enantioresolution

in Complexation Gas Chromatography

Investigation of Dynamic

Interconversion Processes

Lewsi-Acid Catalysts for
On-Column Reaction Chromatography

Linker

Scheme 1 Development of novel, immobilized CSPs form camphor and their application in 
complexation gas chromatography. 
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The 2nd chapter deals with the synthesis of a novel bidentate N,N-heterocyclic ligand motif 

derived from d-(+)-camphor. After a short introduction into isomerization reactions and the 

Wacker-oxidation of olefins, the synthesis and structural analysis of overall 11 new ligands is 

reported and the coordination to palladium, copper and cobalt is investigated. As the synthesis 

initially involves the preparation of diastereopure chiral camphortetraketones the focus was 

set on the investigation of the isomer distribution and configuration thereof, giving evidence 

for a new proto-chelate type, keto-enol tautomerism supported by X-ray crystallographic and 

VT proton NMR analysis. The preparation and the molecular structure of two, chiral 

bihomometallic transition-metal(I) complexes is described as well. The performance of three 

representative palladium catalysts exhibiting different electronic properties in the palladium-

catalyzed copper-free Wacker oxidation of different alkenes is described and the obtained 

results are discussed in detail. A detailed study of all 11 Pd-catalysts in the selective 

isomerization of a series of substituted terminal arylpropenoids is presented. The influence of 

catalyst loading and the impact of acid and base additives is addressed. An extensive solvent, 

catalyst and finally substrate screening is undertaken and the results are discussed concerning 

steric and electronic effects of the ligands and employed solvents. The reaction mechanism 

involved is studied in detail using deuterium labeled solvents and substrates and the reaction 

rate orders of catalyst, substrate and solvent are determined by GC, GC-MS and NMR 

measurements. The integrity and stability of the catalyst system is demonstrated by multiple 

addition reaction cycles, successive filtration and isolation experiments. Finally, an extension 

of the bidentate 3,3-bipyrazole ligand pattern to furnish 2nd generation tetradentate ligands and 

their palladium-complexes featuring either pyridine or methylpyridine as wingtip substituents 

is presented and their structural characteristics (atropisomerism) are discussed (cf. Scheme 2). 

  

Scheme 2 Synthesis and catalytic application of novel camphor derived, 
bidentate 3,3’-bipyrazole palladium complexes. 
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Chapter 3 of this thesis focuses on the synthesis of a chiral NHC-pincer ligand derived from 

camphoric acid as the chiral building block. The preparation is presented in overall five steps 

in moderate to good overall yield. Two NHC-pincer ligands with differing counter ions and 

one dibenzotriazole ligand are described. The developed procedure allows the regioselective 

monosubstitution of the central chiral building block as validated by NMR spectroscopic and 

X-Ray crystallographic analysis. The molecular structures of the NHC- and triazole pincer 

ligand is presented and the structural characteristics are discussed in detail. The results are 

supported by X-ray crystallographic measurements and an explanation for the observed 

coordination properties is given (cf. Scheme 3). 

Chapter 4 of this thesis focuses on the structure-reactivity relationship in the asymmetric 

intramolecular oxindole synthesis using Pd-NHC isonitrile catalysts (100 – 102) featuring 

increasing steric demand while maintaining the same chiral substitution pattern (camphor). 

After a short introduction into chiral NHCs used for these transformations, three six-

membered hexahydropyrimidine core based, camphor-derived (bornylamine) NHC-Pd-

isonitrile complexes are presented and their application in the enantioselective α-amide 

arylation to form 3,3-disubstituted oxindoles is described. The preparation of five different 

substrates bearing benzyl-and naphthyl-substituents and N-alkylation and the influence of the 

NHC-substitution pattern on enantioselectivity in the asymmetric α-arylation of amides is 

reported. Different enantioselectivities and a change in the reaction profile is observed. The 

results are discussed taking steric effects at the catalyst metal-center and steric demand of the 

substrates into account (cf. Scheme 4). 
  

Scheme 3 Target palladium pincer-complex 78 derived from camphoric acid. 

Scheme 4 Asymmetric oxindole synthesis using Pd-isonitrile complexes 100 – 102. 
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Zusammenfassung 

Natürlicher d-(+)-Campher stellt – dem chiralen Pool entnommen –  ein privilegiertes und 

strukturell vielseitiges Motiv dar. Es wird für die Entwicklung von neuen Liganden und 

Katalysatoren verwendet und besitzt ein breites Einsatzspektrum in der asymmetrischen 

Synthese, Katalyse und in der Enantiomerentrennung. Neben der Verwendung als chirales 

Auxiliar, als Lewis-Säure und als Baustein für N-heterozyklische Liganden findet es auch 

Einsatz in Form potenter Selektoren in homogenen und heterogenen Systemen. In der flüssig-

flüssig Phase haben sich Campher-basierte NMR-shift Reagenzien für die 

Enantiomerenanalytik erfolgreich etabliert und einige Derivate sind ebenfalls in der gas-

flüssig (GC, CGC), flüssig-flüssig (LC) und überkritischen Phase (SFC) einsetzbar. Die 

vorliegende Arbeit beschäftigt sich auf der Grundlage von Campher mit der Entwicklung 

neuer chiraler Liganden, Katalysatoren und Selektoren sowie deren Anwendung in der 

Katalyse und Trennanalytik.  

Die vorliegende Arbeit ist in vier Kapitel unterteilt, von denen sich jedes mit der 

Entwicklung neuer Campher basierter Zielstrukturen sowie deren Einsatz als Katalysatoren 

oder Selektoren beschäftigt. Zu Beginn eines jeden Kapitels wird dabei auf den Stand 

aktueller Entwicklungen und die notwendigen Grundlagen der betreffenden Themengebiete, 

beispielsweise der Palladium-Katalyse, der Polymerwissenschaft und der Trennanalytik 

eingegangen. 

In Kapitel 1 wird, nach einer kurzen Einleitung die Grundlagen chiraler Stationärphasen 

(CSPs) und deren Anwendung in der Komplexierungs-Gaschromatographie betreffend, die 

Totalsynthese einer neuen CSP ausgehend von 1S-(+)-Camphersulfonsäure präsentiert. Die so 

genannten „Chirasil-Metall-OC3“ Phasen sind in hohen Gesamtausbeuten über sechs Stufen 

zugänglich. Insgesamt werden zwei Vorgehensweisen für die Chirasil-Metall Phasen, 

basierend entweder auf einem oxypropyl- oder einem propanylsulfanyl Linker, vorgestellt. 

Für den Schlüsselschritt in der Synthese – eine Fluoracylierung – wird ein neues Verfahren 

vorgestellt, welches eine entscheidende Verbesserung der bestehenden Routen darstellt. 

Neben der Synthese der Polysiloxan CSPs liegt ein Hauptaugenmerk auf der Immobilisierung 

des Selektors am Polymer. Mittels IR- und NMR spektroskopischen Untersuchungen wird die 

Immobilisierung anhang dreier variierender Liganden-Konzentrationen auf dem Polymer 

sowie der Metalleinbau zu den fertigen Selektoren verfolgt und eine detaillierte Studie 

dargelegt. Mit der Wahl der Selektorkonzentration auf dem Polymer (3.5%, 10.2% und 

20.0%) sowie dem Einbau von Nickel(II), Oxovanadium(II), Europium(III ) und Lanthan(III ) 

werden insgesamt sieben Chirasil-Metall Phasen mit unterschiedlichen Trenneigenschaften 
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vorgestellt. Der Einfluß des Metalls, der Selektorkonzentration, der Säulenlänge sowie der 

Schichtdicke und der Zusammensetzung des Polymers auf die Effizienz in der 

Komplexierungs-Gaschromatographie wird untersucht. Anhand der Auftrennung von 29 

kleinen Substraten, bestehend aus derivatisierten Epoxiden, Alkenen, Alkinen, Alkoholen und 

Amiden wird die hohe Effizienz der neuen chrialen Stationärphasen aufgezeigt. Die 

thermische Belastbarkeit, das breite Einsatzspektrum der Phasen und die vielfältigen 

Möglichkeiten in der Synthese neuer CSPs wird dabei erläutert. Darüber hinaus wird die 

Auftrennung der Enantiomere und Epimere der vier Stereoisomeren von Chalcogran, dem 

Hauptbestandteil des Aggregationspheromons des Borkenkäfers pitogenes chalcographus, 

vorgestellt und die kinetischen Daten (∆Gǂ, ∆Hǂ and ∆Sǂ) der Interkonversionsbarriere für den 

Epimerisationsprozess von Chalcogran durch temperaturabhängige Messungen mittels 

dynamischer Komplexierungs-Gaschromatographie (DCGC) ermittelt. Die erhaltenen Daten 

werden mit den Ergebnissen der Chalcograntrennung mittels dynamischer Einschluß-

Gaschromatographie auf Chirasil-β-Dex verglichen und eingehend diskutiert. Weiterhin wird 

eine einzigartige, neu entwickelte Methode zur effizienten Konfigurationsbestimmung von 

Enantiomerenpaaren sowie optional der Ermittlung des Enantiomerenüberschusses einer 

konfigurativ unbekannten Probe mittels on-column Gaschromatographie vorgestellt. Die 

Generierung dynamischer Elutionsprofile durch Kupplung chiraler Stationärphasen vereint 

hierbei Vorteile der Gaschromatographie (kleine Probenvolumina, Analyse verunreinigter 

Proben und Schnelligkeit) mit der Möglichkeit der Enantiomerdifferenzierung in einer 

Methode und erlaubt erstmals eine reale, physikalische Trennung der einzelnen Bestandteile 

eines Interkonversionsprofils (Plateaus) in zeitlich separierte Peakflächen. Am Ende des 

Kapitels wird die stereoselektive Synthese eines Campherdimers durch selektive Einführung 

zweier chiraler Zentren (S-, R-) und dessen Verwendung als azyklische chirale Stationärphase 

für die GC besprochen (s. Schema 1).  

n = 0, 2

M = NiII, , EuIII, LaIIIVIV

O

Polysiloxane
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On-Column Reaction Chromatography

Linker

Schema 1 Entwicklung neuer, angebundener, chiraler Stationärphasen ausgehend von 
Campher und deren Anwendung in der Komplexierungsgaschromatographie. 
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Das zweite Kapitel der vorliegenden Arbeit hat die Synthese einer neuen, bidentaten N,N-

heterozyklischen Ligandenklasse ausgehend von d-(+)-Campher zum Ziel. Nach einer kurzen 

Einleitung zu Isomerisierungsreaktionen und der Wacker-Oxidation von Olefinen wird die 

Synthese und Strukturanalyse von insgesamt 11 neuen Liganden beschrieben und die 

Komplexierungseigenschaften zu Palladium, Kupfer und Kobalt untersucht. Die Darstellung 

diastereomerenreiner, chiraler Camphertetraketone stellt dabei den ersten Schritt in der 

Synthese dar, weshalb zu Beginn speziell auf die Isomerenverteilung sowie auf die Isolierung 

und Identifizierung der generierten Diastereomere und deren Konformation eingegangen 

wird. Hierbei zeigt sich ein dynamisches Verhalten, welches durch temperaturabhängige 

Protonen NMR Spektroskopie und Kristallstruktur gestützte Analysen Hinweis auf eine neue 

Art von Protonen-Chelat Keto-Enol Tautomerie gibt. Auf die Darstellung zweier 

bihomometallischer Übergangsmetallkomplexe des chiralen Tetraketons ist ebenfalls 

hingewiesen. Nach erfolgreich fortgeführter Synthesen werden representativ drei Palladium 

Komplexe der neuen Ligandenklasse ausgewählt und auf ihre Effizienz in der kupferfreien 

Wackeroxidation hin untersucht und die Ergebnisse diskutiert. Eine weitaus detalliertere 

Studie zur Palladium katalysierten Isomerisierung terminaler Arylpropanoide wird 

anschließend präsentiert. Hierzu werden insgesamt 11 Palladium Katalysatoren eingesetzt und 

der Einfluß von Säuren und Basen als Additive in der Reaktion untersucht. Ein ausführliches 

Screening von Lösungsmitteln, Substraten und Katalysatoren gibt Aufschluss über den 

Mechanismus und den Einfluß von Sterik und elektronischen Faktoren der Liganden auf die 

Katalyse. Mittels GC-, GC-MS- und NMR- sowie Deuterium Markierungsexperimenten 

werden die Reaktionsordnungen bezüglich Katalysator, Substrat und Lösungsmittel ermittelt 

und ein plausibler Isomerisierungsmechanismus postuliert. Die Integrität und Stabilität des 

Katalysatorsystems ist anhand multipler Substratzugaben, Feinfiltration und 

Isolierungsexperimenten adressiert. Im letzten Teil des Kapitels wird die 3,3-Bipyrazol 

basierte, bidentate Ligandenklasse durch Einführung von Pyridin und 

Methylpyridinsubstituenten zu einer tetradentate Ligandenklasse ausgebaut, deren 

Palladiumkomplexe dargestellt und deren strukturellen Charakteristika (Atropisomerismus) 

diskutiert (s. Schema 2).  

Schema 2 Synthese von neuen Palladium 3,3’-Bipyrazol 
Komplexen und deren katalytische Aktivität. 
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Das dritte Kapitel der Arbeit beschreibt die Synthese neuer chiraler NHC-pincer Liganden 

basierend auf Camphersäure als zentralen Brückenkopf, welche in moderaten bis guten 

Ausbeuten in 5 Stufen zugänglich sind. Zwei NHC-Liganden mit unterschiedlichen 

Gegenionen und zusätzlich ein Dibenzotriazol-Ligand werden präsentiert. Die entwickelte 

Syntheseroute erlaubt dabei die regioselektive Monosubstitution des zentralen chiralen 

Camphermotifs, was sowohl durch NMR spektroskopische Messungen als auch durch 

Kristallstrukturanalyse aufgezeigt wird. Weiterhin wird die molekulare Struktur des NHC-

pincer Liganden sowie die des Dibenzotriazol-Liganden aufgeklärt und eingehend diskutiert. 

Die Ergebnisse der Strukturen und die der Synthesevorläufer liefern hierbei eine plausible 

Erklärung für die beobachteten Komplexierungseigenschaften (s. Schema 3). 

Im vierten Kapitel der vorliegenden Arbeit werden Struktur-Reaktivitätbeziehungen in der 

asymmetrischen, intramolekularen Oxindolsynthese mittels Pd-NHC Isonitril Katalysatoren 

untersucht, welche bei gleichbleibendem chiralen Muster (Campher) einen Anstieg des 

sterischen Anspruchs aufweisen. Nach einer kurzen Einführung chiraler NHCs, welche 

Verwendung in dieser Katalyse finden, wird die Synthese sechsgliedriger 

Hexahydropyrimidine NHC-Pd Katalysatoren ausgehend von Campher (Bornylamin) und 

deren Anwendung als Katalysatoren für die enantioselektive Synthese von 3,3-disubstituierten 

Oxindolen beschrieben. Die Synthese von fünf unterschiedlichen N-alkylierten Substraten 

(Benzyl-, Naphthyl-substituiert) und der Einfluß des Substitutionsmusters in der 

enantioselektiven, asymmetrischen α-Arylierung von Amiden wird untersucht. Eine 

Veränderung der Enantioselektivitäten und eine Änderung des Reaktionsprofils gibt dabei 

Aufschluss über den Einfluß sterischer Beladung des Katalysators als auch des sterischen 

Anspruchs des Substrats auf die Katalyse (s. Schema 4 ). 

Schema 3 Palladium-Pincer Zielkomplex 78 ausgehend von Camphersäure. 

Schema 4 Asymmetrische Oxindolsynthese mit  Pd-Isonitril Komplex 100 – 102 



Publications xi 

Publications 

Refereed Publications 

M. J. Spallek, S. Stockinger, R. Goddard, F. Rominger and O. Trapp*, Eur. J. Inorg. Chem. 

2011, 32, 5014 – 5024, full paper. Novel Bulky and Modular 3,3’-Bipyrazoles as Ligands – 

Synthesis, Characterization and Catalytic Activity of the Pd Complexes. 

M. J. Spallek, D. Riedel, A. S. K. Hashmi, O. Trapp*, Organometallics 2012, full paper, 

accepted (ASAP). Six-membered, chiral NHCs derived from Camphor – Structure-Reactivity 

Relationship in Asymmetric Oxindole Synthesis. 

M. J. Spallek, S. Stockinger, R. Goddard, O. Trapp*, Adv. Synth. Catal. 2012, full paper, 

accepted. Modular Palladium Bipyrazoles for the Isomerization of Allylbenzenes – Insights 

into Catalyst Design and Activity, Role of Solvent pH Effects and Mechanistic 

Considerations. 

M. J. Spallek, G. Storch, O. Trapp*, Eur. J. Org. Chem. 2012, full paper, submitted. 

Straightforward Synthesis of Immobilized 3-(Perfluoroalkanoyl)-(1R)-camphorate Metal 

Complexes and their Application in Enantioselective Complexation Gas Chromatography. 

M. J. Spallek, S. K. Weber and O. Trapp*, 2012, full paper, submitted. Metathese in ionischen 

Flüssigkeiten: Ursache der außergewöhnlichen Stabilisierung des Katalysators; Metathesis in 

ionic liquids: Reason for the remarkable stabilization of the catalyst. 

Poster Presentations 

M. J. Spallek, C. Lang, J. Troendlin, O. Trapp*, 5th Heidelberger Forum of Molecular 

Catalysis 2009, Heidelberg, Germany. High-Throughput Screening of Ligand Libraries in 

Catalysis. 

M. J. Spallek, S. Sandel, O. Trapp*, Colloquium of the Graduate College 850 2009, 

Heidelberg, Germany. Design of Water-Soluble Metathesis Catalysts and Investigations on Pd 

Nanoparticle Catalyzed C-C Coupling Reactions. 



xii Publications 

M. J. Spallek, R. Goddard, O. Trapp*, 6th Heidelberger Forum of Molecular Catalysis 2010, 

Heidelberg, Germany. Chiral 3,3’-Bicamphorpyrazoles as Ligands. 

M. J. Spallek, R. Goddard, O. Trapp*, Modeling of Molecular Properties 2011, Heidelberg, 

Germany. Structure Dynamics of Chiral Tetraketones – Selective Synthesis of Defined Rh(I) 

and Ir(I) Lewis-Acid Catalysts. 

M. J. Spallek, R. Goddard, O. Trapp*, 23rd International Symposium on Chiral Discrimination 

(Chirality) 2011, Liverpool, UK. Chiral 3,3´-Bicamphorpyrazoles (bcpz) as Ligands – 

Synthesis, Structure, Solution Dynamics and Catalytic Activity. 

M. J. Spallek, G. Storch, F. Rominger, O. Trapp*, 23rd International Symposium on Chiral 

Discrimination (Chirality) 2011, Liverpool, UK. Norbornane-based Chiral Lewis Acids 

(CLAs) – First Evidence for Stable Chelate-type Tautomers by X-ray Crystallographic 

Analysis & Selective Formation of One Single Isomer upon Complexation. 



Table of Contents xiii 

Table of Contents 
 

Acknowledgement ....................................................................................................................... i 

Abstract  .............................................................................................................................. iii 

Zusammenfassung .................................................................................................................... vii 

Publications  .............................................................................................................................. xi 

Table of Contents .................................................................................................................... xiii 

List of Abbreviations ............................................................................................................... xvi 

Chapter 1 Camphor-Derived Stationary Phases in Complexation Gas Chromatography ..... 1 

1.1 Introduction ........................................................................................................... 2 

1.1.1 Separation of Enantiomers on Chiral Stationary Phases (CSP) in 

Chromatography.................................................................................................... 2 

1.1.2 Complexation Gas Chromatography ..................................................................... 6 

1.1.3 Immobilization of Selectors and Choice of Supports in GC ................................. 8 

1.2 Objectives............................................................................................................ 15 

1.3 Results and Discussion........................................................................................ 17 

1.3.1 Selector Synthesis and Immobilization ............................................................... 17 

1.3.2 Preparation of Chirasil-Metal Phases ................................................................. 23 

1.3.3 Enantioselective Complexation Gas Chromatography ....................................... 29 

1.3.3.1 Selector Concentration in the Discrimination of Chiral Epoxides ...................... 29 

1.3.3.2 Chirasil(hfpc)x@PS of Ni(II), Eu (III ), La (III ) and Oxovanadium(IV) ................ 30 

1.3.3.3 Extending the Scope of Chirasil-Ni(hfpc)2@PS – Separation of Enantiomers 

using Compound Libraries with Differing Functional Groups ........................... 33 

1.3.4 Resolution of Chalcogran on Chirasil-Europium-/Lanthanum- and Nickel-OC3 

by Dynamic Complexation GC (DCGC) ............................................................ 39 

1.3.5 Dynamic Elution Profiles by CSP-Coupling – A Novel Approach Towards 

Efficient Assignment of Enantiomer Configurations via On-Column GC ......... 49 

1.3.6 Camphordimers with Two Centers of Chirality – Towards New Acyclic, Metal-

free Selectors for (CB)CSPs ............................................................................... 60 

1.4 Conclusion .......................................................................................................... 65 



xiv Table of Contents 

Chapter 2 Bi- and Tetradentate Pd-Bicamphorpyrazole Heterocycles (bcpz) – Synthesis, 

Characterization and Their Application in Catalysis .......................................... 67 

2.1 Introduction – Wacker Oxidation and Isomerization of Olefins ......................... 68 

2.2 Objectives............................................................................................................ 76 

2.3 Results and Discussion........................................................................................ 77 

2.3.1 Synthesis and Structural Dynamics of Chiral Tetraketones and Their Metal 

Complexes ........................................................................................................... 77 

2.3.2 Palladium-bipyrazoles derived from Camphortetraketones ................................ 84 

2.3.2.1 Synthesis and Characterization ........................................................................... 84 

2.3.2.2 Wacker-Oxidation of Terminal Olefins .............................................................. 89 

2.3.2.3 Isomerization of Allylbenzenes – Insights into Catalyst Design and Activity, 

Role of Solvent, pH Effects and Mechanistic Considerations ............................ 91 

2.3.2.4 2nd-Generation (Tetradentate) Camphorbipyrazole Ligands and Their Palladium 

Complexes ......................................................................................................... 107 

2.4 Conclusion ........................................................................................................ 112 

Chapter 3 Chiral, N-heterocyclic Carbene (NHC) Pincer Ligands using Camphoric Acid as 

Chiral Building Block ....................................................................................... 115 

3.1 Introduction – N-heterocyclic Carbene (NHC) Pincer Ligands ........................ 116 

3.2 Objectives.......................................................................................................... 117 

3.3 Results and Discussion...................................................................................... 118 

3.4 Conclusion ........................................................................................................ 124 

Chapter 4 Six-Membered, Chiral Pd-NHCs Derived from Camphor – Structure-Reactivity 

Relationship in the Asymmetric Oxindole Synthesis ....................................... 127 

4.1 Introduction – NHC-Palladium Catalysts in Asymmetric Oxindole Synthesis 128 

4.2 Objectives.......................................................................................................... 130 

4.3 Results and Discussion...................................................................................... 131 

4.3.1 Six-Membered, Chiral Pd-NHC-Camphorisonitrile Complexes ...................... 131 

4.3.2 Asymmetric Oxindole Synthesis ....................................................................... 134 

4.4 Conclusion ........................................................................................................ 137 



Table of Contents xv 

Experimental Section ............................................................................................................. 138 

General Methods and Materials ......................................................................................... 138 

Experimental Section – Chapter 1 ...................................................................................... 139 

Experimental Section – Chapter 2 ...................................................................................... 162 

Experimental Section – Chapter 3 ...................................................................................... 191 

Experimental Section – Chapter 4 ...................................................................................... 198 

References  ........................................................................................................................... 211 

Appendix  ........................................................................................................................... 138 

Academic Teachers ................................................................................................................ 232 



xvi List of Abbreviations 

List of Abbreviations 
∆G≠ Gibbs activation energy 

∆H≠ activation enthalpy 

∆S≠ activation entropy 

9-BBN 9-borabicyclo[3.3.1]nonane 

ACSP acyclic chiral stationary phase 

Ar aryl 

n-BuLi n-butyl lithium 

tBu tert-butyl 

cat. catalytic 

Chirasil-β-Dex octamethylen-permethyl-β-cyclodextrin-

poly(dimethylsiloxane) 

Chirasil-Ni(hfc)2 nickel(II)-bis[(3-heptafluorobutanoyl)-(1R)-

camphorate] dissolved in poly(dimethylsiloxane) 

Chirasil-Ni(II), nickel(II)-bis[(3-heptafluorobutanoyl)-(1S)-10-

methylenecamphorate]-poly(dimethylsiloxane) 

Chirasil-Eu(III ) europium(III )-tris[(3-heptafluorobutanoyl)-(1S)-10-

methylenecamphorate]-poly(dimethylsiloxane) 

Chirasil-V(O)(IV) oxovanadium(IV)-bis[(3-heptafluorobutanoyl)-(1S)-

10-methylenecamphorate]-poly(dimethylsiloxane) 

Chirasil-Europium-OC3 X%,  

Chirasil-Eu(hfpc)3@PSX% europium(III )-tris[(1R, 4S)-3-heptafluorobutanoyl-10-

propoxycamphorate]X%-poly(dimethylsiloxane); (X% 

selector concentration on the polymer) 

Chirasil-Lanthanum-OC3 X%, 

Chirasil-La(hfpc)3@PSX% lanthanum(III )-tris[(1R, 4S)-3-heptafluorobutanoyl-10-

propoxycamphorate]X%-poly(dimethylsiloxane); (X% 

selector concentration on the polymer) 

 

 



List of Abbreviations xvii 

Chirasil-Nickel-OC3 X%, 

Chirasil-Ni(hfpc)2@PSX% nickel(II)-bis[(1R, 4S)-3-heptafluorobutanoyl-10-

propoxycamphorate]X%-poly(dimethylsiloxane); (X% 

selector concentration on the polymer) 

Chirasil-Vanadyl-OC3 X%, 

Chirasil-V(O)(hfpc)2@PSX% oxovanadium(IV)-bis[(1R, 4S)-3-heptafluorobutanoyl-

10-propoxycamphorate]X%-poly(dimethylsiloxane); 

(X% selector concentration on the polymer) 

CB chemically bonded 

CSP chiral stationary phase 

d.e. diastereomeric excess 

DIBAL di isobutylaluminium hydride 

e.e. enantiomeric excess 

ESI-MS electron spray ionization-mass spectrometry 

Et2O diethyl ether 

FID flame ionization detector 

GC gas chromatography 

GC-MS gas chromatography-mass spectrometry 

h hour(s) 

hfb heptafluorobutanoyl 

hfc 3-heptafluorobutanoyl-(1R)-camphorate 

hfpc (1R, 4S)-3-heptafluorobutanoyl-10-propoxy-

camphorate 

HMPA hexamethylphosphoramide 

HR high resolution 

HPLC high performance liquid chromatography 

I.D. inner diameter 

IR infrared spectroscopy 

LiAlH 4 lithium aluminium hydride 

M metal 



xviii List of Abbreviations 

min minute(s) 

mol% mol percent 

MS mass spectrometry 

NHC  N-heterocyclic carbene 

NMR  nuclear magnetic resonance 

OTf trifluoromethanesulfonyl 

PDMS poly(dimethylsiloxane) 

Ph phenyl 

PS polysiloxane 

ppm parts per million 

iPr iso-propyl 

py pyridine 

W.-M. Wagner-Meerwein 

Rf retention factor 

r.t. room temperature 

sec second(s) 

t time 

THF tetrahydofurane 

TMEDA tetramethylethylenediamine 

TMS tetramethylsilane 

TMSCN trimethylsilyl cyanide 

tR retention time 

%Vbur buried overlap volume 

VT NMR variable temperature nuclear magnetic resonance 

vol% volume percentage 

wt% weight percentage 



Chapter 1 – Camphor-derived Stationary Phases for Complexation GC 1 

Chapter 1  

Camphor-Derived Stationary Phases 

in Complexation Gas Chromatography 

  



2 Chapter 1 – Camphor-derived Stationary Phases for Complexation GC 

1.1 Introduction 

1.1.1 Separation of Enantiomers on Chiral Stationary Phases (CSP) in 
Chromatography 

Many of the biomolecules produced and processed in nature are chiral or prochiral and most 

metabolic transformations are stereospecific. A lot of effort is necessary for nature to 

introduce chirality or transfer chiral information onto a molecule or from one to another. 

During evolution of nature the (L)-configuration of small molecules (amino acids, peptides 

and proteins) and the (D)-configuration of sugars prevailed and are upon the most dominant 

configurations.[1] For chiral induction enzymes are used, for instance. As most of the environs 

in nature are chiral, enantiomers show different effects in biological systems. For example the 

two enantiomers of limonene exhibit a different odor commonly known as orange aroma (R-

limonene) or the off odor of turpentine (S-limonene). Especially in therapeutically medical 

science, drug discovery and drug evaluation, as well as present in pesticides and synthetic 

flavors the different effects of enantiomers in an chiral environment (as in nature) are known. 

In many cases the targeted effects is only limited to one enantiomer, whereas the other 

enantiomer shows either reduced activity or no effect at all. Different effects and considerable 

toxic behavior can be observed as well. This did not receive attention until the disaster with 

the chiral drug Thalidomide.[2] Sold as its racemate (Contergan®) between 1957 and 1961 the 

(S)-enantiomer had the desired property as treatment for morning sickness for pregnant 

women (cf. Figure 1). But it turned out that the other enantiomer was teratogenic causing 

congenital deformations of children born from women treated with this drug. Therefore the 

determination of configuration of a chiral compound, the stereospecific introduction of 

chirality and the determination of enantiomeric excess (e.e.) is of great interest in 

pharmaceutical and related industries.[3] Even though the need for enantiomerically pure 

compounds (drugs) is obvious and also increasingly forced by the legislative authority, many 

of the substances on the market are still sold as racemates.[3] Reasons are high costs either due 

to low bioavailability of natural sources (agriculture or fermentation), their isolation or 

purification, as well as separation of enantiomers from their racemate by classical resolution 

via crystallization[4] of diastereomeric salts or kinetic/ dynamic resolution using enzymes (or 

chiral catalysts).[5] Intensive synthetic procedures[6] and the generally time-consuming 

methods, necessary for their evaluation in drug regulatory affairs renders these processes 

challenging. 
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Efforts are made to develop novel, enantioselective analytical methods and techniques, which 

are fast, cheap and precise and therefore more efficient than established ones. 

Chromatography is beside chiroptical methods (e.g. chircular dichroism) or nuclear magnetic 

resonance spectroscopy (NMR) utilizing shift reagents ideal combining fast analysis, 

flexibility and efficiency within the same method. 

For the chromatographic separation of enantiomers either direct or indirect methods can be 

applied. By derivatization with a chiral reagent diastereomers with different physical 

properties are formed from the racemate, which can be separated by conventional 

chromatography on an achiral stationary phase (indirect method). More straightforward is the 

direct separation of enantiomers without derivatization of the compounds prior to separation. 

An additional chiral information, related to the common “key-lock-principle” in biochemistry 

is needed as well, but this problem is solved by application of chiral stationary phases (CSPs) 

in GC, SFC, HPLC, CE on which enantiomers can be separated. For HPLC and CE 

applications chiral additives in the eluent stream can be used as well. CSPs, the state-of-the-

art technology[5] for chromatographic separations of enantiomers, include basically five types, 

which are classified by the type of selector–selectand interaction (cf. Table 1).[7] 

The first CSP-type features protein based stationary phases, which are usually of natural 

origin, bonded to a silica matrix with many chiral centers present, forming strong analyte 

(selector–selectand) interactions. Generally, prolonged retention times are observed due to the 

large number of active sites (unselective contribution to retention of analyte and eluent). Also 

macrocyclic glycopeptides developed by Armstrong et al.[8, 9] can be used and a high number 

of chiral centers and active sites combined with cavities are present within these phases, The 

level of intrusion into this cavities and thus the proximity to the selector is influenced by the 

character of selectand and eluent, which determines the magnitude of observed retention.  

Figure 1 Thalidomide enantiomers present in Contergan® as 
sold by Grünenthal in Germany (1957 – 1961). 
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Table 1 Common chiral, stationary phases used for the chromatographic separation of 
enantiomers. 

class type of interaction common selectors 

I  PROTEINS hydrophobic and polar, mesophase 

interactions 

α1-acidic glycoprotein, bovine 

serum albumin, vancomycin 

II  PIRKLE attractive and p-p-interactions, hydrogen-

bonding, charge-transfer-complex formation 

various ionic or covalent bonded 

selectors 

III  OKAMOTO 

(polymeric helices) 

attractive interactions, selector–selectand 

complexes 

derivatives of cellulose and 

amylose 

IV  CAVITIES   

(inclusion phases) 

inclusion and selector–selectand complexes cyclodextrines, crown ethers, 

polyacrylamides, 

polymethacrylates 

V DAVANKOV   

(ligand-exchange) 

ligand exchange, ionic interactions amino acid-metal complexes 

The second CSP-class are Pirkle-type[10-16] stationary phases featuring only small, limited 

chiral centers present at the selector. Therefore, unwanted unselective contributions and 

retention of eluent is reduced and chiral selector-selectand selectivity become more dominant, 

which enhances the resolution. Okamoto-phases[17] represent the third type of CSPs. They are 

based on polymeric helices of cellulose and amylose with appropriate modifications (ester, 

carbamate and ether derivatives).[18-22] The fourth group of CSPs are used in inclusion GC and 

consist of cyclodextrins (α – γ type, depending on the ring size),[23-25] crown ethers, 

polyacrylamides[26] or polymethacrylates[27] and derivatives thereof. The cone-shaped barrel 

form of cyclodextrins, the degree of substitution and the type of modification determines 

resolution and retention time of the analyte. More recently, also acyclic dextrins were 

developed and successfully applied for the separation of enantiomers. Finally, ligand-

exchange chromatography introduced by Davankov[28-31] can be used as well. The selectors 

consist of chiral amino acid metal complexes, like proline combined with copper, for instance. 

For the sake of completeness cinchona alkaloide based ionic CSPs developed by Linder et al. 

for the separation of (amino) acids have to be mentioned as well. 
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For volatile, thermally stable compounds gas chromatography is the method of choice, since 

determination of appropriate separation conditions is straightforward, the parameter-set is 

generally small, resolution and sensitivity is high and results are easily reproducible (due to 

the absence of solvent interactions in LC systems, for instance).[32, 33] Today, numerous chiral 

stationary phases for GC are available.[34] They are based on amino acid derivatives (diamide 

phases), on polysiloxane polymers and most notably on cyclodextrin derivatives. The first 

enantioseparation using GC was obtained with N-trifluoroacetyl-derivatized (L)-isoleucine[35] 

and later with polysiloxane-based Chirasil-Val,[36, 37] derived from (S)-valine-tert-butylamide, 

as the chiral selector in 1977. Amino acids were successfully separated by hydrogen-bonding 

interactions between selector and selectand. König et al. widened the scope of analytes by 

derivatization with isocyanates and other reagents.[38] Another method was introduced by 

Schurig et al. who developed the concept of enantiomer discrimination by complexation gas 

chromatography[39] (CGC) utilizing coordination interactions between selectand 

functionalities and chiral-metal complexes as chiral selector. Despite the early successes with 

polysiloxane based CPSs, cyclodextrine based CSPs developed in 1983 by Koscielski et al.[40] 

(α-, β-pinene enantiomer separations in gas-liquid GC with α-CD) became impressively 

predominant. Inspired by these results the synthesis and successive improvement furnished a 

steadily growing number of cyclodextrin derivatives.[41] Native and modified cyclodextrins, 

like permethylated β-cyclodextrins developed by Schurig et al.[42-44], by König et al. (liquid 

cyclodextrin derivatives)[45, 46] and Mosandl et al. (diluted modified cyclodextrins)[47] in 

polysiloxanes are nowadays state-of-the-art CSPs in chiral gas chromatography (cf. Figure 2). 

Figure 2 Polymer-supported chiral selectors for enantiodiscrimination in gas chromatography. 

Chirasil-Val (left) and Chirasil-Cyclodextrins (α – γ, right). 
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1.1.2 Complexation Gas Chromatography 

Despite first results in 1972, the term “complexation GC” was introduced by Schurig et al. in 

1977.[39] Inspired by the previous work of Gil-Av, Freibush and Charles-Siegler with amino 

acid alkyl esters in enantioselective GC (cf. Chapter 1.1.1) and their capability for hydrogen-

bonding combined with the resemblance to peptide-enzyme complexes led to the development 

of a completely new type of selectors. Related to these selector–selectand interactions an 

abiotic enantioselective system displaying a metal-organic framework was considered. Key 

feature of the system is the coordination between the metal and an analyte exhibiting 

functional groups, which are prone to enantiorecognition. Therefore, the discrimination of 

enantiomers with CSPs by metal-organic coordination was called enantioselective 

complexation gas chromatography. As the use of silver(I)-containing CSPs utilizing π-

interactions for the separation of olefins was already demonstrated decades before, the use of 

chiral transition metal complexes was quite intuitive. 

Whereas optically active phosphines and phosphites proofed to be unsuccessful, complexes of 

chiral β-diketonates obtained from natural d-(+)-camphor showed promising results. 

Previously known as ligands for rare earth metals[48, 49] and for their utilization as chiral shift 

reagents[50] 3-trifluoroacylated d-(+)-camphor β-diketonate was used for this purpose. 

Embedded in a squalane matrix rhodium(I) 3-(trifluoroacyl)-(1R)-camphorate was able to 

separate racemic 3-methylcyclopentene demonstrating a successful discrimination of 

enantiomers via complexation gas chromatography for the first time (cf. Figure 3).[51] This 

approach was limited to a number of very few, selected compounds under optimized 

conditions. However, as resolution of chiral unsaturated hydrocarbons, ethers and ketones 

0 1.5

time / [min]

3.0

re
l. 

in
t.

(S) (R)

IS

air

Figure 3 First example of enantiomer separation on a 200 m column by 
complexation GC using Rh(I)(hfc)(CO)2 reported in 1972. 

Conditions: 200 m (I.D. 500 µm) column embedded with Rh(i)(hfc)(CO)2. 0.04 m selector 

concentration in squalane at 22 °C. 
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were found to be difficult, especially for small molecules, but the important applications in 

the field of chiral analysis became immediately apparent. 

0 5 10 15

re
l. 

in
t.

time / [min]

  

 

Figure 5 Enantiomer separation of aliphatic diol acetonides using diluted  Ni(hfc)2 in 
OV 101 by complexation GC. 

Conditions: 0.17 M Ni(hfc)2, 40 m glass capillary (I.D. 250 nm) in OV 101 at 80 °C.  

Figure 4 Mono- and bicyclic monoterpeneketones as chiral β-diketonates. 
Chiral building blocks (left to right and top to bottom): camphor, 3-pinone, 4-pinone, (-)-α-

thujon, (-)-β-thujon, (-)-menthone, (-)-isomenthone. Metal (M): Ni( II). 
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Consequently, a broader approach was considered and different chiral ligand frameworks 

were developed and the metal-coordinated to the ligand was altered. As shown in Figure 4 

natural starting materials related to camphor, pinene (nopinone), thujone and menthone were 

envisaged. Obtained from the chiral pool, these materials were modified to their 

corresponding 3-perfluoroacylated β-diketones and metals, like manganese(II),[52] cobalt(II)[53] 

and nickel (II),[54, 55] were incorporated. Experiments showed that nickel(II)-complexes of 3-

(trifluoroacyl)-(1R)-camphorate exhibited the best separation capability upon all metals and 

ligand patterns and the scope of separable compounds was extended to oxygen-, nitrogen- and 

sulfur containing selectands. However, oxygen-containing compounds showed good 

separations, whereas nitrogen- or sulfur-functionalized analytes still proofed to be 

challenging. Utilizing this approach the type of oxygen-containing compounds was restricted 

to cyclic ethers and acetals,[53] underivatized sec-alcohols[56, 57] and a few ketones (cf. Figure 

5).[57, 58] However, the reproducibility and stability was unsatisfactory. 

 

1.1.3 Immobilization of Selectors and Choice of Supports in GC 

 

Several requisites have to be considered to develop new chemically-bonded chiral stationary 

phases for gas chromatographic applications and separation of enantiomers:[1, 5, 34] 

− thermal stability (>150 °C required) and long life-time 

− broad applicability over a broad temperature range (regarding melting points) 

− expanded scope of enantiorecognition and functional group tolerance 

− reproducibility (separations and column preparation) 

− high degree of versatility (selector-modifications) 

− non-volatile selectors (column-bleeding, leaching of selector, MS-compatibility) 

− high enantiopurity of the selector 

− efficient selector concentration and limits (upper and lower) 

− temporary interactions (selector re-liberation time) 

− efficiency, retention tendency and resolution factor 

− stereointegrity (aggregation and degradation tendency) 

− physical properties of the (polymeric) support and selector compatibility 

− synthetic value (commercial available starting materials, short synthesis and high 

yield)  

− optional: compatibility with other separation systems, like SFC (supercritical fluid 

chromatography), (HP)LC ([high pressure] liquid chromatography), CE (capillary 

electrophoresis) 
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For the development and successful application of a novel (CB)CSP for the resolution of 

enantiomers these considerations have to be taken into account.  The application of high-

resolution glass and later the fused-silica column technology greatly improved the progress in 

(complexation) gas chromatography. Overall high thermal stability and selector integrity over 

a broad temperature range combined with a broad scope of enantiorecognition and a long, 

constant column life-time performance are upon the most critical aspects. For a suitable 

selector support the initially applied squalane was replaced by dimethylpolysiloxane as a 

unique solvent. Diluted in the polymer the selector is embedded in the matrix of the support, 

with the advantage of isolated selector sites (ideal case). This is beneficial for selector life-

time and enantiodiscrimination, since degradation of the selector is suppressed by simple 

separation though space and the exposition of selector to the environment (air, moisture, 

carrier gas and sample impurities) is reduced. The aggregation tendency, a commonly known 

source for inactivation or decomposition, is decreased, the enantioselective recognition step 

stays intact and is not influenced by neighboring selector-selectand interactions. 

A major drawback of the application of camphor-β-diketonates of  rhodium(I), 

manganese(II) and cobalt(II) in enantioselective complexation GC is their limitation to 

temperatures between 25 – 90 °C and their short life-time.[59] Leaching and degradation of the 

complexes were generally observed resulting in low reproducibility and reduced life-time of 

these columns. 

 

 

Immobilization Strategies 

 

To overcome these problems the selector has to be attached to a suitable (polymeric) support 

(immobilization). Overall four different basic strategies were developed, which will be 

discussed briefly. The compound (selector/ligand, catalyst or the preassembled metal 

complex) can either be attached covalently or immobilized via non-covalent interactions 

(entrapping, electrostatic interactions, adsorption) onto the support (cf. Figure 6). 

Alternatively, the synthesis of the ligand can be performed on the support or the 

monomers of the ligand containing building blocks can be synthesized and polymerized 

afterwards. The latter approach enjoys the advantage of a straightforward synthesis and 

comfortable characterization of each product prior to polymerization. However, a controlled 

polymerization or copolymerization as well as the purification and characterization of the 

final polymer is challenging. Especially, the use of dialkoxysilane precursors, generally 

employed for polymerization, is not possible, since their derivatization is extremely 

challenging or not possible at all, due to their sensitivity to acid and base.  Therefore, the 

synthesis of the compound for immobilization is likely to be performed in advance holding 
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the advantage of standard characterization techniques. In a final step immobilization can be 

carried out employing defined, pre-fabricated polymers of known properties. 

By an immobilization approach leaching of selector can be prevented and aggregation effects 

are reduced. Noteworthy for chiral induction, enantiorecognition can be influenced by the 

geometry and electronic properties of the linker and the physical properties of the support. 

For embedded or encapsulated phases, like in mesoporous materials, compounds of 

well-defined properties can be trapped without further modifications. Despite the ease of 

preparation, this approach is prone to leaching of catalyst, selector or active species during 

operation. For electrostatic trapping the choice of counter ions and their interactions with the 

environment (analytes, substrates and products, impurities and the eluting moiety) is of main 

interest and might change the performance. Also immobilization by simple physisorption onto 

a surface via Van-der-Waals interactions displays an attractive approach but conditions 

regarding the chemical environment, the interactions and the physical properties employed are 

crucial for success. However, the tendency to generate weakly-bound and non-stable phases is 

a major drawback. Finally, and doubtless most challenging is the direct, covalent linkage of 

the ligand or preassembled metal-complex.85 Only few reports deal with a direct or close 

attachment of the compounds to the support. The predominant strategy focuses on the use of 

flexible linker systems (spacers) of different length. This method opens the possibility and 

versatility to adjust and tune the accessibility to the immobilized active sites. For this purpose 

the electronic and steric properties of the spacer has to be considered carefully and the choice 

of ligand, selector or catalyst loading and solvents employed will influence the stability and 

performance of the phases.[60, 61] 

 

Entrapped/ dilutedElectrostatic
interactions

AdsorptionCovalent
tethering

supportsupportsupportsupport

Figure 6 Basic immobilization strategies for homogeneous selector-systems. 
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Supports for Immobilization 

 

The types of catalyst supports can be classified into solid and liquid organic materials, like 

organic polymers, ionic liquids and carbon nanotubes, and in inorganic materials, like 

mesoporous materials, inorganic polymers and silica, alumina and inorganic oxides. The 

physical properties of the support are very important for the application and separation 

performance of the chemically bonded (CB)CSPs products. Mechanical strength, thermal 

stability, solubility, swelling properties and the presence of functional groups have to be 

considered and numerous problems can arise during immobilization, which alter the desired 

performance profile in different ways: (i) limited selector accessibility, (ii) undesired selector-

support interactions, (iii) change or reversal of enantioselectivity, (iv) reduced 

enantiodiscrimination and (v) stability problems within the polymeric selector-linker support, 

leading to decomposition or leaching. Therefore the right geometry and electronic properties 

of the support, the linker and the selector have to be chosen properly. 

Polysiloxanes, being widely used as fluids, membranes[62] and lubricants,[63] showing 

excellent thermal (usually -100°C to ≥350 °C), oxidative, biological and good chemical 

stability (pH 4 – 9).[64] 

 

 

Immobilization at Polysiloxanes via Hydrosilylation 

 

Since 1990, several techniques to achieve a covalent bonding of selectors to polysiloxane 

backbones were developed.[65-68] Their physical properties, like polarity and selectivity, can be 

tuned to furnish tailor-made chiral stationary phases in a very efficient way. However, it 

should be noted that the enantioseparation characteristics of polysiloxane containing diluted 

and linked selectors can significantly differ as shown for cyclodextrin derivatives.[44] 

A comfortable way of attaching a selector to the polysiloxane moiety is the addition of 

a carbon-carbon-double bond to a Si-H functionality (hydridomethyldimethylpolysiloxane, 

HMPS, 1) to form an alkylsilane (2). This hydrosilylation reaction[69] allows the installation of 

various types of residues producing polymers with defined properties. Among a large family 

of catalysts employed for this type of transformation (rhodium-silanols,[70] cobalt-

carbonyls,[71] e.g.), the Pt-catalyzed hydrosilylation is most dominant.[72] Hexachloroplatinic 

acid (H2PtCl6) in alcoholic media (Speiers’ catalyst, 3)[73] can be used, but is sometimes 

accompanied by the precipitation of small amounts of finely dispersed Pt(0). For purpose of 

complete metal-free (CB)CSPs catalysts, like Pt-divinyltetramethyldisiloxane complex (4) 

(Karstedt’s catalyst),[74] dichlorodi(cyclopentadienyl)platinum(II) (Cl2Ptdcp)[75, 76] (5) or the 
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Karstedt-related Pt(0)-carbene complex (6)[77] can be used in toluene or tetrahydrofurane at 

elevated temperatures ranging from 25 to 120 °C (cf. Scheme 5). 

If needed, ultrasonification can help permitting the hydrosilylation reaction of challenging 

substrates, even at room temperature.[78] However, by using Pt-divinyl catalysts 4 and 6 

without addition of inhibitors (dimethyl fumarate and maleate), the dilution of reactants plays 

an important role and premature crosslinking of polymers may be observed at high 

concentrations or elevated temperatures.72 As most of the linear polysiloxanes are soluble in 

organic solvents they can be fully characterized using 1H NMR and 29Si NMR measurements 

to determine purity, average polymer length and Si-H content (resp. ligand loading). The 

reaction progress is typically monitored by 1H NMR measurements and change in the IR 

stretching frequencies. This straightforward approach allows the efficient, covalent 

immobilization of tailor-made chiral selectors to polysiloxanes, as reflected in the following 

examples for chemically bonded chiral stationary phases (CB)CSPs derived from camphor. 

 

 

Chemically Bonded Chiral Stationary Phases – (CB)CSPs in Complexation GC 

 

After the pioneering work of Gil-Av, Freibush and Charles-Siegler[35] with embedded 

selectors in 1966 the concept of complexation GC was validated by Schurig in 1972.[51] 

Regarding the versatility of these compounds, by simple change of metal-coordination or 

choice of chiral ligand, it is somewhat surprising that little effort was undertaken to improve 

and investigate this class more deeply. Reasons for this trend are located at the thermal 

lability of coordination type CSPs. Embedded in a stationary phases a limiting factor was the 

hitherto low temperature range of operation and drawbacks as outlined in chapter 1.1.3. In a 

pioneering advance, a strategy to link a chiral selector to a polymeric backbone for  

Scheme 5 Pt-catalyzed hydrosilylation reaction and catalysts. 
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application in conventional GC was reported by Frank, Nicholson and Bayer. Linkage of the 

valine diamide selector, developed by Freibush and Gil-Av, to a polysiloxane support resulted  

in the first chiral polysiloxane containing valine phase, abbreviated as Chirasil-Val.[36] This 

(CB)CSP proofed to be efficient in the gas chromatographic resolution of amino acid 

enantiomers. Both antipode phases are nowadays commercially available and thermally stable 

up to 200 °C (Chirasil-D/L-Val®).[79] A few related polymeric CSPs with different supports 

were also reported.[80, 81] A strategy to link the chiral metal-containing selector for 

complexation GC to a polymeric backbone was first achieved by Schurig et al. on a 

hydridomethylpolysiloxane (HMPS) support by Pt-catalyzed hydrosilylation. By this 

approach thermal stability was improved to (100 – 120 °C), but by operation at these 

temperature-limits a decrease in efficiency, resolution and life-time was still observed after 

prolonged use! [82-84] In particular, two main routes towards camphor-derived (CB)CSPs were 

pursued. Chiral polysiloxanes with metal-containing stationary phases (Chirasil-Metals) are 

obtained either by total synthesis of the chiral copolymer-block followed by copolymerization 

(Route A) [85] or preferentially by synthesis on the polymer itself [82] (cf. Scheme 6). 

Scheme 6 Total synthesis (A) and polymer-analogous synthesis (B) of Chirasil-Nickel 7 and 8. 
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The (CB)CSPs 7 showed fast separation of 2-methyl substituted cyclic ethers. A Chirasil-

Nickel phase, with the metal-selector as the terminating group of the polymer (8) was 

prepared as well.[83] Unfortunately, these oligomers suffered from short chain-length 

(decamers) leading to aggregation, insolubility and decomposition. The use of higher 

molecular weight polymers was limited in this approach since the selector-concentration in 

the polymer (at the polymer termini), necessary for efficient resolution, is successively 

lowered with higher molecular weight (cf. Route B, Scheme 6). 

 

However, besides the pioneering and inspiring work of Schurig and coworkers with Chirasil-

Metal CSPs one major drawback of all camphor and monoterpene related (CB)CSPs prepared 

so far was the selector-synthesis prior to immobilization (cf. Scheme 7). 

Up to now the shown synthetic procedure represents the only literature report for the 

preparation of chiral, metal β-diketonates useful for polymerization at a polymer backbone. 

For this purpose, modifications at the chiral building block are necessary and suitable 

functional groups have to be selected, installed and conserved during synthesis. As illustrated 

in Scheme 7 commercially available (1S)-(+)-camphorsulfonic acid was used as starting 

material. The olefin necessary for the hydrosilylation step was introduced using equimolar 

amounts of diazomethane to yield a metastable episulfone capable of sulfur dioxide 

elimination to yield methylencamphor 11.[86, 87] Besides the need for freshly prepared 

cancerinogenic and potentially explosive diazomethane and the moderate yield obtained the 

major drawback of this route is the perfluoroacylation step to 12.[88] The preparation of the 

fluoroacylated 1,3-diketonate 12 was achieved by deprotonation of the acidic α-keto proton 

with strong bases to form the enolate-nucleophile prior to acyl chloride addition. By using 

lithium diisopropylamide the yield was low (max. 35%), because of competing reactions 

between acyl chloride, remaining acidic camphor protons and base. The use of sodium amide 

and dimethoxyethane as solvent combined with higher reaction temperatures to facilitate 

ammonia liberation (driving force beneficial for enolate formation) slightly increased the 

yield up to 50% (ideal case). However, the reaction was accompanied by various side-

Scheme 7 Preparation of Chirasil ligand 12, immobilization and metal incorporation step. 
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reactions and by-products (e.g. O-acylation, bisacylation and acylamide formation), which 

required tedious multi-step work-up procedures giving rise to low yield. The route furnished 

3-heptafluorobutanoyl-10-methylencamphor 12 (prior to metal incorporation and 

immobilization) in yields ranging from 9% to 24% best.[89, 90],[91, 92] 

 

1.2 Objectives 

 

Immobilized transition metal complexes derived from camphor are especially useful for 

asymmetric induction. Besides the use as chiral catalysts in hetero Diels-Alder reactions with 

oxovanadium(IV)[89, 93, 94] or europium(III ),[89, 95-97] asymmetric induction in cyclopropanation 

reactions[98] were reported with homogeneous as well as immobilized chiral metal β-

camphordiketonates. Moreover, the immobilization of the chiral metal-complexes onto a 

suitable support, like polysiloxanes to produce Chirasil-Metals offer advantages in terms of 

catalyst recycling and their use as immobilized chiral stationary phases (CSP) in (gas) 

chromatographic applications. Being unreactive towards carbon dioxide, even application in 

supercritical fluid chromatography (SFC) is possible. They can be employed as stationary 

phases for chromatographic resolution of enantiomers as well as for catalytic active CSPs in 

classical bench reactions followed by recovering and re-use. Upmost, by combination of 

catalytic activity, separation selectivity and chromatographic analysis at the same time within 

the same capillary the ultimate method for determination of reaction profiles, kinetic catalyst 

parameters, identification and analysis of dynamic phenomena and product identification and 

distributions is realized. Bearing this in mind a chiral and immobilized stationary phase being 

either used as selectors for the resolution of enantiomers or being active catalysts themselves, 

by simple metal-  exchange at the polymer the enormous range of applications becomes 

evident. 

Reconsidering these opportunities and the pioneering work on chiral metal chelates this 

chapter focuses on the development of novel, chiral camphor-derived stationary metal phases 

with improved thermostability, resolution and efficiency. The use of high molecular-weight 

polysiloxanes (Mw ~3000 g/mol) is considered to guarantee thermal and chemical stability of 

the backbone and the selector. Key to an enhanced efficiency and enantioselectivity will be 

the development of a selector-to-support spacer of well-defined length, which has proofed to 

be beneficial for immobilized systems.[99, 100] Furthermore, an straightforward, modular and 

high yielding access to (CB)CSPs of varying spacer-length is emphasized. The challenging 

fluoroacylation step and purification procedure should be improved as well (cf. Scheme 8). 
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Chemically bonded chiral stationary phases (CB)CSPs incorporating different metals and 

their performance in the gas chromatographic resolution of compound libraries will be 

investigated. Furthermore, the influence on the performance of the novel camphor-derived 

(CB)CSPs in complexation gas chromatography will be investigated regarding: 

− metal-coordination 

− degree of selector perfluoration 

− selector-concentration 

− selectand/ analyte composition (functional group tolerance and separation capability) 

− temperature, stability and life-time 

− polymer film-thickness 

− polymer composition (mixed-phases) 

− column length 

− column conditioning 

Finally, in order to revisit the great potential of metal-coordinated (CB)CSPs, the versatility of 

this approach and their use in asymmetric on-column reaction chromatography will be 

addressed and an novel approach towards a fast and efficient assignment of enantiomer 

configurations via dynamic complexation gas chromatography will be presented, called 

dynamic elution profiles by coupling of CSPs. 
  

Polysiloxane
support

Selectors for Enantioresolution

in Complexation Gas Chromatography

Investigation of Dynamic

Interconversion Processes

Lewsi-Acid Catalysts for
On-Column Reaction Chromatography

Linker
Scheme 8 Development of novel, immobilized CSPs form camphor and their applications. 
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1.3 Results and Discussion 

1.3.1 Selector Synthesis and Immobilization 

The results obtained by Schurig and coworkers (cf. Chapter 1.1.2) using 10-

methylidenecamphor for a “direct” attachment (short linker) were promising. However, 

separation quality and synthesis suffered mainly from two aspects. As outlined in chapter 

1.1.3 the choice of spacer (flexibility and linker-length) is crucial for the performance of the 

derived polymers and therefore a different approach was developed. Instead of a short two-

carbon-membered linker with restricted flexibility my research focused on the design of a 

versatile ligand pattern allowing variation of the spacer length in the late steps of the synthesis 

(cf. Figure 7). 

Secondly, the synthesis of 7 and 8 give the opportunity for improvement as the need for 

freshly prepared cancerinogenic and potentially explosive diazomethane is unfavorable. 

Therefore a different synthetic approach was considered. Moreover, the challenging 

perfluoroacylation step had to be drastically improved regarding yield and purification 

procedure as outlined in chapter 1.1.3. 

 

Synthesis of 1,3-Diketonato Camphor Ligands 

 

Overall two different routes towards the camphor-derived chiral, fluorinated compounds prior 

to immobilization were developed. Starting from commercially available, enantiopure (1S)-

(+)-camphorsulfonic acid the strategies either furnish an ether or thioether spacer, which were 

then subjected to immobilization onto the polysiloxane support (cf. Scheme 9). 

Figure 7 Camphor-derived selector pattern by Schurig (left), Fluck (right) and targeted, 
linker-variable selector pattern (middle). 
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For the preparation of 21 (1S)-(+)-camphorsulfonic acid (16) was first converted to its 

potassium sulfonate (17), which was reacted to its acid bromide derivative by reaction with 

phosphorus pentabromide, freshly prepared from phosphorus tribromide and bromine in 

carbon disulfide. Elimination of sulfur dioxide in o-xylene with catalytic amounts of calcium 

dichloride yielded (1S, 4R)-10-bromocamphor (18) in 35% yield. Further reaction with excess 

potassium acetate and acetic acid under molten conditions (>175 °C) resulted in the 

corresponding 10-acetatocamphor derivative 19 in quantitative yield (>97%). (1R, 4R)-10-

hydroxycamphor (20) was prepared from of the acetate derivative by reaction in 10wt% 

methanolic solution of potassium hydroxide at reflux conditions and was obtained in good 

yield (92%). This route furnished (1R, 4R)-10-hydroxycamphor in four steps with an average 

yield of 31%. Ether synthesis to yield 10-allyloxycamphor 21 was achieved using 10-

hydroxycamphor 20 and allylbromide under classical conditions (utilizing sodium hydride in 

tetrahydrofurane, 84% yield). With an overall yield of 10% in 6 steps synthesis had to be 

further improved. 

The preparation of enantiopure (1R, 4R)-10-hydroxycamphor by construction of a 

spirocyclopropanated camphor skeleton via Diels-Alder-reactions in 7 steps was not 

considered due to the use of thiophosgen and the overall low yield of 20%.[101] An alternative 

enantioselective preparation of (1R, 4R)-10-hydroxycamphor 20 in a three-step synthesis 

starting from natural d-(+)-camphor via regioselective tandem-Wagner-Meerwein (W.-M.) 

rearrangements was quite appealing (cf. Scheme 10).[102] In a first Wagner-Meerwein 

rearrangement triflic anhydride is used to furnish methylencamphor-derivative 23 starting 

from d-(+)camphor. This compound can be directly oxidized to their cyclopropanone 

diastereomers and subjected to base-induced ring-opening followed by regioselective 

Wagner-Meerwein rearrangement to enantiopure 10-hydroxycamphor 20. Alternatively, 

camphen-1-yl-triflate 23 is converted into its alcohol derivative 24, which is then subjected to 

cyclopropanation with meta-chloroperoxybenzoic acid (MCPBA) and regioselective Wagner-

Scheme 9 Synthesis of 10-allyloxycamphor 21. 

Reaction conditions for the preparation allylether 21: a) KOH, H2O, r.t., quant. b) PBr5, Et2O, 35 °C, 48 h, 

41% (18). c) KOAc, HOAc, 175 °C, 12 h, 93% (19). d) KOH, MeOH, 65 °C, 6 h, 92% (20). e) NaH, 

C3H5Br, THF, 0 – 50 °C, 2 h, 84% (21). 
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Meerwein rearrangement. However, by following this route purification appeared challenging 

due to various side-products and the overall yield dropped from 70% (literature report)[102] to 

15%. Even though an access of enantiopure 10-hydroxycamphor 20 was stated by the authors 

and enantiopure camphor (≥99%) was used as starting material the investigations of this 

approach showed that the obtained 10-hydroxycamphor was not diastereomerically pure 

(max. 93% d.e.) as determined by GC. 

A closer, more deeply look into literature revealed several papers[103-119] dealing with side-

products and side-reactions pointing out the need for strict temperature control and moreover 

the necessity of N,N-diisobutyl-2,4-dimethylpentylamine (DTBMP, 27),[108] which is 

nowadays not anymore commercially available. Utilizing triisobutylamine as the base, as 

suggested by the authors[106] proofed to be not appropriate. This is in line with the observation 

that the diastereomeric distribution between camphen-1-yl-triflate 23 and camphen-4-yl-

triflate 26 strongly depends on the base employed for the regioselective Wagner-Meerwein 

rearrangement (33% d.e. for camphen-4-yl-triflate 26 with sodium carbonate, 65% d.e. 

without base and 90% d.e. with DTBMP favoring camphen-1-yl-triflate 23).[117] With 
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generation of 26 Nametkin rearrangement becomes predominant leading to compound 25. 

Furthermore, it was observed that traces of triflic acid catalyses the isomerization of 

camphen-1-yl-triflate in camphen-4-yl-triflate at room temperature (and at -15 °C)[117] – a 

second reasonable source for the observed reduced diastereoselectivity (cf. Figure 8, 9). 

Finally, a change to (1R, 4R)-10-iodocamphor (28) proofed to be the ideal strategy. 10-

iodocamphor was prepared directly from 1S-(+)-camphorsulfonic acid (16) in quantitative 

yield (>98%), thus saving two steps. Noteworthy, literature favors purification of 10-

iodocamphor 28 by column chromatography,[120-123] but due to involvement of 

triphenylphospine and side products purification by sublimation is recommended, since high 

amounts of 10-iodocamphor can be readily obtained absolutely pure and in short time. 

Following the procedures outlined before the synthetic pathway was shortened and (1R, 4R)-

10-allyloxycamphor (21) was prepared in overall 4 steps in very good overall yield of 73% 

(compared to 10%). Since the ligand pattern features an ether group as spacer and functional 

groups are of significant influence in complexation gas chromatography, another strategy 

involving a thioether moiety was considered as well. Therefore, the 10-hydroxycamphor 

analogue (1S, 4R)-10-thiocamphor (29) was prepared from 1S-(+)-camphorsulfonic acid (16) 

directly in a one-step procedure. Using thionylchloride and triphenylphosphine 10-
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Figure 8 Camphen-1-yl-triflate (left), camphen-4-yl-triflate (middle) 
and N,N-diisobutyl-2,4-dimethylpentylamine (DTBMP, right). 

Figure 9 Gas chromatographic determination of diastereomeric purity of (1R, 4R)-10-
hydroxycamphor derived in three steps by the method of Cerero and Martinez et al.104 

Separations were carried out after purification by flash-column chromatography using a 25 m HP-5 column 

(250 nm film-thickness) and helium as inert carrier gas; conditions: 50 °C to 180 °C, 4K@120 kPa helium. 
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thiocamphor 29 was obtained directly in 94% yield. Following the same strategy, as applied 

for ether synthesis, (1S, 4R)-10-allylmercaptocamphor (30) was obtained in 81% yield. 

Utilization of this shortened two-step approach allylthiocamphor 30 was prepared in good 

overall yield of 76% (cf. Scheme 11). 

Noteworthy, during the endeavor to further shorten the synthetic pathway to 10-

allyloxycamphor 21, 10-iodocamphor 28 was directly subjected to conditions, which were 

intended to furnish in situ displacement of iodine by an allylic alcohol. Instead of the desired 

product 21 formation of (R)-all-7-yl 2-(1,2,2-trimethyl-3-methylenecyclopentyl)acetate (31) 

as the major product was detected. Early literature precedents[124, 125] account for a 

transformation consisting of regioselective rearrangements initiated under basic conditions 

followed by in situ etherification. The enantiopure, newly derived product was isolated in 

54% yield. This one step-procedure and related transformations may be of valuable interest in 

natural product synthesis (cf. Scheme 2) 

Scheme 11 Improved access to (1R, 4R)-10-allyloxycamphor (21) and preparation 
of (1S, 4R)-10-allylmercaptocamphor (30). 

Reaction conditions: a) I2,PPh3, toluene, 111 °C, 16 h, 98% (18). b) KOAc, HOAc, 175 °C, 12 h, 

97% (19). c) KOH, MeOH, 65 °C, 6 h, 92% (20). d) SOCl2, 80 °C, 4 h; PPh3, H2O, dioxane, 4 h, 

100 °C, 94% (29). e) NaH, C3H5Br, THF, 0 – 50 °C, 2 h, 84% (21) and 84% (30). 
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Scheme 12 Regioselective, base induced, camphor cleavage 
to methylenecyclopentylester 31. 

Raction conditions: NaH, C3H5OH, DMF, 80 °C, 24 h, 54%. 
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The key step in synthesis – the introduction of a perfluoroalkanoyl group at the selector – is a 

necessary prerequisite for enhanced enantiorecognition and to generate stable diketonate 

metal complexes. The general procedure involves deprotonation of camphor or related 

monoterpene derivatives at the α-carbonyl position by lithium diisopropyl amide at low 

temperatures (-70 °C) to furnish enolate formation and suppress side-reactions. Even though 

low temperatures can be applied, the reaction is accompanied by side-reactions, like O-

acylation, bisacylation, decomposition or incomplete conversions, which renders purification 

of the product quite challenging involving multiple-steps (cf. Chapter 1.1.3).[126] Therefore 

different bases for enolate formation were first tested. Sodium hydride in tetrahydrofurane 

showed only moderate conversions over four days at reflux temperature, but remarkably no 

O-acylation and only minor side products were detected (including methyl ethers as 

anomalous sodium hydride reduction by-products).[127] Encouraged by this result potassium- 

and lithium hydride for enolate formation were investigated. Whereas potassium hydride 

showed almost no conversions, lithium hydride was found to be the base of choice. 

Deprotonation of either 10-allyloxycamphor or 10-allylmercaptocamphor was achieved at 

reflux conditions (8 – 24 h) and addition of the fluorinated alkyl esters yielded the desired C-

fluoroacylation in an unexpected, extremely clean reaction! Due to different melting points of 

the employed perfluorinated starting materials, purification in case of trifluoroacetylation can 

be achieved simply by evaporation of excess trifluoromethylester (bp. 43 °C) to yield the 

analytically pure product. By introduction of a hexafluorobutyl moiety (ethyl 

heptafluorobutyrate, bp. 95 – 98 °C) the pure product can be distilled at elevated temperatures 

(120 °C) under reduced pressure. Following this procedure (1R, 4S)-3-trifluoromethanoyl-10-

allyloxycamphor (32, 94%), (1R, 4S)-3-heptafluorobutanoyl-10-allyloxycamphor (33, 75%), 

(1S, 4S)-3-trifluoromethanoyl-10-allylmercaptocamphor (34, 94%) and (1S, 4S)-3-

heptafluorobutanoyl-10-allylmercaptocamphor (35, 77%) were obtained in very good to 

excellent isolated yields (colorless, viscous oils). Reasons for lower yields in case of 

heptafluoroacylation are observed due to distillative purification of small product quantities 

(cf. Scheme 13). 

Scheme 13 Perfluoroacylation step of 10-allyloxy- and allylmercaptocamphors 
to furnish allylcamphor β-diketonate precursors prior to immobilization. 

Reaction conditions: a) LiH, CF3CO2Me, THF, 0 – 67 °C, 14 h, 94% for 32, 94% for 34. b) LiH, 

C3F7CO2Et, THF, 0 – 67 °C, 14 h, 75% for 33, 77% for 35. 
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1.3.2 Preparation of Chirasil-Metal Phases 

Ligand Immobilization and Metal Incorporation 

 

To investigate the potential of the newly derived chiral ligands (1R, 4S)-3-

heptafluorobutanoyl-10-allyloxycamphor (33) with a high degree of perfluorination being 

beneficial for enantiorecognition and polysiloxanes as a suitable support (high thermal and 

chemical stability) were chosen. Therefore hydridomethylpolysiloxane (HMPS, Mw 

~3000 g/mol) with varying content of free silane groups were synthesized, characterized and 

the silane content determined by NMR spectroscopic measurements (SiH content 3.5%, 

10.2% and 20.0%).[128] 

Immobilization was achieved by platinum-catalyzed hydrosilylation reaction of 10-

allyloxycamphor and HMPS using Pt-divinyltetramethyldisiloxane (Karstedt’s catalyst)[74] in 

anhydrous toluene under ultrasonification over 10 h at elevated temperatures. Purification 

thereof resulted in the chemical-bonded ligands with SiH contents of 3.5% (36, 88% yield), 

10.2% (37, 73% yield) and 20.0% (38, 73% yield) in good yields along with increased 
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Scheme 14 Synthesis of polymer-bound camphor ligands 36 – 38 and Chirasil-Metal-OC3 
preparation  by metal incorporation (39 – 46, M = Ni, V(O), Eu, La). 

Reaction conditions: a) HMPS, Karstedt’s cat., toluene, sonic, r.t. – 110 °C, 10 h, 88% for 36, 73% for 37, 73% for 

38. b) Ni(OAc)2×4H2O, H2O-heptane (2:3), 100 °C, 2 h, 92% for 39, 89% for 40, 85% for 41. c) V(O)SO4 ×H2O, 

NEt3, H2O-heptane (2:3), 100 °C, 5 h, 79% for 42, 70% for 43, 74% for 44. d) Eu(OAc)3×H2O, NEt3, H2O-heptane 

(2:3), 100 °C, 5 h, 80% for 45. e) La(OAc)3×H2O, NEt3, H2O-heptane (2:3), 100 °C, 5 h, 86% for 46. 
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viscosity. Immobilization of (1S, 4S)-3-trifluoromethanoyl-10-allylmercaptocamphor (34) and 

(1S, 4S)-3-heptafluorobutanoyl-10-allylmercaptocamphor (35) failed using Karstedt’s catalyst 

and hexachloroplatinic acid (H2PtCl6, Speiers’ catalyst).[73] The results are in line with the 

observation that stereoelectronic properties of substituents at the reactants[129] (and at the 

silicon atom)[130] strongly influence the reactivity of the carbon-carbon double bond and 

account for the general more challenging hydrosilylation of allylthioethers. However, an 

appropriate choice of catalyst generally allows hydrosilylation reactions of thiocompounds as 

well.[72, 75-77, 131] 

Metal incorporation was accomplished using a modified procedure of Schurig and 

coworkers[83]. In a two-phase liquid-liquid reaction between metal precursor and chiral 

polysiloxanes (Chirasil) takes place. For the preparation of Chirasil-Nickel-OC3, nickel(II) 

acetate tetrahydrate dissolved in methanol and ligand polysiloxanes 36 – 38 dissolved in 

heptane were reacted in a two-phase mixture, which becomes miscible at elevated 

temperatures. Re-separation upon cooling and purification resulted in nickel(II) bis[(1R, 4S)-

3-heptafluorobutanoyl-10-propoxycamphorates, hfpc]  immobilized on polysiloxane as pale 

greenish to deep greenish oils (39, 3.5% Ni(hfpc)2@PS, 92% yield; 40, 10.2% Ni(hfpc)2@PS, 

89% yield; 41, 20.0% Ni(hfpc)2@PS, 85% yield, cf. Scheme 14). The reaction progress can 

be easily monitored since the metal-precursor (green color) is only soluble in the methanolic 

(bottom) solvent and the colorless polymer (HMPS) is dissolved in the aliphatic heptane layer 

(top). Decolorization of the methanolic layer and color change of the aliphatic (heptane) layer 

to green is indicative for successful metal-incorporation (cf. Figure 10). 

Chirasil-Nickel propoxy

MeOH

ligand polymer

Ni(OAc)2

heptane/ MeOH

(miscible)

Figure 10 Color-change as observable indicator for successful metal-incorporation. 
Preparation of Chirasil-Nickel-OC3 41 shown, top layer (heptane), bottom layer (methanol): Ni(OAc)2×4 H2O 

and ligand polymer 38 prior to reaction (left), reaction mixture upon heating (middle) and Chirasil-Nickel-OC3 

41 separation upon cooling (right, top layer). 
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Incorporation of oxovanadium(IV) was achieved using oxovanadium(IV) sulfate pentahydrate 

and triethylamine to yield the Chirasil-Vanadyl-OC3 polysiloxanes (42, 3.5% 

V(O)(hfpc)2@PS, 79% yield; 43, 10.2% V(O)(hfpc)2@PS, 70% yield; 44, 20.0% 

V(O)(hfpc)2@PS, 74% yield) as purple-reddish oils. A change in the color-depth of the 

polymers is observed for varying selector-concentration and can be visualized by dissolution 

of small quantities in dichloromethane (cf. Figure 11). Following this procedure europium(III ) 

acetate and lanthanum(III ) acetate hydrate furnished Chirasil-Europium-OC3 (45, 20.0% 

Eu(hfpc)3@PS, 80% yield) as a yellow and Chirasil-Lanthanum-OC3 (46, 20.0% 

La(hfpc)3@PS, 86% yield) as an orange oil. (cf. Scheme 14). 

Validation of Immobilization and Characterization of (CB)Chirasil-Metal phases 

Immobilization of (1R, 4S)-3-heptafluorobutanoyl-10-allyloxycamphor (33) onto 

polysiloxanes and metal incorporations were monitored by IR and NMR spectroscopic 

measurements. This is crucial for the determination of the true nature of immobilized product 

and complexes present and indeed potential sources for errors or wrong conclusions. 

Therefore, the following detailed study is intended to contribute to this field of broad 

interest.[5, 132-138] 

 

Ligand Immobilization and Metal Incorporation Monit ored by IR Spectroscopy 

Immobilization of the (1R, 4S)-3-heptafluorobutanoyl-10-allyloxycamphor (10) on 

polysiloxanes can be detected and considered >99% complete by fading of the silane band at 

ν(Si-H) = 2160 cm-1 and detection of two sets of bands resulting from symmetric ν(C=C) and 

ν(C=O) stretching frequencies and asymmetric δ(-OH) deformations of the camphordiketone 

Figure 11 Selector-content of Chirasil-Vandyl-OC3 visualized by 
dissolution of 42, 43 and 44 in dichloromethane. 

Selector concentration (left to right): 20.0%, 10.2% and 3.5% V(O)(hfpc)2@PS.  
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ligand (cf. Figure 1). By comparison of polysiloxanes of different silane content and their 

hydrosilylated (CB)CSPs 14 – 16 a characteristic increase in the intensities along with higher 

degree of SiH content (resp. degree of ligand immobilization) is observed for the SiH as well 

as for the carbonyl-, carbon-carbon stretching and carbon-hydroxyl deformation frequencies. 

Finally metal incorporation of nickel(II) and oxovanadium(IV) was monitored. A pronounced 

change towards lower frequencies is observed for nickel(II) bis[(1R, 4S)-3-

heptafluorobutanoyl-10-propoxycamphorate] on polysiloxanes [17 – 19, Ni(hfpc)2@PS3.5-

20.0%, Chirasil-Nickel-OC3], regarding the ν(C=C), ν(C=O) and ν(O-Metal) frequencies. 

Disappearance of the bands at 1701 cm-1 and  1642 cm-1 of the diketone ligand and 

appearance of two new bands at 1641 cm-1 and  1627 cm-1 validate the successful nickel 

incorporation (cf. Figure 12). 

Although less pronounced, this change in frequencies is also observed for the incorporation of 

oxovanadium(IV) with bands at 1686 cm-1 and  1635  cm-1 (Chirasil-Vanadyl, 20 – 22, cf. 

Figure 13). With varying ligand content in the polymer the intensities change, like discussed 

HMPS

Chirasil-hfpc

Chirasil-Nickel(II)-hfpc

3.5% SiH

ν1(C=C)+ν1(C=O)

ν(Si-H)

δ1(OH)+ν2(C=C)+ν2(C=O)

10.2% SiH

20.0% SiH

3.5% Ni(hfpc)2@PS

10.2% Ni(hfpc)2@PS

20.0% Ni(hfpc)2@PS

ν1,2(C=C)+ν1,2(C=O)+ν,δ1,2(O-Ni)

4000 3500 3000 2500                2000 1500                1000

ν / [cm-1]

Figure 12 Immobilization of camphordiketone ligand 33 on hydridomethylpolysiloxanes with 
varying SiH-content and Ni(II) incorporation monitored by IR-spectroscopic measurements – 

Chirasil-Nickel-OC3 39, 40 and 41. 
3.5%, 10.2%, 20.0% SiH-content; overlay of 9 spectra, characteristic absorption bands marked with arrows. 
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for the nickel (CB)CSPs. Characteristic IR spectra for the europium and lanthanum (CB)CSPs 

(not shown) related to Chirasil-Nickel-OC3, resp. Chirasil-Vanadyl-OC3, were obtained. 

 

Ligand Immobilization and Metal Incorporation Monit ored by 1H NMR Spectroscopy 

 

The immobilization progress was also studied and verified by NMR spectroscopic 

measurements. Figure 14 shows the 1H NMR spectra of starting materials, Chirasil and 

Chirasil-Metals. Due to detection limits only the spectra for a high silane (resp. ligand/ metal-

camphorate) content of 20.0% are depicted (cf. Figure 14). 

In spectrum A the signal for the silane protons at 4.68 ppm and methyl moieties of 

HMPS (0.2 to -0.3 ppm) can be easily detected. In B (1R, 4S)-3-heptafluorobutanoyl-10-

allyloxycamphor (33) prior to immobilization is displayed and can be identified by its allylic 

protons at 5.93 – 5.86 (m, 1H), 5.28 (dd, 1H, methyleneCH2trans), 5.18 (dd, 1H, 

methyleneCH2cis) ppm and its characteristic singulets for the two C7-exomethyl groups at 1.07 

HMPS

Chirasil-hfpc

Chirasil-
oxovanadium(IV)-hfpc

3.5% SiH

ν1(C=C)+ν1(C=O)

ν(Si-H)

δ1(OH)+ν2(C=C)+ν2(C=O)

10.2% SiH

20.0% SiH

3.5% V(O)(hfpc)2@PS

ν1,2(C=C)+ν1,2(C=O)+ν,δ1,2(O-Ni)

10.2% V(O)(hfpc)2@PS

20.0% V(O)(hfpc)2@PS

4000 3500 3000 2500                2000 1500                1000

ν / [cm-1]

Figure 13 Immobilization of camphordiketone ligand 33 on hydridomethylpolysiloxanes with 
varying SiH-content and oxovanadium(IV) incorporation monitored by IR-spectroscopic 

measurements – Chirasil-Vanadyl-OC3 42, 43 and 44. 
3.5%, 10.2%, 20.0% SiH-content; overlay of 9 spectra, characteristic absorption bands marked with arrows. 



28 Chapter 1 – Camphor-derived Stationary Phases for Complexation GC 

and 0.96 ppm. In spectrum C immobilization onto the polysiloxane and complete conversion 

>99% can be verified by fading of all allylic ligand-proton signals in the range between 6.00 

and 5.00 ppm as well as vanish of the silane signal of the polymer at 4.68 ppm. 

The lack of signals in this region (5 – 6 ppm) is noteworthy, since ether-cleavage of the ligand 

and side reactions during hydrosilylation are possible, which makes purification as well as 

any further application of these polymers difficult (e.g. remaining SiH functionalities as a 

source for metal-reduction or remaining free complex species altering the selector 

performance). While these signals disappeared, the characteristic C7-methyl groups of the 

camphor moiety (1.07 and 0.96 ppm) and the broad singulet at 11.69 ppm for the hydroxyl 

group of the β-diketonate is still present, validating successful immobilization of the ligand on 

the polymer. Furthermore, its remarkably that it was possible to identify a triplet-signal at 

0.91 ppm for the newly formed ligand-to-polymer silanomethylyl bond (t, 2H, -Si-CH2-linker) 

and a multiplet at 0.56 – 0.46 ppm for the silane methyl groups directly attached to the 

opposite location of the silicon atom where immobilization took place. Finally, metal 

incorporation is proven by disappearance of the hydroxyl-signal at 11.69 ppm as well as a 

Figure 14 Immobilization of 33 on polysiloxane and incorporation of Eu(III ) and La(III ) 
monitored by 1H NMR spectroscopy – Chirasil-Europium/ Lanthanum-OC3 45 and 46. 

Characteristic signals highlighted with arrows; spectrum A) HMPS (20.0% SiH content), (B) free ligand [(1R, 

4S)-3-heptafluorobutanoyl-10-allyloxycamphor (33)], (C) hfpc@PS (38) (immobilization step), (D) 

Eu(hfpc)3@PS (metal incorporation step to 45), (E) La(hfpc)3@PS (“ to 46). 
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characteristic shift of the camphor-methylene signals between 3.1 and 3.9 ppm for Chirasil-

Europium (D) and Chirasil-Lanthanum (E, cf. Figure 14). The results are in agreement with 

the 13C and 19F NMR signals obtained for the free- and immobilized hfpc-ligand 33 (not 

shown, cf. Experimental Section). 

 

1.3.3 Enantioselective Complexation Gas Chromatography 

1.3.3.1 Selector Concentration in the Discrimination of Chiral Epoxides 

 

After characterization of the newly derived CSPs their potential was investigated in the 

separation of enantiomers using complexation gas chromatography. Therefore, the CSPs 17 –

24 exhibiting different hfpc-metal contents (3.5%, 10.2% and 20.0%) were coated onto the 

inner surface of fused-silica capillaries (0.25 mm I.D.) each using the static method described 

by Grob[139] giving a defined polymer film-thickness’ of 250 nm. The column-capillaries were 

conditioned (for conditioning of columns cf. Experimental Section), installed into the GC and 

tested. After promising first results with Chirasil-Nickel-OC3 in complexation GC, their 

potential by separation of the smallest classes of chiral compounds, namely alkyl- and halo-

substituted oxiranes on this novel (CB)CSP is presented (cf. Figure 15). The prerequisite for 

any successful chromatographic application, in particular the stability and integrity of the 

selector-system, was validated. With Chirasil-Nickel-OC3 operating at 160 °C thermostability 

was proven over a period of two weeks and no loss in the quality of resolution was observed. 

The maximum operation temperature seems to be at higher temperature and was not probed. 

Chlorohydrin, methyloxirane, butyloxirane and even octyloxirane were successfully 

baseline-separated. To investigate the influence of the amount of selector immobilized at the 

polysiloxanes on the resolution of enantiomers, all separations were conducted with 

capillaries of same film-thickness’ under equal chromatographic conditions, but with varying 

hfpc-content. The results are depicted in Figure 15. On the CSP with 10.2% selector only the 

smallest selectand (methyloxirane) was partially separated. Chlorhydrin was separated to the 

baseline with a selector content of 20.0%. Methyloxirane, epoxyhexane and epoxydecane 

were completely separated into their enantiomers on the CSPs containing 10.2% and 20.0% 

selector. Retention-times as well as resolution of compounds increased with higher selector 

concentrations. The results are in accordance with literature,[59] correlating prolonged 

chemical retention of enantiomers of the selectand with an increase of activity (concentration) 

of the selector (cf. Figure 15). 
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1.3.3.2 Chirasil(hfpc) x@PS of Ni(II ), Eu (III ), La (III ) and Oxovanadium(IV ) 

 

Since enantiorecognition in complexation gas chromatography is based on metal-organic 

coordination, the type of metal present and the functional group of the selectand has 

significant influence on the chromatographic resolution. Noteworthy, there is no general 

relationship between strength of molecular complexation of selectands and the magnitude of 

enantiorecognition as proofed for related Chirasil-Nickel stationary phases.[126] The 

Figure 15 Resoltuion of oxiranes using Chirasil-Nickel-OC3 stationary phases (39 – 41) 
with varying selector concentration. 

A: 3.5% (17), B, 10.2% (18) and C: 20.0% (19); enantiomeric pairs highlighted with arrows; separations 

were preformed using Chirasil-metal coated fused-silica capillaries, 25 m, 250 nm film-thickness with 

helium as the inert carrier gas; conditions (top to bottom): 30 °C, 85 kPa; 40 °C, 85 kPa, 100 °C, 85 kPa 

and 110 °C, 120 kPa. 
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enantioselectivity, ∆∆G and the related separation factor α only depend on the energy 

difference of the transient enantiomer-selector complexes. In regard to the results obtained 

from selector-concentration-tests  with Chirasil-Nickel-OC3 stationary phases (39 – 41, cf. 

Chapter 1.3.3.1) the corresponding coated columns of Chirasil-Europium-OC3 (45) and 

Chirasil-Lanthanum-OC3 (46) were prepared containing 20.0% selector and a standard 

polymer film-thickness of 250 nm and 25 m length. Racemic 2-[(prop-2-yn-1-

yloxy)methyl]oxirane (47) was chosen as model substrate for the resolution. Separation of 

enantiomers occurred on both (CB)CSPs but prolonged retention times were observed with 

Chirasil-Lanthanum and Chirasil-Europium without improvement of separation. By metal-

coordination of europium(III ) and lanthanum(III ) the electronics as well as the coordination 

geometry is significantly changed. In both Chirasil-Metals three ligands are placed in the 

coordination sphere of the metal centre (two in the case of nickel and oxovanadium). 

Therefore, an approach of the incoming selectand is likely to be hampered and interaction via 

coordination is reduced on europium(III ) and lanthanum(III ) phases. Noteworthy, the 

discrimination of the enantiomers might be higher within rare earth metal-selectors 

considering their success as chiral shift reagents. But in fact, the detected resolution is 

reduced compared to Chirasil-Nickel-OC3 41 (20% selector, cf. Figure 16). 

Complexation GC requires coordinative selector-selectand interactions as well as fast 

equilibration between mobile and coordinating analytes in the liquid polymer (and gas) phase. 

t / [min]

Figure 16 Influence of metal-chelate on the enantioseparation of compound 47 using 
Ni(hfpc)2@PS (41), Eu(hfpc)3@PS (45) and La(hfpc)3@PS (46). 

Chirasil-Metal-OC3 columns (25 m, 250 nm film-thickness) with helium as the inert carrier gas; conditions: 

80 °C, 85 kPa. 
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The observed longer retention time for both rare-earth metal phases account for strong 

selector-selectand interactions with an almost doubled retention time and extensive peak-

broadening on Chirasil-Europium-OC3, compared to the lanthanum phase. These results are 

indicative for the formation of stable rare earth selector-selectand associates, which are 

incapable of adopting a sufficient distribution equilibria. Therefore, no enhanced 

enantiorecognition was obtained for europium and lanthanum (CB)CSPs and thus application 

of the corresponding nickel-containing (CB)CSP in complexation GC is most efficient. 

Due to the strong coordination capability of nickel(II) weakened interactions between selector 

and selectand are expected by a change to oxovanadium(IV). Moreover, significant changes in 

enantiorecognition and complexation are reported.[52, 93, 140, 141] By applications of Chirasil-

Vanadyl-OC3 phases (3.5%, 10.2% and 20.0% selector content) only low separation 

tendencies were obtained and discrimination of enantiomers diminished completely for 

analytes exhibiting strong coordinative functional groups, like alcohols, amides and ketones. 

These observations are in agreement with the results obtained by Weber[142] and Fluck[83] with 

camphor-derived Chirasil-Vanadyl CSPs. Reasons for this observations may be the formation 

of different diastereomeric oxovanadium(IV) complex geometries and the resulting varying 

approach vectors for incoming selectands. For Chirasil-Vanadyl-OC3 the analytes are likely to 

enter the complex from the opposite site to the oxygen atom. Even though the real structure of 

the camphor selector oxovanadium-complexes at the polymer is subject of current 

investigations,[50, 143] and their diastereomeric distribution is still unclear, three different 

complex-structures can be envisaged. The approach was shown to occur trans to the oxygen 

atom for benzaldehyde and cis for N-benzylidene-benzylamine thus proofing that different 

complexation geometries are possible in Chirasil-Vanadyl phases. (cf. Figure 17).[83, 90, 93, 94] 
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Figure 17 Possible geometries of Chirasil-Vanadyl-OC3 adopted in the polymer. 
Approach vectors for incoming substrates shown for cis-48 and highlighted with arrows (grey). 
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1.3.3.3 Extending the Scope of Chirasil-Ni(hfpc)2@PS – Separation of Enantiomers 

using Compound Libraries with Differing Functional Groups 

As displayed in Figure 15 oxiranes were successfully baseline separated on the Chirasil-

Nickel-OC3 phase 41 with a selector concentration of 20.0% and a polymer film-thickness of 

250 nm. To further extend the scope of enantioresolutions the film-thickness was increased to 

500 nm (20.0% selector) and a mixed phase consisting of 125 nm polydimethylsiloxane (GE-

SE 30) and 125 nm Chirasil-Nickel-OC3 (20% selector) were prepared and tested in 

complexation GC. Screening of various racemic compounds exhibiting different functional 

groups showed separation of enantiomers of a broad range of compounds with overall high 

separation factors. 

 

 

The resolution includes halogen-, alkyl- and aryl substituted oxiranes, primary, secondary and 

tertiary alcohols, substituted internal and terminal alkenes, alkynes, cyclic ethers, ketones and 

allenes. Not only oxiranes but also alcohols (entries 8, 15a – 17a, 28) were successfully 

separated with α-values between 1.10 and 1.12 using the standard 25 m 250 nm Chirasil-

Nickel-OC3 column were obtained. Excellent resolutions were observed for methyloxirane 

(entry 1c, α = 1.32) on the mixed phase and the highest separation-factor α was observed for 

the separation of TMS-alkynylbenzylalcohol enantiomers (entry 18) with α = 1.66 after only 

6 minutes on an 8 m column (250 nm). Moreover, an extraordinary and extremely fast 

separation after only 47 seconds (30 sec. adjusted retention time!) was obtained using a 5 m 

(500 nm) Chirasil-Nickel-OC3 column for methyloxirane (α = 1.21, entry 1b, cf. Figure 19)! 

Figure 19 Nearly complete resolution of 
methyloxirane after 47 seconds on 25 m of 

Chirasil-Nickel-OC3 mixed CSP. 

Chirasil-Nickel-OC3 column mixed phase (25 m, 

250 nm film-thickness with 50% (125 nm) 

polydimethylsiloxane, 20% selector) with helium as 

the inert carrier gas; conditions: 60 °C, 85 kPa. 

Figure 18 Baseline separation of (+/-)-
menthol after <1min on 5 m of Chirasil-

Nickel-OC3.
 

Chirasil-Nickel-OC3 column (5 m, 500 nm film-

thickness, 20% selector) with helium as the inert 

carrier gas; conditions: 140 °C, 85 kPa. 
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(+/-)-menthol was also separated to the baseline in less than 1 min (α = 1.10, 46 sec. adj. 

retention time) at 140 °C using the same column (cf. Figure 18). For diethyl-1,3-allene 

dicarboxylate (entry 29) a high separation factor of 1.33 was obtained. By comparison of the 

resolution for mono-alkylated oxiranes on a standard 25 m and on a mixed 25 m Chirasil-

Nickel-OC3-GESE-30 phase (entries 1a, 1c; 2a, 2b; 3a, 3c and 4a, 4c) the separation factor on 

both phases is decreasing along with higher oxirane-homologues (as expected). Furthermore, 

all four stereoisomers of chalcogran, the principal component of the aggregation pheromone 

of the bark beetle pityogenes chalcographus, consisting of a set of two interconverting epimer 

pairs (2R,5R-, 2S,5S-, 2S,5R- and 2R,5S-, entries 25a,b and 26a,b) were baseline separated as 

well. All columns employed, the measured and calculated values of each enantiomeric pair (A 

and B), like t0, corrected retention times tR(A/B)’,  separation factors α, resolution Rs and 

effective plates Neff(A/B) are listed in table 2. The observation of effective separations combined 

with the broad versatility of this novel chemically bonded Chirasil-Nickel phase underlines 

the advantage of this elegant approach (cf. Table 2, shown after the following brief excursus 

concerning GC data evaluation for interpretation purposes). 

 

Interpretation of GC Data – Concise Theory, Basic Measures & Values 

For comprehensive fundamentals in GC separation science reference is made to other sources 

in the literature.[144-147] For sake of interpretation the basic key descriptors, following the 

international ASTM-standards, will be outlined.[148] The quality of a separation of two 

analytes A and B depends on their net retention time tR
’ (corrected by the solvent dead-time t0; 

tR
’ = tR - t0) and is expressed by the selectivity α. Generally α-values greater 1.10 afford 

excellent separations and values exceeding 1.20 are only occasionally reported.[41, 53, 149] 

� = ��(�)	
��(
)	  (α ≥ 1 and tR(B)’ ≥ tR(A)’) 

The peak profile is very important, especially the peak-width (sharpness) and is expressed by 

the effective plate-number Neff taking the peak-width at half peak-height W0.5h into account 

(this value is more significant than the standard theoretical plate number n). High effective 

plate numbers are beneficial but not necessarily the determining factor for efficient 

separations since no measure of selector-efficiency is included. Therefore, with “good” 

selectors baseline-separations can be achieved even with reduced effective plate numbers. 

� = 5.545 ×  � �����.���
�
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The capacity factor k = tR
’/t0 is an indicator of the distribution of the analytes between the gas 

and liquid phase. Therefore the effective plate numbers approaches zero for analytes 

exhibiting a small capacity factor k → 0 and no separation will be observed. The resolution Rs 

represents a third descriptor for the separation quality of two analytes A and B. It combines the 

peak-width at half peak-height W0.5h and the uncorrected retention times tR of the analytes and 

displays another useful indicator. Noteworthy, for gaussian-shaped peaks (ideal case) a 

resolution Rs = 1.00 is sufficient for a complete baseline separation of analytes. 

�� =  ���(B) − ��(A)
∑(��) ! 

Table 2 Data for baseline resolutions of enantiomers of racemic compounds using 
(CB)Chirasil-Nickel-OC3 (41) as the CSP (column and conditions given below).[a] 

# compound tR(A)' tR(B)' k(A)' k(B)' α RS Neff(A) Neff(B) T p 
   /[min] /[min]             /[K] /[kPa] 

1a 
 1.51 1.92 0.69 0.87 1.27 1.13 291 403 313 85 

  b 
[f] 

0.41 0.49 1.46 1.76 1.21 0.64 202 163 313 85 

  c 
[g] 

2.00 2.64 0.97 1.28 1.32 1.38 546 299 303 85 

2a 
 

11.86 13.6 5.76 6.61 1.15 1.40 2920 1077 363 85 

  b 
[g] 

2.93 3.38 1.53 1.77 1.15 1.47 3307 1055 353 85 

3a 
 

10.07 10.57 6.80 7.14 1.05 1.40 21058 8815 383 120 

  b 
[e] 

11.51 12.15 8.23 8.68 1.06 1.35 14730 7006 393 120 

  c 
[g] 

13.61 14.49 9.45 10.06 1.06 1.20 11942 3438 373 120 

4a 
 

35.08 36.93 23.67 24.92 1.06 1.65 24278 11422 373 120 

  b 
[f] 

10.77 11.34 56.3 59.69 1.05 0.77 6994 2180 373 120 

  c 
[g] 

28.46 30.04 19.63 20.72 1.06 1.40 23177 5952 383 120 

5 
[b] 

10.78 12.13 3.11 3.50 1.12 0.74 1028 431 318 100 
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6 
 

9.28 10.09 4.27 4.64 1.09 0.66 1247 796 313 85 

7a 
 

29.14 32.83 7.57 8.53 1.13 2.60 11792 5234 318 45 

  b 
[e] 

6.37 6.89 3.29 3.56 1.08 1.16 5189 2396 343 85 

8 
 

8.07 8.90 3.93 4.34 1.10 0.52 559 368 393 85 

9a 
 

12.72 13.21 7.40 7.68 1.04 1.43 31663 16565 363 100 

  b 
[e] 

9.62 10.00 5.95 6.18 1.04 1.90 41116 33638 383 100 

  c 
[f] 

7.17 7.56 32.91 34.69 1.05 0.90 7500 3094 343 100 

  d 
[g] 

11.28 11.59 6.78 6.96 1.03 1.00 32786 15147 363 100 

10 
[b] 

4.17 4.37 5.06 5.31 1.05 1.00 11481 4516 373 120 

11 [c] 

9.59 10.12 14.13 14.91 1.06 1.15 11748 4770 373 120 

12a 
 

19.99 24.04 13.65 16.41 1.20 1.03 823 345 318 120 

   b 
[g] 

15.77 18.53 8.90 10.46 1.17 1.03 332 1374 318 120 

13a 
 

7.24 7.68 5.05 5.36 1.06 0.92 4529 3069 353 120 

   b 
[e] 

5.39 5.63 3.89 4.05 1.06 1.18 9783 5862 373 120 

   c 
[f] 

7.43 8.35 35.05 39.42 1.12 0.76 604 684 323 120 

14a 
 

9.30 9.71 4.65 4.86 1.04 0.51 3413 1579 353 85 

   b 
[e] 

6.40 6.70 3.46 3.62 1.05 0.91 7421 5071 373 85 

   c 
[f] 

6.66 7.21 31.46 34.05 1.08 0.50 998 440 323 120 

15a 
 

3.74 4.17 2.55 2.85 1.11 2.00 5711 4924 393 120 

   b 
[e] 

2.58 2.75 1.83 1.95 1.07 1.83 14773 11637 413 120 
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   c 
[f] 

1.35 1.52 7.33 8.25 1.13 1.22 1983 1429 383 120 

16a 
 

0.53 0.62 0.37 0.43 1.18 1.34 983 1078 383 120 

   b 
[e] 

0.69 0.73 0.50 0.56 1.13 1.47 2171 2311 403 120 

   c 
[g] 

5.11 5.64 2.64 2.91 1.11 3.42 25717 13758 403 85 

17a 
 

11.92 13.39 8.32 9.35 1.12 1.55 2437 3112 373 120 

18a 
[d] 

3.13 5.25 11.94 19.83 1.66 2.16 2827 147 416 120 

19a 
 

12.85 13.73 8.88 9.49 1.07 1.37 6176 6992 383 120 

   b 
[f] 

4.78 5.28 25.43 28.10 1.11 0.99 1614 1448 368 120 

20a 
 

20.09 21.79 25.87 28.05 1.08 1.25 3791 3613 363 240 

21a 
 

9.10 9.26 5.10 5.19 1.02 0.69 28612 21594 413 100 

   b 
[e] 

21.00 21.33 11.3 11.50 1.02 0.78 47556 31048 413 85 

22a 
 

15.10 15.44 7.37 7.53 1.02 0.94 29115 26098 393 85 

   b 
[e] 

14.50 14.78 7.82 7.97 1.02 0.96 42807 35384 413 85 

23a 
[b] 

16.13 19.34 5.59 6.70 1.20 2.78 3984 3408 403 120 

24a 
[b] 

7.30 7.61 2.20 2.30 1.04 2.28 46167 44487 383 100 

25a 
(2R,5R),(2R,5S)
-chalcogran 5.89 6.04 2.87 2.94 1.03 1.00 24656 23231 373 85 

   b 
[f] 

10.06 10.57 38.72 40.67 1.05 1.15 8981 7997 323 85 

26a 
(2S,5S),(2S,5R)-
chalcogran

 7.93 8.41 3.86 4.10 1.06 2.66 31663 32429 373 85 

   b 
[f] 

13.65 15.39 52.53 59.20 1.13 2.09 5179 4364 323 85 

27a 
(+/-)-camphor

 

28.23 29.87 19.91 21.06 1.06 0.96 5333 3905 353 120 

O

tBu

N
H

O

tBu

OO

OTMS



38 Chapter 1 – Camphor-derived Stationary Phases for Complexation GC 

   b 
[g] 

41.01 43.05 28.29 29.69 1.05 0.95 6489 5445 343 120 

28a 
(+/-)-menthol

 

3.73 4.16 1.78 1.99 1.12 3.05 15006 9929 413 85 

   b 
[e] 

3.72 4.02 2.58 2.80 1.08 2.4 18145 11955 423 120 

   c 
[f] 

0.69 0.76 3.09 3.40 1.10 1.40 3773 3224 413 85 

29a 
[e] 

5.34 7.02 9.81 12.89 1.31 3.50 850 13622 393 120 

[a] Separations were carried out using a 25 m Chirasil-Nickel-OC3 (41) column (20% selector, 250 nm) unless 
otherwise indicated and helium as inert carrier gas. 
[b] 40 m, 250 nm Chirasil-Nickel-OC3 (41) column (20% selector, 250 nm). 
[c] 15 m, 250 nm Chirasil-Nickel-OC3 (41) column (20% selector, 250 nm). 
[d] 8 m, 250 nm Chirasil-Nickel-OC3 (41) column (20% selector, 250 nm). 
[e] 25 m, 500 nm Chirasil-Nickel-OC3 (41) column (20% selector, 500 nm). 
[f]  5 m, 500 nm Chirasil-Nickel-OC3 (41) column (20% selector, 500 nm). 
[g] 25 m, 250 nm mixed Chirasil-Nickel-OC3 (41) phase (125 nm (19), 20% selector and 125 nm GE-SE 30). 
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1.3.4 Resolution of Chalcogran on Chirasil-Europium-/Lanthanum- and 
Nickel-OC3 by Dynamic Complexation GC (DCGC) 

Chalcogran [(2RS, 5RS)-2-ethyl-1,6-dioxaspiro[4.4]nonane)] (49) is a spiroketal consisting of 

four stereoisomers[150-152] found to be the principal component of the aggregation pheromone 

of the bark beetle pitogenes chalcographus, infesting the Norway spruce and causing serious 

damage to the forests. Spiroketals represent an important class of chiral compounds and are 

widely distributed in nature as microbacterial metabolites of antiproliferative potency, as 

antibiotics, cell growth inhibitors, as highly toxic metabolites of marine wildlife and as 

volatile pheromones for communication between insects.[153] The stereoisomers consist of two 

pairs of epimers and two pairs of enantiomers (cf. Figure 20). 

Dynamic complexation gas chromatography (DCGC) will be used to separate all four 

stereoisomers of chalcogran on the novel, camphor-derived Chirasil-Metal stationary phases 

of nickel, europium and lanthanum. Since chalcogran is prone to interconversion at the spiro 

center (tertiary carbon-atom) by zwitterionic and enolic ether/alcohol intermediates,[154] as 

validated during enantio-and diastereoselective, dynamic GC on Chirasil-β-Dex, the novel 

Chirasil-phases will be used to determine the epimer-interconversion barriers and rate 

constants using the DCGC approach. 
  

Figure 20 Epimeric, diastereomeric and enantiomeric pairs of chalcogran (49). 
Stereochemistry indicated by dotted lines. Top left: (Z)-(2R, 5R)-2-ethyl-1,6-

dioxaspiro[4.4]nonane; (2R, 5R)-49. Top right: (Z)-(2S, 5S)-2-ethyl-1,6-dioxaspiro[4.4]nonane; 

(2S, 5SR)-49. Bottom left: (E)-(2S, 5R)-2-ethyl-1,6-dioxaspiro[4.4]nonane; (2S, 5R)-49. Bottom 

right: (E)-(2R, 5S)-2-ethyl-1,6-dioxaspiro[4.4]nonane; (2R, 5S)-49. 
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Influence of Metal-Coordination (EuIII +, La III + and Ni II +) 

Initially, the influence of the metal-incorporated at the Chirasil-phase was investigated using 

Chirasil-Europium/Lanthanum and Nickel-OC3 as the chiral stationary phase. To achieve 

maximum efficiency a column length of 25m with selector-concentrations of 20.0% and a 

standard film-thickness of 250 nm was selected and the columns prepared as described (cf. 

Chapter 1.3.3.1). After determination of appropriate separation conditions (100 °C, 85kPa 

helium) the chalcogran mixture was subjected to GC analysis. On Chirasil-Nickel-OC3 41 

both epimeric pairs (8.2 min, 11.5 min average value) were separated after 12 minutes. A 

remarkable long retention of the enantiomers of each pair was observed with the second 

enantiomer eluted six minutes (average time) later after the first enantiomer (operating at 

100 °C!, not shown; cf. Table 2). Noteworthy, the challenge on the resolution of chalcogran 

stereoisomers is the structural relationship of both epimer pairs rather than the separation of 

each enantiomeric pair. However, a remarkably resolution of the enantiomeric pairs (2R, 5R)-

49, (2S, 5SR)-49 and (2S, 5R)-49, (2R, 5S)-49 was possible, with (2S, 5SR)-49 eluting 

2.04 min and (2R, 5S)-49 eluting 2.37 min later than their corresponding enantiomers at 

110 °C and 85 kPa inlet pressure on Chirasil-Nickel-OC3 41 (cf. Figure 21 and Table 3). 

Table 3 Resolution of all four stereoisomers of chalcogran on Chirasil-Nickel-OC3 41. 

# epimer pairs k(A)' k(B)' α RS Neff(A) Neff(B) 

1 
(2R,5R)-, (2R,5S)-chalcogran 2.87 2.94 1.03 1.00 24656 23231 

2 
(2S,5S)-, (2S,5R)-chalcogran 3.86 4.10 1.06 2.66 31663 32429 

Chirasil-Nickel-OC3 column (20% selector-content, 25 m, 250 nm film-thickness) with helium as the 

inert carrier gas; conditions: 110 °C, 85 kPa. 

Figure 21 Stereoresolution of the epimeric and enantiomeric pairs of chalcogran (49). 

Chirasil-Nickel-OC3 (41) column (25 m,  250 nm film-thickness, 20% selector) with helium as the inert carrier 

gas; conditions: 110 °C, 85 kPa. 
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After successful resolution of all chalcogran stereoisomers on the Chirasil-Nickel-OC3 phase 

the efficiency of Chirasil-Europium and Lanthanum-OC3 as the stationary phases was 

investigated. Using the same conditions, regarding temperature, selector-loading, polymer 

film-thickness and column length, as described for the separation of the chalcogran 

stereoisomers with the nickel-selector, a pronounced influence of the metal was found (cf. 

Figure 22). 

Whereas, all components were eluted within eleven minutes on the Chirasil-Nickel-OC3 phase 

the epimeric pair was retained on the column eluting 25 min later on the lanthanum and even 

31 min later on the europium-phase. This effect is remarkably, bearing in mind that the 

enantiomers are eluted with a time-gap of 25, respectively 31 minutes. There is only one 

single report of an enantiomer retention over a period of 30 minutes. An extraordinary high 

separation-factor of α ~ 10 was observed for resolution of the methanol-decomposition 

product of the inhalational anesthetic sveoflurane by GC on Lipodex E (pentylated γ-

cyclodextrin derivative) dissolved in polysiloxane (5 m column, 26 °C, 120 kPa 

hydrogen).[149] This represents also the highest separation-factor α observed so far. No 

retention in this order of magnitude was ever reported for chalcogran isomers. On Chirasil-

Europium as derived by Schurig[83] (cf. Chapter 1.1.3) exhibiting a C2-linker the retention 

time for the chalcogran epimers almost doubled (10 m, 87 °C, 1000 kPa helium). As a 

common phenomenon longer retention times are accompanied by peak broadening. With the 

novel (CB)CSPs of lanthanum and europium this effect was also observed. However, peak 

time / [min]

Figure 22 Prolonged enantiomer retention observed during chalcogran (49) resolution 
on Chirasil-Lanthanum-OC3 46 (top) and Chirasil-Europium-OC3 45 (bottom). 

Chirasil-columns (25 m,  250 nm film-thickness, 20% selector) with helium as the inert carrier gas; 

conditions: 100 °C, 85 kPa. 
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broadening did not exceed elution over a period of 1.5 minutes – an order of magnitude that 

was also observed with Chirasil-Europium by Schurig and coworkers (overloaded conditions 

and reduced mobile-phase flow rates did not account for this observation).[83, 155] Besides 

these remarkable results with the novel (CB)CSPs the observations are in agreement with the 

explanations given in chapter 1.3.3.2 for the role of the coordinated metal. Europium(III ) 

exhibits the strongest selector-selectand complexation properties compared to lanthanum(III ) 

and nickel(II) within the novel CSPs and therefore prolonged retention times and peak-

broadening is observed on Chirasil-Europium-OC3 45. Furthermore, the second epimeric pair 

of chalcogran, eluted after 44 min and 49 min, is likely to be separated more efficiently on the 

europium-based than on the lanthanum-based (CB)CSPs (cf. Chapter 1.3.3.2 and Figure 22). 

Resolution of Chalcogran Stereoisomers on Chirasil-Nickel-OC3 – Influence of Selector-

Loading, Temperature, Polymer Film-thickness and Composition 

As Chirasil-Nickel-OC3 proofed to be the ideal, chiral stationary phase for the separation of 

chalcogran stereoisomers, columns with varying selector-concentrations (3.5%, 10.2% and 

20.0%) and 250 nm film-thickness were selected to investigate the influence of selector-

loading on the quality of separation. By application a pressure of 85 kPa the operating 

temperature was raised to 110 °C to force peak-overlap. The second epimer pair of chalcogran 

is generally more easily separated on the Chirasil-Nickel-OC3 phase. Even with selector-

Selector-

content:
3.5%

10.2%
20.0%

time / [min]

6.0
7.0

8.0
9.0

10.0

Figure 23 Chalcogran separation on Chirasil-Nickel-OC3 with varying selector concentration. 
Chirasil-columns (25 m,  250 nm film-thickness, 3.5 –20.0% selector content) with helium as the inert carrier 

gas; conditions: 110 °C, 85 kPa. 
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loadings of 3% partial separation of these peaks was observed. Although different selector-

concentrations were employed, retention times of the stereoisomers were almost equal and 

faster elution on columns exhibiting less selector-concentration was not observed. Selector 

concentrations of 10.2% were sufficient to baseline separate the second epimeric pair and 

partial resolution of the first pair. The resolution-factor Rs drastically improved from 0.75 to 

1.83 (3.5% → 10.2% selector-loading). With 20.0% metal-selector the resolution of the first 

epimeric pair was further improved as can be seen from the chromatogram, by change of the 

α-values from 1.01 to 1.02 and improvement of the resolution-factor Rs from 0.64 to 0.70 for 

each epimeric pair (highlighted with arrows, entries 2a, 3a, 2b, 3b; cf. Figure 23 and Table 4). 

Table 4 Influence of the selector-concentration on the quality of epimer-resolution. 

# epimer pairs k(A)' k(B)' α RS Neff(A) Neff(B) 

               

1a 
(2R,5R),(2R,5S)
-chalcogran 2.26 - - - 20269 - 

  b 
(2S,5S),(2S,5R)-
chalcogran

 2.52 2.57 1.02 0.75 21804 21186 

2a 
(2R,5R),(2R,5S)
-chalcogran 2.00 2.02 1.01 0.64 29403 20723 

  b 
(2S,5S),(2S,5R)-
chalcogran

 2.51 2.62 1.04 1.83 28300 29587 

3 a 
(2R,5R),(2R,5S)
-chalcogran 2.00 2.03 1.02 0.70 18389 16753 

  b 
(2S,5S),(2S,5R)-
chalcogran

 2.66 2.80 1.05 1.99 25292 24794 

Epimeric pairs connected with arrows for resolution factor α and resolution RS. 

Separations were carried out using a 25 m Chirasil-Nickel-OC3 column (250 nm 

film-thickness) at 110 °C and 85 kPa helium as inert carrier gas (selector-

concentrations: 3.5%, entry 1; 10.2%, entry 2 and 20.0%, entry 3). 

 

The observation that selector-concentrations of 20.0% Chirasil-Nickel-OC3 still improve 

separation quality is very important for further developments of Chirasil-Metal-OC3 derived 

chiral stationary phases! This is noteworthy, since selector-selector interactions might lead to 

reduced efficiency by the formation of unselective complex-species and decomposition 

products. Therefore, complexation GC is more sensitive to selector-content than inclusion 

GC. For permethylated-β-cyclodextrin dissolved in OV-1701 (cyanopropylphenyl 

methylpolysiloxane) the selector-concentration was limited to a maximum of 25%. Exceeding 

this concentration did not lead to any further increase in the separation factor, resp. quality of 
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resolution, because of crystallization of the selector resulting in low selector concentration 

accessible for analytes.[156] After the findings that a nickel-selector content of 20.0% is still 

beneficial for the quality of resolution, the polymer-film-thickness and composition was 

altered. Separation columns (20.0% selector-concentration) of 250 nm, 500 nm and a mixed 
 

Table 5 Quality of stereoresolution of 
chalcogran isomers on a 500 nm Chirasil-

Nickel-OC3 phase. 

# epimer α RS Neff(A) Neff(B) 

1a 
(2R,5R), 
(2R,5S) 1.03 1.74 60635 53614 

  b 
(2S,5S), 
(2S,5R)

 1.06 4.07 56688 58643 

2a 
(2R,5R), 
(2R,5S) 1.02 1.33 50642 43063 

  b 
(2S,5S), 
(2S,5R)

 1.06 3.19 48246 48296 

3a 
(2R,5R), 
(2R,5S) 1.02 0.78 33905 27588 

  b 
(2S,5S), 
(2S,5R)

 1.04 2.33 50571 52295 

Table 6 Separation quality of chalcogran 
isomers on a mixed Chirasil-Nickel-OC3/ 

polydimethylsiloxane phase. 

# epimer α RS Neff(A) Neff(B) 

1a 
(2R,5R), 
(2R,5S) 1.02 1.03 40452 42090 

  b 
(2S,5S), 
(2S,5R)

 1.05 2.58 42547 39619 

2a 
(2R,5R), 
(2R,5S) 1.01 0.73 34647 26128 

  b 
(2S,5S), 
(2S,5R)

 1.04 2.10 38776 38856 

3a 
(2R,5R), 
(2R,5S) - - 9303 24132 

  b 
(2S,5S), 
(2S,5R)

 1.03 1.12 21364 26128 

Conditions: 25 m Chirasil-Nickel-OC3 (41, 500 nm, 

20% selector) column at 90 °C (entry 1), 100 °C 

(entry 2) and 120 °C (entry 3) and 85 kPa helium. 

Conditions: 25 m Chirasil-Nickel-OC3 (41, 125 nm, 

20% selector) and 125 nm GE-SE30 column at 

90 °C (entry 1), 100 °C (entry 2) and 120 °C (entry 

3) and 85 kPa helium.  

t [min]
31.030.029.028.027.026.025.024.023.022.021.020.019.018.017.016.015.014.013.012.011.010.09.08.0

t [min]
22.021.020.019.018.017.016.015.014.013.012.011.010.09.08.07.06.05.04.0

t [min]
10.09.08.07.06.05.04.03.0

time / [min]

9.0 15.0 21.0 27.0

time / [min]

4.0 9.0 14.0 19.0

time / [min]

3.0 5.0 7.0
9.0

125nm 41 + 125nm GE-SE30

500nm 41

90°C 100°C 120°C

125nm 41 + 125nm GE-SE30

500nm 41

125nm 41 + 125nm GE-SE30

500nm 41

Figure 24 Influence of film-thickness and temperature on the enantio- and epimerresolution of 
chalcogran isomers (49) using Chirasil-Nickel-OC3.

 

(A) 25 m Chirasil-Nickel-OC3 (41) phase (20% selector, 500 nm); (B)  25 m mixed Chirasil-Nickel-OC3 phase 

(125 nm 41, 20% selector and 125 nm GE-SE 30). 
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phase consisting of 125 nm Chirasil-Nickel-OC3 and 125 nm polydimethylsiloxane (GE-SE 

30) were prepared. Three different temperatures (120 °C, 100 °C and 90 °C) were applied. For 

comparison, the results obtained for the mixed and the Chirasil-Metal phase with 500 nm 

polymer thickness are displayed (constant helium pressure of 85 kPa; cf. Figure 24, Table 5 

and Table 6). Throughout good separations were observed on all phases and temperatures 

applied, especially for the second epimeric pair even at 120 °C. The 500 nm Chirasil-Nickel-

OC3 phase showed the best results observed so far for the separation of chalcogran 

isomers![154] With respect to a four times lower selector-concentration of the mixed phase 

(app. 5% selector-content) compared to 20.0% in the 500 nm column the results obtained with 

the mixed (CB)CSP at all temperatures are remarkable since almost no separation was 

achieved on the pure phase with 3.5% selector-concentration at 100 °C (as elucidated for the 

investigations regarding selector-loading). The effective plates are reduced from Neff = 

60k/56k to 40k/43k (entries 1a and b), but are still high considering four times lower selector-

concentrations. Therefore, the presence of selector-free polymer within the Chirasil-Metal 

phase is beneficial for separation quality. This observation becomes plausible, if complexation 

GC is reconsidered as an discriminating process between free selectands, selector-selectand 

complex formation and selectand-liberation. After injection all analytes will be present in the 

liquid polymer phase 99% of the time competing for and interacting with the selector bound 

to the polymer. The presence of selector-free polymer might therefore add unselective 

contribution to separation by offering free space for incoming selectands and thus 

guaranteeing selection and fast equilibration between complexation and liberated substrates. 

This approach is not uncommon and in fact are many stationary phases for gas 

chromatographic applications are polymer-diluted or mixed phases consisting of different 

compounds.[5, 144, 149, 157] 

Determination of the Interconversion Barriers of Chalcogran by Dynamic Complexation 

Gas Chromatography (DCGC) on Chirasil-Nickel-OC3 

The epimerization of chalcogran during dynamic diastereo- and enantioselective DCGC gives 

rise to two independent interconversion peak profiles, each featuring a plateau between the 

epimer pairs being currently interconverted. Reason for this observation is the time-depended 

interconversion and thus change of the physical properties of each epimer within the chiral 

environment (CSP). Therefore, either a prolonged retention or an accelerated elution of a 

certain amount of epimers is detected during experiment. By overlay of both contributions 

(areas) of each interconverted epimers a plateau is formed and superposition of both 

interconversion processes leads to a characteristic peak-profile, as illustrated in Figure 25. 
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The rate-constants for the epimerization process (kapp) by DCGC were obtained by 

consecutive measurements at temperatures between 90 °C and 130 °C on Chirasil-Nickel-OC3 

(cf. Figure 26). A constant, standard inlet pressure of 85 kPa was chosen, since the observed 

interconversion process will be influenced by the metal-complex on the CSP and therefore has 

Figure 25 Schematic representation of the interconversion 
peak profile of chalcogran on Chirasil-β-Dex. 

Isolated interconversion processes (black and red) and observed overall 

peak-profile (dotted line). 

Figure 26 Epimerization of chalcogran (49) at different temperatures.[a] 
Experimental chromatograms as obtained on a 25 m Chirasil-Nickel-OC3 (41, 250 nm, 20% 

selector) column between 90 °C and 130 °C at 85 kPa helium. 
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to be considered to be catalytic. Therefore, conversion will depend on the retention time of the 

analytes on the CSP and thus depend on the probability of being present at the catalytic 

center, which is strongly influenced by the internal pressure – a significant difference to the 

determination of interconversion barriers by inclusion GC on Chirasil-β-Dex.[154] The 

pressure-dependency and therefore the influence of the Chirasil-Metal phase on the 

interconversion process was validated as different reaction-rate-constants kapp were observed 

at constant temperature with varying inlet pressures (85 – 180 kPa, cf. Table 7, Figure 27). 

 

Table 7 Pressure depended interconver-
sion of chalcogran epimers.[a] 

p [kPa] kapp [s
-]  p [kPa] kapp [s

-] 

85 4.98×10-4  140 4.35×10-4 

100 4.69×10-4  160 4.20×10-4 

120 4.36×10-4  180 3.63×10-4 

Reaction-rate-constants kapp observed at 413.15 K 

for varying helium inlet pressures on a 25 m 

Chirasil-Nickel-OC3 (41, 250 nm, 20% selector) 

column. 

 

The reaction-rate-constant kapp and activation parameters (∆Gǂ, ∆Hǂ, ∆Sǂ) at constant pressure 

of 85 kPa were obtained by data evaluation using kinetic models and the Unified Equation 

approach as previously described by Trapp et al.[158-164] The activation enthalpy ∆Hǂ was 

obtained from the slope and the activation entropy ∆Sǂ from the y-axis intercept of the Eyring 

plot [ln (kapp/T)] as a function of 1/T (cf. Figure 28) at constant pressure. The standard 

deviation of the activation parameters ∆Hǂ and ∆Sǂ has been calculated by error band analysis 

with a level of confidence of r = 99% and a residual deviation of 10%, regarding the error 

band. The Eyring activation parameters of the experimental interconversion profiles between 

100 and 120 °C in the presence of Chirasil-Nickel-OC3 41 were determined to be: 

∆Gǂ (289.15 K, 85 kPa) = 107.7 kJ/mol 

∆Hǂ = 66.7 ± 7.9 kJ/mol 

∆Sǂ = -137.4 ± 52.2 kJ/mol 

Figure 27 Graphic representation of pressure-
dependend chalcogran epimerization (plotted 

data from table 7). 
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By comparison of the results obtained by literature reports on the interconversion barrier of 

chalcogran on Chirasil-β-Dex using dynamic gas chromatography (DGC, inclusion 

chromatography) a reasonable explanation for and interpretation of the results obtained from 

DGC and DCGC-experiments was possible. The overall activation Gibbs free energies, 

standardized to 298.15 K using either complexation or inclusion gas chromatography is 

almost equal (0.6 kJ/mol deviation). However, the parameters for the activation enthalpy ∆Hǂ 

and activation entropy ∆Sǂ differ significantly and can be directly interpreted in this case. The 

overall highly negative activation entropies ∆Sǂ observed in both cases account for a highly 

ordered state for the epimerization process. A dissociative mechanism involving bond 

breakage at the spiro center at C5 and formation of a zwitterions/enol ether/alcohol structure 

was stated and supported by computational chemistry (cf. Scheme 15).[154] 
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-15.2
2.56          2.58           2.60          2.62          2.64          2.66          2.68
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(k
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Figure 28 Eyring plot [ln (kapp/T)] as function of 1/T for the epimerization of 
chalcogran on Chirasil-Nickel-OC3. 

Conditions: 25 m Chirasil-Nickel-OC3 (49, 250 nm, 20% selector) column between 100 °C and 120 °C 

at 85 kPa helium. 

Scheme 15 Interconversion mechanism of the empimeric pair (2R, 5R)-49/ 
(2R, 5S)-49 via a zwitterions/enol ether/alcohol intermediates. 
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Considering the strong electrostatic attractions present at intermediate structures, both 

pathways represent a highly ordered system thus accounting for the highly negative value of 

the activation entropy ∆Sǂ. As the activation free Gibbs energies are almost equal a similar 

reaction-pathway can tentatively be envisaged. As shown in Table 8, the entropy of the 

epimerization process at 20 °C increases by 66.5 kJ/mol on Chirasil-Nickel-OC3 compared to 

Chirasil-β-Dex, thus implying a more ordered structure during epimerization. Being still 

highly negative (∆Sǂ = -137.4) an ordered-structure featuring electrostatic interactions and the 

coordination to the chiral selector, in close proximity to the metal-center, may be envisaged 

and account for this decrease in order by 66.5 kJ/mol. As a matter of fact, reconsidering the 

Gibbs free activation energies, the enthalpy is raised to a certain extend (+19.2 kJ/mol) – a 

phenomenon related to enthalpy–entropy compensation. It represents a fundamental principle 

ubiquitously found in the chemistry of living systems, but hardly attracted interest in 

literature.[165] The message of “Win some, lose some”(enthalpy ↔ entropy), as stated by 

Dunitz,[166] applies for the observations made for the epimerization process of chalcogran on 

different CSPs as validated with Chirasil-Nickel-OC3 and Chirasil-β-Dex CSPs exhibiting the 

same polymer-backbone (polysiloxane). 

Table 8 Activation parameters at 298.15 K (∆Gǂ, ∆Hǂ, ∆Sǂ) for chalcogran epimerization in 
DGC and DCGC. 

Data in kJ/mol; entry 1: 50 m Chirasil-β-Dex (300 nm) column between 70 °C and 120 °C; entry 2: 25 m 

Chirasil-Nickel-OC3 (19, 250 nm, 20% selector) column between 100 °C and 120 °C at 85 kPa helium. [b] ∆∆Xǂ = 

∆Xǂ(Chirasil-Nickel-OC3) - ∆Xǂ(Chirasil-β-Dex) 

 

1.3.5 Dynamic Elution Profiles by CSP-Coupling – A Novel Approach 
Towards Efficient Assignment of Enantiomer Configurations via On-
Column GC 

Chiral compounds are throughout present in nature and are highly important compounds for 

global industry, including the pharmaceutical and agricultural sectors, for instance (cf. 

Chapter 1.1.1). As a prerequisite for any research in this area, the structure and the enantiomer 

configuration has to be identified. A lot of effort is necessary to determine the enantiomeric 

composition (enantiomeric excess, e.e.) either from racemic, enantiomer enriched or impure 

# stationary phase (CSP) ∆Gǂ ∆Hǂ ∆Sǂ ∆∆Gǂ [b] ∆∆Hǂ [b]
 ∆∆Sǂ [b]

 

               
1 

Chirasil-β-Dex 108.3 47.6 -203.5 
-0.6 +19.2 +66.5 

2 
Chirasil-Nickel-OC3 107.7 66.7 -137.4 
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mixtures. Therefore, the compounds are initially produced in their racemic forms, followed by 

enantioselective synthesis of each enantiomer, extraction from natural sources or selective 

crystallization, for instance. The necessity of having the racemate and both enantiomers in 

their isolated forms at hand, renders this approach economically unfavorable. Therefore, the 

development of new techniques for an efficient determination and assignment of enantiomer 

configurations is and will be pursued on a continuous basis.[1] 

For this purpose a new process using a gas chromatographic dynamic on-column approach by 

coupling of chiral-stationary phases was developed. The idea is based on the principles of 

discrimination of enantiomers by chromatography. Enantiomers exhibit, while present in a 

symmetric environment identical chemical and physical properties (except optical activity). 

However, by introduction of additional chiral information, like with chiral-stationary phases, 

marked differences regarding retention-times, peak shape, distribution or reactivity of the 

enantiomers can be observed because each enantiomer now interacts differently with its 

environment. Therefore, the question, which led to the development of this method, arised: 

“What happens by a change of the chiral information present in the environment 

during an enantiodiscriminating step?” 

(instead of varying the chiral information of the analyte by derivatization or by displacement of the chiral 

environment to another after each successive run, for instance). 

Two different, chiral stationary phases combining the separation strategies of complexation 

and inclusion gas chromatography were chosen to answer this question. The novel, camphor-

derived (CB)CSP Chirasil-Nickel-OC3 (complexation GC) and a standard cyclodextrin phase 

(Chirasil-β-Dex, inclusion GC) were selected. Initially, the efficiency of the CSPs in the 

stereoresolution of chalcogran isomers was evaluated. For this purpose, chalcogran was 

injected on both phases (5 m column length each). The obtained chromatograms are displayed 

in Figure 29. Besides the extraordinary resolution on the novel, polysiloxane diluted (mixed) 

Chirasil-Nickel-OC3 phase, the chromatograms shows that all stereoisomers tend to separate 

on the Chirasil-β-Dex phase as well (cf. Figure 29). 
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A temporary change of the chiral environment during the separation process was achieved by 

direct coupling of both phases within one gas chromatograph. For a maximum effect the 

column length was increased to 25 m each to furnish a “fused” 50 m separation column of 

unique properties. First, the stereoseparation of chalcogran was performed on each single 

Chirasil column. The temperature was raised to 90 °C and the pressure to 110 kPa to force a 

faster elution of the analytes. The single chromatograms (A and B) show distinct 

interconversion profiles of chalcogran depending on the chiral, stationary phase employed. By 

injection of chalcogran onto the coupled phase a further temperature increase of 10 °C to 

100 °C was found to be sufficient enough for elution of all analytes within appropriate times 

(30 min) on the 50 m column. The obtained chromatograms showed distinct peak-profiles, 

which have never been reported before. Besides a plateau formation, due to interconversion of 

chalcogran epimers, as outlined in 1.3.4, two additional “hump-shaped” peak areas were 

observed, with one located in front and one at the end of some peaks. Measurements were 

repeated and the same results showing this characteristic pattern were obtained. Furthermore, 

by reverse coupling of the (CB)CSPs a different peak-pattern exhibiting these additional 

fronting/retracing peak areas was observed. The corresponding chromatograms are depicted in 

the following (cf. Figure 30, Figure 31 ). 
  

Figure 29 Chalcogran resolution on Chirasil-Nickel-OC3 (A) and Chirasil-β-Dex (B). 

Separations were carried out either using (A) 5 m Chirasil-Nickel-OC3 (41) column (125 nm, 20% 

selector and 125 nm GE-SE 30) and (B) 5 m Chirasil-β-Dex column (500 nm film-thickness) at 60 °C 

and 85 kPa helium as inert carrier gas. 
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Both results obtained from normal or reverse column coupling show characteristic regions of 

peak-fronting and “retracing” (cf. Figure 31). None of these regions are detected twice, resp. 

in odd numbers, and the peak areas can be considered equal in both cases. The explanation for 

the occurrence of these additional, abnormal-shaped peak areas is based on the 

interconversion process of the chalcogran isomers. In principle, the characteristic plateau 

formation observed during interconversion results from the interconversion between the 

epimers of chalcogran (epimerization). Since this process is time-dependent and since each 

epimer interacts differently with the CSP, the retention of the parts currently being 

interconverted into the opposite epimer will be different and unselective to a certain extend. 

Due to enhanced or reduced interactions with the CSP the elution of small amounts is 

39.037.035.033.031.029.027.025.023.0

time / [min]

Figure 31 Interconversion profiles for chalcogran observed on Chirasil-β-Dex and 
Chirasil-Nickel-OC3.

 

Separations were carried out either using (A) 25 m Chirasil-β-Dex column (500 nm film-thickness) 

coupled to 25 m Chirasil-Nickel-OC3 column at 90 °C and 110 kPa helium as inert carrier gas. 

37.035.033.031.029.027.025.023.0 36.034.032.030.028.026.024.0

time / [min] time / [min]

Figure 30 Distinct interconversion profiles for chalcogran stereoisomers observed on coupled 
CSPs of Chirasil-β-Dex and Chirasil-Nickel-OC3. 

Separations were carried out using coupled, fused silica capillaries of Chirasil-β-Dex (500 nm film-thickness) 

and Chirasil-Nickel-OC3 (41, 125 nm, 20% selector and 125 nm GE-SE 30) with an overall column length of 

50 m at 100 °C and 100 kPa helium; (A) 25 m Chirasil-β-Dex coupled to 25 m Chirasil-Nickel-OC3 (left) and (B) 

25 m Chirasil-Nickel-OC3 coupled to 25 m Chirasil-β-Dex (right). 
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therefore retained or accelerated. In particular, two interconversion profiles, each featuring a 

plateau between the interconverting epimers will be observed.  

The observed plateau is formed by an overlap between two parts of interconverting structures 

originating from each epimer. Therefore, a theoretical separation of the plateau into its basic 

components would result in four independent areas for two plateaus (two contributions for 

each plateau). 

By coupling of Chirasil-Nickel-OC3 and Chirasil-β-Dex two stationary phases of 

different separation capabilities either featuring retention by complexation or retention by 

inclusion were combined. The interconversion process was divided into its basic contributions 

and a real physical separation of the plateau components was made observable. The detection 

of one pair of fronting/retracing peak areas shows the separation of one plateau, whereas the 

other plateau of epimerization stays intact without separation. A total reversal of the elution 

order of each part of the plateau, as observed for standard and reversal CSP-coupling, can 

only be detected, when the enantioselectivity of the chiral selector changes completely in 

favor of the opposite enantiomer during CSP-change! With a CSPs selecting the same 

enantiomers but exhibiting different enantioselectivity a step-wise plateau formation would be 

expected and the order of eluted enantiomers will be retained. A schematic representation of 

the interconversion process and its basic components is illustrated in Figure 32. 

This novel approach provides a fast and efficient method for the assignment of enantiomer 

configurations and their distribution present in an unknown mixture of enantiomers. A typical, 

straightforward determination of compound purity utilizes gas chromatography, which 

combines selectivity, efficiency, high resolution and the need of only small sample quantities 

within a fast method. The standard analytical procedure for the gas chromatographic 

determination of the enantiomeric purity of an optional impure sample consists of three steps: 

(A) initial injection and analysis of a test-mixture, preferentially racemic, (B) single analysis of 

Figure 32 Schematic illustration of the basic components during interconversion process of 
two compounds A and B. 

A and B represent interconverting species highlighted in different colors (non gaussian-shaped deconvolution). 
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each enantiomer and (C) analysis of the sample of interest followed by comparison of 

retention-times and elution-orders under equal separation conditions. 

Generally, a transfer of results, regarding especially retention times, to the own results 

lacks due to sample preparation and composition, slightly differing separation conditions, 

column properties and varying technical equipment. Thus, without having both enantiopure 

compounds in hand or at least in their enantioenriched forms, a successful validation is not 

possible. Furthermore, the elution-order within the same class of compounds can change 

unexpectedly by passing its isoenantioselective temperature (Tiso),
[59, 167] which represents a 

potential source for errors and wrong conclusions. Therefore each enantiomer has to be 

isolated and analyzed independently for an exact validation. In case of the novel developed 

approach by CSP-coupling only the sample is analyzed and three chromatographic runs are 

sufficient enough for an efficient assignment of enantiomer configuration, determination of 

enantiomeric composition and enantiopurity. Furthermore, three independent methods can be 

used for the validation of the correct enantiomer assignment after one measurement on the 

coupled phase thus increasing the level of confidence. 

A) Total Retention Model – Additive/ Subtractive Separation Tendency [tR1(A)+tR2(A)+…] 

B) α-Model – Decrease/ Increase of Separation-Factor α of the Analytes 

C) Interconversion-Model – Generation of Dynamic Elution Profiles (in Case of Stereolabile 

Stereoisomers) 

Assignment of Chalcogran Enantiomers via CSP-Coupling -– A Case Study 

The prerequisite necessary for the application of this method is the existence of literature 

reports, dealing with the enantiomer configuration and the elution order of its enantiomers, as 

given for chalcogran.[154] The assignment of all chalcogran stereoisomers on a CSP of 

unknown properties represents a challenging task without having the isolated isomers in 

hands and is not possible by standard state-of-the-art techniques. In the following section all 

three methods for validation will be demonstrated. The elution-order of chalcogran on 

Chirasil-β-Dex was reported[154] to follow (E)-(2R, 5S)-2-ethyl-1,6-dioxaspiro[4.4]nonane; 

(2R, 5S)-49 (bottom right), (Z)-(2R, 5R)-2-ethyl-1,6-dioxaspiro[4.4]nonane; (2R, 5R)-49 (top 

left), (Z)-(2S, 5S)-2-ethyl-1,6-dioxaspiro[4.4]nonane; (2S, 5SR)-49 (top right) and (E)-

(2S, 5R)-2-ethyl-1,6-dioxaspiro[4.4]nonane; (2S, 5R)-49 (bottom right) latest (cf. Scheme 16). 
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By simple injection only into Chirasil-β-Dex and Chirasil-Nickel-OC3 columns no 

pronounced differences are observed and the elution-order on the novel, Chirasil-Nickel-OC3 

phase remains unknown (cf. Figure 30, Figure 31). However, by injection on the coupled 

CSPs different retention times, varying α-values and the peculiarities, regarding the separation 

of the interconversion plateau-components, are observed. The observables directly point to the 

three models for validation of enantiomer assignment. Since the elution order on Chirasil-β-

Dex is known, beside the fact that the overall retention time for all stereoisomers will be 

increased, the following considerations are accurate: 

Total Retention Model: 

− increased retention times for enantiomers are expected along with similar 

enantioselectivity on Chirasil-Nickel-OC3 and the distance between enantiomers will 

be lengthened (linear relationship!) 

− a change of enantioselectivity on Chirasil-Nickel-OC3 will influence retention times 

of enantiomers 

− a reversal of enantioselectivity on Chirasil-Nickel-OC3 will lead to accelerated elution 

of unfavored and prolonged retention of selector-favored analytes (enhanced complex 

formation) 

− a reversal of enantioselectivity on Chirasil-Nickel-OC3 shortens the distance between 
enantiomers and might lead to a reverse elution order of enantiomers  

Scheme 16 Elution order (illustrated by arrow) of chalcogran 
stereoisomers on Chirasil-β-Dex as the chiral stationary phase. 



56 Chapter 1 – Camphor-derived Stationary Phases for Complexation GC 

α-Model: 

− increased α-values will be observed along with similar and increased 

enantioselectivity on Chirasil-Nickel-OC3 and the distance between enantiomers will 

be lengthened 

− a change of enantioselectivity on Chirasil-Nickel-OC3 will influence the separation-

factor α  and the quality of resolution  

− a reversal of enantioselectivity on Chirasil-Nickel-OC3 will lead to reduced α-values 

(pure time-dependency of α) 

− a reversed elution order will led to an decrease in the α-value (α < 1) after passing the 

peak coalescence on Chirasil-Nickel-OC3. Resolution quality might be increased even 

though α-values < 1 are generated. For sake of definition, the order of division has to 

be changed from tR(B)/tR(A) to tR(A)/tR(B) and in this case α-values (α > 1) will be 

obtained again for sufficient separation. 

Interconversion Model: 

− a stepwise plateau formation is expected along with similar enantioselectivity on 

Chirasil-Nickel-OC3, the distance between enantiomers will be lengthened and the 

plateau will be stretched 

− a change of enantioselectivity on Chirasil-Nickel-OC3 will influence the plateau 

formation, the shape and the positioning of the principal components of the 

interconversion plateau 

− a reversal of enantioselectivity on Chirasil-Nickel-OC3 separates the principal 

components of interconversion plateaus 

− a reversal of enantioselectivity on Chirasil-Nickel-OC3 shortens the distance between 

epimer pairs and might lead to a reverse elution order of enantiomers characterized by 

frontening and retracing peak areas 

All the aspects elucidated are realized for the time-dependent resolution of chalcogran 

isomers on the coupled stationary phases! To interpret the novel peak-profiles some 

considerations and illustrations will briefly be discussed: By coupling of two CSPs of same 

length and identical enantioselectivity two enantiomers will be separated to equal extend and 

retention of will be doubled (linear relationship). Same is true for two interconverting 

enantiomers and thus the plateau will be elongated (case A). Changing only the selectivity of 

the selector (in favor of the opposite enantiomer) on one of the two CSPs a step-shaped 

plateau is expected (due to interconversion on both phases), but again the linear relationship 
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of retention will be retained (case B). Reversal of the enantioselectivity on one phase results 

in converging peaks and an increased plateau height is observed (case C). With increasing 

enantioselectivity of the selector present on the second CSP each enantiomer and its 

corresponding, interconverted enantiomer (as one part of the plateau) will first superpose the 

others (point of coalescence, case D) and pass them to generate a novel peak-profile, featuring 

additional fronting and retracing peak areas (case E, cf. Scheme 17). 

By comparison of the results a change in the elution order is observed for chalcogran on the 

coupled-CSPs. However, the complete and correct assignment of all peaks to this complex 

chromatographic pattern is challenging. As both CSPs exhibit the same polysiloxane-based 

backbone diastereoselectivity is retained and therefore no change in the elution order of both 

epimeric groups is possible! This is validated by an increase in the overall retention times for 

both epimeric pairs (29 and 32 min). The retention time has to be at least as long as the sum of 

the retention times observed on both separated phases (Chirasil-β-Dex: tR-range = 8 – 9 min; 

Chirasil-Nickel-OC3: tR-range = 8 – 10 min, linear relationship of retention). The deviation form 

the theoretical expected retention range (16 – 19 min) to 29 – 32 min for chalcogran on the 

coupled-CSP is originated at the pressure decay observed along with increasing column 

length leading to prolonged retention times. 

Highly pronounced is the change in enantioselectivity for the first epimeric pair (related to 

study case E) and evidenced by plateau separation between (2R, 5R)-49 (top left), (2R, 5S)-49 

(bottom right, cf. Scheme 18). A change in the diastereoselectivity for both interconverting 

Scheme 17 Peak-profiles observed for an interconversion process on coupled CSPs with different 
and enantioselectivity (case A – E, non gaussian-shaped deconvolution). 
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epimeric pairs is not likely to happen reconsidering the linear retention relationship (equal 

polysiloxane backbone equals similar diastereoselectivity). This is validated since the second 

plateau between (2S, 5S)-49 (top right) and (2S, 5R)-49 (bottom left) remained intact and 

therefore no change in diastereoselectivity is possible, nor by changing the order of coupled 

CSPs. The novel method allowed the determination of enantiomer configuration and peak 

assignment to all four chalcogran stereoisomers on the novel Chirasil-Nickel-OC3 stationary 

phase. The different elution orders on Chirasil-β-Dex and Chirasil-Nickel-OC3 are illustrated 

in Scheme 18.  

The novel approach allows the transfer of existing or standardized elution-orders from 

reference columns to other columns. Furthermore, a comparative determination of the relative 

configuration and validation of the absolute configuration by a reference compound is 

possible. This is very important for the analysis of enantiomers, especially for the 

determination of the enantiomeric excess (% e.e.) in asymmetric catalysis as transfer of 

otherwise incomparable ligand-systems of unknown enantioselectivity becomes possible. The 

overall expenditure of measurement periods is reduced and the set-up is simple. The need for 

one chiral reference column for the comparison with literature reports is not necessarily a 

drawback of this approach as the columns can be used for standard separations as well. Plus, 

only a small number of chiral columns are commonly employed for separations and therefore 

excessive investment in different chiral CSP columns is limited. In fact, this approach opens 

the way for an additional application of already existing columns. Furthermore, and also 

likely to be the major advantage beside the straightforward approach and simple set-up is the 

injection of only the sample of interest, instead of having all isolated compounds 

(enantiomers) at hands. Since only small amounts of analytes are necessary for GC analysis 

any bench-upscale and purification procedures become less important. By installation of a set-

up with increased separation-performance (resp. a better resolution quality), peaks can be 

Scheme 18 Different elution orders on Chirasil-β-Dex (left) and Chirasil-
Nickel-OC3 (right) efficiently determined by the developed CSP-coupling 

method (elution order illustrated by black arrows in each case). 
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further separated from each other allowing the determination of very high as well as very low 

enantiomeric excess’ at the detection limits – a challenging task even with state-of-the-art 

Chirasil-β-Dex phases. Elution-orders of related compounds and compound-classes can be 

validated and changes thereof can be detected, which is important for the pharmacologic 

spectrum of activity within compound libraries (related to QSAR, QSPR). The method allows 

also a qualitative comparison between different separation columns. The direct detection of 

the selectivity-profile allows the user a fast and efficient determination of the benefit of a 

separation column, which helps to decide whether a column may be suitable for a given 

resolution-problem or not. As today high pressures have already been realized within LC-

systems the compatibility of Chirasil-Metal-OC3 phases to carbon dioxide even renders this 

application suitable for sub- and supercritical fluid chromatography (SFC). The usefulness of 

CSP-coupling is finally underlined by direct comparison of the experimental chromatogram 

with the theoretical expected chromatogram for the separation of enantiomers and 

stereoisomers of all chalcogran components while epimerization takes place (Figure 33). 

 

Figure 33 Experimental (left) and theoretical chromatogram splitted into its basic 

components (right) showingth chalcogran interconversion under CSP-coupling conditions. 
Experimental chromatogram (left) as observed on coupled, fused silica capillary of 25 m Chirasil-β-Dex 

(500 nm film-thickness) and 25 m and Chirasil-Nickel-OC3 (19, 125 nm, 20% selector and 125 nm GE-SE 30) 

column with an overall column length of 50 m at 90 °C and 110 kPa helium. Schematic representation (right, 

non gaussian-shaped deconvolution): Epimeric pairs highlighted in red (resp. in black). The peak profiles for 

both interconversion processes and interconverting parts are displayed by a continuous line. The dotted line 

shows the overall expected chromatogram. Basic components corresponding to each other are of the same 

color and color-depth . 
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1.3.6 Camphordimers with Two Centers of Chirality – Towards New 
Acyclic, Metal-free Selectors for (CB)CSPs  

During the endeavor towards the development of Chirasil-Metal-phases, the synthesis of 

acyclic, stationary phases for inclusion GC was envisaged. Natural d-(+)-camphor was chosen 

as the chiral building block. To increase the steric demand and enhance the chiral information 

present coupling of two camphor moieties was aimed. Following the developed procedure, 

10-hydroxycamphor was used as starting material to allow allylether formation and 

immobilization by Pt-catalyzed hydrosilylation on the polysiloxane support in the late steps of 

synthesis. The synthetic pathway pursued is shown in Scheme 19. 

The most challenging step in synthesis was the preparation of camphor-derived sec-amine 57 

from commonly available or readily accessible starting materials. Corey et al.[168] reported the 

formation of a related, unfunctionalized camphor sec-amine dimer by condensation of 

enantiopure isobornylamine with d-(+)-camphor in the presence of titanium tetrachloride 

followed by reduction in two steps. However, the need for pure 10-hydroxy R(-)-

isobornylamine (55) as starting material made this method impossible. Even though 

unfunctionalized R(-)-isobornylamine can be obtained pure by reduction of readily available 

camphor oxime over Pd/C with hydrogen the preparation of pure 10-substituted R(-)-

isobornylamine (55) proofed to be challenging. Reduction of the corresponding 10-

Scheme 19 Synthetic approach towards acyclic selector 58 for (CB)CSPs. 
Reaction conditions: a) 21, NaH, THF, r.t., 3 h then arylbromide, THF, 67 °C, 2 h, r.t. 16 h, 96% for 50, 98% 

for 51. b) NH2OH×HCl, pyridine, EtOH, 78 °C, 5 h, 84% for 52, 88% for 53, 96% for 54. c) see Table 9. 



Chapter 1 – Camphor-derived Stationary Phases for Complexation GC 61 

hydroxycamphor oxime 52, reduction of the corresponding benzyl- or tert-butylbenzyl 

protected oxime alcohols 53 and 54 did not furnish pure 10-hydroxy isobornylamine (55, cf. 

Table 9). 10-hydroxycamphor oxime 52 was prepared by reaction with hydroxylamine 

hydrochloride and pyridine in ethanol and obtained in 82% yield. The protected ketoalcohols 

50 and 51 were prepared by Williamson ether synthesis with sodium hydride and 

arylbromides[169] in tetrahydrofurane at reflux temperature and isolated in 96%, respectively 

98% yield. The corresponding oximes were prepared using standard methods and obtained as 

colorless liquids (53, 88% and 54, 96%). 

Table 9 Conditions intended to furnish pure R(-)-10-hydroxy isobornylamine 55. 

Conditions 0.3 mmol substrate, 1 – 2 eq. reagent, conditions as reported; [b] as determined by NMR spectroscopic 

measurements and chiral, gas chromatography on a 25 m Chirasil-β-Dex (500 nm film-thickness) column using 

a temperature gradient (80 °C, 2 min hold and 5 °C to 180 °C@120 kPa helium); [c] The corresponding alcohols 

were obtained. 

Even though, in-situ conversion of ethyl acetate to acetamide was possible in a promising 

clean and high yielding reaction with ammonia in the presence of titanium tetra-isopropoxide 

and subsequent reduction with sodium borohydride, the reaction failed to work with camphor-

ketones 50 and 51 even under hydrogenation conditions.[170, 171] After an extensive screening 

# Substrate Reagent Reaction conditions Product ratio(exo-/ endo)
[b] 

         

1 52 LiAlH4 Et2O, 5 d, 35 °C 2.9 : 1 (48% d.e.) 

2 52 Raney-Ni®, H2 MeOH, H2, 48 h, r.t. 1.1 : 1 (5% d.e.) 

3 52 L-Selectride® THF, r.t., 15 h up to 3 d, 67 °C  no rct. 

4 52 K-Selectride® THF, r.t., 15 h up to 3 d, 67 °C no rct. 

5 52 DIBAL THF, r.t., 15 h up to 3 d, 67 °C complex mixture 

6 52 9-BBN THF, r.t., 15 h up to 3 d, 67 °C side products, 1 : 1 

7 53 LiAlH4 Et2O, 35 °C, 1 – 6 d mixture (>3 products) 

8 54 LiAlH4 Et2O, 35 °C, 1 – 6 d mixture (>4 products) 

9 ethyl acetate Ti(O-iPr)4, NH3 
EtOH, r.t., 24 h then 

NaBH4, 3 h, 0 °C to 12 h, r.t. 
100% acetamide 

10 50 Ti(O-iPr)4, NH3 
EtOH, r.t., 24 h then 

NaBH4, 3 h, 0 °C to 12 h, r.t. 
11.5 : 1 (84% d.e.)[c] 

11 51 Ti(O-iPr)4, NH3 
EtOH, r.t., 24 h then 

NaBH4, 3 h, 0 °C to 12 h, r.t. 
7.3 : 1 (76% d.e.)[c] 
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it was possible to directly couple two camphor building blocks via one central nitrogen atom 

in two steps. The corresponding imine 56 was first generated over Raney-Ni® in situ and 

reduced to the target amine 57 with lithium aluminiumhydride over a period of three days (cf. 

Scheme 20). The camphor-derived sec-amine 57 was isolated in 74% yield and its structure 

was unequivocally determined by X-ray crystallographic analysis of its carbonate salt (cf. 

Figure 34). Unexpectedly, the structure proofed to be 100% diastereopure. To validate these 

results the isolation of the imine intermediate was pursued. As no crystals from the 

hydroxylimine derivative 56 were obtained and to investigate the reaction mechanism more 

deeply the corresponding unfunctionalized natural camphor derived sec-imine dimer (N-

isobornylcamphor imine, 59) was synthesized, isolated and crystallized over a period of four 

month. The structure of 59 was determined by X-ray crystallographic analysis and showed the 

expected, target imine intermediate to be 100% diastereopure (R-configuration, cf. Figure 35)! 

Noteworthy, the configurations reported by Corey et al.[168] [(R-, R-)-diisobornylamine] 

differs from the one obtained by this novel approach and a more complex proton NMR 

spectrum, resulting from (R-) and (S-) configured camphor substructures is obtained for (S-)-

bornyl-(R-) -isobornylamine 57. 

In conclusion, it was shown that both reactions were diastereoselective to furnish 100% pure 

bornylisobornyl 57. The configuration was determined to be (R) for the imine derivative and 

the second stereocenter is installed selectively (S-configuration), while the camphor chirality 

is preserved. The obtained products give evidence for a reaction mechanism, in which one 

camphor monomer approaches the nickel surface from the less hindered endo-face followed 

by condensation with a second camphor molecule via desamination. In this particular case, the 

resulting imine dimers 56 and 59 are unreactive even under hydrogenation conditions over 

Raney-Ni® and can therefore be isolated, whereas Corey et al. used platinum on charcoal for 

hydrogenation of an imine to a sec-amine. 

Scheme 20 Synthesis of target, functionalized camphor sec-amine dimer 57. 
Reaction conditions: a) 21, Raney-Ni®, H2, EtOH,  r.t., 24 h then 50 °C, 4 d for 56 or 58, Pd/C, NH4OAc, MeOH, 

r.t., 5 d, 6% for 59. b) LiAlH4, THF, 0 °C to 67 °C, 60 h, 74% for 57. 
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The reductive coupling of d-(+)-camphor to 56 was reported to take place either on ruthenium 

and palladium with ammonium chloride as additive under hydrogenation conditions at 200 °C 

and pressures of 8 MPa![172] Literature proposed a reaction mechanism running via four 

steps[173-175] consisting of a reduction to the amine, followed by aldimine formation (due to 

loss of molecular hydrogen) and condensation to the imine dimer under loss of ammonia. 

Finally, the ketimine is reduced to furnish the corresponding sec-amine (cf. Scheme 21). 

Interestingly, the reaction might be considered autocatalytic, since the reaction consumes the 

hydrogen generated through aldimine formation and thus works without an external hydrogen 

source. The mechanism was further supported by the observation that aniline and tert-butyl 

Figure 35 Structure of camphor-derived 
ketimine dimer 59 (diasteropure with 

preserved chirality) as determined by X-
ray crystallographic analysis. 

Thermal ellipsoids are plotted at 50% probability 

level and hydrogen atoms are omitted for clarity. 

Selected bond lengths and angles for 59: C3–

N1 122.3(9) pm, N1–C3’ 133.1(10) pm, C2-C3–

N1 123.8°, C3-N1–C3’ 117.6°. 

Figure 34 Molecular structure of target, 10-
hydroxycamphor-derived N-

bornylisobornylcamphor 57 (diastereopure 
with preserved chirality). 

Thermal ellipsoids are plotted at 50% probability 

level and hydrogen atoms are omitted for clarity. 

Selected bond lengths and angles for 57: C3–

N1 153.6(10) pm, N1–C3’ 149.8(9) pm, C1–

O1 142.5(1) pm, C1’–O1’ 143.8(9) pm, C2-C3–

N1 115.0°, C2’-C3’–N1 115.5°, C3-N1–

C3’ 115.5°. 

Scheme 21 Proposed mechanism for the formation of targeted, camphor-derived N-(S-)-
bornyl-(R-)-isobornylamine 57. 
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amine are completely unreactive as aldimine formation is not possible in these cases. The 

results obtained within this study validates the mechanism running via imin-amin formation in 

two steps with 100% diastereoselective introduction of chirality.  

The central (sec-)amine is chemically inert, even under harsh conditions 

(methyllithium–HMPA, n-butyllithium-TMEDA at 60 °C) and methylation is not observed 

for diisobornylamine as reported from Corey et al.[172] A related behavior is expected for the 

novel, camphor-derived hydroxyl substituted bornylisobornylamine 57 thus allowing 

synthesis of the corresponding allyl ether derivatives under classical conditions. By following, 

the synthetic strategy and immobilization steps as outlined in chapter 1.1.2 for Chirasil-

Metal-OC3 the study and the successful preparation of the enantiopure key-fragment 56 and 

59 are supposed to contribute to the development of novel, chemically-bound, acyclic, chiral 

stationary phases (CB)ACSPs for gas chromatographic applications. 
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1.4 Conclusion 

In summary, the total synthesis and an improved synthetic access to novel camphor-derived 

and chemically bound (CB), chiral, stationary phases (CSPs) for gas chromatography were 

presented. The strategy involved the synthesis of the chiral-selector with an extraordinary 

improvement of the trifluoroacylation-step. The selector was chemically bonded onto a 

polysiloxane support. The immobilization step and metal incorporation of nickel(II), 

oxovanadium(IV), europium(III ) and lanthanum(III ) was studied in detail by 1H, 19F and 13C 

NMR and IR spectroscopic measurements and verified for ligand, resp. metal-selector 

loadings of 3.5%, 10.2% and 20.0%. This allowed the user to validate immobilization and 

conversions >99% to the desired Chirasil-phases. The novel, so called Chirasil-Metal-OC3 

phases were coated on the inner surface of fused silica capillaries (I.D. 250 nm) and their 

performance in complexation gas chromatography regarding the nature of the metal, selector-

content, column length, polymer film-thickness and composition on the quality of separation 

of various racemic compounds was investigated. Besides findings that a selector-content as 

high as 20% is still beneficial for separation quality, it was shown that Chirasil-Nickel-phases 

exhibit the highest separation performance. An extraordinary, large retention difference 

between the enantiomers of chalcogran (∆tR@Eu(hfpc)3@PS = 30 min, (∆tR@La(hfpc)3@PS = 25 min) 

was observed for Chirasil-Europium-and Lanthanum-OC3 phases. An enhanced 

thermostability up to >160 °C was achieved with the novel Chirasil-Nickel-OC3 CSP – a 

major drawback for the applicability of the Chirasil-Metal phases in the past. Furthermore, 

the resolution of overall 29 racemic compounds extending the scope of complexation GC to 

different substitution patterns and group functionalities was presented. Throughout high 

separation factors as high as α  = 1.66 were obtained and all compounds were baseline 

separated. The development of thioether-linked Chirasil-Metal-OC3 phases was addressed as 

well. All four stereoisomers of chalcogran, the principle component of the aggregation 

pheromone of the bark beetle pityogenes chalcographus, were successfully separated using 

the novel Chirasil-Nickel-OC3 phases. The interconversion barrier for the epimerization 

process was determined to ∆Gǂ (289.15 K, 85 kPa) = 107.7 kJ/mol, ∆Hǂ = 66.7 ± 7.9 kJ/mol, 

∆Sǂ = 137.4 ± 52.2 kJ/mol by temperature-dependent measurements using dynamic, 

complexation gas chromatography (DCGC). By comparison with results from dynamic GC on 

Chirasil-β-Dex a reasonable explanation for the different parameters was given. In particular, 

it proofed the influence of the stationary phases on the chalcogran interconversion process 

either via a coordination(complexation)-driven interconversion process or via an uncatalyzed 

(pressure independent) interconversion process through highly ordered electrostatic 

intermediates. The thermodynamic data obtained allowed for the first time the validation of 

the fundamental principle of enthalpy–entropy compensation in the liquid phase of polymer 

bound selectors in dynamic gas chromatography. Furthermore, a unique, novel approach to an 
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efficient assignment of enantiomer configurations via on column gas chromatography was 

developed. The generation of dynamic elution profiles by CSP-coupling allows the easy 

determination of enantiomeric excess, sample composition and enantiomer assignment within 

only three injections without the need of isolated enantiomers (only the a sample mix has to 

be injected). Combined with the need for only small quantities and the innecessity of having 

the isolated enantiomers in hand this approach was proven for the stereoresolution and 

assignment of all four stereoisomers of chalcogran. This method represents also an useful tool 

for the determination of the “direction” of enantioselectivity of chiral, stationary or 

catalytically active phase of known handedness but unknown selectivity! The individual peak-

profiles obtained indicate changes in the enantioselectivity and the “direction” of enantiomer 

selection as well as diastereoselectivity. The effects observed by coupling of different CSPs 

were discussed in detail and compared to theory. By this novel approach it was possible to 

physically separate the principal components of an interconversion plateau into two parts of 

fronting and retracing peak areas! The development of an acyclic CSP using linked-camphor 

building blocks, featuring two centers of chirality by successive enantioselective synthesis, 

was addressed as well. The overall great versatility and potential of metal-coordinated 

(CB)CSPs, their capability of enantioseparation of smallest classes of chiral compounds (e.g. 

epoxides) in complexation gas chromatography (CGC) and the development of dynamic 

elution profiles by CSP-coupling was highlighted. The studies are also intended to re-envision 

their great potential[176-178] and imply future applications for asymmetric reactions[89, 93, 94, 179] 

and moreover to point to their compatibility to carbon dioxide used for supercritical liquid 

chromatography (SFC). [59, 82, 155] 
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Chapter 2  

Bi- and Tetradentate Pd-Bicamphorpyrazole 

Heterocycles (bcpz) – Synthesis, Characterization 

and Their Application in Catalysis 
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2.1 Introduction – Wacker Oxidation and Isomerization of 
Olefins 

Recent Developments in the Wacker Oxidation of Olefins – Overview and Motivation 

The Wacker process[180] for the production of acetaldehyde from ethylene and oxygen is well 

known and represents an industrial process of multi thousands metric tons capacity per 

year.[181] The industrial process proceeds by homogeneous catalysis on palladium(II) 

dichloride or heterogeneous on molten, eutectic copper(II) dichloride/potassium chloride 

catalyst-containing silica phases or [PdII][CuII]-zeolites in the presence of water.[132] In situ re-

oxidation of the palladium is achieved via catalytic copper(II)/copper(I) reduction-oxidation 

cycles with oxygen. Even though, known since the 1959,[182] the reaction still receives a lot of 

interest and has been studied in detail in the presence of chloride.[183-187] However, for a 

laboratory scale version for the oxidation of terminal alkenes Wacker-Tsuji conditions[184] are 

commonly employed utilizing water-miscible solvents like dimethylacetamide (DMA), 

dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) as additives.[188] DMSO and DMA 

were stated to stabilize the in situ generated Pd(0) species plus promoting the direct oxidation 

of Pd(0) to Pd(II) in the presence of oxygen.[186, 188, 189] Several inorganic compounds, like 

manganese dioxide, sulfuric acid or other copper(II)salts and also organic peroxides or 

benzoquinone can be used. Alkyl nitrate/nitrite-systems[190] are occasionally used even in 

industrial processes. More importantly, Pd(OAc)2–pyridine (1 : 2) was found to be a simple 

and effective catalytic system for direct oxidation with oxygen without employing other co-

catalysts.[191] The proposed mechanism was likely to run via a Pd(0)(py)2 complex being 

peroxidized to a peroxopalladium(II) bispyridine complex followed by conversion to a Pd(II) 

complex and hydrogen peroxide by protonolysis (cf. Scheme 22).[192, 193] 

Takas et al. reported the copper and chloride free Wacker oxidation using phenanthren as the 

N-heterocyclic ligand and envisaged an peroxopalladium(II) species, which is then converted 

by protonation. In this case, a disproportion reaction between the oxopalladium(II)(phen) 

species and the initially present Pd(0)(phen) via protonolysis was considered. The resulting 

hydroxylated, dimer complex was assumed to be the active catalyst, which is then cleaved 

upon nucleophilic attacked by the incoming olefin. Therefore, the re-oxidizing step with 

Scheme 22 Pd(OAc)2–pyridine system for oxidation reactions 
using molecular oxygen as the sole oxidant. 
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molecular oxygen will ingeniously proceed via formation/disproportion reactions between 

peroxopalladium(II) and Pd(0) species (cf. Scheme 24). For sparteine, as the N-heterocyclic 

ligand, Anderson et al. reported a third-order dependency on water and proposed a catalytic 

system without formation of dimeric catalyst-species.[186] Starting with a palladium(II) 

chloride sparteine complex, the mechanism was likely to run via positively charged, 

monomeric species. The oxidation step is explained by a nucleophilic attack of a water 

molecule and believed to run via an outersphere mechanism due to the third-order dependency 

on water. However, they noted that the controversy surrounding the mode of attack is 

challenging to determine, as the reaction is sensitive to the conditions employed. But by using 

relatively strong coordinating ligands, like DMA or bidentate, N-heterocyclic ligands the 

outersphere mechanism might be favored (cf. Scheme 23).[194] 

 

 

These reports combined with the number of increasing, recent publications dealing with 

related Pd-catalyst complexes for oxidation reactions with N-heterocyclic ligands[193, 195-202] 

triggered the development of camphor-derived bidentate, N-heterocycles and their 

investigation in the state-of-the-art co-catalyst free Wacker oxidation reaction. Since the Pd-

sparteine system was also used in asymmetric, aerobic cyclization reactions[198] and for 

separation of racemic alcohols[197, 198] by enantioselective oxidation, the use of camphor as a 

sterically bulky, readily available and chiral compound as building block for the development 

of a well defined and modular, bidentate N-heterocyclic ligand was appealing. 

Scheme 24 Co-catalyst and chloride-free, 
innersphere Wacker oxidation mechanism 

reported by Takas et al.195 
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Isomerization of Olefins with Palladium Catalysts – Overview and Motivation 

The catalytic isomerization of olefins is an important and widely established process in 

industry and broadly employed in petrochemical refining processes (mostly in combination 

with heterogeneous catalysts).[132, 181, 203] There is a large variety of existing synthetic methods 

for the construction of carbon-carbon double bonds or the introduction of an unsaturated 

functionality of which many deal with mixtures of (E)- and (Z)-isomers. The controlled 

migration of a pre-existing unsaturated functionality is a very elegant, alternative route of 

transformation.[204] In particular, the isomerization of carbon-carbon double bonds obeys the 

sustainability criteria in that it is a 100% atom efficient reaction with widespread application, 

either for interconversion of (E)- and (Z)-alkenes[205-207] or  for stereo-controlled 

rearrangement of functionality along the carbon chain. This reaction is extensively deployed 

in the preparation of commodities for polymer synthesis, pharmaceuticals and fine chemicals, 

such as fragrances.[208-211] The selective isomerization of terminal allylbenzenes into their 

internal counterpart represents a benchmark reaction for this kind of transformation, since the 

latter are common starting materials in the flavor and fragrance industry. Since (Z)-isomers 

are mostly characterized by an unpleasant odor and taste and are even toxic in some cases, 

processes with high yields, as well as high (E)-selectivity, are an attractive goal, but still 

remain a challenge. Nowadays, procedures range from heterogeneous catalysts on suitable 

supports at high temperatures to simple base catalyzed isomerizations, used for the conversion 

of estragol to E-anethol in KOH at 200 °C (cf. Scheme 25). The low yields of below 60% and 

only moderate E/Z selectivities (82:18, 64% d.e.) of this process requires additional separation 

steps and therefore many fragrances such as eugenol, estragol and safrol, as well as their 

internal alkenes, are still obtained by classical extraction techniques from natural sources with 

several million metric tons capacity per year.[210, 212] 

Despite the popularity of heterogeneous catalysts, which are known to be critically affected 

by the presence of water at high temperatures,[132, 181] the use of homogeneous catalysts 

presents an attractive alternative.[208] The isomerization of terminal alkenes can be 

accomplished by employing various transition metals, e.g. Pd,[213-217] Pt,[218-220] Ru,[221-224] 

Rh,[215, 225, 226] Ir[227-229] or Ni,[203, 230] which generally afford significant amounts of the 

thermodynamically more stable (E)-isomers. Since olefin isomerization is a kinetic 

Scheme 25 Base-catalyzed, industrial process for the preparation of fragrances. 
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phenomenon, the thermodynamic driving forces, in particular the steric and electronic factors 

that control the β-H elimination process, can be investigated by following the kinetic 

distribution of cis and trans isomers early in the reaction process for various catalysts. The 

thermodynamic equilibrium ratio between (E) and (Z) may be tuned, especially by running the 

reactions at higher temperatures and using catalysts with long lifetimes.[231, 232] Unfortunately, 

when transition metals catalyze the isomerization process, side-reactions with the carbon-

carbon double bond occur, the kinetics and the product distribution is affected and hence the 

selectivity of the reaction changes. Examples, for which such side-reactions occur, include 

Grubbs-type hydride complexes, which can be modified in alcoholic solutions, with 

hydrogen, inorganic hydrides or alkoxides. They afford very active isomerization catalysts, 

which are usually accompanied by olefin self-dimerization, cross-metathesis and 

hydrogenation of the terminal alkene functionality.[233-235] Transition metals in combination 

with additives, such as trialkylsilanes,[222] boro- or aluminium-hydrides are used as well.[206, 

233, 234, 236] Besides isomerization, these reactions also lead to significant amounts of undesired 

hydrogenated side-products. To date there is no direct pathway for isomerization reactions, 

owing to the large variety of different catalysts, metals and ligands available for this kind of 

transformation.[214] This being said, Pd2+ catalysis, is an area worth pursuing, since upon 

complexation with the appropriate ligands Pd2+ compounds are generally air and moisture 

stable. 

Why Bipyrazoles as Ligands? – Structural and Electronic Properties 

2,2’-Bipyridines are well-known and established ligands and upon one of the most explored 

chelate systems in coordination chemistry[237] and due to its redox stability and ease of 

functionalization commonly used as catalysts,[238] i.e. for allylic oxidations,[239, 240] 

substitutions,[241-243] cyclopropanations[244, 245] and transfer hydrogenations.[246] Surprisingly, 

3,3’-bipyrazoles have been less used and investigated as potential ligands.[247-249] 

Scheme 26 2,2’-Bipyridines (top) and 3,3’-bipyrazoles (bottom) as 
structural motif. 
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Intrigued by the converse electronic nature of the π-excessive 3,3’-bipyrazoles[250, 251] 

compared to 2,2’-bipyridines, which are π-acceptors, a more deeply investigation of this 

ligand class was envisaged (cf. Scheme 26). 

The 3,3’-bipyrazole pattern was selected due to several advantages regarding structural 

and electonical properties.[252] Besides the steric bulk, enhanced within the 3,3’-bipyrazole 

core compared to 2,2’-bipyridines, a complete, rigid ligand structure was not considered as 

retention of a certain degree of flexibility[253] might be beneficial for later applications and 

transfer of the ligand system to other areas of interest. The protic structure is synthetically 

valuable as modifications might be more, readily achieved compared to transformations at the 

pyridine core. Furthermore, the protons are in close proximity to the metal-center and 

transformations, like the installation of flanking substituents, are expected to enhance steric 

congestion around the metal center thus influencing catalysis more efficiently. Generally, 

N,N-bidentate ligand pattern are of good thermal stability compared to ordinary N-

monodentate ligands, like simple nitrile or amine coordination. This is especially interesting, 

since sparteine represents a pure σ-donor and stabilizing effects due to any π-

bonding/backbonding interactions are impossible. The π-excessive nature of the 3,3’-

bipyrazoles pattern, compared to bipyridines, phenanthrens, indoles and indazoles is supposed 

to increase the electrophilicity of the metal-center thus enhancing catalytic performance (cf. 

Figure 36). 

Tetraketones – Preparation, Scope, Structure Properties and Catalytic Activity 

The most simple tetraketone can be derived from acetone and was reported already in 1888 by 

Claisen et al.[254] using sodium methanolate to condensate the obtained acetone enolate 60 

with diethyl oxalate. Acidic workup with acetic acid furnished 1,3,4,6-tetraketone 61 (cf. 

Scheme 27). In general, side products due to successive polymerization or monosubstitution 

are observed, which strongly depend on the reaction conditions, the procedure and the work-

up process. 

X- < NC < py < NH3 < en < pyrazole < indole < indazole < phen < NO2
- < CN

Figure 36 Electronic properties of 3,3’-bipyrazoles (spectrochemical series). 

Scheme 27 1,3,4,6-acetone tetraketone first reported 
by Clasien et al.256 
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Even though, the catalytic activity of β-diketonate complexes in asymmetric transformations 

and their use as CSPs for GC and SFC was reported on a continuous basis since the early 

1960s (cf. Chapter 1), literature reports on catalytically active 1,3,4,6-tetraketone metal 

complexes is extremely rare. With the chiral, ferrocenyl derived tetraketone 63 the yttrium-

catalyzed, asymmetric silylcyanation of benzaldehyde showed promising results (95% yield, 

90% e.e.). However, a decrease in the enantiomeric excess was observed with electron-

deficient benzaldehyde derivatives (cf. Scheme 28).[255, 256] 

The difluoroborine incorporated 1,3,4,6-tetraketone derived from acetophenone was 

successfully used for the preparation of semi-conductors[257] and in environmental 

geochemistry 1,3,4,6-dimethyltetraketone was reported to be a sensor for iron and used for the 

determination of iron concentrations in water and soil.[258, 259] The structures of 1,3,4,6-

tetraketones were issued several times and different conformations and tautomeric isomers 

(keto-enol-tautomerism) were observed in the solid and liquid state. It was stated that 1,3,4,6-

diphenyltetraketone, which exhibits a pure bisenolic form in chloroform (VI ), tautomerizes in 

dimethyl sulfoxide to its keto-form (IV , ratioketo-enol = 1:1).[260] However, the fully enolized 

structure is present in the solid state.[261] Semi-acetal structures (VII ) were observed as well to 

a certain extend.[262-264] On the other hand it was shown that 1,3,4,6-dimethyltetraketone does 

adopt a bisenolic form in chloroform (VI , 96%) and in dimethyl sulfoxide a mixture of the 

semi-acetalic (VII , 59%), the bisenolic (VI , 36%), the mono-enolic (V, 45%) and the pure 

tetraketone from (IV , 1%) exists. Semi-acetal formation (VII ) was even increased to 90% in 

case of the corresponding 2,4-dimethylphenyl derivative.[265] The dynamic, structural 

behavior and the challenges arising due to isolation of the compounds may account for the 

limited research reported in this field (cf. Scheme 30). 

Scheme 28 Yttrium-catalyzed asymmetric silylcyanation of benzaldehyde 
using ferrocenyl-tetraketone 63 and TMSCN.257, 258 

Reaction conditions: Y5(O)(OiPr)13, DCM, r.t., 1 h. DCM, r.t., 3 min. TMSCN, DCM, -

78 °C to r.t. 
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Camphortetraketone 65 was first reported as an unwanted side product during preparation of 

ethylcamphor oxalate 64 at elevated temperatures (cf. Scheme 29). In addition to the 

described structural behavior two diastereomeric forms were detected by NMR-spectroscopic 

measurements and were assigned from the authors to Z and E-isomers (ratioE/Z = 1.0 : 3.4).[266] 

Hart et al. postulated the existence of overall six different isomers of 1,3,4,6-

camphortetraketone 65, in particular cisoid and transoid structures, enol-tautomers and 

rotamers due to the large bulk of the camphor moiety. Semi-acetal structures were not 

considered by the authors but have to be taken into account as well (cf. Figure 37).[267] 
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Figure 37 1,3,4,6-Camphortetraketone isomers as postulated by Hart (including semi-acetals). 

Scheme 30 Structure dynamics of 1,3,4,6-tetraketones. 

Scheme 29 First report on 1,3,4,6-camphortetraketone 65 by Noe et al.268 

Reaction conditions: a) NaH, (CO2Et)2, xylene, 50 °C, 95% for 64. b) NaH, (CO2Et)2, xylene, 90 °C, 59% 

for 65. 
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From Tetraketones to Bipyrazoles – Preparation and Structure Properties 

Doubtless the most employed and straightforward method for the preparation of the pyrazole 

heterocycle is the condensation of 1,3-diketonates with hydrazine derivatives.[268] The same 

strategy can be applied for the preparation of bipyrazoles from tetraketones. However, for the 

preparation of 3,3’-bipyrazoles from 1,3,4,6-tetraketones regioselectivity has to be 

considered. Despite a few examples, the use of substituted hydrazine derivatives in this case is 

of low synthetic value as a mixture of several condensation products are generally obtained 

(cf. Scheme 31).[265, 269] Therefore, a two-step process featuring hydrazine hydrate 

condensation with 1,3,4,6-tetraketones followed by selective functionalization was envisaged. 

  

Scheme 31 3,3’-bipyrazoles and isomers obtained by condensation with hydrazine 
derivatives.267 
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2.2 Objectives 

The second part of the present thesis focuses on the development of a novel, bidentate N-

heterocylic ligand pattern derived from camphor (3,3-bicamphorpyrazole, bcpz), its 

coordination properties towards palladium(II), cobalt(II) and copper(II) and its catalytic 

activity considering the influence of steric as well as electronic effects. Therefore, a new 

ligand pattern was envisaged fulfilling the following criteria: (i) short synthesis from readily 

available starting materials, (ii) steric bulkiness with the possibility of introducing different 

moieties, (iii) a modular ligand system with a sterically and electronically diverse substitution 

pattern. Furthermore, this ligand system should be preliminarily screened for catalytic 

activity, so enabling further insights for development of stereoselective transformations (cf. 

Figure 38). Noteworthy, there is no literature about backbone fused 3,3’-bipyrazoles and their 

use as potential ligands in metal mediated catalysis so far. 

Furthermore, the synthetic approach includes the formation of chiral camphortetraketones in 

the first step, which were of considerable interest for the development of chiral, lewis-acid 

catalysts (CLAs).[176-178] In general, their synthesis is reported to be challenging, regarding 

yields, isolation and especially characterization of the obtained products. Therefore, an 

improved synthetic access to and the unequivocally determination of the tetraketone structure 

and reaction products was pursued. The identification and isolation of pure 

camphortetraketone is the prerequisite for any further synthetic steps to the 

bicamphorpyrazole ligand pattern as well as for preparation and any catalytic application of 

camphor-derived CLA catalysts. The structure dynamics of chiral tetraketones will be 

discussed and defined rhodium(I) and iridium(I) CLA-catalysts prepared. Afterwards, the 

synthesis, characterization and structural analysis of the chiral, bicamphorpyrazol (bcpz) 

ligands and metal complexes will be refocused. The catalytic activity of a series of bcpz-

palladium catalysts in the copper-free Wacker oxidation and in the selective isomerization of 

terminal alkenes, regarding influence of electronic and steric properties, the role of the solvent 

N N N N

R R
M
Ln

: steric shielding

: central distortion

: flexibility

R = Alkyl-, Aryl-, Pyridyl-,

M = Pd, Co, ...

L = halogen (Cl-, Br-, ...)

or acetate

Substitution:

Figure 38 Target, camphor derived, bidentate 3,3’-bipyrazole complex pattern. 



Chapter 2 – Palladium-Bicamphorpyrazole Heterocycles 77 

and starting materials will be investigated. The nature of active catalyst and insights into the 

isomerization mechanism deploying the novel catalysts were of main interest. 

  

2.3 Results and Discussion 

Natural d-(+)-camphor proofed to be the building block of choice in the design of the new 

bicamphorpyrazole (bcpz) ligand class, since d-(+)-camphor fulfills all the above mentioned 

criteria and furthermore enables the user to extend this strategy to the majority of bicyclic 

monoterpenes commonly found in catalyst designs.[122, 238, 245, 270-272] The retrosynthetic 

approach towards the newly, camphor-derived ligand pattern is depicted in Scheme 32. 

The synthetic route features the formation of 1,3,4,6-camphortetraketone in the first step, 

followed by tandem condensation to the N-heterocyclic bipyrazole core, which is then 

subjected to conditions intended to furnish wing-tip substitution, and finally metal 

incorporation to the desired catalysts. 

 

2.3.1 Synthesis and Structural Dynamics of Chiral Tetraketones and Their 
Metal Complexes 

Tetraketone Formation – Preparation, Isolation and Structure Determination 

The first step towards 3,3’-bicamphorpyrazoles, as shown in Scheme 32, is the preparation of 

the 1,3,4,6-camphortetraketone 65. This compound was prepared using a slightly modified 

procedure of Noe et al.[266] As outlined in chapter 2.1 the reaction is sensitive to reaction 

conditions, reactant quantities, the synthetic protocol and work-up procedure. However, 

sodium hydride in boiling tetrahydrofurane was found to furnished complete camphorenolate 

formation over a period of three days prior to addition of diethyl oxalate and after several 

recrystallization steps 1,3,4,6-camphortetraketone 65 was isolated in 93% yield (cf. Scheme 

Scheme 32 Retrosynthetic analysis of target, backbone-fused camphor 3,3’-bipyrazole 
ligand pattern. 
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33). NMR-spectroscopic measurements in deuterated chloroform showed the formation of 

only two independent isomers as indicated by two characteristic singletts at 11.6 ppm and 

14.6 ppm (enolate-protons) and two signals at 2.9 ppm (respectively 3.2 ppm) for the isolated, 

tertiary CH-proton of the camphor backbone. This led to the assumption that in deed at least 

two diastereomeric froms are present in solution. To identify the true nature of the isomers all 

six structure isomers postulated by Hart[267] plus two possible semi-acetal structures were 

taken into account. Whereas acetalization isomers were not observed, a differentiation 

between the six isomers remained challenging until X-ray crystal structure analysis revealed 

the existence of an unprecedented, isomeric 1,3,4,6-tetraketone structure (cf. Figure 39). 

Overall two independent enolate-structures, either chelating the enol-proton via a 6-membered 

or a 7-membered chelate structure, were found. The 6-membered E-diastereomer as 

postulated by Hart[267] was verified by X-ray analysis and represents one of the isomers. The 

result is in line with the transiod structure observed for 1,3,4,6-diphenyltetraketone,[261] 

regarding the orientation of the 1,3-β-diketonate substructures. The 7-membered, chelate-type 

tetraketone isomer instead has not been postulated before. 

Scheme 33 Preparation of 1,3,4,6-camphortetraketone 65. 
Reaction conditions: a) NaH, THF, 67 °C, 3 d then (CO2Et)2, THF, 67 °C, 1 d, 93%. 

Figure 39 Solid state structure of camphortetraketone 65 showing the 
unprecedented, 7-membered, proton chelate structure. 

X-Ray crystal structure of 1,3,4,6-camphortetraketone 65, thermal ellipsoids are plotted at 50% 

probability level and hydrogens are omitted for clarity. Selected bond lengths for 65: C1–

O1 123.1(4) pm, C1–C2 145.4(4) pm, C2–C3 134.9(4) pm, C3–C4 147.4(4) pm, C4–O3 135.3(4) 

pm, C4–C5 135.7(4) pm, C5–C6 146.0(5) pm, C6–O4 146.0(5) pm. 
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A correct classification of this isomer was possible, but several aspects have to be elucidated: 

(i) by application of the same stereodescriptor rules for both isomers an E-configuration has to 

be assigned to the 7-membered chelate structure as well (since it’s a transoid structure), 

therefore the structures are no cis-trans-isomers, (ii) by superposition of both structures all 

three characteristic methylsubstituents of the camphor-backbone (general a useful indicator to 

differentiate between isomers) point to the same direction, (iii) the positioning of all oxygen 

atoms of the 1,3-β-diketonate substructure in the overlay is (almost) similar, (iv) the isomers 

are no constitutional (structural) isomers as the d-(+)-configuration of enantiopure camphor is 

retained, (v) the structures are stereoisomeric to each other but no enantiomers, (vi) due to 

“fixation” of the structures via chelatization they represent no rotamers of each other, (vii) the 

Newman-projection commonly used for the determination of conformer configuration 

(gauche, anti, eclipsed) is not valid, since both isomers are in plane and thus the isomers are 

no simple conformers, (viii) stereodescriptors, like D-, L- (carbohydrates, anomers), α-, β- 

(steroid/ terpene nomenclature), P-, M- (helicity) are not suitable and the isomers can not be 

differentiated by the coordinated proton (equal mode of coordination, e.g. κ-, η-, µ-, …), (ix) 

the structures are no protomers and the isomers are obviously not a mesomeric representation 

of each other, (x) in conclusion the structures represent keto-enol type diastereomeric isomers. 

Figure 40 Solid-state structures shown for 6-membered 1,3,4,6-camphor- (left) and 7-
membered 1,3,4,6-norcamphorteraketone (right) and superposition thereof (bottom). 

X-Ray crystal structure of camphortetraketone 65 (left), thermal ellipsoids are plotted at 50% probability level 

and hydrogens are omitted for clarity (except chelate-protons): 6-membered proto-chelate isomer (top left) and 

superposition of both isomers (bottom left). X-Ray crystal structure of 1,3,4,6-norcamphortetraketone (right), 

thermal ellipsoids are plotted at 50% probability level and hydrogens are omitted for clarity (except chelate-

protons): 7-membered proto-chelate isomer (top right) and superposition of both isomers (bottom right) 
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To proof the formation of 6- and 7-membered chelates as a general property of sterical 

hindered, backbone-fused 1,3,4,6-tetraketones, the corresponding norcamphor-derived 

1,3,4,6-tetraketone was prepared.[273] Crystal structure analysis of this compound showed the 

same structural properties as seen with camphor (cf. Figure 40). 

Considering the isomers as simple tautomers is somewhat inaccurate as by IUPAC 

definition tautomers represent “readily interconvertible (frequently very rapid)” isomers 

(keto-enol-, lactam-lactim-, amine-imine- and amide-imidic acid-tautomerism, for 

instance).[274] Isolation of one tautomer is generally hampered without stabilizing effects, like 

aromatization. Prototropy is observed for both structures of 1,3,4,6-(nor)camphortetraketones, 

but a clear assignment to a known phenomenon, like annular tautomerism (e.g., 1H-, 2H-

pyrazole) or ring-chain tautomerism (e.g., pyran/ furan structures of glucose/ fructose) is not 

possible. In particular, the present isomers may represent a unknown type of chelate-

prototropy tautomerism accompanied by tandem-keto-enol rearrangements and rotation of 

two carbon-carbon bonds. Interconvertability is a necessary prerequisite for tautomers and 

therefore the influence of temperature on the distribution of isomers was investigated using 

VT proton NMR spectroscopy. 1,1,2,2-tetrachlorethane-d2 (bp. 146 °C) was chosen as solvent 

and the results obtained from consecutive, temperature-dependent measurements (-10 °C → 

90 °C, 	T = 10 °C and 90 °C → 0 °C, 	T = 20 °C) showed the selective conversion of the 6-

membered proto-chelate to the 7-membered isomer (temperature driven). For comparison 

reasons, regarding signal-broadening and integration values, the sample was heated, then 

cooled again and spectra of the same temperature were analyzed and compared. The isolated 

CH-proton at the camphor backbone (2.9 ppm, 3.2 ppm), each corresponding to one chelate-

isomer, was found to be an ideal internal standard. This approach allowed the observation of 

any small changes in isomer-distribution and allowed cross-validation by integration of two 

sets of signals for each isomer. A increase of 40% in favor of the 7-membered isomer upon 

heating was detected by freezing of the hydroxyl-integral for the 6-membered isomer. Cross-

validation using the backbone as internal standard showed an increase of 42% again in favor 

of the 7-membered isomer. The results are in good agreement (cross validated) and account 

for a temperature driven conversion of the 6-membered 1,3,4,6-camphortetraketone isomer 

into its thermodynamically more stable 7-membered isomer. No change in this distribution 

ratio was obtained over a period of four weeks under standard conditions (cf. Scheme 34). To 

evaluate, whether the camphor- and norcamphortetraketones are suitable ligands for any 

application in transition-metal catalysis, the corresponding dirhodium(I) and diiridum(I) metal 

complexes were prepared in 54%, resp. 94% yield (cf. Scheme 35). 

Unexpectedly, by metal incorporation the complex signal pattern of the mixed isomers 

observed via NMR spectroscopy were significantly reduced giving evidence for a selective 
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formation of only one transition-metal complex from the ligand mixture. This behavior was 

found for both metal complexes of camphor and norcamphor. Whereas all camphor-derived 

dirhodium(I) and diiridium(I) transition-metal complexes were obtained as yellow 

microcrystalline, air and moisture stable solids, the corresponding diiridium-norcamphor[273] 

complex decomposed in anhydrous dichloromethane-d2 and benzene-d6 within 30 min or over 

prolonged exposure to air. However, 1H NMR measurements showed selective formation of 

only one transition-complex species for all chiral 1,3,4,6-tetraketones from the diastereomeric 

mixtures (cf. Scheme 35 and Scheme 36)! 

After numerous attempts crystals of bis(norbornadiene) dirhodium(I)-1,3,4,6-

dicamphortetraketonate 67 suitable for X-ray crystallographic analysis using synchrotron 

radiation were obtained. Noteworthy, the structure analysis confirmed the selective formation 

of one transition-metal complex diastereomer and showed the selective formation of the 6-

membered rhodium(I)-chelate isomer from the diastereomeric ligand mixture. The rhodium(I) 
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Scheme 34 VT proton NMR showing the conversion of 6-membered chelate isomer 65 VI a to 
7-membered chelate isomer 65 VIII a.[a] 

[a] Recorded in 1,1,2,2-tetrachlorethane-d2 between 263 K and 353 K 
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β-diketonates are distorted to each other due to rotation of the central C3–C3’ bond with a 

O2-C3-C3’-O2’ torsion angle of 127.3° forming a transoid structure (52.7° deviation from 

planarity). An almost planar conformation for each rhodium(I) β-diketonate substructure is 

observed with a maximum out-of-plane deviation of 5°. Noteworthy, the distorted transoid 

structure is indicative for the steric demand of the camphor backbones and chirality might be 
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Scheme 36 Selective formation of 66 and 67 from the diastereomeric ligand mixture. 
As observed by 1H NMR spectroscopy and recorded in chloroform-d3 (top, bottom right) and dichloromethane-d2 

(bottom left) at r.t. 

Scheme 35 Metal-mediated, selective formation of 6-membered bis(cyclooctadiene) and 
bis(norbornadiene) metal(I)-1,3,4,6-dicamphortetraketonate complexes 66 and 67. 

Reaction conditions for complex preparation: a) [Ir(cod)Cl]2, KOtBu, THF, r.t., 16 h, 94%. b) [Rh(nbd)Cl]2, 

KOtBu, THF, r.t., 16 h, 54%. 
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transferred to the metal center via two ways: (i) from the adjacent, fused camphor-backbone 

of the rhodium(I) β-diketonate substructure itself and (ii) from each neighboring camphor-

backbone group being in close proximity to the metal center (in fact the neighboring 

camphor-backbone is 30 pm closer to the rhodium center in the solid state than the adjacent, 

fused one). Therefore, both rhodium(I) β-diketonate substructures are expected to “support” 

each other, regarding chiral induction, blocking of octants and approaching vectors for 

incoming substrates and thus enhancing asymmetric induction (cf. Figure 41).  

For preliminary catalytic tests, the iridium(I) and rhodium(I) complexes 66 and 67 were 

embedded in GE-SE 30 (polydimethylsiloxane) and coated onto the inner surface of fused-

silica capillaries (0.25 mm I.D.) using the static method described by Grob[139] resulting in a 

defined polymer film-thickness’ of 250 nm. The column-capillaries were conditioned (for 

conditioning of columns cf. Experimental Section), installed into the GC and tested in the 

asymmetric hydrogenation of monoterpenes. (S)-(+)-Carvon was partially hydrogenated on 

the rhodium(I)-1,3,4,6-dicamphortetraketonate 67 containing column but a clear 

differentiation between hydrogenation of terminal, internal double bond or carbonyl 

functionality was not possible due to substantial loss of catalytic activity as determined by 

chiral GC-MS on a standard 25 m Chirasil-β-Dex column (50 °C to 120 °C, 4K@85 kPa 

Figure 41 Solid state structure of bis(norbornadiene) dirhodium(I)-1,3,4,6-
dicamphortetraketonate 67. 

Thermal ellipsoids are plotted at 50% probability level and hydrogen atoms are omitted for clarity. Selected 

bond lengths: Rh1–O1 204.5(19) pm, Rh1–O2 205.8(2) pm, O1–C1 126.7(4) pm, C1–C2 140.9(4) pm, C2–

C3 137.6(5) pm, C3–O2 129.2(4) pm, C3–C3’ 150.9(4) pm, Rh2–O1’ 204.9(2) pm, Rh2–O2’ 205.7(19) pm, 

O1’–C1’ 127.0(4) pm, C1’–C2’ 141.5(4) pm, C2’–C3’ 138.0(4) pm, C3’–O2’ 129.1(4) pm. 
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helium). By injection of (S)-(+)-carvon products exhibiting a characteristic camphor 

fragmentation pattern were detected and evaluation of the GC-MS data obtained suggests 

decomposition of the complex under reaction conditions. Competitive coordination in the 

catalyst between chelating tetraketone and carvon exhibiting a keto- and two olefinic 

positions may account for the observation. However, the successful preparation of chiral, 

defined dirhodium(I) and diiridium(I) catalysts via selective metal-incorporation and the 

unequivocally determination of the complex structures and isomers is remarkably as 

identification of the true nature of catalyst is fundamental for application in catalysis. 

Continuous research is going on to extend the scope of chiral 1,3,4,6-tetraketones, their metal-

complex preparation and application in asymmetric rhodium(I)- and iridium(I)-mediated 

catalysis. 

 

2.3.2 Palladium-bipyrazoles derived from Camphortetraketones 

2.3.2.1 Synthesis and Characterization 

The bipyrazole ligands 69a–k were readily synthesized in a three step procedure starting from 

enantiopure d-(+)-camphor (cf. Scheme 37). 

1,3,4,6-tetraketone 65 was obtained in two tautomeric enol forms (cf. Chapter 2.3.1) by 

double Claisen condensation with diethyl oxalate in 93% yield. A second tandem 

condensation with hydrazine hydrate[265, 269] furnished the key intermediate 3,3’-

bicamphorpyrazole (bcpz) 68 as an insoluble powder in 91% yield. After several attempts to 

Scheme 37 Synthetic pathway to novel, camphor-derived 3,3’-bipyrazole ligands. 
Reaction conditions for the preparation of 3,3’-bipyrazoles 69a-69k. a) NaH, THF, 65°C, 3 d then (CO2Et)2, 

65°C, 1 d, 93%; b) N2H5OH, EtOH, 78°C, 2 d, 91%; c) NaH, THF, 65°C, 2h then RCH2X, 65°C, 4h (16h for 

69c and 69i), 79 – 98%. 
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solubilize 68 it was found that prolonged heating under basic conditions resulted in complete 

solvation of the 3,3’-bipyrazolate, which in turn provides a useful indicator of the reaction 

progress. Furthermore, dialkylation was achieved exclusively at the N-1,1’-pyrazole positions 

without formation of regioisomeric mixtures, which often hampers synthesis and requires 

additional separation steps (cf. Chapter 2.1).[275-277] This was attributed to steric congestion 

and metal (sodium) complexation with the N-2,2’-atoms in the center of the ligand under the 

experimental conditions. It should be emphasized that, due to the here developed and 

optimized synthetic protocol and crystallizability of the intermediates, the synthesis of the 

ligands 69a – i was achieved in only three steps in excellent overall yields between 67 and 

82% and without the need for tedious work-up procedures or chromatographic separations. 

Single crystals of the free ligands were obtained by slow evaporation of saturated solutions in 

ethanol and revealed a C2-symmetric transoid structure state with respect to the pyrazole 

nitrogen atoms, which were obtained for all ligand structures reported here (solid states of 

69e – j). The crystal structures of the sterically most demanding ligands mesitylen-3,3’-

bicamphorpyrazole 69i and naphthalene-3,3’-bicamphorpyrazole 69j are depicted in Figure 

42 with an N-C-C-N torsion angle of 172.8° (69i) and 165.0° (69j), respectively. 

The monomeric palladium complexes of all eleven new ligands 70a – k were obtained by 

ligand exchange with bis(acetonitrile)palladium(II) dichloride in acetonitrile at room 

Figure 42 X-Ray crystal structures of ligand 69i (left) and 69j (right) showing the 
transoid structure. 

Thermal ellipsoids are plotted at 50% probability level and hydrogen atoms are omitted for clarity. 

Selected bond lengths for 69i: N1–N2 136.6(4) pm, N1’–N2’ 135.8(4) pm, N2–C3 134.3(5) pm, N2’–

C3’ 134.8(5) pm; 69j: N1–N2 139.0(10) pm, N1’–N2’ 135.6(10) pm, N2–C3 136.5(11) pm, N2’–C3’ 

136.7(10) pm. 
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temperature in good yields (cf. Scheme 38). To confirm the ability of complex formation of 

the novel ligands, the monomeric bidentate copper(II) and cobalt(II) complexes of ligands 69h 

and 69j were prepared and 69h(Cu) crystallized from ethanol containing solutions. The 

copper(II) complex of 69h shows a distorted structure between tetrahedral and square planar 

conformation, with an N-Cu-N plane twisted about 51.7° to the Cl-Cu-Cl plane, which is a 

known phenomena for κ2-LCuCl2 complexes, but less pronounced in related κ2-N2,N2’-

copper(II) compounds[278] and hardly visible in κ2-N2,N2’-bipyridine copper(II) complexes[279, 

280] (cf. Figure 43). The two crystal structures represent, beside d6 complexes of Ru, the first 

examples for d8 (Pd) and d9 (Cu) 3,3`-bipyrazole complexes coordinating the N2,N2’-

nitrogens through κ2.[247, 281] All complexes were characterized by elemental analysis, NMR 

(except paramagnetic Cu, Co complexes), IR and MS. 

Scheme 38 Preparation of palladium(bcpz) complexes 70a – k. 

Reaction conditions: Pd(MeCN)2Cl2, MeCN, r.t., 12 – 16 h, 91 – 98%. 

Figure 43 Distorted geometry observed in copper(II)-complex of 69h. 
Thermal ellipsoids are plotted at 50% probability level and hydrogen atoms are omitted for clarity. 

Selected bond lengths for 69h(Cu): Cu–Cl1 220.3(4) pm, Cu–Cl2 221.3(4) pm, Cu–N2 200.2(12) pm, 

Cu–N2’ 201.5(12) pm,  N1–N2 138.5(16) pm, N1’–N2’ 134.7(16) pm, N2–C3 139.9(19) pm, N2’–C3’ 

133.0(18) pm, C3–C3’ 141.0(2) pm, Cu–Cl1 135.6(10) pm. 
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In contrast to the free ligands, the palladium complexes scarcely crystallized. However, small 

single crystals of 70h suitable for X-ray analysis using synchrotron radiation were obtained by 

slow diffusion of pentane into a saturated diethyl ether solution. As shown in Figure 44, two 

molecules of the complex Pd[(bcpz)1,1’-(p-tBuC6H4)2] adopt a cage like structure with its 

benzyl wingtips encapsulating one single diethyl ether molecule (cf. Figure 44). 

The Pd1 atom lies 49.8 pm above the mean bipyrazole plane (Pd1 coordination plane  20.5° 

out of bipyrazole plane; for Pd2 41.7 pm and 16.5°, respectively) and the bite angle N–Pd–N 

is 78.3° for Pd1 and 78.9° for Pd2. The complex stability in solution, integrity of the cisoid 

structure and the feasibility to rotate the wingtips are the prerequisite for any application as a 

catalytic system in homogeneous catalysis. Therefore solutions of the palladium(II) complexes 

70d – k were studied by temperature dependent 1H NMR spectroscopy. The two protons of 

each wingtip methylene group at C1 and C1’ of the free ligands show a characteristic singlet 

between 5.0 and 5.6 ppm for arylated structures, as expected for two sets of enantiotopic 

protons, whereas complexation with Pd(II) results in a distinct pattern for the cisoid structure. 

Splitting of the methylene signals with a downfield shift to 5.8 and 6.3 ppm is generally 

observed for the two sets of diastereotopic protons of arylated bcpz compounds including 

geminale 2JCH couplings (13.8 – 14.1 ppm for alkyl-; 15.6 – 16.7 ppm for benzylic protons). 

Figure 44 X-ray crystal structure of palladium 3,3’-bipyrazole complex 70h showing the 
cisoid structure. 

Thermal ellipsoids are plotted at 50% probability level and hydrogen atoms are omitted for clarity. 

Selected bond lengths: Pd1–N2 206.4(3) pm, Pd1–N2’ 207.5(3) pm, N1–N2 136.5(4) pm, N1’–N2’ 

137.3(4) pm, N2–C3 133.6(5) pm, N2’–C3’ 136.8(5) pm. 
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This is observed for the proton spectra of N,N’-alkylated ligands 69a – c as well, which 

undergo downfield shifts between 4.3 ppm and 6.0 ppm combined with more complex 

splitting patterns (cf. Scheme 39). The geminale coupling of the dibromide complex of 

69h[282] (2JCH = 15.9 Hz) and a downfield shift to 5.8 and 6.2 ppm is in agreement with the 

range and shift observed for the chloride complexes. 

VT proton NMR spectra of 70h – j in 1,1,2,2-tetrachloroethane-d2 between 243 K and 363 K 

did not indicate the presence of further conformations in solution. The starting spectra 

remained unchanged, hence proving complex stability in a broad temperature range. To 

investigate the influence of solvent, the CD-spectra of Pd-complex 70h were recorded in 

various solvents. The CD-spectra show two strong absorptions with a maximum positive 

Cotton effect at 266 – 271 nm and a negative Cotton effect at 225 – 227 nm in both 

tetrahydrofurane and dichloromethane solutions, which are larger than in the free ligand. The 

zero crossings in the CD-spectra are in satisfactory agreement with the maximum absorptions 

of the complexes, as can be seen in the UV-spectra (cf. Experimental Section, Figure 65). In 

contrast, in acetonitrile a more disordered random conformation seems to dominate. 

Surprisingly, evaluation of the CD-spectra of the Pd(II)-complexes revealed a reverse solution 

behavior exclusively for the 3,5-trifluorobenzyl substituted complex 70k, with a pronounced 

broad positive Cotton effect between 275 – 283 nm (cf. Figure 45).  

upon

complexation

upon

complexation

R = -ethyl

R = -CH2-naphthyl

Pd(bcpz)Cl2free ligands:

Scheme 39 Distinctive 1H NMR pattern of 69a and 69j showing splitting 
of wingtip methylene signals into a set of two diastereotopic protons upon 

complexation to afford 70a and 70j (recorded after 16h). 
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2.3.2.2 Wacker-Oxidation of Terminal Olefins 

With these ligands and complexes in hand their catalytic potential was screened[283] in the 

copper-free catalytic oxidation of terminal alkenes.[188, 201, 284] 70h was arbitrarily chosen as 

the model complex for preliminary catalytic screening.[285] For comparison, Pd(3,3’-

bpy)Cl2
[286] was synthesized and tested in parallel as a benchmark under the same reaction 

conditions. After optimizing reaction conditions, the oxidations of alkenes with molecular 

oxygen showed overall good conversions to the corresponding ketones (72 – 87%, cf. Table 

10). These results are noteworthy, even though prolonged reaction times were required, since 

no or very low conversions were observed using molecular oxygen combined with Pd(3,3’-

bpy)Cl2 (71) as catalyst. Much shorter reaction times of 17 h were obtained with 

benzoquinone (BQ) as the internal oxidant with overall conversions of 89 – 99%. In order to 

evaluate the performance of the catalysts with respect to their substitution pattern a test set of 

three catalysts (70h–k) as representatives for N,N’-arylated Pd(bcpz)-compounds was chosen. 

The most electron deficient 3,5-bis(trifluoromethyl) substituted complex 70k showed only 

low conversions of 1-octene and vinylcyclohexane, whereas catalysts 70h (p-tbutylbenzyl 

substituted) and 70i (mesitylene substituted) were much more active. With 70i yields of 83 – 

99% of the corresponding ketones were obtained. We explain this by the higher redox 

potential of the 3,3-bipyrazoles, which are beside electronic effects also strongly influenced 

by sterics, which may be enforced by the ligand backbone. While still maintaining the 

structure, framework and coordination cavity higher reactivities and conversions with 

increasing electronic donating properties of arylsubstituted bcpz-type catalysts in the range of: 

mesitylene > p-tButylbenzyl >> 3,5-bis(trifluoromethyl) benzyl are observed. No conversion 

Figure 45 CD-spectra of free ligand 69h and Pd-complex 70h in different solvents (left) and 
Pd-complexes 70h – j in THF (right, recorded at room temperature in different solvents). 
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was achieved using the corresponding palladium(II) acetates of 70h and 71 as catalysts.[287] 

Secondary alcohols as starting materials were not oxidized.[200, 202] The formation of Pd black 

was not observed and all catalysts showed activity even after two cycles, which underlines the 

stability and recyclability of the here investigated catalysts. 

Table 10 Summarized results of the copper-free Wacker oxidation of alkenes using Pd-
complexes 70h, 70i, 70k and 71.283 

 

Reaction conditions: catalyst (5 mol%), alkene (0.90 mM), O2 (1 atm) or benzoquinone (3.00 equiv.) and n-

undecane (10.0 µL) as internal standard  in a DMA-water mixture (6:1) at 70 °C stirred for 17 h in a cap sealed 

vial (3d with O2). Pd(bpy)Cl2 71 was prepared by S. Stockinger.[283] [b] Reactions were monitored and yields 

determined by GC- and GC-MS analysis using a 25 m HP-5MS column and He as the inert carrier gas.[283] 
[c] 11% of 1-octene isomers detected. 

To this point it was shown that these palladium complexes showed higher activities with 

increasing electron donating properties induced by appropriate wingtip substitution (-CH2R: 

# Substrate Catalyst Oxidant Yield [%][b] Conversion [%][b] 

      aldehyde ketone   

1 1-octene 71 O2 - 35 36 

  70h O2 - 80 94[c] 

2 4-methylstyrene 71 O2 25 1 34 

  70h O2 33 27 87 

3 vinylcyclohexane 71 O2 - 3 5 

  70h O2 - 67 72 

4 1-octene 71 benzoquinone - 2 2 

  70k benzoquinone - 19 19 

  70h benzoquinone <1 99 >99 

  70i benzoquinone 2 97 >99 

5 vinylcyclohexane 71 benzoquinone - 3 3 

  70k benzoquinone - 6 6 

  70h benzoquinone - 61 62 

6 1-octene 71 O2 - 35 36 
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Mes > p-tBuBn >> 3,5-(CF3)2Bn) in the copper-free Wacker oxidation of terminal alkenes (cf. 

Scheme 40). 

 

Scheme 40 Influence of flanking substituents on the reactivity in the Cu-free Wacker 
Oxidation of terminal alkenes 

Color scheme: red to green (increasing reactivity). 

 

2.3.2.3 Isomerization of Allylbenzenes – Insights into Catalyst Design and 

Activity, Role of Solvent, pH Effects and Mechanistic Considerations 

In the following, the results in the Pd(II)-catalyzed isomerization of alkenes for the synthesis 

of fragrances under very mild conditions, employing media that did not need to be purified or 

dried, and using low catalyst loadings is described. In addition, the role of the solvent in terms 

of electronic and steric factors, as well as the influence of the halide concentration and the 

pH-value on the reaction progress when using bases and acids as additives was investigated 

and a possible reaction mechanism based on the observations and the results of deuterium 

labeling studies is discussed. 

As shown in Figure 46 all catalysts are mononuclear, neutral Pd(II) soft Lewis acids, with the 

N2,N2’-nitrogen atoms of the 3,3’-bipyrazole unit coordinated via κ2. The catalysts can be 

divided into two distinctive groups depending on the nature of wingtip substitution, either 

alkyl or benzylic residues. The ligands were chosen in order to be able to investigate and  

compare catalytic performance with steric factors and electronic properties within the group, 

3,5-(CF3)2bn 4-(tBu)bn (Mes)bn

Figure 46 Catalysts for investigations of the Pd(II)-catalyzed 
isomerization of terminal allylic compounds. 
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while maintaining the same ligand geometry and metal-coordination cavity. Overall eleven 

ligands of this family were tested in the isomerization reactions of allylpropenoids. In order to 

evaluate the performance of the catalysts in the Pd(II)-mediated selective isomerization of 

terminal alkenes a set of two arylpropenes (allylbenzene, entry 1; estragol, entry 2) were 

chosen as starting materials. Initially, the reactions were carried out using 5 mol% of Pd-

catalyst 70h, substrate (0.09 M) in iso-propanol and undecane (10 µL) as internal standard. 

The reactions were monitored and yields determined by GC, GC-MS and 1H NMR 

spectroscopy of isolated products. All starting materials were readily isomerized under very 

mild conditions in air at room temperature giving the (E)-isomers in high yields with high 

E/Z-selectivities of 97 : 3 for trans-allylbenzene and trans-anethol (94 % d.e.). Reactions 

were complete after 26 h at the latest by raising the temperature to 70 °C. All reactions were 

carried out in unpurified solvent. Allylbenzene was isomerized in three hours in 98 % yield 

with an E/Z ratio remaining almost constant at 96:4 (92 % d.e.), which is noteworthy since 

isomerizations are known to be critically affected by water and impurities (cf. Table 11, 

Figure 47). 

Table 11 Pd(II)-catalyzed selective isomerization of allylbenzene and estragol. 

# Substrate (R =)  time [h] Yield of E-Isomer[b] Product ratio (E/ Z)[b] 

1 H 5 80 97 : 3 

  26 96 97 : 3 

2 OMe 5 57 95 : 5 

  26 93 97 : 3 

3[c] H 3 98 96 : 4 

Reaction conditions: catalyst 70h (5 mol%), substrates (89 mM), undecane (10.0 µL) as internal 

standard in a cap sealed vial at r.t. Average outcome of two repetitions. [b] Reactions were 

monitored and yields determined by GC analysis on a 25 m HP-5MS column. Product assignment 

determined by GC-MS and 1H NMR analysis of isolated products. [c] Reaction at 70 °C. 

Promising conversions were even observed on lowering the catalytic amount of palladium to 

1 mol%. After the encouraging results the role of the solvent was investigated more deeply. 

Interestingly, under the chosen reaction conditions almost no conversions were obtained in 

non-polar solvents (diethyl ether, toluene) as well as in aprotic polar solvents (acetonitrile, 

tetrahydrofurane, acetone, chloroform). Therefore the influence of the alcohol in terms of 

steric as well as electronic factors was considered. Metal-hydrides are known to be generated 
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in situ by the use of additives, such as inorganic hydrides or, more recently, by weak acids, in 

particular alcohols, as is the case in the present study.[221] Only absolute solvents of high 

purity were used for these tests and no conversions were observed without the addition of 

Pd(II)-catalysts, as proven by blank samples. Besides linear, monofunctional alcohols, such as 

methanol, ethanol and n-propanol, and secondary alcohols, such as iso-propanol, cyclo-

hexanol as well as tert-butanol, 1,5-pentanediol, 1-propanthiol and 1-aminoheptane and 

glycerol, as a trifunctional alcohol,  were employed. To complete the set also fluorinated 

alcohols were used, because remarkable effects have been reported for these substances.[288-

290] The results are depicted in Figure 48. Besides the need for a protic solvent, the electronic 

character is highly important as there is clear evidence for rate acceleration in the range of: 

methanol > ethanol > n-propanol > iso-propanol > tert-butanol. This result is in line with the 

pKa-values of the alcohols (cf. Table 12).[291, 292] 

Table 12 pKa-values of selected solvents. 

solvent H2O
 MeOH EtOH iPrOH tBuOH glycerol nPrSH TFE HFB 

pKa[a]  15.7 15.5 15.9 16.5 17.0 4.4 13.2 12.4[b]  11.4[c]  

As determined in H2O, compiled and listed as reported by R. Williams,[291, 292] significant digits left uncorrec-ted. 
[b] 2,2,2-trifluoroethanol (TFE), pKa of 11.3 in 50% aq. EtOH.[292] [c] 2,2,3,3,4,4,4-heptafluorobutanol (HFB), 

measured in 50% aq. MeOH.[292] 
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Nevertheless, besides inductive effects, steric bulk doubtless also has a significant influence 

on the pKa values (due to disturbance of solvation and H-bonding). A drop of about 45% yield 

when comparing iso-propanol and cyclo-hexanol underlines these aspects, although the 

electronic properties of these two compounds tend to be quite similar. Whereas all other 

solvents and solvent mixtures led to almost equal conversions over time, a reaction progress 

analysis revealed a significant retardation of the reaction rate as the reaction proceeded (50% 

conversion  after 24 h in cyclo-hexanol and 27% conversion after 23 h in tert-butanol, both at 

room temperature). Although decomposition of the catalyst provides an inadequate 

explanation, since only the type of alcohol for the given reaction conditions was changed, 

unknown inhibition effects of the catalyst cannot be ruled out. Surprisingly, no conversions 

were observed in more acidic 1-propanthiol (pKa 13) and, as expected, no reaction occurred 

when using the more basic 1-aminoheptane as a solvent. Although, no isomerization occurred 

in pure acetonitrile due to its coordination capability, no inhibition was observed in methanol 

when adding 0.5 – 10 mol% acetonitrile, showing that low concentrations are still tolerated by 

the catalyst system. Two hydroxyl functionalities, as present in 1,5-pentanediol, had no 

significant effect and rates similar to those for ethanol were obtained. Even an increased 

acceleration compared to methanol was observed when 2,2,2-trifluoroethanol (TFE) and 

2,2,3,3,4,4,4-heptafluorobutanol (HFB) were used as solvents, which is consistent with the 

Figure 48 Solvent influence on the Pd(II)-catalyzed isomerization of allylbenzene. 

Time-resolved formation of trans-methyl styrene over time as determined by GC and GC-MS.283 Reaction 

conditions: 1 mol% catalyst 70h, substrate (98 mM) under air at r.t. (t-BuOH at 70 °C). 
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higher pKa-values of fluorinated alcohols. By a closer look at the time-resolved conversion, a 

slightly different ascending slope bisecting the alcohol-mediated isomerization rate after an 

average of three hours, depending on the alcohol, can be detected for the fluorinated solvents. 

However, very high conversions and consistent diastereoselectivities are still maintained. It is 

worth mentioning, that by further optimization of the reaction conditions, fast conversions, 

similar to the results in fluorinated solvents, can be achieved using a 1:2 mixture of methanol 

and toluene. Since all catalysts are easily soluble in alcohols as well as in most aliphatic 

solvents, this observation is attributed to matching effects between solvent, starting materials 

(allylbenzene) and catalyst shape (bipyrazole-core and wingtip-arylation). Operating with this 

solvent mixture, allylbenzene conversion to the internal E-isomer was still very effective with 

catalyst loadings as low as 0.5 mol% Pd (92% yield, 92% d.e. after 6 h at r.t.) and even 0.1 

mol% Pd (35% yield, 92% d.e. at r.t.; 70% yield, 90% d.e. at 60 °C; both measured after 6 h) 

with almost no decrease in diastereoselectivity. Remarkably, by using a solvent mixture (1:1) 

of glycerol and methanol at room temperature and catalyst loadings of 1 mol% the 

isomerization rate was even further accelerated (91% yield, 91% d.e. after 45 min) compared 

to the reaction in the toluene-methanol (2:1) solvent mixture (64% yield, 93% d.e. after 

45 min). This is again in agreement with the low pKa-value of glycerol, but may also be 

affected by the pronounced mesomeric stabilization capability within glyceric aldehyde. In 

summary, rate acceleration was obtained in the range of: glycerol/methanol (1:1) > 

2,2,3,3,4,4,4-heptafluorobutanol ≈ 2,2,2-trifluoroethanol ≈ methanol/toluene (1:2) > 

methanol > 1,3,-pentanediol > ethanol > n-propanol > iso-propanol > cyclo-hexanol > tert-

butanol (cf. Scheme 41).  

  

tBuOH cylo-HexOH iPrOH nPrOH EtOH 1,3-pent-diol

MeOH MeOH/ Tol TFE HFB MeOH/ glycerol

Scheme 41 Solvent influence on the Pd(II)-catalyzed isomerization of allylbenzene in the 
order of increased efficiency 

Color scheme: red to green (increasing efficiency). 
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Substrate Screening 

With the optimized conditions in hand we focused on the scope of the isomerization reaction 

deploying different starting materials, as well as the previously developed catalysts. 

In order to get reliable results before varying the catalyst, the previous set of tests was 

extended to allylbenzenes with different functional groups at the aryl terminus (-CF3, -OH, -

OAc, -OMe). Applying the optimized reaction conditions (1 mol% Pd, 1:2 mixture methanol/ 

toluene, air, room temperature) samples were taken and analyzed after 3 h. It has to be pointed 

out that the reactions were not allowed to run to completion in order to be able to evaluate the 

catalyst performance on the substrates regarding electronic properties and functional group 

tolerance. Several functionalities proved compatible to the catalytic conditions and after three 

hours 90% of allylbenzene and 4-hydroxy allylbenzene were converted to their corresponding 

E-isomers, followed by 2-allylanisol (80%), eugenyl acetate (75%), estragol (50%). 4-

(trifluoromethyl) allylbenzene (20%) and eugenol (15%, cf. Figure 49). Low conversions of 

challenging, electron deficient starting materials, e.g. for fluorinated compounds, is a common 

phenomenon.[217] As evidenced by the substrates the catalyst is compatible with donor 

heteroatoms, such as phenols and acetates and the overall high selectivities of 93 – 98% d.e. 

are among the highest ratios comparable to other well-studied systems.[213, 217, 221, 223, 226, 231, 

293] The excellent selectivity for trans-4-hydroxy allylbenzene  (exclusively, >99%) is 

particularly remarkable and represents the highest diastereoselectivity reported so far.[213, 231] 

Figure 49 Conversion of allylbenzenes to internal alkenes after 3 h using catalyst 70h. 

Reaction conditions: 1 mol% catalyst 70h, substrate (98 mM) in MeOH/ toluene (1:2) at r.t. under air. 

Conversions monitored and product assignment determined by GC and GC-MS.283 Average outcome of 

three runs. Substrate order (left to right): 4-allylbenzene, 2-allylanisol, 2-allylphenol, estragol, 4-

(trifluoromethyl) allylbenzene, eugenol, eugenyl acetate, 4-allyl-1,2,-dimethoxybenzene. 
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This effect may be attributed to the 2-hydroxyl functionality being in close proximity to the 

reaction center. A similar effect was observed recently and led to increased product formation 

and high selectivities in the Pd(II)-catalyzed double bond isomerization of 2-(but-3-

enyl)phenols over two carbon-atoms.[216] 

Catalyst Screening 

 

On the basis of the results obtained from the substrates, the influence of the electronic and 

steric properties of the catalysts on the isomerization reaction was of interest. With N-1,1’-

alkylated bipyrazole catalysts 70a – 70c and their arylated counterparts 70d – 70k in hand, 

two types of Pd(II)-catalysts characterized by different steric demand (alkylated/ arylated) and 

with different electronic properties within each group were deployed. 

To obtain meaningful data for evaluation of the catalyst performance less reactive eugenyl 

acetate was chosen as a benchmark. The reactions were performed under the optimized 

reaction conditions (0.09 M, 1:2 mixture methanol/ toluene, 1 mol% Pd, room temperature) 

and samples were taken after three and six hours. For the N-1,1’-alkylated catalysts (70a – 

70c) increased activity was observed for 70b (R = iso-propyl), followed by 70c (R = n-pentyl) 

and the lowest conversions to the E-isomer was obtained by using catalyst 70a (R = methyl). 

The results are indicative of a trend correlating higher electron-donating properties and 

Figure 50 Catalyst performance evaluated in the selective isomerization 
of less reactive eugenyl acetate. 

Reaction conditions: 1 mol% catalyst, eugenyl acetate (98 mm) in methanol/ toluene 

(1:2) at r.t. under air. Conversions monitored and product assignment determined by 

GC and GC-MS.282 Average outcome of two repetitions. Catalyst order (left to right): 

70b, 70c, 70a, 70i, 70h, 70f, 70j, 70e, 70g, 70k, 70d. 



98 Chapter 2 – Palladium-Bicamphorpyrazole Heterocycles 

catalyst activity, since oxidative addition of substrates should be enhanced by higher electron 

density located at the metal center.[184] For further evaluation, catalysts 70d – 70k were tested 

under equal conditions and showed a similar trend towards higher activity with increased 

electronic-density at the 3,3’-bipyrazole core. After six hours Pd(II)-catalyst 70i (R = mesityl) 

showed the overall highest conversion of eugenyl acetate (96%), followed by 70h (R = para-

(tert-butylphenyl), 90%), 70f (R = para-tolyl, 87%), 70j (R = 2-naphthyl, 79%), 70e (R = 

phenyl, 65%), 70g (R = m-tol-, 62%) and 70k (R = 3,5-di(trifluoromethyl)phenyl, 4%). This 

is in good agreement with the electron-donor capability of aryl substituents and verifies the 

results obtained for the N-1,1’-alkylated Pd(II)-catalysts. Surprisingly, catalyst 70d (R = 

methoxy), with the most activating substituent pattern, did not fit into the trend (5% yield), 

but it represents the only catalyst exhibiting a heteroatom functionality at the wingtip-

position. However, the reason is still unclear. Within the given ligand pattern a significant 

steric influence on the isomerization reaction was not observed and the high E/Z-selectivities 

(94 – 97% d.e.) achieved for eugenyl acetate were comparatively similar and remained almost 

constant during the reaction progress, as shown by variation of the catalysts. In summary, 

increased catalyst activity was obtained for Pd(II)(bcpz)-catalysts exhibiting a higher electron-

density within the 3,3’-bipyrazole core induced by the substituents in the range of (Rwingtip =): 

iso-propyl > n-pentyl > methyl and mesityl > para-(tert-butylphenyl) > para-tolyl > 2-naphthyl 

>  phenyl > meta-tolyl >> 3,5-di(trifluoromethyl)phenyl (cf. Figure 50 and Scheme 42).   
  

m,m-CF3 ~ p-OMe m-Tol ~ Ph 2-Naphth p-Tol p-tBu Mes

Me Bu i-Pr

Scheme 42 Influence of flanking substituents on the reactivity in the Pd(II)-catalyzed 
isomerization of eugenyl acetate. 

Color scheme: red to green (increasing efficiency). 
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Mechanistic Studies 

Generally, two main reaction pathways for the isomerization of alkenes can be envisaged. The 

transition-metal catalyst can operate via a π-allyl mechanism (A) or a hydride addition-

elimination mechanism (B) (cf. Scheme 43). 

The metal-hydride complex can be initially present as catalyst or generated in situ, whereas 

the other mechanism features a rearrangement through a transitory π-allyl intermediate upon 

alkane coordination, which is followed by a reversible hydride transfer to form the π-allyl 

metal-hydride species. Overall olefin isomerization follows the thermodynamic driving 

forces, reaching an equilibrium distribution, with the thermodynamic more stable E-isomer 

being favored.[206, 215, 233, 294] In particular, the kinetic distribution of the isomers depends on 

the electronic and steric factors controlling the β-elimination process. Moreover the kinetics 

and product distribution, and thus the selectivity of the reaction, is affected, when the 

transition metal catalyzes the isomerization as well as reaction at the double bond. Generally, 

the π-allyl intermediate mechanism has a dramatic effect on the distribution of isomers giving 

rise to high E/Z-selectivities, and E/Z ratios greater 4:1 will be generally observed.[203] An 

interesting class of catalysts capable of this type of terminal olefin isomerization was derived 

from [(allyl)PdCl]2, a triarylphosphine and silver triflate. Although the transformation was 

successfully achieved with the substrates employed, the E:Z ratio of the newly formed olefins 

were only moderate.[215] Recently, ruthenium-hydride species, derived from thermally 

modified Grubbs 2nd generation metathesis catalysts have been developed and successfully 

applied in the isomerization of terminal olefins.[221] However, the reactions are commonly 

accompanied by unwanted side reactions, such as reduction or self-dimerization.[232, 235] 

Palladium(II)-hydride complexes are known to be generated in-situ by addition of alcohols, 

which undergo oxidation upon β-H-elimination.[184, 295] Some peculiarities regarding the 

metal-hydride formation should be noted. Alcohols bearing no β-H atom, such as methanol or 

Scheme 43 Isomerization of terminal alkenes via π-allyl intermediate 
(A) and hydride addition elimination (B) reaction mechanism. 
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phenol, are dehydrated (α-H atom) to their corresponding carbonyl derivatives, suggesting 

that β-elimination of water is not involved, whereas the reaction in tert-butanol is likely to 

proceed via β-H atom- and hydroxyl group-elimination forming a water molecule.[295] Since 

the solvent screening revealed the necessity of alcoholic additives for the catalytic cycle to 

operate and the fact that Pd-assisted proton migration via a π-allyl mechanism is favored in 

non-polar aprotic media, as shown for PdCl2(PhCN)2,
[296] a hydride addition-elimination 

mechanism seems to be most conceivable for the here investigated catalyst system. The 

robustness of the catalysts is also in agreement with this mechanism, because π-allyl type 

based Pd-isomerization reactions usually require purified, anhydrous aprotic solvents[297-302] 

and this catalyst system performed very well even in unpurified, non-anhydrous solvents 

under air. A complete lack of methoxylated and acetalyzed  side products, which may arise 

from nucleophilic attack of the solvent at the carbon double bond is a further indication for a 

mechanism involving a hydride addition-elimination mechanism, instead of a π-allylic 

pathway.[303, 304] 

To get further insight into the reaction mechanism, isotopic labeling studies were performed. 

Even though both the metal-hydride addition-elimination- and the π-allyl hydride mechanism 

result in the same product, the two mechanistic pathways can be distinguished by looking at 

the hydrogen shift of deuterium labeled starting materials upon isomerization and at 

incorporation of deuterium into the substrates when the reactions are run in deuterated 

solvents. The π-allyl mediated mechanism initially involves a “hydride-free” metal precursor 

featuring two empty coordination sites. Coordination of the free olefin followed by oxidative 

addition of the allylic carbon-hydrogen bond would form the π-allyl metal-hydride catalyst, 

which transfers the hydride to the terminal position by reductive elimination yielding the 

isomerized alkene. Therefore, a formal [1,3-H] shift within the substrates should be observed 

for a π-allyl mechanism. If one considers the hydride which originates from the approaching 

olefin, the active catalyst is thus generated by an intramolecular reaction.  The metal-hydride 

mechanism on the other hand involves a distinct metal-hydride complex being initially 

present before entering the catalytic cycle and can therefore be called intermolecular, because 

hydrides are successively displaced between catalyst and new incoming substrates during 

catalysis. In this case, the olefin coordinates to form a hydrido π-alkene complex, followed by 

β-addition, generating a σ-alkyl intermediate (hydropalladation) and finally β-H-elimination 

furnishes the isomerized olefin. The Markovnikov and anti-Markovnikov hydropalladation 

step across the double bond are both reversible and only Markovnikov addition leads to the 

isomerized product. This process results in a characteristic [1,2-H] shift when the metal-

hydride mechanism is active. Although both reaction pathways proceed along different 

hydrogen-shifts, only the observation of a [1,2-H] shift is sufficient proof of the hydride 
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addition-elimination mechanism, because deuterium scrambling between the alkene-

hydrogens and subsequent isomerization thereof by a hydride addition-elimination reaction  

results in a formal [1,3-H] shift as well, and thus preventing distinction. For this investigation 

α,α-d2-allylbenzene was prepared[282] by Wittig-reaction of d3-methyl iodide and 

phenylethanal. Applying the standard reaction conditions using 1 mol% catalyst 70h in a 

0.9 M solution of deuterium labeled allylbenzene in methanol afforded the isomerized E-

isomer as the major-product. By constant, careful monitoring of the starting materials, the 

reaction progress and the products by GC-MS measurements, a characteristic key fragment of 

the deuterated starting material and the products could be identified (cf. Figure 51).  

This allowed a clear differentiation, as to whether deuterium incorporation at C-2 took place 

or not. Even though starting materials and products exhibit the same molecular ion in the 

higher, and benzyl fragmentation in the lower mass region, the initial fragmentation of α,α-

d2-allylbenzene generates fragment m/z 104.1 by loss of the d2-methylene group whereas m/z 

103.1 is expected for the product, regardless of isomer-configuration. This fragment 

originates from α-methyl cleavage of the terminal methyl group within the product. Contrary 

to this a m/z 104.1 for the initial fragment of the E- and the Z-product was detected, which 

clearly demonstrates deuterium incorporation at the C-2 position of propenyl benzene. It has 

to be pointed out that during fragmentation of allyl systems in the gas phase, metastable ions 

induce carbon skeleton rearrangements and hydrogen migrations, which lead to complex 

mixtures of interconverting structures prior to further decomposition. Consequently, the 

identification of characteristic fragments and isomer assignment is quite challenging, as 

shown for the molecular ions of linear octene isomers. However, it has been previously 

demonstrated that scrambling of terminal hydrogens does not occur over the entire time 

range.[305] Furthermore, it is important to check, whether the catalyst employed is capable of 

trans-isomerization. During multiple addition-reaction cycles a constant amount of cis-isomer 

was produced (kinetic distribution). On the account of this, the observed initial fragment (m/z 
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Figure 51 Mass spectra showing the characteristic fragments of α,α-d2-allylbenzene (left) and 
β-d1-(E)-propenyl benzene (right). 
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104.1) of trans-propenylbenzene originates from a [1,2-H] shift thus proving that only the 

hydride addition-elimination mechanism is active (cf. Scheme 43). Fragmentation patterns of 

undeuterated starting material and isolated products were cross validated in methanol and 

methanol-d4. Deuterium scrambling between starting materials and substrates was not 

observed and at low catalyst loadings in methanol-d4, no deuterated E-/Z-propenylbenzenes 

arising from initial deuterium transfer from the solvent to the catalyst, were detected. 

To gain further insight into the catalytic cycle, the kinetics and the reaction-order of the 

isomerization was investigated using catalyst 70h. Performing the reactions at catalyst 

loadings of 0.1 mol%, 0.5 mol% and 1 mol% and correlating catalyst concentration with 

product formation over time showed a first-order dependence on the initial catalyst 

concentration (cf. Figure 52, left). With constant catalyst loadings of 1 mol% a sub-first-order 

dependence on the initial (high) substrate concentration of about 0.20 was observed. During 

reaction progress the sub-first-order dependence on the initial substrate concentration changes 

and approximates 1.0 at very low substrate concentration, which indicates substrate inhibition 

(cf. Figure 52, right). For the solvent combination methanol/toluene, employing 

concentrations of 1:2, 1:1 and 1:0, a negative sub-first order dependence of -0.51 was 

obtained, leading to the following rate expression: 

 
[MeOH]

][ [Pd]
 )( = 

0.51

)(0.12.001. ∞→→ tsubstrate
Tkrate

0.4

0.6

0.8

1.0

0.0 2.0 4.0 6.0

(C
a

ta
ly

st
 1

0
)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.0 4.0 6.0

t [h]

t [h]

ra
te

 o
rd

er
 (

ca
ta

ly
st

70
h)

ra
te

 o
rd

er
 (

al
ly

lb
en

ze
ne

)

time / h time / h
Figure 52 Effect of the concentration of catalyst 70h (left) and allylbenzene (right) 

on the rate of isomerization. 

Conditions: [sub]0 89 mM, resp. [cat]0 0.089 mM (1 mol%) in MeOH/toluene mixture (1:2) at room 

temperature. Reaction rate orders were determined by correlation of catalyst, resp. substrate 

concentration and product formation over time (not shown).282 
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The results are indicative of an inhibition effect of the starting materials and methanol at 

higher concentrations, or at least point towards a decelerating effect. The reaction order on the 

products was not assigned, but no rate deceleration or inhibiting effects were observed by the 

external addition of pure trans- nor cis-propenylbenzene to the reaction. Increased product 

concentration over time by performing the reaction over multiple substrate addition-reaction 

cycles had no effect on the conversion rates. The catalyst activity remained constant, thus 

proving catalyst stability and the inhibitive effect of the starting material (allylbenzene) 

concentration. No kinetic isotope effect was detected with undeuterated allylbenzene in 

methanol and methanol-d4 leading to comparable reaction rates, yields and selectivities. Thus, 

generation of the metal-hydride complex is not the rate-limiting step, if one assumes that the 

formation of only small amounts of active hydride-species is insufficient for catalysis. In 

contrast, using α,α-d2-allylbenzene as starting material in methanol and methanol-d4 resulted 

in a large kinetic isotope effect. No H/D-exchange was observed between starting materials 

and solvent at low catalyst loadings suggesting that the isomerization mechanism is an inner 

sphere interconversion after initial metal-hydride formation.[295] With catalyst 70h and 

allylbenzene or allylanisol the 1H NMR spectra did not show the presence of any Pd-H 

species up to -100 ppm, which is usually observed at high-field resonances (δ < 0 ppm). The 

same was true under substrate inhibition conditions. Indeed, many hydride catalysts are too 

reactive to be observed by spectroscopic measurements. 

Scheme 44 suggests a possible reaction pathway that is in accordance with the spectrometric 

and kinetic evidence given above. Initially the alcohol present in the reaction media is 

oxidized and thus generates the active palladium-hydride species A’ , which then enters the 

catalytic cycle. Upon oxidation of the alcohol, a vacant coordination site is exposed at the 

electron-deficient palladium center owing to liberation of HX, which may be occupied by 

solvent molecules. The hydride then moves to the axial position of the metal complex to 

furnish a cis-coordination-site for the incoming olefin, a necessary prerequisite for the 

hydropalladation step.  

Whereas in II  the catalytic cycle begins with the entering and coordination of the 

electron-rich olefin,  complex A’  is thought to be capable of losing its second halide in a 

reversible process, forming the cationic Pd(II)-hydride complex A, which may be stabilized 

under protic polar conditions.[183, 306] This intermediate offers a second vacant coordination 

site for incoming substrates. Considering cycle I , olefin-addition to hydrido-π-alkene complex 

B occurs. β-Addition, either in a Markovnikov or anti-Markovnikov fashion, results in the 

hydropalladated σ-alkyl intermediates C and Cside, which are reversible steps and the reason 

for the [1,2-H] shift as previously described. The M-η1-C(β)-intermediate undergoes syn-β-

hydride elimination and the palladium-hydride species D is regenerated, which liberates the 
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E-, and Z-isomers, respectively. Apart from retention of one halide coordinated to the metal 

center in cycle II , both mechanisms are equal and all catalytic species reported run through 

alternating 18 and 16VE complexes. The transition states for both hydride-transfers involve a 

syn-coplanar arrangement of the two carbon atoms, the metal center and the hydrogen 

participating and reductive elimination requires coordinative unsaturation of the Pd-complex 

(16VE, Scheme 44).[184] 

Although rhodium-[307, 308] and iridium-dihydride[309] complexes have been reported for 

isomerization reactions, a palladium-dihydride species[310, 311] is improbable under the reaction 

conditions, since dihydride species are prone to decomposition and capable of hydrogenation 

reactions, which were not detected. To rule out the presence of Pd(0) species within the 

catalytic cycle, Pd2(dba)3 was tested as precursor, which is not a catalyst under the reaction 

conditions reported here. Furthermore, the catalyst system was still active after multiple 

addition-reaction cycles (10×) without any loss of activity, conversion or selectivity. 

Palladium-black was not formed over prolonged reaction times, even at elevated temperatures 

(343 K). This was verified by careful monitoring of the reaction progress and fine-filtration of 
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Scheme 44 Proposed mechanism for the isomerization reaction of terminal allylaryls to E- 
and Z-propenylaryls in alcoholic media using (bcpz)-type PdCl2-catalysts. 
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the solution after each reaction cycle. When bis(acetonitrile)palladium(II) dichloride was 

employed as catalyst, fast isomerization was also observed under the reaction conditions, but 

a substantial loss of activity was observed, as early as after seven cycles (53% E-Isomer, 90% 

d.e.) and almost no conversions were detected after 21 cycles (11% E-Isomer, 88% d.e., cf. 

Experimental Section). Liberation of HX from metal-hydride complex A to form a Pd(0) 

complex can be ruled out, since reductive elimination is likely to occur from a trans-

configuration, which is not favored for our neutral bidentate N-ligand as it is coordinated at 

the equatorial positions. This together with the chelating properties and the π-back-bonding 

character of the bipyrazole ligands may account for the observed integrity of the bcpz-

alcohol-catalyst system and explain the observed precipitation of palladium black by using 

bis(acetonitrile)palladium(II) dichloride as catalyst (trans-coordinated acetonitrile and 

chloride). Since no kinetic isotope effect was observed in deuterated solvents the rate-limiting 

step is thought to be the β-H-elimination reaction and not the initial formation of the metal-

hydride complex, nor regeneration thereof. If the sub-first order on substrate and methanol 

concentration is taken into account, inhibition of the catalytic cycle may take place by 

trapping of a catalytic species. As found, decomposition to Pd(0) does not occur and therefore 

cannot account for this observation. Poisoning of the catalyst by impurities within substrates 

or methanol can also be ruled out, since the catalyst maintained its activity through multiple 

substrate addition-reaction cycles and with the use of absolute solvents. Reasons for the 

observed rate-deceleration may either originate from formation of inactive complexes, which 

would result in removal of catalytic species from the catalytic pool, or be caused by a 

competitive reaction, because simple saturation in allylaryls would not account for the 

prolonged reaction times. Deactivation of a certain amount of catalyst is improbable, since the 

catalyst recovers its previous activity after a certain time. More conceivable, seems to be 

another reversible pathway, which becomes competitive at higher substrate and methanol 

concentrations. This may operate by occupation of a secondary vacant coordination site 

offered by the metal center leading to Dside (cf. Scheme 44, route I , bottom). Related 

mechanisms, involving positively charged complex species due to loss of a secondary halide 

prior to olefin complexation, were recently proposed by Sigman et al. under Wacker oxidation 

conditions,[186] and for the Pd-catalyzed reductive cross-coupling of styrenes in iso-propanol, 

also involving Pd-hydride π-alkene intermediates.[312] However, 1H-NOESY, 13C- and 15N-

HMBC NMR measurements did not show additional complex species present in solution, 

giving no evidence for a competitive pathway. 

 

 



106 Chapter 2 – Palladium-Bicamphorpyrazole Heterocycles 

pH-Influence on the Reaction Progress and Role of the Halide 

 

The results show a strong solvent effect on the isomerization, regarding first of all the pKa and 

the steric encumbrance as well as electronic effects originating from ligand design. Bearing 

the envisaged reaction mechanism (route I) in mind, the role of the pH value and the halide on 

the catalyst was investigated. Clearly, a hydride-driven reaction mechanism would be 

influenced by the external addition of acid and base (cf. Figure 53).[313, 314] 

Therefore the standard reaction with 1 mol% 70h, allylbenzene (89 mM) in a mixture of 

MeOH/toluene (1:2) at room temperature, combined with 10 mol% of an additive, was 

performed. As expected, the addition of sodium methanolate significantly slowed down the 

reaction rate, leading to lower conversions (48% E-isomer after 24 h, 93% d.e.) and with 

caesium carbonate no reaction was observed. Pd(II)-diacetate and the corresponding Pd(II)-

diacetate of bcpz ligand 70h did not promote the reaction either, regardless of ligand 

substitution, owing to the lack of metal-hydride formation. The addition of toluene sulfonic 

acid monohydrate did not accelerate the reaction and after prolonged reaction times (days) 

equal conversions as without additive were obtained. Interestingly, the observed reaction 

progress was almost identical with the results obtained for catalyst loadings between 

0.5 mol% and 0.1 mol%. This is indicative of partial catalyst poisoning, which is generally 

attributed to sulfur containing substances,[132, 315-317] and may account for no isomerization in 

1-propanethiol (pKa 13.24) as well. Noteworthy, 10 mol% acetic acid did not have a positive 

influence on the outcome of the reaction and similar reaction rates, conversions and 

Figure 53 Influence of additives in the isomerization of allylbenzene catalyzed by 70h. 
Reaction conditions: 1 mol% catalyst, 10 mol% additive [blank (♦), NaOMe (○), p-toluenesulfonic acid 

(∆), acetic acid (◊)], allylbenzene (98 mM) in methanol/ toluene (1:2) at r.t. under air. Conversions 

monitored and product assignment determined by GC and GC-MS.285 Data points represent the mean of 

two repetitive experiments. 
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selectivities were observed as without additive. This brings to mind the facile, mild and 

effective catalyst preparation, which occurs without the formation of typical by-products 

arising from acid-catalyzed dehydration reactions (alkenes, ethers). 

For evaluation of the influence of the halide coordinated to the metal center on the 

isomerization, the dibromide palladium complex of 70h was prepared and tested under 

standard conditions (1 mol% catalyst, 89 mM substrate, 2:1 toluene/methanol at room 

temperature). In order to effectively compare the catalyst performance, less reactive eugenyl 

acetate was chosen as the model substrate. Only small differences in the yield of trans-

products were observed (77% for 70h and 70% for the dibromide complex after 3 h; 92%, 

resp. 86% after 6 h). Selectivity was not affected, as expected, and finally almost equal 

conversions were obtained with both catalysts (99% for 70h, resp. 96% after 24 h). The 

decreased isomerization rate can be understood in terms of the lower π-donation ability of 

bromide compared to chloride. Although less pronounced, the effect is in agreement with the 

results obtained for the iridium-hydride driven isomerization of allylbenzene, whereby higher 

reaction rates were observed by stabilization of unsaturation at the metal center originating 

from more effective π-donation of the halide in the order: I < Br < Cl < OH < F.[309] Even 

further increased isomerization rates may therefore be realized with this novel catalyst system 

by fluoride substitution, an aspect that is still underestimated as a tunable parameter. 

 

2.3.2.4 2nd-Generation (Tetradentate) Camphorbipyrazole Ligands and Their 

Palladium Complexes 

The modular synthetic approach of the bcpz-ligand allowed further modifications on the 

flanking substituents and an extension of the coordination number to four was envisaged. 

Pyridine was found to be an ideal substituent for varying the coordination number plus 

changing the electronic properties. The (pyridine-2-ylmethyl)pyrazole structure represents an 

ambiguous, bidentate ligand pattern featuring a pyrazolyl (π-donor) and a pyridyl (π-

acceptor)[251] subunit for metal coordination. Complexes of palladium(II/ 0),[318-323] 

platinum(II),[324] ruthenium(II),[247, 325-327]  nickel(II)[328, 329] and copper(II/ I)[329, 330] are known 

for related pyrazole-pyridine motifs. Nickel(II)[328] and palladium(II)[318, 321, 323] complexes are 

reported to be active catalysts for ethylene oligo- and polymerization reactions. Successive 

metal alkylation-dehalogenation steps are necessary for activation of the catalyst, which is 

either employed in a preactivated form (as methylchloride complex, e.g.)[318] followed by in 

situ dehalogenation (with silver(I) triflate, e.g.) or a dihalide complex combined with 

methylaluminoxane (MAO)[321] or ethylaluminium dichloride[328] for direct in situ activation 

can be used. However, cationic Pd(II)-η3-allyl complexes of  (pyrazol-1-ylmethyl)pyridine 
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were also reported to be active catalysts in asymmetric allylic alkylations of arylated 

acetoxypropanes with dimethylmalonate (25 – 84% e.e.).[320] 

 

Preparation of Tetradentate 3,3’-bicamphorpyrazole Ligands and Pd-Complex 

Formation 

The 3,3’-bicamphorpyrazole core was prepared following the standard procedure (cf. Chapter 

2.2.3.1). For introduction of pyridine-2-ylmethyl wingtips under basic conditions the 2-

(bromomethyl)pyridine (74) and 2-(bromomethyl)-6-methyl-pyridine (75) hydrobromide salts 

were first converted to the free bromopyridines with triethylamine over a period of 18 h and 

added to the sodium 3,3’-bipyrazolate. The pyridine and 6-methylpyridine derived bcpz 

ligands were obtained in moderate yields between 43 – 89% for 76 and 48 – 70% for 77, 

depending on the reaction scale. In the solid state both ligands exhibit a C2-symmetric 

transoid structure (not shown) with respect to the pyrazole nitrogens similar to the structures 

observed for bcpz-ligands 69d – 69k (cf. Chapter 2.3.2.1). The bihomometallic palladium(II) 

dichloride complexes of both ligands were prepared by ligand exchange reaction with 

bis(acetonitrile)palladium(II) dichloride and were obtained in 97% (78), respectively 94% 

yield (79, cf. Scheme 45). 

The free ligands show a characteristic doublet for the protons at the wingtip methylene group 

with germinal couplings of 2JCH of 16.7 Hz for both ligands indicative for a decrease in 

rotational freedom of the flanking substituents in the liquid state (diastereotopic protons). 

Complexation with Pd(II) results in a distinct pattern and an upfield shift of the methylene 

signals from 5.52 – 5.43 ppm to 5.28 – 5.38 ppm. A more complex signal pattern is observed 
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Scheme 45 Synthesis of tetradentate 3,3’-bicamphorpyrazole ligands 76, 77 and their 
palladium complexes 78 and 79. 

Reaction conditions. a) 74 or 75, NEt3, THF,  molecular sieve 3Å, slow stirring, r.t., 18 h. b) 68, NaH, THF, 

65°C, 2h then addition of free bromomethylpyridines at r.t., 1 h, then 65°C for 5h, then r.t., 12 h, 89% for 76 

(70% for 77). c) Pd(MeCN)2Cl2, DCM, r.t., 24 h, 97% for 78 (94% for 79). 
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after complexation due to formation of two atropisomers (cf. Scheme 46). The proton signal 

attached to C1 of the pyridine substructure proofed to be an excellent indicator for 

determination of the atropisomeric ratio. By bisecting both 3,3-camphorbipyrazole 

atropsiomers into their (pyridine-2-ylmethyl)pyrazole substructures overall two sets of 

resonance shifts are expected. Therefore, the observed signal intensities of the pyridine 

protons of 1.0 : 2.0 account for one atropisomer being favored under the reaction conditions, 

which was attributed to the bulkiness of the camphor backbone (cf. Scheme 47). No 

significant change in distribution was observed during and after product isolation of reaction 

at -80 °C to room temperature nor at 96 °C in boiling acetonitrile and account for the 

formation of stable atropisomers. 

For determination of the atropisomeric ratio of the C1-methylated bihomometallic 

palladium(II) complex mixture, the neighboring proton signals, splitted into two independent 

doublets at 7.0 ppm and 6.9 ppm, was selected. Due to partial overlap of the signals a 

intensity ratio of approximately 1.0 : 1.2 was found indicating an almost similar distribution 

of atropisomers and might be caused by the installation of an additional methyl group at the 

pyridine substituent. The molecular structures of both complexes were determined by X-ray 

crystallographic analysis. Crystals of 78 were obtained by slow diffusion of hexane into a 

saturated diethyl ether/ dichloromethane solution (1:1) of 78. Unexpectedly, with the sterical 
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room temperature. 
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less demanding pyridine substituted in palladium complex 78 a conformation, related to the 

cisoid structure of the monometallic Pd(bcpz) complexes 70e – 70j with a N-C-C-N torsion 

angle of 51.6 for atropisomer 78A (38.1° for 78B) was found. Note, that in the free complex 

of the sterical more demanding 6-methylpyridine ligand a quasiplanar transoid structure with  

a N2-C3-C3’- N2’ torsion angle of 176.7° is realized. The methylene linker of the (pyridine-

2-ylmethyl)pyrazole structure is distorted and adopts a boat-conformation to furnish a 

quadratic planar coordination sphere of palladium (Npyrazole-CH2-CAr = 111.2° and 112.6° for 

78A, 110.0° and 113.0° for 78B). Both complex-substructures are in plane to each other with 

the chloride substituents and N-substituents being staggered and a Pd-Pd distance of 340.6 pm 

in 78A and 331.3 pm in 78B (cf. Figure 54). Single crystals suitable for X-ray analysis of the 

sterical more demanding bihomometallic palladium(II) 6-methylpyridine derived complex 79 

were obtained by slow evaporation of a saturated chloroform solution. Interestingly and 

contrary to 78, the solid state of 79 revealed a transoid structure. Moreover, only one 

atropisomer proofed to be present in the crystal, which accounts for a stereoselective 

crystallization of one atropisomer, which is a fundamental prerequisite for any application of 

the complexes for asymmetric catalysis. In the transoid structure both metal centers are 

coordinated quadratic planar with the (pyridine-2-ylmethyl)pyrazole adopting a boat 

configuration (Npyrazole-CH2-CAr = 111.2° and 110.2°, Figure 55). Preliminary tests on the 

activity of both complexes for ethylene polymerization with MAO revealed less reactivity and 

only small amounts of products were obtained. However, these results might be in accordance 

to the sterical demand of the complexes as illustrated by the solid state structures. 

Nevertheless, the first results regarding selective crystallization from the atropisomeric 

mixture of 78 as well as the approach of combining chirality and atropisomerism within one 

chiral ligand pattern are promising (cf. Figure 56). The possibility of introducing different 
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Scheme 47 Determination of the atropisomeric ratio of Pd complex 78. 
1H NMR proton shifts of ligand 76 recorded in chloroform-d3 and Pd complex 78 in dichloromethane-d2 at r.t. 

Splitting into a set of two independent signals shown for the selected pyridine proton (highlighted in red). 
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Figure 56 Schematic representation of the conformations in 78A, 78B and 79. 

metals to generate bihomometallic complexes, the preparation of heterobimetallic complexes 

(with cooperative metal-metal centers) or incorporation of preactivated complexes, like 

palladium allylic species is expected to be particularly useful for (asymmetric) catalytic 

transformations. 

 

 

 

top view: side view:

Figure 54 Solid state structure and overlay structure of atropisomeric palladium complexes 
78A (left) and 78B (shown in overlay as unfilled structure). 

Thermal ellipsoids are plotted at 50% probability level and hydrogen atoms are omitted for clarity. Selected 

bond lengths for 78A: Pd1–N2 202.8(14) pm, Pd1’–N2’ 197.4(14) pm, Pd1–N3 208.0(14) pm, Pd1–N3’ 

208.3(14) pm, Pd1–Cl1 227.6(5) pm, Pd1’–Cl1’ 228.1(5) pm, Pd1–Cl2 228.1(5) pm, Pd1’–Cl2’ 227.1(4) pm,  

N1–N2 139.9(8)mpm, N1’–N2’ 137.0(9) pm, N2–C3 130.0(2) pm, N2’–C3’ 138.0(2) pm, C3–C3’ 150.0(2) pm. 

Figure 55 Solid state structure of palladium complex 79 after selective crystallization. 
Thermal ellipsoids are plotted at 50% probability level and hydrogen atoms are omitted for clarity. Selected bond 

lengths for 79: Pd1–N2 201.8(5) pm, Pd1’–N2’ 202.8(6) pm, Pd1–N3 207.1(6) pm, Pd1–N3’ 205.9(6) pm, Pd1–

Cl1 229.0(17) pm, Pd1’–Cl1’ 228.7(18) pm, Pd1–Cl2 228.8(18) pm, Pd1’–Cl2’ 228.1(19) pm,  N1–N2 137.2(8) 

pm, N1’–N2’ 136.8(7) pm, N2–C3 135.1(8) pm, N2’–C3’ 136.1(9) pm, C3–C3’ 146.9(10) pm. 
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2.4 Conclusion 

In summary, a novel class (bcpz) of a sterically bulky ligand system was described, which 

features a rigid, bulky backbone, while still maintaining flexibility and diversity through 

different substitution patterns (wingtips), thus allowing electronic and steric tuning of the 

ligands. Since redox potentials of transition metal complexes are strongly influenced by steric 

effects, which may be enforced by the ligand backbone, the constant ligand sphere combined 

with variable and tunable substituents and the smaller cavity of 3,3’-bipyrazoles compared to 

the widely used 2,2’-bipyridines may help developing new catalysts. The ligands are 

accessible in a three step procedure by condensation with diethyl oxalate followed by tandem 

condensation with hydrazine hydrate and finally by aryl- or alkylation exclusively at the N-

1,1’-pyrazole positions. X-ray crystallographic analysis of the synthesized 

camphortetraketone precursors revealed an unprecedented 7-membered proto-chelate 

tetraketone structure and combined with the proposed (and within this study validated) 

mixture of isomeric structures their dynamic behavior was studied giving evidence for a new 

proto-chelate type, keto-enol tautomerism. The chiral dirhodium(I) and diiridium(I)-

tetraketone complexes were prepared, the structure unequivocally determined by X-ray 

crystallographic analysis (Rh-complex) showing the selective formation of the 6-membered-

metal chelate structure and preliminary experiments using the chiral dirhodium(I) complex in 

on-column gas hydrogenation chromatography of olefins was addressed. 

By condensation of camphortetraketone with hydrazine hydrate and selective N-1,1’-

pyrazole wingtip substitution overall eleven new ligands with different electronic properties 

were obtained. The corresponding Cu(II)-, Co(II)- and a series of Pd(II) complexes were 

prepared and their conformational behavior was studied with regard to substitution in the 

solid, as well as in solution state using X-ray, CD- and VT proton NMR analyses. These 

complexes of 70h represent the first examples of d8 (Pd) and d9 (Cu) 3,3`-bipyrazole 

complexes coordinating through κ2. Initial catalytic investigations revealed that these 

palladium complexes showed higher activities with increasing electron donating properties 

induced by appropriate wingtip substitution (-CH2R: Mes > p-tBuBn >> 3,5-(CF3)2Bn) in the 

copper-free Wacker oxidation of terminal alkenes. 

In the second part of this chapter a detailed experimental investigation into the activity of 

these novel backbone-fused bipyrazole (bcpz) derived palladium catalysts, which are highly 

effective in the selective isomerization of arylpropenoids in alcoholic media was presented. 

Catalyst screening revealed that the donor-capability of the wingtip substituents of the 

bidentate ligand has a strong influence on the activity. Catalyst integrity, a prerequisite for 

any application in homogeneous catalysis, was shown to be maintained, even at elevated 
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temperatures (363 K) and over multiple addition-reaction cycles, with neither loss of activity 

nor degradation or decomposition to metallic palladium. Deuterium labeled mechanistic 

investigations revealed the formation of palladium-hydride species under the reaction 

conditions, as evidenced by a characteristic [1,2-D] shift detected by MS fragmentation 

experiments, and indicated that these species are the active catalysts. Taking the observed 

reaction orders into account, a catalytic cycle, which proceeds via a metal-hydride addition-

elimination mechanism, is proposed (κobs[cat.] ≈ 1 (0.94), κobs [substrate] = 0.27 and κobs [MeOH] = -

0.51, for allylbenzene isomerization). Solvent screening revealed that the pKa has a strong 

influence on the reaction rate. The impact of acid and base additives was also addressed. The 

absence of side-reactions, such as reduction or dimerizations and no precipitation of 

palladium-metal, compared to reported catalyst systems employing acids or metal-hydrides as 

co-reactants, highlights the mildness and effectiveness of the catalyst system, which operates 

in various alcoholic media at low catalyst loadings of 1 mol%. The investigation also show 

how the bcpz class of ligands can be used for catalyst design. The effect of substitution 

pattern, combined with substrate and solvent screening, and a discussion of electronic and 

steric factors, as well a solvent polarity, pKa-value, the coordinated halide and additives, 

provide valuable information for future developments and improvements of related catalytic 

systems. 

Finally, the 3,3-bipyrazole ligand pattern was extended to furnish two novel tetradentate 

ligands featuring either pyridine or methylpyridine as flanking substituents. Coordination to 

palladium(II) yielded the corresponding bihomometallic complexes. For both ligands two 

atropisomeric complexes were obtained, their distribution was determined and studied using 

VT proton NMR and their solid state structures were unequivocally determined using X-ray 

crystallographic analysis. The structures revealed a highly crowded system sensitive to methyl 

substitution at the pyridine (evidence by structural change: cisoid → transoid conformation) 

and selective crystallization of one atropisomer was achieved. 

At this point the general features of the new, optional chiral bcpz ligand class are briefly 

outlined: 

− They exhibit a modular ligand pattern, which can be easy modified by wingtip 

substitution providing catalysts with different electronic and steric (e.g. alkyl vs. aryl 

substitution) properties, together with cis-coordination.[217] 

− The central coordination cavity and ligand pattern of the 3,3́-bipyrazole core structure 

is maintained, avoiding direct interference between ligand shape and catalyst 

performance.[224] 
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− The N,N-bidentate ligand pattern exhibits good thermal stability and integrity up to 

363 K compared to ordinary N-monodentate ligands (e.g. simple nitrile coordination). 

− The bulkiness of the ligand (backbone and wingtips) is able to suppress single-side N-

decoordination and out-of-plane rotation of the ligand, as well as avoiding any catalyst 

dimerization processes, whether as the catalytically active species or as causing the 

catalyst termination step.[217, 295] 

− Flexible wingtip substituents and extended backbone facilitate excellent solubility in 

most solvents including ethers, alcohols, nitriles, ketones and hydrocarbons (e.g. 

compared to 2,2’-bipyridines). 

− The high electron donor capability and π-excessive nature of 3,3’-bipyrazoles, 

combined with a straightforward, high yielding preparation of catalysts and facile 

ligand synthesis provides an entirely new approach. 

Therefore, it can be envisaged that the short and high yielding synthetic protocol, combined 

with the versatility of the system, allowing a systematic screening of steric as well as 

electronic effects, will give rise to a number of new types of fused and even optional chiral 

3,3’-bipyrazoles in the near future. 
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3.1 Introduction – N-heterocyclic Carbene (NHC) Pincer 
Ligands  

N-heterocyclic carbene (NHC) ligands have been studied extensively during the last decades 

and are still of considerable interest due to their unique electronic properties and the ability to 

form shell-shaped ligands by appropriate N-substituents, which renders them useful 

alternatives to tertiary phosphine ligands.[230, 306] Their metal complexes are generally air and 

moisture stable and they can be employed as catalysts for a variety coupling reactions.[304, 331] 

With a second ancillary NHC ligand present in the complex thermal stability and reactivity of 

the catalysts, as observed under classical Suzuki-Miyaura and Mizoroki-Heck coupling 

reactions.[332-337] More recently, NHC-pincer complexes have attracted much attention, as it 

was found that steric hindrance is an important factor for chemo- and stereoselectivity.[338] In 

particular, throughout higher reactivities were observed for the palladium(II)-catalyzed 

hydroarylation of alkynes using pincer catalyst 83, for instance.[338] The authors stated, that 

increased steric demand aids the reductive elimination step during catalysis and complexes of 

higher steric encumbrance may allow the synthesis and stabilization of low coordination 

complexes to facilitate oxidative addition. However, the preparation of defined, pincer-chelate 

complexes proofed to be more challenging than anticipated during the last years. Besides the 

change of substituents the structure of the CNHC-CNHC bridge has a pronounced influence on 

the complex formation, either leading to the desired pincer complexes, dimeric structures, 2:1 

(metal/ ligand) complexes or to no complex formation at all. The formation of kinetically 

stable di- or multinuclear complexes in which the ligand itself behaves solely as the CNHC-

CNHC bridge is a common phenomenon. Figure 57 represents state-of-the-art Pd-pincer 

complexes, in which the NHCs can be bridged via one methylene group (80) for Pd[338] or 

higher homologues, like a butylene linker, as shown for the corresponding Rh-complexes.[339-

341] Introduction of a 1,3-benzyl bridge (81) or 2,6-dimethylpyridine (82)[342] is also possible. 

Imidazolannulation,[332] in particular a change to more electron donating benzimidazole was 

found to be beneficial for catalyst integrity and reactivity, as observed for the palladium(II)-

catalyzed hydroarylation of alkynes (83).[338] The C3-bridged palladium(II) dibenzimidazole 

complex (84) was also reported.[343] Most recently, chiral Pd-chelating pincer NHCs (85) 

featuring an optically active binaphthyl-2,2’-diamine (BINAM) bridge and their use in 

asymmetric catalysis is emerging.[344-346] However, the choice of the chiral bridge motif has 

significant impact on complex formation and will determine whether a certain geometry is 

feasible or not. In case of 1,2-diaminocyclohexane (DACH) only the dimeric complex was 

observed, since both benzimidazoles are positioned trans to each other making the formation 

of a monometallic pincer complex impossible (cf. Figure 57).[347] 
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In short terms, sterically demanding (regarding substituents and backbone) benzimidazole 

based dicarbenes with short bridge lengths seem to be favorable for the preparation of 

effective palladium(II)-NHC catalysts. Furthermore an introduction of chirality by appropriate 

choice of substituents and a chiral bridge is most promising. 

 

3.2 Objectives 

The third section of this thesis is intended to demonstrate the versatility of camphor, in 

particular by using (1R, 3S)-camphoric acid as a chiral-building block. The synthesis of a 

chiral, camphor derived NHC pincer ligand pattern for incorporation of different metals and 

investigations in asymmetric catalysis is aimed. Reconsidering the results in homogeneous 

catalysis of modern palladium-pincer complexes (cf. Chapter 3.1) the use of a camphor 

pattern as the chiral CNHC-CNHC bridge was reasonable (cf. Figure 58). 

Figure 57 State-of-the-art pincer complexes of Pd deployed in homogeneous catalysis. 

Figure 58 Target, chiral pincer NHC Pd(II)-complex 87 in structural relationship to 
complexes 83 and 84. 
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Inspired by a recent publication,[348] dealing with the synthesis of a chiral R,S-tmcp [(1S,3R)-

1,3-diamino-1,2,2-trimethylcyclopentane] derived monodentate NHC-ligand and its 

application in asymmetric homogeneous catalysis, the synthesis of complex 87 was 

considered (cf. Figure 58). Due to the limited number of chiral diamines from the chiral pool, 

the use of diamine 89 (R,S-tmcp), only rarely found in literature, was quite appealing. By 

comparison to the geometries and distances of NHC-pincer complexes 83 and 84, the 

formation of R,S-tmcp NHC pincer complex 87 was envisaged and a related structure between 

C1- and C3-bridged geometry was expected. 

 

3.3 Results and Discussion 

Retrosynthetic analysis of the target ligand system resulted in a synthetic pathway furnishing 

the ligands 93 and 94 in five steps (cf. Scheme 48). 

Starting from readily available camphoric acid, 88 was converted to the diamine 89 (R,S-

tmcp, [1S,3R]-1,3-diamino-1,2,2-trimethylcyclopentane)[349] by Schmidt degradation-reaction 

using concentrated sulfuric acid and sodium azide (for safety instructions see Experimental 

Section). A modified procedure[348, 350] utilizing dichloromethane for extraction before pH 

adjustment to 12 instead of chloroform as the solvent was developed and furnished the 

Scheme 48 Synthesis of targeted chiral NHC pincer ligands 93 and 94 derived from 
camphoric acid 88. 

Reaction conditions: a) NaN3 (added over 5 h), conc. H2SO4, CHCl3, 50 °C, 18h, 94%. b) 1-fluoro-2-

nitrobenzene, K2CO3, DMSO, r.t., 30 min then 90 °C, 4 h then 110 °C, 4 d, 72%. c) Pd/C, H2, MeOH, r.t., 

4 h, 97%. d) HC(OEt)3, HCO2H, 105 °C, 18 h, 49%. e) MeI, MeCN, 82 °C, r.t., 2 h then 55 °C, 1 h, 93%. f) 

MeOTf, MeCN, r.t., 3 h, 89%. 
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analytically pure diamine building block in 94% yield (literature 57%).[350] The obtained 

diamine, stable for month at -20 °C under argon, was subjected to arylation reaction with 1-

fluoro-2-nitrobenzene. It was found that only harsh conditions furnish double aminoarylation 

to 90 at both nitrogen atoms of R,S-tmcp (89). Therefore, fresh powdered potassium carbonate 

and reactants suspended in anhydrous dimethyl sulfoxide were vigorously stirred in a small 

vessel at 110 °C for 4 days (yield 38  – 72% depending on the reaction scale). The 

corresponding para-nitrobenzene derivative 97, obtained from R,S-tmcp (89) and 1-fluoro-4-

nitrobenzene was also prepared, but in this case caesium carbonate proofed to be more 

effective and improved the yield of 97 from 19% to 79%. Interestingly, both reactions were 

found to yield the mono arylated compounds 95 and 96 initially during the reaction progress 

or by employing insufficient reactant (1 equiv. fluoronitrobenzene) and the mono 

aminoarylated compound is formed selectively and in high yields (92% for 95 and 78% for 

96, cf. Scheme 49). 

The crystal structure of the mono aminoarylated para-nitrobenzene derivative 96 is displayed 

in Figure 59 and validates the regioselective monoarylation at the sterically less hindered 

nitrogen atom at C1 under the here reported experimental conditions. The solid state structure 

revealed a straightened up motif (envelope conformation) related to the conformation of the 

camphor bicycle with a pronounced hydrogen bonding between both nitrogen atoms. 

Noteworthy, the envelop points upwards (not in plane with the N-substituents) resulting in a 

positive out of plane distortion of 39.0° to be capable of hydrogen bonding. In analogy to the 

reported NHC derived from R,S-tmcp,[348] in which the C1 building block was successfully 

introduced fusing both nitrogens to a 7-membered carbene, the crystal structure of 95 (Figure 

59) shows that the cyclo-pentene-structure is easily tightened up even by attracting forces 

forming a N1H1-NO2 hydrogen bond pattern deviating 6.7° from planarity (hydrogen bonding 

length, H1-NO2 = 234.4 pm). Noteworthy, isolation and crystallization of a side product 

revealed that even incorporation of carbon monoxide into R,S-tmcp (89) to form a 7-

membered bornylurea derivative is possible under the reaction conditions (cf. Figure 59). The 

Scheme 49 Regioselective aminoarylation of R,S-tmcp (89). 
Reaction conditions: a) 1-fluoro-2-nitrobenzene, K2CO3, DMSO, r.t., 30 min then 90 °C, 4 h then 110 °C, 2 d, 

92%. b) 1-fluoro-4-nitrobenzene, K2CO3, DMSO, r.t., 30 min then 90 °C, 4 h then 110 °C, 2 d, 78%. c) 1-fluoro-4-

nitrobenzene, K2CO3, DMSO, r.t., 30 min then 90 °C, 4 h then 110 °C, 4 d, 19% (79% by using Cs2CO3). 
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results are important indicators for bringing both benzimidazole units together in the final 

palladium complex. 

The regioselective monoarylation of R,S-tmcp is of particular interest, since the selective 

transformation of the diamine allows someone to enhance the chiral motif by introduction of a 

nitroaryl group first, followed by successive transformations at the C2 amino group to 

secondary diamines, which may be useful for the preparation of unsymmetrical NHCs as well. 

In contrast, the ortho-dinitrocompound 90 showed a more stretched structure in the solid state, 

regarding the central bornyl moiety. This can be explained by effective hydrogen bonding 

between the secondary amine and the adjacent ortho-nitro functionalities (bond lengths, H1-

 

 

Figure 59 Molecular structures of regioselective, monoaminoarylated R,S-tmcp to 96 and 
incorporation of carbon monoxide to R,S-tmcp derived bornylurea derivative 97. 

Hydrogen bond indicated (dashed bond). Thermal ellipsoids are plotted at 50% probability level and hydrogen 

atoms are omitted for clarity, except for NH protons. Selected bond lengths for 96 (left): N2–C4 147.7(3) pm, 

C1–N1 145.4(3) pm, C4–C5 155.4(3) pm, C5–C1 155.6(3) pm, N2–H1 234.4(9) pm. Selected bond lengths for 

97 (right): N1–C9 135.9(4) pm, N2–C9 135.1(3) pm, N1–H1 88.0(3) pm, N2–H2 85.0(3) pm, C9–O1 125.1(2) 

pm, C4–C5 154.8(4) pm, C5–C1 154.0(4) pm. 

Figure 60 X-Ray crystallographic structure of diaminoarylated R,S-tmcp 90. 
Hydrogen bonds indicated (dashed bonds). Thermal ellipsoids are plotted at 50% probability level and hydrogen 

atoms are omitted for clarity, except for NH protons. Selected bond lengths for 90: N1–C4 146.4(5) pm, C1–N1’ 

145.4(5) pm, N1–H1 87.0(5) pm, N1’–H1’ 82.0(4) pm, C4–C5 155.0(6) pm, C5–C1 155.0(6) pm 
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O2 = 194.7 pm and H1’-O2’ = 199.3 pm, cf. Figure 60). Instead of a positive out of plane 

distortion of the dimethyl cyclo-pentane bridgehead (envelope conformation), present in the 

solid states structures of 96 and 97 (Figure 59), a negative distortion of -39.9° is observed, 

resulting in a more planarized structure with an increased distance of 484.8 pm between the 

adjacent bornyl nitrogens (compared to 289.0 pm in 96, caused by effective hydrogen-

bonding, cf. Figure 59 and Figure 60). 

By following the synthetic pathway, the dinitro compound 90 was reduced with molecular 

hydrogen on Pd/C in anhydrous methanol to yield the free tetramine 91 in 97% yield. This 

compound proofed to be instable and was readily oxidized in minutes upon isolation. 

However, for sake of completeness and to validate the structure a complete characterization 

was carried out with small samples freshly prepared. Contrarily, small amounts of the 

compound are stable over hours in solution under argon and therefore synthesis was continued 

using the purified solution of tetramine 91. However, the corresponding reduced para-aniline 

derivative of 97 proofed to be too instable for isolation and characterization and 

decomposition was already observed under the experimental conditions and thus further 

investigation on this particular compound was abandoned. However, at this point two 

different approaches towards a chiral, pincer NHC were pursued. The successful preparation 

of the tetramine compound 91 allowed the incorporation of a C1 or N1 building block. Tert-

butyl nitrite in degassed tetrahydrofurane at 40 °C over four days furnished the chiral 

dibenzotriazole 99 as orange, needle-shaped crystals (60%). By combination of tert-butyl 

nitrite and aqueous hypophosphorous acid in degassed tetrahydrofurane the reaction was 

completed within 16 h and 99 isolated in 74% yield.[351-353] A two-step mechanism is 

proposed involving initial didiazonium salt formation followed by intramolecular tandem 

electrophilic substitution by the secondary amine (cf. Scheme 50). 

After preparation of the camphor-derived dibenzotriazole 99, C1 incorporation to furnish the 

desired chiral pincer NHC was aimed. Under classical acid catalyzed conditions employing 

triethyl orthoformiate and catalytic amounts of formic acid, condensation to dibenzimidazole 

was achieved at reflux heating and the product was isolated as an off white powder in 49% 

Scheme 50 Proposed mechanism for the formation of chiral, dibenzotriazole 99. 
Reaction conditions: a) t-BuONO, H3PO2, degassed THF, 40 °C, 16 h, 74% (60% without H3PO2). 
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yield. Methylation of the imidazole was carried out in anhydrous acetonitrile using methyl 

iodide. One hour at reflux heating was sufficient for complete conversion and the target chiral 

pincer NHC ligand was obtained as the diiodide salt 93 in 93% yield. As the choice of counter 

ions may be a crucial factor for the formation of a the pincer complex the corresponding 

ditriflate salt 94 of the target ligand was prepared as well. Methylation with 

trifluoromethanesulfonate was achieved after three hours at room temperature and the 

ditriflate 94 was obtained in 89% yield as a white, hygroscopic salt and was therefore stored 

at -20 °C under argon (cf. Scheme 48). The use of Meerwein’s reagent (trietyloxonium 

tetrafluoroborate) is not recommended for preparation of the ditetrafluoroborate salt due to its 

low solubility leading to product mixtures. 

Crystal structures of both ligands (93, 99) were obtained by slow diffusion of hexane 

into a saturated diethyl ether-dichloromethane solution of the ligands (cf. Figure 61). 

In the solid state two benzotriazoles 99 are positioned pseudo symmetrical to each other in the 

unit cell and can be considered equal with only marginal structural variations. In contrast to 

the envelop-conformation pointing away from the N-substituents (positive out of plane 

distortion) observed for the monoarylated compound (cf. Figure 59), the central cyclo-pentane 

moiety of 99 adopts an envelop-conformation with the dimethyl bridgehead positioned in the 

center between the N-substituents, and are therefore competing for space necessary for metal-

incorporation. The benzotriazole substituents are distorted out of plane (distortion angle for 

pseudo symmetric molecules in the unit cell: -19.7°/ -24.3° and -37.7°/ -30.6°) in respect to 

the cyclo-pentane moiety as expected and generally observed for the bridging unit in pincer-

Figure 61 Molecular structure of target, chiral dibenzimidazole diiodide 93 (left) and 
dibenzotriazole 99 (right). 

Thermal ellipsoids are plotted at 50% probability level and hydrogen atoms are omitted for clarity. Selected bond 

lengths for 93: N2–C9 133.0(2) pm, N2’–C10 128.0(2) pm, N1–C9 130.0(2) pm, N1’–C10 140.0(2) pm, N1–

C1 145.0(2) pm, N1’–C4 149.0(2) pm, N2–C11 146.0(2) pm, N2’–C12 144.0(3) pm. Selected bond lengths for 

99: N3–N2 130.9(6) pm, N3’–N2’ 130.1(6) pm, N1–N2 137.0(4) pm, N1’–N2’ 136.2(4) pm, N1–C1 145.5(5) 

pm, N1’–C4 147.6(5) pm. 
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type NHC complexes (cf. Figure 57).[332, 339, 341-343, 354] The molecular structure of the chiral 

dibenzoimidazole diiodide salt 93 shows characteristics similar to the solid state structure of 

dibenzotriazole 99. Two molecules are placed in the unit cell and the central bridgehead 

adopts an envelope-conformation with the methylene bridgehead being negatively distorted -

38.1°, resp. -40.1° out of the cyclo-pentane plane (same direction as N-substituents). In 

contrast, to the cis conformation observed for the benzotriazole ligand in 99, a trans 

configuration of the benzimidazole substituents is realized in 93 (cf. Figure 61).  

After successful preparation of the diiodide and ditriflate salt preliminary studies were 

undertaken to investigate their coordination properties towards palladium(II). The formation 

of a palladium pincer complex proofed to be challenging and various conditions were 

applied,[355-358] including standard conditions and metal precursors in combination with 

respect to the counter ions present at the ligand as well as transmetallation reactions with 

silver(I)[359] and conditions intended to furnish, less sterical demanding carbon dioxide 

incorporation (cf. Table 13). 

Table 13 Conditions intended to furnish palladium(II) pincer complexes of NHC 
ligand salts 93 and 94. 

# Ligand  Metal-Precursor Reaction Conditions[a] 

  1 93 Pd(OAc)2 MeCN, r.t. to 82 °C 

  2 93 Pd(OAc)2 THF, r.t. to 67 °C 

  3 93 Pd(OAc)2 DMSO, 50 °C/ 75 °C/ 105 °C/ 189 °C. 

  4 93 Ag2CO3 THF, r.t., in the dark 

  5 93 Ag2CO3 MeCN, r.t., in the dark 

  6 93 Ag2CO3 DCM, r.t., in the dark 

  7 93 Ag2CO3 DMSO, r.t., in the dark[b] 

  7 93 Ag2CO3 DMSO, 75 °C, in the dark [b] 

  8 93 Ag2O MeCN, r.t., in the dark 

  9 94 Pd(MeCN)Cl2 LiHMDS, THF, r.t. 

10 94 CO2 NaH, THF, -35 °C to r.t. 

11 94 CO2 NaH, MeCN, -20 °C to r.t. 

Reactions (150 – 200 µmol scale) were monitored over a period of at least 48 h, no complex 

formation observed.[360] [b] Target Pd-pincer complex of 93 identified by HRMS. 

The palladium(II) diiodide complex of dibenzimidazole 93 was only detected by MS 

measurements. Certainly, geometric strain and steric demand of the ligands obtained from 

camphoric acid strongly influences complex formation. The geometric change, in particular 

the flip of the bridgehead dimethyl group of the central cyclo-pentane moiety and central 

positioning of the methylene bridgehead observed for the solid state structures of ligand 93, 



124 Chapter 3 – Chiral, N-heterocylic Pincer Ligands 

99 and for the dinitroprecursor 90 in contrast to the monoaminoarylated structure (cf. figure 

59) may account for this observation. By having a closer look into the structural properties of 

the dibenzimidazole ligand it was found, that for the formation of a pincer ligand, a complete 

flip of the central dimethyl bridgehead through the cyclo-pentane plane is necessary. 

Consequently, the torsion angle α between the exo-methyl group and the bridgehead methyl 

group of the 5-membered cyclo-pentane unit is changed with the methyl substituents 

approaching each other. They adopt first a staggered conformation, finally sweeping through 

the eclipsed positioning (cf. Scheme 51). Since a stepwise complex formation is likely to run 

through a monodentate NHC complex first, the distance between the Pd-NHC and the free 

NHC, considering the energetically more favored trans-configuration observed in the solid 

state of the free ligand 93, might be improper as well. 

 

3.4 Conclusion 

In Summary, it was shown that (1R, 3S)-camphoric acid is a useful chiral starting material for 

the preparation of chiral N-heterocyclic ligands. Synthesis was accomplished in five steps to 

yield dibenzoimidazole diiodide salt 93 in good overall yield (30%). The corresponding 

ditriflate salt 94 was prepared in 29% yield. It was found, that aminoarylation of R,S-tmcp 

[(1S,3R)-1,3-diamino-1,2,2-trimethylcyclopentane] can be carried out regioselectively 

furnishing the monoarylated para- and ortho-nitro compounds The regioselective formed 

product was unequivocally determined by X-ray crystal structure analysis and proofed 

substitution to occur at the sterically less hindered N2-position of the camphor motif. 

Furthermore, chiral dibenzotriazole 99 was prepared in four steps in 74% yield. Under the 

applied reaction conditions a two step mechanism was proposed, featuring didiazonium salt 

torsion angle α

Scheme 51 Schematic representation of the geometrical properties of 
dibenzimidazole ligand 93. 

Cis-configuration of dibenzimidazole ligand 93 shown. Direction of flanking N-substituents for 

complex formation and impact of torsion angle highlighted. 
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formation followed by tandem intramolecular cyclization to form the benzotriazole core 

exclusively. Nitrodefunctionalization was not observed under the reaction conditions 

indicating the formation of benzotriazoles being favored. Investigations on the molecular 

structures of benzimidazole diiodide 93 and dibenzotriazole 99 revealed a configuration of the 

bridging unit believed to be disadvantageous for the formation of a pincer metal-chelate. In 

particular, the dimethyl bridgehead of the cyclo-pentane substructure is located in between, 

occupying space necessary for complex formation. Therefore, approaching of the 

benzimidazole substituents becomes difficult. Complex formation may be possible as the 

solid state structure of the regioselective monoarylated compound shows a pronounced 

hydrogen bonding pattern leading to a tightened up structure with the dimethyl bridgehead 

being flipped. However, the torsion angle and the close proximity of the exo-methyl group to 

the dimethyl group of the cyclo-pentane structure might be disadvantageous for an inversion 

(flip) of the camphor-related dimethyl bridgehead (cf. Scheme 51). Reconsidering the 

successful preparation of the ligands, the obtained solid state structures and the ability for 

regioselective transformations at R,S-tmcp, the development of chiral, pincer-type complexes 

is promising. An approach combining R,S-tmcp and regioselective isonitrile formation (cf. 

Chapter 4) for the preparation of chiral NHC-palladium(II)-complexes may be particularly 

interesting (cf. Scheme 52). 

 

Scheme 52 R,S-tmcp and regioselective aminofunctionalized derivatives as versatile starting 
materials for the development of novel, chiral mono- and bidentate NHC ligands. 



126 Chapter 3 – Chiral, N-heterocylic Pincer Ligands 



Chapter 4 – Chiral Pd-NHCs of Camphor in Asymmetric Catalysis 127 

Chapter 4 Six-Membered, Chiral Pd-NHCs 

Derived from Camphor – Structure-Reactivity 

Relationship in the Asymmetric Oxindole Synthesis 

  



128 Chapter 4 – Chiral Pd-NHCs of Camphor in Asymmetric Catalysis 

4.1 Introduction – NHC-Palladium Catalysts in Asymmetric 
Oxindole Synthesis 

Known since the late 1960s,[361-365] N-heterocyclic carbenes (NHCs) attracted little interest in 

the beginning, until Arduengo et al. reported the isolation of the first stable carbene in 

1991.[366] Due to their unique electronic and steric properties NHCs revolutionized todays 

organometallic chemistry and homogeneous transition-metal catalysis.[367-370] NHCs are 

strong σ-donors with only weak π-acceptor capability[371] and their structural properties are 

best described by the buried volume model developed by Nolan and Cavallo et al.[371-373] In 

short terms, it gives a measure of the space occupied by an organometallic ligand in the metal 

NHC complex coordination sphere and is related to Tolman’s cone angle θ,[374] which is used 

as descriptor for the steric demand of phosphine ligands. The sp2 nature of the N-heterocyclic 

carbene donor is responsible for their unique steric properties, which are described by the 

buried overlap volume (%VBur). It represents a useful steric parameter indicative for the 

accessible metal surface, but noteworthy completely ignores ligand anisotropy (ligand 

rotation). The resulting complexes are typically characterized by a high stability[375] of the 

NHC-metal bond, making them highly attractive for metal-complex formation and catalysis. 

Particularly, the preparation of chiral ligands and their potential in asymmetric catalysis are 

receiving growing attention.[376-381] Various approaches towards the synthesis of chiral NHC-

ligands were established.[382-387] Besides the need for a short access to chiral ligand 

frameworks and evaluation of their coordination properties, focus on modular synthetic 

pathways, preferable convergent and high yielding, is emerging to investigate the impact of 

ligand design on catalysis. Besides electronic effects, steric demand of the ligand is an 

important factor for enhanced chirality transfer as well as for stabilization of low-coordinated 

metal complexes during catalysis. Latter are needed for challenging transformations, such as 

cross-coupling reactions of non-activated aryl chlorides.[331, 388-390] Although increased steric 

encumbrance of the metal center in the complex is pursued for effective chirality transfer, the 

retention of certain flexibility within the catalyst seems to be a beneficial factor as well.[253] 

The intramolecular α-arylation of amides represents an ideal reaction for the 

investigation of ligand design in catalysis as both reactants are present within the substrate 

and concentration effects of reactants and the influence of the degree of dilution are 

significantly reduced. The reaction provides efficient and direct access to chiral 3,3-

disubstituted oxindoles, a common structural motif present in many natural products. 

Currently, there are various routes towards enantiomerically enriched 3,3-disubstituted 

oxindoles with overall moderate success.[391] In a pioneering work Hartwig et al.[392] used 

chiral phosphines and NHCs for this type of transformation but it was shown that C2-

symmetric NHC ligands gave better results with an enantiomeric excess (e.e.) up to 76% in 
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comparison to those obtained with potent chiral phosphines (BINAP, PHOX, DuPhos, Salen-

Phosphines 2 – 53% e.e.). Glorius[393], Dorta[394] and more recently Kündig et al.[395-397] 

managed this challenging type of α-amide arylation with moderate to high enantiomeric 

excess and yields. In 2011 Murakami[398] reported a complete rigid chiral NHC ligand system 

for chirality transfer in the asymmetric oxindole synthesis. Commonly ligands based on 5-

membered imidazoles,[392, 395-397] imidazolines or oxazoles[393, 399] are employed. Noteworthy, 

and this is true for all ligands employed for the asymmetric oxindole synthesis, the highest 

enantiomeric excess is obtained for 1-naphthyl derivatives as substrate. The privileged 

ligands, the reaction conditions employed as well as product yield and enantiopurity are 

summarized in chronological order in Table 14. 

Table 14 Privileged ligands for the Pd-catalyzed asymmetric oxindole synthesis. 

# Ligand (and Year) Synth. Steps Conditions Yield  e.e. [%] 
         
1 

 

3 
Pd(dba)2 (10 mol%) 
NaOtBu (1.5 equiv.) 

75 76 

2 

 

3 
Pd(dba)2 (10 mol%) 

NaOtBu 
95 43 

3 

 

4 
Pd(OAc)2 (5 mol%) 
NaOtBu (1.5 equiv.) 

72 79 

4 

7 
[Pd(allyl)Cl]2 (2.5 mol%) 

NaOtBu (1.5 equiv.) 
99 96 

5 

7[a] 
TMEDA, PdMe2 (5 mol%) 

NaOtBu (1.5 equiv.) 
98 97 

Synthesis requires optical resolution with tartaric acid.[398] 

  

N N

BF4

2011
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All ligands employed for this type of transformation exclusively feature C2-symmetry, but the 

idea of chirality transfer is realized in different ways. Whereas the first ligand (cf. Table 14, 

entry 1) exhibits two bulky, chiral camphor building blocks each being attached as N-bornyl 

substituents to the imidazoline core, bisoxazolines were intended to benefit from complete 

rigidity of the tricyclic system thus enhancing enantioselectivity (cf. Table 14, entry 2). In 

fact, a lower enantioselectivity was observed with bisoxazolines thus indicating that the tert-

butyl substituents induce chirality less effective or implying that complete rigidity of the 

ligand is not a crucial factor. More recently, Glorius et al. enhanced the chiral information 

present at the bisoxazoline core by changing the tert-butyl groups into (-)-menthyl as chiral 

building block (cf. Table 14, entry 5). Contrary to this approach, Kündig et al.[395-397] 

developed a flexible, chiral ligand pattern likely to combine aspects of chirality and restricted 

flexibility in the catalyst and reported conversions and enantioselectivities similar to the 

results with IBiox [(-)-menthyl][393] (cf. cf. Table 14, entries 3, 4). Most recently in 2011, 

Murakami reported excellent enantioselectivities with a complete rigid, backbone-fused NHC 

(cf. Table 14, entry 5).[398] However, still seven steps were needed for synthesis of the most 

efficient ligands employed for this type of transformation (cf. Table 14, entries 4, 5). 

 

4.2 Objectives 

Inspired by the work of Hartwig[392] and Glorius[393] a ligand pattern featuring two camphor 

chiral building blocks related to Hartwig’s dibornylimidazoline ligand (cf. Table 14, entry 1)  

was envisaged. In regard to the recent proceedings in N-heterocyclic ligand design in the 

Hashmi group, a collaboration with Dominic Riedel focusing on the development of novel, 

expanded chiral camphor derived palladium(II) catalysts was launched. Expanded NHCs and 

furthermore unsymmetrical substituted chiral NHC-metal complexes have rarely been 

reported or investigated in the asymmetric α-arylation of amides. As rather different 

properties are reported for six-[383, 400-405], seven-[383, 406-409] and most recently 8-membered[410] 

NHCs, in particular increased basicity (nucleophilicity),[402, 403, 405] greater steric demand and 

higher congestion around the metal-center (larger N-CNHC-N angle),[403] the evaluation of a 

series of ligands featuring successive increasingly steric demand, while maintaining the same 

chiral substitution pattern (camphor), was aimed (cf. Figure 62). 

With these catalysts the impact of substitution and steric hindrance on catalyst reactivity and 

selectivity in the asymmetric oxindole synthesis will be investigated. For observation of 

maximum effects of the catalyst substitution a catalyst pattern and substrates intended to yield 

moderate enantiomeric excess was envisaged. To get reliable insights natural d-(+)-camphor 
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(resp. bornylamine) was chosen as the chiral building block and arylbromides as well as 

arylchlorides with different substitution patterns were employed in the asymmetric α-

arylation of amides. 

 

4.3 Results and Discussion 

Note: The preparation and characterization of the three palladium catalysts (100 – 102) was 

accomplished by Dominic Riedel[411] and will therefore be discussed in brief. Preparation of 

the substrates for the asymmetric oxindole synthesis, screening of the reaction conditions, 

evaluation of their catalytic performance of the novel catalysts and determination of the 

enantiomeric excess and the configuration was done by the author and is subject of this 

chapter. 

4.3.1 Six-Membered, Chiral Pd-NHC-Camphorisonitrile Complexes 

Overall a set of three chiral palladium catalysts featuring a 6-membered N-heterocyclic 

hexahydropyrimidine core was realized by modification of the flanking substituents and 

finally by installation an additional group at the NHC-backbone. The steric demand and the 

chiral information of the catalyst was successively increased.  The synthesis of the 6-

membered, chiral NHC-complexes was achieved utilizing a straightforward synthetic protocol 

developed in the Hashmi group.[412-416] The modular and quite convergent pathway allowed 

the unprecedented short synthesis of three bornylamine-derived palladium-catalysts with 

varying types of backbone- and wingtip-substitution. 

Bornylisonitrile 105 was prepared by neat reaction of ethyl formate and (1R,2S)-

bornylamine 103 in an autoclave at 200 °C for 12 h and additional 5 h at 250 °C. This reaction 

furnished pure bornylformamide 104 as colorless crystals in 87% yield. Dehydration with 

Figure 62 Target, chiral hexahydropyrimidine NHC Pd(II)-catalysts (100 – 102) with 
increasing steric demand for the asymmetric α-amide arylation. 
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phosphorous trichloride and excess triethylamine gave bornylisonitrile 105 in 83% yield as an 

off white solid. The chiral palladium(II) isonitrile precursor 106 was obtained in 83% yield by 

ligand exchange reaction of bis(acetonitrile)palladium(II) dichloride and bornylisonitrile 3 (cf. 

Scheme 53). Aminoalkylchlorides were used as synthons for the installation of the NHC-

backbone. Therefore, (1R,2S)-bornylamine (103) was reacted with 1-bromo-3-propanol 107 

and 108 to furnish 3-hydroxypropylbornylamine (109) and 3-phenyl-3-hydroxy-

propylbornylamine (110) as colorless liquids. The chloride salts of 109 and 110 were prepared 

in very good yields using thionyl chloride. To ease purification and handling in further 

synthetic steps 111 and 112 were isolated as their corresponding chloride salts (94% for 111, 

88% for 112). The cyclo-dodecanone derivative of 111 was prepared in a similar manner (cf. 

Scheme 54). 

The bornyl-derived Pd-isonitrile complexes 100 – 102 were prepared by in situ intramolecular 

cyclization with the appropriate aminoalkylchloride in presence of excess base and obtained 

in 67% (100), 64% (101) and 41% (102) yield (cf. Scheme 55). 

Scheme 53 Synthesis of chiral bornylisonitrile 105 and Pd-bis(isonitrile) complex 106. 
Reaction conditions: a) HCO2Et, 200 – 250 °C, 12 h, 87%. b) POCl3, NEt3, DCM, -60 °C, 20 min, r.t., 18 h, 83%. 

c) Pd(MeCN)2Cl2, toluene, r.t., 12 h, 83%. 

NH2 HN

2

H2N
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Cl

OH Cl
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Scheme 54 Preparation of NHC-backbone synthon 111 and 112. 
Reaction conditions: a) PhCN, 95 °C, 12 h, no yield reported. b) SOCl2, DCM, 40 °C, 12 h, 94% for 111 (88% 

for 112). 
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The molecular structures of palladium complexes 100 and 102 were determined by crystal 

structure analysis. In palladium-isonitrile complexes 100 the dihedral torsion angle between 

N(2)–C(1)–Pd–C(5) of -79.0° with 11° deviation from the orthogonality is indicative for 

steric congestion around the quadratic planar metal center and generally observed for NHC 

complexes exhibiting bulky substituents. The solid state structure of complex 101, bearing 

two chiral bornylamine building blocks is in accordance to the structural features observed for 

complex 100. Due to the higher steric demand due to the orientation of the exo-methyl groups 

at C25 and C27 of the bornyl substituents, a decrease of the dihedral torsion angle N(2)–C(1)–

Pd–C(5) to -73.5° is observed. In relation to the NHC axis the isonitrile ligand points towards 

the sterically less crowded camphor backbone (C24, C23 and C19). The bornylisonitrile 3 is 

almost linearly coordinated to the palladium centers and a significant change of the Pd-

carbene bonds and Pd-isonitrile distances is not observed (cf. Figure 63). 

Scheme 55 Formation of chiral Pd-isonitrile complexes 100 – 102 by intramolecular 
cyclization. 

Reaction conditions: a) Pd(MeCN)2Cl2, NEt3, DCM, r.t., 12 h, 67% for 100 (64% for 101, 41% for 102). 

Figure 63 Solid state structures of Pd-NHC-complexes 100 (left) and 101 (right). 
Selected bond lengths for 100: C1–Pd 198.0(2) pm, Pd–C5 191.0(2) pm, C5–N3 115.0(3) pm, N3–C6 149.0(3) 

pm, C1–N1 132.0(2) pm, C1–N2 137.0(2) pm, N1–C37 150.0(2) pm, N2–C16 146.0(2) pm. Selected bond 

lengths for 101: C1–Pd 201.4(4) pm, Pd–C5 191.7(5) pm, C5–N3 116.0(6) pm, N3–C6 143.6(6) pm, C1–

N1 134.9(7) pm, C1–N2 133.2(7) pm, N1–C26 146.3(6) pm, N2–C24 148.6(6) pm. 
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4.3.2 Asymmetric Oxindole Synthesis 

For a representative evaluation of the catalytic performance of the palladium-isonitrile 

complexes 100 – 102 overall 5 different substrates were synthesized according to 

literature.[392, 417-420] Substrates bearing benzyl-and naphthyl-substituents and N-methylation 

were chosen to study the influence of the substitution pattern on selectivity. The 

corresponding bromide and chloride analogues and one cyclo-butylated substrate were 

prepared as well (cf. Scheme 56). 

Therefore the corresponding 2-haloanilines were first monomethylated using n-butyllithium 

and methyl iodide at -60 °C and the products were obtained after purification in 49% (115), 

respectively 50% yield (116). The arylpropanamides 121 – 125 were prepared by 

condensation of 2-phenylpropanoic (119) and naphthalenpropanoic acid chlorides (118) with 

2-halo-N-methylanilines (115, 116). The carboxylic acid chlorides were prepared by in situ by 

neat reaction with thionyl chloride. Monomethylated 2-(naphthalen-1-yl)propanoic acid 118 

was synthesized by reaction with freshly prepared lithium diisopropylamide and methyl 

iodide at -78 °C and obtained as a colorless solid after purification (91%). 

An initial solvent screening using tetrahydrofurane, ethanol, iso-propanol, diglyme, dioxane, 

dimethoxyethane and dimethyl sulfoxide revealed anhydrous dimethoxyethane combined with 

Scheme 56 Synthesis of substrates for the Pd-catalyzed asymmetric α-amide arylation. 

Reaction conditions: a) BuLi, THF, -50 °C, 1 h then MeI, -60 °C, 1 h then r.t., 16 h, 49% for 115 (50% for 116). 

b) BuLi, LDA, THF, -78 °C, 1 h then MeI, 0 °C, 1 h then r.t., 18 h, 91%. c) SOCl2, propanoic acid, 75 °C, 3 h 

then 2-halo-N-methylaniline, NEt3, r.t., 16 – 24 h, 43% for 121 (41% for 122, 72% for 123, 89% for 124, 93% 

for 125) 
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sodium tert-butylate as base to be ideal. Catalyst loadings were successively decreased and 

loadings of 2.5 mol% were found to be sufficient for catalysis. Alcohols were not suitable 

solvents even though related Pd-isonitrile complexes were reported to be highly-active 

catalysts in alcoholic media for Suzuki cross-coupling of boronic acids.[414] All reactions were 

performed at 50 °C to furnish complete conversions within a maximum of 18 h 

Table 15 Asymmetric oxindole synthesis using Pd-isonitrile NHC-complexes 100 – 102. 

 

# Catalyst X R1 Ar A B Yield [/%][b]  ee [A; /%][c]  

1 
100 Br Me 1-naphthyl 100 - quant. rac. 

2 
101 Br c-C4H8 Ph 100 - 95 55 

3 
101 Br Me Ph 100 - 90 58 

4 
101 Cl Me Ph 100 - 98 63 

5 
101 Br Me 1-naphthyl 100 - 92 68 

6 
101 Cl Me 1-naphthyl 100 - 95 72 

7[d] 
102 Br Me Ph 36 64 89[e] 8 

8[d] 
102 Br Me 1-naphthyl - 100 91 - 

Reaction conditions: 0.3 mmol scale, NaOtBu (0.45 mmol) , catalyst (2.5 mol %) in DME (5 mL) at 50 °C, 14 –

 18 h. [b] Isolated yields reported. [c] Determined by chiral HPLC (Chiralpak IA). Product configuration: (R-), 

determined by chiral HPLC  (Chiralpak IB) of known compounds. [d] Reaction at 80 °C. [e] Isolated yield of A 

and B.  

With chiral catalyst 100, featuring a flexible cyclo-dodecanyl substituent at one N-terminus, 

the desired 3,3-disubstituted oxindole was obtained and isolated in quantitative yields (cf. 

Table 15, entry 1). After purification of the reaction mixture enantioselective HPLC-analysis 

of the product showed a racemic mixture of oxindole enantiomers and proofed that no chiral 

induction takes place within a system bearing only one chiral substituent. Therefore, catalysis 

was continued using NHC-Pd-isonitrile complex 101 featuring two chiral bornyl substituents. 

With this catalyst all substrates were converted to their (R)-oxindole derivatives in very high 
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yields (cf. Table 15, entries 2 – 6, as determined by chiral HPLC). Benzyl-substituted 

substrates were obtained with an enantiomeric excess of 58% e.e. (bromide derivative, cf. 

Table 15, entry 3) and 63% e.e. (chloride derivative, cf. Table 15, entry 4). The corresponding 

naphthyl substrates showed higher enantioselectivities (68% e.e. and 72% e.e., cf. Table 15, 

entries 5 and 6). The results are noteworthy, since temperature has a pronounced influence on 

the enantioselectivity. The related 5-membered NHC showed 70% e.e., however only 

58% e.e. at 0 °C with catalyst loadings of 10 mol% catalyst.[392] The higher enantioselectivity 

of 72% e.e. (cf. Table 15, entry 6) at higher temperatures is attributed to the NHC-metal angle 

being enlarged within a 6-membered NHC, thus increasing steric congestion and chiral 

induction compared to the 5-membered derivative with the same chiral ligand pattern. A 

slight increase of 5% in enantioselectivity was observed for the chloro derivative in each case 

(cf. Table 15, entries 3, 4 and 5, 6). This data suggests that the halide is present on or at least 

in close proximity to the catalytic active species during the enantiodiscriminating step. 

Introduction of a cyclo-butyl substituent at the N-terminus of the substrate had no significant 

influence on enantioselectivity compared to the N-methylated substrate (cf. Table 15, entry 2 

and 3). 

Interestingly, palladium-isonitrile catalyst 102 bearing the same chiral bornyl-ligand pattern at 

the N-substituents but exhibiting an additional phenyl-substituent at the NHC-backbone in 

close proximity to the chiral-substituents showed a different reactivity. High conversions were 

observed by employing the bromo-phenyl derivative 121 (cf. Table 15, entry 7), but 

enantioselectivity dropped almost completely to 8%. Beside small amounts of 3,3-

disubstituted oxindole product dehalogenation of the starting material was observed in 64% 
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Figure 64 HPLC-chromatogramm showing the enantioselective oxindole and 
dehalogenation products using the sterically most demanding catalyst 102. 

Determined by chiral HPLC (Chiralpak IA). Elution order: racemic arylpropanamides (14.6 min and 

16.2 min), (S-)-oxindole (17.7 min), (R-)-oxindole (29.6 min). Product configuration determined by reference 

measurements on chiral HPLC (Chiralpak IB) of known compounds. 



Chapter 4 – Chiral Pd-NHCs of Camphor in Asymmetric Catalysis 137 

yield leading to racemic arylpropanamides, as validated by NMR spectroscopic and chiral 

HPLC-MS measurements (cf. Figure 64). By changing the substrate to the even more 

sterically demanding bromo-naphthyl derivative only the racemic dehalogenation products 

were observed. The change in reactivity leading to dehalogenation of the substrates may be 

explained by the high sterical demand of catalyst 102 but moreover reasonable might be 

freezing of the C-N-rotation of one chiral bornylamine substituent to a certain extend. By 

increasing the sterical demand within the substrate dehalogenation via reductive elimination 

prior to insertion of the amide subunit becomes competitive and dominates the reaction profile 

of catalyst 102 by using bromo-naphthyl substrate 124 leading exclusively to dehalogenation. 

 

4.4 Conclusion 

In summary, the synthesis[411] of three six-membered hexahydropyrimidine core based, 

camphor-derived NHC-Pd-isonitrile complexes and their application as catalysts in the 

asymmetric α-amide arylation was shown. The structure of two Pd-complexes was 

determined by X-ray crystallographic analysis. Taking advantage of a convergent, modular 

synthetic pathway the preparation of NHC ligands bearing different structural motifs present 

at the N-termini was accomplished. By successive increase of the chiral information and 

congestion within the catalyst pattern – while retaining the chiral motif (bornylamine) at the 

same time – their influence on enantioselectivity was demonstrated. All catalysts showed very 

good conversions of bromo- as well as chloro-substrates bearing aryl and naphthyl residues 

with catalysts loadings of 2.5 mol%. Whereas, catalyst 100 (exhibiting only one chiral 

bornylamine NHC- and one cyclododecyl substituent) showed no enantiodiscrimination in the 

oxindole synthesis, catalyst 101 bearing two bornylamine NHC substituents proofed to be 

more effective. Higher enantioselectivities compared to the related, 5-membered 

bornylamine-derived imidazoline ligand was observed at even higher temperatures than the 

reported ones. With the sterically most demanding catalyst 102 exhibiting an additional 

phenylsubstituent at the NHC backbone in close proximity to the chiral N-bornyl substituent a 

reaction profile leading either to an arylation or dehalogenation product depending on the 

employed substrate was observed. Furthermore, the calculated buried overlap volume[372, 373] 

of catalyst 101 (%Vbur = 40.9) exceeds the value of 1,3-di-(1-adamantyl)-imidazol-2-ylidene 

(IAd, %Vbur = 36.1)[421] and represents the second highest volume reported so far for chiral 

N,N-heterocyclic carbene ligands (IBiox[(-)-menthyl], %Vbur = 47.7 (Au-complex).[393] The 

results obtained show that higher hindrance of the metal by substituents is still beneficial for 

enantioselectivity but at a certain level of congestion or restriction of flexibility a further 

improvement of chiral induction within a given system is limited! 
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Experimental Section 

General Methods and Materials 

All reagents and solvents were obtained from Acros, ABCR, Alfa Aesar, Sigma-Aldrich or 

VWR and were used without further purification unless otherwise noted. Dichloromethane 

was freshly distilled from calcium hydride under argon atmosphere and tetrahydrofurane was 

freshly distilled from sodium under argon atmosphere. Deuterated solvents were purchased 

from Euriso-Top. Acetonitrile was dried by a MB SPS-800 with the aid of drying columns. 

Handling of air- and moisture-sensitive materials was carried out in flame dried flasks under 

an atmosphere of argon using Schlenk-techniques. Thin layer chromatography (TLC) was 

performed using Polygram® precoated plastic sheets SIL G/UV254 (SiO2, 0.20 mm thickness) 

from Macherey-Nagel. NMR spectra were recorded on Bruker Avance 500, Bruker Avance 

300 and Bruker ARX-250 spectrometers at RT. Chemical shifts (in ppm) were referenced to 

residual solvent protons.[422] Signal multiplicity was determined as s (singlet), d (doublet), t 

(triplet), q (quartet) or m (multiplet). 13C assignment was achieved via DEPT135 spectra and 

HSQC experiments. GC- and GC-MS measurements were performed on a Thermo PolarisQ 

Trace GC-MS, equipped with split injector (250°C), flame-ionization detector (250°C) and a 

quadrupole ion-trap MS (Thermo, San Jose, CA). Fused silica capillaries (0.25 mm I.D.) were 

coated with polysiloxanes (GE SE 30, GE SE 52) and modified, stationary Chirasil-Metal 

phases and combinations thereof by the static method described by Grob.[139] For on-column 

experiments and separations helium or nitrogen was used as carrier gas. Exact conditions for 

the measurements are reported in detail in the corresponding experimental sections. MS 

spectra were recorded on a Finnigan MAT TSQ 700 or JEOL JMS-700 spectrometer. IR 

spectra were recorded on a Bruker Vector 22 FT-IR. CD- and UV-Vis spectra were recorded 

on a JASCO J-810 spectropolarimeter. Crystal structure analysis was accomplished on Bruker 

Smart CCD and Bruker APEX diffractometers. Melting points were determined on a Büchi 

melting point apparatus and temperatures were uncorrected. Elemental analysis was 

performed on an Elementar Vario EL. Crystallographic data is available in electronic form on 

CD attached to this manuscript. 
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Potassium-(1S)-camphor-10-sulfonate (17): 

(1S)-camphorsulfonic acid (350.0 g, 1.51 mol) was suspended in 150 mL water and 

neutralized by slow addition of a solution of potassium hydroxide (84.5 g, 1.51 mol) in 

200 mL of water at 0 °C. The solvent was removed under reduced pressure and under high 

vacuum. The product was powdered and dried two times over phosphorus pentoxide for 48 h 

to yield sulfonate 17 (395 g, 1.46 mol, 97%) as a white salt. Mp. 320 – 328 °C. IR (KBr): ν 

3454, 2954, 2232, 2082, 1740, 1728, 1469, 1414, 1374, 1284, 1217, 1186, 1166, 1103, 1040, 

973, 934, 936, 851, 780, 710. 

Phosphorus pentabromide: 

To a dilution of phosphorus tribromide (499.5 g, 1.85 mol, 173.4 mL) in 220 mL carbon 

disulfide placed in a three-necked flask equipped with a mechanical stirrer was slowly added 

bromine (294.7 g, 1.84 mol, 94.5 mL) via a dropping funnel at 0 °C under an argon 

atmosphere under vigorous stirring. The solvent was distilled off under reduced pressure after 

three hours. After 48 h under high vacuum phosphorus pentabromide (796.3 g, 1.84 mol, 

quant.) was obtained as a bright yellow solid. The product was stored under an argon 

atmosphere. 

(1S, 4R)-10-camphorsulfonic acid bromide and (1S, 4R)-10-bromocamphor (18): 

(1S, 4R)-10-camphorsulfonic acid bromide was prepared according to 

literature.[423] Potassium-(1S)-camphor-10-sulfonate (17, 200.0 g, 0.74 mol) 

was suspended in 1.1 L anhydrous diethyl ether in a three-necked flask 

equipped with a mechanical stirrer under an argon atmosphere. Phosphorus 

pentabromide (326.4 g, 0.76 mol) was added rapidly under vigorous stirring 

at 0 °C. The red solution was allowed to warm up to room temperature and stirring was 

continued for 30 min, followed by 30 min at 30 °C. For reasons of handling only ⅓ of the 

reaction mixture was submitted to the work-up procedure at once. Therefore, ⅓ of the solution 

was poured onto 1 kg ice and  was immediately extracted with 3×250 mL diethyl ether, to 

minimize decomposition to (1S, 4R)-camphorsulfonic acid. Finally, the organic layers were 

combined, washed with 100 mL water and dried over magnesium sulfate. Evaporation of the 

solvent and drying under high vacuum yielded (1S, 4R)-10-camphorsulfonic acid bromide 

Br
O
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(90.9 g, 0.31 mol, 41%) as microcrystalline, brown powder. 1H NMR (300.13 MHz, CDCl3): 

δ 0.93 (s, 3H, -CH3), 1.14 (s, 3H, -CH3), 1.43 – 1.52 (m, 1H), 1.74 – 1.83 (m, 1H), 1.99 (d, 

1H, J = 18.3 Hz), 2.04 – 2.16 (m, 2H), 2.39 – 2.53 (m, 2H), 3.90 (d, 1H, J = 14.7 Hz, -

CH2SO2Br), 4.50 (d, 1H, J = 14.7 Hz, -CH2SO2Br) ppm. 13C NMR (75.46 MHz, CDCl3): 

δ 19.7, 19.6, 25.4, 26.8, 42.2, 42.7, 48.0, 60.5, 69.1, 212.4 ppm. MS (EI): m/z (%) 41 (41), 81 

(80), 109 (82), 151 (100) [M-(SO2Br)]+, 187 (7), 229 (10). IR (KBr): ν 2954, 2891, 1739, 

1456, 1414, 1392, 1376, 1279, 1182, 1127, 1094, 1038, 967, 933, 853, 794, 764, 710. 

(1S, 4R)-10-Bromocamphor 18 was prepared according to literature.[423] (1S)-10-

camphorsulfonic acid bromide (45.0 g, 0.152 mol) was dissolved in 1.2 L of fresh distilled, 

anhydrous o-xylol in a three-necked flask equipped with an open, oil filled valve for the 

extrusion of gas. Then a small amount of calcium chloride was added and the mixture was 

stirred for 48 h under the exclusion of light. Afterwards calcium chloride was filtered off and 

the filtrate was heated to 144 °C under an argon atmosphere and the temperature was 

maintained, till the generation of sulfur dioxide ceased. The solvent was removed by rotary 

evaporation resulting in a dark brown oil, which was submitted to steam distillation (oilbath 

temperature 150 °C) over a period of four days to yield (1S, 4R)-10-bromocamphor (18, 

12.30 g, 0.053 mol, 35%) as colorless, needle-shaped crystals.Mp. 66 – 69 °C. 1H NMR 

(300.51 MHz, CDCl3): δ  3.61 (d, 1H, J = 11.2 Hz, -CH2Br), 3.40 (d, 1H, J = 11.2 Hz, -

CH2Br), 2.45 – 2.36 (m, 1H), 2.17 – 1.97 (m, 3H), 1.90 (d, 1H, J = 18.3 Hz), 1.59 – 1.51 (m, 

1H), 1.44 – 1.36 (m, 1H), 1.10 (s, 3H, -CH3), 0.94 (s, 3H, -CH3) ppm. 13C NMR (75.56 MHz, 

CDCl3): δ  20.3, 20.4, 26.7, 27.7, 29.3, 43.0, 43.9, 48.2, 60.3, 215.5 ppm. MS (EI): m/z (%) 41 

(37), 53 (18), 67 (41), 81 (72), 93 (20), 109 (74), 123 (38), 133 (7), 151 (100) [M-Br]+, 173 

(1), 230 (7) [M]+. IR (KBr): ν 2967, 2935, 2884, 1744, 1465, 1451, 1421, 1382, 1328, 1287, 

1234, 1215, 1195, 1167, 1071, 1043, 1018, 961, 934, 910, 873, 851, 809, 775, 745, 708. 

(1S, 4R)-10-iodocamphor (28):[120, 121, 123, 169] 

Synthesis of this compound was accomplished according to a procedure of 

Mulholland et al.[120] Instead of column chromatography, purification by 

sublimation proofed to be the method of choice. To a suspension of (1S)-10-

camphorsulfonic acid (16, 65.0 g, 0.280 mol) in 500 mL toluene was added 

iodine (142.0 g, 0.560 mol) and triphenylphosphine (293.5 g, 1.120 mmol) 

and the mixture was heated at reflux for 16 h. Afterwards the solvent was removed under 

reduced pressure and ethyl acetate (500 mL) was added. The mixture was washed with 

saturated sodium thiosulfate solution (3×100 mL), water (3×50 mL) and brine (2×50 mL). 

The solvent was removed and the residue dried under high vacuum. Successive sublimation of 

small amounts of crude product yielded pure (1S, 4R)-10-iodocamphor (76.3 g, 0.274 mol, 

I
O
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98%) as colorless crystals.Mp. 79 – 82 °C. 1H NMR (300.51 MHz, CDCl3): δ  3.29 (d, 1H, 

J = 10.6 Hz, -CH2I), 3.10 (d, 1H, J = 10.6 Hz, -CH2I), 2.43 – 2.34 (m, 1H), 2.16 – 2.13 (m, 

1H), 2.05 – 1.94 (m, 2H), 1.89 (d, 1H, J = 18.3 Hz), 1.63 – 1.56 (m, 1H), 1.41 – 1.35 (m, 1H), 

1.06 (s, 3H, -CH3), 0.89 (s, 3H, -CH3) ppm. 13C NMR (75.56 MHz, CDCl3): δ  0.7, 20.1, 20.3, 

26.7, 30.5, 42.9, 44.0, 28.3, 59.0, 215.0 ppm. IR (KBr): ν 2962, 2931, 1744, 1454, 1417, 

1391, 1375, 1324, 1298, 1290, 1273, 1214, 1190, 1164, 1064, 1038, 766. Anal. calcd for 

C10H15IO, C: 43.18 H: 5.44. Found, C: 43.19 H: 5.47. 

(1R, 4R)-10-acetatocamphor (19): 

Method A: A mixture of (1S)-10-bromocamphor (18, 12.0 g, 0.052 mol), 

potassium acetate (35.7 g, 0.363 mol) and acetic acid (20.3 g, 0.338 mol, 

19.3 mL) were stirred at reflux heating (175 °C) for 12 h. Afterwards the 

crude mixture was allowed to cool down (10 min) and was dissolved in 

20 mL of water, while being hot. The solution was carefully neutralized 

with sodium carbonate and extracted with 4×50 mL diethyl ether. The 

organiclayers were combined, washed with 50 mL brine and dried over 

magnesium sulfate. Evaporation of the solvent under reduced pressure followed by high 

vacuum yielded (1R, 4R)-10-acetatocamphor (10.2 g, 0.048 mol, 93%) as a colorless oil. 

Method B: (1S)-10-iodocamphor (20.0 g, 0.072 mol) was used instead of (1S)-10-

bromocamphor. Reaction conditions and work-up procedure is similar to method A. Pure (1R, 

4R)-10-acetatocamphor (14.7 g, 0.070 mol) was obtained in 97% yield.1H NMR 

(500.13 MHz, CDCl3): δ 0.98 (s, 3H, -CH3), 1.05 (s, 3H, -CH3), 1.37 – 1-41 (m, 2H), 1.88 (d, 

2H, J = 18.4 Hz), 1.94 (dd, 1H, J = 2.9 Hz, J = 12.8 Hz, -CH2CH2-), 1.98 – 2.02 (m, 1H), 2.04 

(s, 1H, -OCH3), 2.07 – 2.09 (m, 1H), 2.40 – 2.45 (m, 1H), 4.23 (d, 1H, 2J = 12.4 Hz, -

CH2OCOH), 4.27 (d, 1H, 2J = 12.4 Hz, -CH2OCOH) ppm. 13C NMR (125.76 MHz, CDCl3): 

δ 19.8, 20.7, 20.9, 25.5, 26.6, 43.3, 43.9, 47.0, 60.1, 60.5, 170.9, 216.1 ppm. MS (EI): m/z (%) 

43 (100), 55 (14), 67 (18), 79 (43), 95 (49), 107 (55), 122 (16), 135 (11), 150 (78) [M-

(CO2CH3)]
+, 167 (5) [M-(COCH3)]

+, 192 (8), 210 (10) [M]+. IR (KBr): ν 2964, 2887, 1746, 

1454, 1417, 1392, 1366, 1322, 1242, 1200, 1034, 961, 857, 605. 
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(1R, 4R)-10-hydroxycamphor (20): 

This is a known compound.[424] (1S)-10-acetatocamphor (19, 10.2 g, 

0.048 mol) was dissolved in a methanolic solution of potassium hydroxide 

(175 mL, 10wt%) and heated at reflux for 6 h. Afterwards the solution was 

allowed to cool down to room temperature and 200 mL of water was added. 

The solution was extracted with 3×100 mL diethyl ether. The organic layers 

were combined, washed with 50 mL brine, dried over magnesium sulfate and the solvent 

evaporated under reduced pressure. Recrystallization from pentane yielded 10-

hydroxycamphor (20, 7.55 g, 0.045, 92%) as colorless crystals. Mp. 216 – 218 °C. 1H NMR 

(300.51 MHz, CDCl3): δ 3.87 (d, 1H, J = 11.8 Hz, -CH2OH), 3.63 (d, 1H, J = 11.8 Hz, -

CH2OH), 2.54 (bs, 1H, -OH), 2.08 – 2.05 (m, 1H), 2.04 – 1.93 (m, 1H), 1.89 – 1.78 (m, 2H), 

1.64 – 1.55 (m, 1H), 1.42 – 1.32 (m, 1H), 1.00 (s, 3H, -CH3), 0.97 (s, 3H, -CH3) ppm. 
13C NMR (75.56 MHz, CDCl3): δ 19.3, 20.8, 26.0, 26.6, 43.4, 43.9, 46.7, 60.6, 61.6, 221.0 

ppm. MS (EI): m/z (%) 29 (20), 41 (48), 55 (28), 67 (33), 81 (40), 95 (95), 108 (100), 125 

(13), 137(8) [M-(CH3O)]+, 153 (39) [M-(CH3)]
+, 168 (18) [M]+. IR (KBr): ν 2955, 2876, 

1729, 1610, 1457, 1417, 1390, 1370, 1323, 1300, 1288, 1272, 1217, 1201, 1178, 1162, 1143, 

1107, 1060, 1028, 1009, 997, 950, 930, 919, 871, 852, 808, 769, 753, 710. 

 

(1R, 4R)-10-allyloxycamphor (21): 

To a suspension of sodium hydride (1.20 g, 50 mmol) in 150 mL anhydrous 

tetrahydrofurane was slowly added a solution of 10-hydroxycamphor (20) 

(8.00 g, 48 mmol) in 30 mL anhydrous tetrahydrofurane at 0 °C. After 30 min 

the mixture was allowed to warm up to room temperature and was then 

heated at reflux for 30 min. Afterwards the reddish mixture was cooled to 

0 °C and allylbromide (6.04 g, 50 mmol, 4.32 mL), dissolved in 30 mL 

anhydrous THF, was added dropwise. The reaction mixture was stirred for 

30 min at room temperature and was then heated to 50 °C and maintained at this temperature 

for two hours. The mixture was cooled down to 0 °C, quenched with small amounts of ethanol 

(10 mL) and 200 mL of water was added. The solution was extracted with 4×50 mL pentane, 

the organic layers were combined, washed with 2×20 mL water and brine and dried over 

sodium sulfate. Evaporation of the solvent under reduced pressure, followed by high vacuum 

yielded analytical pure (1R, 4R)-10-allyloxycamphor (8.31 g, 40 mmol, 84%) as a colorless 

oil. 1H NMR (500.13 MHz, CDCl3): δ 5.92 – 5.85 (m, 1H, -OCH2CH-), 5.26 (dd, 1H, 

J = 17.4 Hz, 2J = 1.6 Hz, methylene-CH2trans), 5.14 (dd, 1H, J = 10.3 Hz, 2J = 1.6 Hz, 

methylene-CH2cis), 3.98 (d, 2H, J = 5.3 Hz, -OCH2CH-), 3.60 (d, 1H, 2J = 10.6 Hz, -CCH2O), 
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3.56 (d, 1H, 2J = 10.6 Hz, -CCH2O-), 2.60 – 2.64 (m, 1H, -CHC(CH3)2), 2.07 (d, 1H, 

J = 18.0 Hz), 2.42 – 2.37 (m, 1H), 2.12 – 1.96 (m, 3H), 1.84 (d, 1H, J = 18.3 Hz), 1.38 – 1.34 

(m, 2H), 1.07 (s, 3H, -CH3), 0.96 (s, 3H, -CH3) ppm.13C NMR (125.76 MHz, CDCl3): δ 20.3, 

20.7, 25.2, 26.7, 43.5, 43,8, 47.0, 61.3, 66.4, 72.5, 116.3, 135.0, 217.6 ppm. MS (EI): m/z (%) 

41 (52), 55 (17), 67 (24), 81 (25), 95 (38), 109 (100), 123 (20), 151 (52) [M-(C3H5O)]+, 167 

(6) [M-(C3H5)]
+, 208 (13) [M]+. HR-MS (EI, m/z): calc. for C13H20O2 [M]: 208.1463, found: 

208.1451. ATR-FTIR: ν 2959, 2879, 1732, 1647, 1454, 1417, 1389, 1362, 1348, 1274, 1234, 

1193, 1169, 1134, 1093, 1046, 1016, 988, 917, 857, 769, 723. Anal. calcd for C13H20O2, C: 

74.96 H: 9.68. Found, C: 75.10 H: 9.74. 

(R)-allyl 2-(1,2,2-trimethyl-3-methylenecyclopentyl)acetate (31): 

Sodium hydride (2.88 g, 120 mmol) was suspended in 20 mL 

anhydrous dimethylformamide in a three-necked flask under 

argon equipped with a reflux condenser and allylic alcohol 

(10.22 g, 176 mmol, 12.0 mL), dissolved in 20 mL anhydrous 

diemthylformamide, was added dropwise. The mixture was stirred at room temperature for 

two hours. To this mixture (1S, 4R)-10-iodocamphor 28 (33.38 g, 120 mmol) dissolved in 

60 mL anhydrous dimethylformamide was added dropwise and stirred at 80 °C for 24 h. 

Afterwards water (100 mL) was added and the mixture was extracted with 3×100 mL diethyl 

ether. The organic layers were combined, dried over magnesium sulfate and the solvent 

carefully evaporated under reduced pressure (no high-vacuum!) to yield the title compound 31 

as a colorless oil (14.4 g, 65 mmol, 54%). 1H NMR (300.13 MHz, CDCl3): δ 6.01 – 5.88 (m, 

1H, -OCH2CH-), 5.34 (dt, 1H, J = 17.3 Hz, 2J = 1.5 Hz, methylene-CH2trans), 5.26 (dt, 1H, 

J = 10.3 Hz, 2J = 1.3 Hz, methylene-CH2cis), 3.80 (dt, 2H, J = 6.4 Hz, 2J = 2.1 Hz, -

CH2CC(CH3)-), 4.60 (dt, 2H, J = 5.8, J = 1.3 Hz, -CH2O-), 2.53 – 2.39 (m, 4H, -CH2CHCH2-

), 2.21 – 2.12 (m, 1H, -CH2CHCH2-), 2.08 – 1.98 (m, 1H, -(CO)CH2CHCH2-), 1.44 – 1.34 

(m, 1H, -(CO)CH2CHCH2-) 1.09 (s, 3H, -CH3), 0.86 (s, 3H, -CH3) ppm. 13C NMR 

(75.47 MHz, CDCl3): δ 23.4, 26.5, 28.3, 30.4, 35.2, 43.8, 46.5, 65.0, 103.6, 118.2, 132.2, 

161.2, 173.3 ppm. LR-MS (EI, m/z): 41 (35), 55 (9), 67 (17), 79 (12), 93 (30), 108 (100), 121 

(20), 133 (4), 150 (7), 167 (32) [M-(C3H5)]
+, 193 (10) [M-(CH3)]

+, 208 (4) [M]+. HR-MS (EI, 

m/z): calc. for C13H20O2 [M]: 208.1463, found: 208.1462. 
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(1R, 4S)-3-trifluoromethanoyl-10-allyloxycamphor (32): 

To a suspension of lithium hydride (160 mg, 20.1 mmol) in 50 mL 

anhydrous THF in a three-necked flask under argon equipped with a 

reflux condenser was dropwise added a solution of 10-allyloxycamphor 

21 (2.000 g, 9.6 mmol) in 30 mL anhydrous tetrahydrofurane at 0 °C. 

The mixture was stirred for 15 min at this temperature, was then 

allowed to warm up to room temperature and stirred for further 15 min. 

Afterwards the mixture was heated at reflux temperature for 8 h until 

the color of the solution turned to pale orange. The mixture was cooled to room temperature 

and trifluoromethyl ester (2.828 g, 22.1 mmol, 2.22 mL) dissolved in 40 mL anhydrous THF 

was added dropwise over a period of 30 min. After stirring for 20 min the mixture was heated 

at reflux temperature for 12 – 14 h. Progress of the reaction was monitored by gas-

chromatography of pH neutral samples and if necessary additional trifluoromethyl ester (bp: 

316 K) was added. After completion of the reaction 10 mL of conc. hydrochloric acid was 

added, followed by addition of water (500 mL) while stirring. The mixture was extracted with 

3×100 mL diethyl ether, the organic layers were combined, washed with 2×200 mL water and 

brine. The organic phase was dried over sodium sulfate and the solvent was evaporated under 

reduced pressure. Drying in vacuo at elevated temperatures over a period of three days 

yielded analytical pure (1R, 4S)-3-trifluoromethanoyl-10-allyloxycamphor (32, 2.75 g, 

9.0 mmol, 94%) as a colorless, viscous oil. 1H NMR (500.13 MHz, CDCl3): δ 11.4 (bs, 1H, 

OH), 5.93 – 5.86  (m, 1H, -OCH2CH-), 5.28 (dd, 1H, J = 17.4 Hz, 2J = 1.6 Hz, methylene-

CH2trans), 5.18 (dd, 1H, J = 10.5 Hz, 2J = 1.5 Hz, methylene-CH2cis), 4.00 (d, 2H, J = 5.4 Hz, 

-OCH2CH-), 3.65 (d, 1H, 2J = 10.4 Hz, -CCH2O-), 3.63 (d, 1H, 2J = 10.5 Hz, -CCH2O-), 2.85 

– 2.82 (m, 1H, -CHC(CH3)2), 2.16 – 2.08 (m, 2H), 1.50 – 1.39 (m, 2H), 1.07 (s, 3H, -CH3), 

0.97 (s, 3H, -CH3) ppm. 13C NMR (125.76 MHz, CDCl3): δ 19.4, 21.5, 25.7, 26.5, 47.9, 49.2, 

61.6, 65.4, 72.6, 116.1, 116.7, 117.8 (q, J = 2.5 Hz, -CCCF3), 119.4 (q, J = 276.6 Hz, -CF3), 

134.7, 148.5 (q, J = 37.2 Hz, -CCF3), 212.2  ppm. 19F NMR (282.76 MHz, CDCl3): δ -70.2 

ppm. MS (EI): m/z (%) 177 (21), 191 (17), 205 (17), 233 (100) [M-(C4H7O)]+, 247 (15) [M-

(C3H5O)]+, 263 (6) [M-(C3H5)]
+, 304 (7) [M]+. HR-MS (EI, m/z): calc. for C15H19F3O3 [M]: 

304.1286, found: 301.1288. ATR-FTIR: ν 2963, 2874, 1702, 1648, 1703, 1648, 1507, 1476, 

1454, 1419, 1393, 1374, 1363, 1348, 1313, 1293, 1266, 1222, 1188, 1140, 1067, 1004, 989, 

924, 891, 854, 816, 809, 753, 717. Anal. calcd for C15H19F3O3, C: 59.20 H: 6.29. Found, C: 

59.24 H: 6.44. 
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(1R, 4S)-3-heptafluorobutanoyl-10-allyloxycamphor (33): 

To a suspension of lithium hydride (160 mg, 20.1 mmol) in 50 mL 

anhydrous tetrahydrofurane in a three-necked flask under argon 

equipped with a reflux condenser was dropwise added a solution of 10-

allyloxycamphor 21 (2.000 g, 9.6 mmol) in 30 mL anhydrous 

tetrahydrofurane at 0 °C. The mixture was stirred for 15 min at this 

temperature, was then allowed to warm up to room temperature and 

stirred for further 15 min. Afterwards the mixture was heated at reflux 

temperature for 10 h until the color of the solution turned to pale orange. The mixture was 

cooled to room temperature and ethyl heptafluorobutyrate (5.346 g, 22.1 mmol, 3.83 mL) 

dissolved in 40 mL anhydrous tetrahydrofurane was added dropwise over a period of 30 min. 

After stirring for 20 min the mixture was heated at reflux temperature for 14 – 18 h. Progress 

of the reaction was monitored by gas-chromatography of pH neutral samples. After 

completion of the reaction 10 mL of conc. hydrochloric acid was added, followed by addition 

of water (500 mL) while stirring. The mixture was extracted with 3×100 mL diethyl ether, the 

organic layers were combined, washed with 2×200 mL water and brine. The organic phase 

was dried over sodium sulfate and the solvent was evaporated under reduced pressure. Drying 

in vacuo at elevated temperatures over a period of three days, followed by distillation at 

120 °C under high vacuum (small-sized distillation apparatus equipped with a short 

connecting tube) yielded pure (1R, 4S)-3-heptafluorobutanoyl-10-allyloxycamphor (33, 

2.898 g, 7.2 mmol, 75%) as a colorless, viscous oil. 1H NMR (500.13 MHz, CDCl3): δ 11.69 

(bs, 1H, OH), 5.93 – 5.86  (m, 1H, -OCH2CH), 5.28 (dd, 1H, J = 17.3 Hz, 2J = 1.5 Hz, 

methylene-CH2trans), 5.18 (dd, 1H, J = 10.5 Hz, 2J = 1.5 Hz, methylene-CH2cis), 4.00 (d, 2H, 

J = 5.2 Hz, -OCH2CH), 3.66 (d, 1H, 2J = 10.7 Hz, -CCH2O-), 3.63 (d, 1H, 2J = 10.7 Hz, -

CCH2O-), 2.82 – 2.79 (m, 1H, -CHC(CH3)2), 2.15 – 2.09 (m, 2H), 1.49 – 1.42 (m, 2H), 1.07 

(s, 3H, -CH3), 0.96 (s, 3H, -CH3) ppm. 13C NMR (125.76 MHz, CDCl3): δ 19.4, 21.4, 25.6, 

26.4, 48.2, 49.3, 61.5, 65.4, 72.6, 116.7, 120.6, 134.7, 148.7 (dd, J = 29.5 Hz, J = 29.7 Hz, -

CCF2CF2CF3), 212.0  ppm. 19F NMR (282.76 MHz, CDCl3): δ -127.3 – -127.4 (m, -

CF2CF2CF3), -119.4 (qdd, J = 8.8 Hz, J = 2.0 Hz, J = 283.4 Hz, -CF2CF2CF3), -117.9 (qd, J = 

8.8 Hz, J = 283.4 Hz, -CF2CF2CF3), -119.4 (t, J = 8.8 Hz, -CF2CF2CF3) ppm. MS (EI): m/z 

(%) 177 (7), 235 (5), 291 (9), 305 (10), 333 (100) [M-(C4H7O)]+, 347 (14) [M-(C3H5O)]+, 363 

(4) [M-(C3H5)]
+, 404 (16) [M]+. HR-MS (EI, m/z): calc. for C17H19F7O3 [M]: 404.1222, 

found: 404.1212. ATR-FTIR: ν 2963, 2874, 1699, 1642, 1479, 1454, 1422, 1393, 1374, 1345, 

1315, 1292, 1215, 1185, 1165, 1118, 1097, 1067, 1023, 958, 920, 897, 886, 855, 813, 780, 

743, 724. Anal. calcd for C17H19F7O3, C: 50.50 H: 4.74. Found, C: 51.05 H: 5.01. 
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(1S, 4R)-10-thiocamphor (29): 

(1S)-10-camphorsulfonic acid (16, 50.0 g, 0.215 mol) and thionyl chloride 

(51.21 g, 0.430 mol, 31.3 mL) were placed in a three-necked flask equipped 

with a condenser under argon atmosphere and an exhaust line for direct gas-

discharge into the fume hood. The reaction mixture was heated at 80 °C for 

4 – 5 h until the evolution of hydrochloric acid and sulfur dioxide ceased. 

Afterwards thionyl chloride was removed under reduced pressure in vacuo at elevated 

temperature. To the crude 10-camphorsulfonic acid was added triphenylphosphine (169.2 g, 

0.645 mol) together with a 1:4 mixture of water and dioxane and the suspension was stirred at 

reflux for 4 h. The suspension was allowed to cool down to room temperature, water 

(600 mL) was added and the mixture was extracted with 4×100 mL pentane. The organic 

layers were combined, washed several times with water (8×100 mL), followed by brine 

(2×25 mL) and dried over sodium sulfate. Evaporation of the solvent under reduced pressure 

and high vacuum yielded pure (1S, 4R)-10-thiocamphor (29, 42.1 g, 0.228, 94%) as colorless 

crystals.Mp. 55 – 57 °C. 1H NMR (300.51 MHz, CDCl3): δ 2.88 (d, 1H, J = 6.8 Hz, -CH2SH), 

2.83 (d, 1H, J = 6.8 Hz, -CH2SH), 2.39 – 2.30 (m, 2H), 2.08 – 2.05 (m, 1H), 2.03 – 1.83 (m, 

4H), 1.72 – 1.65 (m, 1H), 1.41 – 1.35 (m, 1H), 1.01 (s, 3H, -CH3), 0.90 (s, 3H, -CH3) ppm. 
13C NMR (75.56 MHz, CDCl3): δ 19.8, 20.3, 21.4, 26.6, 27.0, 43.2, 43.6, 47.8, 60.6, 217.8 

ppm. MS (EI): m/z (%) 55 (18), 67 (30), 81 (47), 95 (42), 109 (50), 123 (37), 141 (34), 

151(23) [M-(SH)]+, 169 (5) [M-(CH3)]
+, 184 (100) [M]+. Anal. calcd for C10H16OS, C: 65.17 

H: 8.75. Found, C: 65.40 H: 8.76. 

(1S, 4R)-10-allylmercaptocamphor (30): 

To a suspension of sodium hydride (2.74 g, 114 mmol) in 250 mL anhydrous 

tetrahydrofurane was slowly added a solution of camphorthiol (29, 20.00 g, 

109 mol) in 50 mL anhydrous tetrahydrofurane at 0 °C. After 30 min the 

mixture was allowed to warm up to room temperature and was then heated at 

reflux for 30 min. Afterwards the reddish mixture was cooled to 0 °C and 

allylbromide (13.39 g, 111 mmol, 9.58 mL), dissolved in 50 mL anhydrous 

tetrahydrofurane, was added dropwise. The reaction mixture was stirred for 

30 min at room temperature and was then heated to 50 °C and maintained at this temperature 

for two hours.  The mixture was cooled down to 0 °C, quenched with small amounts of 

ethanol (15 mL) and 400 mL of water was added. The solution was extracted with 4×100 mL 

pentane, the organic layers were combined, washed with 2×50 mL water and brine and dried 

over sodium sulfate. Evaporation of the solvent under reduced pressure, followed by high 

vacuum yielded analytical pure (1S, 4R)-10-allylmercaptocamphor (19.74 g, 88 mmol, 81%) 
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as a colorless oil.1H NMR (500.13 MHz, CDCl3): δ 5.84 – 5.75 (m, 1H, -SCH2CH-), 5.15 – 

5.09 (m, 2H, methylene-CH2), 3.20 – 3.12 (m, 2H), 2.74 (d, 1H, 2J = 13.1 Hz, -CCH2S-), 2.47 

(d, 1H, 2J = 13.0 Hz, -CCH2S-), 2.39 – 2.34 (m, 1H), 2.08 – 1.96 (m, 3H), 1.86 (d, 1H, 

J = 18.4 Hz), 1.53 – 1.48 (m, 1H), 1.39 – 1.35 (m, 1H), 1.04 (s, 3H, -CH3), 0.90 (s, 3H, -CH3) 

ppm. 13C NMR (125.76 MHz, CDCl3): δ 20.20, 20.2, 26.8, 26.9, 27.7, 37.0, 43.1, 43.5, 47.8, 

60.9, 117.1, 134.4, 217.5 ppm. MS (EI): m/z (%) 55 (28), 67 (30), 81 (39), 95 (14), 109 (39), 

123 (20), 151 (16) [M-(C3H5S)]+, 168 (13), 183 (62) [M-(C3H5)]
+, 224 (100) [M]+. HR-MS 

(EI, m/z): calc. for C13H20OS [M]: 224.1325, found: 224.1237. ATR-FTIR: ν 3080, 2958, 

2887, 1725, 1634, 1469, 1453, 1416, 1389, 1372, 1317, 1298, 1281, 1227, 1197, 1159, 1128, 

1101, 1062, 1049, 1026, 989, 964, 914, 866, 851, 754. Anal. calcd for C13H20OS, C: 69.59 H: 

8.97. Found, C: 69.54 H: 8.97. 

(1S, 4S)-3-trifluoromethanoyl-10-allylmercaptocamphor (34): 

Lithium hydride (149 mg, 18.7 mmol) in 60 mL anhydrous 

tetrahydrofurane was placed in a three-necked flask under argon 

equipped with a reflux condenser and a solution of 10-

allylmercaptocamphor 30 (2.000 g, 8.9 mmol) in 40 mL anhydrous 

tetrahydrofurane was added dropwise at 0 °C. After stirring for 15 min 

the suspension was allowed to warm up to room temperature and 

stirred for further 15 min. Afterwards the mixture was heated at reflux 

temperature for 24 h until the color of the solution turned to pale orange. The mixture was 

cooled to room temperature and trifluoromethyl ester (2.630 g, 20.5 mmol, 2.07 mL) 

dissolved in 30 mL anhydrous tetrahydrofurane was added dropwise over a period of 30 min. 

After stirring for 20 min the mixture was heated at reflux temperature for 12 – 14 h. Progress 

of the reaction was monitored by gas-chromatography of pH neutral samples and if necessary 

additional trifluoromethyl ester (bp: 316 K) was added. After completion of the reaction 

10 mL of conc. hydrochloric acid was added, followed by addition of water (500 mL) while 

stirring. The mixture was extracted with 3×100 mL diethyl ether, the organic layers were 

combined, washed with 2×200 mL water and brine. The organic phase was dried over sodium 

sulfate and the solvent was evaporated under reduced pressure. Drying in vacuo at elevated 

temperatures over a period of three days yielded analytical pure (1S, 4S)-3-

trifluoromethanoyl-10-allylmercaptocamphor (34, 2.693 g, 8.4 mmol, 94%) as a colorless oil. 
1H NMR (300.08 MHz, CDCl3): δ 11.43 (bs, 1H, OH), 5.87 – 5.74  (m, 1H, -SCH2CH-), 5.17 

– 5.11 (m, 2H, methylene-CH2), 3.26 – 3.13 (m, 2H), 2.87 – 2.83 (m, 1H), 2.80 (d, 1H, 
2J = 13.3 Hz, -CCH2S-), 2.51 (d, 1H, 2J = 13.2 Hz, -CCH2S-), 2.17 – 2.03 (m, 2H), 1.67 – 

1.58 (m, 1H), 1.50 – 1.44 (m, 1H), 1.04 (s, 3H, -CH3), 0.91 (s, 3H, -CH3) ppm. 13C NMR 
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(75.46 MHz, CDCl3): δ 19.3, 20.9, 26.5, 26.8, 27.4, 36.9, 47.6, 50.1, 61.3, 117.4, 121.1 (-

CF3), 134.2, 148.4 (m, J = 37.0 Hz, -CCF3), 212.4  ppm. 19F NMR (282.76 MHz, CDCl3): δ -

70.1 ppm. MS (EI): m/z (%) 191 (15), 219 (21), 233 (24) [M-(C4H7S)]+, 247 (34) [M-

(C3H5S)]+, 261 (27), 279 (56) [M-(C3H5)]
+, 320 (100) [M]+. HR-MS (EI, m/z): calc. for 

C15H19F3O2S [M]: 320.1058, found: 320.1068. ATR-FTIR: ν 2962, 2915, 1702, 1652, 1479, 

1453, 1428, 1405, 1393, 1975, 1316, 1267, 1224, 1187, 1123, 1112, 1055, 1021, 1004, 990, 

973, 952, 916, 869, 888, 748, 710. Anal. calcd for C15H19F3O2S, C: 56.24 H: 5.98. Found, C: 

56.28 H: 6.09. 

(1S, 4S)-3-heptafluorobutanoyl-10-allylmercaptocamphor (35): 

Lithium hydride (149 mg, 18.7 mmol) in 50 mL anhydrous 

tetrahydrofurane was placed in a three-necked flask under argon 

equipped with a reflux condenser and a solution of 10-

allylmercaptocamphor 30 (2.000 g, 8.9 mmol) in 40 mL anhydrous 

tetrahydrofurane was added dropwise at 0 °C. After stirring for 15 min 

the suspension was allowed to warm up to room temperature and stirred 

for further 15 min. Afterwards the mixture was heated at reflux 

temperature for 24 h until the color of the solution turned to pale orange. The mixture was 

cooled to room temperature and ethyl heptafluorobutyrate (4.963 g, 20.5 mmol, 3.56 mL) 

dissolved in 30 mL anhydrous tetrahydrofurane was added dropwise over a period of 30 min. 

After stirring for 20 min the mixture was heated at reflux temperature for 14 – 18 h. Progress 

of the reaction was monitored by gas-chromatography of pH neutral samples. After 

completion of the reaction 10 mL of conc. hydrochloric acid was added, followed by addition 

of water (500 mL) while stirring. The mixture was extracted with 3×100 mL diethyl ether, the 

organic layers were combined, washed with 2×200 mL water and brine. The organic phase 

was dried over sodium sulfate and the solvent was evaporated under reduced pressure. Drying 

in vacuo at elevated temperatures over a period of three days, followed by distillation at 

120 °C under high vacuum (small-sized distillation apparatus equipped with a short 

connecting tube) yielded pure (1S, 4S)-3-heptafluorobutanoyl-10-allylmercaptocamphor (35, 

2.893 g, 6.9 mmol, 77%) as a colorless, viscous oil.1H NMR (500.13 MHz, CDCl3): δ 11.68 

(bs, 1H, OH), 5.84 – 5.76  (m, 1H, -SCH2CH-), 5.16 – 5.12 (m, 2H, methylene-CH2), 3.24 – 

3.16 (m, 2H), 2.83 – 2.81 (m, 1H), 2.80 (d, 1H, 2J = 13.2 Hz, -CCH2S-), 2.51 (d, 1H, 
2J = 13.2 Hz, -CCH2S-), 2.14 – 2.06 (m, 2H), 1.65 – 1.60 (m, 1H), 1.49 – 1.46 (m, 1H), 1.04 

(s, 3H, -CH3), 0.89 (s, 3H, -CH3) ppm. 13C NMR (125.76 MHz, CDCl3): δ 19.3, 20.8, 26.5, 

26.8, 27.4, 37.0, 43.3 (d, J = 47.7 Hz), 47.9, 50.1, 61.2, 117.4, 120.1 (-CF3), 134.2, 148.8 (dd, 

J = 29.4 Hz, J = 29.5 Hz, -CCF2CF2CF3), 212.2  ppm. 19F NMR (282.46 MHz, CDCl3): δ -
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127.4 (s, -CF2CF2CF3), -119.4 (qd, J = 9.0 Hz, J = 283.1 Hz, -CF2CF2CF3), -117.9 (qd, J = 

9.0 Hz, J = 283.5 Hz, -CF2CF2CF3), -80.6 (t, J = 8.8 Hz, -CF2CF2CF3) ppm. MS (EI): m/z (%) 

251 (7), 291 (12), 305 (9) 319 (16), 333 (19) [M-(C4H7S)]+, 347 (32) [M-(C3H5S)]+, 379 (53) 

[M-(C3H5)]
+, 420 (100) [M]+. HR-MS (EI, m/z): calc. for C17H19F7O2S [M]: 420.0994, found: 

420.0999. ATR-FTIR: ν 2963, 2916, 1743, 1700, 1639, 1479, 1454, 1429, 1405, 1394, 1375, 

1338, 1312, 1292, 1258, 1215, 1183, 1162, 1110, 1099, 1058, 1025, 1007, 991, 973, 946, 918, 

881, 813, 742, 729. Anal. calcd for C17H19 F7O2S, C: 48.57 H: 4.56. Found, C: 48.81 H: 4.86. 

General procedure for the hydrosilylation of (1R, 4S)-3-heptafluorobutanoyl-10-

allyloxycamphor on polysiloxanes: Hydridomethylpolysiloxane (HMPS, 0.17 – 0.36 mmol 

polymer, 3.5, 10.2 or 20.0% SiH content) was dissolved in 40 mL anhydrous toluene under an 

argon atmosphere. To the solution was added (1R, 4S)-3-heptafluorobutanoyl-10-

allyloxycamphor (33) (for exact amounts cf. experimental details of each compound) and five 

drops (app. 50 mg, 0.1 mg “Pt”, 5.1×10-4 mmol “Pt”, 0.05 mol%) of platinum-1,1,3,3-

tetramethyl-1,3-divinyldisoloxane (Karstedt’s catalyst, 2%wt “Pt” in toluene). The solution 

was stirred for 5 h at room temperature under ultrasonic (control of temperature!) followed by 

36 h starting at room temperature reaching 70 °C after 10 h. The reaction progress was 

monitored by 1H NMR measurements and additional (1R, 4S)-3-heptafluorobutanoyl-10-

allyloxycamphor (33) or HMPS was added until all SiH- and all allylic proton signals 

disappeared indicating full conversions of starting materials. After completion of the reaction 

the solvent was evaporated under reduced pressure. The crude product was dissolved in 

25 mL of dichloromethane, filtered (pore size ø = 0.45 µm) and 5 mL of methanol and active 

charcoal were added. The mixture was stirred for 24 h at reflux temperature, filtered (pore 

size ø = 0.45 µm) and the solvents were evaporated under reduced pressure. Column 

chromatography (silica, height ↨ = 19.0 cm, diameter ø = 1.5 cm, dichloromethane/ethanol = 

98:2) of the crude polymer yielded the analytical pure (1R, 4S)-3-heptafluorobutanoyl-10-

allyloxycamphor immobilized on polysiloxane. For ease of reproduction the following 

amounts of starting materials proofed to be necessary for complete immobilization and full 

consumption of starting material [23, 49 and 92 mg (1R, 4S)-3-heptafluorobutanoyl-10-

allyloxycamphor (33) per 100 mg of HMPS (3.5%, 10.2%, 20.0% SiH content)]. 
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[(1R, 4S)-3-heptafluorobutanoyl-10-propoxycamphor]20.0%-polysiloxane (38): 

The compound was prepared according to the general 

procedure for immobilization of (1R, 4S)-3-

heptafluorobutanoyl-10-allyloxycamphor (33) on 

polysiloxane. Therefore, hydridomethylpolysiloxane 

(523 mg, 0.174 mmol polymer, 20.0% SiH content) and 

(480 mg, 0.129 mmol) (1R, 4S)-3-heptafluorobutanoyl-

10-allyloxycamphor (33) were reacted and purified by the 

given procedure to yield 735 mg (73%) [(1R, 4S)-3-

heptafluorobutanoyl-10-propoxycamphor] 20.0%-polysil-

oxane (38) as a colorless, viscous oil. 1H NMR (500.13 MHz, CDCl3): δ 11.70 (bs, 1H, OH), 

3.63 (d, 1H, J = 10.5 Hz, -CCH2O-), 3.61 (d, 1H, J = 10.5 Hz, -CCH2O-), 3.40 (dt, 2H, 

J = 1.8 Hz, J = 6.6 Hz, -OCH2CH2-), 2.82 – 2.78 (m, 1H, -CHC(CH3)2), 2.15 – 2.08 (m, 2H, -

OCH2CH2-), 1.61 – 1.54 (m, 2H, -CHCH2-), 1.47 – 1.39 (m, 2H, -CHCH2CH2-), 1.06 (s, 3H, -

CH3), 0.95 (s, 3H, -CH3), 0.91 (t, 2H, J = 7.4 Hz, -SiCH2-), 0.56 – 0.46 (m, 0.4H, -Si(CH3)[1-

n]-), 0.12 – 0.04 (m, 19H, -O(CH3)[1-n]Si(CH3)[1-n](CH3)[n](hfc)[n]) ppm. 13C NMR 

(125.76 MHz, CDCl3): δ 0.8, 1.0, 1.8, 1.6, 19.4, 21.4, 22.8, 25.5, 26.4, 48.2, 49.3, 61.6, 65.9, 

73.5, 111.0 (dd, J = 32.0 Hz, J = 29.8 Hz, -CF2CF2CF3), 116.6 (d, J = 32.0 Hz, -CF2CF2CF3), 

118.6 (d, J = 32.0 Hz, -CF2CF2CF3), 120.7, 148.6 (dd, J = 26.1 Hz, J = 26.2 Hz, -

CCF2CF2CF3), 212.0  ppm. ATR-FTIR: ν 2963, 2867, 1735, 1701, 1642, 1507, 1580, 1457, 

1392, 1378, 1344, 1315, 1259, 1229, 1216, 1186, 1164, 1068, 1091, 1015, 979, 957, 920, 896, 

886, 841, 795, 744, 723, 707. 

[(1R, 4S)-3-heptafluorobutanoyl-10-propoxycamphor]10.2%-polysiloxane (37): 

The compound was prepared according to the general 

procedure for immobilization of (1R, 4S)-3-

heptafluorobutanoyl-10-allyloxycamphor (33) on 

polysiloxane. Therefore hydridomethylpolysiloxane 

(1092 mg, 0.364 mmol polymer, 10.2% SiH content) and 

(532 mg, 1.316 mmol) (1R, 4S)-3-heptafluorobutanoyl-10-

allyloxycamphor (33) were reacted and purified by the 

given procedure to yield 605 mg (73%) [(1R, 4S)-3-

heptafluorobutanoyl-10-propoxycamphor]10.2%-polysilox-

ane (37) as a colorless oil. Analytical data is in agreement to polymer-bound [(1R, 4S)-3-

heptafluorobutanoyl-10-propoxycamphor] on polysiloxane (hfc content 20.0%). ATR-FTIR: ν 

2962, 2879, 1734, 1700, 1654, 1643, 1457, 1393, 1374, 1344, 1315, 1258, 1231, 1218, 1185, 

O
O

OH

C3F7

Si
O O

SiSi
O

Si

n m

10.2%n =

(m = 1 - n)
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1164, 1067, 1011, 959, 921, 897,793, 744, 724, 704. 

[(1R, 4S)-3-heptafluorobutanoyl-10-propoxycamphor]3.5%-polysiloxane (36): 

The compound was prepared according to the general 

procedure for immobilization of (1R, 4S)-3-

heptafluorobutanoyl-10-allyloxycamphor (33) on 

polysiloxane. Therefore, hydridomethylpolysiloxane 

(560 mg, 0.187 mmol polymer, 3.5% SiH content) and 

(131 mg, 0.324 mmol) (1R, 4S)-3-heptafluorobutanoyl-

10-allyloxycamphor (33) were reacted and purified by the 

given procedure to yield 605 mg (88%) [(1R, 4S)-3-

heptafluorobutanoyl-10-propoxycamphor]3.5% -polysilox-

ane (36) as a colorless oil. Analytical data is in agreement to polymer-bound [(1R, 4S)-3-

heptafluorobutanoyl-10-propoxycamphor] on polysiloxane (hfc content 20.0%). ATR-FTIR: ν 

2962, 2905, 1735, 1700, 1415, 1353, 1257, 1231, 1216, 1011, 833, 788, 699. 

General procedure for the preparation of nickel(II )-bis[(1R, 4S)-3-heptafluorobutanoyl-

10-propoxycamphorate]20.0%-polysiloxane – Chirasil Nickel-OC3: Metal incorporation was 

accomplished using a modified procedure of M. Fluck.[83] A two phase solution of ligand 

polymer (100 – 390 mg, 3.5, 10.2 or 20.0% (1R, 4S)-3-heptafluorobutanoyl-10-

propoxycamphor content) in a mixture of anhydrous n-heptane/methanol (3:2, 100 mL) was 

stirred for 1 h at room temperature and an additional hour at reflux temperature upon which 

the solvents became miscible. The ligand polymer dissolved and cooling back to room 

temperature resulted in separation of the two phases. This step is recommended to furnish 

clean polymer dissolvation and polymer-purification prior to metal incorporation. To the 

solutions was added nickel(II) acetate tetrahydrate (for exact amounts cf. experimental details 

of each compound) and the mixture was stirred at room temperature for 1 h and an additional 

hour at reflux temperature. The solution was allowed to cool down to room temperature 

resulting in phase reseparation. Metal incorporation can be monitored by color change of the 

polymer-containing n-heptane phase from colorless to green as well as decolorization of the 

nickel-salt containing methanol phase. The n-heptane phase was decanted off and the 

methanol layer was extracted once with 30 mL n-heptane. The organic layers were combined, 

the solvent was evaporated under reduced pressure and the residue dissolved in 50 mL n-

pentane. The organic phase was washed with 5×100 mL water and dried over small amounts 

of magnesium sulfate. Evaporation of the solvent and drying in vacuo for three days yielded 
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nickel(II)-bis[(1R, 4S)-3-heptafluorobutanoyl-10-propoxycamphorate]-polysiloxanes (Chirasil 

Nickel-OC3) as green, viscous oils. 

Nickel(II )-bis[(1R, 4S)-3-heptafluorobutanoyl-10-propoxycamphorate]3.5%-polysiloxane – 

Chirasil Nickel-OC3 3.5% (39): 

This compound was prepared according to the general 

procedure for the preparation of Chirasil Nickel-OC3. 

Therefore, 298 mg ligand polymer and 15 mg 

(0.060 mmol) nickel(II) acetate tetrahydrate were reacted 

and purified by the given procedure to yield 277 mg 

(92%) nickel(II)-bis[(1R, 4S)-3-heptafluorobutanoyl-10-

propoxycamphorate]3.5%-polysiloxane as a pale green oil. 

ATR-FTIR: ν 2962, 2905, 1737, 1654, 1637, 1481, 

1447, 1413, 1344, 1257, 1231, 1216, 1182, 1010, 835, 

788, 700. 

Nickel(II )-bis[(1R, 4S)-3-heptafluorobutanoyl-10-propoxycamphorate]10.2%-polysiloxane 

– Chirasil Nickel-OC3 10.2% (40): 

This compound was prepared according to the general 

procedure for the preparation of Chirasil Nickel-OC3. 

Therefore, 390 mg ligand polymer and 56 mg 

(0.225 mmol) nickel(II) acetate tetrahydrate were 

reacted and purified by the given procedure to yield 

360 mg (89%) nickel(II)-bis[(1R, 4S)-3-

heptafluorobutanoyl-10-propoxycamphorate]10.2%-poly-

siloxane as a pale green oil. ATR-FTIR: ν 2962, 2906, 

1739, 1640, 1627, 1576, 1512, 1481, 1445, 1412, 1373, 

1345, 1258, 1230, 1216, 1183, 1075, 1010, 828, 788, 

751, 702. 
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Nickel(II )-bis[(1R, 4S)-3-heptafluorobutanoyl-10-propoxycamphorate]20.0%-polysiloxane 

– Chirasil Nickel-OC3 y 20.0% (41): 

This compound was prepared according to the general 

procedure for the preparation of Chirasil Nickel-OC3. 

Therefore, 190 mg ligand polymer and 53 mg 

(0.060 mmol) nickel(II) acetate tetrahydrate were 

reacted and purified by the given procedure to yield 

173 mg (85%) nickel(II)-bis[(1R, 4S)-3-

heptafluorobutanoyl-10-propoxycamphorate]20.0%-poly-

siloxane as a green oil. ATR-FTIR: ν 2962, 2878, 1739, 

1641, 1627, 1481, 1457, 1413, 1388, 1373, 1344, 1258, 

1229, 1215, 1183, 1163, 1075, 1015, 918, 833, 789, 750, 

703.  

Lanthanum(III )-tris[(1R, 4S)-3-heptafluorobutanoyl-10-propoxycamphorate]20.0%-poly-

siloxane – Chirasil Lanthanum-OC3 20.0% (46): 

Incorporation of lanthanum was accomplished following 

the standard procedure for Chirasil Vanadyl-OC3. 

Vanadyl(IV) sulfate pentahydrate was replaced by 

lanthanum(III ) acetate hydrate (87.6 mg, 0.226 mmol) and 

200 mg ligand polymer and 0.50 mL (685 mg, 

6.772 mmol) anhydrous, distilled triethylamine were 

used. Incorporation of lanthanum is indicated by 

colorchange of the n-heptane phase from colorless to an 

orange-red color. Work-up and purification including 

column chromatography as described for Chirasil 

Vanadyl-OC3 yielded 199 mg (86%) lanthanum(III )-tris[(1R, 4S)-3-heptafluorobutanoyl-10-

propoxycamphorate]20.0%-polysiloxane as an orange to red viscous oil.ATR-FTIR: ν 2962, 

2879, 1687, 1684, 1645, 1525, 1480, 1455, 1413, 1387, 1372, 1344, 1258, 1229, 1214, 1197, 

1184, 1161, 1074, 1014, 918, 838, 791, 748. 
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Europium( III )-tris[(1R, 4S)-3-heptafluorobutanoyl-10-propoxycamphorate]20.0%-poly-

siloxane – Chirasil Europium-OC3 20.0% (45): 

Europium was incorporated following the standard 

procedure for Chirasil Vanadyl-OC3. Vanadyl(IV) sulfate 

pentahydrate was replaced by europium(III ) acetate 

hydrate (78.8 mg, 0.196 mmol) and 212 mg ligand 

polymer and 0.50 mL (685 mg, 6.772 mmol) anhydrous, 

distilled triethylamine were used. Incorporation of 

lanthanum is indicated by color change of the n-heptane 

phase from colorless to a yellow color. Work-up and 

purification including column chromatography as 

described for Chirasil Vanadyl-OC3 yielded 193 mg 

(80%) lanthanum(III )-tris[(1R, 4S)-3-heptafluorobutanoyl-10-propoxycamphorate]20.0%-

polysiloxane as an orange to yellow to pale orange viscous oil. ATR-FTIR: ν 2962, 2877, 

1738, 1702, 1685, 16447, 1577, 1575, 1530, 1479, 1457, 1413, 1389, 1372, 1345, 1258, 1229, 

1214, 1198, 1182, 1161, 1075, 7014, 917, 833, 791, 745, 703. 

General procedure for the preparation of oxovanadium(IV )-bis[(1R, 4S)-3-

heptafluorobutanoyl-10-propoxycamphorate]20.0%-polysiloxane – Chirasil Vanadyl-OC3: 

Incorporation of oxovanadium was accomplished using a modified procedure of M. Fluck.[83] 

Ligand polymer (200 – 450 mg, 3.5, 10.2 or 20.0% (1R, 4S)-3-heptafluorobutanoyl-10-

propoxycamphor content) was dissolved in a mixture of anhydrous n-heptane/methanol (3:2, 

100 mL) and was stirred for 1 h at room temperature and one hour at reflux temperature upon 

which the solvents became miscible. This step is recommended to furnish clean polymer 

dissolvation and polymer-purification prior to metal incorporation. Excess oxovanadium(IV) 

sulfate pentahydrate was added at room temperature and the mixture was stirred for 1 h (for 

exact amounts cf. experimental details of each compound). Afterwards the solution was 

heated at reflux temperature, anhydrous, distilled triethylamine was added and the solution 

was stirred for 3 – 4 h at this temperature. Reaction progress can be monitored by color 

change of the n-heptane phase from colorless to purple as well as decolorization of the 

vanadyl sulfate-salt containing methanol phase. Purification was accomplished following the 

work-up procedure including column chromatography as described for the preparation of 

Chirasil Nickel-OC3. The oxovanadium(IV)-bis[(1R, 4S)-3-heptafluorobutanoyl-10-

propoxycamphorate]-polysiloxanes (Chirasil Vanadyl-OC3) were obtained as reddish-purple, 

viscous oils. 
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Oxovanadium(IV )-bis[(1R, 4S)-3-heptafluorobutanoyl-10-propoxycamphorate]3.5%-poly-

siloxane – Chirasil Vanadyl-OC3 3.5% (42): 

The compound was prepared according to the general 

procedure for the preparation of Chirasil Vanadyl-OC3. 

Therefore, 200 mg ligand polymer, 270 mg 

(1.067 mmol, excess) vanadyl(IV) sulfate pentahydrate 

and 0.10 mL (138 mg, 1.364 mmol) triethylamine were 

reacted and purified by the given procedure to yield 

157 mg (79%, corresponding to polymer starting 

material) oxovanadium(IV)-bis[(1R, 4S)-3-

heptafluorobutanoyl-10-propoxycamphorate] 3.5%-poly-

siloxane as a pale reddish-purple oil. ATR-FTIR: ν 2962, 

2905, 1739, 1639, 1446, 1412, 1352, 1257, 1231, 1216, 

1182, 1011, 834, 789, 701. 

Oxovanadium(IV )-bis[(1R, 4S)-3-heptafluorobutanoyl-10-propoxycamphorate]10.2%-poly-

siloxane – Chirasil Vanadyl-OC3 10.2% (43): 

The compound was prepared according to the general 

procedure for the preparation of Chirasil Vanadyl-OC3. 

Therefore, 450 mg ligand polymer, 1.750 g 

(6.917 mmol, excess) vanadyl(IV) sulfate pentahydrate 

and 0.33 mL (455 mg, 4.504 mmol) triethylamine were 

reacted and purified by the given procedure to yield 

314 mg (70%, corresponding to polymer starting 

material) oxovanadium(IV)-bis[(1R, 4S)-3-

heptafluorobutanoyl-10-propoxycamphorate]10.2%-poly-

siloxane as a reddish-purple oil. ATR-FTIR: ν 2962, 

2905, 1739, 1685, 1638, 1576, 1560, 1517, 1446, 1413, 

1373, 1346, 1258, 1231, 1217, 1184, 1197, 1011, 828, 

789, 701. 
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Oxovanadium(IV )-bis[(1R, 4S)-3-heptafluorobutanoyl-10-propoxycamphorate]20.0%-poly-

siloxane – Chirasil Vanadyl-OC3 20.0% (44): 

The compound was prepared according to the general 

procedure for the preparation of Chirasil Vanadyl-OC3. 

Therefore, 230 mg ligand polymer, 1.760 g 

(6.957 mmol, excess) vanadyl(IV) sulfate pentahydrate 

and 0.33 mL (455 mg, 4.504 mmol) triethylamine were 

reacted and purified by the given procedure to yield 

170 mg (74%, corresponding to polymer starting 

material) oxovanadium(IV)-bis[(1R, 4S)-3-

heptafluorobutanoyl-10-propoxycamphorate]10.2%-poly-

siloxane as a reddish-purple, viscous oil. ATR-FTIR: ν 

2962, 2875, 1737, 1702, 1700, 1686, 1635, 1521, 1479, 

1457, 1414, 1389, 1373, 1346, 1258, 1230, 1217, 1197, 

1185, 1165, 1013, 917, 829, 792. 

General procedure for the preparation of oximes from ketones: To a solution of ketone 

(1.00 eq.) and pyridine (1.2 eq.) in ethanol was added hydroxylamine hydrochloride (1.75 eq.) 

and the mixture was stirred at reflux temperature for 4 – 5 h. The solvent was evaporated 

under reduced pressure, 10 mL of aqueous hydrochloric acid (1M) was added and the mixture 

was extracted with 3×50 – 100 mL dichloromethane. The combined organic layers were 

washed with 25 mL brine, the organic layer was separated and the aqueous layer was 

extracted with 2×50 – 100 mL dichloromethane. The combined organic layers were dried over 

sodium sulfate and the solvent was evaporated to yield the desired oximes. 

(1S, 4R)-10-hydroxycamphor oxime (52): 

The title compound was synthesized using the general method for the 

preparation of oximes. (1S)-10-hydroxycamphor (21, 2.36 g, 14.0 mmol), 

hydroxylamine hydrochloride (1.70 g, 24.5 mmol) and pyridine (1.33 g, 

16.8 mmol, 1.36 mL) were used and (1S, 4R)-10-hydroxycamphor oxime 

(52, 2.15 g, 11.7 mmol, 84%) was obtained as an off-white powder. Mp. 

193 – 195 °C. 1H NMR (300.51 MHz, CDCl3): δ 0.91 (s, 3H, -CH3), 0.95 (s, 3H, -CH3), 1.31 

– 1.08 (m, 1H, -CH2CH2-), 1.93 – 1.61 (m, 4H, -CH2CH2-, -CH2CH2-, CH3CCH2-), 2.05 (d, 

1H, J = 17.8 Hz), 3.20 (bs, 0.6H, -OH), 3.65 (d, 1H, J = 11.6 Hz, -CH2OH), 3.91 (d, 1H, 

J = 11.6 Hz, -CH2OH), 8.01 (bs, 0.7H, NOH) ppm. 13C NMR (75.56 MHz, CDCl3): δ  18.9, 
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20.4, 26.9, 28.9, 33.0, 44.6, 48.1, 56.3, 61.8 ppm. MS (EI): m/z (%) 41 (31), 55 (16), 67 (22), 

79 (13), 94 (19), 107 (9), 122 (15), 140 (100), 150 (8), 166 (32) [M-OH]+, 183 (53) [M]+. HR-

MS (EI, m/z): calc. for C10H17NO2 [M]: 183.1259, found: 183.1259. IR (KBr): ν 3278, 2959, 

2873, 1745, 1685, 1604, 1443, 1384, 1370, 1322, 1299, 1281, 1259, 1239, 1221, 1199, 1181, 

1165, 1098, 1076, 1054, 1040, 1017, 1002, 984, 973, 950, 924, 865, 854, 839, 809, 783, 765, 

709. 

(1R, 4R)-camphor oxime (58): 

This is a known compound[425] and was synthesized using the general 

method for the preparation of oximes. (1R)-camphor (22, 2.36 g, 14.0 

mmol), hydroxylamine hydrochloride (1.70 g, 24.5 mmol) and pyridine 

(1.33 g, 16.8 mmol, 1.36 mL) were used and (1R, 4R)-camphor oxime 

(58, 2.15 g, 11.7 mmol, 84%) was obtained as an off-white powder. Mp. 

110 – 114 °C. 1H NMR (300.08 MHz, CDCl3): δ 0.80 (s, 3H, -CH3), 0.91 (s, 3H, -CH3), 1.00 

(s, 3H, CH3CCH2-), 1.19 – 1.28 (m, 1H, -CH2CH2-), 1.41 – 1.50 (m, 1H, -CH2CH2-), 1.70 (dt, 

1H, J = 4.2 Hz, J = 12.5 Hz, CH3CCH2-), 1.78 – 1.88 (m, 1H, CH3CCH2-), 1.91 (t, 2H, 

J = 4.2 Hz), 2.05 (d, 3.91, J = 18.0 Hz), 2.55 (dt, 1H, J = 4.0 Hz, J = 18.0 Hz, -CCH), 7.76 

(bs, 1H, NOH) ppm. 13C NMR (75.56 MHz, CDCl3): δ  11.1, 18.5, 19.4, 27.2, 32.6, 33.1, 

43.7, 48.3, 51.8, 170.0 ppm. MS (EI): m/z (%) 69 (29), 79 (25), 94 (28), 110 (41), 124 (81), 

150 (34) [M-OH]+, 151 (5), 167 (100) [M]+. Anal. calcd for C10H17NO, C: 71.81 H: 10.25 N: 

8.37. Found, C: 71.81 H: 10.35 N: 8.21. The analytical data are in accordance to the reported 

one.[425] 

(1R, 4R)-10-benzyloxycamphor (50): 

This compound was prepared by a method described by Chelucci et al.[169] 

Sodium hydride (0.24 g, 10.00 mmol) suspended in 100 mL anhydrous 

tetrahydrofurane was placed in a three necked round bottom flask and (1S)-10-

hydroxycamphor (21, 1.50 g, 8.92 mmol) dissolved in 50 mL anhydrous 

tetrahydrofurane was added dropwise and the mixture was stirred for 3 h at 

room temperature. A solution of benzyl bromide (1.60 g, 9.35 mmol) 

dissolved in 30 mL anhydrous tetrahydrofurane was slowly added to the 

mixture over a period of one hour. The mixture was stirred for two hours at 

reflux temperature and additional 16 h at room temperature. 300 mL water was added 

followed by extraction with 3×50 mL diethyl ether. The organic layers were combined, 

washed with brine and dried over sodium sulfate. Evaporation of the solvent under reduced 
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pressure yielded the title compound as a colorless liquid (2.22 g, 8.58 mmol, 96%). 1H NMR 

(500.13 MHz, CDCl3): δ 0.89 (s, 3H, -CH3), 1.01 (s, 3H, -CH3), 1.27 – 1.33 (m, 2H), 1.78 (d, 

1H, J = 17.7 Hz), 1.91 – 2.00 (m, 2H), 2.02 – 2.07 (m, 1H), 2.33 (dt, 1H, J = 18.3 Hz, J = 3.5 

Hz, CH3CCH-), 3.54 (d, 1H, 2J = 10.3 Hz, -CH2OBn), 3.58 (d, 1H, 2J = 10.3 Hz, -CH2OBn), 

4.47 (s, 2H, -CH2Ar), 7.19 – 7.34 (m, 5H, ArH) ppm. 13C NMR (125.75 MHz, CDCl3): 

δ  20.3, 20.8, 25.3, 26.7, 33.5, 43.5, 43.8, 47.1, 61.3, 66.5, 73.5, 127.3, 128.2, 138.7, 217.5 

ppm. MS (EI): m/z (%) 55 (17), 64 (23), 67 (19), 77 (20), 79 (19), 81 (17), 91 (100), 107 (7) 

[CH2OBn]+, 152 (26), 258 (4) [M]+. HR-MS (EI, m/z): calc. for C17H22O2 [M]: 258.1620, 

found: 258.1633. IR (KBr): ν 2961, 2879, 1743, 1496, 1470, 1453, 1416, 1389, 1365, 1274, 

1199, 1169, 1104, 1047, 1027, 738, 700. 

(1R, 4R)-10-(4-tert-butylbenzyl)oxycamphor (51): 

This compound was prepared by a method described by Chelucci et al.[169] 

Sodium hydride (0.24 g, 10.00 mmol) suspended in 100 mL anhydrous 

tetrahydrofurane was placed in a three necked round bottom flask and (1S)-

10-hydroxycamphor (21,1.50 g, 8.92 mmol) dissolved in 50 mL anhydrous 

tetrahydrofurane was added dropwise and the mixture was stirred for 3 h at 

room temperature. A solution of 4-tert-butylbenzyl bromide (2.13 g, 

9.40 mmol) dissolved in 30 mL anhydrous tetrahydrofurane was slowly 

added to the mixture over a period of one hour. The mixture was stirred for 

two hours at reflux temperature and additional 16 h at room temperature. 300 mL water was 

added followed by extraction with 3×50 mL diethyl ether. The organic layers were combined, 

washed with brine and dried over sodium sulfate. Evaporation of the solvent under reduced 

pressure yielded the title compound as a colorless liquid (2.75 g, 8.74 mmol, 98%). 1H NMR 

(500.13 MHz, CDCl3): δ 0.96 (s, 3H, -CH3), 1.08 (s, 3H, -CH3), 1.32 (s, 9H, -(CH3)3), 1.36 (d, 

J = 9.0 Hz), 1.84 (d, 1H, J = 17.9 Hz), 1.99 – 2.04 (m, 2H), 2.08 – 2.16 (m, 1H), 2.37 – 2.42 

(m, 1H), 3.59 (d, 1H, 2J = 10.4 Hz, -CH2OBn), 3.64 (d, 1H, 2J = 10.4 Hz, -CH2OBn), 4.47 – 

4.53 (m, 2H, -CH2Ar), 7.25 – 7.37 (m, 4H, ArH) ppm. 13C NMR (125.75 MHz, CDCl3): 

δ  20.4, 20.8, 25.3, 26.8, 31.2, 31.4, 33.6, 34.5, 43.5, 43.8, 47.1, 61.4, 66.5, 73.4, 125.1, 125.8, 

127.1, 128.8, 135.7, 150.2, 217.6 ppm. MS (EI): m/z (%)69 (6), 81 (6), 109 (100), 117 (13), 

132 (17), 147 (47), 152 (32),  163 (84) [OtBuBn]+, 257 (6) [M-tBu]+, 314 (24) [M]+. HR-MS 

(EI, m/z): calc. for C21H30O2 [M]: 314.2246, found: 314.2265. IR (KBr): ν 3285, 3264, 3242, 

2962, 2869, 1743, 1621, 1468, 1362, 1210, 1108, 1047, 818. 
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(1S, 4R)-10-benzyloxycamphor oxime (53): 

The title compound was synthesized using the general method for the 

preparation of oximes. (1R ,4R)-10-benzyloxycamphor (50, 730 mg, 2.83 

mmol), hydroxylamine hydrochloride (236 mg, 3.40 mmol) and pyridine 

(268 mg, 3.39 mmol, 0.27 mL) were used and (1S, 4R)-10-

benzyloxycamphor oxime (681 mg, 2.49 mmol, 88%) was obtained as an 

colorless liquid. 1H NMR (500.13 MHz, CDCl3): δ 0.89 (s, 3H, -CH3), 

1.02 (s, 3H, -CH3), 1.25 – 1.30 (m, 2H), 1.45 – 1.20 (m, 1H), 1.85 – 1.91 

(m, 2H), 2.06 (d, 1H, J = 17.8 Hz), 2.10 – 2.13 (m, 1H), 2.54 – 2.60 (m, 

1H, CH3CCH-), 3.61 (d, 1H, 2J = 10.0 Hz, -CH2OBn), 3.70 (d, 1H, 2J = 10.0 Hz, -CH2OBn), 

4.51 (d, 1H, 2J = 12.2 Hz, -CH2Ar), 4.55 (d, 1H, 2J = 12.2 Hz, -CH2Ar), 7.24 – 7.35 (m, 5H, 

ArH), 7.82 (bs, 1H, NOH) ppm. 13C NMR (125.75 MHz, CDCl3): δ  20.1, 20.2, 27.0, 28.3, 

33.0, 44.5, 48.6, 55.3, 67.8, 73.5, 127.3, 127.4 (2×), 128.2 (2×), 138.8, 168.3 ppm. MS (EI): 

m/z (%) 79 (9), 91 (100), 111 (7), 124 (14), 150 (18), 167 (56) [M-CH2OBn]+, 182 (27) [M-

tolyl] +, 230 (5), 256 (5) [M-OH]+, 274 (1) [M]+. HR-MS (EI, m/z): calc. for C17H23NO2 [M]: 

273.1729, found: 273.1731. IR (KBr): ν 2950, 2878, 2802, 1723, 1610, 1495, 1452, 1388, 

1366, 1201, 1111, 1096, 1073, 1027, 927, 836, 737, 700.  

(1S, 4R)-10-(4-tert-butylbenzyl)oxycamphor oxime (54): 

The title compound was synthesized using the general method for the 

preparation of oximes. (1R, 4R)-10-(4-tert-benzyl)oxycamphor (51, 

1.00 g, 3.18 mmol), hydroxylamine hydrochloride (0.27 g, 3.81 mmol) 

and pyridine (0.30 g, 3.82 mmol, 0.31 mL) were used and (1S, 4R)-10-(4-

tert-benzyl)oxycamphor oxime (1.01 mg, 3.05 mmol, 96%) was obtained 

as an colorless liquid. 1H NMR (500.13 MHz, CDCl3): δ 0.90 (s, 3H, -

CH3), 1.04 (s, 3H, -CH3), 1.24 – 1.92 (m, 2H), 1.31 (s, 9H, -(CH3)3), 1.44 

– 1.49 (m, 1H), 1.85 – 1.91 (m, 2H), 2.06 (d, 1H, J = 17.7 Hz), 2.09 – 

2.15 (m, 1H), 2.54 – 2.60 (m, 1H, CH3CCH-), 3.61 (d, 1H, 2J = 10.1 Hz, -CH2OBn), 3.70 (d, 

1H, 2J = 10.1 Hz, -CH2OBn), 4.50 (d, 1H, 2J = 12.5 Hz, -CH2Ar), 4.53 (d, 1H, 2J = 12.6 Hz, -

CH2Ar), 7.26 – 7.28 (m, 2H, ArH), 7.34 – 7.36 (m, 2H, ArH) ppm. 13C NMR (125.75 MHz, 

CDCl3): δ  20.1, 20.2, 27.0, 28.2, 31.4 (3×), 33.0, 34.5, 44.5, 48.6, 55.4, 61.9, 67.8, 73.4, 

125.1 (2×), 127.1 (2×), 135.8, 150.2, 168.6 ppm. MS (EI): m/z (%) 79 (5), 91 (130), 105 (12), 

111 (20), 117 (20), 124 (38), 132 (23), 138 (13), 140 (12), 147 (77), 150 (64), 167 (100) [M-

(4-tert-butylbenzyloxy)]+, 182 (7) [M-(4-tert-butyl)tolyl]+, 312 (45) [M-OH]+, 329 (2) [M]+. 

HR-MS (EI, m/z): calc. for C21H31NO2 [M]: 329.2355, found: 329.2383. IR (KBr): ν 3162, 

2960, 2869, 1451, 1391, 1363, 1268, 1109, 1094, 1074, 927, 844, 738. 
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N-Bornyl isobornylcamphor amine (57): 

(1S, 4R)-10-hydroxycamphor oxime (52, 9.07 g, 0.050 mol) was 

dissolved in 100 mL anhydrous ethanol and Raney-Nickel®, 

thoroughly washed several times with absolute ethanol, was added 

under nitrogen and hydrogenation was allowed to proceed at 50 °C 

over a period of three days. The mixture was filtered (pore 

size 0.45 µm), the solvent was evaporated and dried for one day 

under high vacuum to yield a yellow oil. Lithium aluminum hydride 

was suspended in 250 mL anhydrous tetrahydrofurane and filtered carefully. The solution was 

cooled to 0 °C and the obtained oil dissolved in 50 mL anhydrous tetrahydrofurane was added 

over a period of one hour. The mixture was allowed to warm up to room temperature and was 

stirred for 36 h at reflux temperature. The reaction was quenched at 0 °C with anhydrous 

methanol and the ¾ of the solvent was evaporated. The crude product was taken up in 300 mL 

dichloromethane, 200 mL of saturated, aqueous sodium/ potassium tartrate was added and the 

mixture was vigorously stirred for 24 h. The organic layer was separated, the pH was adjusted 

to one with 3M hydrochloric acid and extracted three times with 75 mL water. The aqueous 

layers were combined, basified with 3M sodium hydroxide and 10 ml of aqueous, saturated 

sodium carbonate and extracted three times with 50 mL dichloromethane. The combined 

organic layer was dried over sodium sulfate, the solvent was evaporated under reduced 

pressure and the crude product was purified by flash column chromatography (silica, 

chloroform/ methanol = 20:1 to 7:1). Evaporation of the solvent yielded the N-

bornylisobornylcamphor amine carbonate salt 57 as colorless crystals (6.44 g, 0.0184 mol, 

74%). 1H NMR (500.13 MHz, MeOD-d4): δ 0.89 – 0.92 (m, 1H), 0.93 (s, 3H, -CH3), 0.94 (s, 

3H, -CH3), 0.95 – 1.02 (m, 4H, -CH2CH2-, -CH3), 1.04 (s, 3H, -CH3), 1.08 – 1.26 (m, 2H), 

1.30 – 1.40 (m, 2H), 1.54 – 1.60 (m, 1H), 1.63 – 1.79 (m, 4H), 1.82 – 1.93 (m, 4H), 2.36 – 

2.43 (m, 1H), 3.03 – 3.10 (m, 1H), 3.60 (d, 1H, 2J = 10.3 Hz, -CH2OH), 3.65 (d, 1H, 
2J = 11.2 Hz, -CH2OH), 3.81 (d, 1H, 2J = 10.3 Hz, -CH2OH), 3.83 – 3.91 (m, 1H, NH), 3.94 

(d, 1H, 2J = 11.3 Hz, -CH2OH) ppm. 13C NMR (125.75 MHz, MeOD-d4): δ  19.6, 20.3, 21.1, 

21.3, 25.2, 27.5, 28.9, 33.5, 47.2, 7.3, 48.1, 48.8, 52.8, 54.0, 62.1 (2×), 64.5 (2×), 65.7, 65.8 

ppm. MS (CI, pos. mode, iso-butane): m/z (%) 322 (100) [M-H]+, 364 (11) [M+C4H9]
+. MS 

(EI): m/z (%) 67 (30), 79 (30), 81 (26), 93 (41), 111 (35), 135 (27), 152 (22) [M-

(isobornylamin)yl]+, 168 (37) [M-bornyl]+, 182 (32), 196 (23), 234 (74), 290 (25), 304 (100), 

321 (100) [M]+. HR-MS (EI, m/z): calc. for C20H35NO2 [M]: 321.2668, found: 321.2695. 

ATR-FTIR: ν 3385, 2986, 2934, 2876, 1653, 1448, 1384, 1273, 1299, 1273, 1225, 1211, 

1183, 1128, 1100, 1088, 1053, 1022, 984, 967, 920, 894, 875, 860, 845, 788, 768, 741. 
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N-Isobornylcamphor imine (59): 

(1R)-camphor oxime (58, 5.07 g, 0.030 mol) was dissolved in 

100 mL  anhydrous methanol, palladium on charcoal and 

ammonium formate (5.66 g, 0.120 mmol) was added. The mixture 

was stirred for five days at room temperature, filtered (pore 

size 0.45 µm) and the solvent was evaporated under reduced 

pressure. The crude product was dissolved in 100 mL diethyl ether 

and washed twice with 25 mL aqueous 3M sodium hydroxide solution. The organic layer was 

acidified to pH 2 with 1M hydrochloric acid and washed two times with 25 mL diethyl ether 

to remove the starting material. The pH was adjusted to 7 with 1M sodium hydroxide solution 

and extracted three times with 50 mL diethyl ether. The combined organic layers were dried 

over sodium sulfate and the crude product was deposited on celite and purified by flash 

column chromatography (silica, hexane/ ethyl acetate = 15:1 to 1:1) to yield a small fraction 

of the desired bornyl ketimine condensation product. N-Isobornylcamphor imine 59 was 

obtained as an colorless oil (255 mg, 0.89 mmol, 6%). Crystals suitable for X-Ray diffraction 

were obtained over a period of 9 month from a saturated diethyl ether/ pentane solution. 1H 

NMR (500.13 MHz, CDCl3): δ 0.64 (s, 3H, -CH3), 0.67 (s, 3H, -CH3), 0.76 (s, 3H, -CH3), 

0.81 (s, 3H, -CH3), 0.84 (s, 3H, -CH3), 1.04 – 1.10 (m, 4H, -CH2CH2-, -CH3), 1.06 – 1.21 (m, 

1H, -CH2CH2-), 1.43 – 1.56 (m, 4H, var. -CH2CH2-), 1.59 – 2.24 (m, 3H, var. -CH2CH2-, -

CCHamin substructure), 1.69 – 1.77 (m, 1H), 1.80 (t, 1H, 2J = 4.5 Hz, J = 7.5 Hz, -CCHimin 

substructure), 2.22 (dt, 1H, J = 16.7 Hz, 2J = 3.9 Hz, -N=CCH2-), 3.02 (dd, 1H, 2J = 5.4 Hz =N-

CH- 1H)  ppm. 13C NMR (125.75 MHz, CDCl3): δ  11.4, 12.3, 19.1, 19.6, 2.4, 20.9, 27.6, 

27.8, 32.3, 34.9, 36.4, 38.8, 44.1, 45.7, 46.2, 47.0, 49.2, 53.3, 68.4, 175.9 ppm. MS (EI): m/z 

(%) 67 (9), 81 (29), 95 (16), 137 (28) [M-(isobornylamin)yl]+, 152 (97) [M-bornyl]+, 178 

(20), 218 (11), 244 (6), 259 (31), 272 (14) [M-CH3]
+, 287 (100) [M]+. HR-MS (EI, m/z): calc. 

for C20H33N [M]: 287.2613, found: 287.2610. 
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Bis((1R,4S)-7,7-dimethyl-3-oxobicyclo[2.2.1]heptan-2-ylidene)glyoxal, camphor tetrake-

tone (65): 

This compound was prepared using a modified procedure of 

the reported one.[266] To a solution of (1R)-camphor (22, 

5.00 g, 0.033 mol) in 150 mL anhydrous tetrahydrofurane was 

slowly added sodium hydride (0.87 g, 0.036 mol). The 

suspension was stirred at reflux temperature (75 °C) for 3 d 

until the mixture turned into a yellow, clear solution. The solution was allowed to cool down 

to room temperature and half of the volume of diethyl oxalate (2.4 g, 0.016 mol) dissolved in 

100 mL of anhydrous tetrahydrofurane was added dropwise. After 2 h the remaining diethyl 

oxalate solution was added dropwise and the orange solution was stirred at reflux temperature 

for one day. The red solution was cooled down to room temperature and the solvent was 

evaporated under reduced pressure. 200 mL of dichloromethane was added and the 

suspension was extracted three times with 200 mL of water. The aqueous layer was acidified 

with aqueous 1N hydrochloric acid and extracted with diethyl ether until the aqueous layer 

remained almost colorless. The organic layers were combined, washed with brine, dried with 

sodium sulfate and the solvent removed under reduced pressure to obtain an orange powder. 

Purification by washings with a small amount of acetone and drying under high vacuum 

yielded 5.47g (0.015 mmol, 93%) of 65 as a bright yellow powder. Mp. 178 – 186 °C; 1H 

NMR (500.13 MHz, CDCl3, TMS): δ  0.84 (s, 6H, 2×(-CH3)), 0.93 (s, 6H, 2×(-CH3)), 0.99 (s, 

6H, 2×(-CH2CCH3)), 1.40  1.51 (m, 4H, 2×(-CCH2-)), 1.69 – 1.79 (m, 2H, 2×(-CHCH2-)), 

2.01 – 2.10 (m, 2H, 2×(-CHCH2-)), 3.28 (d, J = 4.0 Hz, 2H, 2×(-CH)), 11.83 (bs, 2H, 2×(-

OH)); 13C NMR (125.75 MHz, CDCl3, TMS): δ 8.7, 18.6, 20.6, 27.1, 30.5, 48.5, 48.9, 57.9, 

120.6, 155.3, 214.7 ppm. MS (EI): m/z (%) 151 (15), 179 (100) [C11H15O2]
+, 247 (94), 330 

(54), 358 (34) [M]+. HRMS (EI): m/z calcd for C22H30O4: 358.2144. Found: 358.2158. IR 

(KBr): ν 3442, 2960, 2871, 1661, 1579, 1456, 1390, 1376, 1337, 1269, 1225, 1179, 1155, 

1146, 1106, 1069, 1027, 826, 815. Anal. calcd for C22H30O4, C: 73.71 H: 8.44. Found, C: 

73.22 H: 8.40. 
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Bis (3-oxobicyclo[2.2.1]heptan-2-ylidene)glyoxal, norcamphor tetraketone, mixture of 

three isomers (65b): 

Synthesis was accomplished using racemic norcamphor as 

starting material and overall three diastereomers were 

obtained (R,R-, R,S- and S,S-diastereomer). The title 

compound was prepared by Golo Storch.[273] To a suspension 

of 2.90 g (0.121 mol, 2.05 eq.) sodium hydride in anhydrous 

tetrahydrofurane (500 mL) was dropwise added norcamphor 

(13.00 g, 0.118 mol) dissolved in 50 mL tetrahydrofurane and stirred under reflux heating 

over night. Additional 0.28 g (11.8 mmol) sodium hydride was added to ensure complete 

deprotonation and stirring was continued for another 24 h. To the mixture 8.19 g (56.1 mmol) 

diethyl oxalate diluted in 60 mL tetrahydrofurane were added dropwise over a period of three 

hours at room temperature and stirring was continued for 6 h under reflux heating. After 

evaporation of the solvent under reduced pressure and high vacuum the crude product was 

dissolved in 800 mL of water and washed three times with diethyl ether (overall volume 1 L). 

The pH of the aqueous layer was adjusted to 3 with 3M hydrochloric acid and extracted two 

times with 300 mL dichloromethane. The organic layers were combined, dried over sodium 

sulfate and the solvent was evaporated under reduced pressure to yield the product as a dark, 

yellow oil. further purification was achieved by re-dissolution in a dichloromethane-water 

mixture (1:1), pH adjustment to 1 and extraction with dichloromethane. Drying over sodium 

sulfate and evaporating of the solvent yielded norcamphor tetraketone 5.07 g (29.9 mmol, 

52%) as an yellow to orange oil. 1H NMR and 13C-NMR data and a detailed discussion due to 

formation of diastereomers are reported elsewhere.[273] MS (EI): m/z (%) 67 (26), 91 (25), 137 

(31) [M/2]
+, 145 (30), 174 (99), [M-CO-CO2-C2H4]

+, 201 (100), [M-2CO-OH]+, 202 (97) [M-

CO-CO2]
+, 229 (79) [M-CO-OH]+, 246 (12) [M-CO]+, 274 (2) [M]+. HR-MS (EI, m/z): calc. 

for C16H18O4 [M]: 274.1205, found: 274.1201. ATR-FTIR: ν 3400, 2954.4, 2874.4, 1785.8, 

1716.3, 1656.6, 1450.2, 1299.8, 1243.9, 1197.6, 1184.1, 1148.4, 1088.6, 1071.3, 1024.98, 

942.1.  
  



164  Experimental Section – Chapter 2 

 

General procedure for the preparation of Rh- and Ir tetraketone complexes derived 

from camphor- or norcamphor tetraketones:  

To a solution of enantiopure tetraketone 65 (camphor) 

or 65b (norcamphor) (150 mg, 0.42 mmol, 1.00 eq.) in 

anhydrous tetrahydrofurane was added potassium tert-

butylate (94 mg, 0.84 mmol, 2.00 eq.) in one portion at 

room temperature. After  20 min 0.42 mmol metal 

precursor (1.00 eq.) was added and the mixture stirred 

over night. The solvent was evaporated under reduced 

pressure, the residue is dissolved in a small quantity of 

dichloromethane and filtered through a short pad of 

celite. Evaporation of the solvent and recrystallization 

from a dichloromethane-petrolether mixture (1:20–100) 

by evaporation of the solvents followed by precipitation 

at low temperatures (-60 °C) yields the rhodium- and 

iridium chelate-complexes as bright, yellow powders. 

 

Preparation of enantiopure dirhodium(I)-camphor tetraketone complex (67): 

This compound was prepared according to the general method 

for tetraketone metal complex formation using enantiopure 

camphor tetraketone 65 (150 mg, 0.42 mmol), potassium tert-

butylate (94 mg, 0.84 mmol) and dichloro-

bis(norbornadiene)dirhodium(I) (193 mg, 0.42 mmol). Reaction 

was stirred at 50 °C for one day after metal precursor addition. 

Purification was accomplished following the general procedure 

to yield the title compound as a bright, yellow microcrystalline 

powder (294 mg, 0.39 mmol, 94%). Mp. >210 °C (decomp.); 1H 

NMR (500.13 MHz, CDCl3, TMS): δ 0.70 (s, 6H, 2×(-CH3)), 

0.78 (s, 6H, 2×(-CH3)), 0.83 (s, 6H, 2×(-CH3)), 1.17 – 1.21 (m, 6H, 2×(-CH2-)nbd, 2×(-CH2-)), 

1.25 – 1.30 (m, 2H, 2×(-CH2-)), 1.48 – 1.53 (m, 2H, 2×(-CH2-)), 1.83 – 1.88 (m, 2H, 2×(-

CH2-)), 2.38 (d, 2H, J = 3.4 Hz, 2×(-CCH-)), 3.76 (d, 2H, J = 19.0 Hz, 2×(-CCH-)nbd), 3.87 (d, 

8H, J = 16.8 Hz, 4×(-CHCH-)nbd) ppm. 13C NMR (125.75 MHz, CDCl3, TMS): δ 9.5, 19.3, 

20.4, 27.5, 30.9, 49.1, 49.5, 51.4, 51.8, 51.9, 52.0, 52.1 (2×), 52.7 (2×), 57.9, 60.3, 60.4, 

112.6, 172.4, 201.1 ppm. HR-MS (FAB): m/z (%) calcd for C36H44Rh2O4 [M] +: 746.1350, 

found: 746.1335. ATR-FTIR: ν 2991, 2948, 2906, 1602, 1580, 1437, 1397, 1389, 1382, 1373, 
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1319, 1364, 1304, 1301, 1278, 1242, 1217, 1192, 1178, 1164, 1152, 1104, 1073, 1054, 966, 

938, 926, 916, 881, 848, 829, 808, 795, 776, 766, 743, 723. 

Preparation of enantiopure diiridium( I)-camphor tetraketone complex (66): 

This compound was prepared according to the general method 

for tetraketone metal complex formation using enantiopure 

camphor tetraketone 65 (150 mg, 0.42 mmol), potassium tert-

butylate (94 mg, 0.84 mmol) and bis(1,5-

cyclooctadiene)diiridium(I) dichloride (281 mg, 0.42 mmol) to 

yield the title compound as a bright, yellow microcrystalline 

powder (216 mg, 0.23 mmol, 54%). Mp. >225 °C (decomp.); 1H 

NMR (500.13 MHz, CD2Cl2, TMS): δ 0.68 (s, 6H, 2×(-CH3)), 

0.84 (s,  6H, 2×(-CH3)), 0.93 (s, 6H, 2×(-CH3)), 1.23 – 1.28 (m, 

2H, 2×(-CH2-)), 1.33 – 1.38 (m, 2H, 2×(-CH2-)), 1.52 – 1.64 (m, 10H, 8×(-CH2-)cod, 2×(-CH2-

)), 1.93 – 1.99 (m, 2H, 2×(-CH2-)), 2.13 – 2.28 (m, 8H, 8×(-CH2-)cod), 2.59 (d, 2H, J = 3.6 Hz, 

2×(-CCH-)), 3.86 – 3.90 (m. 2H. 2×CHcod), 3.94 – 4.01 (m. 6H. 6×CHcod) ppm. 13C NMR 

(125.75 MHz, CD2Cl2, TMS): δ 9.2, 19.0, 19.9, 27.5, 30.8 (2×), 30.9, 31.2, 31.3, 49.6, 51.7, 

58.4 (2×), 59.0, 59.2 (2×), 116.2, 170.5, 202.6, 210.7 ppm. HR-MS (FAB): m/z (%) calcd for 

C38H52
191Ir193IrO4 [M] +: 956.3102, found: 956.3069. ATR-FTIR: ν 2959, 2875, 2828, 1606, 

1582, 1464, 1447, 1399, 1383, 1373, 1364, 1318, 1286, 1279, 1262, 1242, 1220, 1196, 1180, 

1164, 1156, 1108, 1102, 1077, 1057, 1009, 999, 978, 938, 913, 891, 867, 845, 828, 813, 779, 

748, 724. 

Preparation of dirhodium( I)-norcamphor tetraketone complex (67b):[273] 

This compound was prepared according to the general method 

for tetraketone metal complex formation using norcamphor 

(rac.) tetraketone (65b, 48 mg, 0.17 mmol), potassium tert-

butylate (39 mg, 0.35 mmol) and dichlorobis(norbornadi-

ene)dirhodium(I) (193 mg, 0.17 mmol). Purification was 

accomplished following the general procedure to yield the title 

compound as a bright, yellow powder (114 mg, 0.17 mmol, 

98%). Mp. >200 °C (decomp.); 1H NMR (300.51 MHz, CDCl3, 

TMS): δ 1.21 (s, 4H, 2×(-CH2)nbd), 1.21 – 1.35 (m, 6H, 2×(-

CH2-), 2×(-CH2-), 2×(-CH2-)), 1.55 – 1.56 (m, 2H, 2×(-CH2-)), 

1.65 – 1.80 (m, 4H, 2×(-CH2-), 2×(-CH2-)), 2.69 (s, 2H, 2×(-
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CCH-)), 2.98 (s, 2H, 2×(-CCH-)), 3.77 (d, 4H, J = 45.1 Hz, 4×(-CCH-)nbd), 3.92 (d, 8H, 

J = 86.7 Hz, 4×(-CHCH-)nbd) ppm. 13C NMR (75.48 MHz, CDCl3, TMS): δ 24.4, 29.0, 40.5, 

43.1, 49.5, 50.0 (4×), 52.1 (2×), 52.2, 52.3, 52.6, 52.7 (2×), 52.9, 60.5, 60.6, 113.1, 173.1, 

200.6 ppm. HR-MS (FAB): m/z (%) calcd for C30H32Rh2O4 [M] +: 662.0411, found: 662.0392. 

IR (KBr): ν 2947.7, 2915.8, 2866.7, 1578.5, 1435.7, 1382.7, 1219.8, 1097.3, 930.5. 

Preparation of diiridium( I)-camphor tetraketone complex (66b):[273] 

This compound was prepared according to the general method 

for tetraketone metal complex formation using norcamphor (rac.) 

tetraketone (65b, 29 mg, 0.10 mmol), potassium tert-butylate 

(24 mg, 0.21 mmol) and bis(1,5-cyclooctadiene)diiridium(I) 

dichloride (70 mg, 0.10 mmol) to yield the title compound as a 

bright, yellow powder (38 mg, 0.04 mmol, 41%). The 

redissolved compound is not stable and decomposes within 

60 min in solution (dichloromethane, chloroform and benzene). 

Mp. >200 °C (decomp.); 1H NMR (300.51 MHz, CD2Cl2, TMS): 

δ 1.25 – 1.40 (m, 6H, 2×(-CH2-), 2×(-CH2-), 2×(-CH2-)), 1.56 – 

1.69 (m, 10H, 2×(-CH2-), 2×(-CH2CH2-)cod, 2×(-CH2CH2-)cod), 1.80 – 1.83 (m, 4H, 2×(-CH2-

), 2×(-CH2-)), 2.21 – 2.25 (m, 8H, 2×(-CH2CH2-)cod, 2×(-CH2CH2-)cod), 2.86 (s, 2H, 2×(-

CCH-)), 3.23 (s, 2H, 2×(-CCH-)), 4.00 (s, 8H, 4×(-CHCH-)nbd) ppm. HR-MS (FAB): m/z (%) 

calcd for C32H39
191Ir193IrO4 [M] +: 871.2085, found: 871.2110. IR (KBr): ν 2936.1, 2866.7, 

2830.0, 1583.3, 1446.4, 1375.0, 1220.7, 1100.2, 975.8. 

4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-1H,1'H-3,3'-bipyrazole (68): 

To a boiling solution of 65 (3.50 g, 9.76 mmol) in 200 mL 

absolute ethanol was added hydrazinium hydroxide 9.5 mL g 

(9.22 g, 0.184 mol) at once through a short reflux condenser. 

After heating for two days at this temperature the precipitate 

was collected by hot filtration. The filtrate was concentrated 

under reduced pressure at 70 °C and the formed precipitates 

were successively collected. Washings with ethyl acetate and drying under high vacuum 

yielded 3.13 g (8.93 mmol, 91%) of pure 68 as a fluffy, insoluble white powder. Mp.  > 

250 °C; MS (EI): m/z (%) 55 (15), 77 (16), 67 (22), 121 (23), 133 (31), 159 (35), 176 (20) 

[C11H16N2]
+, 177 (69), 187 (19), 220 (19), 307 (32) [M-(3×CH3)]

+, 350 (17) [M]+. HRMS 

(EI): m/z calcd for C22H30N4: 350.2470, found: 350.2442. IR (KBr): ν 3428, 3262, 2957, 
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2871, 1632, 1473, 1453, 1418, 1388, 1375, 1367, 1270, 1237, 1180, 1170, 1129, 1083, 969, 

950. Anal. calcd for C22H30N4, C: 75.39 H: 8.63 N: 15.98. Found, C: 75.18 H: 8.88 N: 15.77.  

General procedure for alkylation and arylation of (68): Compound 68 (1.00 eq.) and 

sodium hydride (2.30 eq.) were suspended in anhydrous tetrahydrofurane (10 – 50 mM, 

referred to 2), stirred for 30 min at room temperature and heated at reflux temperature for 2 h 

until it turned into a clear colorless solution. The solution was then cooled to room 

temperature and the appropriate amount of arylhalogenide (2.05 eq.) was added. The solution 

was stirred at room temperature for 30 min and at reflux temperature for 4 – 16 h. The 

precipitate was filtered off and the solvent was evaporated under reduced pressure. The 

residue was taken up in dichloromethane, washed with H2O and brine. The organic phase was 

separated, dried with sodium sulfate and the solvent was evaporated under reduced pressure to 

yield the corresponding arylated compounds as analytically pure solids. In case of alkylation 

2.20 eq. of alkylhalogenides were added. Standard work-up procedure and drying at elevated 

temperatures under high vacuum yielded pure alkylated compounds. Whenever necessary the 

compounds were washed with small amounts of pentane. 

1,1'-diethyl-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-1H,1'H-3,3'-

bipyrazole (69a): 

Compound 69a was prepared following the standard procedure 

using 68 (150 mg, 0.427 mmol), sodium hydride (25 mg, 

1.024 mmol) and ethyl bromide (116 µL, 0.938 mmol) in 80 mL 

anhydrous tetrahydrofurane. The solution was stirred at reflux 

temperature for 16 h.  Extensive drying at elevated temperature 

under high vacuum yielded pure 69a (229 mg, 0.542 mmol, 97%) as a yellowish powder. Mp. 

132 – 148 °C; 1H NMR (300.13 MHz, CD3CN): δ 0.73 (s, 6H, 2×(-CH3)), 0.93 (s, 6H, 2×(-

CH3)), 1.02 – 1.10 (m, 2H, 2×(-CCH2-)), 1.16 – 1.20 (m, 2H, 2×(-CCH2-)), 1.24 (t, 6H, 

J = 7.2 Hz, 2×(-CH2CH3)), 1.34 (s, 6H, 2×(-CH2CCH3)), 1.82 – 1.90 (m, 2H, 2×(-CHCH2-)), 

2.08 – 2.17 (m, 2H, 2×(-CHCH2-)), 2.90 (d, 2H, J = 3.9 Hz, 2×(-CCH)), 4.01 (q, 4H, 

J = 7.2 Hz, 2×(-CH2CH3)) ppm. 13C NMR (75.46 MHz, CD3CN): δ 11.9, 17.7, 20.2, 21.1, 

28.7, 34.7, 46.1, 49.5, 53.7, 63.9, 127.3, 138.9, 155.4 ppm. MS (EI): m/z (%) 73 (26), 133 

(14), 355 (13), 377 (75), 406 (14), 420 (33) [M-(n-pentyl)]+, 434 (11) [M-(n-butyl)]+, 447 (73) 

[M-(3×CH3)]+, 420 (9) [M-(ethyl)]+, 475 (9) [M-(CH3)]
+, 490 (62) [M]+. HRMS (EI): m/z 
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calcd for  C32H50N4: 490.4035, found: 490.4018. IR (KBr): ν 3428, 2957, 2870, 1632, 1504, 

1451, 1386, 1378, 1365, 1352, 1310, 1282, 1247, 1133, 1107, 1082, 1060, 1049, 1029. 

1,1'-diisopropyl-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-1H,1'H-3,3'-

bipyrazole (69b):  

Compound 69b was prepared following the standard procedure 

using 68 (200 mg, 0.571 mmol), sodium hydride (33 mg, 

1.376 mmol) and iso-propyl bromide (215 µL, 2.29 mmol) in 

90 mL anhydrous tetrahydrofurane. After 2 h at reflux 

temperature another 215 µL iso-propyl bromide was added. 

Extensive drying at elevated temperature under high vacuum 

yielded pure 69b (236 mg, 0.542 mmol, 95%) as a yellowish powder. Mp. 155 – 162 °C; 1H 

NMR (300.13 MHz, CDCl3, TMS): δ 0.74 – 0.68 (m, 2H, 2×(-CHCH2-)), 0.78 (s, 6H, 2×(-

CH3)), 0.91 (s, 6H, 2×(-CH3)), 1.02 – 1.10 (m, 2H, 2×(-CHCH2-)), 1.36 (s, 6H, 2×(-

CH2CCH3)), 1.50 (d, 6H, J = 6.9 Hz, 2×(-NCHCH3)), 1.53 (d, 6H, J = 6.9 Hz, 2×(-

NCHCH3)), 1.90 – 1.73 (m, 2H, 2×(-CHCH2-)), 2.02 – 2.15 (m, 2H, 2×(-CHCH2-)), 2.85 (d, 

2H, J = 5.0 Hz, 2×(-CCH)), 4.47 (q, 2H, J = 6.8 Hz, 2×(-CH2CH3)) ppm. 13C NMR (125.75 

MHz, CDCl3, TMS): δ 12.5, 19.9, 20.6, 23.2, 23.4, 27.6, 34.1, 48.4, 51.9, 52.8, 62.4, 126.5, 

137.7, 152.7 ppm. MS (EI): m/z (%) 307 (11), 349 (60) [M-(2×i-Pr)]+, 355 (9), 377 (8), 391 

(55) [M-(i-Pr)]+, 405 (8), 419 (20) [M-(CH3)]
+, 434 (58) [M+]. HRMS (EI): m/z calcd for 

C28H42N4: 434.3409, found: 434.3405. IR (KBr): ν 3394, 2954, 2869, 1627, 1474, 1452, 1386, 

1373, 1366, 1269, 1250, 1234, 1082, 1058, 1020, 971, 954, 915. 

1,1'-dipentyl-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-1H,1'H-3,3'-

bipyrazole (69c): 

Compound 69c was prepared following the standard 

procedure using 68 (150 mg, 0.427 mmol), sodium hydride 

(25 mg, 1.024 mmol) and n-pentyl bromide (116 µL, 

0.938 mmol) in 80 mL anhydrous tetrahydrofurane. The 

solution was stirred at reflux temperature for 16 h. Extensive 

drying at elevated temperature under high vacuum yielded 

pure 69c (229 mg, 0.542 mmol, 97%) as a yellowish, 
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insoluble powder. Mp. > 250 °C; MS (EI): m/z (%) 73 (26), 133 (14), 355 (13%), 377 (75), 

406 (14), 420 (33) [M-(n-pentyl)]+, 434 (11) [M-(n-butyl)]+, 447 (73) [M-(3×CH3)]
+, 420 (9) 

[M(-ethyl)]+, 475 (9) [M-(CH3)]
+, 490 (62) [M]+. HRMS (EI): m/z calcd for  C32H50N4: 

490.4035, found: 490.4018. IR (KBr): ν 3431, 2956, 2871, 1627, 1511, 1454, 1387, 1375, 

1366, 1286, 1277, 1260, 1135, 1109, 1084, 1058, 1043, 1015, 1000. 

1,1'-di(4-methoxybenzyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-

1H,1'H-3,3'-bipyrazole (69d): 

Compound 69d was prepared following the standard procedure 

using 68 (300 mg, 0.856 mmol), sodium hydride (45 mg, 

1.883 mmol) and 4-methoxybenzyl chloride (246 µL, 

1.75 mmol) in 100 mL anhydrous tetrahydrofurane. The solution 

was stirred at reflux temperature for 4 h. After crystallization 

from ethanol and washings with acetone 69d (398 mg, 

0.676 mmol, 79%) was obtained as a yellowish powder. Mp. 151 

– 154 °C; 1H NMR (500.13 MHz, CDCl3, TMS): δ 0.78 (s, 6H, 

2×(-CH3)), 0.87 (s, 6H, 2×(-CH3)), 1.07 – 1.09 (m, 2H, 2×(-

CCH2-)), 1.10 (s, 6H, 2×(-CH2CCH3)), 1.18 – 1.23 (m, 4H, 2×(-CCH2-)), 1.65 – 1.70 (m, 2H, 

2×(-CHCH2-)), 2.06 – 2.08 (m, 2H, 2×(-CHCH2-)), 2.92 (d, 2H, J = 3.7 Hz, 2×(-CCH)), 3.73 

(s, 6H, 2×(-OCH3)), 5.32 (d, 2H, 2JH-H = 15.9 Hz, -NCH2-), 5.36 (d, 2H, 2JH-H = 16.0 Hz, -

NCH2-), 6.68 (s, 2H, 2×(ArH)), 6.73 – 6.77 (m, 4H, 2×2(ArH)), 7.17 – 7.20 (m, 2H, 2×(ArH)) 

ppm. 13C NMR (125.75 MHz, CDCl3, TMS): δ 11.3, 19.6, 20.4, 27.3, 33.4, 48.4, 52.4, 54.0, 

55.2, 62.6, 112.0, 13.0, 119.1, 127.2, 129.3, 138.2, 140.2, 154.0, 159.7 ppm. MS (EI): m/z (%) 

121 (44) [C8H9O]+, 469 (94) [M-(methoxybenzyl)]+, 483 (17) [M-(C8H9O)]+, 547 (48), 575 

(7) [M-(CH3)]
+, 590 (100) [M]+. HRMS (EI): m/z calcd for C38H46O2N4: 590.3621, found: 

590.3585. IR (KBr): ν 3436, 2955, 2871, 1602, 1587, 1491, 1455, 1437, 1387, 1365, 1348, 

1281, 1261, 1147, 1117, 1085, 1045, 999. 
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1,1'-dibenzyl-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-1H,1'H-3,3'-

bipyrazole (69e): 

Compound 69e was prepared following the standard procedure 

using 68 (700 mg, 1.997 mmol), sodium hydride (115 mg, 

4.792 mmol) and benzyl bromide (484 µL, 4.093 mmol) in 

110 mL anhydrous tetrahydrofurane. The solution was stirred at 

reflux temperature for 4 h. 69e (1.002 g, 1.888 mmol, 94%) was 

obtained as a yellowish powder. Mp. 151 – 161 °C; 1H NMR 

(500.13 MHz, CDCl3, TMS): δ 0.76 (s, 6H, 2×(-CH3)), 0.86 (s, 

H, 2×(-CH3)), 1.07 (s, 6H, 2×(-CH2CCH3)), 1.18 – 1.23 (m, 4H, 2×(-CCH2-)), 1.63 – 1.68 (m, 

2H, 2×(-CHCH2-)), 2.02 – 2.07 (m, 2H, 2×(-CHCH2-)), 2.91 (d, 2H, J = 4.0 Hz, 2×(-CCH)), 

5.35 (d, 2H, 2JH-H = 16.0 Hz, -NCH2), 5.39 (d, 2H, 2JH-H = 16.0 Hz, -NCH2), 7.13 – 7.22 (m, 

10H, 2×5(ArH)) ppm. 13C NMR (125.75 MHz, CDCl3, TMS): δ 11.4, 19.8, 20.6, 27.5, 33.6, 

48.6, 52.6, 54.2, 62.8, 126.9, 127.4, 128.5, 138.3, 138.8, 154.2 ppm. MS (EI): m/z (%) 91 (95) 

[C7H7]
+, 439 (77) [M-(benzyl)]+, 453 (14) [M-(C6H5)]

+, 487 (86) [M-(3×CH3)]
+, 515 (8) [M-

(CH3)]
+, 530 (100) [M]+. HRMS (EI): m/z calcd for C36H42N4: 530.3409, found: 530.3420. IR 

(KBr): ν 3430, 2955, 2870, 1496, 1473, 1454, 1421, 1386, 1376, 1364, 1308, 1279, 1244, 

1118, 1086, 1047, 1029, 999. 

1,1'-di(4-methylbenzyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-

1H,1'H-3,3'-bipyrazole (69f):  

Compound 69f was prepared following the standard procedure 

using 68 (440 mg, 1.255 mmol), sodium hydride (72 mg, 

3.014 mmol) and 4-methylbenzyl bromide (476 mg, 

2.573 mmol) in 100 mL anhydrous tetrahydrofurane. The 

solution was stirred at reflux temperature for 4 h. 69f (690 mg, 

1.235 mmol, 98%) was obtained as a yellowish powder. Mp. 71 

– 92 °C; 1H NMR (300.13 MHz, CDCl3, TMS): δ 0.77 (s, 6H, 

2×(-CH3)), 0.86 (s, 6H, 2×(-CH3)), 1.09 (s, 6H, 2×(-CH2CCH3)), 

1.16 – 1.31 (m, 4H, 2×(-CCH2-)), 1.61 – 1.70 (m, 2H, 2×(-CHCH2-)), 2.00 – 2.10 (m, 2H, 

2×(-CHCH2-)), 2.30 (s, 6H, ArCH3), 2.91 (d, J = 3.6 Hz, 2H, 2×(-CCH)), 5.30 (d, 2H, 2JH-

H = 15.7 Hz, -NCH2-), 5.36 (d, 2H, 2J H-H  = 15.9 Hz,-NCH2-), 7.03 – 7.09 (m, 8H, 4×2(ArH)) 

ppm. 13C NMR (75.46 MHz, CDCl3, TMS): δ 11.4, 19.8, 20.6, 21.2, 27.5, 33.5, 48.6, 52.5, 
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54.0, 62.7, 126.8, 127.3, 129.1, 135.7, 136.9, 138.2, 154.0 ppm. MS (EI): m/z (%) 105 (100) 

[C8H9]
+, 453 (90) [M-(p-xylenyl)]+, 467 (14) [M-(C7H7)]

+, 515 (18) [M-(3×CH3)]
+, 543 (3) 

[M-(CH3)]
+, 558 (65) [M]+. HRMS (EI): m/z calcd for C38H46N4: 558.3722, found: 558.3704. 

IR (KBr): ν 3433, 2956, 2868 1515, 1472, 1453, 1422, 1386, 1375, 1364, 1352, 1309, 1298, 

1280, 1118, 1085, 1046, 1020, 998. 

1,1'-di(3-methylbenzyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-

1H,1'H-3,3'-bipyrazole (69g):  

Compound 69g was prepared following the standard procedure 

using 68 (500 mg, 1.427 mmol), sodium hydride (82 mg, 

3.424 mmol) and 3-methylbenzyl bromide (541 mg, 

2.923 mmol) in 100 mL anhydrous tetrahydrofurane. The 

solution was stirred at reflux temperature for 4 h. 69g (730 g, 

1.306 mmol, 92%) was obtained as a yellowish powder. Mp. 132 

– 140 °C; 1H NMR (300.13 MHz, CDCl3, TMS): δ 0.78 (s, 6H, 

2×(-CH3)), 0.87 (s, 6H, 2×(-CH3)), 1.07 (s, 6H, 2×(-CH2CCH3)), 1.09 – 1.26 (m, 4H, 2×(-

CCH2-)), 1.63 – 1.71 (m, 2H, 2×(-CHCH2-)), 2.01 – 2.11 (m, 2H, 2×(-CHCH2-)), 2.28 (s, 6H, 

ArCH3), 2.92 (d, 2H J = 3.6 Hz, 2×(-CCH)), 5.34 (s, 4H, 2×(-NCH2-)), 6.92 – 7.16 (m, 8H, 

2×4(ArH)) ppm. 13C NMR (75.46 MHz, CDCl3, TMS): δ 11.4, 19.8, 20.6, 21.5, 27.5, 33.6, 

48.6, 52.6, 54.2, 62.8, 124.0, 127.4, 127.6, 128.1, 128.4, 138.1, 138.2, 138.6, 154.1 ppm. MS 

(EI): m/z (%) 105 (92) [C8H9]
+, 453 (100) [M-(m-xylenyl)]+, 467 (14) [M-(C7H7) ]

+, 515 (19) 

[M-(3×CH3)]
+, 543 (4) [M-(CH3)]

+, 558 (94) [M]+. HRMS (EI): m/z calcd for C38H46N4: 

558.3722, found: 558.3690. IR (KBr): ν 3435, 2952, 2869, 1609, 1504, 1493, 1455, 1435, 

1424, 1386, 1374, 1365, 1347, 1275, 1117, 1081, 1045. 
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1,1'-di(4-tert-butylbenzyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-

1H,1'H-3,3'-bipyrazole (69h): 

Compound 69h was prepared following the standard procedure 

using 68 (500 mg, 1.427 mmol), sodium hydride (82 mg, 

3.424 mmol) and 4-tert-butylbenzyl bromide (534 µL, 

2.906 mmol) in 100 mL anhydrous tetrahydrofurane. The 

solution was stirred at reflux temperature for 4 h. 69h (887 mg, 

1.380 mmol, 97%) was obtained as a yellowish powder. Mp. 214 

– 226 °C; 1H NMR (300.13 MHz, CDCl3, TMS): δ 0.78 (s, 6H, 

2×(-CH3)), 0.87 (s, 6H, 2×(-CH3)), 1.12 (s, 6H, 2×(-CH2CCH3)), 

1.17 – 1.30 (m, 22H, 2×-tBu, 2×(-CCH2-)), 1.63 – 1.71 (m, 2H, 2×(-CHCH2-)), 2.00 – 2.10 

(m, 2H, 2×(-CHCH2-)), 2.91 (d, J = 3.1 Hz, 2H, 2×(-CCH)), 5.28 (d, 2H, 2J H-H  = 15.7 Hz, -

NCH2-), 5.36 (d, 2H, 2J H-H  = 15.8 Hz, -NCH2-), 7.08 – 7.11 (m, 4H, 2×2(ArH)), 7.27 – 7.29 

(m, 4H, 2×2(ArH)) ppm. 13C NMR (75.46 MHz, CDCl3, TMS): δ 11.5, 19.8, 20.6, 27.5, 31.5, 

33.6, 34.6, 48.5, 52.6, 53.9, 62.7, 125.3, 126.7, 127.2, 135.6, 138.3, 150.2, 154.1 ppm. MS 

(EI): m/z (%) 147 (78) [C11H15]
+, 495 (100) [M-(C11H15)]

+, 509 (13) [M-(C10H13)]
+, 599 (19) 

[M-(3×CH3)]
+, 627 (5) [M-(CH3)]

+, 643 (91) [M]+. HRMS (EI): m/z calcd for C44H58N4: 

642.4661, found: 642.4662. IR (KBr): ν 3455, 2952, 2869, 1609, 1504, 1493, 1455, 1435, 

1424, 1386, 1374, 1365, 1347, 1275, 1117, 1081, 1045. 

1,1'-di(2,4,6-trimethylbenzyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-

1H,1'H-3,3'-bipyrazole (69i): 

Compound 69i was prepared following the standard 

procedure using 68 (244 mg, 0.695 mmol), sodium hydride 

(40 mg, 1.667 mmol) and 2,4,6,-trimethylbenzyl chloride 

(240 mg, 1.423 mmol) in 50 mL anhydrous 

tetrahydrofurane. The solution was stirred at reflux 

temperature for 16 h. 69i (398 mg, 0.647 mmol, 93%) was 

obtained as a yellowish foam. Mp. 153 – 179 °C; 1H NMR 

(500.13 MHz, CDCl3, TMS): δ 0.78 (s, 6H, 2×(-CH3)), 0.85 

(s, 6H, 2×(-CH3)), 0.96 (s, 6H, 2×(-CH2CCH3)), 1.06 – 1.16 (m, 4H, 2×(-CCH2-)), 1.60 – 1.65 

(m, 2H, 2×(-CHCH2-)), 1.98 – 2.03 (m, 2H, 2×(-CHCH2-)),  2.27 (s, 6H, 2×(ArCH3)), 2.29 (s, 

12H, 4×(ArCH3)), 2.88 (d, J = 3.5 Hz, 2H, 2×(-CCH)), 5.32 (s, 4H, 2×(-NCH2-)), 6.85 (s, 4H, 
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4×(ArH)) ppm. 13C NMR (125.75 MHz, CDCl3, TMS): δ 11.5, 19.9, 20.6, 21.1, 27.4, 33.6, 

48.2, 49.3,, 53.3, 62.4, 127.1, 129.4, 130.6, 137.4, 138.1, 153.7 ppm. MS (EI): m/z (%) 133 

(100) [C10H13]
+, 481 (86) [M-(C10H13)]

+, 495 (22) [M-(mesityl)]+, 571 (24) [M-(3×CH3)]
+, 

599 (5) [M-(CH3)]
+, 614 (71) [M]+. HRMS (EI): m/z calcd for C42H54N4: 614.4348, found: 

614.4359. IR (KBr): ν 3442, 2956, 2869, 1614, 1487, 1463, 1425, 1386, 1375, 1365, 1284, 

1261, 1237, 1118, 1080, 1050, 1032, 997.  

1,1'-di(naphthalene-2-ylmethyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-

octahydro-1H,1'H-3,3'-bipyrazole (69j):  

Compound 69j was prepared following the standard procedure 

using 68 (300 mg, 0.856 mmol), sodium hydride (49 mg, 

2.043 mmol) and 2-(bromomethyl)naphthalene (382 mg, 

1.728 mmol) in 80 mL anhydrous tetrahydrofurane. The solution 

was stirred at reflux temperature for 4 h. 69j (519 mg, 

0.823 mmol, 96%) was obtained as a white powder. Mp. 200 – 

223 °C; 1H NMR (300.13 MHz, CDCl3, TMS): δ 0.81 (s, 6H, 

2×(-CH3)), 0.86 (s, 6H, 2×(-CH3)), 1.08 (s, 6H, 2×(-CH2CCH3)), 

1.10 – 1.30 (m, 4H, 2×(-CCH2-)), 1.61 – 1.70 (m, 2H, 2×(-

CHCH2-)), 2.03 – 2.13 (m, 2H, 2×(-CHCH2-)), 2.96 (d, J = 3.7 Hz, 2H, 2×(-CCH)), 5.57 (s, 

4H, 2×(-NCH2-)), 7.31 – 7.35 (m, 2H, 2× (ArH)), 7.42 – 7.47 (m, 4H, 2×2(ArH)), 7.59 (s, 2H, 

2×(ArH)), 7.75 – 7.82 (m, 6H, 2×3(ArH)) ppm. 13C NMR (75.46 MHz, CDCl3, TMS): δ 11.5, 

19.8, 20.6, 27.5, 33.6, 48.6, 52.6, 54.4, 62.8, 125.1, 125.4, 125.9, 126.2, 127.6, 127.8, 128.0, 

128.3, 132.9, 133.4, 136.3, 138.4, 154.3 ppm. MS (EI): m/z (%) 141 (100) [C11H9]
+, 489 (71) 

[M-(C11H9)]
+, 503 (8) [M-(2-naphthyl)]+, 587 (8) [M-3×(CH3)]

+, 615 (2) [M-(CH3)]
+, 630 

(44) [M]+. HRMS (EI): m/z calcd for C44H46N4: 630.3722, found: 630.3679. IR (KBr): ν 3425, 

2956, 2870, 1509, 1453, 1438, 1419, 1387, 1376, 1366, 1278, 1261, 1117, 1085, 1046, 1019, 

999, 810.  
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1,1'-bis(3,5-di(trifluoromethyl)benzyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-

octahydro-1H,1'H-3,3'-bipyrazole (69k): 

Compound 69k was prepared following the standard 

procedure using 68 (300 mg, 0.856 mmol), sodium 

hydride (45 mg, 1.88 mmol) and 3,5-

di(trifluoromethyl)benzyl chloride (322 µL, 1.75 mmol) 

in 90 mL anhydrous tetrahydrofurane. The solution was 

stirred at reflux temperature for 4 h. After 

crystallization from diethyl ether and washings with 

pentane 69k (289 mg, 0.360 mmol, 42%) was obtained 

as a white powder. Mp. 155 – 158 °C; 1H NMR (500.13 MHz, CDCl3, TMS): δ 0.80 (s, 6H, 

2×(-CH3)), 0.90 (s, 6H, 2×(-CH3)), 1.08 – 1.25 (m, 8H, 2×-CH2CCH3, 2×(-CCH2-)), 1.19 – 

1.25 (m, 2H, 2×(-CCH2-)), 1.75 – 1.80 (m, 2H, 2×(-CHCH2-)), 2.08 – 2.14 (m, 2H, 2×(-

CHCH2-)), 3.00 (bs, 2H, 2×(-CCH)), 5.46 (d, 2H, 2JH-H = 16.5 Hz, -NCH2-), 5.52 (d, 2H, 2JH-

H = 16.3 Hz, -NCH2-), 7.58 (s, 4H, 4×(ArH)), 7.77 (s, 2H, 2×(ArH)) ppm. 13C NMR (125.75 

MHz, CDCl3, TMS): δ 11.28, 19.5, 20.1, 27.1, 33.6, 48.4, 52.6, 53.0, 62.9, 121.5, 122.0, 

124.2, 126.9, 128,1. 131.9, 140.9, 154.7 ppm. MS (EI): m/z (%) 227 (11) [C9H5F6]
+, 575 (23) 

[M-(3,5-di(trifluormethyl)benzyl)]+, 589 (4) [M-(C9H5F6)]
+, 759 (100), 787 (7) [M-(CH3)]

+, 

803 (24) [M]+. HRMS (EI): m/z calcd for C40H38F12N4: 802.2905, found: 802.2914. IR (KBr): 

ν 3447, 2964, 2874, 1624, 1505, 1464, 1437, 1381, 1348, 1323, 1277, 1245, 1178, 1134, 

1084, 1045, 906, 888. 

1,1'-di(pyridine-2-ylmethyl)-4,8,8'-trimethylbicycl o[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-

1H,1'H-3,3'-bipyrazole (76): 

For the preparation of compound 76 2-(bromomethyl)pyridine 

(444 mg, 1.755 mmol) was suspended in 20 mL anhydrous 

tetrahydrofurane, freshly distilled triethylamine (230 µL, 

1.799 mmol) and molecular sieve (3Å) was added. The mixture 

was stirred slowly for 18 h at room temperature. 

Triethylammonium bromide was filtered off and the solution 

was transferred to sodium 3,3’-bicamphorpyrazolate in 

anhydrous tetrahydrofurane, as prepared following the standard procedure (3,3-

bicamphorpyrazole, 300 mg, 0.856 mmol and sodium hydride, 42 mg, 1.75 mmol). The 
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solution was stirred for one hour at room temperature, five hours at reflux temperature and 

additional 12 h at room temperature. Workup, purification and isolation of the compound was 

achieved following the standard procedure for bcpz-ligand preparation and washing with 

acetone once. Compound 76 (409 mg, 0.761 mmol, 89%) was obtained as white, needle-

shaped crystals. Mp. 213 – 218 °C; 1H NMR (500.13 MHz, CDCl3, TMS): δ 0.78 (s, 6H, 2×(-

CH3)), 0.88 (s, 6H, 2×(-CH3)), 1.11 (s, 6H, 2×(-CH2CCH3)), 1.12 – 1.16 (m, 2H, 2×(-CCH2-

)), 1.21 – 1.25 (m, 2H, 2×(-CCH2-)), 1.69 – 1.74 (m, 2H, 2×(-CHCH2-)), 2.06 – 2.12 (m, 2H, 

2×(-CHCH2-)), 2.94 (d, 2H, J = 3.7 Hz, 2×(-CCH)), 5.48 (d, 2H, 2JH-H = 16.6 Hz, -NCH2-), 

5.52 (d, 2H, 2JH-H = 16.7 Hz, -NCH2-), 6.94 (d, 2H, J = 8.1 Hz, 2×ArH), 7.14 (dd, 2H, 

J = 5.1 Hz, J = 1.9 Hz, 2×ArH), 7.56 (dd, 2H, J = 7.7 Hz, J = 1.7 Hz, 2×ArH), 8.50 (d, 2H, 

J = 4.3 Hz, 2×ArH)  ppm. 13C NMR (125.75 MHz, CDCl3, TMS): δ 10.9, 19.6, 20.4, 27.3, 

33.4, 48.5, 52.5, 55.8, 62.7, 121.3, 122.2, 127.4, 136.8, 138.5, 148.8, 154.7, 158.5 ppm. MS 

(EI): m/z (%) 398 (10), 412 (9), 440 (79) [M-(C7H6N)]+, 454 (17) [M-(C6H4N)]+, 489 (26), 

503 (12), 517 (9) [M-(CH3)]
+, 532 (100) [M]+. HRMS (EI): m/z calcd for C34H40N6: 532.3314, 

found: 532.3312. IR (KBr): ν 3439, 2954, 2870, 1591, 1572, 1507, 1474, 1437, 1387, 1376, 

1365, 1348, 1279, 1245, 1117, 1083, 1046, 997, 839, 757. 

1,1'-di[(6-methylpyridine-2-yl)methyl]-4,8,8'-trime thylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-

octahydro-1H,1'H-3,3'-bipyrazole (77): 

This compound was synthesized following the procedure for 

the preparation of 1,1'-bis(pyridine-2-ylmethyl)-3,3'-

bicamphorpyrazole (77). 2-(bromomethyl)-6-methylpyridine 

(319 mg, 1.715 mmol), triethylamine (230 µL, 1.799 mmol), 

3,3-bicamphorpyrazole (300 mg, 0.856 mmol) and sodium 

hydride (42 mg, 1.75 mmol). Workup, purification and 

isolation of the compound was achieved following the 

standard procedure for bcpz-ligand preparation and washing 

with acetone once. Compound 77 (335 mg, 0.597 mmol, 70%) was obtained as white, needle-

shaped crystals. Mp. 186 – 192 °C; 1H NMR (500.13 MHz, CDCl3, TMS): δ 0.78 (s, 6H, 2×(-

CH3)), 0.88 (s, 6H, 2×(-CH3)), 1.12 (s, 6H, 2×(-CH2CCH3)), 1.14 – 1.25 (m, 4H, 4×(-CCH2-

)), 1.69 – 1.74 (m, 2H, 2×(-CCH2-)), 1.69 – 1.74 (m, 2H, 2×(-CHCH2-)), 2.05 – 2.12 (m, 2H, 

2×(-CHCH2-)), 2.52 (s, 6H, 2×ArCH3), 2.93 (d, 2H, J = 3.6 Hz, 2×(-CCH)), 5.43 (d, 2H, 2JH-

H = 16.7 Hz, -NCH2-), 5.48 (d, 2H, 2JH-H = 16.7 Hz, -NCH2-), 6.69 (d, 2H, J = 7.8 Hz, 2×ArH), 
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6.98 (d, 2H, J = 7.3 Hz, 2×ArH), 7.43 (dd, 2H, J = 7.8 Hz, J = 7.8 Hz, 2×ArH)  ppm. 13C 

NMR (125.75 MHz, CDCl3, TMS): δ 10.9, 19.6, 20.4, 24.3, 27.4, 33.4, 48.5, 52.5, 55.9, 62.7, 

118.2, 121.6, 127.3, 136,9 138.5, 154.6, 157.5, 157.8 ppm. MS (EI): m/z (%) 412 (8), 426 (8), 

454 (75) [M-(C8H8N)]+, 468 (21) [M-(C7H6N)]+, 517 (27), 531 (12), 545 (9) [M-(CH3)]
+, 560 

(100) [M]+. HRMS (EI): m/z calcd for C36H44N6: 560.3627, found: 560.3642. IR (KBr): ν 

3425, 2954, 2870, 1594, 1577, 1506, 1457, 1438, 1386, 1375, 1365, 1332, 1278, 1244, 1116, 

1094, 1083, 1046, 1000, 776. 

General procedure for the preparation of bcpz palladium(II ) chloride complexes. To a 

solution of the appropriate bipyrazole ligand (1 eq.) in anhydrous acetonitrile was added 

Bis(acetonitrile)dichloropalladium(II) (1 eq.) and the solution was stirred for 16h at room 

temperature. The solvent was evaporated under reduced pressure; the product was taken up in 

a small amount of chloroform and filtered though a short plug of silica. Evaporation and 

drying under high vacuum yielded the corresponding bicamphorpyrazole palladium 

complexes as deep orange to red microcrystalline solids. 

1,1'-diethyl-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-1H,1'H-3,3'-

bipyrazole palladium(II ) chloride (70a): 

Compound 70a was prepared following the standard procedure 

using 69a (94 mg, 0.231 mmol) and bis(acetonitrile)di-

chloropalladium(II) (60 mg, 0.231 mmol) in 10 mL anhydrous 

acetonitrile to yield 70a (132 mg, 0.226 mmol, 98%) as a ocher 

red powder. Mp. 147 – 158 °C; 1H NMR (500.13 MHz, CDCl3, 

TMS): δ  4.84 (dddd, 2H, J = 7.1 Hz, J = 7.0 Hz, J = 7.0 Hz, 2JH-H = 14.1 Hz, 2×(-NCH2-)), 

4.61 (dddd, 2H, J = 7.1 Hz, J = 7.0 Hz, J = 7.0 Hz, 2JH-H = 14.1 Hz, 2×(-NCH2-)), 2.86 (d, 2H, 

J = 3.4 Hz, 2×(-CCH)), 2.11 – 2.16 (m, 2H, 2×(-CHCH2-)), 1.87 – 1.92 (m, 2H, 2×(-CHCH2-

)), 1.41 (dd, 6H, J = 7.0 Hz, J = 7.0 Hz, 2×(-CH2CCH3)), 1.35 (s, 6H, 2×(-CH2CH3)), 1.26 – 

1.31 (m, 2H, 2×(-CCH2-)), 1.12 – 1.17 (m, 2H, 2×(-CCH2-)), 0.96 (s, 6H, 2×(-CCH3)), 0.76 

(s, 6H, 2×(-CCH3)) ppm. 13C NMR (125.75 MHz, CDCl3, TMS): δ 11.2, 17.5, 19.4, 20.4, 

27.1, 33.6, 45.5, 47.9, 54.0, 63.2, 124.5, 138.6, 158.3 ppm. MS (FAB): m/z (%) 511 (100) [M-

(HCl), -(Cl-)]+, 546 (8) [M-(Cl-)]+, 953 (51) [M+(L),-(Cl-)]+, 1129 (13) [2×M-(Cl-)]+. HRMS 

(FAB): m/z (%) calcd for C26H37N4
106Pd+ [M-(HCl), -(Cl-)]+: 511.2053, found: 511.2042. IR 

(KBr): ν 3443, 2964, 2872, 1635, 1559, 1508, 1466, 1390, 1380, 1306, 1287, 1276, 1247, 
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1206, 1182, 1137, 1100, 1082, 1063, 1015. Anal. calcd for C26H38Cl2N4Pd×1/5 CHCl3, C: 

51.37 H: 6.28 N: 9.13 Cl: 15.44 Pd: 17.38. Found, C: 51.25 H: 6.46 N: 9.28. 

1,1'-diisopropyl-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-1H,1'H-3,3'-

bipyrazole palladium(II ) chloride (70b): 

Compound 70b was prepared following the standard procedure 

using 69b (101 mg, 0.231 mmol) and bis(acetonitrile)di-

chloropalladium(II) (60 mg, 0.231 mmol) in 10 mL anhydrous 

acetonitrile to yield 70b (134 mg, 0.219 mmol, 95%) as a ocher 

red powder. Mp. 170 – 179 °C; 1H NMR (500.13 MHz, CDCl3, 

TMS): δ 0.77 (s, 6H, 2×(-CCH3)), 0.96 (s, 6H, 2×(-CCH3)), 1.10 – 1.15 (m, 2H, 2×(-CCH2-)), 

1.27 – 1.33 (m, 2H, 2×(-CCH2-)), 1.40 – 1.47 (m, 18H, , 2×(-CH2C(CH3)2), 2×-(CH2CCH3)), 

1.83 – 1.90 (m, 2H, 2×(-CHCH2-)), 2.11 – 2.16 (m, 2H, 2×(-CHCH2-)), 2.87 (d, 2H, 

J = 3.7 Hz, 2×(-CCH)), 5.84 (q, 2H, J = 6.9 Hz, 2×(-NCH-)) ppm. 13C NMR (125.75 MHz, 

CDCl3, TMS): δ 15.0, 19.8, 20.5, 22.5, 23.1, 27.0, 47.4, 54.4, 55.5, 62.9, 126.8, 137.8, 157.6 

ppm. MS (FAB): m/z (%) 539 (25) [M-(HCl), -(Cl-)]+, 1010 (14) [M+(L),-(Cl-)]+. HRMS 

(FAB): m/z (%) calcd for C28H41N4
106Pd+ [M-(HCl), -(Cl-)]+: 539.2377, found: 539.2407. IR 

(KBr): ν 3444, 2966, 2872, 1628, 1559, 1438, 1389, 1369, 1331, 1288, 1277, 1259, 1207, 

1181, 1136, 1104, 1083, 1049, 998. Anal. calcd for C28H42Cl2N4Pd×1/3 CHCl3, C: 50.96 H: 

6.38 N: 8.34. Found, C: 50.93 H: 6.47 N: 8.55.  

1,1'-dipentyl-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-1H,1'H-3,3'-

bipyrazole palladium(II ) chloride (70c): 

Compound 70c was prepared following the standard 

procedure using 69c (114 mg, 0.231 mmol) and 

bis(acetonitrile)di-chloropalladium(II) (60 mg, 0.231 mmol) 

in 10 mL anhydrous acetonitrile to yield 70c (134 mg, 

0.211 mmol, 91%) as a ochre red powder. Mp. 149 – 154 °C; 

1H NMR (500.13 MHz, CDCl3, TMS): δ 0.76 (s, 6H, 2×(-

CCH3)), 0.89 (t, 6H, J = 7.4 Hz, 2×(-CH2CH3)), 0.96 (s, 6H, 2×(-CCH3)), 1.13 – 1.17 (m, 2H, 

2×(-CHCH-)), 1.26 – 1.37 (m, 16H, 2×(-CHCH2CH2-), 2×(-CHCH2CH2-), 2×(-CH2CCH3)), 

1.78 – 1.89 (m, 4H, 2×(-CH2CH2CH3)), 2.00 (s, 2H, -CH2CH2-), 2.11 – 2.16 (m, 2H, 2×(-
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CH2CH2-)), 2.85 (d, 2H, J = 3.8 Hz, 2×(-CCH)), 4.52 (ddd, 2H, , J = 9.4 Hz, J = 6.0 Hz, 2JH-

H = 13.8 Hz, -NCH2-), 4.73 (ddd, 2H, , J = 9.4 Hz, J = 6.3 Hz, 2JH-H = 14.0 Hz -NCH2-) ppm. 
13C NMR (125.75 MHz, CDCl3, TMS): δ 11.3, 14.2, 19.4, 20.4, 22.5, 27.1, 28.8, 32.0, 33.6, 

47.9, 50.4, 54.0, 63.2, 124.3, 138.6, 158.4 ppm. MS (FAB): m/z (%) 595 (84) [M-(HCl), -(Cl-

)]+, 631 (4) [M-(Cl-)]+, 1121 (1) [M+(L),-(Cl-)]+, 1297 (7) [2×M-(Cl-)]+. HRMS (FAB): m/z 

(%) calcd for C32H49N4
106Pd+ [M-(HCl), -(Cl-)]+: 595.2992, found: 595.2990. IR (KBr): ν 

3445, 2959, 2931, 2871, 1627, 1465, 1390, 1378, 1307, 1287, 1276, 1247, 1206, 1184, 1137, 

1105, 1086, 1067, 1015, 1000. Anal. calcd for C32H50Cl2N4Pd×5/6 CHCl3, C: 51.38 H: 6.68 

N: 7.63. Found, C: 51.42 H: 6.62 N: 7.72. 

1,1'-di(4-methoxybenzyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-

1H,1'H-3,3'-bipyrazole palladium(II ) chloride (70d): 

Compound 70d was prepared following the standard procedure 

using 69d (114 mg, 0.193 mmol) and bis(acetonitrile)di-

chloropalladium(II) (50 mg, 0.193 mmol) in 10 mL anhydrous 

acetonitrile to yield 70d (145 mg, 0.189 mmol, 97%) as a deep 

orange powder. Mp. 218 – 222 °C; 1H NMR (500.13 MHz, 

CDCl3, TMS): δ 0.74 (s, 6H, 2×(-CCH3)), 0.92 (s, 6H, 2×(-

CCH3)), 1.06 – 1.15 (m, 4H, 2×(-CH2CH2-), 2×(-CH2CH2-)), 

1.23 (s, 6H, 2×(-CH2CCH3)), 1.72 – 1.76 (m, 2H, 2×(-CH2CH2-)), 2.08 – 2.13 (m, 2H, 2×(-

CH2CH2-)), 2.87 (d, 2H, J = 3.7 Hz, 2×(-CCH)), 5.83 (d, 2H, 2JH-H = 15.9 Hz, -NCH2-), 6.18 

(d, 2H, 2JH-H = 15.9 Hz, -NCH2-), 6.78 – 6.87 (m, 4H, 2×2(ArH)), 6.86 – 6.87 (m, 2H, 

2×(ArH)), 7.20 – 7.23 (m, 2H, 2×(ArH)) ppm. 13C NMR (125.75 MHz, CDCl3, TMS): δ 11.1, 

19.2, 20.3, 26.8, 32.7, 47.7, 53.3, 54.0, 55.3, 63.2, 112.8, 113.3, 119.3, 125.5, 129.6, 138.3, 

139.0, 159.5, 159.7 ppm. MS (FAB): m/z (%): 695 (96) [M-(HCl), -(Cl-)]+, 733 (24) [M-(Cl-

)]+, 1323 (19) [M+(L), -(Cl-)]+. HRMS (FAB): m/z (%) calcd for C38H46
35ClN4O2

108Pd+ [M] +: 

733.2347, found: 733.2348. IR (KBr): ν 3427, 2962, 2874, 1602, 1586, 1491, 1456, 1437, 

1390, 1369, 1349, 1305, 1284, 1261, 1148, 1123, 1103, 1046, 1017. Anal. calcd for 

C38H46Cl2N4O2Pd×1/11 CHCl3, C: 57.93 H: 5.88 N: 7.07. Found, C: 57.43 H: 6.06 N: 6.84. 
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1,1'-dibenzyl-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-1H,1'H-3,3'-

bipyrazole palladium(II ) chloride (70e): 

Compound 4e was prepared following the standard procedure 

using 69e (123 mg, 0.231 mmol) and bis(acetonitrile)di-

chloropalladium(II) (60 mg, 0.231 mmol) in 10 mL anhydrous 

acetonitrile to yield 70e (158 mg, 0.223 mmol, 96%) as a deep 

orange powder. Mp. 164 – 170 °C; 1H NMR (500.13 MHz, 

CDCl3, TMS): δ 0.72 (s, 6H, 2×(-CCH3)), 0.90 (s, 6H, 2×(-

CCH3)), 1.00 – 1.14 (m, 4H, 2×(-CH2CH2-), 2×(-CH2CH2-)), 1.19 (s, 6H, 2×(-CH2CCH3)), 

1.68 – 1.73 (m, 2H, 2×(-CH2CH2-)), 2.06 – 2.12 (m, 2H, 2×(-CH2CH2-)), 2.86 (d, 2H, 

J = 3.6 Hz, 2×(-CCH)), 5.85 (d, 2H, 2JH-H = 15.8 Hz, -NCH2-), 6.23 (d, 2H, 2JH-H = 15.9 Hz, -

NCH2-), 7.23 – 7.32 (m, 10H, 2×(ArH)) ppm. 13C NMR (125.75 MHz, CDCl3, TMS): δ 11.2, 

19.4, 20.4, 26.9, 32.8, 47.9, 53.6, 54.2, 63.4, 125.7, 127.3, 127.9, 128.7, 137.1, 139.1, 159.7 

ppm. MS (FAB): m/z (%): 635 (82) [M-(HCl), -(Cl-)]+, 671 (26) [M-(Cl-)]+, 1203 (4) [M+(L), 

-(Cl-)]+, 1381 (6) [2×M-(Cl-)]+. HRMS (FAB): m/z (%) calcd for C36H42
35ClN4

106Pd+ [M] +: 

671.2143, found: 671.2164. IR (KBr): ν 3442, 2962, 2871, 1626, 1606, 1497, 1454, 1391, 

1379, 1369, 1315, 1287, 1276, 1247, 1182, 1124, 1103. Anal. calcd for C36H42Cl2N4Pd×1/11 

CHCl3, C: 60.22 H: 5.89 N: 7.78. Found, C: 60.17 H: 6.06 N: 7.87. 

1,1'-di(4-methylbenzyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-

1H,1'H-3,3'-bipyrazole palladium(II ) chloride (70f): 

Compound 70f was prepared following the standard procedure 

using 69f (129 mg, 0.231 mmol) and bis(acetonitrile)di-

chloropalladium(II) (60 mg, 0.231 mmol) in 10 mL anhydrous 

acetonitrile to yield 70f (166 mg, 0.226 mmol, 98%) as a deep 

orange powder. Mp. 151 – 160 °C; 1H NMR (500.13 MHz, 

CDCl3, TMS): δ 0.72 (s, 6H, 2×(-CCH3)), 0.90 (s, 6H, 2×(-

CCH3)), 1.02 – 1.11 (m, 4H, 2×(-CH2CH2-)), 1.22 (s, 6H, 2×(-

CH2CCH3)), 1.69 – 1.74 (m, 2H, 2×(-CH2CH2-)), 2.06 – 2.11 (m, 2H, 2×(-CH2CH2-)), 2.31 (s, 

6H, 2×(ArCH3)), 2.85 (d, 2H, J = 3.7 Hz, 2×(-CCH)), 5.77 (d, 2H, 2JH-H = 15.6 Hz, -NCH2-), 

6.18 (d, 2H, 2JH-H = 15.5 Hz, -NCH2-), 7.11 (d, 4H, J = 8.0 Hz, 2×(ArH)), 7.18 (d, 4H, 

J = 8.0 Hz, 2×(ArH)) ppm. 13C NMR (125.75 MHz, CDCl3, TMS): δ 11.3, 19.4, 20.4, 21.3, 

26.9, 32.8, 47.9, 53.4, 54.1, 63.3, 125.6, 127.3, 129.4, 134.0, 137.6, 139.1, 159.5 ppm. MS 
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(FAB): m/z (%) 663 (91) [M-(HCl), -(Cl-)]+, 699 (30) [M-(Cl-)]+, 1258 (19) [M+(L), -(Cl-)]+, 

1438 (6) [2×M-(Cl-)]+. HRMS (FAB): m/z (%) calcd for C38H46
35ClN4

106Pd+ [M] +: 699.2457, 

found: 699.2419. IR (KBr): ν 3432, 2963, 2872, 1617, 1516, 1457, 1390, 1369, 1316, 1287, 

1276, 1248, 1205, 1184, 1124, 1103, 1072, 1050, 1018. Anal. calcd for C38H46Cl2N4Pd×1/8 

CHCl3, C: 60.83 H: 6.19 N: 7.44. Found, C: 60.89 H: 6.37 N: 7.30. 

1,1'-di(3-methylbenzyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-

1H,1'H-3,3'-bipyrazole palladium(II ) chloride (70g): 

Compound 70g was prepared following the standard 

procedure using 69g (129 mg, 0.231 mmol) and 

bis(acetonitrile)di-chloropalladium(II) (60 mg, 0.231 mmol) 

in 10 mL anhydrous acetonitrile to yield 70g (166 mg, 

0.224 mmol, 97%) as a deep orange powder. Mp. 143 – 147 

°C; 1H NMR (500.13 MHz, CDCl3, TMS): δ 0.73 (s, 6H, 

2×(-CCH3)), 0.91 (s, 6H, 2×(-CCH3)), 1.04 – 1.14 (m, 4H, 2×(-CH2CH2-)), 1.19 (s, 6H, 2×(-

CH2CCH3)), 1.70 – 1.75 (m, 2H, 2×(-CH2CH2-)), 2.08 – 2.13 (m, 2H, 2×(-CH2CH2-)), 2.31 (s, 

6H, 2×(ArCH3)), 2.87 (d, 2H, J = 3.7 Hz, 2×(-CCH)), 5.84 (d, 2H, 2JH-H = 15.9 Hz, -NCH2-), 

6.16 (d, 2H, 2JH-H = 15.9 Hz, -NCH2-), 7.01 – 7.06 (m, 6H, 2×(3ArH)), 7.17 – 7.20 (m, 2H, 

2×(ArH)) ppm. 13C NMR (125.75 MHz, CDCl3, TMS): δ 11.2, 19.4, 20.4, 21.6, 26.9, 32.8, 

47.9, 53.5, 54.1, 63.3, 124.2, 125.6, 127.8, 128.6, 128.7, 137.0, 138.3, 139.1, 159.6 ppm. MS 

(FAB): m/z (%) 663 (25) [M-(HCl), -(Cl-)]+, 699 (30) [M-(Cl-)]+, 1259 (2) [M+(L),-(Cl-)]+, 

1439 (3) [2×M-(Cl-)]+. HRMS (FAB): m/z (%) calcd for C38H46
35ClN4

106Pd+ [M] +: 699.2457, 

found: 699.2478. IR (KBr): ν 3453, 2963, 2871, 1609, 1490, 1456, 1390, 1378, 1369, 1348, 

1306, 1287, 1276, 1248, 1184, 1123, 1104, 1092. Anal. calcd for C38H46Cl2N4Pd×1/8 CHCl3, 

C: 60.83 H: 6.18 N: 7.44. Found, C: 60.69 H: 6.36 N: 7.41. 
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1,1'-di(4-tert-butylbenzyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-

1H,1'H-3,3'-bipyrazole palladium(II ) chloride (70h): 

Compound 70h was prepared following the standard procedure 

using 69h (149 mg, 0.231 mmol) and bis(acetonitrile)di-

chloropalladium(II) (60 mg, 0.231 mmol) in 10 mL anhydrous 

acetonitrile to yield 70h (187 mg, 0.224 mmol, 97%) as a deep 

orange powder. Mp. 203 – 205 °C; 1H NMR (500.13 MHz, 

CDCl3, TMS): δ 0.74 (s, 6H, 2×(-CCH3)), 0.92 (s, 6H, 2×(-

CCH3)), 1.05 – 1.14 (m, 4H, 2×(-CH2CH2-)), 1.24 (s, 6H, 2×(-

CH2CCH3)), 1.29 (s, 18H, 2×(-C(CH3)3)), 1.72 – 1.76 (m, 2H, 2×(-CH2CH2-)), 2.08 – 2.13 

(m, 2H, 2×(-CH2CH2-)), 2.87 (d, 2H, J = 3.7 Hz, 2×(-CCH)), 5.81 (d, 2H, 2JH-H = 15.8 Hz -

NCH2-), 6.18 (d, 2H, 2JH-H = 15.8 Hz, -NCH2-), 7.19 (d, 4H, J = 8.3 Hz, 2×(ArH)), 7.32 (d, 

4H, J = 8.4 Hz, 2×(ArH)) ppm. 13C NMR (125.75 MHz, CDCl3, TMS): δ 11.1, 19.2, 20.3, 

26.8, 32.7, 34.5, 47.8, 53.0, 54.0, 63.2, 125.4, 126.9, 133.7, 139.0, 150.7, 159.4 ppm. MS 

(FAB): m/z (%) 747 (45) [M-(HCl), -(Cl-)]+, 783 (19) [M-(Cl-)]+, 1427 (3) [M+(L),-(Cl-)]+. 

HRMS (FAB): m/z (%) calcd for C44H58
35ClN4

106Pd+ [M] +: 783.3398, found: 783.3434. IR 

(KBr): ν 3445, 2961, 2871, 1622, 1514, 1458, 1415, 1391, 1367, 1316, 1276, 1247, 1205, 

1193, 1125, 1050, 1019, 1001. Anal. calcd for C44H58Cl2N4Pd×1/9 CHCl3, C: 63.45 H: 7.01 

N: 6.71. Found, C: 63.47 H: 7.19 N: 6.82.  

1,1'-di(4-tert-butylbenzyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-

1H,1'H-3,3'-bipyrazole palladium(II ) acetate (70h(OAc)): 

Compound 70h(OAc) was prepared following the standard 

procedure using 69h (100 mg, 0.156 mmol) and palladium(II) 

acetate (35 mg, 0.156 mmol) in 12 mL anhydrous 

dichloromethane to yield 70h(OAc) (129 mg, 0.149 mmol, 96%) 

as a white powder. Decomp. >170 °C; 1H NMR (399.89 MHz, 

CD2Cl2: δ 0.75 (s, 6H, 2×(-CCH3)), 0.90 (s, 6H, 2×(-CCH3)), 

1.08 (s, 6H, 2×(-CH2CCH3)), 1.12 – 1.20 (m, 4H, 2×(-CH2CH2-

)),  1.30 (s, 18H, 2×(-C(CH3)3)), 1.49 (s, 6H, 2×(-OAc)),  1.69 – 1.75 (m, 2H, 2×(-CH2CH2-)), 

2.07 – 2.14 (m, 2H, 2×(-CH2CH2-)), 2.92 (d, 2H, J = 3.6 Hz, 2×(-CCH)), 5.35 (d, 2H, 2JH-

H = 16.1 Hz -NCH2-), 5.47 (d, 2H, 2JH-H = 16.2 Hz, -NCH2-), 7.06 (d, 4H, J = 8.3 Hz, 

2×(ArH)), 7.37 (d, 4H, J = 8.3 Hz, 2×(ArH)) ppm. 13C NMR (125.75 MHz, CDCl3, TMS): 
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δ 11.0, 19.3, 20.4, 22.7, 27.0, 31.5, 32.9, 34.7, 47.9, 52.5, 53.9, 63.1, 125.7, 126.3, 133.4, 

138.0, 150.8, 158.3, 179.1 ppm. MS (FAB): m/z (%) 747 (100) [M-(HOAc), -(OAc-)]+, 1391 

(15) [M+(L), -2×(OAc-)]+. HRMS (FAB): m/z (%) calcd for C44H57N4
106Pd+ [M] +: 747.3634, 

found: 747.3631. IR (KBr): ν 3432, 2961, 2871, 1638, 1581, 1515, 1458, 1414, 1391, 1367, 

1288, 1262, 1206, 1184, 1128, 1108, 1017. Anal. calcd for C48H64N4O4Pd×1/9 CHCl3, C: 

66.46 H: 7.44 N: 6.46. Found, C: 65.41 H: 7.47 N: 6.39. 

1,1'-di(2,4,6-trimethylbenzyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-

1H,1'H-3,3'-bipyrazole palladium(II ) chloride (70i): 

Compound 70i was prepared following the standard 

procedure using 69i (142 mg, 0.231 mmol) and 

bis(acetonitrile)di-chloropalladium(II) (60 mg, 0.231 mmol) 

in 10 mL anhydrous acetonitrile to yield 70i (173 mg, 

0.218 mmol, 95%) as a ochre red powder. Mp. 162 – 172 

°C; 1H NMR (500.13 MHz, CDCl3, TMS): δ 0.60 (s, 6H, 

2×(-CCH3)), 0.68 (s, 6H, 2×(-CCH3)), 0.81 (s, 6H, 2×(-

CH2CCH3)), 0.85 – 0.91 (m, 2H, 2×(-CH2CH2-)), 1.05 – 1.10 (m, 2H, 2×(-CH2CH2-)), 1.47 – 

1.52 (m, 2H, 2×(-CH2CH2-)), 2.02 – 2.07 (m, 2H, 2×(-CH2CH2-)), 2.10 (s, 12H, 2×(ArCH3)), 

2.24 (s, 6H, 2×(ArCH3)), 2.81 (d, 2H, J = 3.6 Hz, 2×(-CCH)), 5.74 (d, 2H, 2JH-H = 16.6 Hz, -

NCH2-), 6.35 (d, 2H, 2JH-H = 16.6 Hz, -NCH2-), 6.78 (s, 4H, 2×(ArH)) ppm. 13C NMR (125.75 

MHz, CDCl3, TMS): δ 10.5, 19.5, 20.4, 20.5, 21.0, 27.2, 32.2, 47.7, 51.8, 55.3, 63.1, 126.7, 

130.0, 137.3, 137.7, 137.8, 159.0 ppm. MS (FAB): m/z (%) 719 (59) [M-(HCl), -(Cl-)]+, 754 

(5) [M-(Cl-)]+, 1371 (6) [M+(L), -(Cl-)]+. HRMS (FAB): m/z (%) calcd for 

C42H54
35ClN4

106Pd+ [M] +: 755.3084, found: 755.3137. IR (KBr): ν 3447, 2960, 2874, 1613, 

1483, 1457, 1423, 1390, 1379, 1323, 1288, 1277, 1261, 1246, 1182, 1125, 1099, 1031, 1016, 

850. Anal. calcd for C42H54Cl2N4Pd×1/4 CHCl3, C: 61.11 H: 6.58 N: 6.73. Found, C: 61.01 H: 

6.66 N: 6.85. 
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1,1'-di(naphthalene-2-ylmethyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-

octahydro-1H,1'H-3,3'-bipyrazole palladium(II ) chloride (70j): 

Compound 70j was prepared following the standard 

procedure using 69j (150 mg, 0.238 mmol) and 

bis(acetonitrile)di-chloropalladium(II) (62 mg, 0.238 mmol) 

in 10 mL anhydrous acetonitrile to yield 70j (173 mg, 

0.225 mmol, 95%) as a deep orange powder. Mp. 158 – 170 

°C; 1H NMR (500.13 MHz, CD2Cl2, TMS): δ 0.78 (s, 6H, 

2×(-CCH3)), 0.91 (s, 6H, 2×(-CCH3)), 1.03 – 1.19 (m, 4H, 

2×(-CH2CH2-)), 1.21 (s, 6H, 2×(-CH2CCH3)), 1.69 – 1.77 (m, 2H, 2×(-CH2CH2-)), 2.07 – 

2.17 (m, 2H, 2×(-CH2CH2-)), 2.96 (d, 2H, J = 3.7 Hz, 2×(-CCH)), 6.05 (d, 2H, 2JH-

H = 16.2 Hz, -NCH2-), 6.40 (d, 2H, 2JH-H = 16.2 Hz, -NCH2-), 7.41 – 7.52 (m, 6H, 2×(ArH)), 

7.62 (s, 2H, 2×(ArH)), 7.81 – 7.87 (m, 7H, 2×(ArH)) ppm. 13C NMR (125.75 MHz, CD2Cl2, 

TMS): δ 11.4, 19.5, 20.6, 27.2, 33.3, 48.5, 63.8, 125.3, 126.0, 126.4, 126.7, 126.9, 128.2, 

128.4, 129.0, 133.4, 133.8, 135.4, 139.7, 160.4 ppm. MS (FAB): m/z (%) 735 (63) [M-(HCl), 

-(Cl-)]+, 771 (8) [M-(Cl-)]+, 1402 (4) [M+(L), -(Cl-)]+. HRMS (FAB): m/z (%) calcd for 

C44H46
35ClN4

106Pd+ [M] +: 771.2459, found: 771.2455. IR (KBr): ν 3446, 3115, 2963, 2872, 

1654, 1634, 1602, 1509, 1457, 1424, 1390, 1378, 1370, 1329, 1286, 1275, 1248, 1124. Anal. 

calcd for C28H42Cl2N4Pd×1/8 CHCl3, C: 64.25 H: 5.64 N: 6.79. Found, C: 64.06 H: 5.74 N: 

6.87. 

1,1'-di(3,5-di(trifluoromethyl)benzyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-

octahydro-1H,1'H-3,3'-bipyrazole palladium(II ) chloride (70k): 

Compound 70k was prepared following the standard 

procedure using 69k (102 mg, 0.127 mmol) and bis-

(acetonitrile)dichloropalladium(II) (33 mg, 0.127 mmol) 

in 10 mL anhydrous acetonitrile to yield 70k (120 mg, 

0.122 mmol, 96%) as a yellow powder. Mp. 145 – 148 

°C; 1H NMR (500.13 MHz, CDCl3, TMS): δ 0.78 (s, 

6H, 2×(-CCH3)), 0.96 (s, 6H, 2×(-CCH3)), 1.14 (s, 6H, 2×(-CH2CCH3)), 1.16 – 1.25 (m, 4H, 

2×(-CH2CH2-), 2×(-CH2CH2-)), 1.84 – 1.89 (m, 2H, 2×(-CH2CH2-)), 2.17 – 2.23 (m, 2H, 2×(-

CH2CH2-)), 2.97 (d, 2H, J = 3.7 Hz, 2×(-CCH)), 6.10 (d, 2H, 2JH-H = 16.7 Hz, -NCH2-), 6.32 

(d, 2H, 2JH-H = 16.7 Hz, -NCH2-), 7.52 (s, 4H, 4×(ArH), 7.80 (s, 2H, 2×(ArH) ppm. 13C NMR 
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(125.75 MHz, CDCl3, TMS): δ 10.9, 19.1, 20.0, 26.7, 33.0, 47.9, 52.5, 54.1, 63.6, 119.7, 

121.7, 124.1, 126.3, 126.5, 132.1, 132.0, 139.3, 140.0, 159.9 ppm. MS (FAB): m/z (%): 907 

(100) [M-(HCl), -(Cl-)]+, 945 (26) [M-(Cl-)]+. HRMS (FAB): m/z (%) calcd for 

C40H38
35ClF12N4

108Pd+ [M] +: 945.1632, found: 945.1594. IR (KBr): ν 3446, 2965, 2026, 1973, 

1624, 1457, 1382, 1351, 1280, 1175, 1136, 1017, 907, 845. Anal. calcd for 

C36H42Cl2N4Pd×1/13 CHCl3, C: 48.63 H: 3.88 N: 5.66. Found, C: 48.39 H: 4.02 N: 5.54. 

1,1'-di(pyridine-2-ylmethyl)-4,8,8'-trimethylbicycl o[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-

1H,1'H-3,3'-bipyrazole di(palladium(II ) dichloride) (78): 

To a solution of ligand 76 (28 mg, 0.053 mmol) in 

dichloromethane was added a solution of 

bis(acetonitrile)palladium(II) chloride (27 mg, 0.104 mmol) and 

stirred for 24 h at room temperature. The solution was 

concentrated under reduced pressure and the product allowed to 

crystallize. Washings with pentane furnished the title compound 

78 as a dark, orange microcrystalline powder (45 mg, 

0.051 mmol, 97%). Mp. 99 – 106 °C (decomp.); mixture of atropisomers: 1H NMR 

(600.13 MHz, CD2Cl2, TMS): δ 0.76 – 0.79 (m, 0.7H), 0.87 – 0.96 (m, 8H), 1.07 – 1.11 (m, 

0.7H), 1.30 – 1.56 (m, 13.7H), 1.72 – 1.82 (m, 1.4H), 1.96 – 2.01 (m, 1.4H), 2.15 – 2.20 (m, 

1.3H), 2.65 – 2.71 (m, 2H), 5.28 – 5.34 (m, 4H), 6.37 – 6.39 (m, 2H, ArH), 7.35 – 7.38 (m, 

2H, ArH), 7.46 – 7.49 (m, 2H, ArH), 7.86 – 7.90 (m, 2H, ArH), 9.86 – 9.92 (m, 2H, ArH) 

ppm. 13C NMR (150.90 MHz, CD2Cl2, TMS): δ 11.1, 11.2, 18.6, 19.1, 19.6, 19.9, 25.9, 27.4, 

29.7, 33.0, 33.9, 47.3, 48.0, 54.3, 55.1, 55.2, 61.6, 65.1, 122.4, 122.8, 125.2, 125.3, 129.9, 

130.4, 136.7, 138.1, 139.8, 139.9, 150.6, 150.5, 151., 155.4, 156.2, 157.9, 158.0 ppm. MS 

(FAB): m/z (%) 673 (77) [M-(PdCl2), -(Cl-)]+, 816 (10) [M-(HCl), -(Cl-)]+, 851 (70) [M-(Cl-

)]+. HRMS (FAB): m/z (%) calcd for C34H40Cl3N6Pd2
+ [M] +: 851.0452, found: 851.0505. 

ATR-FTIR: ν 2953, 2884, 1602, 1479, 1445, 1410, 1392, 1379, 1371, 1310, 1287, 1270, 

1210, 1183, 1151, 1120, 1104, 1098, 1047, 1022, 100, 948, 931, 841, 780, 761, 735, 701. 
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1,1'-di[(6-methylpyridine-2-yl)methyl]-4,8,8'-trime thylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-

octahydro-1H,1'H-3,3'-bipyrazole di(palladium(II ) dichloride) (79): 

 To a solution of ligand 77 (67 mg, 0.120 mmol) in 

dichloromethane was added a solution of 

bis(acetonitrile)palladium(II) chloride (62 mg, 0.239 mmol) and 

stirred for 24 h at room temperature. The solution was 

concentrated under reduced pressure and the product allowed to 

crystallize. Washings with pentane furnished the title compound 

79 as a dark, orange microcrystalline powder (103 mg, 

0.113 mmol, 94%). Mp. 161 – 168 °C (decomp.); mixture of atropisomers: 1H NMR 

(600.13 MHz, CD2Cl2, TMS): δ 0.68 – 0.71 (m, 1.3H), 0.83 – 0.97 (m, 13H), 1.32 – 1.47 (m, 

8H), 1.70 – 1.74 (m, 1H), 1.78 – 1.82 (m, 0.9H), 1.97 – 2.01 (m, 1.4H), 2.14 – 2.18 (m, 1H), 

2.62 – 2.65 (m, 1.7H), 3.92 – 3.93 (m, 5H), 5.34 – 5.38 (m, 2H), 6.97 – 7.02 (m, 2H, ArH), 

7.28 – 7.30 (m, 2H, ArH), 7.35 – 7.37 (m, 2H, ArH), 7.75 – 7.78 (m, 2H, ArH) ppm. 13C 

NMR (150.90 MHz, CD2Cl2, TMS): δ 10.8, 18.3, 18.7, 19.2, 19.8, 27.0, 29.3, 29.5, 29.6, 32.4, 

33.5, 47.2, 48.0, 54.0, 55.8, 55.9, 61.2, 65.0, 119.8, 120.1, 126.7 (2×), 131.0, 136.6, 139.2, 

151.4, 151.7, 155.8, 166.0 ppm. MS (EI): m/z (%) 703 (32) [M-(PdCl2), -(Cl-)]+, 843 (9) [M-

(HCl), -(Cl-)]+, 879 (23) [M-(Cl-)]+. HRMS (FAB): m/z (%) calcd for C34H40Cl3N6Pd2
+ [M] +: 

879.0766, found: 879.0652. ATR-FTIR: ν  2961, 1608, 1572, 1529, 1457, 1418, 1391, 1310, 

1273, 1244, 1226, 1208, 1185, 1155, 1125, 1104, 1051, 1034, 1020, 1003, 947, 910, 844, 805, 

762, 756, 716, 701. 

General procedure for the preparation of bcpz cobalt(II )- and copper(II ) complexes. To a 

solution of the appropriate bipyrazole ligand (1 eq.) in absolute ethanol was added cobalt(II) 

chloride hexahydrate, respectively copper(II) chloride dihydrate (1 eq.). The solution lightens 

up and becomes cloudy. After 16 h at room temperature the solvent was evaporated, the 

residue was dissolved in a small amount of chloroform and filtered through a short plug of 

neutral aluminium oxide. The filtrate was evaporated and the product dried under high 

vacuum to yield the bipyrazole cobalt(II) complexes as fluffy, pale purple solids and the 

bipyrazole copper(II) complexes as red solids, respectively. 
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1,1'-di(4-tert-butylbenzyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-

1H,1'H-3,3'-bipyrazole cobalt(II ) chloride (70h(Co)): 

Compound 70h(Co) was prepared following the standard procedure 

using 69h (49.9 mg, 0.078 mmol) and cobalt(II) chloride 

hexahydrate (18.5 mg, 0.078 mmol) in 3 mL absolute ethanol to 

yield 70h(Co) (54.2 mg, 0.070 mmol, 90%) as a fluffy, pale purple 

solid. Mp. 170 – 178 °C; MS (FAB): m/z (%) 700 (2) [M-(HCl), -

(Cl-)]+, 736 (100) [M-(Cl-)]+, 1378 (11) [M+(L), -(Cl-)]+. HRMS 

(FAB): m/z (%) calcd for C44H58
35ClN4Co+ [M] +: 736.3682, found: 

736.3704. IR (KBr): ν 3434, 2963, 2871, 1619, 1516, 1455, 1427, 

1391, 1366, 1337, 1319, 1273, 1248, 1204, 1183, 1129, 1107, 1017. Anal. calcd for 

C44H58Cl2CoN4×1/15CHCl3, C: 67.75 H: 7.49 N: 7.17. Found, C: 67.87 H: 7.59 N: 7.19.  

1,1'-di(naphthalene-2-ylmethyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-

octahydro-1H,1'H-3,3'-bipyrazole cobalt(II ) chloride (70j(Co)): 

Compound 70j(Co) was prepared following the standard 

procedure using 69j (47.8 mg, 0.076 mmol) and cobalt(II) 

chloride hexahydrate (18.0 mg, 0.076 mmol) in 3 mL absolute 

ethanol to yield 70j(Co) (53.7 mg, 0.071 mmol, 93%) as a fluffy, 

pale purple solid. Mp. 145 – 151 °C; MS (FAB): m/z (%) 688 

(6) [M-(HCl), -(Cl-)]+, 724 (93) [M-(Cl-)]+, 1354 (1) [M+(L), -

(Cl-)]+. HRMS (FAB): m/z (%) calcd for C44H46
35ClN4

63Co+ 

[M] +: 724.2743, found: 724.2808. IR (KBr): ν 3434, 3052, 2963, 1689, 1635, 1558, 1542, 

1509, 1455, 1372, 1329, 1287, 1274, 1248, 1126, 1103. Anal. calcd for C44H46Cl2CoN4×1/5 

CHCl3, C: 67.66 H: 5.94 N: 7.14. Found, C: 67.52 H: 6.07 N: 7.11. 

  

N N N N

Co
Cl Cl

tBu tBu

N N N N

Co
Cl Cl
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1,1'-di(4-tert-butylbenzyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-octahydro-

1H,1'H-3,3'-bipyrazole copper(II ) chloride (70h(Cu)): 

Compound 70h(Cu) was prepared following the standard procedure 

using 69h (50.9 mg, 0.079 mmol) and copper(II) chloride dihydrate 

(13.5 mg, 0.079 mmol) in 3 mL absolute ethanol to yield 70h(Cu) 

(53.7 mg, 0.071 mmol, 89%) as a fine, red powder. Mp. 174 – 181 

°C; MS (FAB): m/z (%) 704 (11) [M-(HCl), -(Cl-)]+, 740 (49) [M-

(Cl-)]+, 1382 (9) [M+(L), -(Cl-)]+. HRMS (FAB): m/z (%) calcd for 

C44H58
35ClN4Cu+ [M] +: 740.3646, found: 736.3624. IR (KBr): ν 

3439, 2963, 2872, 1626, 1558, 1542, 1515, 1456, 1391, 1365, 1339, 1319, 1275, 1248, 1183, 

1129, 1017. Anal. calcd for C44H58Cl2CuN4×1/6CHCl3, C: 66.53 H: 7.35 N: 7.03. Found, C: 

66.64 H: 7.46 N: 7.05. 

1,1'-di(naphthalene-2-ylmethyl)-4,8,8'-trimethylbicyclo[2.2.1]-4,4',5,5',6,6',7,7'-

octahydro-1H,1'H-3,3'-bipyrazole copper(II ) chloride (70j(Cu)): 

Compound 70j(Cu) was prepared following the standard 

procedure using 69j (54.1 mg, 0.086 mmol) and copper(II) 

chloride dihydrate (14.6 mg, 0.086 mmol) in 3 mL absolute 

ethanol to yield 70j(Cu) (59.5 mg, 0.078 mmol, 91%) as a fine, 

red powder. Mp. 131 – 138 °C; MS (FAB): m/z (%) 692 (9) [M-

(HCl), -(Cl-)]+, 728 (44) [M-(Cl-)]+, 1358 (1) [M+(L), -(Cl-)]+. 

HRMS (FAB): m/z (%) calcd for C44H46
35ClN4

63Cu+ [M] +: 

728.2707, found: 728.2678. IR (KBr): ν 3431, 3053, 2963, 2873, 1634, 1510, 1455, 1390, 

1370, 1330, 1287, 1275, 1248, 1185, 1126, 1102, 1017. Anal. calcd for 

C44H58Cl2CuN4×1/3CHCl3, C: 64.78 H: 5.68 N: 6.79. Found, C: 64.91 H: 5.79 N: 6.97.  

General procedure for the copper-free Wacker oxidations of terminal alkenes:  

The catalyst† (5 mol%) was dissolved in a mixture of 2.5 mL of dimethyl acetamide and water 

(6:1) in a cap sealed vial, which was in turn evacuated at -78 °C and refilled with oxygen 

N N N N

Cu
Cl Cl

tBu tBu

N N N N

Cu
Cl Cl

R
R

O

R H

OCat. 4h or 5 (5 mol%),

DMA:H2O (6:1), 70 °C
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three times. The solution was allowed to warm up to room temperature and the appropriate 

alkene (0.89 mM) and 10 µL of internal standard (undecane) were added. Reaction control 

samples were taken from the solution, extracted with diethyl ether, filtered through a short 

plug of neutral aluminum oxide to remove the catalyst and analyzed by GC- and GC-MS 

using a 25 m standard HP-5 MS column (film thickness 250 nm). Observed retention times of 

starting materials and products are depicted in table 1. For the oxidation without oxygen three 

equivalents of benzoquinone were added followed by the standard procedure. 

† Pd(II)-2,2-bipyridine chloride 5 was synthesized from PdCl2(MeCN)2
[426] following the literature 

preparation.[427] 

 

Table 1: Observed retention times on a Agilent 25 m HP-5MS column using a temperature 

program (40 °C for 5 min, ramp 4 °C/min to 180 °C @ 80kPa He). 

 

 

 

General procedure for the selective Isomerization of Allylbenzene and -anisole:  

Catalyst 70h (5 mol%) was dissolved in iso-propanol and the appropriate allylbenzenes 

(0.89 mM) and 10 µL of internal standard (undecane) were added. Reaction control samples 

were taken from the solution, diluted with diethyl ether, filtered through a short plug of 

neutral aluminum oxide to remove the catalyst and analyzed by GC- and GC-MS using a 

25 m standard HP-5MS column (film thickness 250 nm). Observed retention times of starting 

materials and products are depicted in table 2. 

Substrate RT [min] Product RT [min] 

1-octene 8.3 octane-2-one 25.7 

4-methylstyrene 17.8 4-methylbenzaldehyde 21.4 

 1-(4-tolyl)ethanone 25.7 

vinylcyclohexane 9.6 1-cyclohexylethanone 19.4 
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Table 2: Observed retention times on a Agilent 25 m HP-5MS column using a temperature 

program (100 °C for 5 min, ramp 4 °C/min to 180 °C @ 80kPa He). 

Preparation of authentic samples were carried out following the standard procedure using 1H, 

1H-Heptafluoro-1-butanol as solvent. After the reaction was complete, the solution was 

extracted twice with pentane. The pentane layers were combined, filtered through neutral 

aluminum oxide and the solvent was allowed to evaporate at room temperature to yield the 

corresponding E-Isomers and traces of the Z-Isomers as shown in 1H- and 13C-NMR 

spectroscopic measurements. 

trans-propenylbenzene (72): 

1H NMR (300.08 MHz, CDCl3, TMS): δ 1. 83 (dd, 3H, J = 6.5 Hz, 4J = 1.3 Hz, (-CH3)), 6.18 

(dq, 1H, Jgem = 15.6 Hz, 4J = 6.5 Hz, (-CHCH3)), 6.35 (dd, 1H, Jgem = 15.7 Hz, 4J = 1.3 Hz, (-

CHCHCH3)), 7.11 – 7.15 (m, 1H, ArH), 7.20 – 7.29 (4H, 4×(ArH)) ppm. 13C NMR (75.46 

MHz, CDCl3, TMS): δ 18.5, 125.7, 125.8, 126.7, 128.4, 131.0, 137.9 ppm. 

trans-anethole (73): 

1H NMR (300.08 MHz, CDCl3, TMS): δ 1. 86 (dd, 3H, J = 6.5 Hz, 4J = 1.6 Hz, (-CH3)), 3.80 

(s, 3H, (-OCH3)), 6.09 (dq, 1H, Jgem = 15.7 Hz, 4J = 6.5 Hz, (-CHCH3)), 6.35 (dd, 1H, 

Jgem = 15.8 Hz, 4J = 1.5 Hz, (-CHCHCH3)), 6.82 – 6.85 (m, 2H, 2×(ArH)), 7.26 – 7.28 (2H, 

2×(ArH)) ppm. 13C NMR (75.48 MHz, CDCl3, TMS): δ 18.4, 55.3, 113.9, 123.5, 126.9, 

130.3, 130.8, 158.6 ppm. 

  

Substrate RT [min] Product RT [min] 

allylbenzene 15.2 cis-propenylbenzene 17.3 

  trans-propenylbenzene 18.8 

allylanisole 11.5 cis-anethole 13.4 

  trans-anethole 14.6 
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UV-Vis spectra of palladium complexes 70h, 70j, 70d and 70k:  

The solution spectra (c = 0.03 mM) of the palladium complexes were recorded in distilled 

tetrahydrofurane. 

 

 

Figure 65 UV-Vis spectra of palladium complexes 70h, 
70j, 70d and 70k in tetrahydrofurane.[a] 



Experimental Section – Chapter 3 191 

 

NH2

NH2

Experimental Section – Chapter 3 

(1R,3S)-1,3-Diamino-1,2,2-trimethylcyclopentane (R,S-tmcp, 89): 

Caution: The reaction has to be performed very carefully due to danger of 

explosion. Strict control of the reaction conditions, addition cycles and 

monitoring of the reaction progress is crucial. It’s explicitly advised to 

perform the reaction several times in a (sub-)gram scale prior to the 

amounts reported herein. Protecting equipment, like special gloves, a 

leather apron, a chest protector, a face shield as well as a bullet proof protective wall are 

recommended as well. This compound was prepared using a modified procedure of the 

reported one.[349, 350] Camphoric acid (88, 36.0 g, 0.180 mol) and 1.2 L of ethanol-free 

chloroform were placed in a five liter round bottom flask under argon equipped with a 

mechanic stirrer and a 100 mL dropping-funnel. Sulfuric acid (90.0 mL, 98%) was slowly 

added and the mixture heated to 50 °C. A white gummy precipitate forms and after 30 min 

sodium azide (35.1 g, 0.540 mol) was added slowly in very small amounts starting with 1 g 

and later up to 3 g over a period of five hours (caution: hydrazoic acid generation). The 

mixture was stirred under argon for 18 h, cooled to 0 °C and poured slowly into 1 L of ice 

water. The chloroform layer was separated and discarded, the water layer adjusted to pH 12 

with 3M sodium hydroxide (caution: carbon monoxide generation!) and extracted four times 

with dichloromethane (500 mL). Addition of sodium chloride may ease phase separation. The 

organic layers were combined and washed with brine. The organic layer was dried over 

sodium sulfate, the solvent evaporated and the product dried for 24 h under high vacuum to 

yield the title diamine 89 (24.1 g, 0.170 mol, 94%) as a white foam. The product can be stored 

under argon at low temperatures for several month without degradation. Mp. 127 – 129 °C; 
1H NMR (500.13 MHz, CDCl3, TMS): δ  0.77 (s, 3H, -CH3), 0.78 (s, 3H, -CH3), 0.99 (s, 3H, -

NH2CCH3), 1.23 – 1.31 (m, 1H, -CHCH2-), 1.29 – 1.39 (bs, 4H, -NH2), 1.54 – 1.66 (m, 2H, -

CHCH2-, -CH3CCH2-), 1.96 – 2.04 (m, 1H, -CH3CCH2), 2.95 (dd, J = 8.5 Hz, J = 9.0 Hz, 

1H,-CHNH2) ppm. 13C NMR (125.77 MHz, CDCl3, TMS): δ 16.3, 22.2, 25.9, 30.3, 38.3, 

46.2, 53.4, 60.8, 61.0 ppm. MS (CI): m/z (%) 71 (3), 83 (1), 110 (9) [M-2×NH2]
+, 143 

[M+H] +. IR (KBr): ν 3282, 2960, 2869, 1594, 1472, 1371, 1316, 1209, 1165, 1093, 1043, 

1018, 984, 877. 
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N,N’-Di(2-nitrophenyl)-(1R,3S)-diamino-tmcp (90):  

To a solution of R,S-tmcp (89, 6.00 g, 42.2 mmol) and freshly 

powdered potassium carbonate (11.67 g, 84.4 mmol) in 150 mL 

anhydrous dimethyl sulfoxide in a small reaction vessel 

(100 mL) was added 1-fluoro-2-nitrobenzene (12.50 g, 

88.5 mmol) under vigorous stirring. The mixture turns 

immediately yellow and after stirring for 30 min the mixture was 

heated to 90 °C.  At 2 h and 4 h freshly powdered potassium carbonate (11.67 g, 84.4 mmol) 

was added in one portion each. After stirring at 110 °C for 4 d the black, hot mixture was 

poured into 1.5 L water. The orange solid was filtered, washed five times with water, 

collected, dissolved in dichloromethane and dried over sodium sulphate. The solvent was 

evaporated and the residue was dried at 80 °C for one day and one day under high vacuum. 

The crude product was washed three times with diethyl ether to obtain the analytically pure 

product 90 (11.72 g, 30.5 mmol, 72%) as a bright orange-red, microcrystalline powder. Mp. 

160 – 164 °C; 1H NMR (300.13 MHz, CDCl3, 25 °C): δ 1.18 (s, 3H, -CH3), 1.24 (s, 3H, -

CH3), 1.51 (s, 3H, -NHCCH3), 1.67 – 1.79 (m, 1H, -CHCH2-), 2.20 – 2.30 (m, 1H, -CHCH2-), 

2.35 – 2.48 (m, 2H, -CH3CCH2-), 4.02 (ddd, J = 8.4 Hz, J = 8.1 Hz, J = 8.1 Hz, 1H, -

CH2CHNH-), 6.60 - 6.67 (m, 2H, 2×ArH), 7.35 - 7.45 (m, 2H, 2×ArH), 8.17 - 8.22 (m, 2H, 

2×ArH), 8.34 (bd, 1H, J = 8.4 Hz, -CHNH), 8.79 (bs, 1H, -CH3CNH) ppm. 13C NMR (75.47 

MHz, CDCl3, TMS): δ 18.38, 21.6, 22.1, 29.1, 35.1, 49.7, 59.0, 64.3, 114.0, 115.2, 115.3, 

115.8, 127.2, 127.6, 132.1, 132.7, 135.5, 136.2, 144.6, 145.5 ppm. MS (EI): m/z (%) 69 (23), 

122 (13), 188 (29), 191 (13), 231 (16), 247 (100) [M-(2-nitroanilinyl-)]+, 384 (9) [M]+. HR-

MS (EI, m/z): calc. for C20H24N4O4 [M]: 384.1798, found: 183.1771. IR (KBr): ν 3361, 2975, 

1614, 1576, 1506, 1440, 1420, 1355, 1326, 1265, 1232, 1157, 1069, 1039, 1009, 857, 780, 

742. Anal. calcd for C20H24N4O4, C: 62.49 H: 6.29 N: 14.57 O: 16.65. Found, C: 62.07 H: 

5.81 N: 13.76. 

(1R,3S)-1,2,2-trimethyl-N3-(2-nitrophenyl)cyclopentane-1,3-diamine (95): 

This compound was prepared according to the procedure for the 

diarylation but with one equivalent of 1-fluoro-2-nitrobenzene (0.99 g, 

7.0 mmol), R,S-tmcp (89, 1.00 g, 7.0 mmol) and freshly powdered 

potassium carbonate (1.95 g, 14.1 mmol) in 40 mL anhydrous 

dimethyl sulfoxide in a small reaction vessel (50 mL). After reacting 

for 2 d work-up followed according to the synthesis of the diarylation product N,N’-di(2-

nitrophenyl)-(1R,3S)-diamino-tmcp to yield the title compound 95 as a bright, yellow solid 

(1.70 g, 6.4 mmol, 92%). Mp. 90 – 98 °C; 1H NMR (300.13 MHz, CDCl3, TMS): δ 0.96 (s, 

NH HN

NO2

NO2
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3H, -CH3), 0.99 (s, 3H, -CH3), 1.16 (s, 3H, -NHCCH3), 1.56 (bs, 3H, -NH2), 1.62 – 1.72 (m, 

2H, -CH3CCH2-, -CHCH2-), 1.75 – 1.86 (m, 1H, -CHCH2-), 2.24 – 2.37 (m, 1H, (-CH3CCH2), 

3.80 (ddd, J = 8.5 Hz, J = 8.5 Hz, J = 3.7 Hz, 1H, -CH2CHNH-), 6.85 (d, 1H, , 4J HAr-

HAr  = 8.7 Hz, ArH), 6.55 - 6.50 (m, 1H, ArH), 7.40 - 7.32 (m, 1H, ArH), 8.13 (d, 1H, 4J HAr-

HAr  = 8.6 Hz, 4JHAr-HAr = 1.6 Hz, ArH), 8.15 (bd, 1H, J = 8.2 Hz, -NH-) ppm. 13C NMR (75.47 

MHz, CDCl3, TMS): δ 17.2, 24.2, 26.3, 29.4, 38.2, 47.5, 61.2, 62.0, 113.8, 114.1, 127.1, 

131.5, 135.9, 145.3 ppm. MS (EI): m/z (%) 69 (17), 109 (8), 126 (100) [M-o-nitroanilinyl]+, 

231 (2), 246 (1) [M-NH2]
+, 263 (23) [M]+. HR-MS (EI, m/z): calc. for C14H21N3O2 [M]: 

263.1634, found: 183.1631. ATR-FTIR: ν 3361, 2959, 1611, 1573, 1498, 1416, 1438, 1383, 

1353, 1325, 1260, 1224, 1155, 1068, 1037, 948, 890, 856, 836, 780, 776, 739. 

N,N’-Di(4-nitrophenyl)-(1R,3S)-diamino-tmcp (97): 

 Method A: The compound was prepared similar to the 

diarylation to N,N’-di(2-nitrophenyl)-(1R,3S)-diamino-

tmcp (90) using R,S-tmcp (89, 1.00 g, 7.0 mmol), 1-

fluoro-4-nitrobenzene (2.28 g, 16.2 mmol) and freshly 

powdered potassium carbonate (3.89 g, 28.1 mmol) to 

yield the title compound 97 (506 mg, 1.3 mmol, 19%) 

as a bright yellow microcrystalline powder. 

Method B: The compound was prepared using powdered caesium carbonate (9.16 g, 

28.1 mmol) instead of potassium carbonate, R,S-tmcp (89, 2.00 g, 14.1 mmol) and 1-fluoro-4-

nitrobenzene (4.36 g, 30.9 mmol) to yield the title compound 97 as a bright yellow 

microcrystalline powder (4.27 g, 11.1 mmol ) in 79% yield. Mp. 79 – 82 °C; 1H NMR 

(300.13 MHz, CDCl3, TMS): δ 1.08 (s, 3H, -CH3), 1.12 (s, 3H, -CH3), 1.43 (s, 3H, -

NHCCH3), 1.56 – 1.70 (m, 1H, -CHCH2-), 2.06 – 2.16 (m, 1H, -CHCH2-), 2.33 – 2.46 (m, 

2H, -CH3CCH2-), 3.89 (ddd, J = 8.4 Hz, J = 8.1 Hz, J = 8.1 Hz, 1H, -CH2CHNH-), 4.62 - 4.65 

(m, 2H, 2×NH), 6.58 - 6.64 (m, 4H, 2×2ArH), 8.00 - 8.07 (m, 4H, 2×2ArH) ppm. 13C NMR 

(75.47 MHz, CDCl3, TMS): δ 17.5, 21.1, 22.8, 29.2, 34.5, 49.6, 60.5, 64.6, 111.4, 113.4, 

126.1, 126.5, 137.9, 151.9, 153.2 ppm. MS (EI): m/z (%) 69 (20), 109 (12), 321 (14) [M-

CH3]
+, 247 (100) [M-p-nitroanilinyl]+, 384 (8) [M]+. HR-MS (EI, m/z): calc. for C20H24N4O4 

[M]: 384.1798, found: 183.1816. IR (KBr): ν 2967, 1596, 1504, 1472, 1377, 1309, 1187, 

1114, 998, 835, 754, 700. Anal. calcd for C20H24N4O4, C: 62.49 H: 6.29 N: 14.57 O: 16.65. 

Found, C: 61.88 H: 6.24 N: 13.88. 
  

NH HN

NO2O2N
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(1R,3S)-1,2,2-trimethyl-N3-(4-nitrophenyl)cyclopentane-1,3-diamine (96): 

This compound was prepared according to the procedure for the 

diarylation but with one equivalent of 1-fluoro-4-nitrobenzene 

(0.50 g, 7.0 mmol), R,S-tmcp (89, 0.50 g, 3.50 mmol) and freshly 

powdered potassium carbonate (2.29 g, 7.0 mmol) in 40 mL 

anhydrous DMSO in a small reaction vessel (50 mL). After 

reacting for 2 d work-up followed according to the synthesis of 

the diarylation product N,N’-di(2-nitrophenyl)-(1R,3S)-diamino-tmcp (90) to yield the title 

compound 96 as a bright, yellow solid (0.93 g, 2.7 mmol, 78%). Mp. 90 – 98 °C; 1H NMR 

(300.13 MHz, CDCl3, TMS): δ 0.95 (s, 3H, -CH3), 0.97 (s, 3H, -CH3), 1.16 (s, 3H, -

NHCCH3), 1.29 (bs, 2H, -NH2), 1.58 – 1.71 (m, 2H, -CH3CCH2-, -CHCH2-), 1.18 – 1.93 (m, 

1H, -CHCH2-), 2.18 – 2.32 (m, 1H, -CH3CCH2-), 3.66 (dd, J = 8.1 Hz, J = 7.8 Hz, 1H, -

CH2CHNH-), 6.43 - 6.47 (m, 2H, 2ArH), 4.64 (bd, J = 7.5 Hz, 1H, -CHNH-), 8.01 - 8.04 (m, 

2H, 2ArH) ppm. 13C NMR (75.47 MHz, CDCl3, TMS): δ 17.0, 25.5, 26.6, 29.4, 38.1, 47.9, 

62.0, 63.3, 110.7, 126.7, 136.5, 153.5 ppm. MS (EI): m/z (%) 69 (12), 109 (10), 126 (100) 

[M-p-nitroanilinyl]+, 164 (17), 231 (14), 246 (8) [M-NH2]
+, 263 (23) [M]+. HR-MS (EI, m/z): 

calc. for C14H21N3O2 [M]: 263.1634, found: 283.1650. ATR-FTIR: ν 3319, 2964, 2872, 1594, 

1581, 1527, 1492, 1459, 1390, 1382, 1368, 1295, 1222, 1182, 1148, 1105, 1060, 1060, 996, 

951, 926, 889, 822, 753. 

N1,N1'-((1R,3S)-1,2,2-trimethylcyclopentane-1,3-diyl) di (benzyl-1,2-diamine) (91): 

To a solution of diaminoarylated-tmcp nitro compound 90 (1.00g, 

2.60 mmol) in 50 mL anhydrous methanol under nitrogen was 

added palladium on charcoal (10% Pd, 277 mg). After addition the 

atmosphere was replaced by hydrogen two times. Hydrogen was 

constantly bubbled through the stirred mixture via a small syringe 

for two hours and the reaction progress monitored by thin-layer 

chromatography. The catalyst was removed by filtration (pore size 0.45 µm) and the solution 

was immediately evaporated to yield the tetramine title compound 91 (818 mg, 2.52 mmol, 

97%) as a white foam. The product can be stored under argon and lower temperatures for 

some weeks. Decomposition of the compound due to oxidation is accompanied by a color-

change from white to pale brown. 1H NMR (300.13 MHz, CDCl3, TMS): δ 1.10 (s, 3H, -

CH3), 1.20 (s, 3H, -CH3), 1.33 (s, 3H, -NHCCH3), 1.53 - 1.65 (m, 1H, -CHCH2-), 1.75 – 1.85 

(m, 1H, -CHCH2-), 2.30 – 2.42 (m, 1H, -CH3CCH2-), 2.50 – 2.62 (m, 1H, -CH3CCH2-), 3.53 - 

3.93 (m, 7H, 2×-NH2, 2×-NH-, -CHNH-), 6.62 - 6.89 (m, 8H, 2×4ArH) ppm. 13C NMR 

(75.47 MHz, CDCl3, TMS): δ 17.3, 19.6, 25.1, 30.3, 32.6, 49.8, 62.1, 65.6, 112.1, 116.7, 

117.1, 117.6, 118.2, 119.3, 120.0, 120.5, 134.5, 135.1, 137.6, 137.7 ppm. MS (EI): m/z (%) 69 

NH HN

NH2

NH2
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(20), 109 (12), 321 (14) [M-CH3]
+, 247 (100) [M-p-nitroanilinyl]+, 384 (8) [M]+. HR-MS (EI, 

m/z): calc. for C20H24N4O4 [M]: 384.1798, found: 183.1816. IR (KBr): ν 3054, 2968, 2872, 

1620, 1597, 1504, 1454, 1391, 1371, 1342, 1294, 1266, 1238, 1148, 1101, 1059, 860, 821, 

742. 

1,1'-((1R,3S)-1,2,2-trimethylcyclopentane-1,3-diyl)di(1H-benzimidazole) (92): 

Tetramine compound 91 (844 mg, 2.60 mmol) and triethyl 

orthoformiate (7.0 mL, 42.1 mmol) were placed in a short 

distillation apparatus, two drops of formic acid were added and the 

reaction heated at 105 °C over night for distillation of ethanol. 

Triethyl orthoformate was decanted off, the residue dissolved in a 

small amount of dichloromethane and the product precipitated by 

addition of diethyl ether. The product was collected, washed with diethyl ether and the 

procedure repeated three times to yield 442 mg (1.28 mmol, 49%) of the title compound 92 as 

an off white powder. Mp. 120 – 127 °C; 1H NMR (500.13 MHz, CDCl3, TMS): δ 0.60 (s, 3H, 

-CH3), 1.36 (s, 3H, -CH3), 2.00 (s, 3H, -NHCCH3), 2.31 – 2.36 (m, 1H, -CHCH2-), 2.60 – 

2.69 (m, 2H, , -CHCH2-, -CH3CCH2-), 3.37 – 3.50 (m, 1H, -CH3CCH2-), 4.90 (dd, J = 9.0 Hz, 

J = 9.0 Hz 1H, -CH2CHNH-), 7.25 - 7.35 (m, 4H, 4ArH), 7.45 - 7.47 (m, 1H, ArH), 7.71 - 

7.72 (m, 1H, ArH), 7.82 - 7.83 (m, 2H, 2ArH), 8.08 (s, 1H, CHNCH-), 8.19 (s, 1H, 

CH3CNCH-) ppm. 13C NMR (125.77 MHz, CDCl3, TMS): δ 19.9, 23.6, 24.2, 26.0, 34.8, 50.5, 

62.7, 69.3, 110.1, 113.9, 120.7, 120.9, 122.1, 122.4, 122.7, 123.1, 123.6, 133.7, 134.7, 141.7, 

141.8, 143.4, 144.8 ppm. MS (EI): m/z (%) 69 (16), 109 (5), 119 (21), 145 (24), 159 (68), 173 

(43), 211 (6), 227 (100) [M-benzimidazolyl]+, 329 (7) [M-CH3]
+, 344 (58) [M]+. HR-MS (EI, 

m/z): calc. for C22H24N4 [M]: 344.2001, found: 344.1989. IR (KBr): ν 2976, 1734, 1636, 

1559, 1540, 1506, 1490, 1457, 1386, 1284, 1229, 1133, 894, 779, 744. Anal. calcd for 

C22H24N4, C: 76.71 H: 7.02 N: 16.27. Found, C: 76.12 H: 7.05 N: 16.06. 

1,1'-((1R,3S)-1,2,2-trimethylcyclopentane-1,3-diyl)di(benzotriazole) (99): 

The tetramine 91 (395 mg, 1.22 mmol) was dissolved in 25 mL 

anhydrous tetrahydrofurane, hypophosphorous acid (0.63 mL, 

12.2 mmol) was added and the solution heated to 40 °C. Tert-

butyl nitrite (377 mg, 3.66 mmol) dissolved in 5 mL anhydrous 

tetrahydrofurane was added dropwise over a period of 15 min and 

the reaction was stirred for 16 h at 40° C. The solution was 

allowed to cool down to room temperature and the solvent was evaporated under reduced 

N N

N N
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pressure. The residue was taken up in dichloromethane and washed two times with 10wt% 

aqueous sodium hydroxide solution. The organic layers were separated, combined and dried 

over sodium sulfate. The solvent was evaporated and the crude product purified by flash 

column chromatography (silica, hexane/ ethyl acetate = 10:1 to 1:1) to yield the title 

compound 99 as orange, needle-shaped crystals (314 mg, 0.91 mmol, 74%). Mp. 205 – 209 

°C; 1H NMR (300.13 MHz, CDCl3, TMS): δ 0.47 (s, 3H, -CH3), 1.50 (s, 3H, -CH3), 2.01 (s, 

3H, -NHCCH3), 2.48 – 2.57 (m, 1H, -CHCH2-), 2.58 – 2.71 (m, 1H, -CHCH2-), 3.33 – 3.45 

(m, 1H, -CH3CCH2-), 3.88 – 3.99 (m, 1H, -CH3CCH2-), 5.26 (dd, J = 8.1 Hz, J = 10.0 Hz, 1H, 

-CH2CHNH-), 7.33 - 7.40 (m, 2H, 2×ArH), 7.43 - 7.53 (m, 2H, 2×ArH), 7.59 - 7.62 (m, 1H, 

ArH), 7.79 - 7.82 (m, 1H, ArH), 8.06 – 8.09 (m, 2H, 2×ArH) ppm. 13C NMR (75.47 MHz, 

CDCl3, TMS): δ 19.7, 23.6, 24.9, 25.1, 34.4, 51.7, 66.6, 79.1, 110.0, 112.2, 120.2, 120.5, 

123.5, 123.9, 127.1, 127.3, 133.1, 133.9, 146.0, 146.5 ppm. MS (EI): m/z (%) 76 (52), 118 

(62), 158 (46), 184 (100), 198 (71), 227 (11), 331 (39) [M-CH3]
+, 346 (77) [M]+. HR-MS (EI, 

m/z): calc. for C20H22N6 [M]: 346.1906, found: 344.1915. ATR-FTIR: ν 2962, 1610, 1582, 

1481, 1447, 1466, 1390, 1373, 1352, 1313, 1286, 1224, 1185, 1163, 1133, 1072, 1051, 1034, 

1009, 1001, 989, 945, 920, 900, 850, 779, 110, 160, 752, 740. Anal. calcd for C20H22N6, C: 

69.34 H: 6.40 N: 24.26. Found, C: 68.92 H: 6.44 N: 23.89. 

1,1'-((1R,3S)-1,2,2-trimethylcyclopentane-1,3-diyl) di (3-methyl-1H-benzimidazole-3-

ium)iodide (93): 

Dibenzimidazole 92 (400 mg, 1.16 mmol) was suspended in 25 mL 

anhydrous acetonitrile and methyl iodide (988 mg, 6.96 mmol) was 

added dropwise via syringe. After stirring for two hours the mixture 

was stirred at reflux temperature at 55 °C for one hour. The product 

93 (675 mg, 1.07 mmol, 93%) was obtained as yellow crystals after 

evaporation of the solvent in vacuum. Mp. 201 – 209 °C; 1H-NMR 

(500.13 MHz, DMSO-d6): δ 0.65 (s, 3H, -CH3), 1.26 (s, 3H, -CH3), 2.09 (s, 3H, -NHCCH3), 

2.35 – 2.41 (m, 1H, -CH2-), 2.66 – 2.77 (m, 2H, -CH2-), 3.35 – 3.42 (m, 1H, -CH2-), 4.12 (s, 

3H, -CH3), 4.13 (s, 3H, -CH3), 5.53 (t, J = 9.2 Hz, 1H, -CH-), 7.68 – 7.77 (m, 4H, ArH), 8.07 

– 8.09 (m, 2H, ArH) 8.24 – 8.30 (m, 2H, ArH), 10.01 (s, 1H, -(CH)N-), 10.19 (s, 1H, -(CH)N-

) ppm. 13C-NMR (125.77 MHz, DMSO-d6): δ 19.1, 22.1, 24.0, 25.49, 33.5, 33.8, 49.6, 63.4, 

73.2, 113.7, 113.9, 114.1, 117.1, 126.2, 126.4, 126.5, 126.6, 130.9, 131.7, 132.0, 132.7, 142.8, 

142.8 ppm. MS (ESI, pos. mode, arginin, m/z): m/z (%) 373 (8) [M-HI, -I-]+, 487 (8) [M-CH3, 

-I-]+, 501 (100) [M-I-]+. HR-MS (ESI, pos. mode, arginin, m/z): calc. for C24H30IN4
+ [M+]: 

501.1515, found: 501.1513. IR (KBr): ν 3138, 2966, 1609, 1567, 1461, 1393, 1348, 1320, 

1263, 1212, 1143, 1100, 1023, 853, 758. Anal. calcd for C24H30I2N4, C: 45.88 H: 4.81 N: 

N N

N N

I- I-
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8.92. Found C: 44.69 H: 4.99 N: 8.78. 

1,1'-((1R,3S)-1,2,2-trimethylcyclopentane-1,3-diyl) di (3-methyl-1H-benzimidazole-3-

ium)triflate (94): 

Dibenzimidazole 92 (400 mg, 1.16 mmol) was suspended in 25 mL 

anhydrous acetonitrile and methyl trifluormethanesulfonate (391 mg, 

2.38 mmol) was added dropwise via syringe. Upon addition the solid 

dissolved and the solution turned brown. After stirring for three hours 

at room temperature the solvent was removed in vacuum and the 

product 94 (694 mg, 1.03 mmol, 89%) was obtained as a white 

hygroscopic solid, which was stored at -20°C. 1H-NMR (300.13 MHz, DMSO): δ 0.64 (s, 3H, 

-CH3), 1.25 (s, 3H, -CH3), 2.07 (s, 3H, -NHCCH3), 2.31 – 2.40 (m, 1H, -CH2-), 2.63 – 2.71 

(m, 2H, -CH2-), 3.29 – 3.40 (m, 1H, -CH2-), 4.10 (s, 3H; -CH3), 4.11 (s, 3H; -CH3), 5.49 (t, J 

= 9.3 Hz, 1H; -CH-), 7.66 – 7.78 (m, 4H; ArH), 8.06-8.09 (m, 2H; ArH) 8.20 – 8.26 (m, 2H; 

ArH), 9.93 (s, 1H; -(CH)N-), 10.05 (s, 1H; -(CH)N-) ppm. 13C-NMR (75.48 MHz, CDCl3): δ 

18.8, 22.0, 23.9, 25.4, 33.4, 33.7, 49.6, 63.3, 73.2, 113.7, 117.0, 126.3, 126.4, 126.6, 126.7, 

131.0, 131.7, 132.2, 132.7, 142.8 ppm. HR-MS (ESI, pos. mode, arginin, m/z): calc. for 

C25H30F3N4O3S [M]+: 523.1985, found: 523.1984. IR (KBr): ν 3415, 3157, 3092, 2986, 2576, 

1708, 1651, 1572, 1466, 1408, 1258, 1226, 1162, 1030, 852, 759, 639, 573, 541, 517. 
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2-Bromo-N-methylaniline (115):[420] 

The compound was prepared following a procedure of Barluenga[417] 

Therefore 2-bromoaniline (113, 6.74 g, 0.039 mol) was dissolved in 40 mL 

distilled, anhydrous tetrahydrofurane and as solution of n-butyllithium 

(2.2 M in cyclo-hexane, 9.80 mL, 0.039 mol) was slowly added at -50 °C 

(1 h). The resulting red mixture was stirred for 15 min at this temperature, cooled to -60 °C 

and iodomethane (1.22 mL, 0.039 mol) was added over a period of 30 min. The reaction 

mixture was allowed to warm up to room temperature and stirred for additional 16 h at room 

temperature. The reaction was quenched with 20 mL of water, the organic phase was 

separated and the aqueous phase extracted three times with 30 mL ethyl acetate. The organic 

layers were combined, washed with 50 mL aqueous, saturated sodium hydrogencarbonate 

solution, dried over sodium sulfate and the solvent was evaporated under reduced pressure. 

Purification by flash column chromatography (silica, hexane/ ethyl acetate = 100:1 to 50:1) 

yielded pure 2-bromo-N-methylaniline (115) as a colorless liquid (3.59 g, 0.019 mol, 49%). 
1H NMR (300.13 MHz, CDCl3, TMS): δ 2.90 (d, 3H, J = 5.1 Hz, -CH3), 4.35 (bs, 1H, NH), 

6.55 – 6.60 (m, 1H, ArCH), 6.61 – 6.65 (m, 1H, ArCH), 7.18 – 7.24 (m, 1H, ArCH), 7.40 – 

7.44 (m, 1H, ArCH) ppm. 13C NMR (75.47 MHz, CDCl3, TMS): δ 30.6, 109.6, 110.7, 117.55, 

128.6, 132.2, 145.9 ppm. MS (EI): m/z (%) 111 (2) [M-(-NHCH3)]
+, 140 (100) [M-H]+, 141 

(31) [M]+. HRMS (EI): m/z calcd for C7H8
35ClN: 141.0345. Found: 141.0317. ATR-FTIR: ν 

3417, 3063, 2986, 2907, 2816, 1596, 1508, 1458, 1428, 1419, 1317, 1291, 1251, 1168, 1154, 

1105, 1073, 1036, 1017, 923, 832, 802, 737, 706. 

2-Chloro-N-methylaniline (116):[418] 

2-Chloro-N-methylaniline was prepared following the same procedure 

described for 2-Bromo-N-methylaniline by using 2-chloroaniline (114, 

5.00 g, 0.039 mmol), n-butyllithium (2.2 M in cyclo-hexane, 9.80 mL, 

0.039 mmol) and iodomethane (1.22 mL, 0.039 mmol). Purification by 

flash column chromatography (silica, hexane/ ethyl acetate = 100:1 to 50:1) yielded the title 

compound 116 as a colorless liquid (2.78 g, 0.020 mmol, 50%).1H NMR (300.13 MHz, 

CDCl3, TMS): δ 2.91 (d, 3H, J = 5.0 Hz, -CH3), 4.34 (bs, 1H, NH), 6.61 – 6.66 (m, 2H, 

ArCH), 7.14 – 7.20 (m, 1H, ArCH), 7.24 – 7.44 (m, 1H, ArCH) ppm. 13C NMR (75.47 MHz, 

CDCl3, TMS): δ 30.4, 110.6, 117.0, 119.0, 127.8, 128.9, 145.0 ppm. MS (EI): m/z (%) 105 

(18) [M-35Cl]+, 184 (85) [M-H]+, 185 (100) [M]+. HRMS (EI): m/z calcd for C7H8
79BrN: 

Br

N
H

Cl

N
H
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184.9840. Found: 184.9803. ATR-FTIR: ν 3432, 3067, 2991, 2934, 2911, 2873, 2818, 1601, 

1516, 1461, 1426, 1322, 1295, 1251, 1168, 1114, 1075, 1033, 742. 

2-(Naphthalen-1-yl)propanoic acid (118):[419] 

Following the procedure of Thompson[419], modified by Glorius[393], n-

butyllithium (2.2 M in cyclo-hexane, 47.85 mL, 0.190 mol) was added 

dropwise to a solution of freshly, distilled diisopropylamine (29.54 mL, 

0.190 mol) in 150 mL tetrahydrofurane at -78 °C. The solution was stirred 

for 40 min at the same temperature and a solution of naphthylacetic acid 

(117, 8.10 g, 0.044 mol) in tetrahydrofurane was added slowly at -78 °C over a period of one 

hour. The solution was allowed to warm up to 0 °C, stirred for one hour at the same 

temperature and iodomethane (4.06 mL, 0.065 mol) was added in one portion. The deep 

yellow reaction mixture was allowed to warm up to room temperature overnight becoming a 

white suspension. Quenching by addition of 30 mL of water resulted in a clear yellow 

solution, which was concentrated under reduced pressure. The residue was taken up in 

100 mL water, acidified with 1M hydrochloric acid (50 mL) and extracted six times with 

diethyl ether. The organic layers were combined, dried over sodium sulfate and the solvents 

evaporated under reduced pressure. Purification by flash column chromatography (silica, 

hexane/ ethyl acetate = 10:1 to 1:1) yielded pure 2-(naphthalen-1-yl)propanoic acid (118) as a 

colorless solid (7.94 g, 0.040 mol, 91%).1H NMR (300.13 MHz, CDCl3, TMS): δ 1.68 (d, 3H, 

J = 7.1 Hz, -CH3), 4.54 (q, 1H, J = 7.1 Hz, -CHCH3), 7.43 – 7.57 (m, 4H, ArCH), 7.78 – 7.89 

(m, 2H, ArCH), 8.08 – 8.11 (m, 1H, ArCH) ppm. 13C NMR (75.47 MHz, CDCl3, TMS): 

δ 17.8, 41.0, 123.0, 124.6, 125.5, 125.7, 126.4, 128.0, 129.0, 131.3, 133.9, 135.9 ppm. MS 

(EI): m/z (%) 155 (100) [M-CO2H]+, 200 (45) [M]+. HRMS (EI): m/z calcd for C13H12O2: 

200.0837. Found: 200.0843. ATR-FTIR: ν 3511, 3422, 3201, 3067, 3038, 2985, 2937, 2719, 

2623, 1703, 1452, 1411, 1395, 1376, 1321, 1251, 1232, 922, 794, 778.General procedure 

for the arylpropanamide synthesis: The carboxylic acid (1.2 eq.) and thionyl chloride 

(2.4 eq.) were stirred at reflux temperature for 2 – 3 h until gas evolution had ceased. The 

mixture was cooled to room temperature, excess thionyl chloride was removed under high 

vacuum the residue was dissolved in dichloromethane (app. 0.28 M). Freshly, distilled 

triethylamine (2.0 eq.) and the appropriate 2-haloaniline derivative (1.0 eq.) were added and 

the mixture was stirred for 16 – 24 h at room temperature. The reaction mixture was diluted 

with diethyl ether (70 mL), quenched with saturated, aqueous ammonium chloride (100 mL) 

and the organic layer was separated. The aqueous layer was extracted with diethyl ether 

(2×20 mL), the layers were combined, washed with saturated, aqueous sodium carbonate and 

brine and dried over sodium sulfate. The pure arylpropanamides were obtained after flash 

∗
HO2C
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column chromatography (silica, hexane/ ethyl acetate) of the crude products. Enantiomeric 

excess was determined using chiral HPLC on a Chiralpak IA column. Product configuration 

was determined by retention times and elution order of reported compounds and referenced 

using chiral HPLC on a Chiralpak IB column. 

N-(2-Bromophenyl)-N-methyl-2-phenylpropanamide (121):[392] 

The title compound was obtained following the general 

procedure for the arylpropanamide formation by reaction of 2-

phenylpropanic acid (119) with thionyl chloride, treatment with 

1, 2-bromo-N-methylaniline (115) and triethylamine. Purification 

by flash column chromatography (silica, hexane/ ethyl acetate = 50:1) yielded pure N-(2-

bromophenyl)-N-methyl-2-phenylpropanamide (121) as a colorless, viscous oil (909 mg, 

2.86 mmol, 43%). 1H NMR (300.13 MHz, CDCl3): δ 1.41 – 1.46 (m, 3H, -CHCH3), 3.18 – 

3.20 (m, 3H, NHCH3), 3.36 (q, 0.72H, J = 6.8 Hz, -CHCH3), 3.55 (q, 0.25H, J = 6.9 Hz, -

CHCH3), 6.70 – 6.73 (m, 0.72H, ArCH), 6.94 – 7.04 (m, 2H, ArCH), 7.15 – 7.30 (m, 4.75H, 

ArCH), 7.35 – 7.47 (m, 0.64H, ArCH), 7.57 – 7.61 (m, 0.26H, ArCH), 7.70 – 7.74 (m, 0.69H, 

ArCH) ppm. 13C NMR (75.47 MHz, CDCl3): δ 20.1, 20.6, 36.1, 36.1, 43.2, 44.0, 123.6, 124.2, 

126.6, 126.7, 126.9, 127.3 (3×), 127.4, 127.5, 128.0, 128.1, 128.2 (5×), 128.3 (2×), 128.4 

(2×), 128.5 (5×), 128.6 (2×), 129.6, 129.7, 130.0, 130.7, 130.8, 133.5, 134.0, 140.5, 141.6, 

142.2, 142.5 ppm. MS (FAB): m/z (%): 136 (18), 154 (21), 212 (12) [M-(C8H9)]
+, 238 (31) 

[M-79Br]+, 318 (100) [M+H]+. HRMS (FAB): m/z (%) calcd for C16H17
79BrNO+ [M+H] +: 

318.04880. Found: 318.0435. ATR-FTIR: ν 3060, 3026, 2929, 2869, 1660, 1601, 1583, 1475, 

1435, 1453, 1417, 1375, 1315, 1278, 1246, 1182, 1130, 1066, 1046, 1029, 1019, 988, 910, 

866, 488, 764, 727. 

N-(2-Chlorophenyl)-N-methyl-2-phenylpropanamide (122): 

The title compound was obtained following the general 

procedure for the arylpropanamide formation by reaction of 2-

phenylpropanic acid (119) with thionyl chloride, treatment with 

1, 2-chloro-N-methylaniline (116) and triethylamine. Purification 

by flash column chromatography (silica, hexane/ ethyl acetate = 

50:1) yielded pure N-(2-chlorophenyl)-N-methyl-2-phenylpropanamide (122) as a colorless, 

viscous oil (794 mg, 2.90 mmol, 41%). 1H NMR (500.13 MHz, CDCl3): δ 1.40 – 1.43 (m, 3H, 

-CHCH3), 3.17 (s, 3H, NHCH3), 3.35 (q, 0.69H, J = 6.8 Hz, -CHCH3), 3.55 (q, 0.29H, 

J = 6.8 Hz, -CHCH3), 6.71 – 6.73 (m, 0.65H, ArCH), 6.96 – 6.97 (m, 1.88H, ArCH), 7.11 – 
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7.19 (m, 3.57H, ArCH), 7.29 – 7.37 (m, 2H, ArCH), 7.52 – 7.54 (m, 0.66H, ArCH) ppm. 13C 

NMR (125.77 MHz, CDCl3): δ 20.0, 20.5, 36.0, 36.2, 43.3, 43.9, 126.7, 127.4, 127.8, 127.8, 

127.9, 128.2, 128.4, 129.4, 129.5, 130.0, 130.4, 130.8, 133.1, 133.9, 140.6, 140.8, 141.0, 

141.7, 173.9, 174.0 ppm. MS (EI): m/z (%) 77 (10), 105 (45) [C8H9]
+, 141 (28) [M-

(C9H9O)]+, 168 (42) [M-(C8H9)]
+, 238 (100) [M-35Cl]+. HRMS (EI): m/z calcd for 

C16H16
35ClNO: 273.0920. Found: 273.0927. ATR-FTIR: ν 3061, 3028, 2978, 2931, 1667, 

1610, 1482, 1453, 1442, 1379, 1281, 1128, 1057, 755, 720, 700. 

N-(2-Bromophenyl)-N-methyl-2-(naphthalen-1-yl)propanamide (124):[392] 

The title compound was obtained following the general 

procedure for the arylpropanamide formation by reaction of 2-

(naphthalen-1-yl)propanoic acid (118) with thionyl chloride, 

treatment with 1, 2-bromo-N-methylaniline (115) and 

triethylamine. Purification by flash column chromatography 

(silica, hexane/ ethyl acetate = 50:1) yielded pure N-(2-bromophenyl)-N-methyl-2-

(naphthalen-1-yl)propanamide (124) as a colorless solid (2.30 g, 6.27 mmol, 89%). 1H NMR 

(300.13 MHz, CDCl3): δ 1.51 – 1.54 (m, 3H, -CHCH3), 3.19 – 3.20 (m, 3H, NHCH3), 4.17 (q, 

0.82H, J = 6.9 Hz, -CHCH3), 4.46 (q, 0.19H, J = 6.9 Hz, -CHCH3), 6.06 – 6.09 (m, 0.76H, 

ArCH), 6.45 – 6.50 (m, 0.78H, ArCH), 6.85 – 6.90 (m, 0.79H, ArCH), 7.03 – 7.23 (m, 2.45H, 

ArCH), 7.31 – 7.40 (m, 2.41 H, ArCH), 7.44 – 7.51 (m, 1H, ArCH), 7.58 – 7.62 (m, 0.84H, 

ArCH), 7.64 – 7.69 (m, 1H, ArCH), 7.73 – 7.76 (m, 1H, ArCH) ppm. 13C NMR (75.47 MHz, 

CDCl3): δ 20.0, 36.2, 39.6, 121.9, 123.3, 124.5, 124.9, 125.2, 125.5, 125.6, 125.7, 127.1, 

128.1, 128.5, 128.6, 129.2, 129.3, 130.0, 130.5, 130.6, 133.2, 133.7, 133.9, 138.5, 141.7, 

174.1 ppm. MS (EI): m/z (%) 77 (8), 155 (100) [C12H11]
+, 212 (58) [M-(C6H4

79Br)]+, 288 (87) 

[M-79Br]+, 367 (48) [M]+. HRMS (EI): m/z calcd for C20H18
79BrNO: 367.0572. Found: 

367.0576. ATR-FTIR: ν 3055, 3013, 2974, 2932, 1657, 1584, 1475, 1457, 1442, 1430, 1412, 

1396, 1381, 1275, 1129, 1049, 808, 799, 790, 774, 758, 724. 
  



202  Experimental Section – Chapter 4 

 

N-(2-Chlorophenyl)-N-methyl-2-(naphthalen-1-yl)propanamide (125):[392] 

The title compound was obtained following the general 

procedure for the arylpropanamide formation by reaction of 2-

(naphthalen-1-yl)propanoic acid (118) with thionyl chloride, 

treatment with 1, 2-chloro-N-methylaniline (116) and 

triethylamine. Purification by flash column chromatography 

(silica, hexane/ ethyl acetate = 50:1) yielded pure N-(2-bromophenyl)-N-methyl-2-

(naphthalen-1-yl)propanamide (125) as a colorless solid (2.13 g, 6.58 mmol, 93%). 1H NMR 

(300.13 MHz, CDCl3): δ 1.50 – 1.54 (m, 3H, -CHCH3), 3.20 (s, 3H, NHCH3), 4.16 (q, 0.75H, 

J = 6.9 Hz, -CHCH3), 4.47 (q, 0.23H, J = 6.9 Hz, -CHCH3), 6.07 – 6.10 (m, 0.70H, ArCH), 

6.42 – 6.47 (m, 0.72H, ArCH), 6.78 – 6.81 (m, 0.22H, ArCH), 6.93 – 7.00 (m, 0.73H, ArCH), 

7.01 – 7.10 (m, 0.72H, ArCH), 7.14 – 7.44 (m, 5.90H, ArCH), 7.48 – 7.51 (m, 0.80H, ArCH), 

7.64 – 7.69 (m, 1H, ArCH), 7.73 – 7.76 (m, 1H, ArCH) ppm. 13C NMR (75.47 MHz, CDCl3): 

δ 19.9, 20.1, 36.1, 36.2, 38.8, 39.4, 121.9, 124.4, 124.9, 125.2, 125.4, 125.5, 125.6, 125.7, 

127.0 (2×), 127.3, 127.8, 128.5, 128.6, 129.0, 129.1, 129.8, 130.1, 130.5 (2×), 130.6, 132.7, 

133.7, 136.8, 138.5, 140.3, 174.2, 174.3 ppm. MS (EI): m/z (%) 77 (5), 155 (100) [C12H11]
+, 

167 (48), 182 (8), 288 (36) [M-35Cl]+, 323 (36) [M]+. HRMS (EI): m/z calcd for 

C20H18
35ClNO: 323.1077. Found: 323.1090. ATR-FTIR: ν 3053, 3020, 2994, 2972, 2933, 

1659, 1586, 1480, 1458, 1440, 1413, 1396, 1380, 1354, 1277, 1261, 1130, 1059, 809, 799, 

791, 117, 156, 728. 

N-cyclo-pentyl-N-(2-bromophenyl)-2-phenylpropanamide (123): 

The title compound was obtained following the general 

procedure for the arylpropanamide formation by reaction of 120 

with thionyl chloride, treatment with 1, 2-bromo-N-methylaniline 

(115) and triethylamine. Purification by flash column 

chromatography (silica, hexane/ethyl acetate = 50:1) yielded pure 

N-cyclo-pentyl-N-(2-bromophenyl)-2-phenylpropanamide (123) 

as a colorless, viscous oil (274 mg, 0.76 mmol, 72%). 1H NMR (300.13 MHz, CDCl3): δ 0.84 

– 0.98 (m, 1.34H, -CH2CH2CH-), 1.20 – 1.27 (m, 1.34H, -CH2CH2CH-), 1.36 – 1.58 (m, 

3.46H, -CH2CH2CH-), 1.63 – 1.73 (m, 2.10H, -CH2CH2CH-), 2.04 – 2.15 (m, 1.22H, -

CH2CH-), 2.60 – 2.80 (m, 1.04H, -CH2CH-), 2.90 – 2.30 (m, 0.74H, -CH2CHCH-), 3.14 – 

3.18 (m, 0.30H, -CH2CHCH-), 3.24 – 3.28 (m, 3H, NHCH3), 6.58 – 6.62 (m, 0.73H, ArCH), 

7.00 – 7.05 (m, 2H, ArCH), 7.18 – 7.44 (m, 5.24H, ArCH), 7.51 – 7.57 (m, 0.34H, ArCH), 

7.64 – 7.67 (m, 0.27H, ArCH), 7.79 – 7.82 (m, 0.73H, ArCH) ppm. 13C NMR (75.47 MHz, 

CDCl3): δ 24.4, 24.9, 30.3, 30.4, 32.0 (2×), 35.9 (2×), 44.7, 44.9, 55.0, 56.2, 123.1, 124.5, 

N
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126.5, 127.9, 128.0 (2×), 128.1(3×), 128.2, 128.3, 128.4, 128.5, 129.5, 129.6 (2×), 130.7, 

131.5, 133.5, 133.9, 138.9, 139.9, 141.9, 142.4, 172.9, 173.0 ppm. MS (FAB): m/z (%): 154 

(31) [C6H4
79Br]+, 212 (16), 292 (16) [M-79Br]+, 303 (11) [M-(C5H9)]

+, 372 (100) [M+H]+. 

HRMS (FAB): m/z (%) calcd for C20H23
79BrNO+ [M+H] +: 372.0958. Found: 372.0968. ATR-

FTIR: ν 3060, 3025, 2950, 2865, 1658, 1600, 1583, 1475, 1452, 1417, 1371, 1294, 1240, 

1180, 1117, 1074, 1052, 1031, 949, 911, 815, 763, 750, 727, 718. 

General procedure for the Pd-catalyzed, asymmetric oxindole synthesis: To a solution of 

starting material (0.3 mmol) and catalyst (2.5 mol%) in anhydrous dimethoxyethane (6 mL) 

was added sodium tert-butoxide (0.45 mmol) in one portion. The mixture was stirred at 50 °C, 

resp. 80 °C until all starting material was consumed (18 – 24 h). The mixture was diluted with 

50 mL ethyl acetate, filtered and the solvent evaporated under reduced pressure. The crude 

product was absorbed on silica and purified by flash column chromatography (silica, 

hexane/EtOAc). 

(R)-1,3-Dimethyl-3-phenylindolin-2-one[396] (Table 15, entry 4):  

Following the general procedure for oxindole synthesis the title 

compound was obtained after flash column chromatography (silica, 

hexane/ ethyl acetate = 15:1 to 7:1) as pale oil (70 mg, 0.29 mmol, 

98%). 1H NMR (500.13 MHz, CDCl3): δ 1.75 (s, 3H, -CHCH3), 3.20 

(m, 3H, -NHCH3), 6.87 – 6.88 (m, 1H, ArCH), 7.04 – 7.07 (m, 1H, 

ArCH), 7.14 – 7.16 (m, 1H, ArCH), 7.19 – 7.20 (m, 1H, ArCH), 7.21 – 

7.30 (m, 5H, ArCH) ppm. 13C NMR (125.77 MHz, CDCl3): δ 23.7, 26.4, 52.1, 108.3, 122.7, 

124.2, 126.6, 127.2, 128.1, 128.5, 134.8, 140.8, 143.2, 179.4 ppm. MS (EI): m/z (%) 77 (3), 

165 (8), 194 (14), 208 (7) [M-2×(CH3)]
+, 222 (100) [M-CH3]

+, 237 (99) [M]+. HRMS (EI): 

m/z calcd for C16H15NO: 237.1154. Found: 237.1135. ATR-FTIR: ν 3055, 3024, 2969, 2931, 

2870, 2245, 1708, 1610, 1491, 1470, 1444, 1418, 1372, 1342, 1302, 1258, 1157, 1144, 1115, 

1099, 1078, 1054, 1023, 1002, 911, 860, 803, 748, 728. 63% ee [Chiralpak IA column, n-

hexane/i-PrOH = 99:1, 1.0 mL/min, 210.5 nm; tR = 17.21 min (minor) and 25.65 min 

(major)]. 
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(R)-1,3-Dimethyl-3-(naphthalen-1-yl)indolin-2-one[392] (Table 15, entry 6): 

Following the general procedure for oxindole synthesis the title 

compound was obtained after flash column chromatography (silica, 

hexane/ ethyl acetate = 10:1 to 5:1) as pale oil (82 mg, 0.29 mmol, 

95%). 1H NMR (300.08 MHz, CDCl3): δ 1.92 (s, 3H, -CHCH3), 

3.45 (m, 3H, -NHCH3), 6.83 – 6.88 (m, 3H, ArCH), 7.04 – 7.07 (m, 

1H, ArCH), 7.14 – 7.20 (m, 1H, ArCH), 7.29 – 7.36 (m, 2H, 

ArCH), 7.53 – 7.58 (m, 1H, ArCH), 7.80 – 7.88 (m, 3H, ArCH) ppm. 13C NMR (75.46 MHz, 

CDCl3): δ 26.7, 26.8, 52.4, 108.6, 122.8, 123.1, 123.4, 125.0, 125.2, 126.2, 127.9, 129.0, 

129.1, 131.3, 134.3, 135.1, 136.7, 142.2, 180.4 ppm. MS (EI): m/z (%) 83 (11), 136 (7), 160 

(6) [M-naphthyl]+, 215 (11), 244 (14), 272 (59) [M-CH3]
+, 287 (100) [M]+. HRMS (EI): m/z 

calcd for C20H17NO: 287.1310. Found: 287.1293. ATR-FTIR: ν 3051, 2969, 2933, 2874, 

2245, 1705, 1610, 1511, 1489, 1569, 1418, 1400, 1371, 1338, 1301, 1257, 1245, 1211, 1157, 

1142, 1167, 1105, 1090, 1072, 1050, 1025, 983, 904, 776, 791, 725. 72% ee [Chiralpak IA 

column, n-hexane/i-PrOH = 99:1, 1.0 mL/min, 210.5 nm; tR = 36.43 min (minor) and 56.04 

min (major)]. 

(R)-1-cyclo-pentyl-3-methyl-3-phenylindolin-2-one (Table 15, entry 2):  

Following the general procedure for oxindole synthesis the title 

compound (0.25 mmol scale) was obtained after flash column 

chromatography (silica, hexane/ ethyl acetate = 20:1 to 10:1) as pale oil 

(69 mg, 0.24 mmol, 95%). 1H NMR (500.13 MHz, CDCl3): δ 0.74 – 

0.84 (m, 1H), 1.28 – 1.61 (m, 7H), 2.97 – 3.07 (m, 1H), 3.11 (s, 3H, -

NHCH3), 6.80 – 6.82 (m, 1H, ArCH), 7.00 – 7.05 (m, 1H, ArCH), 7.10 

– 7.26 (m, 4H, ArCH), 7.27 – 7.37 (m, 3H, ArCH) ppm. 13C NMR (125.77 MHz, CDCl3): 

δ 25.2, 25.3, 26.2, 27.4, 29.7, 47.3, 57.8, 108.0, 122.2, 125.8, 126.6, 127.0, 127.5, 128.1, 

128.3, 129.5, 130.9, 139.8, 144.3, 178.4 ppm. MS (EI): m/z (%) 91 (15), 107 (12), 134 (7), 

159 (7), 194 (11), 223 (100) [M-cyclopentyl]+, 291 (22) [M]+. HRMS (EI): m/z calcd for 

C20H21NO: 291.1623. Found: 291.1615. ATR-FTIR: ν 3085, 3056, 3029, 2937, 2866, 1701, 

1655, 1609, 1596, 1609, 1596, 1492, 1464, 1445, 1420, 1367, 1347, 1317, 1255, 1182, 1160, 

1131, 1099, 1078, 1028, 1004, 952, 932, 914, 897, 885, 857, 839, 816, 752, 744, 721. 55% ee 

[Chiralpak IA column, n-hexane/i-PrOH = 99:1, 1.0 mL/min, 210.5 nm; tR = 17.74 min 

(minor) and 19.68 min (major)]. 
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N-phenyl-N-methyl-2-(naphthalen-1-yl)propanamide (Table 15, entry 8): 

Following the general procedure for oxindole synthesis the 

dehalogenated title compound was obtained after flash column 

chromatography (silica, hexane/ethyl acetate = 15:1 to 5:1) as 

colorless oil (69 mg, 0.24 mmol, 91%). 1H NMR 

(300.13 MHz, CDCl3): δ 1.48 – 1.50 (m, 3H, -CHCH3), 3.27 

(s, 3H, NHCH3), 4.41 (q, 1H, J = 7.0 Hz, -CHCH3), 6.73 (bs, 2H, ArCH), 7.02 – 7.08 (m, 3H, 

ArCH), 7.18 – 7.21 (m, 1H, ArCH), 7.25 (s, 1H, ArCH), 7.34 – 7.41 (m, 2.42H, ArCH), 7.54 

– 7.55 (m, 1H, ArCH), 7.68 – 7.69 (m, 1H, ArCH), 7.76 – 7.77 (m, 1H, ArCH) ppm. 13C 

NMR (75.47 MHz, CDCl3): δ 19.9, 29.7, 37.8, 38.8, 122.3, 124.7, 125.2, 125.6, 127.1, 127.4, 

127.6, 128.6, 129.3, 133.7, 143.4, 174.3 ppm. MS (EI): m/z (%) 77 (9), 107 (16) [C7H9N]+, 

127 (7) [M-naphthyl]+, 134 (87), 155 (100) [C12H11]
+, 182 (8), 289 (88) [M]+. HRMS (EI): 

m/z calcd for C20H19NO: 289.1467. Found: 289.1461. MS (ESI): m/z (%) 290 (23) [M+H]+, 

312 (27) [M+Na]+, 601 (100) [2M+Na]+. HRMS (ESI, pos. mode, Arginin) m/z calcd for 

C20H20NO [M+H]+: 290.1539. Found: 290.1540. ATR-FTIR: ν  3058, 2967, 2928, 2868, 

1652, 1594, 1510, 1495, 1452, 1418, 1378, 1351, 1310, 1269, 1245, 1167, 1124, 1096, 1071, 

1031, 1002, 980, 903, 860, 796, 773, 733. (rac.) [Chiralpak IA column, n-hexane/i-propanol = 

99:1, 1.0 mL/min, 210.5 nm; tR = 17.47 min  and 18.56 min]. 
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HPLC-Data: 

Chiralpak IA column, n-hexane/i-propanol = 99:1, 1.0 mL/min. DAD 1 A, Sig = 210.5 nm, 

Ref = 360.5 nm, tR = 16.22 min and 17.57 min. 

Chiralpak IA column, n-hexane/i-propanol = 99:1, 1.0 mL/min. DAD 1 A, Sig = 210.5 nm, 

Ref = 360.5 nm, tR = 16.47 min and 17.83 min. 

1,3-Dimethyl-3-(naphthalen-1-yl)indolin-2-one (Table 15, entry 6): 

Chiralpak IA column, n-hexane/i-propanol = 99:1, 1.0 mL/min. DAD 1 A, Sig = 210.5 nm, 

Ref = 360.5 nm, tR = 36.43 min (minor) and 56.04 min (major), 72% ee. 

Peak  Area  Height  Width  Area%  Symmetry 

36.427  20300.8 249.7  1.1806  14.214  0.345 

56.042  122013.4 1101.2  1.6467  85.432  0.46  

N
O
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1,3-Dimethyl-3-(naphthalen-1-yl)indolin-2-one (Table 15, entry 5): 

Chiralpak IA column, n-hexane/i-propanol = 99:1, 1.0 mL/min. DAD 1 A, Sig = 210.5 nm, 

Ref = 360.5 nm, tR = 36.46 min (minor) and 55.25 min (major), 68% ee. 

Peak  Area  Height  Width  Area%  Symmetry 

36.456  4602.4  62.9  1.0756  15.759  0.474 

55.249  24258.1 248.1  1.4846  83.063  0.615 

1,3-Dimethyl-3-phenylindolin-2-one (Table 15, entry 4): 

Chiralpak IA column, n-hexane/i-propanol = 99:1, 1.0 mL/min. DAD 1 A, Sig = 210.5 nm, 

Ref = 360.5 nm, tR = 17.21 min (minor) and 25.65 min (major) 63% ee. 

Peak  Area  Height  Width  Area%  Symmetry 

17.213  5647.4  224.3  0.3777  18.673  0.578 

25.650  24595.8 356.9  1.0161  81.327  0.433 
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1,3-Dimethyl-3-phenylindolin-2-one (Table 15, entry 3): 

Chiralpak IA column, n-hexane/i-propanol = 99:1, 1.0 mL/min. DAD 1 A, Sig = 210.5 nm, 

Ref = 360.5 nm, tR = 16.63 min (minor), 21.54 min (major) and 16.05 min (8% substrate), 

58% ee. 

Peak  Area  Height  Width  Area%  Symmetry 

16.633  3018.9  118.2  0.3779  19.169  0.597 

21.535  11294.2 325.5  0.5209  71.717  0.514 

1-cyclo-pentyl-3-methyl-3-phenylindolin-2-one (Table 15, entry 2): 

Chiralpak IA column, n-hexane/i-propanol = 99:1, 1.0 mL/min. DAD 1 A, Sig = 210.5 nm, 

Ref = 360.5 nm, tR = 17.74 min (minor) and 19.68 min (major), 55% ee. 

Peak  Area  Height  Width  Area%  Symmetry 

17.738  14436.6 479.2  0.4575  22.376  0.632 

19.675  50080.7 950.1  0.715  77.624  0.321 
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Determination of product configuration: [393, 395, 396] 

1,3-Dimethyl-3-(naphthalen-1-yl)indolin-2-one (reference on Chiralpak IB column equal 

to elution order reported): 

Chiralpak IB column, n-hexane/i-propanol = 99:1, 1.0 mL/min. DAD 1 A, Sig = 210.5 nm, 

Ref = 360.5 nm, tR = 28.49 min (minor) and 61.67 min (major). 

Peak  Area  Height  Width  Area%  Symmetry 

28.489  23956.6 335.2  1.0859  14.297  0.259 

61.673  143607 538.8  3.3677  85.703  0.14 

1,3-Dimethyl-3-phenylindolin-2-one (reference on Chiralpak IB column equal to elution 

order reported):  

Chiralpak IB column, n-hexane/i-propanol = 99:1, 1.0 mL/min. DAD 1 A, Sig = 210.5 nm, 

Ref = 360.5 nm, tR = 11.91 min (minor) and 13.95 min (major). 

Peak  Area  Height  Width  Area%  Symmetry 

11.914  6582. 1 339.9  0.2859  18.177  0.452 

13.949  29241.3 1054  0.3977  80.753  0.271 
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Dehalogenation products: N-methyl-N-diphenylpropanamide (A) and 1,3-Dimethyl-3-

phenylindolin-2-one (B) (Table 15, entry 7): 

Chiralpak IA column, n-hexane/i-propanol = 99:1, 1.0 mL/min. DAD 1 A, Sig = 210.5 nm, 

Ref = 360.5 nm, tR, A = 14.63 min (A), 16.16 min (A) and tR, B = 17.72 min (B), 29.60 min (B). 

Peak  Area  Height  Width  Area%  Symmetry 

14.630  9700.3  468  0.3118  26.772  0.604 

16.163  9517.1  426.1  0.3366  26.267  0.592 

17.715  5933.7  180.6  0.4713  16.377  0.57 

29.601  5011.1  60.1  1.3246  13.830  0.827 

N-phenyl-N-methyl-2-(naphthalen-1-yl)propanamide (Table 15, entry 8): 

Chiralpak IA column, n-hexane/i-propanol = 99:1, 1.0 mL/min. DAD 1 A, Sig = 210.5 nm, 

Ref = 360.5 nm, tR = 17.47 min and 18.56 min and 23.16 min (3% substrate deriv.). 

Peak  Area  Height  Width  Area%  Symmetry 

17.471  4750.8  190.5  0.3769  44.904  0.671 

18.559  5078.6  182.7  0.4163  48.004  0.618 

23.16  371.7  11.7  0.4838  3.514  0.759 

35.666  57.8  0.89  0.7718  0.546  0.869

N
∗

O
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