
 

 

 

 

 

 

 

Dissertation 

submitted to the 

Combined Faculties for the Natural Sciences and for Mathematics 

of the Ruperto-Carola University of Heidelberg, Germany 

for the degree of 

Doctor of Natural Sciences 
 

 

 

 

 

 

 

 

 

 

 

presented by 

 

Diplom-Biol. Dolle, Dirk-Dominik 

born in: Groß-Gerau 

 

Oral-examination: _____________________ 



 

 

 

 

 

 

 

Application of motif scoring algorithms 
for enhancer prediction 

 in distantly related species 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referees: 

Prof. Dr. Joachim Wittbrodt 

 Dr. Steffen Lemke



Acknowledgements 
First of all I want to thank Dr. Laurence Ettwiller for giving me the chance to 

start my PhD in this field and for introducing me into various successful 

collaborative projects. Not any less I thank Prof. Dr. Jochen Wittbrodt for all 

his advice and help during my whole PhD and especially for “adopting” me to 

his group when things changed. Further thanks go to Dr. Steffen Lemke who 

accepted to be second supervisor for this thesis despite the short notice and 

the trouble this may have caused. I also want to thank Michael Eichenlaub for 

all the support he offered me in the lab, for his advice and patience during the 

three years. Special thanks also go to all people in the lab who were willing to 

sacrifice their time for injecting multiple enhancer constructs into hundreds of 

medaka embryos. Without their help I could not have finished my thesis in that 

time. Most of all, I want to thank Dr. Juan Luis Mateo Cerdan for his strict, 

critical but constructive, very supportive, and always helpful comments 

throughout the whole process of the underlying work of this thesis, and for all 

the time he invested in the hundreds of detailed discussions we had. Without 

his help I would have never made it that far! I further want to thank all the 

people in my former lab, the lab of Jochen Wittbrodt and all other labs around 

that shared space and equipment with us and created a nice working 

atmosphere. I also want to thank all the members of the Hartmut Hoffmann-

Berling International Graduate School (HBIGS) for the supportive environment 

they provided. Of course I also want to mention my family and friends who 

were always willing to help and to listen whenever necessary. Finally, I also 

want to mention Rolf Jansson and his team who, without knowing, provided a 

spare time activity that allowed me to regenerate and focus all my energy on 

my PhD. 



Summary 
Although many studies proposed methods for the identification of enhancers, 

reliable prediction on a genome-wide scale is still an unsolved problem. One 

of the reasons for this is the highly flexible regulatory logic underlying a 

detectable enhancer activity. In each cell type or tissue and at any given time, 

a mostly unknown set of transcription factors activates specific regulatory 

elements by coordinated binding to the corresponding genomic region. 

Position, spacing, and orientation of the individual bound factors can thereby 

vary between different enhancers yet result in a highly similar spatio-temporal 

activity. Due to this inner flexibility, so-called “alignment-free” methods have 

been proposed for enhancer prediction, as they are able to cope with 

rearrangements by comparison of word profiles rather than linear sequence. 

However, the problems caused by allowing for permutation in sequence 

comparison have not been investigated so far. In this study I implemented 

several published alignment-free metrics and analysed, which parameters 

affect their ability to successfully predict regulatory regions. As results show, 

single point mutations and the increasing amount of spurious matches with 

decreasing word size pose the biggest challenge to alignment-free 

techniques, especially when applied on a genome-wide scale. Alignment 

algorithms usually solve these problems quite efficiently but cannot handle 

permutation. I therefore implemented a new technique for enhancer prediction 

that combines the advantages of both algorithm types and used it for the 

identification of regulatory regions in the teleost fish Oryzias latipes (Medaka) 

based on a set of known and validated human enhancers. Predicted medaka 

regions and human enhancers were subsequently used in an in vivo enhancer 

assay and analysed for their activity. In total, 12 predicted regions 

corresponding to 9 human enhancers showed clear enhancing activity in the 

fish. This shows that the principle implemented here is able to predict active 

enhancers at a high rate on a genome-wide scale even in species as diverged 

as human and fish. Furthermore, evidence for motif-level conservation 

between some of the human and medaka enhancers could be found that was 

invisible for most of the alignment-algorithms used for comparison. 



Zusammenfassung 
Obwohl bereits viele Studien Methoden zur Identifizierung von Enhancern 

vorgeschlagen haben ist eine verlässliche Vorhersage in ganzen Genomen 

noch immer problematisch. Eine Ursache dafür sind die zu Grunde liegenden, 

teilweise sehr flexiblen regulatorischen Mechanismen in Enhancern. In jedem 

Zelltyp oder Gewebe resultiert die spezifische Aktivität eines regulatorischen 

Elements aus der koordinierten Bindung eines meist unbekannten Sets von 

Transkriptionsfaktoren an die entsprechende Region im Genom. 

Verschiedene Enhancer können dabei sehr ähnliche Aktivitätsprofile zeigen, 

selbst wenn sich Positionierung und Orientierung der einzelnen Faktoren, 

sowie deren Abstand untereinander, stark unterscheiden. Auf Grund dieser 

inhärenten Flexibilität wurden in der Vergangenheit so genannte “Alignment-

free” Methoden zur Identifizierung von Enhancern vorgeschlagen, da diese in 

der Lage sind, Permutationen über den Vergleich von “Wörter-Profilen” 

auszugleichen. Die damit verbundenen Schwierigkeiten wurden allerdings 

bisher nicht wirklich untersucht. In dieser Arbeit habe ich daher verschiedene 

bereits publizierte Methoden implementiert um herauszufinden, welche 

Faktoren eine zuverlässige Vorhersage beeinflussen. Wie die Analysen 

zeigen stellen Punktmutationen und zufällige Übereinstimmungen von 

“Wörtern” das größte Problem dar, ganz besonders im genomweiten 

Maßstab. Alignment-Algorithmen lösen diese Probleme zwar recht effizient, 

sind aber nicht in der Lage Permutationen zu kompensieren. Aus diesem 

Grund habe ich für diese Arbeit eine neue Methode entwickelt, welche die 

Vorteile beider Arten von Algorithmen zu verbinden versucht. Diese neue 

Technik wurde dann angewendet um unter Verwendung von bekannten 

Enhancern im Menschen ebenfalls regulatorische Regionen im Teleost 

Oryzias latipes (Medaka) zu identifizieren. Diese Regionen aus beiden 

Spezies wurden anschließend mittels eines in vivo Enhancer Assays auf 

regulatorische Aktivität untersucht. Ausgehend von 9 Enhancern im 

Menschen konnten so 12 Regionen in Medaka mit eindeutiger regulatorischer 

Aktivität entdeckt werden. Dies ist ein klarer Hinweis darauf, dass die hier 

verwendete Methode in der Tat in der Lage ist, aktive Enhancer mit hoher 

Erfolgsrate auf genom-weiter Ebene zu identifizieren – selbst in so 



verschiedenen Spezies wie Mensch und Fisch. Weiterhin zeigen einige der 

getesteten Regionen Hinweise auf Konservierung von Sequenzelementen, 

die von den meisten der zum Vergleich verwendeten Alignment-Algorithmen 

nicht entdeckt werden konnten. 
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1. Introduction 

1.1 Evolution of species 

The huge diversity of species has at all times raised the question, how such 

extensive variation could have been achieved. Besides several other 

explanation attempts, the idea that species could originate from other, 

previously existing ones came up already in ancient times. But it took until 

1858 for the first scientifically sound theory to be presented [1]. In that year, 

Darwin and Wallace together presented their theory of evolution in front of the 

Linnean Society of London, a theory that both had developed independent of 

each other. Since these days it became more and more accepted that species 

acquire new traits and phenotypes by chance, which are selected for once 

they provide an advantage compared to the parent species. Transmitted over 

several generations, the accumulated divergences might finally result in the 

creation of new species from former variants, which either exist in parallel to 

the parent species or replace it if superior. This theory of gradual divergence 

of species from a common ancestor also laid the foundation for the concept of 

homology, allowing restructuring the previously existing classification of 

species based on evidence for common ancestry. But until the rediscovery of 

Mendel’s rules of inheritance in the beginning 20th century, there was no 

explanation how this process of transmission across generations could be 

achieved. In 1915, Thomas Hunt Morgan was the first to prove, based on his 

studies in flies, that the information for the observed phenotypes had to be 

located on specific macromolecules, the chromosomes [2]. The smallest unit 

of this information was called a “gene” although at that time it was rather a 

theoretical construct than a clear definition of a physical region. It took 

additional 14 years before Barbara McClintock showed that genes in fact are 

real objects located on chromosomes [3]. At that time, two possible carriers of 

the “genetic” information were discussed, as both are contained in large 

quantities within chromosomes: DNA and proteins. One year before, Griffith 

[4] had already shown that genetic information can be transmitted between 

species but as he used cell extracts that contained both substances it stayed 

unclear which molecule contained the information. This proof was finally given 
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by Avery in 1944 [5], who repeated the experiments, this time removing 

individual components of the extract to test for the effect. Digestion of DNA 

prior to exposure of bacteria of a specific strain (R-type) to extracts from S-

type strains finally revealed that it had to be the DNA - and not the proteins - 

that encodes the specific properties of the S-type strain. This could be further 

confirmed by experiments on lambda phages performed by Hershey and 

Chase in 1952 [6]. One year later, Watson & Crick [7], Wilkins [8], and 

Franklin [9] published both, the structural model of the DNA and the 

experimental results proving it, and this way allowed to explain how the 

genetic information is stored in a physical molecule. This finally resulted in the 

discovery of the genetic code by Nirenberg and others in 1965 [10] and led to 

what is called the “Central Dogma” of molecular biology, describing the 

process by which genetic information stored in the DNA is transmitted into 

proteins that fulfil most functions of a living cell. 

 

While this explained how information is stored and evaluated by living 

organisms, the question remained, how this would lead to changes in species 

and thereby evolution. Since 1941, when Beadle and Tatum had shown that 

mutations in genes can alter metabolic pathways and are therefore likely to 

affect the organism as a whole [11], it was widely accepted that mutations 

modify the function of the encoding genes and in turn result in phenotypic 

changes that might lead to speciation. Studies by Jacob and Monod in 1960 

further supported this [12]. They used Escherichia coli (E. coli) to study two 

mechanisms of gene regulation that could be affected by mutations in a 

specific class of repressive DNA binding proteins. Their main achievement 

however, was that they provided the first example of experimental evidence 

for the regulatory potential of proteins. In 1975, King and Wilson [13] were 

among the first who suggested that mutations in the regulatory architecture 

and not in protein-coding regions might account for the observed interspecies 

differences. Jacob followed in 1977, stating that mutations in regions of the 

DNA bound by regulatory proteins might be a more likely mechanism to 

create phenotypic diversity [14]. But despite these early publications, 

mutations in genes were still thought to be the main mechanism of speciation 

for several decades. This started to change after the successful sequencing of 
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the complete human genome sequence in 2001 [15,16]. In the pre-Human 

Genome Project era, the number of expected protein coding genes had been 

assumed to be roughly 40,000 [17], although also ranges between 60,000 – 

70,000 [18] or even 120,000 [19] had been hypothesized  – numbers way 

higher than the ~22,000 protein coding genes contained in the most recent 

human genebuild (EnsEMBL, v68). This high difference partially derived from 

the assumption that the increasing complexity of organisms is achieved by an 

increased number of genes, which is in clear contrast to the numbers known 

today. Interestingly enough, genome sizes and number of protein coding 

genes are very similar between Human, Mouse, and Rat (Table 1). 

 
Table 1 Genome size and number of protein coding genes per species                       
(state: EnsEMBL v68) 

 

Comparison between these mammals and the teleost Oryzias latipes 

(“Medaka”) reveals that even across an evolutionary distance of ~450mio 

years, gene counts have only slightly changed despite a significant difference 

in genome size. But even when compared to the invertebrate Drosophila 

melanogaster (“Fruitfly”), the gene count is only halved. These numbers 

clearly point out that the morphological differences between those species are 

not accompanied by dramatic changes in the amount of protein coding genes. 

Many genes even exist as orthologous copies in species as divergent as 

Human and Drosophila. This indicates that, in contrast to initial assumptions, 

the observed diversity is unlikely to be the result of changes in coding regions. 

Further support comes from the findings of the Human Genome Project. 

Surprisingly, only 1.5% of the full genomic sequence contain protein-coding 
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information compared to 5% that are conserved in total [20]. This means that 

3.5% of the genome is subjected to evolutionary selection but not translated 

into proteins. Although a fraction of these regions encode for functional 

classes of RNAs like tRNA (involved in protein translation), rRNA (crucial 

functional and structural subcomponents of ribosomes), snRNA (involved in 

splicing), snoRNA (part of RNA-editing complexes), and siRNA (host virus 

defence), the majority of them is likely to be involved in regulation. This further 

emphasizes that regulatory regions might provide more “evolutionary 

playground” than coding regions. Examples in the recent literature show that 

changes in regulators indeed contribute to phenotypic diversity, this way 

providing additional support for their importance for evolution. For instance, 

Prud’homme et al. demonstrated that repeated independent mutations of the 

same cis-regulatory element in multiple Drosophila species had led to a gain 

and loss of an expression domain of the yellow gene. This gene is involved in 

pigmentation processes in the flies. The changes in the regulatory region 

resulted in a gain and loss of a pigmented wing spot that is involved in male 

courtship display [21]. Another study in Drosophila showed that mutations in 

the dorsocentral enhancer (DCE) led to an expansion of its domain of activity 

resulting in posterior dorsocentral bristles in Drosophila quadralineata [22]. 

Also in vertebrates, cases of phenotypic changes as result of mutations in 

regulatory regions exist. Chan et al. [23,24] provided evidence, that repeated 

deletion of a regulatory element near the pitx1 gene in Gasterosteus 

aculeatus had led to the loss of pelvic spines in several independent 

freshwater populations. Tung et al. were able to find a similar event in 

primates. Mutation of a regulator of the FY gene in yellow baboons (Papio 

cynocephalus) led to an altered resistance to a very common malaria-like 

parasite in this species, which might have provided a selective advantage 

[25]. These examples clearly highlight that regulatory mutations contribute to 

the phenotypic diversity of species, from insects through vertebrates and even 

up to primates, and show that they have been – and still are – one of the 

driving forces of evolution. 
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1.2 Mechanisms of gene regulation 

Compared to E.coli, the organism studied by Jacob and Monod, gene 

regulation in eukaryotes, and especially vertebrates, is by far more complex 

and acts on several levels. This starts already at the genomic structure. Unlike 

in bacteria, vertebrate genomes are organized in several chromosomes, each 

consisting of a long linear DNA molecule that is wound around specific multi 

protein complexes, the nucleosomes. This state is also described as “30nm 

fibre”. During cell division, this fibre is further compacted into a highly coiled 

and dense structure that can be identified under the microscope as 

metaphase chromosomes, and expanded again afterwards. But even in 

terminally differentiated cells, regions of the 30nm fibre are still partially 

packed as a result of uneven nucleosome densities. Due to this variable 

packing density, certain areas in the genome are accessible for transcription 

(described as “euchromatin”) while others stay condensed and inactive 

(“heterochromatin”). Actively transcribed loci for example can be associated 

with certain modifications of specific amino acid residues (e.g. H3K36me3) in 

the N termini of histones, the protein subcomponents of nucleosomes [26]. 

However, which regions in the DNA are active or not is thereby not a general 

property of the genome but varies between conditions and cell types. 

Furthermore, not only transcribed but also regulatory regions are affected by 

differences in nucleosome-density. A study in Drosophila for example could 

show that predicted regulatory regions containing sequences indicative for 

nucleosome depletion were more likely to be active than regions without [27]. 

One explanation is that local binding of nucleosomes to the DNA can cover 

binding sites for a specific class of DNA-binding proteins, so called 

transcription factors (TFs), rendering them inaccessible for TF binding. The 

binding of these factors to their corresponding transcription factor binding 

sites (TFBSs) in specific regions of the genome, described as cis-regulatory 

elements (CREs), is one of the most important mechanisms of regulation of 

gene transcription [28]. 

 

CREs are named this way, as they are located “in cis” to their target gene 

while “trans” usually describes factors that bind to these elements. CREs can 
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be further subdivided into “proximal” and “distal” elements. Promoters, which 

are located around the transcription start site (TSS) of genes, are the most 

known class of proximal elements. They roughly reside within 2kb upstream 

(5’) and 500bp downstream (3’) of the TSS and contain the starting platform 

for the RNA polymerase II (RNA Pol II), which is responsible for transcription 

of protein-coding genes. At the same time they integrate all regulatory signals 

resulting in a specific spatio-temporal expression pattern. These inputs either 

derive from TF binding events directly in the proximal promoter region or from 

“enhancers”, the most common class of distal regulatory elements. The two 

classes do not only vary in the distance to their target gene but also have very 

different structural and positional properties. As already stated, promoters 

always reside 5’ around the TSS of their target gene. Furthermore, they 

contain several unique sequence features aside from the existence of TFBS, 

including C/G-rich clusters (“CpG-islands”), TATA- or CCAAT-boxes, DPEs 

(“downstream promoter elements”, [29,30]), and other specialized elements 

like XCPE1 & 2 (“X Core Promoter Element”) [31,32], with many of them 

having to be precisely positioned within the promoter region. 

 

Enhancers on the other hand, are more flexible in their positioning and inner 

structure. They can reside almost anywhere in the genome: 5’ and 3’ of their 

target genes, in introns – and even exons – of flanking genes or the regulated 

gene itself [28]. Enhancers are also reported to be able to activate target 

genes across several intercalated “bystander genes” [33] and/or large (>1mb) 

distances [34]. Considering the highly folded and organized packaging of 

chromosomes in the nucleus [35], they might be even located “in trans”, as 

two regions on completely different chromosomes can be physically directly 

adjacent to each other. Besides this positional flexibility, they also possess a 

highly flexible inner structure. Usually about 1kb in size, they can span several 

kilobases or just a few hundred nucleotides. This is owed to the fact that many 

enhancers can be subdivided into cis-regulatory modules (CRMs), which are 

able to drive a certain expression pattern independently of other modules in 

the same enhancer [36,37]. It is therefore a matter of debate whether CRMs 

represent just a part of a larger CRE or whether CREs are just a description of 

genomic regions containing several CRM-enhancers. In general, two different 
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classes of enhancers are discriminated: densely clustered and highly 

structured arrangements of TFBS, the “enhanceosomes”, or loose groups of 

CRMs and individual TFBSs described as “billboard” enhancers [38]. While 

the structural rules in enhanceosomes are that strict that TF binding has to 

occur in a highly coordinated sequential manner [39] billboard enhancers are 

the clear opposite. For those, each module or site can be bound 

independently or in combination, depending on available interacting factors or 

other outer conditions [36,37,40]. This functional independence allows 

extensive permutation and reshuffling between the individual sites and 

modules within billboard enhancers without affecting the function [41,42], 

while enhanceosomes tolerate little to no mutation [39]. Despite these huge 

differences in the inner structure, the mechanism of gene activation is thought 

to be the same for the two classes. In both cases, activation starts by binding 

of the involved TFs to their binding sites. These can be independent proteins 

or complexes of one to many interacting factors which form the initial 

enhancer complex upon binding. This complex then recruits further co-factors 

like CBP/p300 [43] that can act as histone acetyl transferases (HATs) 

modifying amino acids in the N-termini of DNA-associated nucleosomes, the 

result of which is an open and accessible chromatin configuration. 

Recruitment of chromatin remodelling factors (e.g. SWI/SNF) and other 

complexes like TRAP/Mediator finally leads to looping of the activated 

enhancer complex to the promoter of its target gene and this way activates it 

[44,45]. Several enhancers can cooperate in this process, each of them 

activating the same gene in a different cell type/tissue or at a different 

timepoint or condition resulting in the partially highly complex and/or 

ubiquitous expression pattern known for many genes [46,47]. There is also 

evidence for the opposite case, in which a single enhancer controls several 

genes at the same time by looping all TSSs to one spot where it interacts with 

the enhancer complex [48]. Although further regulatory mechanisms set in 

after initiation of transcription and during or after translation, they all depend 

on the initial activation provided by enhancer complexes. Their ability to also 

remodel chromatin structures in and around areas containing their 

corresponding target genes by recruitment of specific co-factors places them 

at the basis of gene regulation in eukaryotes. Furthermore, due to the high 
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number of putative TFs and TFBSs and the integration of multiple inputs at 

the same time, they offer the highest flexibility and diversity of all regulatory 

mechanisms. 

 

 

1.3 Enhancer prediction 

As described, enhancers are highly flexible structures that can occur at 

various different places in the genome. Unfortunately, this high structural and 

positional flexibility makes them also very hard to detect. Even promoters are 

already hard to predict, although they are restricted to the close vicinity of 

TSSs. This results from the fact that the initial “one gene one polypeptide” 

hypothesis does not reflect the physical reality of genomes. Besides 

alternative splicing that can create a huge variety of different gene products 

from a single locus, gene transcription can also start at different positions in 

the genome resulting in different proteins without even involving splicing 

events [49,50]. As these shifts can sometimes change the position of the TSS 

by several hundred to more than thousand base-pairs, it is a challenging task 

to predict the correct promoter region without the precise position of the used 

TSS. But while promoters contain certain core elements that might allow their 

prediction even in that case, no comparable structural elements are known for 

enhancers. Additionally, the possible search space can literally be the full 

genome, which further complicates the task. Different approaches have been 

used in the past to predict the location and/or function of enhancers, which 

can be classified in two different categories: biological and computational 

approaches. 

 

1.3.1 Biological approaches 

1.3.1.1 Targeting transcriptional (co-)factors 

This class of prediction techniques is largely based on chromatin 

immunoprecipitation methods (ChIP) that are followed by different subsequent 

evaluation steps. They can be further differentiated in methods targeting TFs 

directly, those that focus on known interaction partners involved in enhancer 

complexes, especially co-factors, and other methods that try to predict 
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enhancers indirectly by assessing the chromatin state of cells or tissues. 

ChIP-chip belongs to the first category and was also one of the first methods 

used. For this technique, TFs are first crosslinked to the bound DNA region, 

followed by dissection of the genome into small pieces by sonication, 

restriction digest or other methods. Antibodies targeting the factor of interest 

and linked to different substrates e.g. magnetic beads are then mixed with the 

sample. This allows precipitation of transcription factor-bound DNA fragments, 

which were protected against the dissection process by the protein. Reversal 

of the cross-linking process results in a genomic fraction highly enriched for 

fragments containing a binding site for the targeted factor. These fragments 

are subsequently detected by DNA-probes via hybridization. The major 

drawback of this method is its limitation to a very restricted set of genomic 

regions due to the designed probe set. In the pre-genomic era, this only 

allowed the detection of binding events in already known regions and was 

therefore mainly restricted to the detection of promoters and proximal 

regulators, a task for which it is still used [51]. The progress made in 

sequencing techniques allowed the extension of ChIP to further tasks. 

Precipitation followed by massive parallel sequencing (ChIP-seq) does not 

depend anymore on previous knowledge of the target sequence and therefore 

broadens the spectrum, including TF motif prediction and targeting of co-

factors or histones. This for the first time also allowed detailed investigation of 

genome-wide histone modification profiles and opened the door for large-

scale epigenetic studies. The main advantage however is that it allows 

assessment of distant genomic regions and thereby largely facilitates 

enhancer prediction. Unfortunately, the main strength of this technique comes 

with a major drawback. Compared to prokaryotic TFs, TFs in eukaryotes have 

rather promiscuous binding properties in general [52], allowing them to attach 

to regions in the genome that match between each other by only a few 

nucleotides. Although the apparently variable positions might actually be 

highly specific in a given context (e.g. a certain cell type or tissue), this 

inherent flexibility is likely to result in an increased amount of noise binding 

events in regions that have no regulatory function. Therefore, computational 

methods are necessary that allow discrimination between those regions and 

functional ones. Furthermore, regions not bound by the factor under 
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investigation also often end up in immunoprecipitated sample and need to be 

filtered prior to data interpretation. This is usually done by comparison to a 

background (“input”) sample, removing all regions equally enriched in both 

fractions. Obviously, this filtering is only as good as the used reference. 

Unfortunately, in the beginning of ChIP-seq, either unreliable or no “input” 

samples were used at all. This makes the interpretation of the resulting data 

nowadays very difficult. But even with good backgrounds, the data analysis 

stays a challenging task due to the high binding noise. To reduce the 

problems inherent to TF-ChIP, other studies [43,53] focused on co-factors like 

p300, which only bind to fully assembled enhancer complexes. This approach 

was very successful, yielding a high number of putative enhancers of which 

many could be validated experimentally in the meantime. Other approaches to 

increase the significance of TF-ChIP data are based on the combination of 

different TFs. As enhancers usually need to be bound by a set of factors 

rather than just one, searching for dense clusters of highly significant binding 

events is a very powerful way for enhancer prediction [54]. This approach is of 

course limited by the availability of highly specific antibodies against the TFs 

of interest (especially if several factors of the same family are involved) and 

requires previous knowledge about the expression profiles of the used TFs. 

 

1.3.1.2 Targeting histones 

A more general approach focuses on histone marks associated with different 

chromatin states and/or regulatory elements. Jin et al., for instance, report 

that promoter regions correlate with H3K4me3, while enhancers either have 

H3K4me1/H3K27me3 (“poised”) or H3K4me1/H3K27ac (“active”) marks [55]. 

Targeting modified histones, the building blocks of nucleosomes, hence 

allows indirect identification of putative enhancer regions in a way that is not 

limited by previous knowledge of involved TFs and more significant due to 

less binding noise. But like for TFs, certain tasks require a series of 

experiments in the same cell type or tissue to allow conclusions about the 

predicted regions (e.g. discrimination between poised and active enhancers 

requires histone-ChIP for H3K4me1 and H3K27me3 or H3K27ac). 

Furthermore, although this technique is able to not only identify regulatory 
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regions but also, whether the identified regions are active in the investigated 

context, it provides no insights into the underlying regulatory logic. It is 

therefore comparable to ChIP on co-factors like p300 but without the limitation 

to cells expressing it. Its main drawback however, is that some histone 

modifications are not restricted to a narrow locus but tend to spread across a 

larger regions, leading to more blurred predictions compared to clustering of 

TF-ChIP. 

 

1.3.1.3 Targeting chromosomal structure 

Another ChIP-based approach used for enhancer prediction is ChIA-PET 

("Chromatin Interaction Analysis by Paired-End Tag sequencing") [48], which 

combines the classical TF-ChIP technique with the analysis of physical 

interactions between genomic regions. It is based on the fact that enhancers 

activate their corresponding target gene by looping to its promoter upon 

binding of TFs [44]. Regions that are in close proximity to promoters and 

additionally bound by a specific TF in a given context are therefore likely to be 

functional enhancers. Unfortunately, this technique suffers from a problem 

common to all “chromosomal conformation capture” (3C) methods – which is 

limited spatial resolution [56]. Additionally, regions located near each other in 

linear DNA are also always physically in close proximity, independent of the 

chromosomal conformation. This leads to a high amount of reported non-

functional interactions of close-by loci and results in a rather low signal-to-

noise ratio. Due to that, filters like independent binding events of the same 

factor in both interacting segments (e.g. in enhancer and target gene 

promoter) are necessary to allow discrimination between real chromatin loops 

and false positive regions. However, a binding event within a reported loop 

does not necessarily mean that the detected interaction is also initiated by the 

TF under investigation and therefore might not correspond to a functional 

enhancer. ChIA-PET hence suffers from the same limitations as regular TF-

ChIP but acts as a filter for noise binding events as it reduces the search 

space to interacting genomic loci. At the same time, in contrast to other 

methods it provides hints about the putative target gene of functional 

enhancers. 
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All methods described here have been used over the last years and provided 

unprecedented insights into regulatory mechanisms of eukaryotic genomes. 

As they are based on experimental data, they allow conclusions beyond the 

scope they were initially designed for and provide information that might turn 

out to be valuable for not yet asked questions. But as all experimental 

approaches they are time-intense, labour-intensive, and costly. They 

furthermore provide only a snapshot of the current state and are therefore 

limited by the accessibility and reproducibility of the outer conditions. To 

predict enhancers active in a specific tissue, this tissue also has to be 

available. It is therefore difficult to predict enhancers e.g. active in the human 

brain or during human embryonic development, as these conditions are not 

available for experiments. Model organisms can help in this situation but 

subsequently need methods that allow the identification of the functional 

analogous enhancer in the species of interest. Considering the flexible nature 

of many enhancers, this is a challenging task. 

  

1.3.2 Computational approaches 

Computational methods for enhancer prediction have several advantages 

compared to biological approaches. They do not depend on the availability of 

a specific cell type or tissue, are therefore not affected by the current state of 

the cell, provide information about all regions of the genome, and most 

importantly, are fast and cheap. Depending on the method, they are also not 

biased by selection of specific TFs and are therefore theoretically able to 

predict all kinds of enhancers, provided that the necessary information is 

available. These methods can be roughly classified in conservation-based, 

clustering or motif-scoring approaches. 

 

1.3.2.1 Alignment-based detection of conservation 

Since the beginning of the “genomics” era, started by the emergence of high-

throughput sequencing techniques, comparison of multiple genomes of 

distantly related species by multiple alignments allows the detection of highly 

stable genomic regions outside of coding genes. These regions, which form 

up to 3.5% of the human genome, are under clear evolutionary constraint and 



Chapter 1: Introduction 
 

 
 13 

therefore might be of functional importance. After subtraction of all those 

regions that contain crucial non-coding RNAs, the function of the remaining is 

likely to be regulatory. It is therefore not surprising that deep sequence 

conservation across large phylogenetic distances, like between human and 

fish, has been suggested or used as predictor for enhancer regions in many 

publications [34,57–60]. The predictive strength of these approaches 

increases the more genomes are used and the larger the maximum 

evolutionary distance is across which the enhancer is conserved. This method 

therefore mostly detects enhanceosomes due to their packed and highly 

restrictive structure. Identified enhancers mostly reside next to crucial 

developmental or neuronal active genes and validation revealed that they 

indeed mostly show activity in neuronal tissues [34]. But as alignments 

depend on a conserved collinear arrangement of functional enhancer motifs 

they are unlikely to detect enhancers that follow the billboard model and have 

evolved by permutation or binding site turnover. A ChIP-seq based study 

aiming to identify heart enhancers could show that these regulators are in the 

majority only weakly conserved [53] and hence would be “invisible” to 

alignment-based techniques. Enhancer prediction based on conservation is 

therefore a powerful tool that made a huge contribution to research on 

regulation but provides only a limited spectrum of enhancer activity. 

 

1.3.2.2 TFBS clustering 

TFBS clustering approaches are the computational counterpart to ChIP-seq 

experiments targeting many different TFs. The basic idea is the same: the 

more TF binding events occur in a narrow region the more likely this region 

has enhancer activity. This is computationally assessed by prediction of the 

corresponding TFBS clusters.  Both approaches thereby depend on a telling 

pre-selection of factors that are known to be expressed in the same tissue 

and interact to drive enhancer activity. The advantage of TFBS clustering is its 

genome-wide applicability without the restriction to a given context. While 

multi-TF ChIP will only reveal enhancers that are active under the current 

conditions, TFBS clustering can find all enhancers that have the potential to 

be active in that context but might be temporarily silenced due to the 
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experimental setup. As their experimental counterpart they suffer from the 

same penalty: motif/binding noise. As described, eukaryotic TFs often have 

rather variable binding specificities allowing them to bind to several, partially 

very different sites. In contrast to ChIP-seq however computational prediction 

can only make limited statements about the likelihood that the predicted site is 

also bound. TFBSs are usually described by position weight matrices 

(PWMs), which are compiled from all experimental reported bound sites for a 

specific TF. Percentage identity to a given PWM is normally used to give hints 

about whether or not a site is bound in vivo. But as many factors have 

different binding affinities depending on the given context, a fact that is not 

represented in PWMs, this method to predict binding events is highly error 

prone. This situation is further complicated by the inner structure of 

enhancers. As described, CREs can be composed of many CRMs and 

individual sites, separated by non-functional spacer sequences. This 

configuration can “dilute” a TFBS cluster by spreading it over a larger stretch 

of sequence. Even if an enhancer is mainly composed of CRMs, these 

modules might contain too few binding site to be recognized as a cluster of 

their own. Therefore, although not challenged by permutation and turnover, 

TFBS clustering is also likely to identify enhanceosomes, as these regions are 

dense clusters of many sites.  

 

1.3.2.3 Motif scoring methods 

Motif scoring methods are also called “alignment-free” techniques, as they, in 

contrast to alignment algorithms, do not depend on a collinear arrangement of 

functional elements in query and target sequence. This is achieved in most 

cases by dissection of a given enhancer sequence into a profile of 

overlapping, short sequence fragments, called “words”. As multiple different 

permutations of the same set of words can lead to exactly the same word 

profile, these techniques are able to cope with enhancer evolution by 

permutation. The words thereby represent TFBS that might change their 

position by several mutational mechanisms, especially in billboard enhancers. 

Due to that, word sizes used by most algorithms range between 5 – 8nt, as 

this is the typical size of a TFBS. They therefore could be regarded as TFBS 
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clustering methods – or vice versa, TFBS clustering as “alignment-free”. Their 

main difference however is that alignment-free methods use an already 

known enhancer as input instead of a set of TFBS of factors known to be 

active in a specific tissue. This way, they can use the full sequence of an 

enhancer to extract words instead of using only a narrow set of sites. This 

allows inclusion of sequences close to TFBS that might have been conserved 

due to the functional importance of the binding site. This “conservation 

shadow” hence can contribute to the identification of corresponding 

enhancers in paralogous loci or orthologous species where TFBS clustering 

might fail. The fact that mostly perfect-matching words are used further 

reduces noise matches. One of the first alignment-free metrics published was 

the “d2” metric in 1994 [61], which was used for clustering of sequences into 

similarity groups to speed up database search. Further metrics were 

published in the following years, nicely reviewed in [62]. Since then, a huge 

variety of algorithms utilizing various types of input data and applied in many 

different species or conditions have been published (reviewed and compared 

in [63]). Most successful studies however, were performed in Drosophila [64–

67], on narrow genomic regions [67,68] or using additional data like TFBS-

sets or conservation-vectors [65,67–69]. It is thereby hard to assess how 

useful these methods can be in general, especially when applied in more 

complex organisms like vertebrates and on a genome-wide scale. 

Furthermore, only little is known about the general problems created by 

compensation of permutation using word profiles. 

 

 

1.4 Aim of this study 

As described above, enhancers are at the very basis of gene regulation, 

integrating multiple different inputs that in the end lead to complex spatio-

temporal expression patterns of their corresponding target gene. Increasing 

evidence in the recent literature indicates that mutations in these regulatory 

regions significantly contribute to phenotypic evolution of species. It is 

therefore of great interest to get insight into the functional principle of 

enhancers, as it would allow drawing conclusions about the mechanisms by 
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which they can evolve. For this, it is of crucial importance to identify 

functionally similar regulatory elements in different species to determine the 

“rules” underlying a specific spatio-temporal activity. Unfortunately, this is so 

far restricted to highly conserved enhancers identifiable by pair-wise or 

multiple sequence alignment, although many more enhancers too divergent in 

sequence to be alignable but fulfilling similar functions might exist in different 

species. Methods for identification of these “corresponding enhancers” (i.e. 

enhancers that receive similar input leading to comparable activity) could 

hence contribute significantly to our understanding of regulatory mechanisms. 

 

Two different classes of enhancers are known today which are described 

either by the enhanceosome or billboard model. While the first class has a 

high chance to be identifiable by alignment algorithms, the latter poses a huge 

challenge to these techniques, as they are able to keep their activity even 

after extensive reshuffling of their functional elements. This makes new 

detection techniques necessary that are able to cope with these changes. 

Alignment-free algorithms are the most promising methods to handle 

evolutionary permutation. To date, a large variety of implemented techniques 

exist but most of them depend on prior knowledge that is rarely available. 

Furthermore, the majority was used for prediction in species that have more 

compact genomes and regulatory elements than vertebrates and for which 

more detailed data about the specificity of the involved factors exists (e.g. 

Drosophila). To also apply these methods for enhancer prediction in 

vertebrates, a better understanding of the underlying problems of the 

alignment-free approach is necessary. Unfortunately, the modifications 

implemented in currently available algorithms make this task very difficult. 

 

Recent studies [40,70] have further emphasized the fact that, despite their 

flexibility, billboard enhancers do not completely reshuffle their contained 

TFBS. Instead, some of these sites are permuted as groups or modules. 

These modules, which might be even full CRMs, are under such strong 

structural constraint that they reappear in almost the same configuration after 

complete turnover. This allows treating them as small-scale enhanceosomes 

that permute together with additional independent site within the same 
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enhancer. This mode of permutation is only insufficiently described by current 

alignment-free approaches, as they completely dissect a given sequence into 

words without paying attention to the structural constraints acting on potential 

modules. At the same time, these modules are likely to be too short and 

degenerate to be detectable by alignment algorithms. It therefore might be 

that this type of enhancer is missed by alignment-based as well as by 

alignment-free approaches. 

 

As shown in [63], many recent alignment-free algorithms make use of 

additional information like conservation and TFBS. This limits their 

applicability to situations in which the necessary information is available. They 

furthermore are often restricted to narrow genomic regions or used for 

classification of comparably small sets of enhancers [71,72]. It is therefore 

unknown to what extent these methods are able to identify corresponding 

enhancers across large evolutionary distance on a genome-wide scale. This 

is of special importance as enhancers might be at remote places compared to 

their target gene due to the highly complex 3D structure of genomes in the 

nucleus. 

 

The aims of this study are therefore: 
 

I. Analysis of the problems created by introducing permutation into 

sequence comparison as done by alignment-free algorithms and 

development of possible solutions. 

 

II. Implementation of a prediction principle based on the previous 

findings that take the modular but flexible structure of enhancers 

into consideration. 

 

III. Application of this new implementation for the task of genome-wide 

prediction of enhancers, using only a known enhancer and the 

available information about the query and target genome. 
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To achieve this, I make use of a large set of known and validated enhancers, 

followed by implementation and testing of several basic alignment-free 

metrics. The lessons learned from these techniques are then combined and 

used for the development of a new algorithm, which is subsequently used for 

prediction of corresponding enhancers between Human and Medaka. 
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2. Results 

2.1 Data set selection 

2.1.1 VISTA Enhancer browser 

To identify regulatory elements across a large evolutionary distance based on 

only sequence information, a highly reliable set of enhancers as input is 

necessary. The data set for this study was extracted from the VISTA 

Enhancer Browser [73] [LINK1] as it contains the largest, consistent set of 

validated human enhancers. These regions were initially predicted either by 

deep sequence conservation or by ChIP-seq on the transcriptional co-factor 

p300 and subsequently validated in vivo in a mouse enhancer assay. Of all 

the regions contained, only those were selected which had reported enhancer 

activity. This resulted in a total data set of 629 human regulatory regions, 

which were used for all subsequent analyses. 

 

2.1.2 Subset extraction 

To generate subsets for testing, I aligned all regions against the genome of 

the teleost fish Medaka (Oryzias latipes) using LastZ [74]. This species was 

selected as it is separated from the human lineage by ~450mio years of 

independent evolution. Furthermore, through relaxation of selective pressure 

by the whole genome duplication that has happened at the teleost-tetrapod 

split, enhancers might have been allowed to undergo evolutionary change 

and this way allow conclusions about mutational mechanisms. Among several 

alignment algorithms, LastZ was chosen mainly for two reasons. The first was 

that deep sequence conservation used to predict the majority of the enhancer 

set is based on PhastCons [75]. This algorithm uses multiple alignments 

generated by MultiZ [76] as input to calculate, in combination with a 

phylogentic tree, the evolutionary constraint acting on each individual 

nucleotide. MultiZ in turn is based on multiple pairwise alignments generated 

by LastZ. LastZ should therefore be able to detect all elements that have been 

conserved since the teleost-tetrapod split. The other important reason was its 

high specificity in aligning non-coding regions [77], which is crucial when 

searching for enhancers across large phylogenetic distances. In total, LastZ 
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could identify 252 of the 629 human enhancers in the medaka genome. 

These enhancers formed the “aligning” subset that served to assess the 

sensitivity of the tested algorithms. The remaining 377 regions were used as 

input for the prediction of corresponding enhancers in the medaka genome. 

Although many of these enhancers are likely to have lost their function due to 

mutations, some of them might still have enhancer potential. 

 

2.1.3 Test candidate selection 

 
Figure 1 Pariwise alignment pipeline from Human through Zebrafish to Medaka for all 
human VISTA enhancers. For three medaka loci identified in this way no direct Human-
Medaka alignment was possible using LastZ. 

 

I further filtered the enhancer data set via an alignment pipeline from Human 

through Zebrafish (Danio rerio) to Medaka to generate a set of test candidates 

for assessment of the prediction capacity of several different techniques 

(Figure 1). This procedure served two purposes: first, using Zebrafish as an 

anchor, the likelihood to identify putative enhancers that are also functional in 

Medaka should be increased. Second, it should allow the detection of 

orthologous regions between Human and Medaka which cannot not be found 

by direct alignment on genome-wide scale. It this way facilitates the 

identification of regions, which on the one hand are strongly divergent in 

Human and Medaka but on the other hand share teleost specific mutations 

and innovations. Taher et al. [68] for example successfully applied a similar 
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“tunnelling” approach for the identification of divergent regions in Human and 

Zebrafish using Frog (Xenopus tropicalis) as intermediate step. Applied on my 

data set, this method resulted in three candidates (VISTA IDs: hs1022, hs692, 

hs20) for which the corresponding regions in Medaka identified by the pipeline 

do not produce significant direct alignments using LastZ on genome-wide 

scale. However, two of them still contain small aligning regions identifiable 

using another aligner, BlastN [78] [Link2], at very sensitive conditions on the 

already identified loci. These alignments seem to be too weak to allow their 

identification by LastZ on genome-wide scale. The third locus contained no 

detectable alignment at all. All three human enhancers were subsequently 

used as candidates to test whether they can be detected by alignment-free 

prediction methods. 

 

In addition to these three candidate loci, I also selected two enhancers 

(VISTA IDs: hs320, hs631) located in paralogous loci in Human next to the 

genes ZNF503 and ZNF703, respectively, which are still alignable between 

Human and Medaka. Both genes exist in Medaka in two copies together with 

several syntenic genes in their vicinity, indicating that these loci have been 

generated by the whole genome duplication in the teleosts. Interestingly, 

when using LastZ to align hs631 (next to human ZNF703) to the medaka 

regions identified by the pipeline for both enhancers, it maps at a higher 

identity to the ortho-paralogous enhancer locus for hs320 near medaka 

ZNF503 than to its orthologous counterpart. As the paralogous duplication 

obviously happened prior to the teleost-tetrapod split, one would expect that 

both loci acquired independent mutations, which subsequently were kept 

conserved between the corresponding orthologous loci after the split. This 

should result in alignments between the orthologs followed by weaker hits in 

the ortho-paralogous regions – at least given that the paralogous sequences 

are still similar enough to be alignable. Repetition using BlastN however 

further confirmed the ranking reported by LastZ. These enhancers were 

therefore good candidates to not only test the sensitivity of different 

alignment-free approaches but also their specificity. They furthermore served 

to adjust several parameters of the alignment-free metrics (e.g. word length, 

window size, target window overlap).  
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2.2 Alignment-free metrics 

Obviously, more than 50% of the VISTA enhancer set cannot be identified by 

an algorithm specialized to identify non-coding regions in distant species. The 

easiest explanation would be that those enhancers have just acquired that 

many mutations during evolution that they lost any sequence similarity – and 

most likely their function as well. On the other hand, the functional motifs 

within the corresponding enhancer might just have been permuted rendering it 

invisible for alignment algorithms. In that case, alignment-free algorithms, 

which are designed to cope with rearrangements, should be able to reveal 

some of those eventually hidden (also termed “covert” [68]) elements. 

 

2.2.1 Classical metrics 

To investigate to what extent alignment-free operating metrics are able to 

identify putative enhancers purely by direct sequence comparison, several 

classical alignment-free metrics were implemented and examined. Some of 

these metrics (termed here “COSINE” and “D2”, for details see “Materials & 

Methods”) are taken from a comprehensive review on different alignment-free 

approaches [62]. Further metrics were proposed by [79] (“POISSON”) and 

[64] (“HEXDIFF). With the exception of the “COSINE” metric, each of the used 

metrics has already been used in alignment-free algorithms for enhancer 

prediction. The “POISSON” metrics for example form the basis of an algorithm 

for enhancer prediction in intergenic regions in different Drosophila species 

[67] while “D2” and “HEXDIFF” were both used for prediction of several 

classes of enhancers [66] in Drosophila and Mouse. In that study, the latter 

metric, although rather simple, was able to outperform many different 

modifications of the “D2” metric that implemented sophisticated statistical 

methods to calculate similarity. Nonetheless, due to its use for many different 

tasks [61,80,81], the “D2” metric was included in the set of tested metrics. It 

would have been possible to just use one of the already existing 

implementations of those metrics but several parameters argued against. 

First, as previously mentioned (see 1.3.2.3 and 1.4) many of those algorithms 

require additional information besides the input enhancer sequence (“query”) 

and the genome of interest (“target”). Second, it was planned to subsequently 
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use those metrics for genome-wide scanning. But as most implementations 

were only used on narrow genomic regions, rewriting of the source code 

would have been necessary to adapt them to this approach. Last but most 

important, these metrics had been modified in the respective algorithms to 

meet the specific needs of the project scope. As the aim of this approach is to 

identify possible problems introduced by allowing permutation for prediction, 

especially when having only limited information, these modifications might 

have interfered with the readout. I therefore implemented the aforementioned 

unmodified metrics myself and used them for prediction of the selected test 

candidates. 

 
Table 2 Ranking of orthologous/ortho-paralogous loci for alignable test candidates based 
on either alignment or implemented alignment-free algorithms. Dark marked loci are those 
with highest syntenic evidence. Interestingly, HEXDIFF prefers both orthologous loci for 
hs631 compared to all other metrics 

 
2.2.1.1 Test candidates 

All implemented metrics are able to clearly identify the signal in the putative 

orthologous regions (531 bits and 421bits, locus specific BlastN alignments) 

when running the hs320 enhancer (ZNF503) against the four identified 

medaka loci (two for ZNF503 and for ZNF703). No alignment-free signal can 

be detected in the two ortho-paralogous loci (around ZNF703), which contain 

much weaker alignments (68 bits and 89.7 bits, locus specific BlastN 

alignments). Using the hs631 enhancer (ZNF703) as input, all except one 

POISSON metric (POISSON:Distinct) can find each aligning region (Suppl. 
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Figure 1). Different to the result obtained by LastZ and BlastN, all metrics 

report one of the orthologous loci as first hit (Table 2) - interestingly, this 

region has less syntenic evidence compared to its duplicated locus. 

Furthermore, most metrics report the four loci in a ranking similar to that of the 

alignment algorithms, differing only by shifting the least-syntenic orthologous 

locus to the first position (but still scoring the second orthologous locus last). 

Only the HEXDIFF metric reports the loci in the order expected by the 

presence of the anchor genes (ZNF503 / ZNF703). However, due to the 

quality of the gene annotation in Medaka and the problems in assignment of 

correct orthologs between tetrapods and teleosts caused by the additional 

whole-genome duplication in the latter, ranking of the loci by their gene 

content might lead to the wrong conclusions. On the other hand, HEXDIFF is 

the metric with the best signal-to-noise ratio compared to all others. This is 

surprising as it is also one of the simplest metrics implemented but it confirms 

the results found by [66]. Although this would speak in favour for the 

HEXDIFF metric as the metric of choice, one has to keep in mind that even 

this metric fails to report a signal in the ortho-paralogous loci for the hs320 

enhancer next to ZNF503 despite the fact that both loci still contain 

alignments.  

 

This could indicate that the alignment-free metrics already reach their 

detection limit at levels of sequence identity for which alignment algorithms 

are still able to identify the region of interest – even on genome-wide scale. 

But this does not necessarily mean that regions invisible to aligners also 

produce no signal using alignment-free algorithms - individual motifs might 

have just been reshuffled. Detailed analyses of the performed tests support 

this. In all cases where alignment-free metrics produce a signal, this signal is 

already visible just by looking at the word counts. All peak regions have an 

increased word overlap between input and target window that is clearly 

distinguishable from the surrounding profiles (surprisingly, this signal is even 

more pronounced than the difference in the score profile of some metrics). 

Reshuffling of words within a given region would not interfere with that 

property and thereby still allows the prediction of corresponding regions while 

at the same time hiding the signal from alignment approaches. 
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I therefore also used the three human enhancer-candidates undetectable by 

direct LastZ alignment to Medaka as input for the alignment-free algorithms. 

As before, I checked several genes in the locus containing the pipeline 

alignment hit to identify putative additional syntenic regions in the medaka 

genome that might have been created by the teleost whole genome 

duplication. For two of the enhancers (hs1022, hs692), an additional 

putatively orthologous locus can be found containing multiple paralogous 

genes in syntenic arrangement (Table 3). 

 
Table 3 Putative orthologous loci in Medaka for 3 selected candidates identified by the 
pipeline. For hs20 no second locus could be found. 

 

BlastN alignments on those loci do not show any significant sequence 

similarity to the enhancer. Interestingly, for hs1022 no similarity can be 

detected at all in any of the two syntenic loci. This indicates that the tunnelling 

of the human enhancer through the zebrafish genome is crucial for the 

identification of the corresponding region in Medaka. I performed the 

alignment-free runs as before and analyzed it to identify windows peaking 

above a set threshold (see “4.8 Alignment-free metrics”). Of the two weakly 

alignable candidates, surprisingly only the weaker aligning one (for hs692) 

can be identified although only by peaks at the lower end of the peak ranking 

(Figure 2). Neither the strongest aligning candidate nor the one without 

significant alignment overlaps with any reported peak. On the contrary, most 

metrics fail at least in one of the loci predicted by the pipeline to produce a 



Chapter 2: Results 
 

 
 26 

peak at all. Only the HEXDIFF metric is able to find peaks in all three pipeline-

loci but surprisingly fails to identify aligning region for hs692 predicted by the 

other metrics. However, closer examination of the score levels reveals that 

the scores in this region are very close to the threshold (Suppl. Figure 2). 

 
Figure 2 Peak position plot for all implemented alignment-free metrics on the target loci 
identified by the alignment pipeline. Only for the medaka target locus of hs692 some metrics 
peak (coloured triangles) at the position of the identified alignment (vertical grey bar). 

 

In general, the signal-to-noise levels are 7- to 19-times lower than in the 

previous runs for the test candidates (hs320, hs631) and in many cases even 

below one (Figure 3). This indicates that the metrics indeed operate at the 

limits of their detection levels. In sum, results show that the implemented 

classical alignment-free metrics, if given nothing more than two sequences, 

reach their limit already at rates of sequence identity that still allow reliable 

identification of the region of interest by alignment of the enhancer against a 

given locus. On the other hand, the ability to detect a region and to 

discriminate it from other loci containing similar sequences is not directly 

correlated to the observed alignment scores, indicating that alignment-free 

metrics can utilize information that is either invisible or ignored by the used 

alignment algorithms. 
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Figure 3 Signal-to-noise ratios for all alignment-free metrics. Even for the weaker, still 
directly aligning (hg19  ol2) test candidate (hs631) the signal to noise ratios are higher than 
for any of the regions only identifiable by the pipeline. Except for hs20, HEXDIFF always 
performs best. 

 

Analysis of the results shows that alignment-free metrics face two major 

challenges that both lead to signal loss. Single point mutations in the target 

sequence change all words overlapping them, which in turn changes the word 

profile. This way, even few mutations can alter the whole profile, especially in 

short input sequences like enhancers. This problem also occurs when two 

words detach and rearrange as it eliminates all motifs overlapping the break 

point. The other problem leading to signal loss is the significance reduction for 

single words caused by splitting them into many smaller overlapping 

fragments. Long words obviously have a higher significance than the small 

words they are composed of. As these words are not required to occur in the 

same overlapping fashion in the target sequence, each individual nucleotide 

in the query is virtually multiplied by the words overlapping it. This way it might 

be repeatedly scored in the target independent of its preceding or succeeding 

nucleotides. But as these words are smaller than the word they derive from, 

this rather increases noise than signal. Due to that, even a region containing a 

strong alignment signal resulting from a long stretch of perfect sequence 

identity can “drown” in noise peaks predicted in unrelated genomic regions if 

the enhancer size is large enough to allow the generation of an equally 

scoring amount of small “noise-words”. 
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Most recent metrics solve this problem by assigning different weights to 

individual words. Word filters just keep certain subsequences defined a priori 

while ignoring all others, which is equivalent to setting their weight to zero 

(“direct filtering”). Others selectively increase the importance of specific words 

(“balancing”). This, for example, is done by the POISSON and HEXDIFF 

metrics. Only the HEXDIFF however also uses “implicit filtering” by scoring 

only words that exist in the profiles of query and target sequence, all other 

metrics score at least all words in the query profile. This fits well to the 

observation that HEXDIFF has the best signal-to-noise ratio, followed by the 

POISSON metrics, D2 and COSINE (Figure 3). D2 seems to benefit from the 

fact that it scores profiles for different word sizes simultaneously but the 

extent of which is rather low. Implemented POISSON and HEXDIFF metric 

are theoretically also able to score words of different size at the same time but 

face two problems in practice. First, motifs used for assessment of similarity 

are normally derived from additional data, which is not available in this 

approach. Second, both require the calculation of word background 

frequencies, which is computationally expensive for larger words (>10nt), 

especially if the maximum size of a word matching between query and target 

is not known a priori. 

 

2.2.2 Extended metric 

Based on these findings I implemented a new metric that uses “implicit 

filtering” of variable-sized words and “balancing” simultaneously. This should 

show whether these concepts could help compensating the adverse effects of 

permutation on sequence comparison. The extraction of variable-sized words 

however is different from the strategy used by the D2 metric. For D2, both 

sequences are individually split into word profiles of a certain range of sizes. 

Profiles of the same word size are then independently compared and the 

scores for each word size added. Here, instead of dissecting input and target 

sequence individually into words of various fixed sizes, both sequences are 

used at the same time to extract the longest possible word-matches between 

them (for details see “4.8.5. Modified metric”). Words are then filtered 

afterwards by allowing only words of the same size to overlap in the target, as 
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they basically are equally significant. Other overlapping words are either 

truncated or discarded if they drop below the minimum word size. This way, 

only words contained in both sequences are scored (i.e. “implicit filtering”). As 

mentioned earlier, the extraction of words of variable size at runtime does not 

allow calculation of exact word frequencies a priori. Therefore, frequency 

values are assigned to all nucleotides in the target genome. The weight of a 

specific word (“balancing”) is then calculated by averaging across the mapped 

nucleotides (for details, see “4.5 Frequency track” and “4.8.5 Modified 

metric”). 

 

2.2.2.1 Orthoblocks 

I first tested the new metric on the three candidate enhancers identified by 

alignment pipeline. These could not be detected before in an alignment-free 

manner although two of them still contained BlastN alignment hits (64.4 bits 

and 78.8 bits for hs692 and hs20, respectively). This time, a signal is 

detectable in each of the three target loci but not in the alternative syntenic 

regions. This signal is not only clearly distinguishable from the surrounding 

sequence but also overlaps in all cases with the previously reported 

alignments (Suppl. Figure 3). This shows that it is possible to use variable-

sized motifs in alignment-free techniques even if they are not specified by 

additional data a priori. Subsequently, I also applied this metric for all 

enhancers that were not directly detectable when aligning the human 

sequence against the medaka genome using LastZ. First, for each enhancer 

a set of regions is extracted from the medaka genome based on syntenic 

arrangements of genes orthologous to those in the surrounding of the human 

element. Then, regions are scanned and the highest peak for each enhancer 

selected. Peaks next to at least one orthologous flanking gene are selected as 

putative candidates. In total, for 18 out of 377 (4.8%) enhancers a putative 

candidate can be identified. 10 of 18 (56%) can be further confirmed by locus-

specific BlastN alignments (Figure 4). The remaining eight have no obvious 

sequence similarity to their input enhancer. Previous approaches, which also 

focused on orthologous intergenic regions, had shown that weakly alignable 

regions only identifiable in that narrow scale still had detectable enhancer 
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activity [82]. But even these studies would have missed the additional 

elements found here due to the lack of alignable sequence. One of those 

additional candidates is even located between both orthologous flanking 

genes and in comparable relative distance. This is only the case for 2 

additional peaks among the 18 candidates (3 of 18 in total). Comparison of 

the alignment strength found in the BlastN-overlapping candidates identified 

by this metric to those in the test loci, which are identifiable by the 

implemented alignment-free metrics, shows that using variable sized motif 

can clearly increase sensitivity (weakest alignment found: 51.8 bits vs. 96.9 

bits). 3 out of 10 overlapping candidates (30%) were even close (51.8 bits) to 

the significance threshold for BlastN (50 bits). 

 

2.2.2.2 Genome-wide 

I then tested whether this sensitivity is still achievable on genome-wide scale. 

For this, all 377 human enhancers were scanned against the full medaka 

genome. Unfortunately, this time only five candidates could be identified by 

the metric, all overlapping BlastN hits, whereas the previously identified novel 

regions were all lost – even the double-flanked candidate. Surprisingly, BlastN 

can identify all five even on genome-wide scale although LastZ, which is 

specialized for aligning non-coding regions, did not report any of those 

regions. More detailed analysis of the lost and still found enhancer candidates 

showed that there is no correlation between the contained alignment strength 

and the fact that a candidate was lost. 

 

 
Figure 4 Result summary for modified alignment-free metric. All novel candidates identified 
in Orthoblocks are lost on genome-wide scale. The remaining candidate regions are all 
detectable by BlastN alignments. 
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While 2 of the 3 weakest aligning regions (51.8 bits) were still found, the 

strongest one (122 bits) and several other significantly aligning regions were 

lost. To test whether this also affects the set of 252 regions for which LastZ 

did report an alignment, this set was scanned as well against the medaka 

genome, resulting in only 182 (72%) enhancers that could be identified. 

Repeating the same run against orthologous regions computed in the same 

way as for the non-aligning sub set, increased the overlap by only 6% (197 of 

252, 78%) (Figure 4). 

 

2.2.3 Conclusions 

Among the regions hidden to the alignment-free approach are also three 

regions of the highest alignment category defined by BlastN (i.e. >200 bits). 

These regions have a length between 300 – 600nt, a percentage identity of 

68% to 76%, and contain only few gaps (2 - 15%). Sequences are partitioned 

into perfect matching motifs of various sizes mainly by single point mutations 

or short mismatching regions (longest motif between 14nt and 19nt) (Figure 5 

and Suppl. Figure 4). The regions predicted by the alignment-free metric for 

those enhancers have motifs between 21-23nt. As both region sets always 

also contain additional smaller motifs that balance each other, the final 

decision for one or the other region is based on the longest contained motif. 

While this explains why the most likely wrong region is preferred by the metric 

it does not explain why those motifs exist. Analyses of the predicted loci show 

no evidence for orthologous genes at these positions. Although this could be 

the result of wrong orthology mapping between Human and Medaka, the fact 

that two of the aligning loci are clearly identified when scanning the computed 

orthologous regions argues against that explanation. A perfect matching 21-

mer between human and medaka however should be a very unlikely event 

outside orthologous regions. 
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Figure 5 Example for word pattern in highly significant aligning region. Individual perfect 
matching words (grey areas) are mostly separated by only a few mutated nucleotides. 
Resulting words are too small to carry enough signal that would allow identification on 
genome-wide scale. 

 

To test how strong deviations from the expected word frequencies might 

influence the correct identification of the corresponding region by the modified 

metric, I analysed the repeat masked sequence of the smallest medaka 

chromosome (i.e. chr19, ~23.5mb, assembly: ol2/MEDAKA1) for occurrence 

of all possible 20-mers. A 20-mer has a likelihood of 4^-20 ~= 9e-13. This 

means, it should occur only once ~1,300 full medaka genomes (genome size: 

~800mb, ol2/MEDAKA1). As Table 4 shows, ~340,000 different words (~2.1% 

of all 20-mers found) are contained more than once, the most frequent 

(“GATTTCATGTAATCCATGGA”) occurs even in 189 copies – and that on a 

chromosome which contains only ~3% of the medaka genome.  

 

This clearly shows that likelihood assumptions for motifs above a certain size 

largely deviate from the genomic reality. Long motifs should therefore be 

given less weight to avoid artifacts. Short motifs on the other hand occur in 

such high amount per scanned target window, that their signal drowns in the 

noise. This can be shown by analysis of 14 still alignable enhancers selected 

at more or less equidistant positions in the median score distribution (0.011 – 

0.077, stepping ~0.005). The median score represents the genomic 

background signal and is correlated with the enhancer length as more noise 

motifs are accumulated. This also results in reduced signal-to-noise levels. 
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Table 4 Word counts for different word sizes extracted from medaka chromosome 19. This 
chromosome obviously contains several large words that differ drastically from likelihood 
assumption and affect all word profiles of a size smaller than these artifacts. 

 

To determine what leads to this reduction, the relative abundance of words of 

a certain size in all scanned windows as well as the amount of words of that 

size per window were analyzed. As it can be seen in Figure 6, independent 

words of size 12 and below not only exist in more than 50% of all windows on 

average but also accumulate per window with increasing enhancer length. As 

windows overlap by 25% during scan (see “4.8.5 Modified metric”), this 

means that the target genome contains a matching motif of that size at least 

every second enhancer length. Unfortunately, many strong alignments are 

dissected into motifs of that size due to point mutations and/or small indels. 

Therefore, the signal contained in those regions drowns in the noise of 

randomly matching motifs. Together with the previously described problem of 

artifacts generated by words of 20nt or more this is a huge challenge for 

alignment-free predictions on a genome-wide scale. 



Chapter 2: Results 
 

 
 34 

 
Figure 6 Word accumulation analysis. (A) Relative abundance of words in windows for 
different enhancer (i.e. window) sizes. Words of size 12 (blue vertical line) and below occur in 
more than 50% of the windows (red horizontal line) for most enhancer sizes. (B) Words of 
size <= 12 not only occur in 50% of the windows but also accumulate per window.  

 

2.3 NASCAR 

The results obtained using alignment-free metrics show that it is possible to 

identify candidate regions of likely enhancer activity in the genome just based 

on the comparison of profiles of matching words between two sequences, and 

that even on genome-wide scale. No additional data like TFBS sets or 

conservation profiles are necessary. Although none of these regions was 

tested in an in vivo assay, previous studies could show that regions of similar 

properties identified using alignments were able to drive a reporter construct 

in an enhancer-like fashion [82]. The observations also highlight that the main 

problem generated by allowing rearrangement in sequence comparison is the 

loss of significance of the individual matching segments by fragmentation into 

smaller pieces. Small words are more likely to occur at higher frequencies, 

offer more possibilities for permutation and thereby increase noise. While this 

still can be handled when focusing on narrow regions around orthologous 

genes, it causes substantial problems on genome-wide scale. Increasing the 

significance of individual words by perfect match extension can reduce 

adverse effects but is challenged by long matching segments that exist much 
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more frequent in the genome than expected. Furthermore, extension is 

interrupted in many cases by short interspersed mismatch mutations that 

dissect regions of high sequence similarity into many small, noise prone 

segments. Alignment algorithms solve these problems very effectively but aim 

to detect single regions that are significant by themselves. This is contrary to 

alignment-free approaches, which are based on the simultaneous scoring of 

multiple matching elements within a given region. As the results for the 

variable perfect-match metric show, a combination of both principles is 

possible in theory. Mismatch extension allows combination of small perfect 

matching words into larger mismatch containing motifs, which can then be 

scored in an alignment-free manner allowing motif reshuffling. This principle 

has the potential to work for all classes of enhancers: enhanceosomes, which 

are forced by their working principle to keep their functional elements in a 

collinear arrangement, could be indentified even if they are rather short as the 

metric would treat them as a whole instead of dissecting them into small 

pieces and thereby dispersing the signal. Changes in variable positions could 

also be handled as long as enough sequence identity is kept. Rearrangement, 

which is a prominent feature of billboard enhancers, can also be handled by 

such a metric as it allows motifs to occur at rearranged positions without 

affecting the score. The recently describe type of structured enhancers [40,70] 

should benefit the most from this principle. Swanson et al. describe that 

enhancers are composed of individual binding sites on the one hand and 

groups of sites following a strict grammar on the other. These groups contain 

sites, which need to be precisely positioned to allow interaction of the bound 

TFs. In this way they should form longer motifs that could be recognized by 

mismatch extension. They could also show that these groups can rearrange 

as a whole and even vanish and reappear by binding site turnover. This would 

also be covered by the principle described here. 

 

2.3.1 Principle 

To test whether the combination of alignment and alignment-free properties 

can be used for enhancer prediction, I implemented them in the “NASCAR” 

algorithm (“Non-linear Alignment SCoring AlgoRithm”). Knowledge gained 
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from previous alignment-free approaches was thereby included in the design. 

Key features of this new algorithm are: window-based scanning of a given 

target sequence, usage of mismatch containing motifs to increase signal of 

each individual word, weighting and filtering of motifs according to their 

relative importance, sum scoring of all matching elements contained within a 

given window, and allowance for full permutation (rearrangement & strand 

swap) of the motifs involved. In short, motifs are detected in a similar way as 

in the alignment-free metric used for genome-wide prediction, just that instead 

of allowing only perfect-match extensions, mismatches are included using a 

scoring function known from alignment algorithms. The detected motifs are 

then weighted, filtered and used to generate a similarity score between the 

input enhancer and each individual window in the target sequence (for details 

see “4.9 NASCAR”). 

 

In addition to the basic metric, I also implemented a pattern detection 

technique to increase signal in non-permutated but far-spaced regions. This 

was thought to be of special help for the detection of structured enhancers as 

the CRMs that form the full enhancer are likely to be farther spaced than the 

sites within one module. Mutation of those module spacers, especially in large 

regulatory elements would leave the functional elements intact but split them 

in several, still collinear arranged fragments. Knowing that sequence within 

functional elements or groups evolves at slower rates than the spacers 

between them [40], this would not only reduce signal strength but at the same 

time increase the noise level by generating new, random motifs matching just 

by chance to different parts of the input region, thereby blurring the signal. To 

compensate these effects, motifs still arranged in a collinear fashion are 

strengthened. This way, even motifs below the noise-threshold (see 2.2.3 and 

4.9.2) can be considered. This technique should also help to reduce 

permutation noise that can occur even without the generation of new motifs. 

In an algorithm like the proposed here, every single motif is independent form 

each other in the sense that they neither overlap in the input nor the target 

sequence. This way they are free to permute as long as they finally reach 

another non-overlapping configuration. But as all possible permutations result 

in the same score, a still collinear arrangement, which is a way less likely 
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event to happen, cannot be discriminated from fully mixed up arrangements. 

The described pattern detection technique however enhances the score of 

collinear regions above mixed sequences and thereby allows their 

discrimination.  

 

2.3.2 Sensitivity 

I first tested the final algorithm on the aligning data set to assess its sensitivity 

and specificity. When run against the full medaka genome it can identify 246 

of 252 (~98%) of all alignment hits found by LastZ, only 238 of 252 (~94%) 

however also overlap with BlastN alignments. This is partially due to the fact 

that LastZ and BlastN overlap by only ~97% (246 of 252). Nonetheless, 

NASCAR reaches an overlap of >90% in general which is a clear 

improvement compared to the 72% reached with the purely alignment-free 

technique. As NASCAR is a hybrid between an alignment and alignment-free 

algorithm this result was expected for the aligning enhancer set. 

 

2.3.3 Prediction 

Having successfully identified most of the aligning subset, I subsequently 

used NASCAR to detect enhancer candidates for elements in the non-aligning 

set. As most candidates for the aligning set are directly flanked by at least one 

orthologous gene (~77%), this criterion was also used to call candidates for 

the non-aligning enhancers. In total, NASCAR predicts putative candidates for 

30 of 377 enhancers (~8%), 10 of them located even between both their 

orthologous flanking genes. Due to the fact that many motif permutations can 

lead to more or less the same score, NASCAR cannot be as specific as 

alignment algorithms, meaning that candidate regions might not necessarily 

score first (similar to the situation for only weakly aligning regions). 

Furthermore, scores are strongly correlated to the input size as always a 

whole window is scored. This makes it very difficult to define a score cutoff for 

significant candidates like the bit score of BlastN. I therefore tested until which 

position in the peak ranking flanked candidates can be found. More than 50% 

of all flanked candidates are already found as first peak, ~75% until position 

12. To include even weak signals in the candidate set, I set the threshold to 
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25 (~84%). Application of this threshold on the alignment set increases the 

overlap with LastZ further, reaching 99% (249 of 252). For the non-aligning 

set, this results in 48 candidates, 14 still between both orthologous flanking 

genes. To assure, that no candidates are selected for further testing, which 

could have been identified by an alignment algorithm on genome-wide scale, I 

used BlastN on the medaka genome and selected the 25 highest alignments 

per input enhancer, including even those that were not considered as 

significant hits (bit score <50). Afterwards, I filtered all enhancers and their 

candidates further by removing all enhancer-candidate pairs for which the 

suggested medaka peak is next to an orthologous gene and within 5kb 

around a BlastN hit. This assures that each selected candidate is indeed 

uniquely found by NASCAR and results in a final set of 9 human enhancers 

for which at least one peak is found next to an orthologous flanking gene (see 

Figure 7 and Table 5). For hs882:hg19, even two peaks very close to each 

other (4kb) can be identified (hs882:ol2-1, hs882:ol2-2). This second peak 

overlaps the aligning region of another VISTA enhancer (VISTA ID: hs431), 

which was not included in the compiled dataset as no enhancer activity was 

observed in the initial mouse assay. To rule out that they may be paralogous 

enhancers, I aligned those candidates against each other in all possible 

combinations (hg19hg19, ol2ol2, hg19ol2, ol2hg19) using BlastN. 

This did not show any significant similarity. This candidate is thereby very 

interesting as it might be a “redundant” enhancer [83] with highly similar 

activity. 

 
Figure 7 NASCAR results for genome-wide prediction of aligning and non-aligning VISTA 
enhancers. 
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Table 5 Candidate regions predicted in Medaka for 9 human VISTA enhancers. For hs882, two regions very close to each other (hs882:ol2-1, hs882:ol2-2) 
could be predicted but only hs882:ol2-1 contains a collinear motif cluster. Four peaks are located between both orthologous flanking genes (“double flanked”; 
DF), 6 still next to one (“single flanked”; SF).Orthologous flanking genes are marked in bold face, relative peak location is indicated by asterisk. Gene order 
depicts arrangement of orthologous genes in the medaka locus compared to Human. Empty parenthesis indicate non-orthologous genes flanking the peak
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Figure 8 Comparison of activity patterns oh human VISTA enhancers in Mouse and 
Medaka (dpi=days post injection). Hs394 is not shown as it has no activity in Medaka. Mouse 
pictures taken from the VISTA Enhancer browser [LINK1].
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2.3.4 In vivo validation 

The final set of candidates consists of 9 human enhancers and 10 

corresponding medaka regions (Table 5). I cloned each of these regions from 

the human or medaka genome into a reporter construct and tested the 

construct in the medaka fish for enhancer activity. This in vivo enhancer assay 

was established in the lab and has also previously been used to study the 

activity of enhancers [84]. Eight of 9 human enhancers, which already had 

been validated in Mouse, also show activity in Medaka in comparable 

structures, mainly in the brain and other neuronal tissues (Figure 8). Of the 

corresponding medaka regions, 7 of 10 show activity as well (Figure 9). For 3 

of them (hs865:ol2-1, hs848:ol2-1, hs882:ol2-1), activity is even partially 

similar to the corresponding human enhancer as they drive reporter 

expression in comparable tissues. Hs882:ol2-2 (the second peak for 

hs882:hg19) was of special interest, as it is not only predicted using the same 

enhancer as input but also located very close to the first candidate, which 

makes it a likely redundant enhancer candidate. In contrast to the aligning 

enhancer in the VISTA data set, which was negative in the initial validation in 

Mouse, the predicted medaka region indeed shows enhancer activity. 

However, in contrast to the expectation it shows a different activity pattern 

compared to the first candidate. The predicted medaka region for the negative 

human element hs394 is negative as well as expected. 

 

2.3.5 Conservation analysis 

Most enhancers that show activity in medaka also contain blocks of sequence 

that are conserved within the teleosts but interestingly not between the 

teleosts and placental mammals. I therefore analysed the motif profiles of all 

enhancer-candidate pairs to explore, whether these motifs might be 

conserved between Human and Medaka but just too short to allow the 

detection of deep sequence conservation across that phylogenetic distance. 

For this, I used PhastCons scores [75] for placental mammals and teleosts 

downloaded from UCSC [LINK3, LINK4] and calculated the average 

conservation score per motif for Human and Medaka. 
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Figure 9 Validation results for NASCAR-predicted medaka regions and the corresponding 
human VISTA enhancers. For some constructs, red arrows mark structures that are similar in 
the activity patterns caused by the human and medaka region.
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Figure 10 Motif conservation boxplots. Bars in brighter colours on the left and right side of each plot show results for randomly selected motifs in the 
corresponding human or medaka loci. Darker bars in the centre show real motifs. Median motif conservation (horizontal black bar) in medaka in higher than in 
any random set picked from the same locus for the five upper enhancer-candidate pairs, for hs882:ol2-1, hs1049:ol2-1, and hs1344:ol2-1 even significantly 
higher (p-value < 0.01, wilcoxon rank sum test). Situation in Human is similar, with median conservation as high or higher than in random sets (hs882:hg19 = 
p-value <0.05; hs1049:hg19 = p-value < 0.01; wilcoxon rank sum test). Hs1344 for instance shows very high conservation of NASCAR motifs, which is much 
stronger than for the corresponding random sets. Furthermore, median levels in randomisations show that there is a large amount of non-conserved 
sequence in both loci. This clearly indicates that, although the majority of the sequence in both regions has acquired mutations within its clade, the indentified 
motifs were kept conserved.
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Figure 11 Detailed analysis of NASCAR-motifs for hs1344 enhancer-candidate pair. PhastCons scores for placental mammals including Human are shown 
in dark green, scores for teleosts including Medaka in dark blue. Brighter coloured blocks above and below show predicted conserved elements with attached 
lod-scores (“log odds”). NASCAR-motifs are shown in rainbow colours between both tracks and corresponding motifs are connected (grey lines). Although 
drawn next to each other, there is no relation between the two sequences except those regions forming the motifs. One collinear cluster with almost identical 
spacing of motifs is clearly visible. Interestingly, the red motif is not conserved in Human but located in a small conserved block in Medaka. The blue motif, 
which seems to have changed its relative position compared to the others, is also located in one defined conserved block although there is enough non-
conserved sequence. This indicates that these motifs contain functionally relevant information that, although rearranged, was kept conserved independently 
in both clades.
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To rule out that eventual high conservation levels just derive from the fact that 

the full regions (Human, Medaka, or both) are under constraint, I extracted 10 

random motif sets from the same region and also analyzed them for their 

conservation. For 5 of the 10 candidates, the median conservation of the 

involved motifs in Human and Medaka is clearly as high or even higher than 

for the random sets, partially also at lower scattering around the mean (see 

Figure 10). Three of them even show no conservation scattering of human 

motifs although the corresponding random motifs are variable in their 

conservation. This indicates that the NASCAR motifs in these human regions 

are specifically conserved compared to the surrounding sequence. In sum, 

those 5 enhancer-candidate pairs show clear signs of motif level conservation 

in both species although PhastCons cannot find any direct conservation from 

Human to Medaka (Figure 11). 

 

2.3.6 Motif analysis 

As a next step, I analysed the motif arrangement in Medaka for each of the 

candidates by using Human as reference. All 5 enhancer-candidate pairs that 

show motif level conservation also show clearly collinear motif arrangements 

(Figure 12), 3 of them (hs848:ol2-1, hs882:ol2-1, hs1344:ol2-1) as dense 

clusters of 4 to 5 motifs. This further strengthens the conclusion that small-

scale conservation throughout the vertebrates was missed in those cases. 

One candidate (hs1049:ol2-1) shows a rather loose arrangement of motifs 

with two motifs near the 5’ end that seem to have undergone a local inversion. 

The last of these (hs865:ol2-1) is harder to assess, as it seems to have 3 

motifs still in collinear arrangement that are interrupted by a reshuffled motif. 

As NASCAR predicts two possible candidates for one of the enhancers 

(hs882:hg19) it was of special interest whether the involved motifs also 

overlap. This would argue for a similar function of both enhancers. Both peaks 

however seem to utilize completely different motifs in the human enhancer 

(Figure 13) which is in accordance with the validation results. 
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Figure 12 NASCAR-motif arrangements for all enhancer-candidate pairs that contain 
collinear patterns. Pattern in hs865 was not found by the implemented detection technique as 
it requires at least three motifs and the yellow motif is too far away.
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Of the 4 candidates that showed no conservation within the teleosts 

(hs394:hg19, hs590:hg19, hs1535:hg19, hs1831:hg19), none showed any 

collinear motif arrangement but completely mixed profiles (Figure 14). This 

could explain why 3 of them show no enhancer activity for the medaka region. 

On the other hand, hs882:ol2-2 shows strong activity despite a completely 

mixed profile – as well as hs1535:ol2-1. 

 
Figure 13 Query motif usage for both hs882 enhancer-candidate pairs. Obviously, 
completely different regions in the query (middle two motif rows) were used for prediction of 
hs882:ol2-1 and hs882:ol2-2. 

Figure 14 Examples for shuffled motif profiles. Hs590:hg19 showed activity in the enhancer 
assay but the predicted medaka region (hs590:ol2-1) did not. Hs394 (hg19 & ol2-1) was 
completely inactive. 

 
To test whether the found conserved motifs are also functional, I scanned the 

remaining 24 peaks per enhancer for a second candidate sharing the highest 

possible motif overlap with the already tested region whilst excluding as many 

collinear motifs as possible. These candidates should serve as kind of natural 
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deletion constructs and their activity compared against the previously tested 

candidate for which the collinear cluster of motifs was artificially deleted 

(Figure 15). 

 
Figure 15 Deletions and alternative constructs for hs1344:ol2-1 (A) and hs865:ol2-1 (B). 
Motif usage in Human is always shown in the central two lines. Motifs deleted in the medaka 
construct are highlighted in grey. Alternative constructs in both cases share some motifs 
inside and outside of the deleted area. 

 

Surprisingly, the patterns of both deletion constructs (hs865:ol2-1Δ and 

hs1344:ol2-1Δ) remain rather stable and show little to no reduction as result 

of the deletion (Figure 16). Quite the contrary, an additional domain seems to 

emerge in hs1344:ol2-1Δ. Furthermore, none of the additional peaks 

(hs865:ol2-2, hs1344:ol2-2) is similar to either the tested candidate or the 

deletion construct. Hs1344:ol2-1, -1Δ, and -2 have overlapping activity in the 

optic tectum, but this is only very faint in hs1344:ol2-1 while very strong in 

hs1344:ol2-2. 
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Figure 16 Comparison of original constructs with deletions and alternative regions. 
Hs1344:ol2-1Δ shows an additional domain (red arrow) but otherwise looks like the undeleted 
construct. Both alternative constructs (hs1344:ol2-2, hs865:ol2-2) show strong enhancing 
activity but not similar to any of the other tested regions. 

 
2.3.7 TFBS analysis 

As TFs are the main actors for enhancer activation, I tested whether patterns 

of exclusive TFBS enrichment can be found in the motifs predicted by 

NASCAR. As expected, even at a conservative threshold of 90% similarity to 

the used PWMs, hundreds of putative TFBSs are found. Even when 
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restricting the search space to the NASCAR motifs only, still 50 to 100 TFBSs 

can be identified. This is partially due to the fact that different factors of the 

same family bind to the same motif and are reported as individual hits but also 

caused by overlapping sites of unrelated factors. For 18 regions (8 in Human 

and 10 in Medaka), motif-specific TFs can be identified but do not differ 

significantly when compared to the set of randomly selected motifs (p-value: 

0.22 for human and 0.19 for medaka active enhancers, wilcoxon rank sum 

test). I also tested whether the same TFs are restricted to the identified 

NASCAR motifs in both species. If TFBSs depletion is one mechanism of TF-

guidance and the identified TFs involved in the enhancer function, sites for 

those factors would have to be motif-exclusive in Human and Medaka. 

Indeed, a significant enrichment can be found (p-value: 0.003, wilcoxon rank 

sum test) for regions with validated enhancer activity. Due to the small 

number of positive candidates (only 7 candidate pairs showed activity for 

cloned regions of Human and Medaka) this result might be strongly influenced 

by a single outlier. Closer inspection of the identified TFs shows that for one 

pair 7 restricted TFs are identified but all overlapping exactly the same spot. 

This artificially increases the amount of TFBSs found. I therefore removed this 

candidate pair from the data set and repeated the analysis. This time, the p-

value drops to 0.013 (wilcoxon rank sum test) but still shows a significant 

enrichment. 
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3. Discussion 

3.1 Data set selection 

To date, the VISTA Enhancer Browser provides one of the largest collections 

of in vivo validated enhancers. Most of the contained regions were either 

predicted by ChIP-seq on the transcriptional co-factor p300 or deep sequence 

conservation. The fact that this co-factor is involved in many enhancer 

complexes [43,53] allows generation of sets of tissue-specific enhancers 

based on very different underlying enhancer logics. This way, the resulting 

sets allow the study of enhancer mechanisms in an unbiased fashion. Most 

importantly, it does not introduce biases to enhancer sequence structure, as it 

binds to already assembled TF clusters rather than to the sequence itself. 

Conservation on the other hand introduces a strong bias to sequence 

structure. In this thesis, I made the attempt to predict enhancers by a hybrid 

method situated between alignment and alignment-free techniques. This 

should especially allow detection of enhancers that have undergone structural 

changes and permutations during evolution. Due to these changes, this class 

is likely to be missed by alignment-based approaches using deep sequence 

conservation but at the same time of great interest for studying regulatory 

evolution of species. Using the enhancers in the VISTA database as starting 

material for the prediction of permuted regulatory regions in a distant species 

might however come with several problems. Although there might be many 

reasons why the corresponding counterpart in Medaka is not detectable by 

LastZ, the most likely explanation is that it just mutated to an extent that 

destroyed its function. It is of course also possible that subunits rearranged 

and therefore hid the enhancer, but the fact that it was initially found by deep 

sequence conservation somehow argues against that. Why should an 

enhancer region, kept conserved from Human down to Chicken or Frog, 

suddenly be allowed to rearrange? Mutational events in one species or clade 

of course do not depend on events in any other lineage, but for some reasons 

this did not happen in a large variety of different vertebrates, most likely 

because the enhancer under investigation is of crucial importance for the 

organism carrying it. However, the whole genome duplication that happened 
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shortly after the split of the teleosts from the tetrapods [85] might have 

provided the playground for mutational changes as it relieved the selective 

pressure on at least one of the copies. In this case, the second copy should 

still be detectable by alignments. Otherwise, one enhancer would have had to 

mutate for some time while still two copies existed of which the not mutated 

one was lost at some point, leaving no trace of any of the two copies. 

Although this scenario is possible it seems to be unlikely. 

 

Another possible scenario would be that the enhancer was neither copied nor 

lost but mutated in a fashion that hides it from alignment algorithms without 

affecting its function. This does not necessarily have to be permutation-

related. Billboard enhancers are known to be partitioned in individual TFBSs 

or functional modules (CRMs), separated by intercalated spacer sequences 

[36,38,70]. These sequences evolve much faster than the functional modules, 

at a rate that is close to the genomic background [70]. This could result in 

“erosion” of sequence similarity in the spacer regions, leaving “islets” of 

regulatory function behind (see Figure 17). Furthermore, the modules 

themselves might acquire mutations in the spacers between the TFBSs or 

even at variable positions within. In the end, the accumulated changes can 

reduce sequence similarity to an extent that does not allow identification by 

alignment algorithms anymore. Considering that enhancers are rather short in 

general, this might happen quite easily. This scenario does not require any 

permutation or even complete turnover of functional regions as only 

functionally unimportant positions are affected. It therefore might be a more 

likely explanation why some of the input enhancers do not seem to have a 

counterpart in Medaka. 
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Figure 17 “Sequence erosion”: accumulated mutations in non-functional regions of an 
enhancer result in small, functionally conserved blocks which are too small to produce a 
significant alignment on their own but at the same time too far spaced to be combined by 
gapped alignment. 

 

As described, the data set extracted from the VISTA Enhancer Browser might 

not be the ideal starting material to search for permutation-based evolutionary 

changes. The results found in this study somehow support this conclusion, as 

no clear signs of permutation or turnover are visible in the validated 

enhancers. This of course assumes that the applied detection method is able 

to find permutation and that the motifs predicted in the enhancer regions are 

indeed involved in the function. Nonetheless, as long as no large validated 

enhancer sets are available that were generated by less biased prediction 

methods, the VISTA Enhancer Browser represent one of the most valuable 

sources of starting material for prediction approaches. 

 

 

3.2 LastZ vs. BlastN 

LastZ [74,77] is a widely used and generally accepted fast alignment 

algorithm applied especially for the alignment of non-coding regions, partially 

because of its high specificity [77]. Due to elevated rates of sequence 

evolution in non-coding regions, reliable identification of the “correct” ancestral 

region is crucial. This is even more important when considering segmental 

and even whole genome duplications, which have occurred several times 

during the evolution of life. In combination with its speed, LastZ is therefore 

the ideal tool for comparative genomics, especially for the assessment of 

deep sequence conservation over large evolutionary distances. LastZ (more 
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precisely its predecessor BlastZ) hence forms the basis for multiple alignment 

algorithms like MultiZ [76] and this way also for methods used to calculate 

scores of evolutionary constraint (e.g. PhastCons [75], PhyloP [86]) or tools 

for visualisation of evolutionary conserved regions (ECRs) (e.g. zPicture [87]). 

Deep sequence conservation on the other hand has been very successful in 

the identification of enhancer regions in the past [34,59,60] and is still used for 

enhancer prediction. In a highly dynamic sequence environment like non-

coding regions, stable segments are likely to carry important function for the 

organism as they were preserved by negative selection. This makes LastZ 

also very valuable for the analysis of gene regulation and regulatory evolution. 

In this context, it is quite surprising to notice several highly aligning regions in 

the VISTA data set being missed by this algorithm. Of the 629 regions 

extracted from the VISTA Enhancer Browser [73], only 252 produce a direct 

alignment hit between Human and Medaka on a genome-wide scale while for 

377 enhancers no significant alignment is detected. BlastN [78] however is 

able to identify a significant hit for additional 55 regions while missing only 4 

previously found by LastZ if only the best BlastN hit is used. Extending the 

BlastN search beyond the first hit (like for LastZ), BlastN reports 336 highly 

significant (>=80bits) and even 480 significant (>= 50bits) hits for the full 

VISTA set – compared to 371 for LastZ. Although this could be the result of 

different parameters specified for both algorithms, the difference is too large 

to be purely explained in this way – especially as 4 of the first hits have a bit 

score of >100 and additional 7 still >80. Furthermore, for both algorithms I 

used parameters that are optimized for the detection of distant homology. In 

fact, these are the same settings that were used for the LastZ runs underlying 

all MultiZ and PhastCons scores including the teleost fish [LINK7]. It therefore 

might be possible that regions conserved from Human to Medaka have been 

missed in these comparisons and are therefore not reported by PhastCons or 

PhyloP. Based on these observations, it seems that LastZ sacrifices 

sensitivity for specificity. This might lead to exclusion of even strong signals 

and hence to signal loss during the preparation of multiple pair-wise 

alignments. MultiZ for example uses small aligning regions as anchors, which 

are subsequently combined into chains of alignment blocks [88]. In case of 

multiple possible chains, the highest scoring chain is selected first. Other 
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overlapping chains are then either truncated or discarded. Missed alignment 

blocks can influence this process with the result that the “wrong” chain is 

favoured, just because alignment blocks in the “right” were missed. In the end, 

an unknown fraction of deeply conserved (non-coding) regions could be 

invisible for conservation-based enhancer detection approaches. It therefore 

might be advisable to rather perform genome-wide pair-wise alignments using 

BlastN at sensitive settings than using LastZ for enhancer prediction - 

especially for distantly related species. 

 

 

3.3 General problems of the alignment-free principle 

Although alignment-free algorithms have properties that make them promising 

for the detection of enhancers they suffer from some certain drawbacks that 

make their usage difficult for such narrow-scale approaches. 

 

3.3.1 Relative word significance 

This starts already with the generation of word profiles: the selection of an 

appropriate word size is crucial to obtain a sufficient signal-to-noise ratio. 5- or 

6-mers are typical sizes proposed by several studies [64,66,72] but also 8-

mers were suggested [71]. Among those, 5-mers have the most limited pool 

of possible words, which is 4^5 = 1024. Theoretically, a sequence of 1028nt 

(1024 + word size – 1, as the last word starts on the 1024th nucleotide) could 

harbour all of them in an overlapping fashion – which of course is a rather rare 

case that likely does not exist in all currently sequenced genomes. Another 

estimate would be 5120nt (1024 x word size) if they were placed next to each 

other (Figure 18). Although also this case might be rather rare, it shows that 

windows scanned for a given enhancer sequence of ~1kb might contain many 

different, perhaps even most of all possible words. This leads to the fact that 

the calculation of similarity using 5-mers is mainly based on the instances of a 

given motif rather than on its mere presence. But knowing the rather limited 

set of 5-mers, how telling is it whether or not there is one instance more or 

less in a given sequence? 
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Figure 18 Word profile generation from a given sequence. Words can either be extracted 
independently or in an overlapping fashion 

 

It has to be kept in mind that the used words serve as a kind of substitute for 

TFBSs within an enhancer. Although there are reports about repetitive 

occurrences of the same site in certain types of enhancers [89] it is not known 

whether or not this is a common feature of cis-regulatory elements in general. 

It therefore might be completely unimportant for the function of an enhancer 

how many copies are present as long as at least one site exists. Furthermore, 

sequences of low complexity also contain repeated copies of the same motif 

without having regulatory activity. Both types of motifs are indistinguishable as 

long as nothing but a query and a target sequence are given to the algorithm. 

This is one of the reasons why many published approaches make use of 

TFBS repositories which either are additionally provided together with the 

query sequence [69,90] or replace it completely [68], transforming the 

alignment-free algorithm into a kind of TFBS-clustering method. Without this 

additional support, thorough masking of repeats is crucial for metrics using 

small word sizes. 

 

Another way increase word-significance is to simply increase word size. Using 

10-mers, the set of possible words exponentially increases to 4^10 = 

1048576. In a genome of ~3gb like for Human, each word would have an 

expected occurrence of 3*10^9 / 4^10 =~ 2860 copies – or better, an 
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occurrence of one per ~1mb assuming a uniform background distribution. 

Taking the combinatorial space into account, formed by the amount of 

different words to the power of all positions for word extraction in an enhancer 

or given sequence window, this should be more than sufficient to reliably 

indentify the correct region. However, due to the huge amount of different 

words possible, each individual word will likely occur only once within a given 

sequence. This makes accurate likelihood estimates a crucial prerequisite, as 

similarity will be mainly based on whether or not a word is present and not on 

the number of its instances. Metrics such as POISSON [79], HEXDIFF [64] 

and several modifications of the D2-score [66] approach this problem by using 

statistical or empirical background distributions to adjust the importance of 

individual words. But as tests on medaka chromosome 19 have shown, reality 

deviates largely from the assumptions. The Poisson distribution for instance is 

used to describe rare events that happen independently of each other. This is 

challenged by the fact that even very large words (up to 20-mers) can occur 

quite frequently on single chromosomes. Furthermore, as the analysis has 

shown, these words not always occur independently of each other but also in 

a highly overlapping fashion (e.g. in case they all derive from one longer word 

like a 29-mer in this case; see Table 4). As a result, enhancers that by chance 

contain any of these words will produce extremely high scores in each region 

harbouring the longer “source” word. Another problem of overlapping word 

extraction is that words are usually generated at every single nucleotide 

position. This way, each word has all but one nucleotide in common with the 

previous word. Therefore, every abundant word strongly affects the 

frequencies of all overlapping ones, and by that, leads to complex 

dependencies, which are very difficult to handle. 

 

3.3.2 Word background distribution 

As just mentioned, one of the most prominent problems of alignment-free 

techniques is the completely unknown background distribution of words in the 

genomes of interest. While the real background frequencies per word can be 

computed from the genomic sequence, their physical distribution along the 

chromosomes of the genome cannot. The majority of the genome is 
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composed of many highly repetitive elements like transposons [91], ancient 

retroviral insertions, and ancestral segmental duplications [88]. Furthermore, 

different lineages have encountered several whole genome duplications 

followed by genomic restructuring and sequence loss. This results in a very 

clustered distribution of the same set of words in different regions of the 

genome that is almost impossible to approximate. One consequence of this is 

that words very frequent on a genome-wide scale might occur in dense 

clusters forming only a small portion of the genome while more or less rare 

motifs can be evenly distributed across all chromosomes and thereby are 

contained in almost every randomly extracted fragment. As statistical models 

always assume a standard background distribution, being it Gaussian, 

Poisson, Binomial or others, this very uneven distribution of motifs poses a 

huge challenge to the calculations. This shows that the reality of genomes 

and genome evolution can have a tremendous effect on statistical and 

likelihood-based prediction models. 

 

3.3.3 Mutation 

The usage of word profiles comes along with another type of problem. Point 

mutations and small indels are abundant events in the genomes of all living 

organism (and even viruses) and one of the driving forces of evolution. 

Unfortunately, they represent one of the major problems for purely sequence-

based alignment-free enhancer detection. Alignment algorithms can partially 

compensate this, as a single seed (i.e. a k-mer) is enough to start an 

alignment, which allows to bridge individual or small groups of mismatches  - 

at least as long as enough matching nucleotides follow. Alignment-free 

algorithms on the other hand suffer from the fact that a single mutation affects 

all words overlapping it. Although word-loss increases only linear with word-

size, its impact on the score increases exponentially due to the exponential 

increase in significance of a single word. In the extreme case, one nucleotide 

mutated at every 5th position between to sequences can completely mask any 

similarity based on 5-mer profiles by affecting every possible word in the 

profile. This would hide relations between sequences already at 80% similarity 

– for 10-mers even 90%. Such a regular mutation pattern might be pretty rare 
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but clearly shows the impact of single point mutations on the similarity score. 

Using an intermediate motif size is by far not sufficient to mitigate these 

effects as even the smallest suggested motif size might still fail at 80% 

identity.  

 

One possibility to deal with point mutations would be to allow mismatches in 

words. While this might sound easy to do it comes with a severe problem. In 

the perfect-match word-space, each word in the query sequence is associated 

with only two words in the target: the identical word and its reverse 

complement. If words are treated as sense-antisense-pairs, this turns even 

into a one-to-one relation. Introducing just a single mismatch at an arbitrary 

position in the query word extends this to a one-to-many problem. In this 

context, a 5-mer in the query would map on average to 15 different words (so 

called a “1-neighbours” [71]) in the target – and vice versa (special case of 

palindromic or low-complexity words is not discussed here for simplicity 

reasons). This of course includes that several words in one of the sequences 

can also map to the same 1-neighbour in the other. By that, overlapping 

“word-spaces” are created which are hard to resolve and most likely lead to 

signal blurring. In the past, several approaches have been published that 

allowed for mismatches in their word profiles. While some solved the blurring 

problem by using aligned sequences of multiple species [65] or reduced it by 

focusing on sets of enhancers active in a restricted tissue [72], only one did 

not require any additional information [71]. With their method, they were able 

to reach a significant overlap between a set of known regulators and their 

genome-wide peaks but also detected a high number of noise matches. 

However, these enhancers contained dense clusters of TFBSs and were 

searched in the comparably small drosophila genome. A test run on a single 

human chromosome using a set of known human regulators resulted in an 

even higher rate of false positives. As this approach only allowed for a single 

point mutation, it is questionable whether it can be extended to full vertebrate 

genomes using enhancers that contain less dense binding sites and higher 

rates of mutations. Different ways of dealing with the mismatch problem are 

therefore necessary. 
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3.3.4 Permutation 

One of the main reasons for suggesting alignment-free algorithms was their 

inherent ability to cope with permutations as they are based on word profiles 

rather than recognition of long collinear stretches of DNA. But allowing for 

permutation in general comes along with several problems beyond those 

generated by the composition of genomes or the occurrence of point 

mutations. The most obvious is their main property, namely to score all 

different permutations of a given input at exactly the same level. Considering 

the very special case that the input is clearly subdivided into completely 

independent words, e.g. achieved by insertion of “N”s in the DNA sequence. 

In this case the number of all possible combinations is n! (n = number of 

words). Using a 5-mer profile for a region of a typical enhancer size like 1kb 

leads to approximately 1000 / 5 = 200 words (not considering the positions 

occupied by “N”s). If each word occurs only once, this leads to 200! different 

permutations, which is too large to be computed on regular computers (largest 

value calculated by R 2.8.1: 170! = 7.257416e+306). In case words occur 

more often, this reduces the number of combinations approximately to u! (u = 

number of unique words), which largely depends on the used word size “k”. 

Words forming the word-profile for a given sequence however are generated 

in an overlapping fashion, meaning that each k-mer depends on the k-1 words 

before. This leads to even more words and at the same time makes 

estimations very difficult. Assumptions of Binomial [71] or Poisson [79] 

distribution of words, as used by several metrics, are therefore only rough 

estimations. They also rely on another assumption, which is that a profile of 

very similar or even almost identical composition is very unlikely to occur at 

any other position in the genome. Considering the patchy composition of 

genomes and the huge amount of segmental duplications, this is definitely not 

the case. The fact that most metrics also treat all words equally, and thereby 

cannot distinguish between completely different profiles as long as the 

amount of overlapping words is the same, complicates the situation even 

further. Hence. it is not surprising that the peaks obtained with the classical, 

unmodified alignment-free metrics were much clearer when looking only at the 

counts of overlapping words. It also explains why weighting of individual 
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motifs improves the sensitivity and specificity of alignment-free approaches. 

This might also be the reason why those methods work best for medium-sized 

enhancers. For small regions, one word more or less makes a huge difference 

leading to very spiky scores and many artifact peaks. Large regions on the 

other hand contain that many words that the increase in matching words in 

the “correct” region is hardly noticeably against the noise. 

 

3.3.5 Usage of additional information 

To overcome the problems described above, many studies included various 

kinds of additional information into their prediction models to improve 

sensitivity and specificity of their algorithms. 

 

3.3.5.1 TFBSs 

TFBSs represent the smallest known functional subunit of regulatory elements 

like enhancers and promoters. It is therefore not surprising that many different 

approaches utilize TFBS data for enhancer prediction. The main benefit of 

TFBSs for alignment-free methods is that they act as word filter that helps to 

reduce noise. As previously described, purely alignment-free techniques a 

priori cannot distinguish different target sequences by their word content as 

long as query and target profile overlap by the same amount. TFBSs allow 

filtering of these profiles for those words that match to the specified sites and 

thereby help to discriminate target regions from noise. By assessing the 

percentage similarity of a given TFBS and a word in the profile they might also 

allow to distinguish between regions that have very similar word profiles. High 

numbers of words that match very well to a specific set of sites might also 

enrich for regions that are not only bound or active but even very similar in 

activity to the given query region. As TFBSs are normally specified as PWMs, 

they help to handle point mutations as well. But at the same time, PWMs are 

also the main problem. Although they represent the compiled binding 

information derived from biological binding data (e.g. ChIP-chip, ChIP-seq, 

EMSA), the combination of many different binding sites into a unified position 

weight matrix leads to loss of combinatorial information in variable sites. 

Certain nucleotides might always occur in highly specific combinations in 
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variable positions of a TFBS and never in any of those other patterns that can 

be derived from the computed PWM. This co-occurrence might also be very 

cell type specific. Hence, using PWMs might result in predicted regions that 

show sites specific for a certain cell type and lead to a highly significant 

prediction although the input enhancer is active in a completely different 

tissue. Due to this degeneracy, matching putative TFBSs in query and target 

sequence will occur more often than perfectly matching words. The usage of 

TFBSs for enhancer prediction might therefore be counteractive. Furthermore, 

they can only be used, if the set of factors binding to a given enhancer is 

known but this is rarely the case. In most instances, the used PWMs were not 

even determined in the species of interest, assuming that the binding 

specificities are the same as in the source species for the PWM. It is therefore 

hard to tell how useful TFBSs are for enhancer prediction. 

 

3.3.5.2 Sequence conservation 

Sequence conservation is another commonly used word filter [65,67]. In case 

multiple alignments across large phylogenetic distance are available for the 

enhancer of interest, this information can be used to extract words that seem 

to be under evolutionary constraint. This implicitly assumes that the observed 

conservation is due to the function. Although this approach also helps to filter 

motifs and in turn reduces noisy hits during prediction, it is limited to regions 

that are diverged enough to result in a significant word profile restriction but at 

the same time are conserved enough to still allow the extraction of a telling 

word set. However, deep sequence conservation makes it unlikely to find 

rearranged enhancers. If the observed conservation is indeed functional, 

strong constraint was acting on the non-mutated regions. It is therefore hard 

to explain why these sites suddenly should have been allowed to rearrange if 

no segmental or perhaps whole genome duplication has happened in the 

meantime. But in this case, one of the copies should be still detectable by 

alignments. Another downside of this method is that the binding specificities of 

TFs allow for variable positions that can mutate to some extent without 

affecting functional binding of the factor. Focusing only on fully constraint 

regions might therefore miss the wanted binding sites. Sequence 
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conservation can also be used even if the enhancer is not directly alignable, 

as long as close by sequence anchors are. In that case, the sequences of 

many species between those anchors can be analysed for words occurring in 

the majority of them. This approach makes it more likely to allow detection of 

rearranged enhancers, but again only if those words carry at least part of the 

function. It also allows extraction of mismatch-containing motifs [65] in a 

similar way as TFBS-prediction on ChIP data sets [92,93]. In sum, although 

conservation data might act as efficient word filter, this information is mostly 

not available for those enhancers that have rearranged during evolution and 

therefore are the most interesting. 

 

3.3.5.3 Functional conservation 

Functional conservation (e.g. used by [64,72,79]) is by concept very similar to 

sequence conservation. Instead of a set of aligning sequences (“sequence 

similarity”), regions of known comparable activity (“functional similarity”) are 

used to extract enriched words or mismatch-containing motifs. This approach 

suffers from the same drawbacks as sequence conservation with the addition 

that they derive from the same species and therefore are not further 

supported by evolutionary constraint. 

 

Summed up, it can be stated that the largest benefit of additional information 

for alignment-free prediction is the reduction of the extracted word profile to a 

set of – putative – telling words and by that not only reduces noise but also 

increases the significance of the remaining words. At the same time, it allows 

assigning individual weights to words and thereby shifts prediction from a pure 

overlap count to a word-specific prediction that also allows inclusion of 

mismatch-containing motifs. However, the feasibility of this approach largely 

depends on the quality and availability of the necessary information, which 

strongly limits the possible scope of those techniques. 
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3.4 Algorithm selection: alignment vs. alignment-free 

Knowing the weaknesses of alignment-free algorithms the question arises 

how helpful these approaches can be in general. As discussed, their main 

advantage is also their main weakness: dissecting a linear sequence in a set 

of relatively small words introduces a lot of uncertainty about the significance 

of individual motifs while at the same time creating a huge permutation space 

that hinders precise identification of even collinear regions that align very well. 

They also require some kind of preprocessing step to discriminate between 

words as they otherwise only measure the amount of overlapping words 

rather than the occurrence of a specific word pattern. This preprocessing is in 

most cases achieved by providing additional data that comes with further 

assumptions and penalties. Alignment-free techniques are furthermore very 

susceptible to small-scale mutations. As TFBSs in most cases seem to shift 

their positions by turnover rather than small-scale translocations, it is unlikely 

that newly generated binding sites are perfectly identical to the lost one. In 

this case, little to none of the words generated at the new site will correspond 

to those at the old as they all differ by one to many nucleotides. Although all 

this can be taken as arguments against alignment-free methods there are little 

alternatives. Alignment algorithms may be able to handle mutations to some 

extent and by that allow detection of regions of low sequence similarity. But as 

binding site turnover in enhancers is a well-proven fact [36,37,41,42,70,94–

96], they are only able to find a very limited set of all existing regulatory 

elements. This might explain why most enhancers detected by deep 

sequence conservation were close to important developmental genes or 

regions encoding TFs [59]. Due to their importance, no mutations are allowed 

that would remove a crucial binding site. This at the same time strongly limits 

the space for generation of redundant sites and thereby inhibits binding site 

turnover. On the other hand, as mutations in variable sites are less likely to 

affect functional binding of the TFs involved, these sites might be still allowed 

to evolve. This makes them ideal candidates for alignment-based prediction 

while the contained mutations mask the signal against alignment-free 

approaches. Obviously, using conservation in such mutated regions as motif 

filter is unlikely to recover functional motifs. A closer look at the principle of 
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alignment and alignment-free techniques reveals that both actually are two 

extremes of the same method: both start with extraction of small, perfect 

matching words or “seeds” contained in query and target sequence. But while 

aligners continue with seed extension (perfect match or mismatch) to find a 

single, highly significant subsequence, alignment-free methods try to filter the 

“seed” profile to extract a significant pattern that consists of many small 

sequences. It is therefore not a question of using one or the other but of 

finding means that allow the combination of both approaches in one 

technique. In the past, several publications have already proposed methods 

that make use of both principles [68,69,97]. Some of them were even 

successfully used for enhancer prediction [68,69]. The main difference 

between those approaches and the principle used here is that they always 

required additional data and were applied on narrow genomic regions 

between alignment anchors, either direct or indirect, instead of being used 

genome wide. The effect of this locus restriction is described in the next 

section. 

 

 

3.5 Search space 

Most techniques that have been published so far share the common feature 

that they were applied on specific regions of the genome. These regions were 

either delimited by direct or indirect alignment anchors [68,69] or anchored at 

or between genes [67,82]. A similar approach was chosen here for the 

analysis of alignment-free metrics by focusing on regions near orthologous 

genes. As the results show, the restriction to a certain region in the genome 

helps to reduce the number of false positive predictions and this way 

facilitates the identification of putative candidates. This finding can be 

explained by the properties of alignment-free metrics and the genome 

structure. As mentioned, alignment-free metrics suffer from the fact that a 

priori all words are indistinguishable. At the same time, the amount of different 

motifs is limited by the small alphabet of only four bases. This makes noisy 

matches at any position in the genome very likely as even words up to 11-

mers accumulate with increasing enhancer length. The duplicated nature of 
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most genomes makes this even more difficult. It thereby greatly reduces the 

chance of false positive hits if the majority of the available sequence is not 

scanned. If the aim is to find the putative orthologous enhancer for a given 

input, it is reasonable to search for it near its orthologous genes. A peak in 

such a narrow region is then likely to be the enhancer of interest. The same 

holds true when looking for enhancers of similar activity in the vicinity of co-

expressed genes. The drawbacks are that signals in unexpected regions are 

missed, as they are not included in the search space. And as results for 

aligning enhancers show, strong alignments can indeed be found away from 

any orthologous gene. Furthermore, genome-wide approaches require 

reliable significance thresholds as it otherwise is hard to determine whether a 

found peak is still within the genomic noise level. Unfortunately, due to the 

complex dependencies in word profiles such thresholds are more difficult to 

obtain than for alignments. 

 

 

3.6 NASCAR 

An enhancer detection algorithm has to solve the problem of detecting 

genomic regions that consist of small clusters of moderate sequence similarity 

(the regulatory modules) that are intercalated with stretches of sequence, 

which evolve almost at the rate of the genomic background [70]. 

Unfortunately, these spacers mostly contain more sequence than the modules 

they separate. They therefore hide enhancers from alignment algorithms as 

they evolve beyond recognizable sequence similarity while the modules 

themselves provide too little significance to be detected on their own. This is 

made even more complicated as these modules, and even individual binding 

sites, can rearrange by several mechanisms. Alignment-free techniques, 

which are thought to be able to cope with these permutations, are often 

blinded by too many noise motifs derived from these spacers as they score 

almost everything in a given window. This strongly reduces the signal-to-noise 

ratio and hides the region of interest in a huge amount of false-positive calls 

on a genome-wide scale. While many published approaches try to 

compensate this by providing additional information, the approach I chose in 
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this project tries to integrate several principles of alignment and alignment-

free techniques to allow enhancer prediction on genome-wide scale based on 

sequence information only. 

 

3.6.1 Mismatch extension 

The initially applied alignment-free approach showed that extension of words 

to their maximal possible length could be used to increase the signal of 

individual motifs even without additional biological information. Longer words 

are just less likely to occur at random region in the genome and thereby have 

a higher weight than any set of small motifs they can be dissected in. This 

concept is well known from alignment algorithms but also applicable for word 

profiles. However, mutations in or between TFBSs can stop the extension 

process at word sizes that still occur more frequent in the genome than 

expected. This leads to artifacts that hinder the identification of the 

corresponding region. Alignment algorithms solve the problem of motif-

internal mutations by a match-mismatch scoring function, which also allows 

bridging changes occurring in the motif spacers. As recent studies have 

shown, the structural rules governing regulatory modules can be strong 

enough to be kept even after full module turnover [70]. This could allow their 

detection by mismatch extension of words, which therefore is the most 

important concept implemented. Module spacers on the other hand cannot be 

handled in this way as they evolve at higher rates than the short spacers 

between motifs and span larger distances in the genome.  

 

3.6.2 Motif weighting 

As mismatch-containing motifs lead to more noise matches than perfect-

match words, a more rigorous filtering is necessary. The threshold was again 

obtained from previous alignment-free attempts. They showed that small 

motifs up to 11-mers occur almost every enhancer length and thereby 

contribute rather to the noise than increasing the signal. I therefore set the 

threshold for words to the score of a perfectly matching 12-mer. This 

threshold is still rather permissive than restrictive: a 14-mer containing one 

mismatch contributes to the score although 19 different variants exist while a 
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perfect matching 14-mer is only 16-times less likely than a 12-mer. As 

mismatch motifs do not allow using the relative likelihood of individual words 

like applied for the alignment-free approach, I weighted motifs by simply 

multiplying their identity score by their length. Motifs weighting is therefore the 

second concept taken from the alignment-free approach. 

 

3.6.3 Scoring 

The most important aspect of a metric is of course the score calculation. 

Already very early in the history of sequence comparison, authors suggested 

to not only score individual matches, but to combine several matches in a 

single score [98]. Although this was initially meant for protein sequences it 

was implemented in a modified version of Blast developed at the Washington 

University (WU-Blast). Although changed to a commercial version in the 

meantime, a free version is still running at the EBI [99] and the basis of the 

EnsEMBL Web-BlastN service accessible via the EnsEMBL Genome Browser 

[LINK5]. Several statistical models to compute such a score were proposed 

which all can be activated in the web interface. Results obtained with the 

implemented classical alignment-free metrics on the other hand showed that 

simple counting of matching words can provide a clearer signal for 

comparison of word profiles than a specific statistical model (like for the 

POISSON metrics). This can be explained to some extent by the fact that the 

occurrence of words in the genome does not follow any statistical distribution, 

as genomes are a patchy, clustered composite of duplicated or even highly 

repetitive fragments. However, this has no influence on the fact that a 

spurious match between two sequences becomes less likely the more 

matching words can be identified. The scoring function of NASCAR is 

therefore a simple sum scoring of the detected words. Tests show that 4 

validated enhancer pairs detected by NASCAR, 2 of them even having a quite 

similar pattern, are not detectable by WU-Blast within the set thresholds even 

if the implemented statistics are used (EnsEMBL BlastN-Parameters: profile 

“distant homologies”, modified using -statistics "-sump", -W 8, -M 2, -N -1, -Q 

5, -R 2). This of course does not make any statement about the quality of the 

used metric, but it shows that very simple scoring techniques using little to no 
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previous assumptions are sufficient to detect regions of similar activity and 

might even allow the detection of strongly diverged regions. 

 

3.6.4 Pattern detection 

The last and most experimental concept implemented in NASCAR tries to 

deal with the special situation of functional clustering in enhancer regions. As 

described, enhancers are composed of to some extent functionally 

independent modules that are allowed to change their relative distances, 

positions and orientations. In some cases however, these modules might 

keep their relative positions and orientations while the spacer sequences 

mutate. Interestingly, the effect of unchanged spacing but high sequence 

turnover in the module spacers is more severe for alignment algorithms than 

insertions/deletions of the same size. While affine gap scoring allows a rather 

“cheap” bridging of longer gaps, mismatch scoring is more restrictive. LastZ 

for example uses 3.25 times the mismatch penalty as penalty for opening a 

gap – the gap extension penalty however is only ~0.24 times the mismatch 

penalty by default [LINK6]. This means that gaps >3nt (4nt gap = 3.25 + 3 x 

0.24 = 3.97) would have a lower impact on the score than a mismatching 

region of the same length. Alignment algorithms would thereby miss correctly 

spaced regulatory modules even in case of perfect sequence collinearity 

when separated by highly diverged spacers (Figure 19). 

 

 
Figure 19 Example for almost perfectly spaced matches in the same region separated too far 
to be recognized as a single hit by alignment algorithms. Although still alignable as such, a 
few more mutations would hide them in genome-wide alignments while a pattern detection 
method could still pick them up. 

 

The same holds true for alignment-based gene prediction due to their exon-

intron structure. The main difference to the situation in enhancers however is 

that exons are dense packages of perfectly “beaded” codons that are only 

allowed to mutate at every 3rd position in order to keep the resulting amino 
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acid chain unchanged. As two matches normally score higher than a single 

mismatch this situation can be perfectly handled by alignment algorithms – 

especially as exons normally are longer than regulatory modules. The 

challenge was now to implement a mechanism that can detect the collinear 

patterns of preserved regulatory modules against the noisy background 

generated by the spacer sequences. Due to the fact that these arrangements 

can be considered as one to many blocks separated by simultaneous gaps, 

gap detection techniques were investigated for their potential to handle the 

problem. For this, a modified gap detection technique initially published for the 

CHAOS [100] aligner was used. CHAOS is a fast local aligner used in the 

preparation of alignment hits as input for the Shuffle-LAGAN algorithm [97]. 

This algorithm was designed for the correct alignment of larger genomic 

regions that have undergone local reshuffling. A very similar approach was 

chosen here just at a much smaller scale using less significant – and 

ungapped – modules. For this, the distance and shift parameters for motifs 

were extended and scored in an elliptic region upstream and downstream of 

the starting module instead of using a short, parallel section. The reasoning 

for this “shape” was that close by modules are less likely to have a large 

relative shift due to the fact that this mutation very likely would have affected 

one or even both modules and thereby impaired the function. Far spaced 

modules on the other hand were restricted to only small shifts, as too many 

artificial clusters would have been generated otherwise. Modules at about half 

the size of the input enhancer were allowed to shift the most. This method is 

able to identify one candidate that shows strong enhancer activity similar to 

the activity of the input enhancer that would have been missed otherwise. As 

a side effect, this technique is also able to recover gapped alignment hits that 

would be missed by the basic score without a significant speed reduction of 

the algorithm. 
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3.7 Prediction results 

3.7.1 Alignment-free 

Results obtained for alignment-free metrics show that these approaches are 

able to identify putative corresponding regions across large evolutionary 

distances even on a genome-wide scale. However, all of the regions identified 

are also predicted by a significant alignment when using BlastN. Focusing on 

more narrow, orthologous regions, determined by the genes in synteny, 

increases the amount of putative corresponding enhancers and even allows to 

predict candidates that are invisible to the alignment algorithms used. Initially, 

alignment-free techniques were used for database searches [61] or large-

scale similarity comparisons [101]. For both tasks they perform well as they 

do not have to report one significant hit but to either exclude regions that are 

not similar at all of give an estimate about the degree of similarity of two 

known genomic regions – or even full genomes. Especially for the latter task 

they are very well suited as segmental duplication, inversion, permutation and 

other mutational events are common features of large genomic regions 

(>>1mb) and make approximations based on global alignments difficult. Motif 

noise, which is one of the major challenges of alignment-free methods on a 

narrow scale, has only little to no effect in that context as the large window 

sizes allow generation of densely occupied word profiles of long matching 

words. These carry way more signal than the short words that have to be 

used within enhancers. When used for enhancer prediction, it is therefore not 

surprising that a lot of putative corresponding regulatory regions, which can 

be found in a restricted locus, are lost in a genome-wide approach. This 

explains why most published alignment-free algorithms include supporting 

data into their scoring schemes and/or focused on narrow regions of 

confirmed orthology. In the light of the aforementioned problems inherent to 

the alignment-free methodology it is therefore interesting to note that 72% of 

all aligning regions, among them even weakly aligning regions (50 – 60 bits), 

could be identified by the implemented alignment-free approach on a 

genome-wide scale without specifying additional information. 
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3.7.2 NASCAR 

3.7.2.1 Candidates 

In this study, 377 in vivo validated enhancers, for which no significant LastZ 

hit is detectable, were used to identify corresponding enhancers in the 

medaka genome. For this set, 30 putative enhancer candidates could be 

selected defined by their position next to orthologous flanking genes. This 

selection criterion was derived from observations in the aligning sub set, 

showing that the majority of all still identifiable regions (194 of 252, ~77%) is 

either located next to one (133 of 252, ~53%) or even between both 

orthologous flanking genes (61 of 252, ~24%). Twelve (~5%) are still near 

their orthologous flanking genes and additional 32 (~13%) near at least one 

gene orthologous to the human enhancer locus. In total, ~94% of all 

alignment hits occur in the vicinity of orthologous genes. This clearly shows 

that the presence of orthologous genes in the vicinity, especially if they are 

still in flanking positions, is a strong indicator for a corresponding putative 

enhancer. Shifting the cutoff from only the first peak to the first 25 increases 

the number of putative candidates to 48. This concession had to be made due 

to the allowance for motif permutation in the metric. A scoring scheme that 

produces a stable score in case of permutation events results in a lot of 

different combinations scoring at the same level. Furthermore, such a metric 

has to include a lot of independent motifs. As each of these motifs is rather 

weak compared to the significance levels of alignment algorithms, this leads 

to inclusion of random matches that do not correspond to functional motifs. 

This, in turn, increases the number of equally scoring combinations even 

further. It is therefore necessary to include more than just the highest scoring 

peak when looking for enhancer candidates. To be able to discriminate 

between rearranged and collinear regions, an additional pattern detection 

technique was implemented. As no metric alone can assess both structural 

models at the same time, the two metrics are used in parallel. More restrictive 

or permissive cutoffs than 25 would also be possible. Analysis of peak 

location suggests that most putative candidates would be included at this 

level. The lowest ranked peak, which is at position 23, shows no enhancer 

activity and thereby might be a false positive hit – but the human counterpart, 
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which is strongly conserved within the placental mammals, shows no activity 

as well. It is therefore possible that the necessary trans environment has 

changed since the split of Human and Medaka. The medaka region however 

is not conserved and therefore might well be a false positive prediction. The 

next lowest candidate peak showing enhancer activity for both regions 

(Human and Medaka) is at position 12. This shows that even a more 

conservative threshold would not result in a loss of active candidates. But with 

an average number of ~40.000 peaks per enhancer, 25 is already rather 

conservative. The highest loss of candidates was caused by BlastN alignment 

on the non-aligning data set. This shows that 55 still alignable regions are 

missed by LastZ, 39 of them overlapping with predicted NASCAR peaks in the 

vicinity of orthologous genes. These were therefore removed from the 

candidate list. 

 

In vivo validation of the remaining 8 putative enhancer candidate pairs results 

in 6 pairs (~75%) showing activity of both corresponding regions, the 2 

remaining ones have no enhancer activity in the medaka region. This result is 

very similar to a TFBS-based approach on narrow regions in Zebrafish [68], 

which resulted in 88% (7 of 8) regions showing enhancer activity. In contrast 

to this approach, the regions tested here are predicted on the full medaka 

genome without any additional information like TFBSs. This shows that the 

simple principle of sum-scoring short alignment hits that are insignificant by 

themselves is able to reveal enhancers that would have been missed by 

commonly used alignment algorithms. Even when removing those that can be 

identified by specifically modified WU-Blast settings, still 60% (3 of 5) show 

enhancer activity. This is at the rate of active elements expected for enhancer 

prediction by deep sequence conservation (44%, [34]).  

 

In addition to the candidates tested, more than 50 enhancers have NASCAR 

peaks near at least one of their orthologous flanking genes although it is not in 

flanking position anymore. Two of these peaks are even reported at first 

position. Comparison to randomly generated peak sets shows that this is 

within the range of what would be expected by chance. The aligning set on 

the other hand also has 12 peaks in that category. It is therefore possible that 
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those 50 peaks might contain several additional candidates. One possible 

explanation for those regions would be that local inversion or insertions 

between the former flanking gene and the enhancer led to their separation in 

the fish. Genomic changes might also have masked some good candidates by 

the deletion of “bystander genes” [33], initially located between the enhancer 

and its target gene, in the teleosts. If one of the other genes kept in synteny is 

the target gene, these enhancers could still be detectable but would have 

been assigned to the “orthologous gene near” category. But as more than 100 

peaks within the top 25 are contained in this sub set, selection of likely 

enhancing peaks is very difficult.  

 

Interestingly, for almost each of the tested candidates peaks can be found 

that score even higher. The reason for this is unknown. It might be that still 

unmasked regions in the enhancers produce high amounts of random 

matches in certain regions, which lead to a high NASCAR score. As the 

expected motif sizes are rather small (<35nt) noise is still a problem. Larger 

motifs might already produce an alignment on their own and are therefore 

unlikely to occur in the word profiles generated by NASCAR. Another possible 

explanation is that those regions might be redundant enhancers, which are 

expected to contain similar motifs. In that case, at least some of those peaks 

should occur near the tested peak although too far away to be assigned to the 

orthologous gene. As enhancers are known to act over large distances and 

even if several genes are in between [28], the chosen assignment threshold 

might just be too conservative to show that relation. Location analysis 

performed on the 100 highest peaks for each of the tested candidates 

however could not reveal any clustering pattern around the tested candidates. 

Nonetheless, several peaks among the 25 highest per human enhancer may 

be regulatory elements. For 3 VISTA enhancers (hs882:hg19, hs1344:hg19, 

hs865:hg19) additional NASCAR peaks further down in the ranking were 

tested, 2 of them not even near any orthologous gene. Despite that, all 3 

showed (partially even strong) enhancing activity (see Figure 9 and Figure 

16). However, none of them was similar to either the human enhancer or the 

first tested region. While this argues further against a redundant enhancer 

activity it indicates that more than just the predicted region near the 
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orthologous gene might be an enhancer – especially those regions that score 

higher. 

 

In total, 9 out of 12 predicted NASCAR peaks have clear enhancing activity in 

the used reporter assay, even 2 peaks that are not near any annotated 

orthologous gene and despite a lower score than the orthologous candidate. 

Further validation of the remaining 25 highest-scoring NASCAR peaks for 

each of the 9 human enhancers might therefore reveal even more regulatory 

elements. This indicates that NASCAR is able to predict active regulatory 

elements at a high rate based on sequence features alone. However, only 3 

of the tested peaks resulted in an at least partially similar pattern. But as 

studies have shown, even clearly orthologous enhancers conserved between 

Human and Zebrafish display a similar pattern in only 30% of the cases [102]. 

 

3.7.2.2 Conservation analysis 

Detailed inspection of the tested candidate loci revealed that the majority of 

them are conserved within their clade or at least contain some conserved 

blocks. This is interesting as no conservation between the clades is reported. 

It also indicates that large changes must have happened shortly after the split, 

which were fixed individually within each clade. Afterwards, the majority of 

sequences mutated independently in each species retaining only some 

regions that were under constraint. These clade specific conserved blocks are 

either too short or too diverged to result in significant alignment hits between 

the clades, otherwise the corresponding human enhancers would have been 

contained in the aligning set. It is not very surprising however that the motifs 

used by NASCAR overlap to a large extent with the conserved blocks in both 

species.  As the remaining sequence is too diverged to align even within the 

clade it is unlikely to match to human. Four candidates show motif-level 

conservation at higher levels than for any other random motif set selected in 

either Human or Medaka. This can be taken as evidence for motif-specific 

conservation and makes it likely that those motifs are involved in the function. 

For 2 candidates, several motifs in the medaka sequence were deleted to 

validate their importance for the enhancer. Unfortunately, the results obtained 
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by the deletion experiments do not allow any clear conclusion. Although 

apparently specifically conserved in Human and Medaka, the deletion of 

several identified, and even still collinear, motifs did not eliminate the 

enhancer activity of the initial construct. One could therefore state that those 

motifs are of no functional importance for the enhancer - but this would leave 

their clear conservation unexplained. On the other hand, it is well possible that 

due to the transient context (none of the injected embryos were raised to form 

a stable line), variations in spatio-temporal activity caused by the deletion are 

just not visible. The results obtained for hs1344:ol2-1Δ can be taken as 

support for this hypothesis. This construct shows a new domain neither 

contained in the human enhancer nor the undeleted construct, arguing for a 

repressive function of the deleted motifs. However, the new domain is only 

visible in roughly 25% of the pattern-positive fish. Further analyses of the full 

enhancer regions show that they contain additional conserved blocks in both 

species, which do not contribute to the NASCAR profile. These blocks may 

either contain binding sites that have diverged too far to be recognized even 

by NASCAR or contain lineage-specific innovations that help to stabilize the 

activity of the enhancer. Hence, they might have compensated the loss of the 

deleted motifs. However, without additional test using just the deleted motifs it 

is impossible to tell whether or not they are of functional importance for the 

enhancer. Nonetheless, it can be stated here that the used detection principle 

is able to reveal small-scale conservation that is missed by the tested 

alignment algorithms. 

 

3.7.2.3 Motif analysis 

The motif profiles of all enhancer-candidate pairs were analysed for patterns 

that would allow conclusions about the inner organisation of enhancers. As it 

seems, most candidate regions in Medaka that drive recognizable enhancer 

activity have very collinear motif arrangements, some even as dense clusters 

that are still alignable using BlastN. These alignments however are too weak 

to peak high enough in a genome-wide alignment ranking to be within the 

significance cutoff set here. Only WU-Blast is able to rank three of them high 

enough to be within the cutoff when sum statistics are used. This indicates 
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once more that consideration of multiple hits within a given region is an 

appropriate way of detecting otherwise lost enhancers. The fact that there is 

only little evidence for motif rearrangement could be explainable by the used 

enhancer set. As previously mentioned, most enhancers in the VISTA set 

have been initially detected by deep sequence conservation and are therefore 

unlikely to have rearranged in Medaka. The observed patterns fit more to the 

assumption of “sequence erosion” by mutation of the intercalated spacer 

sequences. This is further supported by the motif-specific conservation 

detected in some cases. A few motifs that co-occur with collinear motifs show 

mutation patterns that would fit to local inversion. But as the ancestry of these 

sequences cannot be traced back they might also be the result of a turnover 

mechanism or just spurious matches. Without further functional tests it cannot 

be stated whether these motifs are responsible for the observed enhancer 

activity. The patterns for two of the used enhancers could not be interpreted, 

as these regulators are roughly 4kb in size, which results in a very complex 

motif arrangement of which most are likely random matches. 

 

3.7.2.4 TFBS analysis 

The binding of TFs to their corresponding binding sites within the enhancer is 

thought to be the first step in the process of enhancer activation. But it is still 

unclear how TFs find the correct binding sites. As TFBSs are usually rather 

short and degenerate, many possible sites can exist at any given location. 

One possible guidance mechanism could therefore be the depletion of 

possible additional binding sites within an enhancer, restricting their 

occurrence only to correct positions that allow functional binding and 

activation of the enhancer. To search for patterns that argue in favour for this, 

a TFBS analysis was performed on the NASCAR motifs but did not show 

conclusive results. While statistical testing shows significant enrichment of 

specific TFBSs in motifs when compared between the species, this is very 

likely the result of the underlying sequence similarity. Tests, using the 

conserved blocks in teleosts and placental mammals as control could not 

reveal any significant motif enrichment between the species. But as these 

blocks are larger and at the same time of lower sequence similarity than the 
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NASCAR motifs, it is hard to tell which of the two parameters was responsible 

for this result. An equally sized negative set of NASCAR-predicted regions for 

comparison against the validated enhancers would be the best control but 

unfortunately does not exist. More detailed analysis of the predicted TFBSs 

indicates that the observed enrichment might be caused by the fact that these 

sites are rare in general. Most of the identified sites are between 10 and 17nt 

long, which makes another instance of the same TFBS in a small region like 

an enhancer rather unlikely. 

 

Another hypothesis contrary to the aforementioned is that enhancers may be 

formed in regions that are enriched for TFBS precursors instead being 

depleted. As soon as some of these sites mutate into a configuration that 

allows reliable binding of a TF, this might create a beneficial enhancer activity, 

which in turn leads to its fixation. In this case, the identified TFBSs within the 

NASCAR motifs should be more similar to those in their surrounding spacers 

than to the spacer sequences in different enhancers. Analysis of all possible 

motif-spacer combinations however did not reveal any significant difference 

within or between enhancers. 

 

In sum, although both analyses do not show a clear result this does not rule 

out that specific TFBS enrichments exist. The identified NASCAR motifs might 

just not appropriately reflect the functional fraction of the investigated 

enhancers. Furthermore, PWMs are not the best predictor for TFBSs as they 

neglect combinatorial co-occurrence of nucleotides at specific variable 

positions. It is therefore impossible to make a final statement without further 

functional tests or more reliable control sets. In any case, larger numbers are 

necessary to allow meaningful conclusions. 
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3.8 Conclusion 

In this study, I developed a new enhancer prediction method based on a 

combination of alignment and alignment-free principles as each technique has 

strengths that can compensate some of the weaknesses of the other. The 

resulting algorithm was subsequently used for enhancer prediction in Medaka 

and able to identify active regulatory elements at a rate comparable to the rate 

achieved by alignment-based deep sequence conservation. This shows that 

motif-scoring techniques can successfully be applied for genome-wide 

enhancer prediction in vertebrates even without providing any additional 

information and in species as diverged as Human and Medaka. However, the 

importance of the identified motifs for the observed enhancer activity remains 

unclear. Despite partially even significant motif-level conservation only little to 

no effect was visible as consequence of motif deletion in two tested 

constructs. Several explanations for this result are possible, but further 

experiments are necessary to test these hypotheses. It is therefore not clear 

yet whether the algorithm indeed used the regulatory logic of the given 

enhancers to predict additional candidates. Furthermore, it needs to be tested 

whether the used principle can also be applied for regulatory elements that 

are less conserved in general. Most of the activity of the tested candidates 

was observed in neuronal tissues and the question remains whether the 

regulatory logic in other tissues like heart or muscle might utilize more 

promiscuous transcription factors with more degenerate binding specificities. 

This might hide important motifs even to an algorithm like the one used here. 

However, the results achieved by NASCAR are promising and further 

refinements might allow the identification of additional enhancers in even 

more distantly related species. 



Chapter 4: Materials & Methods 
 

 
 80 

4. Materials & Methods 

4.1 VISTA Enhancer set 

I used the VISTA Enhancer browser [73] (state 2010-12-07) to generate a set 

of validated human enhancers. For this, I used the internal search routine to 

extract all tested hg19 regions, which showed enhancer activity at stage 

E11.5 in Mouse. I then further filtered the obtained set by removing of all 

overlapping entries to create a set of fully independent human enhancers. 

This resulted in 629 human regulatory regions. I split the full set further into an 

aligning and a non-aligning set based on LastZ. Then, I retrieved repeat 

masked sequences of all human enhancers via the EnsEMBL API (v63) and 

aligned them against the masked medaka genome retrieved in the same way 

(LastZ command-line parameters: --noytrim, --inner=2000, --masking=40, --

chain. Other parameters see “FishScoreFile.txt” in the thesis data folder). 

Afterwards, I filtered the results by extracting all human enhancers for which 

LastZ reports at least one alignment. In total, the aligning set contains 252 of 

629 human enhancers. The remaining 377 enhancers form the non-aligning 

data set for enhancer prediction. 

 

 

4.2 Pairwise alignment pipeline 

I uploaded the compiled full VISTA dataset to Galaxy [LINK8] [103–105] and 

retrieved all MAF-blocks (“Multiple Alignment File”, Galaxy parameters: Split 

blocks by species=”Do not split”) that contained aligning regions of the 

teleosts Tetraodon nigroviridis (assembly: tetNig2), Takifugu rubripes (fr2), 

Gasterosteus aculeatus (gasAcu1), Danio rerio (‘Zebrafish’, zv8), and Oryzias 

latipes (‘Medaka’, ol2) to Human (“Homo sapiens”, hg19). I subsequently 

filtered these blocks, keeping only those for which an alignment to Zebrafish is 

possible (always the same LastZ parameters used as before). Afterwards, I 

exported the resulting zebrafish regions in bed-format for further processing. 

For this, I removed all regions mapping to non-assembled scaffolds or contigs 

in the reference assembly (zv8). I then extended the centres of the remaining 

regions by 5kb in both directions and combined the overlapping segments into 
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longer, non-overlapping genomic regions. These regions were used to 

perform a direct hg19 to zv8 alignment for all enhancers in the VISTA set. For 

this, I downloaded sequences for both region sets via the EnsEMBL API (v63) 

and aligned them with LastZ. Next, I processed the alignment results and 

stored them as bed-files, containing the exact coordinates of all alignment hits 

in zv8 for every VISTA enhancer. For each of these zv8 regions I identified 

the corresponding genomic location in Medaka via EPO (“Enredo, Pecan, 

Ortheus” alignment pipeline, data retrieved via EnsEMBL API v63) and 

compiled a region set in the same way as previously described for zv8. I then 

aligned the zebrafish sequence of the Human-Zebrafish alignment hits against 

those ol2 regions using LastZ and again extracted the coordinates of resulting 

zebrafish-medaka hits. This way, an alignment chain from Human through 

Zebrafish to Medaka was established for every element that can be identified 

by LastZ in all three species. As a last step, I performed reciprocal LastZ 

alignments (ol2 vs. hg19, hg19 vs. ol2) between each ol2 element and the 

hg19 VISTA enhancer in the same alignment chain to test whether a direct 

alignment is still possible. 

 

 

4.3 BlastN 

I also downloaded BlastN included in the Blast+ Suite (v2.2.25, LINK2) from 

the NCBI. I then performed alignment runs against the repeat masked 

medaka genome (ol2) using the hg19 sequences for all enhancers in the 

VISTA Enhancer set as input (BlastN command-line parameters: -reward 2, -

penalty -3, -gapopen 5, -gapextend 2, -word_size 7, -dust "20 64 1", -

soft_masking TRUE). This served as control whether these regions are 

indeed non-aligning. In total, I did two independent runs using different e-

value limits and subsequently filtered them to retrieve either only the highest 

scoring (parameter: -evalue 5e-1) hit or the 25 highest (parameter: -evalue 1) 

hits, respectively. 
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4.4 Background word counts 

I obtained genome-wide word counts for different word sizes from genomic 

sequence of most recent assemblies (Human: hg19; Medaka: ol2) provided 

by EnsEMBL (v63). As the word frequencies should be later used to filter 

words that are likely to be repetitive, I used unmasked sequence. I first 

downloaded the full genomic sequence using the Perl EnsEMBL API (v63) 

and dissected it afterwards into words of size 5 to 10nt at nucleotide 

resolution. Words containing unspecified or masked nucleotides (“Ns”) were 

excluded. These word profiles served as input for the POISSON and 

HEXDIFF metrics as well as basis for the calculation of frequency tracks. 

 

 

4.5 Frequency tracks 

To assess the word background frequencies in a given genomic region for 

variable word sizes I calculated genomic frequency tracks. For this, first the 

genomic frequencies for all 10-mers contained in the target genome were 

determined. Then, the background distribution of all possible frequency 

products (frequency of each word multiplied by the frequency of every other 

word) was calculated and binned into 256 categories to allow efficient storage. 

Afterwards, preview and review scores per nucleotide were calculated by 

multiplying the frequencies of the words starting at the current nucleotide and 

5nt upstream or those ending at that nucleotide and 5nt downstream, 

respectively. The average of those scores was compared to the computed 

product background distribution and the corresponding frequency category 

assigned to the current nucleotide (Figure 20). As boundaries (e.g 

chromosomal start/end or repeat masked regions) allow calculation of only 

one of the two scores, this score was used to assign the category. The very 

first or last 4nt next to a boundary, for which neither of the scores is 

calculable, are assigned based on the squared frequency of the word 

starting/ending at the nucleotide. All scores were stored bitwise as binary file 

with each bit representing the frequency category of the corresponding 

nucleotide in the given sequence. The whole procedure is implemented in the 

“CompileFrequencyTrack.pl” script. 
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Figure 20 Frequency track generation. For the current nucleotide in the sequence (“C” in the 
centre box) the frequencies of four words (FE-5, FE, FS, FS+5) are extracted from the 
background distribution to calculate the upstream (SU) and downstream score (SD). Those are 
used to compute the final value (Snt) which is looked up in the table containing the boundaries 
for each of the 256 categories (upper left). The corresponding category value is than written 
in the frequency track at the position of the corresponding nucleotide. 

 

 

4.6 Gene sets 

I obtained sets of all protein coding genes for Human and Medaka from 

EnsEMBL via the Perl API (v63) using the “GeneDownloader.pl” and 

“FilterByBiotype.pl” scripts. For this, I first downloaded all genes per 

chromosome and filtered them for protein coding genes afterwards 

(command-line parameter: --biotype protein_coding). These gene sets were 

later used for the generation of orthologous regions and the evaluation of 

peaks predicted by the implemented algorithms. 

 

 

4.7 Orthoblocks 

Orthoblocks are regions on a chromosome in the target species that start and 

end with an ortholog of a gene in the query species. To generate these 

regions, I used EnsEMBL Compara via the EnsEMBL Perl API (v63). Method 
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is implemented in the “Orthify.pl” script. First, the 5 closest flanking genes up- 

and downstream of each human enhancer in the generated VISTA data set 

were identified based on their transcription start site (TSS) using the 

previously generated gene sets. Additionally, all genes within 1.5mb up- and 

downstream were retrieved (command-line parameters: --min_genes 5, --

min_range 1500000). For each gene in the union of both sets all orthologous 

genes in Medaka were retrieved using the API. Known ortho-paralogous 

genes were not taken into account. The identified orthologous genes per 

enhancer were subsequently grouped into sets for each represented 

chromosome and the coordinates for the most upstream/downstream 

boundary of the most upstream/downstream gene determined. These 

coordinates were subsequently further extended by 1.5mb. These 

chromosomal regions form a set of restricted search spaces for each 

enhancer in the input set. 

 
Figure 21 Orthoblocks (brackets indicate orthoblock boundaries). Orthoblocks can contain 
interspersed non-orthologous genes (empty boxes) and permuted gene order (dotted lines). 

 

4.8 Alignment-free metrics 

To test the advantages and disadvantages of alignment-free techniques, I 

implemented different classical metrics in the “MultiMetricScanner.pl” script. 

Scores for those metrics for a given sequence comparison were obtained the 

following: first, the query sequence was read and dissected into words of 
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specified size starting at every single nucleotide to generate a word profile of 

the input sequence. As for the word profiles, words containing unspecified 

nucleotides (“N”s) were excluded. Profile was then transformed into a double-

stranded profile by combining the counts for each word and its reverse 

complement (“rcWord”) in the same strand and assigning this number to the 

respective word-rcWord pair. Target sequence was then read and the 

maximum number of windows for given window size and stepping calculated 

(default: window size is equals to the query sequence length, stepping is 25% 

of used window size). Per window, the word profile was generated in the 

same way as for the query sequence. To calculate word background 

frequencies (for POISSON) and ratios (for HEXDIFF), word counts previously 

extracted from the target genome were given to the program. After score 

calculation, all continuous regions of a score higher than: median + 3 * 

median absolute deviation (per metric) were considered as peaks. 

 

Definitions for equations: Q = Query genome, q = query (enhancer) sequence, 

T = Target genome, t = target (window) sequence, k = word size, c = word 

count, f = word frequency, m = number of all different words for given word 

size. Frequencies are calculated by  

 
Equation 1 Frequency calculation 

with x = given sequence 

 

4.8.1 COSINE 

COSINE metric was taken from [62] but initially used by [101]:  

 

 
Equation 2 COSINE metric 
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4.8.2 D2 

I implemented the D2 metric as described in [62] using word sizes k-1,k,k+1: 

 

 
Equation 3 D2 metric 

 

with i = current word size, mi = all words of size i, and cij = counts for word j of 

size i. 

 

4.8.3 POISSON 

The four different POISSON metrics were initially published by [79]. As they 

need background frequencies for the individual words, these were calculated 

based on the genome-wide word profiles given to the program using 

Equation 1. Furthermore, for each word the expected number of occurrences 

is calculated by 

 

 
Equation 4 Expected amount per word in given sequence 

 

with Lw = window length. 

 

Word-based similarity for “POISSON:Additive” and “POISSON:Product is 

calculated by 

 

 
Equation 5 Common counts per word in query and target sequence 

 

 
Equation 6 Probability for a word to occur as or more often than expected in target 
sequence (F = Poisson distribution function) 
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Equation 7 Contribution of a single word to overall similarity 

 

 

Finally, the four metrics are calculated by: 

 

 
Equation 8 POISSON:Additive metric 

 

 
Equation 9 POISSON:Product metric 

 

 
Equation 10 POISSON:Distinct metric 

 

 
Equation 11 POISSON:Overrepresented metric 

 

4.8.4 HEXDIFF 

The HEXDIFF metrics was initially published by [64]. It uses word ratios 

describing how many times more or less than expected a specific word is 

contained in the query sequence. These ratios are than used to weight each 

individual word. 
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Equation 12 Ratio calculation for all words in i = {1 … m} 

 

Only those words that are contained in the target window and the query profile 

can contribute to the score: 

 
Equation 13 HEXDIFF metric 

 

4.8.5 Modified metric 

The modified alignment-free metric I tested here generates word profiles in a 

bit different way than classical alignment-free metrics. Instead of dissecting 

both sequences independently into word profiles of a fixed size, both 

sequences are directly compared to extract perfect matching words of 

variable size. For this, the query sequence is first dissected in the classical 

way into words of fixed size, which form anchor points or “seeds” that are 

further extended in both directions afterwards. Extension proceeds as long as 

adjacent nucleotides perfectly match between query and target. This results in 

a set of words of various sizes. Words of low complexity are then further 

filtered. For this, each word is dissected further into overlapping 5-mers. 

These 5-mers are then tested for self overlap. Each word that contains more 

self-overlapping than non-overlapping 5-mers is excluded from the profile. 

This procedure is similar to the one used in [71]. Afterwards, words are 

mapped to the target sequence starting with the longest one. Only words of 

equal size are allowed to overlap during this process. Shorter words are 

truncated to their non-overlapping core and assessed again later. In case their 

length drops below seed size they are discarded. Overlap in query sequence 

is not assessed, which allows words in the query to occur repeatedly in the 

target but not vice versa. After all words are mapped, the profile is split into 

sub-profiles for the different contained word sizes and two parameters 

assessed per sub-profile: 



Chapter 4: Materials & Methods 
 

 
 89 

 
Equation 14 Word coverage 

 
Equation 15 Word independence 

 

With Nk
t  = number of nucleotides in window mapped to words of size k 

 

These values are multiplied with a weighting factor (ak, default: a =1.5, k = 

word size) that allows adjusting the contribution of the individual sub-profiles 

to the final score (for a = 1 all sub-profiles would be treated equally). 

Furthermore, the average frequency value for each sub profile is calculated by 

 

 
Equation 16 Word average frequency 

with Ikt = indices of all nucleotides contributing to Nk
t (SCatnt,i see Figure 20). 

 

The final sub-profile score is then calculated by  

 

 
Equation 17 Final score for profile formed by all words of size k 

 

to reduce the contribution of highly repetitive genomic regions. The final 

similarity score for query and target window is then the sum of all sub-profile 

scores: 
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Equation 18 Final similarity score for given window 

 

The full metric is implemented in the “WurmTDS.pl” script. For calling and 

evaluation of peaks see “Peak calling & evaluation” for NASCAR. 

 

 

4.9 NASCAR 

4.9.1 Profile generation 

NASCAR motif profiles are generated in a similar way as described for the 

modified alignment-free metric. As before, query sequence is dissected into a 

word profile of given word size (default: k=8nt). Then, the same procedure is 

repeated for the full target sequence for performance reasons. Each word in 

the query is then mapped to every instance in the target and overlapping 

words of the same shift in query and target (i.e. these words overlap in the 

same diagonal of a dotplot) are collapsed into one word. The resulting profile 

is identical to that for the alignment-free approach and serves as “seeds” for 

subsequent mismatch extension. Extension is performed independently in 

both directions (upstream/downstream) using a simple additive match-

mismatch scoring function until the motif score drops below 0 (i.e. 

accumulated mismatches score higher than all matching nucleotides). Both 

extensions are then truncated to the shortest, highest scoring region starting 

at the seed and merged to form the final motif. Each motif is thereby regarded 

as a mismatch-containing word similar to perfect matching words in 

alignment-free algorithms. The same procedure is repeated for the reverse 

complement target sequence and both generated profiles merged. This profile 

is then filtered to remove overlapping words in the target sequence. Like for 

the modified alignment-free metric, motifs are first ranked by their score and 

then mapped to the target, starting with the highest scoring. The score of each 

motif is determined by 
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Equation 19 NASCAR motif score 

 

with i = {1 … M}, M = all motifs in target window, pi, qi = 

matching/mismatching nucleotides in motif, s = score of match/mismatch, and 

Li = length of motif i. Overlapping motifs are truncated to their next matching 

nucleotide and rescored as long as they still contain a perfect matching region 

of at least seed size. The fully filtered word set forms the final word profile 

(see Suppl. Figure 5). 

 

4.9.2 Score calculation 

NASCAR score is calculated in a windowed fashion along the given target 

sequence as done for alignment-free algorithms (default: window size = 

enhancer length, stepping 25%). For this, all words within the current target 

window are extracted from the profile in a “fuzzy” fashion, allowing words to 

overlap the window boundaries. The extracted profile is then filtered for word 

overlap in the query sequence identical to the target filtering procedure. This 

results in a final profile of completely independent words. All words above or 

equals the minimal score cutoff (default: score of a perfect matching 12-mer) 

are then used to calculate the final similarity score for the target window 

(“PURE-score”, MValid = all motifs above threshold after filtering): 

 

 
Equation 20 NASCAR “PURE score” 

 

4.9.3 Pattern detection 

In a parallel approach, clusters of collinear motifs within a certain distance and 

query-target shift are traced (default: distance = 200, shift in diagonal = 25). 

For this, all motifs above the score threshold are ranked again in decreasing 

order. Then, starting at the strongest motif, two elliptical motif-spaces along 

the current motif diagonal and overlapping in one focus are computed, with 

the motif placed in the overlapping focus (Figure 22). 
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Figure 22 Pattern detection technique. For each motif above threshold (grey bars) two elliptic 
spaces (upstream ellipse drawn only dotted; a,b,e are standard values of ellipses) are 
computed with the motif being located in the overlapping focus point (FC). All motifs within 
those spaces that are also within the set intermotif distance form a pattern even if they are 
below the score threshold (orange motif). At least 3 motifs have to be combined in that way, 2 
of them above score threshold. 

 

The distance between the two foci in query or target corresponds thereby to 

the enhancer length. This allows detection of clusters spanning the full 

window size. All motifs that are with their centre within these motif spaces are 

selected and tested for their inter-motif distance (end  start). Motifs with 

an inter-motif distance smaller or equals the specified distance are combined 

into a motif cluster. All clusters of three motifs containing at least two words 

scoring at or above the threshold level are valid. This allows inclusion of 

motifs even below threshold as long as the previous requirement is met. 

Combined score of all motifs in all identified clusters is finally added to the 

previously computed PURE-score to form the final score (“COMB-score”). 
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Figure 23 NASCAR process diagram 

 

4.9.4 Peak calling & evaluation 

All regions that have a NASCAR score above a set threshold are considered 

as peaks. These peaks are continuous intervals in the target sequence 

starting at the first window scoring above the threshold and ending as soon as 

the score drops below this limit. Default threshold is 3 times the median 

absolute deviation (MAD) above the median NASCAR score for the 

corresponding run. Median and MAD are independently calculated for each 

run of a human enhancer against the medaka genome. Called peaks are then 

evaluated based on 5 different categories: “double flanked” (orthologs of both 

flanking genes in human also flank the medaka peak), “single flanked”, “near 

flank” (ortholog of a flanking gene in Human is still within the set distance and 

gene cuttoffs in Medaka but not directly flanking the peak), “not flanked” 

(orthologous gene within the cutoff but not flanking in human), and “not 

orthologous” (not a single orthologous gene near, but ortho-paralogous genes 

would be possible). The full procedure is done independently for “PURE” and 

“COMB” score and implemented in the “EvaluateRace.pl” script. Evaluation of 

the results for the modified alignment-free metric is performed in the same 
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way with the exception that the “near flank” category does not exists. This 

procedure is implemented in the “EvaluateCrawl.pl” script. 

 

4.10 Random motif sets 

The procedure for random motif generation is implemented in the 

“RandomizeMotifsInRegion.pl” script. Random sets were generated by 

randomly placing motifs of the same size as the real motifs within the given 

enhancer region in a non-overlapping fashion. In this way 10 independent 

random sets for each validated sequence (9 human and 10 medaka regions) 

were generated, which were subsequently used for conservation and TFBS 

analysis. 

 

4.11 Conservation 

The conservation of NASCAR motifs was analyzed by averaging across the 

compiled conservation information of all nucleotides forming a motif. The 

conservation data (PhastCons scores) for placental mammals (mammal sub 

set of the 46-way MultiZ vertebrate alignment) and teleosts (5-way MultiZ 

alignment) was obtained from the UCSC Genome Browser [LINK3, LINK4]. 

Resulting data was then further analyzed using R 2.8.1. The conserved blocks 

within the individual enhancer-candidate pairs were obtained using the UCSC 

TableBrowser (PARAMETERS: clade=”Mammal”, genome=”Human”, 

assembly=”hg19”, group=”Comparative Genomics”, track=”Conservation”, 

table=”phastConsElements46wayPlacental”, output format=”BED – browser 

extensible data”; clade=”Vertebrate”, genome=”Medaka”, assembly=”ol2”, 

group=”Comparative Genomics”, track=”Most Conserved”, 

table=”phastConsElements5way”, output format=”BED – browser extensible 

data”). 

 

4.12 TFBSs 

To analyse NASCAR motifs for the presence of putative TFBSs I modified a 

script existing in the lab (Juan Mateo, personal communication). The PWM 

scoring function of that script was adapted from [106], PWMs for the analysis 

were obtained from JASPAR and TRANSFAC. The threshold for calling 
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TFBSs was set to 90% percentage identity to the given PWM (command-line 

parameter: --tfbs_threshold 0.9). Whole procedure was implemented in the 

“TFBSscan.pl” script. 

 

4.13 Cloning & in vivo validation 

All constructs were amplified from the human or medaka genome by PCR 

using Phusion DNA Polymerase (Finnzyme/Biozym, F-530L) and the primers 

specified in Suppl. Table 1 (programs see Appendix). Resulting fragments 

were extracted and purified from 1% Agarose gel (Agarose: Biozym, 840004) 

using the Analytik Jena innuPREP DOUBLEpure kit (REF: 845-KS-5050250). 

Constructs created via sticky-end ligation (Suppl. Table 2) were digested 

using HindIII (Fermentas; ER0501) after PCR and ligated by T4 ligase 

(Fermentas, EL0014) into the p339:HSP70:eGFP expression vector (Plasmid 

stock no. 1955). Remaining constructs were cloned into blunted 

p339:HSP70:eGFP vector. For this, vector was cut using ClaI (Fermentas, 

ER0141), sticky ends filled by Klenow enzyme (Roche, 

Cat.No.11008404001), and dephosphorylated using FastAP (Fermentas, 

EF0654). For blunt ligations, PEG4000 contained in the T4 ligase kit 

(Fermentas, EL0014) was used in addition (protocol see Appendix). Ligated 

constructs were used to transform in-house generated chemical competent 

MachT1 cells. Injection constructs were generated following the MidiPrep 

protocol of the QIAGEN Plasmid Purification kit. Purified constructs were 

subsequently mixed with I-SCE (NEB, R0694S) and injected into 100+ 

medaka embryos. All injected embryos were monitored from 1 – 10dpi (days 

post injection) and analysed for a consistent GFP expression pattern. Lens 

activity of the HSP70 promoter served as injection control allowing 

discrimination between unsuccessful injections and inactive putative enhancer 

elements. Due to the usually mosaic activity in injected fish, an enhancer was 

considered to be active if at least 25% of all lens positive fish showed a 

consistent activity pattern. Images of injected embryos were taken on an 

OLYMPUS MVX10 binocular at 4x magnification using a LEICA DFC500 

camera. 



Chapter 5: References 
 

 
 96 

5. References 

1.  Darwin C, Wallace A (1858) On the Tendency of Species to form 
Varieties; and on the Perpetuation of Varieties and Species by Natural 
Means of Selection. Journal of the Proceedings of the Linnean Society 
of London Zoology 3: 45–62. 

2.  Morgan TH, Sturtevant A, Muller H, Bridges C (1915) The mechanism 
of Mendelian heredity. 

3.  McClintock B (1929) A Cytological and Genetical Study of Triploid 
Maize. Genetics 14: 180–222. 

4.  Griffith F (1928) The Significance of Pneumococcal Types. J Hyg (Lond) 
27: 113–159. 

5.  McCarty M, Avery OT (1946) Studies on the chemical nature of the 
substance inducing transformation of pneumococcal types. J Exp Med 
83: 97–104. 

6.  Hershey AD, Chase M (1952) Independent functions of viral protein and 
nucleic acid in growth of bacteriophage. J Gen Physiol 36: 39–56. 

7.  Watson JD, Crick FHC (1953) Molecular structure of nucleic acids; a 
structure for deoxyribose nucleic acid. Nature 171: 737–738. 

8.  Wilkins MHF, Stokes AR, Wilson HR (1953) Molecular structure of 
deoxypentose nucleic acids. Nature 171: 738–740. 

9.  Franklin RE, Gosling R (1953) Molecular configuration in sodium 
thymonucleate. Nature 171: 740–741. 

10.  Nirenberg M, Leder P, Bernfield M, Brimacombe R, Trupin J, et al. 
(1965) RNA codewords and protein synthesis, VII. On the general 
nature of the RNA code. Proc Natl Acad Sci USA 53: 1161–1168. 

11.  Beadle GW, Tatum EL (1941) Genetic Control of Biochemical Reactions 
in Neurospora. Proc Natl Acad Sci USA 27: 499–506. 

12.  Jacob F, Perrin D, Sánchez C, Monod J, Edelstein S (2005) [The 
operon: a group of genes with expression coordinated by an operator. 
C.R.Acad. Sci. Paris 250 (1960) 1727-1729]. C R Biol 328: 514–520. 

13.  King MC, Wilson AC (1975) Evolution at two levels in humans and 
chimpanzees. Science 188: 107–116. 

14.  Jacob F (1977) Evolution and tinkering. Science 196: 1161–1166. 
15.  Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) 

Initial sequencing and analysis of the human genome. Nature 409: 860–
921.  

16.  Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, et al. (2001) The 
sequence of the human genome. Science 291: 1304–1351.  

17.  King JL, Jukes TH (1969) Non-Darwinian evolution. Science 164: 788–
798. 

18.  Fields C, Adams MD, White O, Venter JC (1994) How many genes in 
the human genome? Nat Genet 7: 345–346. 

19.  Liang F, Holt I, Pertea G, Karamycheva S, Salzberg SL, et al. (2000) 
Gene index analysis of the human genome estimates approximately 
120,000 genes. Nat Genet 25: 239–240. 



Chapter 5: References 
 

 
 97 

20.  Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, et al. (2011) A 
high-resolution map of human evolutionary constraint using 29 
mammals. Nature 478: 476–482. 

21.  Prud’homme B, Gompel N, Rokas A, Kassner VA, Williams TM, et al. 
(2006) Repeated morphological evolution through cis-regulatory 
changes in a pleiotropic gene. Nature 440: 1050–1053. 

22.  Marcellini S, Simpson P (2006) Two or four bristles: functional evolution 
of an enhancer of scute in Drosophilidae. PLoS Biol 4: e386. 

23.  Chan YF, Marks ME, Jones FC, Villarreal G, Shapiro MD, et al. (2010) 
Adaptive Evolution of Pelvic Reduction in Sticklebacks by Recurrent 
Deletion of a Pitx1 Enhancer. Science 327: 302–305.  

24.  Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, et al. (2012) 
The genomic basis of adaptive evolution in threespine sticklebacks. 
Nature 484: 55–61. 

25.  Tung J, Primus A, Bouley AJ, Severson TF, Alberts SC, et al. (2009) 
Evolution of a malaria resistance gene in wild primates. Nature 460: 
388–391. 

26.  Sims RJ, Reinberg D (2009) Processing the H3K36me3 signature. Nat 
Genet 41: 270–271. 

27.  Khoueiry P, Rothbächer U, Ohtsuka Y, Daian F, Frangulian E, et al. 
(2010) A cis-regulatory signature in ascidians and flies, independent of 
transcription factor binding sites. Curr Biol 20: 792–802.  

28.  Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, et al. (2003) The 
evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20: 
1377–1419. 

29.  Butler JE, Kadonaga JT (2001) Enhancer-promoter specificity mediated 
by DPE or TATA core promoter motifs. Genes Dev 15: 2515–2519.  

30.  Kadonaga JT (2002) The DPE, a core promoter element for 
transcription by RNA polymerase II. Exp Mol Med 34: 259–264. 

31.  Tokusumi Y, Ma Y, Song X, Jacobson RH, Takada S (2007) The New 
Core Promoter Element XCPE1 (X Core Promoter Element 1) Directs 
Activator-, Mediator-, and TATA-Binding Protein-Dependent but TFIID-
Independent RNA Polymerase II Transcription from TATA-Less 
Promoters. Molecular and Cellular Biology 27: 1844–1858. 

32.  Anish R, Hossain MB, Jacobson RH, Takada S (2009) Characterization 
of transcription from TATA-less promoters: identification of a new core 
promoter element XCPE2 and analysis of factor requirements. PLoS 
ONE 4: e5103. 

33.  Kikuta H, Laplante M, Navratilova P, Komisarczuk AZ, Engström PG, et 
al. (2007) Genomic regulatory blocks encompass multiple neighboring 
genes and maintain conserved synteny in vertebrates. Genome 
Research 17: 545–555. 

34.  Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, et al. 
(2006) In vivo enhancer analysis of human conserved non-coding 
sequences. Nature 444: 499–502. 

35.  Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, et al. (2005) 
Three-dimensional maps of all chromosomes in human male fibroblast 
nuclei and prometaphase rosettes. PLoS Biol 3: e157.  

36.  Romano LA, Wray GA (2003) Conservation of Endo16 expression in 
sea urchins despite evolutionary divergence in both cis and trans-acting 



Chapter 5: References 
 

 
 98 

components of transcriptional regulation. Development 130: 4187–
4199. 

37.  Brown CD, Johnson DS, Sidow A (2007) Functional architecture and 
evolution of transcriptional elements that drive gene coexpression. 
Science 317: 1557–1560. 

38.  Arnosti DN, Kulkarni MM (2005) Transcriptional enhancers: Intelligent 
enhanceosomes or flexible billboards? J Cell Biochem 94: 890–898.  

39.  Panne D, Maniatis T, Harrison SC (2007) An atomic model of the 
interferon-beta enhanceosome. Cell 129: 1111–1123.  

40.  Swanson CI, Evans NC, Barolo S (2010) Structural Rules and Complex 
Regulatory Circuitry Constrain Expression of a Notch- and EGFR-
Regulated Eye Enhancer. Dev Cell 18: 359–370.  

41.  Ludwig MZ, Bergman C, Patel NH, Kreitman M (2000) Evidence for 
stabilizing selection in a eukaryotic enhancer element. Nature 403: 564–
567. 

42.  Hare EE, Peterson BK, Iyer VN, Meier R, Eisen MB (2008) Sepsid 
even-skipped enhancers are functionally conserved in Drosophila 
despite lack of sequence conservation. PLoS Genet 4: e1000106.  

43.  Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, et al. (2009) ChIP-seq 
accurately predicts tissue-specific activity of enhancers. Nature 457: 
854–858. 

44.  Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping 
and interaction between hypersensitive sites in the active beta-globin 
locus. Mol Cell 10: 1453–1465. 

45.  Roeder RG (2005) Transcriptional regulation and the role of diverse 
coactivators in animal cells. FEBS Lett 579: 909–915.  

46.  Visel A, Akiyama JA, Shoukry M, Afzal V, Rubin EM, et al. (2009) 
Functional autonomy of distant-acting human enhancers. Genomics 93: 
509–513. 

47.  Ruf S, Symmons O, Uslu VV, Dolle D, Hot C, et al. (2011) Large-scale 
analysis of the regulatory architecture of the mouse genome with a 
transposon-associated sensor. Nat Genet: 1–10. 

48.  Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, et al. (2009) An oestrogen-
receptor-alpha-bound human chromatin interactome. Nature 462: 58–
64.  

49.  Vázquez AV, Blanco M, Zaborowska J, Soengas P, González-Siso MI, 
et al. (2011) Two proteins with different functions are derived from the 
KlHEM13 gene. Eukaryotic Cell 10: 1331–1339. 

50.  Fujita T, Fujii H (2012) Transcription start sites and usage of the first 
exon of mouse Foxp3 gene. Molecular biology reports. 

51.  Castro DS, Martynoga B, Parras C, Ramesh V, Pacary E, et al. (2011) 
A novel function of the proneural factor Ascl1 in progenitor proliferation 
identified by genome-wide characterization of its targets. Genes Dev 25: 
930–945. 

52.  Wunderlich Z, Mirny LA (2009) Different gene regulation strategies 
revealed by analysis of binding motifs. Trends Genet 25: 434–440.  

53.  Blow MJ, McCulley DJ, Li Z, Zhang T, Akiyama JA, et al. (2010) ChIP-
Seq identification of weakly conserved heart enhancers. Nat Genet 42: 
806–810. 



Chapter 5: References 
 

 
 99 

54.  Chen X, Xu H, Yuan P, Fang F, Huss M, et al. (2008) Integration of 
external signaling pathways with the core transcriptional network in 
embryonic stem cells. Cell 133: 1106–1117. 

55.  Jin F, Li Y, Ren B, Natarajan R (2011) Enhancers: multi-dimensional 
signal integrators. Transcription 2: 226–230. 

56.  de Wit E, de Laat W (2012) A decade of 3C technologies: insights into 
nuclear organization. Genes Dev 26: 11–24. 

57.  Pennacchio LA, Rubin EM (2001) Genomic strategies to identify 
mammalian regulatory sequences. Nat Rev Genet 2: 100–109.  

58.  Nobrega MA, Ovcharenko I, Afzal V, Rubin EM (2003) Scanning human 
gene deserts for long-range enhancers. Science 302: 413.  

59.  Visel A, Bristow J, Pennacchio LA (2007) Enhancer identification 
through comparative genomics. Semin Cell Dev Biol 18: 140–152.  

60.  Visel A, Prabhakar S, Akiyama JA, Shoukry M, Lewis KD, et al. (2008) 
Ultraconservation identifies a small subset of extremely constrained 
developmental enhancers. Nat Genet 40: 158–160.  

61.  Hide W, Burke J, Davison DB (1994) Biological evaluation of d2, an 
algorithm for high-performance sequence comparison. J Comput Biol 1: 
199–215. 

62.  Vinga S, Almeida J (2003) Alignment-free sequence comparison-a 
review. Bioinformatics 19: 513–523. 

63.  Su J, Teichman S, Down T (2010) Assessing Computational Methods of 
Cis-Regulatory Module Prediction. PLoS Comput Biol: 1–15. 

64.  Chan BY, Kibler D (2005) Using hexamers to predict cis-regulatory 
motifs in Drosophila. BMC Bioinformatics 6: 262. 

65.  Sosinsky A, Honig B, Mann RS, Califano A (2007) Discovering 
transcriptional regulatory regions in Drosophila by a nonalignment 
method for phylogenetic footprinting. Proc Natl Acad Sci USA 104: 
6305–6310.  

66.  Kantorovitz MR, Kazemian M, Kinston S, Miranda-Saavedra D, Zhu Q, 
et al. (2009) Motif-blind, genome-wide discovery of cis-regulatory 
modules in Drosophila and mouse. Dev Cell 17: 568–579.  

67.  Arunachalam M, Jayasurya K, Tomancak P, Ohler U (2010) An 
alignment-free method to identify candidate orthologous enhancers in 
multiple Drosophila genomes. Bioinformatics 26: 2109–2115.  

68.  Taher L, Mcgaughey DM, Maragh S, Aneas I, Bessling SL, et al. (2011) 
Genome-wide identification of conserved regulatory function in diverged 
sequences. Genome Research 21: 1139–1149.  

69.  He X, Ling X, Sinha S (2009) Alignment and prediction of cis-regulatory 
modules based on a probabilistic model of evolution. PLoS Comput Biol 
5: e1000299. 

70.  Swanson CI, Schwimmer DB, Barolo S (2011) Rapid Evolutionary 
Rewiring of a Structurally Constrained Eye Enhancer. Curr Biol 21: 
1186–1196.  

71.  Leung G, Eisen MB (2009) Identifying cis-regulatory sequences by word 
profile similarity. PLoS ONE 4: e6901. 

72.  Göke J, Schulz MH, Lasserre J, Vingron M (2012) Estimation of 
pairwise sequence similarity of mammalian enhancers with word 
neighbourhood counts. Bioinformatics 28: 656–663. 



Chapter 5: References 
 

 
 100 

73.  Visel A, Minovitsky S, Dubchak I, Pennacchio LA (2007) VISTA 
Enhancer Browser--a database of tissue-specific human enhancers. 
Nucleic Acids Res 35: D88–92. 

74.  Harris RS (2007) Improved pairwise alignment of genomic DNA. 
75.  Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005) 

Evolutionarily conserved elements in vertebrate, insect, worm, and 
yeast genomes. Genome Research 15: 1034–1050. 

76.  Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AFA, et al. (2004) 
Aligning multiple genomic sequences with the threaded blockset aligner. 
Genome Research 14: 708–715. 

77.  Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, et al. (2003) 
Human-mouse alignments with BLASTZ. Genome Research 13: 103–
107.  

78.  Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. 
(2009) BLAST+: architecture and applications. BMC Bioinformatics 10: 
421.  

79.  van Helden J (2004) Metrics for comparing regulatory sequences on the 
basis of pattern counts. Bioinformatics 20: 399–406.  

80.  Burke J, Davison D, Hide W (1999) d2_cluster: a validated method for 
clustering EST and full-length cDNAsequences. Genome Research 9: 
1135–1142. 

81.  Davidson DB, Burke JF (2001) Brute force estimation of the number of 
human genes using EST clustering as a measure. IBM Journal of 
Research and Development 45: 439–447. 

82.  Hufton AL, Mathia S, Braun H, Georgi U, Lehrach H, et al. (2009) 
Deeply conserved chordate noncoding sequences preserve genome 
synteny but do not drive gene duplicate retention. Genome Research 
19: 2036–2051.  

83.  Frankel N, Davis GK, Vargas D, Wang S, Payre F, et al. (2010) 
Phenotypic robustness conferred by apparently redundant 
transcriptional enhancers. Nature: 1–5.  

84.  Mongin E, Auer TO, Bourrat F, Gruhl F, Dewar K, et al. (2011) 
Combining computational prediction of cis-regulatory elements with a 
new enhancer assay to efficiently label neuronal structures in the 
medaka fish. PLoS ONE 6: e19747. 

85.  Wittbrodt J, Meyer A, Schartl M (1998) More genes in fish? BioEssays 
20: 511–515. 

86.  Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A (2010) Detection of 
nonneutral substitution rates on mammalian phylogenies. Genome 
Research 20: 110–121. 

87.  Ovcharenko I, Loots GG, Hardison RC, Miller W, Stubbs L (2004) 
zPicture: dynamic alignment and visualization tool for analyzing 
conservation profiles. Genome Research 14: 472–477. 

88.  Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D (2003) 
Evolution’s cauldron: duplication, deletion, and rearrangement in the 
mouse and human genomes. Proc Natl Acad Sci USA 100: 11484–
11489.  

89.  Gotea V, Visel A, Westlund JM, Nobrega MA, Pennacchio LA, et al. 
(2010) Homotypic clusters of transcription factor binding sites are a key 



Chapter 5: References 
 

 
 101 

component of human promoters and enhancers. Genome Research 20: 
565–577. 

90.  Koohy H, Dyer NP, Reid JE, Koentges G, Ott S (2010) An alignment-
free model for comparison of regulatory sequences. Bioinformatics 26: 
2391–2397. 

91.  Bourque G, Leong B, Vega VB, Chen X, Lee YL, et al. (2008) Evolution 
of the mammalian transcription factor binding repertoire via 
transposable elements. Genome Research 18: 1752–1762. 

92.  Ettwiller L, Paten B, Ramialison M, Birney E, Wittbrodt J (2007) Trawler: 
de novo regulatory motif discovery pipeline for chromatin 
immunoprecipitation. Nat Methods 4: 563–565. 

93.  Gordân R, Narlikar L, Hartemink AJ (2010) Finding regulatory DNA 
motifs using alignment-free evolutionary conservation information. 
Nucleic Acids Res 38: e90. 

94.  Cande J, Goltsev Y, Levine MS (2009) Conservation of enhancer 
location in divergent insects. Proc Natl Acad Sci USA 106: 14414–
14419.  

95.  Kunarso G, Chia N-Y, Jeyakani J, Hwang C, Lu X, et al. (2010) 
Transposable elements have rewired the core regulatory network of 
human embryonic stem cells. Nat Genet. 

96.  Barrière A, Gordon KL, Ruvinsky I (2011) Distinct Functional 
Constraints Partition Sequence Conservation in a cis-Regulatory 
Element. PLoS Genet 7: e1002095. 

97.  Brudno M, Malde S, Poliakov A, Do CB, Couronne O, et al. (2003) 
Glocal alignment: finding rearrangements during alignment. 
Bioinformatics 19 Suppl 1: i54–62. 

98.  Karlin S, Altschul SF (1993) Applications and statistics for multiple high-
scoring segments in molecular sequences. Proc Natl Acad Sci USA 90: 
5873–5877. 

99.  Lopez R, Silventoinen V, Robinson S, Kibria A, Gish W (2003) WU-
Blast2 server at the European Bioinformatics Institute. Nucleic Acids 
Res 31: 3795–3798. 

100.  Brudno M, Morgenstern B (2002) Fast and sensitive alignment of large 
genomic sequences. Proc IEEE Comput Soc Bioinform Conf 1: 138–
147. 

101.  Stuart GW, Moffett K, Baker S (2002) Integrated gene and species 
phylogenies from unaligned whole genome protein sequences. 
Bioinformatics 18: 100–108. 

102.  Ritter DI, Li Q, Kostka D, Pollard KS, Guo S, et al. (2010) The 
importance of being cis: evolution of orthologous fish and mammalian 
enhancer activity. Mol Biol Evol 27: 2322–2332. 

103.  Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, et al. (2005) 
Galaxy: a platform for interactive large-scale genome analysis. Genome 
Research 15: 1451–1455. 

104.  Goecks J, Nekrutenko A, Taylor J, Team G (2010) Galaxy: a 
comprehensive approach for supporting accessible, reproducible, and 
transparent computational research in the life sciences. Genome Biol 
11: R86. 



Chapter 5: References 
 

 
 102 

105.  Blankenberg D, Kuster GV, Coraor N, Ananda G, Lazarus R, et al. 
(2010) Galaxy: a web-based genome analysis tool for experimentalists. 
Curr Protoc Mol Biol Chapter 19: Unit 19.10.1–21.  

106.  Kel AE, Gössling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, et al. 
(2003) MATCH: A tool for searching transcription factor binding sites in 
DNA sequences. Nucleic Acids Res 31: 3576–3579.  

 

 

 

 

Web links: 

LINK1: http://enhancer.lbl.gov/frnt_page_n.shtml 
LINK2: ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.25/ 

LINK3: http://hgdownload.cse.ucsc.edu/goldenPath/hg19 

/phastCons46way/placentalMammals/ 

LINK4: http://hgdownload.cse.ucsc.edu/goldenPath/oryLat2 

/phastCons5way/ 

LINK5: http://www.ensembl.org/index.html 

LINK6: http://www.bx.psu.edu/miller_lab/dist/README.lastz-

1.02.00/README.lastz-1.02.00a.html#options_scoring 

LINK7: http://genomewiki.ucsc.edu/index.php/Human/hg19/GRCh37_46-

way_multiple_alignment 

LINK8: https://main.g2.bx.psu.edu/ 
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A. PCR-Programs: 

 

Standard program: 

10” @ 98°C  20” @ 68°C  2’ @ 72°C   | x5 

10” @ 98°C  20” @ 63°C  2’20” @ 72°C  | x25 

10’ @ 72°C  END 

 

Program for long (~4kb) fragments:  

10” @ 98°C  20” @ 63°C  3’ @ 72°C   | x5 

10” @ 98°C  20” @ 60°C  3’30” @ 72°C  | x25 

10’ @ 72°C  END 

 

 

B. Blunt ligation protocol: 

 

14µl PCR product 

1µl blunted Vector 

2µl 10x ligation buffer 

1µl PEG4000 

1µl T4 Ligase 

1µl dH2O 

 

 @ RT for 2h 
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Suppl. Figure 1 Score plots for all alignment-free metrics on each putative orthologous/ortho-paralogous target region in Medaka. Scores for hs320 
show clear peak above threshold (dashed line) in both orthologous loci (2 upper left plots) but none in the ortho-paralogous regions (2 upper right plots). 
Scores for hs631 (lower row) are generally weaker and more noisy than for hs320 but in all regions a peak above threshold is visible.



Appendix 
 

 
 III 

 

 

 

 

Suppl. Figure 2 Score plots for all alignment-free metrics focused on the aligning 
regions (vertical grey bar) in the orthologous loci for all three candidates identified by the 
alignment pipeline (hs1022, hs692, hs20). Only for hs692 (middle plot) some metrics score 
above threshold (dashed line). HEXDIFF is very close to the threshold but does not fully 
reach it. Interestingly, most metrics peak at a close by position in that locus
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Suppl. Figure 3 Score plots for modified alignment-free metric using variable words sizes (red) compared to the best-scoring classical metric 
(HEXDIFF; blue). For all three alignment-pipeline candidates, clear peaks at the alignment positions (grey bars) are visible in the modified metric whereas 
HEXDIFF reports only noise. Genes in those loci are drawn in scale as horizontal grey blocks. Double lines per metric show scores on masked and 
unmasked sequence indicating there is no big difference in those loci. 
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Suppl. Figure 4 Additional example for word pattern in significantly aligning region
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Suppl. Figure 5 Graphical display of NSACAR motif filtering process 
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Suppl. Table 1 Primer table for all primers used to generate the tested NASCAR constructs
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Suppl. Table 2 All cloned and injected NASCAR constructs 
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