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Abstract

The study of gene functions in a variety of different treatments, cell lines and organ-

isms has been facilitated by RNA interference (RNAi) technology that tracks the

phenotype of cells after silencing of particular genes. In this thesis, I describe two

computational approaches developed to analyze the image data from two different

RNAi screens. Firstly, I developed an alternative approach to detect host factors

(human proteins) that support virus growth and replication of cells infected with

the Hepatitis C virus (HCV). To identify the human proteins that are crucial for

the efficiency of viral infection, several RNAi experiments of viral-infected cells have

been conducted. However, the target lists from different laboratories have shown

only little overlap. This inconsistency might be caused not only by experimental

discrepancies, but also by not fully explored possibilities of the data analysis. Ob-

serving only viral intensity readouts from the experiments might be insufficient. In

this project, I describe our computational development as a new alternative ap-

proach to improve the reliability for the host factor identification. Our approach

is based on characterizing the clustering of infected cells. The idea is that viral

infection is spread by cell-cell contacts, or at least advantaged by the vicinity of

cells. Therefore, clustering of the HCV infected cells is observed during spreading

of the infection. We developed a clustering detection method basing on a distance-

based point pattern analysis (K -function) to identify knockdown genes in which

the clusters of HCV infected cells were reduced. The approach could significantly

separate between positive and negative controls and found good correlations be-

tween the clustering score and intensity readouts from the experimental screens. In

comparison to another clustering algorithm, the K -function method was superior

to Quadrat analysis method. Statistical normalization approaches were exploited

to identify protein targets from our clustering-based approach and the experimental

screens. Integrating results from our clustering method, intensity readout analy-

sis and secondary screen, we finally identified five promising host factors that are

suitable candidate targets for drug therapy.

Secondly, a machine learning based approach was developed to characterize

protein-protein interactions (PPIs) in a signaling network. The characterization

of each PPI is fundamental to our understanding of the complex signaling system

of a human cell. Experiments for PPI identification, such as yeast two-hybrid and
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FRET analysis, are resource-intensive, and, therefore, computational approaches

for analysing large-scale RNAi knockdown screens have become an important pur-

suit of inferring the functional similarities from the phenotypic similarities of the

down-regulated proteins. However, these methods did not provide a more detailed

characterization of the PPIs. In this project, I developed a new computational ap-

proach that is based on a machine learning technique which employs the mitotic

phenotypes of an RNAi screen. It enables the identification of the nature of a PPI,

i.e., if it is of rather activating or inhibiting nature. We established a systematic

classification using Support Vector Machines (SVMs) that was based on the pheno-

typic descriptors and used it to classify the interactions that activate or inhibit signal

transduction. The machines yielded promising results with good performance when

integrating different sets of published descriptors and our own developed descriptors

calculated from fractions of specific phenotypes, linear classification of phenotypes,

and phenotypic distance to distinct proteins. A comprehensive model generated

from the machines was used for further predictions. We investigated the nature of

pairs of interacting proteins and generated a consistency score that enhanced the

precisions of the classification results. We predicted the activating/inhibiting nature

for 214 PPIs with high confidence in signaling pathways and enabled to identify a

new subgroup of chemokine receptors. These findings might facilitate an enhanced

understanding of the cellular mechanisms during inflammation and immunologic

responses.

In summary, two computational approaches were developed to analyze the im-

age data of the different RNAi screens: 1) a clustering-based approach was used

to identify the host factors that are crucial for HCV infection; and 2) a machine

learning-based approach with various descriptors was employed to characterize PPI

activities. The results from the host factor analysis revealed novel target proteins

that are involved in the spread of the HCV. In addition, the results of the character-

ization of the PPIs lead to a better understanding of the signaling pathways. The

two large-scale RNAi data were successfully analyzed by our established approaches

to obtain new insights into virus biology and cellular signaling.



Zusammenfassung

Die Untersuchung von Genfunktionen in vielen verschiedenen Behandlungsver-

fahren, Zelllinien und Organismen wurde durch die Technologie der RNA Interferenz

(RNAi) ermöglicht, mit der der Phänotyp von Zellen nach Gen-Silencing bestimmter

Gene beobachtet werden kann. In der vorliegenden Arbeit beschreibe ich zwei com-

putergestützte Ansätze, die zur Analyse von Bildern zweier unterschiedlicher RNAi

Screens entwickelt wurden. Erstens habe ich einen alternativen Ansatz entwickelt

um Host-Faktoren (menschliche Proteine) zu detektieren, die das Viruswachstum

sowie die Replikation von Zellen fördern, die mit dem Hepatitis C Virus (HCV)

infiziert sind. Verschiedene RNAi Experimente von virusinfizierten Zellen wurden

durchgeführt, um diejenigen menschlichen Proteine zu identifizieren, die entschei-

dend für die virale Infektionseffizienz sind. Trefferlisten aus verschiedenen Laboren

haben nur geringe Übereinstimmung gezeigt. Diese Unstimmigkeiten sind möglicher-

weise nicht nur auf experimentelle Unterschiede zurückzuführen, sondern auch auf

die Tatsache, dass die Möglichkeiten der Datenanalyse nicht vollständig ausgeschöpft

wurden. Die ausschließliche Betrachtung der experimentell erzeugten viralen In-

tensitätswerte ist vermutlich unzureichend. In diesem Projekt beschreibe ich un-

sere computergestützte Entwicklung als einen neuen alternativen Ansatz, um die

Verlässlichkeit der Host-Faktor Identifikation zu verbessern. Unser Ansatz basiert

auf der Charakterisierung des Clusterings infizierter Zellen. Die Idee ist, dass Virus-

infektion durch Zell-Zell Kontakt verbreitet wird oder zumindest durch die Nach-

barschaft von Zellen begünstigt wird. Daher betrachten wir das Clustering HCV

infizierter Zellen während der Infektionsverbreitung. Wir haben eine Clustering-

Detektionsmethode entwickelt, um Knockdown-Gene zu identifizieren, in denen die

Cluster von HCV infizierten Zellen reduziert waren. Die Methode verwendet eine

distanzbasierte Punktmuster-Analyse (K -function). Der Ansatz konnte signifikant

zwischen Positiv- und Negativ-Kontrollen unterscheiden und fand eine gute Korrela-

tion zwischen dem Clustering-Score und den Intensitätswerten der experimentellen

Screens. Im Vergleich zu einer anderen Clustering-Methode (Quadrat-Analyse) ist

die K -function überlegen. Statistische Normalisierungsmethoden wurden angewen-

det um Ziel-Proteine aus unserem Cluster-basierten Ansatz und experimentellen

RNAi Screens zu identifizieren. Durch Integration von Ergebnissen unserer Anal-

yse, der Analyse von Intensitätswerten und einem sekundaren RNAi Screens, haben
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wir schließlich fünf viel versprechende Host-Faktoren identifiziert, die geeignete Kan-

didaten für eine medikamentöse Behandlung darstellen.

Zweitens wurde ein maschineller Lernansatz entwickelt, um Protein-Protein In-

teraktionen (PPI) in einem Signalnetzwerk zu charakterisieren. Die Charakter-

isierung jeder PPI ist elementar für unser Verständnis des komplexen Signal-

systems einer menschlichen Zelle. Experimente zur PPI Identifikation, wie z.B.

yeast two-hybrid und FRET Analysen, sind Ressourcen-intensiv und daher ist der

Rückschluss von phänotypischen Ähnlichkeiten von herunterregulierten Proteinen

auf funktionelle Ähnlichkeiten ein wichtiger Aspekt computergestützter Ansätze zur

Analyse von umfangreichen RNAi Knockdown Screens. Diese Methoden lieferten je-

doch keine detaillierte Charakterisierung der PPIs. In diesem Projekt habe ich einen

neuen computergestützten Ansatz entwickelt, der auf einem maschinellen Lernansatz

basiert, der die mitotischen Phänotypen eines RNAi Screens verwendet. Der Ansatz

ermöglicht die Identifizierung des Wesens einer PPI, d.h. ob sie eher aktivierender

oder inhibierender Natur ist. Basierend auf den phänotypischen Deskriptoren haben

wir eine systematische Klassifizierung mittels Support Vektor Maschinen (SVMs)

etabliert um zu bestimmen, ob ein aktivierendes oder hemmendes Signal propagiert

wird. Die SVMs lieferten viel versprechende Ergebnisse mit guter Performanz durch

die Integration verschiedener Gruppen von publizierten Deskriptoren und unseren

selbst entwickelten Deskriptoren, die aus Fraktionen spezifischer Phänotypen, lin-

earer Klassifikation von Phänotypen und phänotypischen Distanzen zu bestimmten

Proteinen berechnet wurden. Ein umfassendes Modell, welches von den SVMs gener-

iert wurde, wurde für weitere Vorhersagen verwendet. Wir haben das Wesen von

Paaren von interagierenden Proteinen untersucht und einen Konsistenzwert gener-

iert, der die Präzision der Klassifikationsergebnisse verbesserte. Wir konnten die

aktivierende/inhibierende Natur von 214 PPIs in Signaltransduktionswegen mit ho-

her Sicherheit vorhersagen und identifizierten eine neue Subgruppe von Cheomkin-

rezeptoren. Diese Ergebnisse tragen möglicherweise zu einem besseren Verständnis

zellulärer Mechanismen bei, insbesondere während Entzündungsreaktionen und Im-

munantworten.

Zusammenfassend wurden zwei computergestützte Ansätze zur Analyse der

Bilder der unterschiedlichen RNAi Screens entwickelt: 1) Es wurde ein Clus-

teringansatz verwendet, um Host-Faktoren zu identifizieren, die entscheidend für

eine HCV Infektion sind; und 2) wurde ein maschineller Lernansatz mit verschiede-
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nen Deskriptoren angewendet, um PPI Aktivitäten zu charakterisieren. Die Ergeb-

nisse der Host-Faktor Analysen konnten neue Zielproteine aufdecken, die an der

Verbreitung von HCV beteiligt sind. Darüber hinaus führen die Ergebnisse zur

Charakterisierung der PPI zu einem besseren Verständnis von Signalwegen. Die

beiden umfangreichen RNAi Datensätze konnten erfolgreich mit unseren etablierten

Ansätzen analysiert werden, um neue Einblicke in die Virusbiologie und zelluläre

Signalwege zu erhalten.
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Chapter 1

Introduction

1.1 Motivation

The discovery of the RNA interference (RNAi) technology is a major advance in

the identification of a specific gene’s function or role in signaling pathways. RNAi

is a naturally occurring cellular mechanism that permits the silencing of genes and

creates phenotypes that can provide clues to the function of these genes. Hence,

the technical application of RNAi has been developed on a genome-wide scale and

widely used to elucidate central aspects of cell biology. Notably, RNAi technology

allows for the analyses of a large variety of different treatments and cell lines, which

makes it a desirable approach for large-scale inferences of protein function. Besides

this, technologies using fluorescent reporters and imaging by microscopy have been

developed for the screening assays and this allows also single cells to be studied

over time. Numerous cellular phenotypes (e.g., cell shape, location and signaling

response) can be explored from these microscopy assays by using automatic im-

age analysis approaches and numerical features that represent cellular objects are

used in pattern recognition, machine learning techniques and statistical analyses for

functional analyses [4, 45, 55, 97, 98, 151, 152]. The exploratory data analysis of

the RNAi image data has posed challenges and has led to the identification of the

function of single human proteins, which correspond to the silenced genes.
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RNAi technology can be harnessed to identify drug targets. Several recent stud-

ies were reported systematic screening of gene knockdowns to identify host proteins

that might support HCV replication [5, 99, 132, 137]. By observing the viral infec-

tion after gene knockdown, the silenced genes that reduce the infection rate might be

suitable to be targets for drug development. These studies focused on inhibiting host

factors (human proteins) instead of viral proteins because human host-factor pro-

teins are evolutionary more stable and will not mutate into drug refractory variants.

However, the results from these studies showed only little overlap. This discrepency

might result from incomplete data analysis or differences in experimental conditions

of these studies. Therefore, an alternative method to improve the reliability of the

screens is required. Viral infection is spread effectively by cell-cell contacts. With

this mechanism, the clustering of infected cells can be observed during spreading of

the infection. To our knowledge an alternative computational method for identify-

ing viral host factors from infected cell localization has not been described earlier.

Rather than observing viral intensities which has been used for analyzing infected

cell images in traditional way, we developed a computational approach based on a

localization analysis of infected cells to identify host factors that might be suitable

for therapeutical drug targeting.

In addition, most of the functional processes in a cell involve interactions among

proteins. A better understanding of the complex protein-protein interactions can

support a better investigation in cell development and disease. To study the in-

teractions of proteins, a variety of high-throughput screens (e.g., the yeast 2-hybrid

system [129] or FRET analysis [163]) can be performed to obtain a vast amount of

interaction data. However, these approaches can be resource-intensive and infeasible

for many protein pairs. Thus, the development of computational approaches for the

characterization of protein interactions has become an important pursuit. Besides

this, several computational researchers studied protein functions and protein-protein

interactions from RNAi screening data using the image processing system, machine

learning techniques and statistical analysis in their researches [4, 45, 55, 97, 98].

However, using RNAi technology to better characterize protein-protein interactions

has not been performed yet. Identifying if two interacting proteins transduce a

rather activating or inhibiting signal can gain a better insight into their cellular

function and can be a useful information for pharmaceutical development. We

developed an approach based on a machine learning technique to predict the in-
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teractions to be activating or inhibiting signals. This approach used features from

both published phenotypic descriptors and our own developments calculated from

the fraction of phenotypes, linear classification approach from LDA analysis, and

distance with protein reference in the network. This integrative approach yielded a

more comprehensive model for further prediction.

1.2 Objective and scope

The goal of this thesis is twofold. First, we analyzed the RNAi data of cells infected

with the HCV and employed a clustering approach to identify the host factors that

are suitable as potential drug targets. The study focused on the clustering behavior

of the infected cells after genes were knocked down. The results of our clustering ap-

proach were compared with the data from experimental screens to identify potential

hits. Second, we analyzed the RNAi data of HeLa cells and developed a machine

learning technique for better characterizing known protein-protein interactions. The

characterization of protein-protein interactions enhance our understanding of the

underlying biological pathways and reveal protein cooperativity that is relevant to

disease mechanisms. This study focuses on the similarities between loss-of-function

phenotypes of different gene products that are involved in signal transduction path-

ways.

1.3 Outline of the thesis

Chapter 1 introduces the biological and biotechnical background and further topics

related to this thesis and reviews the existing computational methods that concerns

to RNAi data analysis, host factor identification and protein-protein characterization

analysis. Chapter 2 summarizes the methodologies and datasets applied in this

thesis. Detailed descriptions of the methods and algorithms, including the clustering

algorithm for detecting a group of infected cells and the machine learning technique

for predicting the activities of protein interactions are also provided. Chapter 3

reports the results of identifying host factors involved in viral infection and the

results of analyzing the signaling interactions using RNAi screening data. Chapter

4 provides the summary, discussion and outlook of this thesis.
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Männer. Accelerating the computation of Haralick’s texture features using

Graphic Processing Units (GPUs). Proceedings of the world congress on en-

ginerring, London, U.K., 2-4 July, 2008. Newswood Limited, International

Association of Engineers.

The results of our research about the host factor identification have been published in

the journal Bioinformatics [133]. The manuscript covering the characterizing signal

interaction part is currently in preparation. A part of this project is involved in a

publication [47] published in IAENG International Journal of Computer Science.

1.5 Biological and technical background

In this section, I briefly summarize the biological and biotechnical background con-

cerning the application of my work. First, I briefly describe the process of RNAi to

promote the understanding of the data I analyzed. Next, I give a short overview

of the high-throughput RNAi screening technique used to generate the RNAi data.

Thereafter, I provide a short overview describing the biology of HCV. Finally, I give

an overview of signal transduction and protein-protein interactions.
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Figure 1.1: DNA to protein. A complementary RNA copy is created from DNA

sequence during transcription. The genetic information is carried by the mRNA,

which is used to synthesize the protein molecules on the ribosomes. (The figure is

modified from http://de.wikipedia.org/wiki/MRNA).

1.5.1 RNA interference

A common approach used to discover the function of a gene is to down-regulate

the expression of the gene, which down-regulates the corresponding protein. The

phenotypic effects caused by this down-regulation are then studied. The discov-

ery of RNA interference (RNAi) or gene silencing using double stranded RNA has

allowed the disruption of expression. This RNAi is a cellular mechanism of post-

transcriptional gene silencing to prevent the cell from expressing foreign genetic

material, e.g., genetic material from a virus. In the nucleus of a normal cell (Figure

1.1), the DNA sequence of a gene is used as a template to synthesize the ribonu-

cleic acid (RNA) molecules during the processes of transcription. A protein-coding

gene that is copied into an RNA molecule is further processed into a messenger

RNA (mRNA). The mRNA is then transported into the cytoplasm and binds to
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Figure 1.2: RNA inference process. An enzyme of the Dicer family cleaves the RNA

into small pieces, called the siRNAs. The siRNA activates the RISC and aids in

the recognition of the complementary mRNA. The mRNA is cleaved and destroyed;

thus, the corresponding protein cannot be produced. (The figure is modified from

http://www.scbio.de/gene silencers.html).

a ribosome that translates the mRNA and produces the respective protein. The

mechanism of RNAi (Figure 1.2) initiates from a double stranded RNA (dsRNA)

in which one strand is complementary to a section of the mRNA. An enzyme of the

Dicer family proceeds to cleave and cut the RNA into small pieces called the small

interfering RNAs (siRNAs). Then, one strand of the siRNA called the antisense

strand becomes the ‘guide’, and the other strand becomes a temporary ‘passenger’,

which is quickly degraded [37]. The antisense strand (guide) is integrated into an

RNA-induced silencing complex (RISC) and then forms the activated RISC. The

antisense strand aids the RISC complex in the recognition of the complementary

mRNA, which it cleaves and systematically destroys the cognate RNA. The re-

spective protein cannot be produced after destruction of the mRNA by this RNAi
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process. To silence a gene, the siRNAs that have base-sequence complementarity to

the mRNA of the target gene are transfected into the cell.

1.5.2 High-throughput screening of the RNAi experiments

When laboratory automation (e.g., tissue culture facilities, arrayer robots, and plate

reader), software control, and computing infrastructure are employed, the use of

high-throughput screens allows millions of genetic tests to be rapidly conducted. The

application of RNAi technology to a high-throughput screen is a powerful method to

address many questions of cell biology. This loss-of-function screen is also particu-

larly useful for the analysis of signal transduction pathways [37]. In high-throughput

screens that use genome-wide siRNA knockdown experiments, approximately 22,000

human genes can be screened. To attain this number, the experiments can only be

performed after the optimization and automation of the experimental processes. In

384-well plates, the siRNA-gelatine transfection solution is prepared and then ar-

rayed into single-wells of the LabTek cover glass live cell imaging dishes. The spot

diameter is approximately 400 m, and the spot-to-spot distance is approximately

1125 m. These siRNA microarrays are dried and stored overnight. After drying,

the HeLa-H2B-GFP cells are plated on the microarrays and transfected by growing

these cells on the siRNA spots. Images are acquired with an automated microscope

every 30 min for 44 hours. The imaging starts 20 hours after plating the cells on

the siRNA microarrays. To image as many microarray spots as possible within a

time lapse of 30 min, the number of spots that can be imaged simultaneously, the

time spent at each spot and the desired temporal resolution have to be carefully

manipulated. Additional details of genome-wide high-throughput screens are also

available (e.g., [97, 98]).

1.5.3 Hepatitis C Virus

Approximately 170 million people are infected with the HCV worldwide [109]. The

HCV is a major cause of persistent chronic infections that lead to development of

steatosis, liver failure, liver cirrhosis and hepatocellular carcinoma [44]. The HCV

is a single-strand RNA virus that has an average incubation period of 6-8 weeks.

The HCV infection is often asymptomatic, and hence the detection of the HCV

at an early stage is difficult. Therefore, the HCV is often referred to as a “silent
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disease” [123]. The mechanism of the HCV life cycle is still unclear. A decade ago,

the model of viral entry was developed. It was found that a key cellular protein

for viral entry, CD81, is needed and binds to the viral structure protein E2 on the

surface of the HCV caspid [108]. Many more proteins were subsequently identified

as factors involved in the HCV entry, including two essential proteins, SR-BI and

claudin-1, as well as, accessory factors, such as glucosaminoglycans and low-density-

lipoprotein receptors (LDL receptors) [34, 42, 107, 121]. Generally, the viral envelope

protein of the HCV plays a central role in the HCV binding to host receptors and

membrane fusion. After the HCV uncoating, the viral genome is then translated

in preparation for viral replication. The translation of the viral genome generates

nonstructural and structural viral proteins, which are needed for the viral replication

and assembly of new viral particles. Viral replication is carried out in a convoluted

membrane structure called a membranous web. The newly synthesized viral RNA

strand is released from the membranous web and passed to the core protein via the

NS5A. The core protein is translocated onto the surface of a lipid droplet or an

endoplasmic reticulum (ER) membrane for efficient formation of the viral particles,

and then encloses the synthesized viral genome to form a capsid. The capsids are

enclosed by an endoplasmic membrane containing the viral envelope proteins and

are then released into the ER lumen. Finally, the viral particle is released from

the infected cells [95, 112]. The HCV has several mechanisms it employs to inhibit

the host response. The HCV infection induces an interferon response in the liver

of patients, and the expression of several HCV proteins has been shown to inhibit

and evade the innate antiviral response of host cells [65]. Recently, Moriishi and

coworkers reported that a HCV core protein cooperates with the host factors and

causes the lipid alternation, oxidative stress, and the progression of cell growth. To

maintain efficient viral replication and production, other viral proteins interact with

the host proteins, including molecular chaperones, membrane-anchoring proteins,

and enzymes associated with lipid metabolism [95]. Hence, the investigation of host

factors is progressing, and this progress is crucial for the discovery of treatments for

the HCV.
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1.5.4 Signal transduction and protein-protein interaction

networks

Cells typically receive chemical or mechanical cues from their environments. In

response to these cues, the cells send and propagate signals through signaling cas-

cades. There are many types of these pathways and they are commonly categorized

as metabolic pathways, gene regulatory pathways, or signal transduction pathways.

The metabolic pathways are well-studied and comprise a series of biochemical reac-

tions that maintain all cellular processes. To produce cellular energy or synthesize

cellular components, the metabolic pathways break down large nutrient molecules

(e.g., proteins, carbohydrates and fats) into small molecules. The gene regulatory

pathways or transcriptional regulatory pathways concern transcription factors, their

respective target genes, and the regulation between. Transcription factors bind to

the DNA at specific binding regions to stimulate or repress gene transcription, and

this binding regulates the production of the corresponding proteins. The signal

transduction pathways connect extracellular signals and transcription factors by a

complex system of interactions between signaling molecules within the cell. In a

typical signal transduction pathway, a receptor is a protein on the cellular surface

that receives and responds to a stimulus. An intracellular response is initiated after

the signal interacts with the receptors. The resulting message is transmitted by

specific proteins that trigger a specific action in the cell. Most of our understand-

ing of cellular processes is based on the identification and characterization of the

interactions between proteins and other biomolecules. These protein interactions

propagate the signal, which is the main process of signaling transduction. In this

thesis, I will use the term protein-protein interaction (PPI) to refer to a physical

interaction between proteins. Examples of PPIs include the phosphorylation, bind-

ing, and association of proteins to forming protein complexes. The second part of

this thesis characterizes the PPIs of signaling pathways.

1.6 Existing computational approaches

In this section, I review various existing computational approaches of analyzing

RNAi screening data that concerns to our works, i.e., the hit identification analysis

and protein-protein characterization analysis. I firstly explain existing approaches
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for analyzing the RNAi microscopy image data. Next, I describe existing approaches

for identifying host factors being important for viral infection. Finally, I explain the

existing approaches for inferring protein functions and protein-protein interactions

on a large scale.

1.6.1 Computational analysis of the RNAi image data

The use of fluorescence microscopy for the imaging of RNA interference (RNAi)

knockdown screens has become a preferred method to identify the protein function

of silenced genes and can be harnessed to detect potential drug targets. Computa-

tional approaches for automatic analysis of cell microscopy images after knocking

down genes have been successfully developed to describe the loss-of-function mor-

phological features. A goal of the RNAi knockdown screen is to study the effects

of experimental treatments on a cell population by comparing population-based

features. Usually, cell nuclei are the main labeled compartments of interest. Also

other subcellular structures, e.g., the cytoplasm, cytoskeleton, or proteins indicating

a specific cellular response (such as from virus infection) have been additionally la-

beled in separate channels [82, 92, 135, 153]. Studies were reported that investigated

single cells using phenotypic features such as cellular area, diameter, eccentricity,

texture, granularity, moment [18, 56, 64, 75, 98, 150]. The main steps for analyzing

the data consisted of (1) segmentation, (2) feature extraction, and (3) classifica-

tion. The aim of segmentation is to identify the cells in the images. The image is

seperated into different regions, each containing a single cell and the cells are seper-

ated from the background. This procedure can be done by several segmentation

algorithms, e.g., threshold- or edge-detection-based algorithms. For example, the

goal of the Otsu thresholding technique [100] is to find the optimal threshold that

separates the pixels into two populations (the cells and background) by minimizing

the in-class variance and maximizing the between-class variance. After each single

cell segmentation, cellular features are computed based on the identified single cell.

The features of a single cell are a numerical vectors representing the sizes, shapes,

or textures of a cellular object. These features can be analysed directly by compar-

ing the distributions of the features between two different experiments, e.g., normal

versus cancer nuclei, using statistical tests [87].

Additionally, when analyzing the cellular phenotypes, we wanted to observe only

specific cellular shapes occuring, e.g., during apoptosis or mitosis. In this case,
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machine learning techniques are required for learning the specific phenotypes and

performing the phenotypic prediction. Based on the extracted features and labeled

classes, machine learning techniques have been applied to classify cell nuclei into

different cell cycle phases [46, 97, 98, 151]. Held et al. [58] used an SVM technique

to classify cells into interphase, six mitotic stages and apoptosis based on 186 quan-

titative features describing texture and shape. Neumann et al. [97] used a live-cell

assay to profile the cell-division of the HeLa cells. They silenced each of 21,000

protein-coding human genes in a separate cell population using the RNAi method

and observed the effect using fluorescently labeled chromosomes that express his-

tones (H2B) tagged with the green fluorescent protein (GFP), followed by auto-

mated high-throughput time-lapse microscopy. They also used SVMs for classifying

the cell nuclei into several classes, e.g., interphase, mitosis, apoptosis, clustered nu-

clei, and artefacts, based on 214 extracted features of texture and shape. Harder

et al. [54, 57] extracted 376 features based on the size and shape, texture (Haralick

features), geometric moments, and granularity to classify imaged life cells into 12

classes of cell division cycle phases. A variety of applications followed extracting

the texture of RNAi transfected cells from large-scale cellular phenotypic assays,

and using machine learning methods allowing the classification of cells to identify

subcellular location [27, 104] and specific cellular features (e.g., the mitotic state and

viability of the cell) [18, 55, 56, 64, 75, 98, 150]. The classified phenotypes were used

for further analyses, e.g., to put-up models for cell division cycles or progression of

mitotic events [57, 97, 98]. Apart from the cell nucleus staining, also for additional

other cellular components these method were applied and the morphological features

were extracted using the fluorescent signal intensity [52, 92, 135] of the structure of

interest, e.g., of the mitotic spindle, centrosomes, or spliceosomes [48, 105]. Matula

et al. [92] analyzed the RNAi of cells infected with GFP expressing HCV. They mea-

sured the viral intensity from the GFP channel in cytoplasm and used the intensity

to compute the infection rate and classify each single cell into two classes (infected

and non-infected cells). The classification was performed by finding the optimal

intensity threshold that maximize the difference of the infection rates between the

positive and negative controls on a labtek. The target gene was identified from the

infection rate or from the average of viral intensity.

From the aboved studies, applications of the classification methods of morpho-

logical phenotypes were mostly used for finding sets of functionally related genes
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that showed similar knockdown phenotypes. We exploited the classification ap-

proaches for identifying infected cells to our new approach to identify human host

factors. Moreover, the methods for cellular phenotype classifications were exploited

for developing phenotypic descriptors related to calculation of phenotypic fraction

or phenotypic similarity to characterize activities of a protein-protein interaction.

1.6.2 Computational approaches for targeting host factors

Despite many substantial discoveries in virology, viruses remain a major cause of

severe diseases including Dengue fever, hepatitis, immune deficiency and severe in-

fluenza. Viruses employ specific human host proteins (i.e., host factors) for each step

of their ‘life’ cycle [19, 88, 91]. Discovering these host factors may not only unravel

the fundamental principles underlying the mechanisms of viral action (e.g., viral

replication), but also, notably, may lead to promising drug therapies that are not

affected by the high mutational variability in viral populations. Computational

approaches to determine human proteins involved with virus or other pathogens

mostly exploit information from available pathogen-host, protein-protein interac-

tion, or gene ontology databases [1, 69, 164]. The similarities or interactions of

host and pathogen sequences, structures, or domain-interactions are employed for

finally predicting the probability of the interactions between host proteins and the

pathogen [31, 33, 36]. Doolittle et al. [33] developed a computational approach for

predicting host factors for Dengue virus (DENV) for both the host (human) and the

vector (insect). The approach was based on the similarity of 3D protein structures

of DENV proteins and human proteins (hDENV-similar protein). They investigated

the interactions of hDENV and other target human proteins in the protein-protein

interaction database (the Human Protein Reference Database, HPRD) and predicted

that the target proteins might also interact with the DENV protein. However, these

methods based structure similarity and lack of predictions for viral proteins which

do not have a human homologous structure. Moreover, pathogens including viruses

show high variability and can evolve exploit the host proteins using various strate-

gies as well as effective escape machanisms [71]. Therefore, the network of virus

and human proteins are clearly dynamic and undergo diverse mechanisms of ac-

tions [71, 134]. Hence, these methods need to be further improved. Rather than

using the pathogen-host interaction analysis, RNAi knockdown screens have been

used and we propose a new technique for detecting host factors in this RNAi data
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in this thesis.

There are several genome-wide and more selected screens like e.g., kinase siRNA

screens using an infectious HCV to be brought into a cell culture to identify host

factors [77, 137, 142, 145]. One goal of these RNAi screens is to directly identify the

siRNAs (hits) that generate meaningful cellular phenotypes of cells infected with

the virus. Recently, Reiss and colleagues [115] performed an siRNA screen of the

human kinome to detect the host factor requirements for HCV replication. They

identified 13 different kinases that are required for HCV replication. However, most

of the previous results show the difficulty to obtain a consensus set of gene targets.

Li et al. [77] and Randall et al. [114] used siRNA against human host factors using

the same HCV genotype and modeled the human cell system. The results showed

only eight genes that overlapped across all platforms. This discrepancy might result

from incomplete data analysis or differences in the experimental conditions of these

studies, such as the use of different viral strains, time intervals or silencing sequences.

Brown et al. [14] showed the results of a computational analysis of genes identified

from four different experiments (protenomics, mRNA microarray, RNA-Seq, and

siRNA). They studied the effects of infecting cells with HCV by measuring changes of

infection. They performed pathway enrichment tests using GeneGOTM MetacoreTM

and revealed a greater overlap at the pathway level. They found 16 pathways which

were significantly enriched in three out of four experiments. These pathways are

known to be modulated by HCV infection. Therefore, this finding showed that

the development of an alternative approach might support to get insight from the

experimental data.

However, most of the studies for host identification are performed by the

RNAi experiments in the wet-lab and the results are analyzed with statistical ap-

proaches [9, 77, 114, 115, 137, 142, 145]. The statistical analysis for hit identification

is a bioinformatic approach that is an important step after conducting the knock-

down experiments to recover the set of important genes. To allow a comparison of

the data from different plates (labteks) and positions on these plates, data normal-

izations need to be conducted. A variety of current normalization approaches have

been developed to analyze the RNAi screens [89]. For the microscopy-based screens,

the mean or median fluorescence intensities of the cells in a spot are calculated.

These summarized values are used to normalize within and between different exper-

iments [7, 9, 115, 154]. For the RNAi screen of cells infected with a virus (e.g., the
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HCV or Dengue Virus), the viral expression of the GFP (intensity) is analyzed

based on the average fluorescence intensity per spot [115]. The normalization can

be performed using controls, such as siRNA controls with random, non-functional

sequences; this normalization is called a control-based normalization. In contrast,

the normalization can also be performed using all measured data as a control [7].

The normalization of the data from screens can be performed using the percentage

of control method, the normalized percent inhibition method, the z -score normaliza-

tion or the B-score normalization [7, 89]. The z -score is a measure of the standard

deviation away from the mean. The z -score is frequently used to normalize data of

high-throughput cell array screens; however, this method is sensitive to outliers. It

was suggested that the B-score normalization is a robust application of the z -score

normalization [89]. The B-score normalization accounts for row and column varia-

tions and has the advantage that it minimizes the biases from positional effects. To

reduce the row and column effects, B-score normalization uses a two-way median

polish procedure, which is an iterative algorithm that alternates row and column

operations. By using the medians rather than the means, the B-score normalization

is less affected by the presence of outliers. On each iteration of the two-way median

polish procedure, the row median, column median, and median of these medians

are computed and accumulated systematically into the row effects, column effects,

and an overall level effect. This procedure is continued until the value of the row

and column medians nears zero. The two-way median polish procedure is performed

for each plate. To account for plate-to-plate variablility, the resulting residuals of

each plate are then divided by their median absolute deviation (the median of the

absolute deviations of the medians) from all the residuals of the plate.

After the normalization, the data are processed to determine which genes differ

significantly from those of the negative controls, which identifies the hits or positives

from the screen. Screeners might simply select a discrete number of top scoring genes

from the screen as the hits. However, many hit identification techniques are available

to obtain the quality hits and reduce the risk of false positives. The hit identification

can be performed with the mean ± k standard deviation or median ± k median

absolute deviation. The genes are identified as hits if they surpass these thresholds.

The z -score normalization is simple and frequently used for the hit identification.

However, a robust z -score is preferred for hit identification. The robust z -score is

computed by subtracting the median instead of the mean from the measured values
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and then dividing by the median absolute deviation. The genes with low, significant

z -score values (P-value<0.05) are selected as the hits [9, 117].

From the above reviewed studies, the host factors were identified from the statis-

tical analyzing of the intensity readout of GFP-expressing viruses from knockdown

experiments or inferred from the pathogen-host analysis. However, there are prob-

lems regarding inconsistency of target lists and complexity of dynamic host-virus

networks. Therefore, an alternative approach is required to identify human target

genes that improve the reliability for host identification. In this thesis, we developed

a new approach based on cell localization to identify the host factors on the screens

and used the above statistical techniques to support the hit identification.

1.6.3 Inferring protein functions and protein-protein inter-

actions

The accurate reconstruction of signal transduction pathways within cells is central

to elucidating the cellular mechanisms of pathogenesis. The interactions within

signaling cascades are often specific to a given treatment or disease under investiga-

tion [74]. With the help of manual curation, the experimental validations of direct

PPIs and functional relationships have been extracted from the literature and as-

sembled in well-established databases [66, 68, 74, 128]. To identify new PPIs, a vast

amount of interaction data has been assembled from a variety of high-throughput

screens, including data from the yeast 2-hybrid system [129]. These screens can

be resource-intensive, especially if any possible interaction needs to be experimen-

tally investigated (e.g., 12.5 million experimental interaction assays for a selection

of 5,000 proteins). Therefore, the use of computational approaches is suggested

for the statistical inference of the PPIs using information from the co-expression of

genes, co-evolutionary studies and natural language processing (STRING [63, 136]).

Bakal et al. [4] used neural networks that based on morphological features of cells to

infer functional similarity from phenotype similarity of a smaller set of genes with

well-characterized functions. They first calculated 145 morphological features for

each cell to identify 7 classes of morphology that based on known phenotypes and

this was the result related to the perturbation of key signaling molecules (e.g., Rho

and Rac). They trained a set of artificial neural networks to identify these pheno-

types. The result was a matrix with seven columns; each represented the similarity
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score of the cell to the phenotypic category. They further performed a hierarchical

cluster analysis that allowed identification of the local signaling network with func-

tional characteristics regulating cell shape and migration. Fuchs et al. [45] described

an experimental and computational approach to predict gene functions basing on

changes in the morphology of individual cells within cell populations. They assessed

the effect of siRNA transfection on HeLa cells which DNA and the cytoskeletal pro-

teins actin and tubulin were stained. 51 morphological features were computed and

applied to SVMs. The classification results were employed to generate 13 pheno-

prints used to compute similarity distances. The clustering of genes was performed

based on the similarity distances and elucidated new functions of genes that were

involved in the organization of the spindle. Neumann et al. [98] analyzed time-lapse

microscopy siRNA data to identify a set of genes involved in cell division, migration

and survival. They computed about 200 morphological features for each single cell

and classified them into 16 phenotypic classes using SVMs. A phenotypic profile

of each class was computed that based on the time-lapse image sequence. They

performed hierarchical clustering of genes by their phenoprints in all morphological

classes, taking both the temporal change and the severity of the phenotype into ac-

count to identify a group of mitotic genes. The rationale of these approaches is that

similar cellular phenotypes will arise if the functions of the knocked-down genes

are tightly linked. For example, cellular phenotypes are expected if the proteins

corresponding to the knocked-down genes are part of the same protein complexes

or are mutually dependent for the propagation of signals. Recently, Vinayagam et

al. [149] developed an experimental and computational approach predicting the di-

rectionality of signal flow in a signaling network. They initially generated a PPI

network from yeast two-hybrid data and combined the information with publicly

available interaction data that resulted in a network comprising 1126 proteins and

2626 PPIs. The method predicted the flow of signaling cascades from membrane

receptors to transcription factors with the shortest path connections. They used a

naive Bayesian classifier for the prediction with 8 probability features of the direc-

tion between the proteins and yielded a good performance. Although the approach

was able to predict the signal flow, the study of the sign (activation and inhibition)

of the signal transduction has not been addressed.

Investigating how signal transduction by PPIs is mediated by phosphorylation

is an alternative way to gain insight into intracellular signal transduction. The
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goal of phosphorylation studies is to understand the nature of these phosphoryla-

tion interactions by mapping the phosphorylation sites and effector kinases. This

mapping aims to reconstruct a cellular signaling network [140]. The knowledge of

phosphorylation site prediction could be used for interpreting activating protein

pairs that a protein in the pair is a protein kinase that could be an evidence for a

protein-protein activation. Protein phosphorylation is a post-translational modifi-

cation of proteins that affects approximately one-third of all cellular proteins [26].

Both experimental and computational approaches have been developed for phos-

phorylation site detection. The software or databases for this detection have been

provided [125, 139, 140, 158, 159, 169]. Tan et al. [139] developed a sequence align-

ment approach to reconstruct conserved kinase-substrate networks. They identified

proteins that were tightly regulated by phosphorylation. Using topology features of

a predicted human phosphorylation network, a regulatory hub protein was found to

be highly phosphorylated, and the identified proteins were evidenced to be associ-

ated with various diseases, e.g., diabetes, cancer, or Alzheimer’s disease [139].

From the above reviewed studies, the aim of the study from Vinayagam et al. [149]

is closely related to our work. Most of the above studies addressed approaches for

inferring protein function or protein-protein interaction. However, they do not ad-

dress the question about the activities between the interacting proteins in signaling

transduction. The knowledge from predicting kinase-specific phosphorylation site

as mentioned above can support the activation interactions from our study.

1.7 Main contributions of this thesis

In the following, I summarize the main contributions of this thesis:

• Host factor identification in cells infected with the HCV

In this study, we investigated the HCV infection in a human hepatoma cell line

to detect human host factors that are necessary for viral infection. A compre-

hensive set of 719 genes expressing different kinases was screened by employing

the RNAi technology [115]. We developed a computational approach basing on

a well-known point pattern analysis approach, the K -function, to detect clus-

tering of the cells (see Section 2.1.4). This approach observed a reduction of

viral infection in a reduced grouping (clustering) of the infected cells. For each
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knockdown experiment, we compared the clustering of the infected and non-

infected cells and estimated the reduction in clustering of the infected cells. We

also applied an alternative clustering method, the quadrat analysis, to mea-

sure the infection phenomena of the cell distribution (see this method in Sec-

tion 2.1.4 and the results in Section 3.1.1). Different bioinformatics approaches

were applied to the data to identify the host factors that significantly reduce

the HCV infection efficiency. We employed a statistical method described re-

cently using B-score and z -score normalization of the intensity readouts from

the segmented cellular images [13], the intensity readouts of a luciferase based

secondary screen and our clustering scores (see Section 2.1.6). We yielded 30

promising candidates suiting as potential host factors for therapeutical drug

targeting. Five of these candidates were found using all three methods: the

CD81, PI4KA, CSNK2A1, SLAMF6 and FLT4 (see Section 3.1.1). In conclu-

sion, we report an alternative method for high-throughput imaging methods

to detect host factors being relevant for the infection efficiency of viruses.

This method is generic and has the potential to be used for a large variety of

different viruses and treatments being screened by imaging techniques.

• Characterization of signaling interactions

The aim of our study was to elucidate if two interacting proteins positively

propagate a signal (activation) or if their interaction rather lead to a con-

version of the original signal (inhibition). For this, we developed a workflow

that employed a machine learning approach based on the idea that activat-

ing signals lead to similar knockdown phenotypes of the respective interacting

proteins, whereas the inhibitory signals lead to rather dissimilar phenotypes

(see Section 2.2.1). We used a large range of phenotypic descriptors calcu-

lated from fractions of specific phenotypes, linear classification of phenotypes,

and phenotypic distance to distinct proteins (see Sections 2.2.5 and Section

3.2.2). We applied this approach to cellular images collected in the Mitocheck

genome-wide RNAi knockdown screen [98]. Support Vector Machines were

employed for the interaction classification (see Section 2.2.6). With this, char-

acterizations of protein-protein interactions were identified. The results from

classifications showed that our methods can be used to classify interactions as

having a role in the activation or inhibition of signal transduction with AUC

of 0.76 (see Section 3.2.3). Consistency score was established for investigat-
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ing the nature of pairs of interacting proteins (see Section 2.2.9). This score

used the performance criteria of the machine learning method to estimate

the consistence of pairs of individually knocked-down genes. The relevance

of our consistency scores was validated using other independent databases

through GSEA enrichment tests (see this method in Section 2.2.10 and the

results in Section 3.2.4). In a case study, we analyzed the signal transduction

pathways leading from the cytokine receptors to the transcription factors that

were known to be controlled by these pathways.



Chapter 2

Methods

This chapter is divided into two parts. Section 2.1 describes the methods used

to detect the host factors necessary for viral replication and the analysis of the

clustering of cells infected with HCV. The clustering approach, which is based on the

spatial distance, and the statistical analysis for defining hits are described. Section

2.2 describes the general workflow and methods used for the characterization of

the PPIs as having a role in the activation or inhibition of signal transduction

and includes a detailed description for generating the phenotypic descriptors. The

classification approach and the measurement of its classification performance are

also explained.

2.1 Clustering of cells infected with Hepatitis C

Virus

2.1.1 General concept and workflow

The detection of human proteins that are involved in viral entry and replication is

facilitated by the modern high-throughput RNAi screening technology. However, the

hit lists from different laboratories have shown only little consistency. This lack of

agreement might result from experimental discrepancies or unexplored possibilities

in the data analysis. We would like to improve the reliability of the RNAi screens by

combining a population analysis of infected cells with an established dye intensity
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Figure 2.1: The workflow used to identify the host factors that are crucial for viral

infection efficiency. The RNAi data of cells infected with HCV are generated as two

channel image data (the DAPI-stained cell nuclei and the GFP expressed by the

virus). An automated imaging system is employed to identify the infected and non-

infected cells. A clustering approach is then performed to analyze the clustering of

infected cells. Statistical methods are applied to identify potential hits by comparing

the hits from the clustering approach with the hits from a standard procedure and

a secondary screen.

readout. The viral infection is mainly spread by cell-cell contacts, and the clustering

of infected cells can be observed during spreading of the infection in situ and in vivo.

We employed this clustering feature to define the knockdowns that harm the viral

infection efficiency of the human HCV. Images of the cells that were knocked down

for 719 human kinase genes were analyzed with an established point pattern analysis

method, Ripley’s K -function. This method was used to detect knockdown cells in

which the viral infection did not show any clustering and therefore were hindered

to spread their infection to the neighboring cells. The results were compared in a

statistical analysis that used intensity readouts of the GFP-expressing viruses and

a luciferase-based secondary screen. Five promising host factors were identified and

are suitable as potential targets for drug therapy.

An overview of our workflow is shown in Figure 2.1. During screening, images

were taken under fluorescence microscopy of the infected human cells with knocked-

down genes. The cells were cultured and treated on printed plates, and the siRNA

and transfection reagents were spotted on a chamber plate at known locations in a

grid pattern. Only the cells located within the area of a printed spot took up the

corresponding siRNA and underwent gene silencing. The two-channel images were



22 Methods

acquired using an automated fluorescence microscope. The first channel displayed

DAPI stained cell nuclei. The second channel represented a viral expressed fluo-

rescence protein (GFP, Green Fluorescence Protein). An automated system, which

was described in detail by Matula and coworkers [92], was employed. In the DAPI

channel, the single-cell nuclei were segmented, and the viral protein production lev-

els (viral signal) of each cell were computed by the mean intensity in channel 2.

According to the viral signal, the cells were classified as infected or non-infected

based on a thresholding procedure. The cells with a viral signal that was less than

the threshold were classified as non-infected, otherwise cells were classified as in-

fected. The threshold was defined by maximizing the difference in the infection

rates between the positive and negative controls, which were spotted on the same

plate. We applied the K -function to the spot distributions using the local spatial

variation, which is a statistical clustering method. We found candidate host factors

that are suitable for therapeutical drug targeting.

2.1.2 Data source

The experimental data were generated by our collaborator, Ilka Rebhan at the

Department of Molecular Virology, UniversitätsKlinikum Heidelberg. The siRNA

library used for the primary screen of this study was purchased from Ambion (Si-

lencer R© Human Kinase siRNA Library V3 (AM80010V3)). The reverse transfection

of the siRNAs into Huh7.5 cells [8] in a LabTek format was optimized according to a

previously described protocol [39]. Overall, 2157 siRNAs targeting 719 human kinase

genes plus positive controls targeting the entry receptor CD81 or the viral genome

itself (HCV321 and HCV138) and four different negative controls (non-silencing

siRNA) were spotted in transfection mixture onto LabTeks. After the seeding of

the Huh7.5 cells, we allowed the siRNA silencing to occur for 36h. The cells were

infected with a HCV GFP reporter virus, fixed 36h later and immunostained with a

GFP-specific antibody. The cellular arrays were imaged with a scanning microscope

(ScanˆR, Olympus Biosystems) using the 10x objective (Olympus, cat. no. UP-

SLAPO 10x), and images were analyzed with an image analysis method (see Section

2.1.3). The primary screen was repeated in 12 times. All images with less than 125

or more than 500 cells within the siRNA spots were excluded from the analysis. As

an additional quality control for staining artifacts, all images were analyzed by eye;

this quality control step resulted in the exclusion of 15% of the images. Statistical
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analysis was performed to compute a mean z -score and a P -value for each gene to

facilitate the selection of candidate genes (Section 2.1.6). During the validation of

178 gene candidates selected from the primary screen, three independent siRNAs

per gene were used to minimize the number of potential off-target hits. In addi-

tion, the format of the assay was changed to a statistically more robust 96-well

plate format to increase the number of transfected cells per siRNA and thus the

statistical power of the assay (approximately 300 cells in the LabTek format but

approximately 10,000 in this well-based assay). The solid phase method of reverse

siRNA transfection was adapted to the 96-well plate format as described by Erfle

and coworkers [40]. Briefly, the siRNAs are printed together with a gelatin solution

at defined locations on the glass slides. After drying the wells, the substrates can be

stored for up to 15 months without any loss in efficacy or directly used for knockdown

studies. This method is called a “reverse transfection” because the order of addition

of the siRNAs or expression plasmids and cells is reversed in comparison with the

conventional transfection method [39, 40]. This assay format allowed the use of a

luciferase reporter virus that also facilitated the analysis of the screen. To validate

the effects of the kinase knockdown experiments on the HCV entry and replication,

5 x 103 Huh7.5FLuc cells (stably expressing firefly luciferase) were seeded in each

siRNA-coated well of a 96-well plate. After 36h, the cells were infected with a HCV

renilla luciferase reporter virus. Forty-eight hours post-infection, the cells were har-

vested, and the firefly luciferase and renilla luciferase activities were measured. The

secondary screen was performed twice in duplicates.

2.1.3 Image analysis of HCV infected cells

To analyze the images of the siRNA screen, an automated system, which is described

in detail elsewhere [92], was employed. Briefly, the inputs of this system consisted

of two dye-channel images from a chamber plate with printed siRNA spots. The

fluorescence signals originated from the DAPI-stained cell nuclei (1st channel) and

Green Fluorescence Protein (GFP), that incorporated into the viral strain (2nd chan-

nel). In the DAPI channel, the single-cell nuclei were segmented using an edge-based

approach that combined the responses of the gradient magnitude and the Laplacian

of the Gaussian filters with the morphological closing and hole filling operators. The

nuclei were identified among the segmented objects by applying the size, intensity,

and circularity criteria. The viral protein production level (virus signal) of each cell
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was computed using the mean intensity in channel 2 inside the nucleus neighbor-

hood. The positive and negative controls were spotted on each plate. In the positive

controls, the siRNAs hindered viral protein production, which resulted in a low vi-

ral signal; whereas, in the negative controls, the viral replication was unaltered.

According to the viral signal, the cells were classified as infected or non-infected

using a thresholding concept. The cells with a viral signal less than the threshold

were classified as non-infected, otherwise the cells were classified as infected. The

threshold was defined by maximizing the difference in the infection rates between

the positive and negative controls, which were spotted on the same plate. Quality

filtering was performed to eliminate the out-of-focus images and image artifacts. On

the single image level, the images were automatically classified as low quality if they

contained too few or too many cells or if they were out-of-focus. On the whole plate

level, the percentage of saturated pixels in channel 2 was computed. Over-exposed

plates were scanned again using decreased exposure times [92].

2.1.4 Clustering of infected cells

K -function

The K -function or Ripley’s K -function is a well-established measure for defining the

degree of clustering. This measure evaluates all interparticle distances over the stud-

ied area and compares the observed distribution with a random distribution of spots.

Ripley’s K -function has been used in ecology, epidemiology and geography [41]. In

cell biology, the function was applied to study the integrin-sensing extracellular ma-

trix properties [102] and to analyze lipid rafts by observing the clustering of the RAS

proteins [110].

The distribution of cells in fluorescence microscopy images was represented as a

spatial pattern of spots. The spots (cells) were classified as infected or non-infected,

and their respective clustering behaviors were studied using the K -function. The

K -function function was introduced by Ripley in 1977 [118]. The K -function is a

distance-based method of measuring the ratio of the expected number of neighbors

within a circle with a given radius c(r) to the expected density. The K -function is

calculated using the equation

K(r) =
1

λ

N∑
i=1

N∑
j=1,i 6=j

1

w(xi, dij)

Ir(dij)

N
(2.1)
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for a given radius parameter r>0. The variables of the equation include the follow-

ing: N is the number of spots in the observed area A (whole image); λ is the intensity

of spots, which can be estimated by N
A

; dij is the Euclidean distance between the

spots i and j. The function Ir(dij) is equal to one if dij < r and is zero otherwise.

Since each point’s neighborhood is only defined within a given study area, points

close to the area’s boundary need to be processed with edge correction to get an

accurate estimation. The weighting factor w(xi, dij) corrects for the edge effects and

is the proportion of the circumference of a circle with center xi and distance dij that

falls in the studied area. Let c+i (r) and c−i (r) be the regions of the search circle of

a point i that belong or do not belong to the study area, respectively. We usually

do not know the number of points within c−i (r). If the points in this area are not

considered, we might find points in ci(r) that are lower than expected. Suppose

that the point density within c−i (r) is equal to the point density within c+i (r). Let

us define the total number of points within ci(r) as the following:

ni(r) = n+
i (r) + n−i (r) (2.2)

where n+
i (r) and n−i (r) are the number of points within c+i (r) and c−i (r), respectively.

The area of the circle, ci(r), can be defined as

Areai(r) = Area+i (r) + Area−i (r) = πr2 (2.3)

where Area+i (r) and Area−i (r) are the areas of the region within c+i (r) and c−i (r),

respectively. Using the density definition and above assumption, we find the follow-

ing:

n−i (r)

Area−i (r)
=

n+
i (r)

Area+i (r)

n−i (r) =
Area−i (r)

Area+i (r)
n+
i (r). (2.4)

From equation (2.2), (2.3) and (2.4), it follows that

ni(r) =
Areai(r)

Area+i (r)
n+
i (r) =

πr2

Area+i (r)
n+
i (r) =

1

w(xi, dij)
n+
i (r). (2.5)

When the circle is entirely inside of the studied area, Area+i (r) is equal to πr2,

ni(r) = n+
i (r) and w(xi, dij) = 1. From equation (2.1) and equation (2.5), we obtain

the following:
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(a) (b) (c)

Figure 2.2: Examples of three different point patterns. (a) random distribution of

spots; (b) clustering spots; (c) regular pattern. The normalized clustering scores for

the random distribution, clustering spots, and regular patterns are 0.03, 0.98, and

-1.02, respectively.

K̂(r) =
1

λ

1

N

N∑
i=1

ni(r) =
1

λ
πr2

(
1

N

N∑
i=1

n+
i (r)

Area+i (r)

)
=

1

λ
·
(
λ̂πr2

)
, (2.6)

where the λ̂ is the density estimation. Ripley’s K -function is used to compare the

observed spot distribution with a random distribution. The given spot distribution

is tested against the null hypothesis that the spots are randomly distributed. For

clustering distributions, the expected value of K(r) is larger than the value of a

random distribution; for regular patterns, this expected value is less than for a

random distribution. For the complete spatial randomness (CSR) and assuming

the points are randomly distributed, the average neighborhood density is equal to

πr2. In equation (2.6), if the points adhere to the CSR, λ̂ = λ and K̂(r) = πr2.

Furthermore, if λ̂ < λ, then the average neighborhood density is less than the

expected, which means that points are dispersed and the K̂(r) < πr2. If λ̂ > λ,

then the average neighborhood density is greater than expected, which means that

the points are clustered and K̂(r) > πr2 [130]. Figure 2.2 shows examples of the

spot distributions for the random, clustering, and regular distribution; the plot of

K̂(r) is shown in Figure 2.3.

To correct for the biases caused by the clustering of proliferating cells, we used a
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(a) (b) (c)

Figure 2.3: Estimated K -values for the point patterns. Solid curves are the plots of

the inhomogeneous K -function for the data of Figure 2.2. (a) random distribution

of spots; (b) clustering spots; (c) regular pattern). Dashed curves represent the K

values of the complete spatial randomness (CSR) distributions, which were used as

controls. The normalized clustering scores for the random distribution, clustering

spots, and regular patterns are 0.03, 0.98, and -1.02, respectively.

random distribution that used the actual positions of the spots of infected and non-

infected cells. The sth simulated null-hypothesis of the K -function was estimated

by randomly drawing Nc spots from all spots (infected and non-infected cells) and

applying them to the K -function. The final null-hypothesis was calculated from

the mean value of these simulated K -functions (s = 1, . . . ,100). We applied K -

function to the spot distributions using the local spatial variation (independent from

their clustering) and the inhomogeneous K -function as defined by Baddeley and co-

workers [3]. The inhomogeneous K-function is given by the following equation:

Kinhom(r) =
1

|A|

N∑
i=1

N∑
j=1,i 6=j

eijIr(dij)

λ(yi)λ(yj)
(2.7)

where |A| denotes the observation area (distance ≤ r) and eij is the edge-correction

factor calculated by the border method [119]. λ(yi) and λ(yj) are estimated inten-

sities at spots yi and yj. These variables were estimated using a Gaussian kernel

smoother and the intensity surface model [3]. The maximum ranges of the radius

r that we investigated were 25%, 30%, 35%, and 40% of the shorter side of the

whole image. To obtain the clustering score, the area between the curves of the
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(a) (b) (c)

Figure 2.4: Three point pattern distributions with different VMR scores. The VMR

scores for the random distribution, clustering spots, and regular patterns are 1.21,

17.97, and 0.27, respectively.

inhomogeneous K -function and a simulated random distribution was calculated.

The score was positive if the curve for the inhomogeneous K -function was mainly

above the curve of the simulated random distribution (tendency for clustering),

and the score was negative otherwise. This score was calculated for the infected

and non-infected cells, respectively. To estimate the infection rate using the final

clustering score, the score of the infected cells was subtracted by the score of the

non-infected cells. The library spatstat [2] in the R-programming environments was

used to compute the estimated K -value.

Quadrat Analysis

We also observed the clustering of cells with another clustering method, which is

called a quadrat analysis. The quadrat analysis observes the frequency distribution

of cells within a set of grid squares (quadrat) [156]. To obtain the variance-mean

ratio (VMR) as a measure of the clustering of points, the mean number of cells per

quadrat is estimated, and its variance is computed using the following:

VMR =
s2

x̄
, (2.8)

s2 =
m∑
i=1

(xi − x̄)2

m− 1
, (2.9)
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where m is the number of quadrats, xi is the number of points in quadrat i and x̄

is the mean of the number of points per quadrat. A VMR value of greater than one

indicates a clustered distribution, a VMR value of less than one indicates a random

distribution and a VMR = 0 indicates a uniform distribution. The VMR scores for

the random, cluster and regular distributions are shown in Figure 2.4. The VMR

scores were computed with a 4x4 grid quadrant and yielded the following: a score

of 1.209, which is nearly one for the random distribution; a score of 17.97, which is

much higher than one for the clustered distribution; and a score of 0.29, which is

less than one for the uniform or regular distribution. To obtain the final clustering

score, we subtracted the VMR scores of the non-infected cells from the VMR scores

of the infected cells. The clustering score was calculated for all knocked-down genes

and the controls, and a z -normalization was performed.

2.1.5 Comparing the clustering results and experimental re-

sults

We investigated the results of the clustering approaches by comparing the z -scores

from K -function and Quadrat Analysis for all knocked-down genes with the z -score

from the intensity readouts of the primary and secondary screens. The Pearson

correlation coefficient was employed for this comparison. Given the scores of all

knocked-down genes from the clustering approach, X = (x1, x2, x3, . . . , xn), and the

intensity readouts from the experiments, Y = (y1, y2, y3, . . . , yn). The correlation

coefficient can be computed as follows:

R =
cov(X, Y )√
var(X)var(Y )

(2.10)

where cov(X, Y ) is the covariance between X and Y, cov(X, Y ) =
∑n

i=1(xi − x̄) ×
(yi − ȳ), and var is the variance of the data, var(X) =

√∑n
i=1(xi − x̄)2, var(Y ) =√∑n

i=1(yi − ȳ)2. The correlation coefficient values range from -1 to +1. If the corre-

lation coefficient is close to 1, the clustering scores are consistent with the intensity

values from the experiments, whereas a correlation coefficient that is close to -1

suggests that the score and the intensity have an opposite tendency. A correlation

coefficient of 0 means that no linear relationship exists between the score and the

intensity.
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2.1.6 The statistical method used to identify the host

siRNA hits

For the primary screen, we excluded the wells with less than 125 and more than

500 cells. For the secondary screen, the wells showing the lowest and highest 5% of

the firefly reporter activity (correlated to the number of viable cells) were excluded.

These wells were excluded to eliminate possible interference with the readout of

viral replication from cytostatic or cytotoxic effects or high variability in the cell

number. In some wells, the cells might have grown densely and it is possible that

incorrect segmentation of images occurred [9]. The viral-specific signal intensities per

siRNA were normalized for the effects of differing cell counts using a local-weighted

scatterplot smoothing method [25].

The B-score normalization was used to remove the spatial effects within indi-

vidual LabTeks [13] and accounted for the row and column variation effects. The

variability between plates was addressed by subtracting the plate median from each

measurement per siRNA and then dividing the resulting value by the plate median

absolute deviation (1σ), which resulted in one score per siRNA per LabTek. The

advantage of the B-score normalization is that it minimizes the biases due to posi-

tional effects [89]. To compute the B-score, first we calculated the residual rijp for

the row i and column j on the plate p which is defined as the following:

rijp = yijp − ŷijp = yijp − (µ̂p + R̂ip + Ĉjp). (2.11)

The residual is the difference between the measured value yijp and the fitted value

ŷijp that is computed from the estimated average of the plate (µ̂p) and the estimated

systematic measurement offsets for each row i on plate p (R̂jp) and column j on plate

p (Ĉjp). The B-score is calculated by the following:

B-Score =
rijp

MADp

, (2.12)

where MADp is the adjusted median absolute deviation for each plate p; MADp is a

robust estimate of the spreading of rijp: MADp = median {| rijp −median(rijp)|}.
The replicates were summarized using the mean of the normalized scores; further-

more, Student’s t-tests were carried out to determine whether the siRNA effects

differed significantly from zero. Only the hits with negative z -scores were taken.
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For all three analyses (the primary screen, secondary screen, and clustering analy-

sis), the hits were selected if their P -values were below 0.05. The statistical analysis

of the processed imaging data was carried out using the R-programming language

and integrating the Bioconductor libraries RNAither [117] and cellHTS [12].

2.2 Characterization of the signaling interactions

2.2.1 General concept and workflow

An overview of our workflow is shown in Figure 2.5. First, the cellular pheno-

types from the RNAi screening images were quantitatively measured and analyzed.

Protein interactions (activation and inhibition of signal transduction) were assem-

bled from the database KEGG [66, 67, 155], and these interactions were used as a

gold standard. We generated novel phenotypic features describing the similarity of

phenotypes between two proteins. In addition, the phenotypic features from the

original study of the image data [98] were assembled. We then established a sys-

tematic classification using the Support Vector Machines (SVMs) that was based

on the phenotypic descriptors used to classify the set of interactions that activate

or inhibit signal transduction. The trained machines were evaluated and then used

as a prediction model for unknown interactions. All interactions were used to de-

fine a similarity score, which is called the consistency score. The performance was

improved using this score. The consistency score was verified with other interaction

databases. We applied the consistency score for a detailed analysis of the cytokine

receptor signaling. Unsupervised clustering was performed to find proteins that have

similar functions. A cluster with a predicted domain of interaction was investigated

in further detail.

2.2.2 Data sources

List of interactions from KEGG that activate or inhibit signal transduc-

tion

The characterizations of the PPIs in signaling pathways that were used to construct

the human signaling network were obtained from the Kyoto Encyclopedia of Genes

and Genomes (KEGG, www.genome.jp/kegg) [66, 67, 155]. The KEGG provides

a comprehensive set of interactions which are linked to the supporting literature
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Figure 2.5: The workflow for the prediction of interactions that are involved in

the activation and inhibition of signal transduction using the pairwise phenotypic

similarity features and SVMs.

evidence. We used the lists of activation (Act-PPI) and inhibition (Inh-PPI) from

eleven signaling pathways (Table 2.1) that had a high overlap with the cytokine

receptors such as those from the endocrine signaling system, cell growth and death

and the immune system. In total, we had phenotypic data for 663 proteins for

which we had phenotypic data were investigated. Among these, we got 1927 known

activation and 676 known inhibition interactions. The protein pairs of all sets (Act-

PPI, Inh-PPI) were further analyzed.

We also used the PPIs from the Search Tool for the Retrieval of Interacting

Genes/proteins (STRING) version 9.0 [136] and the MetaCoreTM (www.genego.com)

to perform the enrichment analysis. The STRING database includes an interaction

database of known and predicted PPIs. The MetaCore database is an interaction

database that provides additional pairs of interacting proteins.

Cellular imaging data

The morphological changes in the nuclei of HeLa cell clones that were stably trans-

fected with the GFP-tagged histone 2B were tracked by fluorescence imaging af-

ter the transient transfection of the siRNAs in the high-throughput screens. The
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Table 2.1: The list of the selected pathways from the KEGG database.

Signaling pathways KEGG ids Pathway groups

Insulin hsa:04910 Endocrine system

VEGF hsa:04370 Signal transduction

MAPK hsa:04010 Signal transduction

ERBB hsa:04012 Signal transduction

mTOR hsa:04150 Signal transduction

WNT hsa:04310 Signal transduction

TGF-beta hsa:04350 Signal transduction

Jak-STAT hsa:04630 Signal transduction

Cell cycle hsa:04110 Cell Growth and Death

Chemokine signaling pathway hsa:04062 Immune System

Cytokine-cytokine receptor interac-

tion

hsa:04060 Signaling molecules and

interactions

cells were distributed on the cell microarrays (labteks) that were printed with the

transfection-ready siRNAs, and the chromosome/nuclear morphology was visualized

in real-time. One image contained more than 100 nuclei with an average diameter of

approximately 30 pixels in the G1 phase. All images had a grey value depth of 16 bit

and a spatial resolution of 1344x1024 pixels. Each image sequence consisted of 96

time points over 48 hours. The analyzed images were obtained from the Mitocheck

Database.

2.2.3 Machine learning for classification: the LDA and SVM

The machine learning approach is a computational method for the design and de-

velopment of algorithms capable of learning empirical data. A major task of the

machine learning approach is to recognize patterns and then makes an intelligent

decision based on the learned data. The machine learning approach is mainly cate-

gorized into supervised and unsupervised learning methods. A supervised learning

method requires the training data with correctly predefined classes for learning and

produces an inferred function (a classifier or a regression function). In contrast, an

unsupervised learning approach, such as clustering and association rules, is based
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on a data distribution in a feature space without predefined classes and describes

hidden patterns in the data. The general elements of the classification task in the

machine learning approach are comprised of the following: 1) learned data, 2) learn-

ing algorithms (e.g., the Support Vector Machine, Random Forest, Decision Tree,

and Näıve Bayes), and 3) performance evaluations of the classifier. To measure the

ability of the classifier to perform accurately on new (untrained) data, the learned

data are divided into training and testing sets. The learning algorithm learns from

the training set and tests on the testing set.

In this project, we focused on the supervised learning approaches, such as linear

discriminant analysis (LDA) and a Support Vector Machine (SVM). We used LDA

and a SVM for several tasks. LDA was trained to classify two sets of cellular

phenotypes resulting from the knockdown of different genes. The accuracy of this

classification was the similarity of the two knockdown phenotypes. For the SVM,

we first used it to classify each single cell into four phenotypic classes (apoptosis,

interphase, mitosis, and shape) and computed the fraction of each phenotype with

respect to the number of cells in an knockdown image. Second, we used the SVM to

distinguish the activities of the PPIs, which consisted of the activation and inhibition

of signal transduction. Both LDA and the SVM are supervised machine learning

approaches. The supervised learning method requires prior knowledge of a set of

objects, which are composed of values of their descriptors and class labels. For

the LDA, the descriptors are the image features (Section 2.2.4), and the classes are

the two groups to which the single cells belong. For the SVM classification of the

four phenotypes, the descriptors are also the image features (Section 2.2.4), and

the classes are the four class labels. For the SVM classification of the types of

PPIs, the descriptors are the pairwise phenotypic descriptors (Section 2.2.5), and

the classes are the labels of activation and inhibition. After the training procedure,

the classifiers are applied to superimpose the class labels from the given descriptors

on new objects for which the class labels are unknown. The principle of LDA and

the SVM is briefly described in the following sections.

2.2.3.1 Linear discriminant analysis

Linear discriminant analysis (LDA) is an approach widely used in classifications

that are based on the linear combinations of feature vectors. The method performs

feature dimensionality reduction while preserving the class separability and charac-
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(a) (b)

Figure 2.6: Two-dimensional case of projecting the sample on a line. Figure (a)

shows two sample groups that are mixed on the projected line. Figure (b) shows

two sample groups that are separated by the projected line.

terizes two or more classes of the data with the highest conditional probability. The

resulting combination uses a linear classifier. A criterion of the linear discriminant

is that the ratio of the between-class to within-class scatter must be maximized.

The sample x is projected onto a line by y = wTx. The optimal line is the line

that maximizes the separation of two or more classes. Figure 2.6(b) shows the opti-

mal line for the separation of the two-dimensional samples, whereas the two groups

cannot be separated by the line in Figure 2.6(a).

To find a suitable projection vector, the mean vector of each class in the x and

y feature spaces uses the following as a measure:

µi =
1

Ni

∑
x∈ci

x, (2.13)

and µ̃i = 1
Ni

∑
y∈ci y = 1

Ni

∑
x∈ci wTx = wTµi.

The objective function is the distance between the projected means and is given by

the following:

J(w) = |µ̃1 − µ̃2| =
∣∣wT(µ1 − µ2)

∣∣ . (2.14)
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Figure 2.7: An example of a data projection considering the means and standard

deviations.

However, the consideration of the mean alone is not enough. The standard deviation

within the classes should also be taken into account because in some cases the

difference between the means is high, but the data of each group are scattered and

highly overlapping (Figure 2.7). Fisher [43] proposed a solution to this problem

that maximize the difference between the means normalized by a measure of the

within-class scatter. The variance of each class can be defined as the following:

s̃2i =
∑
y∈ci

(y − µ̃i)2, (2.15)

where the quantity (s̃21 + s̃22) is called the within-class scatter of the projected data.

The linear discriminant is defined as the linear function wTx that maximizes the

following criterion function:

J(w) =
|µ̃1 − µ̃2|2

s̃21 + s̃22
. (2.16)

We find a projection where the samples in the same class are close together and

the projected means are the furthest apart from one another. To find the optimal
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projection w, the explicit form of w from the J(w) needs to be expressed. In the

scatter of the multivariable feature space x, the scatter measurements are given by

the following scatter matrices:

Si =
∑
x∈ci

(x− µi)(x− µi)T. (2.17)

In the two-class classification, we defined the within-class scatter matrix Sw where

the Sw = S1 + S2. The scatter of the projection y can then be determined in a

function of the scatter matrix in the feature space x:

s̃2i =
∑
y∈ci

(y − µ̃i)2 =
∑
x∈ci

(wTx−wTµi)
2 =

∑
x∈ci

wT(x− µi)(x− µi)Tw = wTSiw.

(2.18)

Therefore, we obtain the following:

s̃21 + s̃22 = wTSWw. (2.19)

Similarly, the difference between the projected means can be expressed in terms of

the means in the feature space x as given by the following:

(µ̃1 − µ̃2)
2 = (wTµ1 −wTµ2)

2 = wT(µ1 − µ2)(µ1 − µ2)
Tw = wTSBw, (2.20)

where SB is denoted as the between-class scatter. Notably, the rank of SB is at

most one because it is the outer product of two vectors. By substituting equation

(2.19) and equation (2.20) into equation (2.16), we obtain the Fisher criterion as

the following:

J(w) =
wTSBw

wTSWw
. (2.21)

To find the maximum of J(w), we compute the derivative of J(w) and set it equal

to zero:

d

dw
J(w) =

d

dw

(
wTSBw

wTSWw

)
= 0, (2.22)(

wTSWw
) d

dw

(
wTSBw

)
−
(
wTSBw

) d

dw

(
wTSWw

)
= 0,(

wTSWw
)

(2SBw)−
(
wTSBw

)
(2SWw) = 0,(

wTSWw

wTSWw

)
(SBw)−

(
wTSBw

wTSWw

)
(SWw) = 0,

SBw − λSWw = 0, where λ is a constant,
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S−1W SBw = λw. (2.23)

In this case, it is unnecessary to solve for the eigenvalues and eigenvectors of S−1W SB

because SBw = (µ1−µ2)(µ1−µ2)
Tw = (µ1−µ2) ·k, where k is a constant, is always

in the direction of µ1−µ2 and the scale factor for w is unimportant [35]. Therefore,

the unscaled solution for the w that optimizes J(·) is w = S−1W (µ1 − µ2). Thus we

have obtained w for Fisher’s linear discriminant, which is the linear function that

produces the maximum ratio of between-class scatter to within-class scatter. The

classification has been converted from a d -dimensional problem to a one-dimensional

problem. We then find the threshold that is the point along the one-dimensional

subspace separating the projected points. The optimal decision boundary has the

equation wx + w0 = 0 where w = S−1W (µ1 − µ2) and w0 is a constant involving w

and the prior probabilities. The optimal decision rule is to decide data in c1 if the

linear discriminant exceeds some threshold, and to decide c2 otherwise.

2.2.3.2 Support Vector Machines

In the field of pattern recognition, the Support Vector Machines (SVMs) [16, 146]

have been widely used for classification purposes. SVMs are effective supervised

learning algorithms for finding an optimal hyperplane that separates the sample

classes of training data by maximizing the distance to the nearest training data

points. In the following, we briefly describe the basic concepts of SVMs.

Linear Support Vector Machine

We consider the linear separable binary classification or the separable case. For a

given l training samples with a dimensionality D, {xi, yi}, i = 1, ..., l where xi ∈ <D

and yi ∈ {−1, 1} are the respective classes, and we assume that the samples are

linearly separable. The separating hyperplane is defined by w · x + b = 0, where

w is the normal vector of the hyperplane and b/ ‖w‖ is the perpendicular distance

from the hyperplane to the origin. The support vectors are the data points closest

to the separating hyperplane and defined by the margin. The margin is given by the

two parallel hyperplanes H1,H2 with equal distance to the separating hyperplane

(Figure 2.8(a)). The aim of the SVM is to orientate this hyperplane to be furthest

from the closest samples of both classes, which maximizes the margin. Suppose that

all the training data satisfy the following constraints:
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(a) (b)

Figure 2.8: Linear separation in a two-dimensional feature space. (a) The SVM

attempts to find an optimal linear hyperplane by maximizing the margin. The

dashed lines are the margins chosen with the closest data points to the line. The data

points that constrain the width of the margins are called the support vectors. For

the (b) non-separable case of the SVM, the constraint is relaxed by the introduction

of a slack variable.

xi ·w + b ≥ +1 for yi = +1 (2.24)

xi ·w + b ≤ −1 for yi = −1. (2.25)

These inequalities can then be combined into the following:

y i(xi ·w + b)− 1 ≥ 0, ∀ i and yi ∈ {−1, 1}. (2.26)

The support vectors are then the data points lying on the following two hyperplanes:

H1 : xi ·w + b = 1

H2 : xi ·w + b = −1
(2.27)

which the margin is defined as the distance between these two hyperplanes. We

calculate the margin by subtracting the perpendicular distance of H2 to the origin
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(|−b+1|/ ‖w‖) from the perpendicular distance of H1 to the origin (|−b−1|/ ‖w‖).
Hence, the margin is simply 2/ ‖w‖. Thus, we find the pair of hyperplanes that give

the maximum margin by minimizing ‖w‖ subject to the constraints of equation

(2.26). To avoid the square root in the norm and allow Quadratic Programming

(QP) to be used later on, we minimize 1
2
‖w‖2, which is equivalent to minimizing

‖w‖. We therefore need to solve the following:

min
1

2
‖w‖2 ,

subject to yi(xi ·w + b)− 1 ≥ 0, ∀ i.
(2.28)

The method of Lagrange multipliers can be used to find the minima of this objective

function subject to the constraint. The Lagrange multipliers, αi ≥ 0, i = 1, . . . , l,

are introduced. The Lagrangian is the following:

LP =
1

2
‖w‖2 −

l∑
i=1

αi [yi(xi ·w + b)− 1]

=
1

2
‖w‖2 −

l∑
i=1

αiyixi ·w − b
l∑

i=1

αiyi +
l∑

i=1

αi, αi ≥ 0, ∀i. (2.29)

We then compute the partial derivatives ∂
∂w
Lp and ∂

∂b
Lp and set them equal to zero:

∂

∂w
LP = 0 ⇒ w =

l∑
i=1

αiyixi, (2.30)

∂

∂b
LP = 0 ⇒

l∑
i=1

αiyi = 0. (2.31)

By substituting equation (2.30) and equation (2.31) into equation (2.29), we find

the following:

LD =
l∑

i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjx
T
i xj, (2.32)

subject to αi ≥ 0, ∀i and
l∑

i=1

αiyi = 0.

This LD is referred to as the dual form of the primary LP . Note that LD only

depends on the Lagrange multiplier α (not on w and b); in LD, the training data
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appear as the dot products (xT
i xj), and this property can be exploited to perform

the classification in a higher dimensional space. For the training of the SVM, we

maximize LD with respect to αi and subject to the constraints of equation (2.31)

and the positivity of the α as shown in equation (2.32). w is then given by equation

(2.30), and b is determined with the complementary condition of the Karush-Kuhn-

Tucker (KKT) conditions for the primal problem LP :

αi [yi(xi ·w + b)− 1] = 0, ∀i. (2.33)

The complementary condition of the KKT is applied to all samples in the training

set. Therefore, for each sample, either αi = 0 or (yi(xi · w + b) − 1) = 0 must be

hold. Those sample points for which αi > 0 are then found on one of the hyperplanes

which are the support vectors. For all other training samples αi = 0.

The sample point, which is a support vector (xs), will have the following form:

ys(xs ·w + b) = 1. (2.34)

We substitute equation (2.30) into equation (2.34) and find the following:

ys(
∑
m∈S

αmymxm · xs + b) = 1 (2.35)

where S denotes the set of indices of the support vectors. S is determined by finding

the indices i where αi > 0. We then multiply through by ys when y2s = 1. Therefore,

we get b from the following:

y2s(
∑
m∈S

αmymxm · xs + b) = ys ⇒ b = ys −
∑
m∈S

αmymxm · xs. (2.36)

Instead of using an arbitrary support vector xs, it is more advantageous to take an

average of all of the support vectors in S :

b =
1

Ns

∑
s∈S

(ys −
∑
m∈S

αmymxm · xs). (2.37)

To apply the trained SVM for the classification of a test sample xt, we applied the

following hyperplane decision function:

f(xt) = sign(w · xt + b). (2.38)
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For the binary classification of the data that is not fully linearly separable or the

non-separable case, the constraints of equation (2.26) are relaxed to allow for

misclassification of the samples by the introduction of a positive slack variable,

ξi, i = 1, . . . , l (Figure 2.8(b)) as follows:

yi(xi ·w + b) ≥ 1− ξi, ∀i,
ξi ≥ 0, ∀i.

(2.39)

These slack variables measure the deviation from the ideal conditions. For 0 ≤ ξi ≤
1, the data point falls inside the region of separation but on the right side of the

decision surface. For ξi > 1, the data point falls on the wrong side of the separating

hyperplane. The sum of the slack variables
∑

i ξi provides an upper bound on the

number of training errors. The objective function can be formulated in the relaxed

version as 1
2
‖w‖2 +C

∑
i ξi, where the parameter C regulates the penalty of errors

and has to be chosen by the user. This formulation is called a soft margin classifier.

Formulating the primal problem by applying the Lagrange multipliers αi and µi
yields the following:

LP =
1

2
‖w‖2 + C

∑
i

ξi −
∑
i

αi{yi(xi ·w + b)− 1 + ξi} −
∑
i

µiξi (2.40)

where µi is introduced to enforce the inequality ξi ≥ 0. Differentiating with respect

to w, b and ξi and setting the derivatives to zero:

∂

∂w
LP = 0 ⇒ w =

l∑
i=1

αiyixi, (2.41)

∂

∂b
LP = 0 ⇒

l∑
i=1

αiyi = 0, (2.42)

∂

∂ξi
LP = 0 ⇒ C = αi + µi. (2.43)

The substitution of these formulations into equation (2.40) gives the formulation of

the dual problem LD, which is the same for the separable case. The only difference

is that there is an additional constraint 0 ≤ αi ≤ C, ∀i, which means that there

exists an upper bound C on the αi in this non-separable case. b is then calculated in

the same way as the separable case with the KKT conditions of the primal problem:
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αi [yi(xi ·w + b)− 1 + ξi] = 0 and µiξi = 0. (2.44)

Non-linear Support Vector Machine

The generalization of the above formulations with the non-linear decision function

is straightforward. The training samples are mapped to a higher dimensional Eu-

clidean space H by a non-linear feature mapping function Φ. The mapping is per-

formed in accordance with Cover’s theorem, which the data in mapped space are

linearly separable. For the training of the SVM equation (2.32), the training data

only appear in a dot product xi · xj. Thus, for the data transformed to H, the

machine handles only the dot product of the mapping Φ(xi) · Φ(xj). If there ex-

ists a kernel function K(xi,xj) = Φ(xi) · Φ(xj), we do not have to consider the

explicit form of Φ, but could only use K(xi,xj) instead of using the dot product

Φ(xi) ·Φ(xj) in equation (2.32). Thus, the SVM performs a linear separation of the

data in H corresponding to a non-linear separation in the lower dimensional original

space with the following:

LD =
l∑

i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyjK(xi,xj) (2.45)

There exist kernel functions with the property K(xi,xj) = Φ(xi) · Φ(xj) if

they satisfy Mercer ’s condition: for any g(x) such that
∫
g(x)2dx is finite, then∫

K(x,y)g(x)g(y)dxdy ≥ 0. This condition only examines whether a kernel is an

inner-product kernel in some space, but it does not tell us how to construct the

mapping function Φ. We used the Gaussian radial basis function kernel in our anal-

ysis because it has been shown to work very well for the classification of cell images

in previous analyses [27, 55].

2.2.4 Image features for the classification of cells

To analyze images of the siRNA screens, an automated system, which was described

in detail recently [55, 56, 57], was employed. Briefly, a quadratic sliding window was

used to calculate local thresholds for different image regions. The local threshold was

only calculated if the variance within the window reached a pre-defined threshold

(2000); otherwise, a global threshold was used. The window consisted of an outer
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region of 15 pixels in which the thresholds were computed and an inner region of

2 pixels in which the thresholds were applied. The window was shifted by the

length of its inner region. The global and local thresholds were calculated using the

Otsu thresholding method. After segmentation, the following quantitative image

features were extracted from the image for each single cell: granularity features,

object- and edge-related features, tree-structured wavelet features, Haralick texture

features, grey-scale invariants and Zernike moments. In total, we computed 353

features for each cell nucleus. Using these features, the single-cell images were

classified into the following classes: interphase, mitosis, apoptosis and cell clusters.

The Haralick features have relatively high computational costs. It would have taken

several weeks or months to compute the Haralick texture features from all the image

data; therefore, my colleagues, M.Gipp, G.Marcus and R.Männer, and us employed

the general-purpose graphics processing units (GPUs) to speed up the computation

of the co-occurrence matrices and Haralick texture features. A massive parallel

software version for the GPUs was designed and implemented for this purpose. The

computational time was shortened by a factor of 32 on a single node of a cluster in

comparison to a pre-existing optimized CPU software version [47].

We extracted a set of image features for each single cell. Table 2.2 illustrates the

number of extracted features. All these features were described in detail in Harder

et al. [55, 56, 57]; I briefly describe them below.

Haralick texture features: The Haralick texture features [53] are the most im-

portant features and have been widely used to describe the characteristics of a cell

image in several research reports [28, 45, 55, 98]; these features are also included in

several cell analysis software packages [29, 64, 103]. The Haralick texture features

are based on the co-occurrence matrices of an image. A co-occurrence matrix (C ) is

computed by the relative frequencies of all occurring gray value pairs of pixels at a

given distance d with the angle φ, C (d, φ). The co-occurrence matrix for an image

with gray values in the range of [0, Ng-1] is defined as the following:

C(d, φ) =


P (0, 0) P (0, 1) . . . P (0, Ng − 1)

P (1, 0) P (1, 1) . . . P (1, Ng − 1)
...

...
. . .

...

P (Ng − 1, 0) P (Ng − 1, 1) . . . P (Ng − 1, Ng − 1)

 , (2.46)

where P (gi, gj) = 1
R
η(gi, gj) is the probability for a gray value pair (gi, gj), η(gi, gj) is
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Table 2.2: Sets of features extracted from each single cell.

Feature set Total

number

Haralick texture 260

Zernike moments 49

Granularity 21

Object-related 8

Edge-related 3

Gray scale invariants 10

Tree-structured wavelets 2

the frequency of a gray value pair (gi, gj) and R is the total number of possible pixel

pairs in the image depending on d and φ. In this work, we compute co-occurrence

matrices for the distances of one to five pixels and angles of 0◦, 45◦, 90◦, and 135◦.

Thirteen statistical features (e.g., the angular second moment, contrast, correlation,

variance, and entropy) are computed for each co-occurrence matrix, which leads

to 260 image features that describe the texture of an image. Table 2.3 lists the

thirteen features.

Object- and edge-related features: For the object- and edge-related features,

the basic attributes of an object, such as the area (number of pixels), contour length

(perimeter), and moments (e.g., the mean gray value and standard deviation of the

gray value), are measured. The circularity of an object is computed by p2

A
, where

p is the perimeter of an object and A is the area of the object. Feret’s distance,

which is the longest distance within an area, is computed using the greatest possible

distance between any two contour pixels. The edge-related features are computed

by applying the Laplace and Sobel filters to the image and refining the detected

edges with a thresholding method. The number of detected edge pixels is used as a

further feature.

Granularity features: The granularity features depend on the relation of neigh-

boring pixel pairs. The differences in the gray levels of the center pixel and all
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Table 2.3: Thirteen statistical features computed on a co-occurrence matrix.

Angular second moment f1 =
∑

i

∑
j(P (i, j))2

Contrast f2 =
∑Ng−1

n=0 n2
{∑

i

∑
j P (i, j)

}
, |i− j| = n

Correlation f3 =
[
∑

i

∑
j(ij)P (i,j)]−µxµy

σxσy

Variance f4 =
∑

i

∑
j(i− µ)2P (i, j)

Inverse difference moment f5 =
∑

i

∑
j

P (i,j)
1+(i−j)2

Sum average f6 =
∑2Ng−2

i=0 iPx+y(i)

Sum variance f7 =
∑2Ng−2

i=0 (i− f6)2Px+y(i)
Sum entropy f8 = −

∑2Ng−2
i=0 Px+y(i) logPx+y(i)

Entropy f9 = −
∑

i

∑
j P (i, j) logP (i, j)

Difference variance f10 =
∑Ng−1

i=0 i2Px−y(i)

Difference entropy f11 = −
∑Ng−1

i=0 Px−y(i) logPx−y(i)

Information measure I f12 =
Hxy−H1

xy

max{Hx,Hy}

Information measure II f13 =
√

1− exp(−2(H2
xy −Hxy))

Definition:

H1
xy = −

∑
i

∑
j P (i, j) log(Px(i)Py(j))

H2
xy = −

∑
i

∑
j Px(i)Py(j) log(Px(i)Py(j))

Px(i) =
∑

j P (i, j), Py(i) =
∑

i P (i, j)

Px±y(k) =
∑

i

∑
j,|i±j|=k P (i, j)

µ, µx, µy;σx, σy;Hx, Hy are the means and standard deviations and entropies.

pixels within a given distance (e.g., 1-10 pixels) in eight directions (0◦, 45◦, 90◦,

135◦, 180◦, 225◦, 270◦, and 315◦) are computed, and the maximum difference in

each direction is stored. The mean and standard deviation of the maxima over all

image pixels are computed.

Gray scale invariant features: The gray scale invariant features [17] are com-

puted by combining a pair of neighboring pixels in an image g(x, y) using a

simple nonlinear kernel function f that transforms the gray value into form of

f(g(x, y)) = f1(g(x, y)) · f2(g(x + d1, y + d2)), where d = [d1, d2] is a span vector

for the kernel function. This function is computed for each pixel and its neighbors
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in all possible directions. The summation of the resulting values yields a value

being invariant to rotation. This strategy is applied to all possible positions in

the image, and the results are summed for the whole image, which yields a value

that is invariant to rotation of the image content. The applied kernel functions are

the followings: (1) the product of the gray values (f1(g) = f2(g) = g) and (2) the

product of the square roots of the gray value (f1(g) = f2(g) =
√
g). Different grey

scale invariant features are computed by varying the distances (i.e., the distances

between the center and neighboring pixels).

Zernike moment features: These moments are commonly used to character-

ize distributions. In image processing, an image region is considered as a two-

dimensional density function. The moment sets of different orders and with a differ-

ent basis function can be used to describe the information in an image region [111].

The complex Zernike moments [165] use a set of complex polynomials that form a

complete orthogonal basis that is defined over a unit circle. The image is translated

and scaled to a unit disc first (disc centered at the origin (0,0) with radius one) be-

cause these Zernike polynomials defined within a unit circle. For an image g(x, y),

the Zernike moments can be computed using the following:

Zmn =
m+ 1

π

Nx−1∑
x=0

Ny−1∑
y=0

V ∗mn(x, y)g(x, y), (2.47)

where x2 + y2 ≤ 1 and V ∗mn(x, y) is the complex conjugate of a Zernike polynomial

of the degree m, n is a positive integer with 0 ≤ n ≤ m and m-n is even, and

Vmn(x, y) =

(m−n)/2∑
s=0

(−1)s
(m− s)!

s!
[
m+n
2
− s
]

!
[
m−n
2
− s
]

!
· (x2 + y2)

m
2
−s exp(ynθ) (2.48)

where θ = tan−1(y/x), and y =
√
−1. As proposed by Boland et al. [10], the mag-

nitudes |Zmn| of the moment are used as image features. The Zernike moments are

calculated up to degree 12 (m ≤ 12) and all possible values for n; this calculation

results in 49 features.

Tree-structured wavelets: A wavelet transform decomposes a signal into differ-

ent frequency channels. Applying a wavelet transform to a 2D input image yields
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four subimages. Each subimage comprises a part of the whole frequency band-

width and has a quarter of the input image resolution. Daubechies wavelets [30]

are widely used in signal and image processing. The decomposition is based on

12-tab Daubechies wavelets. Tree-structured wavelet transform [21] is a multireso-

lution analysis approach. This approach decomposes only the significant frequency

channels of the subimages, that contain the most information. The information con-

tent is determined using the image energy. The image energy is computed from an

energy function E (g) for an image g(x,y) with x- and y-dimensions Nx, Ny, which

is the mean of the absolute gray values given by the following:

E(g) =
1

NxNy

Nx−1∑
x=0

Ny−1∑
y=0

|g(x, y)| . (2.49)

The decomposition is recursively performed on the input image depending on the

image size. At each decomposition step, the feature used is a product of the highest

energy value and a constant representing the frequency channel in which the highest

energy was observed.

2.2.5 Pairwise phenotypic descriptors for protein-protein

interactions

The fraction and maxima features

As mentioned in Section 2.2.4, the segmentation and feature extraction were per-

formed using an automated image processing system as described in [55]. Each

single cell nuclei was segmented using the Otsu thresholding method and charac-

terized using morphological descriptors (Table 2.2) such as the Haralick texture,

Zernike moment, granularity features, object-and edge-related features, grey-scale

invariants, number of cells and pixels. These features were used to distinguish be-

tween different phenotypes of the cells. Using SVM analysis (Section 2.2.3.2), each

single cell was classified into the following four morphological classes: interphase,

apoptosis, mitosis, and shape (cluster of cells). The classifier was trained to distin-

guish between the four phenotypic classes using the trained morphological classes

that were manually annotated by an expert. The fractions of each phenotype were

computed with respect to the number of cells in an image for each knocked-down
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gene. The features of cell proliferation, median and standard deviation of the cellu-

lar intensities, were also calculated. To obtain features for a pair of knocked-down

genes, we calculated the absolute value of the differences between the features for

each gene of the respective pair. These features were termed “fraction features”.

To obtain more discriminative features, we used features from the original study

by Neumann and co-workers [98]. The phenotypic scores of the seven morphological

phenotypes from the Mitocheck database (www.mitocheck.org) were extracted and

comprised the following features: 1) mitotic delay, 2) binuclear, 3) polylobed, 4)

grape, 5) large, 6) dynamic change, and 7) cell death. The scores were derived from

the maximum difference of the cell counts between the negative controls and the

cells of the respective class (of one of the seven morphological phenotypes). The

time points for these maxima were also taken as features. We also calculated the

absolute value of the differences between the features for each gene of the respective

pair to obtain features for a pair of knocked-down genes. These features were

termed “maxima features”.

LDA-Similarity and proximity features

We used linear discriminant analysis (LDA) (Section 2.2.3.1) to distinguish between

two sets of single cells in which each set of cells had a different gene knocked down.

These features were termed LDA-performance features. If two sets of single cells

were classified well (i.e., the phenotypes that resulted from the knockdown of the

corresponding two genes were dissimilar), then these sets yielded a favorable dis-

crimination performance. The performance (accuracy) of the classification was used

as a similarity feature. For the proximity-features, we computed the distances be-

tween a reference gene and two genes instead of computing the distance between

two genes directly; we then computed the difference of these two distance vectors.

If these two genes are close together, these two distances should also be close to-

gether. These proximity features were computed with 5 reference genes to find a

vector of the distance. To obtain different feature vectors, we selected 5 reference

genes that are distinct from each other. An integer linear programming problem

was formulated for finding these reference genes.

The LDA-performance feature and the Euclidean distance of maxima features

were used as distances. For all genes, the distance of a gene to the other genes was
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computed. The problem of finding k genes that were distant from each others can

be formulated as the following quadratic problem:

max
∑

dijxixj,

subject to:
∑
i

xi ≤ k,

xi, xj ∈ {0, 1} ,
i, j = 1, . . . N,

(2.50)

where dij is the distance from gene xi to gene xj. However, this problem can be

transformed into an integer linear problem. We introduced a new variable yij, which

can be represented as yij = xixj. The integer linear problem is defined as the

following:

max
∑

dijyij

subject to: (I) yij ≤ xi,

(II) yij ≤ xj,

(III) yij ≥ xi + xj − 1,

(IV)
∑
i

xi ≤ k,

xi ∈ {0, 1} , yij ∈ {0, 1} ,
∀i, j ∈ {1, . . . , N}, i < j.

(2.51)

In this maximization case, the constraint (III) can be discarded. To reduce the

complexity of the problem, thirty genes with distances that deviated significantly

were selected. In this study, we performed computations to obtain five optimal genes

(k=5). To find the difference between the distances of optimal gene pairs and other

gene pairs, the distances were normalized for values in a range from 0 to 1, and

the distances of all combination of each sets were computed. When computations

were performed using the LDA-performance and maxima features as the distances,

the distances of all combinations of optimal gene pairs yielded significantly higher

values than the distance of all combinations of other gene pairs (Figure 2.9).

In summary, the pairwise phenotypic features are comprised of the following

sets of fraction features, LDA-performance feature, maxima features, and proxim-

ity features. The complete list of pairwise phenotypic features is shown in Table 2.4.
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Figure 2.9: Comparison of the distances between all combinations of the optimal

genes and all combinations of the other genes. The P -values were calculated for the

two distributions of distances between the five optimal genes and the other genes

using a Wilcoxon test.

Table 2.4: Pairwise phenotypic descriptors

Feature name Description

Fraction features

frApop Distance computed from the fractions of Apoptotic cells

frInter Distance computed from the fractions of Interphase cells

frMito Distance computed from the fractions of Mitosis cells

frShape Distance computed from the fractions of Cluster cells

medMean Distance computed from the medians of mean of cell intensities

medSD Distance computed from the medians of standard deviation of cell

intensities

medNbPixel Distance computed from the medians of number of cell images

pixels

medNumCell Distance computed from the medians of number of cells

ProliferRate Distance computed from the cell proliferation rates

Continued on next page...
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Table 2.4 – continued from previous page

Feature name Description

LDA-performance feature

LDA-performance LDA similarity

Maxima features

MitoticDelay Distance computed from the maximum scores of a Mitotic Delay

phenotype

Binuclear Distance computed from the maximum scores of a Binuclear phe-

notype

Polylobed Distance computed from the maximum scores of a Polylobed phe-

notype

Grape Distance computed from the maximum scores of a Grape pheno-

type

Large Distance computed from the maximum scores of a Large pheno-

type

DynamicChange Distance computed from the maximum scores of a Dynamic

Change phenotype

CellDeath Distance computed from the maximum scores of a Cell death phe-

notype

tMitoticDelay Distance computed from the time point with the max.score of a

Mitotic Delay phenotype

tBinuclear Distance computed from the time point with the max.score of a

Binuclear phenotype

tPolylobed Distance computed from the time point with the max.score of a

Polylobed phenotype

tGrape Distance computed from the time point with the max.score of a

Grape phenotype

tLarge Distance computed from the time point with the max.score of a

Large phenotype

tDynamicChange Distance computed from the time point with the max.score of a

Dynamic Change phenotype

tCellDeath Distance computed from the time point with the max.score of a

Cell death phenotype

Proximity features

SpScoreRef(1-5) Distance computed from reference gene(1-5) using the maxima

features

LDAperfRef(1-5) Distance computed from reference gene(1-5) using the LDA-

performance



2.2 Characterization of the signaling interactions 53

Figure 2.10: Two nested cross-validation loop. The 10-times 10-fold cross-validation

technique was performed with a 5-times 5-fold cross-validation for parameter opti-

mization.

2.2.6 Classification of interactions with a role in the activa-

tion or inhibition of signal transduction

Based on the pairwise phenotypic descriptors, we classified the interactions as hav-

ing a role in the activation or inhibition of signal transduction using the SVM as

mentioned in Section 2.2.3.2. To assess the performance of the classifiers, 10-times-

10-fold cross-validations were performed (Figure 2.10). In each cross-validation, the

PPIs involved in the activation and inhibition of signal transduction were randomly

split into ten equally sized, non-overlapping subsets. The nine subsets were concate-
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nated and used for training the classifiers and testing of the one remaining subset.

The performance was measured on the test set by comparing the predictions with

the true class labels. To measure the performance of the predictions of the PPIs

involved in the activation of signal transduction, these PPIs were set as the posi-

tives. This process was repeated ten times until each subset was tested once. In our

dataset, the sizes of the two classes (Act-PPI and Inh-PPI) differed considerably.

Therefore, a data stratification was performed using an ensemble machine learning

technique. In each training subset, ten SVM classifiers were trained with equal

stratified numbers of randomly selected PPIs that are involved in the activation and

inhibition of signal transduction.

To optimize parameters for the classifiers, the nested cross-validation loops were

employed. In the inner loop, the cross-validations were repeated to obtain the opti-

mal parameter set (Figure 2.10). It is crucial that the test data were not included in

this inner cross-validation. For each combination of parameters used for the training

step, the cross-validation performance was measured, and the significant parameters

were selected in this inner loop. In this work, we used a radial basis function as a

kernel for our SVM. Therefore, there are two parameters for the optimization of the

kernel (Section 2.2.7). To obtain the overall performance of the classifiers from the

nested cross-validation loops, we repeated the cross-validation procedure 10 times.

The votes of each testing sample were summed from the predictions of the classifiers

for a certain class. Using these votes, a receiver operator characteristics curve (ROC

curve) was used to measure the performance of the classifiers (Section 2.2.8). The

performance was estimated by the area under the curve (AUC) for the entire range

of thresholds based on the votes. To predict new interactions, all 1000 trained clas-

sifiers were employed as an ensemble classifier that used a voting scheme in which

each SVM contributed one vote. Figure 2.10 shows the cross-validation procedure

with a 10-fold cross-validation for the outer loop and a 5-fold cross-validation for the

inner loop. The software library LIBSVM [20] was used for the SVM classifications.

2.2.7 Parameter optimization and voting scheme technique

The SVM algorithm (Section 2.2.3.2) was employed for the classification. Using a

radial basis kernel, there are two SVM parameters that can be optimized: 1) the

regularization term that defined the costs of false classification (C ); and 2) kernel

width parameter (γ), which regulates the variance of the kernel. Using an approach
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proposed by Hsu et al. [59], we performed a grid search on the training data to

maximize the classification accuracy on a defined parameter space. The parameter

space was defined using the value of C and γ, which grow exponentially (C =

2n, γ = 2n, n = -5, -4,. . . , 4, 5). To measure the classification performance, we

split the training data into two parts. One part is used for the training data (also

called the training set) that is used to train the classifier. The other part is called

a test set and is used for the testing of the trained classifier. The classification

performance is measured on the test set by comparing the classifier output with

the true classes of the test set. Then, the percentage of correct classifications can

be determined. However, training and testing the data on a training set might not

reflect the true classification performance and produce poor classification results for

other data because of the use of a specific training set. To achieve more reliable

results, the parameter testing can be performed on several independent data sets

using the cross-validation technique. In this work, we used a 5-fold cross-validation

for the parameter optimization (Figure 2.10). The cross-validation technique splits

the data into 5 subsets of equal size. Four of the subsets were used for training the

classifier and the other subset is used to test the classifier. This process is repeated

5 times until each subset has been tested once. The best determined combination

of the C and γ can be used for the whole training set to train the final classifier.

2.2.8 Performance measurements

By comparing the predictions with the true classes, we can generate a confusion

matrix, which is also called contingency table. Table 2.5 shows an example of a

confusion matrix of a two-class classification task. TP are the true positives, FN

are the false negatives, FP are the false positives, and TN are the true negatives.

Accuracy is a commonly used classification measurement. The accuracy measures

the proportion of correct predictions:

accuracy =
TP + TN

TP + FN + FP + TN
. (2.52)

From the confusion matrix, we can compute other performance values such as the

sensitivity, specificity, positive predictive value and negative predictive value. The

sensitivity or recall is the proportion of actual positives that are correctly classified,

whereas the specificity is the proportion of negatives that are correctly classified.
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Table 2.5: Confusion matrix of the two-class classification

Predicted Classes

Positive Negative

True Classes
Positive TP FN

Negative FP TN

The positive predictive value or precision rate measures the proportion of correct

positive predictions performed by a classifier, whereas the negative predictive pre-

diction denotes the portion of correct negative predictions:

sensitivity =
TP

TP + FN
, (2.53)

specificity =
TN

TN + FP
, (2.54)

positive predictive value =
TP

TP + FP
, (2.55)

negative predictive value =
TN

TN + FN
. (2.56)

These performance measures resulted from a dataset that is called a test set.

The test set with known class labels is the data remaining after the data of the

training set is removed. We perform the measurement on the test set instead of the

training set to avoid the overestimation the measurement. The test set is applied

to the trained classifier and predicts the class labels. The predicted labels are then

compared with the true labels and the performance measurements are calculated as

described above.

Receiver operator characteristics and the area under the ROC curve

A common approach used to compute the overall classification performance is the

receiver operator characteristic (ROC) curve and the area under the ROC curve

(AUC). The ROC is suitable for measuring the performance of a classifier system

using various thresholds of stringency (e.g., when using voting scheme technique).

The ROC curve shows the true positive rate (sensitivity) versus the false positive

rate (1-specificity). The overall performance of the classifiers is calculated from the

area under the ROC curve. A perfect classifier has an AUC of 1.0, whereas random

guessing produces an AUC of 0.5. Figure 2.11 ROCs shows an example of an ROC
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Figure 2.11: An example of an ROC curve. The performance of multiple thresholds

can easily be investigated by plotting. For example, a certain threshold at point

A yields a sensitivity of 0.8 and a specificity of 0.7. Another threshold at point B

yields a sensitivity of 0.7 and a specificity of 0.8.

curve.

By changing the thresholds, we determined a point on the ROC curve. From the

example curve of Figure 2.11, we found the point A using a certain threshold. At

this point, we found a sensitivity value of 0.8 and a specificity value of 0.7. Using a

different threshold, we found the point B, which has a sensitivity value of 0.7 and

a higher specificity value of 0.8. The dashed diagonal line represents the results

from random predictions that produce an AUC of 0.5. The perfect classifier yields a

curve that includes the coordinate (0,1) in the upper left corner, which corresponds

to 100% sensitivity, 100% specificity and an AUC that is equal to one.

2.2.9 Consistency score

To improve the precision of classification performance, we conducted a statistical

post-processing step that was used to filter our results. We compared the effect of

each of the down-regulated genes of a pair (genei, genej) to all other investigated

genes (genek). If both knocked-down genes (i.e., the gene i and j) showed the same
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prediction to the other gene k, we defined the knocked-down genes as interacting

“consistently” with respect to genek. Similarly, if one of them showed a prediction

of activation and the other inhibition, we set that pair to be inconsistent with

respect to genek. This was performed for all other genes k, k ∈ {all genes \{i, j}},
and the portion of consistent and inconsistent interactions was used to define the

consistency score (high consistency = a higher number of other genes that show

the same activation/inhibition predictions to both genes of the pair). This criterion

was used to filter out gene pairs that had a high consistency but a low number

of votes used for the prediction of a PPI as involved in the activation of signal

transduction (and vice versa for inhibition). If the voting score of a gene pair was

less than 100, it was predicted to be a PPI that is involved in the inhibition of signal

transduction; In turn, if the vote of a pair was more than 900, it was defined as a

potential PPI that is involved in the activation of signal transduction. All other

predictions were assigned as undefined. We computed the consistency score from

the percentage of consistency and inconsistency values. To quantify the difference

between the consistency and inconsistency values, we calculated the similarity score

by transforming the percentage of consistency and inconsistency values into the

range between -1 and 1 using the following hyperbolic tangent function:

f(x) = tanh(k ∗X), (2.57)

where X is the proportion of consistency values subtracted by the proportion of

inconsistency values. For this study, we used the optimized parameter k=5 and we

improved the negative (or lower than average) and positive (or higher than average)

consistency scores to yield the PPIs as involved in the inhibition and activation,

respectively, of signal transduction.

2.2.10 Enrichment tests for the consistency score of protein

pairs

All protein pairs and their consistency score (gpi, i=1,. . . , all protein pairs)

were investigated using the interaction databases, STRING version 9.0 [136] and

MetaCoreTM version 6.8, www.genego.com. We applied the gene set enrichment

analysis (GSEA) strategy of Subramanian et al. [131]. The goal of GSEA is to de-

termine whether the evidenced interactions (a list S with NH pairs in the database)

are randomly distributed throughout our ranked consistency scores r(gpj) = rj in a
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list L = {gp1, gp2, ..., gpN} or found at the top or bottom of the list. This approach is

essentially a Kolmogorov-Smirnov test of running sums over the ranked scores. The

enrichment score (ES ) was computed and indicated the degree of overrepresentation

of a set S in the top or bottom of the ranked list L. The algorithm walks into the

ranked list L, and a running-sum is increased if the gene pairs found in the list S, are

also found in the database; otherwise, the running-sum is decreased. The maximum

deviation between the zero encountered in the random walk and the magnitude of

the increment was calculated as the ES. The ES is calculated as follows:

ES(S) = max
1≤i≤N


∑
gpj∈S
j≤i

1

NR

−
∑
gpj /∈S
j≤i

1

N −NR

 (2.58)

where NR is the number of gpj ∈ S. The ES is the fraction of interaction pairs in S

running up to i, and the value is penalized by the fraction of the interaction pairs not

in S running up to i. To assess the significance of the ES, we compared the observed

ES with the null set of ES scores that were computed using a permutation-based

approach. We found the null distribution of the permutated ES by permuting the

interaction pair labels and re-computing the ES(S). We repeated this step 104 per-

mutation times and computed the nominal P -value for S from the null distribution.

The nominal P -value is estimated as the portion of the permutated ES which is

greater than the observed ES.
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Results

This chapter describes our results mainly consisting of two parts. Section 3.1 de-

scribes the results of clustering of cells infected with Hepatitis C Virus to iden-

tify host factors. Section 3.2 presents the results of characterizing the activities of

protein-protein interactions using machine learning approaches.

3.1 Clustering of cells infected with Hepatitis C

Virus

Viruses can spread within a host through the release of cell-free virions or direct

passage between infected and non-infected cells. In general, direct cell-cell transfer

is considerably more efficient than cell-free transfer [141] and can be supported by

filopodial bridges [124], virological synapses, or nanotubes [120]. As a consequence

of such a viral cell–cell spreading, clusters of infected cells may be formed. It was

recently reported that the spatial distribution of cells can influence infection behav-

ior. Snijder and co-workers observed intriguing relationships between virus species,

the spatial distribution of cells and infection rates. While the infection efficiency

of a rotavirus was considerably increased in sparse populations, Dengue Viruses

mainly employed cells located at the edges of islets, and murine hepatitis viruses

were preferably found in dense cell populations [126]. To analyze such clustering

patterns systematically, statistical methods for point pattern analysis can be em-

ployed. Section 3.1.1 reports the parameter optimization of the clustering method
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and shows our hits compared with primary and secondary experimental screens.

Section 3.1.2 provides a functional interpretation of our hits. Section 3.1.3 provides

a comparison of the clustering behavior of cells infected with HCV and cells infected

with Dengue Virus.

3.1.1 Parameter optimization, choice of the most suitable

clustering analysis method and assembly of significant

hits

We identified cellular protein kinases involved in HCV replication by observing the

replication and clustering of infected cells upon silencing of protein kinases (2157

siRNAs targeted 719 human protein kinase genes). Virus-infected cells were identi-

fied through viral GFP expression observed using fluorescence microscopy analysis.

Host siRNA hits were identified based on three different approaches, (i) using the

viral GFP fluorescence intensity of the primary screen, (ii) the luciferase intensity

of the secondary screen and (iii) the clustering analysis method. In applying the

clustering analysis method, we computed a z -transformed clustering score for all

knockdowns. We analyzed the clustering of infected cells using the DAPI channel

(nucleus staining) to define the center of mass and the viral GFP signal for label-

Table 3.1: Pearson’s correlation coefficients for the intensity values of the scores

from K -function and the standard readouts (intensity values of the primary and

secondary screens).

K -function (Inho-

mogeneous)

K -function

(Homoge-

neous)

40% 35% 30% 25% 35%

Correlation with intensities of

the primary screen

0.51 0.55 0.49 0.36 0.36

Correlation with intensities of

the secondary screen

0.31 0.32 0.34 0.28 0.23
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(a) (b)

Figure 3.1: Images of positive (knockdown of CD81) and negative controls (non-

silencing siRNA). Knockdown of CD81 resulted in a rather random distribution of

infected cells (black dots), while infected cells were highly clustered when no genes

were silenced (unhindered viral replication).

ing the cells as infected and non-infected. Low clustering scores were yielded if the

infected cells did not cluster, while high values resulted specifically if the infected

cells showed high clustering. This trend is demonstrated exemplarily in Figure 3.1.

To detect the clustering we used K -function and optimized the performance

by varying the range of the radius. As the objective function, we analyzed the

correlation of the z -scores from K -function for all knocked-down genes with the

z -scores from the intensity readout of the primary screen and secondary screen.

Table 3.1 shows the obtained results. The best correlation with the primary screen

was 0.55 using a radius range of 35%.We investigated the performance of a well-

established clustering analysis method, Quadrat Analysis [156]. Quadrat Analysis

was tested, and the correlation with the primary and secondary experimental screens

was observed. We optimized the parameters for the Quadrat Analysis (QA, Section

2.1.4) by varying the number of rows (i) and columns (j ), with i = 3, 4, 5 and j = 4,

5, 6, yielding different grid sizes. Pearson’s correlation coefficients were computed

from VMR scores and intensity readout values from the primary and secondary

experimental screens. The results are presented in Table 3.2. However, the method
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Table 3.2: Pearson’s correlation coefficients for the intensity values of the Quadrat

Analysis and the standard readouts (intensity values of the primary and secondary

screens)

Quadrat Analysis

QA4x3 QA4x4 QA4x5

Correlation with intensities of the

primary screen

0.25 0.23 0.23

Correlation with intensities of the

secondary screen

-0.02 0.029 -0.027

QA5x3 QA5x4 QA5x5

Correlation with intensities of the

primary screen

0.23 0.23 0.22

Correlation with intensities of the

secondary screen

0.027 -0.0018 -0.033

QA6x3 QA6x4 QA6x5

Correlation with intensities of the

primary screen

0.22 0.20 0.19

Correlation with intensities of the

secondary screen

-0.07 -0.04 -0.097

showed less correlation with the intensity readouts (Table 3.2 shows the results for

several parameter settings).

Additionally, the homogeneous K -function was inferior to the inhomogenous K -

function (the result with the best radius range is given in Table 3.1). Here, we

report results using the inhomogenous K -function with the optimized parameter

(radius range = 35%). Knockdown of CD81 gene (positive control) resulted in low

clustering of the infected cells, while the negative control (non-silencing siRNAs)

showed a comparably high tendency for infected cells (black dots) to cluster. The

clustering scores were -2.3 and 2.2 for CD81 and the negative control, respectively.

In the primary screen, the mean intensities of viral GFP were calculated for each
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Figure 3.2: Comparison of the scores of the positive control (CD81) and the negative

controls (non-silencing siRNA) for all applied methods. The P -values were calcu-

lated for the two distributions of CD81 and the negative controls using Student’s

t-test.

knockdown and replicate (12 replicates), following which their z -scores were com-

puted with respect to the bulk of the data, and genes with significant low z -scores

were selected (P -value < 0.05). Significant genes were defined similarly based on the

secondary screen. The difference between the z -score distributions of the positive

control (CD81) and the negative controls is shown in Figure 3.2. The separation

of the distributions shows CD81 to be a significant down regulator in all three

approaches (i.e., primary screen, secondary screen and clustering analysis method).

The numbers of significant hits and their intersections are summarized in Figure 3.3.

Observation of viral signal intensities in the primary screen yielded 85 significant

genes. A total of 178 genes selected from the primary screen were observed with

the secondary screen yielding 64 significant genes. The clustering analysis method
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Figure 3.3: Venn diagram of the hits for all three applied methods.

yielded 30 genes (shown in Table 3.4). All three positive controls showed significantly

low clustering scores (CD81: P -value = 6.61E-07; HCV-321: P -value = 1.53E-13;

HCV-138: P -value = 1.20E-10). Five genes were found to be significant with all

three methods: CD81, PI4KA, CSNK2A1, SLAMF6 and FLT-4 (Table 3.3). Note

that the positive controls HCV-321 and HCV-138 were not used in the secondary

screen. CD81 was used as a positive control, as it is well-known viral receptor of

HCV [166] and is involved in HCV entry [114].

3.1.2 Functional interpretation of the results

In addition to CD81, we detected four host factors as significant using all

three analysis approaches (PI4KA, CSNK2A1, SLAMF-6 and FLT-4). Phos-

phatidylinositol 4-kinase-α (PI4KA) is well known to be required for HCV repli-

cation [5, 11, 77, 137, 142, 145]. It was shown in vitro that Casein kinase II (for

which CSNK2A1 encodes the subunit alpha) phosphorylates the non-structural HCV

protein NS5A [70]. Fms-related tyrosine kinase 4 (FLT-4), also known as vascular

endothelial growth factor receptor 3 (VEGFR-3), is a member of the tyrosine kinase
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Table 3.3: Host factors detected with all three analysis methods

Entrez

gene ID

Gene

symbol

Gene name P-value

(Clustering

method)

975 CD81 CD81 molecule 6.61E-07

5297 PI4KA Phosphatidylinositol 4-kinase,

catalytic, alpha

0.0019

1457 CSNK2A1 Casein kinase 2, alpha 1

polypeptide

0.0274

114836 SLAMF6 SLAM family member 6 0.0345

2324 FLT4 Fms-related tyrosine kinase-4 0.0445

receptor family. Over-expression of the short splice variant of VEGFR-3 stimulated

cell growth in HepG2 cells [79], which may favor infectious spreading of the virus.

Interestingly, a retrovirus was found to be integrated into an intron of FLT-4 in the

genome which may have resulted in an evolutionary advantage for this virus [61].

SLAMF-6 belongs to the signaling lymphocytic activation molecule family and is

a transmembrane receptor mainly expressed in natural killer (NKT) cells. This

receptor serves as a docking site for several signaling molecules [38, 147]. It was

shown that SLAMF-1 and SLAMF-6 critically control the characteristic expansion

and differentiation of NKT cells following thymic selection [49]. SLAMF-6 may be

a suitable interesting candidate for investigating the uptake and signal propagation

of the virus during its entry into the host cell.

3.1.3 Comparing the clustering behavior of HCV and the

Dengue Virus infection

The same experimental set-up as was used for HCV was applied to observe cells

infected with the Dengue Virus (DV) [92]. It is known that DV infects the edges

of islets of cell populations rather than forming clusters of infections [126]. We also

observed this behavior in our data which is shown exemplarily in Figure 3.4. We

compared the clustering scores for non-silencing siRNA images for both datasets and
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Table 3.4: The first 30 candidate genes from the clustering analysis approach.

Entrez

Gene

ID

Gene

Symbol

Gene Name P-Value Mean

Z -

score

HCV 321 Positive Control 1.53E-13 -2.9217

HCV 138 Positive Control 1.20E-10 -2.6395

975 CD81 CD81 molecule ( Positive Control) 6.61E-07 -2.1275

7852 CXCR4 Chemokine (C-X-C motif) receptor 4 6.14E-05 -0.6285

5297 PI4KA Phosphatidylinositol 4-kinase, catalytic, alpha 0.0019 -3.5111

4233 MET Met proto-oncogene (hepatocyte growth factor

receptor)

0.0030 -0.8307

10298 PAK4 p21 protein (Cdc42/Rac)-activated kinase 4 0.0041 -0.5306

51447 IP6K2 Inositol hexakisphosphate kinase 2 0.0061 -0.6380

10188 TNK2 Tyrosine kinase, non-receptor, 2 0.0072 -0.7748

9212 AURKB Aurora kinase B 0.0131 -0.5962

2645 GCK Glucokinase (hexokinase 4) 0.0175 -0.6753

5586 PKN2 Protein kinase N2 0.0193 -0.6841

140767 NRSN1 Neurensin 1 0.0197 -0.3436

440275 EIF2AK4 Eukaryotic translation initiation factor 2 alpha

kinase 4

0.0203 -0.7116

659 BMPR2 Bone morphogenetic protein receptor, type II

(serine/threonine kinase)

0.0238 -0.6405

5298 PI4KB Phosphatidylinositol 4-kinase, catalytic, beta 0.0259 -0.6006

6198 RPS6KB1 Ribosomal protein S6 kinase, 70kDa, polypep-

tide 1

0.0274 -0.5495

1457 CSNK2A1 Casein kinase 2, alpha 1 polypeptide 0.0274 -0.6259

255239 ANKK1 Ankyrin repeat and kinase domain containing

1

0.0323 -0.6443

5605 MAP2K2 Mitogen-activated protein kinase kinase 2 0.0328 -0.6364

132158 GLYCTK Glycerate kinase 0.0340 -0.5697

114836 SLAMF6 SLAM family member 6 0.0345 -0.4253

30849 PIK3R4 Phosphoinositide-3-kinase, regulatory subunit

4

0.0367 -0.9770

80216 ALPK1 Alpha-kinase 1 0.0408 -0.8162

51678 MPP6 Membrane protein, palmitoylated 6 (MAGUK

p55 subfamily member 6)

0.0413 -0.5960

130497 OSR1 Odd-skipped related 1 (Drosophila) 0.0434 -0.5213

2324 FLT4 fms-related tyrosine kinase 4 0.0445 -0.5479

10256 CNKSR1 Connector enhancer of kinase suppressor of

Ras 1

0.0448 -0.3241

5584 PRKCI Protein kinase C, iota 0.0449 -0.3953

548596 CKMT1A Creatine kinase, mitochondrial 1A 0.0463 -0.6092
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Figure 3.4: Left: Distribution of clustering scores for Hepatitis C Virus (HCV)

and Dengue Virus (DV). In comparison with DV, cells infected by HCV showed

significantly higher clustering scores (Wilcoxon test P=4.8E-04). Right: Typical

examples of real position images of infected (filled) and non-infected cells (not filled).

HCV infected cells show cluster formation, while DV infected cells populated rather

the edges of cell colonies.

observed significantly higher clustering scores for cells infected with HCV (Wilcoxon

test P= 4.8E-04, see Figure 3.4 for the distribution of all scores for both data sets).

3.2 Characterization of the signaling interactions

We investigated eleven signaling pathways which had a high overlap with cytokine

receptors, such as the endocrine signaling, cell growth and death and the immune

system pathways (Table 2.1). A total of 663 proteins for which we had phenotypic

data were investigated. Among these proteins, we obtained 1927 and 676 known
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activation and inhibition interactions, respectively. Gene pairs for all sets (activat-

ing protein-protein interactions (Act-PPI), inhibiting protein-protein interactions

(Inh-PPI) and putative interactions with no information regarding activation or

inhibition (Undef-PPI)) were analyzed. We calculated a first set of features by ap-

plying our new concept for feature generation using Linear Discriminant Analyses

(LDAs). For each gene pair, genei and genej, the task of the classifier (LDA) was

to distinguish images of cells with knockdown of genei from images of cells with a

knockdown of genej. The performance of the LDAs served as a similarity criterion.

Features describing the performance of the LDAs ((1) LDA-performance features)

were calculated. Good performance resulted in e.g., high accuracy indicating that

the phenotypes of the two knockdowns were dissimilar hinting at an inhibiting inter-

action. In contrast, weak performance indicated similar phenotypes (hinting at an

activating interaction). As additional features, we employed (2) phenotype-fraction

features derived from counting cells according to the distinct phenotype classes of

interphase, mitosis and apoptosis, and the overall cellular proliferation rates; (3)

maxima features, i.e., the time-point and height of phenotype maxima (maxima

features were obtained from the original Mitocheck study, [98]); and (4) proximity-

features calculated from the distances to well-defined reference genes within a PPI

interaction network. These features are described in Section 2.2.5 and were used

to learn a second set of classifiers (Support Vector Machines, SVMs) to classify the

Act-PPI and Inh-PPI sets. Gene pairs from the Act-PPI and Inh-PPI sets were

trained for the classifiers and their performance was assessed in an independent val-

idation set. The trained machines (trained on the training sets) were used to define

a similarity measure (consistency score). This score was high for a pair of proteins if

their interactions with other proteins were of a similar nature (similar profile, with

both proteins predicted to exhibit either an activating or inhibiting interaction with

the other proteins) and low otherwise (showing a rather different activation/inhibi-

tion profile). Using this score, the performance was improved. The readily trained

classifiers were subsequently used to predict the nature of interactions from the set

of non-defined PPIs. Finally, we applied the consistency scores in a detailed analysis

of cytokine receptor signaling.
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3.2.1 Assembly of known activating, inhibiting and non-

defined interactions

Three (non-overlapping) sets of interactions were defined. Set no. 1 consisted of

well-known interactions that were described as activating. They were taken from a

literature-based data repository (the Kyoto Encyclopedia of Genes and Genomes,

KEGG [66, 67, 155]) and used as a reference, or gold standard for activating PPIs

(Act-PPI). Set no. 2 was taken as inhibiting PPIs (Inh-PPI) and comprised pairs

of genes encoding proteins for which an inhibiting interaction has been reported

(listed in KEGG). Set no. 3 consisted of putative interactions for which there is no

information regarding activation or inhibition (Undef-PPI, undefined PPI). This list

was assembled from computationally inferred high potential interactions and from

entries in a well-curated database (MetaCore, unspecific interaction). To further

restrict to proteins pairs that were very likely to interact, we used these potential

interacting pairs only if their protein domains were predicted to interact (protein-

domain interactions were obtained from a database [161]). With this, we selected

727 non-defined interactions, which served as a basis for new predictions of the

nature of their interactions (activation/inhibition).

3.2.2 Quantifying cell phenotypes

Quantitative profiles of knockdown gene images were generated using an automated

image processing system [55]. Each cell nucleus was segmented using Otsu thresh-

olding and characterized based on morphological descriptors, e.g., Haralick texture,

Zernike moment, granularity features, object-and edge-related features, grey-scale

invariants, and numbers of cells and pixels (Section 2.2.4). These features were used

to distinguish different phenotypes of cells. Each single cell was classified into one

of four morphological classes: interphase, apoptosis, mitosis, or shape (cluster of

cells) using a Support Vector Machine (SVM). The classifier learned to distinguish

the four phenotypic classes from trained morphological classes that were manually

annotated by an expert. Therefore, the fractions of each phenotype based on the

number of cells were computed for each knocked-down genes. Ordinary features,

e.g., cell proliferation and median and standard deviation of the cell intensities, were

also calculated. This feature is termed a “fraction feature”. In addition, we also
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generated other features, called LDA-performance, maxima, and proximity features

(Section 2.2.5), for our pairwise phenotypic features.

3.2.2.1 Cell phenotype classification

We assigned four classes of cellular phenotypes: (1) interphase, (2) mitosis, (3) apop-

tosis (cell death phenotypes), and (4) shape (clustered nuclei). The total number of

manually classified cell objects was 775. The number of cells per class is provided

in Table 3.5. The cell nuclei were characterized automatically from multicellular

images using the segmentation approach, and image features were extracted.

Table 3.5: Number of single cell images separated for training and testing.

Classes Training

set

Test

set

Total

Interphase 252 62 314

Mitosis 172 43 215

Apoptosis 89 22 111

Shape 108 27 135

Total 621 154 775

We split the available samples for each class randomly in training data and testing

data at a ratio 4:1, resulting in a training set size of 621 and a test set size of 154.

We trained an SVM classifier with a Gaussian radial basis function (RBF) kernel on

the training dataset. The samples of the test set were classified into the four classes,

i.e., interphase, mitosis, apoptosis, and shape. We repeated the classification step

applying ten times random sampling on the whole dataset. The performances of

the classification for the training and test sets are shown in Table 3.6 and Table 3.7,

respectively. We yielded an overall accuracy of the training set of 99.62% and of the

test set of 96.62%. Misclassifications mainly occurred between the classes mitosis

and apoptosis, which are difficult to seperate, even through human identification.
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Table 3.6: Confusion matrix for SVM classification of training sets based on Table

3.5. The overall accuracy is 99.62% (618.7/621).

True class
Classifier output

Accuracy
Interphase Mitosis Apoptosis Shape

Interphase 252 0 0 0 100.00%

Mitosis 0 172 0 0 100.00%

Apoptosis 0 2.1 86.9 0 97.64%

Shape 0.2 0 0 107.8 99.81%

Table 3.7: Confusion matrix for SVM classification of test sets based on Table 3.5.

The overall accuracy is 96.62% (148.8/154).

True class
Classifier output

Accuracy
Interphase Mitosis Apoptosis Shape

Interphase 61.1 0 0.9 0 98.55%

Mitosis 0 41.9 1.1 0 97.44%

Apoptosis 0 3 18.9 0.1 85.91%

Shape 0 0 0.1 26.9 99.63%

3.2.2.2 Characterization of the phenotypic similarity and dissimilarity

of cells using LDAs

For each of the 663 genes from the selected cytokine signaling pathways, cell images

of each pair of genes were compared. The approach of using LDAs to describe phe-

notypic similarity is exemplarily described for three sample knockdowns illustrated

in Figure 3.5. Two of the genes, frizzled family receptor (FZD7 ) and dishevelled

2 (DVL2 ), are closely functionally related. DVL2 is activated by FZD7 in the

Wnt signaling cascade [160]. Thus, cellular images following individual knockdown

of these two genes should exhibit phenotypic similarities. In contrast, SFRP1 (se-

creted frizzled-related protein 1) forms an inhibitory complex with the frizzled re-

ceptor and down-regulates Wnt signaling [22]. Hence, this should show a dissimilar
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Figure 3.5: Illustration of the characterization of phenotypic similarity. (a)-(c)

Images of cells in which SFRP1,DVL2 and FZD7, respectively, were knocked down.

(d) First two principal components (PC 1 and PC 2) of the features for cells in

which SFRP1 and DVL2 were knocked down; (e) first two principal components

of the features for cells in which DVL2 and FZD7 were knocked down. The dotted

lines indicate a linear separation.

cellular phenotype after knockdown. Indeed, after knockdown of FZD7 and DVL2,

cells displayed considerably irregular nuclear membranes (Figure 3.5 (b) and Figure

3.5 (c)). In contrast, after knockdown of SFRP1, cells did not show these irregular

patterns (Figure 3.5 (a)) and were therefore better distinguishable from cells after

FZD7 and DVL2 knockdown. We segmented the cells in all images and calculated

a broad range of texture, morphological and shape features for each cell. Feature

vectors were compared for cells in which SFRP1 and DVL2 were knocked down

(dissimilar images) and in which DVL2 and FZD7 were knocked down (similar im-

ages). Figure 3.5 (d) and Figure 3.5 (e) show the results from plotting the first two

principal components (the first two axes associated with the highest variance of the
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Figure 3.6: ROC curves of the classification using subsets of features. We trained

and tested the machines with different subsets of features according to the different

types of phenotypic similarity features: the phenotype fraction features, the LDA-

performance feature, the maxima features, and the proximity features. The figure

shows that the best performance was yielded using all features followed by the set

of proximity features.

data in the feature space). With respect to cells in which FZD7 was knocked down,

cells in which SFRP1 was knocked down were better separable from cells in which

DVL2 was knocked down. Hence, distinguishing knockdown of SFRP1 and DVL2

was easier for the discriminator (LDA), and the LDA therefore yielded better per-

formance values (accuracy: 80.7%) in comparison to DVL2 and FZD7 (accuracy:

70.6%). The LDA was applied to all combinations of pairs in our data and was used

to computed the accuracy, which was one of our similarity features.
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3.2.3 Performance of the identification of activating from

inhibiting PPIs

We trained 100 Support Vector Machines to distinguish the set of activating PPIs

(Act-PPI) from the set of inhibiting PPIs (Inh-PPI). Training and validation were

performed through cross-validation. To obtain different levels of stringency, a vot-

ing scheme was applied: when a classifier predicted an activating interaction, a

positive vote was contributed. Positive votes from all 100 trained SVM-classifiers

were summed to yield the predicted interactions and the number of positive votes

was used to define stringency. We were particularly interested in classifiers with

high stringency. At the highest stringency, remarkably good precision was yielded

when selecting interactions that were predicted unequivocally by all classifiers (pre-

cision: 92%; accuracy: 35%, sensitivity: 13%, specificity: 97%). Using a minimum

90% stringency yielded a high precision (89%) with a considerably high specificity

(87%); the sensitivity was 39%. Figure 3.6 shows the Receiver Operator Characteris-

tics for all features (area under the curve, AUC=0.76) and for the LDA-performance

features alone (AUC=0.57) as well as the phenotype-fraction features (AUC=0.58),

maxima-features (AUC=0.62) and proximity features (AUC=0.66). We obtained

similar results regarding the inhibiting PPIs as true positives and the activating

PPIs as true negatives. Using the consistency score (Section 2.2.9) as a filter, we

improved the precision of the classification performance considerably. This score

expressed the similar or dissimilar nature of two interacting genes with respect to

other genes. Consistency scores were calculated and assigned to all of the interac-

tion pairs in our data. To avoid a bias (overfitting) in computing the consistency

scores, we did not take the known interactions from KEGG into account in com-

puting these scores. At a high stringency of 80%, the precision was improved from

89% to 94% with 1187 selected activation and 392 selected inhibition interactions.

At a middle stringency of 50%, the precision was improved from 84% to 92% with

1177 selected activation and 323 selected inhibition interaction. At a low stringency

of 20%, the precision was improved from 81% to 90% with 1137 selected activation

and 249 selected inhibition interactions.

3.2.4 Validation with other PPI datasets

To validate the approach using an independent dataset, we compared our predic-

tions with the annotation of known interactions from a well-curated literature-based



76 Results

database (MetaCoreTM version 6.8, www.genego.com). We applied our method to

all possible gene pairs and calculated their consistency scores. To avoid overfit-

ting, we did not take known interactions from the investigated KEGG pathways

into account. We observed a significant enrichment of gene pairs from the database

for predicting activation (P -value = 3.1E-03) and for predicting inhibition (P -value

= 4.0E-04). We were interested in how our predictions relate to putative interac-

tions with a high confidence from computationally inferred and not experimentally

validated interaction predictions. We used predicted interactions with high confi-

dence scores (scores ≥ 900) from the Search Tool for the Retrieval of Interacting

Genes (STRING [136]). Interestingly, we found that these interactions showed a sig-

nificant enrichment (P -value = 4.6E-03). No significant enrichment for inhibiting

interactions was yielded. This raised two interesting aspects. The computationally

inferred interactions seemed to consist of considerably more activating functions,

and our consistency scores may be suitable for predicting new interactions (which

was beyond the scope of this study).

3.2.5 Predictions for non-defined PPIs

From the set of undefined PPIs (Undef-PPI) we selected gene pairs with a high

number of votes for activation/inhibition and high/low consistency. After discarding

interactions found in the literature database (MetaCore, “specific interaction”), 179

new predictions for activation and new 35 predictions for inhibition were yielded.

Note that we yielded predictions with good confidence more for activation which is

in accordance with the results presented in Section 3.2.3. All 214 predictions can

be found in Appendix A.

We then investigated these predictions in greater detail. Commonly, kinases acti-

vate their substrates, whereas phosphatases deactivate them. Hence, we performed

enrichment tests for these protein groups to validate our predictions and found con-

siderably higher enrichment of kinases and kinase binding proteins in the predictions

of activating interactions (for activation, kinase activity P -value = 1.9E-04, and ki-

nase binding P -value = 2.8E-04; for inhibition, kinase activity P -value = 0.03, and

no significance was found for kinase binding). In addition, we identified signifi-

cant enrichments of phosphatase activities and phosphatase-binding proteins only

in the predictions of inhibiting activations (phosphatase binding P -value = 0.02, py-

rophosphatase activity P -value = 0.01, calcium dependent protein serine/threonine
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phosphatase activity P -value = 0.007). The results of all of the enrichment tests are

presented in Appendix B. We then analyzed the quality of the predicted interactions

of the kinases. We compared the potential kinase activities of our predictions for

activation with all non-defined interactions (Undef-PPIs). Quantitative mass spec-

trometry has been employed in obtaining a massive number of site- and context-

specific in vivo phosphorylation events [15, 23, 81, 84, 85, 93, 138, 140]. Using these

data, computational tools have been developed to predict kinase phosphorylation

events [78, 83, 96, 159] among which we used one of them which contained the

most of our investigated kinases [159]. We found significant enrichment of predicted

phosphorylation events in our predictions of kinases interacting with their potential

substrates (P -value = 0.015, ratio of our predictions to predicted phosphorylation

events: 1.24, other Undef-PPIs: 0.67) and this confirmed our results.

Additionally, we compared our predictions with the literature. Regarding the

top twenty predictions for activation, we found two pairs of genes encoding pep-

tides composing the phospholipase C beta (PLC-β) complex, which are therefore

positively interacting. PLC-γ2 was predicted to positively interact with HCK and

VAV1. This prediction is in accordance with the literature, as HCK was shown to

phosphorylate PLC-γ2 in response to activation of cell surface receptors [80], and

VAV family proteins positively regulated PLC-γ isoforms downstream of ITAM (im-

mune receptor tyrosine- based active motif) receptors [6, 90, 113, 116, 143, 144]. We

found that SRC positively interacts with NFKB and HCK in accordance with an

interesting study addressing an epigenetic switch in which constitutively activated

SRC activates NFKB, linking inflammatory pathways to oncogenic cell transforma-

tion [62]. HCK and SRC are part of the SRC family of kinases (SFKs) and are able

to carry out mutual phosphorylation [101]. As evidence of the predictions regarding

inhibiting interactions, we found, e.g., SHP1 to negatively regulate KIT receptor ty-

rosine kinases [86, 106] and CBLB to negatively regulates CRKL signals in response

to TCR stimulation [167].

3.2.5.1 The best prediction results were yielded for interactions with

cytokine receptors

We were interested in how our predictions were suited for well-defined subgroups of

the signaling network. For this, we investigated three major groups: receptors that

initiate the signaling processes in the cell, central (highly connected) proteins in the
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Figure 3.7: Clustering dendrogram for the cytokine receptors. Three groups of

clusters were identified: a group of interleukin receptors (group 1), a subgroup of

chemokine receptors (group 2) and the rest comprising of interleukin and chemokine

receptors.

pathways, and transcription factors as signal destinations. We selected interactions

containing at least one node of these groups. A considerably better performance

was yielded for the receptors (AUC = 0.92). The group of highly connected pro-

teins showed an average performance (AUC = 0.87), and the transcription factors
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performed more poorly (AUC = 0.51), which may reflect their promiscuous func-

tions. The result for the receptors could be improved by restriction to cytokine

receptors (AUC = 0.97). In the following section, we describe the investigation this

subgroup in more detail.

3.2.5.2 A clustering analysis reveals a new subgroup of chemokine re-

ceptors

We employed the consistency scores of the phenotypes and performed unsupervised

hierarchical clustering of cytokine receptors. Figure 3.7 shows the results of this

analysis. The clustering dendrogram shows three major groups: group 1 mainly

consisted of interleukin receptors, group 2 of a subgroup of chemokine receptors (also

denoted as the CCR-subgroup hereafter), and group 3 included the remainder of the

investigated cytokine receptors. To confirm this clustering, we examined how likely

potential interactions within these groups could be formed, employing the informa-

tion on protein-domain interactions. Interestingly, we found a striking enrichment of

domain interactions in the group of chemokine receptors (P -value = 1.8E-09). This

was the only group for which any protein was predicted to mutually interact with any

other protein in the group (ten mutual interactions). Group 3 showed a much lower,

but still significant, enrichment of these interactions (P -value = 0.01, only 42 out of

211 possible interactions). In contrast, the group of interleukins (group 1) showed

no enrichment of these protein-domain interactions. Subsequently, we focused our

investigations on the detected novel subgroup of five chemokine receptors, i.e., the

subgroup of CCR1, CCR3, CCR4, CXCR4 and CXCR6. Clustering all chemokine

receptors (using only the consistency scores of the chemokine receptors) confirmed

the clustering of the phenotypes of the identified subgroup (Figure 3.8). We further

validated that these five CCR genes form a subgroup through a co-expression anal-

ysis. We used a large set of 5896 gene expression profiles from microarrays (from 76

different studies from the CAMDA 2007 competition). We compared the correlation

of the expression levels of pairs within the subgroup of CCRs with the correlation of

pairs within the group of other CCRs. We found a significantly higher correlation

in our subgroup of CCRs (P -value = 2.3E-03) demonstrating the close relationship

of the CCRs in this subgroup compared to the other CCRs.
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Figure 3.8: Clustering dendrogram for the group of chemokine receptors. The

subgroup of chemokine receptors consisting of CCR1, CCR3, CCR4, CXCR4 and

CXCR6 clustered together.

3.2.5.3 Investigation of gene groups functionally related to chemokine

receptor signaling supports the identification of the new sub-

group of CCRs

To elucidate the functional interplay between chemokine receptors and their direct

upstream and downstream interactors, we selected the following gene groups: the

chemokine receptors themselves; their potentially activating ligands; Jak1, Jak2,

Jak3 and Tyk2 as their direct downstream signaling targets activating the Jak/-

Stat signaling cascades [127]; G-proteins mediating the PI3kinase/Akt signaling of

chemokines (chemokines are G-protein coupled receptors, [157]); and the members
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Figure 3.9: Functional interplay of chemokine receptors. This figure shows the func-

tional interplay of chemokine receptors and their direct upstream and downstream

interactions. The thickness of the arrows is related to the consistency score between

the groups.

of the SOCS family, which inhibit cytokine signaling [162]. To investigate how our

subgroup of CCRs is distinguished from the other CCRs, we partitioned the inves-

tigated CCRs into two groups: our subgroup and the rest of CCRs. To determine

the mutual phenotypic similarity between the investigated groups, we averaged the

consistency scores of gene pairs within the groups and between the groups. Figure

3.9 shows the results of this analysis. Thick arrows indicate high consistency, which

thick inhibition arcs indicate very inconsistent phenotypes. We found a high con-

sistency within each group (e.g., CCR-subgroup - CCR-subgroup: 0.94, CCR-rest -

CCR-rest: 0.59; in comparison, the average consistency of all gene pairs investigated

was 0.39). The pairs between all of these groups (except the group of SOCS genes)

also showed a higher similarity of phenotypes when compared to the average of all

pairs of investigated genes (Table 3.8). As expected, the protein pairs between the
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SOCS family member and their target groups showed very low consistency scores,

reflecting their inhibitory nature. Interestingly, the pairs including genes from the

CCR subgroup exhibited significantly higher consistency scores when compared to

the respective pairs containing genes from the group of the rest of CCRs (CCR-

subgroup - Ligands vs. CCR-rest - Ligands: P -value = 3.1E-04; CCR-subgroup

-Jaks vs. CCR-rest - Jaks: P -value = 1.08E-12; CCR-subgroup - G-protein vs.

CCR-rest - G-protein: P -value = 3.41E-07), supporting our hypothesis that they

are particularly strongly related.

3.2.5.4 Knockdown of CCR subgroup genes results in higher cell prolif-

eration

We found the CCR subgroup to be distinctively different from the rest of CCRs.

We then wanted to obtain insight into how they are different. The maxima features

have been well proven to identify and characterize genes related to cell cycle events,

such as mitotic delays [98]. We used the maxima features in comparing the genes of

the CCR-subgroup with the rest of investigated CCR genes. Interestingly, cells in

which genes of the CCR-subgroup were knocked down showed significantly higher

Table 3.8: Mean of consistency score between the CCR-subgroup and other groups.

Mean of con-

sistency score

CCR-subgroup Ligands 0.49

CCR-subgroup Jaks/Tyk 0.86

CCR-subgroup SOCSs 0.21

CCR-subgroup G-Proteins 0.59

The rest of CCRs Ligands 0.47

The rest of CCRs Jaks/Tyk 0.59

The rest of CCRs SOCSs 0.38

The rest of CCRs G-Proteins 0.48

CCR-subgroup CCR-subgroup 0.95

The rest of CCRs The rest of CCRs 0.52
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proliferation rates compared to when the rest of CCRs were knocked down (P -

value = 1.26E-03). Additionally, regarding all investigated CCRs showed that this

yielded higher proliferation in comparison to all other investigated genes. Still, for

our subgroup, this effect was considerably stronger apparent (significance of higher

proliferation of the CCR-subgroup in comparison to all other genes: P -value =

3.73E-06; in contrast, significance of the rest of CCRs versus all investigated genes:

P -value = 0.523). We validated these results using an independent public repository

produced from a large scale knockdown screen of 72 cell lines from breast, ovarian

and pancreas tumors [73]. This screen contained the essentiality information for

approximately 16,000 genes, including nearly all (98.6%) of our investigated genes.

We argued to have a validation of proliferative influence of a knocked-down gene, if

we obtained a depletion of essentiality hits in this screen, when comparing our gene

list with the rest of our investigated genes. We again performed two comparisons; we

compared 1) our CCR-subgroup with the rest of CCRs, and 2) our CCR-subgroup

with the rest of all investigated genes. Both comparisons confirmed the results,

comparison CCR-subgroup versus the rest of CCRs: P -value = 4.0E-05, genes from

our subgroup were experimentally proven to be 10 times essential and 350 times non-

essential in the 72 cell lines (ratio: 0.029), whereas genes from the rest of CCRs were

proven to be 39 times essential and 321 times non-essential (ratio: 0.12); comparison

CCR-subgroup versus the rest of all investigated genes: P -value = 0.0055, the rest

of all investigated genes showed 2894 times to be essential and 44,194 times to be

non-essential (ratio: 0.065) in the data of Koh and coworkers [73]. These results

confirmed our finding that genes from our CCR subgroup may induce proliferation

after knockdown.



Chapter 4

Summary and discussion

4.1 Summary and discussion

In this thesis, I firstly described a new alternative approach to detect host factors

(human proteins) involved in HCV infection relying on a fluorescence microscopy

imaging of RNAi knockdown screen. The clustering score based on the K -function

and was defined to identify the clustering of infected cells. Through the investigation

of the alteration of clusters of infected cells after perturbating a gene, we identified a

set of potential genes (hits) from our analysis. We compared our targeted host fac-

tors with hits from experimental primary and secondary screens, yielding promising

gene products that might suit for drug targets. Secondly, I described a new devel-

opment that based on a machine learning system to characterize the activities of

protein-protein interactions from RNAi of HeLa cells. Both published phenotypic

descriptors and our own developments were calculated and used for classifications

of the activities of protein-protein interaction. A consistency score was established

to describe the nature of two interacting proteins and supported to identify the

confidence of the predictions. We yielded lists of activation and inhibition predic-

tions. The lists of characterized interactions contributed to our understanding of

signal transduction. Additionally, a subset of chemokine receptors was revealed and

might yield new insights in chemokine signaling which plays an important role in

inflammation and infectious diseases.
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4.1.1 Clustering of cells infected with Hepatitis C Virus

We applied a clustering analysis method and statistical analyses of intensity readouts

to detect host factors involved in HCV infection. Instead of observing the knockdown

of viral components, we focused on specific proteins in the host cell. Targeting host

factors that were relevant to viral replication led to distinctively lower clustering of

the infected cells. Specifically, all three positive controls showed significantly low

clustering scores. Additionally, we obtained hits showing significantly low viral GFP

intensities in the primary screen and hits from a secondary screen using a luciferase-

based readout. Computation of the intersection of hits from all three approaches

yielded five genes to be considered as attractive targets against HCV infection.

Infected cells in the experimental screens showed non-random clustering distribu-

tions which has been caused by the spreading of the virus infection. We established

a clustering score that was based on the K -function, a distance-based method. The

K -function enables to quantify clustering, random, or dispersion distribution at

many distances. It allows observing a combination of distributions, e.g., clustering

at small scales and regularity at large scales. The combination effects can be ob-

served as a characteristic pattern in a plot of the K -function compared with the null

hypothesis determined from a random distribution. Using the K -function, we did

not have to pre-define the number of clusters or neighbouring cells before the cal-

culation likes the other methods, as e.g., methods basing on a k -nearest neighbour

approach. However, one parameter that we needed to determine for calculating the

clustering score was the maximum range of our investigated circular radius from a

cell. This parameter depends on the spreading characters of data. We varied the

maximum range of the radius and selected the optimal one that showed the optimal

correlation coefficients between our clustering score and the intensity values from

the experimental screens.

We also applied an alternative clustering method, the quadrat analysis, to mea-

sure the infection phenomena of the cell distribution. For this comparison we chose

the quadrat analysis method, as similar to the K -function. The quadrat analysis has

also the advantage to analyze a distribution statistically in comparison to any distri-

butions. However, the results from our analysis after applying the quadrat analysis

showed that the correlation between the clustering score computed from the quadrat

analysis and the intensity scores from primary and secondary experimental screens
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were much lower than using the K -function. An explanation for this is that the

quadrat analysis needs to divide the studied area into a set of grid squares, followed

by computing the variability of numbers of points in the grids by a coefficient index

that is the variance-mean ratio. If this ratio is nearly to one, the distribution is a

random distribution. A ratio greater than one indicates a cluster distribution while

a ratio lower than one indicates a uniform distribution. It turned out that the size

of the grids is crucial for this. We tried a variety of quadrat sizes. If grid size is

too small, there are a lot of empty grid and the statistical test, variance-mean ratio,

could not work successfully. If the grid size is too large, it is difficult to detect a

cluster distribution of cells. With these limitations, the grid analysis had a bias in

detecting the distribution of the cells on our screens.

The homogeneous K -function is commonly used for identifying the distribution

of point patterns. The function is computed based on a constantly estimated density

for the whole screen. However, for more realistic distributions, the inhomogeneous

K -function has been used for our analysis. The inhomogeneous K -function has

been used in a wide variety of scientific applications, ranging from the analysis

of the clustering behavior of infected habitants in a country [41] to cell biological

concerns such as studying the clustering of integrins when cells sense the extra

cellular matrix [102]. The inhomogeneous K -function has the same principle as the

homogeneous K -function but additionally considers the variation of the intensity

over the studied areas. This investigation corresponds to our problem that the

infections of cells varied in the different area of the screens which are naturally

affected by the spreading of viral particles from a cell to its neighbours. Hence, the

inhomogeneous K -function was more suitable for our problem. This explanation

was supported by our experimental results which showed the correlation coefficients

of the clustering scores for the inhomogeneous K -function and the intensities of

the experimental screens were relatively higher than those correlations using the

homogeneous K -function. At the maximum radius range of 35% of the images,

the correlation coefficients of the clustering scores from the inhomogeneous and

homogeneous K -functions with the primary screens were 0.55 and 0.36, respectively.

These results supported that the inhomogeneous K -function is more suitable for our

application.

We applied established statistical normalization techniques and yielded 30 candi-

date targets from our clustering methods. When we compared our candidate targets
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with the hits from the primary and secondary screens, we yielded five overlapping

proteins. With this, we recovered known host factors and new candidate genes. Be-

sides two well-known host factors that are relevant for HCV replication (CD81 and

PI4KA) and one host factor that has been described as phosphorylating an HCV

protein, we found two new interesting candidates (FLT-4 and SLAMF-6). FLT-4 is a

membrane protein and therefore easy targetable by immune cells. It has interesting

characteristics. It was observed that it was suited for a retrovirus when genomically

incorporated [61]. It will be a challenge to verify FLT-4 experimentally. Then, an

important step will be the drug design. To validate the results, gene knockdown

experiments may be applied to other liver cell lines that are permissive for HCV

replications to observe the infection efficiency of the same knockdown genes.

We used the K -function for observing the clustering behavior of individual in-

fected cells in a cellular in vitro assay. With this clustering analysis method, we

were able to track the infection of populations in a systematic way and, thus, to

detect host factors for viral replication. In addition to apply the K -function to de-

tect relevant host factors as shown in this study, it may be applied to systematically

investigate the infection behavior of different virus families. Snijder and co-workers

observed principal differences in virus entities to populate cell samples [126]. The

K -function may be used in a follow up analysis of the present study through a quan-

titative clustering analysis supporting a novel taxonomy for virus strains based on

their population characteristics in the host. For example, it is known that Dengue

virus infects the edges of islets in cell colonies and therefore does not exhibit a clus-

tering tendency like HCV does [126]. In an initial trial, we observed distinct, higher

clustering scores for cells infected with HCV in comparison with cells infected by

the Dengue virus.

In summary, the application of a clustering analysis method for estimating viru-

lence in cellular assays is general, and this method can be used in other screens to

observe infectious propagation in cellular populations. It may also be used to per-

form a quantitative and systematic analysis of the specific spreading and populating

behavior of distinct virus families, which may have an impact on the discovery of

their specific use of host cells.
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4.1.2 Characterization of signaling interactions

We developed a machine learning-based approach for characterizing the activi-

ties of protein-protein interactions. The gold standard of the class labels in the

classifications was collected from the KEGG database, which is a comprehensive

database providing the interacting information for each interaction with evidences

from the literature. A systematic classification was established for distinguishing

activation and inhibition interaction using pairwise phenotypic descriptors of gene

perturbation. Only a few sets of basic phenotypic similarity features did not yield

a good protein-protein activity characterization. In contrast, integrating these

features with other developed features yielded a far more comprehensive model.

We mainly got our features from four groups comprising the phenotype-fraction

features, LDA-performance features, maxima features, and proximity features.

Feature analyses

The performance of the classifiers using each single set of the features were mea-

sured. In comparison to the other feature sets, the proximity features yielded

the best performance (AUC of 0.66). This makes sense because the proximity

features employed the distances computed from both the LDA-performance and

the Maxima features. This set of features may contain more variety of informa-

tion for the classification. Another possible reason might be that the proximity

features increased the dimension of the distance features for an interaction. In-

stead of computing a distance of a protein pair directly, the distance between

these two proteins were computed from the distance from each protein to other

distinct proteins. The LDA-performance is an important feature even it showed a

very low performance (AUC of 0.57) when solely used. When we discarded this

LDA-performance feature from our analysis (also discarded from the Proximity

features), the overall performance was decreased from the AUC of 0.76 to the AUC

of 0.72. The result was similar to the Phenotype-fraction features that the overall

performance was decreased to the AUC of 0.73. Therefore, we combined all feature

sets for the machine learning system. All feature sets were used for training and

testing our machine learning approach using SVMs with a voting scheme technique.

An advantage of the technique is the ability to change the stringency parameter

to increase precision and to avoid losing potential candidates. The comprehensive

model from the machines was used to further predict other interacting protein pairs.
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Voting scores and consistency scores

Apart from the voting score for defining the confidence of each predicted inter-

action, we additionally computed the consistency score for each interacting pair.

The consistency score was calculated to identify how likely an interaction processes

an activating or inhibiting signal. The consistency score was rigorously computed

for an interacting pair, avoiding any biases which could have occurred from the

known class labels and trained machines. We used this consistency score to filter

out interactions with ambiguous predictions and this improved the precision 7.2%

on average. However, a limitation of computing this consistency score is the number

of all proteins in the observed pathway. Due to the fact that the score is computed

from the percentages of all proteins showing consistent or inconsistent activities with

the two proteins for which the prediction is made, higher numbers of proteins yield

more reliability. If the number of all proteins in the analysed system is too less, the

consistency score might not be appropriate.

Additionally, the performance of the machine learning system to classify the ac-

tivities of protein-protein interactions to be an activating or inhibiting signal is also

important for computing the consistency score. The higher the performance of the

classification system to classify the activities is, the more precise these predicted

activities become to investigate the consistent (or inconsistent) interaction of a pro-

tein pair to other proteins. To obtain a good performance for the classification, the

number of samples for training the system is one of the important factors. Gener-

ally, many pathways do not provide enough information of the interacting activities.

We focused on signal transduction pathways which provided us with high numbers

of activating/inhibiting interactions for the machine learning system. The results

showed that our systematic classification could be well performed to classify between

activating and inhibiting interactions and used in the calculation of the consistency

score.

The two scores (from the voting scheme and the consistency score) provided

additional information for more precise identification of potential activation and

inhibition interactions. Lists of the predicted 179 activations and 35 inhibitions

with voting scores and consistency scores were produced. We validated the rele-

vance of our consistency scores using other independent databases through GSEA

enrichment tests. The results yielded a significant enrichment of well-defined,

known interactions. In the application of the cytokine receptor analysis, we found
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a subset of chemokine receptors, consisting of CCR1, CCR3, CCR4, CXCR4 and

CXCR6, that showed a significantly high correlation in our co-expression analysis

and their relevance is further discussed in the next section.

Application for Cytokine signaling

Cytokine receptors act as dimers or even higher order oligomers [76, 94]. We went

into the literature to find evidence of common action of the gene products of the

detected subgroup. Seidl et al. [122] investigated the gene expression profiles of

chemokine receptors using real-time PCR in melanocytes, melanoma cell lines and

primary and metastatic melanoma. They found the pair of CXCR4 and CCR1

to be consistently expressed in all of these different melanoma cells, and in the

present study, CXCR6 was found to be expressed de novo in primary melanomas

and melanoma metastases. Among chemokine receptors, CXCR4 and CXCR6 have

been reported in several studies to play a predominant role in the development and

progression of solid tumors. CXCR4 and CXCR6 interact with tumor cells by acti-

vating the AKT/mTor signaling pathway [32]. Furthermore, CXCR4 is also known

to activate cancer progression through the JAK/STAT pathway [148], and CXCR4

is associated with a poor prognosis in cervical cancer patients [72]. CXCR4 and

CXCR6 are highly expressed in gynecological tumors and in inflammation associ-

ated tumors, respectively, and both play important roles in the growth, prolifer-

ation, invasion, and metastasis of epithelial ovarian carcinomas [50]. CXCR6 has

been found to be highly involved in the metastasis and progression of several types

of cancer [32]. The development and aggressiveness of prostate cancer involve the

CXCL16/CXCR6 axis [51]. CXCR6 and CXCR4 are expressed in similar propor-

tions in malignant prostate tumors and benign prostate hyperplasia tissue, and both

are highly expressed in malignant tissue [60]. Our results demonstrate the common

phenotypes of CXCR4 and CXCR6. CCR1, CCR3, CCR4 and CXCR4 were re-

ported to function in human platelets activated in patients infected with human

immunodeficiency virus (HIV) and may be commonly involved in inflammatory or

allergic responses [24]. Interestingly, in HeLa cells, it was shown that CXCR4 was

cross-desensitized by a ligand for CCR4. In chemotaxis, CKLF1 is an activator of

CCR4, and SDF1 is an activator of CXCR4. CKLF1 could inhibit the effect of

SDF1, which was mediated by CCR4, as SDF1 could be rescued, acting as an acti-

vator of chemotaxis after blocking CCR4 [168]. Together with our finding of similar

knockdown phenotypes of these receptors, we suggest that both receptors may signal
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through very similar downstream cascades. This may be potentiated for one receptor

when the other receptor is absent, leading to the same phenotypic shape, regardless

of which of the receptors is expressed. Taken together, these results suggest that the

member of our subgroup of chemokine receptors exhibit similar functions, and they

may even follow similar signaling routes, leading to similar phenotypes following

being knockdown.

In conclusion, we developed a machine learning-based approach for predicting

interactions involved in the activation or inhibition in the signal transductions. The

machines integrated all our developed and published pairwise phenotypic descrip-

tors. We established a consistency score which can be applied to identify the nature

of two interacting proteins. Our developed approach is general and can be broadly

applied to a larger signaling network. This approach can be exploited to avoid

experimental limits of time and cost and might also be applied to the analyses of

human disease pathways and networks.

4.2 Outlook

Investigation phenotypes from double knockdowns of infected cells associated with

known host factors compared to others may reveal insight with respect to identify-

ing missing cooperative host factors. With this, machine learning can be applied to

recognize infected cell characteristics and perform combined host factor predictions.

Integrating the cell characterization information and the host-pathogen interaction

network may reveal a set of host cofactor proteins that the virus need for the repli-

cation. RNAi screens using time-lapse imaging of cells infected with the virus may

explore different temporal patterns of infected cells. Tracking the clustering of cells

in different time steps may reveal the optimal functional time point for which the

virus requires the host factors.

Signaling networks are highly complex. Thus, understanding the system requires

a global view of cellular networks. In characterizing the activities of protein-protein

interactions, it will be a challenge to integrate all available and reliable protein-

protein interaction information from all databases. It will also be a challenge to

apply our method to all possible signaling pathways. This application will aid in

achieving improved insight into the whole system of a human cell. Validating the
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predicted activation and inhibition interactions with protein structures will also be

useful to obtain additional evidence of these interactions. In terms of the pairwise

phenotypic descriptors, similarities of protein sequences are interesting additional

features to explore. Gene ontology may provide hints to identify proteins that are

related in terms of function. Additionally, Tan et al. [138] reconstructed a conserved

phosphorylation (kinase-substrate) network. These phosphorylation events could be

included in our model. Furthermore, we can apply our method in a smaller kinome-

wide RNAi screen to observe which kinases are activating and inactivating for a

given specific treatment or condition.



Appendix A

List of predicted activation and

inhibition interactions

Table A.1: List of predicted activation interactions with high vote scores (900-

1000) ranked with consistency scores (higher than average); interactions are taken

from the STRING database with predicted Domain-interaction database and specific

MetaCore interactions are discarded.

Gene

ID1

Gene

ID2

Gene

Name 1

Gene

Name 2

Votes Consistency

score

6714 4790 SRC NFKB1 1000 0.9950

6714 8440 SRC NCK2 998 0.9903

6714 10746 SRC MAP3K2 999 0.9892

23236 5336 PLCB1 PLCG2 989 0.9892

1230 10663 CCR1 CXCR6 1000 0.9834

658 7046 BMPR1B TGFBR1 975 0.9788

5332 23236 PLCB4 PLCB1 1000 0.9664

1499 7046 CTNNB1 TGFBR1 1000 0.9627

4171 4172 MCM2 MCM3 913 0.9604

6714 3055 SRC HCK 1000 0.9574

93 658 ACVR2B BMPR1B 902 0.9534

5970 4790 RELA NFKB1 958 0.9513

3717 4790 JAK2 NFKB1 995 0.9468

3055 5336 HCK PLCG2 998 0.9444

6714 5604 SRC MAP2K1 995 0.9444

Continued on next page...
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Table A.1 – continued from previous page

Gene

ID1

Gene

ID2

Gene

Name 1

Gene

Name 2

Votes Consistency

score

1232 10663 CCR3 CXCR6 1000 0.9436

5336 7409 PLCG2 VAV1 949 0.9436

658 657 BMPR1B BMPR1A 965 0.9384

5331 23236 PLCB3 PLCB1 992 0.9375

6714 5582 SRC PRKCG 987 0.9266

5332 5336 PLCB4 PLCG2 985 0.9233

93 92 ACVR2B ACVR2A 1000 0.9199

6714 5880 SRC RAC2 951 0.9151

2066 2065 ERBB4 ERBB3 937 0.9139

6360 10563 CCL16 CXCL13 967 0.9126

2921 10563 CXCL3 CXCL13 999 0.9101

8797 4790 TNFRSF10A NFKB1 999 0.9047

6352 10563 CCL5 CXCL13 974 0.8931

2921 6366 CXCL3 CCL21 989 0.8900

6366 2919 CCL21 CXCL1 994 0.8836

92 657 ACVR2A BMPR1A 916 0.8819

6772 4790 STAT1 NFKB1 998 0.8768

939 7186 CD27 TRAF2 1000 0.8714

8440 8976 NCK2 WASL 959 0.8714

6387 10563 CXCL12 CXCL13 966 0.8677

6363 10563 CCL19 CXCL13 914 0.8600

5331 5336 PLCB3 PLCG2 998 0.8520

5608 57551 MAP2K6 TAOK1 996 0.8456

4690 6714 NCK1 SRC 997 0.8412

958 7186 CD40 TRAF2 999 0.8345

6360 6366 CCL16 CCL21 913 0.8345

408 409 ARRB1 ARRB2 994 0.8298

3055 9564 HCK BCAR1 997 0.8251

6387 6366 CXCL12 CCL21 945 0.8251

6654 6714 SOS1 SRC 1000 0.8226

4792 7186 NFKBIA TRAF2 995 0.8177

5608 25 MAP2K6 ABL1 974 0.8100

2268 3055 FGR HCK 966 0.8074

5155 5154 PDGFB PDGFA 947 0.8074

5584 4790 PRKCI NFKB1 974 0.8048

6654 8440 SOS1 NCK2 1000 0.7994

1436 9564 CSF1R BCAR1 996 0.7966

Continued on next page...
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Gene

ID1

Gene

ID2

Gene

Name 1

Gene

Name 2

Votes Consistency

score

4772 4775 NFATC1 NFATC3 991 0.7938

1499 5590 CTNNB1 PRKCZ 950 0.7938

2268 6714 FGR SRC 1000 0.7853

6714 5590 SRC PRKCZ 994 0.7853

4790 5590 NFKB1 PRKCZ 976 0.7824

998 5608 CDC42 MAP2K6 979 0.7734

6352 5473 CCL5 PPBP 993 0.7673

1237 10663 CCR8 CXCR6 948 0.7641

6367 6376 CCL22 CX3CL1 947 0.7610

3554 4790 IL1R1 NFKB1 923 0.7610

6366 6363 CCL21 CCL19 993 0.7578

6885 659 MAP3K7 BMPR2 995 0.7545

5196 5473 PF4 PPBP 943 0.7545

6714 1398 SRC CRK 985 0.7512

1237 1232 CCR8 CCR3 967 0.7512

2268 5336 FGR PLCG2 947 0.7446

3716 5608 JAK1 MAP2K6 998 0.7412

8312 7046 AXIN1 TGFBR1 954 0.7378

2185 5582 PTK2B PRKCG 939 0.7378

6352 6367 CCL5 CCL22 996 0.7343

3572 3055 IL6ST HCK 953 0.7343

6654 3055 SOS1 HCK 982 0.7272

1237 1230 CCR8 CCR1 968 0.7237

2921 2919 CXCL3 CXCL1 922 0.7237

6654 5296 SOS1 PIK3R2 1000 0.7200

6352 6360 CCL5 CCL16 999 0.7164

1432 6714 MAPK14 SRC 1000 0.7089

998 5880 CDC42 RAC2 989 0.7051

5321 5604 PLA2G4A MAP2K1 1000 0.7013

4214 4790 MAP3K1 NFKB1 991 0.7013

1432 2057 MAPK14 EPOR 948 0.7013

92 4092 ACVR2A SMAD7 998 0.6975

3572 7409 IL6ST VAV1 960 0.6975

2921 5473 CXCL3 PPBP 942 0.6975

6774 51701 STAT3 NLK 954 0.6936

994 995 CDC25B CDC25C 919 0.6856

8795 4790 TNFRSF10B NFKB1 993 0.6816

Continued on next page...
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Gene

ID1

Gene

ID2

Gene

Name 1

Gene

Name 2

Votes Consistency

score

1432 1499 MAPK14 CTNNB1 999 0.6692

9180 3572 OSMR IL6ST 970 0.6608

6372 5473 CXCL6 PPBP 939 0.6565

4214 5970 MAP3K1 RELA 966 0.6522

5584 998 PRKCI CDC42 951 0.6434

324 699 APC BUB1 974 0.6390

2268 9564 FGR BCAR1 970 0.6390

3627 5196 CXCL10 PF4 964 0.6390

3716 3055 JAK1 HCK 994 0.6345

659 4091 BMPR2 SMAD6 927 0.6345

2064 7046 ERBB2 TGFBR1 984 0.6253

3716 4296 JAK1 MAP3K11 962 0.6253

6654 5880 SOS1 RAC2 994 0.6207

1271 3572 CNTFR IL6ST 993 0.6207

5604 6776 MAP2K1 STAT5A 990 0.6207

3815 7409 KIT VAV1 939 0.6113

1432 5604 MAPK14 MAP2K1 925 0.6113

3627 6366 CXCL10 CCL21 923 0.6113

6774 4790 STAT3 NFKB1 992 0.6066

1432 4215 MAPK14 MAP3K3 991 0.6018

6352 6363 CCL5 CCL19 963 0.6018

5580 5604 PRKCD MAP2K1 960 0.6018

25 9564 ABL1 BCAR1 951 0.6018

3717 4792 JAK2 NFKBIA 995 0.5969

5576 6195 PRKAR2A RPS6KA1 979 0.5969

3716 5604 JAK1 MAP2K1 980 0.5920

5473 2919 PPBP CXCL1 925 0.5920

5295 4790 PIK3R1 NFKB1 990 0.5821

6360 6363 CCL16 CCL19 983 0.5821

6352 6372 CCL5 CXCL6 981 0.5821

5295 23236 PIK3R1 PLCB1 956 0.5821

5473 6363 PPBP CCL19 953 0.5821

6363 2919 CCL19 CXCL1 947 0.5821

5604 7531 MAP2K1 YWHAE 925 0.5771

4214 6885 MAP3K1 MAP3K7 1000 0.5720

6654 2549 SOS1 GAB1 968 0.5720

6352 6361 CCL5 CCL17 907 0.5720

Continued on next page...
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Gene

ID1

Gene

ID2

Gene

Name 1

Gene

Name 2

Votes Consistency

score

1432 3055 MAPK14 HCK 949 0.5669

9133 4342 CCNB2 MOS 932 0.5669

4690 5747 NCK1 PTK2 998 0.5618

5335 5336 PLCG1 PLCG2 993 0.5618

8569 5321 MKNK1 PLA2G4A 945 0.5566

1432 3716 MAPK14 JAK1 932 0.5566

2064 5604 ERBB2 MAP2K1 977 0.5513

3627 10563 CXCL10 CXCL13 963 0.5513

4214 4296 MAP3K1 MAP3K11 934 0.5513

5576 5566 PRKAR2A PRKACA 997 0.5407

10681 5308 GNB5 PITX2 990 0.5407

4914 25 NTRK1 ABL1 981 0.5353

5770 1436 PTPN1 CSF1R 975 0.5353

6654 4690 SOS1 NCK1 967 0.5353

5604 6774 MAP2K1 STAT3 984 0.5299

6370 2919 CCL25 CXCL1 939 0.5299

998 4690 CDC42 NCK1 994 0.5244

5473 6370 PPBP CCL25 951 0.5244

5576 5577 PRKAR2A PRKAR2B 987 0.5189

4091 657 SMAD6 BMPR1A 910 0.5134

658 7048 BMPR1B TGFBR2 964 0.5078

6372 6366 CXCL6 CCL21 920 0.5078

2057 6772 EPOR STAT1 908 0.5078

1398 5747 CRK PTK2 903 0.5078

658 4089 BMPR1B SMAD4 999 0.5022

8408 9706 ULK1 ULK2 984 0.5022

1432 3718 MAPK14 JAK3 973 0.5022

2921 6363 CXCL3 CCL19 970 0.5022

4215 7531 MAP3K3 YWHAE 962 0.4908

3551 8797 IKBKB TNFRSF10A 943 0.4908

5335 7409 PLCG1 VAV1 910 0.4908

6370 6363 CCL25 CCL19 961 0.4850

207 2065 AKT1 ERBB3 999 0.4792

5335 5332 PLCG1 PLCB4 992 0.4792

2064 5747 ERBB2 PTK2 959 0.4733

5159 5747 PDGFRB PTK2 985 0.4675

4792 5590 NFKBIA PRKCZ 910 0.4675

Continued on next page...
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Gene

ID1

Gene

ID2

Gene

Name 1

Gene

Name 2

Votes Consistency

score

5156 5159 PDGFRA PDGFRB 923 0.4615

994 993 CDC25B CDC25A 917 0.4615

1031 990 CDKN2C CDC6 988 0.4555

5568 5577 PRKACG PRKAR2B 971 0.4555

6361 6367 CCL17 CCL22 951 0.4555

5770 9564 PTPN1 BCAR1 979 0.4495

5921 5894 RASA1 RAF1 949 0.4435

5500 5499 PPP1CB PPP1CA 933 0.4435

8312 207 AXIN1 AKT1 1000 0.4374

57154 657 SMURF1 BMPR1A 974 0.4374

5563 10891 PRKAA2 PPARGC1A 942 0.4374

2064 3717 ERBB2 JAK2 999 0.4312

5604 5295 MAP2K1 PIK3R1 994 0.4251

815 816 CAMK2A CAMK2B 990 0.4251

7048 1499 TGFBR2 CTNNB1 993 0.4063

5575 5568 PRKAR1B PRKACG 983 0.3936
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Table A.2: List of predicted inhibition interactions with low vote scores (0-100)

ranked with consistency scores (lower than average); interactions are taken from the

STRING database with predicted Domain-interaction database and specific Meta-

Core interactions are discarded.

Gene

ID1

Gene

ID2

Gene

Name 1

Gene

Name 2

Votes Consistency

score

868 1399 CBLB CRKL 0 -0.3006

891 1022 CCNB1 CDK7 26 -0.2517

868 1398 CBLB CRK 66 -0.1796

5777 3815 PTPN6 KIT 80 -0.1353

701 57551 BUB1B TAOK1 20 -0.1130

701 324 BUB1B APC 19 -0.0980

867 5296 CBL PIK3R2 1 -0.0151

207 10971 AKT1 YWHAQ 33 -0.0151

701 7157 BUB1B TP53 88 0.0227

1432 6300 MAPK14 MAPK12 1 0.0755

5970 5595 RELA MAPK3 60 0.0830

5598 5595 MAPK7 MAPK3 48 0.1353

867 2268 CBL FGR 5 0.1796

1432 5330 MAPK14 PLCB2 22 0.1869

3265 3667 HRAS IRS1 27 0.2231

701 890 BUB1B CCNA2 5 0.2374

3643 5295 INSR PIK3R1 5 0.2374

701 51343 BUB1B FZR1 23 0.2374

7132 4217 TNFRSF1A MAP3K5 21 0.2446

112 114 ADCY6 ADCY8 58 0.2658

112 108 ADCY6 ADCY2 88 0.2658

5601 4804 MAPK9 NGFR 88 0.2728

1432 9021 MAPK14 SOCS3 7 0.2937

5516 5515 PPP2CB PPP2CA 93 0.2937

5335 5330 PLCG1 PLCB2 1 0.3006

3575 6777 IL7R STAT5B 22 0.3006

108 196883 ADCY2 ADCY4 45 0.3006

867 4690 CBL NCK1 5 0.3074

4792 207 NFKBIA AKT1 98 0.3143

998 56924 CDC42 PAK6 23 0.3479

3554 929 IL1R1 CD14 6 0.3546

5530 5532 PPP3CA PPP3CB 50 0.3742

Continued on next page...
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Table A.2 – continued from previous page

Gene

ID1

Gene

ID2

Gene

Name 1

Gene

Name 2

Votes Consistency

score

1871 894 E2F3 CCND2 97 0.3742

115 112 ADCY9 ADCY6 36 0.3807

1019 8900 CDK4 CCNA1 6 0.3872



Appendix B

Gene ontology enrichments

Table B.1: Significant Gene Ontology enrichments of genes in the predicted activa-

tion interactions.

GO.ID Term Annotated Significant P-value

GO:0004713 protein tyrosine kinase activity 152 54 9.50E-07

GO:0042379 chemokine receptor binding 29 17 5.80E-06

GO:0008009 chemokine activity 27 16 9.30E-06

GO:0004674 protein serine/threonine kinase activity 157 52 2.20E-05

GO:0004672 protein kinase activity 171 55 3.20E-05

GO:0004715 non-membrane spanning protein tyrosine

kinase activity

14 10 5.40E-05

GO:0030554 adenyl nucleotide binding 188 58 7.50E-05

GO:0032559 adenyl ribonucleotide binding 188 58 7.50E-05

GO:0005057 receptor signaling protein activity 46 21 7.60E-05

GO:0016773 phosphotransferase activity, alcohol group

as acceptor

185 57 9.50E-05

GO:0019901 protein kinase binding 80 30 0.00018

GO:0016301 kinase activity 193 58 0.00019

GO:0019899 enzyme binding 147 47 0.00021

GO:0016772 transferase activity, transferring

phosphorus-containing groups

194 58 0.00022

GO:0017076 purine nucleotide binding 203 60 0.00024

GO:0032553 ribonucleotide binding 203 60 0.00024

GO:0032555 purine ribonucleotide binding 203 60 0.00024

GO:0000166 nucleotide binding 208 61 0.00026

Continued on next page...
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Table B.1 – continued from previous page

GO ID Term Annotated Significant P-value

GO:0005524 ATP binding 182 55 0.00026

GO:0019900 kinase binding 89 32 0.00028

GO:0070411 I-SMAD binding 9 7 0.00037

GO:0016362 activin receptor activity, type II 5 5 0.00037

GO:0048020 CCR chemokine receptor binding 7 6 0.00044

GO:0004871 signal transducer activity 210 60 0.00074

GO:0060089 molecular transducer activity 210 60 0.00074

GO:0035639 purine ribonucleoside triphosphate binding 197 57 0.00076

GO:0019199 transmembrane receptor protein kinase ac-

tivity

33 15 0.00097

GO:0016740 transferase activity 203 58 0.00098

GO:0031625 ubiquitin protein ligase binding 30 14 0.00105

GO:0001664 G-protein-coupled receptor binding 47 19 0.00119

GO:0005515 protein binding 593 133 0.00123

GO:0004697 protein kinase C activity 4 4 0.00182

GO:0008603 cAMP-dependent protein kinase regulator

activity

4 4 0.00182

GO:0048407 platelet-derived growth factor binding 4 4 0.00182

GO:0046332 SMAD binding 19 10 0.00188

GO:0030674 protein binding, bridging 9 6 0.00359

GO:0004675 transmembrane receptor protein ser-

ine/threonine kinase activity

12 7 0.0046

GO:0005024 transforming growth factor beta-activated

receptor activity

12 7 0.0046

GO:0004702 receptor signaling protein serine/threonine

kinase activity

28 12 0.00592

GO:0004712 protein serine/threonine/tyrosine kinase

activity

10 6 0.00743

GO:0030234 enzyme regulator activity 89 28 0.00764

GO:0031735 CCR10 chemokine receptor binding 3 3 0.0089

GO:0004435 phosphatidylinositol phospholipase C activ-

ity

8 5 0.01198

GO:0004629 phospholipase C activity 8 5 0.01198

GO:0017002 activin receptor activity 8 5 0.01198

GO:0070412 R-SMAD binding 8 5 0.01198

GO:0005488 binding 645 138 0.01779

GO:0019838 growth factor binding 47 16 0.02059

GO:0008047 enzyme activator activity 36 13 0.02192

Continued on next page...
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Table B.1 – continued from previous page

GO ID Term Annotated Significant P-value

GO:0042802 identical protein binding 71 22 0.02224

GO:0004708 MAP kinase kinase activity 9 5 0.02248

GO:0005161 platelet-derived growth factor receptor

binding

9 5 0.02248

GO:0042169 SH2 domain binding 9 5 0.02248

GO:0004709 MAP kinase kinase kinase activity 12 6 0.02254

GO:0060090 binding, bridging 12 6 0.02254

GO:0005126 cytokine receptor binding 84 25 0.02514

GO:0034713 type I transforming growth factor beta re-

ceptor binding

4 3 0.03014

GO:0035254 glutamate receptor binding 4 3 0.03014

GO:0043621 protein self-association 4 3 0.03014

GO:0000975 regulatory region DNA binding 30 11 0.03071

GO:0001067 regulatory region nucleic acid binding 30 11 0.03071

GO:0044212 transcription regulatory region DNA bind-

ing

30 11 0.03071

GO:0005096 GTPase activator activity 10 5 0.03752

GO:0008081 phosphoric diester hydrolase activity 10 5 0.03752

GO:0043028 caspase regulator activity 10 5 0.03752

GO:0004716 receptor signaling protein tyrosine kinase

activity

7 4 0.0376

GO:0005160 transforming growth factor beta receptor

binding

7 4 0.0376

GO:0031434 mitogen-activated protein kinase kinase

binding

7 4 0.0376

GO:0048185 activin binding 7 4 0.0376

GO:0003682 chromatin binding 20 8 0.03789

GO:0004706 JUN kinase kinase kinase activity 2 2 0.04321

GO:0005017 platelet-derived growth factor-activated re-

ceptor activity

2 2 0.04321

GO:0008093 cytoskeletal adaptor activity 2 2 0.04321

GO:0030159 receptor signaling complex scaffold activity 2 2 0.04321

GO:0030617 transforming growth factor beta receptor,

inhibitory cytoplasmic mediator activity

2 2 0.04321

GO:0031730 CCR5 chemokine receptor binding 2 2 0.04321

GO:0031732 CCR7 chemokine receptor binding 2 2 0.04321

GO:0034711 inhibin binding 2 2 0.04321

GO:0048186 inhibin beta-A binding 2 2 0.04321

Continued on next page...
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GO ID Term Annotated Significant P-value

GO:0048187 inhibin beta-B binding 2 2 0.04321

GO:0070491 repressing transcription factor binding 2 2 0.04321
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Table B.2: Significant Gene Ontology enrichments of genes in the predicted inhibi-

tion interactions.

GO.ID Term Annotated Significant P-value

GO:0051219 phosphoprotein binding 15 8 5.60E-06

GO:0045309 protein phosphorylated amino acid binding 9 6 1.70E-05

GO:0001784 phosphotyrosine binding 7 5 6.10E-05

GO:0004707 MAP kinase activity 8 5 0.00015

GO:0019901 protein kinase binding 80 16 0.0003

GO:0004016 adenylate cyclase activity 9 5 0.00032

GO:0009975 cyclase activity 9 5 0.00032

GO:0016849 phosphorus-oxygen lyase activity 9 5 0.00032

GO:0002020 protease binding 6 4 0.00057

GO:0019900 kinase binding 89 16 0.00111

GO:0016829 lyase activity 12 5 0.00167

GO:0008022 protein C-terminus binding 19 6 0.00292

GO:0003824 catalytic activity 337 38 0.00344

GO:0019899 enzyme binding 147 21 0.00373

GO:0030674 protein binding, bridging 9 4 0.00394

GO:0042169 SH2 domain binding 9 4 0.00394

GO:0003924 GTPase activity 27 7 0.00446

GO:0004723 calcium-dependent protein serine/threo-

nine phosphatase activity

2 2 0.00679

GO:0043559 insulin binding 2 2 0.00679

GO:0008294 calcium- and calmodulin-responsive adeny-

late cyclase activity

6 3 0.00908

GO:0005057 receptor signaling protein activity 46 9 0.00949

GO:0016462 pyrophosphatase activity 39 8 0.01091

GO:0016817 hydrolase activity, acting on acid anhy-

drides

39 8 0.01091

GO:0016818 hydrolase activity, acting on acid an-

hydrides, in phosphorus-containing anhy-

drides

39 8 0.01091

GO:0017111 nucleoside-triphosphatase activity 39 8 0.01091

GO:0060090 binding, bridging 12 4 0.0128

GO:0046934 phosphatidylinositol-4,5-bisphosphate

3-kinase activity

7 3 0.01496

GO:0019902 phosphatase binding 19 5 0.01557

GO:0035014 phosphatidylinositol 3-kinase regulator ac-

tivity

3 2 0.01927

Continued on next page...
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Table B.2 – continued from previous page

GO ID Term Annotated Significant P-value

GO:0004702 receptor signaling protein serine/threonine

kinase activity

28 6 0.02239

GO:0004693 cyclin-dependent protein kinase activity 8 3 0.02254

GO:0043548 phosphatidylinositol 3-kinase binding 8 3 0.02254

GO:0016787 hydrolase activity 112 15 0.03029

GO:0004428 inositol or phosphatidylinositol kinase ac-

tivity

9 3 0.03184

GO:0005158 insulin receptor binding 9 3 0.03184

GO:0035004 phosphatidylinositol 3-kinase activity 9 3 0.03184

GO:0035591 signaling adaptor activity 9 3 0.03184

GO:0035639 purine ribonucleoside triphosphate binding 197 23 0.03188

GO:0032403 protein complex binding 39 7 0.03489

GO:0017046 peptide hormone binding 4 2 0.03649

GO:0051059 NF-kappaB binding 4 2 0.03649

GO:0004722 protein serine/threonine phosphatase activ-

ity

10 3 0.04285

GO:0005159 insulin-like growth factor receptor binding 10 3 0.04285

GO:0047485 protein N-terminus binding 10 3 0.04285

GO:0019903 protein phosphatase binding 17 4 0.04493

GO:0017076 purine nucleotide binding 203 23 0.04503

GO:0032553 ribonucleotide binding 203 23 0.04503

GO:0032555 purine ribonucleotide binding 203 23 0.04503

GO:0005524 ATP binding 182 21 0.04778

GO:0016301 kinase activity 193 22 0.04781

GO:0019904 protein domain specific binding 60 9 0.04999
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