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Abstract

To learn the structure of gene regulatory networks is an interesting and important topic in
systems biology. This structure could be used to specify key regulators and this knowledge
may be used to develop new drugs which affect the expression of these regulators. However,
the inference of gene regulatory networks, especially from time-series data is a challenging
task. This is due to the limited amount of given data which additionally contain a lot of noise.
These data cause from the technical point of view for the parameter estimation procedure
problems like the non-identifiability and sloppiness of parameters.

To address these difficulties, in these thesis new methods for both, the parameter estimation
task and the experimental design for gene regulatory networks, are developed for a non-linear
ordinary differential equations model, which use a Bayesian procedure and generate samples
of the underlying distribution of the parameters. These distributions are of high interest,
since they do not provide only one network structure but give all network structures that are
consistent with the given data. And all of these structures can then be examined in more
detail.

The proposed method for Bayesian parameter estimation uses smoothing splines to circum-
vent the numerical integration of the underlying system of ordinary differential equations,
which is usually used for parameter estimation procedures in systems of ordinary differen-
tial equations. An iterative Hybrid Monte Carlo and Metropolis-Hastings algorithm is used
to sample the model parameters and the smoothing factor. This new method is applied to
simulated data, which shows that it is able to reconstruct the topology of the underlying
gene regulatory network with high accuracy. The approach was also applied to real experi-
mental data, a synthetic designed 5-gene network (the DREAM 2 Challenge #3 data) and
outperforms other methods.

For the Bayesian experimental design step, a full Bayesian approach was used which does
not use any parametric assumption of the posterior distribution, nor linearizes around a
point estimate. To make the full Bayesian approach computationally manageable, maximum
entropy sampling is used together with a population-based Markov chain Monte Carlo algo-
rithm. The approach was applied to simulated and real experimental data, the DREAM 2
Challenge #3 data, and outperforms the usage of random experiments and a classical exper-
imental design method.
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Zusammenfassung

Die Struktur von Genregulationsnetzwerken zu lernen ist eine interessante und wichtige
Fragestellung in der Systemsbiologie. Diese gelernte Struktur könnte dazu dienen, essen-
tielle Regulatoren zu spezifizieren und dieses Wissen könnte weiterhin für die Entwicklung
neuer Arzneimittelwirkstoffe genutzt werden, die die Expression dieser Regulatoren beein-
flussen. Die Inferenz von Genregulationsnetzwerken, speziell aus Zeitreihendaten, ist jedoch
eine herausfordernde Aufgabe. Dies liegt daran, dass die Menge der gegebenen Daten klein ist
und diese Daten zusätzlich auch sehr verrauscht sind. Aus technischer Sicht für die Parame-
terschätzung führt dies zu Problemen wie der Nicht-Identifizierbarkeit und der “Sloppiness”
von Parametern.

Um diese Schwierigkeiten zu addressieren, werden in dieser Dissertation sowohl Methoden
für die Parameterschätzung als auch für das Experimentdesign von Genregulationsnetzwerken
entwickelt und zwar für ein nicht-lineares gewöhnliches Differentialgleichungs-Modell. Diese
Methoden benutzen einen Bayes’schen Ansatz und erzeugen Stichproben der zugrunde liegen-
den Verteilungen der Modell-Parameter. Diese Verteilungen sind von hohem Interesse, da sie
nicht nur eine Netzwerkstruktur als Lösung präsentieren, sondern alle Netzwerkstrukturen,
die mit den gegebenen Daten konsistent sind. Und alle diese erhaltenen Strukturen können
dann näher untersucht werden.

Die vorgestellte Methode für die Bayes’sche Parameterschätzung benutzt geglättete Splines,
um die numerische Integration, die üblicherweise benutzt wird, des zugrunde liegenden Sys-
tems bestehend aus gewöhnlichen Differentialgleichungen, zu verhindern. Ein iterativer hy-
brider Monte-Carlo- und Metropolis-Hastings-Algorithmus wird benutzt, um Stichproben der
Modellparamter und des Glättungsfaktors der geglättenen Splines zu generieren. Mit An-
wendung dieser Methode auf simulierte Daten wird gezeigt, dass die Topologie des zugrunde
liegenden Genregulationsnetzwerkes mit hoher Genauigkeit gelernt werden kann. Der gleiche
Ansatz wird auch auf echte experimentelle Daten, einem synthetisch konstruierten 5-Gen-
Netzwerk (den DREAM-2-Challenge-#3-Daten), angewendet und übertrifft die Resultate
anderer Methoden.

Für das Bayes’sche Experimentdesign wird ein vollständiger Bayes’scher Ansatz benutzt,
welcher weder eine parametrische Annahme über die a-posteriori-Verteilung annimmt noch
um einen Punktschätzer herum linearisiert. Um diesen vollständigen Bayes’schen Ansatz rech-
nerisch handhabbar zu machen, wird “Maximum Entropy Sampling” zusammen mit einem
populations-basierten Markov-Chain-Monte-Carlo-Algorithmus benutzt. Diese Methode wird
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Zusammenfassung

sowohl auf simulierten als auch echten experimentellen Daten, den DREAM-2-Challenge-#3-
Daten, angewendet und übertrifft sowohl die Resultate der Anwendung zufälliger Experimente
als auch einer klassischen Experimentdesignmethode.
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Introduction

Every new beginning comes from

some other beginning’s end.

(Seneca)

Systems biology, as a relatively new scientific field, deals with the investigation of biological
systems combining experimental data and mathematical and algorithmical methods. The
main idea behind this new scientific area is the hope that looking not only at small parts of
the system, but rather see the whole one will find out some emergent properties in the system
that are not present in any of its subsystems. To see these properties can also be described
by the saying: “The whole is more than the sum of its parts”. Kitano [Kit02] summarized
this excellently in his paper about computational systems biology in 2002 and also points out
the need of computational methods for problems arising in systems biology:

Molecular biology has uncovered a multitude of biological facts, such as genome
sequences and protein properties, but this alone is not sufficient for interpreting bi-
ological systems. Cells, tissues, organs, organisms and ecological webs are systems
of components whose specific interactions have been defined by evolution; thus a
system-level understanding should be the prime goal of biology. Although ad-
vances in accurate, quantitative experimental approaches will doubtless continue,
insights into the functioning of biological systems will not result from purely intu-
itive assaults. This is because of the intrinsic complexity of biological systems. A
combination of experimental and computational approaches is expected to resolve
this problem.

A general framework how biological modeling in systems biology looks like is depicted in
Figure 0.1: with some biological knowledge a mathematical model is established which is
then used to predict biological behavior. If the obtained results are not accurate for the
desired purpose, methods for optimum experimental design are applied and the proposed
experiments are performed in a wet laboratory. The obtained data are then used to improve
the mathematical model. Now a new cycle of predicting biological behavior, applying methods
for experimental design, performing wetlab experiments and improving the used mathematical
model starts.
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Figure 0.1.: A sequential procedure for modeling biological processes. First, according to prior bio-
logical knowledge a mathematical model is established. This model is then used to predict biological
behavior and if the results are not accurate to the desired purpose, experimental design is performed
to obtain data from wetlab experiments, which will improve the mathematical model the most. After
doing so, the next cycles begin until the model is accurate enough.

Two essential features from the algorithmical side in this procedure are, first, parameter
estimation methods that are used to infer parameters of the mathematical model for given
data, and second, approaches for optimum experimental design are needed to specify the
wetlab experiments that have to be performed.

In this thesis, learning the structure of gene regulatory networks from gene expression data
is the task that will be addressed. Knowing the topology of gene regulatory networks is
highly desired in systems biology. The structure of these networks may be used to predict
key regulators and these regulators may be used as potential drug targets. A lot of models
describing gene regulatory networks were already described and inference algorithms were
also given. These models and algorithms will be described in Chapter 4. The model for gene
regulatory networks used in this thesis will be a system of non-linear ordinary differential
equations and the task is to estimate the model parameters given time-series gene expression
data.

For parameter estimation problems in systems biology several technical problems are pre-
sent. These problems arise, because only a limited amount of data which additionally contain
a lot of noise is available for the inference task. Together with the fact, that usually a large
number of parameters has to be estimated and thus the search space that has to be searched
to find an optimal solution is large, the following three problems have been described in more
detail for parameter estimation tasks in systems biology:

1. Non-identifiability of parameters. The non-identifiability of parameters is per se
not only a problem arising for models in systems biology. It may appear in all kinds of
models. Basically, one distinguishes between practical non-identifiability and structural
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non-identifiability of parameters. The latter one specifies the fact, that even for the
case with perfect data, the model parameters cannot be determined in a unique way
and ambiguities in the parameters arise. It is a property that is inherent in the used
model. On the contrary, practical non-identifiabilities of parameters arise because not
enough data and not good enough data is available to estimate the parameters precisely.
Once good data is available, practical non-identifiabilities can be resolved. Raue and
colleagues developed sophisticated methods to do identifiability analysis for models in
systems biology [RKM+09,RBKT10,RKM+11].

2. Sloppiness of parameters. Sethna and coworkers [GWC+07,DCS+08,TMS10] found
out that a lot of models, especially in systems biology, show an effect which is called
sloppiness. It is defined as the property that the eigenvalues of the covariance ma-
trix around a point estimate span a large range and the corresponding eigenvectors
are skewed. This behavior implies that the parameters are not independent and one
can change the values of the sloppy parameters, i.e., the ones corresponding to a small
eigenvalue of the covariance matrix, to a high extent without changing the model be-
havior. The authors present also examples that even for the direct measurement of
the parameters the precision of the predictions may not be increased because of the
inherent sloppiness property of the underlying model [GWC+07]. And because a wide
range of parameters in sloppy models will describe the same dynamics of the system,
they argue that one should focus more on the model predictions and less on precise
parameter estimates.

3. Recently, Slezak et al. [SSC+10] performed a case study where they analyzed the land-
scape of the objective function used for parameter estimation. This landscape is rugged
and contains a high number of local minima. Furthermore, they argue that a high num-
ber of these local minima, including the global minimum, are not reasonable from the
biological point of view. The authors suggest to use experimental design simultaneously
with optimization and furthermore, to generate independent data sets describing differ-
ent regimes of the biological system under consideration that will hopefully constrain
different parameters of the used model.

All these difficulties presented here can be nicely addressed using a Bayesian framework for
parameter estimation tasks which also has been pointed out in our publication [MK11]. The
Bayesian framework is the main algorithmical focus in this thesis and new methods to perform
it will be introduced and examined here. A Bayesian framework incorporates the noise present
in the data and one easily is able to incorporate prior knowledge into the learning procedure.
However, the biggest benefit of Bayesian approaches is their ability to provide distributions
over parameters. These distributions contain a lot of knowledge about different parameter sets
that are able to describe the data in a similar way, and this knowledge, as a next step, can be
used to perform Bayesian experimental design and to generate additional experimental data
that will increase the information2 of these distributions the most. Several authors already
argued that Bayesian experimental design is needed and has to be explored in large, complex
non-linear ordinary differential equations models [CG08,KR10,KHAR10]3 .

In this thesis, a new algorithmical method for Bayesian parameter estimation for the in-
ference of a non-linear model for gene regulatory networks is given. The work presented here

2the mathematical concept as defined in Definition 2.2.2
3these publications will be further discussed in Section 6.3.3
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was published as [MRRK09] and is collaborative work together with Daniel Ritter who did
his Master’s thesis [Rit08] on the same topic. Additionally, a new algorithmical method for
Bayesian experimental design is presented and examined for the same non-linear model de-
scribing gene regulatory networks. The method uses the maximum entropy sampling theory
presented by Sebastiani and Wynn [SW00].

Structure of the thesis

The thesis is structured in five parts. In Part I the technical background is given, which
is needed to understand the essential part of the thesis. It is subdivided into biological,
mathematical and algorithmical background. Since the topic of the thesis is located in the
interdisciplinary field of systems biology, this part gives the reader coming from different
disciplines the possibility to be able to understand the new methods presented in this thesis.
In Chapter 1 the essential terms and facts of the gene regulation process are introduced
and described. Furthermore, experimental methods are described with their strengths and
weaknesses that are used to measure gene products, i.e., mRNA and protein concentrations.
Chapter 2 describes the mathematical background needed in probability, information and
Markov chain theory. Furthermore, basic facts about ordinary differential equations and
splines are given. In Chapter 3 algorithms for the generation of samples of a distribution,
i.e., Markov chain Monte Carlo algorithms, and their efficiency are presented and discussed.
Additionally, general aspects about parallel computing, which will be used in Chapter 7, and
receiver operating characteristics that are needed for the evaluation of learned networks in
Chapter 5, are described. Reading this thesis, the reader may first omit Part I and can
directly start with Part II and then go back to Part I, if any background knowledge is needed.

Part II deals with the first topic of this thesis, the inference of gene regulatory networks
from time-series data with Markov chain Monte Carlo algorithms and spline interpolation
using a model of non-linear ordinary differential equations. This part starts with an overview
of existing models for gene regulatory networks in Chapter 4 with the analysis of their pros
and cons. In Chapter 5 the new method for Bayesian parameter estimation of non-linear ODE
models for gene regulatory networks with smoothing splines combined with sampling algo-
rithms is explained and results for simulated and real experimental data with the comparison
to other inference methods are presented.

In Part III the second topic of this thesis, Bayesian experimental design for the parameter
estimation of systems of non-linear ordinary differential equations by means of maximum
entropy sampling is examined. This part starts with an introduction in classical and Bayesian
experimental design with existing methods for parameter estimation for models based on
ordinary differential equations in Chapter 6. In Chapter 7 the new method for Bayesian
experimental design is given and applied to the model for gene regulatory networks described
in Chapter 5 and the results are compared to random experiments and classical experimental
design for simulated and real experimental data.

To close the circle of the thesis, which is also depicted in Figure 0.1, Part IV gives the
discussion and the outlook of the presented Bayesian methods for the parameter estimation
and the experimental design for non-linear ordinary differential equations examined in Part II
and Part III.

In the last part, in Part V, the appendices are given.
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Technical background
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CHAPTER 1

Biological background

The essence of life is statistical

improbability on a colossal scale.

(Richard Dawkins)

Since the application of my work is settled in biology, I will give an overview of some biological
facts concerning gene expression and gene regulation. These sections are geared to [ABL+94].
Furthermore, I will summarize experimental setups how to measure gene expression and the
difficulties behind it.

1.1. The cell

What all cells have in common is, that they are surrounded by a plasma membrane which
is about 5 nm thick and contains the genetic information in it. This genetic information is
stored in the DNA. The information in the DNA encodes the “rules” which vital processes are
required and which organic molecules have to be synthesized to accomplish the tasks needed
for the cell to live. For this purpose, evolution has brought up three processes, how chemical
energy in form of ATP is formed. ATP is the central source for energy present in cells.

1. Glycolysis is an inefficient process to degrade glucose in the absence of oxygen, i.e., it
is an anaerobic process. As their was no oxygen in the atmosphere when the first cells
evolved, this process was developed by the cells.

2. Photosynthesis is the process where sunlight is absorbed with the pigment molecule
chlorophyll to use the energy of the sun to convert CO2 from the atmosphere into
organic compounds. As a by-product of photosynthesis, oxygen is produced.

3. Respiration is an efficient process for ATP formation. It is the aerobic oxidation of food
molecules, i.e., it uses oxygen to degrade food molecules. This process developed, once
photosynthesis caused oxygen to be present in the atmosphere.

7



1. Biological background

Figure 1.1.: A typical example of a prokaryotic cell: a bacterium. Details of the bacterium components
are described in Section 1.1.1. Source: http:// en. wikipedia.org/ wiki/Prokaryote

Basically, one distinguishes between two different types of cells: cells without a nucleus,
prokaryotic cells, and cells with a nucleus, eukaryotic cells. We will start with the former
ones.

1.1.1. The prokaryotic cell

Prokaryotic cells are cells with relatively simple internal structures. Inside a prokaryotic cell
one finds DNA, RNA, proteins, and other small molecules. Typical examples for prokaryotic
cells are bacteria. Bacteria are small and can replicate quickly which enables them to rapidly
adapt to changing environments. They are the most abundant type of cells on earth.

In Figure 1.1, a typical example for a prokaryotic cell is depicted: a bacterium. One see
that the plasma membrane encloses the circular DNA and other small molecules. The “body”
of circular DNA is also called the nucleoid . Ribosomes are used in all cells, prokaryotic and
eukaryotic in the procedure of forming proteins which will be described in Section 1.2.3.
Additionally, one may find plasmids in bacteria, which are DNA molecules separate and
independent from the nucleoid. Around the cell membrane of the bacterium there is a cell
wall . An additional surrounding of bacteria is the capsule, which protects the prokaryotic
cell from engulfment by eukaryotic cells. The pili on top of bacteria are used to connect to
another bacterium and transfer plasmids between them. To move, bacteria use flagella, which
is a protein structure about 20 nm in diameter.

To produce chemical energy in form of ATP, different bacteria use different processes. Every
process described in the previous section can be used by bacteria. Since bacteria adapted to a
lot of environment conditions, every species of bacterium uses that energy producing process
which is most advantageous in its environment.

1.1.2. The eukaryotic cell

In eukaryotic cells, the DNA is separated from the other contents of the cell, since most of it is
contained in the nucleus. The nucleus itself is enclosed by a double layer of membrane. Thus,

8
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1.2. Gene expression

a eukaryotic cell has two main regions, the nucleus and the cytoplasm, where most of the cell’s
metabolic reactions occur. Typical examples for a eukaryotic animal and a eukaryotic plant
dell are shown in Figure 1.2. Different from prokaryotic cells, eukaryotic cells contain several
cell organelles. Common in all eukaryotic cells, one finds mitochondria, which are responsible
for respiration. In other words, one can say, that mitochondria are the energy producers of
cells. Another cell organelle, which is found in plants, but not in animals and fungi , are the
chloroplasts. This organelle is responsible for carrying out photosynthesis in their inherent
thylakoid membranes. The obtained glucose is then stored in so-called starch grains. The
evidence is high, that both, mitochondria and chloroplasts, were originally prokaryotic cells
and were engulfed by eukaryotic cells and live now a symbiotic life.

To simplify the problem of entrance and leaving of materials for biosynthetic reactions
through the plasma membrane, eukaryotic cells contain a lot of internal membranes. Thus,
reactions occur inside the cell and the exchange with the environment is done by exocytosis
(external material is brought into the cell) and endocytosis (internal material is brought
outside of the cell). In both processes vesicles are formed containing the molecules which
have to move out resp. move in. In the endoplasmic reticulum (ER) materials for the export
from the cell are produced. The Golgi apparatus helps in the transport of the molecules
made in the ER. Membranes also enclose lysosomes and peroxisomes. The former ones store
enzymes needed for digestion, which are able to attack proteins. The latter ones break very
long fatty acids. In this process hydrogen peroxide is generated, which is dangerous for the
rest of the cell, since it is very reactive. Thus, in both cases the enclosing membrane protects
the cell from severe damage, either by enzymes or hydrogen peroxide. In plant cells (see
Figure 1.2 Bottom) there exist even a water-filled vacuole to, amongst other things, isolate
harmful materials to the cell. The vacuole is surrounded by a membrane called the tonoplast .

To keep all the cell organelles in the proper place and control their movement, an eukaryotic
cell contains a cytosceleton. Is is composed of a network of protein filaments. Flagella consist
of these filaments and help the eukaryotic cell, as the prokaryotic cell, to move. Centrioles,
as a part of the cytosceleton, which are only present in animal cells, play an essential role in
the spatial arrangement of the cell.

1.2. Gene expression

We learned in the previous section, how a general cell looks like and want to focus now only
on eukaryotic cells to describe the process of gene expression and gene regulation. The three
main types of molecules involved in gene expression are DNA, RNA and proteins. We will
discuss these molecules in detail and along the way the processes of gene expression and
regulation will be described. Since it is out of the scope of this PhD thesis to explain basic
knowledge in general and organic chemistry, I assume such facts as given. They can be found
in any introductory book on general and organic chemistry.

1.2.1. DNA

The basic subunits that form deoxyribonucleic acid (DNA) are the four nucleotides adenine
(A), cytosine (C), guanine (G) and thymine (T). Nucleotides consist of one of several nitrogen-
containing aromatic base linked to a five-carbon sugar that carries a phosphate group. The
nucleotides are named after the base they contain. These nucleotides are linked together by
covalent bonds that join the 5′ carbon of the sugar deoxyribose to the 3′ carbon of the next.

9



1. Biological background

Figure 1.2.: Eukaryotic cells: (Top) A typical animal cell. (Bottom) A typical plant cell. The
cell organelles and components are described in more detail in Section 1.1.2. Source: http:// en.

wikipedia.org/ wiki/Eukaryote
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1.2. Gene expression

Figure 1.3.: (Left) The chemical structure of a part of a DNA molecule, where the hydro-
gen bonds are denoted by dotted lines. Source: http: // en. wikipedia.org/ wiki/DNA , (Right)
The double helix structure of a DNA molecule. Source: http:// en. wikipedia.org/ wiki/

Nucleic_acid_double_helix

All the genetic information contained in the DNA is structured as a linear sequence of these
four nucleotides. A DNA molecule is built of two strands of such linear sequences that are
complementary in their nucleotide sequence. Complementary means that the bases G and C
are always opposite each other and connected via hydrogen bonds. And the same holds for the
bases A and T. These complementary nucleotide sequences form a double helix with about
10 nucleotide pairs per helical turn. One such DNA molecule may contain several millions of
such nucleotide pairs. Each DNA molecule is packaged in a separate chromosome. And all
the information contained in all chromosomes in one organism is called the genome of this
organism. In Figure 1.3 the chemical structure of DNA is depicted on the left and on the
right one sees the double helix structure of DNA.

Now we know how the genetic information is stored in detail in every eukaryotic cell.
But how is this information now used to organize the living of the cell, i.e., how are genes
expressed? To answer this question, we first need to define what a gene is. Since this definition
is not unique, we will define it here as a region of the DNA helix that produces a functional
RNA molecule1 (also called here messenger RNA, see also Section 1.2.2). Why do we say
“functional RNA molecule” and not “RNA molecule”? This is, because for the gene expression
process one needs some helper molecules like transfer RNA (tRNA), which carries one of the
20 amino acids needed for the synthesis of proteins. A second helper molecule produced from
a gene is ribosomal RNA (rRNA), which together with ribosomal proteins forms ribosomes.
And, of course, the information for these helper molecules is also encoded in the DNA. With
the definition above, genes in higher eukaryotes can be up to 2 million nucleotide pairs long,
whereas only about 1000 nucleotide pairs are needed to code for a protein of average size.
The parts containing the necessary information for a specific protein are called exons and the
non-informative parts are called introns.

1see [ABL+94] page 340
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Figure 1.4.: Schematic view over gene expression: In the nucleus the DNA is read and mRNA is
created (transcription). The mRNA is then translated into the cytoplasm and a protein is created
(translation).

Now we can come back to the question, how genes are expressed. In Figure 1.4 the two
main steps for gene expression are depicted:

1. DNA transcription

2. translation or protein synthesis

In the first step, a gene is read to produce messenger RNA (mRNA). This step will be
explained in the next subsection. The second step deals, once we have an mRNA template,
with the procedure of the synthesis of proteins. This will be explained in more detail in
Subsection 1.2.3.

1.2.2. Messenger RNA

First, we want to answer the question, how ribonucleic acid (RNA) looks like in comparison
to DNA. As DNA, the four basic subunits of RNA are nucleotides. But there are two basic
differences between the subunits for DNA and RNA. The nucleotides which build RNA contain
as sugar ribose, whereas the nucleotides which build DNA contain as sugar deoxyribose.
Furthermore, instead of the base thymine, the corresponding nucleotide for the formation of
RNA contains as base uracil (U). Another important difference between DNA and RNA is
that RNA is always single-stranded and very short, compared to DNA molecules (between 70
and 10, 000 nucleotides).

How is now the information contained on the DNA in a gene transcribed into an mRNA?
To accomplish this task, an enzyme is used. An enzyme deals as a catalyst for chemical
reactions. This enzyme is RNA polymerase. It collides randomly with the DNA molecule but
binds tightly once it recognizes the promoter of a gene. This specific DNA sequence deals as a
starting point for RNA synthesis. The RNA polymerase then opens the DNA double helix at
that point and one of the DNA strands is used as a template for complementary base-pairing
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with the incoming nucleotides A, C, G, and U. Which one of the strands is used as a template
is determined by the promoter. The RNA polymerase molecule then moves along the DNA
and opens the DNA helix to provide a new template region for the formation of RNA. At the
same time, the enzyme closes the DNA helix to displace the newly formed part of the RNA
molecule. Thus, there exists always only a short region of a DNA/RNA helix. When the
enzyme passes a second special sequence in the DNA, the stop signal , the RNA polymerase
releases the DNA and the produced RNA. This produced mRNA molecule contains exon and
intron sequences. The intron parts have to be cut out to obtain an mRNA molecule which
codes directly for a protein. This process is called RNA splicing . It is performed with help of
a multicomponent protein complex, the spliceosome. This complex binds an intron sequence
and catalyzes the breakage and formation of covalent bonds between the two exons formerly
bound to the intron. The introns are then degraded inside the nucleus and the obtained
mRNA molecule leaves then the nucleus through one of the nuclear pores (see Figure 1.2)
and enters the cytoplasm.

We have to mention here, that the above described transcription procedure omits the very
important detail of how the transcription of specific regions of the DNA is regulated. Until
now, we only mentioned, that the RNA polymerase finds the promoter in a random fashion.
However, this approach may transcribe genes which are not needed at the specific moment
and, on the other hand, may not transcribe genes which are needed to be expressed, because
specific proteins are needed by the cell. To regulate this, gene regulatory proteins, also called
transcription factors, bind to the promoter regions of a gene to, either activate or inhibit the
transcription of it. We will come to this point in more detail in the next subsection.

1.2.3. Proteins

The question to be answered in this subsection is: How do we obtain from the information
contained in a gene the protein we need? First, we will describe, how proteins are synthesized
from mRNA molecules. Second, we will give an overview about regulation of gene expression
in general and how proteins play a crucial role in it.

Protein synthesis

Essential molecules for this process are the previously introduced tRNA and rRNA. The tRNA
molecules carry amino acids. For each of the 20 used amino acids in biological organisms
there exist at least one specific tRNA molecule. This is a good point to mention, that proteins
are nothing different than long chains of amino acid molecules linked by peptide bonds. An
amino acid always contains a carboxyl group and an amino group and the carboxyl group from
one amino acid then binds via a peptide bond to the amino group of another amino acid.

The tRNA binds at one end to a codon, a sequence of three following nucleotides, of the
mRNA and at the other ends it binds to the amino acid specified by that codon. Since there
are 4 different nucleotides, there are 43 = 64 different codons coding for 20 different amino
acids. Three of the 64 codons are so-called stop codons. They serve as points on the mRNA
where protein synthesis is terminated. The remaining codons all code for a specific amino
acid. Thus, for almost all amino acids there is more than one codon associated with it.

The other important molecules for protein synthesis are ribosomes. They are complexes of
rRNA and protein molecules. They serve as guide for the correct protein synthesis, i.e., that
all codons are read in the right order and not single nucleotides are skipped. Ribosomes have

13



1. Biological background

Figure 1.5.: A schematic view of protein synthesis: tRNA molecules bind to the P- and the A-site
of the ribosome and the corresponding amino acids form peptide bonds between them. The ribosome
moves along the mRNA molecule and binds new tRNA molecules. While the ribosome is doing so,
the protein grows and is released, once a stop codon on the mRNA is reached. Source: http:// en.

wikipedia.org/ wiki/Translation_( biology)

three binding sites for RNA molecules, one for the mRNA and two for two tRNA molecules,
the P-site and the A-site. The two binding sites for the two tRNA molecules are that close,
that the two tRNA molecules are forced to bind to adjacent codons and do not skip any
nucleotides. Ribosomes consist of two subunits. The small subunit binds to the mRNA and
tRNA molecules. The large subunit is used for the catalyzation of the formation of the peptide
bonds in the protein.

The process of protein synthesis is depicted in detail in Figure 1.5. This process starts with
the binding of an initiator tRNA to the P-site of the ribosome. The initiator tRNA always
carries methionine, the amino acid that starts a protein chain. As a next step, the small
subunit of the ribosome binds to the 5′ end (compare with Figure 1.3 (Left)) of the mRNA
molecule and scans this molecule, until the start codon is reached. The start codon is always
a AUG codon, which is the codon that codes for methionine. Next, the initiator tRNA binds
to this codon and a matching tRNA molecule2 is bound to the next codon and to the A-site
of the ribosome. Afterwards, the carboxyl group of methionine forms a peptide bond with
the amino group of the amino acid linked to the tRNA molecule in the A-site. Subsequently,
the ribosome moves exactly one codon along the mRNA molecule. Now the tRNA molecule
in the P-site binds a chain of two amino acids. The tRNA occupying the A-site before is now
occupying the P-site. The process described in the last few lines continues until one of the
three stop codons is reached. When this happens, a release factor binds to the stop codon
and adds a water molecule to the amino acid chain instead of another amino acid. This leads
to the release of the protein chain into the cytoplasm. Furthermore, the ribosome releases
the mRNA molecule and dissociates into two subunits.

2“Matching” is meant in the sense, that the tRNA molecule contains the complementary nucleotides given
the codon on the mRNA molecule.
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1.2. Gene expression

Regulation of gene expression

One distinguishes between two types of gene expression control:

1. transcriptional control : control when and how often a given gene is transcribed

2. post-transcriptional control : everything else in the process of gene expression, except the
transcription of a gene, e.g., control which mRNA is transported into the nucleus, control
which mRNA in the cytoplasm is translated into a protein, control of the degradation
of mRNA molecules, alternative splicing, . . .

Transcriptional control is the predominant form of gene regulation, which makes sense, since
then no useless intermediate products are formed. Therefore, I will focus in more detail on
transcriptional control.3 However, one has to keep in mind, that the control of gene expression
is a highly complex procedure and more complicated than shown in Figure 1.4.

Since this section is about proteins, you probably already guessed it, that for transcriptional
control proteins play an essential role. As mentioned at the end of the previous section, three
components are needed for transcriptional control of gene expression:

1. gene control region, which is a combination of short stretches of DNA of defined se-
quence, and consists of the promoter and regulatory sequences, which can be spread
thousands of nucleotide pairs away from the promoter

2. general transcription factors

3. specific transcription factors

We will explain in the following, how transcription factors bind to these short stretches and
how this binding enhances or represses the transcription of a specific gene.

In eukaryotic cells, the initiation of transcription cannot be made with the RNA polymerase
enzyme alone. It has to form a complex together with general transcription factors, which
are proteins that are abundant in the nucleus. This complex forming process can be slowed
down or speeded up in response to regulatory signals4 which are carried out by specific
transcription factors. These specific proteins bind to the general transcription factors or the
RNA polymerase enzyme and enhance resp. suppress the formation of the complex consisting
of RNA polymerase and general transcription factors. This then enhances resp. suppresses
the transcription of mRNA molecules.

An important fact is, that a specific transcription factor has to be bound to a regulatory
sequence on the DNA to be able to influence transcription of its target gene. If the regulatory
sequences are close to the starting point for the RNA polymerase enzyme, the binding of gene
regulatory proteins to the RNA polymerase/transcription factors-complex is easy. However,
what if the regulatory protein binds to a regulatory sequence far away from the promoter?
In this situation, how does it regulate the complex formation needed for transcription? This
is achieved by DNA looping . The name exactly says what it is about: the DNA is forming
a loop to allow the protein to bind to a regulatory sequence far away from the promoter to
interact directly with parts of the forming RNA polymerase/transcription factors-complex.

To make the control of gene regulation even more complicated, several gene regulatory
proteins can assemble into small complexes and then activate or repress transcription. This

3For more details on post-transcriptional control see [ABL+94] pages 453 ff.
4For more information concerning cell signaling see [ABL+94] Chapter 15.
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formation of a complex can either happen in solution, but also, if the proteins do not bind in
solution, it can happen on the DNA. Thus, two proteins cooperate to bind to the DNA, and
then they offer a new surface, where another regulatory protein is able to bind to and there
is able to stimulate transcription.

As a final remark, it remains to mention, that for some genes in mammalian cells the gene
control region may be up to 50, 000 nucleotide pairs long. This control region contains several
regulatory sequences, each to regulatory proteins may bind to and all are able to participate
in the gene regulation process.

Although, the focus was on transcriptional control, I will mention one aspect of post-
transcriptional control, namely alternative splicing . We saw in Section 1.2.2 that an immature
mRNA molecule contains introns and exons and with splicing the introns are removed such
that mature mRNA molecules only contain exons with encode for a specific protein. But this
splicing procedure is not unique. Some exons may be also cut out of the immature mRNA
molecule, such that the corresponding mature mRNA is encoding for a different protein. The
regulation of splicing in general, and also for alternative splicing, is also done by protein
complexes. For more details on alternative splicing see [MCS05].

Altogether, we see that gene regulation is a highly complex procedure.

1.3. Experimental setups

In this section, the experimental setups will be described, which are used to measure the
abundance of gene expression products, i.e., mRNA molecules and proteins, in the cell. The
first three methods detect the amount of mRNA molecules, whereas with a western blot one
detects the amount of proteins in the cell.

1.3.1. Northern Blot

The general principle of northern blotting is to separate RNA molecules by size and detect
them by hybridization, i.e., complementary single strands of nucleotide chains will reform
double helices of the sequence of the target mRNA. This trick for detection was proposed by
Southern in 1975 [Sou75]. We will now describe northern blotting in more detail.

It consists of eight steps [Tra96], which are also outlined in Figure 1.6: First, the RNA
from a specific tissue under consideration is extracted. Second, mRNA molecules are isolated.
These are then separated on the basis of molecular size by gel electrophoresis as a third step.
Fourth, the mRNAmolecules of interest are blotted onto a membrane. Most often, a positively
charged nylon membrane is used, since the negatively charged nucleic acids bind very well
to it. To ensure covalent bonds between RNA molecules and membrane, the RNA molecules
have to be immobilized on the membrane, either by exposure to heat or to ultraviolet light
as a fifth step. Sixth, the hybridization probe with the complementary DNA (cDNA), i.e.,
a strand with the complementary nucleotides of the mRNA of interest, is prepared. These
probes are labeled, most common, with radioactive isotopes or with molecules emitting light
as a result of a chemical reaction. Labeling is needed for the detection in the last step. The
next to last step is the hybridization with the probe. It is followed by washing away the non-
binding hybridization probes. Here one sees the importance of the immobilization of the RNA
molecules on the membrane in step five. Otherwise, everything would be washed away. The
eighth and last step is the detection of the binded labeled probes and its quantification. The
detection method depends, of course, on the labeling method in step six. The quantification
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Figure 1.6.: A schematic view of northern blotting. The eight steps of the northern blotting
procedure are described in detail in Section 1.3.1. Source: http:// en. wikipedia.org/ wiki/

Northern_blotting

is done by densitometry, a procedure which measures how much light passes a material, in
this case, the membrane with the bound labeled cDNA probes. The less light passes the
membrane, the higher the amount of labeled cDNA probes and thus the higher was the
amount of the mRNA molecule of interest in the tissue at the beginning.

A clear advantage of this method is its simplicity and its relatively high specificity , i.e.,
the method is conservative and specifies mostly mRNA molecules with high abundance5. The
main disadvantage is the risk of mRNA degradation during gel electrophoresis which may lead
to the second disadvantage, the low sensitivity , i.e., for a lot of mRNA molecules the given
results are too low and thus not properly detected, compared to that of qPCR [SME+09].
Compared to DNA microarrays, northern blotting usually only considers a small number
of different genes, whereas microarrays are able to visualize thousands of genes. However,
northern blotting is capable to detect small changes in gene expression that microarrays
cannot, at least for some examples [TMIY01].

1.3.2. Real-time quantitative polymerase chain reaction

Real-time quantitative polymerase chain reaction (qPCR) is a quantitative way to measure the
amount of present mRNA molecules. This is done by, first, amplification of the corresponding
cDNA molecules. During this amplification the amount of double-stranded DNA molecules is
measured by the increase of the fluorescence of a dye, e.g., ethidium bromide or SYBR green,
which only fluoresce when bound to a double-stranded DNA molecule. These steps and two

5Compare the terms “specificity” and “sensitivity” used here with the same terms used in Section 3.3.1
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quantification methods will be described in the following in more detail. The description is
based on [VVF08,Hun10]. For a more technical experiment protocol see [NHB06].

Polymerase chain reaction

The goal of a polymerase chain reaction (PCR) is the amplification of short DNA sequences.
One starts with the double-stranded DNAmolecule one wants to amplify, a pair of primers and
a heat-stable DNA polymerase inside a solution. Primers are short sequences of nucleotides,
of about 20 nucleotides in length, which serve as starting points for the amplification and are
complementary to the region of the DNA that is of interest. PCR is performed in several
cycles, where in each cycle the amount of the DNA molecule of interest is doubled in the
optimal case of 100% reaction efficiency. Every cycle contains of three steps:

1. Denaturation

2. Annealing

3. Elongation

In the denaturation step the reaction is heated to a high temperature of more than 90 degrees
such that the two strands of the DNA separate. In the annealing step, the reaction is cooled
down to a temperature between 50 and 60 degrees where the primers bind to the specific
sites of the single-stranded DNA molecules obtained from the denaturation step. As a third
step, the temperature of the reaction is raised to usually 72 degrees, which is the temperature
where the heat-stable DNA polymerase performs the elongation of the primer to a new DNA
strand. This procedure is illustrated in Figure 1.7.

Of course, to quantify mRNA molecules one first has to reverse transcribe the mRNA into
cDNA molecules. Otherwise, no double-strands could be created.

Quantification of mRNA

Now that several cycles of PCR are performed, how do we quantify the amount of mRNA
molecules we had at the beginning? Mainly, there are two approaches to do this:

1. measure absolute levels (done with the standard curve method)

2. measure relative levels of a target gene versus a reference gene (done with the 2−∆∆CT

method [LS01])

Before we will describe these quantification methods in more detail, we first need to know
what the crossing threshold (CT ) means. We saw it already in the exponent of the 2−∆∆CT

method. For this, we have to look at the three phases of the PCR process. In the first phase,
the process is exponential, i.e., the amount of double-stranded DNA molecules doubles in
every cycle of the PCR, since all reaction reagents are abundant and the reaction efficiency
is close to 100%. In the second phase, the process is linear, because the reagents become
limiting although the produced DNA molecules are accumulated. In the third phase, the
process reaches a plateau where the reaction stops because of exhausted reagents.

It is obvious, that one wants to measure the amount of DNA molecules when the reaction
is in the exponential phase, because of the perfect reaction efficiency. But at the beginning
of a PCR the amount of products may be hard to detect. Thus, a crossing threshold CT has
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Figure 1.7.: Illustration of the principle of a PCR. The three steps denaturation, annealing and
elongation are described in more detail in Section 1.3.2. Source: http:// en. wikipedia.org/ wiki/
Polymerase_chain_reaction
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1. Biological background

Figure 1.8.: The three phases of a PCR reaction: It starts with an exponential phase. When the
reagents start to become limiting, it is in the linear phase and when the reagents are exhausted, the
reaction reaches a plateau. Also the crossing threshold CT is depicted. This figure is adapted from
[VVF08].

to be specified, which gives the amount of products that are detectable properly. Of course,
this threshold varies between different experimental settings and is usually a parameter to
be set by the experimenter. It should be set as low as possible to ensure, that one is still in
the exponential phase of the reaction. In Figure 1.8 the three phases of a PCR reaction are
depicted. Additionally, one can see, that at the beginning of the reaction, the fluorescence
signals are that low that the exact amount of DNA molecules is hard to detect.

Now we can begin to explain the two approaches for quantification introduced earlier. For
both methods, we assume that the CT is given by the experimenter. Let’s start with the
standard curve method. The basic idea of it is to perform PCRs with known amounts of
DNA molecules. For this, one starts with a certain amount and then takes dilutions of this
probe, e.g., in every dilution step, the amount is reduced by one half or by one tenth. For all
this diluted probes a PCR is performed and from the fluorescence measurements resulting in
curves like in Figure 1.8 one specifies the cycle number, where the curve crosses the CT line.
By plotting now the concentration of the probes against the obtained cycle numbers one will
be able, in the optimal case, to draw a straight line through these points (see Figure 1.9).
Since in reality, one does not have the ideal case, linear regression is performed to obtain this
straight line. With this standard curve, one is able to determine the initial amount of DNA
molecules of a probe of interest. One just has to observe the cycle number, where for this
probe the PCR crosses the CT line. With the standard curve, one immediately gets the initial
amount that was present in the probe. This is illustrated in Figure 1.9 with the dotted lines:
We observed that the PCR crossed the CT line with the cycle number 13. We calculate with
the standard curve, that the initial concentration had the value 3. It remains now only to
calculate 23 = 8 [a.u.] to obtain the concentration of interest. Of course, this quantification
method depends crucially on the standard curve obtained.

The most common method for relative quantification given a reference sample, is the
2−∆∆CT method. This method is based on two crucial assumptions:
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Figure 1.9.: An idealized standard curve: On the x-axis the logarithmized concentration values and
on the y-axis the corresponding observed cycle number at which the reaction curve crosses the CT line
are depicted. The dotted lines illustrate how the initial amount of a probe can be determined: First,
one observes the CT number of this probe and then one can extract from the straight line, what the
concentration was.

1. the reaction efficiency is 100%

2. it exists a gene which is expressed at a constant level in different samples

Concerning the first assumption one can say, that the crossing threshold CT has to be set
as low as possible to guarantee that the PCR is still in the exponential phase. To fulfill the
second assumption, usually a housekeeping gene is used as a reference gene. Housekeeping
genes are needed for the performance of basic functions of a cell. And some of them are
expressed at constant levels in all cells such as β-actin which makes them ideal candidates to
serve as reference genes for the relative quantification of mRNA molecules of interest. How
does this method work now? Basically, one has two PCRs which deal as a calibrator for the
reaction. For example, in the case of interest how a virus infection affects the expression of
a certain gene of interest, one can use samples which are not infected with this virus as a
calibrator. We need one PCR to measure the amount of the gene of interest and another one
to measure the amount of the reference gene in the calibrator. Now we have to perform two
PCRs for the gene of interest in the sample of interest: one for the gene itself and again one
for the reference gene. For all these four reactions the corresponding values, where the CT line
is crossed, are measured. Let us name these values here CT (V irus,I), CT (V irus,R) for the virus
infected samples for the gene of interest (I) and the reference gene (R). And furthermore,
CT (healthy,I) and CT (healthy,R) for the healthy samples for the gene of interest and the reference
gene. Then the relative amount of the gene of interest compared to the calibrator is

2−(CT (V irus,I)−CT (V irus,R)−(CT (healthy,I)−CT (healthy,R))) =: 2−(∆CT (V irus)−∆CT (healthy)) =: 2−∆∆CT .

Now one can clearly see why this method is called the 2−∆∆CT method. In Figure 1.8 we see
two curves for a PCR reaction. Let’s assume the red one represents the reference gene and
the blue one represents the gene of interest in the case of healthy samples. Then, ∆CT (healthy)

is represented by length of the dashed line located between the crossing of the red and blue
line with the CT dashed line. A similar picture will appear, of course, for the case with the
virus infected samples.
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Figure 1.10.: Scheme of the general flow of a DNA microarray experiment. From a sample, first
the mRNA molecules have to be separated from the rest material in a cell. These are then reverse
transcribed (RT) to get cDNA molecules. As a next step, these cDNA molecules are labeled and are
ready to start the hybridization. After washing away the not binded molecules, the fluorescence signals
are reported and, as a last step, it remains to normalize and analyze the obtained data. Source:
http:// en. wikipedia.org/ wiki/DNA_ microarray

1.3.3. DNA Microarrays

The technology for DNA microarrays was introduced in 1995 by Schena et al. [SSDB95].
Since the literature for microarray experiments is vast, I stick to the three references [SD01,
Sto05,WH08]. As northern blotting it is based on hybridization of cDNA molecules. Well,
this is only half of the truth, since there exist two common platforms for DNA microarray
experiments:

1. cDNA microarrays

2. oligonucleotide microarrays

In northern blotting the cDNA molecules of interest are immobilized and the hybridization
probes are labeled with a radioactive or light-emitting marker. In contrast, and this is the
main difference between these two methods, for DNA microarray analysis the probes are
immobilized and the mRNA molecules are labeled with a fluorescent marker. This gives the
possibility to locate different probes to different locations of a plate. And by labeling the
whole cellular RNA, one is able to detect the expression of the whole genome.

Now let’s come to the difference between the two platforms for DNA microarrays. In
the first one, one creates cDNA molecules, usually by PCR. Then these probes are spotted
onto a solid surface, most often a glass slide. In contrast, for oligonucleotide microarrays,
oligonucleotides are synthesized directly on the plate, i.e., in situ.

In Figure 1.10 we see a typical procedure of a DNA microarray experiment after the probes
are fixed on a plate. First, the mRNA molecules are isolated from the sample and reverse
transcribed to obtain the corresponding cDNA molecules. These are then labeled with a
fluorescent marker. The labeled molecules are used for hybridization and after washing away
the unused experimental material, the fluorescent signals are detected with high-throughput
screening methods6. The obtained data has now to be analyzed. This a very crucial step,
because of the high-dimensionality of the data.

The first point in data analysis of DNA microarray experiments is, that usually not the
absolute values are considered, but ratios between the sample of interest to a reference sample.

6Because of the vast amount of methods and protocols available, I will only give the reference [JB09] as a
starting point to read.
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A typical example in microarray studies is the comparison of normal samples and disease
samples (see Section 2 in [WH08]). This comparison can be done in two separate microarray
experiments or in one experiment, where RNA molecules from both samples are labeled, each
with another fluorescent marker. Usually, for this two-color microarrays the markers Cy3
(emitting green light) and Cy5 (emitting red light) are used.

It has been shown in studies, that results between different platforms, different laboratories
and also between different analysis methods differ a lot (see references in [WH08]). Of course,
there are a lot of possibilities which may explain the different results from the technical point
of view: different probe preparation, different labeling techniques, different hybridization pro-
tocols and as very important part the different quality of the tissue / sample, i.e., the amount
of mRNA molecules expressed in the sample may be different. For two-color microarrays the
additional bias of different chemical properties of the two dyes used is introduced. Also it
may occur that targets hybridize with probes that are not exactly the complementary strand.
This is also known as cross hybridization.

But how can we circumvent, at least partially, the mentioned problems? The problem with
the bias introduced by the usage of two chemically different dyes can be easily solved by
performing the same experiment again where the labeling of the samples is reversed and the
obtained results from both experiments are averaged. In other words, a dye-swap is performed.
To impede cross hybridization, good probe design is essential. There exist a lot of different
methods to perform this task (see e.g. [RHMP05,GR08,SZK+08]). The Affymetrix7 platform,
in contrast, uses probes that are designed in pairs to avoid cross hybridization. One sequence
is the complementary strand to the target and the other sequence differs from the exact
complement by two mutations. The signal from the modified probe can be seen as background
signal and accounts for non-specific binding [Sto05]. As a very promising approach to develop
standards and quality controls for microarray experiments the MicroArray Quality Control
(MAQC) project was established in 2006 [Con06,Con10]. In MAQC-I is has been shown that
external RNA controls included in the microarray experiments can be used as predictors of
technical performance. Another finding was that to produce reproducible and valid results,
biologists have to increase their algorithmical skills [edi10]. The same was mentioned also by
Walker and Hughes [WH08]. With the high complexity of the data obtained and the vast
amount of methods and software packages available helping with the data analysis, this seems
to be a reasonable concern.

Altogether, until no golden standard protocols for DNA microarray experiments are defined,
the conclusions obtained for individual genes have to be validated with northern blotting,
qPCR or western blotting.

1.3.4. Western Blot

Until now, we just described methods how to detect mRNA molecules. Western blotting, in
contrast, is a method to detect the amount of present proteins.

The first steps of the underlying experimental protocol, first described in 1979 [TSG79], are
similar to the first three steps of the northern blotting procedure. The difference, of course,
is that proteins instead of mRNA molecules are separated. After separation the proteins are
blotted on a membrane. Usually, electroblotting is used to pass proteins from the gel to a
membrane made of nitrocellulose. The passing is done by putting the gel together with the

7http://www.affymetrix.com
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1. Biological background

Figure 1.11.: The electroblotting procedure to fix proteins to a membrane: The gel, which contains
the proteins together with a membrane and filter paper are put into a magnetic field. The proteins then
move from the cathode to the anode and stick to the membrane. Source: http:// en. wikipedia.

org/ wiki/Western_blot# cite_ref-Corley2005_5-0

proteins, the membrane and some filter papers into an electrical field , where the proteins
then move from the cathode (+ pole) to the anode (− pole) and stick to the membrane (see
Figure 1.11).

The detection of the amount of proteins bound to the membrane is usually done in two
steps. First, a primary antibody is used to bind specifically to the protein of interest. After
washing away the unbound primary antibody, as the second step a labeled secondary antibody
is used to bind to the primary antibody. The labeling is most often done with a fluorescent
dye. Of course, the unbound secondary antibody has to be washed away to detect the amount
of protein correctly.
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CHAPTER 2

Mathematical background

Mathematics, rightly viewed,

possesses not only truth, but

supreme beauty.

(Bertrand Russell)

In this chapter we introduce the mathematical fundamentals to understand the methods de-
scribed in Part II and Part III. We start with the basic definitions and concepts in probability
theory. With this foundation, we will provide some basic knowledge in information theory and
Markov chain theory. Additionally, we will introduce the concept and notations of ordinary
differential equations and splines and provide general ideas about the numerical methods to
solve differential equations and to obtain splines and smoothing splines.

2.1. Probability theory

In this section, I will give the main definitions and results needed to understand the following
sections on information and Markov chain theory. This section is based on [LW00, Dur05].
Of course, there are a lot of other books dealing with probability theory, which can also be
used to get an overview and deeper understanding of the topic.

2.1.1. Probability spaces

The essential concept in probability theory is a probability space:

Definition 2.1.1. A probability space is a triple (Ω,F , p), where Ω is a set of outcomes, F
is a set of events (a σ-algebra), and p : F → [0, 1] is a function that assigns probabilities to
events (a probability measure).

Definition 2.1.2. A σ-algebra F is a collection of subsets of Ω that satisfy

1. if A ∈ F , then Ac ∈ F , and
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2. Mathematical background

2. if Ai ∈ F is a countable sequence of sets, then ∪iAi ∈ F .

Definition 2.1.3. A probability measure p is a function p : F → R with

1. p(Ω) = 1, and

2. p(A) ≥ p(∅) = 0 for all A ∈ F , and

3. if Ai ∈ F is a countable sequence of disjoint sets, then

p
(

∪iAi

)

=
∑

i

p(Ai).

A probability space of special interest is the probability space on the real line (0, 1) ⊂ R.
As a σ-algebra on the real numbers R the Borel sets B are used. The Borel sets are defined
as the smallest σ-algebra containing the open sets of R. As a measure on R the Lebesgue
measure λR is used. It is defined as the only measure on R with λR

(

(a, b]
)

= b − a for all
a < b. Note, that we have λR(R) = ∞. Thus, the space (R,B, λR) is NOT a probability
space. But with the restriction to the unit interval, we will obtain the probability space
(Ω,F , p) =

(

(0, 1), {A ∩ (0, 1) : A ∈ B}, λR(B) for B ∈ F
)

.

Remark 2.1.4. The Borel sets B and the Lebesgue measure λR are also defined on the n-
dimensional real space Rn. The Borel sets B are defined as for the real numbers as the smallest
σ-algebra containing the open sets of Rn. Furthermore, as for the real numbers the Lebesgue
measure on R

n is defined as the only measure with

λR

(

(a1, b1]× · · · × (an, bn]
)

= (b1 − a1) · · · · · (bn − an)

for all ai, bi ∈ R and ai < bi for all i ∈ {1, . . . , n}.

Sometimes we will equip the same set of outcomes Ω and a σ-algebra F with different
probability measures. For this purpose, we will call the pair (Ω,F) a measurable space.

2.1.2. Random variables and random vectors

Now that we defined a σ-algebra and a measure on R, we are able to give the definition of a
random variable:

Definition 2.1.5. Let (Ω,F , p) be a probability space. A function X : Ω → R is called a
random variable, if for every Borel set B ⊂ R we have

X−1(B) = {ω : X(ω) ∈ B} ∈ F .

How can we now describe random variables in a more descriptive way? As a first point, we
look at the distribution function of a random variable:

Definition 2.1.6. Let X be a random variable on the probability space (Ω,F , p). The
distribution function F : R→ [0, 1] of X is defined as F (x) = p(X ≤ x).
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2.1. Probability theory

Remark 2.1.7. For continuous random variables X we can characterize the distribution
function with help of a density function f : R→ R. If and only if f(x) ≥ 0 for all x ∈ R and
∫

f(x) dx = 1, then

F (x) :=

∫ x

−∞
f(y) dy

defines a distribution function of X.

Example 2.1.8. 1. Of special interest is the normal distribution, also called Gaussian
distribution, N (µ, σ2) with mean µ and variance σ2. It has the density function

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 . (2.1)

If we consider random variables with density function (2.1), we will write X ∼ N (µ, σ2).

2. Another important density function belongs to the gamma distribution Gamma(r, a)
with shape parameter r and rate parameter a. It has the density function

f(x) =
1

Γ(r)
arxr−1 e−ax (2.2)

for x ≥ 0 and f(x) = 0 otherwise, where Γ(r) denotes the gamma function

Γ(r) =

∫ ∞

0
tr−1 e−t dt. (2.3)

We will write X ∼ Gamma(r, a), if we consider random variables with density func-
tion (2.2).

3. To introduce one more example for density functions, I take the beta distribution
Beta(α, β) with shape parameters α and β. It has the density function

f(x) =
1

B(α, β)
xα−1(1− x)β−1 (2.4)

for x ∈ [0, 1] and f(x) = 0 otherwise, where B(α, β) denotes the beta function

B(α, β) =
Γ(α+ β)

Γ(α)Γ(β)
. (2.5)

We will write X ∼ Beta(α, β), if we consider random variables with density func-
tion (2.4).

Another possibility to describe random variables is with their mean and their variance,
which we already saw for the normal distribution N (µ, σ2) in Example 2.1.8 (1).

Definition 2.1.9. Let X be a random variable on the probability space (Ω,F , p).
1. The expected value, also called the mean, of X is defined as

E(X) :=

∫

X dp, 1 (2.6)

if the integral is finite. It is often also denoted by µ.

1For more information about this type of integral see [Bau92] Chapter 2.
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2. The variance of X is defined as

Var(X) := E
(

[

X −E(X)
]2
)

= E(X2)− µ2, (2.7)

if E(X2) <∞. It is often also denoted by σ2.

Remark 2.1.10. 1. For discrete random variables X the mean is calculated as

E(X) =
1

n

n
∑

i=1

xi,

where Ω = {x1, . . . , xn}.
2. For continuous random variables X the mean is calculated as

E(X) =

∫

x · f(x) dx,

where f(x) denotes the density function of X.

Example 2.1.11. 1. The mean of a normally distributed random variable X ∼ N (µ, σ2)
is E(X) = µ and the variance is Var(X) = σ2.

2. The mean of a gamma distributed random variable X ∼ Gamma(r, a) is E(X) = r/a
and the variance is Var(X) = r/a2.

3. The mean of a beta distributed random variable X ∼ Beta(α, β) is

E(X) =
α

α+ β

and the variance is

Var(X) =
αβ

(α+ β)2(α+ β + 1)
.

Until now, we only looked at one random variable X. But we are also interested in random
vectors X = (X1, . . . ,Xn), n ∈ N. The expected value of X, also called the mean vector , is
defined as

E(X) :=
(

E(X1), . . . , E(Xn)
)

.

Analogously, the variance of X is defined as

Var(X) := E
[

(X− µ)T (X− µ)
]

,

if µ = E(X) < ∞ and E(XiXj) < ∞ for all i, j ∈ {1, . . . , n}. This symmetric (n × n)-
matrix is also denoted by Σ and called covariance matrix . The diagonal entries in Σ are
the variances Var(Xi), i ∈ {1, . . . , n} and the other entries are the covariances Cov(Xi,Xj),
i, j ∈ {1, . . . , n}, which are defined as

Cov(Xi,Xj) := E
[

(Xi − µi)(Xj − µj)
]

, (2.8)

where µi = E(Xi) and µj = E(Xj). If Cov(Xi,Xj) = 0, we say Xi and Xj are uncorrelated .
To have a normalized measure for the covariance between two random variables, we introduce
the correlation coefficient Corr(Xi,Xj) as

Corr(Xi,Xj) :=
Cov(Xi,Xj)

√

Var(Xi)Var(Xj)
, (2.9)

which is also denoted by ρij.
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2.1. Probability theory

Remark 2.1.12. 1. The correlation coefficient ρij is always a number between −1 and 1.

2. The correlation coefficient Corr(X1,X2) between two random variables describes the
linear dependency between them, i.e., ifX1 = aX2+b, we have Cov(X1,X2) = aVar(X1)
and Var(X2) = a2 Var(X1) and thus Corr(X1,X2) = 1 for a > 0 and Corr(X1,X2) = −1
for a < 0. We see that, if X1 and X2 are linearly dependent, the correlation coefficient
takes one of the extreme values.

Now that we described elementary properties of random vectors, we will give the definition
of the important property of independence of random variables:

Definition 2.1.13. 1. Let X1, . . . ,Xn be random variables defined on the same probabil-
ity space (Ω,F , p). They are called independent , if for all Borel sets B1, . . . , Bn ∈ B we
have

p(B1 ∩B2 ∩ . . . ∩Bn) = p(B1) · p(B2) · · · p(Bn).

2. If X1, . . . ,Xn are independent and follow the same distribution, they are called i.i.d.
(independent and identically distributed).

Remark 2.1.14. The definition of independence in 2.1.13 is equivalent to saying that

FX1,...,Xn = FX1 · · ·FXn ,

where FX1,...,Xn is the joint distribution function of X and FX1 , . . . , FXn are the distribution
functions of X1, . . . ,Xn.

If the density functions fX1,...,Xn and fX1 , . . . , fXn exist, another equivalent condition for
independence is

fX1,...,Xn = fX1 · · · fXn .

Remark 2.1.15. If X1 and X2 are independent, then they are also uncorrelated. But the
inverse is not always true!

2.1.3. Conditional probability and Bayes’ formula

An important concept in probability theory, which we will use in Chapter 5 and 7, is the
concept of a conditional probability . We ask the question: What is the probability of an event
A, if we already observed the event B? A formal definition is:

Definition 2.1.16. Let (Ω,F , p) be a probability space, A, B ∈ F and p(B) > 0. The
probability of A under the condition B, p(A|B), is given by

p(A|B) :=
p(A ∩B)

p(B)
. (2.10)

Remark 2.1.17. 1. Let (Bn)n∈N be a series of events with pairwise disjoint events, i.e.,
Bi ∩ Bj = ∅ for all i, j ∈ N, with Ω =

⋃

Bn and p(Bn) > 0 for all n. With (2.10) we
now obtain the formula of the total probability :

p(A) =
∑

n∈N

p(Bn)p(A|Bn) for all A ∈ F .
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For continuous random vectors X = (X1, . . . ,Xn) we will write, e.g., for n = 2 also

p(x1) =

∫

p(x1|x2)p(x2) dx2.

In this case, we will say, that we are integrating out the variable x2, where p denotes
here the density of X. Since later we will deal with parameterized densities, we will also
say, that we are integrating out the parameter x2.

2. Another important formula we get immediately with (2.10) is Bayes’ formula for two
events A and B:

p(B|A) = p(A|B)p(B)

p(A)
. (2.11)

2.1.4. Estimators

In the previous sections, we fixed a special random variable and defined properties of it. Now
we want to look the other way around: we have observations x1, . . . , xn of a phenomenon
under the same experimental conditions, and we want to infer properties about the underlying
random variable X. Such observations are also called samples ofX. We now define, that every
xi is a realization of a random variableXi and allX1, . . . ,Xn are i.i.d. likeX. Furthermore, we
say that the distribution function of X is parameterized with a parameter vector θ ∈ Θ ⊂ R

k,
k ∈ N. We now want to learn approximately with the observations x1, . . . , xn the parameter
vector θ or a function of it τ(θ). Now we are able to define an estimator :

Definition 2.1.18. Let x1, . . . , xn be realizations of the random variables X1, . . . ,Xn and let
τ : Θ→ R. We call the random variable

T e
n : Rn → R (2.12)

the estimator for τ and the value T e
n(x1, . . . , xn) is called the estimate for τ(θ).

We are now interested in the quality of the estimators and their estimates. A reasonable
measure for the quality of an estimator is the expected value of the squared error between it
and τ(θ). We have (see [LW00]):

Eθ

(

[

T e
n − τ(θ)

]2
)

= Varθ(T
e
n) +

[

Eθ(T
e
n)− τ(θ)

]2
. (2.13)

The last term in (2.13) is called the bias of the estimator T e
n. If the bias is zero for all possible

θ ∈ Θ, we call an estimator unbiased . With (2.13) we thus see, that a good estimator is an
unbiased estimator with low variance.

The next question we may ask concerning the quality of estimators is, how it improves
for more realizations, i.e., for n → ∞. For this purpose, we first have to introduce two
different types of convergence for random variables: convergence in probability and almost
sure convergence:

Definition 2.1.19. Let (Xn)
∞
n=1 be a sequence of random variables defined on a probability

space (Ω,F , p) and X be a random variable defined on the same probability space.
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1. We say, (Xn)
∞
n=1 converges towards X in probability , if for all ε > 0 we have

lim
n→∞

p
(

|Xn −X| > ε
)

= 0.

We will also denote this type of convergence by Xn
p−→ X.

2. We say, (Xn)
∞
n=1 converges almost surely towards X, if for all ε > 0 we have

p
(

lim sup
n→∞

(

|Xn −X| > ε
)

)

= 0.

We will also denote this type of convergence by Xn
a.s.−−→ X.

Remark 2.1.20. Almost sure convergence implies convergence in probability, but the inverse
may not always be true! Intuitively, we can see, that almost sure convergence is a stronger
property than convergence in probability, since for the latter only the probability that Xn and
X are not equal decreases to zero for growing n, whereas for the former the probability for the
events, for which, for growing n, Xn does not equal X, is zero (for more details see [Bau01]).

With Definition 2.1.19 we are now able to define quality measures for estimators for growing
number of observations: weak consistency and strong consistency.

Definition 2.1.21. Let (T e
n)

∞
n=1 be a sequence of estimators and let τ : Θ→ R.

1. We say, (T e
n)

∞
n=1 is weakly consistent for τ , if for all θ ∈ Θ we have

T e
n

p−→ τ(θ).

2. We say, (T e
n)

∞
n=1 is strongly consistent for τ , if for all θ ∈ Θ we have

T e
n

a.s.−−→ τ(θ).

Example 2.1.22 (Maximum likelihood estimator). An often used estimator is the Maximum
Likelihood (ML) Estimator. To define the ML estimator, we first have to define the likeli-
hood. For this purpose, let (x1, . . . , xn) be a realization and let f(xi) = p(Xi = xi) for all
i ∈ {1, . . . , n}. For continuous random variables the function f(·) thus denotes the density
function of X. The likelihood function is defined as

L(θ;x1, . . . , xn) = fθ(x1) · · · fθ(xn), θ ∈ Θ. (2.14)

A parameter value θ̂ with

L(θ̂;x1, . . . , xn) ≥ L(θ;x1, . . . , xn) for all θ ∈ Θ

is called Maximum Likelihood estimate for the parameter θ with the realization (x1, . . . , xn).
An estimator, which gives us for all realizations the maximum likelihood estimate θ̂, is called
the Maximum Likelihood estimator and we will sometimes write ML(θ) = L(θ̂).

One may now ask: Are all ML estimators (weakly or strongly) consistent? Unfortunately,
this is not the case (see e.g. [Fer82]). But Wald [Wal49] gives conditions under which ML
estimates are strongly consistent.
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2.2. Information theory

2.2.1. Definition of Shannon’s information

In his seminal paper in 1948, Shannon introduced information theory to answer questions
in communication theory [Sha48]. I give an overview over basic definitions and results from
information theory that are needed to understand the experimental design method in Part III.
Here the notation is used as in [CT06], which is also a good reference for further reading
concerning the topic of information theory.

The main goal of this section is to give a measure for the uncertainty and information of
a random variable. First we will do this for a discrete random variable X on a probability
space (Ω,F , p) with | Ω |= n. Shannon introduced the measure of the uncertainty of X in an
axiomatic way. He gave three properties which are reasonable for such a measure H:

1. H should be continuous in p(xi) for all i ∈ {1, . . . , n}

2. If all the p(xi) are equal, i.e., p(xi) = 1
n , then H should be a monotonic increasing

function of n.

3. If a choice can be broken down into two successive choices, the original H should be the
weighted sum of the individual values of H.

Then he proved:

Theorem 2.2.1. The only H satisfying the three above assumptions is of the form

H(X) := −K
n
∑

i=1

p(xi) log p(xi), (2.15)

where K is a positive constant.

Proof. See [Sha48], Appendix 2.

Definition 2.2.2. We call H(X), as defined in (2.15), the entropy of a discrete random
variable X. Furthermore, we define the information of X to be

I(X) := −H(X). (2.16)

Remark 2.2.3. We will now illustrate property 3 from above for a special case with three
possibilities with corresponding probabilities p1 =

1
2 , p2 =

1
3 and p3 =

1
6 .

1
2

1
3

1
6

1
2

1
3

1
6

1
2

1
2

2
3

1
3

Figure 2.1.: Decomposition of a choice with three possibilities
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On the left in Figure 2.1 we will write for the entropy H(12 ,
1
3 ,

1
6). Whereas on the right we

can write for the entropy H(12 ,
1
2)+

1
2H(23 ,

1
3). Note, that the second term is weighted with 1

2 ,
because we will make this choice only with the probability of 1

2 . The property 3 from above
now states that we want to have

H
(1

2
,
1

3
,
1

6

)

= H
(1

2
,
1

2

)

+
1

2
H
(2

3
,
1

3

)

,

because although we take different routes, we end up with the same probabilities.

We have to note here, that the logarithm in the definition of entropy in (2.15) can be to
the base 2, sometimes denoted by H2, or to the base e, sometimes denoted by He. For the
former, the entropy is calculated in bits and for the latter the entropy is calculated in nats.
Because of the equality

logb x = logb a loga x,

we are always able to change the base of the logarithm in the definition of entropy and obtain

Hb(X) = (logb a)Ha(X)

for every discrete random variable X and all bases a, b ∈ R
+.

The definition of entropy is still not satisfying, since we have a constant K in it. In the
following we will use K = 1. This can be seen as a normalization for the case n = 2, where
the logarithm is to the base 2 and we want to have

H
(1

2
,
1

2

)

= 1.

In other words, this normalization says, that the entropy of a fair coin is 1 bit.

One very important property of H is, that we always have H(X) ≥ 0. This can be easily
seen with help of the property H(X) = E

(

− log p(X)
)

.

2.2.2. Kullback-Leibler divergence and mutual information

We will now look at the definitions of two related concepts of entropy: the Kullback-Leibler
divergence, which measures a distance between two distributions, and mutual information,
which measures the information a random variable contains about another random variable.

Definition 2.2.4. 1. For two discrete random variables X and Y , defined on the same
measurable space (Ω,F) with |Ω| = n, with probability functions p(x) and q(y) the
relative entropy or Kullback-Leibler divergence between X and Y is defined as

DKL(p ‖ q) :=
n
∑

i=1

p(xi) log
p(xi)

q(yi)
. (2.17)

2. LetX and Y be two discrete random variables with joint probability function p(x, y) and
marginal probability functions p(x) and p(y) defined on the measurable spaces (Ω1,F1)
with |Ω| = n1 and (Ω2,F2) with |Ω| = n2. The mutual information MI(X;Y ) is defined
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H(X | Y ) H(Y | X)MI(X;Y )

H(X) H(Y )

H(X,Y )

Figure 2.2.: Relationship between entropy and mutual information

as the Kullback-Leibler divergence between the joint probability distribution and the
product distribution p(x)p(y). As a formula:

MI(X;Y ) :=

n1
∑

i=1

n2
∑

j=1

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
. (2.18)

We have to note, that the Kullback-Leibler divergence DKL between two probability dis-
tributions is not a true distance function, since it is not symmetric and does not satisfy the
triangle inequality. But still it is useful to have it in mind as a “distance” between distribu-
tions. This is also justified with the next proposition, which states that DKL is always greater
than or equal to zero, and zero only if the distributions are equal.

Proposition 2.2.5. 1. Let p(x) and q(x) be two probability functions for discrete random
variables. Then we have

DKL(p ‖ q) ≥ 0,

with equality if and only if p(x) = q(x) for all x.

2. For any two discrete random variables X and Y we have

MI(X;Y ) ≥ 0,

with equality if and only if X and Y are independent.

Proof. See [CT06], Section 2.6.

In Figure 2.2 we depicted the relation between entropy and mutual information. For un-
derstanding this figure, one needs the additional definition of conditional entropy .

Definition 2.2.6. Let X and Y be as in Definition 2.2.4 for mutual information. Then the
conditional entropy H(X | Y ) is defined as

H(X | Y ) := −
n1
∑

i=1

n2
∑

j=1

p(xi, yj) log p(xi | yj). (2.19)
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Figure 2.2 illustrates the following properties, which hold for the general case.

Proposition 2.2.7. 1. Relations between entropy and mutual information:

MI(X;Y ) = H(X)−H(X | Y )

= H(Y )−H(Y | X)

= H(X) +H(Y )−H(X,Y )

MI(X;X) = H(X)

2. (Information can’t hurt)
H(X | Y ) ≤ H(X),

with equality if and only if X and Y are independent.

3. (Independence bound on entropy) Let X1, . . . ,Xn be discrete random variables. Then
we have

H(X1, . . . ,Xn) ≤
n
∑

i=1

H(Xi),

with equality if and only if the Xi are independent.

Proof. See [CT06], Section 2.4 and 2.6.

2.2.3. Differential entropy

Until now we have only defined the entropy as a measure for uncertainty for discrete random
variables. Of course, it would be very useful to have such a measure also for continuous
random variables. For this purpose, we first need to define the support set of continuous
random variables.

Definition 2.2.8. Let X be a continuous random variable with density function f(x). The
set where f(x) > 0 is called the support set of X.

With this definition we are now able to define the measures of interest: differential entropy
and conditional differential entropy. Instead of sums, as in (2.15) and (2.19), we use integrals
over the support sets:

Definition 2.2.9. 1. The differential entropy h(X), also denoted by Ent(X), of a contin-
uous random variable X with density function f(x) is defined as

h(X) := −
∫

S
f(x) log f(x) dx, (2.20)

where S is the support set of X.

2. If X and Y are two continuous random variables, which have a joint density function
f(x, y), we define the conditional differential entropy h(X | Y ), which is also denoted
by Ent(X | Y ), as

h(X | Y ) := −
∫

S
f(x, y) log f(x | y) d(x, y), (2.21)

where S is the support set of (X,Y ).

35



2. Mathematical background

We are now interested, how entropy and differential entropy are related. Do they have the
same properties, or are there differences? For this purpose, we give the following theorem.

Theorem 2.2.10. If the density f(x) of a continuous random variable X is Riemann inte-
grable, then

lim
∆→0

(

H(X∆) + log∆
)

= h(X),

where X∆ denotes the quantized random variable of X, i.e., we divide the range of X into
bins of length ∆ and take in every bin a value xi such that

f(xi)∆ =

∫ i∆

(i−1)∆
f(x) dx,

whose existence is guaranteed with the mean value theorem and set X∆ to xi in the i-th bin.

Proof. See [CT06], Section 8.3.

With Theorem 2.2.10 we now see, that the differential entropy is not the limit of entropy
for increasing number of bins, but differs with the term log∆, which of course is −∞ for
∆ → 0. One important property of entropy, namely that it is always greater zero, does not
hold for differential entropy anymore. This is easily seen by considering X to be uniformly
distributed on [0, 12 ]. Then for the density we have f ≡ 2 and thus

h(X) = −
∫ 1

2

0
2 log 2 dx = − log 2 < 0.

In general, we can say that the differential entropy of a discrete random variable is −∞.
One nice property of differential entropy is, that it is translation invariant .

Theorem 2.2.11. For a continuous random variable X and c ∈ R we have

h(X + c) = h(X).

Proof. Follows directly from Definition 2.2.9.

The next step now is to define Kullback-Leibler divergence and mutual information for
continuous random variables. Since the properties are exactly the same as for the discrete
case, we will denote them with the same symbol. The formal definitions are:

Definition 2.2.12. 1. The relative entropy or Kullback-Leibler divergence DKL(f ‖ g)
between two densities f(x) of a random variable X and g(x) of a random variable Y is
defined as

DKL(f ‖ g) :=
∫

S
f(x) log

f(x)

g(x)
dx,

where S denotes the support set of Y .

2. The mutual information MI(X;Y ) between two continuous random variables X and Y
with joint density f(x, y) is defined as

MI(X;Y ) :=

∫

S
f(x, y) log

f(x, y)

f(x)f(y)
d(x, y),

where S denotes the intersection of the support sets of X and Y .
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Remark 2.2.13. The properties of differential entropy, conditional differential entropy, Kull-
back-Leibler divergence and mutual information as described in Proposition 2.2.5 and 2.2.7
also hold for the continuous case. The only exception is, that DKL(f ‖ g) = 0 if and only
if f = g almost everywhere, i.e., the densities don’t need to be equal for all x, but may be
unequal on sets D ⊂ Ω, where p(D) = 0.

2.3. Markov chain theory

At the beginning of this section, we notice that we will talk about probability distributions and
distributions of random variables interchangeably. We will give some fundamental properties
of Markov chains and under which conditions they converge to a unique invariant distribution.
These special class of Markov chains are of special importance for the construction of the
sampling algorithms in Section 3.1 to ensure that the sampling algorithms sample from the
right probability distribution. This section is based on [Nea93]. We will only consider Markov
chains with finite state space and discrete time. But the theory can be extended (easily) to
a countably infinite state space. The theory for continuous state spaces is more difficult, but
since a computer considers every state space (maximally) as a countably infinite state space,
we skip this theory. The interested reader is referred to [MT09].

2.3.1. Definition of a Markov chain

A Markov process, also called Markov chain here, is a special stochastic process2. Stochastic
processes are a collection of random variables indexed by a parameter representing the time.
Thus, stochastic processes over time might show several possible dynamics according to some
given probability. For Markov processes the current state Xi+1, i ∈ N, only depends on the
previous state Xi and not on all other previous states X0, . . . ,Xi−1. More formally:

Definition 2.3.1. A Markov process or Markov chain is a series of random variables X0, X1,
X2, . . . satisfying the following rule:

p(Xn+1|Xn,Xn−1, . . . ,X0) = p(Xn+1|Xn). (2.22)

for all n ∈ N. A stochastic process which satisfies (2.22) is also said to have the Markov
property . The range of all Xn is called the state space of the Markov chain.

Usually, a Markov chain is given by the initial distribution of the various states X0 and
the transition probability , the conditional distributions for Xn+1 given Xn. For x ∈ X0 the
initial probability is written as p0(x) and for x ∈ Xn and x′ ∈ Xn+1 the transition probability
is written as Tn(x, x

′) for all n ∈ N. If the transition probabilities are not dependent on the
time, the corresponding Markov chain is called homogeneous and the index n is skipped in
the notation.

By applying the transition probabilities to p0 we obtain p1, i.e., the probabilities for all the
states x ∈ X1. The distribution p1 may be different from p0. However, since our goal is to
sample from one specific probability distribution, there has to be at least one m′ ∈ N such
that for all m > m′ we have pm = pmTn, i.e., the probability distribution of the state space

2For general theory on stochastic processes see [Doo53].
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2. Mathematical background

is not changed by the transition probabilities. More precise, this gives us the definition of an
invariant distribution.

Definition 2.3.2. The distribution p is invariant (or stationary) with respect to the Markov
chain with transition probabilities Tn(x, x

′), if for all n ∈ N, we have

p(x) =
∑

x′

p(x′)Tn(x
′, x).

Remark 2.3.3. 1. For homogeneous Markov chains with finite state space, the transition
probabilities, denoted by T , are also called a transition matrix . The entries tij of the
matrix T correspond to the probability that for a Markov chain currently being in the
state xi the next state of the Markov chain will be xj. Therefore, the entries of T are
all non-negative and the rows sum up to one. Such matrices are also called stochastic
matrices.

2. In the case of a continuous state space T is also called a transition kernel . A transition
kernel describes the density for a transition to state x′ from a state x.

To make the testing simpler, if a distribution is invariant, we introduce the property of
detailed balance.

Definition 2.3.4. For a homogeneous Markov chain with transition matrix T , the detailed
balance property is fulfilled, if

p(x)T (x, x′) = p(x′)T (x′, x)

for all x, x′ ∈ X.

Theorem 2.3.5. A homogeneous Markov chain with transition matrix T where the underlying
distribution p fulfills the detailed balance property is also the invariant distribution of this
Markov chain.

Proof. We have

∑

x′

p(x′)T (x′, x) =
∑

x′

p(x)T (x, x′) = p(x)
∑

x′

T (x, x′) = p(x).

Thus, the proof is complete.

Remark 2.3.6. The reverse of Theorem 2.3.5 is not true. To see this, let p be the uniform
distribution on the state space {0, 1, 2}. It is invariant with respect to the homogeneous
Markov chain with the transition probabilities T (0, 1) = T (1, 2) = T (2, 0) = 1 and all others
zero. But the detailed balance property is not fulfilled.

2.3.2. Ergodicity

The aim now is to construct a transition matrix such that we finally sample from our desired
distribution. Since we do not know at the beginning how our desired distribution looks like,
we want to have a transition matrix which guarantees us, that the resulting Markov chain will
sample from our desired distribution independent of which starting distribution we use, i.e.,
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2.3. Markov chain theory

the Markov chain needs to have a unique invariant distribution. It obviously has to be the
distribution we wish to sample from and it has to be achieved independent of which starting
distribution we use. In the literature such a Markov chain is often called to be ergodic. We
now give a theorem, which guarantees us for a large number of Markov chains their ergodicity.

Theorem 2.3.7. Let be given a Markov chain on a finite state space X with transition
probabilities T (x, x′) with π as invariant distribution and the following equation has to hold:

ν = min
x

min
x′|π(x′)>0

T (x, x′)

π(x′)
> 0. (2.23)

Then the Markov chain is ergodic, i.e., regardless of the initial probabilities, p0(x), we have

lim
n→∞

pn(x) = π(x)

for all x ∈ X. A bound on the rate of convergence is given by

| π(x)− pn(x) |≤ (1− ν)n. (2.24)

Furthermore, if a(x) is any real-valued function of the state, then the expectation of a with
respect to the distribution pn, written En[a], converges to its expectation with respect to π,
written 〈a〉, with

| 〈a〉 − En[a] |≤ (1− ν)nmax
x,x′

| a(x)− a(x′) | . (2.25)

Proof. See [Nea93], Chapter 3.3.

Remark 2.3.8. The constant ν in Theorem 2.3.7 may be very small. Therefore, the conver-
gence rate to the invariant distribution may be not very fast.

Now one can ask, which transition matrices satisfy equation (2.23)? A matrix with only
non-zero entries would definitely do.

One drawback is, that Theorem 2.3.7 is only valid for homogeneous Markov chains. How-
ever, since in many applications one uses transition matrices which are cyclic in the following
way: there exists a d ∈ N such that Tn+d = Tn for all n ∈ N, considering now the Markov
chain only at time points that are multiples of d, we obtain a homogeneous Markov chain
with transition matrix T0 · · · Td−1. Sometimes we have transition matrices T such that equa-
tion (2.23) does not hold for T but for T k for one k ∈ N. Then we still get convergence to
the invariant distribution, but the exponent n in (2.24) has to be replaced by ⌊n/k⌋3

With this remark we can now give another characterization which transition matrices satisfy
equation (2.23), namely, transition matrices T such that there exists a k ∈ N such that T k

has only non-zero entries. These Markov chains are called regular .

Another often mentioned type of Markov chains are irreducible Markov chains. They satisfy,
compared to regular Markov chains, a weaker condition, namely, for all x, x′ ∈ X there exists
a k ∈ N such that T k(x, x′) > 0. This condition is not sufficient for ergodicity of the Markov
chain according to Theorem 2.3.7, because the k-th powers of the transition matrix may all
contain one or more entries which are zero, because to ensure irreducibility we only have to
find one special power of the transition matrix where one specific entry is non-zero. This

3the bracket ⌊x⌋ denotes the floor function and is the largest integer not greater than x
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problem will be solved by considering aperiodicity of a Markov chain. We will give now a
precise formulation how an aperiodic Markov chain is defined to understand why we need it
to ensure ergodicity. This part is geared to [Beh00].

Definition 2.3.9. 1. Let x ∈ X be a state of a finite Markov chain with transition matrix
T = (tij)

n
i,j=1 such that t

(k)
ii > 0 for some k > 0, i.e., there is a positive probability

that a walk which starts at i returns to i. Then the period of i is the greatest common

divisor of the set Ni := {k | k ≥ 0, t
(k)
ii > 0}.

2. If i has period 1, it will be called aperiodic.

3. A Markov chain where all states are aperiodic is called an aperiodic Markov chain.

Remark 2.3.10. It has to be noted, that for a state with period d it does not mean, that a
walk starting in i will be back in i after d, 2d, 3d, . . . steps with a probability that is non-zero.
It rather implies that it is for sure that the walk does not occupy position i again after k
steps whenever k is not in {d, 2d, 3d, . . .}.

With Definition 2.3.9 and Remark 2.3.10 it is now clear, why we need aperiodicity of a
Markov chain to ensure that (2.23) holds when we have irreducibility of the Markov chain.
We thus showed:

Theorem 2.3.11. A Markov chain on a finite state space is ergodic, if it is irreducible and
aperiodic.

2.4. Ordinary differential equations

We will give in this section a definition of ordinary differential equations (ODEs) in general
and give some properties. This is done to get a feeling concerning ODEs, since the model
that is used for the modeling of gene regulatory networks in Part II and Part III is based on
ODEs. In general, processes appearing in nature can often be and are extensively described
with ODEs. This section is based on [Kna06] and [Heu06] where a detailed and exhaustive
introduction into ODEs can be found.

2.4.1. Definition of an ODE

Definition 2.4.1. 1. A differential equation is defined as an equation, where the deriva-
tives of one or more functions dependent on one or more variables are present.

2. If the functions are dependent on only one variable, the corresponding differential equa-
tion is called an ordinary differential equation, otherwise it is called a partial differential
equation.

3. If only one function is used, we call the differential equation a single differential equation,
otherwise it is called a system of differential equations.

4. The highest order of the derivatives that appears in the differential equation is called
the order of the differential equation.
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2.4. Ordinary differential equations

The definition above uses only words to explain intuitively, what is meant with a differential
equation. We will now give a more formal view of it, to be familiar with it, since it will be
used in the following parts of this thesis. We will give the notation for systems of ordinary
differential equations of order 1, since these are the systems we need in this thesis4. Let xi,
t 7→ x(t), i ∈ {1, . . . , n}, be real-valued functions. Then we will write a system of ordinary
differential equations as an equation of the form

dx

dt
= f(t, x), (2.26)

where x = (x1, . . . , xn) and f : Rn+1 → R
n, (t, x1, . . . , xn) 7→ f(t, x1, . . . , xn). Of course, we

can write for every function xi in the system a single ODE of the form

dxi
dt

= f(t, x1, . . . , xn).

2.4.2. Existence and uniqueness of solutions of ODEs

The next interesting question that arises, is if and under which conditions ODEs have a
solution. Firstly, we note that there exist ODEs with no solution at all, e.g.,

(dx

dt

)2
= −1.

Also there exist ODEs with exactly one solution, e.g.,

(dx

dt

)2
= −x2.

However, the most common case is the one where there exist infinitely many solutions. As an
example we will use the process of exponential growth for a population. The corresponding
ODE is of the form

dx

dt
= αx, with α > 0. (2.27)

The ODE (2.27) is also an example for a linear differential equation, which is in general
defined as an ODE where the function f in (2.26) is linear in x.

One sees immediately, that all functions of the form x(t) = c eαt with c ∈ R are solutions
of the ODE for exponential growth, since we have

dx

dt
= αc eαt = αx(t). (2.28)

By fixation of a value for the population at the beginning of the exponential growth process
x0 := x(0) we obtain x(0) = c eα0 = c and thus the single function from the set of solu-
tions (2.28) that satisfies the value x0 at the beginning of the process is x(t) = x0 e

αt. In
general, a problem of the form

dx

dt
= f(t, x), x(t0) = x0, (2.29)

4The interested reader in partial differential equations is referred to, e.g., [Jos07].
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where t0 denotes the starting point of the process under consideration, is called an initial
value problem. In the example above for a linear differential equation we saw that from the
set of solutions (2.28) we obtained a unique solution after specification of the initial value.

However, can we be sure that the specified set of solutions is the only possibility for solutions
for the exponential growth process? And furthermore, in case of general initial value problems
is there always a unique solution? In the following we give two theorems which guarantee the
existence of solutions of initial value problems. We will see that it depends on the properties
of the function f(t, x). Let us start with a theorem that guarantees existence.

Theorem 2.4.2 (Peano existence theorem).

1. (Local version) Let the function f(t, x) be continuous on the compact cuboid

R := {(t, x) | |t− t0| ≤ a, ‖x − x0‖ ≤ b} (a, b > 0),

and let

M := max
(t,x)∈R

‖f(t, x)‖, α := min
(

a,
b

M

)

.

Then there exists at least one solution of the initial value problem (2.29) on the cuboid
[x0 − α, x0 + α].

2. (Global version) Let the function f(t, x) be continuous and bounded on the cuboid
[c, d] × R

n. Then there exists at least on solution of the initial value problem (2.29) on
the cuboid [c, d] with t0 ∈ [c, d] and x0 ∈ R

n.

Proof. See [Heu06] Chapter 60.

With the Peano existence theorem we see that the continuity of the function f(t, x) guar-
antees that there exists a solution for the initial value problem (2.29). Existence is nice,
but what about uniqueness of the solution? As one would expect, the requirements on the
function f(t, x) will be stricter to guarantee uniqueness. This is in fact the case. The stricter
requirement is that not only continuity but also Lipschitz continuity has to hold for f(t, x).

Definition 2.4.3. Let U ⊂ R×R
n and f : U → R

n, (t, x) 7→ x. Then the function f fulfills a
(global) Lipschitz condition in the second variable on U , if and only if there exists a constant
LC ≥ 0, such that for all t ∈ R and for all x1, x2 ∈ R

n with (t, x1), (t, x2) ∈ U the equation

‖f(t, x1)− f(t, x2)‖ ≤ LC‖x1 − x2‖ (2.30)

is valid.

With this condition for the function f(t, x) we are able to give a theorem which also guarantees
the uniqueness of the solution for the initial value problem (2.29).

Theorem 2.4.4 (Picard-Lindelöf theorem).

1. (Local version) Let the function f(t, x) be continuous and let it fulfill a Lipschitz con-
dition in the second variable for all (t, x1), (t, x2) ∈ R, where R is defined as in
Theorem 2.4.2. Then there exists a unique solution for the initial value problem (2.29)
on the cuboid [x0 − α, x0 + α], where α is defined as in Theorem 2.4.2.
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2. (Global version) Let the function f(t, x) be continuous on the cuboid [c, d]×R
n and let

it fulfill there a Lipschitz condition. Then there exists a unique solution of the initial
value problem (2.29) on the cuboid [c, d] with t0 ∈ [c, d] and x0 ∈ R

n.

Proof. See [Heu06] Chapter 60.

As a final theorem for the solution of initial value problems we show that the solutions depend
continuously on the initial values and on the function f(t, x). This is, of course, a desirable
result and guarantees that the solution does not change much in cases where the initial values
and the function f(t, x) are only slightly varied.

Theorem 2.4.5. Let the function f(t, x) fulfill the requirements of the local version of the
Picard-Lindelöf theorem 2.4.4. Let f̃(t, x) be continuous on the cuboid R as defined in Theo-
rem 2.4.4. Furthermore, let x(t) be the unique solution of the initial value problem (2.29) on
the interval J := [t0−α, t0 +α] and let x̃(t) be any solution on the interval J̃ ⊆ J , which lies
completely in R, of the initial value problem

dx

dt
= f̃(t, x), x(t0) = x̃0.

Finally, the following estimates with the constants σ and ω should hold on R

‖x0 − x̃0‖ ≤ σ

‖f(t, x)− f̃(t, x)‖ ≤ ω.

Then we have with the Lipschitz constant LC of f(t, x) the equation

‖x(t)− x̃(t)‖ ≤ σ eLC |t−t0|+
ω

LC
(eLC |t−t0|−1) (2.31)

for all t ∈ J̃ . Thus, the difference between the solutions x(t) and x̃(t) is arbitrarily small, if
σ and ω are small.

Proof. See [Heu06] Chapter 13.

2.4.3. Solving initial value problems in practice

Having now the theoretical foundation, that for many systems of differential equations there
exist a unique solution, we have to say, that analytical solutions are only available for few
ordinary differential equations, e.g., for linear ODE systems5. However, for the most cases
methods for the numerical integration of ODE systems have to used. This is a wide topic
and we will not give details but rather some general ideas and which difficulties may arise
while applying methods for the numerical integration of ordinary differential equations. The
interested reader in the details is referred to [SB05].

Looking at the initial value problem (2.29), we see that the function f(t, x) just describes
the slope of the solution x. Thus, we can write (we consider the case where n = 1)

x(t+ h)− x(t)

h
≈ f

(

t, x(t)
)

5see [Heu06] Parts II, III, VII and VIII for the derivation of solutions for linear ODE systems
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with h > 0. Reformulating this, we obtain the approximating value for the solution of x at
the point t+ h

x(t+ h) ≈ x(t) + hf
(

t, x(t)
)

.

Having now introduced the general idea of methods for numerical integration we see that we
introduce in every step an error with the usage of h > 0. The goal of efficient methods for
numerical integration is now to use as step size h values that are large, such that not many
calculations have to be performed, but at the same time the step size has to be small, such that
the error introduced is small. Looking at Theorem 2.4.5, the problem of introducing error
(because of discretization errors according to the step size and because of rounding errors
arising with the calculation with floating points) in the numerical integration approach may
get really bad for some problems. Because of the term eLC |t−t0| in equation (2.31), even small
differences in the initial values and the function f(t, x) may lead to substantial differences in
the solutions, in case one considers huge time intervals t− t0.

Special difficulties arise for the case of stiff differential equations. Stiff differential equations
are characterized as differential equations, where the Jacobian of the function f(t, x) has at
least one eigenvalue m ∈ C with |m| ≫ 0. This will then lead to numerical instabilities, since
these eigenvalues determine the step size h of the approach for the numerical integration to
be very small. Thus, a lot of calculations have to be performed. For a more detailed overview
see [SB05] Section 7.2.16.

2.5. Splines

This section deals with the introduction and definition of splines. They will be used in Part II.
The scope of this section is the definition and illustration of splines to get a feeling for the
usage of them.

2.5.1. Definition of splines

Splines are often used to provide an easy to handle function which connects given data points
and thus gives a functional relationship between these points. We will focus here only on
cubic splines, since these are the most widely used ones.

Definition 2.5.1.

1. Let ∆ := {a = x0 < x1 < . . . < xn = b} be a finite sequence of points in the interval
[a, b]. A cubic spline S∆ corresponding to the sequence ∆ is defined as a function
S∆ : [a, b]→ R with the properties

a) S∆ is continuously differentiable twice on the interval [a, b]

b) on every subinterval [xi, xi+1], i ∈ {0, . . . , n− 1}, the function S∆ is a cubic poly-
nomial

2. Let be given data Y := {y0, y1, . . . , yn}. Then we define S∆(Y ; ·) to be an interpolating
cubic spline with S∆(Y ;xi) = yi for all i ∈ {0, . . . , n}.

In Figure 2.3 an interpolating spline is shown which connects 11 data points. We see there
that the interpolating spline perfectly fits the data points as desired. However, in case of noisy
data one does not always want to fit the data perfectly, but rather smooth out the noise and
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Figure 2.3.: An example for an interpolating spline fitting 11 data points generated with the function
spline in Matlab.

fit the underlying dynamic behavior of the process the data is describing. Thus, we introduce
here also smoothing splines which provide exactly the desired results.

Definition 2.5.2. Let ∆ and Y be given as in Definition 2.5.1. The function g : R → R

which minimizes
n
∑

i=0

(

yi − g(xi)
)2

+ λ

∫

(

g′′(z)
)2

dz, (2.32)

where λ is called the smoothing factor , is called a cubic smoothing spline.

Well, one question arises immediately after reading Definition 2.5.2. The question is: Is a
cubic smoothing spline a cubic interpolating spline? The answer to this question is: yes. A
proof that the function g that minimizes (2.32) is a cubic interpolating spline can be found
in [Rei67].

The smoothing factor λ plays a role of how much we want to smooth the data. To be more
precise, for λ = 0 the solution will be an interpolating function and no noise will be smoothed
out. For λ → ∞ the solution will be a straight line and no dynamics of the system under
consideration will be captured.

In Figure 2.4 a smoothing spline is depicted smoothing 11 data points. We see there that
the general dynamics are covered and single noisy peaks are smoothed out.

2.5.2. Calculating splines in practice

The points that remain to be discussed are, if the cubic interpolating spline S∆(Y ; ·) exists
and is unique. To discuss these points in a bit more detail, we will point out here that the
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Figure 2.4.: An example for a smoothing spline fitting 11 data points generated with the function
csaps in Matlab.

generation of cubic interpolating splines is done simply by solving systems of linear equations6.
To guarantee the unique existing solution of a system of linear equations, the corresponding
matrix needs to have full rank . The data points Y alone does not give a matrix with full
rank. However, two additional equations are needed to guarantee a unique solution. There are
three typical constraints that are used for this purpose, where as a example one can demand
the second derivatives of the interpolating spline at the border points a and b to be zero7.
The proof that by doing so one obtains a unique cubic interpolating spline is found in [SB05]
Chapter 2.5.

What about smoothing splines? Since a smoothing spline is the solution of an optimization
problem, we may think, that the computational effort is high. Fortunately, Buja et al. [BHT89]
gave a closed formula for the unique solution of the optimization problem, which basically
results in matrix calculation with a matrix where the structure can be exploited and thus the
computational effort is low.

6The interested reader in numerical issues concerning the solution of systems of linear equations is referred
to [SB05] Chapter 4.

7for the other two possible constraints see [SB05] Section 2.5.1
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CHAPTER 3

Algorithmical background

Anyone who considers arithmetic

methods of producing random

digits is, of course, in a state of sin.

(John von Neumann)

In this chapter we give the background for the algorithms that are used in Part II and Part III.
Firstly, an overview of sampling algorithms is given, which are used to obtain samples from
a distribution of interest. Secondly, some basics about parallel computing are described, that
are used in Part III. Furthermore, receiver operating characteristics are described, which are
used in Part II as evaluation method for the performance of the proposed method.

3.1. Sampling algorithms

In many (statistical) applications one is interested how special distributions look like and one
wants to generate samples from them. The ideal case would be, to have independent samples
from the desired distribution. Since most distributions of applications are high-dimensional
and multi-modal, this is not an easy task. With the theory given in Section 2.3 we will now
give sampling algorithms which are based on Markov chains. The samples produced are not
independent, since the current sample depends on the previous sample (see Definition 2.3.1),
but we can say that samples far away form each other can be assumed to be independent. In
more mathematical terms: let xn and xm be members of a sampled Markov chain. We can
say that if m≫ n, then xn and xm are independent samples of the desired distribution.

But first, we want to give some general properties how one can construct ergodic Markov
chains by giving some ideas how to use/find suitable transition matrices such that they con-
verge to their invariant distribution at as fast a rate as possible. Often one uses a set of
base transition matrices B1, . . . , Bk, where each holds the desired distribution invariant but
may not be ergodic. For example, each Bj may only change a subset of the state space.
There are two main reasons to combine base transition matrices, first, to obtain an ergodic
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Algorithm 3.1 Gibbs sampling

Require: desired distribution p(·), starting value x(0) = (x
(0)
1 , . . . , x

(0)
n ), number of Markov

chain samples T
1: t← 0
2: while t < T do
3: for k = 1 to n do
4: Sample x

(t+1)
k from p

(

· | x(t+1)
1 , . . . , x

(t+1)
k−1 , x

(t)
k+1, . . . , x

(t)
n

)

5: end for
6: Append x(t+1) to Markov chain

(

x(i)
)t

i=0
7: t← t+ 1
8: end while
9: return Markov chain

(

x(i)
)T

i=0

Markov chain and second, to speed up the convergence rate. We saw in Theorem 2.3.11, that
ergodicity of a Markov chain follows from irreducibility and aperiodicity. We can guarantee
aperiodicity easily by combining base transition matrices with the identity to ensure that in
each step there is a non-zero probability that a state will remain in its current state.

A general introduction to Markov chain Monte Carlo (MCMC) algorithms for machine
learning approaches is given in [AFDJ03].

For the sampling algorithms presented in the next sections, we will show that they produce
ergodic Markov chains only for the case of a finite state space. This is done for simplicity
reasons, since the case where one deals with transition kernels instead of transition matrices
is technically more demanding. However, the results also hold for the case of an infinite
state space. This section is based on [Nea93], except for the subsection on population-based
MCMC algorithms which uses [JSH07] as a reference.

3.1.1. Gibbs sampling

The Gibbs sampler is a simple sampler suitable for high-dimensional distributions, where the
full conditionals p(xj | x1, . . . , xj−1, xj+1, . . . , xn) for all j ∈ {1, . . . , n} are available and it
is easy to get independent samples from them.1 Later we will see that the Gibbs sampler
is a special case of the Metropolis-Hastings algorithms, but because of its simplicity, we will
explain it first to give an idea how sampling algorithms work.

One generates a homogeneous Markov chain X(0), X(1), X(2), . . . by sampling from the

conditional distributions for each variable x
(t)
j as mentioned above where the recent sampled

value is directly used to sample the next values x
(t)
k , k > j. A pseudocode version is given in

Algorithm 3.1.

One may now ask why this procedure leaves the desired distribution invariant. For the
answer of this question consider base transition probabilities Bk for k ∈ {1, . . . , n} given by

Bk(x, x
′) = p(x′k | x1, . . . , xk−1, xk+1, . . . xn) ·

∏

i 6=k

δ(xi, x
′
i)

1As examples for distributions where independent samples can be got easily are the Gaussian and the gamma
distribution.
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where δ denotes Euler’s delta function such that δ(x, y) = 1 if x = y and otherwise it is
zero. By sampling with the above procedure one gets a Markov chain with the transition
matrix T = B1B2 · · ·Bn. It is enough to show that each Bk holds the desired distribution
invariant to show that this procedure holds the desired distribution invariant. Since Bk leaves
all components except for xk invariant, it leaves the marginal distribution for this components
invariant. For the remaining component xk it samples from the marginal distribution of xk,
which also leaves the desired distribution invariant. Thus, we are done.

The next question to answer is to show that such a constructed Markov chain is ergodic.
This will be the case, if all Bk’s are non-zero. To be more precise, the conditional probabil-
ities p(· | x1, . . . , xk−1, xk+1, . . . xn) have to be non-zero everywhere. Because in that case it
is possible to reach each state of the state space after the usage of each Bk once. And fur-
thermore, there will be a non-zero probability for each variable to stay in the current state,
which guarantees aperiodicity. Now the ergodicity is proven.

A typical application of the Gibbs sampler is the inference of Bayesian networks2, since the
variables have usually a simple distribution and it is easy to sample from the full conditionals.

3.1.2. Metropolis-Hastings algorithm

We have seen in the previous section that the Gibbs sampler is only applicable when it is easy
to sample from the full conditionals. However, in many applications one has distributions
which are multi-modal and not of a standard form. In such cases one uses sampling algorithms
for which one only has to be able to calculate the desired distribution at each point up to the
normalization constant. Since the calculation of the normalization constant is computational
expensive, this is really an improvement for sampling.

You may now think: Nice, but how is this done? One way to do this was proposed
by Metropolis in 1953 [MRRT53] and refined by Hastings in 1970 [Has70], also called the
Metropolis-Hastings algorithm. For this, one needs first a proposal distribution q(· | ·). The
second step is to sample from this distribution to get a new proposed point x′ from the desired
distribution. This point is now accepted with the probability

A(x, x′) = min

{

1,
p(x′)q(x | x′)
p(x)q(x′ | x)

}

(3.1)

otherwise the Markov chain stays in the old point x. One often uses a symmetric proposal
distribution, i.e., q(x | x′) = q(x′ | x) for all x, x′ ∈ X such that equation (3.1) is reduced to

A(x, x′) = min

{

1,
p(x′)

p(x)

}

. (3.2)

To prove that we really sample from the desired distribution, we look at the underlying base
transition probabilities

Bk(x, x
′) = q(x′k | x)A(x, x′)

∏

i 6=k

δ(xi, x
′
i) + δ(x, x′)

(

1−
∑

x̃

q(x̃k | x)A(x, x̃)
∏

i 6=k

δ(xi, x̃i)
)

,

where x′k is different from x only in the k-th component. The first term is the probability
to change component k from xk to x′k. The second term gives the probability to reject x′k
2See Section 4.1.2 for more details on Bayesian networks.
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and stay in the current state xk. As for the Gibbs sampling we will obtain with these base
transition matrices a homogeneous Markov chain with transition matrix T = B1 · · ·Bn. For
a symmetric proposal distribution we can show that for every Bk, k ∈ {1, . . . , n}, the detailed
balance property holds. Thus with Theorem 2.3.5 the algorithm has the desired distribution
as invariant distribution. To show the ergodicity of the obtained Markov chain we note that
the probability of staying in the same state is non-zero, which gives as aperiodicity. And
irreducibility is guaranteed, if the proposal distribution and p are non-zero everywhere. With
Theorem 2.3.11 we now obtain ergodicity.

Have proven the ergodicity for the case of a finite state space, we now say something about
some practical issues of the usage of the Metropolis-Hastings algorithm. In practice, most
often a normal distribution N (x, σ2), where the mean is the current state x and σ2 gives a
user-specified variance for the proposal distribution, is used as proposal distribution. Using a
large value for σ2 may lead to a high rejection rate of the algorithm. Using, on the other hand,
small values for σ2 will decrease the rejection rate, but one needs to produce a big number
of samples to explore the whole distribution. Another issue to mention for this algorithm is
its random walk behavior, i.e., after performing N steps, the mean distance from the starting
point is only

√
N . This can be interpreted in the way, that because of choosing the direction

for every proposed step independently from each other, some steps may cancel out each other.

To avoid the random walk behavior, several possibilities exist for proposing better states
in MCMC algorithms. In the next two sections, we will describe the hybrid Monte Carlo
algorithm which was designed to simulate physical systems. It proposes states in a more
global way. Another possibility is to use population-based MCMC algorithms which run several
Markov chains in parallel and exchanges the information between them to provide more global
steps.

3.1.3. Hybrid Monte Carlo algorithm

The hybrid Monte Carlo algorithm (HMC) was introduced by Duane in 1987 [DKPR87] and
was motivated with molecular dynamics. It is based on the physical property that for a closed
system the total energy of it is the sum of its kinetic energy and its potential energy . And
to change the total energy of the system, it interacts with its surroundings in a stochastic
manner. For the physical details and background concerning this property we refer to the
literature dealing with classical and statistical mechanics.

Let’s come back to the case, that we want to generate samples of a distribution p(x), where
x = (x1, . . . , xn). How can we now use these physical properties for generating the samples
of interest? First, we consider the vector x to describe the “position coordinates” of the
molecules to be modeled and say that their potential energy E(x) is E(x) = − ln p(x). The
canonical distribution of x is then3

p(x) ∼ exp
(

−E(x)
)

= p(x).

Second, new variables ρ = (ρ1, . . . , ρn) are introduced describing the momentum of the system
which possesses the kinetic energy

K(ρ) =
1

2

∑

i

ρ2i . (3.3)

3we take here the temperature to be 1 for convenience and omit the normalization constant
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The canonical distribution of the momentum variables ρ is then

p(ρ) =
1

√

(2π)n
exp
(

−1

2

∑

i

ρ2i

)

,

i.e., the normal distribution. The combination of the position variables x and the momentum
variables ρ is called the phase space. The total energy of the phase space, also known as the
Hamiltonian, is

H(x, ρ) = E(x) +K(ρ) (3.4)

and the canonical distribution according to this energy function is given by

p(x, ρ) ∼ exp
(

H(x, ρ)
)

∼ exp
(

−E(x)
)

· exp
(

−K(ρ)
)

∼ p(x) · p(ρ). (3.5)

Thus, the desired distribution is just the marginal distribution for x of the distribution p(x, ρ).
This means, that getting samples from the phase space, we obtain the desired values for x by
just ignoring the obtained values for ρ.

To generate the samples for the phase space the HMC algorithms proceeds in two steps

1. following the Hamiltonian dynamics to generate samples with the same total energy

2. perform stochastic transitions to get samples with changed total energy

The next obvious point is to say more about Hamiltonian dynamics. They are characterized
by the following two equations

dxi
dτ

=
∂H

∂ρi
= ρi

dρi
dτ

= −∂H

∂xi
=

∂E

∂xi
,

(3.6)

where τ is a time parameter. In physical problems, it describes the real physical time. For
statistical problems it describes just an artificial parameter. To see that these dynamics really
conserve the value of the Hamiltonian, we just look at

dH

dτ
=
∑

i

(

∂H

∂xi

dxi
dτ

+
∂H

∂ρi

dρi
dτ

)

=
∑

i

(

∂H

∂xi

∂H

∂ρi
− ∂H

∂ρi

∂H

∂xi

)

= 0.

In practice, to follow the Hamiltonian dynamics (3.6) exactly is not possible. Instead, the
equations have to be discretized with a non-zero time step ε, which introduces of course some
error into the dynamics. This discretization is usually done with the leapfrog discretization
which is described in Algorithm 3.2.

We will now come to the second step in the HMC algorithm: the stochastic transitions.
The purpose of this is to get samples with different total energy. It is convenient just to
change the values for the momentum variables ρ, because of (3.5) and the property that ρ
follows a normal distribution, which is easy to sample from. This can also be seen as a Gibbs
sampling step, where we sample from ρ given the current values of x.

A last point we have to manage is how we want to deal with the error that is introduced in
the leapfrog discretization. This is easily solved by considering the point obtained after the

51



3. Algorithmical background

Algorithm 3.2 Leapfrog discretization

Require: desired distribution p(·), starting values (x, ρ), step size ε, number of leapfrog
steps L

1: ℓ← 1
2: ρi ← ρi − ε

2
∂p(x)
∂xi

for all i ∈ {1, . . . , n}
3: while ℓ < L do
4: xi ← xi + ερi for all i ∈ {1, . . . , n}
5: ρi ← ρi − ε∂p(x)∂xi

for all i ∈ {1, . . . , n}
6: ℓ← ℓ+ 1
7: end while
8: ρi ← ρi +

ε
2
∂p(x)
∂xi

for all i ∈ {1, . . . , n}
9: return (x, ρ)

discretization as a candidate step (x̂, ρ̂), which is then accepted or rejected according to the
acceptance function

A
(

(x, ρ), (x̂, ρ̂)
)

= min
(

1, exp
(

H(x, ρ)−H(x̂, ρ̂)
)

)

,

which is the same as (3.2) as can be seen with the help of (3.5). Pseudocode for the HMC
algorithm is given in Algorithm 3.3.

The HMC algorithm can also be seen as a Metropolis-Hastings algorithm where the proposal
distribution is defined by the leapfrog steps. To show now that we really generate samples
from the desired distribution, Neal [Nea93] showed that the detailed balance property is
fulfilled. Thus, our desired distribution is the invariant distribution of the produced Markov
chain. For the ergodicity of the Markov chain the same conditions have to be fulfilled as for
the Metropolis-Hastings algorithm.

The efficiency of this algorithm depends crucially on the number of leapfrog steps L per-
formed and on the step size ε. Generally, a large number of leapfrog steps should be per-
formed to explore the state space in a global way and thus to avoid the random walk behavior.
Furthermore, the step size should be small such that the introduced error is not too large.
However, in every single leapfrog step we need to calculate the derivative of p(x) with respect
to all of its components x1, . . . , xn. Thus, we need to find a tradeoff between a step size not
being too large, which enables the exploration of the state space globally and still does not
need many evaluations of the derivative. And this is not a trivial task.

3.1.4. Population-based Markov chain Monte Carlo algorithms

Instead of running one Markov chain, in population-based Markov chain Monte Carlo algo-
rithms one runs several chains in parallel and, thus, in every step one generates a population
of samples. These samples are generated using so-called genetic operators. The main idea of
this approach is to explore the state space in a more efficient way by exchanging information
between chains. A nice review is given in [JSH07].

We will put this in a more formal context: Instead of considering only the desired target
density p(·), we consider a new target measure

p∗(·) :=
N
∏

n=1

pn(·) (3.7)
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Algorithm 3.3 Hybrid Monte Carlo algorithm

Require: desired distribution p(·), starting value x0, number of leapfrog steps L, step size ε
for leapfrog steps, standard deviation σ for the sampling of the momentum variables ρ,
number of Markov chain samples T

1: t← 0
2: while t < T do
3: Sample ρ

(t)
i from N (0, σ2) for all i ∈ {1, . . . , n}

4: Perform L leapfrog steps with step size ε at state (x(t), ρ(t)) (see Algorithm 3.2)
5: Store resulting candidate state in (x̂, ρ̂)
6: Sample u from U(0, 1)
7: α← min

{

1, exp
(

H(x(t), ρ(t))−H(x̂, ρ̂)
)}

8: if u < α then
9: x(t+1) ← x̂

10: else
11: x(t+1) ← x(t)

12: end if
13: Append x(t+1) to Markov chain

(

x(i)
)t

i=0
14: t← t+ 1
15: end while
16: return Markov chain

(

x(i)
)T

i=0

where N ∈ N denotes the number of chains that are run in parallel. We will assume that at
least for one n ∈ {1, . . . , N} we have p(·) ≡ pn(·). At the end, only the samples of the desired
distribution p(·) are taken for further investigation. Of course, if all distributions pn(·) are
identical, all samples should be used.

The genetic operators or population moves used to generate the samples in the next step
are mutation, which explores the state space in a local way. And furthermore, exchange and
crossover explore the state space in a more global way.

Mutation

This step explores the state space in a local way. It is applied to a single member of the
population and is essentially the same as a step of the Metropolis-Hastings algorithm as
described in Section 3.1.2.

Exchange

This step is used to exchange information between chains. It is also a Metropolis-Hastings
step, where for two chains n, m ∈ {1, . . . , N} the current values xn and xm are exchanged
with the probability min{1, A}, where

A =
pn(xm)pm(xn)

pn(xn)pm(xm)
.

Especially in the case where the sequence of distributions
(

pn(·)
)N

n=1
is selected in such a way

that the distributions are related but are easier to sample from than p(·), this step is very
useful.
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Crossover

There are two types of crossover operators, real crossover and snooker crossover, where we
use the terminology of Goswami and Liu [GL07].

The real crossover is based on the crossover operator used in genetic algorithms4. Assume
we have xn = (xn1, xn2, . . . , xnd) and xm = (xm1, xm2, . . . , xmd) and we want to use for
crossover the l-th position. The proposed new values are then

x′n = (xn1, . . . , xn(l−1), xml, . . . , xmd),

x′m = (xm1, . . . , xm(l−1), xnl, . . . , xnd).

These proposed values are accepted via a Metropolis-Hastings step with the probability
min{1, A} where

A =
pn(x

′
n)pm(x′m)

pn(xn)pm(xm)

under the assumption that the choices for the chains and the crossover position are made
with uniform probability. Of course the crossover step is not limited to do a crossover at one
point, one can also use several break points to perform k-point crossover .

Since for real-valued problems the performance of the real crossover operator is poor [LW01],
so-called snooker crossover operators were suggested. The idea of this steps is to move popula-
tion members towards each other. From a computational perspective the use of the crossover
operator is that we expect that some individuals should have high target density, and thus,
it is reasonable to propose samples near other individuals of the population.

The snooker crossover proposed by Liang and Wong [LW01] chooses two “parental” indi-
viduals xn and xm randomly and proposes as new sample x′n the point

x′n = xn + r · xm − xn
||xm − xn||

(3.8)

where r follows the density

f(r) ∝ |1− r|d−1 pn

(

xn + r · xm − xn
||xm − xn||

)

. (3.9)

This step is illustrated in Figure 3.1 on the left.
Another direction for the snooker crossover proposed by ter Braak [tB06] chooses instead

of the parent xn used in (3.8) another randomly chosen individual xl different from xn and
xm. The proposed sample x′n is then

x′n = xn + r · xm − xl
||xm − xl||

= xn + r · e.

This step is illustrated in Figure 3.1 on the right. One has to note, that the red arrow is
parallel to the dashed line between xl and xm. And furthermore, we have to consider that
if xl and xm had been chosen the other way around, then the red arrow would go into the
opposite direction. Hu and Tsui [HT10] proved that, if you draw r from the distribution

g(r) =
pn(xn + r · e)

∫∞
−∞ pn(xn + r′ · e) dr′ , (3.10)

4For more information on genetic algorithms see [Gol89].
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xn xm

x′n

xl xm

xn

x′n

Figure 3.1.: Geometrical illustration for the snooker crossover operator proposed by [LW01] (left)
and [tB06] (right)

Algorithm 3.4 A basic population-based MCMC algorithm

Require: desired distribution p(·), size of population N , starting values (x1, . . . , xN ) for
the N chains, new target measure p∗ =

∏N
i=1 pi (as in (3.7)), number of Markov chain

samples T , rules R how to use the mutation, exchange and crossover operators
1: t← 0
2: while t < T do
3: According to rules R do:
4: Perform mutation operator
5: Perform exchange operator
6: Perform crossover operator
7: t← t+ 1
8: end while
9: return Markov chain (x

(t)
i )Tt=0, where i corresponds to the index of the chain that sampled

from the desired distribution p(·)

then x′n follows the desired distribution pn(·). It has to be noted, that it might not be easy
to sample from the densities (3.9) and (3.10). In this situation, one has to take a constant r
and perform an additional Metropolis-Hastings acceptance step to ensure sampling from the
desired distribution. This of course lowers the acceptance probability and may lead to poor
mixing performance [HT10].

In Algorithm 3.4 we give a pseudocode for a basic population-based Markov chain Monte
Carlo algorithm. This algorithm does not give any details but just mentions rules R, which
describe, how one should apply the mutation, exchange and crossover operators. This is done,
because the algorithm can and should be used very flexibly to obtain reliable samples of the
desired distribution p(·). The rules R may contain:

• which crossover operator is used, i.e., real crossover or snooker crossover

• if the snooker crossover operator is used, which direction is used, e.g., the direction
proposed by Liang and Wong [LW01] or the one proposed by ter Braak [tB06]

• which of the genetic operators are performed in one sampling step, e.g., only one genetic
operator can be performed in one sampling step or several consecutively

• probabilities for genetic operators to occur in one sampling step, e.g., one maybe wants
to do more crossover steps than mutation steps
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3.1.5. General aspects concerning efficiency of sampling algorithms

As we have seen in the previous four sections, it is not easy to create efficient sampling
algorithms. For the Metropolis-Hastings algorithm one has to define a proposal distribution
such that the rejection rate is small and the whole state space is explored with a running
time as fast as possible. For the hybrid Monte Carlo algorithm one additionally has to fix
a number of leapfrog steps and a step size of the leapfrog steps. And for population-based
MCMC algorithms the number of chains N and several parameters for the genetic operators
used have to be set. There are two questions arising concerning this topic:

1. How many steps do we need to reach the invariant distribution?

2. How many steps do we have to sample to obtain a reliable description of the distribution
we are interested in?

Both questions are, in general, not easy to answer. As a summary of the literature one can
say:

It depends on the underlying distribution.

For finite Markov chains, [Beh00] gives a good overview of the theoretical background of
an answer to the first question, called rapid mixing of sampling algorithms. Since for finite
Markov chains the transition matrix describing the invariant distribution (note that for finite
Markov chains there is always an invariant distribution) has the invariant distribution as its
left eigenvector. And because of the form of the distribution matrix (sum of rows is equal
to one), all eigenvalues are smaller than or equal to one where one is really an eigenvalue.
He proves that the convergence rate of the Metropolis-Hastings algorithms to the invariant
distribution depends on the size of the second largest eigenvalue, the smaller it is, the faster
the convergence rate.

For general state space Markov chains, the theory is similar to the theory of finite Markov
chains (see [GRS98] Chapter 4): Instead of a transition matrix one has a transition kernel
and considers the spectrum of it instead of the eigenvalues.

One important term to mention and introduce for the usage of MCMC algorithms in prac-
tice is the obvious need of neglecting samples at the beginning of the sampling procedure,
called the burn-in phase, since these samples do not follow the distribution of interest. The
samples in the burn-in phase will not be used for further analysis of the samples generated
from the invariant distribution, i.e., the distribution of interest. How to set the length of the
burn-in phase is not a trivial task and problem-specific.

Beyond these theoretical considerations, there are several modifications of the classical
MCMC algorithms, as described in the previous four subsections, called adaptive MCMC
algorithms. The different authors define the word “adaptive” in a different way suitable for
their purposes. As an idea one can say that “adaptive” mean to select a proposal distribu-
tion which depends on the previous sampled points such that the ergodicity property is still
satisfied and the running time is more efficient.

General theoretical considerations of the efficiency of adaptive MCMC algorithms can be
found in [AR05,AA06]. The first paper also gives an adaptive MCMC algorithm where the
proposal distribution is N (x, σI) with x as the current point and σ > 0 and the parameter σ
is updated in such a way that the asymptotic acceptance rate τ is τ = 0.234, which is noted
in [RGG97, RR01] to be optimal under some technical conditions. Another way to update
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the proposal distribution is also to consider the covariance matrix of the previous sampled
points, which has been done, for example, by [HST01]. This algorithm satisfies the necessary
ergodicity properties, but does not satisfy the Markov property anymore.

3.2. Parallel Computing

The general idea of parallel computing is to run a computational program on several processors
at the same time, i.e., in parallel, to save computational time and/or divide the memory
load onto several processors. Although advantageous, parallel programming is more difficult
compared to serial programming. This section is based on [Kep09, KMK]. For a detailed
information on parallel computing, especially on the hardware needed, see [GKKG03].

Several reasons for parallel computing being more difficult than serial computing are that
one has to keep track of on which processor specific data is located and if other processors
need also the same data. Thus, it has to be considered, if data have to be distributed from
one processor to another where it is needed. This distribution of data and the distribution
of a program to several processors produce an overhead , i.e., additional computational time
and memory is needed, which is not present in serial programs. The overhead may be very
large, if a lot of data has to be distributed, i.e., the processors have to communicate a lot.
This may even lead to the strange situation, that the computational time is even longer for
a parallel program distributed on more processors as compared to a serial program run on
one processor. This is the case if a lot of communication has to be performed between the
processors, which produces a huge overhead although the work load per processor is smaller.
For this reason, it is essential for efficient parallel computing to find a trade-off between the
number of processors the work is distributed to and the amount of communication needed
between the processors. Finding this trade-off is not always intuitive and often requires some
effort of iterative thinking and running with different numbers of processors.

Now, that we know that communication between processors is a crucial step, we may ask:
How is this communication organized in a parallel program? Basically, there are three models:

1. manager/worker model

2. message passing model

3. distributed array model

The manager/worker model is the simplest model for parallel computing. There the work
is distributed into several independent tasks and the workers do not communicate with each
other. The only communication taking place is the communication between the workers and
the manager.

However, for a lot of problems, the communication between all processors is needed. The
message passing model accounts for this. This is typically done with the Message Passing
Interface (MPI) standard [GLS99]. In the MPI every processor needs to have a unique
identifier PID and know how many other processors also work on the same parallel program.
The drawback of this model is that the effort for programming is increased, since every
message that has to be sent between different PIDs has to be programmed individually by the
programmer. And this causes a lot of additional code and complicates debugging , i.e., testing
the program.
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Figure 3.2.: Scheme for the three parallel computing models: a single-program single-data model on
the left, a MPMD model in the middle and a SPMD model on the right. In the serial program on
the left two tasks are performed one after the other on data1 and data2, respectively. In the parallel
program based on a MPMD model two processors are used, where on the first one, Task1 is performed
on data1 and the second calculates Task2 on data2. On the right a parallel program based on the SPMD
model is depicted. There, the same program as in the serial program is run on two processors, but the
data needed for the two tasks is divided across the two processors.

The distributed array model is a compromise between the two other models. Well, in
fact, it needs the MPI standard as basis. However, the usage of MPI is implicit and hided
from the user. So, how does the distributed array model work? Basically, the user sees one
big global array, where different parts of the array are located on different processors. How
the global array is distributed is defined by the user, but the needed data distribution and
communication is done by the MPI layer beneath automatically. Thus, the user does not have
to take care of it and the code is shorter and better readable. Every PID is then responsible
for the calculation on the data stored locally on it.

Now we know how communication is organized. The next step is to understand how the
parallel program can be organized itself. There are to main models to organize parallel
programs:

1. multiple-program multiple-data (MPMD) model

2. single-program multiple-data (SPMD) model

To understand this two models better, we first mention, that a serial program will be organized
according to this nomenclature as a single-program single-data model. This name becomes
clear, if we consider that we run one program with one dataset and perform one task of the
program after the other. In a MPMD the different tasks of the serial program are divided
across different processors and the different datasets needed for this tasks are located where
the task is performed. In a SPMD model, the same program is run on all processors, but the
data needed for the different tasks is distributed to the processors. Figure 3.2 gives a scheme
for this three models where the parallel programs are run on two processors each.

It has to be mentioned, that in Figure 3.2 no information about the runtime of the programs
is depicted. It does not mean, that in the MPMD model the runtime is much shorter than
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in the other models. In general, one cannot say much about the runtime for the different
models. Of course, one goal of parallel computing is to reduce the computational time of
the algorithm. Thus, both, parallel programs based on the MPMD model as well parallel
programs based on the SPMD model should have a shorter runtime compared to the serial
program. To measure the performance of parallel programs in general, the most often used
measure is speedup Sp, which is defined as

Sp =
timeserial

timeparallel(p)
, (3.11)

i.e., the runtime of the serial program is divided by the runtime of the parallel program
performed on p processors. The ideal speedup is when the parallel program runs p times faster
on p processors than the serial program runs on one processor. This speedup is called linear .
A common observed speedup behavior is sublinear speedup. This speedup is not as good as
linear speedup, but for increasing number of processors the runtime of the parallel program
decreases. There are two main reasons for a sublinear speedup. First, as we mentioned before,
communication creates overheads which increases the runtime. Second, not all parts of the
serial program are parallelizable. Thus, a linear speedup can never be achieved for programs
with non-parallelizable parts in it. An upper bound for the speedup for parallel programs is
given by Amdahl’s law [Amd67]

Sp ≤
1

fracserial+(1− fracserial)/p
, (3.12)

where fracserial denotes the fraction of time spent on serial operations, i.e., the non-parallelized
part of the code, and p denotes the number of processors. From this formula the maximum
possible speedup can be derived by

lim
p→∞

Sp ≤
1

fracserial
.

As an example, we can assume that only half of the serial code can be parallelized. Thus, the
maximum possible speedup is 2 and cannot be increased with the usage of more processors.
In Figure 3.3, Amdahl’s law and the maximum possible speedup is depicted for different
proportions of parallelizable code.

Another common observed speedup behavior is saturation. We mentioned this earlier as
the strange case, where the runtime of the process is higher for a parallel program distributed
on more processors. In more detail, we first see for increased number of processors an increase
in speedup, then for increasing number of processors the speedup reaches a maximum and
decreases for splitting up the program to more processors. This speedup behavior is observed
in cases the communication load, and thus the overheads, exceeds the saving of computation
time due to parallelization.

3.3. Receiver Operating Characteristics

Receiver operating characteristics (ROC) graphs are a method to visualize the performance
of classifiers. This section is based on [Faw06]. We will first describe the two-class problem
where we classify between two classes. Since this thesis deals with gene regulatory networks,
we will focus on the example of present/absent edges to describe ROC graphs for the two-class
problem. For the three-class problem we will focus on the example of absent/positive/negative
edges in a network, which have to be classified.
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Figure 3.3.: Amdahl’s law for different amounts of parallelizable code. Source: http:// en.

wikipedia.org/ wiki/Amdahl’s_law

3.3.1. Two-class problem

As mentioned above, we consider classifiers which give as output, if an edge is present or
absent. We will call these classifiers also discrete classifiers. There exist also classification
models, which produce continuous outputs. We will call these classifiers continuous classifiers.
For them, thresholds can be applied to predict membership to classes of the output. The
classifier of a two-class problem can have four possible outcomes, which can be denoted
in a confusion matrix as given in Table 3.1. With the confusion matrix we define several
performance metrics of a classifier we will use. The first metric is the true positive rate,
which is also called recall and sensitivity and defined as

true positive rate =
TP

TP+FN
.

The false positive rate (fpr) is defined as

false positive rate =
FP

FP+TN
.

Another used metrics are specificity , which is just 1− fpr and precision, which is defined as

precision =
TP

TP+FP
.
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3.3. Receiver Operating Characteristics

predicted
present edge no edge

actual present edge True Positives (TP) False Negatives (FN)

no edge False Positives (FP) True Negatives (TN)

Table 3.1.: Confusion matrix of the two-class problem (no edge, present edge).

How can this metrics be now used to measure the performance of a classifier? Of course, we
want to have a high sensitivity, since we want to find all the present edges in the true network,
also called the golden standard , and do not classify the edges present in the golden standard
as being no edge. But we also want to have a low false positive rate, since we do not want
to classify not present edges in the golden standard network as being a present edge. In one
type of a ROC graph we plot the sensitivity on the y-axis and 1− specificity on the x-axis.
This can be seen as depicting the benefits of a classifier (true positives) versus its costs (false
positives).
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Figure 3.4.: A basic ROC graph and the performance of different discrete classifiers. The red dot
represents a perfect classifier. The blue dot represents a classifier which is as good as random guessing.
The orange dot represents a classifier worse than random guessing. But if the labels of this classifier
are reversed, the new classifier is represented as the green dot. This figure is adapted from [Faw06].

In Figure 3.4 the performance of several discrete classifiers is depicted. The red dot repre-
sents a perfect classifier, since it learns all present edges and no absent edge is learned as being
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a present one, i.e., sensitivity = 1 and 1− specificity = 0. The blue dot represents a classifier
which is as good as random guessing. In general, the diagonal line in Figure 3.4 indicates the
performance of a classifier being as good as random guessing. Thus, a classifier with a good
performance is found in the upper left corner of the ROC graph. Why represents the diagonal
line the performance of random guessing? Let’s assume that a random classifier learns half
of the present edges right. Then we can expect that is also learns half of the non-present
edges right. In general, one can say, that a random classifier will learn x%, x ∈ [0, 100], of
the possible edges in the golden standard network as present edges, which leads then to a
sensitivity of x/100 and to a 1 − specificity of also x/100. And this is exactly represented
with a diagonal line.

It remains to explain the remaining two dots in Figure 3.4. The orange dot represents a
classifier worse than random guessing. This is, of course, a bad classifier. But it basically
means that the classification outputs have just to be reversed to make true negatives from
false positives and true positives from false negatives. Doing so, we get a classifier with a
performance better than random guessing which is depicted as the green dot.

How can we now measure the performance of a continuous classifier? We can specify a
threshold and fix that all values greater than the threshold represent a present edge and all
values lower than the threshold represent an absent edge. With this procedure we get the
same situation as for a discrete classifier. We can now obtain a point in the ROC graph giving
the performance of the continuous classifier for the specified threshold. However, how can
we decide that we choose the right threshold? Since for different threshold we get different
performance points and we do not know which of them will be the one giving the best
performance5 beforehand, we will calculate points in the ROC graph for varying thresholds.
An exemplary ROC graph for a continuous classifier is depicted in Figure 3.5. The obtained
points in the ROC graph for varying thresholds are then connected and the area under curve
(AUC) can be calculated as the integral of the ROC curve. In Figure 3.5 we have AUC = 0.73.
The theoretical maximum for a perfect classifier is, of course, 1. With the AUC we are now
able to compare different continuous classifiers: the greater the AUC value, the better the
performance of the classifier.

The ROC curve can also be used to specify the “best” threshold, i.e., the threshold, which
gives a point in the ROC graph with the best performance. The blue dashed line in Figure 3.5
is the line furthest away from the diagonal in the ROC graph which touches points in the
ROC curve. Thus, the two points (0.1, 0.5) and (0.4, 0.8) represent the points with the best
performance of the classifier and the associated thresholds are then the “best” thresholds.

An important property of the sensitivity vs. 1 − specificity ROC graphs is that they are
insensitive to the distribution of present and absent edges in the golden standard network. It
doesn’t matter what the percentage of the edges in the golden standard network are present
or absent. The corresponding ROC curve and the AUC value will be always the same for the
same classifier. However, since, especially for biological networks, the percentage of present
edges in the golden standard network is much smaller than the percentage of absent edges,
i.e., biological networks are sparse, we also want to take this knowledge into account to be
sure that the classifiers we propose are suitable for biological networks.

This can be done with precision vs. recall ROC graphs. There on the y-axis we plot pre-
cision and on the x-axis we plot recall, i.e., the true positive rate. The difference between the
previous ROC graphs is now that with the consideration of precision we take into account the

5“best performance” in the sense, that the point is furthest away from the diagonal in the ROC graph
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Figure 3.5.: A basic ROC graph for a continuous classifier with the corresponding ROC curve depicted
in red. The dotted area depicts the corresponding AUC of 0.73 and the dashed black line represents
the (theoretical) ROC curve for random guessing. The blue dashed line touches the points of the ROC
curve which represent the points with the best performance.

distribution of the present and absent edges. This can be seen by looking at the confusion
matrix in Table 3.1. Whereas in the sensitivity vs. 1 − specificity ROC graphs we depict
the relationships of the rows of the confusion matrix against each other, we plot in precision
vs. recall ROC graph the relationship of the first column of the confusion matrix. And thus,
it considers the sparsity of biological networks. The value for random guessing is not 0.5
anymore, as in the sensitivity vs. 1−specificity ROC graphs, but is dependent on the amount
of present edges in the golden standard. Why is this the case? Let’s assume we have a golden
standard network with 100 possible edges where 90 are absent and 10 are present. Now we
take a random classifier which characterizes possible edges with the probability of x, x ∈ [0, 1],
as present. We can then except, that x · 90 of the absent edges are learned as being present
and x · 10 of the present edges are learned as being present. Thus, for precision we have

precision =
x · 10

x · 10 + x · 90 =
1

10
,

which is independent of x and is the proportion of present edges of the possible edges.
In Figure 3.6 an exemplary precision vs. recall ROC graph for a continuous classifier is

depicted. As in the sensitivity vs. 1 − specificity ROC graph, we can determine the “best”
threshold which gives a point in the ROC graph with the best performance. However, since
the best classifiers are found in the upper right corner of the precision vs. recall ROC graph,
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Figure 3.6.: An exemplary precision vs. recall ROC graph for a continuous classifier with the corre-
sponding ROC curve depicted in red. The dotted area depicts the corresponding AUC and the dashed
black line represents the (theoretical) ROC curve for random guessing. The blue dashed line touches
the point of the ROC curve which represent the point with the best performance.

the best classifiers are the ones which are touched by the line which is furthest away from the
function f(x) = −x + 1. In Figure 3.6 this line is depicted as the blue dashed line and the
optimal threshold can be obtained at the point (1, 8/19) for this example.

3.3.2. Three-class problem

Now we will come to the case, where our classifier gives as output, if an edge in the network
is absent, positive or negative. Thus, we do not have a two-class problem anymore, but a
three-class problem. The usual procedure for classification problems with more than two
classes is to reduce it to the case of two classes by calculating several ROC graphs and AUC
values where in every one, one of the classes is considered as the positive class and all the
other classes are considered as the negative class. The overall AUC value is then calculated
as the weighted sum of all the single AUC values. See Section 9 in [Faw06] for more details.

We will use a different approach. The similarity to other methods is that we also reduce
it to the case of a two-class problem. But instead of averaging the different AUC values, we
change the confusion matrix as given in Table 3.2. This confusion matrix was first used by
Böck [Böc08] and Ritter [Rit08] for the analysis of three-class problems. With this confusion
matrix the values for random guessing change and are now dependent on the proportion of
the absent edges in the golden standard network. The exact formula and the proof can be
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Algorithm 3.5 ROC point generation and AUC calculation

Require: set of learned edges L, golden standard network, number of ROC points pROC

1: lmax ← max{l | l ∈ L}
2: lmin ← min{l | l ∈ L}
3: ts ← lmax−lmin

pROC
is the threshold varying size

4: th ← lmax is the starting threshold
5: sensitivity← 0
6: specificity← 1
7: precision← 1
8: AUCROC ← 0
9: AUCP2R ← 0

10: for i = 1 to pROC + 1 do
11: sensitivityold ← sensitivity
12: specificityold ← specificity
13: precisionold ← precision
14: consider all learned edges with learned value ≥ th to be present edges and the others

to be absent edges
15: determine according to the confusion matrix in Table 3.1 and the golden standard

network the values for sensitivity, specificity and precision
16: AUCROC ← AUCROC+ sensitivityold+sensitivity

2 · | specificityold − specificity |
17: AUCP2R ← AUCP2R +precisionold+precision

2 · | sensitivityold − sensitivity |
18: th ← th − ts
19: end for
20: return area under curve values for the sensitivity vs. 1−specificity ROC curve AUCROC

and for the precision vs. recall ROC curve AUCP2R

found in Appendix A.

predicted
positive edge negative edge no edge

positive edge TP FP FN

actual negative edge FP TP FN

no edge FP FP TN

Table 3.2.: Mapping of three-class classification problem (no edge, positive edge, negative edge) onto
two-class ROC / PR evaluation.
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CHAPTER 4

Models for gene regulatory networks

Essentially, all models are wrong,

but some are useful.

(George E. P. Box)

In this chapter we will describe different possibilities to model gene regulatory networks
(GRNs). We will look at the advantages and disadvantages of different kind of deterministic
models (statistical models, discrete models and continuous models) and of stochastic models
(single-molecule models). We do not make a claim of completeness of all possible methods
to model GRNs. Instead, we show the most often used types to illustrate the diversity of
the models used. There is a vast amount of reviews available describing models for gene
regulatory networks. An excellent one was written by Karlebach and Shamir in 2008 [KS08].
However, there are also another good ones, i.e., [MS07,SB07,KR08,HLT+09].

The aim of all models of GRNs is to find the structure between different genes. To state
it more formally, we say that we have a set V = {v1, . . . , vn} of n genes given. We now want
to find interactions E which describe the structure between the genes V . This can be nicely
represented in a graph G = (V, E), where the genes V denote the nodes and the interactions
E denote the edges. Depending on the model, the graph G can be directed or undirected.

Definition 4.0.1. The graph G = (V, E) of a gene regulatory network is called the topology
of a gene regulatory network.

4.1. Statistical models

Statistical models all have in common, that the nodes V are treated as random variables and
the edges E represent probabilistic relationships between these random variables. The main
advantage of statistical models is the ability to capture the stochasticity of gene expression
data. I refer the explanation of this section to the second chapter in the doctoral thesis by
Florian Markowetz [Mar05].
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4.1.1. Coexpression networks

The underlying biological view of coexpression networks is the guilt-by-association heuristic.
What it means, is that genes which show similar expression profiles are supposed to have
similar functions. This follows the hypothesis, that several genes are responsible for the same
cellular function and are activated at the same time to perform the desired task.

There are several possibilities to calculate the similarity between gene expression profiles.
The most simple measure for similarity is correlation. However, since correlation measures
only a linear relationship between random variables, it neglects nonlinear properties. An-
other possibility is mutual information which was used by Butte and Kohane to introduce
relevance networks [BK00]. Margolin et al. [MNB+06] implemented the ARACNE-algorithm,
which improves relevance networks in that way, that it removes the vast majority of indirect
interactions. Recently, a version of the ARACNE-algorithm was presented, which is able
to reconstruct directed graphs with time-series data [ZMC10]. Kaleta et al. [KGS+10] and
Chaitankar et al. [CGP+10] used a similar information theoretic approach to infer a directed
network with time-series data for Escherichia coli and Saccharomyces cerevisiae, respectively.

Except for the last example, the obtained topologies with coexpression networks are undi-
rected, since they just provide a similarity between gene profiles and do not model regulation
between genes. Because coexpression networks are easy to calculate, there are a lot of appli-
cations present in the literature, e.g., [SSDK03,MHDD09,XCP+10].

A clear drawback of coexpression networks is, that genes may have similar expression
profiles by chance where the genes are not biologically related. Wolfe et al. [WKB05] tested the
general applicability of the guilt-by-association heuristic to the transcriptome. The authors
calculated probabilistic scores between each gene and each Gene Ontology (GO) category
and tested their results with ROC curves. Their results show that the AUC values are much
better than random guessing, but are also away from being perfect.

Recently, a new statistic called local correlation was developed to identify nonlinear rela-
tionships [CAR+10]. The authors show that local correlation outperforms correlation and has
higher statistical power than mutual information. Thus, it seems to be a promising measure
that can be exploited in the future.

4.1.2. Graphical models

In comparison to coexpression networks, graphical models used to model GRNs calculate
conditional dependencies between genes, given information of other genes. Thus, one only
connects two genes, if their correlation cannot be explained by other genes. This is also
implicitly done in the ARACNE-algorithm described in Section 4.1.1, where no edge is drawn,
if the correlation between two genes can be explained by a single third gene.

The question, one is facing now is: What about the correlation between two genes that can
be explained by an arbitrary subset of other genes? There are two often used methodologies to
model GRNs which deal with this question, which will be described now. Graphical models are
able to give undirected but even directed graphs. Gaussian graphical models give undirected
graphs, whereas Bayesian networks are able to provide directed graphs.

Gaussian graphical models

The question answered with Gaussian graphical models (GGMs) is, if the correlation between
two genes can be explained by all other genes in the model. Thus, we only draw an edge
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between two genes, if their correlation cannot be explained by all other genes. The name
Gaussian already implies that the set of the nodes X = (X1, . . . ,Xn) follows a multivariate
Gaussian distribution, i.e., X ∼ N (µ,Σ). It can be shown, that the conditional distribution of
two random variables Xi, Xj, i, j ∈ {1, . . . , n}, of a GGM given all other variables X\{Xi,Xj}
follows a bivariate normal distribution with correlation coefficient ρij = −kij/

√

kiikjj, where

K =
(

kij
)n

i,j=1
:= Σ−1 (4.1)

denotes the precision matrix of the distribution X. The value ρij defined above is also called
the partial correlation coefficient between Xi and Xj . Thus, we have shown, that two random
variables Xi and Xj are independent given the remaining random variables X \ {Xi,Xj} if
and only if the corresponding element of K is zero [Edw00].

Compared to coexpression networks, where the correlation is used, partial correlation coef-
ficients usually vanish. Thus, they give a strong measure for dependence and a weak measure
for independence, whereas for correlation alone it is the other way around [SS05a].

The procedure to obtain GRNs with GGMs is performed in four steps:

1. Calculate an estimate Σ̂ of the covariance matrix Σ, usually done with the sample
covariance matrix

Σ̂ =
1

M − 1

(

X− X̄
)T (

X− X̄
)

(4.2)

where X̄ = (X̄1, . . . , X̄n) denotes the sample mean andM denotes the number of samples

2. Invert Σ̂ to obtain an estimate K̂ for the precision matrix K

3. Perform statistical tests to deduce which elements of K̂ are significantly different from
zero

4. Put an edge between two genes, where the corresponding entry of K̂ was found to be
different from zero in Step 3

One problem with this procedure is, that to obtain accurate results, the number of samples
M has to be larger than the number of genes n considered. Otherwise, the sample covariance
matrix Σ̂ is not positive definite and cannot be inverted [Fri89, SS05a]. Since it is a usual
problem in modeling GRNs, that there are more genes than different samples (n ≫ M),
several methods have been proposed to deal with this problem, e.g.,:

• Wille et al. [WZV+04] applied modified GGMs to analyze the isoprenoid gene network
in Arabidopsis thaliana. For this purpose, they applied GGMs to subnetworks of three
genes and combined the obtained results to restore the whole network.

• Schäfer and Strimmer [SS05a] used first bootstrap aggregation [Bre96] to stabilize the
estimator of the sample covariance matrix. Second, they calculated the Moore-Penrose
pseudoinverse [Pen55] of this obtained estimate of the sample covariance matrix. The
Moore-Penrose pseudoinverse is also applicable to singular matrices. Their method is
implemented in the R-package GeneNet [SORS06] and was extended by Opgen-Rhein
and Strimmer [ORS07] to obtain also directed graphs.

• Schäfer and Strimmer [SS05b] review the three general used methods to circumvent
the “few-samples problem”: dimension reduction prior to analysis (e.g., clustering of
genes [TH02]), computation of low order partial correlation coefficients and regularized
variants of graphical Gaussian modeling.
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• Kontos [Kon09] proposes a non-biased estimator for the covariance matrix after proving
that the estimator used by Schäfer and Strimmer [SS05a] is biased. Furthermore, he
gives more efficient algorithms for the inference of GGMs than previous known algo-
rithms.

GGMs were applied by de la Fuente et al. [dlFBHM04] on Saccharomyces cerevisiae mi-
croarray data. And Ma et al. [MGB07] investigated the Arabidopsis thaliana transcriptome
with GGMs. Wang et al. [WCD05] combined GGMs with graph orientation rules to obtain
directed networks and applied their method on microarray data for the mitogen-activated
protein kinase (MAPK) pathways in yeast.

Bayesian networks

We said in the previous section, that GGMs are useful graphical models with a lot of appli-
cations. But they only provide undirected networks. Bayesian networks (BNs), in contrast,
are able to give directed networks.

For GGMs we draw an edge, if the correlation between two genes cannot be explained by all
other genes. In Bayesian networks we will draw an edge, where the correlation between two
genes cannot be explained by any subset of the other genes. This collection of independencies
already implies directions of some edges in the network [Pea00, SGS00]. We give a formal
definition:

Definition 4.1.1. A Bayesian network for a set of random variables X = (X1, . . . ,Xn)
consists of

1. a directed acyclic graph (DAG) S that encodes a set of conditional independence asser-
tions about variables in X

2. a set P of local probability distributions associated with each variable.

Together, these two components define the joint probability distribution for X by

p(X) =
n
∏

i=1

P (Xi | pai, θ), (4.3)

where pai denotes the parent nodes of node Xi in S and θ denotes the parameters which
describe the set of local probability distributions P .

To learn a Bayesian network, given data D, we thus have to learn the underlying DAG S
given local probability distributions P . Chickering et al. [Chi96,CHM04] showed, that this
inference problem is a difficult task, i.e., they proved that it is, at least, NP-complete. A
tutorial for the inference of Bayesian networks was given by Heckerman [Hec96].

To score different network structures S, several methods can be used:

1. The Maximum Likelihood (ML) estimate:

ML(S) = max
θ

p(D | S, θ) (4.4)

The ML estimate has the drawback, that is tends to overfitting , i.e., the score ML(S) is
higher for larger networks with more edges, which capture all details (especially noise)
in the data.
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2. To control overfitting, a regularized version of the ML estimate was proposed: the
Bayesian information criterion (BIC):

BIC(S) = max
θ

p(D | S, θ)− d

2
logM, (4.5)

where d denotes the number of parameters θ used to parameterize the local probability
distributions P and M the number of samples as denoted in Section 4.1.2.

3. Another score, circumventing the overfitting problem [Mar05], is to average over param-
eters θ instead of maximize over them. Thus, we obtain a marginal likelihood p(D | S)
by treating the parameters θ as nuisance parameters and integrating them out, i.e.,

p(D | S) =
∫

p(D | S, θ)p(θ | S) dθ. (4.6)

With the usage of Bayes’ theorem, we obtain the desired probability of a network
structure S given the data D:

p(S | D) =
p(D | S)p(S)

p(D)
. (4.7)

The marginal likelihood (4.6) can either be calculated analytically using conjugate priors
[GCSR04], i.e., the posterior is of the same distributional form as the prior, or has to
be approximated.

For the case, when we have to deal with missing or hidden data, which is very often the
case for biological problems, we can maximize p(D | S, θ) in (4.4) and (4.5) and p(S | D)
in (4.7) using the Expectation-Maximization algorithm (EM-Algorithm). The EM-algorithm
was introduced by Dempster et al. [DLR77] in 1977 and proposes an iterative approach of
the expectation of missing data, given measured data and current parameters θ (E-step) and
the maximization of the likelihood given the missing data obtained in the E-step and the
measured data (M -step).

Now that we can calculate scores for given network structures S, we have to find S with
the highest score. But since the number of DAGs on n edges explodes with growing n, we
have to use either an informative prior p(S) in the Bayes’ score (4.7) or/and reduce the
search space or/and use a heuristic to find the best network structure S. Several approaches
have been proposed to learn network structures efficiently, e.g., [HGC95, NRF04, PBT05,
KZRZ09,NMB+09]. As a special example, Friedman [Fri97,Fri98] introduced the Structural
Expectation-Maximization-Algorithm, where the network structure S is learned inside the
EM-Algorithm.

For the inference task it has to be considered, that several Bayesian network structures
with the same underlying undirected graph, but different direction of edges may represent
the same statements of conditional independence [VP90]. These network structures are said
to be in the same equivalence class. Thus, even with infinitely many samples, we are not able
to distinguish between network structures in one equivalence class. For the interpretation of
gene regulatory networks, this drawback of Bayesian networks is crucial: we cannot be sure,
that the obtained directed edges really represent regulation between genes.

In the literature, there is a lot of applications of BNs for the inference of GRNs. Fried-
man et al. [FLNP00] give one of the first papers applying BNs to infer the GRN of Saccha-
romyces cerevisiae. Liu et al. [LLT+09] use BNs and heterogeneous data to infer miRNA-
mRNA interactions.
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4. Models for gene regulatory networks

Another drawback of Bayesian networks is, that they have to be acyclic to fulfill the factor-
ization of the joint probability distribution in (4.3). Thus, feedback loops and cycles, as often
present in biological systems [LBK+07, AJL+08], cannot be modeled. This can be circum-
vented by using time-series data and assuming, that a gene x at time point t+1 is only allowed
to have parents at time point t. With this assumption we are able to model feedback loops with
BNs, too. These kind of BNs are called Dynamic Bayesian Networks (DBNs) [FMR98,MM99].
DBNs were extensively used for the inference of GRNs, e.g., [NRF04,ZDJJ06,DEO+09]. Do-
jer et al. [DGM+06] extended the usage of DBNs also to data obtained with perturbation
experiments.

4.2. Discrete models

In discrete models the nodes V can take only discrete values and for discrete time steps the
values for nodes V are updated according to some regulation function.

4.2.1. Boolean networks

Let’s start with the simplest form of discrete values that the nodes of the gene regulatory
network can have: 1 for active or “on” and 0 for inactive or “off”. These kind of discrete
models are called Boolean networks and were described first by Kauffmann in 1969 [Kau69].
Let us first give a formal definition of Boolean networks and then discuss the used terms in
detail. The following definition and considerations are based on [AMML11].

Definition 4.2.1. A Boolean network of order n is completely defined by an operator
A : {0, 1}n → {0, 1}n. The operator A can be specified by transition functions, also called
Boolean functions, fi : {0, 1}n → {0, 1} for all i ∈ {1, . . . , n} such that for x = (x1, . . . , xn) and
x′ = (x′1, . . . , x

′
n) the equation x′ = A(x) and the set of equations x′i = fi(x), i ∈ {1, . . . , n},

are equivalent.

The question that comes up seeing this definition is: How do we obtain a graphical in-
terpretation in form of a topology of the underlying gene regulatory network just with the
operator A? To do this, we assume that for every node i ∈ {1, . . . , n} there is a subset Si ⊆ V
such that the transition function fi depends on x ∈ {0, 1}n only through the components xj
where j ∈ Si. The graph that represents the topology is the one where the parents of node
i are the nodes in Si and this holds for all i ∈ {1, . . . , n}. The minimal subset Si with this
property is then called the minimal graph of A.

A nice property of Boolean networks is their ability to represent the dynamic behavior
of the underlying gene regulatory network. For this purpose, one starts with an initial net-
work state x0 and applies the operator A to x0 several times. Thus one obtains a sequence
boolx0 :=

(

At(x0)
)∞

t=0
. Since there are only 2n states possible of the system, there have to

be states which appear infinitely often in boolx0 . This set of states is called an attractor of
the system. Two types of attractors are possible. The first one is called a fixed point and is
defined such that x = A(x), where x ∈ {0, 1}n. The second type for an attractor is a cycle.
It is defined as a finite sequence of states x1, . . . , xm ∈ {0, 1}n such that each state is unique,
it holds xt+1 = A(xt) for all t ∈ {1, . . . ,m− 1} and x1 = A(xm).

We will give a small example for a three node Boolean network to illustrate all the intro-
duced terms. In Figure 4.1 (Left) the representation as a graph is depicted. The transition
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X

ZY

t t+ 1

X Y Z X Y Z

0 0 0 0 0 1
0 0 1 0 0 1
0 1 0 1 0 1
0 1 1 1 0 1
1 0 0 0 0 0
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 1 0

Figure 4.1.: (Left) An example for a Boolean network of order 3 represented as a graph. The nodes X,
Y and Z are representing genes and the topology shows that gene X inhibits gene Z, gene Y activates
gene X and genes X and Z together activate gene Y . (Right) Representation for the same Boolean
network as on the left with the operator A where for all 8 possible states the states for the three genes
after applying the operator A are given.

functions for this example can be written as the logical operators

X = Y Y = X&Z and Z = ¬X. (4.8)

The operator A that defines completely this Boolean network can be given in the form of a
table, where for the 23 = 8 elements of the set {0, 1}3 the states for the three genes are given
as the output of the operator A. This table is shown in Figure 4.1 (Right).

It remains now to look at possible sequences boolx0 . For this example only two different
sequences are possible. One leads to a fixed point as an attractor and the other one leads to
a cycle consisting of two states. These sequences are illustrated in Figure 4.2.

111 110 100 000 001

011 101 010

Figure 4.2.: Sequences boolx0
for the Boolean network represented in Figure 4.1 and (4.8). The one

on top shows a sequence which ends in the fixed point attractor (001). The one on bottom shows a
sequence which ends in a cycle attractor consisting of the two states (101) and (010).

For a more thorough description Boolean network models and its analysis, we refer the
reader to [Kau93].

Boolean networks were used to analyze the robustness and the dynamics for a given topol-
ogy of a gene regulatory network and such for given Boolean functions. This was done,
for example, for the yeast transcriptional network by Kauffman et al. [KPST03] and by
Li et al. [LLL+04] for the cell-cycle regulation in yeast. However, as pointed out by Kar-
lebach and Shamir [KS08], these procedures are only practically possible for small networks.
Giacomantonio et al. [GG10] enumerated all possible Boolean networks with five genes defin-
ing a small gene regulatory network underlying mammalian cortical area development and
compared the interactions obtained with existing knowledge from literature.
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4. Models for gene regulatory networks

The other common usage for Boolean networks is to infer gene regulatory networks with
experimental data. To do so, first the data, of course, has to be discretized. This inference
task needs to find the Boolean functions which define the Boolean network that is consistent
with the data. Not always there are such Boolean functions, because of incomplete and/or
noisy data.

Liang et al. [LFS98] developed the algorithm REVEAL which uses mutual information to
estimate the underlying transition functions of Boolean networks from time-series data. Their
algorithm performs well for networks with a small in-degree, i.e., the number of parents in
the graph of a node, number per gene.

Lähdesmäki et al. [LSYH03] introduced an algorithm which finds in polynomial time
Boolean functions which make as few “errors” as possible according to the given data. They
used their algorithm to find all possible Boolean functions with a pre-defined error for a
five-gene yeast network using time-series gene expression data from Spellman et al. [SSZ+98].

The two former algorithms are implemented in the R-package BoolNet [MHK10]. The
BoolNet package provides also functions for the generation and the analysis in terms of
attractors of Boolean networks.

Wittmann et al. [WKSR+09] transformed Boolean models into a system of ordinary differ-
ential equations using polynomial interpolation. They examined their approach on a model
describing the activation of T-cells and proved that their method preserves the steady-state
behavior of the Boolean model. The same approach was also used to predict interactions at
the mid-hindbrain boundary [WBT+09].

Recently, Almudevar et al. [AMML11] used a Bayesian inference approach to in-
fer Boolean networks with steady-state data obtained with perturbation experiments.
Maucher et al. [MKKK11] proposed a fast algorithm for the inference of Boolean networks
based on the calculation of correlation coefficients between two consecutive states. The au-
thors applied their method to synthetic data representing a published E. coli network and to
real data for a yeast cell-cycle network.

probabilistic Boolean networks

Boolean networks as defined in Definition 4.2.1 and described in the previous section are
thoroughly deterministic. To include the uncertainty about the regulation of certain genes,
Shmulevich et al. [SDKZ02] introduced probabilistic Boolean networks (PBN) as a new class of
models for gene regulatory networks where they may exist more than one Boolean function for
every gene each with a certain probability. The authors also propose an inference algorithm
for PBNs based on coefficients of determination. The analysis of the dynamics of PBNs can
be done with the rich theory on Markov chains1. This was done for gene expression data for
a sub-network describing human glioma, where the joint steady-state probabilities for several
groups of genes were obtained with MCMC algorithms [SGH+03]. A thorough overview of
PBNs and their analysis can be found in [SD10].

Li et al. [LZP+07] compared PBN and dynamic Bayesian network approaches for the infer-
ence of GRNs from time-series data describing a 12 gene network of Drosophila melanogaster .
Dynamic Bayesian networks were able to learn more interactions and gave a higher recall
value. Kaderali et al. [KDZ+09] used a combination of Bayesian networks and PBNs to in-
fer signaling pathways from RNAi data. Qian et al. [QGID10] introduced a method for the

1for a glimpse on this theory see Section 2.3
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reduction of states present in the Markov chains arising in the analysis of the dynamics of
PBNs. The authors prune states having only a small probability to appear in the stationary
distribution and thus reduce the computational complexity of searching for optimal Boolean
functions.

Lähdesmäki and Shmulevich provided a Matlab Toolbox called BN/PBN, which offers
functions for simulation, inference and analysis of Boolean networks and PBNs [LS11].

Algebraic models

Laubenbacher and Stigler [LS04] were the first that developed first an algorithm for reverse
engineering of gene regulatory networks using the rich theory from algebra, a subject in pure
mathematics. They used the fact that functions fi : F

n → F, where F denotes a finite field ,
can be expressed as polynomial functions in n variables [LN96]. Since we are in the Boolean
network section, a reasonable question is the one how this now corresponds to Boolean net-
works? If we set F := {0, 1}, then the functions fi will be Boolean functions. However,
the results from algebra allows it to discretize the expression of genes to more than the two
“on” and “off” states as used in Boolean networks. However, not all possible numbers of
discretization steps are possible, because a finite set can only be a finite field, if the number
of elements in it is a power of a prime number . This is not such an limiting constraint, since
we still can discretize the data in 2, 3, 4, 5, 7, 8, 9, 11, 13, . . . levels. Since the handling of poly-
nomial functions is quite easy, the inference task can be performed quickly. Laubenbacher and
Stigler applied their algorithm with time-series data to a model for Drosophila melanogaster
and found out that this algorithm is quite sensitive to noise.

Veliz-Cuba et al. [VCJL10] introduced the approach by Laubenbacher and Stigler as a
new model type describing gene regulatory networks. They originated the name “algebraic
models”. Furthermore, they showed that Boolean networks as well as Petri nets are special
cases of algebraic models.

4.2.2. Petri nets

Petri nets were introduced by Petri in 1962 in his PhD thesis [Pet62]. Let us give first a
(mathematically not exact) definition of Petri nets and proceed with a small example. We
will orient ourselves for the introduction on Petri nets on the review paper by Murata [Mur89].

Definition 4.2.2. A Petri net is a directed graph together with an initial state called the
initial marking M0 and two kinds of nodes, places and transitions. The edges are called arcs
and can only be either from a place to a transition or from a transition to a place. Arcs are
labeled with positive integer weights. To a place a nonnegative integer of tokens is assigned,
which is called a marking .

To obtain a better feeling for all the terms introduced in the previous definition, we will
use the example of a chemical reaction.

Example 4.2.3. The chemical reaction we look at is the oxyhydrogen reaction
O2 + 2H2 → 2H2O. In Figure 4.3 we illustrate the terms used in the definition above.
The red circles represent the three places O2, H2 and H2O in our case. The rectangle in the
middle represents the transition and there are arcs from the two reactants O2 and H2 to the
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transition and also an arc from the transition to the product H2O of the oxyhydrogen reac-
tion. Two arcs are labeled with the integer 2 representing the stoichiometry of the reaction:
the one from H2 to the transition and the one from the transition to H2O. Now let us look
more closely on (a): the places H2 and O2 are marked each with two tokens symbolizing in
each case two molecules. With this marking the transition is said to be enabled, since the
number of the tokens is greater than or equal to the weights on the arcs to the transition.
In (b) the marking of the Petri net is shown after the transition has fired. The firing of a
transition can only occur if this transition is enabled. According to the stoichiometry of the
reaction the marking after firing of the transition in (b) changes to one remaining token in
O2 and two tokens in H2O. The transition is now disabled, because the required number of
tokens to perform the reaction, i.e., the number of tokens is smaller than the weight on the
arc connecting H2 and the transition, in not available in H2 anymore.

(a) H2

O2

H2O

2

2

(b) H2

O2

H2O

2

2

Figure 4.3.: Petri net for the oxyhydrogen reaction. Details of the symbols are described in Exam-
ple 4.2.3. (a) The marking of the Petri net before firing of the enabled transition. (b) The marking of
the Petri net after firing the transition. The transition is now disabled.

The usage and applicability for Petri nets is vast to study properties and dynamics of bio-
logical systems in general. Peleg et al. [PRA05] listed properties of Petri nets like reachability ,
liveness and boundedness and how they can be used to deduce biological implications from
them. The concept of liveness examines if there are deadlocks in the system under considera-
tions. Basically, in an informal way, a Petri net is live, if all transitions in the system can be
fired independent of the initial marking. For biological systems a live Petri net implies that
all processes modeled can be executed. The concept of boundedness examines the maximal
number of tokens that can be in each place. A Petri net is said to be k-bounded, if the number
of tokens in each place is never higher than k, k ∈ N, independent of the initial marking. For
biological systems the examination of boundedness can be useful in cases where substances
can become toxic if present at a high concentration. The maybe most useful concept for Petri
nets is the concept of reachability. It explores if a specified marking can be reached from
another marking. Thus, reachability deals with the analysis of the dynamic properties of the
underlying system. The so-called reachability problem can be solved in exponential time in
the general case [Lip76]. In biological systems it can be used to determine if certain outcomes
are possible for both, the modeled system in general or the perturbed system. The amount
of software tools present to analyze Petri nets is also vast. For an overview of tools available
look at the webpage [Wor11].

Chaouiya et al. [CRRT04] introduced the Petri net also for modeling of gene regulatory
networks using Boolean functions. This approach was automized by Steggles et al. [SBSW07]

78



4.3. Continuous models

and applied to a regulatory network controlling sporulation in the bacterium Bacillus subtilis.
It has to be pointed out that the network used was not inferred form data but modeled with
literature knowledge.

Two extensions of Petri nets were also used to describe gene regulatory networks.
Matuno et al. [MDNM00] used a hybrid Petri net representation of the gene regulatory net-
work of the genetic switch mechanism of λ phage. In a hybrid Petri net places and transitions
can be either discrete or continuous. The authors also introduced delay times for discrete
transitions to reflect the time needed to transcribe a gene and the time needed for the RNA
polymerase molecule to move to the right position inside the nucleus. As a second extension,
Hamed et al. [HAP10] introduced fuzzy Petri nets for the modeling of gene regulatory net-
works. In fuzzy Petri nets tokens are associated with a real number between 0 and 1 and a
transition is associated with a certain factor between 0 and 1. They applied their modeling
approach to predict the change of expression in a target gene that is regulated by two other
genes. The authors used microarray data for known gene triplets for this purpose.

As a last example for the usage of Petri nets the work by Durzinsky et al. [DWWM08] is
presented, which provides an algorithm that is able to reconstruct gene regulatory networks
from time-series data. The algorithm gives as the output all minimal networks which are
consistent with the data and are encoded as Petri nets. An improvement of this algorithm
which uses extended Petri nets in such a way that also inhibitory effects can be learned was
proposed by the same authors in 2011 [DWM11].

4.3. Continuous models

Up to now, gene regulatory networks are looking at the nodes and treat them either as
random variables as for the statistical models described in Section 4.1 or as entity that can
only have discrete values as for the discrete models described in Section 4.2. In this section
the nodes of the network will have continuous values and the dynamics of the nodes will be
described in detail. From the biological point of view, these models are more detailed, since
real experimental data appears in continuous values. We will focus here on models based on
ordinary differential equations and use [KR08,PHdB09] as references to describe them.

4.3.1. Linear ordinary differential equations

Let’s start to describe linear ODEs. Thus, the dynamics for a gene xi, i ∈ {1, . . . , n}, are
described by

dxi
dt

(t) = A · x(t) + b,

where A denotes a (n × n)-matrix, b is an (n × 1)-vector, both with constant entries, and
x = (x1, . . . , xn). Chen et al. [CHC99] were the first that used linear ODEs to model GRNs.
The main advantage for the usage of linear ODE models is that they are analytically solvable
and no numerical integration has to be performed. This is the main reason, why linear ODE
models for GRNs were used to reverse engineer GRNs from experimental data with a huge
number of genes, e.g., [vSWR00,YTC02,GHL05,BGdB06,SJ06].

However, as was also discussed by Kaderali and Radde [KR08], linear ODE models do not
show rich dynamic behavior, as they only have one steady state, if the matrix A is invertible.
Furthermore, if the steady state is not stable the solution of the linear ODE is not bounded
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which is not suitable to biological systems where the concentrations of the considered species
are known to be bounded.

To use the simplicity of linear ODEs, several authors linearized their system under consid-
eration at a specific point of interest [KKB+02,SKK04,SCJ05,SST07] and thus investigated
the local behavior of the system.

4.3.2. Non-linear ordinary differential equations

To be able to capture more complex dynamics like oscillations, multi-stationarity and bio-
chemical switches, nonlinear ODE models are needed. There are two types of models often
used for gene regulation: additive models and multiplicative models. The multiplicative mod-
els used for the description of gene regulatory networks are called S-systems. Furthermore,
we will give examples of publications using other non-linear ODE models. The parameter
inference of models based on non-linear ODEs will be described in more detail in Chapter 5
in Section 5.2.

Additive Models

Let us start with additive models. In these models, the change of the concentration of each
gene is described in the form

dxi
dt

(t) =

n
∑

j=1

fij
(

xj(t)
)

− γixi(t),

where fij : R→ R are nonlinear regulation functions and γixi denotes a first order degradation
term, see e.g [MPO95, dJP00]. In additive models, one assumes that the regulations that
influence gene i act independently. From the biological point of view this assumption is
not necessarily fulfilled. For example, some proteins have to made complexes to be able to
regulate a gene2. How are these nonlinear regulations functions now looking like? An often
used regulation function for activation is the Hill function

fij
(

xj(t)
)

=
x
mij

j

x
mij

j + θ
mij

ij

, (4.9)

where θij denotes the threshold parameter describing the concentration of xj needed to signif-
icantly regulate the expression of gene xi and mij denotes the Hill coefficient which gives the
steepness of the Hill function. This function was introduced by Hill in 1910 as a function de-
scribing the dissociation curve of hemoglobin [Hil10]. This regulation function is derived from
chemical reaction kinetics and a detailed derivation can be found in [Rad07,KR08] and more
details will be discussed in the next chapter in Section 5.1. The Hill function is used commonly
as regulation function for GRNs in the literature, e.g., [QBd07,BC09,NK09,MDBA11].

To overcome the problem that the system of non-linear ODEs cannot be, in general, an-
alytically solved, as an approximation of Hill functions, piecewise-linear functions were also
widely used. Either step functions (here for activation)

fij
(

xj(t)
)

=

{

0, if xj < θij

1, otherwise
(4.10)

2compare to Section 1.2.3
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are used, e.g., [GK73, EG00, dJGH+04, CdJG06, AJCG11], which are obtained for the case
where the Hill coefficient tends to infinity. Alternatively, a continuous piecewise-linear func-
tion (here for activation) are used

fij
(

xj(t)
)

=











0, if xj(t) ≤ θ1ij
µxj(t) + ν, if θ1ij < xj(t) < θ2ij
1, if xj(t) ≥ θ2ij,

(4.11)

where two threshold parameters θ1ij and θ2ij and two real parameters µ > 0 and ν < 0 defining
the straight line between the two threshold parameters have to be defined. These regulation
functions were used, for example, in [PK05,GRW07].

The regulation functions were only given for the case where gene j is activating gene i.
What about gene j inhibiting the expression of gene i? The answer is straightforward: the
regulation functions for the inhibitory effect are defined as

f inh
ij

(

xj(t)
)

:= 1− fij
(

xj(t)
)

,

which holds for all functions fij defined in (4.9),(4.10) and (4.11).

S-systems

Another class of non-linear ODE models for GRNs are multiplicative models, where the
regulatory terms are described by power law functions, i.e., the change of the expression of
gene i is described by

dxi
dt

(t) = αi

n
∏

j=1

xj(t)
gij − βi

n
∏

j=1

xj(t)
hij , (4.12)

where gij and hij ∈ R are called the kinetic orders and αi and βi ≥ 0 are rate constants [Sav70,
Sav91]. The first term in (4.12) describes the activating effects and the second term the
inhibiting effects. For these type of models it was demonstrated that they are able to capture
dynamics present in biological systems [KTA+03]. The inference of S-systems from time-
series data was predominantly done with genetic algorithms, e.g., [KTA+03,SSSZ04,SSSZ05,
KIK+05,SHS06]. More advanced methods, like the inclusion of regularization terms [LWZ11]
or alternating regression [VCV+08] have recently been introduced. It has to be mentioned
that exponents in general are hard to estimate numerically [WEG08].

Other models

Perkins et al. [PJRG06] used partial differential equations to model the Gap gene network in
Drosophila melanogaster .

Busch et al. [BCTR+08] used a continuous time recurrent neural network , which can be
seen as a system of delay differential equations, to describe the GRN of keratinocyte migration.
They inferred the model parameters with a genetic algorithm.

Äijö and Lähdesmäki [ÄL09] modeled gene regulatory networks with a general ODE model
with a synthesis rate, a degradation rate and an unknown non-parametric regulation function.
They used Gaussian processes and Bayesian learning to infer the underlying regulatory net-
work for the IRMA network proposed by Cantone et al. [CMI+09] and used as the DREAM 2
Challenge #3 data.

Also a non-parametric ODE model was learned recently by Aswani et al. [AKB+10] from
expression data with methods based on correlation.
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4.4. Single-molecule models

Models looking on single-molecules are the most detailed models and thus are also the compu-
tationally most demanding ones. Having a larger number of molecules involved in the biolog-
ical process under consideration, little or no stochastic effects can be observed, or rather, are
averaged out, and thus, deterministic ordinary differential equations can be used. However, if
the number of molecules is small, significant stochastic effects can be observed. Especially, it
was observed with experiments that examined single-cells that the gene regulation processes
for translation and transcription are stochastic and only a small number of needed molecules
are present, e.g., [MA99, OTK+02, RPT+06, CFX06, YXR+06]. A recent review on model-
ing stochasticity in biological systems was published by Wilkinson [Wil09]. Furthermore, an
excellent introductory book into stochastic modeling is also given by Wilkinson [Wil06].

4.4.1. Gillespie algorithm

The algorithm that is used to simulate stochasticity on the molecular level is known as Gille-
spie’s stochastic simulation algorithm (SSA). The algorithm was developed by Gillespie in
1976 to simulate chemical reactions [Gil76,Gil77]. A very nice overview of the different sim-
ulation algorithms for chemical reactions is given in [Gil07], which we will also use as source
to give an introduction into the SSA and its extensions.

We will start with N chemical species {S1, . . . , SN}, which are involved in M chemical reac-
tions {R1, . . . , RM} in a constant volume ΩV . We denote by Xi(t) the number of molecules of
species Si, i ∈ {1, . . . , N}, at time t and want to estimate Xi(t) for all species i at time t given
an initial state X(t0) = x0 and an initial time t0. We denote here X(t) :=

(

X1(t), . . . ,XN (t)
)

.
Before we introduce the SSA, we have to say something about the assumptions that are
made to use the SSA. The fundamental assumption is that the system under consideration
is well-stirred . A well-stirred system can be characterized as a system where the majority of
molecular collisions is non-reactive and the molecules are uniformly distributed over ΩV .

Let us start now with the deduction of the SSA. For this purpose we introduce two
quantities for every reaction Rj , j ∈ {1, . . . ,M}, which is first its state-change vector
νj := (ν1j , . . . , νNj) describing the change in the number of molecules of all species caused
by reaction Rj . As a small example we will have a look at the oxyhydrogen reaction again
which was also used to explain Petri nets in Example 4.2.3. Setting S1 := O2, S2 := H2 and
S3 := H2O and according to the stoichiometry of the reaction we have ν = (−1,−2, 2). Thus,
if the system is in state X := (2, 2, 0) and then the oxyhydrogen reaction occurs, the new
state of the system will be X+ ν = (1, 0, 2).

The second quantity describing the reaction Rj is its propensity function aj . The propensity
function describes the probability that the reaction Rj will occur in the next infinitesimal time
interval [t, t + dt). Gillespie gives the propensity function for unimolecular and bimolecular
reactions [Gil07]. For both cases one first needs to specify a constant cj such that cj dt gives
the probability that any molecules that are needed for the reaction Rj will react in the next
time dt. If there are now x1 molecules present in ΩV , the probability that an unimolecular
reaction will occur is aj = x1cj dt. Looking at the bimolecular reaction, we say that we
have x1 · x2 pairs of molecules in Ω. The probability that the reaction Rj occurs is then
aj = x1x2cj dt. The constant cj can be interpreted as a stochastic reaction constant.

Having not all the ingredients, we want to simulate trajectories of X(t). The “key secret”
to do so is to consider these trajectories as Markov chains. Thus, we only need to consider the
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Algorithm 4.1 Gillespie’s stochastic simulation algorithm

Require: species S1, . . . , SN , chemical reactions R1, . . . , RM , initial time t0, initial state x0,
time T to stop the simulation, propensity functions aj(x), j ∈ {0, . . . ,M}, state-change
vectors νj for all reactions Rj

1: Start trajectory X = x0(t0)
2: t← t0
3: x← x0
4: while t < T do
5: Sample r1 from U(0, 1)
6: τ ← 1

a0(x)
ln
(

1
r1

)

7: Sample r2 from U(0, 1)
8: j ← the smallest integer satisfying

∑j
j′=1 aj′(x) > r2 · a0(x)

9: t← t+ τ
10: x← x+ νj
11: Append x(t) to trajectory X
12: end while
13: return trajectory X

system in the current state and need to know the probability that the next reaction will be
reaction Rj and occurs in the time interval [t+ τ, t+ τ + dt). We will denote this probability
by p(τ, j | x, t) dτ . Gillespie [Gil77] showed that it holds

p(τ, j | x, t) = aj(x) exp
(

−a0(x)τ
)

,

where

a0(x) :=

M
∑

j′=1

aj′(x).

We thus just need to generate samples for τ and j. Pseudocode for the generation of samples
for τ and j and thus for the SSA is given in Algorithm 4.1. Software packages implementing
the SSA are available for R [PK08] as well as for Matlab [Vej10].

In a single step of the SSA always only one reaction event is simulated. Since this procedure
is very slow for large systems, Gillespie introduced the tau-leaping algorithm [Gil01]. In this
algorithm one estimates the largest value for τ such that the following leap condition is
satisfied:

During [t, t+τ) no propensity function is likely to change its value by a significant
amount.

With constant propensity functions on the interval [t, t+τ), Gillespie showed that the number
of times the chemical reaction Rj fires in the time interval [t, t+ τ) follows a Poisson distribu-
tion. Thus, in one step of the tau-leaping algorithm several reactions may be simulated and
the state of the system at time point t+ τ is

X(t+ τ) := X(t) +
M
∑

j=1

Pj
(

aj(x)τ
)

νj), (4.13)
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4. Models for gene regulatory networks

where Pj
(

aj(x)τ
)

is a Poisson distributed random variable with mean aj(x)τ . The most
efficient version for the selection of the largest τ satisfying the leap condition can be found in
Cao et al. [CGP06].

Two further stochastic simulation algorithms were developed for stiff systems, i.e., systems
with fast and slow reactions3, the implicit tau-leaping algorithm [RPCG03] and the slow-scale
SSA [CGP05].

4.4.2. Applications of the SSA

The SSA was used vastly for the description of small regulatory networks and the analysis
of their dynamics, e.g., [ARM98,NNL+05,WBT+05,GG06, SJOW07]. Additionally, we will
give some recent approaches to model general gene regulatory networks.

Roussel and Zhu [RZ06] developed a generalization of the SSA that is able to deal with
delays arising in gene expression systems. The authors give a detailed model for transcription
and apply it to a gene under the control of a lac promoter in E. coli cells. This algorithm was
implemented in the CellLine program [RCLP07]. Ribeiro and co-workers also developed a
general stochastic modeling strategy for gene regulatory networks where elementary chemical
reactions are combined into one delayed chemical reaction [RZK06].

Fournier et al. [FGP+09] modeled self-regulated genes which are building blocks of gene
regulatory networks and gave efficient algorithms to compute the invariant distribution of the
trajectories obtained with the SSA.

Recently, Ribeiro [Rib10] gave a review of existing stochastic models describing gene ex-
pression and gene regulation.

4.4.3. Inference of stochastic models

There are not many inference methods for stochastic models available (see also [Wil09]).
The main problem is that for stochastic models there is no obvious objective function that
can be used for optimization of the model parameters, since no distance between model
predictions and experimental data can be measured for varying simulated trajectories of the
underlying biological system. Several non-Bayesian, e.g., [RAT06, TXGB07], and Bayesian
approaches, e.g., [RRK06,BWK08], exist for this purpose. However, all these approaches are
computationally expensive and only applicable to small networks.

Wilkinson and co-workers approximated the stochastic model with a chemical Langevin
equation which ends up in estimating parameters in a nonlinear diffusion process, i.e., in a
stochastic differential equation [GW05,HFR07]. This approach was applied to a small auto-
regulatory gene network estimated from simulated data [GW08a]. However, according to
Wilkinson [Wil09] these parameter estimation procedures have not been applied extensively
to experimental data.

3compare to stiff differential equations in Section 2.4.3
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CHAPTER 5

Inference of gene regulatory networks

using ordinary differential equations

embedded into a stochastic framework

With four parameters I can fit an

elephant, and with five I can make

him wiggle his trunk.

(John von Neumann)

Gene regulatory networks are represented as directed graphs G = (V, E), with vertices V =
{x1, . . . , xn} corresponding to genes and directed edges E corresponding to regulations between
genes. An edge from gene xi to gene xj indicates that the product of gene xi, i.e., mRNA or
protein, influences the expression of gene xj either by activating or by inhibiting it. The work
presented here was published as [MRRK09] and the details will be described in the following
sections.

5.1. Differential Equations Model for Gene Regulatory
Networks

Our model for gene regulatory networks is a nonlinear ordinary differential equations model
assuming that different regulators act independently. It was developed and first introduced
by Radde in 2007 in her PhD thesis [Rad07]. There, the total effect on the expression of gene
xi can be written as the sum of the individual effects. For all xi, i ∈ {1, . . . , n}, the ODE
model is written as

dxi
dt

(t) = si − γixi(t) +

n
∑

j=1

βijfij
(

xj(t)
)

, (5.1)

where xi(t) denotes the concentration of gene product xi at time t. Furthermore, si and γi
are basal synthesis and degradation rates for each gene xi, which in the absence of regulations
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Figure 5.1.: Hill functions fij for different Hill coefficients m = 1, 3, 5 as used in [Rad07]. The left
plot shows an activation, the right plot an inhibitory effect. The threshold parameter θj was chosen
equal to 3 for both plots. At this concentration of the regulating gene j, half of the maximum effect on
gene i is achieved.

from other genes determine the dynamic behavior of component xi. The variables βij , i, j ∈
{1, . . . , n}, denote the regulation strengths from gene xj on gene xi such that βij > 0 denotes
an activation, βij < 0 an inhibition and βij = 0 means that there is no regulation from gene
xj to gene xi.

The regulation functions fij are Hill functions obtained from chemical reaction kinetics by
considering the binding process of a transcription factor to a promoter as a reversible chemical
reaction, see for details [JM61,YY71,Alo06,Rad07]. They are written as

fij
(

xj(t)
)

=
xj(t)

mij

xj(t)mij + θ
mij

ij

(5.2)

and depicted on the left in Figure 5.1. The parameter mij denotes the Hill coefficients and θij,
i, j ∈ {1, . . . , n}, is related to the reaction rate by describing the concentration of xj needed
to significantly activate or inhibit expression of xi. We call it also the threshold parameters.
The Hill coefficients describe the cooperativity of transcription factors, e.g., a transcription
factor may only bind to the promoter, if there is already another transcription factor bound
to the promoter. This leads to a Hill coefficient being greater than 1. On the other hand, the
binding to the promoter may be blocked by another transcription factor leading to m < 1.

Radde investigated this model in detail and showed that it is able to provide interesting
dynamic behavior like multi-stationarity and oscillations. One drawback of this model is, that
it may provide negative values for the concentration values xi, i ∈ {1, . . . , }, if the synthesis
rate si is smaller than the sum of the negative regulations

∑

βij<0 βij
1. Since in practice,

we will only have positive concentrations we will use a different regulation function for the
inhibiting regulations. It was also proposed in [Alo06] as a function for the inhibiting effect.
Furthermore, we want to simplify the model more by reducing the number of parameters:

1. We only consider one Hill coefficient for all the regulations. This is justified by the
fact, that the dynamics of the Hill function do not significantly change for varying

1compare to equation (2.68) in [Rad07]
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Hill coefficient, as can be seen in Figure 5.1 for the case where m = 3 and m = 5.
Additionally, we noticed in the parameter estimation results, that the parameter m
does not have a huge effect on the results. However, this change of the model reduced
the parameter space to be inferred by n2 − 1 dimensions.

2. We only consider one threshold parameter per gene. We observed in inference runs that
this threshold parameters are very crucial for the learning of the regulation strengths
parameters βij . However, one threshold parameter per interaction makes the inference
procedure very unstable. And since the range of the data we use is quite small, we
see it to be a reasonable justification to simplify the model where we only consider one
threshold parameter per gene. Thus, we reduce the parameter space to be inferred by
n2 − n dimensions.

With these changes, we use in the following the regulation functions

fij
(

xj(t)
)

=







xj(t)
m

xj(t)m+θmj
for βij > 0

1− xj(t)m

xj(t)m+θmj
for βij < 0,

(5.3)

which are depicted in Figure 5.2. With this notation, we have to mention, that we have
to change the ODE model in (5.1) slightly by taking the absolute values of the interaction
strengths parameters βij , i.e., our ODE model is

dxi
dt

(t) = si − γixi(t) +

n
∑

j=1

|βij |fij
(

xj(t)
)

(5.4)

with the regulation functions fij as in (5.3). Otherwise, we would also have to deal with
the problem of obtaining negative concentration values. This proposed regulation function
for inhibition can be interpreted in the way, that we can only inhibit something, if there is
already a certain amount of a gene product present.

5.2. Parameter Estimation of ODE systems

We will describe here some general procedures how parameter are estimated in ODE systems
with their benefits and drawbacks. Additionally, motivated by these facts, we provide the
objective function according to which we will do our estimation procedure.

5.2.1. Based on numerical integration

The usual procedure for the estimation of parameters for differential equation models from
experimental time-series data consists of the following two steps carries out iteratively:

1. solve the differential equations numerically for the time interval of interest

2. compare the predicted values from the first step with the experimental data

The comparison of the predicted values of the model with the experimental data is done by
calculating an error, usually the squared difference between model prediction and data points
for all data points τ ∈ {1, . . . , T} and all genes i ∈ {1, . . . , n}

n
∑

i=1

T
∑

τ=0

(

xi(τ, ω)− diτ
)2
, (5.5)
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Figure 5.2.: Hill functions fij for different Hill coefficients m = 1, 3, 5 as we use it. The left plot
shows the behavior of gene i, if it is activated by gene j. The right plot shows the behavior of gene i
being inhibited by gene j.

where xi(τ, ω) denotes the value of time-series i after numerical integration of the ODE model
of interest which is parameterized with the parameters ω and diτ denotes the experimental
data points being used.

In every iteration of the two-step procedure above one changes the parameters ω of the
model and calculates the error according to (5.5). One chooses at the end the parameter
values where this error is minimal, i.e., one performs a least squares approach. Thus, one
has to deal with an optimization problem where (5.5) is minimized according to the model
parameters ω. There exist a huge number of different optimization algorithms which mainly
differ by the way the search space, i.e., the parameter space of interest, is searched to get
the optimal value of the parameters in an efficient way. Since we will not use optimization
algorithms, we will not describe them here. For more information, see e.g. [Nel01]. The one
thing, one has to keep in mind concerning optimization algorithms in relation to the work we
did, is that they only provide ONE optimal parameter set at the end2.

The drawback of this procedure for parameter estimation in ODE systems is that in every
iteration one has to numerically solve the ODEs of interest. And this is a time consuming
procedure, especially in the case of stiff differential equations3. And Radde [Rad07] argued
that the model we use is stiff around the threshold values θj, j ∈ {1, . . . , n} for the change
of the Hill coefficient m.

5.2.2. Based on spline interpolation

To circumvent the need to solve of the ordinary differential equations numerically, Varah
proposed in 1982 the following method for parameter estimation with ODEs [Var82]:

1. fit interpolating cubic splines with varying knots to the data and calculate the derivatives
of the spline at the time points of the data

2For genetic algorithms we get several parameter sets at the end, but not a distribution over parameter sets.
3compare to Section 2.4.3
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5.2. Parameter Estimation of ODE systems

2. compare the derivatives of the spline obtained in the first step with the model outcome
derivatives (in our case it are the values (5.4) for all genes)

The spline interpolation will be done numerically with the methods implemented in Matlab
in the Curve Fitting Toolbox . For details on these algorithms see [dB01].

For the comparison in the second step, Varah used the squared difference between the
derivatives of the spline z(t,D) obtained from the spline interpolation to the data D and
the model outcome derivatives, i.e., the ODE system of interest parameterized with the
parameters ω, for all data points τ ∈ {1, . . . , T} and all genes i ∈ {1, . . . , n}

n
∑

i=1

T
∑

τ=0

(dxi
dt

(tτ , ω)− żi(tτ ,D)
)2

. (5.6)

One important point to note here, is that for the calculation of dxi

dt (t, ω) the spline estimates
zi(t,D) are included as values for xi(t). Having only to calculate the values for the derivatives
once at the beginning we have to deal with an optimization problem, where we want to find
the parameter values where the error function (5.6) is minimal.

Varah suggests to adjust the number and position of the knots of the spline adaptively and
argues

..., that the user is a good judge of whether a given spline fit represents the data
properly.

Well, this is a very crucial assumption. And because the spline interpolation is only done
once at the beginning, the parameter estimates obtained for the model can only be as good
as the spline fit is. In particular, for the case of noisy data, which is the normal scenario for
biological data, this is not a reliable method. Daniel Ritter [Rit08] used in his master’s thesis
Varah’s approach.

Poyton et al. [PVM+06] developed in 2006 an improvement of Varah’s method by iterating
the two steps of Varah. This method is called iterative principal differential analysis (iPDA).
The term principal differential analysis was first used by Ramsay in 1996 for the inference of
linear differential equations [Ram96]. This name was chosen because of the analogy to the
principal component analysis4 techniques, where also linear algebraic-equation models are
fitted using data. The work presented in [Ram96] has the same underlying idea as the work
of Varah [Var82], but gives more technical details for the usage in estimating the parameters
in linear differential equations.

As the word iterative in the iPDA method already suggests, the two steps of Varah’s method
are iterated, with the difference that smoothing splines with a smoothing factor λ are fitted
instead of just vary the knots in cubic splines. A further important point to mention is
that not the second derivative will be used as penalty term in the smoothing spline as was
described in Section 2.5, but a model-based penalty is used, i.e., the model predictions are
fed back into the spline estimation. As an example, the objective function for spline fitting
for our ODE model is

T
∑

τ=1

(

diτ − zi(tτ,D)
)2

+ λ

∫ (

dxi(t)

dt
− si + γixi(t)−

n
∑

j=1

|βij |fij
(

xj(t)
)

)2

dt (5.7)

4for more details see e.g. [Jol02]
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5. Inference of GRNs using ODEs embedded into a stochastic framework

and one minimizes over the coefficients of the spline basis functions. And the objective
function for parameter estimation for one gene in our ODE model would be

∫

(dxi
dt

(t, ω)− żi(t,D)
)2

dt,

which is similar to the objective function Varah used (see (5.6)). However, Poyton et al. only
used a linear differential equation as a proof-of-principle of their methodology.

A further improvement of Varah’s method has been proposed by Ramsay et al. in 2007
[RHCC07], where they use two nested levels of optimization. What is now meant by this?
Whereas Poyton et al. did a joint estimation of the model parameters (in our model ω) and
of the coefficients of the spline basis functions, Ramsay et al. just had an outer optimization
problem of estimating the model parameters. Furthermore, for every change in the model
parameters, the spline was estimated according to an objective function similar to (5.7) as
an inner optimization problem. To clarify this a bit more, one can say that Poyton et al.
estimate the model parameters in one step for a FIXED spline, and with the obtained optimal
values for the model parameters a new spline is estimated. Ramsay et al., on the other hand,
just optimize the model parameters, but in every optimization step, i.e., every time the model
parameter are changed, the spline is refitted again according to the objective function (5.7).

A more refined extension even exists, where the smoothing factor of normal smoothing
splines5 is also time-dependent and estimated in the estimation procedure [CR09].

The objective function we use

In our procedure we orient ourselves on the methods described above and consider an objective
function for the simultaneous estimation of model parameters and the smoothing factor of
the smoothing spline. We do this according to the objective function

n
∑

i=1

T1
∑

τ=0

(

diτ − zi(tτ ,D, λ)
)2

+

n
∑

i=1

T2
∑

τ=0

(dxi
dt

(tτ , ω)− żi(tτ ,D, λ)
)2

, (5.8)

where T1 denotes the number of time points in the experimental data and T2 denotes the
number of points to be used in the parameter fitting of the slopes. Because it is necessary
to have a large number of slope estimates to describe the dynamics of a system adequately,
we will have T2 ≫ T1. Furthermore, we need to note that, as in (5.6), the spline values
zi(tτ ,D, λ) are needed to calculate the values xi(tτ ) present in (5.4) and thus in (5.8).

5.3. Bayesian Learning Framework

Having now introduced the objective function we want to use in our estimation procedure,
we additionally want to embed our estimation framework into a Bayesian setting to explore
its benefits as described in the introduction of this thesis: the inclusion of prior knowledge
and its ability to provide the whole distribution over model parameters. The first question
to answer is now: what is meant by a “Bayesian setting”? Simply speaking, we want to have
a distribution of the parameter space we are interested in. The second question that follows
immediately is: how can this be achieved? Well, since the data used for the parameter

5“normal” in the sense, that as penalty term the second derivative is used
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estimation procedure contains a lot of noise, we will just assume that this noise follows a
certain distribution. Most often, it is assumed that the data is corrupted by independent
mean zero Gaussian noise with variance σ2. We will also follow this assumption to keep the
model simple. Of course, other noise models could be used, but this is out of the scope of
this thesis. Altogether, if we do our parameter estimation procedure of ODE systems based
on numerical integration and use the objective function (5.5) where

xi(τ, ω) = diτ + εiτ with εiτ ∼ N (0, σ2)

for all i ∈ {1, . . . , n}, τ ∈ {1, . . . , T}, then we will obtain as likelihood for certain data D
given the model parameters ω with dim(ω) = d

p(D | ω, σ2) =

n
∏

i=1

T
∏

τ=1

e−
1

2σ2

(

diτ−xi(τ,ω)
)2

√
2πσ2

. (5.9)

And we want to find the parameters, where the least squares term
(

diτ −xi(τ, ω)
)2

is minimal
for all species i and all time points τ . Thus, the probability p(D | ω, σ2) would be maximal. A
common used approach to find the parameters of interest is the maximum likelihood approach
as presented in Example 2.1.22 which gives one point estimate of the parameter vector ω of
interest which fits the data best.

However, the likelihood (5.9) only says something about the probability of some data given
the model parameters ω. We are more interested in the probability of the model parameters
ω given the experimental data D. In (2.11) we saw how we can obtain the probability of
interest with Bayes’ formula. Let us note first, that we fix the variance σ2 to some predefined
value and do not want to estimate it. This makes the notation also simpler. Applying Bayes’
formula, we thus obtain

p(ω | D) =
p(D | ω)p(ω)

p(D)
,

where p(ω) denotes a prior distribution of the model parameters and p(D) denotes a nor-
malizing constant , which guarantees, that integrating p(ω | D) over Rd will give the result 1,
i.e., to guarantee that p(ω | D) is a density. We are now directly confronted with the two
problems:

1. How do we know the prior distribution of the model parameters ω?

2. How do we calculate the normalizing constant?

Let us first deal with the second question. The normalizing constant p(D) can also be written
as

p(D) =

∫

Rd

p(D | ω)p(ω) dω.

Since for the most cases, there exist no analytical solution for such an integral, we would
need to generate independent samples, e.g., with MCMC algorithms, from the distributions
p(D | ω) and p(ω) and then calculate the integral. This may be very time consuming.
Additionally, in some optimization or sampling procedure, this would have to be done in
every step. Which makes it not tractable anymore. The good point is now, that p(D) is
independent of the model parameters ω. In other words, one can say that the parameters ω
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5. Inference of GRNs using ODEs embedded into a stochastic framework

are integrated out (compare to Remark 2.1.17). And thus, we can simply neglect this term
in the optimization/sampling procedure.

Let us come back to the first question now. At the first glance it seems to be a drawback of
the Bayesian setting, that one has to specify some prior distributions for the model parameters.
However, in practice one usually knows already something about the model parameters, i.e.,
one has some prior knowledge about the model. As in our model, we can say that the
synthesis rates and the degradation rates are always positive. Even in the case, where no
prior knowledge is available, one can always assume the uniform distribution for the parameter
space. Thus, we are able to apply the Bayesian setting even in the case where no knowledge
about the model is available.

The inclusion of prior knowledge instead has a lot of advantages. Firstly, doing so, we
force the parameter estimation procedure to produce plausible results. In our case for the
model of a GRN, we want to obtain model parameters, which are biologically plausible and
are consistent with the literature. Secondly, from the algorithmic point of view the search
space for the optimization/sampling procedure is reduced. And thus the algorithm is able to
search the parameter space more efficiently.

The Bayesian setting how we use it

In the previous section we introduced the method that we will use to estimate the parameters
in the ODE model (5.4) describing the behavior of gene regulatory networks. We argued that
we will use the method based on spline interpolation, which led us to the objective function
(5.8). To embed this now into a Bayesian setting we first assume that the experimental data
is corrupted by independent mean zero Gaussian noise with variance σ2

1 . Furthermore, we
assume that the differences between slope estimates and model predictions to be normally
distributed with mean zero and variance σ2

2 . We noted in the previous section, that we
need much more slope estimates than experimental data time points to describe the dynamic
behavior of the system properly. To weight the two terms in (5.8) properly, the ratio between
σ2
1 and σ2

2 can be used. With these assumptions we obtain as likelihood

p(D | ω, λ, σ2
1 , σ

2
2) =

n
∏

i=1

T1
∏

τ=1

e
− 1

2σ2
1

(

diτ−zi(tτ ,D,λ)
)2

√

2πσ2
1

×
n
∏

i=1

T2
∏

τ=1

e
− 1

2σ2
2

(

dxi
dt

(tτ ,ω)−żi(tτ ,D,λ)
)2

√

2πσ2
2

,

which is equivalent to the objective function (5.8) up to log-transformation and scaling. By
using Bayes’ formula we now obtain for the probabilities of interest

p(ω, λ, σ2
1 , σ

2
2 | D) =

p(D | ω, λ, σ2
1 , σ

2
2)p(ω, λ, σ

2
1 , σ

2
2)

p(D)
. (5.10)

5.4. Inclusion of Prior Knowledge

We argued in the previous section, that the prior distribution can be used to incorporate
available knowledge about the underlying system and the model parameters. We also saw
which advantages the inclusion of prior knowledge has.

Which prior knowledge do we want to incorporate in the estimation procedure? How does
the distribution of p(ω, λ, σ2

1 , σ
2
2) look like? First of all, we do not want to estimate the noise

variances σ2
1 and σ2

2 , but set them in advance to weight the two terms in (5.8) equally. For
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Figure 5.3.: Plot for the two-dimensional Lq-prior p(β1, β2) := Lq(β1; q, s) · Lq(β2; q, s) for q = 0.5
and s = 1. One can clearly see that the prior favors points (β1, β2) where one of the components is
close to zero over points where both components are far away from zero.

this, we set σ2
2 = 1 and σ2

1 = T1/T2. As a next point we notice that we will use independent
priors for all parameters. Thus, for our ODE model, the prior distribution will be

p(ω, λ) = p(s1) · · · p(sn)p(γ1) · · · p(γn)p(β11) · · · p(βnn)p(k1) · · · p(kn)p(m)p(λ). (5.11)

Thus, we have to give formulas for all the factors on the right side of equation (5.11). Since the
synthesis rates s, the degradation rates γ, the threshold parameters k and the Hill coefficientm
have to be larger than zero, we use for them as prior distribution the gamma distribution
Gamma(r, a) as introduced in Example 2.1.8. The gamma distribution is a very flexible
distribution for varying shape parameter r and rate parameter a.

Since we use for the calculation of the smoothing spline the Matlab function csaps6, the
smoothing factor λ varies only between zero and one. Thus, a suitable prior distribution is
the beta distribution Beta(α, β) as introduced in Example 2.1.8.

Furthermore, we want to incorporate as prior knowledge the sparsity of gene regulatory
networks [AD97] into the learning framework. For this purpose, we use a prior based on the
Lq-norm [LZPA07] for the interaction strengths parameters βij , i, j ∈ {1, . . . , n}:

Lq(β; q, s) = N (q, s) exp

(

− 1

qsq
|β|q

)

, (5.12)

6the smoothing parameter is denoted by p in the documentation of this function in Matlab; for the value of
the function λ(t) in the documentation the default constant function 1 is used
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5. Inference of GRNs using ODEs embedded into a stochastic framework

for β ∈ R and q, s > 0, where N (q, s) denotes the normalizing factor

N (q, s) =
q(q−1)/q

qsΓ(1/q)
.

For q = 2, equation (5.12) is a normal distribution, for q = 1 it corresponds to the Laplace
distribution. Values of q < 1 enforce stronger sparsity constraints. In Figure 5.3 a two-
dimensional Lq-distribution is depicted with q = 0.5 and s = 1. One clearly sees how points
where at least one component is close to zero have a higher probability compared to points
where both components are different from zero. Another prior used for integration of sparsity
was introduced by Kaderali et al. in 2006 [KZF+06] to predict survival times for cancer from
gene expression data. Using this prior would mean to assume a multi-dimensional mean-zero
normal distribution with variances Varij on the regulation strengths parameters (β11, . . . , βnn)
and use as prior distribution for each variance Varij a gamma distribution. Then the prior
distribution for each regulation strengths parameter βij will be obtained by integrating out
the variances Varij

p(βij) =

∫

p(βij | Varij)p(Varij) dVarij . (5.13)

This sparsity prior was used by Radde and Kaderali [RK07] to infer the gene network structure
from the ODE model (5.1) with the regulation functions (5.2) with a maximum likelihood
approach. The Lq-prior we use here avoids the numerical integration (see (5.13)) and leads
to similar sparsity constraints.

5.5. MCMC sampling from the posterior

Having now all ingredients for the Bayesian framework together, we will generate samples
from the desired distribution p(ω, λ | D) using Markov chain Monte Carlo methods. For this
purpose, we use an iterative approach. Firstly, the model parameters ω are sampled with the
Hybrid Monte Carlo algorithm (see Section 3.1.3) with fixed smoothing factor λ. Secondly, the
smoothing factor λ is sampled with the Metropolis-Hastings algorithm (see Section 3.1.2) with
fixed model parameters ω. Pseudocode for this iterative procedure is given in Algorithm 5.1.

5.6. Evaluation of Reconstructed Networks

For evaluation of the results we only consider the mean value of the obtained Markov chain for
each model parameter after neglecting points from the burn-in phase. This of course neglects
completely the whole distribution over model parameters that we sampled from. We do this
simplification to be able to evaluate the obtained results in an automated and quantitative
way.

For quantitative evaluation we use receiver operating characteristics. We consider here the
three class problem where we have the three classes of no edge, activating edge and inhibiting
edge. We will calculate the AUC of the sensitivity vs. 1−specificity ROC graph AUCROC

and the precision vs. recall ROC graph AUCP2R. For more details on general receiver
operating characteristics see Section 3.3 and for our analysis with the three-class problem see
Subsection 3.3.2.
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Algorithm 5.1 Iterative Hybrid Monte Carlo and Metropolis Hastings algorithm

Require: desired distribution p(·), starting value (ω0, λ0), proposal distribution qλ(· | λ(t)),
number of leapfrog steps for HMC L, proposal distribution for step size ǫ of leapfrog steps
qǫ(·), standard deviation σρ for the sampling of the momentum variables ρ, number of
Markov chain samples T

1: t← 0
2: while t < T do
3: Sample ǭ from qǫ(·)
4: Sample ρ

(t)
i from N (0, σ2

ρ) for all i ∈ {1, . . . , n}
5: Perform L leapfrog steps with step size ǭ starting at state (ω(t), ρ(t))
6: Store resulting candidate state in (ω̂, ρ̂)
7: Sample u1 from U(0, 1)
8: α1 ← min

{

1, exp
(

H(ω(t), ρ(t))−H(ω̂, ρ̂)
)}

9: if u1 < α1 then
10: ω(t+1) ← ω̂
11: else
12: ω(t+1) ← ω(t)

13: end if
14: Sample λ̄ from qλ(· | λ(t))
15: Sample u2 from U(0, 1)
16: α2 ← min

{

1, p(λ̄|ω(t+1))qλ(λ
(t)|λ̄)

p(λ(t)|ω(t+1))qλ(λ̄|λ(t))

}

17: if u2 < α2 then
18: λ(t+1) ← λ̄
19: else
20: λ(t+1) ← λ(t)

21: end if
22: Append

(

ω(t+1), λ(t+1)
)

to Markov chain
(

ω(k), λ(k)
)t

k=0
23: t← t+ 1
24: end while
25: return Markov chain

(

ω(k), λ(k)
)T

k=0

5.7. Implementation

We implemented our algorithm in Matlab, Release 2008b (The Mathworks), using the Statis-
tics Toolbox and the Spline Toolbox . The Spline Toolbox was recently included into the Curve
Fitting Toolbox. As mentioned before, we use for the generation of the smoothing spline the
function csaps and the derivative of the obtained spline was calculated with the function
fnder. To obtain the values of the spline and its derivative at specific time points we use
the function fnval. We need the Statistics Toolbox to generate random numbers from the
gamma distribution with the function gamrnd. We need these to propose the step size for the
leapfrog steps of the Hybrid Monte Carlo algorithm and the standard deviation of the normal
distribution which is used to propose new samples in the Metropolis-Hastings algorithm.

The calculations were done on a Linux cluster with dual-processor 3.1 GHz XEON quad-
core machines with 32 GB RAM, running each Markov chain in a single thread without
parallelization of the code.
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a)
Gene 1

Gene 2 Gene 3

Gene 5 Gene 4

b)

Figure 5.4.: (a) True network of the DREAM 2 Challenge #3 five gene time-series data, showing
the bio-engineered interactions between the five genes artificially inserted into yeast. (b) Time course
of simulation with model in arbitrary time and concentration units, for the simulated five gene model.
Different numbers of equidistant time points from this data were used for network reconstruction in
the simulation study. The time courses of gene 2 and gene 3 are the same.

5.8. Results

5.8.1. Simulated Data: Five Gene Network

To evaluate our approach we first generated simulated data, where we know which values the
parameters of the ODE system have and how the golden standard network looks like. As
golden standard network we used the true network structure of the DREAM 2 Challenge #3.
It is shown in Figure 5.4 (a). The AUC values for random guessing for this network struc-
ture are calculated with the formulas provided in Section A.4 and they are AUCP2R = 0.14
and AUCROC = 0.358. According to this network structure, the regulation strengths pa-
rameters were set to βij = 2 for activations, i.e., β21 = β31 = β41 = β54 = β15 = 2. For
inhibitions, the regulations strengths parameters were set to βij = −2, i.e., β52 = β43 = −2.
For all other indices of the matrix β = (βij)

n
i,j=1 the values βij are zero. We adjusted the

other parameters of the ODE system (5.4) to obtain oscillations as shown in Figure 5.4 (b).
We point out here that learning network structure from oscillating data is a hard prob-
lem, because models tend to learn a steady state since the range of parameters providing
oscillations is usually very small [RK09]. To obtain this behavior, we used for the syn-
thesis rates the values s = (0.2, 0.2, 0.2, 0.2, 0.2) and for the degradation rates the values
γ = (0.9, 0.9, 0.9, 1.5, 1.5) for the five genes. The threshold parameters of the Hill functions
were set to θ = (1.5, 1.5, 1.5, 1.5, 1.5) with Hill coefficient m = 5.

The data were simulated by numerical integration with the function ode45 in Matlab with
the initial value (1, 1, 1, 1, 1). To show the robustness of our method, we simulated data
with different number of time points and different levels of noise. We used equidistant time
points in the range between 0 and 20 [a.u.] (compare to Figure 5.4 (b)) and added mean-zero
normally distributed noise with different standard deviations to the concentration values.
Then we used our method as described in the previous sections and used Algorithm 5.1 so
sample 110, 000 samples from the distribution p(ω, λ | D). We used a burn-in phase of 10, 000
steps to guarantee, that our Markov chain reached the desired distribution as stationary

96



5.8. Results

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

x

f(
x)

Gamma(1,2)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

x

f(
x)

Gamma(1.5,5)

Figure 5.5.: The prior distributions used for our Bayesian parameter estimation framework. On the
left the prior for the synthesis and degradation rates is depicted. On the right the prior for the Hill
coefficient m is shown.
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Figure 5.6.: The density function of the beta distribution as was used as prior distribution for our
Bayesian parameter estimation framework for the smoothing factor λ for the simulated data.

distribution.

The parameters for the prior distribution were set as follows. For the gamma prior on the
synthesis and degradation rates we used a = 1 and r = 2. The density function of this prior
is depicted in Figure 5.5 on the left side. The gamma prior on the Hill coefficient m used the
parameters a = 1.5 and r = 5. The density function for this gamma distribution is shown in
Figure 5.5 on the right side. For the beta prior Beta(α, β) on the smoothing factor λ we used
α = 100 and β = 10. The corresponding density function is shown in Figure 5.6. To enforce
sparsity in the learned network structure we used for the Lq prior the parameters q = 0.5 and
s = 1 (compare to Figure 5.3). The gamma priors on the threshold parameters θj for each
gene j are set in such a way that the mean and the variance of the priors corresponds to the
mean and the variance of the dataset used.

The number of slope estimates T2 is set to 1000 and the corresponding variance σ2
2 is set

to 1. The variance σ2
1 is set to T1/T2, where T1 denotes the number of time points in the used
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Figure 5.7.: Shown are the density functions of the gamma priors of the threshold parameters θj for
j ∈ {1, 2, 3, 4, 5} for the simulated optimal data of 40 time points without noise. Since the time course
data are the same for gene 2 and gene 3, the priors are also the same.

dataset.

Results on 40 time points

As first results we will use optimal data in the sense that we have 40 time points
and no noise. The prior distributions for the threshold parameters obtained with
this data are shown in Figure 5.7. The mean values we obtained for the synthe-
sis rates were s = (0.23, 0.20, 0.29, 0.26, 0.15) and for the degradation rates were
γ = (1.17, 1.14, 1.33, 1.00, 0.99). For the Hill coefficient we obtained the mean value of 4.76
and the means for the threshold parameters θj ranged from 1.38 to 1.78. As mean smoothing
factor λ we obtained 0.92. In Table 5.1 the mean values together with the standard deviations
of the regulations strengths parameters β are shown. The large standard deviations of some
regulations indicate that either several network structures exist that describe the data in a
similar way or that the model dynamics are not sensitive to changes of this parameters. For
example, the self-regulation of gene 3 may be activating, inhibiting or not present according
to the large standard deviation of the learned parameter value. At this point, one can see
perfectly the strength of our proposed method. By analyzing the learned distributions of the
parameters one obtains a lot of additional information about the underlying ODE model and
the quality of the data7.

With the mean values from Table 5.1 we calculated AUC values for precision vs. recall
curves and sensitivity vs. 1−specificity curves. We obtained the values AUCP2R = 0.516 and
AUCROC = 0.706. Compared to the values for random guessing we calculated above, these
results show that we are much better than random guessing.

Effect of Noise and Dataset Size

After showing results for an optimal dataset, we applied our algorithm to datasets with differ-
ent numbers of time points and different levels of noise. To be more precise, we used datasets

7by quality of the data we mean its ability to estimate the parameters of the underlying model in a satisfactory
manner
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To ↓ / From → Gene 1 Gene 2 Gene 3 Gene 4 Gene 5
Gene 1 0.53± 0.72 −0.22± 0.41 −0.10± 0.43 1.37± 1.16 0.88± 0.74
Gene 2 1.54± 0.78 0.28± 0.42 0.49± 0.62 0.33± 0.55 0.28± 0.53
Gene 3 1.35± 0.80 0.34± 0.57 1.07± 1.59 0.55± 0.63 0.26± 0.46
Gene 4 0.23± 0.57 −0.35± 0.61 −0.51± 0.64 0.40± 0.69 0.84± 0.74
Gene 5 −0.01± 0.31 −0.62± 0.67 −0.91± 0.69 0.55± 0.81 0.65± 0.63

Table 5.1.: Learned regulation strength parameters β for the simulated dataset with 40 time points.
Given are mean and the standard deviation of the sampled interaction parameters. True edges which
are present in the reference network are indicated in bold.
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Figure 5.8.: AUC values for different noise levels and different numbers of time points used for
network reconstruction. The standard deviation of the noise was varied from σ = 0 to σ = 0.3, the
number of time points from T1 = 10 to T1 = 200. The plots show AUC values under the ROC curve.
The blue surface indicates the AUCROC values that would follow for random guessing.

with T1 = 10, 20, 30, 40, 50, 70, 90, 110, 140, 170 and 200 time points. To all of the eleven
different time points datasets we added mean zero Gaussian noise with standard deviations
σ = 0.05, 0.1, 0.15, 0.2 and 0.3. The purpose of this procedure is to show the reliability of our
method and also the limitations of our approach.

In Figure 5.8 the AUC values for all the 55 datasets obtained with our inference method
are depicted for the sensitivity vs. 1−specificity ROC analysis. In Figure 5.9 the AUC values
for the same datasets are shown for the precision vs. recall ROC analysis. The blue surface in
both graphs shows the values that will be obtained for random guessing. We see the expected
behavior of decreasing AUC values for decreasing number of time points and increasing levels
of noise. Important to note here is the fact that even for low numbers of time points, the
obtained AUC values are reasonably high. For the highest level of noise, our method does
perform as good as random guessing. However, the amplitude of the oscillations present in
the simulated data is between 0.4 and 1. Thus, noise with standard deviation of 0.3 will, at
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Figure 5.9.: AUC values for different noise levels and different numbers of time points used for
network reconstruction. The standard deviation of the noise was varied from σ = 0 to σ = 0.3, the
number of time points from T1 = 10 to T1 = 200. The plots show AUC values for PR curves for varying
T and σ. The blue surface indicates the AUCP2R values that would follow for random guessing.

least partially, destroy the oscillating behavior of the data. And since estimating parameters
from oscillating data is a challenging task as was mentioned before, our method performs well
in general.

5.8.2. Experimental Data: The DREAM 2 Challenge #3 Dataset

To evaluate our approach on real biological data, we used a dataset of the DREAM initia-
tive. The DREAM initiative was fathered by Stolovitzky et al. [SMC07] to understand the
limitations of reverse engineering methods for the inference of cellular networks from high-
throughput data. Furthermore, the aim is to see which methods are able to perform this
inference task and to which extent concerning reliability and biological predictability. The
acronym DREAM stands for Dialogue on Reverse Engineering Assessment and Methods. Ev-
ery year, the DREAM initiative provides datasets for different tasks for network reconstruction
and a double-blind procedure is performed, where researchers/scientists/engineers/... apply
their methods on these datasets without knowing the underlying golden standard network.
Thus, the applicant is “blind”. Furthermore, the persons of the DREAM initiative do only
know the alias of the applicants and not their real identities. Thus, the evaluators are also
“blind”. In the last year, already the sixth round of posted DREAM challenges was accom-
plished [Pro11a].

The biggest problem to evaluate reverse engineering methods for network reconstruction
on experimental data is the fact that usually no golden standard network is available. In
the Challenge #3 of DREAM 2, Cantone et al. [CMI+09] provided a dataset which was
generated in-vivo, i.e., provides real biological data, and also possesses a golden standard
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Figure 5.10.: (Left) The density function of the beta distribution Beta(5, 100) which was used as
a prior distribution for the smoothing factor λ for the DREAM 2 Challenge #3 data. (Right) The
density function of the gamma distributions which were used as prior distributions for the threshold
parameters manually set for each gene for the DREAM 2 Challenge #3 data.

network structure. Nice, but how was this achieved? The authors bio-engineered a five-gene
network with the underlying topology as in Figure 5.4 (a). For this purpose they inserted
new promoter/gene combinations into the chromosomal DNA of budding yeast . This dataset
consists of two time-series. After stimulation, the gene expression was measured for the five
involved genes using qPCR. The first time-series consists of 15 time points measured in 3
minutes intervals and the second time-series consists of 11 time points measured in 5 minutes
intervals.

The datasets consists of negative log-ratios to the base 2 of the genes of interest to house-
keeping genes. We transformed the data to get the original ratios. We applied our inference
approach to the first time series (3 minute interval data), i.e., we have T1 = 15.

To obtain samples from the desired distribution, we ran a Markov chain with the Al-
gorithm 5.1 and performed 60, 000 samples with a burn-in phase of 10, 000 samples. The
hyperparameters for the gamma prior for the synthesis and degradation rates were the same
as were used for the simulated data. The same holds true for the hyperparameters for the
gamma prior for the Hill coefficient and for the parameters T2, σ

2
1 and σ2

2. The hyperparam-
eters of the beta prior for the smoothing factor were set to α = 5 and β = 100. The density
function of the beta distribution is shown on the left in Figure 5.10. The hyperparameters for
the gamma priors on the threshold parameters were set manually for each gene individually.
This was done in the way that the probability mass of the density functions is the mean value
of the concentration values of every time-series for each gene. The density functions for the
gamma priors for all five genes are depicted on the right in Figure 5.10. The hyperparameters
for the Lq-prior were set to q = 1 and s = 2. The density function of this prior is shown in
Figure 5.11.

We performed an evaluation on the mean of the obtained Markov chain for each parame-
ter, as was done for the simulated data. The resulting AUC values are AUCROC = 0.199 and
AUCP2R = 0.15, which are both not better than random guessing. This may have several
reasons. One may be that the level of noise in the present data is too high and thus the re-
verse engineering procedure is not able to reconstruct the correct network. This point will be
later discussed in more detail. Another reason can be that the posterior distribution contains
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Figure 5.11.: Plot for the two-dimensional Lq-prior p(β1, β2) := Lq(β1; q, s) · Lq(β2; q, s) for q = 1
and s = 2.

multiple modes and the calculated mean being not an appropriate summary statistic. We
therefore searched the sampled points with a low value for the objective function and high
AUC values. To be more precise, we search for the sample where the values for the objective
function are smaller than (178, 135), where we have to note that our iterative sampling algo-
rithm 5.1 has two objective functions, one for the Hybrid Monte Carlo algorithm part and
one for the Metropolis-Hastings algorithm part.

The regulation strengths parameters for this sample are shown in Table 5.2 and the AUC
values for this sample are AUCROC = 0.532 and AUCP2R = 0.2554. The dynamics for all five
genes with this sample are shown in Figure 5.12. The blue dots represent the experimental
data, the blue lines show the smoothing spline fitted to them and the red lines show the dy-
namics obtained with the used sample. The general dynamics of the data are well represented

To ↓ / From → Gene 1 Gene 2 Gene 3 Gene 4 Gene 5

Gene 1 1.03 0.03 −0.05 −0.62 0.12
Gene 2 1.09 1.55 −0.09 0.00 −0.10
Gene 3 0.10 −0.04 0.56 0.16 −0.11
Gene 4 −0.15 −0.03 −0.43 0.26 0.09
Gene 5 0.77 −0.16 0.01 0.01 0.44

Table 5.2.: Reconstructed maximum-a-posteriori regulation strengths parameters β for the DREAM 2
Challenge #3 data. True edges present in the reference topology are marked in bold.

102



5.8. Results

0 50
0

1

2

3

Time

G
en

e 
co

nc
en

tr
at

io
n

Gene 1

0 50
0

1

2

3

4

Time
G

en
e 

co
nc

en
tr

at
io

n

Gene 2

0 50
0.5

1

1.5

2

2.5

Time

G
en

e 
co

nc
en

tr
at

io
n

Gene 3

0 50
0

0.5

1

1.5

Time

G
en

e 
co

nc
en

tr
at

io
n

Gene 4

0 50
0

1

2

3

4

Time

G
en

e 
co

nc
en

tr
at

io
n

Gene 5

 

 

real data

learned data

smoothed data

Figure 5.12.: Plot of the experimental data from the DREAM 2 challenge, in comparison to time
courses simulated with reconstructed model parameters. Shown in black is the smoothed data. Addition-
ally, the function fminsearch in Matlab was used with a least squares objective function between the
interpolated data and the results from numerical integration with ode45 to find the optimum starting
point.

with a moderate amount of smoothing.
To compare our results with the results from other methods, we computed performance

measures as were used in the DREAM 2 challenge for our inferred network parameters β
as shown in Table 5.2. With these values we are able to compare our performance to the
performance of other methods. In Table 5.3 we show the AUC values of our method (second
column) and the best submitted results (first column). It remains now to explain how the AUC
values were calculated. We used for this purpose the scoring methods as described in [SMC07].
Basically, they use a ROC analysis for a two-class problem (compare to Section 3.3.1) with
present and absent edges. However, our method gives us activating and inhibiting edges as
results for the network structure. Thus, we need to modify our results to be suitable for the
evaluation methods of the DREAM 2 challenge. This was done as follows:

• we skipped the sign of the learned regulation strengths parameters β and divided by
the largest regulation strength for the DIRECTED-UNSIGNED challenge

• for the two DIRECTED-SIGNED challenges we only took the regulation strengths pa-
rameters with the appropriate sign, skipped the sign and divided them by the highest
absolute regulation strength

Our method outperforms all submitted results in the challenge DIRECTED-SIGNED-INHI-
BITORY.We observed as one difficulty in our estimation procedure, that our approach learned
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Challenge (DIRECTED-) Best submitted Our method No self-regulations
SIGNED-EXCITATORY AUC = 0.79 AUC = 0.61 AUC = 0.79

AUCPR = 0.72 AUCPR = 0.25 AUCPR = 0.54
SIGNED-INHIBITORY AUC = 0.63 AUC = 0.96 AUC = 0.96

AUCPR = 0.14 AUCPR = 0.45 AUCPR = 0.45
UNSIGNED AUC = 0.73 AUC = 0.56 AUC = 0.79

AUCPR = 0.55 AUCPR = 0.30 AUCPR = 0.57

Table 5.3.: Results of the DREAM 2 Challenge #3 data of our method (second column) compared to
submitted best results from [Pro11b] (first column). The third column gives the AUC values for our
method when self-regulations are omitted. Our method clearly outperforms all submitted methods in
the DIRECTED-SIGNED-INHIBITORY challenge; furthermore, when self-regulations are neglected,
we also beat the best submitted method in the DIRECTED-UNSIGNED challenge.

a lot of strong self-regulations of genes, possibly because of an improper balancing of the priors
on synthesis/degradation rates and regulation strengths. Since there are no self-regulations in
the DREAM 2 Challenge #3 data, we provide an additional evaluation when disregarding self-
regulations. These results are shown in Table 5.3 in the third column. Doing so, we not only
outperform the best submitted results for the DIRECTED-SIGNED-INHIBITORY challenge,
but also beat the best methods in the DIRECTED-UNSIGNED challenge. Furthermore, the
results for the DIRECTED-SIGNED-EXCITATORY challenge are comparable to the best
submitted results.

5.9. Discussion

Relevance

We presented a new methodological procedure for the inference of gene regulatory networks
from gene expression time-series data and applied it to simulated data and to experimental
data generated for a synthetically designed 5-gene regulatory network in yeast. The proposed
approach combines ordinary differential equations with a Bayesian inference technique which
is optimally suited for the quantitative analysis of complex biological processes. The usage of
non-linear differential equations makes it possible to describe complex dynamics of biological
systems and analyze it with a rich mathematically well established theory. We combine the
advantages of the deterministic world of ordinary differential equations with the advantages
of a Bayesian framework, which is capable to capture the noise in the data, gives a straight-
forward framework to include prior biological knowledge into the inference procedure, and
gives as output the probability distributions over model parameters and GRN topologies.

Generating distributions over model parameters and GRN topologies is the main advantage
of the Bayesian approach. The information contained in these distributions can be used to
predict future states of the system for different parameter sets according to their probability.
These predictions may be used to design optimal experiments such that the topology of the
GRN and the model parameters can be inferred more precisely and, at least some, alternative
topologies and model parameter sets can be eliminated. Thus, according to our opinion the
proposed method will be highly useful to perform an iterative approach as shown in Figure 0.1
in the introduction with wetlab experiments, network reconstruction and experimental design.

In our sampling procedure samples are more likely generated where the differences between
the model slopes and the experimental slopes are small. Doing so, we avoid numerical integra-
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tion, which is needed for the usually used case where samples are more likely generated where
the differences between the experimental data and the model predictions are small. Addi-
tionally, we include the estimation of a smoothing spline into our sampling procedure, which
enables an optimal tradeoff between describing the experimental data perfectly and smoothing
out the noise present in the given data. The estimation of smoothing splines and the esti-
mation of its corresponding smoothing factor can be performed much faster than numerical
integration and thus makes a sampling procedure of the posterior distribution possible.

We evaluated our method on simulated data as well as on the DREAM 2 Challenge #3
data, a synthetically designed 5-gene network in yeast. The ability of our approach to recon-
struct the underlying network topology with high accuracy was shown on the simulated data.
As expected, this accuracy decreases with decreasing number of data points and increasing
amount of noise present in the data. However, the simulated data used describes an oscillat-
ing system, which is known to be an extremely difficult task for parameter estimation and
network reconstruction since a high number of data points are needed to describe the oscillat-
ing dynamics precisely, and with a high amount of noise present in the data the oscillations
collapse quickly.

Applying our method on the DREAM 2 Challenge #3 data we outperformed the network
reconstruction results of other methods that were submitted to the DREAM 2 challenge in
the DIRECTED-SIGNED-INHIBITORY and DIRECTED-UNSIGNED categories. Taking a
look at the posterior distribution we obtained with our sampling procedure, we see that there
are several modes describing the data well. This observation fits perfectly to the comment of
Stolovitzky et al. [SMC07] that none of the submitted methods were able to infer the network
precisely. With our results we may explain this comment with the presence of multiple modes
in the posterior distribution such that optimization procedures searching for ONE optimal
topology may get trapped in suboptimal solutions while exploring the huge search space.

Limitations and Future Work

Having now pointed out the importance of our method, we will state some crucial points of
our method, which will have to be considered in more detail in future work.

Firstly, we note that we did not perform an exhaustive study of the hyperparameters for
the priors we used. However, we gained some knowledge, which prior distributions are of
importance for the inference procedure and for which we just can even use some broad distri-
bution. These considerations will come from an intuitive point of view without mathematical
proof.

• Let us first look at the prior distributions for the threshold parameters θj, j ∈ {1, . . . , n},
and why these are of importance to be able to learn oscillating behavior in the system.
We will consider for this purpose an example: Let’s assume that gene j activates gene
i and the concentration values for gene j vary between 1 and 2. Look now at the
regulation functions shown in Figure 5.2 we use in our ODE model and assume a strict
prior for the threshold parameter θj to be around 3. Then the change of concentration
for gene i will only be very small unless the regulation strengths parameter βij is not very
large. However, this is prevented using the sparsity Lq-prior on the regulation strengths
parameters. On the other hand, the change of concentration for gene i will be quite large
even for small absolute values of the regulation strengths parameter, if the inhibiting
regulation function is used. Altogether, the learning of an inhibiting regulation for this
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5. Inference of GRNs using ODEs embedded into a stochastic framework

example may be favorable over the learning of an activating regulation, although the
true regulation is an activating one. A similar situation will occur, if gene j inhibits
gene i and the concentration values for gene i vary between 4 and 5 with the same prior
used for the threshold parameter. Then an activating regulation may be favorable over
an inhibiting regulation. This two examples of course do not explore the behavior of the
whole ODE system and the parameter estimation issues to the full extent. They rather
should illustrate which problems may occur during the parameter estimation procedure
in the case the priors for the threshold parameters are not set appropriately.

• We further notice that the prior distribution for the Hill coefficient m is not of big
importance, since this parameter does not change the dynamics of the system much as
it is varied. This was already mentioned in Section 5.1.

• Another important observation we made is that for the DREAM 2 Challenge #3 data
the estimated smoothing factor λ is much higher (between 0.25 and 0.4) than the beta
distribution as depicted on the left in Figure 5.10 would imply. We also made the
observation, where we used a weaker prior for the smoothing factor, that the estimated
values were close to 1. Thus, the data is overfitted and the noise is not smoothed out
of the data at all. The problem, that our algorithm tends to sample higher values for
the smoothing factor can be explained as follows. In the Metropolis-Hastings step to
sample the smoothing factor, higher values are preferable, since the first term of the
used objective function (5.8) will be minimal for the case where the data is perfectly
fitted, i.e., the smoothing factor is 18. Of course, in this sampling step we fix the other
model parameters ω to the current values and also have to minimize the second term in
the objective function (5.8). Thus, there is a balance between fitting the data perfectly
and fitting the model dynamics perfectly. However, the parameter ω which describe
the model dynamics are only fitted to the derivatives of the obtained smoothing spline.
Thus, at some point the parameter estimates for ω are only as good as the smoothing
spline represents the dynamics of the underlying biological process. We observed for
our inference procedure on the DREAM data, that for a weak prior on the smoothing
factor the sampled values were close to 1 (results not shown). Hence, a strong prior on
λ is necessary to guarantee that the data is not overfitted and the underlying dynamics
and not the noise is used for parameter estimation of the ODE system. Concerning
this point it remains to be clarified in future work, if this problem of overfitting can
be avoided by increasing the number of slope estimates T2 used. However, this does
not change the problem, that the parameter estimates are only as good as the spline
fit is. Maybe, a more promising future step will be the usage of the smoothing splines
as were used by Poyton et al. [PVM+06] and by Ramsay et al. [RHCC07], where the
model predictions are fed back into the spline estimation step instead of using the second
derivative as penalty term (compare to (5.7)). Of course, all these considerations should
be investigated more from the theoretical point of view.

As a second big point to mention is the fact, that we do not take into account the noise in the
data during the learning procedure. Well, we introduced the variables σ1 and σ2 as variables
representing noise in the data and noise in the slope estimates. However, we only used these

8for the Matlab function csaps the obtained smoothing spline will be the natural cubic spline for the smooth-
ing factor being 1
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parameters in the inference procedure to weight the two terms of the objective function (5.8)
such that they are balanced. From this we obtain a further topic for future work, namely the
investigation how the noise present in the data and in the slope estimates obtained with the
smoothing splines can be incorporated into the estimation process and which consequences
this has for the results of the inference process.

The findings we obtain on the DREAM 2 Challenge #3 data point out the need for optimum
experimental design approaches. With the obtained samples of the posterior distribution a
Bayesian experimental design procedure may and should be approached in the future, since
we provided with our method presented here a lot of information9 contained in the posterior
distribution. In Chapter 7 we will use this information to propose and perform a sequential
Bayesian experimental design framework.

9“information” is meant here in the usual meaning of the word in the English language as well as the
mathematical term defined in Definition 2.2.2
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CHAPTER 6

Experimental design

Experiment and you’ll see.

(Cole Porter)

Cole Porter, an American songwriter, seems to be a wise man stating that you should “ex-
periment and you’ll see”. One cannot obtain any information about the world and especially
about topics in systems biology without performing experiments. However, the central ques-
tion in a general context is

How do we perform useful experiments that will help us to understand a specific
problem better?

The next question that arises immediately following this one is of course

What do we mean with the word “useful” and how can we concretize it for practical
issues?

In this chapter we will give answers to the second question for the typical problems arising
in systems biology that are described by ordinary differential equations models. Firstly, we
will discuss why experimental design is a crucial issue with ODE models in systems biol-
ogy, both from the biological but also from the theoretical side. Secondly, we will give the
basic mathematical theory for experimental design, both for classical experimental design
and Bayesian experimental design. We will focus in this chapter on experimental design for
parameter estimation purposes and do not consider experimental design techniques for the
model discrimination purpose.1

6.1. Why we need experimental design

The difficulties that arise in parameter estimation methods for models used in systems biology
are vast. In the introduction we gave a motivation why Bayesian parameter estimation and

1for an introduction into methods for experimental design to discriminate between models see [ADT07] Chap-
ter 20
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Bayesian experimental design are highly needed for problems in systems biology. We will
review some points again and give more detailed arguments.

6.1.1. Systems biology approach

Biological experiments need in general a vast amount of resources. The chemicals needed and
the machines used are very expensive. Furthermore, a lot of time and effort of scientists is
needed to simply do the experiments. Not to mention, the literature search and the design
of the experiments that has to be done before the experiment can be started. Thus, optimal
experimental design is useful to save resources, since only optimal experiments have to be
performed.

A further point why optimal experimental design is needed from the systems biology point
of view is that biological processes are complex and the knowledge about them is constantly
increasing. Thus, all this information cannot be overlooked by one person and experimental
design may help with suggesting the parts of a biological process to be explored which will
give the most information. However, what a suitable definition of information is, is problem-
specific and may be different for different aims of investigation of biological processes.

From a more technical point of view, optimum experimental design together with modeling
is also useful to make predictions about some model parameters which cannot be measured
directly.

6.1.2. Mathematical and algorithmical reasons

The most important issue why optimum experimental design is essential for the purpose of
parameter estimation from the mathematical and algorithmical point of view is that good
parameter estimates can only be found with good data! With excellent data less numerical
instabilities will arise, which increases the reliability of the estimated parameters and decreases
the runtime of the optimization algorithm used to find the optimal parameter values.

What does it now mean to have good data in the context of models in systems biology? Since
we pointed out in the previous section that biological experiments are expensive, usually only
limited data is available. Experimental design will help to perform the experiments needed
with a minimum amount of resources, which will produce the best data according to the
purpose we want to address with our model we have.

Furthermore, experimental design will help to address the problems of non-identifiabi-
lity [RKM+09,RKM+11] and sloppiness [GWC+07] of parameters providing data which will
be complementary in the sense that from two different measurements one obtains almost
double the information that is present in the biological system under consideration compared
to where only one measurement is present. Such complementary data were generated with
the classical experimental design approach by Apgar et al. [AWWT10].

6.2. Classical experimental design

This section is based on [ADT07]. For the theory and the proofs behind classical experimental
design see [Puk06]. As mentioned earlier we remind the reader here that we will focus only
on the case for experimental design for the purpose of parameter estimation.

We start with a parameterized model f(x, p), where x = (x1, . . . , xm) are called factors or
explanatory variables and p = (p1, . . . , pk) is the parameter vector that describes the model.
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The factors are described by the experimental design. As an example one may consider the
model to be a system of ordinary differential equations modeling the dynamic behavior of gene
products and let the factors be time points at which mRNA concentrations are measured.
With a parameterized model and factors the observations from reality can be described by

yi = f(x, p) + εi i = 1, . . . , N

where εi denotes the additive experimental error. In the absence of systematic error it holds
E(εi) = 0 for all i. Another common used assumption is that of independent errors with
constant variance, i.e.,

Cov(εi, εj) = 0 (i 6= j) and

Var(εi) = σ2 ∀i

With this notation we want to estimate the parameters p using a least squares approach, i.e.,
the searched parameter vector p̂ is such that the value

S(p) =
N
∑

i=1

(

yi − f(x, p)
)2

(6.1)

is minimal for p = p̂.

6.2.1. Linear models

We will first explain the mathematical theory of classical experimental design for the case of
linear models. For linear models, we are able to find explicit expressions for the parameter
estimate p̂. For this purpose let E(y) = Fp with F being a (N × k) matrix, where the i-th
row of F is fT (x), a function of the m factors. With this model for the least squares approach
one has to minimize the equation

S(p) = (y − Fp)T (y − Fp).

One can obtain the search parameter vector p̂ by differentiation of S(p) and setting it to zero.
Then, by rearranging, the normal equations

F TF p̂ = F T y

hold. In the last equation the very important (k× k) matrix Mp̂ := F TF arises which will be
called the information matrix for p̂. Why is this matrix of that much importance and why is
it called the information matrix? To answer this important question, we will reformulate the
problem a bit. First, if F TF has full rank, we obtain for the estimator of the parameters

p̂ = (F TF )−1F T y.

As a further assumption we now say that εi ∼ N (0, σ2) for all i ∈ {1, . . . , N}. Since p̂ is a
linear combination of normally distributed observations, it is also normally distributed and
the covariance matrix of p̂ is

Var(p̂) = σ2(F TF )−1. (6.2)

Now we are beginning to get a feeling why the matrix F TF is of importance. This is the case
because we want to design an experiment such that we obtain a parameter estimate p̂ which
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is as precise as possible. Referring to (6.2) we will obtain this, if we can somehow choose an
experimental design which “minimizes” the matrix (F TF )−1. Then the variance of p̂ would
be minimal. Of course, there is no obvious way how to “minimize” a matrix. However, what
can be done is the minimization of a scalar-valued function of this matrix. Common used
examples for scalar-valued functions of matrices are the determinant and the averaged trace.
To get a better feeling for these functions, we will give a geometrical interpretation of them.
For this purpose, we mention that the 100(1 − α)% confidence ellipsoid for the parameter
vector p is of the form

(p− p̂)TF TF (p− p̂) ≤ ps2Fk,ν,α,

where s2 is an estimate of σ2 on ν degrees of freedom and Fk,ν,α is the α% point of the
F -distribution on k and ν degrees of freedom. The volume of this ellipsoid is given now
by the determinant of the covariance matrix (F TF )−1. Thus, minimizing the determinant
of (F TF )−1 will give us a confidence region of the parameter estimates with small volume.
Designs which minimize the determinant of the covariance matrix (F TF )−1 are called D-
optimal . The “D” stands for “determinant”.

Let us now come to the geometrical interpretation for the case that we use the average of the
trace of the covariance matrix as scalar-valued function to be minimized. Since the trace of a
matrix is the sum of its eigenvalues and the eigenvectors describe the principal components
of the underlying ellipsoid, minimizing the averaged trace of the covariance matrix (F TF )−1

implies that the averaged lengths of the principal components of the confidence ellipsoid is
minimized. Designs which minimize the averaged trace of the covariance matrix (F TF )−1 are
called A-optimal . The “A” stands for “average”.

Another related experimental design that may be used is called E-optimal . In this design
the optimal design is used where the maximal eigenvalue of the covariance matrix (F TF )−1

is minimal. The “E” here stands for “eigenvalue”.

In Figure 6.1 the geometrical interpretation of the three alphabetical design criteria D-, A-
and E-optimality is depicted.

As a very important point to mention considering linear models is that the covariance
matrix (F TF )−1 is not dependent on the model parameter estimate p̂ (see (6.2)).

Multivariate response

Until now we only considered the case where we have one response, i.e., only one output is
measured, of the model. Now we will say something about optimum experimental design
where in one experiment several outputs, i.e., responses, are measured. For this purpose let
E(yu) = Fup, u ∈ {1, . . . , h}, be the linear models that describe the h different responses. We
further assume that the h responses for observation i are correlated and that observations i
and l are independent, i.e., the noise εiu follows are multivariate normal distribution N (0,Σ),
where Σ = {σuv}hu,v=1 denotes the covariance matrix. As information matrix Mp̂ for the
parameter estimate p̂ one now uses

Mp̂ =
h
∑

u=1

h
∑

v=1

1

σuv
Muv, (6.3)

where Muv = (Fu)
TFv .
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p2

p1

E-optimality

D-optimality

A-optimality

Figure 6.1.: Geometrical interpretation of three optimality criteria of the classical alphabetical exper-
imental design shown for a two-dimensional case where p = (p1, p2). The optimality criteria used are
D-optimality, A-optimality and E-optimality. The red area is the confidence ellipsoid and the dashed
circle has as radius the averaged lengths of the eigenvectors of the confidence ellipsoid.

6.2.2. Non-linear models

For non-linear models there is no general analytical solution for the estimator of the param-
eters p̂ that minimizes (6.1) as was the case for linear models. In general, one has to use
an optimization algorithm to obtain a point estimate p̂. However, how will we do optimum
experimental design for non-linear models having an estimator for the parameters? Or, to
phrase the question in a different way: can we, as for the linear case, use the information
matrix for p̂ to obtain optimal experiments? The answer is: Yes, we can! Box and Lucas first
introduced in 1959 the following procedure to perform design of experiments in non-linear
situations [BL59]. The main trick is to trace back the non-linear case to the linear case using
Taylor’s theorem. We will explain this in more detail.

For this purpose, let

E(y) =







f(x1, p)
...

f(xm, p)







be an univariate response model. The following procedure works analogously for the case with
multivariate responses. Using Taylor’s theorem at the point p̂ and ignoring the derivatives of
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order higher than 1 leads to

E(y) ≈











f(x1, p̂) +
∂f(x1,p)

∂p1

∣

∣

∣

p=p̂
· (p1 − p̂1) + . . .+ ∂f(x1,p)

∂pk

∣

∣

∣

p=p̂
· (pk − p̂k)

...

f(xm, p̂) + ∂f(xm,p)
∂p1

∣

∣

∣

p=p̂
· (p1 − p̂1) + · · · + ∂f(xm,p)

∂pk

∣

∣

∣

p=p̂
· (pk − p̂k)











.

Bringing the last equation into matrix form, one immediately sees the relation to linear
models:

E(y)−







f(x1, p̂)
...

f(xm, p̂)






=









∂f(x1,p)
∂p1

· · · ∂f(x1,p)
∂pk

...
...

∂f(xm,p)
∂p1

· · · ∂f(xm,p)
∂pk









∣

∣

∣

∣

∣

∣

∣

∣

p=p̂

· (p − p̂) =: F (p− p̂)

The entries of the matrix F for the non-linear case here are also called the parameter sensi-
tivities. As for the linear case one now minimizes scalar valued functions of the covariance
matrix (F TF )−1 to perform optimum experimental design. Since by definition the parameter
sensitivities depend on the model parameter estimate p̂, the experimental design step crucially
depends on p̂. Atkinson et al. [ADT07] gives three possibilities how the dependence on the
unknown parameter estimate p̂ can be overcome. These methods are also known as methods
to perform robust experimental design.

1. Sequential designs: Performing several rounds of experimental design and parameter
estimation where the data obtained of the experiment is used to estimate the new
parameter estimate and this estimate is then used to linearize the underlying model
around this point

2. Maximin designs: First the value of the parameter estimate is found such that the
optimality criterion used is maximal; second for this parameter estimate the design is
found which minimizes the used optimality criterion

3. Bayesian designs: The distribution of the parameter estimates is taken into account
in the experiment design process; these designs will be described in more detail in
Section 6.3

6.2.3. Existing methods for parameter estimation with ODE systems

For models based on ordinary differential equations the observations y from reality are ob-
tained as the solutions of the differential equations given as

dzi
dt

(t) = gi(z1, . . . , zn, t, p), i ∈ {1, . . . , n}, (6.4)

where n denotes the number of entities present in the system that is described. Thus, the
expected multivariate response at some time point t is

E(y) =
(

z1(t, p), . . . , zn(t, p)
)T

.

To perform optimum experimental design we need the parameter sensitivities ∂zi(t,p)
∂pj

for all

entities zi with i ∈ {1, . . . , n} and for all parameters pj with j ∈ {1, . . . , k}. These parameter
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sensitivities are obtained by differentiating (6.4) with respect to every parameter pj and using
the rule of total differentiation. Doing so, we derive for all i ∈ {1, . . . , n} and j ∈ {1, . . . , k}

∂

∂pj

(

dzi(t, p)

dt

)

=
d

dt

(

∂zi(t, p)

∂pj

)

=
∂gi(z, t, p)

∂zi(t, p)
· ∂zi(t, p)

∂pj
+

∂gi(z, t, p)

∂pj
· ∂pj
∂pj

(6.5)

Using the matrix notation

Gpj :=

(

∂z1(t, p)

∂pj
, . . . ,

∂zn(t, p)

∂pj

)T

,

∂g(z, t, p)

∂pj
:=

(

∂g1(z, t, p)

∂pj
, . . . ,

∂gn(z, t, p)

∂pj

)T

with z := (z1, . . . , zn)

and

∂g(z, t, p)

∂z
=









∂g1(z,t,p)
∂z1

· · · ∂g1(z,t,p)
∂zn

...
. . .

...
∂gn(z,t,p)

∂z1
· · · ∂gn(z,t,p)

∂zn









we obtain from (6.5) the differential equation system

dGpj

dt
=

∂g(z, t, p)

∂z
Gpj +

∂g(z, t, p)

∂pj
,

which has to be solved by numerical integration to obtain the desired parameter sensitivities.

There is a vast literature on applications for classical experimental design methods with
ODE systems. I will give here only a few exemplary publications.

Bernaerts et al. [BVI00] examined the growth temperatures on the growth rates of microor-
ganisms. Their ODE model consists of two parameters and their experiment design consists of
finding an optimally designed temperature input. As optimality criterion they used a modified
E-optimality criterion, which is the minimization of the maximal eigenvalue of the information
matrix divided by the smallest eigenvalue of the information matrix2. Banga et al. [BVI02]
performed experimental design for the same model. However, their contribution is the usage
of a stochastic global optimization algorithm instead of a local Newton-type optimization
algorithm as was used by Bernaerts et al.

Körkel [Kör02] developed in his PhD thesis the sophisticated software package VPLAN,
which uses a multiple shooting framework to parameterize the dynamics of the underlying
system and uses sequential quadratic programming tools for the optimization task. This
software was applied in his thesis to chemical reaction systems present in chemical engineering
processes using the A-optimality criterion. Recently, Bandara et al. [BSE+09] applied VPLAN
with a D-optimality criterion to a cell signaling model with six parameters to be estimated
and showed for the first time that optimal experimental design for parameter estimation
problems works excellently in model development in systems biology.

Asprey and Macchietto [AM02] designed two optimality criteria for experimental design
purposes for dynamical systems where only poor knowledge is known about a parameter
estimate p̂. The one criteria corresponds to the maximin design described in Section 6.2.2, and

2This fraction is also called the condition number of a matrix.
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the other one corresponds to a Bayesian design, which are both used for the robustification of
the experimental design to circumvent the dependence of the unknown parameter estimate p̂.

Faller et al. [FKT03] performed a simulation study with a model describing the MAP-kinase
signaling pathway to explore to what extent experimental design improves the accuracy of
the parameter estimates of models in systems biology. They found that the error in the
parameter estimates can be reduced by 60% for optimal experimental design and additional
experimental design can help in the detection of practical non-identifiabilities.

Kutalik et al. [KCW04] applied a multiple shooting framework for the estimation of pa-
rameters and performing experimental design to obtain optimal time points at which the four
species of a single step in a signal transduction pathway cascade shall be measured. In their
model three parameters had to be estimated, which was done with 16 measurements at differ-
ent time points per species. The experimental design consists of minimizing the determinant
of the inverse of the information matrix, i.e., the D-optimality criterion is used.

Gadkar et al. [GGI05] applied an iterative procedure to an ODE model describing the cas-
pase function in apoptosis3 to perform optimum experimental design and find the optimal
experiment such that the number of the identifiable parameters in the model is maximal.
Their most important finding was that optimal experiments performed with suboptimal mea-
surements yields much better results than performing suboptimal experiments with optimal
measurements.

Casey et al. [CBF+07] examined a model with 56 parameters for the epidermal growth factor
receptor signaling . Amongst other things they performed experimental design to reduce the
dynamics of one entity in the model that cannot be measured and do not focus on reducing the
uncertainty in the parameter estimates. They obtained that even only with one additionally
measured data point of one entity in the system, that can be easily measured, reduced the
uncertainty of the dynamics of the entity of interest to a high degree, whereas at the same
time the uncertainty in the parameter estimates remained almost the same.

Apgar et al. [AWWT10] performed classical experimental design for a model for the epi-
dermal and neuronal growth factor signaling which contains 48 parameters. The authors
show that with the performance of five complementary experiments including perturbation
experiments like the overexpression or knockdown of single or multiple genes present in the
model, they were able to estimate all parameters within 10% of their nominal value. However,
the authors needed a high number of data points to do so, which was also pointed out by
Chachra et al. [CTS11].

6.3. Bayesian experimental design

The main difference between Bayesian and classical experimental design is the incorporation
of prior knowledge into the learning process. We will describe in more detail the theory behind
it according to the review papers by Chaloner and Verdinelli [CV95] and by Clyde [Cly01].
We will use the acronym BED from now on for Bayesian experimental design.

The main ingredient to perform BED does not differ that much from the ingredient to
perform classical experimental design: one needs a model dependent on model parameters θ
which describes the observations Y from reality for experiments e we want to perform. The
main difference is that we need to embed this model into a probabilistic framework to have
a distribution Y ∼ pe(y | θ). This can be easily obtained assuming the measurement noise

3description for non-biologists: the function of a specific enzyme on cell death
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to be independent and follow a Gaussian distribution such that one gets a likelihood as was
also done in Part II Chapter 5 for the purpose of parameter estimation. The second essential
ingredient to perform BED missing in classical experimental design is a prior distribution
over the model parameters θ, i.e., the distribution p(θ), which is, for example, obtained from
expert knowledge or previous performed experiments.

Lindley [Lin72] presented in 1972 the theory now most often used to do BED. It is based
on decision theory and consists of two parts. To do so, first one needs a utility function
U(d, θ, e, Y ), which is dependent on a terminal decision d, the model parameters θ and the
experiment performed e with the data Y . The utility function should reflect the purpose and
the costs of the experiment. We will see later different choices for utility functions used for
different purposes.

This first part of this decision theoretic framework works like follows and assumes that we
knew the data Y that will be obtained with the experiment e:

1. choose an experiment e

2. observe data Y for experiment e

3. select terminal decision d such that
∫

U(d, θ, e, Y )p(θ | Y, e) dθ

is maximal, where the unknown parameter values θ are integrated out, and this is called
posterior expected utility and is denoted by U(e, Y )

However, we want to decide which experiment to perform, such that we do not know the
data Y before the experiment is performed in reality. Now the second part of the decision
theoretic framework by Lindley comes into play: the experiment e is chosen such that the
pre-posterior expected utility

U(e) =

∫

U(e, Y )p(Y | e) dY (6.6)

is maximal, where the possible model outcomes Y for the experiment e are integrated out and
p(Y | e) is called the predictive distribution for model outcomes Y given the experiment e.
The problem that occurs now is that we do not have the predictive distribution given. How
do we now maximize (6.6) without this knowledge?

To overcome this problem we remind ourselves that the ingredients to perform BED are the
distribution pe(Y | θ) for model outcomes with parameter values θ and a prior distribution
p(θ) for these model parameters. Thus, we obtain the predictive distribution integrating out
the model parameters θ, i.e., for the predictive distribution we have

p(Y | e) =
∫

pe(Y | θ)p(θ) dθ.

Altogether, for the optimal experiment ebest it holds

U(ebest) = max
e

∫
(

max
d

∫

U(d, θ, e, Y )p(θ | Y, e) dθ
)

p(Y | e) dY.
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6.3.1. BED for the normal linear model

For the normal linear model we will show the relation between classical and Bayesian alpha-
betical criteria. First, we need to specify what a normal linear model is.

Definition 6.3.1. A normal linear model is defined such that the observations Y follow a
normal distribution, i.e.,

Y ∼ pe(y | θ) = N (Fθ, σ2 Id),

where θ is a vector of k unknown parameter, σ2 is known, Id is the (n × n)-identity matrix
for the n observations and F denotes the (n × k)-matrix describing the linear model4. Fur-
thermore, the prior distribution for the parameter vector follows also a normal distribution,
i.e.,

p(θ) ∼ N (θ0, σ
2R−1),

where θ0 and the (k × k)-matrix R are known.

The normal linear model is used vastly in the literature for BED, since for it the pre-
posterior expected utility has a closed formula. In the following two subsections we give two
different utility functions which correspond to the D- and A-optimality criteria known from
classical experimental design.

Shannon information

Shannon information was introduced by Lindley in 1956 [Lin56] as an appropriate utility
function, if one is interested in the model parameters θ or functions of it. In more detail, we
have

U(e, Y ) =

∫

p(θ | Y, e) log p(θ | Y, e) dθ,

i.e., the information of the posterior distribution of the model parameters is used as utility
function for BED.

For the normal linear model one obtains

U(e) ∝ det(nF TF +R),

where the matrix F depends on the experiment e as in Section 6.2.1 and n denotes the sample
size used. With this the similarity to the D-optimality criterion in classical experimental
design can be seen immediately. One main difference is that the Bayesian D-optimality
criterion depends on the sample size n.

Quadratic loss

If the purpose of the experiment is to obtain a point estimate of the model parameters, one
uses as utility function the quadratic loss, i.e.,

U(e, Y ) = (θ − θ̂)TA(θ − θ̂),

where A is a symmetric non-negative definite matrix.

4compare to the matrix F used in Section 6.2.1
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6.3. Bayesian experimental design

For the normal linear model one obtains

U(e) ∝ − tr
(

A(nF TF +R)−1
)

.

Here also the similarity to the A-optimality criterion in classical experimental design can
be seen immediately. As above, the Bayesian A-optimality criterion depends on the sample
size n.

Bayesian E-optimality

The Bayesian E-optimality criterion is referred to be that one where for a normal linear
model one minimizes the maximal eigenvalue of (nF TF + R)−1. However, Chaloner and
Verdinelli [CV95] pointed out that this criterion does not appear to correspond to any utility
function and thus its justification from a decision theoretic point of view is unclear.

Main relations between Bayesian and non-Bayesian optimality criteria

We saw already that one main difference between Bayesian optimality criteria and optimality
criteria from classical experimental design is that Bayesian optimality criteria depend on the
sample size n. Since the identity

nF TF +R = n(F TF +
1

n
R)

holds, we see that the larger the sample size n the less difference is between the Bayesian
and the non-Bayesian optimality criteria since the term (1/n)R vanishes for n→∞. This is
reasonable, since for more data available the posterior distribution of the model parameters
will be described more by the data and less by the prior distribution used.

Another important issue is that we may consider singular matrices F TF , since if we take an
informative prior, i.e., the matrix R is a regular matrix, the matrix nF TF +R will always be
regular, independent of the regularity or singularity of the matrix F TF . Altogether, we only
need to consider an informative prior distribution to ensure proper results for the experimental
design procedure in a Bayesian framework.

6.3.2. BED for non-linear models

As seen for the case of non-linear models in classical experimental design, BED for non-linear
models also traces back the non-linear case to the linear case. There are several ways how
this was done in the literature.

One common approximation that is used in BED for non-linear models is to use a normal
approximation for the posterior distribution of the model parameters. For this purpose, first
a maximum likelihood estimate θ̂ is needed. As a common approximation it is used

p(θ | y, e) ∼ N
(

θ̂, [nFIM(θ̂, e)]−1
)

,

where FIM(θ̂, e) denotes the Fisher information matrix , which is defined for a likelihood
f(Y ; θ) as5

(

FIM(θ, e)
)

i,j
= Eθ

[

( ∂

∂θi
log f(Y ; θ)

)( ∂

∂θj
log f(Y ; θ)

)

]

. (6.7)

5compare the Fisher information matrix to the matrix F TF as used for the non-linear case in classical
experimental design
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6. Experimental design

With this approximation, the expected utility

U(e) ∝
∫

log det
[

nFIM(θ, e)
]

p(θ) dθ

is known as Bayesian D-optimality for the non-linear case.

For further optimality criteria for BED for non-linear models and other approximations
used see [CV95]. Here I only wanted to introduce the Fisher information matrix, its relevance
for BED for non-linear models and its similarity to the matrix F TF as obtained for non-linear
models with classical experimental design with the approximation using Taylor’s theorem.

6.3.3. Existing methods for parameter estimation with ODE systems

Although Müller and Parmigiani [MP95] did not apply their approach to an ODE model,
their idea of generating samples from the expected utility function EU(d) for designs d is
worth to mention, since it was a first attempt to solve the complete problem of BED, i.e.,
consider general prior distributions, consider general posterior distributions and perform an
optimization to obtain the optimal design. In their approach the authors first generate ONE
sample from the prior distribution for the parameters for a moderate number of designs and
with this sample together with the likelihood the data d is generated. For each of these
samples the value for the utility function is calculated and a curve is fitted through all these
values. This curve is then used to perform a deterministic optimization to obtain the optimal
design. The authors show that if the expected utility function is unimodal their obtained
design is a consistent estimate of the optimal design.

Müller [Mül99] proposed three schemes to perform BED for the general case, i.e., where no
analytical solution of the posterior distribution and the expected utility function is available:

1. Prior Simulation: Given a prior distribution of the model parameters θ and a likeli-
hood p(D | θ), the expected utility function can be approximated by the average of the
utility function evaluated with the samples for θ and D.

2. Augmented Probability Simulation: Given a proposal distribution for the de-
signs e, a Markov chain Monte Carlo algorithm is applied to obtain samples from the
distribution h(e, d) ∝ u(e, d)p(D | θ)p(θ).

3. Tightening the Expected Utility Surface: The distribution h(e, d) introduced
above is replaced with a power transformation hJ (e, d). These kind of sampling puts
more weight on samples with a higher probability and thus samples around the modes
of h(e, d).

However, all three schemes are only useful for problems with a small number of parameters
and were not applied by Müller to ODE systems.

Cho et al. [CSKW03] applied a multiparametric sensitivity analysis to the NFκB signaling
pathway to find out important parameter values of the underlying nonlinear ODE model.
The most important parameter was used to decide manually which protein concentrations
are measured. Although the authors do not use the term Bayesian experimental design, they
use a uniform distribution over some range as prior knowledge for the parameter values.

Loredo [Lor04] introduced Bayesian adaptive exploration, which is a sequential BED based
on maximum entropy sampling and applied it to determine 3 parameters of a model describing
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6.3. Bayesian experimental design

the orbit of an extrasolar planet. Maximum entropy sampling will be described in more detail
in the next chapter.

Steinke et al. [SST07] used Bayesian experimental design for the inference of gene reg-
ulatory networks. The authors linearized their nonlinear ODE model around the steady
state, performed perturbation experiments and choose the experiment as optimal where the
Kullback-Leibler divergence between the old posterior distribution and the posterior distri-
bution containing the data from the additional experiment is maximal. The authors use as
sparsity prior on the interaction strengths parameters the Laplace distribution. With this
choice, the log density of the posterior is a concave function and thus has a single global
maximum. This justifies the usage of an approximation of the posterior distribution as a
product of Gaussian distributions which yields to a fast algorithm for experimental design for
the purpose of the inference of gene regulatory networks.

Calderhead and Girolami [CG08] examined on the example of the Repressilator model the
importance of optimally chosen measurements6 to obtain a high value for the Kullback-Leibler
divergence between the prior and the posterior distribution. To do so, the authors generated
samples from a 10-dimensional space with a population-based Markov chain Monte Carlo
algorithm, where for each species 49 data points were available. The posterior distribution
was approximated with a kernel density estimator .

Busetto and Buhmann [BB09] divided the posterior distribution into a fixed number of
clusters with a weighted K-means algorithm and wanted to find the optimal intervention
such that the data obtained from this intervention will minimize the entropy of the global
weights of the clusters, i.e., the intervention is searched such that the discrimination between
alternative modes over the posterior distribution for the parameters is maximal. They applied
their approach to the Goodwin model which consists of 4 parameters.

Busetto et al. [BOB09] consider the problem of finding the entities in nonlinear ODE
models for the TOR pathway to be measured sequentially such that the mutual information
between the models and the data is maximized, which is equivalent to maximize the expected
Kullback-Leibler divergence between the posterior and the prior distribution. The authors
tested their algorithms against three classical experimental designs (A-, D- and E-optimality)
and were able to obtain 33% more information with their method for the same amount of
data points. Their work is a good starting point for BED for model selection problems with
nonlinear ODE models.

He et al. [HYB10] proved mathematically that a modified Morris global sensitivity analysis
is equivalent to a Bayesian A-optimality criterion and performed a case study with a signaling
pathway model, where 5 parameters were estimated.

Kramer and Radde [KR10] used a nonlinear ODE model for the regulation of the secretory
transport at the trans-Golgi network and considered perturbation experiments to perform
BED and looked at 3 parameters maximizing the information of the posterior distribution
using steady-state measurements of the system. Their main contribution is the development
of a new estimator for the calculation of the information of the posterior distribution which
is described in more detail in [KHAR10] and is suitable even for small sample sizes whereas
usually used kernel density estimators may fail in this context, at least for the exemplary
results on the model for the secretory transport at the trans-Golgi network.

Terejanu et al. [TUM11] performed Bayesian experimental design maximizing the mutual
information between the model parameters and the model predictions. The authors applied

6in their example the authors concern which species is measured and how many species are measured
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their approach to a non-linear model for the nitridation of graphite, where three most un-
certain parameters needed to be estimated. The experimental design was performed in a
sequential manner where the possible experiments were fixed to 28 experiments beforehand.
Additionally, the authors compare the results of their method with the results of using maxi-
mum entropy sampling on a small non-ODE model with additive and multiplicative noise and
the results are comparable for the model with additive noise. However, maximum entropy
sampling is not applicable to the model with multiplicative noise.

Huan and Marzouk [HM11] recently described a promising and interesting framework where
a Bayesian experimental design is performed considering general distributions of model pa-
rameters of non-linear models and the expected Kullback-Leibler divergence between posterior
and prior distribution is maximized. This maximization is done with stochastic optimization
algorithms which are suited to problems where the objective function is available only ap-
proximately, namely as average over a function of the samples from the posterior and prior
distribution. Additionally, to speed up the evaluation of their objective function, the authors
used a polynomial chaos surrogate to obtain a smooth function depending on model param-
eters and design conditions. However, the authors showed the performance of their method
only for a model where two parameters are to be estimated.

As a last remark, it is worth to mention that several methods for the performance of
BED for the model identification purpose were proposed recently in the field of systems
biology like the one seen above by Busetto et al. [BOB09], examined in the group of Michael
Stumpf [TS10,BSSS11] and by Vyshemirsky and Girolami [VG08].
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CHAPTER 7

Sequential Bayesian experimental design

by means of maximum entropy sampling

If your result needs a statistician

then you should design a better

experiment.

(Ernest Rutherford)

Having developed in Part II a method for parameter estimation for GRNs using a Bayesian
approach and obtaining distributions over parameters, we will use these distributions now to
perform sequential Bayesian experimental design (BED).

7.1. Bayesian Learning Framework

For parameter estimation, we embed our nonlinear ordinary differential equations model as
described in more detail in Section 5.1 into a Bayesian framework. For this purpose, we assume
that the measured data diτ , i ∈ {1, . . . , n}, τ ∈ {1, . . . , T}, is corrupted by independent mean
zero Gaussian noise with variance σ2. Thus, by denoting with ω = (s, γ, β, k,m, start) the
vector which contains all model parameters, the likelihood looks like

p(D|ω, σ2) =
1√
2πσ2

n
∏

i=1

T
∏

τ=1

e−
1

2σ2

(

diτ−xi(t,ω)
)2

, (7.1)

which is equivalent to a least squares objective function up to log-transformation and scal-
ing. Note, that xi(t, ω) is obtained by numerical integration of (5.4) and thus, addition-
ally to the model parameters (s, γ, β, k,m), we need to consider also the initial values
start :=

(

x1(t0), . . . , xn(t0)
)

of the ODE system as parameters, since we do not know the
initial values accurately because of noisy experimental data.

Differential equations were solved numerically using the methods for numerical integration
of ordinary differential equations as implemented in Matlab. For a detailed description for
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7. Sequential Bayesian experimental design by means of maximum entropy sampling

this implementation see [SR97,SGT03].
Since we are interested in the probability distribution of the model parameters ω and the

variance σ2 given the experimental data D, we use Bayes’ theorem to obtain

p(ω, σ2|D) =
p(D|ω, σ2)p(ω, σ2)

p(D)
, (7.2)

where p(D|ω, σ2) is given by the likelihood (7.1), p(ω, σ2) denotes the prior distribution on
model parameters and p(D) is a normalizing constant independent of ω and σ2. Here, we set
the parameter σ2 in advance and do not estimate it.

7.2. Bayesian Experimental Design Procedure

7.2.1. General BED

The goal for experimental design is to specify an experiment that will provide new data
which is best suitable for our purposes. In a Bayesian experimental design framework, the
key ingredient for this purpose is the predictive distribution p(d|D,Me) for future data. Here
we denote by the index e one of the possible experiments we are able to perform, by D the
data we already have, by d the data we expect from experiment e and by Me we denote
the model with which we will generate data for given experiment e. What remains now is a
decision problem which experiment to choose, since we are able to make data predictions with
all experiments. What we need next is a utility function U(d, e) which gives us a measure how
useful an experiment e with given data d is. Since we do not know the data the experiment
will give beforehand, we have to integrate over all possible data. Thus, the best experiment
ebest is the one which maximizes the expected utility of the possible data, i.e.,

ebest = argmax
e

EU(e) = argmax
e

∫

U(d, e)p(d|D,Me) dd. (7.3)

Two questions arise:

1. How do we calculate the predictive distribution p(d|D,Me)?

2. What is a suitable utility function U(d, e)?

To answer the first question, let us remember that we look at models Me which are para-
metrized by some parameters ω. With prior knowledge on model parameters, or learned
parameter distributions according to given data D, we are able to calculate the predictive
distribution of future data d for the experiment e as follows:

p(d|D,Me) =

∫

p(d|ω,Me)p(ω|D) dω. (7.4)

In our case we consider as possible experiments e additional time points te where concentra-
tions of all gene products are measured. Thus, the first term in (7.4) is obtained by sampling
di from N

(

xi(te, ω), σ
2
)

for all i ∈ {1, . . . , n}. From (7.2) we obtain the second term in (7.4).
To answer the second question, we take the information of the final posterior distribution

for the model parameters ω as utility function, i.e.,

U(d, e) =

∫

p(ω|d,D,Me) log p(ω|d,D,Me) dω =: I(ω|d,D,Me). (7.5)
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7.3. MCMC Sampling from the Posterior

This utility function was suggested by Lindley in 1956 [Lin56] and is often used in BED, if
one wants to learn about the parameters ω (see also Section 6.3.3).

Plugging (7.4) and (7.5) in (7.3), we obtain

EU(e) =

∫

(

∫
(
∫

p(ω′|d,D,Me) log p(ω
′|d,D,Me) dω

′

)

· p(d|ω,Me) dd

)

p(ω|D,M) dω.

7.2.2. Maximum Entropy Sampling (MES)

This computationally intractable triple integral can be rewritten with the information theory
analog of Bayes’ theorem as:

EU(e) =

∫

p(d|D,Me) I(ω|d,D,Me) dd = I(d, ω|D,Me)− I(d|D,Me)

= I(ω|D,Me) +

∫

p(ω|D,Me) I(d|ω,D,Me) dω − I(d|D,Me). (7.6)

The first term in (7.6) is the information in the prior distribution p(ω|D,M) which is inde-
pendent of the experiment e and thus constant. The second term gives the average informa-
tion in the sampling distribution p(d|ω,D,Me), which is also constant for our model, since
di ∼ N

(

xi(te, ω), σ
2
)

for all i ∈ {1, . . . , n} with σ2 fixed and the information is translation
invariant according to Theorem 2.2.11. The third term in (7.6) gives the information in the
predictive distribution p(d|D,Me). Thus, our maximization problem (7.3) can be written as:

ebest = argmax
e

EU(e) = argmax
e

(

− I(d|D,Me)
)

= argmax
e

Ent(d|D,Me) (7.7)

since the negative information of a distribution gives the entropy of a distribution. The
entropy is a measure of the uncertainty in a distribution1. Thus, according to (7.7), the best
experiment to choose is the one where the uncertainty in the predictive distribution is the
highest. In other words:

We perform an experiment where we know the least!

This procedure is called maximum entropy sampling and was first described by Sebastiani
and Wynn [SW97, SW00]. Loredo [Lor04] gives an excellent overview over how maximum
entropy sampling can be used.

It is essential to mention that the parameter σ2 is fixed in advance, since otherwise the
second term in (7.6) would not be constant anymore and thus MES would not be applicable
anymore.

7.3. MCMC Sampling from the Posterior

We used the population-based MCMC (for an introduction into population-based MCMC
algorithms see Section 3.1.4) approach by Hu and Tsui [HT10] with two small changes. Let
us first describe the approach by Hu and Tsui. It is called the Distributed Evolutionary
Monte Carlo (DGMC) algorithm and a pseudocode version is given in Algorithm 7.1. The

1compare to Section 2.2.1 and Definition 2.2.2
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7. Sequential Bayesian experimental design by means of maximum entropy sampling

Algorithm 7.1 Distributed Evolutionary Monte Carlo (DGMC) [HT10]

Require: desired distribution p(·), size of chain population N , number of subpopulations k,

starting values
(

x
(0)
1 , . . . , x

(0)
N

)

for the N chains, number of Markov chain samples T ,
probability for migration pmig, probability for mutation pmut, proportion in every sub-
population propcross to perform the crossover operator on

1: t← 0
2: while t < T do
3: Sample u1 from U(0, 1)
4: if u1 < pmig then
5: Perform migration operator (see Algorithm 7.2)
6: end if
7: for i = 1 to k do
8: Sample u2 from U(0, 1)
9: if u2 < pmut then

10: Perform mutation operator on subpopulation i (see Algorithm 7.3)
11: else
12: Perform crossover operator on subpopulation i (see Algorithm 7.4)
13: end if
14: end for
15: t← t+ 1
16: end while
17: return Markov chains

(

x
(t)
1 , . . . , x

(t)
N

)T

t=0

idea of the DGMC algorithm is to use the Distributed Genetic Algorithm (DGA) [Tan89]
and incorporate it into an MCMC framework. In the DGA the whole population is divided
into several subpopulations and a genetic algorithm is performed on each of the subpopula-
tions. Additionally, individuals from subpopulations migrate to other subpopulations, such
that information is exchanged between the subpopulations. The DGA algorithm is able to
prevent premature convergence, where the genetic algorithm converges to early and ends in a
suboptimal result, because the population members are too similar. This behavior occurs in
practice for single-population genetic algorithms [Rya96].

In the DGMC algorithm N Markov chains are generated, where all generate samples from
the desired distribution p(·)2. These N chains are divided into k subpopulations each con-
taining m chains. To be more clear here, we start with starting values for every chain
(

x
(0)
1 , . . . , x

(0)
N

)

, divide these N values into k subpopulations where each subpopulation con-
tains m values. And then we apply genetic operators on the values of each subpopulation.
The genetic operators that are used by Hu and Tsui are migration3, mutation and crossover .
Pseudocode versions of them are given in Algorithms ?? - 7.4.

In the migration operator information between the subpopulations is exchanged. To do so,
one first has to specify a scheme according to one knows which subpopulation gives information
to another subpopulation. For this purpose, one permutes the vector (1, . . . , k) and obtains
the vector Psub. According to this we now let pass information from the subpopulation Psub(i)

2it is straightforward to use Markov chains which generate samples from different distributions (compare to
Section 3.1.4)

3this genetic operator was called the exchange operator in Section 3.1.4
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Algorithm 7.2 Migration operator for the DGMC algorithm

Require: size of chain population N , number of subpopulations k, current samples
(

x
(t)
1 , . . . , x

(t)
N

)

for the N chains

1:
(

x
(t+1)
1 , . . . , x

(t+1)
N

)

←
(

x
(t)
1 , . . . , x

(t)
N

)

2: Psub ← Permute the vector (1, . . . , k)
3: for i = 1 to k do
4: randomly pick one individual x

(t)
∗ from subpopulation Psub(i) and store it in a new

vector h as h(i), additionally store the index of the individual in a new vector hindex
as hindex(i)

5: end for
6: for i = 1 to k do
7: x

(t+1)
hindex(i)

← h(i − 1) {in this loop we use the notation 0 ≡ k}
8: end for
9: return Samples

(

x
(t+1)
1 , . . . , x

(t+1)
N

)

for the N chains

Algorithm 7.3 Mutation operator for the DGMC algorithm

Require: desired distribution p(·), number m of individuals in the subpopulation i, current

samples
(

x
(t)
i1 , . . . , x

(t)
im

)

for the m chains, proposal distribution q(·|x(t))
1:
(

x
(t+1)
i1 , . . . , x

(t+1)
im

)

←
(

x
(t)
i1 , . . . , x

(t)
im

)

2: randomly pick one individual from subpopulation i with the index hindex
3: Sample x̃ from q

(

·|x(t)hindex

)

4: α← min

{

1,
p(x̃)q

(

x̃|x
(t)
hindex

)

p
(

x
(t)
hindex

)

q
(

x
(t)
hindex

|x̃
)

}

5: Sample u from U(0, 1)
6: if u < α then
7: x

(t+1)
hindex

← x̃
8: end if
9: return Samples

(

x
(t+1)
i1 , . . . , x

(t+1)
im

)

for the m chains

to the subpopulation Psub(i + 1). Here we note that subpopulation k + 1 should be defined
as subpopulation 1. An example for 4 subpopulations with Psub = (2, 1, 4, 3) is depicted in
Figure 7.1. Having now the needed scheme, we randomly select one individual from every
subpopulation and pass it over to the destined subpopulation according to the vector Psub.
However, can we now be sure that this migration operator holds the desired distribution p(·)
invariant? The short answer to this question is: Yes! And for the long answer, i.e., the
mathematical proof, we refer to the original paper [HT10] Section 3.3.

In the mutation operator one individual in subpopulation i is selected randomly and a single
Metropolis-Hastings step is performed on it. The first change that we made in the usage of the
DGMC algorithm is that we not only updated one individual in subpopulation i within the
mutation operator step, but updated a proportion propmut of individuals in subpopulation i.
This parameter is a user-defined parameter and encounters for the purpose of efficiency and
thus not that many individuals are kept unchanged in one DGMC sampling step.

The crossover operator used by Hu and Tsui was proposed by the authors themselves. It
works as follows:
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Subpopulation 2

Subpopulation 4

Subpopulation 1Subpopulation 3

Figure 7.1.: Exemplary exchange of information in the DGMC algorithm between 4 subpopulations
with the vector Psub = (2, 1, 4, 3), i.e., subpopulation 2 passes over information to subpopulation 1, etc.
This picture is adapted from [HT10].

Algorithm 7.4 Crossover operator for the DGMC algorithm proposed by Hu and Tsui [HT10]

Require: desired distribution p(·), number m of individuals in the subpopulation i, cur-

rent samples
(

x
(t)
i1 , . . . , x

(t)
im

)

for the m chains, proportion propcross in subpopulation i to
perform the crossover operator on

1:
(

x
(t+1)
i1 , . . . , x

(t+1)
im

)

←
(

x
(t)
i1 , . . . , x

(t)
im

)

2: for ℓ = 1 to (propcross ·m) do
3: randomly pick one individual from subpopulation i with the index hindex {here one has

to guarantee that the individual with the index hindex has not been used before in the
former for-loop steps}

4: randomly pick two other individuals from subpopulation i with the indexes hindex1 and
hindex2

5: e← x
(t+1)
hindex1

−x
(t+1)
hindex2

∥

∥x
(t+1)
hindex1

−x
(t+1)
hindex2

∥

∥

6: sample a scalar r from the density g(r) =
p
(

x
(t)
hindex

+re
)

∫
p
(

x
(t)
hindex

+r′e
)

dr′

7: x
(t+1)
hindex

← x
(t)
hindex

+ re
8: end for
9: return Samples

(

x
(t+1)
i1 , . . . , x

(t+1)
im

)

for the m chains
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1. randomly select one individual x
(t)
hindex

in subpopulation i

2. randomly select two other individuals x
(t+1)
hindex1

and x
(t+1)
hindex2

in subpopulation i

3. sample a scalar r from the density

g(r) =
p
(

x
(t)
hindex

+ re
)

∫

p
(

x
(t)
hindex

+ r′e
)

dr′
, where e =

x
(t+1)
hindex1

− x
(t+1)
hindex2

∥

∥x
(t+1)
hindex1

− x
(t+1)
hindex2

∥

∥

(7.8)

4. set x
(t+1)
hindex

= x
(t)
hindex

+ re

This procedure is applied iteratively to propcross ·m individuals in subpopulation i, where
propcross denotes the user-defined proportion of individuals that has to be updated with the
crossover operator in one DGMC algorithm step. Two concerns arise immediately looking at
this procedure:

1. Does this crossover operator leave the desired distribution invariant?

2. How do we always know the terms x(t+1) for future time t+1 needed for the calculation
of the direction e?

For the answer of the first question we refer to the original paper for a proof. This is a
nice result also in terms that the algorithm will run more efficiently, since the proposed new

individual x
(t)
hindex

+ re is always accepted. However, the drawback is that it has to be easy
to sample from the density g(r), which is unfortunately not always the case. The authors
suggest to use other sampling algorithms to obtain samples for the scalar r inside the DGMC
algorithm. However, they also state that this leads to additional computational time and a
single Metropolis-Hastings may be used at the cost of losing some accuracy. Since for our
distribution of interest it is not easy to generate samples for the scalar r, we used a Metropolis-
Hastings step in the crossover operator as shown as pseudocode version in Algorithm 7.5.

The answer to the second question is simple: We don’t! However, the crossover operator
is applied iteratively to the individuals of one subpopulation. Thus, if any of the individuals

x
(t)
hindex1

and x
(t)
hindex2

was updated already with the crossover operator, we use the updated
version of it and otherwise we just use the current individual. To guarantee that the notation
we used is defined, we first set the values x(t+1) to the current states x(t) as a first step
(compare to the first step in Algorithm 7.4 and Algorithm 7.5).

7.4. Entropy Calculation

We used the algorithm provided by Györfi and van den Meulen [GvdM87] to obtain estimates
for the entropy of the predictive distribution p(d|D,Me) for different experiments e. The
estimator the authors define is a histogram-based entropy estimator and they show its strong
consistency (for a definition and theoretical background on estimators see Section 2.1.4).

We will describe in this section the estimator in more detail and give also a pseudocode
version of how we calculate the needed estimates. Let us start with samples (y1, . . . , yn)
from a density of a continuous random variable X, which are seen as realizations of random
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7. Sequential Bayesian experimental design by means of maximum entropy sampling

Algorithm 7.5 Crossover operator how we use it for the DGMC algorithm

Require: desired distribution p(·), number m of individuals in the subpopulation i, cur-

rent samples
(

x
(t)
i1 , . . . , x

(t)
im

)

for the m chains, proportion propcross in subpopulation i to
perform the crossover operator on, shape parameter r and rate parameter a of gamma
distribution Gamma(r, a), proposal distribution q(·|x(t))

1:
(

x
(t+1)
i1 , . . . , x

(t+1)
im

)

←
(

x
(t)
i1 , . . . , x

(t)
im

)

2: for ℓ = 1 to (propcross ·m) do
3: randomly pick one individual from subpopulation i with the index hindex {here one has

to guarantee that the individual with the index hindex has not been used before in the
former for-loop steps}

4: randomly pick two other individuals from subpopulation i with the indexes hindex1 and
hindex2

5: e← x
(t+1)
hindex1

−x
(t+1)
hindex2

∥

∥x
(t+1)
hindex1

−x
(t+1)
hindex2

∥

∥

6: sample a scalar r̃ from the gamma distribution Gamma(r, a)

7: x̃← x
(t)
hindex

+ r̃e

8: α← min

{

1,
p(x̃)q

(

x̃|x
(t)
hindex

)

p
(

x
(t)
hindex

)

q
(

x
(t)
hindex

|x̃
)

}

9: Sample u from U(0, 1)
10: if u < α then
11: x

(t+1)
hindex

← x̃
12: end if
13: end for
14: return Samples

(

x
(t+1)
i1 , . . . , x

(t+1)
im

)

for the m chains

variables (Y1, . . . , Yn). Furthermore, let Ani be cubes in R
k with edge length hn, where k

denotes the dimension of the data d. Then we have for the Lebesgue measure of Ani

λ(Ani) = hkn.

Additionally, we define the empirical measure for the cubes Ani as

µn(Ani) =
number of yi’s falling in Ani

n
.

With these two definitions we are able to give the formula for the entropy estimator as

T e
n = −

∑

i∈Fn

µn(Ani)
µn(Ani)

λ(Ani)
. (7.9)

One may now wonder, what the set Fn is, if it does not contain all possible indices i, and why
we can neglect the other terms. To tackle the first concern, we give the formal definition of

Fn := {i|µn(Ani) ≥ anh
k
n},

with 0 < an < 1 for all n ∈ N and
lim
n→∞

an = 0. (7.10)
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Algorithm 7.6 Algorithm to calculate entropy estimates

Require: realizations (y1, . . . , yn) of the density of interest, dimension k of data
1: α← 1/(k + 1)
2: β ← 1/(k + 2)
3: hn ← 1/(nα)
4: an ← n−β

5: specify cubes Ani according to their edge length hn
6: T e

n ← 0
7: for i do
8: if µn(Ani) ≥ anh

k
n then

9: T e
n ← T e

n + µn(Ani)
µn(Ani)

hk
n

10: end if
11: end for
12: T e

n ← −T e
n

13: return T e
n as defined in (7.9)

We see immediately that because of (7.10) the set Fn contains more indices i for growing
number of samples n. Basically, one can say that cubes Ani that contain none or only very
few samples yi are neglected during the calculation of T e

n.
To complete the survey of the estimator we give the the essential theorem for the reliability

of its usage.

Theorem 7.4.1. Assume that the condition (7.10) holds. Additionally, assume that the
following condition holds for each c > 0

∞
∑

n=1

1

anhkn
exp(−cnanhkn) <∞

and 1/hn is an integer such that
lim
n→∞

hn = 0.

If Ent(X) is finite, then we have
T e
n

a.s.−−→ Ent(X).

Proof. See [GvdM87] Section 4.

It remains to specify the constants an and hn for practical use. Györfi and van den Meulen
mentioned, that the assumptions of Theorem 7.4.1 are valid, if one uses hn = 1/(nα) and
an = n−β, where k ·α+β < 1 and a, b > 0. We will use their suggestion and set α = 1/(k+1)
and β = 1/(k+2). A pseudocode version of the algorithm we used is shown in Algorithm 7.6.

7.5. Evaluation of obtained posterior distributions

To evaluate the results of the BED method described in the previous sections, we take a look
at the posterior distributions of the model parameters after performing optimal experiments
as proposed by the BED with MES framework. We estimated the information I(ω) using
the entropy estimator by Györfi and van den Meulen as described in the previous section.
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7. Sequential Bayesian experimental design by means of maximum entropy sampling

Of course, since we want to obtain the information and not the entropy , we just take the
negative value of the obtained entropy estimate, since we have by definition for a random
variable X

I(X) = −Ent(X).

7.6. Implementation

We implemented our algorithm in Matlab, Release 2010b (The Mathworks), using the Statis-
tics Toolbox. The Statistics Toolbox was needed to generate random numbers from the
gamma distribution with the function gamrnd. We need these to propose the crossover op-
erator parameter r and the standard deviation of the normal distribution which is used to
propose new samples in the mutation operator.

The calculations were done on a Linux cluster with dual-processor 3.1 GHz XEON quadcore
machines with 32 GB RAM.

To speed up the calculations of the population-based MCMC algorithm we parallelized the
code with pMatlab, the Parallel Matlab Toolbox v2.0.1 [Kep09,KMK], which uses MatlabMPI
as a Message Passing Interface basis. pMatlab and MatlabMPI follow the SPMD model and
the distributed array model is used as a model to perform communication between processors
(compare to Section 3.2).

7.7. Results

7.7.1. Simulated Data: Five Gene Network

We evaluate our approach on a 5-gene regulatory network defined by our ODE model (5.4).
We simulated data with the model parameters described in Subsection 5.8.1. The data were
simulated by numerical integration with the function ode15s in Matlab with the initial values
(1, 1, 1, 1, 1).

We did not use any prior distributions on the model parameters.

In the first run of the parameter estimation sampling we started with two data points, i.e.,
we used the data of all genes at the time points t = 0 and t = 11. As possible experiments e to
perform we proposed to measure the concentration of all gene products at the 19 time points
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20). Thus, altogether we need to perform
20 parameter estimation steps. We did so for our sequential BED procedure and estimated the
information of the obtained posterior distribution p(ω|Di), i ∈ {1, . . . , 20}, where Di denotes
the data that we used in the i-th parameter estimation procedure to obtain the samples of
the posterior distribution of the parameter vector ω.

Let us give an example to clarify this notation. We have always D1 =
{

x(0, ω), x(11, ω)
}

and let us assume that the next proposed experiment would be to measure the concentration
of all 5 gene products at t = 5. Then we would have D2 =

{

x(0, ω), x(5, ω), x(11, ω)
}

, where
we write x(t, ω) :=

(

x1(t, ω), . . . , x5(t, ω)
)

.

To get a feeling how much the proposed experiments improve the parameter estimation
procedure, we compared the information of the posterior distribution of the model parameters
obtained with our BED procedure with the information of the posterior distribution of the
model parameters, if we just perform sequentially one randomly chosen additional experiment.
Furthermore, we compare the amount of information with the sequential experimental design
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Figure 7.2.: Results for the ODE model containing 46 parameters for gene network reconstruction with
perfect data. For 5 independent runs the mean and the standard deviation of the information contained
in the posterior distributions is depicted. The black line represents the runs with the maximal amount
of data available. The dark grey line represents random experiments, the light grey line represents the
results obtained with classical experimental design and the red line line illustrates optimal experiments.

procedure with the amount of maximally available information that we will obtain, if we run
the sampling procedure with D20.

We generated samples from the posterior distributions p(ω|Di), i ∈ {1, . . . , 20}, with the
population-based MCMC algorithm specified in Algorithm 7.1 with the crossover operator
as in Algorithm 7.5. We ran 20 Markov chains subdivided into 4 subpopulations, where we
generated with every chain 202, 000 samples from p(ω|Di) with a burn-in of 2, 000 steps. The
probability for migration was set to pmig = 0.005, the probability for mutation was set to
pmut = 0.5 and the proportion propmut was set to 1, i.e., the mutation operator is performed
on all individuals of one subpopulation. The proportion propcross was also set to 1, i.e.,
the crossover operator is performed iteratively on all individuals of one subpopulation. The
noise parameter is set to σ = 0.01 for simulated data used without noise and to σ = 0.1 for
simulated data used with noise.

We parallelized the code in such a way that the samples to be generated in one subpopula-
tion are generated on one processor. Doing so, we keep the overhead of the parallelized code
small, since the processors only have to communicate, if the migration operator is performed.
However, this is the case in only 0.5% of the samples generated, i.e., in our case only the
processors have only to communicate on average 1010 times during the sampling procedure.

Results with perfect data

The obtained results for our experimental design procedure with simulated data without noise
are depicted in Figure 7.2. We performed 5 independent runs of our approach and show the
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Figure 7.3.: Entropy estimates for run 1 for perfect data (Part I)
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Figure 7.4.: Entropy estimates for run 1 for perfect data (Part II)
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7. Sequential Bayesian experimental design by means of maximum entropy sampling

mean and the standard deviation of the obtained values for the information of the posterior
distribution of the model parameters. We clearly see that our approach outperforms random
experiments and after performing 4 additional experiments, the amount of information in the
posterior distribution of the model parameters is the same as if we have used all available
data.

It is worth to mention, that the amount of information in the posterior distribution of
the model parameters is equal for experiment number 1. However, since we used for experi-
ment #1 the same two data point, this is a desirable result. And it implies, that our MCMC
approach really samples from the desired distribution and is robust, since the information con-
tent in the posterior distribution over the model parameters is very similar, i.e., the standard
deviation is very low, for all independent 104 runs.

In Figures 7.3 and 7.4 the entropy estimates of the predictive distribution p(d | D, Me)
for all possible experiments are depicted for the first independent run of our approach. The
entropy estimates for the other four runs can be found in Appendix B in Figures B.1 – B.8.
To be more precise, we show the values of the entropy estimates for all 19 time points, at
which the concentration of all gene products may be measured as possible experiment. These
estimates were used to specify the time point, where the entropy estimate is maximal and
the obtained data was used in the corresponding experiment (the experiment number written
under every subfigure). Of course, after performing an additional experiment and thus use the
additional data in the parameter estimation step, no entropy estimate is given for that time
point anymore. The notation of the number of the experiments is the same as in Figure 7.2: in
experiment #1 no additional experiment was performed, in experiment #2 data measured at
one additional time point is added, etc. Let us give a small example: in Figure 7.3 in the first
subfigure for “Exp 2” the entropy estimates for all time points after finishing the sampling
procedure for experiment #1 are shown and time point 1 (tp 1) shows the maximal entropy
value. Thus, in experiment #2 the additional data obtained at time point 1 is added into the
sampling procedure for parameter estimation. In the subfigure for “Exp 3” time point 1 is
missing, since the data for is already included into the parameter estimation framework. The
maximal entropy value in this subfigure is time point 6, which is not included anymore in the
subfigure for “Exp 4”, etc.

Results with noisy data

The results with simulated data with noise for our experimental design procedure are shown
in Figure 7.5. The results look similar to the results obtained without noise, i.e., our approach
outperforms random experiments. However, one has to perform 12 additional experiments to
obtain the same amount of information in the posterior distribution of the model parameters
as if we have used all available data. Nevertheless, the amount of information present in the
posterior distribution after performing 5 experiments may be sufficient for practical issues.

It is worth to mention the fact that the expected result that the maximal amount of
information contained in all available data points is smaller for noisy data compared to perfect
data without noise.

In Figures 7.6 and 7.7 the entropy estimates for the first independent run of our approach
of the predictive distribution p(d | D, Me) for all possible experiments are depicted, as was
described in the previous subsection. The entropy estimates for the other four runs are shown
in Appendix B in Figures B.9 – B.16.

45 runs with optimal experiments procedure and 5 runs with random experiments procedure
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Figure 7.5.: Results for the ODE model containing 46 parameters for gene network reconstruction with
noisy data. For 5 independent runs the mean and the standard deviation of the information contained
in the posterior distributions is depicted. The black line represents the runs with the maximal amount
of data available. The dark grey line represents random experiments, the light grey line represents the
results obtained with classical experimental design and the red line line illustrates optimal experiments.

7.7.2. Experimental Data: The DREAM 2, Challenge #3 Dataset

We used the same data and preprocessed it in the same way as was done in Section 5.8.2. As
for the case above with simulated data we did not use any prior distribution on the model
parameters and generated samples from the posterior distributions p(ω|Di), i ∈ {1, . . . , 14},
using Algorithm 7.1 with the crossover operator as described in Algorithm 7.5 with the same
parameters as we used it for the runs with simulated data.

In the first run of the parameter estimation sampling we started with two data points, i.e.,
we used the data of all genes at the time points t = 0 and t = 8. As possible experiments
to perform we proposed to measure the concentration of all gene products at the 13 time
points (1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14). Thus, altogether we need to perform 14 parameter
estimation steps.

Well, one parameter was different for the usage of real biological data, namely the noise
parameter σ. We assumed here that the amount of noise in the data in the future experiments
will be comparable to the amount of noise in the already available data. To be more precise,
we calculated the median of the 5 · (i + 1)5 measurements available in the i-th parameter
estimation step and set σ to this value.

The results with simulated data with noise for our experimental design procedure are shown
in Figure 7.8. As for the simulated data, our experimental design approach outperforms
random experiments. Moreover, after performing 6 experiments the amount of information in

5for experiment #i we use data at (i+ 1) time points for all 5 genes
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Figure 7.6.: Entropy estimates for run 1 for noisy data (Part I)
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Figure 7.7.: Entropy estimates for run 1 for noisy data (Part II)

141



7. Sequential Bayesian experimental design by means of maximum entropy sampling

0 5 10 15
0

1

2

3

4

5

6

7

Experiment Number

In
fo

rm
at

io
n

Dream 2 Challenge #3 Data

 

 

all data
optimal experiments
random experiments
D−optimal experiments

Figure 7.8.: Results for the ODE model containing 46 parameters for gene network reconstruction
with data from the DREAM 2 Challenge #3 initiative. For 5 independent runs the mean and the
standard deviation of the information contained in the posterior distributions is depicted. The black
line represents the runs with the maximal amount of data available. The dark grey line represents
random experiments, the light grey line represents the results obtained with classical experimental
design and the red line line illustrates optimal experiments.

the posterior distribution of the model parameters is the same as if we have used all available
data. Performing random experiments, the same amount of information is only obtained after
the performance of 10 experiments.

In Figure 7.9 the entropy estimates for the first independent run of our approach of the
predictive distribution p(d | D, Me) for all possible experiments are depicted, as was described
in Section 7.7.1. The entropy estimates for the other four runs are shown in Appendix B in
Figures B.17 – B.20.

7.7.3. Comparison with classical experimental design

You maybe already noticed that in Figures 7.2, 7.5 and 7.8 there is an additional curve
that is annotated with “D-optimal experiments”. Here we want to explain how the results
generating this curve were calculated. To describe it first in a very general case, we can say
that we performed classical experimental design where we linearized around a point estimate
and minimized a scalar-valued function of the variance of this point estimate. We used the
framework as described in Section 6.2.3 and in [ADT07] Chapter 17.8. We used the Matlab
function ode15s to obtain the needed parameter sensitivities Fi, where i ∈ {1, . . . , 5} denotes
the experimental outputs for the 5 genes present. The outputs were also called the responses
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Figure 7.9.: Entropy estimates for run 1 for the DREAM 2 Challenge #3 data

143
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in Chapter 6. Since we have five responses in our possible experiments, we use as information
matrix the one that was introduced in (6.3). In our case, for a point estimate p̂, we use the
information matrix

Mp̂ =
5
∑

i=1

1

σ2
(Fi)

TFi,

since we assumed independent mean zero Gaussian noise with variance σ2. As a point estimate
p̂ we use the set of parameters where the likelihood (7.1) is maximal for all the sampled
parameter vectors.

The final decision which experiment is performed next is made by calculating for all possible
time points where the gene products can be measured the determinant of the information
matrix Mp̂ and perform the experiment where det

(

(Mp̂)
−1
)

was minimal, i.e., according to
the definitions in Chapter 6 we use a D-optimality criteria. Since Mp̂ in our case is under-
determined and thus singular, because we consider in our experimental design only one factor
which gives five observations to specify 46 model parameters, we regularized it by adding a
small multiple ǫ of the identity matrix Id, i.e., we used the information matrix

M ǫ
p̂ := Mp̂ + ǫ Id . (7.11)

We set ǫ = 10−5. With this regularization the information matrix becomes invertible and we
are able to calculate its determinant which now differs for different experiments. This type
of regularization is described in [ADT07] in Chapter 10.3.

We see in all three cases, i.e., for the perfect data (see Figure 7.2), for the noisy data (see
Figure 7.5) and also for the DREAM 2 Challenge #3 data (see Figure 7.8), that this classical
experimental design procedure gives the worst results. It gives even worse results than the
random choice of experiments. At first sight, these results seem strange, since a procedure for
experimental design was performed. However, if we look in more detail at the experiments
that were proposed with the classical experimental design, we see that for all five independent
runs, independent of the used point estimate p̂, the sequentially proposed experiments are to
measure the gene product concentrations of all genes at the time points 20, 19, 18, 17, 16, 15,
14, 13, 12, 10, 9, 8, 7, 6, 5, 4, 3, 2 and 1 for the perfect and noisy simulated data and 14, 13,
12, 11, 10, 9, 7, 6, 5, 4, 3, 2 and 1 for the DREAM 2 Challenge #3 data. On the contrary,
looking at the experiments proposed with our Bayesian experimental design procedure we
can see in Figures 7.3, 7.4, 7.6, 7.7 and 7.9 in this chapter and in the Figures B.1 – B.20
in Appendix B that the most informative experiments to perform are, well not exclusively,
the ones at early time points. And for the classical experimental design procedure the data
obtained at these time points is added very late. In comparison, for random experiments, as
the name implies, the experiments are chosen randomly, i.e., the probability to propose the
measurement of all gene product concentrations at one specific time point is the same for all
time points, and thus early time points will be chosen earlier in the sequential experimental
design procedure.

7.8. Discussion

Relevance

The algorithmic approach used here for Bayesian experimental design shows that BED is
possible for high-dimensional models based on non-linear ordinary differential equations, the
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most often used type of models in the field of systems biology. In comparison to existing
experimental design procedures, where the variance around a point estimate is minimized,
the used method here considers the whole distribution of model parameters and suggests as
next experiments the one where the information content in the whole posterior distribution
will increase.

We have evaluated our approach on simulated and on real experimental data from a syn-
thetic 5-gene regulatory network. We compared the amount of information present in the
posterior distribution performing the experiments proposed with our experimental design
procedure with the performance of random experiments and with the performance of experi-
ments proposed with the classical experimental design procedure for ODE models described
by Atkinson [ADT07] in Chapter 17.86. For all tested datasets (perfect simulated data, noisy
simulated data and real experimental data) we have shown that our experimental design
procedure outperforms the usage of classical experimental design and the usage of random
experiments to a high extent. Even more striking is the fact, that the used procedure to per-
form classical experimental design for ODE models is not really applicable to situations with
this little amount of data and the information matrix used has to be regularized to become
invertible and thus obtain a determinant different from zero.

The work presented here shows that with the simplification of maximum entropy sam-
pling and the usage of population-based MCMC algorithms, Bayesian experimental design
is possible even for general non-linear problems without the need of linearization around
point estimates or the assumption of the distributions to follow a Gaussian distribution.
Moreover, the DGMC algorithm enables the easy and efficient parallelization of the sam-
pling procedure, since the overhead produced by the communication between the processors
is intended to be small. Altogether, the technical limitations usually mentioned to perform
general BED are solved and distributions over parameter values can be considered completely
for experimental design purposes. And this is a desirable feature, because of the known
problems of non-identifiabilities and sloppiness in parameter estimation tasks especially for
problems tackled with non-linear ordinary differential equations models arising in systems
biology [GWC+07,RKM+09].

Since maximum entropy sampling for Bayesian experimental design is, in principle, appli-
cable to any kind of experiment7 and to any ODE model, the algorithmical method proposed
gives modelers and experimental biologists the possibility to accomplish the sequential task of
mathematical modeling, experimental design and biological experiments as depicted in Fig-
ure 0.1 in the Introduction under consideration of distributions over model parameters and
not only point estimates.

Limitations and Future Work

One clear limitation of this work is the long computational time it needs to obtain sufficient
reliable samples from the distribution of interest. This is the usual unsolved problem of how
to use Markov chain Monte Carlo algorithms in practice to obtain reliable samples from the
desired distribution in an efficient manner. Issues concerning this problem where already
argued in [MK11]. There are no general guidelines to deal with this problem and more
theoretical and practical considerations have to be looked at in more detail. We argued in

6see also Section 6.2.3 in this thesis for a description
7perturbation experiments, knockdown experiments of certain components in the system under consideration,
etc.
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the previous section and in [MK11], that population-based MCMC algorithms are promising.
As one step to be followed in the future will be to generate new efficient crossover steps. For
example, one could propose new values x̃ using the gradients of the objective function and
propose those values which are close to local minima of the objective function8. This needs
more theoretical and algorithmical work to be performed, since algorithmic differentiation9

has then to be used for general problems.
However, the known issues using MCMC algorithms is only half of the story. In this work,

we additionally observed a lot of problems with the numerical integration. Although, we
already used the function ode15s within Matlab which deals with stiff differential equations,
we had to deal with numerical instabilities. Even worse, for some proposed parameter values
in the DGMC algorithm the function ode15s was not able to integrate over the whole time
interval. We assumed that these parameter values will be rejected anyway within the MCMC
steps. We think that this is a reasonable assumption, since the solution of such stiff problems
will not be accurate and will not describe the underlying dynamics anyway. However, even if
this assumption is not valid, the cases where we do not have integrated values over the whole
time interval are rare in the procedure, and tend to appear more often for noisy data, i.e., for
the simulated data with noise and for the DREAM 2 Challenge #3 data. Furthermore, this
problem appears much more often in the cases where only a few data points are available, i.e.,
for low experiment numbers. Altogether, we observed a lot of practical problems while using
numerical integration approaches, which we already partially discussed in Subsection 2.4.3.
To circumvent this, one possibility would be to avoid numerical integration and use an ap-
proach based on splines, as was done in Chapter 5, for parameter estimation. We point out
here, that the numerical problems with our approach mainly originate from the numerical
instabilities during numerical integration, which has to be performed in every single sampling
step. Thus, this problem is the crucial one which has to be solved in the future, at least for
high-dimensional models.

A further point to mention here is the fact, that we completely neglected the integration of
prior knowledge into our BED method. Doing so will be a major point for future work, since a
lot of biological knowledge is available and can and should be used to help with the underlying
parameter estimation problem. However, doing so, one is interested in the Kullback-Leibler
divergence between the prior distribution and the obtained posterior distribution and not in
the information of the posterior distribution of the model parameters. Thus, the used utility
function is no longer the information (7.5) but is the Kullback-Leibler divergence

U(d, e) = DKL

(

p(ω|d,D,Me) ‖ p(ω)
)

.

Thus, maximum entropy sampling seems not to be applicable directly to the case where prior
knowledge is available. However, since it holds

DKL

(

p(ω|d,D,Me) ‖ p(ω)
)

=

∫

p(ω|d,D,Me) log
p(ω|d,D,Me)

p(ω)
dω

= I(ω|d,D,Me)−
∫

log p(ω) dω (7.12)

and the second term in (7.12) is independent of the experiment e, the same utility function as
for the case without prior knowledge can be used which enables us to use maximum entropy

8compare to derivative-based optimization algorithms (see e.g. [NW06])
9see [GW08b]
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sampling even in the case where prior knowledge is incorporated into the parameter estimation
framework.

We compared our approach of Bayesian experimental design by usage of maximum entropy
sampling only with the classical experimental design described by Atkinson [ADT07]. The
recently proposed methods by Steinke et al. [SST07], Busetto and Buhmann [BOB09] and
Kramer and Radde [KR10] use perturbation experiments to perform BED for non-linear
ODE models. Thus, our method has to be adapted for perturbation experiments first to be
able to see how our BED procedure compares with the existing methods using perturbation
experiments. Moreover, the comparison with the very recent proposed general approaches for
Bayesian experimental design by Terejanu et al. [TUM11] and by Huan and Marzouk [HM11]
would be very interesting. However, both publications only show the applicability of their
methods for a model with three resp. two parameters. It remains to be shown, if their
approaches scale up to models with more parameters, like in our case to models with 46
parameters.

A more technical issue to consider will the impact of the entropy estimator used. Several
other entropy estimators are available, i.e., [HS09,KHAR10], which where specially developed
for the case where only a small amount of samples is available. It will be worth to examine,
if the usage of another entropy estimator changes the proposed experiments in the BED
procedure. Moreover, with these entropy estimators one could also examine the effect of
generating less samples with the MCMC algorithm of the posterior distribution with our
Bayesian experimental design procedure by means of maximum entropy sampling.

To decrease the amount of computational time needed several other possibilities from com-
puter science have to be addressed. One point would be to parallelize the used code even
more than was already done. The simplest possibility would be to run more Markov chains
in parallel on more processors where each one produces less samples but together the number
of generated samples from the posterior distribution remains the same. Another promis-
ing possibility is to run the code, instead on central processor units (CPUs), on graphical
processor units (GPUs), which has already been done in computational problems arising in
systems biology like sequence alignment [BL11,HKAA11] which leads to tremendous speedup
of calculations in comparison to the usage of the same algorithms on CPUs.

As a last point it remains to mention, that although in this thesis the application is the
inference of gene regulatory networks, the proposed sequential BED procedure can and should
be applied to general high-dimensional ODE models, especially for the cases where the amount
of data is limited and noisy. This is, of course, the case for modeling in systems biology but
also for other complex models arising in nature like climate modeling or economic modeling .
A further point would also be to extend the proposed method to be applicable to partial dif-
ferential equations models, which not only need the temporal but also the spatial information
to be modeled, like, for example, in geologic modeling .
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CHAPTER 8

What we learned

What is success? I think it is a

mixture of having a flair for the

thing that you are doing; knowing

that it is not enough, that you

have got to have hard work and a

certain sense of purpose.

(Margaret Thatcher)

8.1. Summary

This thesis addressed the challenging tasks of parameter estimation and experimental de-
sign for high-dimensional non-linear ODE models arising in systems biology and applied the
obtained methods and algorithms to the inference of gene regulatory networks.

More precisely, Bayesian approaches for parameter estimation and experimental design
were used and new algorithms were developed. Bayesian frameworks are especially suitable
for problems arising in systems biology, as was discussed in the introduction and in [MK11],
since the given data is limited and contains a lot of noise. And thus, one has to deal with
technical problems like non-identifiabilities and sloppiness of parameters.

In this thesis, first an efficient method and algorithm for the parameter estimation task for
ODE models describing gene regulatory networks is given in Chapter 5. It circumvents the
need of time-consuming numerical integration in every sampling step of the parameters using
the hybrid Monte Carlo algorithm. This is done using as objective function a least squares
function that does not compare the measured data concentrations to the solution of the system
of ordinary differential equation, but compares the derivative of the time-series data concen-
trations with the slopes predicted with the ODE model. The needed derivatives of the data
concentrations are obtained by fitting a smoothing spline with a smoothing factor λ to the
data. Since the results of this approach highly depend on the value for the derivatives of the
experimental data and thus on the smoothing factor λ, an iterative approach for the sampling
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of the model parameters and the smoothing factor is used. The usage of smoothing splines
gives a tradeoff between accurate representation of the data and smoothing out the noise. Fur-
thermore, the existence of a closed formula for the calculation of smoothing splines1 makes
the whole sampling procedure faster compared to the usage of numerical integration in every
sampling step. The method was evaluated on both, simulated and real experimental data. For
the simulated data, which consists of oscillations, we show that the developed method is able
to reconstruct the underlying topology of the 5-gene regulatory network accurately, at least
for low amounts of noise. However, for high amounts of noise and small number of data points
the oscillations in the data break down and thus a successful reconstruction of the network
is not possible anymore. As experimental data, the DREAM 2 Challenge #3 data was used.
These data represent a synthetically designed 5-gene network with known topology in yeast
and was generated by Cantone et al. [CMI+09] for the DREAM initiative. We outperform
other approaches that were submitted to the DREAM 2 competition in the two categories
DIRECTED-SIGNED-INHIBITORY and DIRECTED-UNSIGNED and obtained compara-
ble results with the best submitted method for the DIRECTED-SIGNED-EXCITATORY
category.

Second, in this thesis an efficient algorithm for the performance of Bayesian experimental
design is given and applied to a high-dimensional non-linear ODE model describing gene regu-
latory networks in Chapter 7. We showed that with maximum entropy sampling it is possible
to perform Bayesian experimental design for general distributions of model parameters and
they do not have to follow a certain parametric form. Experiments are then selected such that
the information in the posterior distribution will be maximally increased. Going the standard
way to perform general BED, this would mean to have to solve triple integrals2. With the
usage of maximum entropy sampling, this computationally non-tractable task reduces to the
estimation of the entropy, being only one integral, of the distribution of the data that will
be obtained after performance of this experiment. Then the experiment will be chosen where
the entropy is maximal, i.e., an experiment will be performed where one knows the least. To
obtain entropy estimates, one needs a high number of samples from the distribution of the
model parameters. Reliable samples of the model parameters are obtained with the usage of a
population-based Markov chain Monte Carlo algorithm which is parallelized to speed up the
sampling procedure. The method was evaluated for simulated data as well for the DREAM
2 Challenge #3 data. It was compared to the choice of random experiments and the usage of
the D-optimal classical experimental design for ODE models described in Atkinson [ADT07]
Chapter 17.8. We show that the maximum entropy approach clearly outperforms the choice
of random experiments as well as the classical experimental design method.

Altogether, this thesis provides two excellent approaches for the parameter estimation and
the experimental design for high-dimensional non-linear ordinary differential equations mod-
els that arise in systems biology. The proposed Bayesian approaches consider the whole
distribution over the model parameters and do not only concentrate on point estimates which
was shown to be problematic because of non-identifiability and sloppiness problems for the
obtained point estimates [GWC+07,RKM+09] and furthermore the possibility that the global
optimum may not be reasonable from the biological point of view [SSC+10]. To show the
figure of the sequential procedure for modeling biological processes in Figure 8.1 again, which
was also shown in the introduction, we see that our method for the Bayesian parameter esti-

1see Section 2.5.2 for a reference for the closed formula
2see Section 7.2.1
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Figure 8.1.: A sequential procedure for modeling biological processes.

mation helps in the procedures indicated with the “improve” and “predict” arrows and our
Bayesian experimental design approach describes the procedure in the “Experimental Design”
box and helps in the work indicated with the “determine” arrow. Taken together, the meth-
ods presented here are involved in a large part of the sequential modeling process of biological
systems.

8.2. Discussion

Having summarized the results and the impact of the research presented in this thesis, it
remains to discuss the limitations and critical points about the presented work.

Let us start with the Bayesian experimental design procedure examined in Chapter 5. One
striking fact was that the prior distribution for the smoothing factor has to be very strict,
since otherwise the data will be overfitted and no noise will be smoothed out of the data.
Also the priors for the threshold parameters have to be predefined with carefulness, since
according to the model they are crucial to estimate the right directions, i.e., activation or
inhibition, of the regulations between genes.

We observed also that especially the reconstruction from experimental data, although we
outperformed other methods, is far from being perfect. This may be due to a dense population
of local optima and picking a single optimal topology may be the wrong way to treat the
obtained multi-modal distribution over model parameters.

For the Bayesian experimental design procedure there are several limitations that have
to be pointed out. First, it cannot be applied for online experimental design, i.e., while a
biological experiment is running, the optimal time point when to measure next is estimated.
This is, of course, due to the long runtime of the sampling algorithms. The next big concern
is the presence of numerical instabilities in the procedure, which is caused by the numerical
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integration of the ODE system for little and noisy data. Furthermore, the sampling for a noise
parameter in the model is not included, since an estimate for the amount of noise present in
the used data is needed to apply maximum entropy sampling.

It seems also to be a drawback of the proposed method for experimental design that the
set of experiments has to be fixed at the beginning and for every experiment the entropy
of the predictive distribution has to be stored. Thus, the optimal experiment is found by
enumeration over the whole search space which may of course lead for large search spaces to
storage and runtime problems. However, for problems in systems biology there exist a lot of
restrictions for the experiments that can be performed [KT09], e.g.,

1. only some of the species present in an ODE model can be measured

2. external perturbations that can be performed practically are limited

Altogether, the above mentioned point is not such a big concern, since the search space that
is enumerated is reasonably small due to experimental constraints.

Compared to alphabetical classical experimental design our method is applicable and pro-
duces useful results, even if non-identifiabilities of the parameters occur in the model. In
this situation the information matrix will be singular and regularization techniques has to be
applied to obtain at least some results for the classical experimental design methods.
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CHAPTER 9

What remains to be learned

It is said that the present is

pregnant with the future.

(Voltaire)

Having discussed the relevance and the critical points of the scientific work presented in this
thesis in the last chapter, this chapter will deal with the future directions of the presented
methods and algorithms.

For the Bayesian parameter estimation procedure presented in Chapter 5 the future work
should include the exhaustive study of the impact of the hyperparameters used for the prior
distributions on the obtained results. Furthermore, the used iterative sampling of model
parameters and the smoothing factor should be compared with the usage of smoothing splines
as used by Poyton et al. [PVM+06] and Ramsay et al. [RHCC07]. In their work the model
predictions are fed back into the spline estimation step, whereas we only use as penalty term
the second derivative of the spline. The investigation of this difference and its impact for the
inference procedure is of great interest. In addition, the noise present in the data should be
incorporated into the learning framework. Right now, this information is completely neglected
and not used in the reverse engineering task.

The Bayesian experimental design framework presented in Chapter 7 offers a lot of direc-
tions for future research. One obvious direction will be to avoid numerical integration of the
ODE system in every sampling step, since this causes a lot of numerical instabilities especially
for the cases where only little data are available. One possibility to avoid numerical integra-
tion can be the usage of smoothing splines as for the Bayesian parameter estimation method
in Chapter 5. This may solve the numerical instabilities and also speed up the experimental
design procedure. Another direction of future research can the usage of another entropy esti-
mator, especially those that are developed for the case where only a small number of samples
for a distribution are available [HS09,KHAR10]. This step can also help with speeding up the
Bayesian experimental design procedure. Finally, one last big topic for future work will be the
adaptation of the BED approach to other experiments, like perturbation experiments. Thus,
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9. What remains to be learned

our method could also be compared with other presented methods for Bayesian experimental
design that all use perturbation experiments as potential experiments to be performed.

And since the results for Bayesian methods using Markov chain Monte Carlo algorithms can
only be as good as the obtained samples for the distribution under investigation, a necessary
and demanding goal for future research is to find more efficient sampling algorithms. And
especially for the population-based MCMC algorithm used for the Bayesian experimental
design approach new crossover operators, which are able to explore the search space more
efficiently, would be of high interest.

In summary, the main point for future work, apart from the application to other high-
dimensional ODE systems and other experiments, is the reduction of the computational run-
time. Several theoretical and algorithmical mathematical possibilities how this can be done
were suggested. However, more detailed knowledge about efficient programming practice and
more efficient devices like the usage of GPUs has to be explored and used for speeding up the
whole process of the proposed Bayesian experimental design procedure.

A more general topic to be considered in the future will be the question, how the huge
generated data sets with both presented methods in this thesis, i.e., the samples generated
of the posterior distribution and the data that had to be stored for the BED procedure to
be able to calculate the desired entropies, can be further used and analyzed. Both data sets,
the posterior distribution of the model parameters as well the distribution of the predictive
distribution may be used to explore in more detail all modes of these distributions. The
posterior distribution will then give us all possible topologies of the underlying gene regulatory
network that are consistent with the data. Or, if used on other ODE models, the modes
will give all parameter sets that are consistent with the data. The modes of the predictive
distribution may be potentially used to analyze the dynamical system under consideration in
more detail. These distributions can be used to get a feeling for which parameter ranges the
dynamics of the system does not change at all, or for which parameter ranges the dynamics
vary a lot even for small parameter changes. To formulate this in other words: one may
perform a sensitivity analysis of the system under consideration. Altogether, how this can be
formulated precisely and proven mathematically is an interesting topic for future work.

Now this is not the end. It is not even the beginning of the end. But it is, [...],
the end of the beginning.

Winston Churchill
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APPENDIX A

Proof of value for random guessing for

three-class ROC

I enjoy learning technical details.

(Ken Follett)

In classical two class receiver operator characteristics analysis the area under curve value
gives a measure of how well the two classes are separated. In our case this approach is not
suitable, since we want to distinguish three classes and evaluate how well they are predicted.
We now describe the confusion matrix underlying our analysis as well as our method for the
generation of ROC points and the calculation of the AUC value. After recalling what the
AUC value is for guessing in the two class ROC analysis, we calculate the AUC value for
guessing in our three class ROC analysis for sensitivity vs. 1−specificity and precision vs.
recall. For more information concerning receiver operator characteristics, see [Faw06].

A.1. Confusion matrix

In Table A.1 the confusion matrix of our three class problem is denoted. An edge is denoted
as true positive (TP), if it is a positive or negative link and predicted also as a positive or
negative link, respectively. False positives (FP) are all predicted positive or negative links
which are not correctly predicted, i.e., either they are non-existent or they have another sign
in the reference network. As true negatives (TN) we denote correctly predicted non-existent
edges and as false negatives (FN) falsely predicted non-existent edges are defined, i.e., an
edge is predicted to be non-existent, but it is a positive or a negative link in the reference
network.
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A. Proof of value for random guessing for three-class ROC

predicted
positive link negative link non-existent link

positive link TP FP FN

actual negative link FP TP FN

non-existent link FP FP TN

Table A.1.: Mapping of three-class classification problem (no edge present, positive regulation, nega-
tive regulation) onto two-class ROC / PR evaluation.

A.2. ROC point generation and AUC Calculation

Let B be the set of the predicted interaction parameters, i.e., the edge weights. Further
denote by βmax the maximum of the absolute values of B. Now we choose a precision factor
p and calculate the step size s = βmax/p. Then, for a varying threshold from zero to βmax by
adding the step size s we obtain p thresholds. For each of these thresholds we set the predicted
interaction parameters to zero for values inside the interval [ - threshold, threshold ]. Then
we calculate sensitivity, specificity and precision according to the confusion matrix denoted
in Table A.1 for each of the p thresholds. Then the AUC value is calculated as the integral
under the curve described by these points.

A.3. AUC value for guessing for two class problem

For the two class problem the AUC value for guessing for sensitivity vs. 1−specificity is
known to be 0.5. Assume that one has randomly guessed the edges of a network. If you now
have a classifier which gives you sensitivity of 0.8, i.e., 80 percent of true existing edges are
found with our classifier, then you also expect to have 1−specificity of 0.8, i.e., 80 percent of
the predicted existing edges are not present in the true network.

The AUC value for guessing for precision vs. recall is the ratio of present edges in the gold
standard divided by the possible edges in the gold standard for varying recall between zero
and 1. (See also Section 3.3.1.)

A.4. AUC value for guessing for three class problems

First, we introduce as notations p(+L) for the probability of a positive learned edge, p(−L)
for the probability of a negative learned edge and p(0L) for the probability of a non-existent
learned edge. Furthermore, we denote by ratio(+), ratio(−) and ratio(0) the ratio between
the positive, negative resp. zero edges in the true network. For example, if in the true network
there are one third positive edges, one third negative edges and one third zero edges, then
ratio(+) = ratio(−) = ratio(0) = 1. If two third of the edges are zero edges and one third
of the edges are positive, then ratio(0) = 2, ratio(+) = 1 and ratio(−) = 0. Note, that we
always have

ratio(0) + ratio(+) + ratio(−) = 3 (A.1)

in our three class problem.
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A.4. AUC value for guessing for three class problems

Remark A.4.1. With the method for the ROC point generation described in Section A.2 we
have two properties of the above defined probabilities:

1. Since we take a symmetric threshold variation, we want to have for randomly generated
edge weights

p(+L) = p(−L). (A.2)

2. The aim is now to give a function which depends on p(+L), p(−L), p(0L) and ratio(0),
ratio(+), ratio(−), which gives us the points in the ROC graph by varying p(0L) from
zero to one or analogously with (A.2) by varying p(+L) or p(−L) from zero to one half.

Furthermore, denote by p(TP |+L) the conditional probability for a TP under the condition,
that an edge was learned as positive. Similarly, for all other combinations of TP, FP, TN,
FN and +L, −L, 0L. Now assume that one generates randomly with the uniform distribution
weights on the edges. Thereby we assume, that we have infinite many edges to ensure that
p(+L) = p(−L) and therefore with Table A.1 and our assumptions we have

p(TP |+L) =
ratio(+)

3
· p(+L)

p(TP |−L) =
ratio(−)

3
· p(+L)

p(FP |+L) =
ratio(−) + ratio(0)

3
· p(+L)

p(FP |−L) =
ratio(+) + ratio(0)

3
· p(+L)

p(FN |0L) =
ratio(+) + ratio(−)

3
· p(0L)

p(TN |0L) =
ratio(0)

3
· p(0L).

(A.3)

Furthermore, we have

0 = p(TP |0L) = p(FP |0L)
= p(TN |+L) = p(FN |+L)

= p(TN |−L) = p(FN |−L)

(A.4)

and with the classification in Table A.1 and together with (A.4) we obtain

p(TP) = p(TP |+L) + p(TP |−L)

p(FP) = p(FP |+L) + p(FP |−L)

p(TN) = p(TN |0L)
p(FN) = p(FN |0L).

(A.5)

With (A.2) we have

1 = p(+L) + p(−L) + p(0L)

= 2p(+L) + p(0L).
(A.6)
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A. Proof of value for random guessing for three-class ROC

To calculate sensitivity, specificity and precision we need to know the probabilities for true
and false positives as well as for true and false negatives. With (A.3), (A.5) and (A.6) we get

p(TP) =
ratio(+) + ratio(−)

3
· p(+L)

p(FP) =
2 ratio(0) + ratio(+) + ratio(−)

3
· p(+L)

p(FN) =
ratio(+) + ratio(−)

3
· p(0L) =

ratio(+) + ratio(−)
3

·
(

1− 2p(+L)
)

p(TN) =
ratio(0)

3
· p(0L) =

ratio(0)

3
·
(

1− 2p(+L)
)

.

(A.7)

For sensitivity we now obtain

sensitivity =
p(+L)

1− p(+L)
,

analogously, for 1−specificity with (A.1)

1− specificity =

(

ratio(0) + 3
)

· p(+L)
(

3− ratio(0)
)

· p(+L) + ratio(0)

and for precision

precision =
ratio(+) + ratio(−)

6
. (A.8)

We now obtain directly that the AUC value for guessing for the precision vs. recall curve
equals the right hand side of (A.8), since it does not depend on p(+L).

Remark A.4.2. 1. The AUC value for guessing for precision vs. recall curve varies be-
tween zero and one half. It is zero, if the true network only contains zero edges, i.e.,
ratio(0) = 3, and it is one half, if the true network does not contain any zero edges, i.e.,
ratio(0) = 0.

2. The AUC value for guessing for precision vs. recall only depends on the ratio for the
zero edges because of (A.1) and not on the proportion of the ratios for the negative and
positive edges.

To obtain the AUC value for guessing for the sensitivity vs. 1−specificity curve we have to
calculate the area under the curve whose graph G can be written as

G =

{

(

(

ratio(0) + 3
)

· a
(

3− ratio(0)
)

· a+ ratio(0)
,

a

1− a

)

; a ∈
[

0,
1

2

]

}

=

{

(

x,
ratio(0) · x

ratio(0) + 3− 3x

)

; x ∈ [0, 1]

}

.

With integration by parts we now obtain
∫ 1

0

ratio(0) · x
ratio(0) + 3− 3x

dx =
ratio(0)

ratio(0) + 3

(

−1

9
ln
( ratio(0)

ratio(0) + 3

)

· ratio(0)2

− 2

3
ln
( ratio(0)

ratio(0) + 3

)

· ratio(0)

− ln
( ratio(0)

ratio(0) + 3

)

− ratio(0)

3
− 1

)

.
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A.4. AUC value for guessing for three class problems

Remark A.4.3. 1. The AUC value for guessing for sensitivity vs. 1−specificity curve
varies between zero and approximately 0.39. It is zero, if the true network does not
contain any zero edges, i.e., ratio(0) = 0, and it is 2 ln 2− 1 ≈ 0.39, if the true network
only contains zero edges, i.e., ratio(0) = 3.

2. As in the case for guessing for precision vs. recall, the AUC value for guessing for
sensitivity vs. 1−specificity only depends on the ratio for the zero edges and not on the
proportion of the ratios for the negative and positive edges.

Remark A.4.4. By using our notation we will now consider the classical two-class problem.
By p(+L) we now denote the probability of a learned positive and with p(0L) we denote
the probability of a learned negative. Furthermore, we denote by ratio(+) the ratio for the
positives in the true network and with ratio(0) the ratio for the negatives in the true network.
Note that we here have

ratio(+) + ratio(0) = 2.

Then we have for random generated edges

p(TP) =
ratio(+)

2
· p(+L),

p(FP) =
ratio(0)

2
· p(+L),

p(TN) =
ratio(0)

2
· p(0L),

p(FN) =
ratio(+)

2
· p(0L).

As in Section A.3 we obtain sensitivity = p(+L), 1−specificity = p(+L) and precision = 0.5.
Thus, we also get the AUC values of 0.5 for sensitivity vs. 1−specificity and ratio(+)/2 for
precision. It is important to note here, that, different from our three class ROC analysis,
the AUC value for sensitivity vs. 1− specificity does not depend neither on ratio(+) nor on
ratio(0).
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APPENDIX B

Evaluation of Bayesian experimental

design for 5-gene network

A good picture is equivalent to a

good deed.

(Vincent van Gogh)

B.1. Simulated perfect data

In this section the evaluation pictures for the runs 2 - 5 performed for the Bayesian exper-
imental design scheme presented in Chapter 7 for the perfect simulated data are shown in
Figures B.1 – B.8. Depicted are the entropy estimates as was described in Chapter 7.

B.2. Simulated noisy data

In this section the evaluation pictures for the runs 2 - 5 performed for the Bayesian exper-
imental design scheme presented in Chapter 7 for the noisy simulated data are shown in
Figures B.9 – B.16. Depicted are the entropy estimates as was described in Chapter 7.

B.3. DREAM 2 Challenge #3 data

In this section the evaluation pictures for the runs 2 - 5 performed for the Bayesian experi-
mental design scheme presented in Chapter 7 for the DREAM 2 Challenge #3 data are shown
in Figures B.17 – B.20. Depicted are the entropy estimates as was described in Chapter 7.
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B. Evaluation of Bayesian experimental design for 5-gene network
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Figure B.1.: Entropy estimates for run 2 for perfect data (Part I)
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B.3. DREAM 2 Challenge #3 data
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Figure B.2.: Entropy estimates for run 2 for perfect data (Part II)

167



B. Evaluation of Bayesian experimental design for 5-gene network

Exp 2
tp 20
tp 19
tp 18
tp 17
tp 16
tp 15
tp 14
tp 13
tp 12
tp 10

tp 9
tp 8
tp 7
tp 6
tp 5
tp 4
tp 3
tp 2
tp 1

−
11

−
10

−
9

−
8

Exp 3
tp 20
tp 19
tp 18
tp 17
tp 16
tp 15
tp 14
tp 13
tp 12
tp 10

tp 9
tp 8
tp 7
tp 6
tp 5
tp 4
tp 3
tp 2
tp 1

−
7.

4
−

7.
2

−
7.

0
−

6.
8

Exp 4
tp 20
tp 19
tp 18
tp 17
tp 16
tp 15
tp 14
tp 13
tp 12
tp 10

tp 9
tp 8
tp 7
tp 6
tp 5
tp 4
tp 3
tp 2
tp 1

−
7.

0
−

6.
9

−
6.

8
−

6.
7

Exp 5
tp 20
tp 19
tp 18
tp 17
tp 16
tp 15
tp 14
tp 13
tp 12
tp 10

tp 9
tp 8
tp 7
tp 6
tp 5
tp 4
tp 3
tp 2
tp 1

−
7.

6
−

7.
5

−
7.

4
−

7.
3

−
7.

2
−

7.
1

Exp 6
tp 20
tp 19
tp 18
tp 17
tp 16
tp 15
tp 14
tp 13
tp 12
tp 10

tp 9
tp 8
tp 7
tp 6
tp 5
tp 4
tp 3
tp 2
tp 1

−
7.

45
−

7.
40

−
7.

35
−

7.
30

−
7.

25
−

7.
20

−
7.

15
−

7.
10

Exp 7
tp 20
tp 19
tp 18
tp 17
tp 16
tp 15
tp 14
tp 13
tp 12
tp 10

tp 9
tp 8
tp 7
tp 6
tp 5
tp 4
tp 3
tp 2
tp 1

−
7.

85
−

7.
80

−
7.

75

Exp 8
tp 20
tp 19
tp 18
tp 17
tp 16
tp 15
tp 14
tp 13
tp 12
tp 10

tp 9
tp 8
tp 7
tp 6
tp 5
tp 4
tp 3
tp 2
tp 1

−
8.

05
−

8.
00

−
7.

95
−

7.
90

−
7.

85
−

7.
80

−
7.

75

Exp 9
tp 20
tp 19
tp 18
tp 17
tp 16
tp 15
tp 14
tp 13
tp 12
tp 10

tp 9
tp 8
tp 7
tp 6
tp 5
tp 4
tp 3
tp 2
tp 1

−
7.

70
−

7.
65

−
7.

60
−

7.
55

Exp 10
tp 20
tp 19
tp 18
tp 17
tp 16
tp 15
tp 14
tp 13
tp 12
tp 10

tp 9
tp 8
tp 7
tp 6
tp 5
tp 4
tp 3
tp 2
tp 1

−
7.

55
−

7.
50

−
7.

45
−

7.
40

−
7.

35
−

7.
30

−
7.

25

Exp 11
tp 20
tp 19
tp 18
tp 17
tp 16
tp 15
tp 14
tp 13
tp 12
tp 10

tp 9
tp 8
tp 7
tp 6
tp 5
tp 4
tp 3
tp 2
tp 1

−
7.

60
−

7.
55

−
7.

50
−

7.
45

Exp 12
tp 20
tp 19
tp 18
tp 17
tp 16
tp 15
tp 14
tp 13
tp 12
tp 10

tp 9
tp 8
tp 7
tp 6
tp 5
tp 4
tp 3
tp 2
tp 1

−
8.

25
−

8.
20

−
8.

15
−

8.
10

−
8.

05
−

8.
00

Exp 13
tp 20
tp 19
tp 18
tp 17
tp 16
tp 15
tp 14
tp 13
tp 12
tp 10

tp 9
tp 8
tp 7
tp 6
tp 5
tp 4
tp 3
tp 2
tp 1

−
8.

20
−

8.
15

−
8.

10
−

8.
05

−
8.

00

Figure B.3.: Entropy estimates for run 3 for perfect data (Part I)
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B.3. DREAM 2 Challenge #3 data
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Figure B.4.: Entropy estimates for run 3 for perfect data (Part II)
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Figure B.5.: Entropy estimates for run 4 for perfect data (Part I)
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Figure B.6.: Entropy estimates for run 4 for perfect data (Part II)
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Figure B.7.: Entropy estimates for run 5 for perfect data (Part I)
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Figure B.8.: Entropy estimates for run 5 for perfect data (Part II)
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Figure B.9.: Entropy estimates for run 2 for noisy data (Part I)
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Figure B.10.: Entropy estimates for run 2 for noisy data (Part II)
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Figure B.11.: Entropy estimates for run 3 for noisy data (Part I)
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Figure B.12.: Entropy estimates for run 3 for noisy data (Part II)
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Figure B.17.: Entropy estimates for run 2 for the DREAM 2 Challenge #3 data
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Figure B.18.: Entropy estimates for run 3 for the DREAM 2 Challenge #3 data
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Figure B.19.: Entropy estimates for run 4 for the DREAM 2 Challenge #3 data
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B.3. DREAM 2 Challenge #3 data
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Sp . . . . . . . . . . . . . . speedup of a parallel program, see equation (3.11), page 59
SPMD . . . . . . . . . abbr. for single-program multiple-data, page 58
SSA . . . . . . . . . . . . abbr. for Gillespie’s stochastic simulation algorithm, page 82
T . . . . . . . . . . . . . . abbr. for thymine, page 9
T . . . . . . . . . . . . . . transition probability for a homogeneous Markov chain, page 38
τ(·) . . . . . . . . . . . . function of a parameter of a distribution function, page 30
τ . . . . . . . . . . . . . . . time parameter for the Hamiltonian dynamics, see equation (3.6), page 51
θij . . . . . . . . . . . . . . threshold parameters of the ODE model for GRNs, see equation (5.2),

page 86
TN . . . . . . . . . . . . . abbr. for true negatives, page 61
Tn . . . . . . . . . . . . . . transition probability for a Markov chain, page 37
T e
n . . . . . . . . . . . . . . estimator function, see equation (2.12), page 30

TP . . . . . . . . . . . . . abbr. for true positives, page 61
tRNA . . . . . . . . . . abbr. for transfer RNA, page 11
U . . . . . . . . . . . . . . abbr. for uracil , page 12
U(d, e) . . . . . . . . . utility function used in BED dependent on future data d and the experi-

ments e, page 126
U(d, θ, e, Y ) . . . . general utility function needed for BED as proposed by Lindley [Lin72]
V . . . . . . . . . . . . . . vertices in a directed graph G = (V, E), page 69
Var(X) . . . . . . . . . variance of a random variable X, see equation (2.7), page 28
X . . . . . . . . . . . . . . random vector of random variables X1, . . . ,Xn, page 28
X . . . . . . . . . . . . . . random variable, page 26
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genetic regulatory networks: Equilibria and their stability. Journal of Mathe-
matical Biology, 52(1):27–56, 2006.

[CFX06] Long Cai, Nir Friedman, and X. Sunney Xie. Stochastic protein expression in
individual cells at the single molecule level. Nature, 440:358–362, 2006.

[CG08] Ben Calderhead and Mark Girolami. Sloppy parameters in oscillatory systems
with unobserved species. In Miika Ahdesmäki, Korbinian Strimmer, Nicole
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[LS11] Harri Lähdesmäki and Ilya Shmulevich. BN/PBN Matlab Toolbox. http://

personal.systemsbiology.net/ilya/PBN/PBN.htm, November 2011.
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ular level stochastic model for competence cycles in Bacillus subtilis. Proceedings
of the National Academy of Sciences, 104(45):17582–17587, 2007.

[SKK04] Eduardo Sontag, Anatoly Kiyatkin, and Boris N. Kholodenko. Inferring dynamic
architecture of cellular networks using time series of gene expression, protein and

221



Bibliography

metabolite data. Bioinformatics, 20(12):1877–1886, 2004.
[SMC07] Gustavo Stolovitzky, Don Monroe, and Andrea Califano. Dialogue on reverse

engineering assessment and methods: The DREAM of high throughput pathway
inference. Annals of the New York Academy of Sciences, 1115:1–22, 2007.

[SME+09] Sylvia Streit, Christoph W. Michalski, Mert Erkan, Jörg Kleeff, and Helmut
Friess. Northern blot analysis for detection and quantification of RNA in pan-
creatic cancer cells and tissues. Nature Protocols, 4:37–43, 2009.
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Stefan Bleuler, Lars Hennig, Amela Prelić, Peter von Rohr, Lothar Thiele,
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