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Abstract: This thesis presents two single camera Particle Streak Velocimetry (PSV)
techniques that were purpose-built for the measurement of Lagrangian three-dimen-
sional three-component (3D3C) flow information in the turbulent boundary layer of
transparent interfaces. Both techniques are based on a particle streak extraction rou-
tine that enables a sub-pixel precise extraction of individual particle trajectories. A
periodical intensity modulation of the illumination was implemented to increase the
temporal resolution of the extracted Lagrangian trajectories. The achieved high spa-
tial and temporal resolution enables quantitative measurements of Lagrangian flow
characteristics in the interfacial region of turbulent flow fields. The first measurement
technique, called bichromatic Particle Streak Velocimetry (bPSV), uses an absorbing
dye and a two-wavelength LED illumination to resolve three-dimensional data that
are needed for the extraction of 3D3C trajectories. In the second measurement tech-
nique the depth estimation is realized by means of a focused plenoptic camera that
records long time exposure light fields. Both techniques were applied to measure in-
terfacial flow fields in a turbulent Rayleigh-Bénard (RB) convection. On the basis of
the Lagrangian particle trajectories obtained in the bPSV measurements, acceleration
statistics and particle pair dispersion statistics were evaluated. A comparison of the
Lagrangian acceleration distribution with two recently published models yielded good
agreements. In the extracted Lagrangian particle pair dispersion, transitions between
three turbulent regimes (i.e. the Batchelor regime, the Richardson-Obukhov (R-O)
regime and the diffusive regime) were observed.

Zusammenfassung: Die vorliegende Arbeit befasst sich mit zwei neuartigen (3D3C)
Geschwindigkeitsmesssystemen für komplexe 3D-Strömungen in der turbulenten Grenz-
schicht an transparenten Grenzflächen. Beide Systeme basieren auf der Messung von
Particle Streak Velocimetry (PSV)-Daten und auf einem sub-pixel genauen Extrak-
tionsalgorithmus für die Extraktion von Lagrange’schen Einzeltrajektorien. Eine peri-
odische Intensitätsmodulation der Beleuchtung wurde benutzt, um das zeitliche Auflö-
sungsvermögen der Systeme zu erhöhen. Die hohe zeitliche und räumliche Auflösung
der so bestimmten Partikeltrajektorien ermöglicht die Extraktion von Lagrange’schen
Fluss-Charakteristiken in turbulenten Grenzschichten. In der so genannten bichromatic
Particle Streak Velocimetry (bPSV)-Messtechnik wird ein absorbierender Farbstoff in
Kombination mit einer Zwei-Wellenlängen LED-Beleuchtung verwendet, um Tiefenin-
formationen zu messen, die für eine Extraktion von Lagrange’schen (3D3C) Trajekto-
rien benötigt werden. Das zweite Messsystem nutzt eine fokussierte Plenoptische Ka-
mera zur Messung von Lichtfeldern für die Tiefenschätzung. Beide Geschwindigkeits-
messsysteme wurden eingesetzt, um die wasserseitige Grenzschicht an der freien Ober-
fläche einer turbulenten Rayleigh-Bénard (RB) Konvektion zu vermessen. Die Ergeb-
nisse der bPSV-Messung wurden im Folgenden verwendet, um Lagrange’sche Beschleu-
nigungsstatistiken und Lagrange’sche Paar-Separationsstatistiken zu berechnen. Die
so gewonnenen Beschleunigungsstatistiken zeigen eine gute Übereinstimmung mit zwei
kürzlich veröffentlichten Modellen, und in den Separationsstatistiken wurden in der
Theorie vorhergesagte Übergänge zwischen dem Batchelor Regime, dem Richardson-
Obukhov (R-O) Regime und dem anschließenden diffusen Regime beobachtet.





Für meine wundervolle Agnieszka.
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1 Introduction

1.1 Motivation

Processes that control the transport of momentum, heat and mass across fluid bound-
ary layers are of major importance in many industrial applications, environmental
processes and in fluid-dynamic research. Since turbulent transport in the boundary
layer of an interface plays a major role in the understanding of these processes, many
investigators focused on the theoretical description of turbulent flow fields in the pres-
ence of an interface as well as on the development of numerical and experimental
techniques. Although all these efforts have spawn a detailed theoretical description,
e.g. the advection-diffusion equation and the Navier-Stokes equation, the physical
workings are far from being completely understood.

A proper understanding of interfacial turbulent flow fields is, for example, important
for many industrial applications and in the field of engineering. One example from
this field is the experimental study by Burgmann et al. (2008), who recorded volu-
metric measurements of the turbulences occurring in the boundary layer of an airfoil
that moves fast in a surrounding medium. Furthermore, interfacial flow fields are of
major importance in many industrial applications when it comes to the exchange of
heat between a fluid and an interface. This happens in various applications such as
combustion engines, film-cooling systems or heat exchangers (Cho and Greene, 2011;
Hanjalić and Launder, 2011).
Interfacial flow field measurements can also be found in the field of medical research.
This is due to the fact that many biological processes are influenced by the movement
of the surrounding medium. Cell biological studies by (Akimoto et al., 2000; Butler
et al., 2001) showed for example that the membrane fluidity as well as the proliferation
of aortic endothelial cells depend on the shear stress caused by the surrounding fluid.
Another example for the importance of interfacial flow fields in the field of medical
research is presented by Kim et al. (2006) who showed that the interfacial flow fields
at the walls of blood vessels have a large influence on the thrombus formation.
Another example is the influence of interfacial transport processes on the air-sea heat
and gas exchange as described by Garbe et al. (2004). In this study thermographic
image sequences were analyzed and a so-called “surface renewal model” was proposed
that describes the exchange rates of mass and heat by means of a surface renewal
rate. Another study in the same field published by Banner and Peirson (1998) used
a wind-wave tank to measure interfacial flow structures below a wind-driven air-water
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1 Introduction

surface. A better understanding of this air-sea interaction that is controlled by pro-
cesses in the turbulent interfacial region can help to improve the predictions of present
climate models (Wanninkhof et al., 2009).

Due to the chaotic nature of turbulent flow fields, an analysis can not be accomplished
by means of the equations of motion developed for the characterization of viscous
non-turbulent flow fields. Therefore, the concepts for the analysis of turbulence have
changed from the thorough description of individual turbulences towards the formula-
tion of theoretical models that are valid for these classes of turbulences, i.e. boundary
layer flow fields, jets, buoyancy driven turbulence and wakes. These models typically
rely on the definition of characteristic measures describing the turbulence and on the
definition of scaling variables. Scaling variables allow the formulation of scale-invariant
turbulence models that provide a description of entire turbulence classes and allow a
comparison of turbulent processes observed on different scales. Up to now, turbulence
models depend inherently on numerical and experimental studies that are needed to
determine correct model parameters for different boundary conditions and to validate
the correctness of the models.

Two general strategies were followed in literature for the experimental measurement
of turbulence characteristics in flow fields. One strategy is based on the measurement
of Eulerian flow fields. The main idea of all approaches following this strategy is
to measure flow fields in a Eulerian frame of reference and to extract the sought
characteristics by a statistical analysis of these measurements. The second strategy
for the analysis of turbulence is based on the extraction of Lagrangian flow information
typically obtained from particle tracking experiments. Methods based on this strategy
commonly use a statistical analysis of the measured Lagrangian particle trajectories
for the extraction of characteristic measures that describe the turbulence.

While transport processes in an isotropic, homogeneous turbulence can be estimated
from a set of model assumptions and scaling parameters, the estimation of turbulent
transport mechanisms in the boundary layer of an interface presents a special challenge.
This class of turbulences is no longer isotropic since the turbulent eddies that move
perpendicular to the interface are inhibited in the interfacial region. A description of
the turbulent processes by means of the common scaling parameters is also difficult
since the scales in the direction of the interface may also differ from the scales in the
perpendicular direction due to the anisotropy.

Therefore, the formulation of models for the description of interfacial turbulence is
crucially dependent on flow measurements in the boundary layer. These measurements
are needed for a validation of the models and to determine correct model parameters.
Because of the intrinsic three-dimensionality and the anisotropic nature of turbulent
boundary layer flow fields, a proper characterization needs to be based on volumetric
measurements that incorporate all three velocity-components, i.e. three-dimensional
three-component (3D3C) information.
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1.1 Motivation

Common methods that aim to solve the challenging task of measuring 3D3C flow
information can be distinguished according to the technique used to obtain three-
dimensional (3D) velocity information and the methods used to measure volumetric
datasets. The most popular method to access three-components (3C) of the veloc-
ity field is to measure the out-of-plane velocity using stereoscopic methods (Prasad,
2000), extended by a technique called multi-plane Particle Image Velocimetry (PIV)
using multiple laser sheets (Brücker, 1996; Cenedese and Paglialunga, 1989; Kähler
and Kompenhans, 2000; Liberzon et al., 2004; Müller et al., 2001) or intensity graded
light sheets (Dinkelacker et al., 1992) for the reconstruction of the third velocity com-
ponent.
In the recent past many methods were proposed to access volumetric information from
3D flow fields. This was achieved using holographic measurements (Hinsch, 2002; Sheng
et al., 2008), by combining PIV with Doppler global velocimetry (PIV/DGV) (Wernet,
2004), using tomography (Elsinga et al., 2006; Schröder et al., 2008), defocussing-based
approaches (Pereira et al., 2000, 2007; Willert and Gharib, 1992), scanning-light-sheet
methods (Brücker, 1995; Burgmann et al., 2008; Hoyer et al., 2005) and absorption
based methods (Berthe et al., 2010; Jehle and Jähne, 2008).

Another requirement that arises when it comes to the measurement in thin boundary
layers concerns the spatial resolution perpendicular to the boundary layer. This res-
olution has to be very high because the boundary layer thicknesses observed in the
laboratory environment are typically small compared to the characteristic length scale
of turbulence below the boundary region.

Unfortunately, most of the previously named 3D3C techniques are optimized for a
fixed measurement volume that is typically cubic or hexahedral shaped. Common
workarounds that enable a restriction of these volumes, e.g. by using absorbing dyes,
do not increase the spatial resolution of the data in the restricted volume.

Measurement methods that are capable to fulfill all previously described requirements
for measurements of interfacial turbulences are rare. The most promising approaches
with respect to interfacial 3D3C measurements are a stereo-based approach by Turney
et al. (2009), an absorption-based technique presented by and Jehle and Jähne (2008)
and a holographic approach by Sheng et al. (2008). These methods rely on costly setups
using high-speed cameras and complex illumination setups. Moreover, the stereo-based
and the holographic approach depend on an additional interface tracking technique
since they record flow information in an absolute frame of reference that needs to be
related to an interface position.

Therefore, this thesis aims to the development of alternative Lagrangian techniques
dedicated for the measurement of 3D3C flow fields in interfacial boundary layers. The
temporal and spatial resolution of the proposed techniques have to be within the same
order of magnitude than the microscales of the observed turbulences to enable a proper
characterization of interfacial turbulent flows fields.
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1 Introduction

1.2 Objectives of this Study

The aim of this study was the development of two techniques dedicated to the volu-
metric measurement of Lagrangian 3D3C characteristics in the boundary region of a
transparent gas-liquid interface. Due to the multiple scales that are present in tur-
bulent interfaces the spatial and temporal resolution has to be of the same order of
magnitude as the smallest scales that can be observed in the turbulence. Because of
the anisotropic nature of the boundary layer, the method aims to resolve a thin layer
of the interfacial region with a high precision in the direction which is perpendicular to
the interface. For the extraction of turbulence characteristics based on Lagrangian ac-
celeration statistics, the temporal resolution of the method should be in the same order
of magnitude as the time scale defined by the Kolmogorov microscales of turbulence.

Another target during the development was that the method should be based on a
single camera setup to make it applicable for situations where the optical access pre-
cludes the usage of multiple-camera setups or when the financial resources prohibit
such a system. An additional advantage of using a single camera technique is that the
calibration effort is much smaller than the effort needed for the setup of a multi-camera
solution.

The precision and the applicability of the developed techniques should be assessed by
means of test measurements. Additionally, the water-sided interfacial turbulence of
Rayleigh-Bénard (RB) convection should be characterized by means of the developed
methods.

1.3 Outline

The basic concepts, strategies and techniques that were used for the development of the
presented 3D3C measurement techniques are outlined in the following paragraphs.

For all particle-based flow measurements that were conducted in the scope of this the-
sis neutrally buoyant silver coated hollow ceramic spheres with 100µm diameter were
used for the tracing of turbulent flow fields. Depending on the environment and the
expected turbulence, these tracer particles can be replaced by any other reflecting par-
ticles that have a diameter smaller than the characteristic length-scale of the observed
turbulence.

During the course of this study a single-camera Particle Streak Velocimetry (PSV)
measurement technique with a volumetric light-emitting diode (LED)-illumination was
developed. The recorded PSV-sequences contain long-exposure images that show mov-
ing particles as streak patterns. To overcome the loss of temporal resolution that is
introduced by the long exposure times, a periodical signal of a known frequency was
modulated on the light sources. An image of the resulting particle streak patterns that
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1.3 Outline

reflect the periodical modulated illumination is shown in Figure 3.2 on page 41. The
periodical gray-value signal along these patterns allows the extraction of the instanta-
neous particle velocity that can be computed for every point along the center line of
the trajectory.

For the resolution of volumetric data two different depth-extraction techniques were
developed. The first measurement method is the so-called bichromatic Particle Streak
Velocimetry (bPSV)-technique. It relies on a bichromatic depth extraction approach
that was originally proposed by Jehle and Jähne (2008). It uses a single gray-value
camera for the acquisition of PSV-image series. An absorbing dye is solved in the
fluid for the depth estimation. Afterwards, the depth is computed from the reflected
intensities of two light sources that illuminate the particles with different wavelengths.
This method makes use of Lambert Beer’s Law and the wavelength-dependent ab-
sorption characteristic of the dye. It inherently provides depth information relative to
the interface, because the illuminating light is only absorbed on its way through the
liquid. Additionally, the resolution in z-direction, i.e. perpendicular to the interface,
can be adapted by changing the concentration of the absorbing dye. Therefore, it is
possible to restrict the measurement volume to thin regions in the boundary layer of
an interface.

The second measurement technique developed in the scope of this thesis is called
plenoptic Particle Streak Velocimetry (pPSV). This technique is based on light field
measurements by means of a focused plenoptic camera. In this camera a micro-lens
array is placed between the camera objective and the sensor array. It samples four-
dimensional light fields that comprise directional information as well as intensity in-
formation of the incident light. These light fields allow to render depth maps and
“all-in-focus” images with an increased focal depth.
The major advantage of this depth extraction technique is that it allows the extraction
of three-dimensional (3d) data from the light field itself and is thus not dependent
on additional cameras, expensive illumination strategies or the use of an absorbing
dye. Additionally, the calibration effort is negligible compared to other state of the art
techniques for volumetric 3d imaging.

By combining the instantaneous velocity and the horizontal particle trajectories with
the depth information obtained from one of the proposed depth extraction techniques,
it is possible to compute 3D3C-trajectories of the imaged tracer particles. A subsequent
matching routine applied to these data enables a matching of multiple particle streaks
to long trajectories that describe the movement of a tracer-particle over multiple images
in the recorded PSV-sequences.

On the basis of these long 3D3C particle trajectories several turbulence characteristics
such as the Lagrangian acceleration distribution and the 3d Lagrangian two-particle
dissipation can be extracted.
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To prove the applicability and to validate the precision of the presented measurement
techniques, the PSV extraction routine was applied to a set of semi-artificial benchmark
data sets that allow to assess the precision of the instantaneous velocity. These data
sets were computed based on a set of PIV benchmark-measurements published by
Berthe et al. (2010).

After a characterization of the precision that can be expected in the measurements
both techniques (i.e. the bPSV-technique and the pPSV-technique) were used to
measure the interfacial flow field in the water-sided boundary layer of a turbulent
Rayleigh-Bénard (RB) convection. The measurement of these turbulent flow fields is
a challenging task for many reasons. The two most obvious reasons are:

Firstly, the characteristic length scale of this turbulence is larger than the size of the
boundary layer. Therefore, the extraction of proper turbulence characteristics
relies on a high resolution in the direction perpendicular to the interface, while the
horizontal size of the measurement volume has to be larger than the characteristic
length scale of the turbulence.

Secondly, the large difference between the microscopic scale and the characteristic
length scale of the turbulence involves a tracking of single particles over long
periods of time with a high temporal and spatial resolution. That makes this
type of turbulence measurement challenging for any technique.

Nonetheless, it was possible to use the developed method for the extraction of mean-
ingful turbulence characteristics from the boundary layer region. The results are in
accordance with the results of other studies aiming the characterization of turbulent
processes.

1.3.1 Structure of this Thesis

The present thesis is organized in the following way. An overview over existing methods
and studies published in the field of particle-based flow measurements and turbulence
analysis is given in Chapter 2 (“Background”). The aim of this chapter is to lay a
cornerstone for the understanding of the following chapters, and to justify the need for
a dedicated measurement technique to assess 3D3C-information of turbulent processes
in the boundary layer various interfaces.
In this context, results of previous numerical studies and experiments will be summa-
rized. This chapter especially focuses on techniques that were used to assess volumetric
3D3C flow information. At this point, a detailed description of the bichromatic depth
extraction technique that was developed by Jehle and Jähne (2008) will also be given.
In the following section of this chapter the principle of the second depth estimation
technique based on a focused plenoptic camera will be introduced in detail. A con-
cise knowledge about these methods, their possibilities and shortcomings is vital for
an understanding of the challenges that arise when it comes to the measurement of
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1.3 Outline

turbulent flow information in the boundary layer of an interface. Furthermore, this
chapter provides the basics for an understanding of the used statistical Lagrangian
measures that were extracted within the scope of this thesis.

The basic principles and the underlying concept of the developed measurement tech-
niques are explained in detail in Chapter 3 (“Measurement Technique”). This includes
an explanation of mathematical concepts as well as a description of the tensor-based
image processing routines and the signal processing algorithms that were implemented.
Additionally, this chapter describes the calibration routines that were used for the cal-
ibration of both developed depth estimation techniques.

The experimental setup and the hardware used to control the image acquisition, the
illumination and the synchronization are explicitly described in Chapter 4 (“Exper-
imental Setup”). Furthermore, this chapter comprises a detailed description of the
interaction between all these hardware components. In addition to the description of
the experimental setup of the measurement device, this chapter also introduces the
setup of the vessel that was used to generate a turbulent RB-convection.

Chapter 5 (“Data Processing”) presents the complete chain of operations that was
implemented to extract precise and robust flow information from the recorded PSV-
sequences. This includes the radiometric and the geometric calibration of the gray-
value camera as well as the tensor-based feature extraction and the frequency analysis
that yields Lagrangian trajectories. Finally, this chain of operations builds a rou-
tine for the statistical evaluation of the measured turbulences that computes a set of
Lagrangian characteristics from the measured particle trajectories. In the end, this
chapter also describes the computation of the semi-artificial data sets that were used
to validate the frequency-based velocity estimation.

All the results obtained from the numerical experiments using the semi-artificial data
sets and from the measured characteristics extracted from the turbulent RB convection
are summarized and explained in Chapter 6 (“Results and Discussion”). This chapter
also provides an approximation of the expected measurement error and a quantita-
tive comparison of the obtained turbulence characteristics with results from previous
studies.

Chapter 7 (“Conclusion”) summarizes the achievements of this study as well as its re-
sults and its shortcomings. Furthermore, this chapter gives a short outlook containing
a description of possible modifications and extensions to improve the quality of the
extracted turbulence characteristics.

Supplementary content in form of data sheets and tables is bundled in Chapter A
(“Appendix”) at the very end of this thesis. This additional information is not neces-
sary for a general understanding of this work. Still this work contains some links to
these data to provide the ambitious reader with background information.
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2 Background

The present chapter provides a conceptual background of the physical properties and
the characteristic measures used in this thesis. It starts with a description of turbulent
flow fields by means of dimensionless scaling parameters as well as by the commonly
used Kolmogorov microscales is explained.
The subsequent section introduces two important turbulence characteristics, i.e. the
Lagrangian acceleration statistic and the Lagrangian pair-dispersion statistic.
In the following section a brief introduction to particle-based measurement techniques
and their ability for interfacial measurements is given.
The last section in this chapter comprises an introduction to the principle of plenoptic
imaging.

2.1 Turbulence

“Big whirls have little whirls,
That feed on their velocity;
Little whirls have lesser whirls,
And so on to viscosity.”
(L. F. Richardson)

As mentioned in the introduction of this thesis, the scientific description of turbulent
flow fields is based on models that address single turbulence families such as boundary
layer flow fields, jets, buoyancy driven turbulence and wakes. Typically, these models
use a set of parameters and some scaling variables for the description of a specific
turbulence. The use of scaling parameters is well established in the field of fluid
mechanics since they allow to adapt models to various boundary conditions determined
by external parameter like the fluids viscosity, different temperature gradients or the
spatial boundaries of an experiment.

2.1.1 Scaling Parameters

The umbrella term Rayleigh-Bénard (RB) convection describes all the buoyancy driven
convective flow fields that are heated from below and cooled from above. In the field
of fluid-dynamics, RB convections can be seen as a classical problem that is probably
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2 Background

treated in every undergraduate lecture given on fluid-dynamics. Turbulent RB flow
fields belong to the most studied and best characterized turbulences that exist. This is
because the generation of this kind of turbulence in a laboratory environment is quite
simple.

To enable quantitative comparisons of the results obtained in this thesis with the
outcome of other studies, we derived several scaling parameters from the measured
data.
One of the most prominent scaling parameters used to scale models for the description
of convection-driven turbulence is the Rayleigh Number Ra. This number describes
the relation between the convective heat transfer in a buoyancy-driven turbulent flow
field and the conductive heat transfer. In turbulent RB flow fields this parameter is
defined as follows:

Ra = αig∆TH3

νκ
. (2.1)

Here αi is the isobaric thermal expansion coefficient, the gravitational acceleration is
given by g, and ∆T is the temperature difference that causes the RB convection. The
two parameters in the denominator are material characteristics of the fluid. Here κ is
the thermal diffusivity and µ is the kinematic viscosity of the fluid, and H describes
the characteristic length-scale of the convection.

A more phenomenological scaling parameter that is often used to scale models describ-
ing turbulent RB convections is the dimensionless Reynolds number Re. It combines
information from the characteristic length scale l and the characteristic velocity u
observed in the turbulence with the fluids kinematic viscosity (Ahlers et al., 2009;
Tennekes and Lumley, 1992).

Re = ul

ν
(2.2)

To get a better idea of the meaning of this scaling parameter, one can imagine it as
the ratio between the internal forces defined by the product ul and the viscous forces
represented by the kinetic viscosity. The characteristic length scale and the charac-
teristic velocity of a turbulence can be estimated from the results of the turbulence
measurements. Here l is given by the integral length scale that can be approximated
by the size of the largest eddies in the turbulent flow field, and u corresponds to the
velocities observed within these eddies.
A very detailed review on large scale dynamics in turbulent RB convections and the
correlation between heat transfer and the most prominent dimensionless scaling param-
eters, i.e. the Rayleigh number, the Reynolds number and the also often used Prandtl
number, was published by Ahlers et al. (2009). This publication also describes the
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2.1 Turbulence

dependency of the thermal and the kinetic boundary layer on the previously named
scaling parameters.

According to the detailed introduction to ways to characterize turbulent flow fields
given in (Tennekes and Lumley, 1992), the next important characteristic measure that
can be used to characterize turbulent processes is the dissipation rate of energy. This
so-called energy dissipation rate 〈ε〉 can also be approximated from the observed length
scales (Tennekes and Lumley, 1992) using:

〈ε〉 ∼ u3

l
(2.3)

The above definitions allow the derivation of the well known Kolmogorov microscales
that provide a microscopic turbulence scaling by means of a length scale ηK = (ν3/〈ε〉)1/4,
a time scale τK = (ν/〈ε〉)1/2 and a velocity scale uK = (ν 〈ε〉)1/4.

By using the approximation (2.3) and the previously defined dimensionless Reynolds
number (2.2), these three microscales can also be approximated from the observed
characteristic length scales.

ηK ≈ lRe−
3/4 =

(
ν3l

u3

)1/4

(2.4)

τK ≈ l

u
Re−

1/2 =
(
νl

u3

)1/2

(2.5)

uK ≈ uRe−
1/4 =

(
νu3

l

)1/4

(2.6)

These Kolmogorov microscales define a measure for the smallest turbulent structures
that are expected to occur in a flow field. The energy contained in these smallest
structures is no source for smaller turbulences but dissipates completely by means of
viscous processes into thermal energy.

2.1.2 Lagrangian Statistics

On the basis of flow measurements characterizing the movements of single tracer parti-
cles in a fluid, Lagrangian statistics can be used to extract characteristic measures for
the description of turbulent processes. Most models that describe turbulent processes
on the basis of these Lagrangian statistics use the Kolmogorov microscales to provide
a scale-invariant description of the underlying dynamics.
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2 Background

The two Lagrangian statistics that will be analyzed within the scope of this thesis
are the three-dimensional (3d) Lagrangian acceleration statistic and the Lagrangian
particle pair separation.

Acceleration Statistics

In a Eulerian frame of reference, the acceleration of a flow field can be defined by the
total derivative of the flow velocity.
This can be derived by

ai = dvi
dt ≡ ∂tvi + vk∂kvi. (2.7)

It can be seen that the acceleration separates in a Eulerian local acceleration ∂tvi and
a more global part that is given by a nonlinear advection term vk∂kvi (Aringazin and
Mazhitov, 2004). In this equation ∂k = ∂/∂k describes the spatial derivative in the
Cartesian reference system of the laboratory, and ∂t = ∂/∂t is the temporal derivative.
The indices i, k ∈ {1, 2, 3} correspond to the different spatial directions. The indices
in this section are used according to Einsteins summation convention (Einstein et al.,
1916).

The acceleration statistic is a quite meaningful turbulence parameter since it is directly
connected to the 3d Navier-Stokes equation (NSE) for incompressible flows (Tropea
et al., 2007) that is defined by

∂tvi︸︷︷︸
unsteady

acceleration

+ vk∂kvi︸ ︷︷ ︸
convective
acceleration

= −1
ρ

∂kp︸︷︷︸
pressure
gradient

+ ν∂2
kvi︸ ︷︷ ︸

viscous
term

+ fi︸︷︷︸
additional
forcing

. (2.8)

In this equation ρ is the fluids density, p is the pressure, and ν is the kinematic viscosity.
The additional summand fi describes a forcing that is usually only relevant at large
characteristic spatial scales (Aringazin and Mazhitov, 2004).

The NSE can be rewritten with (2.7) including the acceleration into this equation.

ai = −1
ρ
∂ip+ ν∂2

kvi + fi. (2.9)
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2.1 Turbulence

Lagrangian measurement methods such as Particle Tracking Velocimetry (PTV) or
Particle Streak Velocimetry (PSV) are a common tool for the measurement of acceler-
ation characteristics in turbulent flows.

The basic idea of all Lagrangian approaches is to measure time series xi(t) that describe
the position of individual tracer particles. Most approaches use a finite-differences
strategy to extract the Lagrangian velocity ui(t) and the ai(t) in a subsequent step.
These measures can be computed from the first and the second time derivative

ui(t) = ∂txi(t) (2.10)
ai(t) = ∂2

t xi(t) (2.11)

In his review article on Lagrangian acceleration statistics, Aringazin and Mazhitov
(2004) state that the measurement of acceleration statistics in a locally isotropic tur-
bulence requires a very high accuracy of the tracking system. The experiment for the
extraction of Lagrangian accelerations should be able to access time scales that are
smaller than the Kolmogorov time scale τK of the measured turbulence. The underly-
ing aim of all experiments that extract acceleration statistics in turbulent flow fields
is to assess information on the pressure gradient term in (2.9).

Recent developments in the field of Lagrangian measurement techniques as well as in
the field of direct numerical simulations (DNS) have triggered a set of studies focusing
on the extraction of Lagrangian acceleration statistics with resolutions that lie in the
order of magnitude of the Kolmogorov time scale τK.

For a better understanding of the underlying processes, various models were proposed
to describe the acceleration statistics of isotropic turbulences. These models mostly
focus on the acceleration distribution in turbulences and formulate Probability Density
Functions (PDF)s that model these distributions on the basis of a set of physical
assumptions made on the underlying fluid-mechanical processes. A detailed derivation
of the most promising models developed in the recent past is given in a review paper
by Aringazin and Mazhitov (2004).

In this thesis we focus on two Lagrangian acceleration distribution models. The first
one is based on a phenomenological function that was used to model experimental
data in a study made by Voth et al. (2002), and the second one is based on a Random
Intensity of Noise (RIN) approach, and was derived by Beck (2002, 2003).

The model used in the experimental study by Voth et al. (2002) is based on the
observation that the center part of the Lagrangian acceleration histogram shows a
Gaussian behavior, while the tails of the distribution extend far beyond those of a
normalized Gaussian bell-curve of the same variance. Therefore, this study adds a
linear dependency to the width parameter of a Gaussian bell curve. The resulting
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Probability Density Function (PDF) used to model the results of this study is given by
the following equation.

PI(a) = Ca exp
(
− a2

(1 + |aβa/σa|γa)σ4
a

)
(2.12)

In this equation Ca is a normalization factor, and σa corresponds to the width of the
underlying Gaussian distribution. The additional model parameters βa and γa control
the flatness of the tails of the distribution.

The second parametrization model used in this thesis was developed on the basis of
theoretical considerations based on Tsallis non-extensive statistics (Tsallis, 1988). The
major assumption of this model is that the acceleration of infinitesimal fluid particles
moving in a fully developed turbulence can be explained by a conditional PDF

PII(a) =
∫ ∞

0
dβP (a|β) f (β) . (2.13)

The first part of this equation can be derived using the one-dimensional Langevin
equation for the Lagrangian acceleration to a Gaussian form (Aringazin and Mazhitov,
2004).

P (a|β) = C(β) exp (−βa2/2) (2.14)

Here C(β) =
√
β/2π is a normalization factor.

This approach is based on the idea that the model parameter β is a random parameter
that prescribes external statistics. Therefore, this parameter introduces an additional
PDF f(β) in the Lagrangian acceleration model (2.13).

As motivated in (Aringazin and Mazhitov, 2004) a χ-square distribution of order (n =
1, 2, 3, . . .) is a reasonable assumption for the model parameter β.

f (β) = 1
Γ (n/2)

(
n

2β0

)n/2

β
n/2−1 exp

(
− nβ2β0

)
(2.15)

Using this distribution of the randomly distributed positive parameter β together with
the Gaussian distribution given in (2.14) the original PDF (2.13) can be solved to

PII (a) = C

(a2 + n/β0)
(n+1)/2

(2.16)
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2.1 Turbulence

The final extension added to this model is a Gaussian truncation of the power-law tails
that automatically arises if one assumes β to contain a non-fluctuating part. This non-
fluctuating part is parametrized by ac in the model derived by Aringazin and Mazhitov
(2004).

PII (a) = C exp (−a2/a2
c)

(a2 + n/β0)
(n+1)/2

(2.17)

A more detailed description of this model and alternative RIN models for the descrip-
tion of Lagrangian acceleration statistics can be found in the studies by Voth et al.
(2002) and Aringazin and Mazhitov (2004).

Two-Particle Dispersion

The cornerstone for the development of dispersion-based statistical flow characteriza-
tion was laid by Taylor (1922), who proposed the usage of the Lagrangian single-particle
dispersion. His work was also the inspiration for the so-called Lagrangian two-particle
dispersion first developed by Richardson (1926). For the quantitative description of
mass clouds relative to their center of mass, Richardson defined a so-called distance
neighbor function q(~r, t) that can be seen as a PDF defined for the times t and the
distance vectors ~r.

The definition of this Lagrangian statistic was also applied in the reverse direction.
Instead of asking: “How will the particle pair distance evolve in future”, one can also
ask: “What is the history of this particle pair?”. Concerning the previously named
PDF this means to ask: “Given a particle pair at time t with distance r(t), what is
the probability that these particles had the distance r(t− τ) in the past?” Similar to
the original definition this concept, called backward dispersion, was first developed for
the single particle case by Corrsin (1952). In this theoretical study the author uses a
combination of Lagrangian and Eulerian approaches to describe the heat transfer in
an isotropic turbulence. The two-particle backward dispersion was proposed later by
Durbin (1980).
Nowadays, a large variety of models for the description of turbulent mixing are based
on the backward dispersion concept.

As the large number of studies that followed and refined the understanding of turbulent
processes on the basis of Lagrangian particle dispersion provides enough material to
fill complete textbooks, this section restricts to a short summary of the theory of two-
particle dispersion. Additional information on this turbulence measure can be found
in (Boffetta et al., 2000; Otte, 2001; Salazar and Collins, 2009).
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2 Background

Figure 2.1: Two-dimensional trajectories of a
typical particle pair. This picture was taken
from a study by Jullien et al. (1999). The ini-
tial separation of these particles was 0.3mm and
the sampling rate, i.e. the time between two
successive dots, is 0.2s.

The underlying kinetic equation that influences the separation vector ~r(t) defining the
distance between a given pair of particles can be formulated according to Salazar and
Collins (2009) in its integral form.

d~r
dt = ~w(t) (2.18)

~r(t) = ~r0 +
∫ t

0
~w(t) (2.19)

In this integral formulation, ~w(t) is the relative Lagrangian velocity between the two
particles, and ~r0 = ~r(0) is the initial pair separation vector that describes the distance
between both particles at the time t = 0. Unfortunately the amount of information
contained in the functional description of the temporal development of ~r(t) is rather
small. Therefore, Lagrangian turbulence statistics use averages computed over a large
ensemble of particle pairs. This average growth rate of the particle separation can be
defined by 〈

r2(t)
〉
L

= 〈~r(t) · ~r(t)〉L . (2.20)

This measure has proved to be a valuable parameter for the characterization and for
the description of turbulent processes (Salazar and Collins, 2009). The brackets 〈 〉L
indicate an averaging of a large ensemble of Lagrangian particle pairs. This average of
such an ensemble containing N elements can be computed using

〈
r2(t)

〉
L

= 1
N

N∑
i=0

r2
i (t) (2.21)
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2.1 Turbulence

By using (2.18), (2.19) and (2.20), one can formulate a differential equation that de-
scribes the dependencies of this turbulence characteristic on the initial separation and
the relative velocity vector.

1
2

d
〈
r2〉

L

dt = 〈~r(t) · ~w(t)〉L

= 〈~r0 · ~w(t)〉L +
∫ t

0

〈
~w(t′) · ~w(t)

〉
L dt′ (2.22)

The non linear equation (2.22) depends directly on the relative separation velocity.
Therefore, a theoretical modeling of this dependency is rather complex. Most theoret-
ical studies are based on the integral formulation of (2.22)

1
2
〈
|~r(t)− ~r0|2

〉
L

=
∫ t

0

∫ t

0

〈
~w(t′) · ~w(t′′)

〉
L dt′dt′′. (2.23)

The process of dispersion of a tracer particle pair that started with a small initial
separation which is much smaller than the Kolmogorov length scale ηK can be separated
in three different regimes defined by the characteristic scales of the observed turbulence
(Salazar and Collins, 2009).

1. The dissipation subrange: This regime comprises particle pairs with very small
distances, i.e. r(t) = |~r(t)| � ηK. The Kolmogorov microscale ηK is defined in
(2.4). In this subrange the relative velocity w(t) can be approximated linearly
by a expansion in r.

2. The inertial subrange: This subrange lies between the microscale defined by
Kolmogorov and the so-called integral length scale L that can be estimated from
the size of the large scale eddies occurring in the observed turbulence. Therefore,
the inertial subrange is defined as ηK � r(t)� L.

3. The diffusion subrange: Particle-pair dispersions that are much larger than the
integral length scale are contained in this subrange, i.e. L� r(t).

In the second subrange, in which the pair separation is of the same order of magnitude
as the characteristic length scale of the turbulent eddies, the movement of the eddies
becomes the dominant transport mechanism. For the case of a homogeneous and
isotropic turbulence, Richardson (1926) proposed a diffusion equation to describe the
dispersion within this inertial subrange. This PDF was later refined by Obukhov
(1941), who determined a description of the diffusion coefficient. As described in
detail by Salazar and Collins (2009), this theoretical development yielded a functional
description for the mean square displacement that can be modeled by the so-called
Richardson-Obukhov (R-O) law.
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Figure 2.2: Time evolution of the mean
squared pair separation. The t3 dependency
in the R-O regime is indicated by a straight
line. The subplot shows the same data scaled
with t−3. In this visualization the R-O regime
causes a plateau. This figure was taken from a
study by Jullien et al. (1999).

〈
r2(t)

〉
L

= gr 〈ε〉 t3. (2.24)

In this equation 〈ε〉 is the energy dissipation and gr is a dimensionless constant that
can be approximated to be gr ≈ 0.5 (Schumacher, 2009).

On the basis of these developments, Batchelor (1950) applied Kolmogorov’s K41 theory
and formulated a model that describes a solution of (2.23) for short and intermediate
observation times (i.e. for t � tb and for tb � t � TL). The upper boundary of the
intermediate time range is defined by the Lagrangian integral time scale. It has to be
pointed out that the following model is only valid if both the initial separation ~r0 and
the final separation ~r(t) are within the inertial subrange.

1
2

d
dt
〈
|~r(t)|2

〉
L
− 〈~r0 · ~w(t)〉L =

{11
3 C2 (〈ε〉 r0)2/3 t for t� tb
3
2g 〈ε〉 t

2 for tb � t� TL
(2.25)

In this model, C2 is the second-order Kolmogorov constant for the structure function,
and the Batchelor time is defined as

tb ≡ r
2/3
0 〈ε〉

−1/3 . (2.26)

In its integral form that corresponds to the expression given in (2.23), the equation
given in (2.25) can be written as follows:

〈
|~r(t)− ~r0|2

〉
L

=
{11

3 C2 (〈ε〉 r0)2/3 t2 for t� tb

g 〈ε〉 t3 for tb � t� TL
(2.27)

This differentiation also separates two temporal regimes. The first one is the small
scale Batchelor regime that explains the pair dispersion of particle pairs in the inertial
subrange directly after the start of the observation. The second temporal regime
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defined by the lower equation is the so-called Richardson-Obukhov (R-O) regime. It
predicts a t3 proportionality of the particle pair separation growth for particles in
the inertial subrange at intermediate times. The transition between these regimes is
shown in Figure 2.2. Most publications that describe the particle pair dispersion in
the inertial subrange and the transition from the Batchelor regime to the R-O regime
use a t−3 scaling of the data. In this representation, which is also shown in the small
sub-plot in Figure 2.2 the R-O regime forms a plateau. For times that are much larger
than the Lagrangian integral time scale TL, the particle separation curve in this figure
assumes a t1 proportionality that is caused by normal, large scale diffusion (Boffetta
et al., 2000).

2.2 Particle Based Measurement Techniques

The measurement of fluid flow fields by means of small, neutrally buoyant tracer par-
ticles that assume the velocity of the fluid has become standard in the field of fluid
mechanics. In the last decades various methods were proposed that are based on this
technique. Because of the huge diversity of methods in this field it is not possible to
give a thorough overview of all these methods within the scope of this thesis. Therefore,
this section is restricted to the introduction of methods proposed in the recent past
for the measurement of three-dimensional and interfacial flow fields. A more complete
introduction to the different methods that exist in the field of particle-based flow field
measurement is given in the review papers (Adrian, 1991, 2005).

2.2.1 Particle Image Velocimetry (PIV)

In a classical PIV measurement setup, the neutrally buoyant particles are seeded into
the fluid and illuminated by means of a planar laser sheet. The light that is reflected
from the tracer particles is typically recorded by a charge-coupled device (CCD) cam-
era. Typically the optical axis of the camera is perpendicular to the laser sheet. In
the evaluation of the recorded PIV image sequences a small correlation window is
used to compute a displacement vector field that describes the drift of the recorded
particles in consecutively recorded images. In the recent past various extensions to
the classical PIV technique were proposed. Most of the extensions were introduced
to extend the dimensionality of the measured data, i.e. to measure three-dimensional
three-component (3D3C) information. Other approaches extended the classical PIV
approach to assess interfacial flow information from the boundary layer region of an
interface.
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Figure 2.3: Multi-plane
scanning system. The
laser beam is widened by
a first cylindrical lens and
then scanned through the
measurement volume us-
ing an oscillating mir-
ror and a second cylin-
drical lens. This image
was taken from Brücker
(1995).

Three-dimensional Particle Image Velocimetry (PIV)

The first extensions that aimed for the measurement of the out-of-plane movement in a
two-dimensional laser sheet used stereo camera setups with two or three cameras (Ar-
royo and Greated, 1991; Fouras et al., 2008). These approaches were further extended
by (Brücker, 1995; Schröder and Kompenhans, 2004) who used multiple planes that
were realized in a scanning light sheet setup as shown in Figure 2.3. In this setup the
laser beam is widened to a sheet by a first cylindrical lens and then scanned through
the volume of interest by means of an oscillating mirror and a second cylindrical lens.
Another method to realize multiple planes is to use color coded light sheets and color
sensitive image acquisition devices as proposed by Brücker (1996) and McGregor et al.
(2007).
A different strategy commonly used to extract three-dimensional data in PIV measure-
ments is the use of holographic systems. This Holographic PIV technique is described
in detail by (Barnhart et al., 1994; Hinsch, 2002). Both the multi-plane approach and
the holographic approach allow the extraction of a full volumetric 3D3C flow infor-
mation and a tracking of individual tracer particles in the so-called Particle Tracking
Velocimetry (PTV). In contrast to the correlation-based PIV measurement, the re-
sults from PTV measurements can be used to extract Lagrangian particle trajectories
that describe the movement of infinitesimal fluid volumes in the measured flow field.
Unfortunately the data recorded by means of this technique are rather sparse. This is
because PTV does not work for high particle seeding densities.
A third common strategy to resolve three-dimensional flow field information uses a
tomographic measurement setup. In Tomographic PIV (Elsinga et al., 2006) the full
3D3C flow field can be recorded using multiple cameras. Unfortunately, this method
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is connected with a high calibration effort, and the seeding density is constrained by
the number of cameras that are used.
Another common technique that can be used to record 3D3C PTV measurements is
Defocussing PIV (Grothe and Dabiri, 2008; Pereira et al., 2000; Willert and Gharib,
1992). This technique uses a pinhole mask with a multiplicity of apertures or multiple
cameras arranged in a known pattern. This allows to obtain multiple images of the
same particle in one measurement. These images form geometrical patterns that scale
according to the distance of the individual tracer particle from the focal plane. A
Lagrangian particle tracking can be performed on the basis of this information about
the depth.
The last extension that allows to measure volumetric 3D3C data using PIV techniques
is an absorption based method originally proposed by Debaene (2005) and Kertzscher
et al. (2008). They used an absorbing dye to measure the depth from the length of the
absorption path of the illuminating light through the fluid.

Interfacial Approaches

As mentioned in Chapter 1 of this thesis, the volumetric measurement of flow fields
in the boundary layer of an interface presents a special challenge for particle-based
measurement techniques.
A first obstacle is that most common techniques for the measurement of 3D3C data
are optimized for a fixed measurement volume that is typically hexahedral shaped.
Therefore, a restriction of the measurement volume to a thin layer in the boundary of
a possibly non-planar interface presents a major challenge.
Secondly most measurement techniques only work below a certain particle seeding
density. Therefore, it is difficult to increase the particle density in the volume of
interest to a sufficiently high value because the signals from tracer particles that are
not in the interfacial region may interfere with the measurement.
A third challenge is the relation of measured flow vectors with the position of the
interface. Since most methods measure in an absolute frame of reference, i.e. not
relative to the interface, it is necessary to estimate the exact position of the interface
and to align this information with the measured flow fields.

Additionally, all multi-plane methods face another problem. Because of reflections
in the interface an adjustment of a scanning unit as shown in Figure 2.3 on page 19
presents a highly complex problem.

According to Berthe et al. (2010), Holographic PIV is a more promising technique for
3D3C measurements in an interface. The only restriction is its bad depth resolution
that would especially interfere when it comes to the measurement of moving or non-
planar interfaces. Nonetheless, this problem might be solved in the future with the
development of better high resolution imaging systems. Another promising approach
was published by Turney et al. (2009), who used a stereo camera setup, fluorescent
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Figure 2.4: Measurement setup used in the
“Wall PIV” experiments proposed by Berthe
et al. (2010). Particles in the interfacial bound-
ary layer are recorded through the transparent
interface. In the fluid the light is absorbed due
to a solved dye. Therefore, the intensity of the
imaged particles depends on their depth R be-
hind the interface. This figure was taken from
(Berthe et al., 2010).

tracer particles and an absorbing dye to restrict the measurement volume to the inter-
facial region.

The studies by Debaene (2005), Kertzscher et al. (2008), Jehle and Jähne (2008) and
Berthe et al. (2010) go one step further. The measurement techniques used in these
studies encode the particle depth by means of an absorbing dye. The extraction of the
real depth is then simply done on the basis of Beer-Lambert’s law for absorption:

I = I0 exp (−εcR) (2.28)

In this equation I0 represents the intensity at the interface, and I is the intensity that
is observed in the measurement after the absorption in the dyed fluid. Here c is the
dye concentration, ε is the absorption coefficient, and R is the distance between the
interface and the particle (cf. Figure 2.4).

Since the intensities that can be measured by means of these methods also depend on
the reflectance of the particle coating and the particle size, Jehle and Jähne (2008)
used two light sources with different wavelengths that are absorbed differently by the
dye. From the intensity ratio of the reflected light from both light sources it is possible
to eliminate these dependencies as described in detail in Chapter 3 of this thesis.

To estimate the precision that can be reached by using the absorption-based depth
estimation, Berthe et al. (2010) made some test measurements. In these measurements
a single particle was mounted on the head of a high-precision milling cutter (at the
Department of Precision Engineering and Micro Technology (MFG), TU Berlin). The
milling cutter allows three-dimensional movements with a precision up to 100 nm in
all three directions. Single shot PIV image sequences were recorded by means of a
Fastcam Super10K camera and an inversely mounted Nikon Nikkor 50 mm 1:1.8 lens.
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Figure 2.5: Temporal integrated PIV bench-
mark data sets for the validation of the bichro-
matic wall-PIV method. These pictures were
taken from Berthe et al. (2010)

During the measurement the particles were moved with constant velocity on different
trajectories (cf. Figure 2.5) near a transparent interface in a dyed liquid. In the present
thesis these data sets were used to generate semi-artificial datasets for the validation
of the frequency-based velocity estimation as described in Chapter 5.

2.2.2 Particle Streak Velocimetry (PSV)

The underlying concept that distinguishes Particle Streak Velocimetry (PSV) measure-
ments from the previously introduced methods is that this method uses long exposure
times to obtain blurred particle streaks. To the best of my knowledge this method was
first introduced by Fage and Townend (1932) in a study to visualize characteristics of
turbulent flow fields in circular and rectangular pipes. Afterwards streak photometry
was also used to visualize flow characteristics by Prandtl (1957). First measurements to
obtain quantitative information from particle streak images were conducted by (Adam-
czyk and Rimai, 1988; Dickey et al., 1984; Dimotakis et al., 1981). All three studies
used computerized evaluation routines to extract the mean direction and the mean
velocity by subtracting the end-points of each streak. The study by Wung and Tseng
(1992) can be seen as an early precursor of the technique presented in this thesis
since this was the first time when temporal information was coded along the streak
structures by changing the intensity of the illumination during exposure.

Three-dimensional Particle Streak Velocimetry (PSV)

In the recent past many approaches were made to extend the PSV method that
was originally developed to measure two velocity components in a plane, i.e. two-
dimensional two-component (2D2C). Typically, these extensions aim for the measure-
ment of the third velocity component (Müller et al., 2001; Wung and Tseng, 1992) or
of volumetric data (Biwole et al., 2009; Dixon et al., 2011; Rosenstiel and Rolf-Rainer
Grigat, 2010; Sinha and Kuhlman, 1992). A newly proposed method published in
Dixon et al. (2011) even uses a holographic particle streak velocimetry technique to
measure volumetric flow features. In this approach blurred holograms are recorded
by imaging particles that move during the exposure time. From the radial intensity
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profiles of the particles in the hologram the magnitude and direction of the in-plane
velocity can be computed.

2.3 Plenoptic Imaging

The inspiration for the development of plenoptic cameras originates from light field-
measurement setups using large camera arrays to capture a single scene from different
viewpoints.
The recent developments in the field of plenoptic cameras (Georgiev and Lumsdaine,
2010; Lumsdaine and Georgiev, 2009) enable their use for quantitative measurements
with a spatial resolution that is sufficient for particle-based flow measurements. These
cameras measure four dimensional light fields with a single exposure through a single
objective. Compared to a conventional image that only contains information about the
intensity of incident light g = (gx, gy) at each pixel, light field-images also comprise
information about the angle of incidence

l = (gx, gy, φx, φy). (2.29)

In this equation (gx, gy) is the sensor position of the sampled light field and (φx, φy)
is the direction of the incident light field.

A single light field image can be used to compute several image features such as:

• a depth map of the imaged scene (Bishop and Favaro, 2011)

• projective 2D images with different focal lengths (Ng et al., 2005)

• projective 2D images with different points of view (Ng et al., 2005)

• "‘all-in-focus"’ images (i.e. full depth of field views) (Perez Nava and Luke, 2009)

The standard geometry of a plenoptic camera uses a micro-lens array that is positioned
behind the objective and in front of the CCD sensor. Here the main lens, i.e. the lens
of the camera objective, is focused on the micro-lens array, and the lenses of the
array are focused at optical infinity (Lumsdaine and Georgiev, 2009). This type of
plenoptic camera (hereinafter referred to as standard plenoptic camera) has a high
angular resolution, but unfortunately the spatial resolution is restricted by the size of
the micro-lenses in the array.

In contrast to the standard setup, the focused plenoptic camera uses a micro-lens array
that is not positioned in the focal plane of the camera objective. Here the micro-
lenses are located in a way that they image the focal plane of the main camera lens on
the detector. The main advantage of focused plenoptic cameras is the relatively high
spatial resolution reached on the expense of a lower angular resolution (Adelson and
Wang, 1992).
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2.3 Plenoptic Imaging

To describe the general principle of both plenoptic camera types, we make use of a
matrix-based formalism for the description of optical transformations that take place
in the plenoptic camera. A nice introduction to the used matrix methods is given by
Gerrard and Burch (1994).

To simplify the problem, we reduce the four-dimensional light field l defined in (2.29)
to a two-dimensional g − φ plane. This means, a two-dimensional light field l can be
seen as a 2D density function in the ray-space. Basic optical transformations in this
space can be described as operations performed on single rays r = (g, φ) that form the
light field.

Translation A ray from a light field that is transformed in an optical system due to a
translation over a certain distance t in the direction of the optical axis can be described
by a matrix multiplication (Gerrard and Burch, 1994)

(g′, φ′) = r ·Tt = (g, φ) ·
(

1 t
0 1

)
= (g + tφ, φ). (2.30)

This result is not surprising since a translation causes a linear change in the position
and no change in the direction of the ray.

Refraction on a Lens A similar linear dependency can be formulated for the transfor-
mation that describes the refraction of a ray on a lens with focal length f . In contrast
to the previously described transformation here the spatial coordinate does not change
since the refraction at a lens only changes the angular information of the rays in the
light field.

(g′, φ′) = r · Lf = (g, φ)
(

1 0
− 1
f 1

)
= (g, φ− 1

f
g) (2.31)

Given these two matrix operations for the description of basic optical transformations,
we can formulate a model to describe an optical setup that consists of a lens followed
by a free space of length t.

r′ = TLr (2.32)

A transformation of the complete radiance density function given by a light field l(r)
due to an optical setup can be described by the same linear model (assuming non-
absorbing transmission through the whole optical system) (Gerrard and Burch, 1994;
Lumsdaine and Georgiev, 2009). This allows the formulation of a conservation law for
the radiance density function given in the light field l(r).

l′(r′) = l(r) (2.33)
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Since the linear transform is allowed in both directions, the transformation of the light
field can also be expressed by means of the inverse transformation and the original
r.

l′(r) = l(A−1r) (2.34)

In the sensor plane of the imaging device, the density function is integrated over all
possible ray-directions and reduced to a single gray-value for each sampled position on
the sensor.

I(g) =
∫
φ
l (r (g, φ)) dφ (2.35)

These equations can be used to describe a simplified model of a standard CCD camera
that consists of a lens in front of a sensor array that integrates the radiant density
function over a given exposure time. The integration over all angles of the incident
light field in (2.35) is the reason for the loss of angular information in a standard
camera.

2.3.1 The Standard Plenoptic Camera

The basic concept of a traditional plenoptic light field camera (as proposed by Ng
et al. (2005)) is shown in Figure 2.6 on page 27. Here a micro-lens array is placed in
the focal plane of the main lens in front of the sensor array. The micro-lens array is
focused at optical infinity, and the incident light focused by the main lens is therefore
decomposed into its angular components by the micro-lenses. As a consequence, the
area behind a micro-lens contains the angular information of the light field captured
by the corresponding micro-lens in the focal plane.
This explains that the spatial resolution of this plenoptic camera type is restricted by
the size of the micro-lenses, whereas the angular resolution depends on the sampling
of the area behind the individual micro-lenses.

Focusing on the beam path of a single micro-lens, as shown on the right hand side
in Figure 2.6 on page 27, the radiance density in the plane of the lens-array is given
by l(g, φ). Therefore, the radiance density in the sensor plane lf (g, φ) array can be
described as a transformation of l. This transformation can be expressed by the com-
bination of a refraction due to a lens Lf (the micro-lens) and a translation Tf (in the
space between lens-array and imaging sensor array).

Af = TfLf =
(

0 f
− 1
f 1

)
(2.36)

After application of this optical transformation the resulting light field lf can be com-
puted using (2.34) and (2.36).

lf (r) = l(A−1
f r) = l(g − fφ, 1

f
φ) (2.37)
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2.3 Plenoptic Imaging

Figure 2.6: Optical beam path of a traditional plenoptic camera. In the left image the
position of the micro-lens array behind the main lens of the objective is visualized. The array
is positioned in the focus of the main lens. Behind the array the light is decomposed into its
angular components. The right image shows a detailed view on a single micro-lens. The focus
position on the sensor array of the camera is determined by the angle of the incident light.

As described by Lumsdaine and Georgiev (2009), the resulting image behind a single
micro-lens is given by the integration that is performed in the single pixels of the sensor
array.

If (g) =
∫
φ
lf (g, φ) dφ =

∫
φ
l

(
g − fφ, 1

f
φ

)
dφ (2.38)

The integration range for the angular integration of l spans an angular area of d
f , as

shown in the image on the right hand side of Figure 2.6 on page 27. Assuming that
the radiance density l is constant over the micro-lens for a given φ, the intensity If at
a point g on the sensor array can be written as

If (g) = d

f
l

(
0, 1
f
φ

)
. (2.39)

This equation shows clearly that the image behind one micro-lens corresponds to a
single position g = 0 in the plane of the micro-lens array. The spatial position in this
micro-lens image encodes the directional distribution of the incident light at g = 0.

Therefore, the spatial sampling of this camera type is given by the positions and size
of the micro-lenses, whereas the angular sampling is done over a range of d

f . This
sampling behavior of the standard plenoptic camera is also shown on the left hand
side in Figure 2.7 on page 27. In the g − φ plane the spatial sampling takes place in
g-direction. The size d of the red squares indicating single sampling points is restricted
by the size of the micro-lenses in the array. In φ direction the sampling resolution is
restricted by the number of pixels behind a single micro-lens, and the angular range is
given by the ratio d/f as shown in Figure 2.6.
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Figure 2.7: Sampling behavior of the traditional and the focused plenoptic camera. On the
left hand side the sampling of the traditional plenoptic camera is shown. The spatial resolution
in g direction is restricted by the size of the lenses in the micro-lens array. The resolution in φ
direction depends on the number of pixels on the sensor array behind a single micro-lens. The
image on the right hand side shows the sampling behavior of a focused plenoptic camera. Here
each diagonal line corresponds to a single micro-lens in the array.

2.3.2 The Focused Plenoptic Camera

A slightly different strategy is used in the focused plenoptic camera concept. Here the
micro-lens array is also positioned between the main lens of the camera objective and
the sensor array, but not in focal plane of the main lens. The following description of
the focused plenoptic concept concerns the camera type described by (Perwass, 2011;
Wanner et al., 2011), and the mathematical derivation of the optical features and
properties was inspired by Lumsdaine and Georgiev (2009).
The optical beam path of this camera model is shown in Figure 2.8. The image on the
left hand side shows the position of the micro-lens array behind the focal plane of the
main lens. Here the distance between the sensor array and the micro lenses a and the
distance to the focal plane b have to fulfill the lens equation

1
a

+ 1
b

= 1
f
. (2.40)

This optical constellation ensures that the image produced at the focal plane of the
main-lens (in a distance b to the micro-lens array) is imaged correctly on the sensor
array.

The optical transformation of the radiance at the main focal plane la(g, φ) to the
radiance distribution at the sensor array behind the micro-lens array can be described
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2.3 Plenoptic Imaging

Figure 2.8: Optical beam path of a focused plenoptic camera. left The micro lens array is
placed between the focal plane of the main-lens of the camera objective and the imaging sensor
array. right Optical path for a single micro lens.

by the matrix formalism introduced in the previous section.
Therefore, lb can be computed using (2.34) by

lb(r) = la
(
A−1
ba r

)
. (2.41)

Here the transformation matrix A is determined by the two translations a and b and
the refraction at the micro lenses (focal length f) as follows:

Aba = TbLTa =
(
− b
a 0
− 1
f −a

b

)
. (2.42)

Therefore, the resulting radiance distribution is given by

lb(r) = la

(
−a
b
g,− b

a
φ− 1

f
g

)
. (2.43)

The spatial signal Ib(g) recorded by the sensor array is formed by an integration of the
radiance distribution lb over a range of φ given by the fraction d/b.

Ib(g) =
∫
φ
lb (g, φ) dφ =

∫
φ
la

(
−a
b
g,− b

a
φ− 1

f
g

)
dφ (2.44)

As shown in the right image in Figure 2.8 on page 28 only a single value of φ in the
integral corresponds to the value of Ib(g) for a certain g. As a consequence the integral
in Figure 2.44 can be rewritten to

Ib(g) = d

b
la

(
−a
b
g,−1

b
g

)
. (2.45)
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This simplification which is a central assumption made by Lumsdaine and Georgiev
(2009) is only valid if la is constant across φ = 1

bg.

The micro-lens array in the focused plenoptic camera incorporates a mapping of the
radiance in the main focal plane that introduces a scaling of the images by a factor b/a.
As a result, objects that have a different distance to the camera and that are therefore
focused to a different plane inside the camera are mapped onto the image sensor with
a different scaling.

Spatial Resolution One of the major advantages of the focused plenoptic camera,
compared to its precursor approach (i.e. the standard plenoptic camera), is the higher
spatial resolution of the recorded radiance l(g, φ) that represents the sampled light
field. Lumsdaine and Georgiev (2009) state that this spatial resolution is given by the
product of the scaling factor b

a and the resolution of the sensor array that was used
to acquire Ib(g). The sampling behavior of the focused plenoptic camera is visualized
in the right image in Figure 2.7 on page 27. In this visualization each diagonal line
corresponds to a single micro-lens. A single pixel on the sensor array samples a single
spatial position g and a span d

a in φ of the radiance distribution at the main-focal
plane la(r) at a.

Angular Resolution This manifestation of the plenoptic camera concept has a much
lower angular resolution. This is because the angular domain is sampled by a

b non-
overlapping directional samples as shown in the right image of Figure 2.7 on page 27.
Therefore, the correlation between the spatial and the angular resolution is exactly
anti-proportional.

In contrast to the traditional plenoptic camera, the spatial resolution depends linearly
on the resolution of the image sensor and the size of the overlapping regions imaged
by the micro-lenses.
The relation between the spatial and the angular resolution of this camera type can
simply be adapted by tuning the fraction a

b . The only restriction is that a and b have
to fulfill the lens equation (2.40).

Spatial Rendering As mentioned earlier, it is possible to compute different views and
“all-in-focus” images as well as depth maps from a single plenoptic light field captured
by means of a focused plenoptic camera.

In a recent publication Wanner et al. (2011) proposed a simple straightforward ap-
proach for the rendering of so-called “all-in-focus” images. This term stands for ren-
dered images that make use of the whole information contained in a light field mea-
surement to compute an image where all objects, even those in different depths, are
focused.
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2.3 Plenoptic Imaging

Figure 2.9: Rendering of images from plenoptic light field measurements. Left: rendering of
different focal positions from the same light field measurement by combining image patches with
different sizes; Right: rendering of different view-points from a single light field measurement
by shifting the patches that were cut from the light field image. This figure was published by
(Wanner et al., 2011).

The b
a scaling introduced by the mapping of the main-focal plane onto the image

sensor due to the micro-lenses encodes a depth-information in the recorded light field
as shown in Figure 2.9. An object that is not in the focus plane of the main-lens will
be mapped by the main-lens to a different focal plane in front of the micro-lens array.
The consequence of this different distance to the array is a different scaling factor b̃

ã .
Therefore, the size of the object in the micro-lens patch on the image sensor array will
be smaller than the size of an “in-focus” object.

This knowledge can be used to compute different focal-plane representations from
a single light field image by cutting and arranging lens-patches of different sizes. As
shown in the right image of Figure 2.9, an “out-of-focus” plane can be moved into focus
by cutting out a smaller center area of the single micro-lens images and rearranging
these patches. It can also be seen in this image that the resolution decreases when
focusing on focal-planes that are further away from the main-focal plane.

For the computation of these “all-in-focus” images, Wanner et al. (2011) render a set
of images based on different micro-lens patch sizes. Each image in this set corresponds
to a different focal plane in the measurement. By minimizing a cost function that is
based on the perpendicular gray-value gradients at the boundaries of the micro-lens
patches, the correct focal-depth for all micro-lens patches in the image is estimated
locally. This focus-map determines the size of the focus-patches that are cut from the
micro-lens images as shown in Figure 2.9. In a next step these patches are magnified
in order to obtain equi-sized patches. In the last step an “all in focus” image is built
by arranging these patches to a new image.
The focus-map can also be seen as a depth map since the local position of the focal
plane can be used in a “depth-from-focus” like approach to obtain depth information
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of the recorded scene.

Variation of the Viewpoint The viewpoint on the recorded scene can also be varied
within the sampled range of φ. In the recorded data from the focused plenoptic camera,
this change of the viewpoint can be achieved by moving the center of the micro-lens
patches before cutting them to set the correct focal plane. This concept is shown in
the right image of Figure 2.9.
To render view I the center of the micro-lens patches is moved to the right, and for
the computation of the second viewpoint view II the image patches are taken from the
very left part of the micro-lens images. The result is a shifted viewpoint as shown in
the lower part of the right image in this figure.
In a different depth estimation approach these viewpoints that are contained in the
light field images are used to compute a depth-map from the recorded data by means
of a simple stereo approach (Jähne, 2005).
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This chapter comprises a detailed description of the particle-based measurement tech-
niques that were purpose-built for measurements of volumetric three-dimensional three-
component (3D3C) flow information within the boundary layer of an interface.
The presented methods are hybrid approaches which use a combination of existing
methods and extensions to these methods. The main ideas and strategies that built
the underlying concept of these methods will be explained as well as the technical
realization.

The first section (Section 3.1) of this chapter introduces the basic principle of the
Particle Streak Velocimetry (PSV)-method. This flow field measurement method uses
long exposure times to record the trajectories of tracer particles in a fluid. All particles
that are illuminated during this time reflect light on the imaging device and are thus
imaged as streak structures in the recorded images.
An important and novel extension that was made in this study is the introduction of
an intensity modulated light source. The purpose of this special illumination was to
code temporal information in the images. As shown later, it is possible to decode the
velocity course of single particles during one exposure by means of a frequency analysis
of the spatial periodical intensity signal along the corresponding streak structures.

The second section (Section 3.2) focuses on the extraction of volumetric three-dimen-
sional (3d) data. Here a two-wavelength illumination and an absorbing dye were
used. The different absorption characteristic of the dye for both wavelengths allows
an extraction of the particle depth from the reflected intensities. In contrast to other
absorption-based depth extraction approaches, the usage of a second wavelength in-
troduces a higher robustness and precision of the depth estimate. Furthermore, the
measured depth-information is already in a reference frame that is relative to the in-
terface. In contrast to all other published methods that were invented for extraction
of interfacial flow information the absorption-based depth extraction technique is able
to extract Lagrangian flow information relative to the interface without using an addi-
tional interface-tracking setup. The basic principles of this method, called bichromatic
Particle Streak Velocimetry (bPSV), were already presented to the scientific commu-
nity in (Voss and Garbe, 2010; Voss et al., 2010).

Section 3.3 describes the concept of an alternative single camera depth-extraction ap-
proach. It uses a special imaging device called focused plenoptic camera that samples a
four-dimensional light field. By extending the developed PSV measurement approach
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with this new imaging hardware, this thesis proposes a second strategy for the mea-
surement of volumetric 3D3C flow information by means of a single camera.
As described in detail in this chapter, four-dimensional light fields were measured in
long-time exposure images containing all information that is needed to reconstruct the
velocity and the trajectories of the tracer particles within the volume of interest.
Unfortunately the depth information of the particle trajectories can only be measured
in an absolute frame of reference. Therefore, the application of this technique for the
measurement of interfacial flow fields becomes difficult. Nonetheless, the combination
of the proposed PSV approach with a plenoptic imaging device presents an adequate
alternative to state-of-the-art Particle Streak Tracking (PST) methods.

The following section (Section 3.4) describes the merging of multiple particle streaks
from subsequent images of a PSV image-sequence to long trajectories. This allows
the tracking of single tracer particles through multiple images, i.e. over a long period
of time. Basically this can be achieved by a matching routine that finds streaks in
subsequent images which belong to the same tracer particle. As described in this
section, the matching is realized by means of an adaptive Mahalanobis distance metric.
The merging of trajectories that contain streaks from multiple subsequent images from
a PSV measurement is solved using cubic spline-fit routines based on a least-squares
regression.

The last section (Section 3.5) explains the statistical measure that was used to char-
acterize the turbulent flow fields measured within the scope of this thesis. It is based
on the particle acceleration and on the dispersion rate of particle pairs.

3.1 Particle Streak Velocimetry (PSV)

For the particle-based measurement of Lagrangian flow information close to a present
interface a PSV approach was chosen. In standard PSV measurements, tracer particle
images are recorded in long exposure measurement with constant illumination. As de-
scribed in the previous chapter, most of these techniques use laser sheet illuminations.
The consequence is a two-dimensional restriction of the measurement volume and the
components of the extracted velocity vectors. Additionally, all previous published
PSV-approaches such as (Adamczyk and Rimai, 1988; Dickey et al., 1984; Dimotakis
et al., 1981) suffer from the long exposure times that yield a bad temporal resolution.
Even newest approaches such as (Dixon et al., 2011; Rosenstiel and Rolf-Rainer Grigat,
2010) only provide averaged information about velocity of the tracer particles during
the exposure time. This restriction is caused by the long exposure. It can be seen as
a temporal integration that causes a loss of temporal information.

Bichromatic Measurements To overcome all these restrictions, we combined the clas-
sical PSV approach, summarized in Section 2.2.2, with a bichromatic depth extraction
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routine. This routine is based on a volumetric two-wavelength illumination and an
absorbing dye. Additionally, an intensity modulated illumination was used to gain the
temporal resolution of the extracted velocity information. The main advantages of this
measurement technique are the following:

• It is a low cost solution for volumetric 3D3C flow field measurements since only
a single gray-value camera, an absorbing dye, reflecting tracer particles and a
light-emitting diode (LED) illumination are needed.

• Because only one camera is used (imaging the interface from above), the cal-
ibration is much simpler compared to alternative systems such as holographic
methods or stereo-based approaches.

• It is a perfect solution for interfacial measurements since the measured data are
already in a reference frame that is relative to the interface. This makes an
additional interface-tracking routine dispensable.

Plenoptic Measurements A second technique for the volumetric measurement of
3D3C PSV data was tested within the scope of this thesis. Here a single focused
plenoptic camera (Lumsdaine and Georgiev, 2009) was used for the depth estimation.
Similar to the bichromatic PSV experiments, the exposure time of this camera was set
to high values, to realize a temporal integration that results in particle streaks (shown
in Figure 3.2 on page 41). The light source, used in these experiments, was also
intensity modulated with a sine function to enable the extraction of an instantaneous
velocity, using a frequency analysis. For the particle streak extraction routine the light
fields that were recorded by means of the focused plenoptic camera were processed to
render “all-in-focus” images. In these images all objects, even those in different depths,
are displayed “in-focus” to allow the extraction of particle streaks from all focal planes
within the measurement volume. Additionally, the particle depth information was
extracted from depth-maps that were also rendered using the information contained
in the recorded light fields.

Calibration A proper radiometric and geometric calibration of the whole setup includ-
ing the imaging devices and the illumination is a basic condition to measure precise
volumetric 3D3C flow information using the bichromatic Particle Streak Velocime-
try (bPSV)-technique or the plenoptic Particle Streak Velocimetry (pPSV)-technique.
Especially the camera used for the bichromatic depth estimation requires a sound
radiometric calibration since the quality of the depth estimate depends crucially on
the precision of the measured absolute gray-values. Therefore, the gray-value camera
that is used for the bPSV measurements was characterized according to the European
Machine Vision Association (EMVA)-1288 standard (EMVA, 2010) to determine the
radiometric camera properties. A detailed description of the calibration and its results
is given in Section 5.1 of this thesis.
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The geometric calibration is rather simple since only a single camera with an optical
axis perpendicular to the interface is used. To determine the pixel-size and the con-
comitant magnification, a mm-Grid (shown in Figure 3.6 on page 53) was placed in
the air-water interface and in a depth of 10mm below the interface.
In all measurements that were recorded during this project the perspective distortion,
caused by the larger distances within the volume of interest, was found to be signif-
icantly smaller than the error observed in the spatial calibration of the pixel size. A
detailed description of the precision of the measurement systems is given in Chapter
5

For the extraction of meaningful depth information from the depth-maps that were
extracted from the light field measurements, recorded by means of the plenoptic cam-
era, a seven point calibration was conducted previous to each measurement. In this
calibration a random-noise pattern (shown in Figure 3.6 on page 53) was placed in
different depths within the measurement volume. For each depth, a depth-map was
computed from the recorded light field using the evaluation software RXLive provided
by the camera-manufacturer (Perwass, 2011). This depth-map computation is based
on the principles explained in Section 2.3. Afterwards a linear regression was used
to compute a scaling factor that allows the conversion from the integer values of the
depth-map to real depth values. The resulting depth values are all given relative to
the focal plane of the main lens. ([DN]⇒ [mm]).

Particle Kinematics In the planing and analysis of every particle-based flow mea-
surement the question arises whether the particle movement complies properly with
the movement of the surrounding fluid. A common way to quantify this compliance
analytically is based on the argument of Stokes for a low Reynolds number flow around
a sphere (Dring, 1982; Grant, 1997; Tropea et al., 2007).
The following derivation is valid for a slow motion of a viscous fluid around a sphere.
In his well known Stokes equation for the drag of a sphere George Gabriel Stokes
(1819–1903) described the drag of a sphere with diameter dp that is surrounded by a
parallel fluid stream as follows:

D = 3πνdpU (3.1)

In this equation U represents the relative fluid velocity of the stream with respect to
this sphere and ν is the viscosity of the fluid.
The amount of total drag can be split into two parts. One fraction caused by the
difference in the pressure distribution around the sphere and a second fraction due to
frictional forces. It can be shown that the fraction caused by a pressure imbalance
contributes with one third to the total drag. The remaining two thirds originate from
the friction caused drag (Biswas, 2003). Therefore the drag coefficient can be defined
to be
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CD = D

0.5ρU2A
, (3.2)

where A is given by the frontal area of the sphere (A = 0.25 · πd2
p).

More precisely, the equation of motion for a small particle moving in a viscous envi-
ronment can be formulated, according to Tropea et al. (2007), as follows:

πd3
p

6 ρpv̇ =
πd3

pρf

6
DV
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πd3
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time history (Bassed) force

(3.5)

− 1
12πd

3
p

d
dt

(
(v − U)− 1

40d
2
p∇2U

)
︸ ︷︷ ︸

added mass force

+ L︸︷︷︸
lift force

(3.6)

In this equation ρp and ρf are the densities of the particle and of the fluid respectively.
The variable g determines the gravitational acceleration.
Rotating particles or particles that move within a rotational flow field such as a shear
layer are subject to the so-called “lift force” L.

When it comes to small tracer particles, the right-hand term of the equation of motion
is dominated by the Stokes drag, which is described by the “quasi-steady viscous
term”. To compute the slip-velocity ∆U that is given by the difference between the
fluid velocity U and the velocity of the tracer particles v, the time derivatives can be
approximated as follows:

DU
Dt ≈

dv
dt . (3.7)

Therefore the slip-velocity is given by

⇒ ∆U = U − v ≈
d2
p (ρp − ρf )

18ν
dv
dt . (3.8)

The acceleration of the particle is given by the temporal derivative of its velocity v.
As described for example by Grant (1997), these equations can be used to estimate the
ability of tracer particles to follow spatial or temporal gradients within the fluid-flow.
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3 Measurement Technique

For a characterization of this particle property, the differential equation in (3.8) can
be solved to

v = U

(
1− exp

(−t
τ

))
. (3.9)

The characteristic response time τ that describes how fast the particles assume the
local flow velocity U is therefore given by

τ =
(ρp − ρf ) d2

p

18ν (3.10)

In all experiments that were conducted during this study, neutrally buoyant particles
were used that fulfill the following requirement

ρp − ρf
ρf

≈ 0. (3.11)

The error that is introduced by particles that do not exactly follow the fluid movement
can therefore be eliminated by choosing adequate tracer particles. This becomes a
problem when measuring in a gaseous environment, were the density ratio of avail-
able particles is typically of the order ρp

ρf
= O(102) (Tropea et al., 2007). Since we

aim to develop a measurement method for the water-sided boundary layer, this is
easily achievable since neutrally buoyant tracer particles for Particle Image Velocime-
try (PIV) measurements in fluids are commercially available in various sizes between
1µm and 100µm and for different fluid densities with low density variations.

Scattering Properties The size of the tracer-particles is restricted according to two
requirements. On the one hand, the tracer particles have to be sufficiently large to
scatter enough light. Small particles below a certain size do not reflect enough light to
measure their signal on the imaging device. On the other hand, the particles should
be much smaller than the smallest expected flow structure. Particles with sizes that
are in the order of magnitude of the characteristic size of the flow field only provide
averaged flow information.

For a better understanding of the reflectance properties of tracer particles, an under-
standing of the underlying scattering mechanism is inevitable.
A common strategy to identify the dominant scattering mechanism of the interaction
between electro-magnetic waves of a certain wavelength λ and particles of a certain
diameter d is the classification by means of the dimensionless Mie parameter (Raffel
et al., 1998)

αmie = πd

λ
(3.12)
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3.1 Particle Streak Velocimetry (PSV)

By using this parameter that describes the ratio between the circumference of a tracer
particle and the wavelength of the electro-magnetic radiation, a dominant scattering
mechanism is determined by the following differentiation.

αmie � 1: If the tracer particle is much smaller than the wavelength of the illumi-
nation, the dominant scattering mechanism can be described by the Rayleigh
scattering theory. Here the polarization of light that is scattered in an angle of
90◦ is perpendicular to the incident light. The forward and backward scattered
light contains both directions.

αmie ≈ 1: If both the size of the tracer particle and the wavelength of the illumination,
are within the same order of magnitude, the scattering is described best by the
Mie theory. A detailed description of the Mie theory and its consequences is
given in (Raffel et al., 1998) and (Tropea et al., 2007).

αmie � 1: For particles that are much larger than the wavelength of the illumination,
the scattering is described best by means of the geometric scattering theory.
In this theoretical description light waves are abstracted as light rays. These
rays can be transformed in the following by Snell’s law and Fresnel’s formulas to
describe reflection and refraction processes.

The tracer particles that were used within the scope of this study clearly belong to the
third category. Therefore, the scattering behavior can be described by the geometric
scattering theory. As a consequence, cross-section of a tracer-particle is of the same
order of magnitude as its cross-sectional area (Jeys et al., 2007).

3.1.1 Particle Streak Model

The main idea of Particle Streak Tracking (PST) or Particle Streak Velocimetry (PSV)
techniques is that tracer particles are imaged over a certain, long exposure time texp,
instead of imaging the tracer in single shot recordings with a very short integration
time. The intensity distribution on the charge-coupled device (CCD)-array at a certain
point in time I (~x) can be described by the well known Airy-Function, which in polar
coordinates (ρ, ϕ) is given by

I (ρ, ϕ) =
(2J1 (kaρ)

kaρ

)2
I0. (3.13)

Here J1 is the first order Bessel Function, k = 2π
λ is the wavenumber and a controls

the radius. As shown in Figure 3.1 on page 40 this function can be approximated by a
Gaussian bell-curve as follows (Leue et al., 1996). The logarithm of the Airy-Function
can be decomposed in a second order Taylor expansion
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3 Measurement Technique

Figure 3.1: Intensity distribution of the Airy
function and its approximation by a Gaussian
bell-curve (Raffel et al., 1998).

ln (I (ρ, ϕ)) = ln (I0)−
(
kaρ

2

)2
+O

(
ρ4
)
. (3.14)

By replacing σ =
√

2
ka , the first and second order terms can be rewritten to a Gaussian

bell-curve in polar coordinates.

I (ρ, ϕ) ≈ I0 exp
(
−1

2

(
ρ

σ

)2
)

(3.15)

The gray-value distribution g(~x) on the CCD-Chip, caused by the intensity distribution
of a particle that travels along a trajectory ~X(t), t ∈ (0, texp) during the exposure time
texp, can therefore be modeled by a simple time integral

g (~x) = 1
texp − t0

∫ texp

t0
Gσ

(
~x− ~X (t)

)
dt. (3.16)

In this model, G (·) is a two-dimensional Gaussian distribution. For a set of N tracer
particles with trajectories ~Xl(t), t ∈ (0, texp) with l = 0, . . . , N − 1, the gray-value
distribution in a PSV-image is given by the sum over all trajectories.

gN (~x) = 1
texp − t0

N−1∑
l=0

∫ texp

t0
Gσ

(
~x− ~Xl (t)

)
dt (3.17)

The resulting images contain information of the particle trajectories because the paths
of all particles are mapped as streak-structures on the image plane.

For the extraction of these particle streaks an extraction routine was developed that is
based on this model. As described in detail in Section 5.2, it computes the sub-pixel
precise position of the center-line, the width and the intensity course of the recorded
streak-patterns.
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3.1 Particle Streak Velocimetry (PSV)

Figure 3.2: PSV image recorded using an in-
tensity modulated light source. The exposure
time in this measurement was set to texp = 1 s,
and the frequency of the intensity modulation
function was set to F = 6 Hz. In this measure-
ment silver coated hollow ceramic spheres with
100µm diameter were used.

3.1.2 Periodical Intensity Modulation

The main idea of this novel approach is to use a periodic illumination to code the
course of the particle velocity in the long-exposure image. It can then be recovered by
means of a frequency analysis that is applied on the spatial gray-value signal, along
the center-line of the streak-structures. The strategy is similar to the one used for the
speed measurements based on the Doppler effect. The velocity estimation strategy is
based on the observation that a slow particle illuminated with an intensity modulated
light source results in a short streak with a higher spatial frequency, compared to the
streak of a faster particle that results in a long streak with a lower spatial frequency.

In this work an intensity modulated illumination was used to overcome the loss of
temporal information due to the integration in (3.16). As already published in (Voss
and Garbe, 2010; Voss et al., 2010), the reflected signal of a periodical modulated light
source on the streak structures can be used to compute the horizontal velocity of the
particles from the ratio of the constant illumination frequency F [Hz] and the spatial
frequency along the recorded streak f(c)[1/px].

vh(c) = α
F

f(c) (3.18)

In this equation α[mm/px] is the pixel size. It is used to convert the velocity unit from
[px/s] to [mm/s].
This scaling parameter has to be determined previous to each measurement in a cali-
bration measurement as described in the previous section.

In terms of the derived PSV-model, the introduction of an intensity modulation in the
illumination of the experiment can be expressed by a sine function, multiplied to the
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integral in (3.17).

gN (~x) = 1
texp − t0

N−1∑
l=0

∫ texp

t0
(1.5− sin (2πFt))Gσ

(
~x− ~Xl (t)

)
dt (3.19)

The modulation frequency F of the illumination and the exposure times texp used in
the experiment have to be chosen according to the expected velocities in the observed
flow field. As a result of calibration measurements with various frequencies, exposure
times and velocities, two rules for the parametrization of frequency and exposure time
can be formulated.

1. The number of periods Ftexp should be larger than 5 to assure a correct extraction
of the instantaneous frequency. Thus follows

⇒ F ≥ 5
texp

. (3.20)

2. In order to image nice streak structures, the exposure time should be long enough,
so that streaks caused by slow particles are long enough to enable a proper feature
extraction. It was found empirically that the product of the horizontal particle
velocity vpx [px/s] and exposure time texp [s] should be at least 50[px], leading to

⇒ texp ≤
50
vpx

. (3.21)

Figure 3.2 on page 41 shows a real measurement obtained in one of the turbulent
Rayleigh-Bénard (RB)-convection experiments that were conducted during this study.
The exposure time in this case was texp = 1 s, and the intensity modulation frequency
was set to a value of F = 6 Hz. A detailed description of the experimental setup that
was used to record these image is given in Chapter 4.

3.1.3 Velocity Estimation

For the velocity estimation, a frequency analysis method with a high resolution in the
frequency domain and in the spatial domain is needed.

The simplest way to extract the frequency of a one-dimensional signal is to apply a
Discrete Fourier Transform (DFT). By inspecting the signal in the Fourier domain,
one can easily determine its dominant frequency. This dominant frequency is a feature
that characterizes the whole signal. Therefore, it could be used to compute an average
particle velocity. For a detailed extraction of the particle velocity at each position along
the streak, it is desirable to extract the frequency with a high precision in both fre-
quency domain and time domain. Due to Heisenberg’s Uncertainty principle, a precise
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3.1 Particle Streak Velocimetry (PSV)

measurement of frequency and position has a natural limit. The result of the Fourier
Transform has a maximal precision in the frequency domain, but unfortunately no pre-
cision at all in the spatial domain. This means, a local change of the signal at a single
position in space will change the corresponding signal in the Fourier Domain globally.
In the field of signal processing, many promising attempts to extract signal frequen-
cies with the highest possible precision in frequency and temporal domain were made.
The most promising approaches are the Windowed Fourier Transform (sometimes also
called short time Fourier Transform (STFT) (Gabor, 1946) that uses a normalized,
real valued and symmetric window function to restrict the frequency information from
the Fourier Transformation to a local area, the Hilbert Huang Transform (HHT) which
can be used to extract an instantaneous frequency and a instantaneous amplitude of the
input signal (Huang et al., 1999, 1998; Smith, 2007) and the Wigner-Ville Transform
that can be seen as a method for measuring the local time-frequency energy (Martin
and Flandrin, 1985). In order to obtain an instantaneous frequency information that
enables the extraction of the particle velocity at every point on the streak, we per-
form a HHT on the gray-value signals that were extracted along the center-lines of the
streaks. The HHT is a combination of an Empirical-Mode-Decomposition (EMD) and
a signal processing transformation called Hilbert Transform (HT). Additionally, we
make use of the extracted instantaneous amplitude signal since it contains information
on the particle depth.

The velocity estimation routine can be divided into three main tasks that also deter-
mine the structure of the extraction algorithm.

• The adjustment of the periodical gray-value signal. In this signal processing
step a non-periodical offset is subtracted that was previously computed using an
Empirical-Mode-Decomposition (EMD).

• The computation of instantaneous signal properties, i.e. the instantaneous fre-
quency f(c) and the instantaneous amplitude a(c) for each point c on the center-
line by means of a HT.

• The velocity estimation using (3.18), the instantaneous frequency f(c), the illu-
mination frequency F and the pixel size α.

The following two subsections describe methods that were developed in the field of
time series analysis. Therefore all given references will describe the EMD and the HT
for time-dependent signals. For the purpose of this study, the frequency analysis has
to be performed on spatial signals. Therefore all definitions were changed to describe
spatial signals that are dependent on the position on the center-line c. As a result, all
computed frequencies are given in units of [1/px] instead of [1/s].
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3 Measurement Technique

Figure 3.3: Frequency analysis of a gray-value signal from a single streak in a bPSV measure-
ment. Left: Result of the Empirical-Mode-Decomposition (EMD). The measured gray-value
signal (blue) is decomposed in a periodic signal (not shown) and a non-periodical offset (dashed
red line). The sum and the difference of the instantaneous amplitude and the offset form an
envelope of the signal (yellow and green). Right: Instantaneous frequency of the signal shown
in the upper plot computed by means of the Hilbert Huang Transform (HHT).

Empirical-Mode-Decomposition (EMD)

In order to separate the periodic content of the gray-value signal from the non-
periodical offset and from high frequent noise, an EMD was used. This method was
first introduced by Huang et al. (1996) and is based on the assumption that every
signal consists of different intrinsic modes of oscillations which comprises the same
number of extrema and zero-crossings. Furthermore, it assumes that each oscillatory
mode is symmetric with respect to a local mean.

This local mean is given by the mean of two envelope functions defined by a spline fit
through the local maxima and a spline fit through the local minima of the oscillatory
mode.

In a later publication, Huang et al. (1999) describe two conditions that have to be
fulfilled by a valid intrinsic mode function (IMF) to obtain meaningful results in the
frequency analysis.

1. The difference between the number of extrema and the number of zero-crossings
that are contained in a valid IMF must be less or equal one.

2. At any point on a valid IMF the local mean value defined by the mean of the
two envelope functions is zero.

The first condition can be seen as a restriction of the IMFs that avoids higher frequent
riding waves. The second restriction is necessary to avoid unwanted fluctuations that
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3.1 Particle Streak Velocimetry (PSV)

may be introduced by asymmetric wave-forms. These fluctuations would yield large
errors in the instantaneous frequency that is computed from the dominant IMF of the
signal.

Empirical-Mode-Decomposition (EMD) The strategy of the EMD is to extract a set
of IMFs that are contained in a signal by applying a sequence of iterative repeated
siftings. A detailed description of the algorithm is given in Chapter 5 of this thesis.
Its pseudo-code can be found on page 96.

The result is a decomposition of the original signal X(c)

X(c) =
n∑
j=1

cj + rn (3.22)

that consists of a set of n IMFs ci, (i ∈ N|0 < i ≤ n− 1) and a non-periodical rest
rn.

The gray value signals that were extracted along the center-lines of the particle streak-
structures typically consist of three modes:

1. The first one is a high frequent IMF that contains noise that was induced by pixel-
wise differences of the CCD-sensor and by numerical artifacts in the Levenberg-
Marquardt (LM) fit used in the center-line extraction algorithm (cf. Chapter
5).

2. The second IMF holds the dominant mode that is determined by the particle
speed and the frequency of the intensity modulation function.

3. The last mode comprises the non-periodical offset rn.

In the following frequency analysis by means of a HT, only the IMF that contains the
dominant mode is considered. From now on this one-dimensional, spatial signal will
be labeled as X(c).

Frequency Analysis using the Hilbert Transform (HT)

The frequency analysis of the periodical gray-value intensity course X(c), obtained
from each streak-structure, is based on the computation of the corresponding analytical
signal Z(c). In this context the variable c describes the position on the center-line and
is given in units of [px]. The spatial analytical signal is a complex conjugated pair
that consists of the signal X(c) itself and the corresponding complex signal Y (c). In
its polar representation

Z(c) = X(c) + Y (c) = a(c)eiφ(x), (3.23)
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the spatial analytical signal is determined by an amplitude function a(c), i.e. the
instantaneous amplitude of the signal, and its phasing φ(c). By definition an analytic
signal has no negative-frequency components and thus is causal in the frequency-
domain (Smith, 2007). As explained by Huang et al. (1999), there are an infinite
number of definitions for the complex part of a real-valued signal, but there is only
one unique way that makes (3.23) an analytic signal. In its integral form the HT of an
arbitrary spatial signal X(c) is defined by the convolution integral

Y (c) = Ht (X (x)) = 1
π
P

∫
X (c′)
c− c′

dc′. (3.24)

Where P is the Cauchy principal value (named after Baron Augustin Louis Cauchy,
August 21, 1789 – May 23, 1857). In this equation P is introduced to avoid the
singularity at c′ = c. As described in detail by Tricomi (1951), the definition of the
HT given in (3.24) is valid for all functions in the Lebesgue spaces (Lp).

The instantaneous amplitude a(c) and the instantaneous phasing φ(c) of the polar
representation of the spatial analytical signal can be computed from the complex con-
jugated pair X(c) and Y (c) using the following relations.

a (c) =
√
X2 (c) + Y 2 (c)

φ (c) = arctan Y (c)
X(c)

(3.25)

Knowing the instantaneous phasing of a spatial signal X(c) and its course, the instan-
taneous frequency of this signal can be derived from the first spatial derivative of its
phasing.

f(c) = dφ (c)
dc (3.26)

The right image in Figure 3.3 on page 44 shows the result of the frequency analysis used
in this work on the basis of a gray-value course extracted from a single streak. It was
measured in a turbulent RB-convection using the setup presented in Chapter 4 of this
thesis. The result of the EMD is illustrated on the right hand side of this figure. The
blue crosses represent the gray-value information extracted by means of the center-line
extraction algorithm (cf. Chapter 5). The red dashed line shows the non-periodical
offset o(c) computed in the EMD. The green and the yellow line illustrate that the sum
and the difference of the offset and the instantaneous amplitude a(c) build an envelope
for the original signal. The instantaneous frequency f(c) is plotted as a function of its
position on the center-line.
The large deviations at the beginning and the end of the frequency signal are boundary
effects that arise due to the convolution in (3.24). The high frequent modulations along
the frequency signal are caused by numerical effects in the frequency computation.
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Given the spatial instantaneous frequency along the center line of a particle streak and
the constant illumination modulation frequency, the particle velocity can be computed
using (3.18).

3.2 Bichromatic Depth Extraction

The development of a PSV technique that enables a bichromatic depth extraction and
its implementation is one of the main achievements made in this dissertation. The
depth extraction by means of the absorption of two different wavelengths due to an
absorbing dye presents a simple, low price solution for particle based three-dimensional
measurements of volumetric flow information.
As outlined in Section 2.2, this technique is especially useful for volumetric measure-
ments of flow features in the boundary layer of an interface since all data are mea-
sured in a reference frame relative to the interface. This makes an additional interface
tracking and a matching of the interface position and the measured flow information
dispensable.

3.2.1 Basic Principle

The development of a two-wavelength method for absorption-based depth estimation
was motivated by a method used in bio-fluid-mechanics (Debaene et al., 2005). In
this study the exponential absorption-characteristic of an absorbing dye was used to
extract the depth of tracer particles in a fluid. However, the intensity of the light that
is reflected from the particles does not only depend on their depth as determined in
Lambert-Beer’s law (c.f (3.27)). It also depends on their reflectance properties. The
latter are mainly dominated by the size of the particles and their coating. In (Debaene
et al., 2005) great care was taken to use only particles of identical size. However, this
is impractical for a number of applications and also error-prone. In illuminating the
particles with two wavelengths, the distance of the particles from the interface can be
computed directly from the intensity ratio of the reflected light independently of the
reflectance properties.

The bichromatic depth estimation as introduced by Jehle and Jähne (2008) utilizes
an absorbing dye and two light sources with different wavelengths λi, i = {1, 2}. In
combination with a standard PIV approach it was successfully applied to the free air-
water surface of a laminar falling film and a buoyancy-driven convective turbulence
(Jehle and Jähne, 2008). The applicability of this measurement technique to real-
world flow fields was proved by a comparison of the results obtained in the falling-
film experiment with the theoretical prediction. In medical research the bichromatic
approach was combined with an optical-flow based method to obtain interfacial flow
fields in a displacement pediatric blood pump (Berthe et al., 2009). This study provides
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Figure 3.4: Schematic sketch of
the volumetric two-wavelength il-
lumination. Due to the different
extinction coefficients εi of the dye
for the wavelengths λi i = 1, 2 we
introduced a second independent
variable for a more robust compu-
tation of the particle depth.

a detailed analysis of the measurement errors of the absorption-based depth estimation
on the basis of a single particle experiment and some simulated data sets.

The main idea of the bichromatic depth estimation is to choose a dye with a wavelength-
dependent extinction coefficient εi that differs significantly for the wavelengths of the
used light sources. For each wavelength λi, the intensity decay in the dyed liquid due
to absorption can be described by Lambert-Beer’s Law as function of the distance from
the interface. Since this study concentrated on the horizontal air-water interface, this
distance will be denoted hereafter by the depth z,

I(z, λi) = I0(λi) exp
(
− z
εi

)
. (3.27)

Here I(z, λi) is the intensity of the particle and I0(λi) is the intensity directly at the
interface (i.e, at z = 0). In an ideal world with spherical, equi-sized tracer particles with
equal reflectance properties, a perfectly homogeneous illumination and with a perfect
camera, one wavelength would be enough to compute the depth of a certain particle
from the logarithm of the reflected light. However since in a real world measurement
all these deviations from a “perfect measurement” corrupt the depth estimation, we
introduce a second light source with a different wavelength. Due to the different
extinction coefficient of the second wavelength, its light is absorbed differently. This
additional independent variable in the depth estimation enables more robust depth
estimates.

By computing the intensity ratio of both wavelengths I1 = (z, λ1) and I2 = (z, λ2),
the bias introduced by small variances in the particle size and the reflectivity cancels
out and does not influence the quality of the depth estimation. Therefore, the depth
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z results from:

z = z∗1z∗2
z∗1 − z∗2︸ ︷︷ ︸

γ

ln
(
I1
I2

)
+ ln

(
I02
I01

)
︸ ︷︷ ︸

κ

 ,

z = γκ︸︷︷︸
offset

+ γ︸︷︷︸
slope

ln
(
I2
I1

)
.

(3.28)

This equation shows that the particle depth depends linearly on the logarithm of the
intensity-ratio I1/I2.
This linear dependency can be described by an offset γκ and a slope γ. The offset is
given by the incident intensities and the penetration depths of the dye for the given
wavelengths. The slope γ only depends on these penetration depths z∗1 and z∗2. Both
variables γ and κ can be seen as constant during a measurement. Since they depend
crucially on experimental parameters like dye concentration and absolute intensity of
the LED-arrays, these parameter need to be measured previous to each measurement
in a calibration experiment described in Chapter 4.

3.2.2 bichromatic Particle Streak Velocimetry (bPSV)

Since it is not possible to measure the intensity of both reflected light sources simulta-
neously, we have to illuminate the particles in an alternating way. To make sure that
the information of both light sources was written along the particle streak structures,
we tested two different intensity modulation patterns shown in Figure 3.5 on page
50.

The illumination pattern shown on the left hand side ensures that there are two posi-
tions in each period, when only one light source shines with its maximum intensity.
To distinguish both wavelengths, the maximum intensity of the violet LED-array (λ =
405 nm) was always chosen to be less bright than the blue LED-array (λ = 465 nm)
for all measurements that were recorded with this illumination pattern. Taking into
account the higher extinction coefficient of the dye for violet light, it follows that
the darker areas in the gray-value signal along the center-line of the particle streak
correspond to the violet light source.

The second illumination pattern is shown on the right hand side of Figure 3.5. Here
the intensity of one LED-array is modulated by a sinusoidal function while the other
light source is shining with a constant intensity. This ensures that the minima in
the gray-value signal on the center-line correspond to the intensity of the second light
source, whereas the maxima are a superposition of both light sources shining with full
intensity.
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Figure 3.5: Two different trigger modi. left: Illumination Pattern 1 When the trigger signal
from the trigger board arrives, both LED-arrays are modulated with a phase shifted sinusoidal
function. The 180◦ phase shift is used to ensure that there are two points where only one light
source is turned on. The CCD-array of the camera integrating the incident light during the
whole exposure time. right: Illumination Pattern 2 The trigger signal causes one LED-array
to start a sinusoidal modulated illumination while the other light source is set to a constant
intensity.

For the computation of a reliable and continuous depth signal on the basis of (3.28),
it is important to know the intensities of both light sources for every point on the
center-line. These continuous intensity signals I1(c) and I2(c) are computed from the
non-periodical offset o(c) and the instantaneous amplitude a(c) obtained in the HHT.
The exact formula for the continuous depth signal z(c) depends on the illumination
pattern and can be derived as follows:

Illumination Pattern 1: In the first illumination pattern (cf. Figure 3.5, left), one
light source intensity is given by the gray-value of the minima of the signal and
one by its maxima. Therefore, the continuous depth signal can be computed
from the sum and the difference of o(c) and a(c) using (3.28),

z(c) = γκ+ γ ln
(
o(c) + a(c)
o(c)− a(c)

)
. (3.29)

The courses of I2(c) = o(c) + a(c) and I1 = o(c)− a(c) are plotted in Figure 3.3
on page 44.

Illumination Pattern 2: For the second illumination pattern (cf. Figure 3.5, right)
the first intensity I1 that corresponds to the sinusoidal modulated light source
is given by twice the amplitude of the gray-value signal, whereas the second
intensity I2 corresponds to the difference of offset and amplitude,

z(c) = γκ+ ln
(
o(c)− a(c)

2a(c)

)
. (3.30)

The resulting depth feature vector describes the course particle depth for each position
on the streaks center-line. This particle streak feature is computed for all extracted
streaks. It will be used as described in Section 3.4 to compute a spline representation
of the three-dimensional trajectory of particles that were tracked over several bPSV
images.
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3.3 Plenoptic Depth Extraction

This section comprises the description of the second depth extraction technique used
in combination with the developed PSV extraction algorithm. It uses a focused plenop-
tic camera that records four-dimensional light fields in long time exposure measure-
ments.

3.3.1 plenoptic Particle Streak Velocimetry (pPSV)

The main idea that motivated the measurement series with a focused plenoptic camera
was as follows:
A novel, single camera measurement technique for the measurement of volumetric flow
information in an Eulerian frame of reference can be easily implemented by applying
the developed PSV flow feature extraction on data measured by means of a plenoptic
light field camera.

In contrast to the previously described approach that combines a bichromatic depth
estimation with the developed PSV, this hybrid approach could be used to measure
volumetric particle trajectories with a larger depth range, but in an Eulerian frame
of reference. Therefore, this method is not suitable for the measurement of interfacial
phenomena, but due to its intuitive simplicity it can be seen as a proper alternative
to other state of the art Particle Tracking Velocimetry (PTV) approaches.

In this second series of experiments a focused plenoptic camera as described by Lums-
daine and Georgiev (2009) was used to sample four-dimensional light fields. For a
summary of the basic principles that are used to acquire these light fields by means of
plenoptic imaging, we refer to the introduction given in Section 2.3

Similar to the bichromatic approach, the exposure of the focused plenoptic camera was
set to relatively long exposure times. From the resulting images, light fields were ex-
tracted using the rendering algorithms provided by the software-packages RaytrixViewer
and RaytrixLive (Perwass, 2011). These algorithms are based on the principles of
plenoptic imaging described in Section 2.3. In the context of this study we extracted
two feature images from the recorded light fields:

“all-in-focus” images: These rendered images are computed by an adaptive algorithm,
that locally corrects the plane of focus to obtain an image where all imaged
objects (even those in different depth) are focused (“in-focus”).

“depth-maps”: Based on the angular information that is contained in the light field
recordings, it is possible to compute a depth-map of the scene. In the plenop-
tic Particle Streak Velocimetry (pPSV)-approach, this information replaces the
depth information obtained by means of the two-wavelength method.
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For the illumination, a single blue LED-array (λ1 = 465 nm) was intensity-modulated
using a sinusoidal function. The second (violet) light source (λ2 = 405 nm) was not
used in these series of experiments since the pPSV-method does not rely on a bichro-
matic depth extraction.

For the evaluation of these measurements some minor adaptations of the existing
particle streak extraction routine were necessary.

• For the streak extraction of particle streaks from the plenoptic light fields, the
“all-in-focus” images were used as input for the streak-extraction routine. Since
the rendering routine only produces 8bit images, the streak-extraction algorithms
had to be adapted to enable both 8bit and 16bit precision in the gray-values.

• Since the bichromatic depth estimation was replaced by the stereo based ap-
proach used in the RaytrixViewer (Perwass, 2011), the intensity analysis de-
scribed in Section 3.2 was replaced by a lookup function that connects the particle
streak position with the depth-map.

The main distinction to the bichromatic depth estimation approach is that the mea-
sured flow information is in an absolute frame of reference and thus not measured
relative to an interface. Furthermore, the obtained data comprise a much larger depth
range. Therefore, the combination of a plenoptic camera with the presented parti-
cle streak technique using a frequency-based velocity estimation is insufficient for the
measurement of interfacial processes in a relative frame of reference. Nevertheless,
it presents a handy measurement technique for the volumetric measurement of flow
characteristics in an environment, where other techniques that rely on a complex cal-
ibration of multiple view angle are difficult or impossible to apply.

To validate the applicability of this new camera technique in combination with the
developed PSV approach, a set of test measurements were carried out in a turbulent
Rayleigh-Bénard convection.

A summary of the results obtained in these series of measurements is given in Chapter
6 of this thesis.

For the bPSV measurements that were conducted in the context of this thesis a com-
mercially available focused plenoptic camera (Model: RX11 by Raytrix GmbH (Per-
wass, 2011)) was used.
The image acquisition as well as the setting of frame-rate and exposure-time was con-
trolled using the acquisition software “RaytrixLive”. A free version of this software is
available on the web-page of the manufacturer (http://www.raydtrix.de) for demon-
stration purposes.
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3.3 Plenoptic Depth Extraction

Figure 3.6: a) Focus corrected image of a mm-grid used as calibration target. The grid was
placed in the principal focal plane at depth0 (50 mm behind the interface air-water interface).
b) Color-coded depth-map of the calibration target at depth0. Blue encodes information from
deeper layers, and yellow indicates depths in the surface. In the upper part of this depth-map
the water surface can be seen in yellow and orange. The depth information was computed from
the light field images by a stereo algorithm provided by the camera manufacturer. c) Color-
coded depth-map of the calibration target at depth1 (directly at the position of the air-water
interface).

Depth Calibration

For the depth calibration of the plenoptic camera, a calibration target with a mm-grid
was placed in the principal focal plane of the camera. By focusing the camera objective
on this plane, this is automatically the largest distance that can be measured. The
light field of the target at this reference-depth is referred to as depth0. In the next
step, the target is moved a known distance along the optical axes towards the camera,
and a second calibration image (depth1 ) is recorded (c.f. Figure 3.6). These light
field measurements of depth0 and depth1 are then used to scale the measured depth-
maps computed by the stereo-algorithm of the manufacturer. In later versions of the
calibration routine seven depths were used, and the scaling parameter was estimated
in a least squares line-fit.

The focus-corrected images of the mm-grid were also used to correct the perspective
projection distortion and to determine the pixel size. An image of the target with
the mm-grid as well as a depth-map for depth0 and depth1 are shown in Figure 3.6
on page 53. The precision of the depth information extracted from the light field
images is highly dependent on the performance of the depth estimation algorithm on
the given data. For all feasibility measurements presented in this thesis a stereo based
depth estimation algorithm was used that is part of the image acquisition software
“RaytrixLive” (Perwass, 2011). Additionally, a calibration target with a random noise
pattern was mounted on three inclined planes with known angles (α = [25◦±0.5◦, 38◦±
0.5◦, 51◦ ± 0.5◦]). The obtained depth-maps are shown in Figure 3.7 a). For the
evaluation the depth signal was averaged over a width of 100 px perpendicular to the
slope. Areas without depth information were ignored during the averaging. In the next
step the change of the pixel size for different depths was estimated from the calibration
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measurement slope [◦] reconstructed slope [◦]

slope1 (25Deg) 25± 0.5 25.29
slope2 (38Deg) 38± 0.5 37.46
slope3 (51Deg) 51± 0.5 52.21

Table 3.1: For an evaluation of the precision of the depth measurement, a random noise
target was mounted on inclined planes with three different angles. The reconstructed slopes
are summarized in this table.
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Figure 3.7: left: Color-coded depth-maps of three inclined plane calibration targets with a
random noise pattern. The targets are inclined at the angles α = [25◦ ± 0.5◦, 38◦ ± 0.5◦, 51◦ ±
0.5◦] right The depth signal along the slope was corrected for a perspective distortion that
causes a change of the pixel size in depth and calibrated using six depth measurements at
known depths. The three red lines are the result of a linear fit and correspond to the angles
α̃ = [25.29◦, 37.46◦, 52.21◦]

measurements and the depth signals of the three slopes were corrected for this change.
In the end the slopes were reconstructed from the depth signals using a simple linear
fit. The reconstruction error of the three slopes is smaller than 2 % of the measured
depth (Shown in figure Figure 3.7 on page 54 and table Table 3.1 on page 54).

For all focused plenoptic cameras the depth range has the same size as the extended
depth in the rendered “all-in-focus” images (cf. Section 2.3 on page 23). This focal
depth depends on the geometrical arrangement of the camera objective, the micro-
lens array and the detector of the camera. In the calibration measurements that
were conducted during this thesis, we observed the following correlation between the
horizontal dimensions and the depth that can be resolved by the plenoptic camera:
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The depth range of the focal plenoptic camera is always of the same
order of magnitude as the horizontal dimensions of the imaged vol-
ume.

This correlation between the dimensions of the measurement volume of the plenoptic
camera can only be changed by a general rearrangement of the optical components
within the focused plenoptic camera.

3.4 Lagrangian Trajectories

Since the image series recorded by the bichromatic PSV setup and the plenoptic PSV
setup only have small delays between subsequent exposures compared to the exposure
time, the information obtained from single images of the PSV series can be combined.
This is achieved in a matching procedure that combines extracted particle streaks from
multiple subsequent images. Due to this matching it is possible to track single tracer
particles over long periods in time.

Additionally, the inherent problem of directional ambiguity can be solved in the above
mentioned matching procedure. Up to now, it has only been possible to compute
the particle velocity course but not its sign, i.e. it has not been possible to indicate
whether a particle was moving in forward or backward direction. By incorporating
the information of the precursor image and the successor image, a streak matching
algorithm was developed that solves this directional ambiguity and tracks the tracer
particles through the recorded PSV-image stacks. One of the cornerstones of this
matching algorithm is the adaptive Mahalanobis distance that combines the Euclidean
distance information between the streak endings with other streak features to avoid
wrong matchings of particle streaks that correspond to different particles in the fluid.

The result of this matching are long streak trajectories. These trajectories describe
the horizontal paths of the imaged tracer particles by a combination of the center-lines
and a spline interpolation for the spaces between the streaks.

The particle depth and the velocity of the single streaks can also be merged using a
smoothing spline approach to obtain full 3D3C Lagrangian trajectories for the com-
plete measurement volume. On the basis of these trajectories, statistical measures like
acceleration statistics or particle pair dispersions can be computed to gain insight into
characteristics of the recorded flow field.

3.4.1 Particle Streak Matching

The goal of the particle streak matching is to find all sets of streaks structures in a
PSV-image sequence that correspond to the same tracer particles. This is achieved

55



3 Measurement Technique

Figure 3.8: The adaptive Mahalanobis dis-
tance metric (3.32) is defined by an angle θ, a
width scalingW and a length scaling L. Since it
forms ellipsoidal equidistant lines, the threshold
for a feasible assignment dt also forms an ellipse
(red line). In the matching routine a pair is as-
sumed to be a feasible matching if their distance
is smaller than dt.

by a sequential algorithm that starts with the set of all streaks in the first image.
All streak endings are used as seed points for trajectories. In the next step these
seed points are combined with streak endings from the next image if their adaptive
Mahalanobis distance is below a certain threshold. In the following iterations, all
trajectories that have no member in the current image are disabled and all streaks in
the current image that are not part of a trajectory are used to seed trajectories for the
following iterations.

A more detailed description of this particle streak matching routine is given in Chapter
6 of this thesis.

3.4.2 Adaptive Mahalanobis Distance Metric

A central reason for the good performance of the matching algorithm is the used
adaptive Mahalanobis distance metric. It allows a distance definition that is not only
dependent on the Euclidean distance between two streak endings, but also incorporates
the features of the involved particle streaks.

For a comparison of the proposed adaptive distance metric and the common Euclidean
distance, we define the latter metric by the Euclidean norm of the distance vector
as follows. The Euclidean distance de (·, ·) for two streak endings at the positions
~e1 = (x1, y1) and ~e2 = (x2, y2) is defined as

de ((~e1, ~e2) =
√

(~e1 − ~e2) · (~e1 − ~e2)′. (3.31)

56



3.4 Lagrangian Trajectories

To implement a robust matching of particle trajectories in consecutive images, the
matching routine uses the width σ and the orientation at the streak end (extracted
from the local orientation φ) to define a proper distance measure and a threshold for
a feasible trajectory matching. In a first step of the matching algorithm, both streak
ends E1 = {~e1, σ1, φ1} and E2 = {~e2, σ2, φ2} at the end-point positions ~e1 and ~e2 are
inspected. Based on the given features, an adaptive Mahalanobis distance metric d (·, ·)
between two arbitrary streak endings k and l is defined by

d (Ek, El) =
√

(~ek − ~el)t(DtMD)−1(~ek − ~el)

with D =
(

cos (φl) sin (φl)
− sin (φl) cos (φl)

)
and M =

(
L 0
0 W

)
.

(3.32)

For a visualization of this adaptive distance metric, Figure 3.8 on page 56 shows a
single equidistant line (red line). One can clearly see that the orientation of the main
axis of the ellipsoid formed by the equidistant line is inclined by the local orientation
φl. The scaling of the distance metric in both directions (φl and φl + 90◦) is given
by two independent parameters that are based on streak features. The variable W
is the perpendicular scaling parameter which depends on the streak width σ and is
defined to be W = σk+σl

2 . In streak direction, the scaling parameter L was chosen to
be proportional to the streak length.

By defining this adaptive distance metric, one can set a distance threshold d (·, ·) ≤ dt
that allows much larger Euclidean distances in streak direction than perpendicular to
θk, for a feasible matching of two streak ends.

As shown in Figure 3.9 on page 58, the definition of an adaptive non-isotropic distance
metric causes the matching to favor streak assignments in streak direction. For a
detailed description of the matching algorithm we refer to its pseudo code on page 101
in Chapter 5.

3.4.3 Lagrangian Trajectory Construction

A recorded streak-image sequence can now be used to successively put together a
structure called trajectory. This structure consists of multiple particle streaks that
originate from a set of subsequent streak-images. In the iterative matching routine,
only streaks with an adaptive Mahalanobis distance smaller than dt were merged to a
trajectory.

The preliminary result of the previous chain of image processing and signal analysis
operations are a set of feature vectors, each containing information about a single tra-
jectory and the velocity of a single tracer-particle in the measurement. Each trajectory
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Figure 3.9: Comparison of the Euclidean and the adaptive Mahalanobis distance metric. In
both images blue corresponds to low distance values and red indicates larger distances. The
left image shows the color-coded Euclidean distance values around the ending of a streak (black
line). The distances are distributed isotropically around the end of the streak. The image on
the right hand side shows the non-isotropic distance distribution of the adaptive Mahalanobis
metric, defined in (3.32)

feature vector is a set of several particle streak feature vectors corresponding to single
images in the PSV-measurement.

Still there are several shortcomings in these feature vectors that need to be overcome.
Firstly, the sampling of the horizontal position is equidistant for every single streak
that is contained in a trajectory, but the gaps between the streaks introduce a non-
equidistant sampling of the horizontal position along the center-line of the complete
trajectory. This causes problems for two reasons:

1. The non-equidistant sampling of the feature vectors complicates the computation
of derivatives by means of convolution with an appropriate filter kernel.

2. For the computation of time-dependent Lagrangian trajectories and the con-
nected statistical measures, a functional description of the features is needed
which defines all features for every point on the trajectory.

The second shortcoming in the feature vectors regards the depth and velocity informa-
tion. Additionally to the previously mentioned sampling problem, these data are noisy
and corrupted by larger measurement errors at the streak endings. These errors also
shown in Figure 3.3 on page 44 are caused by boundary artifacts that occur during
the convolution of the periodical gray-value signal with the Hilbert-Kernel.

A solution to both previously described shortcomings was implemented using a cubic
spline function. This function allows a smooth interpolation of the horizontal infor-
mation that yields a functional description for all points along the center-line of a
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trajectory. On the other hand a smoothing spline can be used in a weighted regression
to correct for the noise and errors at the streak endings in the depth signal and the in
extracted velocity vectors.

Further details on the mathematical background and the routines used to compute the
spline interpolation and the smoothing splines are given in Chapter 5.

After the computation of a spline interpolation and smoothing of all features in a trajec-
tory’s feature vector, an iterative sampling routine is used to compute the Lagrangian
position ~x(t) and the Lagrangian velocity vh(t), from these functional descriptions of
the 3d position ~x(c) and velocity vh(c). This is achieved by adding a time dependency
to the position on the center line c ∈ CL. Starting with t0 = 0 at the first point of the
center-line c(t = 0) = 0, the Lagrangian variables are sampled in small, equidistant
time-steps tε along the center line position c in the following way.

c(t+ tε) = c(t) + vh (c (t)) · tε (3.33)
~x(t) = ~x (c (t)) (3.34)
vh(t) = vh (c (t)) (3.35)

Additionally to the three-dimensional Lagrangian particle position vector ~x(t), a three-
component velocity vector is computed by decomposing vh(t) into v1 and v2. The third
velocity component is given by the temporal derivative of the depth v3 = dz/dt.

3.4.4 Trajectory Self-Validation Scheme

After the construction of each Lagrangian trajectory, we use the velocity from (3.35)
for a self-validation. By integrating vh(t) over time, a trajectory length is computed.
This length can be compared with the sum over the lengths of all streaks corresponding
to the trajectory. A large difference between these two measures indicates an error in
the velocity extraction or an incomplete trajectory. For the following experiments, we
allow a maximal deviation of 10 %. All trajectories that are above this threshold are
rejected.

3.5 Lagrangian Particle-Pair Dissipation Statistics

As motivated in Section 2.1, Lagrangian two-particle dispersion statistics are a com-
monly used and intuitive statistical measure for the characterization of turbulent flow
fields.
This statistical measure was first proposed by Richardson (1926) in a systematical
study on isotropic turbulence. It is of fundamental importance for the understanding
and characterization of many industrial applications and environmental processes. The
Lagrangian pair dispersion rate characterizes for example the growth relative to the
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center of mass of clouds in the atmosphere, contaminations in the ocean or chemical
species in a turbulent reactor.

The computation of this characteristic measure on the basis of the Lagrangian tra-
jectories ~x(t) is rather simple. According to the mathematical derivation given in
Section 2.1 of this thesis, the Lagrangian two-particle dispersion can be computed
from a set of Lagrangian trajectories. It is computed on the basis of a distance vector
~R(t) that describes the time-dependent Euclidean distance dc(·) between the positions
~xi(t) i ∈ {1, 2} of two tracer particles that are moved by a turbulent flow field and an
initial distance R(0) = r0.

~R(t) = ~x2(t)− ~x1(t) (3.36)

The Lagrangian two-particle dispersion is defined as follows:

〈|~R(t)− ~R(0)|2〉L. (3.37)

In this equation 〈·〉L denotes the average over an ensemble of Lagrangian particle
tracks.

Since in the present approach all tracer particles are distributed randomly in the liquid,
it is impossible to seed a set of particle pairs with an initial distance at random positions
in the turbulent flow field.

In order to obtain a number of particle pairs that is large enough for valid Lagrangian
statistics, all particle trajectories that coexist in at least one measurement of the PSV
image series are extracted into a set of trajectory-pairs P. For all trajectory-pairs
Pi ∈ P, the distance vector ~Ri(t) is computed in the next step using (3.36). Out of
all members in P, those were extracted that fulfilled |~Ri(tp)| = |~xi2(tp)− ~xi1(tp)| ≤ r0
at some point in time tp. From this point in time until the trajectory-pair Pi does not
longer coexist, this particle pair contributes to the Lagrangian average 〈·〉L in (3.37).

A detailed description of the algorithms for the extraction of the Lagrangian parti-
cle pair dissipation behavior is given in Chapter 5 of this thesis. The results of the
characterization of a turbulent Rayleigh-Bénard convection that was studied using the
presented bPSV approach are given in Chapter 6.
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The complete measurement setup, including all hardware components used in the
experiments presented in this thesis, is described in detail in this chapter. Since two
Particle Streak Velocimetry (PSV)-techniques based on different depth extraction tech-
niques are presented in this work, this chapter introduces the focused plenoptic camera
that was used in the plenoptic Particle Streak Velocimetry (pPSV) measurements as
well as the gray-value camera that recorded the data in the bichromatic Particle Streak
Velocimetry (bPSV) experiments.
The first section (Section 4.1) in this chapter focuses on the two-wavelength illumi-
nation arrangement that was installed to modulate arbitrary intensity signals on two
light-emitting diode (LED) arrays. As described in Chapter 3, this intensity modu-
lation is essential for the extraction of an instantaneous velocity from the PSV data
sets. Besides, the two different wavelengths of the light sources are the basis for the
absorption-based depth estimation used in the bPSV-approach.
The absorbing dye Tartrazine (E112) used to encode the particle depth by means of
the two-wavelength illumination in the bPSV measurements is characterized in Section
4.2.
The third section (Section 4.3) comprises a detailed description of the cameras that
were used to record the light fields for the plenoptic approach and the gray-value im-
ages used for an absorption-based depth estimation. In the following section (Section
4.4), all hardware components used for the synchronization of the image acquisition
and the intensity modulation are described.
Section 4.5 gives a detailed description of the rectangular vessel that was purpose-built
for the generation of a defined and stable turbulent Rayleigh-Bénard (RB) convection.
This vessel was constructed and characterized in two bachelor projects by Niegel (2010)
and Kunz (2011).

A schematic sketch of the hardware arrangement is shown in Figure 4.1 on page 62.
The camera and the LED arrays are mounted on a measurement-platform that was
placed approx. 30 cm above the interface. The optical axis of the camera is set to be
perpendicular to the interface. To enable a homogeneous illumination of the volume
of interest that lies in the boundary layer of the interface directly below the camera,
the light sources are directed towards the measurement volume under the camera and
defocused to a point far behind the volume of interest.

During the pPSV measurements a focused plenoptic camera was used and the measure-
ment volume was only illuminated by a single LED array. In the bPSV measurements
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Figure 4.1: This figure shows a sketch of the experimental setup. a) and b) represent the LED
arrays with 405nm and 465nm; c) 5Mpx CCD camera that records 12bit gray-value images;
d) measurement volume seeded with silver-coated hollow glass spheres with 100µm diameter
and E112; the intensity modulation of both light sources and the synchronization with the
frame-grabber is achieved by using an arbitrary function generator e) and a trigger card in the
desktop PC used for the data acquisition.

both LED arrays were used, and the image sequences were recorded by a simple gray-
value camera.

Previous to each bPSV experiment, the dye concentration is set to a value that causes
a penetration depth of typically 1 cm. The exact absorption characteristic at this given
concentration is determined by means of a calibration measurement described in Chap-
ter 3.
After this calibration the fluid is seeded with neutrally buoyant silver-coated hollow
ceramic spheres. These spheres have a mean diameter of 100µm and a mean density
of 0.9± 0.3 g

cm3 (Potters Industries Inc. Conduct-O-Fil R© AGSL150-16TRD).
The modulation function that controls the intensity of the LED light sources is gen-
erated as a voltage signal by means of an Arbitrary Waveform Generator (AFG).
Afterwards this signal is converted to a current-signal by a purpose-built amplifier
circuit board. The complete system is controlled by an automated measurement-
control-software implemented on a Personal Computer (PC). This software sets all
the parameters of the used hardware components and controls the synchronization of
the periodical intensity signal and the image acquisition.

62



4.1 Illumination

4.1 Illumination

For the intensity modulated illumination of the volume of interest, two very bright
LED arrays (ENFIS UNO Tile Array Blue 465 nm and ENFIS UNO Tile Array Violet
405nm) were used. Each of these arrays consists of 5 × 5 LEDs that are mounted in
a 9 mm × 9 mm grid on a circuit board. To ensure a fast removal of arising heat, the
circuit board is attached to a copper plate.

The three main characteristics that have to be considered when choosing LED light
sources for the volumetric illumination of a particle-based flow experiments are the
following:

• The heat that arises because of thermal effects within the LED arrays has to be
removed efficiently from the circuit board to avoid damage on the light sources
and to guarantee a linear response of the intensity on the input-current.

• The intensity distribution of the light sources has to be constant in the com-
plete volume of interest. Inhomogeneities of the light intensity may introduce
measurement-errors especially in the absorption-based depth estimation used in
the bPSV-measurements.

• The response-time of the light source on changes of the current has to be short.
This is essential because long response-times would corrupt the intensity modu-
lation used for the velocity estimation in the presented approaches.

For the removal of the expected thermal power that was estimated from the numbers
given in the LED-data sheet (cf. Figure A.1 on page 161 and Figure A.2 on page
162), two fan-cooled aluminium heat-sinks (C33224-002 Intel Socket-478 Cooler) were
mounted by means of thermal conductive glue on the backside of the copper plates
of the LED light sources. A (TRACOPOWER - TXL 025-12S - PSU, ENCLOSED,
25W, 12V ) power-supply was used to provide the current for the heat sinks of both
LED arrays.

From the data in Table 4.1 on page 64, one can see that the input power P of both
LED arrays is equal to 38 W. Assuming that all power which is not converted into
photons remains as heat on the circuit board, the thermal power Ptherm that needs to
be removed by means of a cooling solution can be computed from the difference of the
input power and the radian flux ΦR.

Ptherm = P − ΦR. (4.1)

Therefore, a thermal power of Ptherm(405 nm) = 32.900 W has to be removed from the
violet LED array, and a power of Ptherm(465 nm) = 31.930 W has to be removed from
the backside of the blue LED array to avoid damage and to guarantee a linear response
of the light sources over a long time. According to the data sheets, the chosen CPU
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Item λ1 = 405 nm λ2 = 465 nm
min typ max min typ max

Rated current If [mA] 2000 2350
Forward voltage Vf [V] 16 19 22 14 16 20
Peak wavelength λp[nm] 400 405 412 450 465 470
Dominant wavelength λd[nm] 455 470 475
Spectral width ∆λ[nm] 10 16 22 15 23 30
Total radiant flux ΦR[mW] 4000 5100 4000 6070
Radiant flux density ΦR/A[mW/cm2] 8000 10200 8000 12140
Total Luminous flux ΦL[lumens] 220 350
Luminous flux density ΦL/A[lm/cm2] 440 700
Total electrical power P [W] 38 38

Table 4.1: Characteristics of the LED arrays (ENFIS Ltd., 2008a,b); A more detailed descrip-
tion of the characteristics of these LEDs is given in Figure A.1 on page 161 and Figure A.2 on
page 162.

heat-sink accomplishes a cooling for processors up to P = 100 W which is more than
enough to remove the heat that is generated by the LED arrays.

As explained in Chapter 3, it is essential that the light sources used in the bPSV
measurements have two wavelengths that cause a different absorption behavior by the
used dye. As shown in Figure 6.2 on page 116 in Section 6.1, the precision of the depth
estimate is much better for larger differences in the wavelength-dependent extinction
coefficient ε(λi). The light sources used in this study were chosen in a way that their
wavelengths are at positions in the extinction spectrum of the dye which have a large
difference in the extinction coefficient (cf. Figure 4.3 on page 66).

4.1.1 Optical setup of the light sources

As visualized in the sketch of the experimental setup (cf. Figure 4.1 on page 62),
the light sources were mounted on both sides of the camera. In order to ensure a
homogeneous illumination of the volume of interest, a plan-convex lens was mounted
in front of each LED array by means of a lens tube that was fixed on the copper-plate
to avoid irritations by scattered light.
The focus of these lenses was set to a position far behind the volume of interest to
achieve a flat, homogeneous illumination distribution. The optical axis defined by
the LED arrays and the plano-convex f27 lenses in front of the arrays are inclined
with respect to the optical axis of the camera to achieve a superposition ob both light
sources in the measurement volume below the camera.
The homogeneity of the intensity distribution was tested by means of a white, diffuse
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reflecting target placed in the volume of interest. Images that were recorded by means
of the gray-value camera were used to evaluate the constancy of the irradiation in the
measurement volume.

4.2 Tartrazine (E112)

For the absorption based depth-estimation in the bPSV-measurements, the food-dye
Tartrazine (E112) was used. In other sources this dye is also called Cl Food Yellow
4 or FD & C Yellow No. 5. It has a molecular weight of 534 g/mol and is typically
available in form of orange powder. Solved in liquid, it educes a strong yellow color.
The dye is easily soluble in water and sparingly soluble in ethanol (EFSA, 2009).

According to the detailed introduction in (EFSA, 2009), E112 consists essentially of “3-
carboxy-5-hydroxy-1-(4’-sulphophenyl)-4-(4’-sulphophenylazo) pyrazole trisodium salt
and subsidiary coloring matters together with sodium chloride and/or sodium sulphate
as the principal uncolored components”.

The small amounts of E112 used in the experiments during this study were purchased
from the dye manufacturing company Kremer Pigmente GmbH & Co. KG Hauptstraße
41-47, D-88317 Aichstetten/Allgäu.

For a characterization of the extinction behavior, the absorption spectra of E112 were
measured for different concentrations using a HP 8453E UV-visible spectrometer sys-
tem. The acquired spectra are shown in the left image in Figure 4.3 on page 66

On the basis of these absorption measurements, the extinction-coefficients were deter-
mined. The measured extinction characteristic is plotted as a function of the wave-
length on the right hand side of Figure 4.3 on page 66. These results reinforce the pre-
viously published measurements of the extinction behavior of E112 by Jehle (2006).

As shown in the plot of the extinction spectrum, E112 has different extinction-coefficients
at the wavelengths of the LED arrays. For the illumination with the violet light
source that has a peak-wavelength of λ1 = 405nm the extinction coefficient is given

Figure 4.2: Structural formula of Tartrazine
(E112), Stoichiometry: C16H9N4Na3O9S2,
Molecular weight: 534.36 g/mol, This image was
taken from (EFSA, 2009).
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Figure 4.3: Absorption behavior of Tartrazine (E112). The absorption characteristic for
various concentrations was measured by means of a HP 8453E UV-visible spectrometer system.
On the basis of these absorption characteristics the wavelength-dependent extinction coefficient
visualized on the right hand side was computed.

by α405 nm ≈ 2.4 1
( mol/L)cm . The extinction-coefficient for the blue light source (λ2 =

465 nm) can be determined to be α465 nm ≈ 1.6 1
( mol/L) cm .

Additionally to the difference in the absorption behavior, this dye has a row of other
advantages that make it a suitable dye for the absorption-based depth-extraction by
means of a two-wavelength illumination.

• In the dosage that is needed to restrict the measurement area to the upper
centimeter under the interface, E112 is non-toxic in contact with human skin
and even oral intake causes no harm (EFSA, 2009).

• Various in-vivo and in-vitro studies prove that E112 causes no mutagenic-effects
on the genome (EFSA, 2009).

• Due to its high availability and its usage as a common food-dye, E112 is a low-cost
solution.

A much more detailed characterization of this dye can be found in (EFSA, 2009).
This study summarizes all technical data as well as the manufacturing process and
the food-chemical background. Furthermore, it is an extensive characterization of its
biological and toxicological characteristics.

4.3 Imaging Hardware

This section comprises a description of the two cameras and the additional imaging
hardware used in the scope of this thesis for the acquisition of PSV image-series.
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Item Value Comment
Chip 2/3” EXview HAD PS IT CCD
Pixel size 3, 45µm× 3, 45µm
Resolution 2448× 2050 (5 MPixel)
Depth range 8/10/12 bit B/W
Framerate 15 fps (Fullscan)
Power over CameraLink
Binning (1x2) Vertical, Partial Scan
Hardware Preprocessing 3× 3-Filter Built-in Test Pattern
Shutter Normal / Trigger Shutter
Weight 130 g
Size 44 mm× 44 mm× 57.5 mm (B x H x L)
General Purpose IO 1 x Trigger In, 4 x Output
Additional features Mirror Image, Binarization

Table 4.2: Characteristics of the gray-value camera (XCL-5005 B/W, Sony Electronics Inc.).
These data were taken from the data sheet (Sony Electronics Inc., 2008)

In all bPSV measurements that use the absorbing dye E112 and a two-wavelength
illumination to resolve volumetric data, an industrial gray-value camera was used.
The second camera that is presented in this section is a focused plenoptic camera. It
was used for the measurement of four-dimensional light fields that were recorded in
the pPSV experiments.

4.3.1 Gray Value Camera

The particle streak images of the bPSV-measurements were recorded using a 12 bit
gray-value camera (XCL-5005 B/W, Sony Electronics Inc.) with 5 Mpx resolution.
This camera-type is purchased for industrial image-acquisition purposes. An overview
of the main features of the camera given by the manufacturer is summarized in Table
4.2 on page 67.

Additional camera-characteristics that provide a detailed description of sensor response
were determined in a set of characterization measurements described in Chapter 5. The
results of these characterization measurements are summarized in Section 6.1.

4.3.2 Camera Objective

For the acquisition of the bPSV image series, a Fujinon HF35SA-1 2/3” 35 mm camera
objective was used. As described in the data sheet shown in the appendix chapter
of this thesis (Figure A.4 on page 164), this objective was designed for the usage on
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Item Value
Effective resolution 3 MPixel
Sensor array 35 mm × 35 mm array with 10.7 MPixel; Interline-CCD-

Sensor; Color/Mono
Depth resolution 30 - 100 different depth layers in the depth-maps; 3D stereo;

Rendering of different view-points
Focal range 10× higher than with conventional cameras; Rendering of

“all-in-focus” images
Framerate Up to 10 fps via CameraLink, 6.2 fps via Gigabit Ethernet

(GigE)
Depth range 8 bit and 12 bit
Interface GigE and CameraLink
Objective mount F-Mount / Nikon, Canon-Mount, M58
Hardware requirement Microsoft Windows XP/Vista/7, NVIDIA GeForce GTX-

580

Table 4.3: Key-features of the focused plenoptic camera (Model: R11, Raytrix GmbH, Kiel,
Germany); These data were taken from the camera data sheet provided by the manufacturer
(Raytrix GmbH, 2012) (cf. Figure A.5 on page 165).

5Mpixel cameras. The wide aperture (F1.4) enables the acquisition of clear images
in low-intensity environments. Additionally, the manufacturer claims that this objec-
tive yields an enhancement of the image recognition accuracy by means of a reduced
distortion and an improved uniformity of the sensor illumination.

By using this objective it was possible to image an interface patch of approx. 8 cm×8 cm
by mounting the camera at distance of 30 cm above the air-water interface.

4.3.3 Plenoptic Camera

The focused plenoptic camera (Model: R11, Raytrix GmbH, Kiel, Germany) used in
the pPSV experiments was provided by the manufacturer. The imaging principle that
enables the recording of four-dimensional light fields by means of this camera, is ex-
plained in detail in Section 2.3. The camera was delivered in combination with a special
macro-objective that had similar characteristics as the objective used in combination
with the gray-value camera.

The main features of the focused plenoptic camera are summarizes in Table 4.3 on page
68. A more detailed description can be found in the data sheet of the camera (Raytrix
GmbH, 2012) that is partially shown in Figure A.5 on page 165.
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4.4 Synchronization

Since the synchronization of the light sources with the acquisition times and the expo-
sure times of the imaging devices is of major importance for a proper velocity estima-
tion, large effort was invested in the implementation of a synchronized measurement
setup.

The basic components of the presented setup are the previously described illumination
and image acquisition devices. For the interconnection and synchronization of these
devices a trigger board, an Arbitrary Waveform Generator (AFG) and an Operational-
Transconductance-Amplifier (OTA) were used.

A measurement-control-software was implemented using Heurisko R© to control the
setting and synchronization of frame-grabber and AFG as well as to store the recorded
images in 16 bit Tagged Image File Format (TIFF) files. Heurisko R© is a development
environment for image processing and the automatization of measurement devices and
cameras (AEON Verlag & Studio Walter H. Dorn e.K., 2012).

4.4.1 Trigger Board

A GPIO/Trigger Board (SILICONSOFTWARE GmbH, Mannheim, Germany) was
used to provide a trigger signal to the AFG and to the microEnable IV VD4-CL
frame-grabber (SILICONSOFTWARE GmbH, Mannheim, Germany). A data sheet
containing the main characteristics of the frame-grabber card is shown in Figure A.7
on page 167 in the appendix chapter of this thesis.
This external triggering of the frame-grabber and the AFG by means of an extra trigger
board ensures that the image acquisition and the modulation of the light sources are
perfectly synchronized. To reduce the response time, the trigger-board is directly
connected to the frame-grabber card. The signal to the OTA is conducted by a short
copper co-axial cable.

4.4.2 Arbitrary Waveform Generator (AFG)

A two-channel AFG (AFG3102, Tektronix Inc., Beaverton, United States) was used
for the generation of two periodical signals. This device allows the definition of two
independent arbitrary voltage signals generated at the two output channels. It also
provides a trigger input that enables a synchronization of the output signals with the
camera.
For all experiments that were implemented in this study, the AFG was set to the
“external trigger mode”. This means that for an incoming trigger signal at the trigger-
input connector, the AFG starts sending two previously defined voltage signals to the
outputs CH1 and CH2.
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Figure 4.4: Sim-
plified scheme of
the Operational-
Transconductance-
Amplifier (OTA). A
complete scheme of the
circuit board is shown in
Figure A.6 on page 166.
This image was taken
from (Lauffs et al., 2011).

The amplitudes of these voltage signals control the brightness of the LED-light sources.
The duration of the sent voltage signal is exactly as long as the exposure time of the
camera.

During the bPSV measurements voltage signals were used that generated the two
illumination patterns shown in Figure 3.5 on page 50. Here each light source was
controlled by one channel of the AFG. Since for the pPSV-measurements only one
light source was sufficient, in these experiments only the blue LED array was controlled
by the AFG that sent a simple sine function.

4.4.3 Operational-Transconductance-Amplifier (OTA)

For the amplification of the voltage signals that were generated by means of the AFG
into voltages sufficient to drive the LED arrays, a two-channel amplifier was built. As
shown in Figure A.6 on page 166 in the appendix chapter of this thesis, each channel
in the amplifier uses an OPA2350 (High-Speed, Single-Supply, Rail-to-Rail Operational
Amplifiers MicroAmplifier R©), an IRF520 (IRF520 MOSFET N Channel Transistor)
and a power supply unit (TRACOPOWER - TXL 120-24S - PSU, METAL, 120W,
24V/5A) to generate a current signal that is proportional to the input-voltage of the
channel. The Amplifier was dimensioned for input signals Ue ∈ (0 V . . . 5 V).
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4.5 Convection Experiment

Since both channels of the implemented OTA are identical, we focus on a single channel
in the following description.

As shown in the simplified sketch in Figure 4.4, the built amplifier uses a transistor
and a resistor to realize a voltage controlled current source. In this electric circuit
the potential at R1 is nearly as large as the input voltage Ue. The current that flows
through R1 is therefore given by Ue/R1. The output current Ia controlled by the IRF520
transistor is as large as the current through R1. On the basis of this wiring the amplifier
only works properly if the applied voltage at the output Ua is larger than the potential
that arises at R1.
Due to losses in the Operational Amplifier (OA) the amplification A of this circuit is
alway a little bit smaller than AD.

The output of each channel of the OTA-amplifier was connected to the corresponding
LED array. To avoid a damage of the light sources, the voltage of the power supply
unit that provides the support-current for the amplifier was set to Umax = 21 V. This
is the upper limit of the voltage range defined in the data sheets of the LED arrays
(cf. Figure A.1 on page 161 and Figure A.2 on page 162)

Varying the input voltage provided by the AFG therefore directly results in a variation
of the output current. Within the limits this output current causes a linear response
of the light sources.

4.5 Convection Experiment

For the generation of a well defined turbulent RB-convection a rectangular vessel with
the dimensions (H = 147 mm, L = 405 mm, W = 415 mm) was built from 3.3 mm
thick BOROFLOAT R© glass. This vessel was dimensioned and constructed within the
scope of a bachelor thesis by Niegel (2010). In a later bachelor thesis by Kunz (2011),
the vessel was characterized by means of a set of thermographic measurements, and
the gas-exchange through the air-water interface was measured quantitatively.

For the heating a mirrored box with two infrared heating tubes (Heraeus Noblelight,
Art.Nr.: 45132877), with Pmax = 1 kW and Tmax = 1.2 · 103 ◦C each, was mounted
under the vessel as shown in Figure 4.5 on page 72. Due to the high transmission of
93% at wavelengths between 2.0 nm and 2.7 nm, most of the infrared light penetrates
the bottom plate of the vessel and is absorbed within the first mm of the water body.
The cooling at the water surface is mostly due to evaporation and radiation.

In all experiments the vessel was filled up to a height of H̃ = 50 mm and the heating
power was set to 945W. Measurements were conducted once the system reached its
state of equilibrium at a water temperature of T ≈ 51◦C. The temperature difference
∆T = 23.6◦C± 0.3◦C between the bottom plate and the air directly above the water
surface was measured by a Pt100 thermo sensor using a GMH 3710 thermometer
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Figure 4.5: Sketch of the convection vessel
used to generate the turbulent RB-convection.
The side walls and the bottom plate a) consist
of 3.3 mm thick BOROFLOAT R© glass, which
is nearly transparent for the infrared light, ra-
diated from the heating tubes d). All sidewalls
of the box containing the heating elements are
mirrored to reflect the infrared light to the bot-
tom plate of the vessel where it is absorbed in
the first few mm of the water-body b), since wa-
ter behaves like a black-body for infrared light.

(GREISINGER electronic GmbH). All temperature measurements were averaged over
several minutes. The absorbing dye Tartrazine was added to the liquid from a stock
solution with 1g Tartrazine per liter, to obtain a concentration of 12 mg/l Tartrazine
in the water. This concentration enables a particle extraction down to the depth of
10 mm below the interface.

For the seeding we used neutrally buoyant silver-coated hollow ceramic spheres with
a mean diameter of 100µm and a mean density of 0.9 ± 0.3 g/cm3 (Potters Industries
Inc. Conduct-O-Fil R© AGSL150-16TRD). These tracer particles were sorted in advance
based on their sedimentation behavior in water to obtain a narrower density distribu-
tion. During the experiment the measurement setup was covered with light absorbing
material to ensure that the light that is reflected by the particles only originates from
the LED arrays.
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This chapter comprises a detailed description of all computational operations that
were applied to extract Lagrangian flow information from both Particle Streak Ve-
locimetry (PSV) techniques presented in this thesis. To illustrate the interaction be-
tween the different algorithms, Figure 5.1 on page 74 shows a schematic workflow
of the implemented routine. The 12bit image sequences that were recorded using
the bichromatic Particle Streak Velocimetry (bPSV)-setup and the plenoptic PSV se-
quences are processed sequentially for the extraction of all streak features, i.e. the
three-dimensional (3d) position of the center-line, the intensity course along this line
and the streak velocity.
In a first preprocessing step (Step I) that is only needed for the bPSV measurements,
a radiometric characterization of the gray-value camera was carried out in accordance
to the European Machine Vision Association (EMVA) standard EMVA1288 (EMVA,
2010). On the basis of the extracted camera characteristics, a radiometric calibration
of the raw-data was developed. Furthermore, the characteristics provide a detailed
insight in the expected measurement uncertainty that is introduced by the camera-
artifacts such as array non-uniformities, variations in the spectral sensitivity and the
linearity of the charge-coupled device (CCD)-sensor.
The following operations belong to the feature extraction (Step II). Here the first image
processing step in the feature extraction routine is a background subtraction on the
basis of a temporal median filter. The basic assumption of this background removal
strategy is that each pixel position contains a background signal in at least 50% of
the recorded images in a bPSV-sequence. Thus, a temporal median of each pixel is
a local and robust estimation of a background signal that can be subtracted from all
images in the sequence. The following extraction of the center-lines and the intensity
courses along these lines was implemented by means of an iterative routine based on
the gray-value information itself and a number of low-level image features computed
using a rotation-invariant second order tensor approach. The last operation that is
performed on each image individually is the computation of particle depth and its
velocity from the gray-value information for all positions along the center-lines. All
image processing operations and feature extraction routines are explained in Section
5.2.
(Step III) comprises the following operations that process the whole set of particle
streaks that were extracted from a complete bPSV image-sequence. Here streaks from
subsequent images that belong to the same particle are grouped to obtain long trajec-
tories. Each trajectory describes the movement of a single tracer particle over a long
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Figure 5.1: Schematic overview of the algo-
rithmic components used in the analysis frame-
work. In the feature extraction part (dashed
rectangle) all images are processed individually
to extract single streak-patters. In the analysis
of the Lagrangian flow features, information of
all extracted streak-patterns is merged to ob-
tain long trajectories that are represented by a
set of streaks from subsequent images that be-
long to the same tracer-particle.

period in time.
Afterwards these long trajectories are used to extract Lagrangian flow features that
are based on single particles and particle pairs as described in Section 5.3. Finally,
to prove the applicability and to show the performance of the velocity estimation, we
generated a set of semi-artificial data generated by a temporal integration (cf. Section
5.4) of a Particle Image Velocimetry (PIV)-benchmark data set proposed by Berthe
et al. (2010).

5.1 Step I: Radiometric Camera Calibration

A radiometric correction of the measured particle streak images recorded in the bPSV
measurements is of major importance since artifacts caused by non-uniformities of the
CCD array or non-linearities have a direct influence on the extracted particle depth.
Additionally, these artifacts may also corrupt the results of the center-line extraction
and therefore the quality of extracted center-line data. This may even cause larger
uncertainties in the result of the frequency analysis.
To allow a proper correction, an accurate measurement of the camera characteristics
is necessary. The camera characterization-setup used in this study was purpose-built
to fulfill the EMVA1288 standard that defines a characterization for monochrome and
color digital cameras with linear photo-response characteristics (EMVA, 2010).
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Figure 5.2: EMVA1288 model of a camera with linear photo-response characteristic. a)
illustrates the processes that convert an incident photon into a digital gray value. b) shows
the linear signal model for the mapping of a photon-count np to a digital gray-value y (EMVA,
2010).

5.1.1 Linear Signal Model

The basic assumption of the linear model that was used to describe the imaging process
is that the number of photons that are measured by a single pixel of the sensor array
depends only on the irradiance E [W/m2] and the exposure time texp[s]. As a result the
radiative energy-density Etexp[J/m2] only depends on these two variables. The second
assumption made in the linear signal model is that the digital signal at the output is
directly proportional to the number of collected photons.

To motivate the linear model for digital imaging sensors visualized in Figure 5.2, we
focus on the processes that participate in the conversion of photons that hit a pixel of
the CCD-array into a discrete gray-value given by a digital number (DN). Considering
an absolute number of µp photons that hit the surface of a single detector pixel during
the exposure time texp, the number of electrons µe that are released as a result of the
photon impact depends on the total quantum efficiency η(λ)

η(λ) = µe
µp
. (5.1)

It has to be pointed out that the correlation between the radiative energy density and
µp as well as the total quantum efficiency depend on the wavelength λ of the irradiating
light. As described in detail in (EMVA, 2010), the number of photons can be computed
using

µp (λ) = AEtexpλ

hc
. (5.2)

In this equation A[m2] is the surface of a single pixel, c ≈ 2.9979 · 108 m/s is the speed
of light, and h ≈ 6.6260 · 1034 Js is Planck’s constant. Additional to the electrons that
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were released by the impact of photons on the sensor surface, thermal effects inside the
pixels release a number of electrons µd. All electrons that were accumulated during
the exposure time are converted into a voltage that can be amplified and converted to
a digital number by an analog digital converter (ADC). The factor of proportionality
between the total number of electrons released in the sensor (µe + µd) and the digital
signal µy [DN] is the overall system gain K[DN/e−]

µy = K (µe + µd) . (5.3)

In accordance to (EMVA, 2010), it is possible to summarize the foregoing into a single
linear model by substituting the dark signal µy.dar = Kµd using (5.1), (5.2) and (5.3):

µy = µy.dark +Kη (λ)µp (λ) = µy.dark +Kη
λA

hc
Etexp (5.4)

One of the main ideas of the this standard is to determine the photo responsivity R =
Kη[DN/photon] by measuring the gray-value change corresponding to defined intensity-
changes of the irradiant light field.

For all calibration measurements, a so-called Ulbricht sphere, i.e. a spherical hollow
cavity that is coated with a highly diffusive reflecting interior, was used that complies
the standard. This allows a homogeneous illumination of the camera sensor that was
mounted directly, i.e. without any optics, on the Ulbricht sphere.
For the illumination three light-emitting diode (LED)-light sources were used (Red
Green Blue (RGB)). The irradiance at the orifice of the sphere was characterized in
advance using a calibrated photo diode. The mean gray-values µy as well as the mean
gray-values of the recorded dark-image µy.dark were computed from twoM ×N images
yA and yB that were captured at each irradiation intensity using

µy = 1
2NM

M−1∑
m=0

N−1∑
n=0

(
yA (m,n) + yB (m,n)

)
. (5.5)

On the basis of (5.5), we can plot the responsivity curve (shown in Figure 5.3 on page 78
left hand side) that visualizes the correlation between the photon-induced gray-values
and the number of photons that hit a single sensor element. The previously mentioned
responsivity R of the imaging system is a wavelength depended characteristic that can
be estimated separately from the slope of the responsivity curve for each light source
(RGB).

5.1.2 Noise Model

Next to the linear signal model, the universal noise model introduced in (EMVA, 2010)
is an important assumption on the way to a general CCD-camera calibration standard.
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The main noise-sources assumed in the standard are the so-called shot noise σ2
e , the

noise caused by internal readout and amplification operations σ2
d, and the discretization

noise caused by the ADC σ2
q . The first mentioned noise-source is caused by statistical

fluctuations of the number of electrons µe. The reason for this noise are quantum
mechanical processes that yield a Poisson distribution of the number of charge units
around its mean. Therefore, the variance σ2

e can be computed from the mean electron
count

σ2
e = µe. (5.6)

The noise caused by the quantization in the ADC was derived theoretically in (Jähne,
2005) to be σ2

q = 1
12 DN. Afterwards the noise model proposed in (EMVA, 2010) makes

the reasonable assumption that the variances of all noise-sources add up linearly.
This assumption yields a functional description of the total temporal signal variance
σ2
y of the resulting signal y that is given by:

σ2
y = K2

(
σ2
d + σ2

e

)
+ σ2

q . (5.7)

By inserting (5.3) and (5.6) in (5.7), it is possible to express the total noise that is
described by the model in relation to the mean of the measured digital signal:

σ2
y = K2

(
σ2
d + σ2

e

)
︸ ︷︷ ︸

offset

+ K︸︷︷︸
slope

(µy − µy.dark) . (5.8)

This dependency is one of the basic assumptions of the photon transfer method de-
scribed by Janesick (1985) and Jähne (2005). Therefore, it is also of crucial importance
for the characterization of digital imaging sensors that have a linear photo response
behavior according to the EMVA1288 standard. The proportionality between the vari-
ance of the signal σy and the mean (photon induced) gray-value µy − µy.dark is shown
in Figure 5.3 on page 78 (on the right hand side).
The proportionality factor of this linear dependency is the overall system gain K, and
the offset can be used to compute the dark noise variance σ2

d. Furthermore, the sat-
uration gray-value of the imaging system σy.sat was obtained from the maximum of
the photon-induced variance illustrated by the cyan colored line in the photon transfer
curve (cf. Figure 5.3 on page 78). Additionally, the average of the wavelength depen-
dent quantum efficiency can be computed from the ratio of responsivity R and the
overall system gain K as follows:

η = R

K
. (5.9)

The error of η can be propagated to be

∆η =

√(
∂z

∂R
∆R

)2
+
(
∂z

∂K
∆K

)2
. (5.10)

All sensor characteristics that were obtained using the photon transfer method are
summed up in Table 5.1 on page 78.
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Figure 5.3: Left: Photo Responsivity curve of the sensor showing the photon induced gray-
values as a function of the number of irradiated photons. The slope of this curve is the
responsivity Kη. Right: Photon Transfer curve visualizing the connection between the photon
induced signal variance and the photon induced gray-value. The slope can be used to compute
the overall system gain K.

Color µy.dark[DN] µy.sat[DN] K[DN/e−] η[e−/Photon]
red

241± 38 3.7060 · 103
(636.3± 2.3) · 10−3 (347.9± 1.3) · 10−3

green (630.6± 2.7) · 10−3 (505.2± 2.2) · 10−3

blue (638.6± 2.3) · 10−3 (505.5± 1.8) · 10−3

Table 5.1: Summarized results from the EMVA1288 characterization of the used imaging
sensor.
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5.1.3 Signal-to-Noise Ratio (SNR) & Dynamic Range

The most common parameter for the characterization of the quality of an image is
the Signal-to-Noise Ratio (SNR). It is defined by the ratio of the photon-induced
gray-value and its variance

SNR = µy − µy.dark
σy

. (5.11)

As described in detail in EMVA (2010), we can make use of the information obtained
from the linear signal model (5.4) and the noise model (5.7), and define the SNR as
follows:

SNR = ηµp√
σ2
d + σ2

qK
−2 + ηµp

. (5.12)

By analyzing the SNR-characteristic separately for the cases of high irradiation and
low irradiation, one obtains a linear correlation when the number of photon-induced
electrons is small compared with the sum of thermal variance and quantization noise.
If, on the contrary, the number of photon induced electrons is much higher, the SNR
shows a slower square root increase. These cases are described by the following ap-
proximation

SNR ≈


√
ηµp if ηµp � σ2

d + σ2
qK
−2

ηµp√
σ2

d
+σ2

qK
−2 if ηµp � σ2

d + σ2
qK
−2

(5.13)

This transition from a linear behavior to a square root increase can also be seen in
the SNR graph in Figure 5.4 on page 80. The SNR graph also shows the lower signal
threshold at SNR = 1 and the previously estimated pixel saturation threshold µy.sat
of the photon transfer curve.

For a computation of the minimum detectable irradiation, i.e. the number of photons
that is required to measure data with a SNR that is equal to one, an inverse formulation
of (5.12) is needed. Using this inverse formulation

µp (SNR) = SNR2

2η

1 +

√√√√
1 +

4
(
σ2
d + σ2

q/K
2
)

SNR2

 , (5.14)

it is possible to compute the gray-value that is necessary to reach a certain SNR.
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Figure 5.4: The Signal-to-Noise
Ratio (SNR)-plot shows the SNR
characteristic of the gray-value
imaging sensor for the illumination
with three different colors. In com-
parison, the green line shows the
characteristic line of an ideal sen-
sor in which only the shot noise
with σp = √µe corrupts the imag-
ing process. The pixel saturation
threshold µy.sat is indicated by the
blue vertical line, and the noise
threshold (SNR = 1) is shown as
a cyan colored horizontal line.

In the description of the EMVA standard, two approximations of (5.14) were made.
One approximation describes the limit for large SNR values, and the other gives ap-
proximates µp(SNR) for small SNR values.

µp(SNR) ≈


SNR2

η

(
1 + σ2

d+σ2
q/K

2

SNR2

)
, SNR2 � σ2

d + σ2
q/K

2

SNR
η

(√
σ2
d + σ2

q/K
2 + SNR

2

)
, SNR2 � σ2

d + σ2
q/K

2

(5.15)

The camera that was used in the bPSV-measurements in this study is well described
by the second case since σ2

d + σ2
q/K

2 is much larger than one.

Therefore, an absolute sensitivity threshold of the imaging device can be approximated
using:

µp(SNR = 1) = µp.min ≈
1
η

(√
σ2
d + σ2

q/K
2 + 1

2

)
= 1
η

(
σy.dark
K

+ 1
2

)
. (5.16)

By inserting the camera characteristics measured in the blue wavelengths area and
the variance of the measured dark-signal σy.dark = 241 [DN], this threshold is given by
µp.min = 20 [photons].

By using these thresholds, the dynamic range of the sensor array can be computed as
follows:

DR = µp.sat
µp.min

= 574. (5.17)
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5.1 Step I: Radiometric Camera Calibration

The consequences that arise from these values for the precision of the bPSV technique
are described in Chapter 6.

5.1.4 Linearity Analysis

Since the bPSV technique presented in this work crucially depends on a precise mea-
surement of absolute gray-values and of their ratios, non-linearities in the response of
the imaging-sensor present one of the main sources of error.
The following analysis was made for the blue LED-illumination because the signals
recorded in the course of this study are all from the blue and violet range of the spec-
trum. The range in between which a linear response of the imaging-device is expected,
lies between the absolute sensitivity threshold (cyan colored line in the SNR-plot)

µp(SNR = 1) = µp.min ≈
1
η

(√
σ2
d + σ2

qK
−2 + 1

2

)
= 1
η

(
σy.dark
K

+ 1
2

)
(5.18)

and the saturation capacity of a single pixel

µe.sat = ηµp.sat. (5.19)

To analyze the degree of linearity, a linear function was fitted to the curve of the
photon induced gray-values. For the computation of the fit-parameter, we restricted
the fit to a range between 5% and 95% of the saturation capacity value. As shown in
Figure 5.5 on page 82 the assumption is valid that the sensor shows a linear response
between the SNR-threshold and the saturation range. The error that is introduced by
this assumption can be estimated to be less than 1% (cf. Figure 5.5 on page 82).

5.1.5 Spatial Non-Uniformities

During the calibration spatial non-uniformities of the sensor response were measured in
three wavelength areas {red, green ,blue}. In these measurements the sensor array was
illuminated directly (i.e. without any optics in front of it) with different wavelengths
and various intensities. Due to the Ulbricht sphere, the light field that irradiates the
sensor can be assumed to be highly homogeneous over the whole sensor surface.

In literature spatial artifacts that can be observed in the sensor signal are often referred
to as Fixed Pattern Noise (FPS). This expression is not perfectly correct since the ob-
served imperfection is not a noise that varies the signal in time. Therefore, the authors
of the EMVA1288 standard introduced a novel nomenclature. It distinguishes two spa-
tial imperfections in the signal of a sensor array, i.e. Dark Signal Non-Uniformities
(DNSU) and Photo Response Non-Uniformities (PRNU).
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Figure 5.5: Linearity analysis of the sensor array. The upper plot shows the gray-value signal
as a function of the irradiance. A linear fit was applied to a range between 5% and 95% of the
saturation capacity (red line). The lower plot shows the deviation of the measured gray-values
from the linear model. Within the range of the fit, the error is below 1%.
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5.1 Step I: Radiometric Camera Calibration

Dark Signal Non-Uniformity (DSNU): This spatial non-uniformity of the pixel-response
occurs in the dark-signal. It is independent of the incident light that hits
the sensor array. In the calibration this characteristic is extracted from dark-
measurements.

Photo Response Non-Uniformity (PRNU) This characteristic describes a spatial non-
uniformity of the pixel response. It is estimated from an image taken at a medium
intensity of the incident light field.

The image in Figure 5.6 on page 84 shows the PRNU-characteristic of the sensor ar-
ray measured with blue light of medium intensity. It has to be pointed out that the
contrast in this image is increased by several orders of magnitude.
The PRNU measurements show a set of disk-patterns that remind of refraction arti-
facts caused by dirt on a lens.
We assume that these PRNUs originate from imperfections in the manufacturing pro-
cess of the array. Here two scenarios are likely:

• Imperfections during the application of a coating on the sensor array might have
caused an inhomogeneous distributed sensor behavior.

• Dirt on the optics that were used in the lithographic manufacturing of the array
can result in a spatial non-uniformity of the sensor characteristics.

Additionally to this disk-pattern, the measurements of the DSNU show a different
variance behavior of the upper and the lower half of the sensor. In contrast to the
disk-pattern, this non-uniformity is also present in variance of the PRNU-signal. An
image of this DSNU-characteristic is shown in the appendix of this thesis (cf. Figure
A.3 on page 163). The most likely reasons for this different behavior of the upper and
the lower half of the sensor array are the different readout and amplification pathways
within the sensor electronic.

For a quantitative characterization, the EMVA1288 standard defines two measures
that are computed by equations which are equivalent to the equations used for the
computation of the temporal noise.
For a dark-signal ydark and a signal that was recorded at an approx. 50% saturation of
the image signal y50, both given by M ×N images, the mean signal can be computed
as follows:

µy.dark = 1
MN

M−1∑
m=0

N−1∑
n=0

ydark[m][n] (5.20)

µy.50 = 1
MN

M−1∑
m=0

N−1∑
n=0

y50[m][n] (5.21)
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Figure 5.6: Spatial non-
uniformity of the linear
response of the sensor ar-
ray. In this measurement
the naked sensor array
was illuminated with a
highly homogeneous light
field. The contrast of this
image was increased by
several orders of magni-
tude for a proper visual-
ization of these effects.

Using these mean values, the spatial variances s2 of both images can be computed
straightforward.

s2
y.dark = 1

MN − 1

M−1∑
m=0

N−1∑
n=0

(ydark[m][n]− µy.dark)2 (5.22)

s2
y.50 = 1

MN − 1

M−1∑
m=0

N−1∑
n=0

(y50[m][n]− µy.50)2 (5.23)

On the basis of the mean pixel value and the spatial variance s2 of the dark image
and the 50% saturation image, the EMVA1288 standard defines two characteristic
parameters DSNU1288 and PRNU1288 of an imaging sensor array as follows:

DSNU1288 = sy.dark
K

[e−] (5.24)

PRNU1288 =

√
s2
y.50 − s2

y.dark

µy.50 − µy.dark
· 100 % (5.25)

The resulting characterization parameter for the spatial non-uniformities of the dark-
signal and the image that was acquired with approx. 50% pixel-saturation, are sum-
marized in Table 5.2.
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Color µy.dark[DN] µy.50[DN] s2
y.dark[DN2] s2

y.50[DN2] DSNU[e−] PRNU[%]
red 246.3 1116.4 38.7 596.5 61 2.71
green 244.8 1356.5 38.7 724.2 61 2.36
blue 246.2 2062.5 38.4 1154.1 60 1.84

Table 5.2: Summary of the non-uniformity characterization according to the European Ma-
chine Vision Association (EMVA)1288 standard

Correction of the PRNU-effect For the correction of the PRNU-effect in the sensor
arrays response, an M × N correction image C was computed to correct this error
source in a simple pixel-wise multiplication with the raw-image.

Therefore, the relative deviation from the mean gray-value in the non-uniformity image
for the blue wavelength area was computed.

The elements of the correction image are therefore given by:

C[m][n] = µy.50 − µy.dark
y50[m][n]− ydark[m][n] (5.26)

All data that were recorded to characterize the non-uniform linearity of the sensor
array are shown in the appendix chapter of this thesis (Figure A.3 on page 163).

5.2 Step II: Feature Extraction

The image processing operations that were used to extract the particle streaks in all
PSV measurements and to compute the course of depth and velocity along the center-
line of each streak can be divided, as shown in Figure 5.1 on page 74, into 5 steps.
These steps also determine the outline of this section.

5.2.1 Removal of Lens Flare Effects and Background Subtraction

Unfortunately, in all measurements that were done during this study we observed
some lens flare effects and slight reflections from the water surface. These artifacts
are caused by the extreme bright LED-illumination and need to be corrected to enable
the extraction of the pure particle signal by means of an extraction algorithm that is
described in the following sections. For the removal of these artifacts a local adaptive
background removal strategy based on a temporal median filter was implemented.

The first assumption that is made in this context is that all pixel which do not contain
the signal of a passing particle contain only a superposition of sensor noise from the
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camera and the above mentioned illumination artifacts.
For all pixel that contain a signal from a passing particle, we assume that sensor
noise, illumination artifacts and particle signal add up and result in the gray-value
measured by the pixel. Therefore, a correction routine only needs to compute the pure
superimposed illumination-artifact image and subtract it from each measured streak
image. In addition, we assume that the probability of a pixel to contain the signal of
a passing particle is lower than 49%.

In general, background estimation routines are used in many applications in the field of
image processing. The most prominent examples are algorithms for detecting moving
objects that were imaged by static cameras (Piccardi, 2004). The general understand-
ing of a perfect background image is that it shows the static scene behind (probably
moving) objects. Piccardi (2004) points out that this background image has to be
updated when it comes to changes of the static scene or changes in the illumination.
Since in all measurements that were done in this study, an absorbing dye was mixed
into the liquid, we do not expect to observe any background signal at all.
Nonetheless, we can make use of a background estimation routine to compute the
illumination-artifact signal. The temporal median filter used in this study can be de-
scribed as follows.
Given an image-stack with N measured images Ĩk, {k ∈ N|0 ≤ k < N} containing
X × Y pixels, for each pixel Ĩk (i, j) , {i, j ∈ N|0 ≤ i < X − 1 and 0 ≤ j < Y } a ring
buffer of size c ∈ N with c ≤ N is initialized. For an arbitrary image Ĩk(i, j) with
k ≥ c, the superimposed lens-artifact signal Bk(i, j) is given by the temporal median
that is computed pixel-wise from the c precedent images.

Bk(i, j) = median
{
Ĩl(i, j)| (k − c) < l ≤ k

}
(5.27)

Since the lens-artifact signal superimposes the complete image, a correction can be
achieved by subtracting the signal from the original image.

Ik(i, j) = Ĩk(i, j)−Bk(i, j) (5.28)

The number of images that contribute to the median is controlled by the parameter
c in (5.27). For a background signal that changes rapidly in time, this parameter can
be decreased to adapt the background estimation. Increasing the size of the temporal
median filter c means to increment the number of images that contribute to the back-
ground estimation, and therefore increases the robustness of the estimate (Piccardi,
2004; Vikas et al., 2010).
For the measurements that were recorded within the scope of this thesis, the conditions
were rather static, i.e. a flat water surface and a constant optical axis.
As a result, the illumination-artifacts can be treated like a static signal that superim-
poses all measurements in a bPSV image-sequence.
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Figure 5.7: Illustration of the lens flare removal using a temporal median filter. The left image
shows a section of an original bPSV-measurement Ik. The image can be seen as a superposition
of the lens effect and the particle streak signals. The image in the middle shows the result of
the temporal median computation according to (5.27) over the whole image stack. The right
image is the result of the lens flare effect correction I using the median based background
subtraction.

To speed up computation, we modified the background estimation for the static case by
computing the temporal median for each pixel considering all images from a sequence.
The result is a single background image that can be subtracted from all images in the
sequence.

The process is also illustrated in Figure 5.7 for a small image section of a bPSV-
measurement. The image on the left shows a section of a single image from a bPSV-
measurement series Ĩk. It contains a superposition of the measured streak structures
and the previously described lens-artifact signal. The image in the middle of Figure 5.7
shows the extracted interfering signal Bk that was extracted from the complete image
stack using the temporal median filter described in (5.27). The right image shows the
corrected signal Ik computed using (5.28).

For the computation of the medians we made use of the partial_sort function to
sort vector<double> vectors containing the gray-values of the pixel position from all
images of a sequence. The pixel-wise median computation and the subtraction of the
illumination-artifact image was parallelized using the portable shared memory parallel
programming library openMP (Chapman et al., 2007).

5.2.2 Tensor Based Feature Extraction

The next step in the feature extraction workflow is the computation of a set of tensor-
based low-level features (e.g. edges, gradients or junctions) that are computed from
the corrected images. These image features enable a robust extraction of the streak-
structures, of their center-lines and of the intensity course along these lines.
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Figure 5.8: Graphical illustration of the func-
tional principle of the three-dimensional (3d)
structure tensor by Haußecker et al. (1998).

In the field of image processing many tensor-based approaches were developed to ex-
tract structures and their orientation from image data. The main idea of most tensor-
based methods is to formulate a rotational invariant operator that allows the extraction
of specific local features from an image.
Originally the application of tensor-based methods on simple gray-value image-sequences
was developed for the optical-flow estimation. Later applications mainly use tensor-
based approaches for the computation of local image features which are invariant under
Eulerian transformations.

Structure Tensor

A given gray-value image sequence I(x, y, t) can be seen as a 3d data cube. As visualized
in Figure 5.8, the computation of an optical-flow field from this sequence is equivalent
to the estimation of iso-gray-value lines within small spatiotemporal neighborhoods in
the volume. Therefore, one has to search for the local direction ~r = (r1, r2, r3) with the
best accordance to all gradients ∇I in the local neighborhood. Haußecker et al. (1998)
proposed the use of a first order gradient tensor for the solution of the optical-flow
problem. He claimed that the problem of estimating iso-gray-value lines can be solved
by minimizing the following matrix equation.

argmin
~r

(
~rTJ ~r

)
‖ ~r ‖2= 1 (5.29)

Here the 3d structure tensor is defined to be

J =

〈
∂I
∂x

∂I
∂x〉 〈

∂I
∂x

∂I
∂y 〉 〈
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∂y
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∂I
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∂t
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 (5.30)

where each component can be written in its integral form

Jpq = 〈∂I
∂p

∂I
∂q
〉 =

∫ ∞
−∞

h
(
~x− ~x′

) ∂I
∂p

∂I
∂q

dx′. (5.31)
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In this equation, h(~x− ~x′) is a function that defines the local neighborhood around ~x.
Usually a Gaussian window function is used for this purpose. By adjusting the area
of influence defined by this function, it is possible to define a scale for the structures
that can be analyzed by the structure tensor.
It can be proved by using Lagrangian multiplicators that the minimum of (5.29) is
given by the eigenvector of J that corresponds to the smallest eigenvalue (Haußecker
et al., 1998).

In the field of image processing the pure spatial version of the structure tensor

S =

〈∂I(x,y)
∂x

∂I(x,y)
∂x 〉 〈

∂I(x,y)
∂x

∂I(x,y)
∂y 〉

〈∂I(x,y)
∂y

∂I(x,y)
∂x 〉 〈

∂I(x,y)
∂y

∂I(x,y)
∂y 〉

 (5.32)

is often used to compute local structure-based image features that are invariant against
all kinds of Eulerian transformations. The most common image features that can be
exploited from the two-dimensional structure tensor are the local orientation that
can be obtained from the orientation of the eigenvector corresponding to the smallest
eigenvalue and a measure of the strength of the local structure based on the relation
between both eigenvalues.

One of the major drawbacks of the structure tensor is that the nearby image features
(e.g. edges and corners of small objects) are blended into a single response and can
not be resolved separately. Another shortcoming is its different response to lines and
edges. This is because the structure tensor is not phase-invariant because of its gradient
based definition (cf. (5.32)). As a result of these restrictions, the performance of the
structure tensor at the end of the recorded streak structures is worse compared to the
response of the boundary tensor that will be introduced in the following section.

Boundary Tensor

The second order boundary tensor turned out to be a superior method for the low-
level feature extraction in our case. As described by Köthe (2006), it overcomes all
previously mentioned shortcomings of the structure tensor. This tensor is defined in
(Köthe and Felsberg, 2005) by means of the sum of a first and a second order band-pass
Riesz transform (Felsberg and Sommer, 2001) b and A of an image.

B =
(
b11 b12
b21 b22

)
= bbT + AAT (5.33)

In the implementation, the tensor-scale σB is the only parameter that controls the
boundary tensor. More precisely spoken, σB controls the size of the band-pass filter
that is part of the tensor. By adjusting the tensor-scale, the size of structures that
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cause a response of the tensor can be controlled. For all data recorded in the course
of this thesis, a tensor scale between σB = 5 and σB = 8 yielded the strongest tensor
response for the recorded streak structures.

From this tensor one can easily extract several energies that will be used as feature-
images in the next steps of the workflow. The definition of the first energy is based
on the observation that both second order band-pass Riesz transforms (b and A) are
real. Therefore, B has to be always positive semi-definite. For this reason the trace of
this tensor represents a local energy measure called boundary energy.
This energy can be divided into a fraction caused by junctions in the data Ejunction
and a part that represents the tensor response to edges Eedge.

Eboundary = Ejunction + Eedge = tr (B) = b11 + b22. (5.34)

Using the expression for the edge energy

Eedge =
√

(2b12)2 + (b11 − b22)2, (5.35)

the junction energy can be computed by subtracting the edge energy from the boundary
energy. Additionally, a fourth low-level image-feature called local orientation θ can be
derived from the boundary tensor using:

θ = 1
2 arctan

( 2b12
b11 − b22

)
(5.36)

This feature is visualized with black arrows in Figure 5.10 on page 94 for an image
section that shows the measured gray-value distribution of a particle streak.
On the basis of these low-level image features, the boundary tensor can be used to
detect edges, lines and corners from the local distribution of the energies in the feature
images.

The particle streak extraction framework that is presented in this thesis makes use
of the local boundary energy Eboundary computed by means of a boundary tensor with
σB = 7. Since the sum of edge energy and junction energy is a decent indicator
for the presence of particle streak structures, the boundary energy is used to identify
particle streak structures in the corrected bPSV-measurements. In an iterative center-
line extraction routine that is described in detail in the following section, the local
orientation θ is used for a stepwise iteration along the structures.
For the computation of the boundary tensor and the low-level feature-images that are
based on its components, the c++ open-source image processing library vigra (Köthe,
2000) was used.

For a more detailed description of the boundary tensor and a characterization of its
edge and boundary detection abilities, we refer to (Köthe and Felsberg, 2005; Köthe,
2006).

Based on the previously described features an extraction routine was developed to
detect particle streak structures in single images of the PSV image sequences.
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Figure 5.9: Zoomed pseudo-color image of a single streak measured with an exposure time
of texp = 1 s and an illumination frequency F = 8 Hz. The blue line shows the course of the
center-line that was extracted by the previously described algorithm.

5.2.3 Streak Detection

All quantitative PSV and Particle Tracking Velocimetry (PTV) approaches that were
published in the past use threshold-based image segmentation techniques to estimate
the positions of particle streaks in the PSV-images.
All extracted information about the particle movement, i.e. the direction and the ve-
locity, are based on this segmentation result (cf. Section 2.2.2). Most approaches make
no use of the information that is contained in the gray-value distribution within the
segmented area and all state-of-the-art approaches ignore the information of neighbor-
ing pixels that are below the threshold.

One of the aims focused during the development phase of this method was to make
use of the complete gray-value signal caused by a passing particle on the bPSV-image.
Therefore, the detection algorithm developed in the course of this thesis uses a com-
pletely different strategy. Based on the particle streak model that is proposed in
Section 3.1, this method uses an iterative extraction approach that starts at several
seeding-points. These seeding-points are given by a set of local maxima in the bound-
ary energy feature image Eboundary. From each seeding point the extraction algorithm
travels along the streak in both directions. Given the assumption that the intensity
profile along a line that is perpendicular to the streak structure can be described
by a Gaussian bell-curve, the extraction routine computes the exact center-line and
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the intensity course using a non-linear Levenberg-Marquardt (LM) fit. This strategy
was inspired by the strategy used in all sub-pixel precise PTV-methods where a two-
dimensional (2d) Gaussian bell-curve is fitted to the intensity distributions caused by
single particles in the measurements (Nobach et al., 2005).

Center-line Extraction

As described in detail in the particle streak model introduced in Section 3.1, the
gray-value distribution of a streak structure caused by a passing particle in a bPSV-
measurement can be described by a temporal integral over a two-dimensional Gaussian
bell-curve that is moved along a trajectory in the image space. As a consequence, we
expect the intensity distribution on a line that is perpendicular to the streak structure
(i.e. perpendicular to the local orientation θ) to be a one-dimensional Gaussian bell-
curve.

Figure 5.10 on page 94 shows an image section that contains the gray-value distribution
of particle streak; the local orientation is displayed in form of arrows within the pixels,
and the Gaussian bell-curves that were fitted perpendicular to the local orientation by
means of a LM-fit are plotted in green.

The center-line extraction routine consists of two loops that are explained in detail
in the pseudo-code on page 93. The outer loop starts at the local maximum of the
boundary energy. In each iteration the inner loop is initialized to compute the middle-
line of the streak pattern that belongs to this maximum. Afterwards the next lower
local maximum is chosen.

The inner loop uses the local orientation and the gray-value information from the
measurement. It starts at the local maximum that was given by the outer loop. At this
position, which is only pixel-precise, the inner loop corrects the center-line positions
to sub-pixel precision by means of a LM-fit of a Gaussian bell-curve on the gray-values
that lie on a line which is perpendicular to the local orientation θ. These perpendicular
LM-fits are visualized by green areas in Figure 5.10 on page 94.
Afterwards, the algorithm updates the current position by traveling one step (the step
size can be set in the parametrization file) into the direction of θ. These steps are
repeated until the result of the LM-fit describes a Gaussian bell-curve with a width σ
that is above a certain threshold. Normally, this termination criterion is fulfilled when
the loop arrives at the end of the structure.

In order to extract the complete streak, the algorithm resets the current positions
to the point where the inner loop was initialized and starts traveling against the local
orientation, i.e. along the streak in reverse direction, until it reaches the second end.
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The sub-pixel precise position of the center-line and the result of the LM-fit are stored
in a feature vector for each streak. The extracted center-line positions are shown as a
blue line in Figure 5.10 on page 94.

Pseudo-code of the line extraction algorithm
1. Compute all local maxima in the boundary energy feature-image and sort them

in a descending order

2. For all local maxima boundary energy
a) Extract the gray-value information from the bPSV-image on a line per-

pendicular to the local orientation (red line in Figure 5.10)
b) Use a non-linear LM-fit to extract the parameter of a Gaussian bell-curve

that describes extracted gray-value distribution
c) Sub-pixel precise correction of the center-line position
d) Store all parameters in the feature-vector corresponding to this streak
e) Move the current position one step size into the direction of the local

orientation
f) If the width σ of the Gaussian bell-curve is larger than a predefined

threshold,
then: go back to the initial position, reverse the local orientation and
got to 2.g)
else: move the current position one step size into the direction of the
local orientation and go to 2.a)

g) Use a non-linear LM fit to extract the parameter of a Gaussian bell-curve
that describes extracted gray value distribution

h) Sub-pixel precise correction of the center-line position
i) Store all parameters in the feature-vector corresponding to this streak
j) If the width σ of the Gaussian bell-curve is larger than a predefined

threshold,
then: disable all local maxima that lie in the direct neighborhood of the
extracted center-line, go to the next lower enabled local maximum of the
boundary energy and start again from 2.a)
else: go to 2.g)

The result of this center-line extraction algorithm is a set of streak feature-vectors
that contain spatial information about the particle positions during the exposure time
by means of their center-lines. In addition, the feature-vectors comprise information
about the gray-value course along the center-line on the basis of the maxima of the
fitted Gaussian bell-curves. It has to be pointed out that this information is more
precise and robust with respect to image noise than taking the maximum-pixel gray-
value since the whole information on all intensities of the perpendicular lines is taken
into account.

93



5 Data Processing

Figure 5.10: Graphic to illustrate the steps of the center-line extraction algorithm. In the
background the measured gray-values are shown; the arrows on top show the direction of the
extracted local orientation φ. Gaussian bell-curves (green) are fitted perpendicular to φ for
the extraction of the particle streak width and intensity (Voss et al., 2012).

Additionally to these streak properties the local orientation and the streak-width are
also stored in the streak feature-vectors for all positions on the center-line.

5.2.4 Velocity Estimation

The main objective of the velocity estimation routine described in this subsection is
the reconstruction of the particle velocity-information that was lost in the temporal
integration over the exposure time texp (cf.: Section 3.1). As described in detail in
Chapter 3, the instantaneous spatial frequency of the gray-value signal along the center-
line of a streak-structure can be used to compute the horizontal velocity course vh(c)
of the particle that caused the streak on the basis of the following relation.

v(c) = α
F

f(c) (5.37)
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Where c [px] is given by the position on the center-line, α [cm/px] is the pixel-size, F [Hz]
is the illumination modulation frequency and f(c) [1/px] stands for the instantaneous
spatial frequency of the gray-value signal.

In order to compute the frequency of the gray-value signal G(c) that was extracted
along the center-line of each streak, a Hilbert Huang Transform (HHT) was imple-
mented. This transformation is a combination of an Empirical-Mode-Decomposition
(EMD) and a Hilbert Transform (HT). The result of the HHT is a spatial analytical
signal as defined in (3.23). This signal enables the computation of the instantaneous
frequency f(c) of a given signal and its instantaneous amplitude a(c) by means of the
equations (3.25) and (3.26). A more theoretical description and a literature review of
these methods is given in Chapter 3 of this thesis.

Empirical-Mode-Decomposition (EMD)

In the Hilbert Huang Transform (HHT) the EMD is used as a signal preprocessing step
that decomposes the signal into a set of independent intrinsic mode functions (IMF)s,
which can be analyzed separately in the following HT. By definition, valid intrinsic
mode function (IMF) fulfills the following two requirements:

1. The difference between the number of extrema and the number of zero-crossings
that are contained in a valid IMF must be less than or equal to one.

2. At any point on a valid IMF, the local mean value defined by the mean of two
envelope functions has to be equal to zero.

The implemented EMD algorithm uses an iterative sifting scheme for the extraction
of the IMFs from a signal G(x). To illustrate the general idea of this decomposition,
a pseudo-code of the implementation is given on page 96.
In the first step the counter variables are set to zero, and the rest r0 is initialized by
means of the signal G(x) itself. In the next step the current mode hij is set to be the
remaining rest ri from the previous iteration. The following loop is repeated until the
rest signal is monotone, i.e. does not contain any periodical information.
The inner loop updates the current mode as long as it fulfills all requirements of an
IMF. For each update two spline-functions are fitted through the maxima and minima
of the current mode. The point-wise mean of these splines, i.e. the local mean, is
afterwards subtracted from the current mode.
When the end of the inner loop is reached, i.e. hij fulfills the requirements of an IMF,
it is stored in ci. Afterwards the rest ri is updated by ri+1 = ri− ci. After termination
the list ci stores the IMFs and the non-periodical rest is given by rn.
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Pseudo-code of the Empirical-Mode-Decomposition (EMD)
1. initialize r0 = G(c), i = 0 and j = 0

2. set hij = ri

3. While: ri is not monotone
a) While: hij is no IMF

i. identify all local minima and local maxima
ii. fit two cubic splines; One through all minima and one through all

maxima
iii. compute the mean of these two splines to be the local mean signal

mij

iv. hi(j+1) = hij −mij

v. j = j + 1
b) ci = hij

c) ri+1 = r − hij

d) i = i+ 1

4. return the computed IMFs in c and the residual rn

Since we expect the signal measured in the PSV measurements to contain a non-
periodical offset, a periodical mode and some noise, the gray-value signal G(c) is
decomposed in three modes. The first mode is the dominant intrinsic mode func-
tion (IMF) that corresponds to the reflected intensity modulated illumination. The
second mode is a high frequent IMF that comprises image noise and variations caused
by numerical artifacts in the LM fit of the center-line extraction algorithm. In the last
mode the non-periodical offset signal is comprised.

For the following frequency analysis that was developed for an estimation of the in-
stantaneous frequency and amplitude of the spatial gray-value modulation along the
center-line of the particle streak structures, the non-periodic offset and the image
noise are not taken into account. Therefore, the Hilbert Transform (HT) focuses on
the analysis of the dominant IMF that is from now on labeled as X(c)

Hilbert Transform (HT)

For the computation of a HT from the periodical component that was extracted by
means of the EMD, we defined a discrete HT filter on the basis of a Hamming window
function (Harris, 1978).
For a given size N , this discrete window function w(n) : N→ R is defined by

w(n) = αh + (1− αh) cos
(2π
N
n

)
. (5.38)
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Hamming Window for α = 25/46

Figure 5.11: Output of the Hamming Window
function of size N = 50 with an optimal αh =
25/46

The window function coefficient αh of the filter used in this study was chosen to be
the optimum αh = 25

46 proposed by Harris (1978). A filter output for N = 50 is shown
in Figure 5.11.

The complex signal Y (c) defines the analytic signal Z(c) corresponding to the peri-
odical input signal. This signal is computed in a one dimensional convolution of the
signal vector X(c) with the product of window function and the Hilbert kernel H = 1

πc
as described in Chapter 3.

Y (x) = Ht (X (c)) = X(c) ?
(
wHT

)
(5.39)

Here Ht symbolizes the application of the HT. For this computation the window func-
tion w and the Hilbert kernel H must have the same dimensionality. The ’?’ symbolizes
a line convolution. In the implementation, we made use of the convolve_line function
implemented in the open-source image processing library vigra (Köthe, 2000).
For the computation of the signal amplitude a(c) and its phasing φ(c), we made use
of the polar representation of the analytical signal (3.23). This signal representation
allows the derivation of an instantaneous frequency that is computed element-wise
from the gray-value signal X(c) itself and from its complex counterpart Y (c), using
(3.25).

The spatial frequency of the gray-value signal is given by the change of the phasing
signal φ(c). Therefore, the frequency feature vector f(c) was computed in a convolution
of φ(c) with a simple one-dimensional derivative filter.

An overview of these extracted signals is given in Figure 3.3 on page 44. It shows the
result of the frequency analysis applied on the gray-value signal of a single particle
streak. This figure also shows that the frequency signal is corrupted by large errors at
both signal endings. These errors are a result of boundary effects that occur during
the convolution with the Hilbert kernel.
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5.2.5 Depth Extraction

Within the scope of this thesis, two depth extraction techniques were applied in PSV-
measurements. The main focus of this thesis is on the development of an absorption-
based method that was purpose-built for the measurement of flow information in the
boundary layer of a present interface. Additionally, a second depth estimation tech-
nique that uses a focused plenoptic camera to record a four-dimensional light field
was tested in a set of measurements conducted in a turbulent Rayleigh-Bénard (RB)
convection.

Bichromatic Depth Extraction (bPSV) As described in Section 3.2, the depth of a
tracer particle can be reconstructed by means of a two-wavelength illumination and
an absorbing dye.
The two light sources have to be modulated in an alternating fashion to enable a
separation of both intensities. Therefore, two different illumination patterns (shown in
Figure 3.5 on page 50) were tested. Both patterns ensure that the reflected intensity
caused by both light sources can be properly separated. This separation is of major
importance, since the depth is computed for the ratio of these intensities according to
(3.28).

The depth vector that contains the depth of every point on the particle center-line is
computed from two of the following previously computed streak features:

1. The non-periodical offset rn that results from the EMD, and

2. the instantaneous amplitude a(c) that was computed by means of the HT from
the analytic signal.

The formula used to compute the depth depends on the illumination pattern. For the
first pattern that modulates the two LED-arrays with two phase shifted sine functions,
the depth is computed using (3.29).

For the second illumination pattern, where one light source is driven with a constant
intensity while the second one is modulated with a sine function, the depth is given by
(3.30).

The resulting depth vector has the same number of entries as the center-line. Together
with the horizontal information this allows to describe the particles trajectory in the
3d space.
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Figure 5.12: Single 3D trajec-
tory that was measured in a
plenoptic Particle Streak Velocime-
try (pPSV) experiment; Black dots
show available z-information, black
lines show spatial information from
the center-lines. The color-coded
line is the result of a horizon-
tal spline interpolation combined
with a smoothing spline regression
of the z data. The color of the
line contains the information about
the horizontal velocity vh(x) of the
tracer-particle.

Plenoptic Depth Extraction (pPSV) The plenoptic depth extraction is based on the
depth-maps that were computed using the software “RaytrixLive” (Perwass, 2011),
provided by the camera manufacturer.
By means of a simple lookup function, positions on the center-line are connected with
height information in the depth-map. Unfortunately, the depth-maps only contain very
sparse information. This is because the stereo-based approach that is used to render
the depth-maps from the measured light fields depends on prominent image structures
for a proper depth estimate.
As a result of this sparse depth information, the depth is only known for a small set
of points on the center-line of single streaks. This circumstance is visualized in Figure
5.12 on page 99. The horizontal information given by the streak center-line (indicated
by the black lines at z = 0) is rather dense, while the z-information that is visualized
as black dots is very sparse and corrupted by large measurement errors and outliers.
The color of the line encodes the particles velocity that was computed using (3.18). As
described later different spline-fits can be used in a least squares regression to compute
a functional description of the 3d trajectory.

After having presented all applied processing operations and feature extraction routines
necessary for the analysis of streak structures, we will turn to the actual computation
of Lagrangian trajectories from the latter.

5.3 Step III: Computation of Lagrangian Trajectories

On the basis of the extracted particle streak data, long trajectories were computed.
Each of these trajectories comprises a set of particle streaks that correspond to the
same particle. As described in Chapter 3, this merging has a set of advantages such as
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a much longer observation time and a higher robustness. Additionally, this merging of
subsequent streaks allows to solve the directional ambiguity.

In accordance to the algorithmic tasks, this section is structured as follows. At the
beginning the strategy used for streak matching is described. Afterwards the spline-
fit that is performed on the matched streak groups is explained. Furthermore the
extraction of a quality-measure that is based on the spline fit of the particles velocity
is summarized. At the end of this section, the routine for the extraction of Lagrangian
flow features is described.

From now on, Ŝ stands for a set of N streak-lists Si, i ∈ [0, . . . , N − 1] that originate
from N subsequent PSV-images. Each streak list Si contains a set of M streaks
sj , j = [0, . . . ,M − 1]. The contained streak-features, i.e. its center-line course ~x(c) as
a function of the center-line position c, the width σ(c) and the horizontal velocity vh(c)
are known for every streak sj in Si. Here the 3d center-line course ~x(c) combines the
information obtained in the horizontal center-line extraction and the depth estimate.

5.3.1 Streak Matching

For the matching of multiple streaks that originate from subsequent images, a rather
simple matching algorithm was implemented. The good performance of the matching
strategy is due to an adaptive Mahalanobis distance metric that was used to define the
distance between two streak-endings. As described in detail in Chapter 3, this adaptive
distance definition incorporates the Euclidean distance as well as the streak direction
and its length. A functional description of the adaptive Mahalanobis distance metric
d(Ei, Ej) for two arbitrary streak-endings Ei and Ej is given in (3.32).

The trajectory-lists T̂ that are computed in the assignment algorithm consist of a set
of single trajectories Tk that store all streaks from a set of subsequent PSV-images
that correspond to the same tracer-particle.

Assignment Algorithm The assignment algorithm described in the following lines
works only on the basis of the extracted streak-features and is therefore independent
of the measured PSV-images. The trajectory computation is an iterative process where
single streaks that can not be assigned to an existing trajectory are used to seed new
trajectories. All streaks that were assigned to a trajectory because of a small adaptive
Mahalanobis distance are simply added at the corresponding trajectory end.
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Pseudo-code of the Streak Matching Algorithm:
1. Initialize an empty trajectory list T̂ , and i=0

2. Start an active trajectory Tk for every streak sj that is a member of the streak-
list S1 which corresponds to the first image

3. Label all endings in T̂ as active

4. Compute the distance d(·, ·) between all endings in T̂ and the streak endings
of all streaks from the next streak-list Si+1

5. All trajectories that have exactly one streak that has an end with an endpoint
distance which is smaller than the threshold dk are extended by adding this
streak; all other trajectories are disabled

6. All streaks in Si+1 that were not added to a trajectory are used to start new
trajectories in T̂

7. i = i+1

8. if i is smaller than the number of images in the measurement,
then:
go to 4.
else:
end the algorithm
return T̂

The output of this assignment algorithm is a set of trajectories. The contained tra-
jectories may start at different points in time and may have different lengths. All
streaks features, i.e. the spatial position x(c), the depth z(c), the width σ(c) and the
velocity v(c) of the member streaks of a trajectory are merged together. Additionally,
the length of the streak as well as its start and end time are stored in each trajectory.
This is achieved by means of a spline fit and a smoothing spline regression as described
in the following sub-section.

Spline Fitting

In this work cubic spline fits were used for three purposes:

1. To give a functional description of the features that are stored in the non-
equidistant sampled feature vectors of the trajectories.

2. To correct the noisy depth and velocity data and smoothen out the errors at the
junctions between single streaks within a trajectory.

3. To enable a change of variables from the position on the center-line to a temporal
dependency of the extracted trajectory features (c[px]→ t[ms]).
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In the implementation of the presented framework, we used the spline-fit routines that
were provided by the open-source C++ library ALGLIB (Bochkanov, 2010).

Spline Interpolation For the interpolation of the horizontal data, the assumption
was made that all 2d data points ~xh(c) on the center-line were extracted with a high
precision. Therefore, the functional description of these data should be given by a
smooth interpolation.

In the matching algorithm implemented within the scope of this thesis, a cubic spline-
fit was used to interpolate the spatial information contained in ~xh(c). A cubic spline
is a piecewise cubic polynomial that is defined for the whole interval of c and that
interpolates all data-points of ~xh(c). The only restriction is that it interpolates all
data-points and that its first and second derivative are continuous.

In the implementation all dimensions were fitted separately, i.e. a separate spline fit
was applied for the x and the y-direction of ~x(c). For a detailed description of the
mathematical background of the cubic spline-interpolation, we refer to the derivation
in (De Boor, 2001).

Spline Regression For the depth feature vector and the horizontal velocity it was
not possible to interpolate the existing data in a spline interpolation satisfactorily.
This is due to the fact that these signals contain errors that would falsify the results.
The horizontal velocity vh(c) for example is very precise in the middle area of each
streak. Due to the previously described error in the convolution with the Hilbert kernel
in (3.24), boundary artifacts may occur at the endings of the signal. These artifacts
are also shown in the extracted instantaneous frequency signal shown in Figure 3.3 on
page 44.

The depth signal z(c) of the measurements that were recorded by means of the bichro-
matic Particle Streak Velocimetry (bPSV)-approach is corrupted by the same kind of
errors as the horizontal velocity. This is because it also results from the frequency
analysis as described in Chapter 3 of this thesis.
The measurement errors in the depth signals that were measured using the plenoptic
Particle Streak Velocimetry (pPSV)-approach are different. As shown in Figure 5.12
on page 99, these data were only defined on a small subset of the center-line positions
and were corrupted by some large outliers caused by errors in the rendering process of
the depth-map. An optimal merging function should therefore be a robust regression
that allows a weighting of the influence of the input data.

In the feature extraction framework presented in this thesis, a weighted cubic smoothing-
spline was used to merge the particle depth z(c) and the horizontal velocity vh(c) of
the member streaks of a trajectory. A derivation and a detailed mathematical charac-
terization of this regression method is given in chapter five of (Hastie, 2003). It uses
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a piecewise cubic polynomial fitted on an equidistant set of sampling points in a way
that noisy data sets are fitted best.
Additionally, it provides the possibility to define a weight function that can be used
to define the influence of single data points.
In this study we used a weight function that was built from a set of logistic functions,
to increase the weight of data taken from the middle of individual streaks and to de-
crease the influence of the data that originate form streak endings.

After the spline interpolation of ~xh(c) and the weighted regression of z(c) and vh(c),
these spline functions were used to define a spatial three-dimensional feature vector
~x(c) and a three-component velocity vector ~v(c)

~x(c) = (xh1(c), xh2(c), z(c))t , (5.40)

~v(c) =
(
vh1(c), vh2(c), d

dcz(c)
)t
. (5.41)

In these equations xhi(c) and vhi(c) represent the ith dimension of the corresponding
feature vector.

Change of Variables On the basis of the spline representation of the spatial three-
dimensional position information and the spatial three-component velocity vectors,
a time-dependent Lagrangian representation of these properties can be computed by
changing the spatial dependency to a temporal dependency

~x(c) → ~x(t), (5.42)
~v(c) → ~v(t). (5.43)

This change of variables is achieved by adding a temporal dependency to the center-
line position c→ c(t). For this transformation we make use of the horizontal particle
velocity vector vh. Together with the start time t0 given by the acquisition time of
the image that corresponds to the first streak in the trajectory, we can use a recursive
algorithm to compute c(t) as follows:

c(t0) = 0, (5.44)
c(t+ tε) = c(t) + vh(c(t)) ∗ tε. (5.45)

In this equation tε is a small time interval. This variable has to be chosen much smaller
than the smallest characteristic time scale in the observed flow field.

The result is a time-dependent center-line position defined between t0 and the time
tend. The first time-point t0 is given by the time when the first streak-image that
corresponds to the trajectory was recorded, and the end time is given by the time when
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the acquisition of the last image was finished. Using the same spline interpolation that
was already used for the computation of a functional description of xh(c), a spline
representation of the time-dependent center-line position was computed. This allows
to assess all times in the interval (t0, tend).

The Lagrangian three-dimensional three-component (3D3C) trajectories can therefore
be described by inserting the time-dependent center-line position c(t) into the spatial
vectors ~x(c) and ~v(c) that are defined by spline-functions of the center-line position
c,

~x(t) = ~x (c (t)) , (5.46)
~v(t) = ~v (c (t)) . (5.47)

Quality Measure

On the basis of these time-dependent Lagrangian particle features (~x(t) and ~v(t)), a
quality measure can be defined for the extracted trajectory. This measure can be used
to exclude trajectories that have a bad quality due to errors in the velocity extraction
or incomplete streaks.

The definition of this quality measure is motivated by the fact that the temporal
integral over the horizontal velocity and the length of the trajectory should be the
same

∫ tend

t0
v(t) dt︸ ︷︷ ︸
A

≈ c(0)− c (tend)︸ ︷︷ ︸
B

. (5.48)

Large differences between the left and the right hand side of (5.48) may occur for two
reasons. The first one is an error in the velocity vector that results in a too large or a
too small left hand side of this equation. A second possible reason is an error in the
streak extraction. If the trajectory consists of incomplete streaks, the right hand side
deviates from the result of the integral. Based on these observations, the following
parameter R was defined to describe the quality of each trajectory,

R = |A−B|
0.5(A+B) . (5.49)

Here A is the integral over the time-depended velocity feature-vector and B is the
length of the extracted center-line. Both are defined in (5.48). Large R values indicate
a large difference between both sides of (5.48).
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In the implemented framework a threshold can be defined that causes a rejection of
trajectories with a quality measure that is larger than this value.

For all quantitative experiments that were done in the context of this study, this
threshold was set to 10%.

5.3.2 Lagrangian Features

For the computation of the Lagrangian features that were described in Chapter 3, the
spline representation of the particle trajectories and the velocity course along these
trajectories was used.
Since the Lagrangian information of a single particle that is moved within a turbulent
flow field comprises nearly no information about the characteristics of a turbulent flow
field, statistical measures were extracted on the basis of the Lagrangian information
of a large ensemble of tracer particles.

Two-Particle Dispersion

For the computation of the Lagrangian average of the particle dispersion motivated
in Chapter 3, a set of particle pairs P has to be extracted. As described in detail
in the methodology chapter of this work, each particle pair in this set must possess
a Euclidean distance that is lower than a predefined initial distance r0 at some time
point tp.

The extraction of a set of feasible particle pairs is performed on the basis of the data
that are contained in a set of trajectories T̂ . The extraction of these particle pairs
Pi and the corresponding time points tpi is solved in an exhaustive search that com-
putes the Euclidean distance de (~xk (t) , ~xj ((t)) for all possible trajectory-combinations
(Tk, Tj) and all time-points where both trajectories coexist.

Pseudo-code of the trajectory-pair computation algorithm
1. Initialize P = ∅ and i = 0;

2. For: k = 0 to size(T̂ ) do:
a) For: j = k to

size(T̂ ) do:
i. If: there is a point in time when |de (~xk (tp) , ~xj (tp))− r0| = 0
• add Pi = (Tk, Tj) to the set of particle pairs P, set i = i+ 1 and

store the corresponding time tpi

3. return P
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The result is a set of trajectory-pairs and time-points which indicate when the particle
distance was equal to the previously defined initial separation r0.

For the computation of the Lagrangian two-particle dispersion statistic, the time co-
ordinates of all trajectories were shifted by the corresponding time points tpi. In the
following step, the individual pair dispersion was computed as described in (3.36).
Thereafter the Lagrangian average of all individual particle pair dispersion behaviors
was computed according to (3.37).

For a turbulent RB convection, this Lagrangian measure was extracted in a series
of experiments that were conducted in the scope of this study. The results of these
experiments are presented in Section 6.

Lagrangian Acceleration Statistics

A second quantitative turbulence measure studied in the scope of this thesis is the
Lagrangian particle acceleration.

The extraction routine for the computation of this Lagrangian single particle charac-
teristic from the measured 3D3C trajectory is based on the spline representation of the
3C particle velocity. With a predefined temporal sampling rate, the algorithm extracts
acceleration values from the instantaneous velocity information. These accelerations
are simply stored in a histogram data structure that allows an easy evaluation of the
underlying Lagrangian acceleration distribution in the observed turbulence.

5.4 Semi-artificial Benchmark Data-Sets

To validate the velocity estimation, a set of benchmark datasets proposed by Berthe
et al. (2010) were used to compute a set of semi-artificial data sets that contain streaks
from particles which move with a known velocity.
These datasets were measured using a particle mounted on the head of a high-precision
milling cutter. The particle was moved in a dyed liquid on different trajectories and
recorded by a single camera recording short-exposure (single shot) PIV-data. A more
detailed description of the technique used for the measurement of these benchmark
measurements is given in Section 2.2 and in the paper that originally published these
data (Berthe et al., 2010).

From each PIV-image sequence containing N images It with t = 0 . . . N − 1 that com-
prise the gray-values ix,y,t, a single PSV image was computed by integrating over time
and modulating the image intensities with a time-dependent, sinusoidal function.

Isum =
t=N−1∑
t=0

ix,y,t

(
1 + 0.5 sin

(
2πF

ζ
t

))
(5.50)
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In this equation ζ[Hz] is the PIV camera frame-rate, F [Hz] is the simulated illumination
frequency and t is the number of the current times step. As shown in Figure 5.13 on
page 108, the integrated PSV data look similar to the data obtained in our long
exposure PSV measurements (cf.: Figure 5.9 on page 91).

The illumination frequency F was varied in a range where the number of periods
that were written along the streak was larger than two (to obtain a robust frequency
signal). The wavelength of the spatial signal on the streak was at least 10 px long
(to avoid errors due to the Nyquist-Shannon sampling theorem (Nyquist, 1924)). The
intensity-modulation frequency F for the circular measurement #1, where the particle
was moved with a constant velocity of v = 25 mm/s, was varied between 0.2 Hz and
2.0 Hz. For the slower linear measurements #2 to #5, where the particles were moved
with v = 9.1 mm/s, F was varied between 0.2 Hz and 1.4 Hz.
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Figure 5.13: Data sets computed by integrating the PIV benchmark data sets measured by
Berthe et al. (2010) over time. The sinusoidal intensity modulation of the signal is introduced
by a sine function in the integration (cf. (5.50)). The extracted middle-lines are shown as blue
lines in the middle of the streak structures. (Voss et al., 2012)
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This chapter comprises the results of the different experiments that were conducted
in the course of this thesis. It includes all validation experiments conducted to assess
the performance and the precision of single parts of the particle streak extraction
framework as well as quantitative measurements of a turbulent Rayleigh-Bénard (RB)
convection. In this context several turbulence features and Lagrangian characteristics
were derived from the Lagrangian trajectories measured in the interfacial region of the
air-water boundary layer. These turbulence characteristics are compared to results
that were obtained in other experimental and theoretical studies recently published in
the field of fluid-dynamics.

The outline of this chapter follows the chronological order of the presented experi-
ments. The first section (“Precision of the Proposed Techniques”) summarizes the
precision that can be expected in the bichromatic Particle Streak Velocimetry (bPSV)
measurements and in the plenoptic Particle Streak Velocimetry (pPSV) measurements.
After that the precision of the estimated velocities that are computed on the basis of
the periodical gray-value signal is assessed in Section 6.2 (“Benchmark Experiments”).
This is done by means of some semi-artificial benchmark data sets. The latter were
computed on the basis of a set of real Particle Image Velocimetry (PIV) benchmark
measurements (Berthe et al., 2010).
In the following Section 6.3, the Lagrangian trajectories are shown that were recorded
to characterize the interfacial flow in the free air-water interface of a turbulent RB-
convection. Since this turbulence measurements were recorded using the two different
depth extraction techniques, i.e. the light-filed based approach and the bichromatic
approach, two subsections summarize the resulting flow fields. Here, the first subsec-
tion shows the results obtained by means of the bPSV approach and the second section
contains the results of the pPSV method.
The last part of this chapter (Section 6.4) focuses on the description of the measured
turbulence and on the extracted Lagrangian turbulence characteristics. Therefore,
different models and theoretic predictions developed to describe isotropic turbulences
are used to characterize the obtained Lagrangian turbulence features of the interfacial
flow field. Furthermore, these models are used in this section to compare the extracted
turbulence characteristics (i.e. the Lagrangian acceleration distribution and the La-
grangian particle pair dispersion) with the results obtained by other state-of-the-art
methods that were proposed in the field.
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6.1 Precision of the Proposed Techniques

As pointed out by Haußecker et al. (1998), a quantitative image sequence analysis
routine requires a geometric and radiometric calibration as well as a quantitative error
analysis of the entire chain of operations used for the flow feature extraction.

Since the quality of the results can only be as good as the least precise part of the
system, this section summarizes the precision of all components of the flow feature ex-
traction framework to obtain a valid and reasonable error analysis of the full system.

A detailed estimation of the radiometric precision by means of a sensor characterization
was only performed for the gray-value camera used in the bPSV-measurements since
the depth estimate of this approach relies crucially on the precision of the measured
absolute intensities as described in Section 3.2.
The precision of the absolute intensities measured by means of a focused plenoptic
camera in the pPSV-experiments does not influence the depth estimate of this method
since this technique relies on a stereo based depth extraction that uses the measured
light fields (cf. Section 3.3). Therefore, this study refrains from a characterization
of the radiometric precision that can be reached by the sensor array in the focused
plenoptic camera.

6.1.1 Radiometric Precision of bPSV Experiments

As described earlier in Chapter 5, the charge-coupled device (CCD)-sensor of the
used gray-value camera was characterized in a radiometric calibration that fulfills
the requirements of the European Machine Vision Association (EMVA)1288 standard
(EMVA, 2010). The following error analysis is based on the results of this characteri-
zation.

One very important sensor characteristic that directly influences the depth estimate is
the overall system gain K. This parameter has to be characterized separately for the
three wavelength areas (Ki, i ∈ {red, green, blue}). As described in detail in Section
5.1, it describes the digital output caused by a single electron in a pixel of the sensor.
Table 5.1 on page 78 summarizes the results of the sensor calibration. Here it can
be demonstrated that the overall system gain for the higher wavelength area, i.e. for
blue and green light, agrees nicely within the 0.4% measurement error. The deviation
for longer wavelengths is much larger. The overall system gains Kblue and Kred differ
more than 1%.

The same tendency was observed for the wavelength-dependent quantum efficiency
ηi, i ∈ {red, green, blue} of the pixels in the CCD-sensor. By its definition in the
EMVA1288 standard, this characteristic measure describes the average number of elec-
trons induced in the semiconductor-junction in a single pixel of the imaging device.
On the one hand the quantum efficiency depends on the materials and coatings that
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were used to manufacture the sensor array. On the other hand it is dependent on the
wavelength of the incident light. This is due to the fact that the photon energy scales
linearly with their frequency.

For the present sensor array, the quantum efficiencies are nearly the same for the blue
and the green light (ηblue = (505.5± 1.8) · 10−3 e−/Photon and ηgreen = (505.2± 2.2) ·
10−3 e−/Photon). In contrast, the photon responsivity for light with larger wavelengths
is much smaller (ηred = (347.9± 1.3) · 10−3 e−/Photon) because of the smaller energy
contribution per photon.

For a more intuitive characterization of imaging sensors, the product of the overall
system gain and the photo response can be computed for each wavelength range.
This characteristic measure is called photo responsivity R [DN/Photon].

Ri = Kiηi, with i ∈ {red, green, blue} (6.1)

As indicated by the units of R, it describes the direct correlation between the number
of photons that hit a pixel and its digital number (DN) output. Furthermore, it is
much easier to assess this characteristic by means of a calibrated Ulbricht sphere as
described earlier in Chapter 5 of this thesis. The diagram on the right hand side in
Figure 5.3 on page 78 shows the characterization measurement that were performed
to determine the photo response for the image sensor. The plot clearly visualizes the
wavelength dependency of this measure. While the response on smaller wavelengths
(blue and green) is very similar, it shows a drastic deviation for larger wavelengths.

The photo response curve can also be used to analyze the linearity of the response
as a function of the signal intensity. In this context the course of the photo response
curve shows a nice linear dependency between the intensity of the dark-signal and the
saturation-intensity for all three wavelength regions. These intensities were computed
in the noise model derived in Section 5.1.

The Signal-to-Noise Ratio (SNR) behavior of the camera was also determined in the
radiometric camera characterization. Figure 5.4 on page 80 shows the course of the
SNR values for the three wavelength regions ({red, green, blue}) as a function of the
irradiation [photons/pixel] on the sensor array. In the noise model of the EMVA1288
standard, the SNR is defined by the ratio of the photon-induced gray-value and its
variance on the sensor array (cf. Section 5.1 in Chapter 5). Additionally, this figure
shows the SNR-course of an ideal imaging sensor and the (SNR = 1)-threshold.

Summarizing the errors that occur because of wavelength-dependent differences in the
linearity of the sensor pixels can be neglected. Both light sources used in the context
of this study (λ1 = 405 nm and λ2 = 465 nm) are in the high frequent regime that
seems to have a constant linearity down to wavelengths of about 550 nm (green).
The SNR-threshold corresponds to a sensor irradiation of about 40 photons/px. Using
the photo-response parameter R = ηK, this minimal irradiation can be converted in
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units of [DN]. Therefore, a threshold µ∆[DN] can be computed from the SNR-threshold
defining a gray-value difference that can be resolved properly in the recorded images.

µ∆ = R ∗ 40 photons/px ≈ 8 DN (6.2)

As a conclusion of the camera calibration in Chapter 5, it can be said that reliable
particle streak signals caused by reflections of the blue and the violet illumination can
be measured between the intensity of the dark signal µy.dark = 241 DN and the satu-
ration intensity µy.sat = 3706 DN. Low intensity signals can reliably be distinguished
from the background if they differ from µy.dark more than µδ = 8 DN.

6.1.2 Spatial Precision of bPSV and pPSV

In the characterization of the spatial precision that can be reached by the presented
measurement methods, three sources of error have to be considered separately.

1. The conversion of positions and velocities is linearly dependent on the pixel-
size. This magnification measure has to be determined determined previously
to each experiment by a calibration measurement using a mm-grid. In a man-
ual evaluation, the number of pixels that constitute a distance of 30 mm were
measured at least five times. On the basis of these counts, the pixel-size α and
its standard deviation σα can be estimated. Typical pixel sizes and standard
deviations observed in the turbulent RB convection measurements amount to
α = (3 · 10−2± 5 · 10−5) mm/px. This means, the expected error can be approxi-
mated to be 0.2% of the pixel size.

2. The second source for a spatial error in the measurement originates from the
perspective distortion that causes a change of the pixel-size for different depths.
To quantify this error, the mm-grid used as calibration target was imaged in
different depths within the volume of interest. In all bPSV measurements, this
volume was rather thin because the developed measurement method focuses on
the measurement of flow fields in the thin boundary layer of interfaces. Deeper
regions (below depths of 15 mm) were not imaged because all the light from these
regions was absorbed due to the used dye. In all measurements the deviation of
the pixel size in different depths was much smaller than the approximated pixel
size error and could therefore not be extracted.

3. The third spatial uncertainty that arises is the error made in the Levenberg-
Marquardt (LM)-fit in the streak-extraction routine described in Section 5.2.
Since the sub-pixel precise position is computed from the maximum position of
the fitted Gaussian bell-curve, the error of the Gauss-fit can be used to quantify
the extraction error.
From the output of the fit routine the expected uncertainty of the parameters

112



6.1 Precision of the Proposed Techniques

was computed by means of the covariance matrix. Typical observed fit-errors of
the center-line position were in the order of magnitude of 0.1 px. Assuming a
typical pixel size of α = 3 · 10−2 mm/px, the absolute expected error introduced
by the uncertainty of the LM fit can be estimated to be 3 · 10−3 mm.

In conclusion, it can be said that the expected spatial error of all measurements that
were done within the scope of this thesis is dominated by the error of the LM-fit.

6.1.3 Precision of the Velocity Estimate of bPSV and pPSV

The precision of the velocity estimate by means of a periodical modulated illumina-
tion and a frequency analysis of the reflected signal depends on various circumstances.
The most important condition for a precise velocity estimate is that the modulation
frequency of the light sources F [Hz] and the exposure time texp[s] should be properly
adapted to the expected velocities in the flow field.
A too high frequency would cause a constant intensity signal from slow particles.
Choosing a too short exposure time results in short streak-structures that don’t com-
prise enough periods of the modulated illumination for a precise velocity estimate.
A description of how to choose the correct modulation frequency and an appropriate
exposure time is given in Section 3.1.

In a series of experiments using semi-artificial data sets computed on the basis of some
previously published PIV-benchmark data sets (Berthe et al., 2010), the previously
mentioned experimental conditions were varied in order to characterize their influence
on the precision of the velocity estimate. A detailed description of the semi-artificial
data sets is given in Section 5.4 of Chapter 5.

The results of the velocity validation are summarized in Table 6.1 on page 118. The
standard deviation of the velocity estimate of all values along the extracted trajectories
is used to estimate the expected error of the velocity estimate. It can be seen, that
for all benchmark data sets it is below 0.5% of the measured velocity. Additionally, it
can be demonstrated that the ground truth velocity lies within a 1σ environment of
the mean of the instantaneous velocities extracted along trajectories.

As described in Section 5.3, an additional quality measure can be used that compares
the length of a trajectory with the temporal integral over the horizontal particle velocity
along the trajectory. On the basis of this quality measure R that is defined in (5.49), all
trajectories with a velocity deviation larger than a certain percentage can be rejected.
For all quantitative experiments that were conducted within the scope of this thesis,
this threshold was set to R = 10 %. According to the definition of R, small R values
correspond to high qualities.

A quality measure distribution of the trajectories extracted from Measurement#4 is
shown in Figure 6.1 on page 114. This figure shows that the 10% threshold restricts
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Figure 6.1: This figure shows the
distribution of the trajectory qual-
ity measure obtained in Measure-
ment#4. In the quantitative
evaluations only trajectories with
a quality measures smaller than
10%, i.e. high quality, were con-
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the evaluation to trajectories from the left (high quality) tail of the distribution. For
future experiments, this threshold can be chosen depending on the required precision
of the velocity estimate and the needed for large trajectory numbers in the statistical
evaluation the threshold.

6.1.4 Precision of the Bichromatic Depth Estimate

In the following estimation of the precision that can be reached in the bichromatic
approach, several error sources have to be taken into account. On the one hand the
SNR of the imaging device restricts the precision of the intensity information that can
be extracted from the measured images. This source of error was previously estimated
in the EMVA camera calibration (cf. Section 5.1). On the other hand the streak
extraction-routine itself presents a possible error source that can corrupt the extracted
intensity values. This uncertainty originates from the intensity extraction by means of
a LM-fit that computes the intensity from the parameter of a Gaussian bell-curve.

Taking into account all possible error sources that corrupt the intensity measurement,
we assume the relative error of the measured absolute intensities to be about ∆I

I ≈ 0.02.
This estimation agrees well with gray-value uncertainties that were observed in other
particle based flow measurements. Typically these uncertainties vary between 1% and
10% (Tropea et al., 2007).

Using the depth equation of the bichromatic depth estimation (3.28) that defines
z(I1, I2), the measurement error ∆z(I1, I2) can be computed from the following equa-
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tion:

∆z(I1, I2) =
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∂z

∂I1
∆I1

)2
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)2
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∣∣∣∣︸ ︷︷ ︸
Z∗(z∗1,z∗2)

√
∆I2

1
I2

1
+ ∆I2

2
I2

(6.3)

In this equation z∗1 and z∗2 are given by the penetration depths of the two light sources
in the dyed liquid. Therefore, the uncertainty of the depth estimate depends linearly
on the relative intensity error and scales with a factor Z∗(z∗1, z∗2), which is given by
the ratio between the penetration depths of the dye for the two wavelengths.
To visualize the influence of this ratio on the uncertainty of the depth estimate, we
replaced z∗2 by z∗2 = Cz∗1 and plotted the logarithm of Z∗ for z1∗ = 1 as a function
of C = z∗2

z∗1
(cf. Figure 6.2).

The penetration depths of the dye at the given wavelengths are summarized in Chap-
ter 4 of this thesis. As visualized in Figure 4.3 on page 66, the ratio between both
penetration depths for the used wavelengths is

z∗2
z∗1

= 2
3 . (6.4)

Therefore, the expected uncertainty of the depth estimate can be computed from Z∗
using (6.3). The expected relative intensity error amounts to ∆z = 0.04z1∗.

The precision of penetration depths of both wavelengths z∗1 and z∗2 at the used dye
concentration also contributes to the error of the depth extraction. As proposed by
Berthe et al. (2010), a calibration measurement is performed previously to each mea-
surement to estimate these parameters with the highest possible precision. By using
the absorption calibration measurement described in Chapter 3 of this thesis, the er-
ror of the penetration depths can be assumed to be smaller than 1%. Therefore, this
source of error can be neglected because the overall error of the depth estimate is
dominated by the precision of the measured absolute intensity.

This means that it is possible to obtain a precision of 4% of the penetration depth by
using Tartrazine (E112) and light sources at λ1 = 405 nm and at λ2 = 465 nm.

6.1.5 Depth Range of the Bichromatic Technique

The assessable depth range can be derived on the basis of Lambert Beer’s law for the
absorption of a single wavelength. Here we have to use the absorption behavior of the
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Figure 6.2: This figure shows the dependency
of the error of the depth-estimate on the ratio
of the wavelength-dependent extinction coeffi-
cients. It can be seen that a large difference
between the extinction coefficients, i.e. a small
C = z∗2

z∗1
, yields a drastic reduction of the mea-
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wavelength with the smaller penetration depth z∗ because this property restricts the
depth range of the method.

Since the exponent of the absorption law (3.27) is linearly dependent on the penetration
depth that also restricts the depth-range, it is obvious that also the depth range can
be estimated from this linearity.

The assessable depth range depends on the dynamic range of the camera. As shown
in the radiometric calibration in Chapter 5, it is possible to measure reliable intensity
signals between the dark signal intensity µy.dark = 241 DN and the saturation intensity
µy.sat = 3706 DN.

I0 ∗ exp (−2z/z∗)
I0

>
µy.dark
µy.sat

= 0.067 (6.5)

This condition is fulfilled if z < 1.35z∗. Therefore, the fraction of the intensity that
hits the sensor from depths below z = 1.35z∗ causes a signal that is below the dark
signal µy.dark and therefore can be neglected.
The depth assessable by the bichromatic technique ranges therefore in the interval
z ∈ [0; 1.35z∗).

6.1.6 Precision of the Plenoptic Depth Estimate

The absolute precision of the depth estimate obtained in the measurements with the
second developed technique using a focused plenoptic camera depends on the depth
range achieved in the individual measurements.

In the calibration measurements described in Section 3.3 on page 50, a general corre-
lation between the horizontal dimensions of the measurement volume and the depth
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range was observed. For the used camera the depth range is always of the same order
of magnitude as the horizontal dimensions.

In the data sheet of the focused plenoptic camera (R11, Raytrix GmbH, Kiel, Ger-
many), the manufacturer claims that the supplied software RXLive resolves 100 depth
layers within the measurement volume (cf. Figure A.5 on page 165). This would imply
a theoretically reachable resolution of ≈ 1 % of the depth range.

Unfortunately performance of the depth extraction depends crucially on the depth
extraction routine itself and on the performance of the algorithm on the measured
data sets. To visualize the quality of the depth information that was extracted from
the pPSV measurements in this study, we plotted a three-dimensional (3d) trajectory
in Figure 6.6 on page 125. It can clearly be seen that the depth information in the
pPSV measurements is corrupted by an error that is much larger than 1%.
Using a statistical analysis of the depth data that were observed on the trajectories
in the pPSV measurements of this study, we observed a relative standard derivation
σdepth = 6 % in the locale mean of the depth signal.

6.1.7 Depth Range of the Plenoptic Technique

The depth range can be resolved by means of the focused plenoptic camera and de-
pends on the extended focal depth which can be achieved in the rendered “all-in-focus”
images. This focal depth is defined by the camera geometry, the position of the used
objective and the position of the micro-lens array. In a set of calibration measurements
described in Chapter 3 it was found that the depth range of the focused plenoptic cam-
era was always within the same order of magnitude as the horizontal dimensions of
the recorded images. This limit is systematic and can also be explained by the camera
geometry of the plenoptic camera model introduced in Chapter 2.

6.2 Benchmark Experiments

The following section presents the results of the validation experiments that were
performed to estimate the precision of the instantaneous velocity computed by means
of a frequency analysis. In these experiments a set of PIV benchmark measurements
proposed by Berthe et al. (2010) were used to compute semi-artificial Particle Streak
Velocimetry (PSV) trajectories as described in Section 5.4 of Chapter 5. For the
computation of these semi-artificial data sets the simulated illumination frequency
was varied systematically. After that the instantaneous velocity computed along the
extracted trajectories was compared to the ground truth velocities used to generate
the PIV benchmark measurements.
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Figure 6.3: Velocity results for
the semi-artificial data sets built on
the basis of a PIV Benchmark data
set previously published by Berthe
et al. (2010). In this plot the av-
erage velocity is shown as a func-
tion of the illumination frequency
F . The illumination frequency in
the plotted range has no influence
on the quality of the velocity esti-
mation.
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data-set #4
data-set #5

measurement velocity [mm
s ] F [Hz] v(x)[mm

s ] std (v(x))

#1 25.0 0.2 - 2.0 24.98 0.09
#2 9.1 0.2 - 1.4 9.12 0.04
#3 9.1 0.2 - 1.4 9.08 0.04
#4 9.1 0.2 - 1.4 9.09 0.04
#5 9.1 0.2 - 1.4 9.11 0.03

Table 6.1: Statistical evaluation of the benchmark results. The deviation of the mean velocity
v(x) from the ground truth given by the speed of the micrometre traverse T is less than one
sigma of the standard deviation.

The velocity results obtained from these semi-artificial data sets indicate that the
proposed algorithm allows an extraction of horizontal particle trajectories as well as the
computation of their instantaneous horizontal velocity based on a frequency analysis
of the reflected light from the intensity modulated illumination. As summarized in
Table 6.1 the extracted average velocity matches the ground truth velocity given by
the speed of the traversal unit. It can be seen that the variations of the simulated
illumination frequency have no influence on the precision of the velocity estimate (cf.
Figure 6.3). The precision of the extracted instantaneous velocities as well as their
standard deviations indicate that the relative uncertainty of the velocity estimate is
smaller than 0.5 %.

The boxplot in Figure 6.4 shows a statistical analysis of the velocity results of all
frequencies for the linear data sets (i.e. data set #2 to data set #5). In this plot
small deviations from the ground truth (v = 9.1 mm/s) can be observed. Since these
deviations are scattered around the ground truth and because the ground truth is
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Figure 6.4: Boxplot of the veloc-
ities obtained from the analysis of
the semi-artificial data sets #2 to
#4. The average of all velocities
(red lines) is near ground truth
(green line), but for two measure-
ments the ground truth is not in
the area between the lower quantile
(Q1) and the upper quantile (Q3),
indicated by the squares. The
black brackets show the maxima
and minima of the velocity distri-
bution and outlier are visualized as
red crosses.

within a 1σ environment of the mean value, it is unlikely that the observed deviations
are caused by a systematic error of the measurement.

6.3 Turbulent Rayleigh-Bénard (RB) convection

This section provides an overview of the results that were obtained from the Lagrangian
measurements of turbulent RB flow fields. All turbulences were generated by means
of the infrared heated vessel described in detail in Section 4.5 on page 71. For all
measurements taken in this study the vessel was filled with deionized water. The total
height was set to H̃ = (50± 3) mm.

The results that are shown in this section were measured in the air-water interface of
a turbulent RB convection by means of the two developed PSV techniques. The first
series of measurements was acquired using the bPSV technique based on a bichromatic
depth extraction approach (cf. Section 3.1 on page 34). In the second series of mea-
surements the pPSV approach was used. This technique relies on a depth extraction
from light field measurements that were taken by means of a focused plenoptic camera
(cf. Section 3.3 on page 50).

The heating power of the RB vessel was set to 945 W in both measurement series.
Previously to each measurement the setup was heated for several hours to guarantee
that the turbulence reached an equilibrium state. In this state of equilibrium the
mean temperature of the water in the bulk, i.e. in the middle of the vessel, was
measured using a Pt100 thermo sensor. Additionally, this sensor was used to measure
an average temperature difference between the heated bottom of the vessel and the free
water surface that was cooled by the environment due to processes such as evaporation
and conductive heat transfer. All measured temperatures are listed in Table 6.2. This
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Item Value Comment
mean temperature T = (51± 0.2) ◦C
temperature difference ∆T = (23± 0.3) ◦C
bPSV dye concentration cbPSV = 12 mg/l used for the bichromatic

depth extraction
pPSV dye concentration cpPSV ≈ 5 mg/l used to remove scat-

tered light from below
the measurement vol-
ume

kinematic viscosity of
water

ν55◦C = 0.551 · 10−6 m2/s (Kestin et al., 1978)

isobaric thermal expan-
sion coefficient

αi (50◦C) = 4.578 · 10−4 1/K (Irvine Jr and Duignan,
1985)

thermal diffusivity κ = 1.44 · 10−7 m2/s (Salazar, 2003)

Table 6.2: Summary of the experimental parameter in the RB experiments. This table shows
the parametrization of the experimental setup as well as the most important material properties
of the deionized water at the equilibrium temperature.

table also summarizes the most important parameters of the turbulent RB convection
that were generated for the characterization experiments.

As motivated in Section 2.1, a set of dimensionless scaling parameters has to be ap-
proximated to enable a comparison of the measured turbulence characteristics with
the outcome of other studies and to use scale-invariant models for the description of
the observed processes.

6.3.1 Scaling Parameters

For a quantitative description of the turbulence that was generated in the previously
described RB experiments, the dimensionless Rayleigh number (Ra) and the dimen-
sionless Reynolds number (Re) were estimated according to the derivation described
in Section 2.1 of Chapter 2.

Ra can therefore be approximated as described in Equation (2.1) using the material
properties from Table 6.2.

Ra ≈ 7 · 107 (6.6)

Common turbulences in the field of industrial engineering lie in the Rayleigh number
interval between Ra = 106 and Ra = 108. Therefore, the turbulence generated in the
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RB vessel can be seen as a feasible model of a turbulent process from an industrial
application.

The Reynolds number can be interpreted as the ratio between the kinematic forces and
the viscous forces that occur in the turbulence (cf. Chapter 2). It can be computed
by using Equation (2.2) as follows:

Re = ul

ν
≈ 115 (6.7)

The Reynolds numbers that were extracted from the single turbulence measurements
in this study were all within the same order of magnitude. The estimated numbers
scatter with a standard deviation of about ±10 around the mean value given in (6.7).

As motivated in Chapter 2, a characterization of the observed turbulence by micro-
scopic scaling variables is quite useful and common in turbulence models that describe
Lagrangian turbulence characteristics.

The most prominent scaling parameters that are used in this context are the Kol-
mogorov microscales. These characteristic scales are given by the smallest scales that
can be observed in a turbulent flow. As described in Section 2.1, these scales define
a length scale ηK, a time scale τK and a velocity scale uK. By definition the Kol-
mogorov microscales can be computed from the fluids kinematic viscosity ν and the
energy dissipation rate 〈ε〉.

Since a precise estimate of the energy dissipation 〈ε〉 is not obtainable from the mea-
sured PSV sequences, we use the correlation between the Kolmogorov microscales and
the Reynolds number derived in Section 2.1. The equations (2.4), (2.5) and (2.6) that
were derived in Chapter 2 of this thesis provide an approximation of these microscales.
They depend on the characteristic length scales and the characteristic velocities that
can be observed in the turbulence.

In the present study we estimated the characteristic length of the large-scale eddies l
by visual inspection from the measured image series. The characteristic velocity was
approximated from the root mean squared (rms) velocity of the fastest 10% of all
measured trajectories. Slower trajectories, corresponding to small-scale turbulences,
were ignored in this averaging. Together with the kinematic viscosity of water ν55◦C =
0.511 · 10−6 m2

s (Kestin et al., 1978) the turbulent Rayleigh-Bénard convection can be
characterized by the small-scale turbulence characteristics summarized in Table 6.3.
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measurement Re ηK[m] τK[ms] uK[mm/s]
Measurement#1 103 3.3 · 10−4 209 0.15
Measurement#2 128 3.0 · 10−4 174 0.17
Measurement#3 115 3.2 · 10−4 205 0.15
Measurement#4 115 3.2 · 10−4 204 0.16

Table 6.3: Turbulence characteristics and Kolmogorov microscales observed in the turbulent
RB flow fields

6.3.2 Bichromatic Particle Streak Velocimetry Measurements

As visualized in Figure 6.5 on page 123, the hybrid bPSV approach that uses a bichro-
matic depth extraction (cf. Section 3.2) allows three-dimensional three-component
(3D3C) measurements in a 10 mm thick boundary layer at the air-water interface of
the generated turbulent RB convections.

This restriction to a thin measurement volume was achieved by using an E112 concen-
tration of 12 mg/l. It has to be pointed out that this is not the resolution limit of the
measurement technique. By using higher concentrations of the absorbing dye, it would
even be possible to restrict the measurement volume to a thinner volume-of-interest.
In contrast to the plenoptic approach a fine resolution of the upper boundary layer
using the bPSV technique is possible. The precision of these measurements can be
estimated according to the preliminary considerations in Section 6.1. It amounts to
4% of the penetration depth.

In the calibration measurements conducted previously to each measurement, this
penetration depth was measured for each wavelength. For the violet light source
λ1 = 405 nm at the used concentration of 12 mg/l it was found to be 9 mm. This
means that the precision of the depth estimate can be approximated to be 0.1 mm.
The precision of the horizontal information is even higher. This is because of the sub-
pixel precise center-line extraction routine (cf. Chapter 5) and the relative small pixel
size α = 0.03 mm/px of the camera (cf. Chapter 4). According to the considerations in
Section 6.1, it is reasonable to approximate the measurement error in the horizontal
directions by 10% of α, i.e. 3 · 10−3 mm/px.

In short it can be said that the resolution of the velocity information and the depth
estimate are sufficient to resolve interfacial processes in the first centimeter of the
air-water interface of the turbulent RB convection.
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Figure 6.5: 3D bPSV trajectories measured in the turbulent RB convection characterized in
Table 6.2 on page 120
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6.3.3 Plenoptic Particle Streak Velocimetry Measurements

In all experiments that were performed by means of the focused plenoptic camera,
E112 was used to block the light from deeper regions lying below the extended focal
depth of the “all-in-focus” images (cf. Chapter 2). This strategy yields a significant
improvement in the quality of the measured data sets since interfering reflections caused
by particles in deeper regions were absorbed by the dye.

In the pPSV measurements that were performed to extract flow information from
the turbulent RB convection, the horizontal dimensions of the measurement volume
amount to 75 mm × 55 mm. As described in Section 6.1, the depth range of the used
focused plenoptic camera is correlated with the horizontal dimensions of the measure-
ment volume. Therefore, the depth range of the measurement volume was approx.
50 mm. The trajectories extracted from a short pPSV image-sequence are plotted in
the right image of Figure 6.6 on page 125. With respect to the original aim of this
thesis, i.e. the development of a measurement technique for the extraction of interfa-
cial flow information, the fixed correlation between the depth range and the horizontal
size of the measurement volume yields three major disadvantages.

• Although a restriction of the measurement volume to a thin layer in the interface
would be possible by means of an absorbing dye, the relative precision of the
depth estimate would still be approx. 6 % of the original depth range. This
means, if we restricted the measurement shown in Figure 6.6 on page 125 to the
upper 10 mm using a high E112 concentration in the liquid, there would still be
an uncertainty of ±3 mm in the depth information.

• Due to the high depth range, the seeding density of the used tracer particles
has to be reduced drastically. This is necessary to avoid multiple crossings of
the measured particle streaks. These crossings would hamper the center-line
extraction and reduce the number of valid streaks extracted from the images.

• Another shortcoming that is connected with the low seeding density is that it
is impossible to compute Lagrangian multi-particle statistics from the recorded
pPSV data. As explained in Chapter 2, these Lagrangian measures rely on pairs
of particles or even clusters of multiple particles that have a small initial distance.

Since a characterization of interfacial processes on the basis of the presented pPSV
technique is not possible due to the previously stated reasons, we focus on the data
measured by means of the bPSV approach in the following extraction of Lagrangian
turbulence statistics. These data were measured in a thin volume under the air-water
interface of the turbulent RB convection with a high spatial and temporal resolution
that enables the extraction of valid acceleration statistics. Furthermore, the bPSV
technique allows to use seeding densities that enable the extraction of Lagrangian
particle pair dispersion statistics.
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a) b)

Figure 6.6: 3D pPSV trajectories of tracer particles with color-coded velocity information
measured at the convection tank. The water surface in this experiment was at z = 50 mm.
The black lines show the horizontal information obtained from seven "all-in-focus" images.
The depth information was obtained from the depth maps of a stereo algorithm. a) Single
trajectory with black dots to show the sparse depth information that was interpolated by using
a penalized smoothing spline. b) Example for a set of particle trajectories from a time interval
of 6s at the convection experiment.

6.4 Lagrangian Statistics

This section focuses on the Lagrangian turbulence statistics that were computed from
Lagrangian trajectories measured in the bPSV experiments on a turbulent RB convec-
tion.

To characterize the turbulent flow and to validate the applicability of the developed
measurement technique, the single particle acceleration was evaluated and compared
to two existing models that describe the acceleration distribution. Therefore, the
Probability Density Functions (PDF)s of these models were fitted to the acceleration
distributions of Lagrangian particle trajectories observed in the upper the centimeter of
the air-water boundary layer in the turbulent RB convection. Additionally the three-
dimensional Lagrangian two-particle dispersion was extracted from these trajectories.
Both statistical turbulence characteristics were computed from large ensembles of La-
grangian particle trajectories. Each ensemble corresponds to one of the measurements
summarized in Table 6.3 on page 122.

6.4.1 Lagrangian Acceleration Statistics

As already explained in detail in Section 2.1, Lagrangian acceleration statistics play an
important role in turbulence characterization. This is mainly due to the fact that the
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Figure 6.7: Lagrangian acceleration statistic of a single measurement. On the left hand side
the data (blue dots), a normalized Gaussian bell-curve (green line) and the two model fits (red,
magenta) are plotted in a regular spaced coordinate system. The right hand side shows the
same data and the same fit in a semi-logarithmic plot.

acceleration directly enters the right hand side of the Navier-Stokes equation (NSE)
described by Equation (2.8).

The Lagrangian particle acceleration statistics, presented in this section, were com-
puted from the first temporal derivative of the instantaneous velocity signal of all
particle trajectories recorded in the RB convection experiments. This velocity signal
directly results from the frequency analysis of the periodic intensity patterns on the
extracted particle streaks. The statistical evaluation was performed separately for each
bPSV measurement series listed in Table 6.3 on page 122.

All four acceleration statistics were used to fit a Gaussian bell-curve and the two
Lagrangian acceleration distribution models that are presented in Chapter 2. The first
model fitted to the Lagrangian acceleration distribution was proposed by Voth et al.
(2002) and is based on a phenomenological description of the observed distribution.
As explained in Section 2.1, the model can be formulated by the Probability Density
Function (PDF) given in Equation (2.12).
The second model is based on a theoretical derivation by Beck (2002, 2003) and was
used by Aringazin and Mazhitov (2004) to formulate the model PDF of the second
model (Equation (2.13)).
Both models were fitted by means of a non-linear least squares fit to the data that
were extracted from the bPSV experiments.

The large range of the Lagrangian acceleration distributions requires a proper visual-
ization to evaluate the quality of the different models. This is shown on the basis of a
acceleration histogram extracted from Measurement#1. For a visual comparison the
diagram on the left hand side of Figure 6.7 shows a conventional plot of the Lagrangian
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acceleration distribution, a fitted normalized Gaussian bell-curve and the fitted model
functions (2.12) and (2.13). The very same data are plotted by means of a semi-
logarithmic plot in the diagram on the right hand side of this figure. Here it becomes
clear that the quality of the model can only be judged by means of semi-logarithmic
diagrams that also visualize the deviations at the tails of the distributions. While in
the diagram on the left hand side, both models seem to fit the data equally well and
the normalized Gaussian bell-curve seems to yield only a slight underestimation of the
tails of the distribution, the semi-logarithmic plot on the right hand side shows the
performance of the models in the lower probability range of the distribution.

Furthermore, it can be seen that the measured Lagrangian acceleration statistic is
highly non-Gaussian. The figure shows that the distribution proposed by Voth et al.
(2002) slightly overestimates the tails of the measured distribution while the model
formulated by Beck (2002) and Aringazin and Mazhitov (2004) yields a slight under-
estimation.

Semi-logarithmic plots of the Lagrangian acceleration distributions extracted from all
four interfacial bPSV measurement series (summarized in Table 6.3 on page 122) are
shown in Figure 6.8 on page 128. Furthermore, this figure comprises the fits of normal-
ized Gaussian bell-curves, and the PDFs of both Lagrangian acceleration distribution
models. These plots show that both models can be used to describe the distribution
down to very low probabilities.

The summary in Table 6.4 on page 129 gives an overview of the parametrization of the
two models and the normalized Gaussian bell-curve computed by the non-linear least
squares fit routine.

Here it can be seen that the width parameter σ from the phenomenological model
by Voth et al. (2002) corresponds nicely with the width that results from the fit of a
normalized Gaussian bell-curve. For the two parameters that model the non-Gaussian
behavior of the tails of the distribution, we observed an accordance to the results
observed by Voth et al. (2002) (i.e. β = 0.539 and γ = 1.588).

The parameters that were fitted by means of the theoretical model (2.13) show an
underlying problem of this model. Due to the strong correlation of the model param-
eters and because of the existence of multiple locale minima in the parameter space,
the result of the model fit relies strongly on the initialization. Especially the normal-
ization parameter C and the parameter ac that models the exponential decrease of
the tails of the distribution rely strongly on each other. The large variations of the
extracted parameters of the second model shown in Table 6.4 on page 129 are a result
of this strong correlation between the model parameters and the vulnerability of the
non-linear least squares fit on locale minima in the parameter space.

In short, it can be said that the acceleration distributions extracted from the flow
fields in the free air-water interface of a turbulent RB convection comply nicely with
the model PDF proposed by Voth et al. (2002) for isotropic turbulences. The extracted
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Figure 6.8: Separate fits of the Lagrangian acceleration models on the measured bPSV data
sets. As indicated by the normalized Gaussian bell-curves (green lines), all four distributions
are highly non-Gaussian. All the distributions are described well by the models down to
probabilities of 10−5 to 10−6.
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Model/Measurement Parameter
Normalized Gaussian distribution σ

Measurement#1 4.4618
Measurement#2 3.974
Measurement#3 2.7228
Measurement#4 5.1605

Phenomenological model (Voth et al.,
2002) (cf. Equation (2.12))

σ C β γ

Measurement#1 4.5812 0.092881 0.47877 1.7015
Measurement#2 3.5306 0.10727 0.62658 1.3382
Measurement#3 2.7058 0.15361 0.50956 1.6209
Measurement#4 4.8774 0.081256 0.52887 1.6607

Theoretical distribution (Aringazin and
Mazhitov, 2004; Beck, 2003)(cf. Equation
(2.13))

ac C n β0

Measurement#1 2.12 · 106 50.9079 1.7445 0.046967
Measurement#2 15.423 2.3916 1.0927 0.06243
Measurement#3 30.9809 7.8304 1.5744 0.12952
Measurement#4 4.71 · 104 15.5902 1.4673 0.040779

Table 6.4: Summary of the model parametrization estimated by a non-linear least squares fit
from the measured Lagrangian acceleration statistics

model parameters are quite similar to those obtained in the experiments by Voth et al.
(2002). Although the fit of the second model proposed on the basis of theoretical
studies by Beck (2003) and Aringazin and Mazhitov (2004) seems to describe the mea-
sured Lagrangian acceleration distribution quite well, the resulting model parameters
are unreliable. Because of the ill-posed model function that describes the PDF of the
distribution, there may be multiple parameterizations yielding the same result. Fur-
thermore, the model seems to comprise many local minima in the parameter space, so
that a global optimum is very unlikely to be obtained by means of a non-linear least
squares fit.

6.4.2 Lagrangian Particle-Pair Dispersion

In this section the results of the Lagrangian particle pair dispersion measurements
recorded in the boundary layer of the turbulent RB convection are presented. This
turbulence characteristic is defined by the mean squared average of the particle pair
dispersion. As described in Chapter 2, it is computed by averaging large ensembles
of Lagrangian particle pairs that were all seeded with a certain initial separation. In
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this study the particle pairs were chosen from sets of Lagrangian trajectories that were
extracted from the bPSV-measurements of the previously described RB convection.

Due to the definition of the Lagrangian particle pair dispersion, the only restriction is
that for each particle pair there has to be a point in time t0, when the particle distance
is equal to a predefined initial separation r0. The initial separation has to be within
the inertial subrange. This subrange is defined by the range between the Kolmogorov
microscale and the Lagrangian integral length scale ηK � r0 � L (cf. Chapter 2).
A detailed description of the particle pair extraction routine used to obtain the data
presented in this section is given in Chapter 5. For a characterization of the particle pair
separation behavior, the evolution of the mean squared pair separation

〈
|~r(t)− ~r0|2

〉
L

is averaged over the whole ensemble.

Four particle pairs from the ensemble extracted from the Measurement#4 are shown in
Figure 6.9. In these images the 3d data of both member trajectories are visualized and
the instantaneous velocity of the single particles is color-coded along the trajectories.
As shown in these images, the movement at the “seeding point” t = t0, when the
particle distance is close to r0, is quite correlated. Later in time this correlation
of the particle movement vanishes. The scaling parameters of Measurement#4 are
summarized in Table 6.3 on page 122.

For a detailed description of the derivation and the meaning of this turbulence charac-
teristic we refer to its introduction in Chapter 2. As described in this chapter, a com-
mon strategy to visualize the transition from the Batchelor regime to the Richardson-
Obukhov (R-O) regime and from the R-O regime to the diffusive regime is to scale the
mean squared pair separation with the factor t−3. In a double logarithmic plot the
scaled time evolution of the mean shows a t−1 slope in the Batchelor regime, a plateau
in the R-O regime and a t−2 slope in the diffusive regime. According to the theory
developed by Richardson (1926) and Batchelor (1950), this transition only occurs for
ensembles with a small initial separation. Ensembles with larger initial separations
don’t show an intermediate Batchelor regime but a direct transition from the t−1 scal-
ing to a t−2 scaling. This behavior was observed in all bichromatic measurements of
the air-water interface summarized in Table 6.3 on page 122. The three regimes and
the transitions for different initial separations are shown in Figure 6.10 on page 133.

In order to allow a comparison on the basis of a scale-invariant characterization, the
time axis was scaled by means of the Kolmogorov time τK.

To enable a quantitative comparison of the observed transition, a measure is needed
that allows a simple extraction of the position of the R-O regime. In this context we
defined the center of the R-O regime tRO to be at the position of the inflection point
in the middle of the R-O regime. This point can easily be assessed from the particle
pair dispersion curves that comprise a plateau of the R-O regime. The exact positions
of these inflection points for different initial separations are summarized in Table 6.5
on page 132. This table contains the evaluation of all bPSV measurements that were
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Figure 6.9: This figure contains four of the particle pairs extracted from Measurement#4.
The color encodes the velocity information along the line. In these figures one can see that the
particle movements at small times are correlated while the movements of the single particles
at later times are quite individual.
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taken in the air-water interface of the turbulent RB convection (cf. Table 6.3 on page
122). Since the plateau of the R-O regime can only be observed for small initial pair
separations, it was not possible to extract the R-O regime time tRO for ensembles that
were extracted with large r0 value.

The results shown in Table 6.5 on page 132 and Figure 6.10 on page 133 match nicely
with the results published recently by Schumacher (2009) in a direct numerical simu-
lations (DNS) study on convective turbulence in air. In this study the author observed
a R-O regime in form of a plateau for initial separations between r0 = 0.5 ηK and
r0 = 4 ηK. At higher initial separations (i.e. r0 = 16 ηK) no plateau was observed in
the transition from the Batchelor t−1 regime to the diffusive t−2. A similar behavior
was also described in a recent review by Salazar and Collins (2009).

The transition points tRO observed in the interfacial measurements in this study tend
to be smaller than the times observed in literature. While the transition points that
were observed in the measurements in this thesis lay in a time range between 1.0 τK
and 3.1 τK, the transitions observed by Salazar and Collins (2009) and Schumacher
(2009) range between 10 τK and 40 τK.

A possible reason for this shift of the transition points can be the fact that the simula-
tions by Schumacher (2009) and the measurements that are summarized in the review
by Salazar and Collins (2009) assume an isotropic turbulence. Since the measure-
ments in this study are recorded in a highly anisotropic turbulence in the interfacial
region of a boundary layer, an application of Kolmogorovs scaling theory might cause
this kind of errors. Another much simpler explanation is the approximation of the
Kolmogorov time scale made in this thesis. As described earlier in this chapter, the
Kolmogorov time-scale had to be approximated from the Reynolds number because it
was not possible to assess the energy dissipation rate from the measured data. There-
fore, the approximation error of the Kolmogorov time-scale might be another plausible
explanation for the observed shift of tR-O.

In conclusion of this section, it can be said that the three regimes described by Richard-
son (1926) and Batchelor (1950) for isotropic turbulences could also be measured in the
anisotropic turbulence of an interface. A comparison with two recent studies showed
that the initial separations at which a plateau of a R-O regime occurs are similar to
those observed in literature. Furthermore, a shift of the transition point of the R-O
transition was observed.
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Measurement#1 Measurement#2 Measurement#3 Measurement#4
r0 tRO r0 tRO r0 tRO r0 tRO

3.64ηK 1.11τK 5.01ηT 1.10τK 3.75ηK 1.54τK 3.75ηK 1.97τK
4.55ηK 1.03τK 6.0ηT 0.87τK 4.69ηK 2.26τK 4.69ηK 2.19τK
6.36ηK 1.32τK 6.95ηT 1.01τK 5.63ηK 2.79τK 5.63ηK 3.31τK
9.10ηK NA 8.08ηT NA 14.06ηK NA 7.5ηK NA

Table 6.5: Overview over the extracted Lagrangian particle pair dispersion statistic. In the
extraction the mean squared particle separation of Lagrangian trajectories was computed for
different initial separations. For each measurement four initial separations were tested that lie
in the inertial subrange. NA entries indicate that no clear transition between the three regimes
was observed.

Figure 6.10: Visualization of the 3D pair dispersion of the data set Measurement#1. The
particle pair dispersion was plotted as a function of the time scaled with the Kolmogorov time
scale for four initial pair separations (R(0) = 3.46ηK , 4.55ηK , 6.36ηK , 9.1ηK). The data were
normalized by the factor t−3. The dissipation subrange corresponds to the ∼ t−1 part, the
inertial subrange (gray labeled area) is represented by the plateau in the curves of small inertial
pair separation R(0), followed by the diffusion subrange.
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7 Conclusion

This thesis describes two particle streak based measurement techniques purpose-built
for Lagrangian three-dimensional three-component (3D3C) measurements of flow char-
acteristics in the interfacial region of a transparent boundary layer. It contains a
thorough description of the implemented measurement setups and a detailed charac-
terization of the techniques with an estimation of precision that can be achieved by
the presented methods.
Furthermore, this thesis successfully applied both techniques to measure turbulent
flow fields in a Rayleigh-Bénard (RB) convection. On the basis of these measurements
several turbulence characteristics were extracted. The comparison of these measures,
taken in the anisotropic interfacial region, shows good agreements with theoretical pre-
dictions for isotropic turbulence and recent experimental studies and therefore proves
the applicability of the method. To the best of our knowledge such a verification of
theoretical predictions in the interfacial region has not been conducted previously.

Both developed measurement techniques rely on the Particle Streak Velocimetry (PSV)
measurement principle that uses long time exposures of a single camera setup to record
blurred streak structures caused by the reflections of neutrally buoyant tracer parti-
cles moving with the fluid. To overcome the loss of temporal resolution caused by the
integration in the long time exposure images, a periodically modulated illumination
is used coding temporal information into the PSV images. By analyzing the spatial
frequency of the gray-value signal along the particle streaks, both methods extract the
instantaneous particle velocity along the individual trajectories.
The two developed measurement techniques can be distinguished by the depth esti-
mation strategy that is used to assess three-dimensional (3d) information. The first
technique was named bichromatic Particle Streak Velocimetry (bPSV). It relies on an
absorption-based approach that uses an absorbing dye and a two-wavelength illumi-
nation to resolve the depth of individual tracer particles below the interface. This
approach was already presented to the scientific community in two conference contri-
butions (Voss and Garbe, 2010; Voss et al., 2010).

Due to a sub-pixel precise particle streak extraction routine both presented methods
provide a continuous spatial description of the particle trajectories with a very high
precision comparable to the precision obtained by state of the art 3d Particle Track-
ing Velocimetry (PTV) approaches. In contrast to current PTV measurements that
determine particle positions at discrete times and compute velocities from the parti-
cle displacements, the presented PSV methods enable the measurement of continuous
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particle velocity signals. The extraction of a dense sampled velocity especially pays off
when it comes to the extraction of particle accelerations that can simply be computed
from the first temporal derivative of the instantaneous velocity signal.
In the context of interfacial measurements the bichromatic PSV technique clearly out-
performs the plenoptic method because the plenoptic approach is restricted to a fixed
ratio between the horizontal measurement range and the depth range. Therefore, it is
infeasible to achieve high resolutions in a thin interfacial layer by means of the plenoptic
Particle Streak Velocimetry (pPSV) approach. Nonetheless, this method presents an
appropriate alternative to state-of-the-art 3D3C PTV approaches. In contrast, the
bPSV technique can be easily adapted for measurements in thin boundary layers by
adjusting the concentration of the dye used. Since the precision of the depth estimate
is relative to the penetration depth of the light, it is possible to extract interfacial infor-
mation with a very high depth resolution. Another advantage of the bPSV technique
is that it directly measures data relative to the position of the interface. This makes
an additional tracking as used in other interfacial measurement techniques dispensable
and reduces the error associated with such an approach.

Additionally, the developed techniques were used in a set of characterization exper-
iments that aimed for the extraction of Lagrangian flow statistics from a turbulent
RB convection. Due to its better interfacial resolution the results of the bPSV mea-
surements were used to extract Lagrangian acceleration statistics and Lagrangian two-
particle dispersion statistics. A comparison of the extracted acceleration statistics from
the boundary layer of the turbulent air-water interface with a phenomenological model
proposed by Voth et al. (2002) and a theoretically motivated model by Beck (2003)
and Aringazin and Mazhitov (2004) showed very good agreements. A direct analysis
of the obtained model parameters showed nice correspondences with the experimental
results published by Voth et al. (2002). Due to the ill-posed model Probability Den-
sity Function (PDF) in the theoretical approach (Aringazin and Mazhitov, 2004) no
meaningful parameters could be extracted from this model.

In the Lagrangian particle pair dispersion statistics of the interfacial region the theo-
retical predicted transitions from the small scale Batchelor regime to the Richardson-
Obukhov (R-O) regime and from the R-O regime to the diffusive regime were observed.
The center of the intermediate R-O estimated from the average of the measured La-
grangian pair dispersion measurements could be extracted for initial pair separations
below 6.95 ηK. This result matches with the results published by Schumacher (2009),
who observed an R-O regime for initial pair separations smaller than 4 ηK. For higher
initial separations we observed a transition from a Batchelor regime to a diffusive
regime that was also recorded by Schumacher (2009). The temporal position of the
observed R-O regimes tend to be smaller compared to the times observed in the ex-
periments summarized by (Salazar and Collins, 2009). An appropriate reason for this
deviation might be the anisotropic nature of the observed interfacial flow field.

Due to the high spatial precision and the reliable intensity extraction of the imple-
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mented particle streak extraction routine the approach was also sucessfully applied to
the analysis of data from cell-biology (Herzog et al., 2012). In this study the inten-
sity profiles along rod shaped cells obtained in fluorescence microscopic measurements
were extracted to analyze the concentration distribution of fluorophore-tagged proteins
along the cell spine.

7.1 Outlook

Although the original aim, i.e. the development of an interfacial measurement tech-
nique for the estimation of Lagrangian 3D3C flow characteristics was reached, there
is still room for refinements. In this context automating the calibration measurement
that has to be performed previously to each bPSV measurement would drastically
alleviate the usability of this method.

Furthermore, the dependency of the presented Lagrangian characteristics on various
boundary conditions such as viscosity, Rayleigh number or aspect ratio could be ana-
lyzed in the turbulent boundary layer region of RB convections.

A challenge that has not been addressed in the this thesis is the measurement of mobile
wave-influenced air-water surfaces. In this context reflections at the mobile interface
present a major challenge that needs to be solved to extend the applicability to moving
interfaces.

Additionally, the particle streak extraction algorithm could be improved by a routine
that allows the identification and extraction of crossing particles. With such a routine
it would be possible to measure flow fields with much higher particle seeding densi-
ties. These higher densities would allow the measurement of dynamical Lagrangian
characteristics in unsteady flow fields because shorter time ranges could be taken into
account in the averaging.

Another extension that would help to establish the presented methods in the field
of particle-based measurement techniques is the development of a Graphical User In-
terface (GUI) for an easy application of the implemented routines in the laboratory
environment.

Furthermore, it would be possible to implement a novel measurement technique by
measuring PSV data of a fluid seeded with particles that are coated with a Temperature
Sensitive Paint (TSP). Such a TSP-PSV hybrid approach would profit from the high
reliability of the extracted intensities and from the high temporal resolution that can
be achieved.
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Nomenclature

αi Isobaric thermal expansion coefficient, page 10

αh Hamming window function coefficient, see equation (5.38), page 96

αmie Dimensionless Mie parameter, see equation (3.12), page 38

∆z(I1, I2) Error of the bichromatic depth estimate

εi Extinction coefficient of the absorbing dye for the Wavelength λi

η(λ) Total quantum efficiency, see equation (5.1), page 75

ηK Kolmogorov length scale, see equation (2.4), page 11

Ŝ A set of streak-lists that correspond to a PSV image sequence, page 100

T̂ A set of trajectories called trajectory-list, page 100

λ Wavelength

λi Wavelength of the light sources used for the intensity modulated illumination

〈ε〉 Energy dissipation, see equation (2.3), page 11

〈~r(t)〉L Averaged Lagrangian pair separation statistic, see equation (2.20), page 16

Bk Temporal median computed for image Ik, see equation (5.27), page 86

B Boundary Tensor, see equation (5.33), page 89

Ht (X (c)) Hilbert transform of the spatial signal X(c), see equation (3.24), page 45

J Three dimensional, spatiotemporal structure tensor, see equation (5.29), page 88

J Three-Dimensional (3D) Structure tensor , see equation (5.30), page 88

Si A single streak-list in a set of streak-lists, page 100
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Tk Single trajectory in a trajectory-list, page 100

µe Number of electrons, page 75

µp Number of photons that hit a single pixel of a charge-coupled device (CCD)
detector during the exposure, see equation (5.2), page 75

µy Digital gray-value of a pixel [DN], see equation (5.3), page 76

µe.sat Saturation capacity of the image sensor pixels, see equation (5.19), page 81

µy.50 Mean pixel gray-value extracted from 50% saturated images, see equation (5.21),
page 83

φ (c) Instantaneous phasing of a spatial signal

ΦR Radiant flux of the light-emitting diode (LED) array, see equation (4.1), page 64

σ2
d Sensor noise produced during the readout and the camera-intern amplification

[digital number (DN)], page 77

σ2
e Shot Noise: Variance of quantum mechanical fluctuations of the number of

electrons induced in the imaging sensor [DN], page 77

σ2
q Image noise generated by the quantization in the analog digital converter (ADC)

[DN], page 77

σ2
y Complete noise as determined by the noise model proposed in the EMVA1288

standard [DN], see equation (5.7), page 77

σy.sat Saturation gray-value of the imaging system, page 77

τK Kolmogorov time scale, see equation (2.5), page 11

DSNU1288 Dark Signal Non-Uniformity (DSNU) value defined by the European Ma-
chine Vision Association (EMVA)1288 standart, see equation (5.25), page 84

Lp Lebesgue spaces, page 46

PRNU1288 Photo Response Non-Uniformity (PRNU) value defined by the EMVA1288
standart, see equation (5.25), page 84

Ĩk(i, j) Image k from an image-stack. (i, j) describes the pixel position within the
image, page 86

H̃ Height of the water surface in the RB vessel
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~v(t) Time dependent 3d velocity vector of a tracer-particle in a Lagrangian trajec-
tory

~x(t) Time dependent 3d position of a tracer-particle in a Lagrangian trajectory

a(t) Instantaneous amplitude of a spatial signal, see equation (3.25), page 46

c Speed of light [m/s]

CD Drag coefficient, see equation (3.2), page 36

de (·, ·) Euclidean distance metric, see equation (3.31), page 57

E Irradiance on the CCD-array [W/m2], page 75

Eboundary Boundary Energy, see equation (5.34), page 90

Eedge Edge Energy, see equation (5.34), page 90

Ejunction Junction Energy, see equation (5.34), page 90

f(c) Spatial frequency extracted along the center-line of a streak structure, see equa-
tion (3.26), page 46

g Gravitational acceleration, page 10

G(x) Gray-value signal extracted along the streaks center-line

h Planck’s constant [Js]

I(z, λi) Intensity signal a particle in the dyed fluid at the depth z, illuminated with
the wavelength λi

J1 First order Bessel Function, page 39

K Overall system gain of an imaging system [DN/e-], page 76

Ptherm Thermal power of the LED array, see equation (4.1), page 64

R Quality measure of the extracted trajectories, Large R-values indicate errors in
the velocity estimation, see equation (5.49), page 104

Ra Dimensionless Rayleigh Number, see equation (2.1), page 10

Re Dimensionless Reynolds Number, see equation (2.2), page 10
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s2
y.50 Spatial variance of the Photo Response Non-Uniformity (PRNU)-signal, see

equation (5.23), page 84

s2
y.dark Spatial variance of the Dark Signal Non-Uniformity (DSNU)-signal, see equa-

tion (5.23), page 84

tb Batchelor time, see equation (2.26), page 18

TL Lagrangian integral time scale, page 18

texp Exposure time [s], page 75

tRO Center of the Richardson-Obukhov (R-O) regime

uK Kolmogorov velocity scale, see equation (2.6), page 11

vh(c) Horizontal particle velocity as a function of the position on the center-line, see
equation (3.18), page 41

w(c) Hamming window function w(n) : N→ R, see equation (5.38), page 96

Z(c) Spatial analytic signal, see equation (3.23), page 45

SNR Signal to noise ratio, see equation (5.12), page 79

DR Dynamic Range of the sensor array in the used imaging device , see equa-
tion (5.17), page 80
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A Appendix

A.1 Data-sheets of the LED-Arrays

Figure A.1: Technical specification of the violet LED-Array (ENFIS UNO Tile Array Violet
405 nm; ENFIS LIMITED, Swansea, SA18PJ, UK) given in the data sheet of the manufacturer
(ENFIS Ltd., 2008a).
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Figure A.2: Technical specification of the violet LED-Array (ENFIS UNO Tile Array Blue
465 nm; ENFIS LIMITED, Swansea, SA18PJ, UK) given in the data sheet of the manufacturer
(ENFIS Ltd., 2008b).
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A.2 Non-Uniformities of the CCD-sensor

A.2 Non-Uniformities of the CCD-sensor
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Figure A.3: Sensor non-uniformities of the used CCD measured with the EMVA1288 calibra-
tion setup. Since the camera is used to record the scattered light of a blue and a violet LED
array, only the non-uniformities from the ’blue’-calibration are shown in this study. The upper
row illustrates the result of the ’dark’-measurement. The lower row shows a some circular
spatial non-uniformities of the overall system gain K that may be caused by manufacturing
imperfections.

163



A Appendix

A.3 35mm Macro Objective

Figure A.4: Data-sheet of the used Fujinon HF35SA-1 2/3” 35mm camera objective
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A.4 Focused Plenoptic Camera R11

A.4 Focused Plenoptic Camera R11

Figure A.5: Data-sheet of the focused plenoptic camera (Model: R11, Raytrix GmbH, Kiel,
Germany) Raytrix GmbH (2012).
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A.5 Circuit Board of the
Operational-Transconductance-Amplifier (OTA)

Figure A.6: Circuit Board of the Operational-Transconductance-Amplifier (OTA) that was
built to drive the LED-arrays
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A.6 microEnable IV VD4-CL framegrabber

A.6 microEnable IV VD4-CL framegrabber

Figure A.7: microEnable IV VD4-CL frame grabber (SILICONSOFTWARE GmbH,
Mannheim, Germany)
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