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Abstract

We present methods for the systematic modelling and clustering of time series. Our data is
associated with behavioral studies of alcoholism in animals. We analyze multivariate time se-
ries obtained from an automated drinkometer system. Here, rats have free access to water and
three alcoholic solutions (this being the baseline treatment level), which is then interrupted by
repeated deprivation phases. We develop a methodology to simultaneously classify into- and
characterize dynamic patterns of the observed drinking behavior. This is achieved by extending
known results on generalized linear models (GLM) for univariate time series to the multivariate
case. We simplify the computational fitting procedure, by assuming a shared seasonal pattern
throughout individuals and implementing an estimation maximization (EM) algorithm to fit
mixtures of the mentioned multivariate GLM. A partition of the data, as well as a character-
ization of each group is obtained. The observed patterns of drinking behavior differ in their
preference profile for the three alcoholic solutions, and also in the net alcohol intake. We ob-
serve an evolution of the drinking behavior over the repeated cycles of alcohol admission and
deprivation, with a clear initial preference profile and a development to one of the advanced
profiles. Furthermore, to measure the alcohol deprivation effect in this 4-bottle setting, a new
criterion is developed, which enables us to classify each rat into presenting ADE or not. This
classification shows that the rats develop a tolerance to taste adulteration after few deprivation
phases. The proposed framework can be employed to find differences in behavior between dif-
ferent conditions and/or groups of animals and in the prediction of alcoholism from early phases
of alcohol intake. The developed methods can also be used in different fields, where the analysis
of time series plays an important role (e.g. microarray analysis and neuroscience).



Zusammenfassung

In dieser Arbeit werden Methoden für die Modellierung und das Clustering von Zeitreihen en-
twickelt und angewandt, um die Entwicklung von Alkoholismus im Tiermodell zu beschreiben.
Die erhobenen Daten sind hierbei multivariate Zeitreihen, die mittels eines automatisierten
Gerätes, des Drinkometers, erhoben werden. Im Experiment haben Ratten freien Zugang zu
Wasser und drei alkoholischen Lösungen (”Baseline“-Trinkverhalten), zyklisch unterbrochen von

”Entzugsphasen“, nach denen ein ”Alkohol-Deprivations-Effekt“ (ADE) beobachtet wird. Zur
Messung des ADEs wurde ein neues Kriterium entwickelt, welches eine Klassifizierung jedes
einzelnen Individuums bezüglich des ADEs erlaubt. Damit kann gezeigt werden, dass Ratten eine
Toleranz gegenüber vergällten alkoholischen Lösungen nach mehreren Entzugsphasen entwick-
eln. Die in dieser Arbeit entwickelten Methoden klassifizieren und charakterisieren dynamische
Muster des beobachteten Alkohol-Trinkverhaltens. Der Hauptansatz ist dabei die Erweiterung
verallgemeinerter linearer Modelle (GLM) für univariate Zeitreihen auf den multivariaten Fall.
Das Fitting-Verfahren wurde durch die Annahme zirkadianer Komponenten vereinfacht, sowie
durch die Implementierung eines EM-Algorithmus, um die Modelle der multivariaten GLM zu
fitten. Dadurch wurde sowohl eine Klassifizierung der Trinkmuster in verschiedene Cluster, als
auch eine Charakterisierung der Dynamik dieser Muster erreicht. Diese unterscheiden sich in
ihrem Präferenz-Profil für die drei alkoholischen Lösungen, und auch in der Netto-Menge des
konsumierten Alkohols. Des Weiteren wurde eine Entwicklung des Trinkverhaltens im Laufe
der aufeinanderfolgenden Zyklen von Alkoholkonsum und Entzug beobachtet, mit einem klaren
”Einsteiger”-Profil und der Entwicklung zu einem mehrerer fortgeschrittenen Profile. Mit Hilfe
des hier vorgestellten Ansatzes können Unterschiede im Verhalten für verschiedene Bedingungen
und/oder Gruppen von Tieren identifiziert werden, und sogar eine Vorhersage von Alkoholismus
bereits in frühen Phasen des Alkoholkonsums ist möglich. Die entwickelten Methoden sind auch
in zahlreichen anderen Gebieten anwendbar, in denen die Analyse von Zeitreihen eine wichtige
Rolle spielt (u.a. Analyse von Microarray-Daten, Neurowissenschaften, etc.).
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Chapter 1

Introduction

Alcoholism is one of the most critical drug addictions of our society, carrying with it not only
several social and health problems but leading, in many cases, to crime and death.

The development of alcoholism, as most of the drug dependencies, occurs without notice. Only
once some acute features have appeared, such as the compulsive seeking and consumption of al-
cohol leading to intoxication, craving and relapse during withdrawal, amongst other, individuals
become aware of the possibility of being addicted. By this point, complete recovery from this
illness is unlikely. Understanding all the social and biological aspects of this disease is important,
in particular, so that, from an early stage, we can describe and predict the risk of developing it.

Many different directions have been taken, with the main objective of gaining insight on alco-
holism. Studies on humans have brought to light the relationship between alcoholism and genetic
and environmental factors [JvdBGP98]. Those however are limited in many senses regarding
human testing ethics (e.g. drug testing) or are costly and affected by large variation due to self
reports (e.g. followed studies based on self-reports, to learn how an individual develops into an
addiction).

Animals can be used to obtain a deeper knowledge of the processes underlying alcoholism. In-
cage studies allow the extraction of patterns of behavior towards alcohol intake, how they vary
in time, how they are affected when other drugs are administered, etc. This also has, however,
limitations, since drug dependencies are strongly influenced by social aspects, and are therefore
difficult to simulate under laboratory conditions.

There is a large body of research on the behavioral study of alcoholism in animals including
(among others) how it develops, which physical symptoms it provoques and signs of withdrawal
due to abstinence.

The first research on animal models of alcoholism aiming to induce and maintain a dependency
on alcohol in animals, dates back to the late 1960s [Mel76] and has kept evolving until today.
In 1973, Lester and Freed summarized a set of features that such an experimental protocol
should expose in order to be called an animal model of alcoholism. Refined scenarios have
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been designed based on the guideline given in their paper [LF73]. Main goals are to induce in
animals sustained high alcohol intake and blood levels, as well as, withdrawal related symptoms.

A documented feature of withdrawal due to abstinence from alcohol of humans and many an-
imals (including rodents and monkeys) is the so called alcohol deprivation effect (ADE). It is
related to an increased ethanol intake after a period of abstinence. In the case of rodents, this
phenomenon has been widely studied [CMB68, SSJ73, Eri72, Gol72b, Gol72a, GA76, HSW+02]
and mathematically modelled [SS67]. If quinine1 taste adulteration of the alcoholic solutions
after a deprivation period does not affect the presence of an ADE (in spite of its aversive taste),
then it can be considered to be a symptom of compulsion and loss of control in the alcohol
drinking, thus being referred as a sign of an alcoholic dependence in rats.

The long-term alcohol self administration with repeated alcohol deprivation phases [SH99] is an
animal model of alcoholism aiming to simulate in rats the process of free alcohol consumption
and withdrawal after a deprivation phase. Rats receive for long periods (4-5 weeks) free choice
of water and ethanol 5%, 10% and 20% concentrated solutions. They are then deprived for
a week from the alcoholic solutions and afterwards get the alcohol represented. After several
such baseline-deprivation-representation phases, rats are supposed to present ADE even in the
presence of quinine adulterated solutions.

The use of a novel drinkometer device, allowing the recording of a high definition drinking time
series, provides this thesis with valuable data sets. So far, the analysis of this data has been
limited to descriptive observations such as mean ethanol intake and its variation after a depri-
vation phase (e.g. solution preference development throughout time in blocks of several weeks,
impact of drugs on ethanol increase related to baseline, after-deprivation [SHA+96, SH99]).

In this thesis we extend the approach of [SHA+96, SH99] to include both the identification of
particular drinking patterns within a population, and provide a high temporal resolution de-
scription of their dynamics. We are furthermore interested in studying the evolution of the
regular drinking patterns and withdrawal symptoms throughout time. This approach provides
this thesis with interesting time series classification and modelling problems.

Several time series clustering approaches exist. [WL05] categorizes them into raw-data-, feature-
and model-based-clustering. In this thesis we focus on the latter, the most advanced develop-
ments of which are reviewed in [FS11]. Under this framework, a population is represented by H

sub-populations, each of them described by a parametric model. This can be mathematically
defined through the concept of finite mixture of distributions [MP00].

The fitting of generic mixtures of distributions is achieved through the general purpose frame-
work proposed by Dempster et al. [DLR77] for maximum likelihood estimates with hidden data.
They propose the estimation maximization (EM), which can solve, as one of its many applica-

1rats find quinine taste adulterated ethanol solutions aversive, because of its bitter taste, causing a decrease

on the intake
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tions, finite mixtures. EM has several advantages and disadvantages. The advantage is, it is
simple and intuitive to develop and requires little time to give a solution. The disadvantage
is that it converges to a local maximum, not yielding optimal solutions only by good starting
approximations (or, as proposed here, restarting several times and keeping the best solution).

Through EM, mixtures of distributions can be fitted. The only remaining question is how to
model sub-population dynamics. For this, generalized linear models (GLM) are chosen, since
they can represent a wide range of known distributions, i.e. the family of exponential distribu-
tions (EM) [Cla05], and are intuitively generalized to time series. In [WD95], a procedure for
the clustering of multivariate data based on a GLM-EM procedure is proposed. We generalize
their results for the case of multivariate time series, yielding a procedure for simultaneously
classifying time series into several clusters and modelling the dynamic mean behavior of each
observed group in terms of a GLM.

Summarizing, we propose a framework to model drinking behaviors. A behavior is represented
by the probability of a drinking event a given time point of the day. It resembles a Fourier
series (it is a non-linear function of a linear combination of sines and cosines). The best selected
model (through CAIC [WD95]) has periodic components reflecting day/night cycles and other
higher frequency components (most likely reflecting different stages of the alcohol metabolism).
To complete the approach, several such behaviors are assumed in the population. With the aid
of an EM, a mixture of the described behaviors is fitted to the data, resulting in a partition of
the data set, whose analysis allows us to estate that rats drink alcohol in several ways, which
evolve in time from explorative to advanced solution preference profiles. Relapse behavior is
also modelled under this framework, showing how it tends to last longer and become inflexible2

throughout time.

1.1 Hypotheses

Since the data sets analyzed for this thesis come from Wistar rats, the hypothesis are related
to these animals. However, they could be extended when new data sets from different animal
types become available.

1. Wistar rats have determined patterns of behavior towards alcohol which develop over time.

2. After a first deprivation phase, Wistar rats will tend to drink ethanol intensively on the
first day after representation of alcohol. However, if the EtOH solutions taste is affected
with bitter substances, particularly with quinine, they will not drink intensively at this
point.

3. After several deprivation phases, rats develop inflexible drinking in presence of quinine-
adulterated alcoholic solutions, and thus indicating a dependence on alcohol.

2in spite of aversive taste of alcoholic solutions, rats drink as much as if the solution were not adulterated
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4. Alcohol deprivation effect, a sign of alcoholic addiction, characterized by loss of control
and compulsive alcohol intake after a deprivation phase, can be predicted from early intake
stages.

1.2 Summary of results and contributions of this thesis

A group of 29 male Wistar rats are studied, that were drinking in-cage under the long term
self administration with repeated deprivation phases protocol on a four-bottle paradigm (see
Chapter 3). High resolution time series were recorded using the drinkometer system, during
different baseline/after-deprivation phases.

Our first contribution involves the proposal of an H2O - penalized alcoholic intake measure for
the four-bottle paradigm. Several ethanol intake measures found in the literature are discussed
and the new one is proposed, overcoming most of the observed disadvantages.

Based on the proposed intake measure, a procedure to classify an animal into presenting ADE
or not is described. It is based on comparing the increase in intake after a deprivation phase
of controls and quinine treated animals. Such a classification does not exist in the literature,
since in most cases mean intakes are compared between groups (e.g. preferring/non preferring,
control/treatment), but a single animal is not classified into presenting ADE or not.

We develop a methodology to simultaneously classify and characterize dynamic patterns of
drinking behavior of time series recorded under a free choice of water and several alcoholic
solutions paradigm. This is done by

• extending known results on generalized linear models (GLM) for univariate time series
to the multivariate case, and simplifying the computational fitting procedure assuming a
shared seasonal pattern throughout individuals (see Chapter 4) and

• implementing an estimation maximization algorithm to fit mixtures of the mentioned mul-
tivariate GLM (see Chapter 5).

The result is a partition of the data as well as a characterization of each group in terms of a GLM.

The designed procedure is used to analyze the described data set. Patterns of behavior are found
in the first baseline that can be described as naive/primary, since no particular preference for an
alcoholic solution and a high frequency of drinking events (mostly of water) can be observed. In
further phases, advanced patterns showing a preference for a solution and a decreased frequency
of overall drinking events characterize most of the rats. Those patterns were observed for dif-
ferent rats also at advanced baseline phases, proving the robustness of the proposed methodology.

It can be seen how primary patterns (observed mostly during the first baseline phase) will result
in a variation in the ADE, conditioned on the presence of quinine. I.e. controls will present
ADE while the quinine group will not. On further phases, regardless of quinine, most of the
animals drinking under an advanced pattern will present ADE. So already from a baseline phase
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the ADE outcome can be predicted.

However, the homogeneity of the Wistar rats in presenting ADE at advanced drinking phases
does not allow to explore beyond in the risks of presenting an alcoholic addiction from early
patterns of intake. It can be already predicted, before performing any behavioral experiment,
that after several deprivation phases, Wistar rats develop an inflexible alcohol drinking pattern,
thus presenting ADE regardless of the bitter taste of the alcoholic solutions.

If a similar data set were provided, where the ADE is not guaranteed after several deprivation
phases for all the population, but more a random effect (meaning that some rats will end up
alcoholic and the rest not), the whole procedure could be employed without much further effort.
A correlation analysis could be performed to establish whether determined patterns of behavior
at early drinking stages condition the development of the addiction.

With this we would like to stress the fact that the proposed methodology is generally applicable
and so can be employed beyond the scope of the data considered in this thesis. It allows one to
predict future outcomes given early behavior patterns. For this, we would require:

• time series data set describing an early phase of the phenomena of interest and

• a classification of the advanced state (e.g. alcoholic/non-alcoholic) for each individual

Our methodology provides a way of partitioning the individuals into a few groups, each of them
dynamically characterized by a model. The identified groups can be correlated to the given clas-
sification. Conclusions about the advanced states can be expressed as probabilistic distributions
dependent on the observed patterns.

1.3 Structure of the thesis

This thesis is structured in 7 chapters and 2 appendices.

Chapter 2 provides a wide literature review on the biological as well as methodological fields,
indicating where this thesis is placed in the current state of the art.

Chapter 3 introduces the application that motivates this thesis. It describes the long-term
alcohol self administration with repeated deprivation phases protocol under which the data is
recorded, the alcohol deprivation effect (ADE), the recorded time series as well as its prepro-
cessing procedure. The chapter finally proposes:

• a new measure of the alcohol intake under the 4-bottles free choice paradigm, and based
on it,

• a method to determine, whether rats present ADE or not.

Chapters 4 and 5 are devoted to the description of the statistical modelling and clustering frame-
work. Appendix A comprises a simulation study that asserts the accuracy and performance of
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the proposed framework. Model fitting and parameter selection as well as clustering performance
are tested using simulations, yielding very good results given that distributional assumptions
hold.

Chapter 6 discusses and interprets the inferred patterns of behavior. An evolution of the drink-
ing patterns can be observed throughout time, as well as an acuteness of the loss of control
symptoms in the alcohol drinking, following a phase of abstinence. Robustness of found pat-
terns is tested by introducing a new data set obtained from an advanced drinking phase under
the same laboratory setup conditions. Since similar behaviors are observed, we conclude that the
observed patterns are robust. Further figures that might help in the interpretation (particularly
for the biologists) are presented in Appendix B.

Chapter 7 summarizes the obtained results and sketches future work in both data and method-
ology directions.



Chapter 2

Scope and state of the art

2.1 Animal models of alcoholism

Only humans voluntarily drink alcohol to intoxication, and continue to regularly use it, in spite
of the negative social and health implications. A major goal of alcoholism research is to under-
stand the mechanisms that cause humans to undergo such a self-destructive process.

Several studies are considered unethical when the subjects of the experiments are humans. The
use of animals to obtain a deeper knowledge of the underlying process of the dependency gives
scientists a strong tool for the research. Examples of the subjects of experiments in this field in
the research on alcoholism are primates [Sin71, RL74], mice [Gol72b, Gol72a, GA76, CPF+96]
and rats [Ric26, Mye62, SS67, CSPS71, Eri72, CS73, CAL+95, SHA+96, SH99].

A limitation in the use of animals for alcoholism research, is that they do not freely drink alco-
hol. They are less prone to intoxication due to excessive ethanol consumption and to developing
an addiction. Animals must be induced to consume alcohol. Furthermore, alcoholism-related
features have to be identified in order to be able to state that an animal has a dependency. Such
features include tolerance (need more alcohol to still feel the effect), psychological dependence
(have a desire for alcohol) and withdrawal symptoms (physical reactions during abstinence).
These represent some of the elements of the classical criterion of addiction to alcohol.

In the following we present a literature review, aiming to summarize some of the most remark-
able historic developments in the use of animals for alcoholism research.

The first developments on alcoholism in animals date back to 1919. At the time it was shown
that rats can develop an acute tolerance to alcohol, and are able to perform tasks after high
doses of alcohol intake [Mel19]. These results turned out to be extremely important, implying
that rats can present signs of physical dependence to alcoholism (such as tolerance).

Humans consume voluntarily alcohol and so develop into an addiction. Behavioral studies of
this illness (patterns of intake and their changes conditioned on external stimuli) on animals,
require that the subjects follow a similar pathway towards the consumption of alcohol, as well
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as, that they present symptoms of physical dependence. This was early recognized, so much
attention was drawn towards the different factors inducing a self-selection of alcohol.

Some preliminary results on this topic showed that white rats drank voluntarily alcohol when
an alcoholic solution and water were simultaneously offered (given that they had undergone an
initiation procedure involving the presentation of alcoholic solution and no water at a very early
age (25-30 days)) [Ric26].

In 1960, the changes in the preference for alcohol induced by several experimental set-ups like
different types of rats, diet taste and smell variation, introduction of a third choice (e.g. sugar,
fat) and drug influence are reviewed [Mar60]. It is a first characterization of the different ex-
perimental settings of alcoholism in animals, serving as a base for further advances in the topic.
Further characterizations showed how temperature and ethanol concentration influenced the
preference for alcohol in G-4 and Wistars rats: more alcohol was drunk at 27◦C than 18◦C;
rats avoided high concentrations of alcohol (20%), and in the range 1.25%− 5.0% the intake of
alcohol was in general greater than water [Mye62].

In 1968, a relationship between a psychological stressor and the conscious choice of ethanol is es-
tablished: rats were receiving clued and non-clued shocks and the ethanol intake was measured.
An increased ethanol intake was observed when rats were warned in advance of the occurrence
of a shock, while the non-clued shock did not provoke significant increase [CMB68]. This had a
great impact, implying that rats consume alcohol when they are stressed, i.e. for its pharmaco-
logical effects.

Although the mentioned approaches were considered to be signs of alcoholism in animals, all of
them seemed to fail in inducing important features of alcoholism, such as maintained ethanol
intake or withdrawal symptoms. In 1971, the first model for alcohol addiction in the rat which
satisfied the classical pharmacologic criteria of addition (physical dependence, tolerance and
indifference) was proposed [CSPS71]. Here, twenty-four rats of the Holtzman strain were given
either water or a 7 per cent alcoholic solution from 21 days until 154 days of age, and food
ad lib. They were afterwards deprived from alcohol showing highly anxious behaviors in con-
trast to water rats. Alcohol rats presented a tolerance to alcohol with respect to controls,
when injections of alcohol were provided to both groups. The intake of alcohol increased during
the first exposure period and seemed to remain constant, when competing solutions were offered.

In 1973, Lester and Freed, after reviewing the approaches to developing alcoholism in animals,
gave a list of criteria (we reproduce them in Table 2.1) to be fulfilled in the design of an animal
model of alcoholism [LF73]. This paper is still a guideline for all scientists working in the field.

Though Table 2.1 gives a list of desired features of an animal models of alcoholism, there are
many aspects that can not be simultaneously considered in experimental set-ups [Poh81]. This
is why different experimental models focus on a subset of those features while weakening the
others. The advances in the field until 1976 are classified into pharmacological (forced alco-
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1. Oral ingestion of alcohol without food deprivation.
2. Substantial ingestion of alcohol with competing fluids available.
3. Ingestion directed to the central intoxicating character of alcohol, sub-

stantiated by determination of circulating blood alcohol levels
4. Work performed, even in the face of aversive consequences, to obtain

alcohol.
5. Intoxication sustained over a long period.
6. Production of a withdrawal syndrome and physical dependence.
7. After abstinence, reacquisition of drinking to intoxication and repro-

ducibility of the alcoholic processes.

Table 2.1: Criteria for an animal model of alcoholism [LF73]

hol administration) and behavioral (alcohol self-adminstration) models of alcoholism [Mel76].
Amongst the applications of both types of experimental branches are the first model of an
alcohol-induced cirrhosis in baboons [RL74], and the relations between withdrawal syndrome
intensity and duration, and the alcohol dosage and exposure-duration [Gol72b, Gol72a].

The recent results in the field of animal models of alcoholism were reviewed in [Spa00]. Three
main directions were described:

• The alcohol preference models: several alcohol preferring/non preferring animal lines have
been developed through selective breeding, and a whole characterization of their behavior
towards alcohol is widely documented. That is the case of the AA/ANA lines of rats
[Eri72], the Sardinian alcohol preferring rat [CAL+95], the HAB (high anxiety-related be-
havior) and the non-anxious LAB (low anxiety-related behavior) lines [HSW+02], and the
alcohol preferring p rats [BRL+06]. These lines allow the correlation of genetic factors with
alcohol drinking behaviors [CdPBDF05, CPF+96]. The fact, however, that a high intake
of alcohol does not by itself indicate the presence of an addiction is stated. In [ML98], sev-
eral approaches to alcoholism in rodents are reviewed, which compare important features
between pairs of high vs. low alcohol preferring rodent strains (e.g. self ethanol intake,
withdrawal syndrome, tolerance, etc).

• The reinstatement model, where animals are trained to receive a drug in response to a
task. Then the drug is withheld, even if the animal keeps performing the task. After this,
the animal ceases to perform the task. It has been proven that for rats, stress, injections
of a small dose of the drug and conditioned stimuli paired to the training session reinstates
the seeking for the drug [LQJ+98, KMW99].

• The long term alcohol self-administration with repeated alcohol deprivation phases is the
third proposed model. This one will be described in Chapter 3 of the thesis and its origins
will be described in the next section.

While genetically selected animals are valuable in the identification of significant genes condi-
tioning an addiction, the use of “wild” animals (though still inbred for laboratory purposes)
to uncover the natural pathway to developing an addiction is of interest. The latter represent
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a closer model of dependency in humans, which can develop alcoholism independently of their
genetics. This is why many behavioral studies are based on this type of animals.

2.1.1 Alcohol deprivation effect

A documented feature of withdrawal due to abstinence from alcohol of humans [BMCS81] and
many animals (monkeys [Sin71], mice [SS93]) is the so called alcohol deprivation effect (ADE).
It is related to an increased ethanol intake after a period of abstinence. In the case of wild
rats, this phenomenon has been widely studied by Sinclair et al. [SS67, SSJ73]. The increase in
ethanol intake after a deprivation phase with respect to baseline drinking is modelled in terms
of an exponential decay on the days after representation of alcohol. The effect of long and short
alcohol deprivations in two strains of alcohol preferring rats is analyzed in [SL89]: the AA rats
[Eri72] did not present any sign of ADE after a week deprivation, however, after only one hour
of deprivation, their intake increased significantly with respect to controls. P rats [BRL+06], on
the contrary, presented a similar ADE as control Wistar rats [Kin18] after a week of deprivation
and a much higher increase during the first hour of representation, following few hours of alcohol
deprivation (like the AA rats).

The long-term alcohol self administration with repeated alcohol deprivation phases [SH99] is an
animal model of alcoholism to simulate in rats the process of free alcohol consumption and with-
drawal after a deprivation phase. Rats receive for long periods (4-5 weeks) a free choice of water
and differently concentrated alcoholic solutions (e.g. 5%, 10% and 20%). They are then deprived
for a week from the alcoholic solutions and afterwards get the alcohol represented. After sev-
eral such baseline-deprivation-representation phases, rats are supposed to present ADE even in
the presence of quinine adulterated solutions or a competing palatable solution [SHA+96]; this
shows the potential of this model to simulate important symptoms of an alcoholic addiction:
compulsion, loss of control and indifference in the alcohol drinking.

2.2 Alcohol drinking patterns and mathematics

Mathematical tools have been used by biologists to assert their intuitive results. For example,
descriptive statistics (e.g. mean, variance and correlation) have been used to gain an insight
of the overall phenomenon, and statistical tests have been used to assert, to a certain level of
statistical significance, the observed features.

In the field of alcoholism, the term drinking pattern has been used in a very ambiguous way,
mostly related to descriptive statistics on intake, inter-drinking intervals and/or drinking fre-
quencies [GA76, MLE+76, BRS+06].

However, in 1994, Grünewald and Nephew [GN94] provided a more mathematical approach by
defining drinking behavior applied to a data set obtained from a general population study of
California consumers. They modelled the probability of a drinking event in terms of a logistic
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function and showed that the frequency of drinking distributed exponentially. [Gru98] reviews
the tools for modelling the distribution and consequences of alcohol consumption. Here, the
stochastic drinking theory in the modelling of drinking behaviors and drinking risks is defined.
The basic goals of this approach are:

1. to provide a universal description of individual drinking patterns in probabilistic terms

2. to provide the linking theory to relate the patterns with alcohol-related harmful outcomes

3. to provide a theoretical explanation for the origination of drinking patterns from an eco-
logical constraint.

[GRL+02] introduced more recent advances in mathematical modelling of current drinking pat-
terns, drinking disorders and their evolution throughout life in humans. The results discussed
were mostly based on self-reports of daily drinking patterns, thus highly affected by external
factors. Though results are given for humans, they can be extrapolated to animal research,
where the information on the drinking quantities, frequencies, etc. are less affected by large
variations. Moreover, in-cage studies of animals can provide reliable (unaffected by external
environment) high time resolution data, allowing a deeper insight in the drinking patterns.

The use of a novel drinkometer device in the laboratories of the ZI-Mannheim provides this
thesis with panels of high resolution multivariate time series from Wistar rats drinking alco-
hol. Following the same goals as Grünewald, we focus on finding drinking patterns within a
population, analyzing their evolution and relating them to alcoholism-related outcomes. This
framework will provide scientist in this field with a tool to recognize how early evolutions in
the drinking patterns can condition further risk of presenting alcoholism. To our knowledge no
developments of this kind have been described in the available literature.

2.3 Time series - generalized linear models

Among the first developments in the analysis of time series data, was performed by Beveridge
[Bev21], who studied how weather conditions affected wheat price fluctuations in Western and
Central Europe. Here, harmonic decomposition is applied to data that was measured from 1500
to 1869. It was concluded that “the yield of harvests in Western and Central Europe from the
middle of the sixteenth to the opening of the twentieth century has been subject to a periodic
influence or combination of such influences tending to produce bad harvests at intervals of about
15*3 years, the first epoch falling in 1556”. This allowed furthermore to predict that the harvest
of 1923 should be deficient. The validation of this statement is complicated by political factors,
as the first world war also influenced the wheat market. Indeed very depressed prices were given
in the whole first half of the 1920s [BG03].

Developments in time series modelling can be classified in several ways (namely by time [BGJ73,
Bol86] vs frequency [Blo76, PW00] domain, normal vs non-normal distributed residuals, station-
ary vs non-stationary, etc.). It is difficult to make an exhaustive historical review, since this
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area of research has developed parallel in different research fields. We therefore jump directly
in the methods for either multivariate or categorical time series, that finally led us to choose
generalized linear models for our modelling purposes.

First developments on categorical time series modelling are related to Markov Chains [Tau86],
integer autoregressive models [JGY91] and discrete autoregressive moving average (ARMA)
models [PP81].

The generalized linear model (GLM) framework was introduced by Nelder and Wedderburn
[NW72] in 1972, and considers random variables following a member of the family of exponen-
tial distributions (FE) [And70]. It provides a unifying framework for the modelling of random
responses linked with systematic effects without necessarily assuming normally distributed resid-
uals. For a detailed definition of the model, parameter estimation algorithm and appropriate
starting guesses, as well as several generalizations and example applications see [MN89].

The FE contains in its definition many of the most commonly used distributions. Although first
defined around 1935, it is convenient for the development of GLM, an has therefore attracted
much attention. A good review on its definition, its moments (mean, variance and higher order
ones), and some example members (e.g. continuos distributions, such as the normal and expo-
nential, and discrete distributions as the binary, poisson and multinomial) is provided in [Cla05].

Special uses of the GLM in the autoregressive modelling of categorical time series have been
developed by Fahrmeir and Kaufmann [FK87] (extending regression models for stochastically
independent observations to allow for non-stationarity), Pruscha [Pru93] (introducing covariates
via logistic regression) and Fokianos and Kedem [FK98] (considering categories as states and
liking their probability of occurrence to the covariates through a time-invariant parameter vec-
tor).

A generalization of GLM for expressing the existence of several latent classes is presented by
Wedel and DeSarbo [WD95] with the help of the definition of mixed models and estimation
maximization (EM). They show furthermore how several of the latent-class regression methods
can be seen as special cases of their proposed models. A study is developed and conclusions
are drawn regarding goodness of fit and model selection as well as a wide range of example
applications.

GLM is important for multivariate analysis, since several of the known multivariate distributions
can be also considered a member of the family of exponentials (e.g. multinomial, multivariate
normal). The book of Fahrmeir and Tutz [FT01] provides a useful introduction with many
example applications, covering from the simplest definition of GLM for cross and long sectional
studies, univariate and multivariate responses, time series and mixed models.
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2.4 Time series model-based clustering

Several time series clustering approaches exist. [WL05] categorized them into a) raw-data-, b)
feature- and c) model-based clustering. Since this thesis focuses on the latter, we will discuss it
in detail below.

Model-based clustering focusses on assuming that (1-) a population can be partitioned into
sub-populations and (2-) each of them can be described by a determined model. The concept
of mixture models marries both these requirements, thus being the basis for model-based time
series clustering methods.

The idea of mixture of distributions was already employed at the end of the 19th century in
[New86] and [Pea94]. The latter proposed a mixture of two univariate normals to describe some
data from crabs, fitting the model through a moment based estimator, yielding complex calcu-
lations he performed without the aid of a computer. In 1920, Green and Yules discussed the
“frequency distributions representative of multiple happenings”, questioning if diverse outcomes
of a disease should be seen as a single probabilistic process, or as the result of the effects of
different environments yielding different such models [GY20]. On 1941, the papers from Halmos
et al. [Hal41, AHK42] developed theoretical results for the decomposition of a measure space
into the sum of measure spaces. These formed the basis for the later work of Robins [Rob48],
where he formalized the concept of mixture of distributions, as a way of representing several
subgroups within a population.

There have been many attempts at solving the problem of efficiently fitting a mixture of distri-
butions. These were typically done for very specific cases. As an example, [Has69] proposed a
maximum likelihood estimator for mixtures of distributions coming from the exponential family,
and [CM73] proposed one for mixtures of discrete probability functions.

In [DLR77], an Expectation Maximization algorithm for incomplete data is formalized and several
applications are described, amongst them the fitting of mixtures models. Its simplicity, adapt-
ability, and general good performance makes it one of the most commonly used inference tech-
niques in presence of incomplete data. Particular examples are missing data [Har58, CBM71],
finite mixtures models [Has69, CM73] and hyper-parameter estimation.

A complete description of mixture models, including applications and a historic review is given
in the book by McLachlan and Peel [MP00].

As pointed out before, finite mixtures has as one of its main applications the model-based clus-
tering. Particularly in the field of time series, it has had a key role in the last decade.

In [FS11], the most modern time series model based-clustering techniques are reviewed. All
of them have the common need of defining a modelling kernel to characterize each subpopu-
lation and a prior distribution for the class assignment, giving place to the different discussed
approaches.
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Given the type of the analyzed data, a complete branch of model-based classification has been
developed. Real-valued time series are mostly represented by dynamic autoregressive models and
have been applied to financial [FSK06] and population growth problems [OVD09]. Binary time
series kernels are usually based on logit [ZZ04] or probit [ABH11] models, describing probabilities
of success at time t. Count time series are generally modelled through a Poisson distributions,
and general discrete time series by terms of Markov Chains [CHM+03, RSC02, PS10]; informa-
tion on covariates lead to a multinomial log-it clustering kernel (for modelling categorical but
not multivariate data) which has been applied on [WD03].

Mixtures of GLM for the partitioning and modelling of multivariate data (although not time
series) are introduced in [WD95]. They make the assumption of independence between responses
to simplify the fitting process. The mentioned model has been used on functional neuro-imaging
data [PF03] to obtain clusters of voxels characterized by similar time series, allowing the dis-
covery of task-related connectivity between different parts of the brain.

Motivated by the above mentioned methods from [FSK08, FS11] and [WD95], in this thesis we
develop an Expectation Maximization algorithm, which is adapted for the simultaneous cluster-
ing and fitting of mixtures of GLM for multivariate long-term time series.



Chapter 3

Animal drinking time series and

ADE

Alcoholism research based in animals has many difficulties:

• Since animals mostly do not drink voluntarily alcohol ( not even humans), how can they
be induced to do it to such an extend that they will become alcoholics?

• Once they do: how can researchers know that the animal has developed an alcoholic
dependency? Even to assert that a person is alcoholic, several questionnaires have to be
filled in and several social disorders have to be observed.

With this motivation, the so called animal models of alcoholism have been developed, where
the subjects proceed through certain scenarios intended to induce alcoholism (e.g. stress fac-
tors, deprivation from food). In presence of an addiction, they then react similarly to addicted
persons in homologous situations. [LF73] describes seven criteria to be fulfilled in the design of
such models, s.a. the voluntary consumption of ethanol without food deprivation, the presence
of physical dependence and abstinence symptoms during withdrawal.

[Mel76] presented a review on the first developments of this area of research. It characterizes
the animal models of alcoholism into two groups:

• pharmacological: forced alcoholic administration to induce a physical dependence. This
approach allows a very fast development into an addiction and is useful in dependence-
related studies, like drug testing, abstinence symptoms on withdrawal, etc. It is, however,
not appropriate for studying the process of developing the addiction per se.

• behavioral: self administration either free or through a task to obtain the alcohol. Ex-
amples of such models are the oral ingestion through schedule-induced polydipsia1 and the
intravenous self-administration.

At the time, the reviewed behavioral models seemed to need a stimulus in order to induce alco-
hol intake, and mostly lacked maintained alcohol intake levels when the stimulus was eliminated.

1polydipsia: intensive thirst
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A more recent review on advances in this topic is given by [Spa00]. Some of the described pro-
tocols are: the reinstatement model as a measure of craving and relapse in the alcohol drinking;
the point of no return model through which it has been proven that a point exists where rats
start drinking in an uncontrolled way, and even after a long period of abstinence, they will
remember and relapse into alcohol drinking; and the long-term alcohol self administration with
repeated alcohol deprivation phases. The thesis is based on the latter, which is described in more
detail in the next section.

3.1 Long-term alcohol self administration with repeated depri-

vation phases

The long-term alcohol self administration with repeated alcohol deprivation phases [SH99], is
designed to observe relapse-related features following a withdrawal phase, amongst which one
can find: enhanced drinking, loss of control and anxiety.

Under this protocol, in-cage Wistar rats are offered four bottles (water and alcoholic solution at
concentrations 5%, 10% and 20%2). They have free access to all of them for 4 to 5 weeks. The
drinking amount is measured every 5 minutes with the help of an automated device (drinkome-
ter) yielding long time series (20 days of 288 daily measurements). This represents a baseline
drinking phase (B). After this time, the rats are deprived from alcohol for 2 weeks, during which
they only receive water and food. This is called the alcohol deprivation phase. Then the alcohol
is re-presented and measurements are taken again for a week. This is called the after-deprivation
phase (AD). Figure 3.1 shows graphically the described protocol. This procedure is repeated
several times yielding subsequent baseline, deprivation and after-deprivation phases in the drink-
ing lifetime of the rat.

Figure 3.1: Long-term alcohol self administration with repeated alcohol deprivation phases

During the AD phase, rats are expected to present the so called alcohol deprivation effect (ADE),
characterized by a change in the pattern of consumption and thus an increase in the mean al-

2ethanol solutions will be notated in the following as EtOH, followed by the percentage concentrations, e.g.

EtOH5%
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cohol intake with respect to the baseline for the first few days of alcohol re-presentation. Using
specific tests, like alcohol taste adulteration, or presentation of other tasty solutions, it can be
shown that rats indeed drink without control and seek for the effects of the drug. This is one
of the most desired features of an animal model of alcoholism, since it relates to the alcohol
dependence symptoms of humans.

A characterization of drinking under this protocol has already been undertaken: in [SH99] our
collaboration partners carried out a study on male Wistar rats where:

• a comparison between the described 4 bottle and a 2 bottle (water and EtOH10%) variants
was made, where the former achieved the highest ethanol intake and preference;

• changes in alcohol drinking patterns over time were observed in terms of total amount
of consumed alcohol and preference to the alcoholic solutions. It could be seen how the
initiation phase was characterized by the highest alcohol consumption (in g of alcohol per
body kg), and throughout time decreased and finally stabilized. The general preference
for ethanol remained constant, though an analysis on the single solution showed a vari-
ation (at the beginning EtOH5%, EtOH10% and EtOH20% had a mean preference of
30%, 15% and 10%, respectively, while at the end of the study the preference evolved to
approximately 14%, 19% and 19%, respectivel;

• the presence of physical and psychological signs of withdrawal could be observed during
a deprivation phase, e.g. hyperlocomotion and hypothermia, increase in anxiety-like be-
havior measured through the social interaction and elevated plus maze tests. Most of the
observed symptoms were reported to become more acute in long-term drinking rats (after
several phases of alcohol deprivation).

However, the description of different patterns of drinking behavior, their evolution in time, how
the regular way of drinking induces a relapse pattern after abstinence, amongst many others,
has not yet been performed. The use of mathematical modelling tools will contribute to achieve
the following goals:

• Identification and characterization of patterns of behavior during measured baseline and
after-deprivation phases.

• Characterization of a possible long-time evolution in the drinking patterns.

• Correlation of the found patterns of behavior during baseline and after deprivation phases
to fully characterize and later predict the ADE as a sign of alcoholism.

This chapter refers to the description of the measured data throughout phases; the alcohol depri-
vation effect (ADE), considered under determined circumstances a sign of alcoholic dependence;
the classification of each animal as presenting or not ADE. As a part of this chapter we propose
a way to measure the intake under the four-bottle paradigm, based on a H2O penalized net
EtOH intake.
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ADE is a commonly observed behavior in many animals after a period of alcohol abstinence.
It is characterized by an increased ethanol intake, and increased locomotion and anxiety levels
during the first days of representation of the alcohol.

In the case of rats, the increased intake after-deprivation with respect to baseline drinking levels
was mathematically modelled by Sinclair et al. [SS67, SSJ73]. The simple model states the
exponential drop of the increase, either of the net EtOH intake or the EtOH preference, as
function of the amount of days after representation of alcohol, i.e.

ADIncrease(d) = M(e−a∗d) (3.1)

where d ∈ {0, . . .} is the amount of days after representation of alcohol and M and a are the
model parameters to be fitted to the data. Parameter values are given that are reported to
account for 98% of the daily variation. Those studies were performed under the two-bottles
choice protocol (H2O and EtOHp%, being p = 10 commonly used) and based on home cage
measurements.

The inclusion of the four-bottles paradigm as well as the novel device for high time resolution
measurement of solution intake, performed in the labs of ZI-Mannheim, has uncovered some
variation in the behavior of Wistar rats towards a deprivation of alcohol. The analysis itself
has to be adapted, since the usual net ethanol intake (g/kg) or solution preference can not
meaningfully explain all the information given. Details are presented in Section 3.2.

Since our later and final goal will be to predict alcoholism from early intake phases, a classifica-
tion of an animal into addicted or not is necessary. Quinine taste adulteration of the alcoholic
solutions is a technique to assert compulsion and loss of control on ethanol drinking, both of
them signs of an alcoholic dependence. Though much has been written on ADE, very little
has been said about a classification of an animal into presenting ADE in presence of quinine.
Section 3.3 addresses this matter, based on the fact that an animal drinking after-deprivation
from quinine-alcoholic solutions at the same basis of controls should be classified as presenting
ADE. In spite of the aversive taste, they increase the baseline mean intake at the same rate as
control animals, showing a loss of control and compulsion in the drinking, thus, an addiction.

3.1.1 Data description

The data analyzed in this chapter and in Chapter 6 was recorded under the described pro-
tocol. Drinking time series of 30 male Wistar rats during the 1st, 3rd and 5th baseline and
after-deprivation phases were measured. Each time series consists at every time point of a 4-
valued real vector, containing the amount of solution a rat consumed from each bottle during
the previous 5 minutes. Figure 3.2 shows a portrait of the measured data.

During the 1st AD, half of the rats received quinine in the alcoholic solutions. During the third
phase, no animal received quinine. On the 5th AD, the other half got the quinine adulterated
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alcoholic solutions.
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Figure 3.2: Portrait of measured time series

In order to validate the robustness of the obtained results, as well as observe how advanced
animals drink during the fifth phase compared to more advanced phases, data from 22 different
rats on the 9th cycle is added to the analysis. This data set is also used in the ADE classification
procedure.

3.2 Alcohol intake measure

The two-bottles free choice paradigm (one bottle of H2O and one of EtOH, usually 7% or 10%)
has been used in several environments. [SS67, SSJ73] even model ADE based on measures de-
veloped for this situation. However, in the ZI-labs, a four-bottles paradigm is used. In [SH99]
the advantages of this protocol in terms on an increased ethanol intake and preference in the
initiation phase with respect to the two-bottles are described. The existing measures have to be
extended to allow the compilation of all the given information.

In the following, several approaches to solve this issue are given, together with their advantages
and disadvantages. We call them alcohol intake measure. Figure 3.3 gives a graphical overview
of each of them, and Figure 3.4 shows the mean daily intake under the two most meaningful
representations throughout successive baseline phases.

3.2.1 Alcohol preference

• Given the amount of drank H2O and each solution EtOHp p = {.05, .1, .2}, the preference
is calculated as

Pref(H2O) =
Am(H2O)

Am(H2O) +
∑

p∈{.05,.1,.2} Am(EtOHp%)
(3.2)

and
Pref(EtOHp%) =

EtOHp%

Am(H2O) +
∑

p′∈{.05,.1,.2} Am(EtOHp′%)
(3.3)

• Equations (3.2) and (3.3) show how animals prefer a solution but does not show the fraction
of alcohol intake each solution provided.
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Figure 3.3: Each of the described representations gives some meaningful information while
lacking some other. The best does not exist, only the most adequate given the situation.
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Figure 3.4: Net alcohol intake in g per body kg (left) is a standard intake measure. However, it
tends to decrease for the same group of animals (B1, B3 and B5). It is important to notice that
this decrease is affected by the fact that the rats gain weight throughout phases as well as they
decrease drastically their water intake. H20 penalized intake takes into account the ml of net
ethanol consumption per dl of water, so that it can be observed that throughout phases, this
remains constant. B9 animals come from a different experiment, and show an increased H20
penalized intake with respect to the rest of the individuals.
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3.2.2 Net alcohol preference

• Given the amount drank of each solution EtOHp p = {.05, .1, .2}, the net EtOH preference
is calculated as

Pref(netEtOHp%) =
p ∗Am(EtOHp%)∑

p′∈{.05,.1,.2} p′ ∗Am(EtOHp′%)
(3.4)

• Equation (3.4) shows the fraction of the net alcohol intake provided through each solution.
It does not show how much water was simultaneously drank.

3.2.3 Water penalized EtOH intake

• Given the amount drank of each solution EtOHp p = {.05, .1, .2}, the H2O penalized
EtOH intake is calculated as

ratio(EtOHp%) =
p ∗Am(EtOHp%)

Am(H2O) +
∑

p′∈{.05,.1,.2}(1− p′) ∗Am(EtOHp′%)
(3.5)

• Equation (3.5)shows the fraction of the net alcohol intake against H2O provided through
each solution. Penalizes hard drinkers that drink simultaneously much H2O, e.g. first
baseline.

3.2.4 Example of different intake representations

Suppose we have 3 drinkers, each drinking only either beer, wine or spirits.

In a first example, each of them drinks the same amount of water, say 250 ml, and 15 ml of
pure alcohol within the same time. Table 3.1 shows how the different drinkers would look like
given different intake representations: a beer drinker has a preference for alcohol of over 50%
while the spirit drinker only of 17%! The water penalized intake tells us, that the beer drinkers
had 2.8 ml of pure ethanol per every liter of water while the spirit drinkers had 5,5 ml of pure
ethanol per liter of water (almost twice as much!!).

Type of drinker net EtOH Am EtOH H2O EtOH Pref. Water-pen. intake

Beer (5%) 15 ml 300 ml 250 ml 54, 55% 2,8 ml/l
Wine (12%) 15 ml 125 ml 250 ml 33, 33% 4,17ml/l
Spirit (40%) 15 ml 37,5 ml 250 ml 17, 40% 5,5ml/l

Table 3.1: Example 1 : What different EtOH intake representations tell about different type of
drinkers: 250 ml of pure water and 15 ml of pure ethanol drank in 300 ml, 125 ml and 37,5 ml
of 5%, 12% and 40% alcoholic solutions respectively

In a second example, each of them drinks the same overall amount of liquid (water and/or al-
coholic solutions), say 300 ml, and of them, 15 ml of pure alcohol, within the same time. Table
3.2 shows how the different drinkers would look like given different intake representations: a
beer drinker has a preference for alcohol of 100% while the spirit drinker only of 17%. The



22 Animal drinking time series and ADE

water penalized intake tells us, that the beer drinker consumed as much as the spirit and wine
drinkers: 50 ml of pure ethanol per every liter of water.

Type of drinker net EtOH Am EtOH H2O EtOH Pref. Water-pen. intake

Beer (5%) 15 ml 300 ml 0 ml 100% 50 ml/l
Wine (12%) 15 ml 125 ml 175 ml 41, 67% 50 ml/l
Spirit (40%) 15 ml 37,5 ml 262,5 ml 16, 7% 50 ml/l

Table 3.2: Example 2 : What different EtOH intake representations tell about different type of
drinkers: 300 ml of liquid and of them, 15 ml of pure ethanol consumed by means of 300 ml,
125 ml and 37,5 ml of 5%, 12% and 40% alcoholic solutions and 0 ml, 175 ml and 262,5 ml of
H2O, respectively

3.3 Individual ADE classification criterion

3.3.1 Intake increase measure for ADE criterion

For classifying an animal into presenting ADE or not, the following assumptions are made:

• Wild rats, particularly Wistar rats, present in absence of quinine ADE. This has been
widely studied and results have been presented in [SS67, SSJ73, SH99, SHA+96] amongst
many others.

• Rats presenting after a deprivation phase an increased quinine-taste-adulterated ethanol
intake, which is comparable to the increased intake of control rats, are classified as pre-
senting ADE.

At this point, it is necessary to find a measure of the intake that allows the comparison between
quinine and control groups. Figure 3.5 shows how the net EtOH intake (g/kg) separates con-
trol and quinine groups, so they can not be compared at all (quinine animals present a much
lower intake than controls). The H2O penalized intake from quinine advanced drinkers (5th and
9th phases) has a “similar” distribution as in control animals. The 1st phase quinine drinkers
can however be easily differentiated from controls. The latter corroborates the fact that young
drinkers are susceptible to taste adulteration, thus not showing signs of addiction.

Since we are dealing with different data sets, it is also of importance that the increase from dif-
ferent data sets are comparable. Figure 3.6 shows (top) the net EtOH increase from (1st− 5th)
and 9th differ considerably; (bottom) the H2O penalized intake behaves similarly for both data
sets.

3.3.2 ADE classification criterion based on water penalized intake

Assuming that
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• on each day, the mean H2O penalized intake increase Id distributes N(µd, σ
2
d), d =

{0, 1, 2, . . .}, and

• during the first 2 AD days, the increase is most significant for stating ADE,

each rat r will be represented with the mean H2O penalized EtOH increase on the first two AD
days:

Ir =
Ir
1 + Ir

2

2
∼ N(

µ1 + µ2

2
,
σ2

1 + σ2
2

2
) (3.6)

Figure 3.3.2 plots the increase Ir as a function of the mean daily baseline H2O penalized EtOH

intake. No trend can be seen, which corroborates Equation (3.6).

A maximum likelihood estimator for µ̂C , σ̂2
C is obtained, fitting {Irc}rc∈ controls to the model

(3.6). The likelihood of each animal (quinine and controls) given the parameters fitted for the
controls µ̂C , σ̂2

C is computed as

L(r|µ̂C , σ̂2
C) =

1√
2πσ̂2

C

e−(x−µ̂C)/(2σ̂2
C).

The animals are classified into presenting ADE (1) or not (0) by:

ADE(r) =

{
1 if Ir > µC or L(r|µ̂C , σ̂2

C) > thresh

0 o.w.

3.3.3 Thresholding

Since we assume that all animals presenting ADE have Ir ∼ N(m̂uC , σ̂2
C), the threshold is se-

lected to maximize the likelihood of the ADE classified group, given the fitted parameters for
the control group.

Defining a grid G = {0 : 0.01 : 0.05}, for each threshold value thresh ∈ G the p-value of the
KS-test was computed to inspect the H0 hypothesis: {Ir}r:L(r|m̂uC ,σ̂2

C)>thresh ∼ N(m̂uC , σ̂2
C).

The threshold was then selected to maximize the corresponding p-value. For our data set we
obtained thresh = 0.025. Figure 3.9 shows the threshold procedure applied to our data.

3.4 Validating the classification

A transition matrix was computed to observe differences between AD phases and the resulting
classification. Each row of such matrices represents the percentage of animals from a particu-
lar phase that presented ADE or not. Figure 3.9 (left) shows no difference amongst controls
throughout phases, since most of the rats presented ADE (as expected); this is also asserted
through Fisher’s exact test for contingency tables yielding a very high p-value (0.55). Figure
3.9 (right) shows how control animals differ in their ADE classification, according to the AD
phase(p-value = 0.03).
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In order to compare our results with those presented in [SS67], model 3.1 was fitted to the net
EtOH intake increase (g/kg) of both ADE = 1 and ADE = 0 groups. Results are displayed in
Figure 3.10. For the ADE = 1 group, the fitted values M̂ = 1.97 and â = 0.41 are very similar
to those reported by Sinclair et al. of M = 1.9 and a = 0.40.
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Chapter 4

Generalized linear modelling of time

series

Generalized linear models (GLM) are a very powerful tool for modelling data assumed to be
drawn from a member of the family of exponential distributions (FE).

The FE groups in its definition many of the most commonly used distributions. Although first
defined around 1935, its convenient properties for the development of GLM has attracted much
attention, so that nowadays it is still an active field of research. A very good review on its
definition, moments and some example members is provided in [Cla05].

The term GLM was first defined by Nelder and Wedderburn [NW72] in 1972 as a model for
random variables following a member of the FE [And70]. It provides a unifying framework
for the modelling of random responses linked with systematic effects in a non-normal way. A
detailed description of the model definition, iterative parameter fitting algorithm and starting
approximation, several generalizations and example applications can be found in [MN89].

A generalization of GLM for expressing the existence of several latent classes is presented by
Wedel and DeSarbo [WD95] with the help of the definition of mixed models and estimation
maximization (EM) [DLR77]. They show furthermore how several of the latent-class regression
methods can be seen as special cases of their proposed model. A study is developed and conclu-
sions are drawn regarding goodness of fit and model selection as well as a wide range of example
applications.

In the multivariate analysis, GLM has a key role since several of the known multivariate distribu-
tions can be also considered a member of the FE (e.g. multinomial, multivariate normal) [FT01].
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4.1 Family of exponential distributions (FE)

GLM are defined for random variables Y following a member of the natural family of exponentials
distributions. Such distributions can be parameterized in the natural form:

f(y|θ, λ, ω) = exp

{
θ′y − b(θ)

a(λ)
ω + c(y, λ)

}
(4.1)

where a, b, c are well known functions according to the specific family, and θ ∈ RP is called the
natural parameter. The scalar value ω is a weight used for different purposes, e.g. for grouped
observations due to the same covariate values [FT01], or for clustering [WD95], as will be seen
in the following chapters. The value λ is called the dispersion parameter.

By means of a simple transformation τ , (4.1) can be expressed in terms of the mean µ, where
µ = τ(θ) is known as the mean value natural form. The function θ = τ−1(µ) is called the
canonical link and has important properties for the inference.

Important results on FE show that the variance structure can uniquely identify each distribution
from the FE. It can also be seen that for the univariate case:

E[Y, θ] = µ = b′(θ), V [Y, θ] =
a(λ)V (µ)

ω
=

a(λ)b′′(θ)
ω

(4.2)

while for the multivariate:

E[Y, θ] = µ = ∇b(θ), Cov[Y, θ] =
a(λ)Hb(θ)

ω
=

a(λ)Σ(µ)
ω

(4.3)

with ∇b and Hb the gradient and Hessian of the multivariate function b(θ). These expressions
prove to be very helpful in the statistical inference for GLM.

4.2 Generalized linear models for univariate time series

Let yi = {yit ∈ M}T
t=1, i = 1 : N , M ⊂ R be N univariate time series consisting each of T time

points. In the definition of a GLM, the three following aspects are to be taken into account:

i. The observed data yit comes from a member of the family of exponential distributions, i.e.
the density function has the form

f(yit|θit, λit, ωit) = exp
{

yitθit − b(θit)
a(λ)

wit + c(yit, λ)
}

. (4.4)

ii. The covariate vector xit ∈ RP influences yit in the form of a linear predictor

ηit = Zitβ, β ∈ RP , Zit = Z(x′it), (4.5)

where Zit is a work matrix given for flexibility. In the univariate case, Zit can be directly
defined as Zit = x′it.
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iii. The linear predictor is related to the mean µit through the response function h : R → M,
i.e.

µit = h(ηit). (4.6)

If the inverse function g = h−1 : M → R exists then

g(µit) = ηit = Zitβ, (4.7)

where g is then called the link function.

A canonical link occurs when g = τ−1, such that θit = ηit, which yields a simplification of the
fitting algorithms and provides a set of sufficient statistics [NW72]. Given a sufficient statistic
T (X) for a parameter θ of a random variable X, the inference of θ can be made based on
the statistic, since the sample does not provide further information as the sample itself. A
characterization of T (X) is given by the Fisher’s factorization theorem stating that T (X) can
be decomposed into

T (X) = h(X)gθ(T (X)),

so that in the estimation of θ, only T (X) can be used.1

4.2.1 Maximum likelihood estimation

The model parameter vector β = {βp}P
p=1 is estimated as the maximizer of the log-likelihood

function:

L = logf(y1, . . . , yN |θ1, . . . , θN , λ, ω1, . . . , ωN ). (4.8)

Conditional on the covariates, the observations are assumed to be independent within individuals
and time points. To consider the important information given by the time structure (otherwise
ignored by the independence assumption) the covariates are properly selected to express the tem-
poral structure, e.g. trigonometric polynomials representing seasonal components or monotonic
functions of it to include trends, etc. Equation (4.8) reduces under this assumption to:

L(y|β, ω) = log(
N∏

i=1

T∏
t=1

f(yit|θit, λ, ωit)

=
N∑

i=1

T∑
t=1

logf(yit|θit, λ, ωit)

L(y|β, ω) =
N∑

i=1

T∑
t=1

{
yitθit − b(θit)

a(λ)
ωit + c(yit, λ)

}
. (4.9)

Applying the necessary condition of extrema:

β∗ = arg max
β∈RP

L(y) ⇒ ∂L

∂βp
(y, β∗) = 0

1The short description of the sufficient statistic was adapted from

http://en.wikipedia.org/wiki/Sufficient statistic
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the homogenous system of nonlinear equations

∂L

∂βp
(y, β∗) =

N,T∑
i,t=1

∂L

∂θit

∂θit

∂µit

∂µit

∂ηit

∂ηit

∂βp
= 0

is obtained, whose solution is a local maximum of the likelihood function. As shown in [NW72]:

b′(θit) = µit, b′′(θit) =
∂µit

∂θit
=

var(yit)
a(λ)

ωit = Vit(µ) and ηit =
P∑

p=1

xitp ∗ βp,

so that
∂L

∂βp
(y, β∗) =

1
a(λ)

N,T∑
i,t=1

ωit
yit − µit

Vit

∂µit

∂ηit
xitp = 0. (4.10)

To solve the homogeneous nonlinear system of equations (∇L(β) = 0) given by (4.10), a Newton-
Raphson method is developed so that:

−HL(β)(xk+1 − xk) = ∇L(β), (4.11)

where HL(β) = (Hp,q)P
p,q=1 is the matrix of the second derivatives of L with respect to β:

HL(p, q) =
∂2L

∂βpβq

=
1

a(λ)

N,T∑
i,t=1

ωit
∂

∂ηit

(
yit − µit

Vit

∂µit

∂ηit
xitp

)
∂ηit

∂βq

=
1

a(λ)

N,T∑
i,t=1

ωit

[
−1
Vit

(
∂µit

∂ηit

)2

+
yit − µit

Vit

∂2µit

∂η2
it

]
xitpxitq.

Instead of HL, its expected value H̄L is used to solve the system. This procedure is known as
the Fisher’s method of scoring [Osb92]. Then:

H̄L(p, q) = − 1
a(λ)

N,T∑
i,t=1

witxitpxitq,

where wit = ωit

(
∂µit

∂ηit

)2
/Vit. In a matrix form this can be seen as

H̄L(β) = − 1
a(λ)

N∑
i=1

x′idiag(wi)xi, (4.12)

with xi the T ∗ P matrix of covariates associated with the ith time series.

Following the same notation, (4.10) can be represented as:

∂L

∂βp
(y, β∗) =

1
a(λ)

N∑
i=1

x′i ∗ diag(wi)diag(
∂ηi

∂µi
)(yi − µi) = 0. (4.13)

Equations (4.13), (4.12) together with (4.11) can be used to iteratively obtain a good approxi-
mation of the maximum likelihood estimator β∗.
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4.2.2 Canonical link

When θ = η equations (4.13), (4.12) reduce to:

∂L

∂βp
(y, β∗) =

1
a(λ)

N∑
i=1

x′idiag(ωi)(yi − µi) = 0, (4.14)

H̄L(β) = − 1
a(λ)

N∑
i=1

x′idiag(ωi)diag(Vi)xi. (4.15)

Table 4.1 shows the expressions of L, V , µ(η), V (µ) and a(λ) of several known members of the
FE, which can be used directly in the programming of the described algorithms given a canonical
link.

Distribution Notation L(y, µ) µ(η) V (µ) a(λ)

Normal N(µ, σ2) 1√
2πσ2

e−(
y−µ)2

2σ2 η 1 σ2

Binomial B(p = µ/n, n)

(
n

y

)
py(1− p)(n−y) n eη

1+eη µ(n− µ) 1

Poisson P (µ) e−µµy

y! eη µ 1

Gamma Γ(k, µ)
(

k
µ

)k
yk−1 e−ky/µ

Γ(k) −1/η µ2 k−1

Table 4.1: GLM elements for some known distributions.

4.3 Generalized linear models for multivariate time series

Let now yi = {yit}T
t=1, with yit = {yit1, . . . , yitR}, so that at each time point t, an individual i

has a multivariate response of length R. In this case, yit is assumed to be the realization of a
multivariate variable from the multivariate family of exponentials, amongst which the multino-
mial and the multivariate normal can be considered.

As in the univariate case, the three elements of a GLM have to be taken into account, i.e.

i. The observed data yit ∈ MR comes from a multivariate exponential family of distributions
with R response channels, i.e. the density function has the form

f(yit|θit, λit, ωit) = exp
{

y′itθit − b(θit)
a(λ)

wit + c(yit, λ)
}

. (4.16)
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In this case b : RR → R.

ii. The covariate vector xit ∈ RP influences yit in the form of a linear predictor

ηit = Zitβ, β ∈ RPR, Zit = Z(x′it) = blockdiag
(
[x′it]

R
r=1

)
. (4.17)

The expression of the work matrix Zit will be better described later in this chapter.

iii. The linear predictor is related to the mean µit through the response function h : RR → MR,
i.e.

µit = h(ηit). (4.18)

If the inverse function g = h−1 : MR → RR exists then

g(µit) = ηit = Zitβ (4.19)

is the link function.

4.3.1 Maximum likelihood estimation

The model parameter vector β = {βp}PR
p=1 is estimated as the maximizer of the log-likelihood

function, as sketched in Section 4.2.1, making the corresponding changes for the multivariate
analysis. Applying the necessary condition of maxima

β∗ = arg max
β∈RPR

L(y) ⇒ ∂L

∂β
(y, β∗) = 0,

we obtain

∂L

∂β
(y, β∗) =

N,T∑
i,t=1

∂L

∂θit

∂θit

∂µit

∂µit

∂ηit

∂ηit

∂βpr

=
N,T∑
i,t=1

ωit

a(λ)

(
y′it −

∂b(θit)
∂θit

)
∂µit

∂θit

−1 ∂µit

∂ηit

∂ηit

∂β

= 0.

As shown in Section 4.1

∂b(θit)
∂θit

= µ′it,

∂µit

∂θit
=

∂2b(θit)
∂θit∂θit

=
Cov[Y, θ]

a(λ)
ωit = Σit(µ)

ηit = Zitβ.

The work matrix Zit(x′it) ∈ RR×RP is a block diagonal matrix containing as many rows as
response channels of the modelled multivariate variable, and in each row the covariate vector
x′it in the columns from (r − 1) ∗ P + 1 to rP , as expressed in the equation

Zit(r, q) =

{
xitp, if q ∈ Z

⋂
[(r − 1)P + 1, rP ] and p = mod(q, P ) + 1

0, o.w.
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Zit has the following portrait: 
x′it 0 . . . 0
0 x′it . . . 0
...

. . . . . .
...

0 0 . . . x′it

 .

The necessary condition for extrema takes the form:

∂L

∂β
(y, β∗) =

1
a(λ)

N,T∑
i,t=1

ωit(y′it − µ′it)Σit(µit)−1 ∂µit

∂ηit
Zit = 0. (4.20)

A Newton-Raphson method is again employed to solve the system of nonlinear equations

∇L(β) =
(

∂L
∂β

)′
= 0 given by (4.20) so that

−HL(β)(xk+1 − xk) = ∇L(β), (4.21)

where HL(β) = (Hp,q)P
p,q=1 is the matrix of the second derivatives of L with respect to β, i.e.

HL =
∂2L

∂β∂β

=
1

a(λ)

N,T∑
i,t=1

ωitZ
′
it

∂

∂β

(
∂µit

∂ηit
′Σit(µit)−1(yit − µit)

)

=
1

a(λ)

N,T∑
i,t=1

ωitZ
′
it

[
∂

∂β

(
∂µit

∂ηit
′Σit(µit)−1

)
(yit − µit) +

(
∂µit

∂ηit
′Σit(µit)−1

)
∂

∂β
(yit − µit)

]
.

Using HL instead of its expected value H̄L, defined by

H̄L(p, q) =
1

a(λ)

N,T∑
i,t=1

ωitZ
′
it

(
∂µit

∂ηit
′Σit(µit)−1

)
∂

∂µ
(yit − µit)

∂µit

∂ηit

∂ηit

∂β

= − 1
a(λ)

N,T∑
i,t=1

ωitZ
′
it

(
∂µit

∂ηit
′Σit(µit)−1 ∂µit

∂ηit
Zit

)
,

and denoting

Wit =
(

∂µit

∂ηit
′Σit(µit)−1 ∂µit

∂ηit

)
and Ωit = diag(ωiteR), where eR ∈ RR, eR(r) = 1, r = 1, . . . , R,

we have

H̄L(β) = − 1
a(λ)

N,T∑
i=1,t=1

Z ′
itWitΩitZit. (4.22)



36 Generalized linear modelling of time series

Following the same notation, (4.20) can be represented as:

∂L

∂β
(y, β∗) =

1
a(λ)

N,T∑
i,t=1

Z ′
itWit

∂ηit

∂µit
Ωit(yit − µit) = 0. (4.23)

Equations (4.23), (4.22) together with (4.21) can be used to iteratively obtain a good approxi-
mation of the maximum likelihood estimator β∗.

Constructing the N matrices Zi ∈ RRP×RT :

Z ′
i = [Z ′

i1, Z
′
i2, . . . , Z

′
iT ],

the block-wise diagonal matrices

Wi = blockdiag([Wit]Tt=1),

Ωi = diag([Ωit]Tt=1),

∂ηi

∂µi
= diag

([
∂ηi1

∂µi1

′
,
∂ηi2

∂µi2

′
, . . . ,

∂ηiT

∂µiT

′])
,

and the vectors

y′i = [y′i1, y
′
i2, . . . , y

′
iT ],

µ′i = [µ′i1, µ
′
i2, . . . , µ

′
iT ],

Equations (4.22) and (4.23) can be seen as:

H̄L(β) = − 1
a(λ)

N∑
i=1

Z ′
iWiΩiZi (4.24)

∇L(y, β∗) =
1

a(λ)

N∑
i=1

Z ′
iWi

∂ηi

∂µi
Ωi(yi − µi) = 0. (4.25)

In order to obtain a flexible representation, allowing different input and storage formats, the
permutation matrix P is defined so that Py = y1, where the rows of y1 have a different ordering
as the ones of the input.

Some of the properties of the permutation matrices of interest are:

• Given a permutation vector π of the numbers 1 . . . N , the associated permutation matrix
is defined as:

P (i, j) =

{
1, if j = πi

0, o.w.

• PA permutes the rows of A so that the i− th row of PA is the π(i)− th row of A.
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• AP ′ permutes the columns of A so that the i− th column of AP ′ is the π(i)− th row of A.

• P−1 = P T

Applying the same permutation P to Equations 4.24 and 4.25, an equivalent system is obtained
with matrix

H̄L(β) = − 1
a(λ)

N∑
i=1

Z ′
iP

′PWiP
′PΩiP

′PZi = − 1
a(λ)

N∑
i=1

Z̃ ′
iW̃iΩ̃iZ̃i, (4.26)

where Z̃i = PZi, W̃i = PWiP
′, Ω̃i = PΩiP

′, and the right hand side

∇L(y, β∗) =
1

a(λ)

N∑
i=1

Z̃ ′
iW̃i

∂η̃i

∂µ̃i
Ω̃i(ỹi − µ̃i) = 0 (4.27)

with ∂η̃i

∂µ̃i
= P ∂ηi

∂µi
P ′, which can be used to modify the fitting algorithms for different data input

formats and for optimized storage.

As an example of the described modification, a permutation is proposed, such that,

ỹi = Pyi = [y1′i, . . . , yR′
i]
′

where yri ∈ MT is a time series representing the r − th output channel of the i− th individual.
The corresponding permutation vector is

π1[(r − 1)T + j] = r + (j − 1) ∗R, For j = 1 . . . T and r = 1 . . . R.

The matrix of covariates and its transformed form for the permutation vector π are portrayed
in Figure 4.1. The matrix Wi and its row and column transformed version W̃ = PWiP

′ are also
portrayed in Figure 4.2.

4.3.2 Canonical link

If a canonical link is used so that h = τ , Equations (4.27) and (4.26) reduce to:

H̄L(β) = − 1
a(λ)

N∑
i=1

Z̃ ′
iΣ̃iΩ̃iZ̃i (4.28)

and

∇L(y, β∗) =
1

a(λ)

N∑
i=1

Z̃ ′
iΩ̃i(ỹi − µ̃i) = 0, (4.29)

where Σ̃i = PΣiP
′ and Σi is the block diagonal matrix diag([Σit(µit)]Tt=1) whose portraits are

the same as those in Figure 4.2.
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Figure 4.1: Matrix Z ′
i (top) and the new matrix Z̃i = Z ′P ′

i after applying the permutation
columns (bottom).

The estimator β for the canonical link is proved to be consistent and asymptotically normal
under appropriate assumptions [FT01].

Multinomial log-it

An example of multivariate time series GLM is the multinomial distribution with its canonical
link, the generalized logistic function.

The multinomial distribution is one of the multivariate family of distributions. Given

Y ∼ multinomial(n, π), i.e. Y ∈ {Z
⋂

[0;n]}R,

where Y (r) is the amount of times out of n the event r occurred, so that
∑R+1

r=1 Y (r) = n. The
event r has a probability of occurrence πr, so that

∑R+1
r=1 πr = 1. The value n is known and the

parameter vector π = {π1; . . . ;πR} is to be estimated.

The multinomial density function is given by:
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Figure 4.2: Matrix Wi (top) and the new matrix W̃i = PWiP
′ after applying the permutation

P to its rows and columns (bottom).

f(Y = y|n, π) =
n!∏R+1

r=1 yr!

R+1∏
r=1

πyr
r ,

having π(R+1) = 1−
∑R

r=1 πr and y(R+1) = n−
∑R

r=1 yr.

The canonical link for this distribution is the generalized logistic function:

πr = τ(θr) = h(ηr) =
exp(ηr)

1 +
∑R

r′=1 exp(ηr′)
, r = 1 . . . R and πR+1 =

1

1 +
∑R

r′=1 exp(ηr′)
.

The covariance matrix under this distribution is:

Σ(π) =


π1(1− π1) −π1π2 . . . −π1πR

...
. . . . . .

...
−πR(π1) −πRπ2 . . . πR(1− πR)

 .

The matrix HL and right hand side vector ∇L are:

HL =
N∑

i=1

Z̃ ′
iΣ̃iΩ̃iZ̃i,

where Σ̃i = PΣiP
′ and Σi is the block diagonal matrix Σi = diag([Σit(πit)]Tt=1) and

∇L =
N∑

i=1

Z̃ ′
iΩ̃i(ỹi − µ̃i).
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Figure 4.3 shows simulated data following a multinomial distribution with parameter πt =
h(Ztβ). In the second row, the estimated model is compared to the original data set by means
of the mean value of Y at time t and the expected mean value µ given the set of parameters
from the fitted model. This data has a similar behavior as the real data analyzed as part of this
thesis in later chapters.
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Figure 4.3: Example of multivariate data (blue) y, its mean value mean(y) (red lines), and the
expected value given the described model µ = E(Y |β, X) = nπ (black).

4.4 Modifications for computational efficiency

Theoretically, the explained methods can be applied without problems to any data set under the
mentioned distributional assumptions. However, computational resources often requiere a sim-
plification of the conditions, in order to improve computational costs, reduce storage resources,
amongst others.

The direct application of the described methods is extremely costly for bigger data sets. Only
building the N matrices Zi would requiere the storage of PTRN non-zeros in the form of N

sparse matrices, each of size PR× TR. Wi requires NTR2 non-zeros in a sparse NTR×NTR

matrix.

In order to obtain less costly algorithms, we suggest the following modifications.

4.4.1 Constant covariates along individuals

Instead of considering for every individual a covariates matrix xi = (xitp)
T,P
t=1,p=1, a constant set

of covariates along individuals can be selected, such that xit = xt, i = 1 . . . N . It is based on
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the fact that a model of a group as a whole is desired, so that an understanding of the unifying
process can be drawn. This assumption implies:

Z̃i = Z̃

η̃i = Z̃iβ = Z̃β = η̃

µ̃i = h(η̃i) = h(η̃) = µ̃

W̃i = W̃

Σ̃i = Σ̃.

Equations (4.26) and (4.27) now are:

H̄L(β) = − 1
a(λ)

N∑
i=1

Z̃ ′W̃ΩiZ̃ = − 1
a(λ)

Z̃ ′W̃

N∑
i=1

Ω̃iZ̃ (4.30)

and
∇L(y, β∗) = 1

a(λ)

∑N
i=1 Z̃ ′W̃ ∂η̃

∂µ̃ Ω̃i(ỹi − µ̃)

= 1
a(λ) Z̃

′W̃ ∂η̃
∂µ̃

{[∑N
i=1 Ω̃iỹi

]
−
[∑N

i=1 Ω̃i

]
µ̃
} (4.31)

respectively.

The quantities
[∑N

i=1 Ω̃iỹi

]
and

[∑N
i=1 Ω̃i

]
are computed at the beginning of the algorithm and

only once. Each iteration of the Newton-Raphson method requieres a single update of the ma-
trices W̃ , ∂η̃

∂µ̃ and µ̃ for the new estimation of β, and would need to perform the expressed matrix
products only once, and not N times per iteration.

This simplification achieves a tremendous storage and computing time efficiency, since:

• only a single sparse KP × TK matrix is stored (Z) with RTP non zero elements (versus
N such matrices in the general case),

• at every iteration only the vector µ ∈ MT , and the matrices W̃ and ∂η̃
∂µ̃ have to be computed,

and

• the amount of matrices products is considerably reduced.

Of course, taking this modification into account, many of the general modelling features of GLM
are lost, since those models including individual measurements, like Markov chains, can not be
modelled with this approach.

4.4.2 Variable covariates amongst response channels (for the multivariate

case)

In the data sets analyzed in this thesis, we observed that some of the response channels were
richly featured, while other channels contained relatively few interesting components. I.e. some
channels require many covariates to achieve a good mean approximation and others need very
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Figure 4.4: Mean value of y (blue) and estimated mean value (red) through the logit-multinomial
model (top). The bottom figure shows the portrait of the matrix Z, having 37, 13, 10 and 5
covariates per response channel respectively.

few components.

The comfortable representation given by Z̃ allows to select for each response dimension how
many, and furthermore which, covariates are of interest. For this we employed a model selection
technique based on a modified Akaike information criterion (AIC) suitable for model selection
of GLM [WD95]. The CAIC of a model is defined as

CAIC(y, β) = −2L + Npar ∗ (log(Nobs) + 1),

with L being the log likelihood of the model, given the data y and the parameters β, Npar the
number of parameters (i.e. |β|), and Nobs the number of observations (i.e. |y|).

To select the number of covariates, the general model β0 is fitted to the data, and the CAIC0

is computed. Then a new model is fitted eliminating one of the covariates, and the CAIC1 is
computed. If CAIC0 > CAIC1, then the mentioned covariate is selected as meaningful to the
data. If, on the other hand, CAIC0 ≤ CAIC1, this covariate has no mayor significance for the
model and is eliminated. The same procedure is repeated with all the covariates until a subset
of the original set is selected. For the remaining subset, the described procedure is repeated
until the initial and final sets are equal.

Figure 4.4 shows the mean value of a data set y and its estimated mean value through the
logit-multinomial model (top). As can be seen, the features of the rightmost channel can be
estimated with fewer covariates than the leftmost one. The bottom figure shows the portrait
of the matrix (Z), having 37, 13, 10 and 5 covariates per response channel, respectively. The
covariates were selected through the described procedure.



Chapter 5

Time series GLM-based EM

clustering

IN the practical applications of statistics such problems as the following often present themselves:
Of n households exposed to risk, m0 returned 0 cases of disease, m1 returned each a single case,
m2 each two cases, . . ., mn each n cases. Might such a distribution have arisen from sampling a
“ population” each member of which was subject to a constant chance of infection throughout the
period of exposure, or is the form of the distribution valid evidence that particular households
were especially prone to take the disease in question ?

Major Greenwood and G. Udny Yule
March, 1920

In this chapter we deal with the clustering of time series into meaningful groups, each of them
identified through a probabilistic model representing the dynamic behavior of all the members
of the group. This is achieved through model-based clustering, allowing the identification and
description of several dynamic patterns of behaviors within a population. The patterns of be-
havior are characterized in terms of a probabilistic model.

Mixtures of distributions provide this approach with a modelling concept, which simultaneously
describe the presence of several subclasses in a population, together with modelling kernels de-
scribing each of them. Mixture models have been employed since the end of the 19th century,
with the papers of Newcomb [New86] from 1886 and the one of Pearson [Pea94] from 1894. The
book of McLachlan and Peel [MP00] introduces this topic.

Many attempts to solve the problem of fitting a mixture of distributions in an efficient way
were successful for specific cases [Has69, CM73]. In 1977, Dempster et al. [DLR77] described
the expectation maximization (EM) algorithm for incomplete data. Several applications were
described, amongst them, the fitting of mixtures models. Its simplicity, adaptability and general
good performance makes it one of the most used inference techniques in presence of incomplete
data. Particular cases are missing data [Har58, CBM71], finite mixtures models [Has69, CM73]
and hyper-parameter estimation.
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Mixtures of GLM for the modelling of multivariate data (although not for time series) is in-
troduced in [WD95]. The mentioned model has been used on functional neuroimaging data
[PF03] to obtain clusters of voxels characterized by a single time series, allowing the discovery
of task-related connectivity between different parts of the brain.

Motivated by the latter mentioned methods from [FSK08] and [WD95], we develop an Expec-
tation Maximization algorithm, which is adapted for the simultaneous clustering and fitting of
mixtures of GLM for multivariate long-term time series.

Since in the scope of this thesis theoretical results are not proven, a simulation study is devel-
oped in Appendix A to test the different features of the proposed method.

5.1 Finite mixture of distributions

Following the approach given in [MMR05], a finite mixture of distributions is any convex com-
bination

g(Y ) =
H∑

h=1

phfh(Y ),
H∑

h=1

ph = 1. (5.1)

In many cases, fh belongs to a parametric family of distributions, so that fh(x) = f(x, λh),
where λh is the set of parameters for the h− th component of the mixture. A common example
is the mixture of Gaussians, parameterized by the mean µh and variance σ2

h. From now on, the
parametric finite mixture will be identified through {θh}H

h=1 = {πh, λh}H
h=1.

The likelihood of a sample {yi}N
i=1 given the mixture {ph, λh} is

L({yi}N
i=1) =

N∏
i=1

H∑
h=1

phf(yi, λh). (5.2)

Is not difficult to see that the expansion of the inner sums in 5.2 leads to HN terms, which
already for H = 2 mixtures and N = 10 samples is 1024 terms in its expansion. This complexity
makes the development of analytical solutions through maximum likelihood or Bayes estimators
[MMR05] unfeasible.

5.2 Estimation maximization

In the following, the approach given by [Del02] is used to describe the basics of the estimation
maximization algorithm for incomplete data.

Given observed data Y coming from a distribution parameterized by θ, the computation of a
value θ∗ maximizing the log-likelihood L(Y, θ) is desired. An analytical maximum likelihood
estimator in presence of incomplete data is difficult to achieve, as shown for the specific case
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of mixture models, due to the exponential amount of terms in the likelihood function. Instead,
EM provides an iterative estimator which improves at every iteration the log-likelihood, being
at the same time much simpler to compute.

Given observed data Y and some hidden variables Z ∈ J , the estimation maximization algorithm
pursues the estimation of the model parameter θ maximizing its posterior probability given Y ,
marginalizing over Z:

θ∗ = argmax
θ

logf(Y, θ) = argmax
θ

log
∑
Z∈J

f(Y, Z, θ). (5.3)

The log of the sum in Expression (5.3) makes its maximization very difficult. In the search for
a more convenient expression, the above is rewritten as:

logf(Y, θ) = log
∑
Z∈J

fk(Z)
f(Y, Z, θ)

fk(Z)
, (5.4)

where fk(Z) is a probability distribution over the space J of hidden variables, such that∑
Z∈J fk(Z) = 1. Since the log function is concave, the Jensen’s inequality states:

log
∑
Z∈J

fk(Z)
f(Y, Z, θ)

fk(Z)
≥
∑
Z∈J

fk(Z)log
(

f(Y, Z, θ)
fk(Z)

)
. (5.5)

Suppose a starting approximation of θ, θk is known, the function

B(θ, θk) :=
∑
Z∈J

fk(Z)log
(

f(Y, Z, θ)
fk(Z)

)
is defined, which fulfills B(θ, θk) ≤ log(f(Y, θ)), thus being a lower bound of the log-likelihood
function. fk(Z) is an arbitrary distribution defined over J depending on the θk. From all the
lower bounds given by the different possible distributions fk(Z), the optimal one in the point
θk is chosen:

fk∗ = argmax
fk

B(θk, θk). (5.6)

Using a Lagrange multiplier for the constraint
∑

Z∈J fk(Z) = 1, the objective function from
(5.6) becomes:

F (fk) = λ

(
1−

∑
Z∈J

fk(Z)

)
+ B(θk, θk).

Applying the necessary condition for extrema with respect to fk(Z):

∂F

∂fk(Z)
= −λ +

∂B(θk, θk)
∂fk(Z)

= −λ +
∂

∂fk(Z)

∑
Z′∈J

fk(Z ′)logf(Y, Z ′, θk)− fk(Z ′)log(fk(Z ′))

= −λ + logf(Y, Z, θk)− 1− log(fk(Z)),
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which yields:

fk(Z) = exp(−1− λ)f(Y, Z, θk)

= f(Y,Z,θk)∑
Z′∈(J) f(Y,Z′,θk)

= f(Z|Y, θk).

(5.7)

The found optimal lower bound has indeed the property of touching the likelihood function at
θk since:

B∗(θk, θk) =
∑
Z∈J

f(Z|Y, θk)log
(

f(Y, Z, θk)
f(Z|Y, θk)

)
=

∑
Z∈J

f(Z|Y, θk)logf(Y, θk)

= logf(Y, θk)
∑
Z∈J

f(Z|Y, θk)

= logf(Y, θk).

B∗(θ, θk) has a much more comfortable expression to maximize than the log-likelihood since it
barely contains a sum of logs. Actually, it can be decomposed into:

B∗(θ, θk) = Elogf(Z|Y,θk)f(Y, Z, θ)− Ef(Z|Y,θk)logf(Z|Y, θk)
= Ef(Z|Y,θk)logf(Y, Z|θ) + logf(θ)− Ef(Z|Y,θk)logf(Z|Y, θk).

(5.8)

Defining the expected complete log-likelihood

Qk(θ) = Ef(Z|Y,θk)logf(Y, Z|θ), (5.9)

the prior on the parameters f(θ), and noting that −Ef(Z|Y,θk)logf(Z|Y, θk) (also known as the
entropy of the distribution f(Z|Y, θk)) does not depend on θ, one can proceed to the maximiza-
tion of Expression (5.8) with respect to θ to obtain a new estimation θk+1, i.e.

θk+1 = argmax
θ

B∗(θ, θk) = argmax
θ

Qk(θ) + log(f(θ)). (5.10)

The EM method can be finally summarized in the two steps:

• E-Step: Obtain the optimal lower bound in θk, B∗(θ, θk) given by (5.7).

• M-Step: Find new estimates θk+1 maximizing the optimal lower bound B∗(θ, θk), as given
in (5.10).

5.3 EM for finite mixtures

In the following, the E and M steps of the EM algorithm are derived for the special case of finite
mixtures. For this the following elements need to be defined:

• hidden variables Zi ∈ {0; 1}H , s.t.
∑H

h=1 Zih = 1

• distributional assumptions on Z with respect to the model parameters, i.e. f(Zi|π, λ)

• expression for the optimal lower bound B∗(θ, θk)

• maximization
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5.3.1 Hidden variables

In the context of finite mixtures, a population is assumed to be decomposable into H sub-
populations, and each individual of the population is assumed to belong to one of them. The
unknown random vectors Zi ∈ {0, 1}H describe to which subpopulation an individual belongs,
i.e. :

Zih =

{
1, if individual i belongs to subpopulation h

0, otherwise.
(5.11)

The Zi are assumed to be i.i.d multinomial with parameters {π1, . . . , πH} and n = 1, i.e.

f(Zi|π, n = 1) =
H∏

h=1

(πh)zih ,

with π = {πh}H
h=1 being the mixing proportions for the mixture (5.1).

It is assumed furthermore that the observations {Yi}N
i=1 are conditionally independent given the

covariates {Zi}N
i=1. The density of Yi conditional on the Zi under this assumption is defined as:

f(yi|zi, θ) =
H∏

h=1

f(yi|λh)zih ,

and the complete log-likelihood

logf(y, z|θ) = logf(y|z, θ) + log(z|θ) =
N∑

i=1

H∑
h=1

zihlogf(yi|zi, λh) +
H∑

h=1

zihlogπh. (5.12)

5.3.2 E-step

In the E-step, given an estimation of the parameters θk = {λk, πk}, the optimal lower bound

B∗(θ, θk) = EZ|Y,θk [logf(Y, Z|θ)− logf(θ)]
= EZ|Y,θk [

∑N
i=1

∑H
h=1 zihlogf(yi|zi, θh) + zihlogπh + logf(θ)]

=
∑N

i=1

∑H
h=1 EZ|Y,θk [Zih]logf(yi|θk

h) + logf(θ)
(5.13)

is obtained by computing the expectation EZih|Yi,θk
h
[Zih]. This can be achieved by means of the

Bayes rule:

EZih|Yi,θk [Zih] = f(Zih = 1|Yi, θ
k)

=
f(Yi, |Zih = 1, θk)f(Zih = 1|θk)

f(Yi|θk)
,

having

f(Yi, |Zih = 1, θk) = f(yi|λk
h), (5.14)

f(Zih = 1|θk) = πk
h (5.15)

f(Yi|θk) =
h∑

h=1

πk
hf(Yi|λk

h), (5.16)
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so that

EZih|Yi,θk [Zih] =
πk

hf(Yi, λ
k
h)∑h

h=1 πk
hf(Yi|λk

h)
. (5.17)

5.3.3 M-step

Let ak
ih = EZih|Yi,θkZih. The objective function to be maximized in order to obtain a new

estimation of the model parameters θk+1 is:

B∗(θ, θk) =
∑N

i=1

∑H
h=1 ak

ihlogf(yi|θh) + logf(θh). (5.18)

5.3.4 EM for finite mixtures of GLM

The last step of the methods employed for data analysis in this thesis includes the use of GLM
as modelling kernels of the finite mixture, i.e.

f(Yi, λ
k
h) =

T∑
t=1

logf(Yit, β
k
h, ωh

it, Xit, ...) =
θ′yit − b(θk

h)
a(λ)

ωh
it + c(y, λ). (5.19)

In the E-step, ak
ih = EZih|Yi,θkZih is computed maximizing (5.19) given estimations of {βk

h}H
h=1.

In the M-step, H GLM’s are fitted through the ML estimator described in Chapter 4 with the
weight ωh

it = aih ∗ ωit.

5.4 Selecting the amount of clusters: BIC

One of the assumptions of the proposed methods is that the number of clusters is known. This
means, a tool for the selection of the number of latent classes in a population has to be employed.
Several techniques have been proposed in the literature for this aim. A short review of such
techniques is reviewed in [FS11].

After analyzing several of the methods reviewed in the literature, we attached to the Bayesian
information criterion (BIC). This is a large sample version of the Bayes procedure based on the
evaluation of the leading terms of its asymptotic expansion, thus not needing the knowledge of
any priors. It is defined as the model-dimension penalized score:

BIC(y, β̃) = −2 ∗ L(y, β̃) + Np ∗ log(Nobs),

with L(y, β̃) the likelihood of the model given the maximum likelihood estimator β̃, Np is the
amount of parameters, and Nobs the number of observations used to fit the model. The selected
model is the one minimizing the BIC. For Nobs > 8, BIC selects a more parsimonious model
than its predecessor, the Akaike information criterion (AIC = −2L + Np).

In Appendix A it is shown that BIC performs very good in estimating the amount of clusters,
when data is simulated from known finite mixtures with different amounts of groups (amount of
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clusters, as well as all kernel parameters are initially known, which allows to evaluate how good
BIC selects the real structure).
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Chapter 6

Drinking patterns, evolution to and

prediction of an alcohol addiction

Through the multivariate time series analysis framework presented in Chapters 4 and 5 the
time series described in Chapter 3 are analyzed. This approach defines patterns of behavior
that characterize the long-term drinking behavior of the tested Wistar rats under the long-term
alcohol self administration with repeated deprivation phases protocol.

An evolution of the drinking behavior, as well as an acuteness of the loss of control symptoms
in the alcohol drinking following a period of abstinence, can be inferred form the found dynamic
patterns.

This chapter describes and interpretes the identified patterns, its correlations throughout phases,
and finally how they relate to the ADE classification given in Chapter 3. The structure of the
chapters can be summarized as follows:

• identification and characterization (modelling) of patterns of behavior during measured
baseline and after-deprivation phases,

• characterization of long-time evolution in the drinking patterns,

• correlation of the found patterns of behavior during baseline and after deprivation phases
and

• characterization and prediction of the ADE as a sign of alcoholism, given the observed
patterns.

6.1 Statistical modelling and pattern selection

For the modelling of each time series it is assumed that the multivariate variable Yt = {Y r
t }

distributes multinomial with probability {πr
t } at each time point t and r ∈ R, where R is the

set of presented solutions, i.e. R = {H2O,EtOH5%, EtOH10%, EtOH20%}. The probability
vectors are modelled as a nonlinear function of a linear predictor ηt = Xtβ within the framework
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of generalized linear models, since the multinomial distribution is a member of the FE1.

All the individuals are assumed to have the same covariates at time t as described in Section
4.4.1. The probability of a drinking event of each solution is modelled through a different amount
of covariates, selected through the procedure described in Section 4.4.2. At the beginning of the
covariate selection, the covariate matrix for each solution r ∈ R has the form

Xr
t = (xr

t,...) =
[
1, {sin(ωt) cos(ωt)}ω∈ 2π

T
∗[1...20]

]
,

where T is the length of the time series. The original model has 4 ∗ (41) = 164 parameters
per cluster. This is computationally very expensive to fit. After a covariates selection is made,
only 65 components out of the 164 are found to significantly contribute to the model. For each
solution {H2O, EtOH5%, EtOH10%, EtOH20%} 37, 13, 10 and 5 covariates are selected re-
spectively. This relates to the complexity of each solution time series, i.e. to the amount of
times rats drink from each of the solutions (most from the water channel, and less often from
the more concentrated alcoholic solutions).

Once the covariates are selected, the clustering procedure is performed for several amounts of
clusters (H = 1, . . . 10) and through the BIC, the “best” model is selected2. The selected model
yields a classification of rats into patterns of behavior whose features are described in detail in
Sections 6.2 and 6.3.

6.2 Baseline time series

6.2.1 Data

• Under the mentioned protocol, data for three different baseline phases (1st, 3rd and 5th)
were recorded

• For each baseline phase time series were recorded during 4-5 weeks at 5 minute intervals.

• Measurements at time t are 4-dimensional vectors, with the amount drank at this time of
each of 4 bottles: H2O, EtOH5%, EtOH10%, EtOH20%.

6.2.2 Preprocessing

Each baseline time series contains 20 days of 5 minute-wise measurements. Due to the day-night
cycle (also called circadian rhythm or passive-active cycle), the presence of a periodic component
is asserted with help of a Fourier transform of each of the solution time series.

Figure 6.1 shows a spike on the 20th Fourier component of each channel, signalling the presence
of 20 cycles on the data, i.e. a day period. The periodicity of the time series allows a length
reduction to only one day of measurements. The model is designed to describe a single charac-
teristic day.

1see Chapter 4 for a description of the GLM framework
2best in the sense of describing better the data with the least amount of parameters possible
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Figure 6.1: Fourier transform of each solution (color) and mean Fourier coefficients for all rats
(black): data contains 20 cycles which are related to 20 days of measurements. The data can
be seen as periodic with one day period (circadian rhythm).

Due to the complexity of the time series (multivariate, long-termed) the following simplification
is made: instead of modelling the drinking amount, the probability of a drinking event of each
solution at time t of the day is modelled. Drinking events are assumed to distribute multinomial
with parameter n, and probability vector πt = {πr

t }, where n is the amount of measured days
(in the case of the baseline data n = 20) and πr

t is the probability of a drinking event at time t

from solution r ∈ R = {H2O,EtOH5%, EtOH10%, EtOH20%}.

Let Ỹ = {Ỹ r
t }t∈T,r∈R be the original 20 days-long time series of drinking amounts at time t from

solution r. A new binary time series Ŷ is obtained s.t.

Ŷ r
t = 1[Ỹ r

t =0].

The series Ŷ = {Ŷ r
t } states whether at time t a drinking event of solution r occurred or not.

Since the measurements are made every 5 minutes, one day long time series will have a length
T = 288. The length of Ŷ can be represented as 20 ∗ T . A new time series Y is defined so that

Y r
t =

∑
t′ ∈ {1 . . . 20 ∗ T}

t = t′ mod T

Ŷ r
t′ . (6.1)

The new time series Y = {Y r
t } quantifies on how many days (out of the 20 measured) a drinking

event of solution r occurred at time t. Y is a 20 times shorter series than Ŷ but contains the
same information, given the assumption of periodicity, i.e. πr

t is the same every day. Under the
mentioned assumptions Yt = {Y r

t : r ∈ R} distributes multinomial with n = 20 and can thus
be modelled within the GLM framework.
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6.2.3 Statistical analysis

The best model for this data (selected through BIC) comprises 5 clusters. The time series re-
lated to rat Id = 1 are excluded from the analysis, since they are associated with an outlier like
behavior (only this rat showed such a behavior).

Characteristics of the 5 drinking patterns

Cluster labels are given related to the mean daily net EtOH intake, i.e. if i < j then cluster i

achieves on average a lower net alcoholic intake than cluster j. Figure 6.2 shows the mean daily
net EtOH intake of the five clusters.
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Figure 6.2: Box plot of daily net EtOH consumption in g per body kg (left) and H2O penalized
net EtOH intake in ml per H2O dl (right) per pattern. The lower and upper lines represent
the minimum and maximum intake within the group. The lower and upper limits of the box
represent the 1st and 3rd quartiles.

Figure 6.3 (top) shows the probability of a drinking event for water, EtOH5%, EtOH10% and
EtOH20% for each of the five characteristic patterns at each time of the day. It can be seen
how the day-night cycle is present: at 8 o’clock the lights are turned off (active cycle begins)
and the rats start drinking actively with some spikes. At 20 o’clock, the lights are turned on
and the passive period starts, accompanied by a decrease in the drinking activity. Figure 6.3
(bottom) shows a cumulative sum of the upper plotted probabilities, i.e. the expected amount
of drinking events for each solution throughout the day per pattern.

Figure 6.4 shows the solution intake profile per pattern. Figures 6.5 and 6.6 show the preference
for each solution per clusters from different perspectives. Figures B.3 and B.4 (see Appendix
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Figure 6.3: Characteristic patterns of behavior: Probability of a drinking event (top) and its
cumulative sum interpreted as the expected amount of drinking events (bottom) at time t of the
day from H2O, EtOH5%, EtOH10% and EtOH20% (left to right respectively)
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Figure 6.4: Solution intake profile per pattern

B) show the mean daily drinking amounts and the mean drinking amount per drinking event
respectively per solution. They complete the description of the 5 characteristic clusters, which
can be summarized as follows:

• BP1 achieves the EtOH intake mainly through 10% concentrated solution. From all the
clusters the lowest net alcoholic intake (in terms of g per body kg) is achieved under this
pattern. This can be related to human wine drinkers, who drink a glass of wine with each
meal, but not much more.

• BP2 and BP4 are explorative drinking patterns: drinking amounts decrease with increasing
concentration of the solution (beer is easy to drink, wine turns out to be a bit aversive,
spirits taste way too strong). They are also characterized by a high water intake. The main
difference between these 2 clusters is mainly given by the higher preference for EtOH10%
of BP4, which is similar to the preference for EtOH5%.

• BP5 animals achieve the highest net EtOH mainly through 5% solution in huge amounts
and some 20% concentrated solution. Very few water is drank throughout the day, and
the final amounts can be compared with the consumed amounts of EtOH5%. In analogy
to humans, this can be compared to beer drinkers, which often drink beer to quench the
thirst. Animals under this pattern also achieve the highest net EtOH/H2O ratio.

• BP3 is characterized by the preference for 20% concentrated solution. It has a huge
variation regarding both EtOH representations.

• BP1, BP3 and BP5 can be considered as advanced patterns of behavior, characterized
by a low frequency of H2O drinking events and a preference for a determined solution
concentration (10%, 20% and 5% respectively).
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Figure 6.5: Analysis of preference per cluster
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Distribution of patterns throughout baseline phases
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Figure 6.7: Distribution of patterns along the different baseline phases.

Once each pattern has been characterized, an analysis of the correlation between the different
baseline phases can be made. Table 6.1 shows a summary of the distributional properties of the
characteristic clusters for each baseline phase.

cluster
label

mean net
EtOH (g)

baseline phase preference

B1 0.495 3rd and 5th EtOH10%
B2 0.545 1st and 3rd H2O, EtOH ↑ ⇒ Pref↓
B3 0.580 3rd EtOH20%
B4 0.615 1st H2O, EtOH5%, EtOH10%
B5 0.890 5th EtOH5%

Table 6.1: Summary of the 5 clusters during the 3 measured baseline phases.

Figure 6.7 shows the distribution of the patterns for each baseline phase. Figure B.1 (see
Appendix B) plots the classification of the rats on the different baseline phases. Our results
allow to draw the following conclusions about the distribution of patterns along baseline phases:

• The first baseline phase is characterized by BP2 and BP4, both of them showing an
explorative-like trend, since they have decreasing preference for increasingly concentrated
solutions. BP4 disappears completely in the following baseline phases. BP2 tends also to
extinguish in the 2 following phases. The main characteristic of this phase is the large
water intake throughout the day.

• The third baseline phase is characterized by a great diversity of behaviors, where rats drink
under the BP1, BP2, BP3 and BP5 patterns. It can be regarded as a “teenager phase
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in the alcohol intake”, where some rats still drink under one of the primary patterns of
intake (BP2), some others have already developed a preference for a determined alcoholic
concentration (BP5/5%, BP1/10% or BP3/20%).

• The fifth baseline phase is characterized by the BP1, BP3 and BP5 showing a strong
preference for a specific concentrated solution.

Evolution of the baseline drinking behavior
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Figure 6.8: Left: pattern transition from 1st to 3rd baseline: unstructured, showing an instability
in the drinking behavior (developing). Right: pattern transition from 3rd to 5th: more than half
of the animals remain during the 5th baseline drinking under the same pattern as during the 3rd

baseline.

An evolution of the drinking behavior throughout baseline phases can be inferred, where explorative-
like patterns on the first phases are replaced by a solution-preference way of drinking in later
stages. Figure 6.7 shows the distribution of patterns throughout phases where this transition
can be observed. A more detailed view is given by Figure 6.8, where transitions from phase to
phase are plotted.

• BP4 rats evolve from 1st to 3rd baseline into BP1,2,3,5 with 50% of them going to BP1.
This is not surprising, since BP4 shows already a high preference for EtOH10%, which is
also characteristic of BP1. BP4 is not present in later baseline phases.

• Rats drinking under BP2 evolve from first to third baseline into BP1,2,3,5. There are only
2 BP1 rats on the fifth baseline; they showed BP1 throughout all the baselines, thus not
evolving from their initial behavior.

• From the third to the fifth baseline phase, 18 out of the 29 rats (62%) remain stable in
their patterns.

• Animals drinking under BP3 on the third baseline phase either remain or evolve to BP5.
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6.3 after-deprivation (AD) time series

6.3.1 Data

• Data were recorded for three different after-deprivation (AD) phases (1st, 3rd and 5th)
under the mentioned protocol.

• For each AD phase time series of 5 minute-wise measurements were recorded during the
first 5 days after an alcohol deprivation phase.

• Measurements at time t are 4-dimensional vectors, with the amount drank at this time of
each of 4 bottles : H2O, EtOH5%, EtOH10% and EtOH20%.

• Rats were divided into two groups, holding 14 and 15 individuals respectively. The first
group received quinine in the alcoholic solutions represented after the 1st deprivation phase.
The second group received quinine after the 5th deprivation phase. The groups are denoted
as Q (quinine) and C (controls), respectively, for the first AD phase, and C/Q respectively
for the 5th AD phase. On the 3rd AD phase, no animal received quinine, being thus used
as controls.

6.3.2 Statistical analysis

The AD time series are modelled again assuming a multinomial distribution with parameters
n = 1 and probability vector πt = {πtr}r∈R in the GLM framework with seasonal components as
covariates. The best model for this data set (selected through BIC) comprises H = 3 clusters,
obtained through the described GLM based-EM algorithm.

Descriptive statistics of characteristic patterns

Descriptive statistics of characteristic patterns are performed separately for each Q and C group.

The three clusters are sorted according to the mean daily net EtOH intake. Hence, the mean
daily net intake for cluster i is greater than for cluster j ⇐⇒ i > j.

The mean daily net EtOH per cluster/group is shown in the box-plots of Figure 6.9. P -values
from a t-test for 2 samples are shown in the color boxes. The net EtOH intake of the C and Q

groups is significantly different for patterns ADP2,3. However, the H2O penalized EtOH intake
of both groups for patterns ADP1 and ADP2 is not significantly different at the 0.01 level.

The probability of a drinking event for a certain solution at each time t of the day for the three
obtained clusters can be seen in Figure 6.11 (top). Its cumulative sum indicates the expected
amount of drinking events throughout the day from each solution and is shown in Figure 6.11
(bottom).

The mean daily intake and the mean drinking amount per drinking event are shown in Figures
B.5 and B.6 (see Appendix B).
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Figure 6.9: Mean daily net EtOH intake in g per body kg (top) and H2O penalized EtOH

intake in ml per dl of water (bottom) per cluster

Figure 6.10 shows the preference profile for each of the clusters, differentiating between control
and quinine groups. Significant differences, tested through the two-sample t-test, are highlighted
with colored boxes, specifying whether the alternative hypothesis is a decrease (red box, right
tailed) or an increase (blue box, left tailed) of the intake.

With the aid of these figures we summarize the characteristics of the three clusters as follows:

• ADP1 is characterized by a very low preference for alcoholic solutions and a high water
intake. Animals drinking under this pattern achieve the lowest daily net EtOH intake.

• ADP2 is mainly characterized by a very high preference for 5% concentrated solution.
Animals drinking under this pattern achieve an average daily net EtOH intake.

• ADP3 is characterized by a high preference for alcoholic solutions and particularly for
the 10% concentration. Animals drinking under this pattern achieve the highest daily
net EtOH intake. Under this pattern, even during the passive period (before 8 o’clock),
the probability of EtOH drinking events is higher than for the remaining patterns, and
comparable to the probability during the active period.

• ADP1 quinine animals present increased water intake (left tailed 2 sample t-test p-val=0)
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Figure 6.10: Solution intake profile of each after-deprivation pattern (ADP) per C/Q group. The
red and blue boxes contain significant p-values obtained by means of a left/right respectively
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and a decrease in EtOH5% intake (right tailed 2 sample t-test p-val=0) in comparison
with ADP1 controls.

• ADP2 quinine animals present a decrease in EtOH20% intake (right tailed 2 sample t-test
p-val=0.03) in comparison with ADP2 controls.

• ADP3 quinine animals present a decrease in EtOH5% intake (right tailed 2 sample t-test
p-val=0) in comparison with ADP3 controls.

Distribution and evolution of drinking patterns throughout deprivation phases

An analysis of the distribution of ADP for each AD day is made, comparing how it behaves
along AD phases (see Figures 6.12 and 6.13). High p-values state that the null hypothesis of
independence of the ADP distribution on the AD phase (H0) cannot be rejected, i.e. regardless
of the AD phase, rats will present the same distribution of ADP. Low p-values state that H0
can be rejected, so depending on the AD phase, rats will present a different distribution of ADP.
The following conclusions can be drawn:

• On the first AD day: control animals from the different AD phases presented the same
distribution of ADP, namely ADP3 with high probability (p-value = 0.06, Figure 6.12
top-left); quinine animals presented a different distribution of ADP, according to the AD
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phase (p-value = 0, Figure 6.12 bottom-left). Comparing C/Q animals from the same AD
phase (first column of Figure 6.13), one can see that there are differences between both
groups on the first AD phase (p-value=0.02, Figure 6.13 top), but not on the fifth. These
results state the development of inflexibility in the drinking at advanced AD phases.

• On the second AD day, a significant dependence of the distribution of ADP on the AD
phase is observed. As general rules for both control and quinine groups:

– ADP2 tends to disappear,

– ADP3 tends to appear more frequently

throughout phases (low p-values from Figure 6.12 second column). A separate analysis of
both groups during each AD phase shows again, that Q/C groups differ during the first
AD phase (p-value = 0.06, Figure 6.13 second column-top), while no significant difference
is observed between Q/C during the fifth AD phase (p-value = 0.57, Figure 6.13 second
column-bottom).

• On the third AD day, no significant dependence throughout phases for each group is
observed (high p− values from Figures 6.12 and 6.13, last column).

6.4 Relationship between BP and ADP

In order to find a correlation between patterns during baseline and those after a deprivation
phase, transition matrices are obtained and shown in Figure 6.14. P -values are computed to
establish significant differences between C/Q groups. Though one can see some differences, the
very small sample size yields large p-values in all the cases, so no conclusions can be drawn
regarding this issue.
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6.5 Robustness of BP and ADP

Baseline and after-deprivation patterns are found that dynamically develop throughout phases
for a set of 29 rats. We hypothesized that after a certain period of time, rats have got to a
stable point, where their behavior towards alcohol does not develop further. Under this assump-
tion, the results obtained for the 5th cycle should also hold for more advanced cycles, given that
these rats have been kept under the same conditions as the ones for which results were developed.

With this idea, time series of the 9th cycle of 22 male Wistar rats are included in the analysis.
The baseline and after-deprivation time series are classified into the existing BP and ADP. This
is achieved maximizing the likelihood of the series, given the fitted pattern parameters.

Figure 6.15 shows the distribution of BP during the 5th and 9th baseline phases. The p-value
from the Fisher exact test states that no significant dependence on the baseline phase can be
found, i.e. they have the same BP distribution. The only difference between the two cycles lies
in BP2, which disappears on the 9th baseline. This corroborates the fact that BP2 is a primary
pattern that tends to extinguish throughout deprivation phases.

Figure 6.16 shows the distribution of ADP during the 5th and 9th after-deprivation phases. The
p-value from the Fisher exact test states that no significant dependence on the cycle can be
found, i.e. they have the same ADP distribution. It can be seen that from the third day on,
animals from the 9th ADE tend to remain in ADP3, corroborating the idea that the more AD
phases, the longer this intense drinking pattern holds.

Figures 6.17 and 6.18 show the distribution of ADP given a certain BP of both phases: no signi-
ficant dependence is observed. However due to the very small sample size, no strong conclusions
can be drawn.
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Figure 6.19 shows the intake profile for each BP (row-wise) for each group (column-wise),
comparing both phases through a right/left tailed t-test (red/blue boxes depict significant de-
crease/increase of the intake on 9th phase with respect to the 5th). It can be seen that:

• BP1 rats (EtOH10% preferrers) decrease EtOH5% and increase EtOH10% intake on the
9th baseline with respect to the fifth, regardless of the group (C/Q). Control rats also
reduce the water intake.

• BP5 control rats increase the EtOH10% intake.

• The rest of the BP/groups does not show significant differences.

As a general conclusion, the found BP patterns, as well as their preference profile holds from
the fifth to the ninth baseline phases. The few behavioral changes between both phases are in
the direction of an acuteness of the drinking behaviors (e.g. primary pattern BP2 completely
disappears).

Figure 6.20 shows the intake profile for each ADP (row-wise) for each group (column-wise),
comparing both phases through a right/left tailed t-test (red/blue boxes depict significant de-
crease/increase of the intake on 9th phase with respect to the 5th). It can be seen that:

• A reduction in the EtOH5% intake is observed in all ADP/groups in the 9th phase with
respect to the fifth.

• ADP3 control animals increase the EtOH10% and decrease the EtOH20% intake. ADP3
quinine animals decrease the EtOH10% intake.

As a general conclusion, after the 9th deprivation phase, rats avoid the less concentrated solution.
A preference for the EtOH10% solution prevails. The intake of EtOH20% shows no interesting
features.

6.6 ADE analysis

The topic of this section is to deal with the final goal of this thesis: predicting the risk of an
alcoholic addiction at early phases of alcohol intake. For this, the classification obtained through
the described procedure in Chapter 3 is correlated to the characteristic BPs.

The inspection of the contingency tables between BPs and the ADE (see Figure 6.21) classifi-
cation yields no significant dependencies. This has of course to do with two important facts: 1)
the small size and 2) the fact that most of the Wistar rats are known to present ADE. In the
presence of quinine, they might need a longer time (more deprivation phases) to present ADE.
Already on the fifth AD phase, ADE regardless of quinine can be observed.

BP2 shows a statistically significant dependency on the C/Q group (p-value=0.03), stating a
vulnerability to quinine, which is not surprising, since it is mostly related to the 1st AD phase.
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Figure 6.16: Distribution of ADP during the 5th and 9th after-deprivation phases. The p-value
is calculated with the Fisher exact test.
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Figure 6.18: Distribution of ADP given BP during the 5th and 9th for the quinine group. Only
BP1,3,5 are analyzed. BP2 was presented by only two animals during the 5th baseline and no
animal from the 9th. The p-value is calculated with the Fisher exact test.
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Figure 6.19: Intake profile per BP for each phase for controls (left) and quinine (right) animals.
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Figure 6.20: Intake profile per ADP for each phase for controls (left) and quinine (right) animals.
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Figure 6.21: Relationship between Q/C groups and ADE classification for each BP

BP4 has a low p-value = 0.08, though greater than 0.05. Since this pattern contains the smallest
sample size, no strong conclusions should be made based on this p-value.

BP1,3,5 have almost the same distribution of ADE = 0/1 for both C/Q groups (with p-values
0.62, 0.09 and 0.2 respectively).

Since most animals on the 5th AD present ADE independently from their pattern or whether
they receive quinine or not, it makes no sense trying to predict from early phases of intake
whether they will present this symptom of alcohol dependence or not. However, the described
procedure could be used for groups of animals where the presence of an ADE is more heteroge-
neous. Here it would make sense to identify features that differentiate a group of animals that
have developed an addiction from those who did not.

6.7 Summary of results and conclusions

In the analyzed baseline data five pattern of behavior could be identified:

• BP2 and BP4 can be regarded as initiating behaviors towards alcohol: EtOH5% tastes
almost sweet, EtOH10% does not taste so bad, and EtOH20% has a very aversive taste.
Thus beginner rats drink consequently the less the more concentrated the solution. They
achieve a high water intake (by drinking very frequently). Most of the animals from the
first baseline phase drink under these two patterns.

• Patterns BP1, BP3 and BP5 can be regarded as advanced, since they show already a
preference for an alcoholic solution (10%, 20% and 5%). Most of the animals from the
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third and fifth phases drink under these patterns.

• BP1 rats can be regarded as very moderate drinkers. They appear already on the 3rd

baseline and most of them remain during the 5th.

• BP3 is mostly present during the 3rd baseline phase. This could signal a transition behavior
in the development towards a final drinking style.

• BP5 rats achieve the highest net EtOH consumption and are mostly characteristic of the
5th baseline.

In the analysis of the AD time series 3 clusters are identified:

• ADP1 is characterized by the lowest preference for alcoholic solutions and the highest
water intake. Animals drinking under this pattern achieve the lowest daily net EtOH

intake.

• ADP2 is mainly characterized by a very high preference for 5% concentrated solution.

• ADP3 is characterized by a high preference for alcoholic solutions and particularly for
the 10% concentration. Animals drinking under this pattern achieve the highest daily net
EtOH intake and drink at unusual times of the day. This pattern is mostly present on
the first days after a deprivation phase.

• ADP1 and ADP3 quinine animals present a decrease in EtOH5% in comparison with their
respective controls.

• ADP2 quinine animals present a decrease in EtOH20% intake in comparison with ADP2
controls. This pattern appears mostly during the 1st and 2nd AD phases for several days.
It is rare during advanced AD phases.

• On the first AD day, the distribution of ADP of the quinine groups showed a significant
dependence on the AD phase: during the first AD, most rats drank under ADP1; during
the 5th AD most of the rats drank as controls did, under ADP3.

• On the second AD day, a significant dependence on the AD phase is observed. As general
rules for both control and quinine groups:

– ADP2 tends to disappear,

– ADP3 tends to appear more frequently

throughout phases.

• On the third AD day, no significant dependence throughout phases for each group is
observed.

A comparative study is made between 5th and 9th cycles, where rats from the latter are different
to the ones used for the pattern modelling. The following is concluded:
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• The distribution of BP is independent of the baseline phase: in advanced phases (like the
5th and 9th) the probability of observing BP1, 2, 3, 4, 5 is [0.42, 0.04, 0.18, 0, 0.36] respec-
tively.

• The distribution of ADP is independent of the AD phase: It can be seen that from the
3rd day on, animals from the 9th ADE tend to remain on ADP3, corroborating the idea,
that the more AD phases, the longer this intense drinking pattern holds.

Few changes are observed regarding the intake profile of each BP for each group of both phases:

• BP1 rats (EtOH10% preferrers) decrease EtOH5% and increase EtOH10% intake on the
9th baseline with respect to the fifth, regardless of the group (C/Q). Control rats also
reduce the water intake.

• BP5 control rats increase the EtOH10% intake.

• The rest of the BP/groups does not show significant differences.

As a general conclusion, the found BP patterns, as well as their preference profile hold from the
fifth to the ninth baseline phases, and the few observed changes are towards the acuteness of
their drinking behaviors (less water, more alcohol).

Few changes are observed regarding the intake profile of each ADP for each group of both phases:

• A reduction on the EtOH5% intake is observed in all ADP/groups on the 9th phase with
respect to the fifth.

• ADP3 control animals increase the EtOH10% and decrease the EtOH20%. ADP3 quinine
animals decrease the EtOH10% intake.

As a general conclusion, after the 9th deprivation phase, rats avoid the less concentrated solution.
A preference for the EtOH10% solution prevails. The intake of EtOH20% shows no interesting
features.

Regarding the prediction of ADE from baseline drinking, it can be seen that BP2 and BP4 rats
are vulnerable to quinine taste affected solutions. BP1, BP3 and BP5 rats, tend to present ADE
regardless from the taste of the alcoholic solutions.

The prediction of presenting ADE at advanced phases from early drinking stages is not interest-
ing within the scope of this thesis. Most of the animals present ADE after several deprivation
phases regardless of the taste adulteration. I.e. independently from their initiation in the alco-
hol drinking, they will present inflexibility in the drinking, thus ADE. So nothing needs to be
predicted, since it is known that the outcome will be positive in almost all the rats.

More heterogeneous data sets could be analyzed, where the ADE is more meaningful (as ex-
plained, Wistar rats are known to present ADE after several deprivation phases even when
quinine is added to the alcoholic solutions). Following the described procedure, preliminary
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patterns of behavior could be identified, that could signal a future alcoholic dependence.

Though the original goal of prediction of ADE from early baseline patterns is not applicable in
the scope of this thesis (due to the data limitations), the developed methodology remains. It
allows the identification of early dynamic drinking patterns conditioning an addiction to alcohol,
as well as the pathway of the evolution from initial patterns of alcohol drinking into advanced
sick patterns.



76 Drinking patterns, evolution to and prediction of an alcohol addiction



Chapter 7

Discussion and conclusions

7.1 Summary of the study

In this thesis we have dealt with the classification of time series into dynamic patterns. The
patterns have been described in terms of dynamic statistical models and can evolve throughout
long time periods. The proposed methodology has been used to define alcohol drinking patterns
of Wistar rats and to observe the pathway towards the development of an addiction to alcohol.

7.1.1 Methodology for identification and modelling of dynamic drinking pat-

terns and their evolution

As a first step, we model patterns of behavior in terms of generalized linear models (GLM)
(see Chapter 4). A generalization of the GLM framework to allow for panels of time series
is described, which allows the modelling of several types of uni- and multi-variate panels of
time series, as long as they are samples of a member of the family of exponential distribu-
tions. Such an approach was already addressed in different time series modelling contexts
[FK87, Li94, Pru93, FK98]. Its flexibility for modelling several multivariate distributions, al-
lowing the inclusion of time varying covariate information, makes this framework a good choice
for the modelling kernels of interest.

In a second step, generalizing the results of [WD95], we developed an estimation-maximization
(EM) algorithm (see Chapter 5), which fits a finite mixture of GLM to panels of uni- or multi-
variate time series. A procedure for selecting the “best” model through BIC is proposed and
later on tested on simulations in Appendix A. The developed methods belong to time series
model-based clustering approach, which has been addressed by several authors, by fitting mix-
tures of specific models, e.g. Markov Chains [FSK06] and binomial processes based on either
logit or probit link functions to model probabilities of success [ZZ04, ABH11].

We allow with our generalization the classification of multivariate time series into a small amount
of dynamical patterns. The latter are modelled in terms of GLM with time varying covariates.

In order to explore the performance of the algorithms on data for which our assumptions hold
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(namely that conditioned on the covariates the observations are independent across time and
individuals), a simulation study is presented (see Appendix A). Indication of the fulfilling of
the nice theoretical properties of consistency and asymptotic normality are observed. The EM-
classifier finds the underlying structure in most of the 100 simulations experiments for each
number of clusters h = 1; . . . ; 5.

7.1.2 Application: behavioral studies on alcoholism in animals

The proposed methodology was applied to time series from behavioral studies on alcoholism,
yielding a dynamic characterization and evolution of ethanol drinking patterns of Wistar rats
under the long term alcohol self administration with repeated deprivation phases protocol. This
is an experimental set up, aiming to induce high alcohol baseline intake, withdrawal symptoms
during abstinence and relapse features after representation of alcohol. After deprivation of alco-
hol, rats present the alcohol deprivation effect and after several deprivation phases, they display
inflexible drinking by increasing intake with respect to baseline levels, even if the alcoholic so-
lutions are adulterated with quinine. This inflexibility is a clear sign of loss of control and
compulsion in the alcohol drinking, thus a symptom of a dependency.

Under the described protocol, time series from the first 1st, 3rd and 5th baseline and after-
deprivation phases are recorded. As a result, the drinking behavior of a rat, from early to
advanced stages is finely time-wise described, i.e. in terms of drinking amounts of each solution
every 5 minutes.

The raw inspection of the large amount of provided data by the naked eye is limited. It is difficult
-or perhaps impossible- to draw conclusions from large volumes of data without the aid of math-
ematical analysis. In this particular case, our method allows for the automatic identification of
subgroups of individuals, as well as the extraction of their common features, which represent
their particular drinking behavior. Linking such characteristics through different phases, an
evolution in the drinking behavior can be inferred. From this, one can analyze the small subset
of features characterizing each pattern and draw meaningful conclusions.

Accordingly, we applied the developed a methodology to process time series data of the same
group of individuals at different stages, identifying at each phase the underlying patterns of
behavior and characterizing them in terms of a probabilistic model. A contingency analysis
establishes the link between patterns of different phases, stating a pathway of the development
of a final behavior.

Upon analyzing the observed patterns of behavior at each stage, (as well as the presence of
dependency related symptoms, like ADE in spite of the aversive taste of the alcoholic solutions)
we draw the following conclusions.
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Intake measure and ADE classification

The first step on the analysis of data had to deal with a four-bottle paradigm (see Section
3.1). While in the literature the two-bottles paradigm is widely used [SS67, SL89], a four-bottle
paradigm leads to a higher self-administration of alcohol [SH99]. However, the analysis of the
alcohol consumption with the aid of the standard measures (net EtOH intake and solution pref-
erence) has some difficulties (see Section 3.2). After a comparison between several ethanol intake
measures, a water penalized net EtOH intake is defined (see Section 3.2.3). This reflects several
features that neither the net EtOH intake nor the EtOH preference present. While a reduction
in the net EtOH intake was observed, the water penalized net EtOH intake remained constant
throughout phases.

The new measure allows to explain how rats at advanced phases decrease the overall EtOH

intake when quinine is added (since the taste is very aversive), however, to compensate they
drink less water, which affects the metabolism of the alcohol, probably keeping the blood alcohol
concentration at the desired level in spite of the decreased intake.

A procedure for classifying animals into presenting ADE or not, based on the increased intake
between baseline and after-deprivation phases, regardless of the presence of quinine or not is
developed (see Section 3.3.2). The model of Sinclair et al. [SS67, SSJ73] of ADE was fitted to
the ADE classified animals, yielding excellent agreement.

During the first after-deprivation phase, rats whose alcoholic solutions were altered with quinine
were mostly classified as not presenting ADE. However, in later phases, most of them did present
ADE regardless of the aversive taste on their solutions. These are not new results [SH99], and
show how Wistar rats develop loss of control and inflexible drinking after several abstinence
period.

Patterns of behavior

A characterization of drinking behaviors of Wistar rats throughout different baseline and after-
deprivation phases of their drinking lifetimes was obtained. They reflect an evolution of the
drinking behavior throughout baseline and deprivation phases. Each of the found patterns is
characterized by the probability of a drinking event at each time point of the day, from each of
the presented bottles (in this thesis, H2O and 5%, 10% and 20% concentrated ethanol solutions).
These results can be found in Chapter 6.

Section 6.2 contains the results obtained on baseline drinking patterns. During the first measured
baseline phase, rats drink mostly in an explorative way: the more concentrated the alcoholic
solution, the less they drink from it. Additionally they are characterized by a very high fre-
quency of H2O intake. In further phases, they develop a preference for a solution and drink
with lower frequency, thus coming to a mature drinking phase. The net EtOH intake reduces
from baseline to baseline, however H2O penalized net EtOH intake remains almost constant
throughout phases: They drink less alcohol but consequently also less water (or vice versa).
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In Section 6.2, three patterns were found during after-deprivation phases. However their dis-
tribution over representation days varied from phase to phase. The more deprivation phases,
the longer the intense after deprivation drinking pattern (ADP3) lasted, even in presence of
quinine (from 5th after-deprivation on). The low after deprivation drinking pattern (ADP1) was
always present after several days, as a sign of normalization after binge drinking days following
abstinence. The second intense after deprivation drinking pattern (ADP2) tends to disappear
throughout phases, which indicates a primary stage in withdrawal patterns. For detailed results
on after deprivation patterns of behavior see Section 6.3.

Since on the latest phases most of the animals are classified as presenting ADE, no analysis of the
risk of presenting an alcoholic addiction can be performed. However, as soon as new data sets are
available, where the ADE outcome is not a fact, as it is in Wistar rats, important relationships
between patterns of drinking and risks of developing an addiction could be uncovered following
the proposed framework.

7.2 Discussion

In Chapter 6 we applied the methodology developed in Chapters 4 and 5 to data recorded un-
der the long term self administration with repeated deprivation phases protocol for Wistar rats,
which was described in Chapter 3.

On the methodological side, the results for multivariate data developed by [WD95] are general-
ized for the case of time series. These result can be seen as a further development on model based
clustering time series, that could complete the methods reviewed in [FS11]. Here, a dynamic
multinomial logit framework is described to model transition probabilities of inhomogeneous
Markov chains. This can be seen as a special case of our proposed framework, by treating pre-
vious observations as covariates and assuming a multinomial distribution with parameter n = 1
for the transition matrix’s rows. Many other specific applications can be generalized under the
proposed framework, as long as they involve samples from a member of the family of exponential
distribution. Our methodology gives a unified solution to a broad range of problems regarding
the modelling of multivariate time series.

For the biological society, the proposed framework allows the modelling and evolution of patterns
in many biological process. It allows not only the partition into meaningful groups, but also the
dynamical evolution analysis throughout time of many processes, such as the before/after drug
treatment change of targeted behaviors, and many other behavior-related analysis.

Our initial analysis on the overall ethanol intake showed that rats drink less net ethanol g per
body kg in time. However, since water intake decreases as well, it can be seen that the frac-
tion of ethanol intake per water (ml/dl) remains almost constant throughout phases. The H2O

penalized net EtOH intake proposed in Chapter 3 allowed the observation of this fact, and we
therefore strongly recommend it in the context of a four-bottle paradigm as an intake measure.
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Using the proposed intake measure, a classification of each individual in presenting ADE or not
was developed. The net EtOH intake of the animals classified as presenting ADE were fitted
to the model proposed in [SS67] obtaining very similar parameter values as the reported. We
assume this as a confirmation of the validity of the proposed procedure.

The developed GLM-EM classification algorithm yielded a thoroughly dynamic characterization
of ethanol drinking patterns during different stages of an individual’s drinking lifetime. Pat-
terns during different baseline phases reflect a clear evolution towards mature drinking behaviors,
where the frequency of drinking events (water, as well as ethanol) is low, and there is a clear
preference for a solution. The results concerning patterns of behavior after a deprivation phase
showed a development of an acuteness of the intense drinking pattern (particularly ADP3, see
Chapter 6), reflected in the fact that the more deprivation phases, the longer rats drink under
this pattern during the first days of representation of alcohol.

The results presented in this thesis can not be directly compared to those obtained so far in
humans. This is due to the fact that the analyzed data sets are very different (our data is
automatically recorded every 5 minutes from in-cage rats, while most studies on humans are
made on self reports on daily amounts of drinks), and so therefore are the obtained patterns.
The proposed modelling approach reflects, however, the concept of stochastic drinking pattern
described by Gruenewald et al. (see [GN94, Gru98, GRL+02]). They propose a probabilistic
distribution for a drinking event which is independent from the time of the day (data is recorded
based on telephone-calls, where the individual reports how many “drinks” he drank during the
day). We, on the other hand, have data finely describing drinking behavior which vary ac-
cording to the time of the day. This allows us to establish the probabilities of drinking events
based on the time of the day, and as it can be seen, they are dependent on the day/night cycle.
Whether these results reflect the different human drinking patterns could be analyzed in the fu-
ture and find possible correlations between them and either risk or even presence of an addiction.

7.3 Implications

From the technical side, a tool box for classification of time series into dynamical patterns, as well
as their characterizations in term of probabilistic models, has been developed. It constitutes the
unification of several results, namely the generalization of GLM for modelling time series [Li94]
to modelling panels of time series, and the generalization of the results of [WD95] for fitting
mixtures of GLM to multivariate time series. Its flexibility and generality allows the application
of these tools to other data sets that follow a certain structure, namely that it consists of:

1. time series data obtained from several individuals describing a particular phenomenon,

2. observations at each time point distributed from one member of the family of exponential
distributions,
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3. a final outcome/classification of each individual is provided that allows linking described
behavior with the outcome.

Under this framework, the time series from point 1.) can be classified by means of our GLM-
EM algorithm into a small set of dynamic patterns describing the temporal behavior of each
subgroup of time series. The found patterns can be correlated to the outcome given by point 3.,
yielding a prediction tool for further realizations of the particular phenomenon. In this case, the
new time series is classified into one of the existing patterns, and a probability distribution of
the outcome can be given, conditioned on this pattern. Thus, we emphasize that this a general
methodology which can be easily applied to several fields of research.

From the biological side, the results presented in this thesis are consistent with many known
results on the evolution of drinking patterns in Wistar rats throughout their drinking lifetime,
including the inflexibility in drinking, given by the presence of ADE in spite of quinine. It fur-
thermore provides a detailed dynamic description of the patterns of behavior at each stage. The
identified patterns of behavior not only contain a circadian rhythm component, but also several
higher frequency ones, whose analysis could provide further insight in the process of intake and
metabolism of ethanol.

Furthermore, this thesis provides biologists with a methodology to classify individual animals
into presenting ADE or not, comparing the increase in ethanol intake (after a deprivation phase
with respect to baseline drinking levels) between controls and animals whose alcoholic solutions
contain a bitter substance, like quinine. Quinine-animals drinking at the same level as controls
can be identified as having developed an inflexible drinking behavior towards alcohol, thus a
dependency.

7.4 Limitations and recommendations

In this section we summarize the shortcomings of the methodology we developed and the data
used. We furthermore propose some ways to overcome them, giving place to future research
topics continuing the thesis.

From the biological point of view, the initial goal of predicting the development of inflexibility in
drinking is not applicable, due to the fact that most Wistar rats develop it after several phases
of deprivation. This is widely reported in the literature (e.g. [SH99]) and can also be observed in
Chapter 6. However, this limitation can be easily overcome by performing the same experiments
on rats known to develop this feature with a more random frequency (certain percentage of rats
does, and the rest does not).

From the technical point of view, a first limitation relates to the simplifications made in order
to obtain better computational performances. The assumption of a common behavior within a
subgroup ignores the individual variability within the subpopulation. This is, in our opinion,
not so critical, since our goal is to reduce the dimensionality of the data, so that conclusions can
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be drawn. However, allowing for some individual variability in the model could be achieved by
either adding random effects components [ZK91] or by allowing for over-dispersion within the
GLM framework [Ait96].

The EM algorithm we developed has the limitation of converging to a local maximum (see
[DLR77]). Because of this, EM has to be restarted several times to achieve a global maxima.
We propose therefore to find good starting guesses, who can make EM converge to the global
maximum. Several other methods have been developed for fitting mixtures of distributions
which have a better performance, being however not so intuitive to understand and implement
as EM. A future step in the developing of our toolbox is related to the implementation of other
mixture fitting techniques (e.g. Gibb’s sampler [CG92, ZK91]), comparing their performance
and robustness, to choose the best one for our classification purposes.

7.5 Final comments

The results presented on this thesis provide experimental biologists with a tool for a better
understanding of the dynamic characteristics of ethanol drinking patterns at different stages of
an animal’s drinking lifetime. It furthermore proposes a new ethanol intake measure, which
quantifies relative net ethanol intakes with respect to water. This is, in our opinion, a much
more meaningful measure as the traditional net intake or solution preference at least in the
context of a four-bottle choice paradigm and for Wistar rats, which tend to decrease the net
alcohol intake per body kg, decreasing however also the water intake and thus maintaining an
almost constant level of EtOH ml per H2O dl.

The methodology presented can be further extended to different applications relating to pat-
tern discovery and description of time series datasets. One example of the this is related to
micro-array time series analysis. In this case, the identification of group of genes with a com-
mon regulation throughout the day and/or with oscillating components, as well as the analysis
of the found patterns in different groups of interest (e.g. sick/healthy) can be performed with
the proposed methodology. This is a very challenging application, since the micro-array data
sets are typically large, leading to computationally expensive analysis. However, the selection
of a first smaller subset of genes with certain application-dependent properties (small varia-
tion throughout members of a group at each time point, etc.) with the help of some statistical
tests, allows smaller size data sets, which can be accommodated, within the proposed framework.

Another example relates to fMRI image time series. Here three-dimensional images are analyzed
in terms of single voxel1 univariate time series. They are usually modelled in terms of linear
regression models and the goal is to find regions that activate simultaneously in the presence
of determined stimuli [BJS03]. Some fMRI time series clustering has been developed, based on
K-means and hierarchical clustering [GTR+99] and on finite mixtures of Pott models [XLW09].
Our framework could also be applied to this field to identify spatio-temporal patterns correlated

1a voxel is the generalization of a two-dimensional image pixel to a three dimensional image, i.e. is the intensity

value at certain tridimensional point of the 3-D image
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to the afore mentioned stimuli.



Appendix A

Simulation study

Many theoretical results on GLM and EM have been developed, which adapt straightforward
to the proposed framework[NW72, DLR77, FT01]. This chapter presents a simulation study
aiming to verify some theoretical properties. The experiment targets the following objectives:

• Analysis of the performance of the estimator for β of the multinomial-logit model pro-
posed in Chapter 4 for multivariate time series, assuming at each time t they distribute
Multinomial(n = 20, πt). The consistency and asymptotic normality of the estimator are
explored.

• Analysis of the performance of the classifier for several amount of clusters (h = 1,. . . ,7)

• Analysis of the performance of the amount of clusters selection through BIC

A.1 Consistency and asymptotic normality of the estimator

Consistency is a very important property which establishes that the more data employed in the
estimation, the closer will be the estimation to the real value. We refer to the MSE-consistency
also called strong consistency [BM11]:

Definition A.1.1. MSE-consistency of the estimator {β̃(n)} of β A sequence of estimators
{β̃(n)}n→∞, is an MSE-consistent estimator if

MSE(β̃(n)) =
1

NExp

NExp∑
e=1

(β̃(n)
e − β)2 → 0 as n →∞

�

In order to assert the MSE-consistency of the estimator β̃ developed in Chapter 4, multivari-
ate NExp = 100 time series data sets Y (n) = {Y (n)

it ∼ Mult(πt, n)}i=1...87
t=1...288 are simulated for

n = {20, 40, 80 100, 150, 200}. Each Y (n) contains N = 87 time series each of length T = 288
and R = 4 channels (like in the real data set). β̃n is estimated for each Y (n), and finally the
MSE(β̃(n)) is computed. Figure A.1 shows the MSE of each parameter β̃

(n)
p . The larger the

amount of data used to estimate βp, the lower is the mean square error MSE(β̃(n)
p ) for each

parameter. Since the MSE tends to zero when the length of the simulated time series grows,
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Figure A.1: MSE(β̃(n)
p ): The larger the n, the smaller MSE(β̃(n)

p ) ⇒ β̃ seems to be consistent.

the theoretical quantities should also have this property, thus it can be concluded that β̃(n) is
consistent.

A second important feature of an estimator is the

Definition A.1.2. Asymptotic normality

√
n ∗ T (β̃(r,n)p − βr

p)
D−→ N(0, V ), for certain V < ∞,

for r ∈ {1, . . . , R} the output channels of the multivariate data, n∗T the amount of observations
used to fit the data, and p = {1, . . . P r} the parameter index for the r-th channel.

�

Definition A.1.2 states that the distribution of the estimator takes asymptotically the shape of
an normal distribution with fixed variance. Amongst the consequences of this property, it can
be seen that the variance of the estimator tends to decrease in the rate of the amount of data
used to fit the model. Figures A.2 shows in each row r the empirical distribution of the 100
values β̃(r,n)p − βr

p (left) and sqrt(nT )(β̃(r,n)p − βr
p). The solid red line on the right plots depicts

an empirical distribution of N(0, V ) (obtained from a N(0, V ) sample of size 1000). On the
left it can be seen that the variance of (β̃(r,n)p − βr

p) decreases with increasing n, and on the
right it is shown that it decays at a rate

√
n ∗ T . This shows that our estimator, under the

given assumptions, is asymptotic normally distributed. Though each row represents a single
parameter p = 3 of each channel, the same holds for all the parameters (data not shown).
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Figure A.2: Distributions of the values β̃(r,n)(p) − βr(p) and
√

n ∗ T (β̃(r,n)(p) − βr(p)) of 100
simulations for one parameter (p = 3) of each response channel (row-wise). To the left, it can be
seen how the values (β̃(r,n)(p)−βr(p)) tend to have a smaller variance with increasing time series
length nT while in the right it is shown how the distribution variance decays with increasing n,
i.e. var(β̃(r,n)(p)− βr(p)) ≈ V/(nT ), with a constant V for all n.
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Tested clusters (h′) Misc.
105∗ 1 2 3 4 5 (h = h′)

R
ea

l
cl

us
te

rs
(h

)

1 1.266 1.268 1.269 1.271 1.272 0
2 1.301 1.258 1.26 1.261 1.263 0
3 1.306 1.267 1.243 1.244 1.246 0
4 1.309 1.274 1.247 1.229 1.231 0
5 1.314 1.277 1.253 1.237 1.226 0.8%

Table A.1: Model selection on simulated data: BIC finds in all cases the right model.

A.2 Performance of the classifier and model selection through

BIC

In order to analyze the performance of BIC in the model selection as well as of the classifier,
an experiment is designed, where data is simulated following the structure of the original data.
The general idea consists of fitting several mixtures, each of a different size, to the original data,
and to simulate testing data sets from these fitted models. The programs are again ran for
these data sets. Since the underlying models are known, several conclusions about the employed
procedure can be drawn. In the following, the experiment is described in detail.

1. for h = 1, 2, . . . ,H fit the multinomial-logit mixtures

F h = {βh
1 , . . . , βh

h , πh
1 , . . . , πh

h}

with h clusters to the original data Y .

2. for h = 1 : H simulate Y h ∼ F h, so that size(Y h) = size(Y ).

3. for h′ = 1 : Y , fit the mixtures

F h,h′ = {βh,h′

1 , . . . , βh′
h,h′ , π

h,h′

1 , . . . , πh,h′

h }

and compute the log-likelihood L(h, h′) = log(L(Y h|F h,h′)) and with this, the BIC.

If steps 2 and 3 are repeated several times, a mean BIC(h, h′) table can be computed and used
to have a more reliable result on the model selection behavior through BIC.

Notice that the structure of each Y h is known, so the misclassification rate can be computed
for each experiment. The selected amount of classes through BIC can be compared with the
real amount of classes used to simulate the data. This gives an idea of how good the clustering
procedure works, given the stated distributional assumptions, and how good BIC discovers the
underlying structure of the data set. Table A.1 shows these results.
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A.3 Conclusions

The theoretical results of consistency and asymptotical normality of the estimator for GLM
seem to hold when extended to mixtures of multinomial-logit time series. This was shown in
Section A.1 with the help of simulated data.

The discovery of the underlying amount of clusters in mixtures of multinomial-logit simulated
data was achieved through BIC, yielding the correct amount in all the experiments.

The classifier performs very good for the simulated data: it makes a very low rate of misclassifi-
cation (less than 1%) throughout 100 experiments for each h′ as shown in the rightmost column
of Table A.1.

Further experiments should be undertaken, perturbing the assumptions with errors, which in
the scope of this thesis has not been taken into account.
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Some extra BP and ADP figures
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Figure B.1: Classification of each individual on each baseline phase (top) and mean daily net
EtOH per baseline phase (bottom).
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Figure B.3: Box plots of mean daily amounts of each solution per pattern. The clusters appear
in the same order of their label, thus blue depicts BP1 while magenta represents the BP5.
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Figure B.4: Box plots of mean drinking amount per drinking event of each solution per baseline
pattern. The clusters appear in the same order of their label, thus blue depicts BP1 while
magenta represents the BP5.
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Figure B.5: Box plots of mean daily amounts of each solution per after-deprivation pattern. The
clusters appear in the same order of their label, thus blue depicts ADP1 while red represents
the ADP3.
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Figure B.6: Box plots of mean drinking amount per drinking event of each solution per after-
deprivation pattern. The clusters appear in the same order of their label, thus blue depicts
ADP1 while red represents the ADP3.
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