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Chapter 1

Introduction

Surely the most famous open problem in the field of structural complexity is
the so-called P = NP problem. In his address at the International Congress
of Mathematicians in Paris in 1900, Hilbert posed a list of 23 problems that
were meant — and in fact turned out — to be both challenging for the
mathematical community and pointing to the future . This was the tenth
problem.

‘Eine diophantische Gleichung mit irgendwelchen Unbekannten
und mit ganzen rationalen Zahlenkoeffizienten sei vorgelegt:

Man soll ein Verfahren angeben, nach welchem sich mittels einer
endlichen Anzahl von Operationen entscheiden lafit, ob die Glei-
chung in ganzen rationalen Zahlen losbar ist.’

[‘Given a diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined by a
finite number of operations whether the equation is solvable in
rational integers.’] (citation and translation taken from [Buh93])

The way Hilbert stated this problem appears both optimistic and de-
manding. In fact, too optimistic. It took seven decades till finally Matija-
sevi¢ [Mat70] proved that the correct solution is a negative one. What does
it mean for Hilbert’s problem to have a negative solution? Apparently, he
based his question on an intuitive notion of “finite number of operations”
of a “process”, i.e., on an intuitive notion of algorithm, that could enable
him to check any suggested positive solution. But in order to prove that no
positive solution exists, this intuitive notion has to be replaced by a formal
one.

With the work of Godel [G6d31], Kleene [Kle36], Post [Pos36], Church
[Chu33, Chu36], and Turing [Tur36, Turd7] on such formalisms started the
development of a robust notion of computability, which can be equivalently
characterized by various logical calculi and schemes, or by the machine model
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of Turing. This model most easily allows for a formal measurement of re-
sources used by the machine in finding solutions, and for a notion of the
“relative difficulty” of explicit problems. By formulating a self-referential
problem about his machine model, the so called Halting Problem, Turing
also marked the borderline of computability by showing that this problem
lies beyond it. This result gave the ground stone in the solution of Hilbert’s
Problem, since Matijasevi¢ finally succeeded in finding the right way to
relate the problem of solvability of a diophantine equation to the Halting
problem such that the status of the latter as proven by Turing entails the
solution of Hilbert’s problem to the negative.

When the formal notion of computability found its practical counterpart
in real-life computers, it soon became obvious that the borderline which is
represented by the Halting Problem is at astronomic distance to a realistic,
practical borderline of computability. In 1965, Edmonds [Edm65] suggested
the polynomial-time bound as theoretical characterization of this practical
borderline. Allthough only polynomials of very low degree are of signifi-
cance in practice, this suggestion soon became accepted among computer
scientists.

The class that embodies these, not only computable but, above that,
feasible problems is denoted by P. A problem belongs to this class if mem-
bership of any instance, represented by an input string of certain length in
a fixed alphabet 3, can be decided by a Turing machine that stops and “ac-
cepts” or “rejects” the input after a finite number of “steps” (which makes
the problem computable), while the total number of steps needed to end
this “computation” is bounded by a polynomial in the length of the input
(which makes the problem feasible).

Many natural and fundamental tasks in computer science belong to P.
For example, sorting of lists, matrix multiplication and inversion, manipu-
lations of graphs, approximating solutions to differential equations and the
like. However, for many interesting tasks, for which it would be desirable to
have a clever and quick algorithm, it is doubtful whether they belong to P.
Typically, these are problems such that any solution seems “hard to find,
easy to check”. For example, packing problems, the traveling-salesman-
problem, many decision problems of graph properties, and, as one of the
“standard representatives” of these kind of problems, to decide whether a
given sentence of propositional logic has a satisfying truth-value assignment
to its variables. No clever way of finding solutions to these problems in
polynomial time are known (like the way one finds the lexicographic or-
dering of a great number of names), but any suggested or guessed solution
can be written down, checked and verified in polynomial time. The class
that embodies these problems is denoted by NP for nondeterministic poly-
nomial time. Here nondeterminism is the theoretical model for “guessing”
the solution.



The polynomial bound on the length of possible “guesses” ensures that
problems in NP allow for the strategy of “checking all the possibilities”. But,
obviously, this strategy might consume a number of steps that is not bounded
by a polynomial in the input length. Typically, there are exponentially many
sensible guesses to check, hence the best bound on the total number of steps
seems to be at least exponential in the total length of the guess. From
this point of view the polynomial many steps needed to check each of these
possibilities appears almost negligible.

These considerations show that the class NP is located between the
polynomial time class P and the ezponential time class EXP, that P C
NP C EXP. But, which one of these inclusions is proper has been one
of the pressing open questions in complexity theory for more than three
decades now. For many practical reasons it would be both desirable (except
in cryptography), and challenging to learn that P = NP, but this is widely
disbelieved.

A further uncertainty about the class NP concerns closure under com-
plementation. Deterministic time classes like P or EXP, as well as deter-
ministic and nondeterministic space classes (see the independent results of
Immerman [Imm88] and Szelepcsényi [Sze88]) are closed under complemen-
tation. It is not known whether this holds for nondeterministic time classes
like NP.

Consider the problems PRIME and COMPOSITE. A natural number is
a member of COMPOSITE if it is not a prime number, and PRIME is the
complement of this set in N. It is easy to see that COMPOSITE is a problem
in NP. (On input n just nondeterministically “guess” two numbers a,b < n
and check that n = a - b.) So PRIME belongs to the class co-NP = {4 :
A € NP}. On the other hand, some knowledge of number theory shows that
PrIME € NP, too. Besides the trivial inclusions

P CNPNco-NP C NP,

the exact relation between the classes P, NPNco-NP, and NP are unknown
The wide-spread belief tells that these classes all differ.

From a structural point of view the uncertainty about the class NP is
especially puzzling. While the internal structure of the class EXP induced
by polynomial time reductions is well understood and very rich, these re-
ducibilities do not impose any interesting structure on the class P. So how
might be the internal structure of NP? Very poor or very rich? Any answer
to these questions would, at least in part, settle the uncertainty about the
true localization of NP within the deterministic time hierarchy.

So how to study the structure of NP in a situation where any interesting
result would answer the P = NP problem? Obviously, any considerations
on this topic have to assume that NP is different from P, since otherwise
there would be left no interesting question to ask. In addition, this is the
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most widely accepted assumption about NP, which makes results especially
appealing that are based on this assumption only. Unfortunately, very little
is known about the structure of NP under this assumption. Hence, for the
time being, stronger hypotheses about NP are needed in order to obtain
structural results.

This thesis studies the structure inside NP under hypotheses that re-
flect different ways to say that “NP is not small” and focuses on results
that separate not only the different kinds of polynomial time reducibili-
ties but also the completeness notions induced by them on the class NP.
Mathematics provides two ways to talk about “small” sets, the measure-
theoretic concept of measure zero sets and the topological category con-
cept of meager sets. (See [Oxt80] for a deeper discussion of the relation
of these concepts.) Inspired by the work of Lutz [Lut90, Lut92, Lut97],
Mayordomo [LutM96, May94a, May94b] and others, where NP is stud-
ied under a measure-theoretic “non-smallness assumption”, in this thesis
a category-based approach as defined by Ambos-Spies in [Amb96] is used.
This approach is based on the amalgamation of concepts of Ambos-Spies,
Fleischhack and Hewig ([AmbFHS88]) and Fenner ([Fen91]). One reason for
the choice is that this approach results in more lucid and understandable
proves. Moreover, the way how non-smallness assumptions allow for diago-
nalizations against polynomial time reductions seems to be most naturally
reflected in a category-based setting.

1.1 Overview

The remainder of this chapter provides fundamental definitions and intro-
duces a number of structural properties used in the sequel.

Chapter 2 introduces the resource-bounded category and measure con-
cepts necessary for stating the non-smallness hypotheses for NP that are
studied in the subsequent chapters. In relation to these concepts, resource-
bounded randomness and genericity are defined, and some properties of
p-random and p-generic sets are discussed.

In Chapter 3 we give and compare hypotheses about NP of different
strength and summarize some known results that can be obtained under
these hypotheses.

In Chapter 4 the relative strength of Lutz’ measure theoretic non-small-
ness hypothesis and the category-based hypotheses that are used in this
thesis are compared. This is done by defining an ordering on possible hy-
potheses about NP that is based on relativizations.

Finally, Chapter 5 provides the main contributions of this thesis, namely
a detailed study of NP-completeness notions induced by various polynomial-
time reductions. These results are divided into two main groups, depending
on the strength of the hypothesis that is used. In addition, possible strength-
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enings of the results are discussed.

1.2 Preliminaries

In this section some fundamental concepts are introduced. We present
these basic notions in an informal way. Exact definitions can be found in
any textbook on computational complexity like [BalDG88, Pap94, BovC94,
WagW86, HopU79].

1.2.1 Turing Machines

Turing machines are a theoretical model designed to cover the notion of
computability. A Turing machine can be pictured as a machine equipped
with a fixed number of tapes and for each tape with a corresponding head
that moves left and right on this tape and may read and write symbols on
it. The symbols are taken from some fixed, finite alphabet , denoted by X.

One of the tapes is declared as input tape and has a read-only head. The
other tapes are the working tapes. The tapes are meant to be unlimited in
both directions and divided into cells. Each cell can either contain one of the
symbols from the alphabet or can be blank. One step of the machine consists
of scanning the cells under the different heads, writing symbols in these cells
and moving some (or all) of the heads one cell left or right. Which actions
are to be carried out depends not only on the content of the scanned cells,
but on the current state of the machine. This is controlled by a finite list
of instructions, called transitions that determine, depending on the current
state and content of the scanned cells, the action for each head and the state
for the next step. There is an initial state and, possibly, several accepting
states. In the beginning, the machine is in the initial state, all its working
tapes contain only blanks, and the head for the input tape is scanning the
leftmost non-blank cell of this tape.

A computation of a Turing machin M (on input z) is a (possibly infinite)
sequence of complete descriptions called configurations of the individual con-
secutive steps performed by M when given input z. So each configuration
describes the current content of the cells on the tapes, the position of every
head and the current state of M, and two subsequent configurations have
to match the corresponding transition.

The machine stops if there is no transition that matches the current
combination of state and content of scanned cells. A finite string w, also
called word, over % is accepted by Turing machine M, if M stops in an
accepting state when w is written on its input tape. And the language
accepted by M is the set of words accepted by M.

M represents a function f, if one of the working tapes of M is declared
as output tape, and in case M stops on input x the word that is written on
this tape then is interpreted as output y = f(z). Note that M need not
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stop on all inputs, in which case f is said to be undefined on these inputs.
f is called partial recursive function. If M stops on all inputs, the function
computed by M is called recursive or computable.

Besides this machine model of computability, Turing also provided a
concept that is of central importance for structural considerations, the oracle
Turing machines. An oracle Turing machine is a Turing machine that is
equipped with an extra query tape and can enter three additional states,
called QUERY, YES and NO. Associated with M is a set, called oracle such
that, whenever M enters the state QUERY, membership of the word written
on the query tape (called the gquery) determines the next state of M. If the
query is a member of the oracle, the next state is YES, otherwise it is NO.
These states are also called answers of the oracle.

So a computation of an oracle Turing machine M depends on the oracle
and instead of a single computation we can also consider the computation
tree of M on input z, where each node represents a query. In general, the
queries made by M will depend on the oracle answers to previous queries.
In this case M is said to make adaptive queries or simply is called adaptive
oracle Turing machine. Otherwise M is called non-adaptive, i.e., M always
makes the same queries, independent of the oracle. In this case the actions
of M can be pictured as first producing a list of queries, getting the list of
corresponding oracle answers, and then proceeding the computation without
further entering a query state.

If the list of transitions that controls the Turing machine M does not
represent a function, but a relation, M is called nondeterministic Turing
machine. In this case, for each input z there exists the computation tree for
M on input z, where each path of this tree represents a possible computa-
tion, according to the list of transitions. Here z is accepted by M if there
is at least one path in the computation tree that represents an accepting
computation.

A Turing machine is completely determined by its list of transitions,
which essentially is a finite piece of text, that can be coded into the natural
numbers. If we fix such a coding, then any natural number either is a
code for a specific Turing machine, or it codes garbage. If we interpret this
garbage as the Turing machine with empty list of transitions, we can use
the natural numbers as list of all Turing machines. Moreover, we can define
a universal Turing machine, that given a word z and a number n decodes n
and then simulates the coded Turing machine on input z.

This machine model of computability immediately yields a formal mea-
surement of resources consumed by a computation. This feature, in special,
made it so popular among computer scientists. The units of time are just
the single steps that consist of applying (one of) the appropriate transitions
from the list.

Thus the running time of a Turing machine M is the number of steps M
may use on an input of length n.
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The class of languages accepted by a (non)deterministic Turing machine
with running time r € O(¢(n)) is denoted by DTIME(t(n)) (NTIME(¢(n))).
We will consider the deterministic time classes

P = DTIME(poly) = | Js>1 DTIME (nk) :
E = DTIME (2“'") = |J#>DTIME (2’“") ,
EXP = DTIME (21’0’1') = J#>:DTIME (2"’°) _and
EE — DTIME (20<2">) = |21 DTIME (22"““) :
and their nondeterministic counterparts
NP = NTIME(poly) = | 4> NTIME (nk) ,
NE = NTIME (2“‘”) = J#s1INTIME (2’“”) ,
NEXP = NTIME (21’01?/) = J#>INTIME (2"’“) _and
NEE = NTIME (20@")) = |J#>1NTIME (22"““) .

In our notation we will not distinguish between this classes of languages and
the corresponding classes of functions computed by Turing machines within
the given time bound.

1.2.2 Polynomial Time Reducibilities

Oracle Turing machines can be used to make precise relations like “problem
B is at most as hard to compute as problem A” thereby imposing a structure
on the class of computable problems. Suppose there is an oracle Turing
machine M such that the language accepted by M if given oracle A is the
set B (B = L(M,A)). Then the problem of deciding membership in B
is “reduced” to the problem of deciding membership in A via M, since
the combination of M with a procedure for deciding A yields a procedure
for deciding B, where the queries of M to the oracle A are replaced by
computations for A. In this case M is called reduction from B to A. The
reductions used in this thesis are the following:

Definition 1.2.1. Let A, B be sets. We write

1. A <8 Bif A = L(M,B) for some polynomial time-bounded oracle
Turing machine M. (A P-T-reduces to B via M.)

2. A<}, Bif A SI} B via a non-adaptive oracle Turing machine M. (A
P-tt-reduces to B via M.)

3. A Sgtt B if A <}, B via some M that makes a constant number of

queries, which is called the norm of M. (A P-btt-reduces to B via M.)
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4. A Sgtt(k) B if A <}, B via some M of norm k. (A P-btt(k)-reduces to

B via M.)
5 A S}:T(k) Bif A S% B via some M that makes at most k queries for
some constant k > 1. (A P-bT(k)-reduces to B via M.)

6. A <b, B if there is a function g in P such that for all inputs z A(z) =
1 <= B(g(z)) = 1. (A P-m-reduces to B via M.)

7. A<} Bif A <}, B via some one-to-one function g. (4 P-I-reduces to
B via M.)

Definition 1.2.2. Let r € {m,btt(k), btt,tt,T} and let C be a complexity
class. A set A is hard for C under P-r-reductions (C-r-hard for short) if
B <P Afor all B € C. And A is complete for C under P-r-reductions
(C-r-complete for short) if A € C and B < A for all B € C.

P-T-completeness was introduced by Cook [Coo71] and P-m-complete-
ness by Karp [Kar72] and Levin [Lev73]. Ladner, Lynch and Selman com-
pared the strength of the polynomial time reducibilities in [LadLS75]. They
showed that

P-1 < P-m < P-btt(1) < P-btt < P-tt < P-T

where r < r' indicates that r is strictly stronger than r'. Ie., A <} B im-
plies A Sf, for all sets A and B, while there are sets A and B such that A
is P-r'-reducible to B, but is not P-r-reducible to B. A great deal of atten-
tion was paid to the completeness notions induced by these reducibilities for
complexity classes like NP, E, EXP, NE, or NEXP. For E, EXP, NE, and
NEXP the relations among the completeness notions are completely deter-
mined. Namely Ko and Moore [KoM81] and Watanabe [Wat87] showed that
P-btt(k)-, P-btt(k+1)-, P-btt-, P-tt-, and P-T-completeness can be separated
for E and EXP, whereas by results of Berman [Ber76] and Homer, Kurtz and
Royer [HomKR93] P-1-, P-m- and P-btt(1)-completeness coincide. Buhrman
[Buh93] proved these results for other complexity classes containing E like
e.g., NE and NEXP (see Buhrman and Torenvliet [BuhT94] for a survey
on these results). Very little is known about NP-complete sets under these
reduciblities, unless P = NP. Chapter 3 provides a summary of results
about NP under various hypotheses.

1.2.3 Notation

For the larger part the notation is standard. N, Q, Q", R, and R are the
sets of natural numbers, (nonnegative) rational numbers and (nonnegative)
real numbers, resp. 3*°z and Y*°xz denote “there are infinitely many z” and
“for all but finitely many z”, respectively.
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The binary alphabet {0, 1} is denoted by ¥ and ¥* = {0,1}* denotes the
set of finite binary strings, also called words. The subsets of %* are called
languages, or problems, or simply sets. Sets of languages are called classes.
Capital letters A, B, C, ... denote sets, boldface capital letters A,B, C,
... denote classes.

Lower case letters ...,z,y,z from the end of the alphabet are used to
denote strings, while the other letters denote numbers, with the exception
of d, f, g, h and s, t which also denote functions.

The capital letters M and N are reserved for Turing machines. M (z) =
1, resp. M(z) = 0 indicates that, given input z, the Machine M halts in
an accepting (resp. rejecting) state. In addition, M4(z) = 1, (M4(z) = 0)
indicates that M is an oracle Turing machine and is equipped with the oracle
set A. Thus L(M,A) = {z : M*(z) = 1}.

For a string x, z(m) denotes the (m + 1)th bit in z, i.e., z = 2(0)...z(n —
1), where n = |z| is the length of z. (Sometimes the notation z[m] is used
as well, for the sake of better readability.) A is the empty string. vw is the
concatenation of the strings v and w and w" is the n-fold iteration of w.
2 C y (z C y) denotes that the string z is a (proper) prefix of y.

We identify strings with numbers by letting n be the (n + 1)st string
under the canonical length-lexicographic ordering on strings. Occasionly,
this string is denoted by s,,. Hence for two strings z and y, z < y if |z| < |y|
or |z| = |y| and z is lexicographical less than y. And if y is the n-th successor
of z in this ordering, y is denoted by z + n.

Sets are identified with their characteristic function, ie., x € A iff
A(z) = 1. The characteristic sequence of a set A is the infinite sequence
A(so)A(s1) ..., which is also identified with the set A. Initial segments of
this sequence of length n are interchangably denoted by A [n or A | sp,.
We write £ C A and say that A eztends z if z is a finite initial segment of
the characteristic sequence of A. If {y, : n > 0} is a sequence of strings
such that y, C yn41 for all n > 0 the unique set extending all strings vy, is
denoted by limy, > yy.

So strings are used in two different meanings: as elements of sets and as
finite initial segments of sets. In an attempt to avoid confusion, usually the
notation X [z is used for strings intended to denote initial segments. Then
X [z denotes a string of length = and, for y < z, X(y) or (X [ z)(y) will
denote the (y + 1)th bit of X [z. If used as an oracle, X |z is interpreted as
(X 12)0%, i.e., as the finite set {z <z : X(z) = 1}.

|A] is the cardinality of the set A. For a number n, A" (AS") is the
set of strings in A of length (at most) n. (In the case of A = ¥* the * is
omitted then.) For sets Aand B, A@ B={0z: z € A}U{lz: z € B} is
the join (effective disjoint union) of A and B, A = £*\ A is the complement
of Aand AAB = (A\ B)U(B\ A) is the symmetric difference of A and B.

For a class A, A° is the complement of A and co-A = {A : A€ A} is
the dual class of A.
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For a function f, domain and range of f are denoted by dom(f) and
rng(f). For a partial recursive function f, f(z)] (f(z)l= y) indicates that
f halts on input z (and outputs y). If f is total and length-increasing and
A is a set, the set Ay = {z : f(z) € A} is called extraction of A. Two
extractions Ay, and Ay, are independent, if rng(fi) Nrng(f2) = 0.

Lower case Greek letters denote finite partial functions from ¥* to {0, 1}.
We say (8 extends o (o C ) if the graph of « is contained in the graph of
0 and we say ( extends o along v (denoted by f = aU~) if f(z) = a(z)
for z € dom(a) and B(z) = (z) for all z € dom(y) \ dom(a). Similarly, a
set X extends a (o C X) if « coincides with the characteristic function of
X on dom(a). If used as an oracle, a finite function « is interpreted as the
finite set {z € dom(a) : a(z) = 1}. So, for a query = & dom(a), the oracle
a returns the answer 0.

1.2.4 Structural Properties

In this section we summarize structural properties of sets that are used in
the subsequent chapters. In the following let A be a set and C a complexity
class.

A first characteristic of a set is the distribution of its members. The
census function of set A gives, for given n, the total number of members of
A of length at most n and is denoted by

ca(n) = {z € A : |z <n}| =]45"].

A is called tally if A C {0}*. If, like in this case, the census function of A
is bounded by a polynomial, then A is called sparse. On the other hand, A
is of ezponential density, if there is a constant € > 0 such that cs(n) > 2™
for allmost all n. And A has exponential gaps if there are infinitely many n
such that ANX=" = (.

The following properties are related to the complexity class C.

Definition 1.2.3. Let A be a set. A is C-immune if A is infinite and every
subset of A is either finite or not a member of C. A is C-bi-immune if A
and A are C-immune.

Proposition 1.2.4. Let A be an infinte and coinfinite set. A ¢ C if A is
C-immune. A is C-bi-immune iff ANC #0 and ANC # 0 for all infinite
CcecC.

Definition 1.2.5. Let A be a set and f a function in C. f agrees with A
if f(z) = f(y) implies that A(x) = A(y). Let the collision set of f be

Colly ={z : Jy<z: f(z) = f(y)}

A is C-incompressible if every function in C that agrees with A has a finite
collision set.
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Lemma 1.2.6. ([BalS85]) Let C be a class closed under complement. Then
every C-incompressible set is C-bi-immune.

Proof. Let A be a C-incompressible set and C € C. Suppose that ANC = {.
Since C is closed under complement, the function f : ¥* — X defined by
flz)=zifx ¢ C and f(z) = ag if z € C for some fixed ap ¢ A is in C and
agrees with A. Hence the collision set of f is finite. But this implies that C
must be finite as well. Similarly, C' is finite if AN C = 0. O

Definition 1.2.7. A is autoreducible if there is a polynomial-time bounded
oracle Turing machine M such that, for every input z, A(x) = M4 (z) and
M never queries its input. And A is selfreducible if there is a polynomial-
time bounded oracle Turing machine M such that, for every input z, A(z) =
M4(z) and all the queries made by M are of length shorter than the length
of the input.






Chapter 2

Resource-Bounded Category
and Measure

2.1 Classical Category and Measure

This section recapitulates two classical classification schemes for subclasses
of the Cantor space 2. Being quantitative classification schemes, these al-
low for a distinction between “small” and “large” classes of languages. In
either scheme, a class appears “small” if it may be considered “negligible”
in the related setting. Besides the usual definitions, both schemes will be
given a game-theoretic characterization. lL.e., given a class A, for each clas-
sification scheme there will be a game associated with A such that A is
“small” if and only if there is a winning strategy for one particular player.
Since a strategy is a function determining the next move of the player,
resource-bounded versions of these classification schemes later are obtained
by emposing appropriate bounds on the corresponding strategies.

2.1.1 Baire Category and Banach-Mazur-Games

The first classification scheme, Baire Category, is given in terms of the stan-
dard topology on the Cantor space.

Definition 2.1.1. For any string z, the class By = {4 : =z C A} is basic
open. A class is open if it is the union of basic open classes.

From the viewpoint of topology, the nowhere dense classes are negligible.
So here the “small” classes, called of first category or meager, are defined as
follows.

Definition 2.1.2. A class A is dense if A intersects all basic open classes;
and A is nowhere dense if A is contained in the complement of an open and
dense class.



14 Chapter 2. Resource-Bounded Category and Measure

A is meager, if A is the countable union of nowhere dense classes; and
A is comeager, if the complement of A is meager.

Remark 2.1.3. A class A is nowhere dense iff for every string x there is a
string y such that B, N A = 0.

Proposition 2.1.4. Let A, A', and A, (e > 0) be classes. Let A be a set.

(i) If A is meager and A' C A then A’ is meager; and if A is comeager
and A C A’ then A’ is comeager.

(i) If the classes A (e > 0) are meager, then U o Ae is meager; and if
the classes A, (e > 0) are comeager, then nezo A, is comeager

(11i) {A} is meager (in fact, nowhere dense).

Proof. (i) and (ii) are immediate by definition. And (iii) follows from the
above remark about nowhere dense classes. O

Note that the closure under countable unions 2.1.4 (ii) holds for meager
classes, but in general not for nowhere dense classes. 2.1.4 (ii) and 2.1.4 (iii)
imply that any countable class is meager.

The consistency of this quantification scheme is shown in Baire’s Theo-
rem, which will be given here in the following form.

Theorem 2.1.5. No basic open class is meager.

Proof. Fix a string z and assume that B, = |J,~, A¢ is the countable union
of nowhere dense classes A.. For any given basic open set B, we inductively
define a sequence y, (e > 0). Let yo = y and let ye11 be the least string
extending y, such that A,NB,,,, = . This sequence exists since all classes
A, are nowhere dense. Then the limit set ¥ = lim,-;vy. extends y and is
not a member of any of the classes A,, hence Y is a member of B, \ B,.
Since y was chosen arbitrarily, this implies that the complement of B, is
dense, a contradiction. (Recall that C is dense if C intersects all basic open
classes.) O

Corollary 2.1.6. The Cantor Space 2% is not meager. No class can be both
meager and comeager.

Proof. This follows from Theorem 2.1.5 by Proposition 2.1.4. O

An alternative characterization of meager classes can be given by Banach-
Mazur-Games. Associated with a given class A, consider the following game
for two players (A) and (B). Player (A) starts by choosing a string y;. Then
(B) chooses a string y, 1 1, followed by the choice y3 1 y2 of (A), and
so on. This way a unique set Y, that extends all strings y, (n > 0), is
defined. Player (A) wins if Y € A, and player (B) otherwise. When Mazur
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introduced these games around 1928, he conjectured that player (B) has a
winning strategy if and only if the class A is meager. This later was proven
by Banach.

Definition 2.1.7. Let A be a class. A winning strategy for player (B) in the
Banach-Mazur-Game associated with A is a family of functions f, : ¥* —
¥* (n > 1) such that, firstly, f,, is defined on all sequences (y1,...Y2n—1)
satisfying

Y1 C ... C Yon—1 and (21)

Yo; = fi((yla . y2i71>) fOI all 1 S ) <n. (22)

In this case, fr,({y1,..-Y2n—1)) extends yo,_1. And secondly, for each se-
quence (Yp)n>1 satisfying (2.1) and (2.2), lim,,>1 y, ¢ A.

Theorem 2.1.8. Let A be a class. In the associated Banach-Mazur-Game,
player (B) has a winning strategy iff A is meager.

Proof. For one direction, consider a class A and let (f,),>1 be a winning
strategy for player (B). For every n > 1 and every sequence of natural
numbers iy,... ,4, > 1 inductively define strings z;, . ;, and 2;, ., by

n=1: Let 1 =0, z1 = f1(0). For every i > 1 let x; be the least string w
such that By, NU,<;; Bz = 0, and let z; = f1(z;).

n > 1: Suppose that z = x;, ;. , and z = z;,.;, , are allready fixed.

Abbreviate i . ..i,—1 by s. Let 241 = 20 and 251 = fr,((Ziy, Ziyy- - 52, ZTs1))-
For ¢ > 1 let x4 be the least string w 1 z such that B, N U1§j<i stj = 0.
And again, zs; = fr((zi,, Ziys--- 5 2, Tsi))-

This way two families of strings are defined such that for every n > 1 and
every finite sequence i1,... ,%, of natural numbers it holds that

(1) Zileidn — fn((xilazila ... azil...in_17$i1...in>);
() @iy in 3 Ziy.iy 1
(iii) the set {z,..i, ® %1,... ,9p > 1} is prefix-free;

)

iii)

(iv) the class G, =U;, . ;,>1 Bz, ., is open and dense.
(i

By (i) and (ii), for any infinite sequence (i,)n>1 of positive natural num-
bers x;,, 2, Tijiy, Zigig, - - - T€Presents a possible “run” in the Banach-Mazur-
Game associated with A whereby player (B) applies strategy (fn)n>1. By
hypothesis about this strategy, the set

nlglgo Tiy iy = nlglgo Ziy.in & A. (2.3)
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Now let D = (1,5 Gy, (see (iv)). By (iii), for every X € D, there is a unique
sequence 41, 12,... such that X 1 z;, ;, for every n > 1. Hence X ¢ A by
(2.3). But this implies that

AcD°=(]JG;
n>1

whence A is meager by (iv).

The other direction is similar to the proof of Theorem 2.1.5 and quite
straightforward. (If A is meager, then player (B) can choose y2; such that
B,,, N C; =0, if A is the union of the nowhere dense classes (C;);>1.) O

2.1.2 Lebesgue Measure on the Cantor Space

The classical Lebesgue measure p on the Cantor space is induced by the
equiprobable measure v on {0,1} which assigns to both 0 and 1 the prob-
ability 1/2. Thus p is the completed product measure induced by v (see
[Fel86] or [Oxt80] for details). For example, for the basic open class B, =
{A: z C A}, u(B;) = 27%l. A model for this measure is the (independent)
tossing of a fair coin. So u(B;) = 2712/ is the probability that a randomly
chosen sequence of coin tosses begins with the events z(0),...,z(|z| — 1).
The “small” classes with respect to measure are the measure-0 classes.

Definition 2.1.9. An infinite sequence B = {B,, : n > 0} of basic open
sets is an e-cover of a class C if

CcC U B, and Z u(Bg,) <e.

n>0 n>0

Example 2.1.10. For any set A, the sequence B4 = {Bay, : n >k} isa
2~ %_cover of {A}.

Definition 2.1.11. A class C has measure 0 (u(C) = 0) if, for all n > 0,
there is a 27"-cover of C. A class C has measure 1 (u(C) = 1) if the
complement C€ of C has measure 0.

We write 4(C) # 4 (i = 0,1) to indicate that C does not have measure
i. Note that, for any cover B = {B,, : n > 0} of the power class of {0,1}*,
Y nso#(Bgz,) > 1. Moreover, p is consistent in the sense that for no class

C, 4(C) =0 and u(C) = 1.

Lemma 2.1.12. Let A be a set, C and D be classes. Then
(1) p({A}) =0.
(i) If C C D and u(D) =0 then pu(C) = 0.

(iii) Let C = J,;~q Cn be the union of the measure-0 classes C,, n > 0.
Then p(C) = 0.
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Proof. (i) follows from Example 2.1.10 while (ii) is immediate by definition.
For a proof of (iii), fix m > 0. To show that C possesses a 2~™-cover, by
assumption choose 2= (m+k+1)_covers By, = {Bwk,n : n > 0} of Cg. Then,
for Z (4 ny = T n, B= {Bg, : € >0} is a 27™-cover of C. O

Corollary 2.1.13. For any countable class C, u(C) = 0. O

Ville ([Vil39]) gave an equivalent characterization of the measure-0 classes
based on betting strategies in a fair betting game. Consider a gambler which
bets on the consecutive bits of a hidden sequence in 2. Depending on the
string w of bits revealed in the previous rounds, she distributes her capital
among the two possible outcomes 0 and 1. Then the next bit is revealed and
the capital bet on the correct guess is doubled, while the other is lost. The
gambler wins in this game if her capital is unbounded as the game proceeds.

Definition 2.1.14.

(a) A martingale is a function d : £* — RT such that d(\) > 0 and, for
every w € X¥,

d(z0) + d(z1) < 2-d(x). (2.4)
d()) is the norm of d. And d is normed if d(\) = 1.
(b) A martingale d succeeds on a set A if

limsupd(A[n) = co.
n>0

S*®[d] denotes the class of sets on which the martingale d succeeds. A
martingale d succeeds on a class C if C C S*°[d].

We can interpret the martingale d as the function that records the current
capital d(z) of the gambler after the consecutive outcomes z(0), ... ,z(|z| —
1). Then d is related to the “strategy” of the gambler, since d(z7)/(2 - d(z))
is the fraction of the current capital she bets on the outcome ¢ < 1, after
she has seen the string x of previous outcomes.

Martingales and their success sets are related to measure zero sets, analog
to the relation between Banach-Mazur-Games and meager classes.

Theorem 2.1.15. [Vil39] The class C has measure zero iff there is a mar-
tingale that succeeds on every set in C.

2.2 Resource-Bounded Genericity

This section presents the central definitions that will be used to obtain
the separation results in Chapter 5. Instead of the measure theoretic ap-
proach of Lutz, there a category-based approach is applied to hypothesize
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non-smallness of NP. Since category can be seen as direct formalization
of diagonalizations, it’s preference is quite natural for the investigation of
polynomial time reductions.

The basic notion of this approach are time bounded extension functions.
Extension functions are designed to reflect finite extension methods to en-
force a certain property. However, a direct imposing of time bounds to
classical extension functions, as was done by Lutz in [Lut90], yields a type
of category that is too weak for our purposes (see [Amb96] for details). The
extension functions considered here are (possibly) partial, and do not fix the
extension completely, but only on selected and (possibly) wide-spread bits.
The definition below was developed by Ambos-Spies in [Amb96] combining
features of the category concepts of Ambos-Spies, Fleischhack and Huwig
[AmbFH88] and Fenner [Fen91].

Definition 2.2.1. ([Amb96], [AmbFH88], [Fen91]) Let ¢(n) > n be a re-
cursive function.

1. A partial function f: {0,1}* — ({0,1}* x {0,1})* such that f €
DTIME(¢(n)) is a t(n)-extension function if, whenever f is defined
on input X [n = X(0)... X(n — 1),

f(X f”) = (yoaio),"'a(ymaim) (25)

for some m > 0, some strings y; with n <y < -+ < ¥, and some
i; €{0,1} (0 < j <m).

2. A simple t(n)-extension function f is a t(n)-extension function f such
that, whenever f(X | z) |, then f(X | z) = (z,%) for some 7 < 1, in
which case we also write f(X [z) = i.

3. A t(n)-extension function f is bounded if there is a constant number
k > 1 such that, whenever (2.5) applies, i.e., f is defined, then m < k.
If k£ is known, f is also called k-bounded.

4. f is a waiting, bounded t(n)-extension function if the domain of f is a
subset of

Inity :={X 0" : X C¥* n>1},

and there is a constant [ > 1 such that, whenever f(«a) is defined for
a € Inity of length 2™ — 1, then

f(a) = (ya,la ia,l)a ERN] (ya,laaia,la) (26)

where [, <1, 0" < yo1 < -+ < Yoy, P0S(@) = (Ya,15--+»Ya,l,) 18
computable in #(2" — 1) steps and i, ; is computable in ¢(2/%il — 1)
steps.
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If neither a time bound for f nor any particular properties are specified,
the general term extension function will be used for f. The next definition
is an example for such a general setting.

Definition 2.2.2. Let f be an extension function and A a set.

1. A meets the extension function f at n if f(A|n) is defined, say (2.5)
holds for X = A, and A(y,) =14; for j <m; and A meets f if A meets
f at some n.

2. The extension function f is dense along A if f(A | n)] for infinitely
many n.

This definition plays the key role in the understanding of generic sets
and their relation to finite extension methods. Every time f is defined on
an initial segment @« = A | n of the characteristic sequence of A, f(a),
as given in (2.5) specifies a set of finite extensions of a, B = {f# 0 « :
Bly;) = ij forall0 < j <m}. Now A meets f at n iff there is a § € B
such that 8§ C A. This way finite extension strategies are modelled into
extension functions. The advantage of this approach lies, on the one hand, in
locality (A has to meet the extension function only once), and coordination
of requirements on the other (A can meet conflicting extension functions by
choosing appropriate “moments” for each). This is reflected in the restriction
on dense extension functions, since density of f along A ensures that there
are infinitely many “chances” for A to meet f. In the following, we will use
two different genericity notions derived from the above definitions.

Definition 2.2.3. Let t(n) > n be a recursive function.

1. A set G is general t(n)-generic if G meets every t(n)-extension function
f which is dense along G; and G is general p-generic if G is general
nk-generic for all k > 1.

2. A set G is t(n)-generic if G meets every simple ¢(n)-extension function
f which is dense along G; and G is p-generic if G is n*-generic for all
kE>1.

3. A class M is general p-meager if, for some k > 1, M does not contain
any general n*-generic set.

4. A class M is p-meager if, for some k£ > 1, M does not contain any
n¥-generic set.

The difference between t(n)-generic and general ¢(n)-generic sets lies in
the reach of the corresponding extension functions. While a simple t(n)-
extension function only specifies the next bit, in general the only limit on
the length and the number of strings g, - . . , ym for which bits g, ... ,%,, are
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specified by an extension function is the time bound ¢(n). Presenting the
input to a t(n)-extension function in the form X [y for some y € ¥* implies
that

2 1 < | X 1y| < 2WHL, (2.7)

Hence, measured in the length of the string y, an n-extension function f
can use O(251¥) many steps in order to compute f(X [y). While this bound
does not suffice to specify bits for all strings of some length polynomial in
ly|, it allows for specifications for polynomial many such strings and for a
profound access to the input. The next Theorem is an example for this kind
of use of the input.

Theorem 2.2.4. ([Amb96]) Let C be a complexity class that is closed under
P-m-reductions. Then the following are equivalent:

(1) C is not p-meager.
(2) There is an n?-generic set in C.
(3) There is an n*-generic set in C for every k > 1.

(4) There is a p-generic set in C.
(5) There is a 21°gk”—genem'c set in C for every k > 1.

Proof. By definition, (5) implies (4), (3) and (2); and (1) is equivalent to
(3). So assume that there is an n2-generic set A in C. For each k > 1 let

Ay = {z: 0¥z e A},
By = {z: 0" 1z € A},

and, for some nondecreasing function with unbounded range f : N —» N
computable in polynomial time with respect to the unary representation,
let

Ay = {z: ofz)lel1z € A}.

These sets are P-m-reducible to A, hence members of C. In [Amb96] it
is shown that for each k > 1, A; is n*-generic, Ay is p-generic, and By
is 2los” "-generic. The idea is to assume a dense extension function that
is not met by the related set and which thus can be transformed into an
n?-extension function that is not met by A. O

In contrast to this result on the #(n)-genericity of sets P-m-reducible to an
n?-generic set, the analog does not hold for sets to which an n?-generic set
can be reduced.



2.2. Resource-Bounded Genericity 21

Theorem 2.2.5. ([JueL95, AmbNTI6]) If A is an n¥-generic set for some
E>2and A<, C, A<LP ) B for some sets B,C € DTIME(2%"), then B

—btt(c
(d+1)(c+1) d+1

s not n -generic and C is not n®" -generic.

Corollary 2.2.6. If A is a p-generic set, then A is not P-btt-hard for E.

Proof. By the following Corollary 2.2.8, there is an n’-generic set in E.
Hence the Theorem implies that an P-btt-hard set for E is not p-generic . [

Besides these relative results on the complexity of ¢(n)-generic sets, Ambos-
Spies, Neis and Terwijn have shown the following strong existence theorem
for t(n)-generic sets.

Theorem 2.2.7. ([AmbNT96]) Let t(n), t'(n) and f(n) be nondecreasing
functions on N such that t(n) and t'(n) are time-constructible, t(n),t'(n) >
n, f(n) is polynomial time computable with respect to the unary represen-
tation of numbers, and the range of f is unbounded. Let B be a set in
DTIME(#(n)). Then there is a t(n)-generic set A such that

A € DTIME (2" (¢ (n) + n?t(2" 1) log t(2")))
and for any n >0
[(AAB) NE="|< f(n).

Sketch of proof. Fix an effective enumeration {f. : e > 0} of simple ¢(n)-
extension such that the set

F ={0°1zi : fe(z)l=1}

is computable in time O(e - £(2""1) log t(2"*!) + ¢) for n = |z|. Note that A
will be t(n)-generic if the following requirements are met:

R, : f. dense along A = A meets f, (2.8)

This will be ensured by constructing the set A in stages. At each stage s,
membership of the string z; in A is decided, whence at the end of stage s
as = Al zsyq is fixed. At the same time, a set Sat; is fixed which records
the requirements met at the end of stage s. At each stage s the minimal
index e < f(|zs|) is chosen such that e ¢ Sats_; and fe(as—1) ). If such
an index exists and fe(as—1) =i, let @y = as_17 and Sats = Sats_1 U {e}.
Otherwise, let a; = a;—1B(z;) and Sats = Sats_1.

An easy induction shows that each requirement R, is met, either by A
meeting f. or by fe not being dense along the resulting set. Hence A is
t(n)-generic. Since A(z,) differs from B(z,) only if some requirement R, is
chosen to be met at stage s, and since there are at most f(n) many such
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stages for which |zs| = n, ||[(AAB) N £="||< f(n). Finally, given A [z, and
Sats_1, A(zs) can be computed in time

F(lzsl) - f(lzs]) - 2| AT 2s]) log £(| AT 2s]) +#(|2s])

by assumption about F. W.l.o.g. we may assume that f(n) < n, whence
the claimed time bound for A follows from (2.7). O

Corollary 2.2.8. There is a sparse n*-generic set in DTIME(2(5+2)7) gnd
a sparse p-generic set in DTIME(Z”Q)

Proof. In Theorem 2.2.7 let B = 0, f(n) = t'(n) = n, and t(n) = n*,
t(n) = n'°8lo8™ resp. O

In the sequel, central interest will be on (general) p-generic sets. The fol-
lowing summary of properties of (general) p-generic sets illustrates the di-
agonalization power of these sets.

Proposition 2.2.9. Let f be a t(n)-extension function, and A a (general)
t(n)-generic set. Then A meets f not only once, but infinitely often.

Proof. Suppose that A meets f only finitely often. Then there is a natural
number m such that the function

@) = { f(z) if f(z)} and |z] > m

T otherwise

is not met by A. Since fp, is a t(n)-extension function, this implies the
desired contradiction. O

Proposition 2.2.10. Ewvery general n?-generic set has exponential gaps.

Proof. Consider the function

(0™,0), (0" +1,0),...(1",0) ifz = 0"

J otherwise.

f(er):{

Then f is an n’-extension function and by Proposition 2.2.9 A meets f at
infinitely many z. So AN X=" = () for infinitely many n. O

For p-generic sets the following Lemma will be extremely useful, since it
relaxes the limitation on simple extension functions.

Lemma 2.2.11. ([AmbB97]) If A is p-generic and f is a bounded or a
waiting bounded nk-extension function for some k > 1, then A meets f.
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Proof. We will only give the proof for waiting bounded n*-extension func-
tions. So assume that there is a constant [ > 1 such that (2.6) holds when-
ever f(a) is defined. W.l.o.g. we may assume that [, = [ for all strings
a on which f is defined. We split f into [ simple n*t!l-extension func-
tions fi,..., fi as follows: Given k with 1 < k <[ and a string X [y let
fx(X Ty) = iqk, where « is the shortest initial segment X [0 of X [y such
that, for f(a) = (Ya,1,%0,1)s s W fa)s Y = Yok a0d (X [Y)(Ya,j) = i,
for 1 < j < k. If no such «a exists, fx(X [y) is undefined. Then, as one can
easily check, f; is dense along all sets, fr11 is dense along all sets which meet
fx infinitely often (1 < k <), and a set which meets f; meets the extension
function f, too. Since A meets any simple n*tl-extension function which
is dense along G not just once but infinitely often by Proposition 2.2.9 the
above implies that any p-generic set G will meet f. U

Next we summarize a number of known properties of (general) p-generic sets
that are related to a complexity class C. Some of the proofs are included,
and may serve as an introduction to the typical lines of arguments used in
later chapters.

Theorem 2.2.12. ([Amb96, AmbNT96]) If A is an n*-generic set then A
is DTIME(2F")-bi-immune.

Proof. Suppose an nF-generic set A that is not DTIME(2*™)-bi-immune.
Then there is an infinite language L in DTIME(2¥") such that either L C A
or L C A. Define the simple extension functions f and g by

0 if L(n)=1
1 otherwise

e = {

1 if L(n) =1
X = )
9(XIn) { 1 otherwise
It is easy to see that the assumptions about L imply that these functions
are dense n¥-extension functions, whence A meets both of them. So suppose
that A meets f at n and g at m. This implies that n is a witness for L Z A,
and m is a witness for L € A, a contradiction. O

Corollary 2.2.13. There is no n¥-generic set in DTIME(2%™) and there
s no p-generic set in E.

Proof. The former follows since no C-bi-immune set is a member of C, while
this implies the latter by definition of p-generic sets and E. O

A similar argument can be established for DTTME(2*™)-incompressibility,
p-selfreducibility and p-autoreducibility.
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Theorem 2.2.14. If A is an nF-generic set then A is DTIME(2(6—1Dm).
incompressible.

Theorem 2.2.15. If A is p-selfreducible, then A is not p-generic.

Proof. Assume that A is p-selfreducible, say via a polynomial-time bounded
oracle Turing machine M, and the running time of M is bounded by nF.
Let f: £* — ¥ be the simple n*-extension function defined by

f(Xn) =1—=MX"(n).

Since f can simulate the query steps of M on input n by scanning the input
X I'n, fis a simple n™a{2:k}_extension function, and f is dense along all
sets. Hence A meets f at some n. But this implies that

A(n) = f(Aln) =1 = M"1"(n) = 1 — M*(n),
a contradiction to the assumption that A is p-selfreducible via M. O

Theorem 2.2.16. If A is p-autoreducible, then A is not general p-generic.

Proof. The ideas for this proof are analog to the ideas for Theorem 2.2.15.
Assume that A is general p-generic and p-autoreducible via M. Recall
that, given as oracle, the string X [n is interpreted as the set (X [ n)0>.
So given a set X, Let i = MXI"(n) and COND,X = {(¢,0) : q €
Q(z, M, X [n)&q > n}U{(n,1 —iX)}. Let f be the function that, given
X ['n as input, outputs the members of COND.X in the appropriate order.
Then f is computable in polynomial time. Hence A meets f at some n.
This implies that A(n) =1 — ia™ and MA(n) = MAI™(n), whence

MA(n)=A(n) =1—i21" =1 - MA"(n) =1 - M4 (n).

This is contradictory, whence no set can be both general p-generic and p-
autoreducible. O

Finally, the following observation provides one of the basic tools in applica-
tions of generic sets to considerations about NP-r-completeness notions.

Theorem 2.2.17. If A is a (general) p-generic set, f1 and fy are indepen-
dent p-extracting functions, then Ay, and Ay, are incompatible with respect
to P-btt- (P-tt-)reductions.

Proof. Here we will only treat one of two assertions, since the proof of the
other is similar. So suppose that A is a general p-generic set, and Ay, <}, Ay,
via the P-tt-reduction M. Let

LONG(M,n) ={f2(q) : ¢ € Q(M,0") &|f2(q)| > n}
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be the set of strings that determine those oracle answers in the computation
of M*472(0") which are not determined by A [ 0”. The extension function
that is designed to refute the assumed reduction between Ay and Ay, is
defined as follows.

For any set X let X,, be the fo-extraction of X <", and i.,X = M*X=(0").
Finally, let

COND,) = LONG(M,n) x {0}
U {(f(0M), 1)}
Again, given X [ 0™ as input, the extension function f corresponding to
CONDY is polynomial time bounded. (Note that f; and f;, are disjoint, so
f is well defined.) Hence A meets f at some n. This implies that
Ap(q) = (A10")5,(q) = An(g) for all g € Q(M,0"), whence
MA2(0") = MA"(0") = i?, whereas
Ap(0") = 1—il and
Ap(0") = MAn(0"),

a contradiction. Therefore there is no P-tt-reduction from Ay to Ay,. O

We close this section with the proof of an existence theorem for general
p-generic sets that was shown in [Amb96]. In contrast to Theorem 2.2.7, it
lacks the bound on disagreement with the given set B.

Theorem 2.2.18. ([Amb96]) Let t(n) be a nondecreasing, time-construc-
tible function on N such that t(n) > n. Then there is a general t(n)-generic
set A such that

A € DTIME (22152t (2" ) log t(2"11)).

Sketch of proof. Fix an enumeration {f. : e > 0} of ¢(n)-extension functions
such that, by means of a standard universal transducer, the function

F(01z) = { Lele) if Jele)k

0 otherwise

can be computed in time O(e - #(2"*1) logt(2"*1) + e). Note that A will be
general t(n)-generic if the following requirements are met:

R, : f. dense along A = A meets f. (2.9)

This will be ensured by constructing the set A in stages. At each stage s,
membership of the string z; in A is decided, whence at the end of stage s
as = A zsy1 is fixed. At the same time, a set Sats is fixed which records
the requirements met at the end of stage s. Note that a requirement R,
should not enter the set Sats at a stage where f.(as_1) is defined, like in
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the proof of Theorem 2.2.7, but at a stage where any set extending s meets
fe. Therefore the bitwise construction of A may cause that the process of
meeting requirement R, (by taking the appropriate actions at several stages)
is injured by taking action for a requirement of higher priority. For i < 1 and
an extension function f, call a string X [y i-critical for f on z, if f(X [ z)
is defined, say f(X [z) = (y0,%0),--- 5 (Ym,im), there is an index 0 < j <m
such that (y;,4;) = (y,4), and for all 0 < k < j it holds that X (yx) = 4.
Then the construction is as follows. Initially, let a_1 = Sat_1 = 0.

Stage s: Requirement R, requires attention if e < |z4|, e ¢ Sats_1, and
there is a t < s and an 4 < 1 such that a;_1 is i-critical for f, on z.
If no requirement requires attention, let oy = as—10 and Sats = Sats_1.
Otherwise, choose e minimal such that R, requires attention. Choose the
minimal ¢ < s and 7 < 1 (in this order) such that «; 1 is i-critical for f. on
zt. Let ag = as—11. If flas—112) = (Y0,%0)s--- s (Umyim) and zs = Yy, let
Sats = Sats_1 U {e}, otherwise, let Sat; = Sats_;.

end of stage s

A straightforward induction shows that every requirement requires attention
at most finitely often and is met. For details on this argument see [Amb96]
or the proof of Theorem 4.1.1 in Chapter 4. So it remains to show that
A € DTIME(2"*#(n)) for ¢'(n) = nt(2"T!)logt(2"*!). As in the proof
of Theorem 2.2.7 we have to show that, given a;_1 and Sats_1 the actions
at stage s can be done in time ¢'(|z5|). Let |z5] = n. In the worst case, for
each e < n and each ¢t < s, F(0°1 [¢) has to be computed and the output
compared with as_1. This takes time O(n-n-t(2"!) log¢(2"+1)+27+1)). O

Corollary 2.2.19. For ¢ > 1 it holds that
(i) there is a general n°-generic set in DTIME(2¢(n+2))
(ii) there is a general p-generic set in DTIME(2"")
(iii) there is a general 2(1°8°™)_generic set in DTIME(2™)
Proof. Apply Theorem 2.2.18 to the functions #(n) = n¢, t(n) = n'°8™ and

t(n) = nllogn)™" O

2.3 Resource-Bounded Randomness

Based on the martingale characterization of measure zero classes of Ville,
Schnorr ([Sch71a, Sch71b]) proposed that a set X should be called recur-
siwely random if no recursive martingale succeeds on X. By additionally
emposing resource bounds on the martingales, Schnorr introduced resource-
bounded randomness concepts. Later Lutz ([Lut92]) extended these con-
cepts by considering notions of resource bounded measure. Here we focus
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on these concepts for deterministic time complexity classes. We will admit
only rational valued martingales, hence time bounds for martingales can be
defined in the usual way.

Definition 2.3.1. Let ¢(n) be a non-decreasing, recursive function on N. A
t(n)-martingale is a martingale such that d € DTIME(¢(n)), i.e.

2 - d(w) > d(w0) + d(wl). (2.10)

These martingales form the basic notion both for resoure-bounded mea-
sure and randomness. Here we follow the definition of ¢(n)-martingales of
Schnorr [Sch71b] and Ambos-Spies, Terwijn and Zheng [AmbTZ97]. Com-
pared to the different setting in [AmbMWY96], where a t(n)-martingale is
induced by “betting ratios” computable in time O(t(n)), or the notion of
Lutz that is based on DTIME(¢(n)) approximations of real valued martin-
gales, these definitions result in different notions of #(n)-randomness, but
yield equivalent definitions of p-randomness.

Definition 2.3.2. Let t(n) be a nondecreasing recursive function. A class
A has t(n)-measure zero (u¢(A) = 0) if there is a t(n)-martingale d that
succeeds on every A € A. A class A has t(n)-measure one (u(A) = 1) if A
has t(n)-measure zero. The set A is called ¢(n)-random if no t(n)-martingale
d succeeds on A.

Definition 2.3.3. A class A has p-measure zero (up(A) = 0) if there is an
nk-martingale d that succeeds on every A € A for some k > 1. A class A
has p-measure one (u,(A) = 1) if A has p-measure zero. The set A is called
p-random if A is n*-random for all k£ > 1.

Before we focus on the notion of p-randomness, we give some basic prop-
erties of ¢(n)-random sets.

Lemma 2.3.4. Let t(n), t'(n) be nondecreasing recursive functions such
that t(n) < t'(n) for almost all n. Then it holds that

(i) any t'(n)-random set is t(n)-random, and
(ii) if A is t(n)-random, then A is t(n)-random, too.

Proof. (i) is immediate by definition. For a proof of (i7) suppose a t(n)-
martingale d that succeeds on A. Then the function d defined by d(w) =
d(w) succeeds on A, where w(m) =1 —w(m) for 0 < m < |w|. O

Lemma 2.3.5. Let A be a set. Then the following statements are equiva-
lent.

(i) A is p-random.
(i) {A} does not have p-measure zero, that is, u,({A}) # 0
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(17i) If C has p-measure one, then A € C.

Allthough p, is consistent with the Lebesque measure i, this lemma shows
that measurable classes w.r.t. p need not be measurable with respect to p,,
e.g., the singletons of p-random sets. Another important difference is closure
under countable unions. However, if DTIME(#(n)) contains a universal
function for DTIME(#¢(n)), the countable union of ¢(n)-measure zero classes
has ¢'(n)-measure zero. This observation also yields a general existence
theorem for ¢(n)-random sets.

Definition 2.3.6. ([AmbTZ97]) Let t(n) be a time-constructible, nonde-
creasing function. Fix an effective enumeration of DTIME(¢(n)). The func-
tion d : ©* — Q7 is called universal for t(n)-martingales (corresponding to
the enumeration {f; : 4 > 1}) if d is defined by
2|w|
dw) => " 27" D(i,w) +4-27 (2.11)
i=0
and D(i,w) = f;(w) if f satisfies (2.10) for all z such that z1 is length-
lexicographic less than w; and D(i,w) = 1 otherwise.

Lemma 2.3.7. Let D and d as above. Then
(i) d is a martingale
(i) S%0d] 2 UgyeDTIME t(n)) S~ 1]

Proof. Note that the function d; defined by d;(w) = D(i,w) is a martingale.
W.lo.g. assume that these martingales are normed. Thus D (i, w) < 2/*! for

all 4 and
d(w0) + d(wl) =
2|w|+2 2|w|+2
> 27 DG, w0) + Y 27 D(iwl) +2-4- 270
1=0 1=0
2|w|+2
< 20 ) 27D(3w) +2-4-227 (1 -1/2)
=0

= 2-d(w)+272"1DQ2lw| + 1,w) +
27 2vI=2 D(2)w| 4 2,w) — 4 - 271"/
< 2-d(w)+27"(1/2+1/4—4) <2 d(w)
and d is a supermartingale, too. For a proof of (ii), note that for d' €

DTIME(¢(n)) and ¢ such that d'(w) = D(i, w)
limsupd(X |n) > 2 - limsupd' (X [n).

n—o0 n—00

So if d’' succeeds on X then d succeeds on X as well. O
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Thus a bound on the running time of the martingale d yields the following.

Corollary 2.3.8. There is a t(n)-random set in DTIME(2"+! . ¢/(27+1))
for t'(n) > nt(n)(logt(n))* ([AmbTZ97]).

Corollary 2.3.9. Fork > 1 there is an n*-random set in E and an n1°8 n)*_
random set in EXP, whence a p-random set in EXP.

We close this section by a short comparison of p-randomness with (gen-
eral) p-genericity.

Theorem 2.3.10. ([AmbNT96, AmbTZ97]) Every n - t(n)-random set is
t(n)-generic.

Proof. Assume an n-t(n)-random set A and a simple ¢(n)-extension function
that is dense along A. Define a martingale d by d(\) = 1 and for all w € ¥*,
1€ X let

2-d(w) if flw)l=1—1i
d(wi) =< 0 if f(w)l=1

d(w) otherwise

Then A has to meet f, since otherwise d will be nondecreasing along A
and will be doubled infinitely often, hence will succeed on A. Since d is an
n - t(n)-martingale, this yields a contradiction. O

Corollary 2.3.11. Ewvery p-random set is p-generic .

This correspondence between randomness and genericity shows that the
genericity concept that was obtained by restrictions on simple extension
functions is weak enough to be compatible with resource bounded measure.
Therefore we obtain the results in the last section for p-generic sets also for
p-random sets.

Corollary 2.3.12. Let A be a p-random set in EXP. Then A is P-bi-
immune, P-incompressible, not p-selfreducible and not P-(btt)-complete for

EXP.

But, of course, there are many characteristics in which random sets differ
from generic sets. These are consequences from the differences between
unsuccessful martingales and infinitely often met extension functions. While
for a generic set the ratio of strings at which an extension function is met
to the “chances” to do so is unpredictible, a unsuccessful martingale has to
“lose” in the majority of chances. Intuitively, a random set shows a more
“regular” irregularity than generic sets, and this regularity can be expressed
by statistical laws. (In [Wan96] this is discussed in detail.) Here we point
out only a few examples of these characteristics of ¢(n)-random sets that are
of importance in this thesis.
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Theorem 2.3.13. Let A be n?-random and P a set in P. Then A=" # P="
for almost all n > 1.

Proof. Consider the following normed martingale.

((d(X ]z) if 3Jy < z such that
lyl = |z & P(y) # X(y)
3d(X1z) if P(z)=iand X(y) = P(y)
for all y < z of length |z|
td(X1z) if P(z)=1-1iand X(y) = P(y)
{ for all y < z of length |z|

Since P is computable in polynomial time, d is an n’-martingale. Now

consider the sequence (a,)nen defined by a, = d(A[0"H). If A=" #£ P=",
then ap, > 1/2-ap_1. If A" = P=", then a,, = (%)Tan_l. Taken together
and using 2" > 2n, this implies that

OROORORO)

for each n such that A=" = P=". Since otherwise d would succeed on A,
there are only finitely many such n. O

In contrast to Theorem 2.3.10 and Corollary 2.3.11 this establishes the fol-
lowing incompatability.

Corollary 2.3.14. ([Amb96]) No set can be both p-random and general
p-generic .

Proof. Since general p-generic sets have exponential gaps, this is an imme-

diate consequence of the previous theorem with the empty set in place of
P. O

The difference between p-random and p-generic sets becomes even more
obvious when the density of a set is considered.

Lemma 2.3.15. Every p-random set A is dense. ILe., there is an € > 0
such that |AS™| > 2" for almost all n.

Proof. Assume a set A that is not dense. Then for infinitely many n it holds
that |A<"| < 2V™. Define the n-martingale d by d(\) = 1, d(w0) = 3/2-d(w),
and d(wl) = 1/2 - d(w). Since |(£*)<"| = 2"+ — 1, it follows that

limsupd(A[z,) > li_)m ((1/2)2‘/5 . (3/2)2%1*1’2%) = 0.

n—o0

Hence d succeeds on A, so A is not p-random. O

Finally, we want to establish the analog to Theorem 2.2.4.
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Lemma 2.3.16. Let C be a complexity class that is closed under P-m-
reducibility. Then the following are equivalent:

2

(i) There is an n°-random set in C.

k_random set in C for every k > 1.

(i) There is an n
(iii) There is a p-random set in C.
(iv) There is an 218" 7 _random set in C for every k > 1.

The proof follows the same argument as in the case of Theorem 2.2.4.






Chapter 3

Non-Smallness Hypotheses
about NP

3.1 Introduction

By the time hierarchy Theorem the levels of the exponential time hierarchy
are proper, whence P C E C EXP. The relation between determinism and
non-determinism implies that NP is localized somewhere in between, i.e.,

P C NP C EXP,

and there are relativizations realizing the two extremes (see [BakGST75]).
Both extremes are widely disbelieved because of their contra-intuitive con-
sequences (see Chapter 1). The internal structure of P as well as of EXP
is well understood and the two classes differ substantially in structure (see
below). Hence the two extreme possibilities to localize NP are contrary not
only with respect to the size of NP, but also with respect to the internal
structure of NP.

On the other hand, considering structural properties about NP will have
implications on the localization of NP. For instance, the statement that
NP contains a set witnessing that P-7- and P-tt-reductions differ (resp.
coincide), implies that NP # P (NP # EXP resp.). Hence a study of the
internal structure of NP depends on a previously chosen hypothesis about
NP.

That NP contains a non-negligible part of EXP and therefore exceeds P
substantially, often can be expressed by stating that NP contains a set with
some appropriate structural property ¥ not shared by the sets in P. Since
NP is contained in EXP, it suffices to consider properties shared by some set
in EXP. Obviously, the weakest (that is, necessary) such statement would
be that NP contains a set not in P, while the strongest (admissible) such
statement would be that NP contains an EXP-complete set (which implies
that NP equals EXP).



34 Chapter 3. Non-Smallness Hypotheses about NP

To obtain a meaningful non-smallness hypothesis about NP we consider
the relativized version of such a statement and require that the conditions
mentioned above relativize.

Definition 3.1.1. A non-smallness hypothesis about NP is a sentence about
sets @ of the form ¢ = 3D (D) in which complexity classes like P, NP, E,
EXP, FP, etc. may appear as constants. It is called possible, if it satisfies
the conditions

(i) consistency:

there is a set A such that NP4 = gpA,

(ii) nontriviality:

for all sets A, P4 [~ o4, and

(iii) admissability:

for all sets A, EXP4 |= 4.
And it is called necessary, if NP4 = 4 for all sets A for which P4 #£ NP4

Here ¢4 denotes the relativization of ¢ to A, the sentence that is ob-
tained by replacing the Turing machines involved in the statement ¢ by
oracle Turing machines equipped with oracle A.

Conditions (ii) and (iii) ensure that the property 1 will be incompatible
with membership in P but will occur within EXP, regardless of the chosen
relativization. Condition (i) states that for sets in NP the property 1 is
conceivable. Since there are oracles for which NP = EXP, this condition is
already implied by condition (iii).

Possible non-smallness hypotheses about NP are compared in strength
according to an ordering that is also based on relativizations. Consider two
hypotheses 1) and ¢ stating the existence of sets with property ' and ¢’
resp. If the existence of a set in NP with property 1’ implies the existence
of a set in NP with property ¢’ and this fact relativizes, we call 9 stronger
than ¢.

Definition 3.1.2. Let ¢, % be possible non-smallness hypotheses about NP.
1 is stronger than ¢ (@ <) if for all sets A,

NP4 =yt = NP4l
1 is strictly stronger than ¢ (p <) if ¢ <1 and 9 A .

Proposition 3.1.3. The ordering < on the possible non-smallness hypo-
theses about NP has a minimal and a mazimal element.
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Proof. Consider the sentences

Pmin = ElD(D ¢ P)
Omaz = 3ID(D P-m-complete for EXP).

Both are possible non-smallness hypotheses about NP. Let 1 be a possible
non-smallness hypothesis about NP and let A be any set. If NP4 = 4 then
the second condition in Definition 3.1.1 implies that NP4 #£ P4, whence
NP4 |= o4 . On the other hand, if NP4 = ¢y,44, then NP4 = EXPA.
Hence the third condition implies that NP4 |= 4. So

Pmin = 'l)b = Pmaz-

3.2 Weak and strong hypotheses about NP

Since Ymin is the most plausible hypothesis about NP, structural properties
obtained under it are of special interest. But only very little is known about
the internal structure of NP under this minimal hypothesis (see below for
details). We distinguish two kinds of possible non-smallness hypotheses,
weak hypotheses and strong hypotheses, without giving a strict line of dif-
ference. Roughly speaking, a hypothesis is called strong if, in some sense, it
states that NP contains a non-negligible subset of E, and that NP is not a
subset of E. And it is called weak otherwise. We start with discussing some
weak hypotheses about NP.

Nontriviality Hypothesis:

(N) dD e NP (D ¢ P)
Sparseness Hypothesis:

(S) dD € NP (D ¢ P & D is sparse)
Tally Set Hypothesis:

(T) dD € NP(D ¢ P & D is tally)
Exptally Set Hypothesis:

(TT) 3IDeNP(D¢P&DC{0* :n>0}
Bi-immunity Hypothesis:

(BI) dD € NP(D p-bi-immune)
Incompressibility Hypothesis:

(INC) dD € NP(D p-incompressible)

Proposition 3.2.1. (N) < (S) < (T) < (TT) < (BI) < (INC)
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Proof. The only nontrivial relation is (TT') < (BI). Note that, if D is a
p-bi-immune set in NP, then D' = {0%" : n > 0&0?" € D} is an exptally
set in NP \ P. Since this fact relativizes, (I'T)) < (BI). O

Moreover, all these relations are strict in the sense given above. Next we
summarize known consequences of these hypotheses.

Theorem 3.2.2. 1. Assume (N). Then there is a set in NP \ P which
is not NP-P-m-complete ([Lad75]). In fact, there are infinitely many
P-m-degrees in NP.

The NP-m-complete sets are neither sparse ([Mah82]) nor p-selective

([Sel79]).

2. Assume (T). Then E # NE, there is a set in NP \ P which is p-
selective, and there is a set in NP \ P which is not P-d-selfreducible

([Sel79]).

3. Assume (TT). Then EE # NEE ([Sel79]), and there is a search prob-
lem in NP that is not reducible to the corresponding decision problem

([BelG94]).

In contrast to the rich and diverse structure inside EXP, it should be
pointed out that nothing is said here about polynomial time reduciblities
with unbounded number of queries to the oracle, or about the complete-
ness notions induced by polynomial time reduciblities. Such kinds of conse-
quences seem to require stronger hypotheses as the following.

Genericity Hypothesis:
(GQ) 1D € NP (D p-generic)
Randomness Hypothesis:
(R) iD € NP (D p-random)
General Genericity Hypothesis:
(GG) dD € NP (D general p-generic)
Completeness Hypothesis :
() dD € NP (D p-m-complete for EXP)

Since the corresponding results in Sections 2.2 and 2.3 relativize,
(G) 2 (GG)  and  (G) X (R).

By Lemma 2.3.16, (R) is equivalent to the non-smallness hypothesis intro-
duced by Lutz in [Lut92], stating that NP does not have measure zero in E
(u(NP|E) # 0). There are several interesting consequences of this hypoth-
esis, among the most interesting are the following.
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Proposition 3.2.3. ([LutZ97]) Assume (R). Then

(1) there is a set in NP that is P-btt(3)-complete, but not P-m-complete
for NP ([LutM96]), in fact, not NP-btt(2)-complete ([May94b]).

(2) For € > 0, no sparse set can be P-tt(n'=¢) -complete or P-T(n%>¢)-
complete for NP.

This thesis concentrates on the hypotheses (G) and (GG), since for p-
generic sets their relation to diagonalizations aganinst polynomial time re-
ductions is more immediate than for p-random sets. Moreover, it turns out
that results in the flavour of 3.2.3 (1) in many cases also are obtained under
(G), while proofs under this hypothesis can be given in a more direct, lucid
way. On the other hand, results in the flavour of 3.2.3 (2) are related to the
Borel-Cantelli-Lemma, which enables diagonalizations against polynomial
time reductions for which the number of queries is not encreasing too fast
with the input length. It is in not clear, how such results could be within
the reach of category-based arguments.






Chapter 4

Relativizations Comparing
Strong Hypotheses about NP

In this chapter the strong hypotheses about NP, (G), (R), (GG) and (C) are
studied under the ordering < introduced in Definition 3.1.2. As was pointed
out in Chapter 2, the genericity concept used to define p-genericity is weak
enough to become compatible with p-randomness. Hence it is obvious that
(G) X (R) X (C) and (G) X (GG) < (C). In fact, it holds that (G) <
(R) < (C) and (G) < (GG) < (C). To show this, it suffices to construct an
oracle A such that, relative to A, NP contains a general p-generic set but
no p-random set; and an oracle relative to which NP contains an n?-random
set but no general p-generic set. Both constructions are quite involved, so
each is discussed in a separate section.

4.1 Genericity versus Randomness

The following theorem is a generalization of the Lemma stating (G) < (R)
given in [AmbB97], and the proof given below is based on ideas used there.

Theorem 4.1.1. There is an oracle A such that, relative to A, NP contains
a general p-generic set but no p-random set.

Proof. We will construct a set A with the required properties in stages. IL.e.,
we will effectively enumerate a sequence of finite characteristic functions
(as)s>0 which has the characteristic function of A as its limit.

In order to guarantee that NP4 does not contain any p“-random set we
will ensure that every set in NP4 agrees with some P“4-set on all strings of
length n for infinitely many numbers n. This will be achieved by letting the
oracle A look like the canonical NP4-complete set K4 on sufficiently large
intervals infinitely often. Let N, be the e-th nondeterministic oracle Turing
machine with respect to some standard numbering and let

KA = {{0°,z,0™) : NeA accepts z in < n steps},
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where, for technical convenience, we assume that |(z,vy,z)| is odd for all
strings z, %y, z. Then the construction of A will ensure that

I°nvz (n < |z| < 2" = A(z) = K4(z)) (4.1)

That this suffices to eliminate random sets in NP4 is shown as follows.

Claim 1: Assume that (4.1) holds. Then NP4 does not contain any p“-
random set.

Proof. Given B € NP4, there is an index e and a polynomial p such that
z € Biff (0°,z,0°(2)) € KA. Since |(0°, z, 0P())| is polynomial bounded in
|z, it follows from (4.1) that there are infinitely many numbers n such that,
for the PA-set B = {z : (0¢, z,0°(2)) € A}, B=" = B=". By the relativized
version of Theorem 2.3.13, this implies that B is not p-random. |

In order to achieve the second goal of the construction we will ensure
that the set

={z: Iy (lyl = |2” & ay € A)}

will be general pA-generic. Note that the strings xy that decide about mem-
bership of z in G4 are of even length. Fix a recursive enumeration ( fe)e>0
of the oracle dependent p-extension functions such that w.l.o.g. f. is an
n®-extension function. Then to make G4 general p-generic relative to A it
suffices to meet the requirements

R, : ff dense along G4 = G meets ff

for e > 0. These requirements will be met in the following way. If the
hypothesis of R, holds then at some stage s of the construction we will
choose the finite extension a; of the previously specified finite part az_1 of
A in such a way that a, will force that ff is defined on input G4 [s, say

FAGA18) b= (20,00)s- - (T, im)- (4.2)

Hence, to meet requirement R, we have to ensure that G4 (z;) = i; for all
0 < j < m. This intention is documented by adding the pairs (e, zj,i;) (0 <
J < m) to the list of announcements Announces, used during the appropriate
stages to choose extensions as,, ... , s, such that as; forces GA(zj) = ij
for 0 < 7 < m. This process will be aborted only if a requirement R, of
higher priority provides a contradicting announcement (e’, z;, 1—i;) for some
0 < j < m. Hereby requirement R, is of higher priority than requirement
R, if ¢ < e. Since there are only finitely many requirements of higher
priority, we will argue that this will happen only finitely often, whence at
some stage s, «, forces G4 to meet f2. Moreover, by hypothesis there
are infinitely many stages to start the above process. This will allow us to
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spread out the actions for meeting the requirements R, in such a way that,
by letting A(z) = K4(z) in the intermediate phases, condition (4.1) will be
satisfied. In the construction below this will be implemented by allowing
only requirements R, to act at stage s for which e < d(|s|) for some slowly
growing function d.

If we take action for requirement R, and choose «; to force (4.2) and
Qg,,--- ,0s, to force GA(:vj) = i; for j < m, we have to make sure that
this action will not simultaneously force fé‘,‘(GA Fs' ) = (v0,70)s--- » (W15 51)
and G4(yg) = 1 — ji for some k < I, ¢ < e and s'. Otherwise, for some
requirement R/, the actions of the requirements R, with e > ¢’ could force

é‘,‘ to be dense along G* in such a way that we will not be able to ensure
that G4 meets fcf?. So the combined actions of the lower priority require-
ments could cause the failure of R,.. This problem is overcome, firstly, by
imposing strict bounds on the possible extensions of a;_1 to choose from,
and, secondly, by choosing «, carefully enough to maintain the reason for
favouring R, over requirements of higher priority to take action at stage s.

Before stating the formal construction we need the following notation.

For a string = call the set code(z) = {zy : |y| = |z|?} the coding region
of z, let m(x) be the least element of code(x), and call a finite function « z-
honest if, for all y > z and all z € dom(a)Ncode(y), a(z) = 0. Then z € GA
iff AN code(z) # 0, and, for any z-honest a with code(z) € dom(a) we can
find extensions f3; forcing GX (x) = i for all extensions X of 3; by letting 3y
be the extension of a along {(z,0) : z € code(z)} and by letting 51 be the
extension of a along {(z,1)} for some string z € code(x) — dom (). In the
construction of A below, the part as_1 of A specified by the end of stage
s — 1 will be chosen to extend A |m(s) whence G4 | s will be determined by
the end of stage s — 1, namely G4 [s = G%~1 | s.

To describe the dependence of fX (G [z) on the oracle X, let ¢(X, e, 7)
be the use function of this computation, i.e.,

o(X,e,z) =
{(z,X(z)) : z is queried in the computation of fX(GX [z).}
Then, for any oracles X and Y such that X [m(z) =Y | m(z) (whence
GX 1o = GY [ o) and p(X,e,2) = @(Y,e,a), FX(GX [2) = f1(GY | ).
Moreover, since f. is an n®-extension function, |dom (p(X, e, z))| < |GX [z¢,

which is less than 2¢(e+1) by (2.7). And, for any z € dom(p(X,e,z)),
|z| < 2¢(=+1) This implies that for any oracle X the set

QY = {z: Jz <sTJe < d(|s]) (z € dom(p(X,e,z)))}

S
has at most

gs = 211 . g(|s]) - 240sD-(sl+1)
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clements. Note that g, < 2°I° for almost all numbers s if d(|s|) < log(|s|)
whereas |code(s)| = 2/*/°. This will ensure that in the construction we can
choose a; to force the computations fA(G* | z) to converge (for e < d(|s|)
and z < s) without exhausting code(s) completely. We assume that the
function d limiting the number of requirements which are considered at
some stage is chosen so that ¢; < 20sI” holds for all s and such that, for all
e < d(|s]), 2¢:(s1HD) < 92°1,

Moreover, in order to guarantee (4.1), we choose d to be nondecreasing
and to satisfy d(n) < log(n) and

n; = pl(d(l) > j) = njq1 > g(n;) forall j >0 (4.3)

2m

where g(m) =22 }8m(m + 1)-times.
For convenience, we define a function ¢ : N x N — N inductively by
t(0,m) =m and t(n+1,m) = 24mm) (4.4)

whence g(m) = t(8m? + 8m,m).

Stage s (s > 0) of the construction of A consists of three parts where the
first two parts contain the actions for meeting the requirements R, while in
the third part condition (4.1) will be ensured. In stage s we do not only
define the initial part a; of A but also sets Sat; and Announces where Sat;
contains the indices of the requirements which have been satisfied by the
end of stage s, while a tuple (e,z’,7) € Announces indicates that there is a
chance to meet requirement R, if a,s forces GA(z') = i. The initial values
of these parameters are a1 = Sat_1 = Announce_1 = ().

Stage s of the construction of A:

Step 1: Requirement R, is active if e < d(|s|), e ¢ Sats_1, and for all
tuples (¢/,z,1) € Announces—_1 it holds that ¢’ # e. R, requires attention
via B if R, is active, ff(Gﬁ l's) | and 8 is an s-honest extension of a; 1.
Requirement R, requires attention if R, requires attention via some S.

If some requirement requires attention then fix the least e and S (in this
order) such that R, requires attention via §. Here the finite function S is
considered less than 3, if |[dom(B)| < |dom(f')|, or if the domains are of
the same cardinality and the position of 3 is prior to that of 5’ with respect
to some effective numbering of finite characteristic functions. Let v be the
extension of 3 along the use function ¢(f3, e, s). Having thus fixed

f2(G71s) = fE(GP15) = (0,i0),- - » (Tmsim),
let

Announcely = Announces_1 U {(e,zj,i;) : 0 <j <m},
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and say that R, receives attention (via (). Otherwise, let v = a,_1 and
Announcel, = Announces_.

Step 2: In case that © # s for all (e,z,i) € Announcel, let § = 7,
Announces = Announcel,, Sats = Sats_; and proceed to step 3. Other-
wise, select the tuple (e, s,i) € Announce), with the minimal first compo-
nent e. Let o' be the extension of v along the union of the use functions
(7, €', z) for all numbers €' < e and strings z < s, let z be the least string
in code(s) \ dom(v'), and let

§ = (Y'U(z,1)) U (code(s) x {0})
Announce; = Announcel,\ {(¢/,2,i) :
(¢/,5,1 —1) € Announcel,}
Sat; = Sats—1U{e : (e, s,i) € Announces &

V(e,z',i') € Announces [z’ < s]}
Step 3: For the extension § of a1 defined in Step 2 let
as =0 (K% |m(s+1)).

end of stage s

This completes the construction. Note that K%(z) only depends on «
for the strings in dom(c) which are less than z. So in Step 3, a; and
K% | m(s + 1) can be inductively defined by fixing a(y) for the strings
y < m(s+1) with y & dom(d) in order.

The correctness of the construction is established by the following claims.
Let Sat = [, Sats.

Claim 2: For all s > 0, a; is well defined, s extends a1, dom(as) contains
all strings less than m(s + 1), and, for z € dom(a;) with z £ m(s + 1),
|z| < 92°!. Moreover, for any = > s, z € dom(as) N code(z) implies that
as(z) = 0 and z € dom(p(as,e,s")) for some e such that e < d(|s|) and
s’ <s.

Proof: The proof, which is by induction on s, is based on the following
observations. Obviously, dom(a;s) contains all strings less than m(s + 1)
by step 3 of the construction. So consider v, 4/, and § as constructed in
the first two steps. If no requirement receives attention at stage s, then
v = as—1. If R, receives attention via 3 at stage s, then v is an s-honest
extension of as_i, and, by minimality of 8, v\ as—1 C ¢(0,e,s). Hence,
if § =+, then the claim follows immediately from the induction hypothesis
and the equation ¢(8,e,s) = @(as,e,s). On the other hand, if 6 # ~,
then an analog argument shows that + is an s-honest extension of a;_1 and
dom(v') N code(s) C QY. Hence the string 2 € code(s) \ dom(v') required
for the definition of ¢ exists. Moreover, for all z > m(s + 1), z € dom(as) \
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dom(as—1) implies that z € Qzl = @Q%. Hence, the claim follows by the
induction hypothesis and the above remark on the length of the strings in
dom(p(X,e,s)). O

Claim 3: If e € Sat, then G4 meets f2 at some = < s.

Proof: Assume that e € Sat; and let s’ be the stage where e entered into
Sat, i.e. e € Saty\Saty_1. By definition of Saty this implies that (e, s’,i) €
Announcey for a unique 4 € 3. Choose the maximal ¢ < s’ such that R, re-
ceived attention at stage t via some [3, fg(Go‘t—1 ['t) = (20,%0)s- - 5 (Tm,im)
and z,, = s'. Then (e,z;,i;) € Announce; for all 0 < j < m. Since R,
can receive attention only if R, is active, for all stages ¢ between ¢ and s,
these are the only tuples in Announcey with e as first component. Now
assume that G4 does not meet f2 at . Then there is a minimal j such
that G*%i (z;) = 1 — i;. But this implies that j < m and by minimality
of j there was an announcement (e,z;,i;) € Announce;j. Hence another
announcement (¢/,z;,1—14;) of higher priority was fulfilled during the stage
zj. By maximality of ¢ this implies that no tuple with e as first compo-
nent can be a member of Announcey , contrary to the assumption about s'.
This completes the proof of Claim 3, since f2(G%-1 [t) = fA(GA |t) and
GA(z;) = G*i (z;) = 4; for all 0 < j < m. m

Claim 4: Whenever a requirement R, receives attention during stage s, there
is a requirement R, and a stage s’ > s such that €’ <e, ¢’ € Saty \ Saty 1,
and |s'| < t(2(e + 1), [s]).

Proof: Consider the case of requirement R, receiving attention via 8 during
stage s, i.e.,

FAHGAs) = fFP(G-118) = (%0, 50)s - - - » (Trms Tm)- (4.5)

Let t.s denote the minimal z; such that G*(z;) # 4; if such an z; exists
and denote z,, otherwise. We want to show, by induction on e, that then
there are €/ < e and a stage s’ > t., such that |s'| < t(2(e + 1),]s|) and
e’ € Saty \ Satg .

If Ry receives attention at stage s, then 9, = x,, and the claim holds
for ¢ = 0 and s’ = tyos = xp, since for all j < m, the tuple (0,z;,1;)
is chosen during step 2 of stage z;. So assume that the claim holds for
e/ < e and R, receives attention at stage s via 8 and (4.5) holds. Now
either e enters into Sat at stage z,, and the claim holds for ¢/ = e and
s’ = @y = tes. Or at the stage § = ¢, s = x;, there is an é < e such
that (é,5,1 —i;) € Announce, and this tuple is chosen during step 2.
Therefore R; received attention at some stage ¢ < § and by the induction
hypothesis we know that there are ¢’ < é < e and a stage s’ > ¢;; such
that |s'| < ¢(2(é¢ + 1), [t|) and € € Saty \ Saty_1. Since at stage §, the
tuple (é,38,1 —i;) is a member of Announcel, it follows that tz; > t. ; and
therefore s’ > t; 4 > t, s > s. Moreover, since [t| < [tes| < 922! and 641 <e,
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it follows that |s'| < £(2(é +1),22"") < t(2(e + 1), |s|) by definition of the
function ¢ (see (4.4)). i

Claim 5: Every requirement R, receives attention at most finitely often.

Proof: Assume that R, receives attention at infinitely many stages. Then
we may choose a sequence sg, s1, So, ... of stages such that for all ¢ > 0, R,
receives attention at stage s; and |s;+1| > #(2(e + 1),]|s;]). Then Claim 4
implies that Sat,,,, \ Sat,, # 0 and {0,... ,e} C Sats,,,. Therefore R, does
not require attention at any stage s > se41, contrary to the assumption. o

Claim 6: Every R, is met

Proof: Assume that f2 is dense along G4, but e ¢ Sat. By Claim 5 there
is a stage s, such that e < d(|s¢|) and for all ¢’ < e, R does not receive
attention at any stage s > s.. Then we may choose s such that

féA(GA [5) = (ZBO"L‘O)’- .- ,(ZEm,im) and |3| > 22|se|_

By the choice of s, the requirement R, is active at stage s. In case that
R, requires attention at stage s, some R, receives attention at this stage.
But the minimality of ¢/ implies that €/ < e, a contradiction to the choice
of s > s.. Therefore R, does not require attention at stage s. Choose §
minimal such that || = 22°! and let B = az. Since 8 D (A, e,s) but
R, does not require attention via g this implies that 8 is not an s-honest
extension of oz 1 .

Then there is a minimal s’ > s such that 5(z) = 1 for some z € code(s').
(Note that Claim 2 implies that ' < §.) Then ay_1 is s'-honest by Claim 2
while o,y C 8 is not. Hence some tuple (€', s',1) € Announce!, was selected
during steP 2 of stage s'. If ¢ < e, the assumption about s, implies that
|s'] < 22 |s|, a contradiction to the choice of s’ > s. Hence e’ > e, and
the choice of 4" during step 2 of stage s’ implies that 5’ = ay 1 Lp(y,e,s)
is an s’-honest extension of ay_1, that 8’ C oy, and that feﬂ’((}’o‘“1 Is) =
fe (Ges=1 1 s) = fA(GA | s) . Moreover, by minimality of s', §' is an s-
honest extension of as_1, too. Since feﬁ’(Go‘S—1 Is) = fA(GA[s) is defined,
R, requires attention via 3’ at stage s, a contradiction.

This completes the proof, since we have shown that for all e > 0 either
fA is not dense along G4, or e € Sat and R, is met by Claim 3. |

€

Claim 7: Condition (4.1) is satisfied.

Proof: Let [(n) = min{m : d(m) = n}. We will show that for all sufficiently
large n there is a number m with [(n) < m < 2™ < [(n 4 1) such that
A(z) = K4(z) for all strings z with m < |z| < 2™.

Note that [(n) > n whence, by (4.3), I(n+1) > ¢(8n2 +8n,I(n)). Hence,
for [; (1 = 0,...,4n) defined by ly = I(n) and l;11; = t(2n + 2,1;), I(n) =
lo<ly <--+<lgn <Il(n+1). On the other hand, only the n requirements
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Ry, ..., R, 1 can receive attention at a stage s for which |s| < I(n + 1).
But if R, receives attention at stage s and |s| < I, then, by Claim 4,
some requirement R, (¢’ < e) enters into Sat at some stage s’ for which
|s| <|s'| < k41 and R does not receive attention at any stage greater than
s'. So we can pick k < 3n such that no requirement receives attention at any
stage s with I < |s| < lg42. It follows by construction that A(x) = K4(x)
for all strings z < m(0%+2) with x ¢ dom(as,) where sp = 1%~1. Since
|z| < Igy1 for z € dom(as,) by Claim 2, this implies that A(z) = K4(x) for
all strings z with ly11 < |z| < lg4o- ]

This completes the proof of Theorem 4.1.1. O

Corollary 4.1.2. For the strong hypotheses (G), (R), (GG) and (C) it
holds that

(@) <(R), (GG)=<(C), and (R)Z(GG).

Proof. This is a direct consequence of Theorem 4.1.1 together with the rel-
ativized versions of Theorems 2.3.11 and 2.3.9. O

4.2 Randomness versus Genericity

This section deals with the analog of Theorem 4.1.1 with p-randomness
in place of general p-genericity and vice versa. As in the previous proof,
there will be a structural property of sets such that, relative to any oracle,
no general p-generic set has this property, but relative to the constructed
oracle, every set in NP will have this property.

Definition 4.2.1. A set A is locally n-2"-verbose if there is an infinite set
B € P and a partial function f : ¥* — £* in DTIME(2") with domain B
such that, for all z € B, |f(z)| = |z| and

f(z) £ A(x)A(z + 1) ... A(z + |z| — 1). (4.6)

I.e.,, f maps z to a string of length |z| that differs in some bit from the
section of the characteristic sequence of A of the same length that starts
with the bit A(z).

Lemma 4.2.2. If A is a general p-generic set, then A is not locally n-2°"-
verbose for any ¢ > 1.

Proof. Fix ¢ > 1 and suppose that A is locally n-2°"-verbose via some
funtion f. Define the nextension function f by

f(X12) = (2, f(@)[0]), (z + 1, f@)1]),- -, (& + |2] = L, f(2)[|z] — 1)
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if f(z)!; and f(X | z) undefined otherwise. Then f is an n‘-extension
function since f € DTIME(2?"); and f is dense along A since the domain
of f is infinite. So A meets f at some x. But then

Aw+i) = 1)l
for all 7 < |z|, a contradiction to (4.6). O

Since Lemma, 4.2.2 relativizes, the property of locally n-2"-verboseness may
be used to construct an oracle relative to which there is no general p-generic
set in NP. For this it suffices to provide the relevant information coded into
the oracle. Of course, a betting strategy with equal computational power
can get this information from the oracle, too, so we have to argue that this
knowledge does not signifficantly effect the chances to win.

Theorem 4.2.3. There is an oracle A such that, relative to A, NP contains
an n?-random set but no general p-generic set.

Proof. As in the proof of Theorem 4.1.1, we will effectivley enumerate a se-
quence of finite characteristic functions («as),~, which has the characteristic
function of A as its limit. The construction will guarantee that the set

G ={z : 3y (lyl = |2” & 1oy € A)}

will be n2-random. This will be achieved by fixing A in a way such that d4
does not succeed on G4 where d is the relativized version of the martingale
universal for the class of n2-martingales given in Definition 2.3.6. Since
5°°[d4] contains the success sets of all martingales computable in time O(n?)
relative to A, this implies that G4 is n%-random relative to A.

At the same time, for each s = (i, 5), we will code a string

ws # NAOTEYNAWO™®) +1) ... NAO™ + 7(s) — 1) (4.7)

of length 7(s) into A. Hereby N; is the i-th language in NP with respect
to some effective numbering, and 7 denotes the iterated power of 2, starting
with 7(0) = 2% and, for s > 0, 7(s + 1) = 27(5). This coding will ensure that
the function

fﬂm:{WS if 2 = 0702

undefined otherwise

will be computable in time O(2") for some constant ¢. Thus (4.7) will imply
that, relative to A, every set in NP will be n-2"-verbose, and therefore no
set in NP can be general p-generic relative to A.

This coding will affect the behaviour of d4 on inputs G4 [z for 7(s) <
|z| < 7(s+ 1), but at each stage s we will choose «; and the string to code
ws such that for all such z

dA(GA 1 z) = d*(G% 1 z) < ¢, - dA(GA107)) (4.8)



48 Chapter 4. Comparing Strong Hypotheses

and limsup H cs < 00. (4.9)

n—00
s<n

Hence d4 will not succeed on G, since (4.8) and (4.9) imply that

lim supd?(G* n) < dA(G4 107 - lim sup H cs < 00.

n—oQ n—o0 s<n
Before sketching the idea of the construction, we introduce some notation.

For a string = call the set G-code(z) = {lzy : |y| = |z|?} the coding
region of G(z) and let m(z) be the least element of G-code(z). For e > 0 and
strings  and y of the same length call the set F-code(e,z,y) = {0%lzyz :
|z| = |z|°T2} the F-coding region of e, x and y.

To describe the dependence of d* (w) on the oracle X let ¢(X,d, w) be
the use function of this computation, i.e.,

o(X,d,w) = {(z,X(z)) : zis queried in the computation
of dX (w).}

The small segments of the characteristic sequence of NX we are interested
in also depend on the oracle X, and we will refer to these segments by

w(X,e,z) = NX(£)NX(z +1)... NX(z + |z| — 1).

Finally, given a finite partial function 8, and a string z, the z-variant of 0,
denoted by wvar(f, z) is the finite partial function

var(8,2) = {(z, 1)} UB.

At each stage s we want to fix o, such that a, extends A [ m(07(+1)
and forces (4.7)—(4.9). Roughly speaking, this is achieved by first computing
each and every sensible choice of oy, then observing the consequence of each
choice , and finally, selecting the “best” extension «; in order to ensure (4.7)
- (4.9).

In the first step of each stage s = (e,j) we select candidates for as,
i.e. for each y of length 7(s) and each p of length 27¢+1) — 1 that extends
G*-1107() we fix the way how to choose a; if we wanted to code ws = y
and G | 07+ = p. In the second step we compute w(3,e,07()) for
each such candidate 8 and choose w; such that w(ﬁ,e,OT(s)) = w; for as
few (3 as possible. Then we replace each § considered in the first step by
a corresponding v = wvar(f, z;) for an a priori fixed string z; coding ws.
Finally, in the third step we examine the behavior of d” on the prefix strings
of G7 1076+ for all 4 fixed during step 2 and fix @, in correspondence to
this behaviour, thereby ensuring (4.7) — (4.9).

Initially, let @—; be the function that maps strings of length less than 7(0)
to 0 and is undefined otherwise. Then the construction is as follows.
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Stage s of the construction of A:

Let = 07(), g = G®-1 |z and e such that s = (e, j) for some j > 0. For
any string z let

E,={p:|p|=2"" —1&zCp}.

Note that E, contains the strings G* [07+1) for all X D a;_1.

Step 1: (Fixing extensions of a;_1)

For each y of length |z| let z, denote the least element of F-code(e,z,y) \
dom(as—1) and let W = {z, : |y| = |=|}.

For each string p of length < 275%1 that has ¢ as prefix we define an
extension ((p) of as—1 inductively by

Bl9) = st | (plwar(as1,2),d.9) \ (Wx{0,1}))
st

B'(pi) = B(p) U{(y,4)}

where y is the least element of G-code(s|y; 1) \ dom(B(p)); and

B(wi) = B(p) U |J (lvar(8'(wi),2), d,pig) \ (W x{0,1}))
zEW
7€{0,1}
for i € {0,1}. Recall that s, denotes the (n + 1)-st string in the length-
lexicographic ordering. Hence, for each string p considered above, the con-
struction ensures that the first |p| bits of the characteristic sequence of GA®)
coincide with p. This is established by the choice of §'(p), and the corre-
sponding string y is chosen such that the adding of the pair (y,7) does
not influence the behaviour of d%®)(pj) for either j € {0,1}. Moreover,
NP® (y) = Npar(Be)2) (y) for all z € W and y € ¥=*|, since on inputs of
length |z| N, does not query any string in W.

Step 2: (Coding ws)
For each string y of length |z| let

freq(y) = {p € Ey : w(B(p),e,z) = y}|

be the number of (maximal) extensions defined in Step 1 that force the
segment of N, we are interested in to equal y. Then we may choose w; to
be the least of the strings y with minimal freq(y), i.e.

freq(ws) < freg(y) for all y of length |z|. (4.10)
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Note that (4.10) implies that freq(ws) < 2.
Having chosen ws, we select the unique string z,, € W N F-code(e, z,ws)

and fix for each string p considered in Step 1 a new extension y(p) of as_1
by

7(p) = var(B(p); zv, )- (4.11)

Step 3: (Choosing «y)

We want to fix pg € E4 such that o, D 7v(po) will ensure (4.7)-(4.9). Ob-
viously, we have to choose py such that w(y(po),e,z) # ws. So call p € E,
“good” if w(v(p),e, ) # ws.

Initially, let po | 07(®) = g. For each n such that 27(8) —1 < n < 27(s+1) _ 1
we will fix po[n]| by the following procedure, assuming that py [n is already
fixed. For i = 0,1, compute

2-[{p € Eggpyi : pis “good” }|

€in = P— » 4.12
= T € Bpun ¢ p1s 000" ]] (12
Choose i € {0, 1} such that €; , # 0 and

4@ ((po [m)i) < eigo - P (py ) (4.13)

and fix pg[n] = ¢. If both values for ¢ have this property then let py[n] = 0.
Using the resulting string pg € E, we define

as =v(po) U{(2,0) : z< m(OT(sH))}. (4.14)
end of stage s

That A has the required properties is shown in the following claims.

Claim 1: For all s > 0, a, is well defined, a; extends a;_1, and dom(as)
contains all strings z < m(07**1). Moreover, dom(c;) contains at most
27(s+1) . 9. 97(s) . 977(s4+1) gstrings z > m(07(+1)) and a,(z) = 0 for all those
z.

Proof. The proof follows by induction on s from the following observations.

(i) W is well defined.
By hypothesis, dom(as_1) covers at most 27(5) . 2. 27(s=1) . 277(s) of
the 270" elements of F-code(07(),y, e) (for |y| = |z| and s = (e, j)
for some j). The definition of 7 ensures that

27(8) > 97(s)” 5 997(s), (4.15)
whence for every y of length |z| the corresponding string z, can be

selected.
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(ii) For each p considered in Step 1, 3(p) is well defined and extends a1,
dom(B(p)) contains at most |p|-2-27() . 27UPI+Y) members z > m(sp))
and B(p)(z) = 0 for all those z.

By induction on |p|, this follows easily from the construction and (i).
Just note that the hypothesis about dom(3(p)) ensures that g'(pi) is
well defined, and G(pi) \ 8'(pi) consists of at most 2 - 27(5) . 27IPl pairs
(2,0).

(iii) po is well defined

Assume n minimal such that po[n| cannot be fixed according to the
procedure given in Step 3. Then pg [n can be fixed according to this
procedure and therefore the denominator in (4.12) is non-zero. Since
€0,n + €1,n = 2, the martingale property of d ensures that at least one
of €y, €1, is non-zero and fulfills (4.13).

Since 7(po) differs from B(pg) only on the string z,,, the analog of (ii)
holds for v(pg), too. By the definition given in (4.14), this proofs the claim
for a. O

Claim 2: For all z such that |z| < 7(s + 1), GA(z) = G*(z) and d*(G* |
z) = d*(G* | z). For all tuples (e, j) there is a unique string y of length
7({e, 7)) such that F(e,07((&3) 1) N A # (.

Proof. Fix some arbitrary z < 07(t1), By Claim 1, A extends a; and G-
code(x) C dom(as). This implies that GA(z) = G*(z) and GA [z = G% | z.
For s’ < s such that 7(s') < |z| < 7(s' + 1) let pj be the string of length
27(8'+1) _ 1 constructed in step 3 of stage s’. Then G4 |z = Py | z. Since ay
extends § = 3'(py | (z — 1)) and ay D p(var(d, z,, ),d, py | )

dPlED) (ph 1 1) = d% (G | 1) = d* (G |z) = d*(G* 1z).  (4.16)

Finally, note that A(z) = 1 implies that either z is an element of G-code(x)
for some z, or z was chosen in step 2 of some stage s = (e, j), which implies
that z € F-code(e,07(%),y) for some y of length 7(s). Since at stage s
exactly one such z is chosen and all the different coding regions used in the
construction of A are disjoint, the corresponding string y is unique. ]

Claim 8: N, is n-2°"-verbose for some constant c.

Proof. Consider the following algorithm for a function f4 : ¥* — ¥*.
On input z, check that z = 07(¢9) for some j > 0. Find y of length
|z|, such that there exists z € AN F-code(z,y,e) and z is one of the first
2902l > g7({ed)) . . 97({exs)=1) . 97-7({e:1)) members of F-code(x,y,e). If such
a y exists, then output y, otherwise let fA(z) be undefined. Since the
elements of F-code(z,y,e) are of length 3|z| + 1 + |z/¢*? and fA has to
make at most 2% . 2911 queries, fé‘1 is computable in time 0(210"”‘), and
A ey | = Wee,jy as defined during stage s = (e, j) by claim 2. Tt
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remains to show that the string pg constructed during this stage is “good”.
So assume that pg is not “good”. Then there exists a minimal prefix z of
po such that pg [ 07(¢7) = 2 T py and no element of E, is “good”. Fix n
such that z = (pg [ n)i for some 7 € {0,1}. Then ¢, =0 and €;_;, # 0 by
minimality of z. Hence pg[n] = 1 — 4, a contradiction to z C py. O

Claim 4: d* does not succeed on G4.
Proof. We want to show (4.8) for ¢; = T(Ts(ﬁ')lll. Note that (4.16) and (4.13)
imply

d(GA T (n+1)) = d"PM) (pg [ (n+ 1)) < €5 - PP (pg ')

for i = pg[n]. Hence
n
d G 1n+0) < [ eope-a (G107,
k=27(s)—1
Again, let g = G [07(5). Then the number of “good” strings in E, is at
least |Ey| — freq(ws) > |Ey| — |E4|/(27%)) = |Ey|(1 — 1/7(s + 1)). Hence

I e = 2vts-r {2 € Butnan s pis ‘goo’
ferat PO[ ]a ‘{p c Eg i p is “gOOd”}‘
< ognt2—27() [{p € Epyjn+1) : pis “good” }|
- [Egl(1—1/7(s + 1))
< gnt2-27() |Epo[(n+1)|

B |Eg|(1—1/7(s +1))
2n—|—272"'(3)—|—27(3+1)7n72

|Egl(1—1/7(s +1))

_ B,
|Eg|(1—1/7(s+1))

_ T(s+1) 1

N T(S+1)—1_1+T(8+1)—1

Since Y52, 1/(7(s) —1) < 00, [1oe1(1+1/(7(s) — 1)) < 00, as well, whence

o0
1
limsupd*(G*[n) < d*(GA1070) - J](1 + ———) < o0
n—00 s=1 (T(S) - 1)
i
This completes the proof of Theorem 4.2.3. O

Corollary 4.2.4. For the strong hypotheses (G), (R), (GG) and (C) it
holds that

(@) <(GG),  (R)<(C), and (GG)ZA (R).



4.2. Randomness versus Genericity 53

Proof. Again, this is a direct consequence of Theorem 4.2.3 toghether with
the relativized versions of Theorems 2.3.11 and 2.2.19. O






Chapter 5

Separating NP-Completeness
Notions under Strong
Hypotheses

5.1 Introduction

In this chapter, a great variety of NP-completeness notions are studied under
the hypotheses (G) and (GG). It was shown in [AmbFHS87] that under the
hypothesis (G), there are sets in NP witnessing differences between most of
the polynomial time reducibilities, and these sets can often be defined in a
straightforward way.

Proposition 5.1.1. ([AmbFH87]) Assume (G). Let S be a p-generic set in
NP. Then

(1) S ﬁg_li 57
(ii)) S®& S £} S,
(i13) for all k > 2, Sy ﬁi’tt(k_l) S for S ={z : {z+1,... ,z+k}NS # 0},

() Soo £y S for Seo = {(z,4) : i >2&z € 5;}.

Sketch of proof. Here only the idea for a proof of (ii) is given. Suppose that
S@& S <P S via the one-to-one function g. Then consider the following
computation. On input X [0" evaluate go = g(00™) and ¢1 = g(10™). Since
g is one-to-one, at least one of these strings differs from 0™. Denote this
differing string by ¢g. If |¢| < m then output (0",1 — X(g)). Otherwise,
output (07, 1), (g,0). This computation pertains to a bounded n?-extension
function f which is dense along every set. By assumption about g, S(0") =
S(g(00™)) = S(g(10™)) = S(q). However, if S meets f at 0" for some
n > 0 then S(0") = 1 — S(g). Thus S does not meet f, a contradiction to
p-genericity of S. O
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This brief sketch illustrates some of the features of the subsequent proofs.
First a reduction M between two sets A; and A, that depend on a p-generic
set A is assumed. Then an infinite sequence of strings z, (n > 0) is fixed.
(In many cases z,, = 0".) Finally, a thorough analysis of the queries made
by M on input z, leads to the definition of an extension function that is
defined on every string of the form X | z,. However, if the p-generic set
meets this extension function at some xz,,, this z,, will witness the fact that
M can not be a reduction between A; and A,, a contradiction.

The success of such a construction depends on the relation between the
p-generic set A and the sets A; and A,. If the defined extension function
f obeys the appropriate bounds, then A will meet f at some z,. Hence
f(X [z,) should be defined such that A meeting f at z,, implies A;(z,) #
M*2(z,). To ensure this, the sets A; (i = 1,2) must depend on the p-gneric
set A in a specific way.

Definition 5.1.2. Let A and B be sets. B dominates A if there is a total
function f : 3* — 0,1 in P and a polynomial time-bounded oracle Turing
machine M such that

Az) =1 whenever (z, f(x)) € L(M, B). (5.1)

B completely dominates A if there are Turing machines My and M; such
that B dominates A via My and the constant function f(z) = 0, and via
M, and the constant function f(z) =1 as well.

Definition 5.1.3. Let A1, A2 and B be sets. A; and As are independently
dominated by B, if there exist f1, fo, My and M5 such that B dominates A;
via M; and f; (i = 1,2), and for every x the two sets of queries made by M;
on input (z, f1(z)) and by M, on input (z, fo(x)) are disjoint.

Obvioulsy, if A is polynomial time reducible to B, then B completely
dominates A. In addition, two independent extractions Ajs and Ay of
a set A are independently dominated by A. Other examples important
in the following are unions and intersections A U B and A N B which are
both dominated (but not completely dominated) by B. This holds since
(AUB)(z) = 1 whenever B(z) = 1, and (AN B)(z) = 0 whenever B(z) = 0.

These considerations together with the observation of Theorem 2.2.17
constitute the basis for the proofs in this chapter. Therefore, they all share
a general pattern that will be discussed in advance.

Consider two polynomial time reducibilities r; and 2. Under the hypoth-
esis (G), an NP-ro-complete set shall be given that is not NP-r;-complete.
For this sake, fix a p-generic set G in NP and an NP-m-complete set
C € DTIME(2"). G and C will be used to define the desired set A € NP.
That A has the desired properties will be achieved by selecting sets G; and
G, which are completely and independently dominated by G, and defining
A such that
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(1) A is positively P-btt-reducible to G; @ C,

(2) C can be recovered from A by a re-reduction,

(8) A is dominated by G, and thus dominated by G, and

(4) p-genericity of G and (3) imply that G2 is not ri-reducible to A.

In case that G; and G2 are members of NP, (1) implies that A € NP, (2)
implies that A is NP-ro-hard, and (4) implies that A is not NP-r;-hard. In
the proofs of this chapter, (1)—(3) will be quite clear from the definition of A,
whereas establishing (4) often requires more careful and envolved arguments.
While G and G, are completely dominated by G, by the dependence on C'
this does not hold for the constructed set A. In order to show that G; is not
r1-reducible to A, thus the dependence of A on the complete set C has to be
overcome by exploiting (5.1). To illustrate this idea, and to introduce the
notation used in this chapter, first we discuss an example. The construction
is taken from [LutM96] where it is discussed under the hypothesis (R), and
was adapted for the weaker hypothesis (G) by Ambos-Spies in [Amb94b].

Example 5.1.4. Assume (G). Fix G and C in NP as above. Let

Go={z : 0z € G},
Gi={z : 1z € G},
A=Gy® ((GoNC)®(GoUQ)).

Then A is NP-btt(3)-complete, but not NP-m-complete.

Proof. Since Gy and G are members of NP, A € NP by standard closure
properties of NP. Note that

z€C & z€GNC or [z¢Gi&zeGyUC]
& 10z e A or [0z ¢ A&llx € A,

whence C Si’tt(z_;) A. Therefore (1) and (2) hold for the set A. For property
(3), consider any string . Then A(0z) = i if Go(z) = i for every i € X.
Since A(10z) = (Go N C)(x), A(10z) = 0 if Go(z) = G(0x) = 0. And since
A(llz) = (Go U C)(x), A(1lz) = 1 if Go(z) = G(0z) = 1 (see the above
remarks about unions and intersections).

Now suppose that G; <}, A via some P-m-reduction M. Let z, = 0"
for n > 0. Then

Gi(zp) = MA(z,)  foralln > 1. (5.2)

Since G dominates A, we can define a bounded p-extension function f such
that G meeting f at x, for some n will imply that

Gi(zn) =1 — MA(zy,), (5.3)
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a contradiction to (5.2). Hence p-genericity of G implies that Gy is not
P-m-reducible to A.

The definition of f consists of several steps. Given n > 1 and the initial
segment X [z, of the characteristic sequence of a set X, in the first step
define a function o : Q(M,x,) — 3 of intended oracle answers. In the
example, let

X (0w) if g=0w and |g| <n
X (0w) - C(w) if ¢ = 10w and |0w| < n
) (q) ={ max{X(0w),C(w)} ifq=1lw and [0w| <n (5.4)
1 if g=11w and |0w| > n
0 otherwise

Note that o;X only depends on X [z, and C</*»|. Le., if Y [z, = X [, for
some set Y, then o} = a;X.

Measured in the length of X | z,, the finite function o;f is computable
in polynomial time since C € DTIME(2"). Also note that oS (q) = A(q), if
one of the first three cases in the definition of a&(q) applies. In the second
step, for each g € Q(M, z,,) define a set of conditions COND,,(q) ensuring
that A(q) = a$(q), whenever G(z) = i for each tuple (z,i) in COND,(q).
In our case, COND,(q) = 0 if |g| < n or ¢ = 1¢' and |¢'| < n. Otherwise,
a%(q) = 1 only if ¢ = 11w for some string w. Hence to ensure that A(q) =

a%(q), let COND,(q) = {(0w,1)} if ¢ = 11w and COND,(q) = {(0w,0)}
if ¢ = 0w or ¢ = 10w. (See the proof that G dominates A above.) Let

i = M (z), (5.5)
and

COND, ={(lzn,1—in)} U (] CONDy(q). (5.6)
q4€Q(M,zn)

Note that CONDX = {(y;,4;) : 1 < m} for some m > 0, where z,, < yo <
Y1 < -+ < Y. S0 let

f(X f.’En) = (yOaiO)a"' ’ (yMaim)a

and let f be undefined on strings not of the form X [ x,. f is called the
extension function induced by COND;X. For this construction it is crucial
that the set COND;X does not contain conflicting tuples (z,0) and (z,1)
for some z. In the example this can not occur, since Gy and G form an
independent pair as introduced in Theorem 2.2.17, and the cardinality of
Q(M, z,,) is one for every n > 0.

It remains to show that G meeting f at z,, will imply (5.3), that f is
a bounded n‘extension function for some ¢ > 1, and that f is dense along
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G. In our example, |[COND,X| < 2 and, given X [z, as input, COND. is
computable in polynomial time by the above remarks about «;\. Hence f is
a bounded n‘extension function for some ¢ > 1 and is dense along every set.
So assume that G meets f at x,,. Then G(z) =i for every (z,i) € CONDS.
If g is the query made by M on input z,, either one of the first three cases
in the definition of ;X applies and A(q) is determined by G [z, and C (see
(5.4)), in which case

or one of the last two cases applies, in which case

Go(w) =G(O0w) =0 if ¢q=0w
Al =4 (GonCO)w)=0 if ¢=10w p=af(q)
(GoUC)(w)=1 if ¢g=1lw

by the definition of CON D,,(q). But this implies M4(z,,) = Mew (z,) =%
whereas the definition of CONDS implies that G1(z,) = G(lz,) = 1 — ¢
since G meets f at x,. Hence G meeting f at z, implies (5.3). O

5.2 One Decisive Query

In this section we compare the NP-completeness notions induced by the
bounded query reducibilities of fixed norm under the genericity assumption
(G). We first consider the case of nonadaptive reductions. Recall that a
polynomial-time bounded-truth-table reduction of norm k (P-btt(k)-reduction
for short) of a set A to a set B is given by polynomial-time functions h :
¥* = ¥ (evaluator) and g1,...,g; : X* — £* (selectors) such that A(z) =
h(z,B(gi(x)),...,B(gk(z))) for all z. We write A Sgtt(k) B if there is a
P-btt(k)-reduction from A to B, and a set B € NP is NP-btt(k)-complete if
A Si’tt(k) B for all A € NP.

Of central interest in this section will be the following set A, which is
based on the same idea as the set in Example 5.1.4.

Definition 5.2.1. Let £ > 2 and let G and C be sets. Let zi,...,25+1 be
the first £ 4+ 1 strings of length k, let

@m:{x:xzmeG} (1<m<k)

and let
G= U Gnm
m

=1
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be the union of the first k¥ — 1 of these sets. Then define Ay, as the disjoint
union of the k¥ + 1 sets G1,...,Gr_1,GNC and GUC:

k-1
A = U{xzm:weém} U {xzk:mE@ﬂC}U

m=1
U{zzgi1:z € GU C}.

Note that the sets Gy, (1 <m < k) are independently dominated by G.
For k = 2, the set A, is essentially the P-btt(3)-complete set considered in
Example 5.1.4, up to the different coding. As there, it is easy to see that,
for every k > 2, C is P-btt(k+1)-reducible to Ag.

Lemma 5.2.2. If G € NP and C is P-m-complete for NP then Ay is
P-btt(k+1)-complete for NP (k> 2).

Proof. Since G and C' are members of NP, A, € NP by standard closure

properties of NP. And C <btt(k+1) Ay, since

1€C & z€GNC or [1¢G&zeGUC]
& zeGNC o M<i<k(z¢G)&zeGUC]
&z €Ay or [V1<i<k(zz & Ag) & x2p11 € Ag]

whence Ay is P-btt(k+1)-hard for NP. O

If only £ non-adaptive queries to A are allowed, reducmg C to A appears
difficult. Consider strings z and y such that z € C \G and y € G\C Which
queries to A could help to detect that z € C and y ¢ C? Note that at least
one of the queries made in the above proof is missing then. By intuition, if
the query ¢ = yzj is missing on input y, the reduction will not be able to
interpret the answers to the remaining queries properly. And analogously,
the same should hold if the query ¢ = x2z,1 is missing on input z. The
main Theorem of this section shows that this intuition is not misleading.

Theorem 5.2.3. Assume (G) and let k > 2. There is an NP-btt(k + 1)-
complete set A which is not NP-btt(k)-complete.

To see that the sets Ag (k > 2) (with G a p-generic set) have the desired
properties, by Lemma 5.2.2 it remains to show that Ay is not NP-btt(k)-
complete. This can be proved in analogy to the discussion of Example 5.1.4.
So first the dependence of Ay on G is discussed.

Lemma 5.2.4. For every k > 2, the set Ay, is dominated by the correspond-
ing set G.
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Proof. Corresponding to the parts G1,...,G_1, GNC and G UC of which
Ay, is composed, a string w € Ay, is of the form vz,, 1 <p <k + 1, where p
indicates that membership of w in A is determined by the pth component.
For w = vz, we call v the value and p the indezx of w. Then the relation
between Ay (w) and G depends on the index of w as follows

1<p<k—1= Ai(vzp) = G(vzp) (5.7)

vz, €A & velC & AA<LI<k—1&vz € Ag)

o veC&AL<I<k—1&vzyeq) (58)

vzpe1 €A & velC VvV 1 <I<k—-1&wvz € A) (5.9)
S velC Vv AL<I<k-1&wvz€q) '

p>k+1 = vz, € Ay (5.10)

By (5.7), for w with index 1 < p < k, Ax(w) =1 (for 1 = 0,1) if G(w) = 1.
If the index of w is k then we can only control the second conjunct on the
right side of (5.8): if G(vz;)) = 0 for all 1 <[ < k, then A(vz;) = 0. By
the dependence on C, however, here in general it is not possible to force
Ag(vz,) = 1. Dually, by (5.9), for w with index k + 1, Ag(vzg+1) = 1, if
G(vz;) = 1 for some 1 <[ < k, whereas Ag(vzk,1) = 0 in general cannot be
forced. O

So, for queries w,w’ with index k and k + 1, we try to force Ax(w) =0 and
Ag(w') = 1, respectively, by the appropriate definition of CON D(w) and
COND(w').

However, for strings w = vz, and w' = vz of index k and k + 1 with
the same value v the above strategies for forcing Ax(w) = 0 and Agx(w') =1
are not compatible. In order to force these values here, we have to know
the value of C(v): If C(v) = 0 then Ax(w) = 0 by failure of the first
conjunct, whence we can force Agx(w') = 1 as above. Dually, for C(v) =
1, Ag(w') = 1 is immediate by the first disjunct in (5.9) whence here it
suffices to force Ax(w) = 0. However, computing C(v) for a query vz €
{g1(xn),... ,gkx(zn)} might need n°® many steps since the length of the
query is polynomial in the length of z,. So for the following it will be
important to note that if this situation applies to strings w,w’ queried by
a P-btt-reduction of norm k, and we have to know C(v) in order to decide
whether some string vz;, 1 <1 < k—1, has to be forced into G (and thereby
into Ag!) then we can choose [ so that vz; € QUERY. Namely, since vz
and vzg41 are both among the k queries at least one of the k — 1 strings
v21,...,02_1 will not be queried.
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Now we are ready to prove Theorem 5.2.3. It remains to show that Ay is
not NP-btt(k)-complete, which will be the most involved part of the proof.
Since G, € NP it suffices to show that G g})’tt(k) Ap.

Proof of Theorem 5.2.5. Fix a p-generic set G € NP and an NP-m-com-
plete set C € DTIME(2™). With these sets, let Gy and Ay as in Definition
5.2.1. For a contradiction assume that G Sgtt(k) Ag via (h,g1,-..,9k), i.e.,

G (@) = h(z, Ag(91 (), - -, Ar(gk () (5.11)

for all strings z.

Note that the set é\k is not used in the definition of A; and that these
sets are independently dominated by G. (See the proof of Lemmma 5.2.4.)
In the following we will use p-genericity of G to refute (5.11). We will define
a waiting bounded extension function f such that (5.11) will fail for z,, = 0"
if G will meet f at 0”. So for given n and X [0" again a set CONDJ is
defined such that

X10"=G10" & VY(y,i) € CONDS (G(y)=1) (5.12)
will imply
Gr(0™) # h(0", Ak(g1(0™)), - ., Ax(gx(0"))). (5.13)

Let z, = 0™ and let QU ERY,, be the set of queries made by the P-btt(k)-
reduction [h, g1,... ,gx] on input z,.

For given n and X [z, we first define the function X : QUERY,, —
{0, 1} specifying the intended values for Aj on these queries. Fix w = vz, €
QUERY,. For the definition of ;X (w) we distinguish between short and
long strings w. If |w| < n let

X (w) ifl<p<k-1
ay (w) =4 C(v) - maxi<<k{X (vz)} ifp==k
max({X(vz) : 1<I<k}U{C(v)}) ifp=k+1

It is easy to check that in this case Ax(w) = oS (w) by (5.7)-(5.10). For w
with |w| > n let

1 ifp=k+1
1 ifp=k—-1&

Vie{l,...,k—1,k+1}(vy € QUERY,)]
0 otherwise

a (w) = (5.14)

And for each w not of the form w = vz, for some 1 < p < k + 1, let
X _
a; (w) =0.
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For w with |w| > n, Ag(w) = af (w) will be ensured assuming (5.12) by
the definition of the set COND;X of forcing conditions which we will give
next.

For any value v with |[v| + k& > n, and such that there is a query vz, €
QU ERY,, for some p with 1 <p < k+ 1, we will define a set COND,,(v) of
forcing conditions which will be part of COND;X. Given such a value v let

IND(w)={p: 1<p<k+1&wvz, € QUERY,}
be the set of indices of queried strings with this value. Let
r=us>1(s¢ IND(v) Vs=k—1)

be the parameter indicating whether there is an index p < k — 1 such that
vzp is not queried. (Note that » = k£ — 1 if such an index does not exist.)
Then the definition of CON D,,(v) depends on IND(v) and r as follows:

k+1¢g IND(v) = COND,(v) ={(vz1,0),...,(vzg_1,0)} (5.15)

k+1 e IND@w) &k & IND(v) —
COND,(v) ={(vz;,j): 1<i<k—-1&(j=1 & i=r)} (5.16)

k+1 € IND(w) &k € IND(v) =
COND,(v) ={(vz;,j):1<i<k—-1&
&G =0ifi£n&(=1-C)ifi=r)} (5.17)

Note that in case of (5.17), r ¢ IND(v), i.e., vz, ¢ QUERY,, since, by
[IND(v)| < |QUERY,| =k, k€ IND(v) and k+ 1 € IND(v) imply that
s ¢ IND(v) for some s € {1,...,k —1}.

To show that, assuming (5.12), this part of the definition of COND;X en-
sures that Ag(w) = af (w) for strings w € QU ERY,, with |w| > n and value
v, fix such a string w = vz, and distinguish the following cases depending
on the index of z.

Case 1: p< k—1. Then aS(w) = 0 and (vz,0) € COND,(v) whence
Ag(w) = 0 by (5.12) and (5.7).

Case 2: p=k—1and IND(v) ={1,...,k— 1,k +1}. Then af(w) = 1.
Moreover, r = k— 1 whence, by (5.16), (vzx_1,1) € COND. So Ag(w) =1
by (5.12) and (5.7).

Case 3: p=Fk—1and IND(v) #{1,...,k — 1,k +1}. Then af(w) = 0.
Moreover, either k + 1 ¢ IND(v) whence case (5.15) applies or r # k — 1.
So in any case (vzx—1,0) € COND,(v) whence Ag(w) = 0.
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Case 4: p=k. Then o (w) = 0. If v ¢ C then Ax(w) = 0 is immedi-
ate by (5.8). So assume v € C, i.e.,, 1 — C(v) = 0. Since for the defini-
tion of CON D, (v) (5.15) or (5.17) applies, it follows that COND,(v) =
{(v#1,0),...,(vzk_1,0)} whence G(vz) = 0 for all | € {1,...,k — 1} by
(5.12). Hence Ai(w) =0 by (5.8).

Case 5: p =k + 1. Then af (w) = 1. If v € C then Ai(w) = 1 is immediate
by (5.9). So assume v ¢ C, i.e., 1 — C(v) = 1. Since case (5.16) or (5.17)
applies, (vz;,1) € COND,(v) whence vz, € G by (5.12). It follows that
Ag(w) =1 by (5.9).

This completes the proof that, assuming (5.12), the above defined sets
COND,,(v) force Ax(w) = a¥(w) for all queries w with value v. Let

i = h(z, 05 (91(2n)); - ;o (gr () (5.18)

So, by letting CONDX be the union of all condition sets CON D, (v)
wherby v is the value of some long query in QU ERY,, together with the final
condition {(0"zg, 1 —4X)}, (5.12) will imply (5.13) since G1(0") = G(0"z).

Since COND;X does not contain any conflicting conditions, it only re-
mains to show that the extension function induced by CON DX is a waiting
bounded p-extension function.

For this sake, first observe that [COND;X| < k? since besides the last con-
dition (02,1 — i;X) forcing the desired value of the left side of (5.13), for
any of the at most k different values v attained by some query in QU ERY,,,
k—1 conditions were added to CON D;X. Moreover, the positions ¥, . . ., Ym
of the conditions can be computed in poly(n) steps. Finally, given X | 0",
for the computation of the value i of a condition (y,i) O(21%!) steps suf-
fice: If (y,4) is added to COND;X via (5.15), (5.16) or (5.17) then obvi-
ously poly(|y|) steps suffice unless (y,7) = (vz,,1 — C(v)) in case (5.17)
where the claim follows from C € DTIME(2"). This leaves the final con-
dition (0"z,1 —4;X). Here, by (5.18), it suffices to show that c; (w) for
w € QUERY,, can be computed in O(2") steps. But for «;\ (w) defined by
(5.2) this follows by |w| < n and C € DTIM E(2") while for o (w) defined
by (5.14) obviously ;X (w) is computable in poly(n) steps.

This completes the proof of Theorem 5.2.3. O

Next we will prove the analog of Theorem 5.2.3 for the adaptive reducibil-
ities. A polynomial-time bounded Turing reduction of norm k (P-bT(k)-
reduction for short) is a polynomial-time bounded Turing reduction M in
which for any oracle set X and any input z the number of oracle queries is
bounded by k. The queries may depend on the oracle, i.e., on the answers of
the previous queries, whence the computation or query tree of M (x) where
the nodes are labelled with the queries has depth < k — 1 but may have size
2k — 1.
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Obviously,
A<pum B = A<yrw B (5.19)

and, by the above remark on the size of the query tree of a P-bT(k)-
reduction,

P
A g}jT(k) B=A Shit(2k—1) B> (5.20)

and both implications are optimal with respect to the normes of the reduc-
tions (see [Lad75]).

In order to distinguish NP-bT'(k + 1)-completeness from NP-bT(k)-com-
pleteness assuming (G), we show that the set Ay constructed in the proof
of Theorem 5.2.3 is NP-bT'(k)-complete but not NP-bT'(k — 1)-complete.
Together with Theorem 5.2.3 this implies the following stronger result.

Theorem 5.2.5. Assume (G) and let k > 2. There is a set which is NP-
bT (k)-complete and NP-btt(k + 1)-complete but neither NP-bT'(k — 1)-com-
plete nor NP-btt(k)-complete.

Proof. Fix A, C and G as in the proof of Theorem 5.2.3. It remains to
show that Ay is NP-bT'(k)-hard but not NP-bT'(k — 1)-hard.
For a proof of the former note that, by definition of Ay,

1€C & [1eG&zeGnClorz¢gG&zeGUC
& [AxN{zz: 1<I<k—-1} #0 & xz € Ag]
or
[AgN{zz: 1<I<k—1} =0 & z241 € A
whence C SET(,C) Ag. By NP-m-completeness of C' this implies that A is
NP-bT'(k)-hard. The proof that Ay is not NP-bT(k — 1)-hard is similar to
the proof that Ay fails to be NP-btt(k)-complete. Hence we will only sketch
the proof and we will use the notation introduced previously.
Given a P-bT'(k — 1)-reduction M it suffices to show that

Gr(0™) # MAx(0™) (5.21)

for some n. As in the proof of Theorem 5.2.3, given a number n and an
initial segment X [0" it suffices to define a set CONDX = {(y;,4;) : | < m}
of forcing conditions such that 0" < yp < y1 < --- < Y, the sizes of the
sets CON D,)f are unifomly bounded by a constant ¢, the forcing locations
{v0,---,ym} and the forced values 7; are uniformly computable in O(2")
and O(2/%) steps, respectively, and to ensure that the assumption (5.12)
will imply (5.21).

Again, to fix the intended oracle answers, we define a function ;X :
¥* — {0,1} and we distinguish between short and long input strings. For
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w with |w| < n, ;X (w) is defined by (5.2) and, for w = vz, with |w| > n we

let ;X (w) = 1 iff the index p of w is k + 1.

Next, by simulating M on input 0" define the set QU ERY,, of the
queries asked by M if the previous queries were answered by a;X (w), and let
M@ (0™) denote this computation.

Note that |[QUERY,| < k — 1 since M is (k — 1)-bounded and, as one
can easily show,

X = Mo () (5.22)

n

can be computed in O(22") steps by definition of ;X.

In order to ensure that, assuming (5.12), MA(0") = M (0") and
Gr(0") = 1 — M9 (0") we define the set CON DX of forcing conditions
as in the proof of Theorem 5.2.3 (using the set QU ERY,, defined above and
iX as in (5.22)). For the proof of correctness it is crucial to note that now
|QUERY,| < k—1 whence not only in (5.17) but also in (5.16) r ¢ IND(v),
i.e., the string forced into Ay there is not a member of the set QU ERY,,.
Hence, assuming (5.12), for w € QUERY,, with |w| > n, Ax(w) = X (w) =
0 for strings of index < k — 1 is immediate while, for strings of index k& or
k+1, Ax(w) = ;X (w) is shown as in the proof of Theorem 5.2.3. O

Corollary 5.2.6. Assume (G) and let k > 1. There is an NP-bT'(k + 1)-
complete set which is not NP-bT'(k)-complete.

Corollary 5.2.7. Assume (G) and let k > 2. There is an NP-btt(k+1)-set
which is not NP-bT'(k — 1)-complete.

While the separation for the bounded Turing reducibilities above is opti-
mal, the corresponding Theorem 5.2.3 for the truth-table reducibilities leaves
a small gap for k = 1:

Question 1. Assuming (G), is there an NP-btt(2)-complete set which is not
NP-btt(1)-complete?

Also it remains the question whether the comparison of bounded truth-table
and bounded Turing completeness in Corollary 3.4 can be further improved
to obtain optimal bounds:

Question 2. Assume (G) and let k > 1. Is there an NP-btt(k + 1)-complete
set which is not NP-bT'(k)-complete?

Under the stronger hypothesis that there is a p-generic set G in NP N co-
NP we can give affirmative answers to these questions. (See Section 5.6.1
below.)
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5.3 Adaptive and Nonadaptive Queries

For the comparison of bounded truth-table and bounded Turing complete-
ness in the other direction we can prove a bound which is optimal by (5.20).
The goal of this section is to prove the following theorem.

Theorem 5.3.1. Assume (G) and let k > 2. There is an NP-bT'(k)-
complete set A which is not NP-btt(2% — 2)-complete.

The construction of the set A with the desired properties is inspired by
the set Ao as defined in the previous section. (Note that As is a witness for
the case k = 2 in Theorem 5.3.1.) For larger k, A has to be defined such
that a fixed NP-m-complete set C' can be recovered from A by a P-bT(k)-
reduction M with a query tree of maximal size. On the other hand, A
should be dominated by a p-generic set G in such a way that any reduction
that skips one of the queries (possibly) made by M encounters strings for
which the remaining queries do not provide any useful information about C.
Again the lack of direct access to negative information on the generic set G
requires a quite involved definition of the set A.

Definition 5.3.2. For any string y let
Lily)={z: 2sCy} (i=0,1)

be the set of proper initial segments z of y such that the i-extension zi is
still extended by y.

Note that Iy(y) and I (y) are disjoint and the union of these sets consists
of all proper initial segments of y, whence |Io(y)| + |11 (y)| = |y|-

Using this notion we define sets Cg, and C\ depending on C and G as
follows:

Ce ={Ty: |y =k—-2&[z€C&Tyc G&Vz € I,(y)(Tz € G)|}

Cv={Ty:|ly=k—2&[z€C VITye GV 3ze I(y)(Tz € G)|}

where Ty denotes the coded pair (x,y) defined by Ty = 1% +10zy. (For the
following note that Ty € ¥* \ {0}* and, for |y| =k — 2, |zy| = 2|z| + k.)

Proposition 5.3.3. The sets Cg, and C\, are dominated by the correspond-
ing set G.

Proof. Consider a string w = Ty with |y| = k — 2. In case of the set Cg,
control about G only allows of forcing Gg(w) = 0. This can be achieved
either by letting G(Zy) = 0 or by selecting some member z € I(y) and
letting G(Tz) = 0—provided I;(y) is nonempty.

The analog holds for Cy. Cy(w) = 1 can be forced by letting Gy (w) = 1
or by letting G(Zz) = 1 for some member z of Iy(y). O
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It is crucial to note that a single bit of information about G(Zz) for some
prefix z of y may already determine the value Cg(Zy) or Cy(Zy). On the
other hand, Cg(zy) = 1 implies x € C and Cy(Ty) = 0 for some y of
length k£ — 2 implies = ¢ C. However, the information that Cg (Ty) = 0 and
Cy(zy) = 1 for some y of length & — 2 helps to determine C'(x) only if

Vi <1Vz € Ii(y) G(Tz) =1

and the value G(Zy) is known.
Hence, let G and C be sets in NP. Then the desired set A is defined as
the disjoint union of G~ = G \ {0}*, Cg, and Cy:

A={vl: veG} U {v2: velCgy} U {v3: vel} (5.23)
where 1, 2, 3 are the first three strings of length 2.

Proposition 5.3.4. The set A defined above is in NP, and C SII;T A.

(k)

Proof. Note that Cg, and C\, are positively P-btt-reducible to C @& G. Hence
A € NP by standard closure properties of NP.

We first point out some basic relations among the parts of A and the
sets C and G. Note that, for any string y of length k — 2,

Ce(Ty) < G(7Y) < Oy (TY). (5.24)
For any string x let y; be the unique string of length k& — 2 satisfying
Vz2Cyr (Tz€G & 2z1LC yy) (5.25)

Then Tz € G for all z € I1(y;) and Tz ¢ G for all z € Iy(y,). Le., the
last conjunct in the definition of Cy, is true while the last disjunct in the
definition of C\, is false, whence

Tyy € G = C(x) = Cg(Tyy) (5.26)
and
Ty, € G = C(z) = Cy(Tyy) (5.27)

So given z, two adaptive queries to A suffice to determine C(z) if the
string y, is known. Therefore it remains to show that y, can be found
by k — 2 adaptive queries to A. Obviously, this can be done by fixing
Yr = Yz(0) ... yz(k — 3) where

Yz(l) = G(Z(yz 1)) = A(Z(y2 [1)1)

for] <k -—3. O
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To demonstrate that A can not be NP-btt(2% — 2)-complete, for given = the
behaviour of Cg, and C\ for strings Ty # Ty, will be discussed. For this
purpose we introduce the following notation.

Given strings u and v, call u to the left of v (u <g v), if there are strings
wy, wi, and wy such that v = woOw; and v = welwse. Then, for strings
y # 1y of length k — 2 we have

y<ry. = COv(Ty)=1
Yo <ry = Cg(@y) =0 (5:28)
This follows from the fact that, by definition of y,, for the longest common
initial segment z of y and y,, G(ZTz) = 1 and z € Iy(y) if y <z y, while
G(Zz) =0 and z € I (y) if y» <r, y.

Proposition 5.3.4 implies that A becomes NP-bT'(k)-complete, if we
choose C NP-m-complete. As in the preceding sections, we are able to prove
that A is not NP-bt¢(2% — 2)-complete, provided that G is a p-generic set
and C € DTIME(2").

Proposition 5.3.5. Let G be a p-generic set in NP, C a set in DTIME(2")
and k > 2. Then G is not P-btt(2¥ — 2)-reducible to the set A as defined in
(5.23).

Proof. Given a p-btt(r)-reduction (h,gi,...,g,) with r < 2F — 2 it suffices
to show that

G(0") # h(0", A(g1(0™)), ..., A(g,(0))) (5.29)

for some n, ie., G ﬁlgtt " A. As in the preceding sections this can be

established by defining, for any given number n and any initial segment
X 10", a set CONDX = {(y;,4;) : I < m} of forcing conditions such that
0" <yo <y < -+ < ym and the following properties hold: The size of
COND; is uniformly bounded by a constant, there are uniform procedures
for computing the set {y; : [ < m} in O(2") steps and for computing 7; from
y; in O(2%1) steps, and, finally, the condition (5.12) will imply that (5.29)
holds.

Fix n and X | 0". For QUERY, = {¢1(0"),...,g,(0™)} we define a
function ;X : QUERY,, — {0, 1} such that, assuming (5.12), A(w) = af(w)
will be forced by the definition of COND;f and a;X will be computable in
O(2") steps.

For the definition of ;X and CON D;X we have to distinguish the different
types of elements of A. A string w is called relevant if w = Tyj, 7 € {1,2,3},
ly| <k—2,and |y| =k —2if j € {2,3}. And w is called simple if w = v1,
v ¢ {0}*, and w is not relevant. For a relevant string w = Tyj, 1 <j <3, j
is called the index of w and z is called the value of w. -
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Note that any element of A is either relevant or simple. For a relevant
string w = vl with index 1 or a simple string, A(w) = G(v) whence, as-
suming (5.12), we can force A(w) =i (i € {0,1}) by the condition (v,7) if
lv| > n, ie., |lw| >n+2.

For a relevant string w = Ty2 with index 2, A(w) = Cg(Zy), and manip-
ulating G only suffices to force A(w) = 0. Similarly, for relevant strings with
index 3, by disjunctivity of the dependence only A(w) = 1 can be forced.
Moreover, forcing these values will require to fix G’ on certain strings with
value z, whence forcing the values of A for strings with the same value has
to be coordinated.

Based on these observations we define o\ and the parts of COND;f
forcing A to agree with af as follows. For any irrelevant, non-simple string
w € QUERY,, o) (w) = 0, and, for any simple w = vl € QUERY,, let
aX (w) = (X [10%)(v) if |v] < n and let a;X (w) = 0 if |v| > n. Moreover, in
the latter case add the condition (v,0) to COND.X. Note that, assuming
(5.12), in any of the above cases this ensures that A(w) = ;X (w).

For the remaining cases let = be a string such that there is a relevant
query w in QUERY,, with value z. Then ;% (w) is simultaneously defined
for all such strings w and a part COND,, of CON DY is specified which, as-
suming (5.12), guarantees the correctness of ;X (w). The definition depends
on the length of z.

Case 1: 2|z| + k < n. Then, for any relevant string w

|Ty| < n whence for w € QU ERY,, the definition of a;X (w) can be based on
the initial segment X [0" as follows:

X(my) if j=1
ay (Tyj) = § Cg (my) if j=2
CX(zy) if j=3
where Cg and CY are defined as Cg, and Cy, respectively, with X [ 0" in
place of G. Moreover, we let COND,, = (.
In this case, A(w) = a; (w) by the first part of (5.12) and a; (w) can
be computed in O(2") steps by C € DTIM E(2").
Case 2: n <2|z|+k <n+k. Then let COND, consist of the conditions
(Ty,0) for all strings y with |y| < k — 2 and |Zy] > n and let X [0"T* be
the extension of X [0" with X (z) = 0 for all strings z with 0" < z < 0"+,
For the relevant strings w € QU ERY,, with value z, o\ (w) is defined as in
Case 1 with X [0"t* replacing X [0™.
Note that, by the second part of (5.12), CON D, forces G(Zy) = 0 for
all Ty of length > n which are relevant for the value of A(w) for the above
queries w. So computing o;X (w) requires information on C only for the

string = and |z| < n whence o;X (w) can be computed in O(2") steps.

zyj with value z,

Case 3: n+ k < 2|z| + k. Then, for any string v = Tz, |v| > n whence
G(v) =i (i € {0,1}) can be forced by adding the condition (v, i) to CON D,,.
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We will force these values in such a way that for all strings y of length k — 2,
Cy(Ty) = 0 and Cy(zy) = 1, whence A(w) = 0 and A(w) = 1 for relevant
strings w with value z which have index 2 and 3. Hence, we let ;X (v2) = 0
and o (v2) = 0) = 1, respectively, for those strings v = Zy of length 2|z|+k
which are queried. For the definition of COND, and anX for the index-1
strings with value z we distinguish the following cases.

Case 3.1: 3z (|2| <k —2&7Tz1 ¢ QUERY,). Then let 2z, be the least such
string and let

COND,; = {(Tz0) : |2|<k—-2& 2z <[ 21}
U{(Zz,1) : |2] <k—2& 20 <y, 2}
U{(Zz,7) : i <1&z € Ii(z0)}

U{(F20,1 — O(2)).

For any relevant string zz1 € QUERY, with value z and index 1, let
aX (Zz1) be the unique number i with (Zz,i) € COND,. By (5.12) this
will obviously imply that ;X (zz1) = A(Zz1). Moreover, by choice of zy, the
last part of CON D, is not used for determining c;X (Tz1) = i whence this
value can be computed in poly(n) steps. To show that CON D, forces the
intended values for strings with index 2 and 3 too, fix y with |y| = k — 2. Tt
suffices to show that, assuming (5.12), Cg (ZTy) = 0 and C\(Ty) = 1. First
observe that, by the third part of COND,, zy C y, for the unique string v,
satisfying (5.25), and that the first two parts of CON D, imply that

(z<r20 = G@z) =0) & (20 <1z = G(Tz) =1) (5.30)

for all strings z with |z| < k — 2. So if y < zp then, by (5.30) and
(5.24), Cg(zy) = 0. On the other hand, 2y C y, implies that yry,, whence
Cv(zy) =1 by (5.28). For zy <1, y, Cg(Ty) = 0 and C\(ZTy) = 1 are shown
similarly. This leaves the case where zg C y, for which it is crucial to note
that C(z) # G(ZTzy) by the fourth part of COND,. So, if zp = y then
y = yg and C(z) # G(Tyz) whence the claim follows from (5.26), (5.27),
and (5.24). Otherwise, zp C y, say p = |y| — |20]- Here the proof depends
on the value of C(z). If C(z) = 0 then Cg(Zy) = 0 is immediate by (5.24).
Moreover, by zy C y, and, by C(z) = 0 and by the definition of COND,,
G(Tz1") = 1 for all | < p whence y, = 21? and G(ZTy,) = 1. So, either
y < Yz, whence Cy(ZTy) = 1 by (5.28), or y = y,, whence Cy(Ty) = 1 by
G(zy;) = 1 and (5.24). Finally if C(z) = 1 then, by similar arguments,
Cy(zy) = 1 is immediate and y; = z00? and G(ZTy;) = 0. So y, <1 y or
yz = y whence Cg (Ty) = 0 by (5.28) or (5.24), respectively.

Case 3.2: Vz (|z| < k—2 = Tzl € QUERY,). Then QU ERY,, contains at
2]6—1

least — 1 strings with index 1. Since

2]6*1 -1 +2k*2 +2k*2 — 2k -1
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whereas |QUERY,,| < r < 2¥ —2, for one of the 22 strings y of length k —2
zy2 € QUERY,, or Ty3 ¢ QUERY,,. For the following fix y with |y| = k—2
and j with 1 < j <3 minimal such that zyj ¢ QUERY,. Let

COND, = {(z2,0) : |2|<k—2&z<ry}
U{(Zz1) : |z|<k—-2&y<r 2}
U{(Zz,1) : i1 <1&z € Ii(y)}
U{@y,i) : (i=1 j=2&(i=0 & j=3)}

and, for any relevant string zz1 € QU ERY, with value z and index 1
let ;X (Zz1) be the unique number i with (Zz,i) € COND,. Then, obvi-
ously, a;X (Zz1) can be computed in poly(n) steps and, by (5.12), A(zzl) =
X (Tz1). It remains to show that, assuming (5.12), COND, forces the
intended values for relevant queries with value z and index 2 or 3. Note
that the third part of CON D, ensures that y = y, whence, by the first two

parts, for any string 1/ of length k — 2,
W <tye = G@Y)=0)& (ya <ry = G(zY) =1)

holds. As in Case 3.1 this implies A(ZTy'2) = Cg(zy') = 0 and A(TY'3) =
Cy(zy') =1 for ¥ # y by (5.26), (5.27), and (5.24). Finally, if ¢/ = y, then
Tyj € QUERY,. So, for j = 2, it suffices to show that A(zy3) = C\ (Ty) =
1. In this case the fourth part of COND, consists of the condition (Zy,1)
whence G(Ty) = 1. So the claim follows from (5.24). Similarly, if j = 3, then
the final condition of COND, is (ZTy,0) whence G(Zy) = 0 and therefore
A(zy2) = Cg(Ty) = 0 by (5.24). Now the condition set COND,X consists
of the parts specified above together with the final condition

(0™, 1 — h(ap (g1(0™)), ..., cq (gr(0™)))) .

Then, assuming (5.12), COND. forces A to agree with o on the query
set QU ERY,, whence, by the final condition, (5.29) holds. The proof of the
required bounds on COND;Y is straightforward by the above remarks. In
particular, [COND;| < 22k~ since for any of the r < 2% — 2 queries at
most 2¥~1 — 1 conditions are added to CON DX. O

This completes the proof of Theorem 5.3.1. Under the assumption (G), there
is a p-generic set G in NP. If C is an NP-m-complete set in DTIME(2"),
then for k& > 2 the set A is NP-bT'(k)-complete by 5.3.4, and A is not
NP-btt(2F — 2)-complete by 5.3.5.

5.4 Bounded and Unbounded Number of Queries

In the preceding sections we gave separations of the NP-completeness no-
tions for the bounded query reducibilities of fixed norm (under the assump-
tion (G)). By exploiting the unifomity (in k) of the proof of Theorem 5.2.3,
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here we separate NP-btt-completeness from NP-tt-completeness. This re-
quires the following diagonalization lemma.

Lemma 5.4.1. Let C,,, n > 0, be uniformly recursively presentable classes
which are closed under finite variants, let D C {0}* x ¥£* be a recursive set
such that

D[n} = {.T : <0n,.’L‘> S D} ¢ C,,

and let f : N — N be a nondecreasing and unbounded recursive function.
Then there exists a set A and a function g : N — N such that

A¢lJc (5.31)

n>0
g 1s polynomial-time computable with respect to the unary
representation of numbers.

vn (g(n) < f(n)) (5.34)
Note that (5.32) and (5.33) imply that A <}, D. So Lemma 5.4.1 can

be viewed as an infinitary version of Schoning’s diagonalization lemma in

[Sch8&2].

(5.33)

Proof. The proof is by a standard delayed diagonalization argument similar
to the one in [Sch82]. Let U be a recursive presentation of the classes C,,
n >0, ie. UCNx N x ¥* is a recursive set such that

C = {Ui[”] :n >0} where UZ-["] ={zeX": (i,n,z) € U}.
We define the function A : N — N by
h(n) = pm > n(Vi <nVl <n3z(|z| € [n,m) & Dy(x) # UM (2)))

Then, for ¢ < n, the length interval [n, h(n)) will contain witnesses for the
fact that the i-th diagonal set Df;; does not occur under the first n sets in the
class C;. Since the sets D and U are recursive and the classes C; are closed
under finite variants h will be total recursive. Therefore we may choose a
time-constructible function r > h and define the intervals

I"(n) == {z €2 : r(0) < |z| < r"*1(0)}

where 7°(0) = 0, r"*1(0) = r(r"(0)).

Now choose a polynomial-time computable enumeration « of N in which
every number occurs infinitely often and such that a(n) < f(n) for all num-
bers n. (E.g., given a polynomial-time computable and invertible pairing
function < -,- >: N x N — N we can define a by letting a((n,m)) = m
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if the relation m < f((n,m)) can be shown in quadratic time by finding a
number k < (n,m) with m < f(k) and by letting a((n, m)) = 0 otherwise.)
Finally we define the desired set A by

= Urm (n)]

n>0

For a proof of (5.31), assume that the claim fails, say A € C;, whence A =
Ui[k] for some k. Then, by the choice of «, there is an m such that r™(0) >
maz{i, k} and a(m) = i. Since r™*1(0) > h(r™(0)), by definition of h there
exists a string x € I"(m) such that :c € Dy }AU[ I Since A(z) = Dy(z) by
definition, it follows that A(z) # UZ- ( ) contrary to the assumption.

For a proof of the conditions (5.32) — (5.34), note that, by definition of
A, there is a unique function g : N — N such that (5.32) holds. Moreover,
since r(n) > n, for any number n there is a unique number s(n) < n such
that 75" (0) < n < r5(™+1(0) and, by time constructibility of r, s(n) can be
computed in poly(n) steps. Then g(n) = a(s(n)), whence (5.33) holds by
polynomial time computability of a. Moreover, by choice of o and by weak
monotonicity of f, it follows with s(n) < n that

g9(n) = a(s(n)) < f(s(n)) < f(n)
whence (5.34) is satisfied, too. O

Proposition 5.4.2. A set A is NP-btt-complete if and only if A is NP-
btt(k)-complete for some k > 1.

Proof. For a proof of the nontrivial implication assume that A is NP-btt-
complete and let C' be an NP-m-complete set. Then C S{;t A whence,
by definition, C <btt( k) A for some k. Hence, for any B € NP, B <F

C <btt(k) A by NP-m-hardness of C. It follows that B <btt( k) A whence A
is NP-btt(k)-hard. O

Theorem 5.4.3. Assume (G). There is an NP-tt-complete set A which is
not NP -btt-complete.

Proof. The set A will be composed of the btt(k +1)- but not btt(k)-complete
sets of Theorem 5.2.3. Let C be an NP-m-complete set in  DTIME(2") and
let C = {01z : n>0& z € C} be a padded version of C. Note that C is
NP-m-complete and C € DTIME(2"), too.

For k > 0 let By be the NP-btt(k + 3)-complete set Agyo constructed
in the proof of Theorem 5.2.3 from C' as above and some fixed p-generic
set G. (See Definition 5.2.1 and Lemma 5.2.2) Then By € NP uniformly
in k, whence D = {(0¥,z) : k > 0& = € By} € NP too. Moreover, for
Cy = {B : B NP-btt(k)-complete} (for £ > 1 and Cy = Cj), the classes
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C; are uniformly recursively presentable and closed under finite variants,
and D) = By ¢ Cy. So, by Lemma 5.4.1, we may fix A and g satisfying
(5.31)—(5.34) for the recursive function f(n) = um(2m + 3 > n). By (5.32)
and (5.33), A <}, D whence A € NP. Moreover, by (5.31), A is not NP-
btt(k)-complete for all £ > 1, whence by Proposition 5.4.2, A is not NP-btt-
complete.

Finally, for the proof that A is NP-tt-hard, it suffices to show that
C <P A. So fix z and let |z| = n. Then, for any numbers k,m > 0,
C(z) = C(0™1z) and, by definition of By, C(0™1z) can be computed from
(By,)=(m+14+n)+k+2 with k + 3 non-adaptive queries in polynomial time uni-

formly in z, k¥ and m. On the other hand, by (5.32), A=! = Bg:&) for all [.

Hence, to recover C (z) from A we need determine numbers m and k such
that ¢g(|0™1z| + k + 2) = k. This is necessary since the way C is coded
into the set By depends on k. Thus the length | = m +1+n+k + 2 of
the queries made in order to determine C(z) = C(0™1z) has to match the
corresponding parameter k, namely k = g(l).

So let k = g(2n + 3) and m = n — k. Then m > 0 since g(2n + 3) <
f(2n+3) = n by definition of f and (5.34). Moreover, |0™1z| = 2n + 3 and
A=2+3 = B3 whence C(z) = C(0™1z) can be recovered from A=2n+3
with g(2n + 3) + 3 non-adaptive queries. O

5.5 Unbounded Number of
Adaptive and Nonadaptive Queries

In this section we want to compare NP-completeness notions induced by
reducibilities for which the number of queries is growing in the input length.
The proofs presented here are closely related to Theorem 5.2.3 and 5.3.1.
However, in contrast to the previous results, meeting an extension function
as defined in Lemma 2.2.11 might not suffice to force such an unbounded
reduction into a given direction. Therefore, the appropriate tool to diago-
nalize against unbounded polynomial-time reductions are general p-generic
sets. On the other hand, Lemma 2.2.11 does not have a real analog in
the case of general p-generic sets, whence we will have to build the desired
extension functions with a little more caution. Nevertheless, under the hy-
pothesis (GG), analog results as in the previous sections can be obtained for
unbounded polynomial time reductions.

Theorem 5.5.1. Assume (GG). Then there is an NP-T-complete set A
which is not NP-tt-complete.

Proof. Fix a general p-generic set G in NP and an NP-m-complete set
C € DTIME(2"). In analogy to Theorem 5.3.1, we define sets Cg and Cy
depending on C' and G, and a set A of which we will show that it has the
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desired properties. So let Cg, and C\ be defined by

Co ={Ty:lyl=|2|—2&[r€C&TYy € G&Vz € I,(y)(Tz € G)|}
Cv={Ty:ly|=lz|-2&[z€eC VTye GV Iz € Ih(y)(ZTz € G)]}

where Ty denotes the coded pair (z,y) defined by Zy = 11#1+10zy. Note
that, for |y| = |z| — 2, |zy| = 3|z|. Let 1, 2, 3, be the first three strings of
length 2. Then the set A is defined as in Theorem 5.3.1:

A={vl:veG }U{v2: veCy} U{vd: vely}

where G~ = G\ {0}*.

Note that, for y, the unique string — now of length |z| — 2 — satisfying
(5.25) and y any string of the same length, the basic relations (5.26), (5.27),
(5.28), and (5.24) hold again. Hence NP-T-completeness of A is straightfor-
ward by the arguments given in the proof of Theorem 5.3.1. Le., A € NP by
the closure properties of NP and C is </.-reducible to A, where, on input
z, |z| — 2 adaptive queries are needed to produce y;, and two more queries
are needed to compute C(z), since

| CylTy,) ifZYy, €G
Cla) = { Cy(@ys) ifTys &G

by (5.27) and (5.28). So it remains to show that A is not NP-t¢-hard. This
will be achieved by refuting the assumption that G <}; A. Given a P-tt-
reduction M we will show that

G(0™) £ MA(0™) (5.35)

for some n. Here, we will establish this by defining, for any given n and
any initial segment X [ 0", a set COND;X = {(y;,4;) : | < m} of forcing
conditions where 0" < yy < y1 < - -+ < Ym, such that the extension function
induced be the sets CON D.X is computable in polynomial time, and, finally,
that the condition (5.12) will imply that (5.35) holds.

So fix n and X [0™. Let QU ERY,, be the set of queries made by M on
input 0". As before, we first define a function «;X : QUERY,, — {0,1} of
intended oracle answers and choose COND;X such that (5.12) will ensure
that

Aw) = ) (w) (5.36)

for all w € QUERY,,. Call w relevant if w = 7yj, j € {1,2,3}, |y| < |z| -2,
and |y| = |z| — 2 if j € {2,3}. And call w simple if w =v1, v & {0}*, and w
is not relevant. For a relevant string w = zyj, 1 < j < 3, j is the index of
w and z is the value of w. For any simple query w = vl of length > n + 2
we add the condition (v,0) to COND. For any irrelevant or simple w, let
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X
n

value z, «

a;, (w) be as in the proof of Theorem 5.3.1. For the relevant queries w with

X(w) is defined, depending on the length of z, as follows.

n

Case 1: 2|z| < n. In this case, C(z) can be computed in O(2") steps. So let
Y = (X 10™)0% be the minimal set that extends X [0™ and define

where Cg; and CY are defined as Cg and Cy, respectively, with Y in place
of G. The conditions that force A to agree with ;X on these queries are
gathered in the set COND, = {(Ty,0) : |y| < |z| — 2& |zy| > n}.

Case 2: 2|z| > n. Here we can force A(vl) = G(v) for any relevant string v1

with value z. Moreover, w.l.o.g we may assume that there is a relevant string

of index 2 or 3 with value z that is not a member of QU ERY,,. So fix yg of

length |z| — 2 and jo with 1 < jo < 3 minimal such that Tyojo ¢ QUERY,.
For y of length |z| — 2 let

(52i) = 0 ifi=2
TPU=Y 1 ifi=3

>

ay

and for z of length < |z| — 2 let

0 if 2z <g yo
1 ifyo <p 2

Ximy Yo <L

a;, (Tzl) = i ifi <1and z € I;(yo)
3—7j0 if z=1yo.

Now, for each z such there is a relevant query w with value z, let

COND, = {(w, ) (w)) : w€ QUERY, & w =721}
U{(Tz,i) : 1 <1&z € Ii(y)}

U {(Tyo,i) =3 —jo}
U{(@y,0) : [yl =l|z| —2&y < yo & ZTy2 € QUERY,}
U{(my,1) : ly| =|z| -2&yo <p y &Ty3 € QUERY,,}.

Obviously, under the assumption (5.12), the first part of CON D, ensures
that A(w) = a;X (w) for each relevant query of index 1. By the second part,
Yo is the unique string y, satisfying (5.25). So consider y with |y| = |z]| — 2
and assume (5.12). For y # v, the last two parts of COND, then ensure
that Cg(Ty) = 0 and Cy(Ty) = 1 by (5.27), (5.28), and (5.24). And for
Yy = Yo, the third part of COND, forces Cg(Ty) = 0 in case that jo = 3
and Cy(ZTy) = 1 in case that jo = 2 by (5.24). Hence the given set COND,
forces the intended values A(w) for all w € QU ERY,,. So let the condition
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set COND;X consist of the parts specified above together with the final
condition

(0", 1— M (0")) .

Then, assuming (5.12), COND,X forces A to agree with ;X on the query set
QUERY,, whence, by the final condition, (5.35) holds. It remains to show
that COND;X meets the required bounds. Given n and X [ 0", the function
aX can be computed in O(2°") steps for some constant ¢, whence the same
holds for the final condition (07,1 — M2 (0")). Moreover, for each z such

that there is a relevant query with value z in QU ERY,,,
|COND,| < |QUERY,| + [yo| + 1.

Hence COND;X has at most poly(n) members and each is computable in
time O(2°"). As in the preceding sections, this implies that the extension
function induced by COND;X is a p-extension function.

This completes the proof of Theorem 5.5.1 O

A relevant feature of the above construction is that the number of pos-
sibly relevant queries to the parts of A involving the set C' exceeds the total
number of queries a P-tt-reduction can make on the same input. The next
theorems study this aspect more carefully by fixing explicit bounds on the
number of queries.

Definition 5.5.2. A reduction M is called P-T(q(n))-reduction, if M is a
P-T-reduction that, given an input of length n, makes at most g(n) many
queries. And M is called P-tt (q(n))-reduction, if M is a P-tt-reduction that,
given an input of length n, makes at most g(n) many queries.

The proof of Theorem 5.5.1 can be easily modified to obtain, for given
polynomial query counting function g(n), the following.

Theorem 5.5.3. Assume (GG). For r(n) = [log(q(n) + 1)] + 1 there is a
P-T(r(n))-complete set for NP wich is not P-tt(q(n))-complete for NP.

Theorem 5.5.4. Assume (GG). For r(n) = q(n) + 1 there is a P-T(r(n))-
complete set for NP wich is not P-T(q(n))-complete for NP.

Theorem 5.5.5. Assume (GG). For r(n) = 2q(n)+1 there is a P-tt(r(n))-
complete set for NP wich is not P-tt(q(n))-complete for NP.

5.6 Filling the Gaps

This final section deals with constructions that semm difficult to adapt for
the assumptions (G) and (GG), but offer solutions to questions not covered
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by the constructions given so far. In the first part the small gap in section 5.2
between P-btt(2)- and P-btt(1)-completeness is discussed. And in the second
part, we study the relation between positive and non-positive completeness
notions.

The constructions below depend on the possibility of negative access to
the assumed (general) p-generic set within NP. So they are based on the
hypotheses

(Gn) There is a p-generic set in NP N co-NP,
and

(GGR) There is a general p-generic set in NP N co-NP.

5.6.1 Two Nonadaptive Queries

Theorem 5.6.1. Assume (Gn). For k > 1, there is a P-btt(k+1)-complete
set A for NP which is not P-bT(k)-complete for NP.

Proof. Fix k > 1 and let G be a p-generic set in NPNco-NP. Fix an NP-m-
complete set C'in DTIME(2") and let z1,... ,zx+1 be the first k+ 1 strings
of length k.

The extractions G,, used in the proof of Theorem 5.2.3 again play a
central role here. For 1 <m < k+1, let

~

Gmn = {z: 22y € G}
k
é - U ém,
m=1
and let

k
A= U{xzm:meC&meém}U{xzk+1:mEC&mgéC;’}

m=1

Thenz € Ciff 31 <m < k+1 : zz, € A, whence A is NP-btt(k + 1)-hard.
Moreover, A € NP since the complement of G as well as the complement of
G are sets in NP. So it suffices to show that Gg41 ﬁET(k) A.

Now the proof follows the general pattern. We assume that ék—}-l is
P-bT(k)-reducible to A via M, i.e.,

é/ﬁ-l(y) = MA(.U) (5.37)

for all strings y. Then, given n and X [0, let

C(z) - X(zz) if |z2;) <n&1<i<k
ap (z2) =4 Clz) -1 (1 — X(2zzm)) if |zzi| <n&i=Fk+1
0 otherwise.
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For strings w not of the form w = zz; for some z and 1 < i < k+ 1, let
aX (w) = 0. Then for each = we have to define a set of conditions CON D,
that forces A to agree with a;X on strings w = zy;. So let QUERY, =
Q(M,a;X,0™) be the set of queries made by M on input 0" if given oracle
aX. Then for every string = of length > n — k such that there is a query

zz; € QUERY, (1 <i<k),let
r=pm{m>1&zz, ¢ QUERY,}

and

k
COND, = U {(zzm,0) : 2z, € QUERY,}
m=1

U{(zzr,1) : r < k}.

Finally, let CON D;f be the union of the parts COND,, above and the final
condition

(0"zp 41,1 — M (OM)). (5.38)

Again, under the assumption (5.12), this final condition forces the failure of
(5.37), provided that CON DX then forces M4A(0") = M (0"). So assume
(5.12) and consider ¢ € QUERY,,. Obviously, A(q) = a%(q) for ¢ not of the
form g = zz; or |q| < n. So fix ¢ € QUERY,, such that |¢| > n and ¢ = zz;
for some 1 < i < k+ 1. Then ;X (q) = 0. In case that i < k, COND,
forces G(zz;) = 0, whence A(q) = (CNG)(q) =0 as well. Fori =k +1,
the fact that ¢ = 241 € QU ERY,, implies that the corresponding r < k.
Le., zz, ¢ QUERY, and COND, forces G(zz,) = G,(z) = 1. But then
G(z) =1, whence A(zzy41) = A(q) = 0.

Finally note that [CON D;X| < 2k+1 and the extension function induced
by CON D is a bounded p-extension function. O

5.6.2 Positive Reductions

Theorem 5.6.2. Assume (Gn).Then there is a SbPT(2)—complete set A for
NP which is not SII:OST—complete for NP.

Proof. Let G be a p-generic set in NP N co-NP and let C' be some NP-
<P _complete set in DTIME(2"). Let § be the iterated power of 2, i.e.,
5(0) =1, 6(n + 1) = 2°"), and let ,, denote the string 0°("). Finally, let
I, ={z : 6(n) <|z| < §(n+1)}. For all strings = in I,, the way we code
C(z) into the desired set A will depend on the value G(z,), whence A will be
NP—SfT(Z)—complete. But, by genericity of G, A will not be SgosT—complete.
To achieve this, we define sets D, D,, A, and A,. For all i € {0,1} and
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z € X* let
N i ifrel,&G(z,) =1
Dliz) = {Cm)ﬂxeh&Gmﬁ#i (5.39)
. i ifzel,
Dniz) = { D(iz) otherwise (5.40)
and let
and
A = (Go\ {0 Y @ D, (5.42)

for Gy = {z : 0z € G}. Note that D and D,, disagree on a string iz only if
x € I,. Morevoer, D C Dy, only if G(z,) = 0 and D,, C D only if G(z,) =1

Claim 1: Ais SII:T(Z)—complete for NP.

Proof: Since G € NP N co-NP, A € NP by standard closure properties
of NP. To see that C SET(Q) A, note that C(z) = A(1(1 —i,)x) for z €
I, and i, = G(z,), by (5.39). Since i, = G(z,) = A(zy), C(z) can be
recovered from A by two adaptive queries. Moreover, on input z € I,,, the
corresponding z, can be computed in polynomial time, whence C SII:T(Q) A.

O

Next we define the set H € NP and show that it is not Sﬁ)sT—reducible
to A. Let

H={UT0z : j = Gi(x)} (5.43)

for G; = {z : 1z € G}, and assume that H SII;STA via M. Then we define
a function v : ©* — %2 by

X (z) = (MA%(10z), MA% (110z))

for n such that =z € I,,, and Af defined as A, with X in place of G. Note
that, for = of length |6(n)| and n large enough, the influence of the set X
on yX(z) is determined by the values X (zp),...,X (2, 1), and therefore
by X [z,. Since M reduces H to A, the pair (M4 (10z), M4(110z)) either
equals (0, 1) or (1,0). By definition of 4, = AS, either A C A, or A, C A.
Moreover, this relation depends on G(zy,):

ACA, = Gz,) =0 (5.44)
A, CA = G(z,) =1 (5.45)
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Therefore, by positivity of M, the following implications hold:
7é(z) =(0,0) = A, CA = G(z,) =1
¥ (z) =(1,1) = ACA, = G(z,) =0
79 (2) =(1,0) = Gi(z) =G(lz) =0
79(@) =(0,1) = Gi(z) =G(lz) =1
So let f: X* — 3 be the extension function, which is defined on the strings
X |zy by

(zn,0) if v (
f(X [-’En) = Eilv(?(;z)—){—l ) if ’)’XEIJ n
(1(5(n)+1 O) if ,),X(lé n

(5.46)

Claim 2: G does not meet f
Proof: This is obvious by the above remarks about the relation between
G and ~©. o

Claim 3: f is an n®extension function for some c.

Proof: By definition of f and 4%, on input X [z,, f has to simulate the
computations of M*4» (1011%n]) and M#4» (110112n). W.lo.g. assume that
the running time of M on these inputs is bounded by d§(n + 1). Hence, for
any query ¢ made by M, the answer A.X(¢) depends on X [z, and C.

(i) If ¢ = Oz, then AX(q) =1 iff z = z; for some j < n and X (0z) = 1.

(ii) If ¢ = 102, then A (¢) = 1 iff z € I; for some j < n and [X(z;) =
1&C(z) =1].

(iii) And if ¢ = 11z, then A7 (q) = 1 iff either z € I,,, or z € I, for some
j<mn,and [C(z) =1V X(z;) =1].

Hence, in dependence of the prefix of ¢, f can compute A.X(¢) by scanning
the input and by computing C(z) if necessary, in linear time, which shows
that f is an n?-extension function. ]

Since G is a general p-generic set, these claims are contradictory, which
completes the proof of Theorem 5.6.2. O

Considering the set A given in [BuhHT91] to separate S;- from <fj-
completeness for EXP, we easily obtain a separation of SII:OST-completeness
from <//-completeness for EXP by the set A@® A. Though the construction
of A may be carried out in NP, this second step fails for NP since A @ A
may not be a member of NP unless we assume NP = co-NP. Therefore, to
obtain the desired separation, we give a new set B in NP with the required
properties by a more direct construction.
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Theorem 5.6.3. Assume (GGn). Then there is a set B which is S;ST—

complete but not Sg—complete for NP.

Proof. Let G be a general p-generic set in NP N co-NP and C as in the
preceding proof. B will be constructed in such a way that C' is recognized
by a positive Turing machine M with oracle B which acts as follows.

On input z of length n, M performs n + 1 rounds of querying B. In
the first n rounds M chooses two queries depending on the answers to the
previous queries and accepts (rejects) if both answers are 1 (0). Otherwise,
M starts the next round. If the final round is reached, only one query is
chosen and M accepts iff the answer is 1.

Since for oracles A C B, M*(z) = 1 implies that the computation
of Mp on input z either follows the same path and accepts, or there is
a minimal round in the computation of M#(z), where the answers of the
oracles A and B differ. But then the behaviour of M implies that A gives
two different answers, while both answers of B are 1, whence MB(z) = 1.
Therefore M is indeed positive and the computation tree of M on input z
may contain a maximal number of 2(2/*l — 1) + 2/#| different queries. This
fact provides enough flexibility to diagonalize against polynomial time truth-
table reductions.

First we define for every string z the tree T'(z) of queries to be chosen
by M. Consider a balanced tree of depth |z| where the root is labeled by
{(#,0),(z,1)} and if a node is labeled by {(z,40), (z,y1)} then its left son is
labeled by {(z,400), (z,y01)} and its right son by {(z,y10), (z,11)}. Finally,
we remove from each leaf the pair (z,y) where the last bit of y is one.

The resulting labeled tree will guide M in the following way: the first
round performed by M on input z will consist of querying (z,0), (z,1), i.e.,
the strings that are labeled to the root of T'(z). As described above, M
accepts (rejects) in round m if all queries made in this round are answered
by 1 (0). Otherwise, if M has reached the node 7, of T'(z) in this round,
then M chooses the left (right) son of 7, if only the first (resp. the second)
answer is 1 and starts the next round by querying the strings that are labeled
to that node.

An easy computation shows that for any set S with |S| < 2-2/*l — 1,
there exists a node n in T'(z) such that S and the label of n are disjoint.
Let N,(S) denote the first such node and P,(S) the path in 7'(z) that leads
to it.

Now we are ready to give the definition of B. Fix a set X. First we
inductively assoziate to each string w a formula ¢;. with free variable z by

¢X(z) = TRUE,
bmo(z) = ¢ (@) A0 zw0 € X,
dX(z) = X (2) A0 1zw0 ¢ X A0 1zwl € X,
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Then we use these formulas to define sets X,,, B and C.X. Let z(z,w) =
0 +11zw, and let

Xy = {z:¢X(@)A2(z,w0) & X A z(z,wl) & X}
BY = {z:¢5@) VvV (@eCAzeX,)} (i<1)
Cao = {z:¢u@ArzeC}
Finally, let
B={(z,w) : 1<|w| <|z] A z€ BSIU
U{{z,w0) : |w| = |z| A z€ CS}-

Consider z, w and X such that ¢, (z) is true. Then at most one of the

formulas ¢, for i < 1 can hold for z, and = € X,, iff none of the two holds

for z. This implies that

BX)(z) = BX(z)=0=2¢C, (5.47)
and

BX\(z)=BX(z)=1=2z€C. (5.48)

Moreover, in case that BX,(z) = 1 — BX (z), then ¢X.(z) holds for the

unique 4 < 1 such that B (z) = 1.
That B has the desired properties, is shown in the following claims.
Claim 1: B € NP

Proof: As in the previous theorem, this follows by assumption about G and
the closure properties of NP. ]

Claim 2: C is SgosT—reducible to B via Mr.

Proof: Let x of length n be given. By the definition of ¢, there is a maximal
string w of lenth < n such that ¢$ (z)w holds. Then ¢%,.(z) = 1 iff w'i C w
and Gy (z) = 0 for all w' C w and 4 < 1. This implies that for every w' C w
and 7 <1,

BS.(z) =1 <= w'iCw.
Hence MEB(z) performs |w| rounds of querying B and proceeds either by
querying (z,w0) and (z,wl), or by querying (z,w0) in case that |w| = n.
In the first case, by maximality of w

B((z,w0)) = B({z,wl)) = C(z) = MF ()
by (5.47) and (5.48). In the second case,

B({z,w0)) = Cyy(z) = C(z) = M (z)
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since ¢Z () holds. m
Claim 3: B is dominated by G
Proof: Consider a pair (z,w) such that 1 < |w| < |z|. By definition of BT,
B({z,w)) = 1 whnenever the following holds:

Vu' € Iy(w) : z(z,w'0) € G

Vuw' € Ii(w) : z(z,w'0) ¢ G&2(z,w'l) € G

z(z,w) € G

Juw' w=w'l : = 2(z,w'0) ¢ G.

On the other hand, B((z,w)) = 0 whenever z(z,w) € G, but one of the
above conditions fails.

For pairs (z,w0) where |w| = |z|, only B({z,w0)) = 0 can be forced.
Namely, whenever one of the above conditions fails, this implies that ¢Z (x)
does not hold, whence B({(z,w0)) = CS,(z) = 0. O

Claim 4: B is not NP-tt-complete.

Proof: Let G; = {z : 1z € G}, and assume that G is P-tt-reducible to B
via M. Fix n and X [0", and let QUERY,, = Q(M,0") be the set of queries
made by M on input 0". Again, we have to fix the function & of intended
oracle answers and the condition set CON D;f such that (5.12) implies

MP(0") # G1(0™) (5.49)

for some n, and such that the induced extension function is a p-extension
function.

So consider p € QUERY,,. Call p relevant if it is of the form (g, w) for
some string w of length 1 < |w| < |g| 4+ 1, and the last bit of w is zero for
|w| = |z| + 1. Fix & (p) = 0 for any irrelevant query p. For relevant queries
p = (g, w) such that 2|¢q| + 3 < n, let

By(q) if1<|w|<|q|Alz(g,w)| <n
aﬁ((q, w)) =4 CY(q) ifw=w0A]|w|=lq|A|z(g,w)| <n

0 otherwise

where Y denotes the minimal set extending X [0", i.e., Y [0" = X [0™ and
Y(z) = 0 for all z > 0". For every ¢ such that there is a relevant query
(g, w) in QUERY,, let

COND, = {({g,w),0) : 1 < |w| < g A2|q| + 2+ w] =n}

In case that 2|g| + 3 > n, w.l.o.g. we may choose w, of length |¢| minimal
such that (g, w,0) ¢ Q(M,0"). For each such ¢ we want to fix o such that
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M;§ (¢) would perform the maximal number |g|+ 1 rounds, finally querying
(g, wg). So let

1 fl<|jwAwCw
X = q
a w)) =
n (@) {O otherwise.

To force these intended oracle answers, fix
COND, = {(2(g,wi), 1) : w € Liw,)}
U{(2(q, wi),0) : w € I—i(wy)}
U{(2(g,wg), 1)}
U{(2(g,w0),0) : wg = wl}
Finally, let COND;X consist of the parts CON D, and the final condition

(10",1 — M= (0™)).

Then the extension function induced by COND;X on {0" : n > 1} is
an nk-extension function for some k > 1, whence G meets f- It remains to
show that, if G meets f at 0", then B agrees with a$ on the set QU ERY,,.
By the deﬁmtlon of a , this is obvious for 1rre1evant queries and for queries
(g, w) such that 2|q| + 2 + |w| < n. So consider p = (¢, w) € QUERY,, such
that 3|g| + 2 = |2(¢,q)| > n and assume (5.12).

Case 1: 2|g| +3 <nand 1 < |w| <g|.

Then ;X (p) = 0, and there is a prefix w’ of w such that |z(g,w'0)| = n.
Thus (5.12) and the definition of COND, imply that neither ¢ (g) nor
#%(q) hold, whence BS(q) = A(p) = 0.

Case 2: 2|g|+3 < n and |w| = |¢|+ 1. In this case w = w'0, and the analog
argument as in Case 1 for w' shows that gbg, (q) does not hold, whence
A(p) = Cy =0 = (). o

Case 3: 2|g| +3>nand 1 < |w| < g/

If w <r, wg then there is a maximal common prefix z of w and wy. Then
neither ¢% (g) holds, nor ¢ € G be the first two parts of COND,. Hence
BS(g) = af(p) = 0. And a similar argument applies for the case w, <r, w.
So consider w C w,. Then again by the first two parts of COND, ¢S (q)
holds, whence BS(q) = oS (p) = 1.

Case 4: 2|q| +3 > n and |w| = |q| + 1.

Then of (p) = 0. By the choice of w,, w # w,0. Note that for w’ with
lw'| = |g|, ¢S (g) holds only if w' = w, by the last two parts of COND,.
Hence CS = A(p) = 0.

This completes the proof of Theorem 5.6.3. O



Chapter 6

Summary

The true localization of the class NP within the exponential time hierarchy
is probably the most famous open problem of structural complexity theory.
Complexity classes like E or EXP, which contain a universal function for P,
allow for diagonalizations against polynomial time-bounded reducibilities.
This results in a very rich internal structure under such reducibilities.

Interesting structural properties claimed for the class NP, however, im-
mediately would settle the P = NP question to the negative. So, for the
time being, the investigation of the internal structure of NP has to be based
on assumptions about the localization of NP within the exponential time
hierarchy.

Lutz [Lut90] proposed to study the internal structure of NP under the
hypothesis that NP does not have p-measure 0 and under related measure
assumptions like NP not having measure 0 in E. There are many proper-
ties which can be shown under these assumptions but which so far could
not be obtained from the weaker assumption that P # NP (see Lutz and
Mayordomo [LutM96]).

Ambos-Spies [Amb94a] proposed to consider not only Lutz’s measure
axiom for NP but also weaker hypotheses. Especially category based as-
sumptions, that are more directly related to diagonalizations than the mea-
sure theoretic approach of Lutz, are mentioned there: the assumption that
NP is not p-meager, and the variant that NP is assumed to be not general
p-meager in the sense given in [Amb96]. All these assumptions are con-
sistent in the sense that they hold for some relativizations. In fact Kautz
and Miltersen [KauM94| have shown that the class of oracles A such that
/,LpA(NPA) # 0 has measure 1. Though there is no evidence that this rela-
tivization to a random oracle describes the unrelativized case, working with
strong hypotheses are of interest by pointing out the relations between possi-
ble structural properties of NP. So far, the plausibility of such a hypothesis
can only be judged by its consequences. It is easy to see that the Genericity
Hypothesis suffices to distinguish many of the standard polynomial time re-
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ducibilities on NP: So S{’, Sf’n, Sgtt(k) for k > 2, Sgtt and Sft are mutually

different on NP. (The relations between <k, and ggtt(l) and between <},
and <%. on NP under the hypothesis (G) are not known.)

One of the most beautiful implications of Lutz’s measure axiom is the
separation of p-m-completeness and p-T-completeness (Lutz and Mayor-
domo [LutM96]). As Ambos-Spies [Amb94b] has shown, in fact the Gener-
icity Hypothesis is sufficient for this separation.

This thesis extends the ideas of these two results to other NP-complete-
ness notions. Completeness notions corresponding to reductions of bounded
norm are studied under the hypothesis (G). It turned out that this hypoth-
esis suffices to establish most of the natural instances of separation results
known for the class EXP. Some of the remaining gaps can be filled un-
der the hypotheses (Gn) and (GGpn) . The analogous scenery emerges for
completeness notions corresponding to reductions of unbounded norm under
the hypothesis (GG). However, the differences in the bounds on the number
of queries are not as tight as in the bounded case. Nevertheless, it turns
out that the hypothesis (GG) allows for separations that are not limited
to reductions with slowly growing bounds on the number of queries, the
way hypothesis (R) seems to be. Finally, the relation between complete-
ness notions induced by positiv and nonpositive reductions is studied, but
again, the results that are possible for the class EXP seem to require the
strong genericity hypotheses (Gn) and (GGn) to allow negative access to
the assumed (general) p-generic set.

So far, there is no generally accepted attitude towards the hypotheses
considered in this thesis. On one hand, it is argued in [LutM96] that a mar-
tingale witnessing that NP does have p-measure zero, i.e., a betting strategy
that is computable in polynomial time and succeeds in every language in NP
would be a remarkable algorithm. (In the sense that the strategy would have
to make a bet without having the possibility of totally examining the “field
of possible solutions”.) On the other hand, it is hard to imagine an NP-
algorithm that would lead to a p-random (or p-generic) set. One might also
doubt the existence of a DTIME(2")-bi-immune, or even a p-bi-immune set
in NP. This thesis does not discuss this question, but makes contributions
to the list of consequences of this kind of strong hypotheses.
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