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Abstract

Palaeoenvironmental and microfacies analyses of the upper Cenomanian–lower Turonian limestone
beds (mid-Cretaceous) of the Sergipe Basin, northeastern Brazil, were carried out. Three outcrop areas
were sampled from northeast to southwest of the basin: the Japaratuba, Laranjeiras and Itaporanga
areas. Eleven sections were investigated where previous biostratigraphical studies have indicated the
position of the Cenomanian–Turonian transition, and 230 thin sections analysed. Four lithologic units
and four microfacies types (MFTs) were defined, and a facies model was established for the Sergipe
Basin. The microfaunal content was analysed for biostratigraphical purpose and palaeoenvironmental
interpretation. Stable isotope analyses (13C, 18O) were carried out in order to estimate the completeness
of the stratigraphical succession and to correlate the sampled sections.

The depositional environment of the upper Cenomanian–lower Turonian transition was that of
a ramp with a gentle dip. The deepening of the basin from northeast to southwest is represented by two
environments exposed in the study area: the mid ramp and outer ramp.

The mid ramp area is represented by nodular and bedded limestones, intercalated with coquina
banks as the result of currents transporting bioclastic material in the basin. In this area bioclastic mud-
to wackestones (MFT 1 and 2) and echinoderm-inoceramid packstones (MFT 3) dominate the
succession. These microfacies types mainly occur in the notheastern and central parts of the basin
(Japaratuba and Laranjeiras areas). The southwestern part (Itaporanga area) is dominated by MFT 4, a
laminated marly mudstone, deposited in the outer ramp area.

The microfauna consists mainly of foraminifers, calcispheres, radiolarians and rare ostracods.
Because of poor preservation foraminifers are only of limited use for biostratigraphical purpose,
however, they can be used as palaeoenvironmental indicators. In addition, roveacrinids can be used as
a biostratigraphical tool. The planktonic foraminiferal assemblages of the northeastern and central
parts of the basin (Japaratuba and Laranjeiras areas) suggest shallow to middle neritic environments
under well-oxygenated conditions. This is also indicated by the occurrence of bioturbation throughout
these sections. The low-diverse, sparse benthic microfaunal assemblages of the southwestern sections
(Itaporanga area) in addition to lamination structures, indicate oxygen-depleted conditions in middle to
deep neritic environments.

A stratigraphical gap in the southern Japaratuba area was detected by the δ13C curve. The
observed fluctuations in the carbon isotopic curve can tentatively be correlated throughout the studied
areas and is in agreement with the biostratigraphy.

Key words: Cretaceous, Cenomanian, Turonian; foraminifers, roveacrinids; microfacies,
sedimentology, facies, carbonates; palaeoenvironment, startigraphy, oxygen depletion, stable isotopes;
Sergipe Basin, Brazil.

Kurzfassung

Die Kalksteinschichten des oberen Cenoman– unteren Turon (mittlere Kreide) des Sergipe Beckens in
Nordost-Brasilien, wurden bezüglich des Paläoenvironments und der Mikrofazies untersucht. Dazu
wurden drei Aufschlussgebiete vom Nordosten nach Südwesten des Beckens beprobt: das Japaratuba-,
Laranjeiras- und Itaporanga-Gebiet. In der Region, in der durch vorherige biostratigraphische Studien
die Lage des Cenoman-Turon-Übergangs nachgewiesen werden konnte, wurden elf Profile beprobt
und 230 Dünnschliffe angefertigt. Vier lithologische Einheiten und vier Mikrofazies-Typen konnten
unterschieden werden. Daraufhin wurde für das untersuchte Gebiet ein Faziesmodel erstellt. Die
Mikrofauna wurde auf ihre biostratigraphische Verwendbarkeit analysiert und zur Interpretation des
Paläoenvironments. Stabile Isotope (13C, 18O) wurden gemessen, zum einen um die Vollständigkeit der
stratigraphischen Abfolge zu überprüfen und zum anderen um die beprobten Profile miteinander zu
korrelieren.

Der Ablagerungsraum der oberen Cenoman- und unteren Turon-Schichten war eine leicht
geneigte Karbonatrampe. Die Vertiefung des Beckens von Nordosten nach Südwesten ist in zwei
Ablagerungsbereichen aufgeschlossen: der mittleren und äusseren Rampe.

Die Mikrofauna der untersuchten Schichten besteht hauptsächlich aus Foraminiferen,
Calcisphären, Radiolarien und wenigen Ostrakoden. Der Erhaltungszustand der Foraminiferen ist



relativ schlecht. Aus diesem Grund sind sie zur Interpretation des Paläoenvironments geeignet,
konnten für biostratigraphische Zwecke aber nur begrenzt benutzt werden. Neben Foraminiferen
lassen sich Roveacriniden als Grenzmarker nutzen. Die Vergesellschaftung planktonischen
Foraminiferen des nördlichen und zentralen Bereich des Beckens (Japaratuba- und Laranjeiras-Gebiet)
weisen auf ein flaches bis mittleres neritisches environment unter gut durchlüfteten Bedingungen.
Dafür spricht ausserdem die starke Bioturbation der Schichten. Die niedrig-diversen, wenig
verbreiteten benthischen Mikroorganismen des südwestlichen Bereichs des Beckens (Itaporanga-
Gebiet) weisen auf ein mittleres bis tief-neritisches environment unter sauerstoff-reduzierten
Bedingungen hin. Die Laminationsstrukturen dieser Schichten unterstreichen dies.

Die Schichtlücke im südlichen Japaratuba-Gebiet konnte mit Hilfe der δ13C-Kurve
nachgewiesen werden. Die auftretenden Fluktuationen der Kohlenstoff-Kurve lassen eine Korrelation
der einzelnen Profile zu, die mit der Biostratigraphie übereinstimmt.

Schlüsselwörter: Kreide, Cenoman, Turon; Foraminiferen, Roveacriniden; Mikrofazies, Sedimentologie, Fazies,
Karbonate; Paläoenvironment, Stratigraphie, Sauerstoffarmut, Stabile Isotope; Sergipe Becken, Brasilien.

Resumo

Foram realizadas análises paleoambientais e microfaciológicas de camadas de calcário do
Cenomaniano superior-Turoniano inferior (Cretáceo médio) da Bacia de Sergipe, nordeste do Brasil.
Três áreas de afloramentos que estendem-se do nordeste ao suduoeste da bacia foram amostradas: área
de Japaratuba, Laranjeiras e Itaporanga. Onze seções e 230 seções delgadas foram analizadas, onde
estudos bioestratigráficos anteriores tem indicado o posicionamento da transição do Cenomaniano-
Turoniano. Quatro unidades litológicas e quatro tipos de microfácies (MFT’s) foram definidas, e um
modelo de fácies foi estabelecido para a Bacia de Sergipe. A microfauna encontrada foi analizada
tendo como objetivo proposta bioestratigráfica e interpretação paleoambiental. Análises de isótopos
foram realizadas a fim de identificar hiatos na seção estratigráfica e correlacionar a seções amostradas.

A transição Cenomaniano superior-Turoniano inferior foi caracterizada por um ambiente
deposicional de rampa de mergulho suave.  Do nordeste à sudoeste, esse ambiente é subdividido em
rampa intermediária e rampa externa identificado em duas áreas expostas que também representa, da
área mais rasa à mais profunda da bacia.

A área onde foi indentificada a rampa intermediária, é representada por calcários nodulares e
estratificados, intercalados com bancos de coquinas resultantes de correntes que transportavam
materiais bioclásticos na bacia. Nesta área, a seção foi dominada por “mud-wackestones” (MFT 1 e 2)
e “packstones” originados de equinodermos-inoceramídeos (MFT 3). Essas microfácies ocorrem
principalmente na parte nordeste e central da bacia (Japaratuba e Laranjeiras). A parte sudoeste (área
de Itaporanga) é dominada por margas laminadas (MFT 4) depositadas em ambiente de rampa externa.

A microfauna consiste principalmente de foraminíferos, calcisferas, radiolários e raros
ostracodes. Devido a pobre preservação, o uso dos foraminíferos para propostas bioestratigráficas foi
limitado. Contudo, eles podem aparentemente ser utilizados como indicadores paleoambientais. Além
dos foraminíferos, os roveacrinídeos podem ser usados como ferramenta bioestratigráfica. As
assembléias de foraminíferos planctônicos que ocorrem na parte nordeste e central da bacia (áreas de
Japaratuba e Laranjeiras) sugerem um ambiente raso à nerítico médio sob condições de águas bem
oxigenadas. Isto também é indicado pela ocorrência de bioturbação por toda a seção. A baixa
diversidade, escassez de assembléias de microfauna bentônica nas seções sudoeste (área de
Itaporanga), além de estruturas de laminação, indicam condições de depleção de oxigênio em
ambientes nerítico médio à profundo.

Um hiato estratigráfico ao sul da área de Japaratuba foi detectado pela curva de 13C. As
flutuações observadas no isótopo de carbono podem tentativamente ser correlacionadas por toda área,
contudo elas não correspondem a nenhum isótopo estável conhecido da passagem

Palavras-chaves: Cretáceo, Cenomaniano, Turoniano; foraminíferos, roveacrinídeos; microfácies,
sedimentologia, fácies, carbonatos; paleoambiente, estratigrafia, oxigênio depleção, isótopos estáveis,
Bacia de Sergipe, Brasil.



Index

Abstract

Chapter 1: Introduction 1
1.1 Objectives 1
1.2 Scope of research 4

1.2.1 Oceanic Anoxic Event 4
1.2.2 Mass extinctions 6

1.3 Previous works 7

Chapter 2: Geologic setting 10
2.1 Evolution of the Sergipe Basin 11

Chapter 3: Material and methods 16
3.1 Field work 16
3.2 Study area and localities 17

3.2.1 Maps 17
3.2.2 Japaratuba 18
3.2.3 Laranjeiras 19
3.2.4 Itaporanga 20

3.3 Sample preparation and analysis 20
3.3.1 Thin sections 20
3.3.2 Fossil extraction 21
3.3.3 Scanning electron microscopy 21
3.3.4 Stable isotope analysis 22

Chapter 4: Biostratigraphical background 23
4.1 Ammonite zonation 23

Chapter 5: Lithologic units 26
5.1 The Cotinguiba Formation 26
5.2 Lithologic units in the study area 26

5.2.1 Lithologic unit 1 26
5.2.2 Lithologic unit 2 27
5.2.3 Lithologic unit 3 27
5.2.4 Lithologic unit 4 27

5.3 Distribution of the lithologic units in the outcrop sections 28
5.3.1 Japaratuba area 28
5.3.2 Laranjeiras area 29
5.3.3 Itaporanga area 29

Chapter 6: Microfacies analysis 34
6.1 Microfacies types 34

6.1.1 Microfacies types 1 and 2 35
6.1.2 Microfacies type 3 37
6.1.3 Microfacies type 4 39

Chapter 7: Palaeoenvironmental analysis 45
7.1 Oxygen deficiency in the Sergipe Basin 45



7.1.1 Terminology of oxygen deficiency 45
7.1.2 Oxygen deficiency in the outcrop areas 47

7.2 Palaeoenvironment-indicating fauna 49
7.2.1 Foraminifers 49

7.3 Conclusions 55

Chapter 8: Facies model 57
8.1 Facies model for the Sergipe Basin 58

8.1.1 The mid ramp area 58
8.1.2 The outer ramp area 60

8.2 Conclusions 62

Chapter 9: Stratigraphy 65
9.1 Biostratigraphy in the study area 65

9.1.1 Roveacrinidal zonation 66
9.1.2 Foraminiferal zonation 68

9.2 Stratigraphy based on microfacies 69
9.3 Isotope stratigraphy 72

9.3.1 Results 73
9.4 Biostratigraphy versus isotope stratigraphy 78
9.5 Conclusions 81

Chapter 10: Comparisons and correlations 82
10.1 Brazil 82
10.2 Africa 82
10.3 North America and Europe 84

Chapter 11: Conclusions 86

Summary 89

Acknowledgements 91

References 93

Plates

Appendix



1. Introduction 1

Chapter 1

INTRODUCTION

1.1 Objectives

The present work is a multidisciplinary study that combines micropalaeontological,

sedimentological and stable isotopic data to reconstruct the environmental conditions in

the upper Cenomanian–lower Turonian (Cretaceous) limestone beds in the Sergipe

Basin, northeastern Brazil. This basin is one of numerous marginal basins of the South

Atlantic Ocean and forms the southern part of the Sergipe-Alagoas Basin (Figure 1.1).

It is an important hydrocarbon-producing basin and therefore a region where geological

investigations have been concentrated. Despite the fact that this economic interest has

resulted in a wealth of publications on the palaeontology and stratigraphy of the

Cretaceous succession, only a few studies of the Cenomanian–Turonian transitional

beds have so far been published.

Figure 1.1: Generalised location map of the marginal basins (dotted) of northeastern Brazil
(modified after Walter et al., in press). Abbreviations of state names: AL= Alagoas, BA= Bahia,
CE= Ceará, MA= Maranhão, PA= Pará, PE= Pernamuco, PI= Piaui, RN= Rio Grande do Norte,
SE= Sergipe

The principal objectives were as follows:

(1) to analyse the different lithologies in the studied localities;

(2) to analyse the different microfacies characteristics of the sampled sections;

(3) to analyse the palaeoenvironmental conditions from the fauna, with

emphasis on foraminifers and roveacrinids;
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1. Introduction 2

(4) to decipher the effect of oxygen-depleted conditions on the shelf sediments

and the microfauna of the study area;

(5) to establish a facies model for the Sergipe Basin for the

Cenomanian–Turonian;

(6) to analyse the microfossil content concerning its biostratigraphical

application;

(7) to establish a δ13C-curve for the boundary succession to estimate the

completeness of stratigraphical sections and for local correlation of isolated

outcrops and correlation with the biostratigraphical framework and the

existing Cenomanian-Turonian carbon stable-isotope data from other areas.

The stratigraphical position of the Cenomanian–Turonian boundary has long been

discussed. This is due to many different biostratigraphical horizons having been used as

possible boundary markers. The proposal of the Turonian Working Group of the

Subcommission on Cretaceous Stratigraphy for a Global Boundary Stratotype section

and Point at the base of Bed 86 in the Rock Canyon Anticline Section west of Pueblo,

Colorado, USA, is expected to end these arguments. In this section, according to current

knowledge, this level coincides with the first occurrence of the ammonite Watinoceras

devonense Wright & Kennedy, 1981 (Bengtson, 1996).

Based on detailed lithologic and palaeoenvironmental studies a facies model was

established for the exposed upper Cenomanian–lower Turonian succession in the

Sergipe Basin. Information on the rock texture, the mineral or skeletal nature of the

components, the proportion of these components and their distribution within the matrix

is preserved in thin sections. Microfacies analysis is an important method for the study

of the mode of transport and depositional environment, and provides a tool for obtaining

information about the palaeontological and petrological composition of the sedimentary

rocks. Besides this it allows differentiation of former biotopes by identification of

diagnostic microfossils, sedimentological structures and geochemical composition of a

sequence. The study and interpretation of all observable characteristics of a rock in thin

section supports the biostratigraphical framework, helps to reconstruct the former

depositional environment and the lithogenesis, and provides a tool for local

chronostratigraphical correlation as well as data for palaeoenvironmental

interpretations.
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The material collected comprises 230 lithological samples from three outcrop areas

(Figure 1.2):

a) the Japaratuba area, in the northern part of the Cenomanian–Turonian

outcrop belt,

b) the Laranjeiras area, in the central part, and

c) the Itaporanga area in the south.

Figure 1.2: Simplified geological map of onshore area of the Sergipe Basin, with location of the
principal areas of study: Japaratuba, Laranjeiras and Itaporanga (modified after Bengtson,
1983).

In these areas shallow-water bioclastic carbonates dominate the sequence. The rocks are

predominantly light-coloured limestones, which form a rather uniform succession and

are macroscopically difficult to distinguish from each other.

The Cenomanian–Turonian succession of the Sergipe Basin in northeastern

Brazil is well exposed and contains a diverse macro- and microfauna. This makes the

basin an ideal study area to establish a reliable chronostratigraphy for the northwestern

South Atlantic, which will provide a basis for comparisons and correlations with

surrounding areas.
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The present work is based primarily on microfacies analysis and stable isotopic

data from the boundary succession. Based on the results of Bengtson (1983) and

Berthou & Bengtson (1988) eleven sections were chosen for the study of the upper

Cenomanian–lower Turonian limestone beds. The first part was carried out in 1995 and

focused on the Japaratuba area; in the second part of the field work, carried out in 1996,

sections were chosen from the Laranjeiras and Itaporanga areas. In the sections studied

detailed lithologic sampling was carried out and a facies model was established. The

model was established for the early Turonian limestone beds, because for this time

interval comparable data are available for all three areas studied.

1.2 Scope of research

1.2.1 Oceanic Anoxic Event

Over the last decades the Cenomanian–Turonian boundary has been the subject of

international research interest. By the end of the Cenomanian and beginning of the

Turonian significant global palaeoceanographic and climatic changes occurred, as

shown by the widespread deposition of organic-rich rocks. The deposition of such

“black shales“ in major oceanic basins was termed the “Oceanic Anoxic Event“ (OAE)

by Schlanger & Jenkyns (1976). Some authors consider the Cenomanian–Turonian

oceanic anoxic event (OAE or Bonarelli Event of, e.g. Jenkyns, 1990, 1999) to be a

global phenomenon and assume that significant parts of the world ocean were

periodically oxygen deficient (e.g. Arthur et al., 1987; Schlanger et al., 1987), whilst

others believe that there is no evidence of global anoxia (e.g. Cooper, 1977; Vail et al.,

1977; Hancock & Kauffman, 1979; Waples, 1983; Haq et al., 1988).

The causes of such anoxic events are not fully understood because of the

difficulty of distinguishing between local geodynamics and global events. Several

models have been suggested to explain the factors causing an Oceanic Anoxic Event.

Most authors assume a coastal upwelling which lead to increased productivity and an

intensified oxygen-minimum-zone (OMZ) (Schlanger & Jenkyns, 1976; Arthur et al.,

1987; Schlanger et al., 1987; Jarvis et al., 1988). Some authors postulate that the early

Turonian was marked by a peak transgression caused by a wordwide high sea-level

stand (e.g. Hancock & Kauffman, 1979; Arthur et al., 1987; Haq et al., 1987; Peryt &

Wyrwicka 1991). The association of sea-level peaks with anoxic events has been
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rejected by Hancock (1993), who explained this hypothesis as a result of misdating the

Turonian boundary (e.g. by means of foraminifers or ammonite-inoceramid zonations).

According to Arthur et al. (1987) the increase in shelf-sea areas caused by

transgressions led to enhanced production of warm saline waters, which sank to bottom-

water masses. This process led to an increase in the rates of oceanic turnover because

the Cretaceous oceanic circulation was salinity driven. This increased circulation

created enhanced upwelling, which triggered the OAE. A different model is favoured by

Summerhayes (1987). According to his model, the upwelling was caused by an influx

of nutrient-rich oxygen-deficient bottom waters from the northern South Atlantic,

triggered by the separation of Africa from South America. However, the dynamics of

the Cenomanian–Turonian upwelling event remain poorly understood and few current

models adequately explain all the characteristics of the sedimentary deposits of that

time (e.g. Jenkyns, 1999). Nevertheless, it is generally accepted that the event did lead

to widespread anoxia in the oceans (Jarvis et al., 1988).

Jenkyns (1999) suggested a climate model to explain the causes of an oceanic

anoxic event (Figure 1.3).

Figure 1.3: Factors causing an Oceanic Anoxic Event (after Jenkyns, 1999)
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A triggering factor is the warming-up of the globe due to volcanogenic CO2

(greenhouse effect), which leads to increased evaporation from the ocean, greater

precipitation on land and consequently increased continental weathering and seaward

transport of nutrients. The flux of organic matter and biogenic silica to the sea floor

would have increased, as would the δ13C value of sea water and the oceanic anoxic

event would have begun (Jenkyns, 1999). The general lack of bioturbation in these beds

is taken to indicate an absence of a burrowing fauna due to anoxic conditions

(Schlanger & Jenkyns, 1976; Arthur & Schlanger, 1979; Jenkyns, 1980; Schlanger et

al., 1987; Arthur et al., 1990; Jenkyns, 1999).

Organisms preferentially extract the lighter 12C isotope during photosynthesis.

This leads to a relative enrichment of the heavier 13C isotope in the bicarbonate of the

ocean (Scholle & Arthur, 1980; Pratt, 1985; Schlanger et al., 1987; Arthur et al., 1988;

Arthur et al., 1990). The 12C-depleted carbon reservoir in the productive water mass is

then expressed by the 13C-enriched biogenetic carbonate (Scholle & Arthur, 1980; Pratt,

1985; Schlanger et al., 1987; Arthur et al., 1988; Arthur et al., 1990; Hilbrecht et al.,

1992). The δ13C-curves can be used for stratigraphical purposes and may indicate

changes in the sediment accumulation/erosion ratio and sea level fluctuations (Voigt &

Hilbrecht, 1997).

1.2.2 Mass extinctions

The late Cenomanian–early Turonian eustatic sea-level rise (Haq et al., 1987; Cooper,

1977; Hancock & Kauffman, 1979) has been related to faunal extinctions by many

authors (e.g. Elder, 1987, 1991; Fitzpatrick, 1996; Hart, 1996). However, the effect of

mass extinctions varies regionally. The anoxic events had a major effect on the

planktonic foraminifers and the idea that the movement of the oxygen minimum zone in

the water column could affect the evolution of the planktonic foraminiferal population

was first suggested by Jarvis et al. (1988). Peryt & Lamolda (1996) draw similar

conclusions concerning the turnover of the benthic foraminiferal assemblages in

northern Spain. Hart (1996) explains a connection between microfossil extinction and a

collapse in the food chain, observed in the late Cenomanian Plenus Marls (Europe).

According to Elder (1987), the faunal turnover at the Cenomanian–Turonian boundary

at Black Mesa, Arizona, probably resulted from changes in the climate or basin/global

oceanic circulations. The extinction of approximately 50 percent of molluscan species
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in the Western Interior Basin was associated with circulation events and a transgressive

pulse followed by increasing sedimentation rates (Elder, 1991). In addition, the biotic

changes suggested low-oxygen benthic concentrations (Elder, 1989). Extinction steps

closely correlate with unusual trace metals (especially Ir), and stable isotope 13C and
18O fluctuations (Orth et al., 1988; Kauffman, 1988, 1996), suggesting cause and effect.

This left a worldwide depauperate marine fauna by the end of the Cenomanian (e.g.

Jefferies, 1962; Elder, 1987, 1989, 1991).

The characteristic microfossils observed at the Cenomanian–Turonian extinction

event, as small planktonic foraminifers (Heterohelix sp.), small benthic foraminifers,

calcispheres and radiolarians (Hart, 1996; Tur, 1996) all occur in the

Cenomanian–Turonian transition deposits studied in Sergipe. Due to the fact that the

Cenomanian–Turonian Oceanic Anoxic Event had minor effects on the shallow shelf

environment of the area studied, the microfauna was apparently not enough affected for

mass extinctions to occur. The only effect observed was the rise of the oxygen-

minimum zone, which changed the palaeoenvironment. It may, of course, be that the

microfossil content is not representative, due to dissolution, which partly destroyed the

original microfaunal assemblage. In the case of the macroinvertebrates a repeated

extinction is followed by biotic recoveries and immigration events (Seeling, 1999), but

there is no evidence of a catastrophic event. The stepwise pattern of faunal turnover can

be interpreted as a response to habitat changes linked to the late Cenomanian sea-level

rise (Seeling, 1999).

1.3 Previous works

In his study on the litho- and biostratigraphy of the Cenomanian to Coniacian of the

Sergipe Basin, Bengtson (1983) gave a complete annotated listing of the fossils reported

in the literature (Bengtson, 1983, Tab. 1–10). Moreover, he added a comprehensive list

of the historical development of age assignments and biostratigraphy of the middle

Cretaceous sequences of Sergipe. Due to this, only the most important literature mostly

about the microfauna and microfacies analysis will be mentioned here.

In the years 1940–1956 prospecting for oil in the Sergipe Basin led to increased

investigations shown in a flood of publications and numerous internal reports of the

Brazilian national oil company Petrobras (Petróleo Brasileiro S.A.), the successor

company of the former Conselho Nacional do Petróleo (CNP).
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From 1961 onwards K. Beurlen published several papers on the geology and

palaeontology of the Cretaceous of northeastern Brazil (e.g. Beurlen 1961, 1964, 1970,

1971a, b). He was the first to attempt to establish an ammonite zonation of the

Aptian–Albian sequence (Beurlen, 1961). K. Beurlen (1970) added Paramammites and

Neoptychites to the lower Turonian fauna of the Sergipe Basin.

After this variety of publications concerning the macrofauna of the Sergipe

Basin, Petri (1962) presented the first foraminiferal zonation for the Turonian.

Krömmelbein (1964) did additional work on the microfauna, and described ostracods

from the Cotinguiba Formation. Müller (1966) published the first palynological

zonation for the Turonian–Coniacian interval. Supplementary works on foraminifers

and ostracods were published by Braun (1966), Fernandes (1967), Viana (1969) and

Schaller (1970), who contributed a basic geological reference for the basin, resulting

from earlier publications.

From the late 1960s onwards, Reyment published several papers on the

palaeobiogeography of the South Atlantic (e.g. Reyment 1969, 1972, 1973, 1976, 1977,

1980). Together with several co-authors he studied the Cretaceous geology,

palaeontology, biostratigraphy and palaeogeography of western Africa and South

America (e.g. Reyment, 1978; Reyment & Tait, 1972; Reyment & Neufville, 1974;

Reyment et al., 1976).

Simões & Bandeira (1969) and Bandeira (1978) described depositional models,

palaeoenvironmental interpretations and identified potential reservoirs for application in

petroleum exploration, based on microfacies studies.

Neufville (1973, 1979) described lower Turonian ostracods from Petrobras in

the Itaporanga and Japaratuba boreholes. Bengtson (1979) made a comparison of the

zonation based on ammonites with that based on foraminifers, nannofossils and

palynomorphs. On the basis of ammonites, Bengtson (1983) established a

biostratigraphical framework, and subdivided the Cotinguiba Formation

(Cenomanian–Coniacian) into eight units. As part of this study on the litho- and

biostratigraphy of the Cenomanian–Coniacian sequence, he collected macrofossils from

604 localities, and these are named and described (Bengtson, 1983, appendix 1).

Bengtson & Berthou (1983) and Berthou & Bengtson (1988) attempted a

stratigraphical zonation and correlation of the Cenomanian–Coniacian by microfacies

analysis. Their study served as an important framework for the upper

Cenomanian–lower Turonian boundary bed studied in detail herein.
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The stratigraphy, depositional and geological history of the marine Cretaceous

carbonate succession of the Sergipe Basin have been discussed by e.g. Ojeda & Fugita

(1976) and Feijó (1995), amongst others. In addition a number of studies on the

palaeontology and sedimentology of the Cotinguiba Formation were published (e.g.

Hessel, 1988; Koutsoukos & Hart, 1990a, 1990b; Koutsoukos et al., 1990, 1991, 1993;

Smith & Bengtson, 1991; Koutsoukos 1992; Koutsoukos & Bengtson, 1993; Bengtson

et al., 1995; Bengtson & Koutsoukos, 1996; Koutsoukos, 1996; Carmo, 1997).

Herrmann (1997) and Schneider (in prep) carried out a geological mapping of

the Cenomanian–Turonian boundary beds in the northeastern part of the Basin

(Japaratuba area). These results remain unpublished, however, part of the work of

Herrmann (1997) contribute to the study of Walter et al. (in press).

The most recent work on the palaeontology and biostratigraphy of

macroinvertebrates of the Cenomanian–Turonian transitional beds of the Sergipe Basin

has been carried out by Seeling (1999) and is partly published (e.g. Seeling & Bengtson,

1999; Seeling, 2000; Andrade & Seeling, 2000; Seeling & Andrade, 2000).
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Chapter 2

GEOLOGICAL SETTING

The Sergipe Basin forms the southern part of the Sergipe-Alagoas Basin in northeastern

Brazil (Figure 1.2). This Atlantic-type basin was formed as a rift valley by the rupture

of the former African-South American continent. The rifting began in the Early

Cretaceous and was accompanied by strong tectonic activity, which formed the

structural framework of this area. The Sergipe Basin and the contiguous Alagoas Basin,

form a half-graben, which is open to the southeast and bounded to the northwest by

faults. The counterpart of the basin is presumably the Gabon Basin in West Africa

(Wilson & Williams, 1979; Castro, 1987). A permanent deep-water connection between

the North and the South Atlantic oceans was established during the Turonian, when sea-

floor spreading became dominant in the equatorial region (Castro, 1987). The

stratigraphy of the basin was most recently reviewed by Feijó (1995) and its tectonic

evolution discussed by Ojeda (1982) among others (Figure 2.1).

Figure 2.1: Stratigraphy and tectonic evolution in the Sergipe Basin after Ojeda (1982) and
Chang et al. (1988); depositional environments after Mabesoone (1994).
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The regional dip averages 10-15° to the southeast, so that progressively younger rocks

crop out towards the coast. Depth to basement ranges between 1 and 3 km onshore,

whereas offshore depths locally exceed 10 km (Ponte et al., 1980).

2.1 Evolution of the Sergipe Basin

The development of the Brazilian marginal basins has been discussed by several authors

(e.g. Ojeda & Fugita, 1976; Ojeda, 1982; Chang et al., 1988). Chang et al. (1988)

recognised five megasequences (Figure 2.1): (a) continental, (b) transitional evaporitic,

(c) shallow carbonate platform, (d) marine transgressive and (e) the marine regressive

megasequence. These sequences were defined as ranging from the Jurassic to

Cretaceous and related to the breakup of Pangaea and to the evolution of the South

Atlantic Ocean.

Mabesoone (1994) subdivided the evolution of the Brazilian Atlantic-type

basins according to their palaeoenvironment (Figure 2.1). In Mabesoone´s (1994)

publication the tecto-sedimentary evolution proposed by Ojeda (1982) is used. This

classification is accepted by most workers and therefore preferred in this paper. The

sedimentary fill of the Sergipe Basin consists of four main tecto-sedimentary sequences

and can be summarised as follows: (1) the pre-rift phase, (2) the rift phase, (3) the

transitional phase and (4) the drift phase.

Pre-rift phase

The basal non-marine pre-rift phase dated as late Jurassic (?) to earliest Creataceous is

represented by alluvial fans resting unconformably on the crystalline basement or on

Palaeozoic deposits.

Rift phase

The non-marine rift phase ranges from earliest Cretaceous to early Aptian. The tectono-

sedimentary part is characterised by deposition of siliclastic and carbonatic material due

to the breakup of the continental crust of the Gondwana continent in the early

Cretaceous, causing a long central graben and a rift-valley system (Koutsoukos, 1989).

The basin opened as a branch of the South Atlantic rift due to differential movement of

the NE Brazilian microplate (Mabesoone, 1994). Sedimentary rocks deposited during

this phase are represented by the Igreja Nova and the Coruripe Subgroups (Figure 2.1).

Transitional evaporitic phase

The rocks of the overlying transitional phase are of broadly Aptian age. This phase is

characterised by progressive spreading allowing the establishment of a narrow
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epicontinental sea (Koutsoukos et al., 1993). The phase is represented by the Muribeca

Formation, which consists of evaporitic and siliclastic deposits formed in hypersaline

environments; this unit is subdivided into various members (Mabesoone, 1994).

Drift phase

The following open marine drift phase (Riachuelo, Cotinguiba and Calumbi formations,

Figure 2.2) is of Aptian (possibly early Aptian) to Miocene/Pliocene age in the deepest,

offshore parts of the basin (Asmus, 1981; Berthou & Bengtson, 1988). The initial stage

of the marine drift phase is represented by an extensive carbonate platform extending

across 3500 km from the Santos Basin (south of Rio de Janeiro) to the Barreirinhas

Basin on the northern equatorial margin.

Figure 2.2: Simplified geological map of onshore area of the Sergipe Basin and Estância area
(modified after Bengtson, 1983), see Figure 1.2 for position of areas studied.
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The Riachuelo Formation (Aptian–Albian) has an average thickness of 500 m and is

composed of three members, represented by a mixed carbonate-siliciclastic unit. The

Cotinguiba Formation (Cenomanian–Turonian) consists of deep water, fine-grained

carbonates, with thickness ranging from 200 m to over 1000 m locally in the onshore

part (Koutsoukos et al., 1993). The mostly siliclastic Calumbi Formation represents the

depositional cycle of the climatic turnover, which lasted until the Miocene or even

Pliocene (Koutsoukos et al., 1993).

The Cenomanian–Turonian sequence studied here is part of the Cotinguiba

Formation, which is exposed in a belt running west to north of the state capital Aracaju,

and locally in the Estância area south of the Sergipe Basin (Berthou & Bengtson, 1988)

(Figure 2.2).

The Cotinguiba Formation consists of two members (Figure 2.3), the Sapucari

and the Aracaju Member. The Sapucari Member is represented by grey to blue-grey

carbonates with a thickness locally of more than 800 m and with sparse siliciclastic

intercalations at the base. The dominantly massive to laminated rock sequence is locally

intercalated by chert horizons and nodules, coquinoid limestones and intraformational

breccias and conglomerates (Berthou & Bengtson, 1988).

Figure 2.3: Lithostratigraphical units of the marine Cretaceous of the Sergipe Basin (modified

after Koutsoukos et al., 1993).
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carbonate mudstones and marlstones, reaching a maximum thickness of 300 m

(Koutsoukos et al., 1993). This member is found in structural lows and the present-day

offshore part of the basin.

The overlying Calumbi Formation is dominated by dark shales with

intercalations of fine- and coarse-grained sandstones deposited as turbiditic submarine

fans. This formation ranges from the middle upper Coniacian/Santonian to the Pliocene

(Feijó, 1995; Koutsoukos, 1998).

The Cotinguiba limestones were deposited in the neritic to upper bathyal

environment of a carbonate ramp, with moderately dysoxic to truly anoxic bottom

conditions and well-oxygenated epipelagic water masses (Koutsoukos et al., 1991). The

succession was deposited during a relative sea level rise, which caused the drowning of

the Riachuelo shallow water carbonate platform (Koutsoukos et al., 1993). The

occurrence of dysoxic-anoxic episodes during the mid-Cretaceous was due to several

factors such as restricted physiography in the deep basin, salinity-stratified water

masses, increased epipelagic primary productivity and periodic high sea-level

conditions (Koutsoukos et al., 1991). Three events of maximum oxygen depletion from

middle neritic to upper bathyal environments are recorded in the Cretaceous succession:

the first in the late Aptian–earliest Albian, the second in the early Cenomanian and the

third around the Cenomanian–Turonian boundary (Koutsoukos et al., 1993).

The Sergipe Basin developed under a regime of predominantly extensional

stresses (Castro, 1987). During the Cenomanian the depositional rate was low and

coupled with tectonic readjustments in the intensely block-faulted floor of the basin

(Figure 2.4). As a result there was patchy deposition of calcareous sediments, which in

some places contain reworked material and detrital quartz (Berthou & Bengtson, 1988).

The late Cenomanian–early Turonian eustatic rise (e.g. Hancock & Kauffman,

1979; Haq et al., 1987) is evidenced by thick carbonate deposits, as a result of

subsidence towards the middle of the Turonian (Berthou & Bengtson, 1988). In areas of

low terrigenous influx the limestones of the Sapucari Member were deposited, whereas

calcareous mudstones of the Aracaju Member were deposited in areas with

proportionally lower carbonate production.
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Figure 2.4: Structural framework of the basement in the onshore area of the Sergipe Basin
(modified after Koutsoukos et al., 1993)

The middle Cretaceous (upper Aptian–lower Coniacian) carbonate ramp is completely

exposed only in the Sergipe Basin (Koutsoukos et al., 1993).
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Chapter 3

MATERIAL AND METHODS

3.1 Field work

The field work was carried out over seven months in 1995 and 1996, and concentrated

mainly on the upper Cenomanian and lower Turonian deposits aiming at establishing

the broad litho- and biostratigraphical relationships in the Sergipe Basin. This project is

part of IGCP Project 381 “South Atlantic Mesozoic Correlations”, under the leadership

of Eduardo Koutsoukos (Petrobras, Rio de Janeiro) and Peter Bengtson (University of

Heidelberg, Germany). Eleven outcrop sections were selected for facies analyses of the

Cenomanian–Turonian boundary strata. This study is based on material collected by the

author in co-operation with Jens Seeling (University of Heidelberg, Germany), who

concentrated his work on the taxonomy, biostratigraphy and palaeoecology of the

macroinvertebrate faunas of the boundary beds.

The material comprises 230 lithologic samples from three major regions, named

as follows from northeast to southwest: Japaratuba, Laranjeiras and Itaporanga (Figure

1.2). The initial sampling concentrated on the Japaratuba area, where seven sections

were selected and investigated (Localities: Jardim 10, 19, 29, 30, 31, Japaratuba 11, 16,

Figure 3.1). The location of these sections is shown in Figures 3.1–3.3 and complete

descriptions are given below and in Chapter 5.

In order to reach a more comprehensive view of the facies development of

different areas within the basin the sampling was expanded and two supplementary

areas were examined. One section was chosen from Laranjeiras (C 652, Figure 3.2) and

three from Itaporanga (Rita Cacete 4a, b and 5, Figure 3.3). Localities Rita Cacete 4a, b

were taken from one quarry, but show a different lithologic appearance. Two additional

sampled sections have not been taken into account in this study: one in the Laranjeiras

area (C 673, Figure 3.2) where macro- and microfossils were missing and therefore the

stratigraphical position remains unclear; and one in the Aroeirinha area (locality

description Bengtson, 1983), which was completely dolomitised, and original

sedimentary structures and microfossils were destroyed.

Due to the tropical climate of Sergipe most of the outcrops are deeply

weathered. The climate also causes rapid changes in geomorphology and vegetation.

Thus, within short periods, small outcrops can disappear. Some of the outcrops
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described by Bengtson (1983) and Berthou & Bengtson (1988) apparently no longer

exist.

In intervals of 20-50 cm approximately 1 kg of sedimentary rock was sampled

(Appendix 2). According to Carozzi (1989) this interval is small enough to recognise

evolutionary trends and changes in the depositional environment of the limestone

succession. In most cases, sampling depended on the outcrop conditions. Unfortunately

reliable strike and dip measurements are not always possible, due to the lack of exposed

bedding planes. The upper Cenomanian sequence is locally comparatively thin and in

many places represented by hiatuses, which complicates correlating the sampled

sections.

After analysing the limestone material (e.g. thin sections analysis, fossil

extraction, stable isotope analysis) and in addition to microfacies analyses

measurements of δ13C and δ18O values were carried out, in order to use an additional

tool for correlating the outcrop sections with help of stable isotope stratigraphy.

Limited lateral and vertical extent of most exposures hampers biostratigraphic

work. Structural highs and lows separate the different outcrop areas, and further

complicate local correlation. Another problem is caused by the partial dolomitisation of

several sections, which leads to obliteration of the textural characteristics.

3.2 Study area and localities

The Sergipe Basin is located between latitudes 9° and 11° 30´S and longitudes 37° and

35° 33´W. The elongated marginal basin covers an area of approximately 6000 km2

onshore and more than 5000 km2 offshore (Koutsoukos, 1998). The narrow coastal belt

of the onshore part covers a part of nearly over 16 to 50 km east-west and 170 km

north-south direction, and lies entirely within the two small states of Sergipe and

Alagoas.

3.2.1 Maps

Topographic and geologic maps on the scale 1:25,000 have been used with permission

and support of the Brazilian oil company Petrobras: Mapa topográfico, Serviços

Aerofotogramétricos Cruzeiro do Sul S.A.: Bacia de Sergipe Alagoas (Petrobras S.A.,

Rio de Janeiro), sheets 635-3-1 (1967), 635-3-4 (1967), 635-4-3 (1966) and 722-1-2
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(1966). Due to the age of the maps they were of limited use and had to be updated

during the field work.

Localities mentioned herein are described and plotted on a 1:100,000 map

(Bengtson, 1983, p. 30–31, Appendices 1 and 3). Newly introduced sections are

described and numbered according to the system introduced by Bengtson (1983).

3.2.2 Japaratuba

From the Japaratuba area seven sections have been described and sampled (Figure 3.1).

Figure 3.1: Locality map of the sections studied in the Japaratuba area (modified after
Herrmann, 1997)

a) Jardim 1

Location: UTM co-ordinates 8 824 100 N/728 400 E. Altitude ca. 25 m, outcrop on both

sides of the road from Japaratuba to Pirambu. Height of section 5 m, and lateral

extension ca. 30 m.

Japaratuba

Timbó

Mercês de Alma

Jericó

Cruzes

N

1 km

Pirambu

Jardim

Jardim 19
Jardim 29

Jardim 1

Jardim 30

Jardim 31

Japaratuba 16

Japaratuba 11



3. Material and methods 19

b) Jardim 19

Location: UTM co-ordinates 8 822 900 N/724 400 E. Altitude ca. 20-45 m. The outcrop

section extends over ca. 200 m on the bank on the south side of the road. The height

reaches to 3.5 m.

c) Jardim 29

Location: UTM co-ordinates 8 822 800 N/727 800 E. Altitude ca. 25-40 m. Section

west of the track up the hillside, facing NW. Height ca. 20 m, length ca. 40 m.

d) Jardim 30

Location: UTM co-ordinates 8 823 130 N/727 550 E). Altitude ca. 25-30 m. Small

section in the track up the hill, facing NW. Height ca. 3 m, length ca. 15 m.

e) Jardim 31

Location: UTM co-ordinates 8 823 610 N/727 620 E. Altitude ca. 35 m. The locality is

situated on the south side of a hill, at Petrobras well CP-1260.

f) Japaratuba 11

Location: UTM co-ordinates 8 826 600 N/724 350 E. Altitude ca. 30-35 m. Section in

track on hill, facing W.

e) Japaratuba 16

Location: UTM co-ordinates 8 826 850 N/724 950 E. Altitude ca. 10 m. The quarry is

to the southeast of road, facing NW. Height 5 m, length 60 m.

3.3.3 Laranjeiras

In the Laranjeiras area one section has been chosen (Figure 3.2):

a) C 652

Location: UTM co-ordinates 8 805 800 N/700

600 E. Altitude ca. 25 m. Outcrop on hillside

facing SE. Extending over 50 m, height ca. 10

m.

Figure 3.2: Locality map of the section studied in the
Laranjeiras area (modified after Seeling, 1999).
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3.2.4 Itaporanga

In the Itaporanga area, near the village of Rita Cacete, two sections have been chosen.

The quarry at Rita Cacete 4 has been divided in two sections RC 4a and RC 4b (Figure

3.3), RC 4a is located in the northern part of the quarry.

a) Rita Cacete 4a

Location: UTM co-ordinates 8 781 600 N/687 950 E. Altitude 1-6 m. The quarry is

active and located 2 km south of the small road from São Cristovão to Itaporanga. The

section 4a is being worked and therefore consists of unweathered material. Maximum

height ca. 6 m.

b) Rita Cacete 4b

Location: Same quarry as Rita Cacete 4a (see above). This lower part of the section is

situated in the western part, which is out of production.

c) Rita Cacete 5

Location: UTM co-ordinates

8 781 950 N/687 850 E.

Altitude 5 m. This locality is

ca. 400 m northeast of Rita

Cacete 4, on a hillside

facing S. Height ca. 4 m,

extending over 30 m.

Figure 3.3: Locality map of the sections studied in the Itaporanga area (modified after Seeling,
1999).

3.3 Sample preparation and analysis

3.3.1 Thin sections

A total of 260 thin sections have been prepared. They were investigated under simple

polarised and non-polarised light and described using Folk (1959, 1962) and Dunham

(1962) nomenclatures. In order to analyse the microfacies of the thin sections, a

thickness of 50-60 µm was preferred, because such “thick sections“ often allow us to
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identify the texture and structure of the limestones. The technique used for the analysis

of the thin sections used herein, was that of visual appraisal of the constituents.

Besides lithologic properties, the abundance of macrofossil remains and the

microfossil content can classify Cenomanian–Turonian limestones. Biostratigraphically

important forms can, in some cases, be identified in thin sections, as for example

benthic and planktonic formaminifers, and roveacrinids (see Chapter 4, 6 and 7).

3.3.2 Fossil extraction

The sampled limestones are partly dolomitic. The marly intercalations from the

northeastern localities are unsuitable for thin section analysis because they are deeply

weathered. Marly material from fresh quarries from the southwestern area has been

analysed. Some of the limestone samples did not yield microfossils, because they were

either too highly indurated or have been dissolved. In addition to thin section analysis

the extraction of microfossils with the petroleum-ether method can lead to a more

comprehensive view of the faunal content of the Cenomanian–Turonian limestone

succession.

The petroleumether is poured over the dry sample until the entire sample is

covered. After 1 hour the samples are allowed to stand, water is heated to 80 °C (not

boiling, because this will lead to a rapid reaction, which might destroy fragile

specimens). The petroleumether is levigated and hot water is poured over the wet

sample. The low boiling point of petroleumether (50–70 °C) means that the hot water

causes any of it in the sample to evaporate. This causes the clay lumps and particles to

disintegrate. The disaggregated sediment was then washed through a fine-mesh sieve of

0.63–0.063 mm. After drying the samples all size fractions were examined, and the

microfossils picked out on a gridded tray and collected into one-hole slides.

3.3.3 Scanning electron microscopy

Specimens were mounted on standard copper stubs with double-sided tape and were

shadowcoated with approximately 12–13 A of gold. The scanning electron microscope

was a LEO 4-40 of the Institut für Umwelt-Geochemie, Heidelberg (Germany).
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3.3.4 Stable isotope analyses

Stable oxygen and carbon isotope analyses were performed on 50 carbonate powder

samples taken from bulk rock samples. The samples were first examined under the

microscope for signs of secondary alteration of the micritic groundmass or

dolomitisation. Only samples that showed no signs of recrystallisation were used for the

analysis. The powder was drilled out from the groundmass avoiding shell material.

The stable-isotope compositions of the bulk rock samples were analysed on a

Finnigan MAT 252 mass spectrometer with a common bath automated carbonate

system at the Pennsylvania State University, USA. Each sample reacted with 100%

phosphoric acid at 90 °C. The carbon dioxide gas was measured relative to a laboratory

reference gas; NBS-19 was used as a test standard, carbon and oxygen isotopic values

are reported in (δ) notation in permil (‰) deviation from the Pee Dee Belemnite

standard (PDB).



4. Biostratigraphical background 23

Chapter 4

BIOSTRATIGRAPHICAL BACKGROUND

Based on published data ammonites, inoceramid bivalves and foraminifers are the main

fossil groups utilised in Cretaceous biostratigraphy of the Sergipe Basin. An integrated

ammonite and foraminifer zonation was published by Koutsoukos & Bengtson (1993).

In the field ammonites and inoceramids are the stratigraphically most useful

macrofossils and occur locally in abundance.

Biostratigraphical interpretations of the different faunal elements investigated in

this study are discussed in Chapter 9, along with stable isotope stratigraphy and the

stratigraphic application of the determined microfacies types. In this section the

biostratigraphical background will be outlined briefly.

4.1 Ammonite zonation

Ammonites and inoceramid bivalves provide the best means of correlating the

Cenomanian–Turonian boundary (Birkelund et al., 1984). The biostratigraphy of the

marine Cretaceous succession of the Sergipe Basin has been studied by several workers,

most recently by Bengtson (1983), Kauffman & Bengtson (1985), Hessel (1988),

Koutsoukos (1989), and Koutsoukos & Bengtson (1993). However, the limited size of

most outcrops and the lack of diagnostic fossils at some localities, do not always allow

precise biostratigraphical assignments.

The recently proposed Cenomanian–Turonian Global boundary Stratotype

Section and Point (GSSP) at the base of Bed 86 in the Rock Canyon Anticline section

west of Pueblo, Colorado, USA, coincides with the first occurrence of the ammonite

Watinoceras devonense in that section (Bengtson, 1996), which then serves as a marker

proxy. However, correlation of the ammonite zonation for the Cenomanian–Turonian of

the Sergipe Basin (Koutsoukos & Bengtson, 1993) with the proposed GSSP is difficult,

because Watinoceras devonense or co-occurring taxa of the Colorado section have not

been found in Sergipe yet.

Recent field work by P. Bengtson in the Laranjeiras area has led to a refinement

of the boundary zonation of Koutsoukos & Bengtson (1993) through subdivision of the

Vascoceras harttii–Pseudaspidoceras footeanum Zone into a lower Vascoceras

harttii–Pseudaspidoceras footeanum Zone and an upper Pseudotissotia spp. Zone

(Figure 4.1). Based on these new field data, the stage boundary is tentatively correlated
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with the first occurrence of the ammonite genus Pseudotissotia (Walter & Bengtson,

1998). This level is well exposed at locality Japaratuba 11.

Figure 4.1: Ammonite zonation of the upper Cenomanian–lower Turonian of the Sergipe Basin
and tentative correlation with the proposed GSSP at Pueblo, Colorado USA (Walter et al., in
press).

Pseudotissotia spp. have been found in the northern Japaratuba area (Japaratuba 11, 16),

in Laranjeiras (C 652) and the southern Itaporanga area (Rita Cacete 4); the lowermost

Turonian of the southern Japaratuba area is marked by a stratigraphic gap (Chapter 9,

Figure 9.4). The occurrence of Watinoceras amudariense indicates lower Turonian in

this area, although at a higher level than the Pseudotissotia spp. Zone. The presence of

Vascoceras sp. and Pseudotissotia sp. in the upper part of Japaratuba 16 is evidence of

late Cenomanian–early Turonian age. In addition to ammonites, inoceramid bivalves are

used for correlation of the Cenomanian–Turonian boundary beds. A mass occurrence of

the genus Mytiloides at locality Jardim 29 and the upper part of Rita Cacete 4 is used as

an indication of lower Turonian, although here probably representing a lower

stratigraphic level than proposed for other regions (see e.g. Hilbrecht, 1986; Hilbrecht

& Dahmer, 1994; Seibertz, 1995). This is confirmed by the co-occurrence of these

Mytiloides with the ammonite Pseudotissotia sp. at Japaratuba 11 and lower part of Rita

Cacete 4 (Seeling, 1999). No determinable inoceramids were found in the Laranjeiras

area, however, in thin sections inoceramid fragments are also observed from here.
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A refined biostratigraphical scheme for ammonites and an inoceramid zonation

was recently proposed by Seeling (1999). These results are unpublished at the moment.

Four intervals were defined to attempt an interregional correlation. For detailed

information the reader is referred to Seeling (1999).
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Chapter 5

LITHOLOGIC UNITS

5.1 The Cotinguiba Formation

The Cenomanian–Turonian boundary falls within the Cotinguiba Formation

(Cenomanian–Coniacian), which is mainly represented by deep-water fine-grained

carbonates with an average thickness of around 200 m (Bengtson, 1983), but locally

reaching a maximum thickness of about 800 m (Koutsoukos et al., 1993). The

formation (Figure 2.3) includes thick successions of carbonate mudstones in the present

onshore area (Sapucari Member) and marlstones and shales in the onshore and offshore

areas (Aracaju Member) (Koutsoukos et al., 1991).

Numerous variations across small areas and a variety of post-depositional and

diagenetic structures like slumps, small-scale faults, nodules and local coquinoidal

accumulations (e.g. echinoids at Rita Cacete 4a, Figure 6.5) are characteristic for this

formation. The Aracaju Member is characterised by a pelagic facies with an average

thickness of 100 m. Shales are interbedded with calcareous mudstones and marlstones

(Figure 2.3). The Sapucari Member is composed of a thick succession of calcareous

mudstones with occasional thin pelagic layers of shales and marlstones (Figure 2.3). In

the study area this member is characterised by cream to yellowish, partly grey

limestones, locally clayey and grading into marlstones. Coquina banks are common.

5.2 Lithologic units in the study area

Field work in the three outcrop areas (Figure 1.2) showed that the upper Cenomanian to

lowermost Turonian is represented by nodular, bedded, laminated and coquinoid

limestones (Figure 5.1). The succession can be broadly subdivided into four lithologic

units and is unconformably overlain by Tertiary rocks of the Barreiras Formation. The

lithologic units represent different depositional environments.

5.2.1 Lithologic unit 1

Nodular limestones

This unit consists of yellow to cream, nodular limestones, which are partly dolomitised

and locally intercalated with small-scale marly limestone layers (Figure 5.1). The

nodular limestones mainly occur in the lower part of the southern Japaratuba sections
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(Jardim 1, 19, 30, 31) except at locality Jardim 29. The nodular limestones are locally

strongly bioturbated (Jardim 1, 19, 31). In the northern Japaratuba area (Japaratuba 11,

16) these limestones are rare, in the Laranjeiras and Itaporanga area these limestones are

absent.

5.2.2 Lithologic unit 2

Bedded limestones (partly bioturbated)

Lithologic unit 2 is the most widespread macroscopic feature in the studied area and is

represented by partly bioturbated or dolomitised, bedded limestones (Figure 5.1). The

light-coloured limestone beds reach a thickness of 10–20 cm. These occur in the

southern Japaratuba area (Jardim 29), the northern Japaratuba area (Japaratuba 11), the

Laranjeiras area (C 652) and the Itaporanga area (Rita Cacete 4a, 5). The degree of

bioturbation varies throughout the sections. Strong bioturbation has mainly been

observed at localities Jardim 29, Japaratuba 11, 16 and C 652, and plays a subordinate

role in the Itaporanga sections (Rita Cacete 4a, 5).

5.2.3 Lithologic unit 3

Coquinoid limestones

Lithologic unit 3 consists of coquinoid limestones. This unit mainly occurs in the upper

part of the northern Japaratuba sections reaching a thickness of 5–10 m. Small-scaled

coquina banks with an average thickness of some 10–50 cm are represented as

intercalations in the Laranjeiras section (Figure 5.1) and the southern Japaratuba area

(Jardim sections).

5.2.4 Lithologic unit 4

Thin-bedded limestones (laminated)

Lithologic unit 4 is represented by grey to yellow coloured, fine-grained, laminated

limestones (Figure 5.1). This unit solely occurs in the Itaporanga area. The thin-bedded

limestone (average thickness 5 cm) in the fresh quarry of Rita Cacete 4 (a, b) is clearly

bedded, whereas in Rita Cacete 5, weathering led to a nodular appearance of the layers.

Moreover weathering turns the colour of the limestones from grey to yellow.

Macroscopically there is a difference between these two sections (Rita Cacete 4 and 5),
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due to higher quantities of macrofossil components as represented in the Rita Cacete 5

exposure. Consequently the former lamination structure is partly destroyed.

Figure 5.1: Generalised distribution of lithologic units in the study area

5.3 Distribution of the lithologic units in the outcrop sections

5.3.1 Japaratuba area

Jardim 1

Lithologic unit 1: Cream, weathered, nodular limestones interbedded with grey, marly

limestones, both strongly bioturbated. The limestone beds reach a thickness of 2–4 dm.

One layer with crustacean burrows (Thalassinoides) is present, ca. 50 cm thick (Photo

1a, b).

Jardim 19

Lithologic units 1 and 3: Mixed layers of cream, compact limestones and marlstones.

The lower part is represented by grey compact limestones. In the upper part less

compact marlstones predominate, intercalated by hard limestone layers, which are

partly coquinoid. Measurements indicate a local dip of 12° to SE (Photo 2).

Jardim 29

Lithologic units 2 and 3: Fine-grained light-coloured strongly bioturbated, thick-bedded

limestones. The lower part of the section consists of fine-grained, light-coloured

limestones which in the upper part turn into more compact, hard, partly coquinoid
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limestones. In the lower part the limestones are characterised by small-scale cavities

(Photo 3a, b).

Jardim 30

Lithologic units 1 and 3: Light cream nodular limestone. The lower part of the outcrop

consists of loose material only and could therefore not be sampled. The upper part

consists partly of coquinoid limestones (Photo 4).

Jardim 31

Lithologic unit 1: Cream to yellow nodular limestones with thin marly intercalations. It

resembles those exposed in the upper part of Jardim 1 and 19 (Photo 5a, b).

Japaratuba 11

Lithologic units 2 and 3: Fine-grained, yellow to cream limestone, interbedded with

coquinoid limestone; partly bioturbated and dolomitised (Photo 6).

Japaratuba 16

Lithologic unit 3: The lower part is represented by massive saccharoidal limestones,

which are strongly dolomitised. The upper part consists of light-coloured coquinoid and

bioturbated limestones (Photo 7).

5.3.2 Laranjeiras

C 652

Lithologic units 2 and 3: Greyish-yellowish bedded limestone (Laranjeiras limestone

sensu Bengtson, 1983) with intercalations of coquinoid limestones. Bioturbation occurs

throughout the section (Photo 8a, b).

5.3.3 Itaporanga

Rita Cacete 4a

Lithologic units 2 and 4: Yellow-cream coloured fine-grained, marly limestones. The

section consists of alternating thick-bedded and thin-bedded beds (5–20 cm) and is

clearly weathered (Photo 9).

Rita Cacete 4b

Lithologic unit 4: Grey, fine-grained, thin-bedded, laminated and marly limestones, the

thickness of every layer reaches 5–10 cm (Photo 10).
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Rita Cacete 5

Lithologic units 2 and 4: Yellow, bedded partly dolomitised limestones, secondary

structure due to weathering nodular. The lower part of the limestone succession is less

weathered than the upper part. The layers show a dip to SE (Photo 11).
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Chapter 6

MICROFACIES ANALYSIS

A variety of properties are available for classifying limestones such as grain or crystal

size, colour, composition and texture. The two most important features of a limestone

seen in thin sections are the grain properties (including composition) and the rock

fabric, that is the relationship of the grains to one another and to any groundmass

(Tucker & Wright, 1990). The most widely used classification are those given by Folk

(1959) and Dunham (1962).

A total of 250 thin sections throughout the whole succession and outcrop areas

were described focusing on petrographical components, such as:

 (1) the type of matrix and/ or cement

 (2) the relative abundance of principle constituents

 (3) the component association

6.1 Microfacies types

As an essential part of facies analysis differentiation of microfacies types (MFTs) for

genetic interpretations, which have been carried out. Analysis of thin section

characteristics led to four microfacies types (Figure 6.1), which were assigned to

various depositional environments within the areas studied.

Figure 6.1: Generalised overview of the lithologic units and their corresponding microfacies
types in the study area.
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The defined lithologic units and microfacies types of the sampled sections are shown in

Figures 6.2, 6.3, 6.4 and 6.5. The southern Japaratuba (Jardim) succession shown in

Figure 6.2 is composed of five sections. Herrmann (1997) positioned the single sections

one on top of the other therefore his composite sections do not correspond to that of the

present work. The results drawn from field work show that the outcrop sections of

southern Japaratuba (Jardim 1, 19, 29, 30, 31) are more or less overlapping. They have

been arranged according to their stratigraphical level based on macrofossils and their

geographic position. This composite section has been used as working hypothesis for

further investigations. In addition the two overlapping sections of the Itaporanga

succession (Rita Cacete 4a, b) have been represented as one in Figure 6.5, as both

sections are located in the same quarry.

6.1.1 Microfacies types 1 and 2

In the field chalky nodular limestones (lithologic unit 1) that pass upwards into bedded

limestones (lithologic unit 2, Figure 6.2) represent MFT 1 and 2. Microfacies type 1 is

represented by a foraminiferal mudstone and MFT 2 by a foraminiferal wackestone.

The groundmass of both microfacies types is a peloidal biomicrite and/or

biomicrosparite, with sparite occurring as cement in dissolved shell fragments and

pseudosparite as neomorphs.

In the thin sections studied skeletal grains were identified as bioclasts, as well as

peloids, cortoids and quartz grains. Cortoids, characterised by coating of relatively thin

micritic envelopes are present.

Syntaxial growth of calcite on single crystals of echinoderm fragments and

foraminiferal tests have been observed. All trace of original wall structures usually of

2–3 layers has been obliterated during inversion from aragonite to calcite.

Differentiation of both types is based on their bioclastic content. MFT 2 is

characterised by the moderately abundance of macrofossil fragments, whereas bioclastic

material in MFT 1 is scarce.

The macrofossil material of MFT 2 consists mainly of fragments of gastropods,

echinoderms and bivalves (mainly inoceramids and oysters). Echinoid spines, other

echinoid fragments, roveacrinids and sponge spicules are common in certain layers

(Appendix 1).
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Figure 6.2: Distribution of lithologic units and microfacies types in the southern Jparatuba sections (Jardim)
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Echinoid spines are identifiable through their characteristic lacy pattern. Roveacrinids

are difficult to classify in thin section, as the cross section does not always show the

determinable part of the species, occasionally only brachial parts can be observed (Plate

4; roveacrinids are described in detail in Chapter 7). This macrofossil group is

moderately abundant in both microfacies types, whereas micromorph gastropods are

more abundant in MFT 2. A variety of shapes were produced by different angles of

section through these gastropods. The volume of macrofossil fragments exceeds 25% in

some thin sections of MFT 2. These fragments show no signs of orientation and are not

rounded. In sections, which are strongly bioturbated, macrofossil remains are generally

broken. However, compaction structures are rare. In some sections elongated fragments

of inoceramid bivalves are unbroken and some thin sections contain complete outlines

of macrofossils (e.g. gastropods, echinoids).

The microfossil remains of both microfacies types consist essentially of benthic

and plankontic foraminifers (Plate 2 & 3), i.e. Heterohelix sp., Heterohelix moremani,

Hedbergella cf. aprica, Hemicyclammina sp., Haplophragmium sp. or Thomasinella

sp., Gabonita levis, Ammobaculites cf. reophacoides and fragments of textulariid

foraminifers (E.A.M. Koutsoukos, 1997, Rio de Janeiro, personal communication).

Some samples also contain numerous specifically indeterminable hedbergellids.

Besides foraminifers some thin sections contain ostracods showing coarse sparry calcite

cavity fillings. Radiolarians, carrying a micritic envelope, occur sparsely.

The original bedding or lamination has been locally homogenised by

bioturbation. Microfacies type 1 and 2 are shown in Plate 1: a, b, c, d.

6.1.2 Microfacies type 3

In the field bedded limestones (lithologic unit 2) and coquinoid limestones (lithologic

unit 3) represent MFT 3 (Figure 6.3 & 6.4). In thin section microfacies type 3 is

represented by an echinoderm-inoceramid packstone.

The groundmass consists essentially of a peloidal biomicrite and/or

biomicrosparite, with peloids being more abundant than in MFT 1 and 2. Calcitic shell

fragments of macrofossils occur in abundance as bivalves (chiefly inoceramids and

oysters), ammonites, gastropods, as well as echinoderm fragments (e.g. echinoid spines

and roveacrinids). These individual allochems average approximately 1–2 mm in length

and are mainly broken, unsorted and angular. Aragonitic shells are replaced by sparite
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and filled with blocky cements with isometric crystals, which increase in size towards

the centre of the shell chamber. Geopetal sediment filling of shell cavity or gastropod

chambers is present. Fragments of inoceramid bivalves are recognisable by their

distinctive prismatic structures and their characteristic single-crystal extinction

behaviour. Oyster shells show alternating constructional layers of lamellar and vesicular

calcite. Other shell fragments are present but could not be associated to particular

groups, due to replacement of sparite.

Figure 6.3: Distribution of lithologic units and microfacies types in the Japaratuba sections
(northern Japaratuba).
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Microfossils such as calcispheres and radiolarians are rare but occur throughout the

sections. Ostracods are sparse in the studied area, only two determinable complete

specimens were found and in thin sections few specimens occur. Determination of

extracted forms show that they belong to the species Brachycythere sapucariensis and

the genus Paracypris (G. Fauth, 1998, Heidelberg, personal communication).

Foraminifers are rare in the northern Japaratuba area, but occur in moderate

abundance in the southern part of this area (Jardim sections). They are mainly

represented by indeterminable hedbergellids and heterohelicids.

Micritic envelopes are restricted to aragonitic shell fragments. In addition to

peloids coated grains are abundant and sparse quartz grains occur. The particle size

ranges from fine sand-size of 0.25 mm to silt- and clay-size of < 0.06 mm.

The thin sections representing microfacies type 3 are partially dolomitised. The

crystals observed in the thin sections show typical rhombohedral shapes and isolated

dolomitic crystals are common and obliterate the textural characteristics. Dolomitisation

is in most sections restricted to the micritic groundmass, whereas echinoderm fragments

and other macrofossil remains are not affected. Some sections show finely crystalline

dolomite replacement of the micritic matrix of a former biomicrite. This type can be

classified as planar-e euhedral (Sibley & Gregg, 1987).

As in microfacies type 1 and 2, the original bedding has been locally

homogenised by bioturbation. Microfacies type 3 is shown in Plate 1: e, f.

6.3.3 Microfacies type 4

In the field the thin-bedded, fine-grained marly limestones of the Itaporanga areas

represent MFT 4 (Figure 6.5). This type is represented by a foraminiferal mudstone.

The groundmass consists of a laminated micrite with sparse quartzose silt. This

microfacies type is characterised by the scarcity of macrofossil fragments, which are

only present in particular layers. Macrofossil remains are generally scarce, however,

two layers contain more than 25% of macrofossil bioclasts, e.g. echinoids and

inoceramid bivalves (Appendix 1). The echinoids are neither broken nor rounded,

whereas the inoceramid bivalves are only preserved as single valves. Roveacrinids are

represented throughout the sections (Plate 4).

Foraminifers, calcispheres and radiolarians are moderately abundant to scarce.

The foraminiferal content is represented by Hedbergella (Whiteinella) aprica,



6. Microfacies analysis 40

Heterohelix reussi and Gavelinella reussi, amongst others (Plate 2 & 3). The

foraminiferal assemblage mainly consists of planktonic forms, whereas benthic taxa are

rare or absent.

Scattered quartz grains occur, peloids or cortoids are absent.

Figure 6.4: Distribution of lithologic units and microfacies types in the Laranjeiras section.
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Figure 6.5: Distribution of lithologic units and microfacies types in the Itaporanga sections.
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sedimantary rocks. Microspar and neomorphic spar indicates that recrystallisation and

cementation affected the original textures.

Discussion

Berthou & Bengtson (1988) attempted a stratigraphic correlation scheme for the

Cenomanian–Coniacian of the Sergipe Basin with help of microfacies analysis. They

subdivided the Cenomanian rocks in seven microfacies types and the Turonian rocks in

five microfacies types, with several variation types (Figure 6.6). The possible

stratigraphic application of the microfacies types in this study will be discussed in

Chapter 9. At this stage the comparison of the MFTs of this study with those of Berthou

& Bengtson (1988) will be worked out:

In this study the upper Cenomanian and lower Turonian limestones have been analysed.

Owing to the fact that the work has concentrated on the transitional beds, analysis

covers a more diminished stratigraphic part. The comparison between the microfacies

types of this study with those of Berthou & Bengtson (1988) only consider the types

comparable to this study and occurring in the outcrop areas of Japaratuba, Laranjeiras

and Itaporanga.

Microfacies type 1 of this study resembles the type Cen E of Berthou & Bengtson

(1988), a bioclastic lime mud- to wackestone with locally abundant microfossils (Figure

6.6). This type has been found in the northwestern region of the basin. Microfacies type

2 is comparable to Cen B, but contains small-sized, thin-shelled gastropods or other

macrofossil remains (e.g. bivalve shells, echinoderm fragments). The micromorph

gastropods are restricted to the southwestern area (Jardim outcrops). The echinoderm-

inoceramid packstones classified as microfacies type 3 apparently corresponds to L Tur

A (1) of their study (Figure 6.6). This type mainly occurs in the Japaratuba area

(Japaratuba 11, 16) and as intercalated beds of various thickness in the Laranjeiras

section. According to Berthou & Bengtson (1988) this type is represented in the

northeastern (Japaratuba area) and central part (Laranjeiras area) of the basin, which is

confirmed in this study, however the occurrence of this type in the Itaporanga area does

not agree with the results drawn from this study.
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Fig. 6.6: Microfacies types and descriptions according to Berthou & Bengtson (1988) in
comparison with the microfacies types recognised in this study.

The laminated lime mudstone rare in macrofossil debris (microfacies type 4 of this

study) seems to correspond to the descriptions of L Tur B (1) and L Tur B (2) (Figure

6.6) given by Berthou & Bengtson (1988) represented in the southwestern part of the

study area (Itaporanga area). L Tur B (1) is characterised by poor macrofaunal debris

and rare sponge spicules, whereas L Tur B (2) is finely laminated and contains abundant

calcispheres. The microfacies type 4 of this study comprises both of these

characteristics. Berthou & Bengtson (1988) found peloids and echinoderm wackestones

only in the Cenomanian, while in this study these components also have been found in

the lower Turonian of the Japaratuba and Laranjeiras localities.

The typical Cenomanian packstone microfacies with echinoderm accumulations

are missing according to Berthou & Bengtson (1988) which agrees with observations

made by the author. Lamination structures, which these authors found in the upper

Cenomanian and lower Turonian, are according to this study only represented in the

lower Turonian of the southwestern area. Different results cannot only be explained by

considering that Berthou & Bengtson (1988) placed the Cenomanian–Turonian
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boundary at the base of the former Vascoceras harttii–Pseudaspidoceras footeanum

zone. The current local Cenomanian–Turonian boundary is positioned in the upper part

of this zone at the first occurrence of Pseudotissotia spp., as explained in Chapter 4.

Different results could also be due to their sampling loose material of more

localities of upper Cenomanian rocks, while the author analysed material from quarries

and outcrop sections, where bed-by-bed sampling on contiguous sections was possible.

The disadvantage of sampling loose material is, that the limestone samples are difficult

to classify regarding to their stratigraphic position. Bed-by-bed sampling in small

intervals allows to record changes on a smaller scale.

In addition variations in depositional conditions, which fluctuated locally within

the study area, led to deviating conclusions between both studies.
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Chapter 7

PALAEOENVIRONMENTAL ANALYSIS

Palaeoenvironmental interpretation has been carried out based on facies and microfacies

characteristics. The most important faunal indicators in the study area are foraminifers

and roveacrinids, due to their widespread abundance. For evaluating the distribution

patterns it has to be considered, that the number of samples containing microfossils

varies throughout the basin. One hundred and thirty samples (seven sections) were

analysed from the Japaratuba area, 46 (one section) from the Laranjeiras area and 62

(three sections) from the Itaporanga area.

7.1 Oxygen deficiency in the Sergipe Basin

The macrofossils of the Sergipe Basin have been studied recently by Seeling (1999).

According to his work, the macrofaunal composition in the Itaporanga area strongly

differs from that of coeval shallow-water deposits in the northern part of the basin.

These differences cannot be explained only by deeper water conditions (Walter et al., in

press). In the Japaratuba area an abundant and diverse benthic macrofauna is present,

whereas in the southern localities the benthic macroinvertebrate assemblage is only

moderately abundant to scarce and almost exclusively represented by the inoceramid

bivalve Mytiloides mytiloides and irregular echinoids (Seeling, 1999). The inoceramid

Mytiloides is known to be low-oxygen tolerant (J. Seeling, 1999, Heidelberg, personal

communication). In addition ammonites are scarce compared with localities

representing shallower environments. The macrofossil assemblages of the Itaporanga

sections were interpreted by Seeling (1999) as representing an exaerobic biofacies. In

the following this macrofaunal evidence should be controlled by interpretation of the

microfossil content and their response to different levels of oxygenation.

7.1.1 Terminology of oxygen deficiency

In many parts of the world the Cenomanian–Turonian boundary is characterised, by the

presence of organic-rich rocks deposited under dysoxic-anoxic conditions.

Terminology: The phenomenon of severe oxygen depletion in continental shelf waters is

of great geological significance because most of the worlds petroleum has been
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generated in organic-rich rocks, deposited in oxygen-depleted or oxygen-free

environments (Tyson & Pearson, 1991).

Before discussing macro- and microfaunal indications for oxygen-depleted

conditions around the Cenomanian–Turonian transition in the Sergipe Basin, some

essential terms describing oxygen-related biofacies should be explained. An overview is

given in Figure 7.1.

The most commonly used classification scheme for oxygen-deficient

environments was originally proposed by Rhoads & Morse (1971). They classified

environments of oxygen depletion as anaerobic, dysaerobic and aerobic with 0–0.1,

0.1–1.0 and >1.0 ml/l O2, respectively. As pointed out by Byers (1977) this

classification, in association with sediment fabrics, can be used to determine former

shelf environments. Tyson & Pearson (1991) proposed the adoption of a dual

terminology:

(a) terms describing oxygenation and related to facies have the ending “-oxic”,

(b) terms describing the associated biofacies have the ending “-aerobic”.

Figure 7.1 Terminology for low-oxygen biofacies in marine environments

For a more detailed discussion concerning the terminology of modern and ancient

anoxia the reader is referred to Tyson & Pearson (1991). The term “quasi-anaerobic“

introduced by Koutsoukos et al. (1990) for environments with more than 0.1 ml/l O2

(Figure 7.1) better conveys the character of the corresponding strata. Anoxic conditions

are apparent on the basis of present lamination and absence of in situ macrobenthic
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body fossils. However the microfauna and/or microbioturbations demonstrate that

conditions were not absolutely anoxic in the sense of complete absence of oxygen

(Savrda & Bottjer, 1991). Discrimination between anaerobic and quasi-anaerobic

biofacies is not always possible because the absence or presence of diagnostic

macrofossils may be influenced not only by oxygen concentration. According to Savrda

& Bottjer (1991) subsequent studies of both modern environments and the

stratigraphical record provide a basis for a more detailed assessment of palaeo-

oxygenation. They introduced the term exaerobic for environments containing more

than 0.1 ml/l oxygen and for strata that lack the recognisable bioturbation of the

dysaerobic and aerobic zone (Figure 7.2). According to Koutsoukos et al. (1991) this

term is synonymous with the quasi-anaerobic biofacies; however, exaerobic biofacies

contain in situ macrobenthic body fossils.

7.1.2 Oxygen deficiency in the outcrop areas

Indicators for oxygen-deficiency in the area studied are, amongst others: (1) the scarcity

or absence of benthic foraminifers, and (2) the lamination structures, indicating the

absence of bioturbation.

Japaratuba and Laranjeiras areas

Bioturbation throughout the Japaratuba and Laranjeiras limestones demonstrates that in

this shallow-water environment bottom waters retrained enough dissolved oxygen for

benthic organisms to exist. The microfaunal assemblages in this area are represented by

abundant and low-diverse planktonic and benthic foraminifers, calcispheres and

radiolarians. The abundance of the benthic fauna and the absence of lamination

structures in the Japaratuba and Laranjeiras limestones, indicate aerobic conditions in

this shallow-water environment.

Itaporanga area

The benthic microfaunal composition of Itaporanga differs strongly from that

represented in Japaratuba and Laranjeiras. Whereas in Rita Cacete 5 a moderately

abundant benthic microfauna is present, in Rita Cacete 4a, 4b the benthic assemblages

are scarce or absent. Planktonic foraminifers are abundant in this area, whereas the

benthic foraminifers are almost exclusively represented by the species Gavelinella
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reussi. The distribution pattern of a rich planktonic assemblage and the scarcity or

absence of benthic forms in the Itaporanga area was recognised throughout the sections

of Rita Cacete 4.

Figure 7.2: Oxygen-related biofacies after Savrda & Bottjer (1991)
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7.2 Palaeoenvironment-indicating fauna

The described microfacies types are among other features characterised by their faunal

associations thus indicating different depositional environments. Besides macrofossil

fragments, the microfauna are used as facies indicators and therefore provide

comprehensive information about the depositional evolution of the area studied (Figure

7.3, 7.4). The macrofossils have been studied in detail by Seeling (1999). In this work

they are only described as part of the thin-section analyses. In addition to foraminifers,

which provide the most useful information concerning the palaeoenvironments,

roveacrinids are a useful group to reconstruct the depositional setting. Both groups are

described in detail in the following section and Chapter 9.

In the Sergipe Basin the microfacies at the Cenomanian–Turonian boundary are

comparatively poor in determinable roveacrinidal fragments (5% roveacrinids). The

current state of knowledge suggests they have a planktonic larval stage, but if their adult

stage is planktonic too this is still questionable. The Sergipe assemblages are relatively

well diversified. A total of seven species were determined in the Cotinguiba Formation

of the Sergipe Basin (Ferré et al., in press), which can be used as biostratigraphical tool

(see Chapter 9). Roveacrinids mostly lived in outer shelf and upper slope environments

and therefore can be used as facies indicators for these palaeoenvironments. In addition

to roveacrinids, calcispheres, radiolarians and scarce ostracods are present in the upper

Cenomanian–lower Turonian limestone beds of the study area.

7.2.1 Foraminifers

The most widespread facies diagnostic microfossils in the study area are represented by

foraminifers. These are like many marine microfossils affected by changes in the

palaeoenvironment and can therefore be used as facies indicators. The composition and

distribution patterns of benthic foraminiferal assemblages indicate a close interaction of

palaeobathymetry and the substrate type and its stability (Koutsoukos & Hart, 1990b).

As already pointed out, further information is given by distribution characteristics of the

foraminiferal assemblages, as the evaluation of the degree of oxygen depletion in the

water column and the extent of the oxygen-minimum zone in the depositional

environment.

In this study foraminifers are small-sized, moderately abundant, but poorly

preserved. The quantity of specimens depends on the depositional environment and the
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degree of dissolution due to weathering or dolomitisation of the samples. Foraminifers

are not recovered throughout the succession but are common in various layers. For

statistical evaluation the number of recovered specimens is not sufficient. However,

these foraminifers indicate environmental changes.

Determination of foraminifers in thin sections can be difficult due to randomly

orientated sections and destruction of original wall-structure by micritisation and

recrystallisation. In addition, triserial tests may appear as uniserial or biserial.

Determination of the foraminiferal assemblage was done by E.A.M. Koutsoukos (1998,

Rio de Janeiro, personal communication) by working with thin sections and extracted

forms.

The low-diverse planktonic foraminiferal assemblages of the Japaratuba area are

characterised by species of Heterohelix, Guembelitria, Hedbergella, and

Globigerinelloides. Benthic forms are represented by bolivinids (e.g. Gabonita levis)

and lituolids (e.g. Ammobaculites, Haplophragmium) (Figure 7.3, 7.4). In the

Laranjeiras sections Hedbergella, Guembelitria and Marssonella are abundant, with

hedbergellids dominating the assemblage.

Figure 7.3: Distribution of planktonic and benthic foraminifers in the studied localities

pl
an

kt
on

ic
be

nt
hi

c

Heterohelix globulosa
Heterohelix moremani

Guembelitria cenomana

Hedbergella (W.) cf. aprica

Globigerinelloides benthonensis
Haplophragmium sp.

Guembelitria cretacea

Hedbergella (W.) brittonensis

Hedbergella (W.) aprica

Hedbergella (W.) cf. baltica

Heterohelix reussi

Huglobulosa sp.
Conorboides sp.

Gabonita levis

Hemicyclammina sp.

Thomasinella sp.

Ammobaculites cf. reophacoides
Ammobaculites sp.

Praebulimina sp.
Textulariidae

Marsonella sp.

Gavelinella reussi

Japaratuba Laranjeiras ItaporangaForaminifers



7. Palaeoenvironmental analysis 51

Fi
gu

re
 7

.4
: D

ist
ru

bu
tio

n 
of

 b
en

th
ic

 an
d 

pl
an

kt
on

ic
 fo

ra
m

in
ife

rs
 in

 th
e s

tu
di

ed
 ar

ea
s a

nd
 ri

sin
g 

ox
yg

en
-m

in
im

um
 zo

ne
 in

 th
e l

ow
er

 T
ur

on
ia

n 
in

 th
e I

ta
po

ra
ng

a a
re

a (
m

od
ifi

ed
 af

te
r K

ou
tso

uk
os

, 1
98

9)

La
ra

nj
ei

ra
s

1
2

3

5

se
a-

le
ve

l

Ita
po

ra
ng

a

O
M

Z

Ja
pa

ra
tu

ba

1
2

3
4

5

6
7

10

11

1)
 G

ue
m

be
litr

ia
, 2

) H
et

er
oh

el
ix,

 3
) H

ed
be

rg
el

la
, 4

) T
ex

tu
la

ria
, 5

) G
lo

bi
ge

rin
el

lo
id

es
, 6

) A
m

m
ob

ac
ul

ite
s,

 7
) P

ra
eb

ul
im

in
a,

 8
) M

ar
ss

on
el

la
, 9

) G
av

el
in

el
la

, 1
0)

 C
on

or
bo

id
es

, 1
1)

 G
ab

on
ita

,
12

) H
em

icy
cla

m
m

ia
, 1

3)
 H

ap
lo

ph
ra

gm
iu

m

shallow/
middle neritic

middle/
deep neritic

8
9

12
13



7. Palaeoenvironmental analysis 52

Hedbergellids (e.g. Hedbergella (Whiteinella) baltica) and heterohelicids (e.g.

Heterohelix moremani) dominate the planktonic assemblages of the Itaporanga

limestones. However, the main characteristic for the Itaporanga succession is the

scarcity of benthic foraminifers, which are rare or totally absent here (Figure 7.3, 7.4).

The foraminiferal species found in the study area are listed in the following Figure 7.3.

Discussion

In this study the low-diverse planktonic foraminifers consists almost exclusively of

Hedbergella spp. and Heterohelix spp. This phenomenon has been explained as the

effect of a possible ecologic barrier formed as the result of heavy influx of fresh waters

from tropical rains and rivers. However, according to Bengtson & Berthou (1988),

palaeoclimatologic data does not provide unambiguous support for this conclusion. In

this study the periodically expansion of the oxygen-minimum-zone was suggested to

cause this phenomenon (Figure 7.5). This conclusion largely confirms the results drawn

from Noguti & Santos (1973) concerning the foraminiferal assemblages from the

Albian and Cenomanian and the interpretation given from Berthou & Bengtson (1988).

Figure 7.5: Rising oxygen-minimum zone (after Mello et al., 1989)
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The influence of oxygen deficiency in the Sergipe Basin on the microfauna has been

discussed by Mello et al. (1989) and Koutsoukos et al. (1990, 1991). Their faunas have

been analysed from outcrop and well sections, including one of the sections studied

herein (Itaporanga area). In the present study additional sections from shallower

environments throughout the shelf area have been analysed in order to recognise the

influence and effect of oxygen-depletion on the shelf environment and its faunal

association.

According to Gale et al. (2000) a decline in benthic diversity is not only related

to decreasing oxygenation levels. The key factor controlling benthic diversity must be

the palaeoproductivity in the overlying water column, related to palaeooceanographic

events (e.g. sea-level rise/fall) (Gale et al., 2000). A rising sea-level cause a switch from

mesotrophic to oligotrophic oceanographic conditions and a breakdown of shelf-edge

fronts (according to Summerhayes et al. (1995) the boundary between shelf seas and

open oceans marked by zones of mixing are called shelf-break fronts (Gale et al.,

2000)). The decline in benthic diversity has been explained by changes in surface water

productivity generated through normal oceanographic processes according to Gale et al.

(2000). In their study of the mid-shelf environments of SE-England, a constant

oxygenation level is evidenced by their macrofauna, their trace fossils and their

sedimentary geochemistry. In addition, their limestone beds show bioturbation

throughout the succession.

In the sections studied small-sized specimens of benthic foraminifers, low in

diversity are suggested to indicate dysoxic conditions. The foraminiferal assemblages in

addition to abundant calcispheres and radiolarians are indications of open water

conditions at the outer shelf, suggesting high epipelagic primary productivity, with

seawater apparently containing high levels of dissolved silica (Mello et al., 1989;

Koutsoukos et al., 1990, 1991). On the other hand, the benthic assemblage indicates

bottom waters depleted in oxygen, with low pH and enriched in carbon dioxide (Mello

et al., 1989). The abundance of radiolarians, calcispheres and planktonic foraminifers in

the Itaporanga limestones provides strong evidence that anoxia was locally related to

the development of an intense oxygen-minimum zone caused by enhanced ocean-

surface productivity. In particular, the microfaunal association is interpreted as

representing an exaerobic facies sensu Savrda & Bottjer (1991). According to

Sagemann et al. (1991) this zone represents a small-sized region, in which shelly

epifauna colonised substrate surfaces during transitions between anoxic and dysoxic
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event layers. The exaerobic biofacies is characterised by laminated strata containing

epibenthic macroinvertebrates and the lack of bioturbation of the dysaerobic and aerobic

facies but contain in situ macrobenthic body fossils in contrast to the anaerobic and

quasi-anaerobic biofacies. This biofacies apparently has been deposited under anoxic

conditions with periodically experienced episodes of re-oxygenation. Savrda & Bottjer

(1991) suggested that it is currently impossible to accurately determine absolute oxygen

concentrations during development of other biofacies, although it seems reasonable to

assume bottom-water oxygen levels at or below 0.1 ml/l for quasi-anaerobic and

anaerobic biofacies.

Neither the presence of bioturbation nor the absence of organic-rich deposits

prove that an oxygen-minimum zone has not developed in the water column (Jarvis et

al., 1988). On the other hand the decline of microfossil abundance and diversities in the

Sergipe limestone succession strongly suggests that bottom waters became significantly

depleted in oxygen, but does not indicate truly anoxic bottom conditions.

Well-oxygenated conditions are suggested for the Japaratuba area (Figure 7.4).

This conclusion coincides with the observed macrofaunal content described by

Bengtson (1983), who concentrated his work on ammonites, and the results drawn by

Seeling (1999) concerning bivalves, gastropods and echinoids. The benthic

foraminiferal assemblage in the Laranjeiras area is relatively poor compared to that of

the Japaratuba area. It has to be considered that only one section has been sampled in

this area compared to seven sections studied in the Japaratuba area. However, the

depositional environment was similar to that of the Japaratuba area, due to resembling

sedimentary structures (e.g. bioturbation), macro- and microfossil content and

microfacies types (Figure 7.4). Along with low diversity and scarcity of the benthic

fauna, the presence of laminated mudstones of the Itaporanga area indicates low-oxygen

conditions (Figure 7.4).

Dysoxic to anoxic waters are frequently observed to expand upwards and

outwards during warmer episodes and after upwelling events, when the water column is

temporarily stratified by a strong thermohaline (Tyson & Pearson, 1991). These

localised and temporally variations in oxygen content could explain the increasing

presence of benthic organisms and bioturbation structures observed in Rita Cacete 5.

With rising sea level, the oxygen minimum zone expanded upwards and affected also

the outer ramp area, as indicated by the microfaunal assemblage of the Itaporanga

limestones (Rita Cacete 4 a, b). The oxygen minimum zone generally creates
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stratification in degree of oxygen depletion, which increases with depth (Mello et al.,

1989). For the area studied, two layers can be broadly distinguished: an upper aerobic

layer (> 1.0 ml/l O2) and a lower thicker exaerobic layer (> 0.1 ml/l O2). The estimated

water-depth in which the exaerobic layer arises is the middle- to deep neritic

environment. Both layers are represented in the Itaporanga area, with an aerobic surface

layer, where a diverse planktonic fauna developed and an exaerobic bottom layer, which

hampered the fully development of benthic assemblages.

7.3 Conclusions

The Japaratura benthic assemblages (e.g. Hemicyclammina sp., Haplophragmium sp.

and Ammobaculites sp.) indicate shallow neritic to paralic conditions, which may be

hyposaline, but not necessarily. These forms developed locally in very shallow

landlocked environments within the tropical belt (Koutsoukos, 2000, Rio de Janeiro,

personal communication). The benthic forms of the Laranjeiras section indicate a

shallow to middle neritic environment and are represented by eggerellids (Marssonella).

The benthic assemblages in the Itaporanga area (Gavelinella reussi) indicate among

other rare diagnostic microfossils, middle to deep neritic conditions.

Roveacrinids occur in association with calcispheres in middle to deep neritic

environments in the Japaratuba area as well as in the Laranjeiras, but are more abundant

in the Itaporanga area.

Shallow conditions (paralic to shallow neritic) are recognised towards the

northeastern region (Japaratuba area). The deepest environments in the Sergipe Basin

seem to have been restricted to the southwest area (Itaporanga area) through a long

narrow seaway.

The Japaratuba and Laranjeiras areas show more or less similar depositional and

palaeoenvironmental conditions indicated by resembling microfacies types and

microfaunal content. The assemblages of the Itaporanga area indicate oxygen depleted

biotopes, characterised by the nearly absence of benthic microfossils and lamination

structures. The hypoxic/anoxic conditions are a probable consequence of the periodic

expansion of the oxygen-minimum zone. The oxygen-minimum zone affected the shelf

and slope regions and created stratification in degree of oxygen depletion.

The planktonic foraminiferal assemblages are characterised by specimens

indicating widespread oxygenated epipelagic layers of variable thickness in space and

time throughout the basin in all three areas studied.
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Together with sedimentological and micropalaeontological data, the Japaratuba

and Laranjeiras sections indicate oxygenated conditions, representing an aerobic

biofacies; the Itaporanga limestones (Rita Cacete 4 and 5) indicate low-oxygen

conditions, representing an exaerobic biofacies (sensu Savrda & Bottjer, 1991).

The hypoxic conditions (sensu Koutsoukos et al., 1990, 1991) of the mid-

Cretaceous deposits seemed to coincide with abundance peaks of roveacrinids. They

seem to have thrived in such environments where they developed abundant

opportunistic populations probably feeding on calcisphere blooms (Ferré et al., in

press).
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Chapter 8

FACIES MODEL

A “short-hand” method of studying limestones is the comparison with standard

microfacies types (SMF). This system devised by Flügel (1982) from a concept from

Wilson (1975) describes 24 standard microfacies assignable to nine standard facies

belts. For each outcrop area, several microfacies have been described and selected to

illustrate the main depositional types. Four microfacies types were identified (Figure

8.1), of which three can be referred to a facies association that apparently corresponds

to Facies Zone 2 proposed by Wilson (1975). This association can be subdivided into

microfacies types 1, 2 and 3 (MFT 1, 2, 3). They are represented by a foraminiferal

mud- to wackestone (MFT 1 and 2) and echinoderm-inoceramid packstone (MFT 3)

characterised by abundant bioclasts. The fourth microfacies type (MTF 4) is represented

by a foraminiferal mudstone and apparently corresponds to Facies Zone 3 of Wilson

(1975). According to Carozzi (1989) this concept to build a generalised depositional

concept appears as an oversimplification. Because there are many exceptions, this

model can only give a broad overview, which has to be refined in every single case.

Wilson´s (1975) universal model is basically that of carbonate shelf sedimentation, and

in the author´s opinion not applicable for the carbonate sections studied of the Sergipe

Basin. In recent times the concept of the ramp model has become an alternative to the

shelf model and will be preferred herein.

Based on lithological and microfacial analysis studies a depositional model was

established for the studied area. Information on the rock texture, the mineral or skeletal

nature of the components, the proportion of these components and their distribution

within the matrix is preserved in thin section, therefore microfacies is an essential tool

for the analysis of the mode of transport and depositional environment of the sediments.

The model presented herein shows depositional conditions during lower

Turonian times, due to the fact, that for this time interval the most complete and

comparable data was available in the study area.

Terminology: According to Simo (1993) a carbonate ramp is characterised as follows:

shallow wave-agitated facies of the nearshore zone which pass downslope without a

marked break in slope, into deeper water low energy deposits. Ramps can be subdivided
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on the basis of profile into homoclinal ramps and distally steepend ramps. The term

“platform” characterises in general a break in slope that mark the shelf margin and

steeper slope. Three types of platform margins were described by Wilson (1975), but

none of them include platforms that lacked a slope break. Several ramp classifications

have been offered. Read (1982, 1985) refined the concepts of ramps and recognised six

types based on the character of the highest energy facies and the distribution of shallow-

water facies. Burchette & Wright (1992) proposed a classification based on the degree

of wave, tide and storm activity. They distinguished two main areas:

(a) the mid-ramp area, as the zone between the fair weather wave base and the

storm wave base, so that storm processes dominate;

(b) the outer-ramp area, as the zone which extends from below normal storm

wave base to the basin floor.

Ramps can develop in a variety of tectonic settings and can be recognised as

sedimentary surfaces that represent different tectono-sedimantary settings (Ahr, 1998).

The facies model established herein bases on the classification given by

Burchette & Wright (1992) of ramp environments.

8.1 Facies model for the Sergipe Basin

In the presented facies model, the different microfacies types are characteristic for both

depositional areas, the mid-ramp and the outer ramp area (Figure 8.1).

8.1.1 The mid-ramp area
The mid-ramp area situated in the northeastern and central part of the Sergipe Basin, is

represented by bedded limestones, intercalated with coquinoid limestones (lithologic

unit 2 and 3). These beds mainly consist of microfacies type 2 and 3 (Figure 8.2).

Microfacies type 2 is characterised by an abundance of thin-shelled macrofossil

remains. In the southern Japaratuba area. Micromorph gastropods are concentrated in

certain sections.

The foraminifers and calcispheres indicate deposition in a neritic environment at

water depths of 40 to 80 m (D. Dias-Brito, 1997, Rio Claro, personal communication).

Roveacrinids are present. Both microfacies types occur in the upper Cenomanian

succession, predominantly in the lower parts of the Japaratuba sections (Jardim area). In

the lower Turonian of the Laranjeiras section, microfacies type 2 predominates.
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The mid-ramp area is characterised by abundant bioclasts predominantly echinoderm

and inoceramid remains, and a high content of shallow-water organisms (e.g.

foraminifers). The level of water-energy is shown by the abundance of peloids and

cortoids and the degree of roundness of the bioclastic material. Strong bioturbation

throughout this region is indicative of the content of dissolved oxygen in the water

column (Figure 8.1 & 8.2).

Figure 8.2: Overview of the different microfacies types and their depositional environment

8.1.2 The outer-ramp area

The outer-ramp environment is characterised by thin-bedded lime to marlstones

(lithologic unit 4), represented by microfacies type 4 (Figure 8.1). Macrofossil debris is

Microfacies
type Characteristics Fossil content

Depositional
environment
(Burchette &
Wright, 1992)

1

2

3

4

lime mudstone or
lime wackestone,
bioturbated,
peloids scarce,
syntaxial rim cement,
quartz grains

Gastropods, bivalves,
echinoderms (echinoids,
roveacrinids) occur,
benthic and planktonic
foraminifers abundant,
radiolarians scarce,
calcispheres scarce

mid-ramp area

Gastropods abundant,
bivalves occur,
echinoderms (echinoids,
roveacrinids) abundant,
benthic and planktonic
foraminifers abundant,
radiolarians and
calcispheres occur

mid-ramp area

bioclastic lime pack-
stone,
bioturbated,
peloids occur,
peloids, cortoids
and quartz grains
occur

Gastropods occur,
bivalves and echinoderms
(echinoids, roveacrinids)
abundant,
benthic and planktonic
foraminifers occur,
radiolariens scarce,
calcispheres rare

mid-ramp area

lime mudstone
subordinately lime
wackestone,
laminated,
absence of quartz,
grains and peloids

Gastropods absent,
bivalves (inoceramids)
rare, echinoderms
(echinoids, roveacrinids)
rare,
planktonic foraminifers
occur, benthic
formaminifers rare,
radiolarians occur,
calcispheres abundant

outer-ramp area

bioclastic lime
wacke- to packstone,
bioturbated,
peloids scarce,
syntaxial rim cement,
quartz grains occur
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rare, and locally represented by echinoid or inoceramid fragments. Roveacrinids are

common in these facies. Peloids and cortoids are rare (Figure 8.2).

The microfossil content is characterised by moderately abundant planktonic

foraminifers and calcispheres, with a few radiolarians present. The benthic microfossil

assemblage is scarce or missing. Bioturbation is absence laminated strata is the

predominant feature throughout this outer-ramp region.

Discussion

The most important framework builders of the Cretaceous were rudists, corals, sponges

and encrusting algae, which are typically absent in the Sergipe Basin (Walter et al., in

press). According to Tucker & Wright (1990), slope sediments consist of components

brought in by currents from shallower parts of the carbonate platform and sediments

deposited from suspension. The reason for the absence of these framework builders

could be the lack of suitable shoals on ramps for reefs to develop. This phenomenon has

been described from the Niger ramp (Pascal et al., 1993; Mathey et al., 1995).

According to Burchette & Wright (1992) shallow-water reef builders are scarce on

ramps, however, small isolated build-ups are common. Bengtson (1983) described

slumping, intraformational breccias and other coarse-grained sediments from the lower

Turonian of other parts of the Sergipe Basin. However, in the areas studied these are

missing.

Analysis of foraminifers shows that there is no evidence of wide ranging

transport of the specimens. Juvenile forms are as abundant as adult forms. However, the

distribution of micromorph gastropods is probably size-dependent due to transport-

variations. According to Mancini (1978) the origin of micromorph faunas are multiple.

The gastropod tests could have been winnowed out and concentrated separately. There

is no evidence for fluctuating environmental parameters leading to paedomorphosis or

low oxygen content leading to stunting in this environment. This coincides with the

conclusions drawn by Seeling & Bengtson (1999) concerning the accumulation of

small-sized oysters in the southern Japaratuba area, which have been explained by size-

sorting due to transport. The shell fragments of the coquinoid limestones of the

Japaratuba and Laranjeiras area observed in thin sections, are evidence of contact of

shells with other bioclasts during transport by currents. The soft mud only partly

preserved the elongated shell fragments from breakage in the fossil-poor mudstones.
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The origin of micrite remains a major problem in carbonate sediments, it can be of

matrix or cement in origin (Flügel, 1982; Tucker & Wright, 1990).

Lithologic unit 1, (nodular limestone) representing the outer-ramp area (Walter

et al., in press), is exposed in the southern Japaratuba area (Jardim sections), and

corresponds to microfacies type 1 and 2. Cortoids and peloids dominate the lower part

of the southern Japaratuba area (Jardim area), where they coincide with shallow-water

foraminifers (e.g. Ammobaculites), which are characteristic of a neritic to paralic

environment. These sediments deposited above and below the storm wave base are of

late Cenomanian age and are therefore excluded from Figure 8.2. The most comparable

data is of early Turonian age and has therefore been illustrated herein.

Previous models

Berthou & Bengtson (1988) and Herrmann (1997) established different facies models

for the Sergipe Basin. The model of Wilson (1975) was preferred by Berthou &

Bengtson (1988). The depositional environment according to their microfacies study

was that of a carbonate shelf to open sea shelf and slope environment, representing

facies belts FZ 2 to FZ 7 of Wilson (1975). To the current state of knowledge the model

of a carbonate ramp is supposed to be more practic-related and more precise to

represent the depositional environment of margin platform type (e.g. Tucker & Wright,

1990). In his diploma theses Herrmann (1997) proposed the facies model of a carbonate

ramp for upper Cenomanian–lower Turonian deposits of the Japaratuba area, however

also using the facies zones of Wilson (1975) for describing the depositional

environment of the limestones. Two additional sections of this area have been analysed

and integrated in this model by the author; the results will be published in Walter et al.

(in press). The conclusions drawn by Herrmann (1997) and Walter et al. (in press) have

been supplemented by evaluating the Laranjeiras and Itaporanga sections. Due to the

comparison of results of three study areas along the axis of the Cenomanian–Turonian

outcrop belt from northeast to southwest in this work the palaeoenvironmental

conditions from shallower to deeper parts of the basin have been worked out and the

facies model has been completed.

8.2 Conclusions

The depositional environment of the lower Turonian limestone succession in the

Sergipe basin was that of a ramp, with a gentle dip (Figure 8.1). The microfacies types
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represented in the localities studied occur in two regions of the carbonate ramp, the

mid-ramp and the outer-ramp area. Sediments from the inner ramp and the basin have

not been sampled, or are not present in the study area. Transitional sediments between

the lithologic units are not exposed.

The mid-ramp area: The bioturbated bedded limestones (lithologic unit 2), with

intercalations of coquinoid limestones (lithologic unit 3), deposited in the mid-ramp

area, are exposed predominantly in the northeastern and central part of the Sergipe

Basin (northern Japaratuba and Laranjeiras area), and correspond to microfacies type 2

and 3. These sediments were deposited below the fair-weather wave base, probably

influenced by storm-wave action. Peloids and cortoids were found in abundance in the

upper part of the Japaratuba area, where in addition micritic envelopes and blocky

cements are present. The environment of origin of these coated particles and the quartz

grains could be the intertidal zone situated in the north of this locality. The southern

Japaratuba limestones were strongly influenced by bioclastic material brought in by

currents from the littoral zone. These currents also reached the Laranjeiras area, reduced

in thickness, where they are responsible for intercalated coquinoid layers.

Sedimentation took place in water depths of 50–100 m, well-oxygenated and of

normal salinity with good current circulation, where shallow-water organisms are

abundant. Because fair-weather wave action is missing rather uniform composed

limestone beds occur as widespread neritic shelf deposits. These are very fossiliferous

limestones, bioclastic wackestones with coquina banks, there is much pelleting of the

micritic matrix. The sediment is homogenised through burrowing.

The outer-ramp area: The outer ramp area, situated in the southwestern part of the

Sergipe Basin (Itaporanga area), is characterised by laminated and bedded lime- to

marlstones (lithologic unit 4), and represents the deeper part of the determined facies

zone. Here, microfacies type 4 predominates in the sections (Figure 8.1).

Bioturbation is absent and the scarcity of a benthic fauna is evident for oxygen

depleted bottom conditions. The calcispheres are in addition to the lithologic features as

the fine laminations of these limestones show, that deposition took place in deeper

water environments (between 100–200 m water depth) compared with the microfacies

types of the Laranjeiras and Japaratuba areas. Peloids and micritic envelopes are absent

due to low water-energy.
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The absence of bioclastic material in the southwestern area is probably caused

by a decrease of current strength from the northeast to southwest, from the Japaratuba to

the Itaporanga area respectively (Walter & Bengtson, 1998).

The high degree of sorting and rounding of quartz grains represented in the mid-

ramp area suggests that this material was either derived from a high-energy

environment, such as the intertidal zone, or reworked from older deposits.

Sedimentation took place below the oxygenation level in dysaerobic water

conditions, with restricted current circulation (Chapter 7). Thin-bedded, marly

limestones and lime mudstones occur with very small peloids and bioclasts, because

wave action is missing. Crinoid accumulations may be present.
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Chapter 9

STRATIGRAPHY

Biostratigraphy and correlation by microfacies in combination with stable isotope

stratigraphy were the principal methods for establishing the chronostratigraphical

position of the sections studied here. The key macrofossil groups for biostratigraphy of

the Sergipe Basin are ammonites and inoceramid bivalves. These have been studied, for

example, by Bengtson (1983) and Hessel (1988) and, most recently, by Seeling (1999).

Microfacies analysis can be of considerable value as a complementary

chronostratigraphical tool in areas where diagnostic macro- and microfossils are scarce

or lacking. A regional atlas of microfacies types was established by Berthou &

Bengtson (1988) for the Cenomanian–Coniacian of the basin. Their microfacies types

are compared with those established here, as described in Chaper 6. In the present study

roveacrinids and foraminifers were specifically analysed in thin section for

biostratigraphical purposes.

In this study a first attempt was made to use stable isotope stratigraphy for

correlating the Cenomanian–Turonian outcrop sections of the Sergipe Basin.

9.1 Biostratigraphy in the study area

Macrofossils are represented in the Cenomanian–Turonian boundary beds of Sergipe by

ammonites, inoceramid bivalves, other bivalves, gastropods, and echinoderms. Their

remains found in thin section play a subordinate role for biostratigraphical purposes but

may be indicative in regard to palaeoenvironmental changes. These were discussed in

Chapter 7.

Microfossils are represented by foraminifers, calcispheres, ostracods and

radiolarians. Calcispheres are abundant in the boundary beds but of limited use for

stratigraphical purposes, because of long-ranging taxa. Radiolarians and ostracods -

primarily belonging to the genera Brachycythere and Paracypris (G. Fauth, University

of Heidelberg, personal communication 1999) - are rare and therefore also unsuitable

for stratigraphical applications.

Palynomorphs are mainly preserved in marlstones (K. Prössl, 1998, Giessen,

personal communication). Where these rocks occur, mainly as thin intercalations, they

are generally deeply weathered and the palynomorphs are oxidised.
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The microfacies study of Berthou & Bengtson (1988) in the Sergipe Basin

revealed the existence of echinoderm remains, among which the most prominent were

“saccocomid-like” cross-sections. These are also known from coeval beds of the Anglo-

Paris Basin (Ferré, 1995; Ferré et al., in press). Ferré & Berthou (1994) referred these

echinoderm remains to roveacrinids and discussed their potential as a biostratigraphical

tool.

9.1.1 Roveacrinidal zonation

The Cenomanian–Turonian roveacrinids of the Sergipe Basin were studied by B. Ferré

(Saint Étienne du Rouvray, France) in collaboration with the author and P. Bengtson

(Heidelberg) (Ferré et al., in press). Taxonomic descriptions and interpretations are

given in a separate publication (Ferré et al., in press).

Roveacrinids are small pelagic crinoids. Their skeleton consists of low-

magnesium calcite, which withstands dolomitisation and weathering better than other

biogenic components. Thus, roveacrinid remains are generally well preserved in thin

sections and offer possibilities for chronostratigraphical correlation in areas of

discontinuous outcrops and patchy occurrences or where other diagnostic fossils are

scarce or missing (Ferré et al., in press). Despite the scarcity of stratigraphical studies of

roveacrinids a biostratigraphical range chart for the taxa found in Sergipe has been

compiled (Figure 9.1) with the aim of eventually extending it to regional or even global

applications (Ferré et al., in press).

Roveacrinid remains are widespread in the upper Cenomanian–lower Turonian

of Sergipe. They occur in association with calcispheres in middle to deep-neritic

environments in the Japaratuba, Laranjeiras and Itaporanga areas. In the southern

Japaratuba (Jardim) sections the presence of, e.g., Roveacrinus geinitzi indicates upper

Cenomanian, whereas in the Itaporanga sections, e.g., Roveacrinus cf. communis is

characteristic of the lower Turonian. The assemblage is relatively well diversified.

Roveacrinidal microfacies can be used to for local chronostratigraphical

purposes. Jefferies (1962) reported several abundance horizons within the Plenus Marls

of the Anglo-Paris Basin. Moreover, Ferré (1995) demonstrated the coincidence of

abundance peaks between assemblages of roveacrinids, ostracods and foraminifers.
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Figure 9.1: Roveacrinidal zonation of the upper Albian to middle Coniacian of the Sergipe
Basin and tentative correlation with the proposed standard and local ammonite zonation (Ferré
et al., in press).

According to Ferré (1995) roveacrinids can be compared to modern comatulids, without

a stem or an anchoring system. The most well-known relative is the saccocomid

Saccocoma tenella (Goldfuss) from the Tithonian Solnhofen limestones in southern

Germany.

Mortoniceras
sergipensis

Peroniceras
tridorsatum

Watinoceras
coloradoense

LO
W

E
R

Local ammonite
zonation

Standard ammonite
zonation

U
P

P
E

R
M

ID
D

LE
U

P
P

E
R

LO
W

E
R

M
ID

D
LE

U
P

P
E

R
LO

W
E

R
M

ID
D

LE Solgerites
armatus -

Prionocycloceras
lenti

Barroisiceras
onilahyense -

Forresteria

Forresteria
(Harleites)

petrocoriensis

Subprionocyclus
neptuni

Subprionocyclus -
Reesidites

A. jukesbrownei -
Eucalycoceras
pentagonum

M. nodosoides -
Kamerunoceras

turoniense

Neocardioceras
juddii

Metoicoceras
geslinianum Pseudocalycoceras

harpax -
Thomelites
aff. sornayi

Euomphaloceras
septemseriatum

Acompsoceras
spathi -

Dunveganoceras

Mantelliceras
mantelli

Graysonites lozoi -
Hypoturrilites
betaitraensis

Mortoniceras
inflatum

Turrilites
acutus - costatus

Acanthoceras
jukesbrownei

Mammites
nodosoides

C
O

N
IA

C
IA

N
A

LB
IA

N

  Pseudotissotia sp.

R
ov

ea
cr

in
us

 c
f. 

al
at

us

R
ov

ea
cr

in
id

æ
 in

de
t.

R
ov

ea
cr

in
us

 a
ff.

 ru
go

su
s

R
ov

ea
cr

in
us

 c
f. 

co
m

m
un

is

R
ov

ea
cr

in
us

 g
ei

ni
tz

i

 R
ov

ea
cr

in
us

 s
p.

R
ov

ea
cr

in
us

 a
ff.

 g
ei

ni
tz

i

R
ov

ea
cr

in
us

 c
f. 

ge
in

itz
i Stratigraphical distribution

 of roveacrinids in the
Sergipe Basin,

northeastern Brazil

W. amudariense -
K. seitzi

Vascoceras harttii -
Pseudaspidoceras

footeanum

C
E

N
O

M
A

N
I

A
N

T
U

R
O

N
I

A
N

R
el

at
iv

e 
ab

un
da

nc
e



9. Stratigraphy 68

TA
N

G
E

N
T

IA
L

L
O

N
G

IT
U

D
IN

A
L

TRANSVERSE

DISTAL

PROXIMAL

POLAR

O
B

LI
Q

U
E

A tentative reconstruction of a

roveacrinid and its various

possible cross-sections has been

presented by Ferré & Berthou

(1994) (Figure 9.2). The

individual consists of a calyx,

composed of five basal plates

and a set of brachial plates,

which compose the arms.

Figure 9.2: Tentative reconstruction
of a roveacrinid and its possible
cross sections from (Ferré &
Berthou, 1994)

The complete specimen is estimated to have reached a size of up to 5 cm. Cross-sections

do not always show determinable parts of a specimen and commonly only brachial parts

are observed. At the present stage of knowledge brachial parts can only be used for

determination down to family level. In addition, sections of isolated plates are very

similar to those of saccocomids or ophiurids (Ferré et al., in press). Further details of

the reconstruction of roveacrinids are given by Ferré & Berthou (1994) and Ferré et al.

(in press).

9.1.2 Foraminiferal zonation

Planktonic and benthic foraminifers are relatively abundant, although in most samples

they are poorly preserved as a result of dissolution and recrystallisation of the

calcareous tests (Plate 2 & 3). The small number of determinable specimens does not

permit efficient biostratigraphical work by using statistical analyses but may provide a

means of correlating parts of the succession.

The planktonic foraminifers Hedbergella (W.) aprica and Hedbergella (W.)

brittonensis (Plate 2 & 3) are recorded from the lowest parts of the succession exposed

in the southern Japaratuba (Jardim) area, indicating upper Cenomanian (see Figure 7.3).

Hedbergella (W.) baltica from the Itaporanga area is characteristic of the lower
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Turonian. A Cenomanian–Turonian boundary marker based on the first or last

occurrence of a specific planktonic foraminifer species could not yet be defined.

Benthic foraminifers are depth-related and therefore less useful for

biostratigraphy (Koutsoukos, 1989). The H. (W.) archaeocretacea–H. reussi Zone

(Figures 9.3 and 9.4) is interpreted as straddling the boundary (Koutsoukos & Bengtson,

1993). Unfortunately H. (W.) archaeocretacea has not been found in the sampled areas.

Figure 9.3: Foraminiferal zonation of the upper Cenomanian–lower Turonian of the Sergipe
Basin and tentative correlation with the proposed ammonite zonation of this basin (modified
after Koutsoukos & Bengtson, 1993).

9.2 Stratigraphy based on microfacies

Microfacies type 1 (MFT 1) is restricted to the upper Cenomanian nodular limestones of

the southern Japaratuba (Jardim) area (Figures 6.2 and 9.4), whereas MFT 2 is

represented in the Cenomanian–Turonian boundary beds throughout the basin. MFT 3

characterises the lower Turonian of the northern Japaratuba area and occurs as

intercalations in the Laranjeiras section (Figure 9.4). In the Itaporanga area MFT 4 is

restricted to the northeastern, lower Turonian part of the area, where it occurs

intercalated with MFT 2 (Figure 9.4).
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The combination of conventional biostratigraphy with microfacies analysis as described

here led to the positioning of the studied sections as shown in Figure 9.4. In the northern

part of the Japaratuba area (localities Japaratuba 11 and 16) the first occurrence of

Pseudotissotia spp. serves as a Cenomanian–Turonian boundary proxy. In the southern

part of the area (Jardim sections) the Pseudotissotia spp. Zone is missing (locality

Jardim 29). The appearance of Watinoceras amudariense and the mass occurrence of

representatives of the inoceramid genus Mytiloides in the upper part of localities Jardim

29 and Japaratuba 16 indicate the Watinoceras amudariense–Kamerunoceras seitzi

Zone. In the southern Japaratuba (Jardim) area microfacies type 2 (MFT 2) dominates

the succession; the northern area is dominated by coquinoid limestones of microfacies

type 3 (MFT 3).

In the Laranjeiras and Itaporanga areas the lower part of the succession is

dominated by pseudotissotiid ammonites (localities Laranjeiras C 652 and Rita Cacete

4a). In the upper part of the succession (locality Rita Cacete 4b) a mass occurrence of

Mytiloides mytiloides indicates the stratigraphical position. The Laranjeiras section is

characterised by an alternation of MFT 2 and 3, whereas the Itaporanga sections are

represented by MFT 4, with intercalations of MFT 2.

Discussion

The biostratigraphical framework based on ammonites (Koutsoukos & Bengtson, 1993;

see Chapter 4) was used as a basis for correlating the studied sections. The

biostratigraphical framework can be complemented with microfossils, in particular

planktonic foraminifers. Roveacrinid biostratigraphy is still in its early stage but was

used as a complementary tool for dating the studied sections.

Stratigraphical correlation based on microfacies analysis as demonstrated by

Berthou & Bengtson (1988) is difficult, owing to lateral changes in the composition of

the limestone beds (Chapter 6). Three of the four microfacies types established herein

represent lower Turonian limestones. Within the microfacies classification, several

varieties occur, as a result of changing palaeoenvironmental conditions. Moreover,

besides diagnostic microfossils, there is no global standard stratigraphical scale based

on unique events that is applicable in microfacies analysis.

In thin sections biostratigraphically important microfossils may permit

chronocorrelation of isolated outcrop sections; however, this will require fresh and

unaltered material. Dolomitised rocks occur throughout the study area and present
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correlation problems as the sedimentological and palaeontological characteristics are

obliterated. Despite recrystallisation, determination of the microfossil content and

microfacies characteristics may be possible.

9.3 Isotope stratigraphy

The use of stable isotopes, particularly carbon isotopes (δ13C), for correlation of

Cretaceous sedimentary successions has been demonstrated by several authors (e.g.

Scholle & Arthur, 1980; Jenkyns, 1985; Schlanger et al., 1987; Hilbrecht & Hoefs,

1986; Jarvis et al., 1988; Voigt & Hilbrecht, 1997). The most distinctive feature of the

Upper Cretaceous carbon-isotope curve is the global positive δ13C excursion near the

Cenomanian–Turonian boundary (Voigt & Hilbrecht, 1997). Increased δ13C values are

thought to result from preferential extraction of 12C from sea water by marine

phytoplankton, the organic matter of which was not recycled back to the oceanic

reservoir because of widespread burial of organic carbon in marine basins during the

OAE (Jarvis et al., 1988). This burial probably lead to a decrease in atmospheric pCO2

(Arthur et al., 1988; Kump & Arthur, 1999).

For carbonate rocks it is convenient to use the same Pee Dee Belemnite (PDB)

standard for both carbon and oxygen isotopes. By definition the PDB standard has the

isotopic composition δ13C = 0 and δ18O = 0. These values are close to those of many

marine carbonates, in which the δ values are slightly positive or negative relative to

PDB. A positive δ value indicates enrichment in the heavy isotope, relative to the

standard, and such substances are colloquially called “heavy” in carbon or oxygen

(Hudson, 1977). However, hiatuses complicate interpretations of the stable isotope

stratigraphy in shallow shelf environments, as demonstrated by Jarvis et al. (1988) for

limestones displaying anomalous carbon isotope values.

The oxygen isotope composition of a carbonate rock precipitated from water

depends primarily on the isotope composition of the water and on temperature.

According to Hudson (1977), diagenetically altered limestones are lighter in oxygen

than primary carbonate rocks. The isotope composition of limestones changes during

diagenesis either by addition of cement generations or by exchange of allochems or

earlier cements already present, or both. As a result, neomorphism can lead to heavier or

lighter oxygen isotope compositions.
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Hilbrecht et al. (1992) and Voigt & Hilbrecht (1997) presented evidence for local

primary differences in the amplitude and stratigraphical variations of δ13C values and

significant diagenetic effects in permeable rocks.

Sudden shifts in carbon isotope values can be produced by hiatuses. These are

confirmed by biostratigraphical evidence, demonstrating that stable isotopes can be used

as a means to identify and assess the extent of gaps in the stratigraphical record (Voigt

& Hilbrecht, 1997).

9.3.1 Results

A total of 56 samples from the Cenomanian–Turonian boundary beds of Sergipe were

analysed. The δ13C and δ18O ratios were determined and plotted against lithology.

Japaratuba area:

The coquinoid limestones that dominate the northern Japaratuba area are partly

dolomitised and less suitable for analysis of bulk rock samples (see Chapter 3).

Therefore, only samples from the southern Japaratuba (Jardim) area were analysed. The

carbon isotope values fluctuate but show a clear negative trend throughout the

succession (Figure 9.5). The δ13C values decrease from 2.5 ‰ to 0.5 ‰ in the lower

nodular limestones, show a positive peak in the middle part of section Jardim 30

followed by a decrease in the bedded limestones to the base of section Jardim 31 (0.2

‰). This peak is followed by a short-term positive excursion (1.0 ‰) to a negative

value of -1.0 ‰ in the upper part of this section. The section at Jardim 29 starts with a

positive δ13C value of ca. 0.8 ‰ up to 1.0 ‰ and a subsequent decrease towards the top

of the section, where the values reach a minimum of -3.5 ‰ in the lower Turonian

(Figure 9.5).

The amplitude of fluctuation in δ18O values is small. In the lower part of the

succession the values remain relatively constant (around -3.5 ‰), increase slightly to

the top of section Jardim 30 (-2.5 ‰) and then decrease rapidly to values of -4.0 ‰ in

the upper part of Jardim 31. A trend with relatively constant values around -3.8 ‰ is

interrupted by a positive peak (-2.0 ‰) above the hiatus at the upper

Cenomanian–lower Turonian transition (Figure 9.5).
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Fig. 9.5: δ13C and δ18O isotopic curves for the Jardim sections in the southern Japaratuba area
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Laranjeiras

In the Laranjeiras section (locality C 652) the carbon isotope values fluctuate between a

maximum of 2.5 ‰ and a minimum of 0.6 ‰ (Figure 9.6). In the lower part the curve

starts at 1.0 ‰, decreases slightly to 0.6 ‰, then increases to 2.4 ‰ and again decreases

rapidly to 0.6 ‰. The fluctuations are broader, with a rise to 2.5‰, a decline to 0.9 ‰

and a second rise to 2.5 ‰.

The stratigraphical

trend in oxygen

iso tope  va lues

differs slightly from

that of the carbon

isotope stratigraphy

(Figure 9.6). The

values fluctuate

only from –3.6 ‰ to

–4.2 ‰. The most

positive δ18O value

nearly coincides

with the most

negative δ13C value

in the lower part of

the succession.

Figure 9.6: δ13C and
δ18O isotopic curves
for the Laranjeiras
section
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Itaporanga

Samples were collected for analysis only from the upper part of the southern Itaporanga

section (locality Rita Cacete 4), as this part contains fresh and undolomitised material

(Figure 9.7). The carbon isotope values are nearly constant throughout the section, with

a minimum value of 2.4 ‰ and a maximum value of ca. 2.9 ‰.

The oxygen isotope curve starts at a value of -3.4 %, followed by a more

positive value of -3.2 ‰, a decrease to -3.3 ‰ and another increase to values of broadly

-3.1 ‰. In the upper part of the succession, the values decrease again to -3.4 ‰.

Figure 9.7: δ13C and δ18O isotopic curves for the Itaporanga sections
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The oxygen isotope trend is inversely proportional to that of the δ13C curve. The

δ18O values vary with an amplitude of slightly over 0.5 ‰.

Discussion

The possibility of diagenetic alteration in carbonates is a major problem in the

interpretation of stable isotope data. Scholle & Arthur (1980) noted a drop in δ18O

values at or near the Cenomanian–Turonian boundary. Jarvis et al. (1988) utilised

oxygen isotope data only as a means of isolating diagenetically altered samples and to

indicate obvious diagenetic trends. They did not ascribe any primary stratigraphical

significance to the δ18O curve. The positive trend of the δ13C curve observed is in

contrast to the negative trend recorded by Hilbrecht & Hoefs (1986) for sections in

Germany. They interpreted their carbon isotope data as indicating falling sea-water

temperatures during the latest Cenomanian, an interpretation supported by

palaeontological data. Positive δ13C peak signals are thought to indicate a maximum in

productivity (Arthur et al., 1988; Gale et al., 1993).

Alteration of the primary isotope signal shortly after deposition in marine

environments depends on the reactivity of the carbonate bioclasts (concentration of

metastable aragonite and high-Mg-calcite versus concentration of low-Mg-calcite

(Patterson & Walter, 1994). According to Jarvis et al. (1988) diagenesis will only alter

bulk-rock isotope values if there has been cementation or recrystallisation, i.e., an

interaction between the sedimentary rock and the surrounding pore-fluid. Such

interaction commonly occurs during early diagenesis in sediments composed of

metastable minerals.

According to Emrich et al. (1970) and Scholle (1974) carbon isotopes are

relatively immune to diagenetic modification. This is true for nearly impermeable fine-

grained sedimentary rocks. However, in permeable deposits, the primary composition of

carbon isotopes changes as a result of migrating pore waters, which transport dissolved

CaCO3 through isotopically different areas. Jarvis et al. (1988) pointed out that during

diagenesis oxygen isotope ratios are far more readily altered than δ13C values, partly

because oxygen isotopes show significant temperature-related fractionation. Primary

δ18O values in carbonates will largely reflect ocean-water temperatures and salinities

but will be modified considerably by addition of cements during meteoric diagenesis.

Finally, recrystallisation may involve the precipitation of new isotopically light



9. Stratigraphy 78

carbonate cements during meteoric diagenesis, leading to lower δ-values of both oxygen

and carbon (e.g., Allan & Matthews, 1982; Saller & Moore, 1991). However, meteoric

waters in tropical regions are comparably heavy in δ18O. The δ18O values of -3 ‰ to -

4‰ in the limestones studied here suggest diagenetic alteration, possibly caused by

meteoric diagenesis.

The δ13C values were plotted against δ18O values (Figure 9.8) to reveal

correlation patterns between the outcrop areas. The Laranjeiras and Itaporanga samples

plot together and have higher δ13C values than the samples from the southern Japaratuba

(Jardim) area. Nevertheless the range of δ18O values of both data sets is comparable

(from –3.1 to –4.1 ‰). It is concluded, that the data reflect approximately the same

degree of diagenesis in all regions. Consequently the differences between the δ13C

values must have other causes than purely diagenetic alteration. Therefore, the

excursions are inter-

preted as original trends

that may be used for

stratigraphical pur-

poses.

Figure 9.8: Correlation
pattern of different
outcrop areas,  δ13C
plotted against δ18O.

9.4 Biostratigraphy versus isotope stratigraphy

The results of the stable isotope analyses have been integrated with macro- and
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Pseudotissotia spp. Zone is missing, this gap in the succession is evidenced by a change

in δ13C values of nearly 1 ‰. Thus, it is likely that the δ13C peaks fall within the hiatus.

The long-term trend from heavier to lighter carbon isotope values is known from

European and North American sections but includes an overprint by diagenetic

alteration. This is evident from the negative values (reaching -3.5 ‰) recorded in the

upper part of the section; these are too low to reflect the primary carbon isotopic

composition (M. Joachimski, Erlangen, personal communication 2000).

The δ18O values fluctuate less between the sections than the δ13C values, but are

apparently altered by diagenesis as evidenced by increasingly negative values (cf.

Scholle, 1977; Scholle & Arthur, 1980). Nevertheless, the stratigraphical trend for the

δ18O curves resembles that of the δ13C curves, except for the positive peak in the δ18O

excursion (Figure 9.9, Japaratuba section, between numbers 3 and 2 of the δ13C curve).

The Laranjeiras δ13C curve (locality C 652) shows multiple peaks and no long-

term trend can be observed. It is possible that the peaks reflect the different lithologies

sampled, as the succession consists of an alternation of bedded limestones and

coquinoid limestones (lithologic units 2 and 3). The maximum δ13C value in the upper

part of the section (2.5 ‰) coincides with the occurrence of the ammonite

Pseudotissotia sp. at this locality (Figures 9.6 and 9.9). However, in this section the

δ13C peaks (Figure 9.6, numbers 5, 6, 7) are comparable to those of the Rita Cacete 5

section, where the lithology (lithologic units 2 and 4) is clearly different. The δ13C

peaks (Figure 9.6, numbers 1, 2, 3, 4) in the upper part of the Laranjeiras section can be

tentatively correlated with those of the southern Japaratuba (Jardim) sections. The δ13C

and δ18O curves in the northern Itaporanga area (locality Rita Cacete 5) show opposite

trends to those of the Laranjeiras section (C652). The two sections apparently represent

the same stratigraphical level, as indicated by the δ13C curve and the biostratigraphical

markers.

It thus appears that the δ13C values reflect original trends. In addition, the

correlation pattern of δ13C and δ18O shown in Figure 9.8 suggests that the degree of

diagenetic alteration was uniform across the study area.
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The isotope values in the Rita Cacete 4b section in the southern Itaporanga area pose a

problem. In this area there is no peak in the carbon isotope curve. The oxygen isotopic

composition is also heavier in 18O than in other sections and the δ18O curve is smooth

(Figure 9.9). Fresh material was sampled in order to exclude diagenetic influence, so the

reasons for these anomalies are unclear.

9.5 Conclusions

It is concluded that the stable isotope values reflect the long-term trend above the δ13C-

event (LOD of Rotalipora cushmani), and the short-term fluctuations reveal small-scale

lithologic changes in the studied sections or are caused by local gaps in the successions.

These fluctuations can tentatively be correlated throughout the study area, as shown in

Figure 9.9.

Diagnostic ammonites and inoceramid bivalves were found at all localities

sampled and provided reliable biostratigraphical correlation. The chronostratigraphical

positioning of outcrop sections with biostratigraphy was confirmed with stable isotope

stratigraphy. In the absence of diagnostic macro- and microfossils this method thus

provides a tool for the positioning of isolated outcrop sections.

The indication of a hiatus with δ13C analysis in the southern Japaratuba (Jardim)

area (Figure 9.9) provides an example of a successful application of isotope

stratigraphy.
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Chapter 10

COMPARISONS AND CORRELATIONS

In most regions the LOD of the planktonic foraminifer Rotalipora cushmani has been

used for correlation of the Cenomanian–Turonian boundary, but this species has not

been found in the studied localities. However, comparisons with faunal associations and

depositional environments of other regions are possible. In addition to the microfaunal

correlation, carbon isotope excursions are generally used for correlating the boundary as

they show a significant peak at this level. However, in this study correlation of the

boundary using stable isotope data is difficult due to diagenetic alteration, whilst

comparisons concerning the microfauna with other regions will be attempted.

10.1 Brazil

The microfaunal assemblages from well-sections in the Sergipe Basin and the Ceará

Basin studied by Mello et al. (1989) are comparable to those of the studied sections

herein. The foraminifers from their sections reflect oxygen-depleted conditions, and this

result agrees with the conclusions drawn from this study. Guardado et al. (1990)

described a scarce benthic fauna and micromolluscs from the Cenomanian–Turonian

transition from the Campos Basin, similar to that represented in the Japaratuba and

Itaporanga area. A low-diverse benthic microfauna has also been reported by

Koutsoukos et al. (1990) from this basin, whereas the benthic assemblage is completely

lacking in several layers of the Cenomanian–Turonian of the Santos Basin (Viviers,

1986). Offshore drilled sections of early Turonian age were investigated, in the Pará and

Maranhão basins, where moderate dysaerobic conditions were characterised by the

paucity of benthic microfauna and abundance of planktonic assemblages (Beurlen &

Regali, 1987).

10.2 Africa

From Angola to Senegal all coastal basins owe their origin to the break-up of

Gondwana and the opening of the South Atlantic Ocean (Kogbe & Me´hes, 1986). They

are therefore younger than the Cretaceous and developed similarly to the Brazilian

marginal basins. The Cenomanian–Turonian transgression also invaded the

intracratonic basins of North and West Africa (Flexer & Reyment, 1989).
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Gabon: The Cenomanian of Angola and Gabon is less well delineated. Locally there

are benthic as well as planktonic foraminifers occurring like e.g. Heterohelix,

Hedbergella and Globutruncana. The Turonian microfauna of the Gabon is composed

of ostracods, Heterohelix and other planktonic and benthic forms. However, only where

ammonites occur can dating be claimed to be secure (Kogbe & Me´hes, 1986).

Nigeria: Deposits of the mid-Cretaceous of the Benue Trough, Nigeria, generally

contain an exclusive planktonic foraminiferal assemblage and sometimes, dwarfed, low-

diverse benthic organisms, which suggested deposition in oxygen depleted

environments (Petters, 1983a). Oxygen deficient conditions have also been reported

from the Cenomanian–Turonian interval of the Calabar Flank, SE Nigeria, evidenced by

a flood-abundance of planktonic foraminiferal assemblage and scarcity of calcareous

benthic foraminifers, when present (Nyong & Ramanathan, 1985). This resembles the

distribution patterns, which have been described in Chapter 7 from the Itaporanga area.

The presence of the arenaceous foraminifers Ammobaculites and

Haplophragmoides, at the time of maximum transgression in the Benue Trough,

Nigeria, further supports the indications of very shallow water depths (Petters, 1978;

1983b). Both species occurred in the southern Japaratuba area, in an extremely similar

environment.

Niger: The Cenomanian–Turonian rocks deposited on the carbonate ramp of the

Iullemmeden and Chad basins (Niger) are characterised by bioclastic wackestones with

abundant ammonites, gastropods, bivalves, echinoids and roveacrinids. In this

palaeoenvironment salinity-stratified water masses caused oxygen-depletion in the

upper part of the bottom sediments (Pascal et al., 1993). These observations agree with

the conclusions drawn from this study. Mathey et al. (1995) described in addition the

absence of rudists and corals, and interpreted this fact as the result of an absence of

shoals amongst other unfavourable morphological conditions. The absence of

brachiopods may have resulted from competition with a pioneer bivalve dominated

epifauna and/or excessive turbidity of bottom waters. These interpretations could be

transferred to the Sergipe Basin where corals and rudists are missing. Another

interpretation has been published by Holmer & Bengtson (1996), who explained the

near absence of brachiopods in the Sergipe Basin as resulting from the low oxygen

levels at the sediment-water interface, where only few, more tolerant brachiopods were

found (e.g. lingulids, discinids). The recorded microfaunal assemblages (Paracypris sp.,



10. Comparisons and correlations 84

Haplophragmoides, Heterohelicidae, Textulariidae) of the study areas also closely

resemble those of the Iullemmeden and Chad basins.

Morocco: The rising oxygen-minimum zone related to the Cenomanian–Turonian

transgression is also shown in Morocco, where ostracods such as Brachycythere

sapucariensis and Paracypris mdaouerensis probably resisted the dysoxic-anoxic

regime (Andreu, 1993), as already described for the study area. The upper Cenomanian

foraminiferal assemblages of this platform are composed of a similar association, as

observed in the Sergipe Basin indicating well-oxygenated surface waters (e.g.

Hedbergella delrioensis, Globigerinelloides sp., Hedbergella (W.) cf. brittonensis).

Tunisia: In the lower Turonian of the homoclinal ramp of west-central Tunisia the

benthic fauna becomes sparse and planktonic assemblages occur in abundance (Saïdi et

al., 1997; Caron et al. 1999); this phenomenon resembles that of the outer-ramp area

described in this study. In addition, the Sergipe ammonite faunas are most closely

related to the central-western and northern African basins of Niger, and Nigeria

(Seeling, 1999).

11.3 North America and Europe

From the Greenhorn Formation, Pueblo, Colorado, North America, the

Cenomanian–Turonian samples investigated by Leckie (1985) are also characterised by

low-diversity of the benthic foraminiferal assemblages already described from other

regions (see above).

In SE Devon (UK) the boundary is defined by the appearance of abundant

Mytiloides spp. bivalves and occasional Watinoceras spp. ammonites. Hilbrecht &

Hoefs (1986) concluded from their study of the German Cenomanian–Turonian (C–T)

boundary succession that the base of the carbon isotope excursion coincided with the

extinction of Rotalipora cushmani and placed the upper limit of the excursion

immediately above the appearance of Mytiloides spp. Possible differences between the

position of the top of the carbon isotope excursion are more difficult to assess. In both

England and Germany the top of the excursion lies immediately above the appearance

of Mytiloides spp. (Jarvis et al., 1988).

The presence of the well-known δ13C isotopic excursion is confirmed in the data

from Lincolnshire and Humberside (Eastern England), and the foraminiferal changes at

this level are identical all over the UK, which is also true for the successions described
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from Spain, France, Poland, Tunisia, Germany and the North Sea Basin (Hart et al.,

1993).

In Europe the species Roveacrinus communis showed a rapid increase in

abundance and dominates the basal Turonian of C–T sections within the Anglo-Paris

Basin (Southern England). This species is the sole macroinvertebrate component

slightly above the C–T boundary in the Eastbourne section (UK) (Harries, 1993). The

occurrence of Roveacrinus communis in the Japaratuba and Laranjeiras sections of the

study area has also been taken as indicator for the lower Turonian.
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Chapter 11

CONCLUSIONS

(1) Four lithologic units have been identified in the study area, which indicate different

depositional environments at the Cenomanian–Turonian transition. In the

northeastern part of the basin (Japaratuba and Laranjeiras areas) nodular and

bedded bioturbated limestones dominate the succession; locally coquina banks are

common. In the southwestern part of the basin (Itaporanga area), the limestone

succession is represented by thin-bedded and laminated marly limestones.

(2) Microfacies characteristics in thin sections have been described and lead to

identification of four microfacies types (MFTs). MFT 1 and 2 consist of a

foraminiferal wacke- to packstone, MFT 3 can be designated as an echinoderm-

inoceramid packstones and MFT 4 is represented by foraminiferal mudstones. The

limestone succession of the Japaratuba and Laranjeiras areas is represented by MFT

1, 2 and 3, whereas in Itaporanga, MFT 4 predominates.

(3) Macrofaunal debris identified in thin sections is represented by fragments of

ammonites, inoceramid bivalves, other bivalves, gastropods and echinoderms

(echinoids, roveacrinids). Roveacrinids can be used as facies indicators of outer

shelf and upper slope environments. These macrofossils are represented throughout

the sections studied, in the shallow and deeper parts of the basin.

(4) The microfaunal association consists of foraminifers, calcispheres, radiolarians and

rare ostracods. Two foraminiferal assemblages are identified. The Japaratuba and

Laranjeiras assemblages indicate shallow neritic to paralic environments, where

both planktonic and benthic forms are abundant and along with bioturbation

characteristic of well-oxygenated water conditions. The Japaratuba and Laranjeiras

area represents an aerobic biofacies. The Itaporanga assemblages suggest oxygen

depleted biotopes, characterised by the virtual absence of benthic foraminifers and

laminated strata representing an exaerobic biofacies.
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(5) The Oceanic Anoxic Event lead to the development of widespread oxygen minimum

zone, which has risen during the Cenomanian–Turonian transgression. Oxygen

deficiency has been suggested in the outer ramp environment in the southwestern

part of the Sergipe Basin (Itaporanga area) by the scarcity of the benthic fauna (e.g.

foraminifers) and lamination structures.

(6) The facies model established for the study area is that of a ramp (sensu Burchette &

Wright, 1992) with a gentle dip. The mid ramp is represented in the northeastern

part of the basin (Japaratuba and Laranjeiras areas), indicated by bioturbated

bedded limestones intercalated with coquinoid limestones. The southern Japaratuba

(Jardim) limestones were strongly influenced by bioclastic material brought in by

currents from the littoral zone. The outer ramp deposits consist of laminated thin-

bedded marly limestones represented in the southwestern part of the basin

(Itaporanga area).

(7) Biostratigraphic zonation with foraminifers is hampered due to poor preservation of

specimens, however correlation of parts of the sections is possible. In combination

with other diagnostic fossils as ammonites, inoceramid bivalves and roveacrinids,

the biostratigraphic framework can be completed.

(8) Stable isotope analyses have been carried out in order to use the δ13C values for

stratigraphic purposes. The positive δ13C excursion, which has been observed

worldwide close to the Cenomanian–Turonian boundary, has not been identified in

the sections studied. Careful comparison of stable isotope data within a pre-existent

biostratigraphic framework led to reliable local correlation of the limestone

succession, which coincides with the positioning based on biostratigraphy. A hiatus

in the southern Japaratuba (Jardim) area was detected by a δ13C peak.

(9) The microfacies characteristics of the Cenomanian–Turonian limestone succession

of the Sergipe Basin, such as the low-diverse, sparsely abundant benthic

microfaunal assemblages and the abundant planktonic fauna, have been compared

to that of other regions. Similar depositional conditions have been recognised

within the Brazilian marginal basins, (e.g. Ceará, Campos and Santos basins), the
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African marginal basins (Gabon, Nigeria, Niger, amongst others), North America

(Colorado) and Europe (Anglo-Paris Basin).
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SUMMARY

Palaeoenvironmental and microfacies analyses of the upper Cenomanian–lower

Turonian limestone beds (mid-Cretaceous) of the Sergipe Basin, northeastern Brazil,

were carried out. Three outcrop areas were sampled bed-by-bed on contiguous sections

from northeast to southwest of the basin: i.g. the Japaratuba, Laranjeiras and Itaporanga

areas. Eleven sections were investigated and 230 thin sections analysed. Determination

of different lithologic units and microfacies types (MFTs) was done and a facies model

was established for the Sergipe Basin. The microfaunal content was analysed for

biostratigraphical purpose and its use for palaeoenvironmental interpretation. Stable

isotope analyses (13C, 18O) were carried out in order to estimate the completeness of the

stratigraphical sections and for correlation purposes.

Four lithologic units have been determined indicating different depositional

environments in the upper Cenomanian–lower Turonian limestone succession. The

sedimentary rocks of the northeastern part of the Sergipe Basin are dominated by

nodular and bedded bioturbated limestones with intercalations of coquinoid limestones,

whereas the southwestern section is dominated of thin-bedded and laminated marly

limestones.

The depositional environment of the lower Turonian limestones of the studied

area was that of a ramp with a gentle dip. The microfacies types identified in the

sections sampled occur in two regions of the carbonate ramp: the mid ramp and outer

ramp environment. Deposits from the inner ramp and the basinal part have not been

sampled. Bedded limestones (lithologic unit 2) with intercalations of coquinoid

limestones (lithologic unit 3) represent the mid ramp area. Laminated, thin-bedded

marly limestones (lithologic unit 4) dominate the outer ramp area.

Thin section analyses lead to determination of four microfacies types of which

three (MFT 1, 2 and 3) correspond to a mid ramp environment situated in the

northeastern and central part of the basin (Japaratuba and Laranjeiras area). Microfacies

type 4 represents the outer ramp environment in the southwestern part of the basin

(Itaporanga area).

The macrofauna determined in thin sections consists mainly of ammonites,

bivalves, gastropods and echinoderms. The echinodermal group of roveacrinids have

been studied and used as facies indicators for outer-shelf and upper slope environments.
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Because of their small size they have been locally transported into shallower

environments by currents, together with micromorph gastropods.

The microfaunal content of the areas studied is dominated by foraminifers; in

addition calcispheres, radiolarians and ostracods occur. The planktonic foraminiferal

assemblages of the Japaratuba area indicate shallow neritic to paralic environments and

well-oxygenated conditions. In the Laranjeiras area, benthic foraminifers suggest

shallow to middle neritic environments.

The low-diverse, sparsely abundant benthic microfaunal assemblages resulting

from oxygen-depleted conditions at the lower Turonian in the Itaporanga area are the

result of widespread transgressions, as already described from coeval depositional

environments of other regions (e.g. Brazilian basins, African basins, North America or

Europe). This is also true for the abundant planktonic fauna, which indicates well-

oxygenated conditions. Foraminiferal assemblages in the Sergipe Basin, during that

time interval, show close affinities to assemblages from other basins, which is evidence

for migration pathways and rates in the northern South Atlantic.

Stable isotope analyses have been carried out for stratigraphical purposes.

Multiple peaks were observed, but diagenetic alteration hinders interpretation. The δ13C

values increase towards the southwestern sections (Itaporanga). However, the variations

do not correspond to any published stable-isotope stratigraphy across the

Cenomanian–Turonian transition from other areas. Tentative local correlation of single

peaks has been made. The stratigraphical positioning of the sections studied with help

of stable isotope stratigraphy is in agreement with the biostratigraphy. This method

largely confirmed the dating of most of the limestone sections. In areas with few

diagnostic fossils stable isotope stratigraphy can be used for the positioning of isolated

outcrop areas. A determination of the completeness of sections is possible. A

stratigraphical gap in the southern Japaratuba area detected by the δ13C excursion is a

good example of a successful application of isotope stratigraphy.

Comparison of microfacies characteristics of this study shows similarities with

upper Cenomanian–lower Turonian basins of other regions, e.g. Brazilian marginal

basins (e.g. Campos and Santos basins), to African marginal basins (e.g. Gabon, Nigeria

or Niger basins), to North America (Colorado) and Europe (Anglo-Paris Basin).
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Appendix 1: Thin sections

Localitiy Jardim 1

A5-1: Groundmass: micritic (peloidal)
Macrofossils: fragments of gastropods and echinoderms rare, sponge spicules
sparse
Microfossils: foraminifers and calcispheres moderately abundant, radiolarians
sparse

A5-2: Groundmass: micritic (peloidal)
Macrofossils: fragments of echinodermal modertely abundant (e.g. roveacrinids)
Microfossils: planktonic and benthic foraminifers rare

A5-3: Groundmass: micritic (peloidal)
Macrofossils: fragments of bivalves, echinoderms rare, sponge spicules sparse
Microfossils: planktonic and benthic foraminifers occur

A5-4: Groundmass: micritic (peloidal)
Macrofossils: fragments of bivalves and echinoderms modertely abundant
Microfossils: none

A5-5: Groundmass: micritic (peloidal)
Macrofossils: fragments of bivalves modertely abundant, fragments of gastropods
rare, sponge spicules sparse
Microfossils: planktonic and benthic foraminifers and calcispheres rare

A5-6: Groundmass: micritic (peloidal)
Macrofossils: fragments of echinoderms (e.g. roveacrinids) rare
Microfossils: planktonic and benthic foraminifers rare

A5-7: Groundmass: micritic (peloidal)
Macrofossils: fragments of bivalves and echinoderms modertely abundant
Microfossils: planktonic, benthic foraminifers and calcispheres rare

A5-8: Groundmass: micritic (peloidal)
Macrofossils: echinodermal remains occur
Microfossils: planktonic, benthic foraminifers moderately abundant
Remarks: sample strongly bioturbated

A5-9: Groundmass: micritic (peloidal)
Macrofossils: fragments of bivalves rare
Microfossils: calcispheres occur

A5-10: Groundmass: micritic (peloidal)
Macrofossils: echinoids occur, sponge spicules rare
Microfossils: planktonic and benthic foraminifers rare

A5-11: Groundmass: micritic (peloidal)
Macrofossils: echinodermal fragments moderately abundant
Microfossils: planktonic and benthic foraminifers rare

A5-12: Groundmass: micritic (peloidal)
Macrofossils: thin-shelled gastropods occur, sponge spicules sparse
Microfossils: planktonic, benthic foraminifers, calcispheres moderately abundant
Remarks: more bioclasts than A5-11

A5-13: Groundmass: micritic (peloidal)
Macrofossils: fragments of echinoderms moderately abundant, gastropods occur
Microfossils: planktonic, benthic foraminifers and calcispheres moderately
abundant

A5-14: Groundmass: micritic (peloidal)
Macrofossils: fragments of gastropods and echinoderms moderately abundant
Microfossils: planktonic, benthic foraminifers and calcispheres occur

A5-15: Groundmass: micritic (peloidal)
Macrofossils: fragments of echinoderms moderately abundant, gastropods occur
Microfossils: planktonic, benthic foraminifers and calcispheres occur



A5-16: Groundmass: micritic (peloidal)
Macrofossils: fragments of echinoderms and thin-shelled gastropods abundant,
sponge spicules sparse
Microfossils: planktonic and benthic foraminifers occur
Remarks: sample dolomitized

A5-17: Groundmass: micritic (peloidal)
Macrofossils: fragments of echinoderms and thin-shelled gastropods abundant
Microfossils: planktonic and benthic foraminifers moderately abundant
Remarks: partly dolomitized

Locality Jardim 19

A1-13: Groundmass: micritic (peloidal)
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic, benthic foraminifers and calcispheres rare

A1-14: Groundmass: micritic (peloidal)
Macrofossils: fragments of roveacrinids rare, sponge spicules sparse
Microfossils: planktonic, benthic foraminifers and calcispheres rare

A1-15: Groundmass: micritic (peloidal)
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers (e.g. Heterohelix moremani), calcispheres
moderately abundant

A1-16: Groundmass: micritic (peloidal)
Macrofossils: fragments of gastropods rare, fragments of roveacrinids rare
Microfossils: planktonic foraminifers (e.g. Hedbergella (W.) cf. aprica),
calcispheres moderately abundant

A1-17: Groundmass: micritic (peloidal)
Macrofossils:more thin-shelled gastropods than A1-16, echinoid spines and
roveacrinids rare
Microfossils: planktonic, benthic foraminifers and calcispheres rare, single
ostracods

A1-18: Groundmass: micritic (peloidal)
Macrofossils: fragments of echinoderms and gastropods abundant, fragments of
roveacrinids rare
Microfossils: planktonic and benthic foraminifers (e.g. textulariids) rare

A1-19: Groundmass: micritic (peloidal)
Macrofossils: less fragments of gastropods than in A1-18, fragments of
echinoderms rare, sponge spicules sparse
Microfossils: planktonic and benthic foraminifers rare, ostracods rare
Remarks: dolomitized

A1-20: Groundmass: micritic (peloidal)
Macrofossils: fragments of gastropods rare
Microfossils: benthic foraminifers (e.g. Ammobaculites) moderately abundant
Remarks: dolomitized

A1-21: Groundmass: micritic (peloidal)
Macrofossils: none
Microfossils: planktonic and benthic foraminifers rare
Remarks: dolomitized

A1-22: Groundmass: micritic (peloidal)
Macrofossils: fragments of gastropods moderately abundant
Microfossils: planktonic and benthic foraminifers abundant
Remarks: dolomitized

A1-23: Groundmass: micritic (peloidal)
Macrofossils: fragments of gastropods abundant, sponge spicules moderately
abundant



Microfossils: planktonic and benthic foraminifers moderately abundant
Remarks: dolomitized

A1-24: Groundmass: micritic (peloidal)
Macrofossils: thin-shelled gastropods abundant
Microfossils: planktonic and benthic foraminifers (e.g. Hemicyclammina,
Ammobaculites, Haplophragmium) moderately abundant

A1-25: Groundmass: micritic (peloidal)
Macrofossils: fragments of gastropods and roveacrinids abundant
Microfossils: planktonic and benthic foraminifers abundant

Locality Jardim 29

A24-1: Groundmass: micritic
Macrofossils: shell fragments moderately abundant
Microfossils: planktonic and benthic foraminifers moderately abundant
Remarks: dolomitized

A24-2: Groundmass: micritic
Macrofossils: fragments of gastropods, echinoid spines, roveacrinids abundant,
sponge spicules sparse
Microfossils: none
Remarks: dolomitizes

A24-3: Groundmass: micritic
Macrofossils: fragments of gastropods, and echinoderms abundant
Microfossils: planktonic, benthic foraminifers and ostracods rare
Remarks: dolomitized

A24-4: Groundmass: micritic
Macrofossils: fragments of echinoids, roveacrinids and gastropods moderately
abundant
Microfossils: planktonic and benthic foraminifers moderately abundant
Remarks: bioturbated

A24-5: Groundmass: micritic
Macrofossils: fragments of echinoderms, gastropods and bivalves abundant,
sponge spicules sparse
Microfossils: planktonic, benthic foraminifers and ostracods rare

A24-6: Groundmass: micritic
Macrofossils: fragments of gastropods, echinoderms and bivalves moderately
abundant
Microfossils: planktonic and benthic foraminifers moderately abundant, ostracods
rare

A24-7: Groundmass: micritic
Macrofossils: fragments of echinoderms
Microfossils: planktonic and benthic foraminifers (e.g. hedbergellids) moderately
abundant

A24-8: Groundmass: micritic
Macrofossils: fragments of echinoderms (roveacrinids, echinoids) rare
Microfossils: none

A24-9: Groundmass: micritic
Macrofossils: fragments of gastropods and echinoderms rare
Microfossils: planktonic foraminifers rare

A24-10: Groundmass: micritic
Macrofossils: fragments of gastropods, bivalves and echinoderms abundant,
sponge spicules sparse
Microfossils: planktonic and benthic foraminifers moderately abundant

A24-11: Groundmass: micritic
Macrofossils: echinoid spines moderately abundant



Microfossils: none
A24-12: Groundmass: micritic

Macrofossils: fragments of echinoderms moderately abundant, fragments of
gastropods abundant
Microfossils: none

A24-13: Groundmass: micritic
Macrofossils: fragments of gastropods and echinoderms abundant
Microfossils: planktonic and benthic foraminifers moderately abundant

A24-14: Groundmass: micritic
Macrofossils: fragments of gastropods and echinoderms moderately abundant
Microfossils: benthic foraminifers rare
Remarks: strongly bioturbated

A24-15: Groundmass: micritic
Macrofossils: fragments of bivalves and echinoderms moderately abundant
Microfossils: planktonic and benthic foraminifers moderately abundant

A24-16: Groundmass: micritic
Macrofossils: fragments of gastropods, echinoderms and bivalves abundant
Microfossils: planktonic, benthic foraminifers and calcispheres moderately
abundant

A24-17: Groundmass: micritic
Macrofossils: fragments of echinoderms (mainly roveacrinids) moderately
abundant
Microfossils: planktonic, benthic foraminifers and calcispheres moderately
abundant

A24-18: Groundmass: micritic
Macrofossils: fragments of gastropods and bivalves moderately abundant
Microfossils: planktonic, benthic foraminifers and calcispheres moderately
abundant

A24-19: Groundmass: micritic
Macrofossils: fragments of echinoderms abundant
Microfossils: planktonic and benthic foraminifers moderately abundant

A24-20: Groundmass: micritic
Macrofossils: fragments of bivalve moderately abundant
Microfossils: planktonic and benthic foraminifers moderately abundant

A24-21: Groundmass: micritic
Macrofossils: fragments of echinoderms (roveacrinids and echinoid spines)
moderately abundant
Microfossils: planktonic and benthic foraminifers rare

A24-22: Groundmass: micritic
Macrofossils: fragments of gastropods and echinoderms rare
Microfossils: planktonic and benthic foraminifers rare
Remarks: sample deeply weathered

A24-23: Groundmass: micritic
Macrofossils: fragments of gastropods and bivalves moderately abundant
Microfossils: planktonic, benthic foraminifers and calcispheres occur

Locality Jardim 30

A2-1: Groundmass: micritic
Macrofossils: fragments of echinoderms (echinoids, roveacrinids) moderately
abundant, sponge spicules sparse
Microfossils: planktonic and benthic foraminifers moderately abundant

A2-2: Groundmass: micritic
Macrofossils: fragments of echinoderms moderately abundant
Microfossils: planktonic and benthic foraminifers abundant



A2-3: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic and benthic foraminifers abundant, calcispheres
moderately abundant

A2-4: Groundmass: micritic
Macrofossils: roveacrinids occur
Microfossils: planktonic and benthic foraminifers abundant

A2-5: Groundmass: micritic
Macrofossils: roveacrinids (e.g. Roveacrinus aff. geinitzi) moderately abundant
Microfossils: planktonic, benthic foraminifers and calcispheres moderately
abundant

A2-6: Groundmass: micritic
Macrofossils: fragments of echinoderms (echinoids and roveacrinids), fragments of
bivalves abundant, sponge spicules sparse
Microfossils: planktonic, benthic foraminifers and calcispheres abundant

A2-7: Groundmass: micritic
Macrofossils: fragments of gastropods and bivalves moderately abundant
Microfossils: planktonic, benthic foraminifers and calcispheres moderately
abundant

A2-8: Groundmass: micritic
Macrofossils: fragments of gastropods, echinoderms and bivalves rare
Microfossils: planktonic, benthic foraminifers and calcispheres rare

A2-9: Groundmass: micritic (peloidal)
Macrofossils: fragments of gastropods, bivalves and echinoderms abundant
Microfossils: benthic foraminifers (e.g. Gabonite levis) and calcispheres
moderately abundant

A2-10: Groundmass: micritic (peloidal)
Macrofossils: fragments of gastropods and echinoderms occur, sponge spicules
sparse
Microfossils: planktonic and benthic foraminifers moderately abundant
Remarks: sample deeply weathered

A2-11: Groundmass: micritic (peloidal)
Macrofossils: fragments of bivalves and echinoderms moderately abundant
Microfossils: planktonic and benthic foraminifers moderately abundant
Remarks: strongly dolomitized

A2-12: Groundmass: micritic (peloidal)
Macrofossils: fragments of bivalves and echinoderms
Microfossils: planktonic and benthic foraminifers and calcispheres
Remarks: dolomitized sample

A2-13: Groundmass: micritic (peloidal)
Macrofossils: fragments of bivalves rare
Microfossils: none
Remarks: dolomitized sample

A2-14: Groundmass: micritic (peloidal)
Macrofossils: fragments of echinoderms and bivalves rare
Microfossils: planktonic and benthic foraminifers rare
Remarks: strongly dolomitized sample

A2-15: Groundmass: micritic (peloidal)
Macrofossils: fragments of echinoderms rare
Microfossils: planktonic and benthic foraminifers rare
Remarks: strongly dolomitized sample

A2-16: Groundmass: micritic (peloidal)
Macrofossils: fragments of gastropods and echinoderms moderately abundant
Microfossils: planktonic, benthic foraminifers and calcispheres rare
Remarks: strongly dolomitized sample



A2-17: Groundmass: micritic (peloidal)
Macrofossils: fragments of bivalves, gastropods and echinoderms moderately
abundant
Microfossils: planktonic, benthic foraminifers and calcispheres rare
Remarks: strongly dolomitized sample

Locality Jardim 31

A8-1: Groundmass: micritic (peloidal)
Macrofossils: fragments of gastropods moderately abundant
Microfossils: planktonic, benthic foraminifers and calcispheres rare

A8-2: Groundmass: micritic (peloidal)
Macrofossils: fragments of echinoderms (echinoids and roveacrinids) moderately
abundant, fragments of gastropods rare
Microfossils: planktonic and benthic foraminifers rare

A8-3: Groundmass: micritic (peloidal)
Macrofossils: fragments of echinoderms rare
Microfossils: planktonic and benthic foraminifers, calcispheres and ostracods
moderately abundant

A8-4: Groundmass: micritic (peloidal)
Macrofossils: fragments of echinoderms abundant, gastropod fragments
moderately abundant, sponge spicules sparse
Microfossils: planktonic and benthic foraminifers and calcispheres abundant

A8-5: Groundmass: micritic (peloidal)
Macrofossils: fragments of gastropods and echinoderms abundant
Microfossils: planktonic, benthic foraminifers and calcispheres moderately
abundant

A8-6: Groundmass: micritic (peloidal)
Macrofossils: fragments of gastropods and echinoderms abundant, sponge spicules
sparse
Microfossils: planktonic and benthic foraminifers, calcispheres abundant, ostracods
rare

A8-7: Groundmass: micritic (peloidal)
Macrofossils: fragments of echinoderms and gastropods abundant
Microfossils: calcispheres moderately abundant, planktonic foraminifers (e.g.
heterohelicids) abundant

A8-8: Groundmass: micritic (peloidal)
Macrofossils: echinoderms and gastropods abundant, sparse sponge spicules
Microfossils: calcispheres moderately abundant, planktonic foraminifers (e.g.
heterohelicids) abundant

Locality Japaratuba 11

AS-1: Groundmass: micritic
Macrofossils: fragments of gastropods moderately abundant
Microfossils: planktonic and benthic foraminifers rare

AS-2: Groundmass: micritic
Macrofossils: fragments of gastropods and bivalves rare, fragments of echinoderms
moderately abundant, sponge spicules sparse
Microfossils: planktonic and benthic foraminifers and calcispheres occur

AS-3: Groundmass: micritic
Macrofossils: none
Microfossils: none
Remarks: sample deeply weathered

AS-4: Groundmass: micritic



Macrofossils: fragments of gastropods and bivalves occur
Microfossils: none

AS-5: Groundmass: micritic
Macrofossils: fragments of echinoderms (echinoid spines, roveacrinids) moderately
abundant
Microfossils: planktonic and benthic foraminifers rare

AS-6: Groundmass: micritic
Macrofossils: fragments of gastropods and echinoderms moderately abundant
Microfossils: planktonic and benthic foraminifers rare

AS-7: Groundmass: micritic
Macrofossils: fragments of echinoderms and bivalves abundant
Microfossils: planktonic and benthic foraminifers rare

AS-8: Groundmass: micritic
Macrofossils: fragments of gastropods abundant and echinoderms, sponge spicules
sparse
Microfossils: planktonic, benthic foraminifers and calcispheres occur

AS-9: Groundmass: micritic
Macrofossils: fragments of bivalves, gastropods and echinoderms abundant
Microfossils: calcispheres moderately abundant

AS-10: Groundmass: micritic
Macrofossils: fragments of echinoderms (roveacrinids, echinoids) and bivalves
(e.g. oysters) moderately abundant
Microfossils: planktonic and benthic foraminifers rare
Remarks: bioclastic material than in AS-9

AS-11: Groundmass: micritic
Macrofossils: fragments of echinoderms abundant
Microfossils: planktonic and benthic foraminifers rare
Remarks: strongly bioturbated

AS-12: Groundmass: micritic
Macrofossils: fragments of echinoderms and gastropods abundant
Microfossils: planktonic and benthic foraminifers moderately abundant,
radiolarians rare

AS-13: Groundmass: micritic
Macrofossils: echinoid spines and roveacrinids abundant
Microfossils: planktonic and benthic foraminifers moderately abundant

AS-14: Groundmass: micritic
Macrofossils: fragments echinoderms occur
Microfossils: planktonic and benthic foraminifers moderately abundant

AS-15: Groundmass: micritic
Macrofossils: fragments of echinoderms and gastropods abundant
Microfossils: planktonic, benthic foraminifers, calcispheres and radiolarians
moderately abundant

AS-16: Groundmass: micritic
Macrofossils: fragments of gastropods and echinoderms rare
Microfossils: none

AS-17: Groundmass: micritic
Macrofossils: fragments of gastropods and echinoderms rare
Microfossils: planktonic and benthic foraminifers rare

AS-18: Groundmass: micritic
Macrofossils: fragments of gastropods abundant, echinoderms rare, sponge
spicules sparse
Microfossils: planktonic and benthic foraminifers rare
Remarks: bioclasts strongly fragmentated

AS-19: Groundmass: micritic



Macrofossils: fragments of gastropods abundant, echinoderms rare, sponge
spicules sparse
Microfossils: planktonic and benthic foraminifers rare
Remarks: bioclasts strongly fragmentated

AS-20: Groundmass: micritic
Macrofossils: fragments ofechinoderms (mainly roveacrinids) moderately abundant
Microfossils: planktonic and benthic foraminifers occur

AS-21: Groundmass: micritic
Macrofossils: fragments of echinoderms (e.g. echinoid spines), roveacrinids and
gastropods moderately abundant
Microfossils: none

AS-22: Groundmass: micritic
Macrofossils: fragments of gastropods and echinoderms moderately abundant,
sponge spicules sparse
Microfossils: planktonic and benthic foraminifers moderately abundant

AS-23: Groundmass: micritic
Macrofossils: fragments of echinoderms sparse
Microfossils: planktonic and benthic foraminifers moderately abundant

AS-24: Groundmass: micritic
Macrofossils: fragments of gastropods and echinoderms occur
Microfossils: planktonic and benthic foraminifers moderately abundant

AS-25: Groundmass: micritic
Macrofossils: fragments of echinoderms moderately abundant
Microfossils: planktonic and benthic foraminifers moderately abundant

AS-26: Groundmass: micritic
Macrofossils: roveacrinids moderately abundant
Microfossils: planktonic and benthic foraminifers moderately abundant

Locality Japaratuba 16

SW3-1: Groundmass: micritic
Macrofossils: fragments of echinoderms, bivalves and gastropods moderately
abundant
Microfossils: none
Remarks: dolomitized

SW3-2: Groundmass: micritic
Macrofossils: fragments of echinoderms and fragments of bivalve (oyster shell)
moderately abundant
Microfossils: none
Remarks: dolomitized

SW3-3: Groundmass: micritic
Macrofossils: fragments of bivalves (e.g. oysters, inoceramids) moderately
abundant
Microfossils: none
Remarks: dolomitized

SW3-4: Groundmass: micritic
Macrofossils: fragments of bivalves (e.g. oysters, inoceramids) moderately
abundant
Microfossils: none
Remarks: dolomitized

SW3-5: Groundmass: micritic
Macrofossils: fragments of bivalves abundant
Microfossils: none
Remarks: dolomitized

SW3-6: Groundmass: micritic



Macrofossils: fragments of bivalves and echinoderms moderately abundant
Microfossils: none
Remarks: dolomitized

SW3-7: Groundmass: micritic
Macrofossils: fragments of echinoderms moderately abundant
Microfossils: none
Remarks: dolomitized

SW3-8: Groundmass: micritic
Macrofossils: fragments of gastropods and bivalves moderately abundant
Microfossils: none
Remarks: dolomitized

SW3-9: Groundmass: micritic
Macrofossils: fragments of echinoderms, bivalves and gastropods moderately
abundant
Microfossils: planktonic and benthic foraminifers rare
Remarks: dolomitized

SW3-10: Groundmass: micritic
Macrofossils: fragments of echinoderms, bivalves and gastropods abundant
Microfossils: planktonic and benthic foraminifers rare

SW3-11: Groundmass: micritic
Macrofossils: fragments of echinoderms, bivalves and gastropods moderately
abundant
Microfossils: none

SW3-12: Groundmass: micritic
Macrofossils: fragments of bivalves and gastropods moderately abundant
Microfossils: none

SW3-13: Groundmass: micritic
Macrofossils: fragments of bivalves (e.g. oysters and inoceramids) moderately
abundant, fragments of gastropods rare
Microfossils: planktonic and benthic foraminifers rare

SW3-14: Groundmass: micritic
Macrofossils: fragments of gastropods abundant, fragments of bivalves moderately
abundant
Microfossils: planktonic and benthic foraminifers rare

SW3-15: Groundmass: micritic
Macrofossils: fragments of gastropods, echinoderms and bivalves abundant
Microfossils: planktonic and benthic foraminifers rare

SW3-16: Groundmass: micritic
Macrofossils: fragments of echinoderms (echinoid spines, roveacrinids) abundant,
fragments of gastropods and bivalves moderately abundant
Microfossils: planktonic and benthic foraminifers rare

SW3-17: Groundmass: micritic
Macrofossils: fragments of echinoderms abundant (echinoid spines, roveacrinids),
fragments of gastropods and bivalves moderately abundant
Microfossils: planktonic and benthic foraminifers rare

SW3-18: Groundmass: micritic
Macrofossils: fragments of gastropods and bivalves moderately abundant
Microfossils: planktonic and benthic foraminifers rare

SW3-19: Groundmass: micritic
Macrofossils: fragments of echinoderms abundant (echinoid spines, roveacrinids),
fragments of gastropods and bivalves moderately abundant
Microfossils: planktonic and benthic foraminifers rare

SW3-20: Groundmass: micritic
Macrofossils: fragments of echinoderms abundant (echinoid spines, roveacrinids),
fragments of gastropods and bivalves moderately abundant



Microfossils: planktonic and benthic foraminifers rare

Locality Laranjeiras C 652

SW1-1: Groundmass: micritic
Macrofossils: fragments of bivalves and gastropods abundant, fragments of
echinoderms rare, roveacrinids occur
Microfossils: planktonic and benthic foraminifers moderately abundant
Remarks: veins filled with sparite

SW1-2: Groundmass: micritic
Macrofossils: fragments of bivalves abundant, fragments of echinoderms rare
Microfossils: planktonic and benthic foraminifers moderately abundant
Remarks: fossil remains strongly fragmentated

SW1-3: Groundmass: micritic
Macrofossils: fragments of bivalves moderately abundant
Microfossils: planktonic and benthic foraminifers occur
Remarks: sample strongly weathered

SW1-4: Groundmass: micritic
Macrofossils: fragments of bivalves moderately abundant, fragments of
echinoderms rare
Microfossils: none

SW1-5: Groundmass: micritic
Macrofossils: indeterminable bioclasts
Microfossils: planktonic and benthic foraminifers rare

SW1-6: Groundmass: micritic
Macrofossils: fragments of bivalves, echinoid spines and roveacrinids rare
Microfossils: none
Remarks: more sparite than SW1-5

SW1-7: Groundmass: micritic
Macrofossils: fragments of bivalves rare
Microfossils: none
Remarks: groundmass inhomogenous

SW1-8: Groundmass: micritic
Macrofossils: echinoid spines and fragments of bivalves moderately abundant
Microfossils: planktonic and benthic foraminifers moderately abundant

SW1-9: Groundmass: micritic
Macrofossils: fragments of bivalves moderately abundant
Microfossils: planktonic and benthic foraminifers moderately abundant,
calcispheres rare
Remarks: sparite veins

SW1-10: Groundmass: micritic
Macrofossils: fragments of bivalves rare, fragments of echinoderms sparse
Microfossils: planktonic and benthic foraminifers rare
Remarks: sparite veins

SW1-11: Groundmass: micritic
Macrofossils: fragments of echinoderms moderately abundant
Microfossils: none

SW1-12: Groundmass: micritic
Macrofossils: fragmenzs of echinoderms moderately abundant
Microfossils: planktonic and benthic foraminifers rare

SW1-13: Groundmass: micritic
Macrofossils: echinodermal fragments rare
Microfossils: planktonic and benthic foraminifers rare

SW1-14: Groundmass: micritic
Macrofossils: fragments of bivalves and echinoids moderately abundant



Microfossils: planktonic foraminifers (e.g. heterohelicids) abundant
SW1-15: Groundmass: micritic

Macrofossils: echinodermal fragments moderately abundant
Microfossils: none

SW1-16: Groundmass: micritic
Macrofossils: echinodermal fragments moderately abundant
Microfossils: planktonic and benthic foraminifers moderately abundant

SW1-17: Groundmass: micritic
Macrofossils: fragments of echinoderms moderately abundant
Microfossils: planktonic and benthic foraminifers moderately abundant

SW1-18: Groundmass: micritic
Macrofossils: fragments of bivalves and echinoderms (roveacrinids) moderately
abundant
Microfossils: planktonic and benthic foraminifers rare

SW1-19: Groundmass: micritic
Macrofossils: fragments of echinoderms and bivalves moderately abundant
Microfossils: planktonic and benthic foraminifers abundant

SW1-20: Groundmass: micritic
Macrofossils: fragments of bivalves and echinoderms moderately abundant
Microfossils: planktonic and benthic foraminifers rare
Remarks: sample strongly weathered

SW1-21: Groundmass: micritic
Macrofossils: fragments of bivalves and echinoderms abundant
Microfossils: planktonic and benthic foraminifers rare
Remarks: bioclasts strongly fragmentated

SW1-22: Groundmass: micritic
Macrofossils: gastropods and bivalves moderately abundant
Microfossils: planktonic and benthic foraminifers occur
Remarks: geopetal fillings

SW1-23: Groundmass: micritic
Macrofossils: fragments of echinoderms and bivalves moderately abundant
Microfossils: planktonic and benthic foraminifers occur

SW1-24: Groundmass: micritic
Macrofossils: fragments of gastropods and echinoderms moderately abundant,
fragments of bivalves rare
Microfossils: planktonic and benthic foraminifers moderately abundant
Remarks: sparitic fillings

SW1-25: Groundmass: micritic
Macrofossils: fragments of bivalves rare, fragments of echinoderms (roveacrinids,
echinoids) rare
Microfossils: planktonic and benthic foraminifers moderately abundant

SW1-26: Groundmass: micritic
Macrofossils: fragments of echinoderms and bivalves rare
Microfossils: planktonic and benthic foraminifers abundant
Remarks: strongly bioturbated

SW1-27: Groundmass: micritic
Macrofossils: fragments of bivalves and echinoderms moderately abundant
Microfossils: planktonic and benthic foraminifers moderately abundant,
calcispheres and radiolarians rare

SW1-28: Groundmass: micritic
Macrofossils: fragments of bivalves (oysters) and echinoderms abundant
Microfossils: planktonic, benthic foraminifers and calcispheres occur

SW1-29: Groundmass: micritic
Macrofossils: fragments of bivalves and echinoderms (roveacrinids) moderately
abundant



Microfossils: planktonic and benthic foraminifers moderately abundant
SW1-30: Groundmass: micritic

Macrofossils: echinoid spines moderately abundant, fragments of bivalves
abundant
Microfossils: planktonic and benthic foraminifers moderately abundant

SW1-31: Groundmass: micritic
Macrofossils: fragments of gastropods and bivalves moderately abundant,
fragments of echinoderms rare
Microfossils: planktonic and benthic foraminifers abundant
Remarks: bioclasts strongly fragmentated

SW1-32: Groundmass: micritic
Macrofossils: fragments of bivalves and roveacrinids moderately abundant
Microfossils: planktonic and benthic foraminifers abundant

SW1-33: Groundmass: micritic
Macrofossils: fragments of gastropods rare, fragments of bivalves and echinoderms
moderately abundant
Microfossils: planktonic and benthic foraminifers moderately abundant

SW1-34: Groundmass: micritic
Macrofossils: fragments of bivalves and echinoderms abundant
Microfossils: planktonic, benthic foraminifers and calcispheres abundant,
radiolarians rare

SW1-35: Groundmass: micritic
Macrofossils: fragments of bivalves and echinoderms moderately abundant
Microfossils: planktonic and benthic foraminifers abundant

SW1-36: Groundmass: micritic
Macrofossils: fragments of bivalves moderately abundant
Microfossils: none
Remarks: sample deeply weathered

SW1-37: Groundmass: micritic
Macrofossils: fragments of bivalves and echinoderms moderately abundant
Microfossils: planktonic and benthic foraminifers rare

SW1-38: Groundmass: micritic
Macrofossils: fragments of echinoderms and bivalves rare
Microfossils: planktonic, benthic foraminifers and calcispheres rare

SW1-39: Groundmass: micritic
Macrofossils: fragments of bivalves and echinoderms moderately abundant
Microfossils: planktonic and benthic foraminifers moderately abundant

SW1-40: Groundmass: micritic
Macrofossils: fragments of echinoderms (roveacrinids) rare
Microfossils: planktonic and benthic foraminifers rare

SW1-41: Groundmass: micritic
Macrofossils: fragments of bivalves moderately abundant
Microfossils: planktonic, benthic foraminifers rare, calcispheres and radiolarians
rare

SW1-42: Groundmass: micritic
Macrofossils: fragments of echinoderms moderately abundant (echinoids,
roveacrinids)
Microfossils: planktonic and benthic foraminifers moderately abundant,
radiolarians rare

SW1-43: Groundmass: micritic
Macrofossils: echinodermal fragments abundant, bivalves occur
Microfossils: planktonic and benthic foraminifers occur

SW1-44: Groundmass: micritic
Macrofossils: fragments of bivalves and echinoderms abundant
Microfossils: planktonic and benthic foraminifers occur



SW1-45: Groundmass: micritic
Macrofossils: fragments of bivalves and echinoderms moderately abundant
Microfossils: planktonic foraminifers and radiolarians occur

SW1-46: Groundmass: micritic
Macrofossils: fragments of bivalves and echinoderms moderately abundant
Microfossils: planktonic, benthic foraminifers and radiolarians moderately
abundant

Locality Itaporanga (Rita Cacete) 4a

SW5-1: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare, echinoid spines rare
Microfossils: planktonic foraminifers and calcispheres rare
Remarks: lamination structure

SW5-2: Groundmass: micritic
Macrofossils: fragments of roveacrinids moderately abundant
Microfossils: planktonic foraminifers rare, radiolarians and calcispheres sparse
Remarks: lamination structure

SW5-3: Groundmass: micritic
Macrofossils: fragments of roveacrinids moderately abundant, fragments of
gastropods rare
Microfossils: planktonic foraminifers and calcispheres moderately abundant
Remarks: lamination structure

SW5-4: Groundmass: micritic
Macrofossils: fragments of roveacrinids moderately abundant
Microfossils: planktonic foraminifers, radiolarians and calcispheres rare
Remarks: lamination structure

SW5-5: Groundmass: micritic
Macrofossils: fragments of roveacrinids moderately abundant
Microfossils: planktonic foraminifers and calcispheres moderately abundant
Remarks: lamination structure

SW5-6: Groundmass: micritic
Macrofossils: fragments of roveacrinids moderately abundant
Microfossils: planktonic foraminifers and calcispheres rare
Remarks: lamination structure

SW5-7: Groundmass: micritic
Macrofossils: fragments of roveacrinids abundant
Microfossils: planktonic foraminifers and calcispheres rare
Remarks: lamination structure

SW5-8: Groundmass: micritic
Macrofossils: fragments of roveacrinids moderately abundant
Microfossils: planktonic foraminifers and calcispheres rare
Remarks: lamination structure

SW5-9: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: calcispheres rare
Remarks: lamination structure

SW5-10: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers rare, calcispheres moderately abundant
Remarks: lamination structure

SW5-11: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers and radiolarians rare, calcispheres
moderately abundant



Remarks: lamination structure
SW5-12: Groundmass: micritic

Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers moderately abundant, calcispheres rare
Remarks: lamination structure

SW5-13: Groundmass: micritic
Macrofossils: fragments of gastropods rare, echinoderms (roveacrinids) moderately
abundant
Microfossils: planktonic foraminifers and calcispheres rare
Remarks: lamination structure

SW5-14: Groundmass: micritic
Macrofossils: fragments of roveacrinids and echinoid spines rare
Microfossils: planktonic foraminifers and calcispheres rare
Remarks: lamination structure

SW5-15: Groundmass: micritic
Macrofossils: fragments of bivalves, gastropods and echinoderms moderately
abundant, roveacrinids abundant
Microfossils: planktonic foraminifers moderately abundant, calcispheres and
radiolarians rare
Remarks: lamination structure

SW5-16: Groundmass: micritic
Macrofossils: fragments of echinoderms (mainly roveacrinids) moderately
abundant, fragments of inoceramid bivalves rare
Microfossils: planktonic foraminifers, calcispheres and radiolarians rare
Remarks: lamination structure

SW5-17: Groundmass: micritic
Macrofossils: echinoids moderately abundant
Microfossils: none
Remarks: lamination structure

SW5-18: Groundmass: micritic
Macrofossils: fragments of echinoderms (mainly roveacrinids) moderately
abundant,
Microfossils: planktonic foraminifers and calcispheres moderately abundant
Remarks: lamination structure

SW5-19: Groundmass: micritic
Macrofossils: fragments of roveacrinids moderately abundant
Microfossils: calcispheres moderately abundant, planktonic foraminifers rare,
benthic foraminifers occur
Remarks: lamination structure

SW5-20: Groundmass: micritic
Macrofossils: fragments of roveacrinids moderately abundant
Microfossils: planktonic foraminifers, calcispheres and radiolarians rare
Remarks: lamination structure

SW5-21: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers, calcispheres and radiolarians moderately
abundant
Remarks: lamination structure

SW5-22: Groundmass: micritic
Macrofossils: fragments of roveacrinids occur
Microfossils: radiolarians and calcispheres moderately abundant, planktonic
foraminifers rare
Remarks: lamination structure

SW5-20: Groundmass: micritic
Macrofossils: roveacrinids rare



Microfossils: radiolarians and calcispheres moderately abundant, planktonic
foraminifers rare
Remarks: lamination structure

Locality Itaporanga (Rita Cacete) 4b

SW4-1: Groundmass: micritic
Macrofossils: fragments of roveacrinids moderately abundant
Microfossils: planktonic foraminifers rare
Remarks: lamination structure

SW4-2: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers abundant, calcispheres and radiolarians
moderately abundant
Remarks: lamination structure

SW4-3: Groundmass: micritic
Macrofossils: fragments of echinoderms (echinoids and roveacrinids, fragments of
inoceramid bivalves rare
Microfossils: planktonic foraminifers moderately abundant, calcispheres and
radiolarians rare
Remarks: lamination structure

SW4-4: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers moderately abundant, calcispheres and
radiolarians rare
Remarks: lamination structure, sample partly dolomitized

SW4-5: Groundmass: micritic
Macrofossils: fragments of echinoderms rare
Microfossils: planktonic foraminifers moderately abundant, calcispheres and
radiolarians rare
Remarks: lamination structure

SW4-6: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers abundant, calcispheres and radiolarians rare
Remarks: lamination structure

SW4-7: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers moderately abundant, calcispheres and
radiolarians rare
Remarks: lamination structure

SW4-8: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers rare, calcispheres and radiolarians rare
Remarks: lamination structure

SW4-9: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers moderately abundant, calcispheres and
radiolarians rare
Remarks: lamination structure

SW4-10: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers, calcispheres and radiolarians rare
Remarks: lamination structure

SW4-11: Groundmass: micritic



Macrofossils: fragments of echinoderms (echinoids and roveacrinids) moderately
abundant
Microfossils: planktonic foraminifers moderately abundant, calcispheres rare
Remarks: lamination structure

SW4-12: Groundmass: micritic
Macrofossils: echinodermal remains moderately abundant
Microfossils: calcispheres moderately abundant, planktonic foraminifers and
radiolarians rare
Remarks: lamination structure

SW4-13: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers moderately abundant, benthic foraminifers
and calcispheres rare
Remarks: lamination structure

SW4-14: Groundmass: micritic
Macrofossils: fragments of echinoids and roveacrinids moderately abundant
Microfossils: planktonic foraminifers moderately abundant, benthic foraminifers
and calcispheres rare
Remarks: lamination structure

SW4-15: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers moderately abundant, benthic foraminifers
and calcispheres rare
Remarks: lamination structure

SW4-16: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers moderately abundant, benthic foraminifers
and calcispheres rare
Remarks: lamination structure

SW4-17: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic, benthic foraminifers, calcispheres and radiolarians rare
Remarks: lamination structure

SW4-18: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic, benthic foraminifers, calcispheres and radiolarians rare
Remarks: lamination structure

SW4-19: Groundmass: micritic
Macrofossils fragments of roveacrinids rare
Microfossils: planktonic foraminifers, calcispheres and radiolarians rare
Remarks: lamination structure

SW4-20: Groundmass: micritic
Macrofossils: fragments of inoceramid bivalves rare, roveacrinids rare
Microfossils: planktonic foraminifers, calcispheres and radiolarians rare
Remarks: lamination structure

SW4-21: Groundmass: micritic
Macrofossils: none
Microfossils: planktonic foraminifers, calcispheres and radiolarians rare
Remarks: lamination structure

SW4-22: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers, calcispheres and radiolarians rare
Remarks: lamination structure



Locality Itaporanga (Rita Cacete) 5

RC5-1: Groundmass: micritic
Macrofossils: none
Microfossils: none
Remarks: sample dolomitized

RC5-2: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: none
Remarks: sample dolomitized

RC5-3: Groundmass: micritic
Macrofossils: rare roveacrinids
Microfossils: none
Remarks: dolomitized

RC5-4: Groundmass: micritic
Macrofossils: rare roveacrinids
Microfossils: none
Remarks: dolomitized

RC5-5: Groundmass: micritic
Macrofossils: fragments of echinoderms
Microfossils: none
Remarks: dolomitized

RC5-6: Groundmass: micritic
Macrofossils: fragments of echinoderms and gastropods rare
Microfossils: planktonic foraminifers and calcispheres rare

RC5-7: Groundmass: micritic
Macrofossils: fragments of echinoderms and gastropods rare
Microfossils: planktonic foraminifers and calcispheres rare

RC5-8: Groundmass: micritic
Macrofossils: fragments of gastropods and roveacrinids rare
Microfossils: planktonic foraminifers and calcispheres rare

RC5-9: Groundmass: micritic
Macrofossils: echinoid spines and roveacrinids rare
Microfossils: planktonic foraminifers and calcispheres moderately abundant

RC5-10: Groundmass: micritic
Macrofossils: fragments of roveacrinids rare
Microfossils: planktonic foraminifers, radiolarians and calcispheres rare

RC5-11: Groundmass: micritic
Macrofossils: small-sized gastropods moderately abundant, fragments of
roveacrinids rare
Microfossils: planktonic foraminifers and calcispheres rare

RC5-12: Groundmass: micritic
Macrofossils: small-sized gastropods rare, roveacrinids rare
Microfossils: planktonic foraminifers and calcispheres rare

RC5-13: Groundmass: micritic
Macrofossils: fragments of gastropods and echinoderms moderately abundant
Microfossils: planktonic foraminifers and calcispheres moderately abundant

RC5-14: Groundmass: micritic
Macrofossils: fragments of gastropods and echinoderms moderately abundant
Microfossils: planktonic foraminifers and calcispheres moderately abundant

RC5-15: Groundmass: micritic
Macrofossils: fragments of gastropods and echinoderms moderately abundant
Microfossils: planktonic foraminifers and calcispheres rare

RC5-16: Groundmass: micritic
Macrofossils: fragments of gastropods and echinoderms moderately abundant



Microfossils: planktonic foraminifers and calcispheres rare
RC5-17: Groundmass: micritic

Macrofossils: fragments of gastropods and echinoderms moderately abundant
Microfossils: planktonic foraminifers and calcispheres rare



Appendix 2: Lithology & microfacies type

Locality Laranjeiras C 652 Locality Japaratuba 16
Sample-ID m Lithologic unit MFT Sample-ID m Lithologic unit MFT

SW1-1 0.00 3 3 SW3-1 0.00 2 2
SW1-2 0.50 3 3 SW3-2 0.35 2 2
SW1-3 0.10 3 3 SW3-3 0.60 2 2
SW1-4 0.15 3 3 SW3-4 0.80 2 2
SW1-5 0.20 3 3 SW3-5 1.05 2 3
SW1-6 0.25 2 2 SW3-6 1.30 2 3
SW1-7 0.40 2 2 SW3-7 1.55 2 3
SW1-8 0.50 2 2 SW3-8 1.75 2 3
SW1-9 0.60 2 2 SW3-9 2.00 2 3
SW1-10 0.70 2 2 SW3-10 2.20 2 3
SW1-11 0.85 2 2 SW3-11 2.45 3 3
SW1-12 0.95 2 2 SW3-12 2.75 3 3
SW1-13 1.10 2 2 SW3-13 2.95 3 3
SW1-14 1.25 2 2 SW3-14 3.05 3 3
SW1-15 1.35 2 2 SW3-15 3.30 3 3
SW1-16 1.55 2 2 SW3-16 3.70 3 3
SW1-17 1.75 2 2 SW3-17 4.00 3 3
SW1-18 1.90 2 2 SW3-18 4.20 3 3
SW1-19 2.00 2 2 SW3-19 4.40 3 3
SW1-20 2.10 2 2 SW3-20 4.60 3 3
SW1-21 2.20 2 2
SW1-22 2.35 2 2 Locality Japaratuba 11
SW1-23 2.65 2 2 Sample-ID m Lithologic unit MFT
SW1-24 2.70 2 2
SW1-25 2.90 2 2 AS-1 0.00 2 2
SW1-26 3.10 2 2 AS-2 0.50 2 2
SW1-27 3.20 2 2 AS-3 0.80 2 2
SW1-28 3.50 2 2 AS-4 1,20 2 2
SW1-29 3.80 3 3 AS-5 1.70 2 2
SW1-30 4.00 2 2 AS-6 2.00 2 2
SW1-31 4.20 3 3 AS-7 2.50 2 2
SW1-32 4.50 2 2 AS-8 2.80 2 2
SW1-33 4.80 2 2 AS-9 3.00 2 2
SW1-34 5.00 2 2 AS-10 3.50 3 3
SW1-35 5.20 2 2 AS-11 4.00 3 3
SW1-36 5.70 2 2 AS-12 4.50 3 3
SW1-37 5.90 3 3 AS-13 4.90 3 3
SW1-38 6.40 3 3 AS-14 5.40 3 3
SW1-39 6.80 3 3 AS-15 6.00 3 3
SW1-40 7.00 3 3 AS-16 7.30 3 3
SW1-41 7.10 3 3 AS-17 7.90 3 3
SW1-42 7.50 2 2 AS-18 8.10 3 3
SW1-43 7.80 2 2 AS-19 8.40 3 3
SW1-44 9.20 2 2 AS-20 8.60 3 3
SW1-45 10.2 2 2 AS-21 8.80 3 3
SW1-46 11.5 2 2 AS-22 9.00 3 3



Locality Rita Cacete 4b Locality Rita Cacete 4a
Sample-ID m Lithologic unit MFT Sample-ID m Lithologic unit MFT

SW4-1 0.00 4 4 SW5-1 0.00 2 4
SW4-2 0.15 4 4 SW5-2 0.10 2 4
SW4-3 0.35 4 4 SW5-3 0.20 2 4
SW4-4 0.45 4 4 SW5-4 0.30 2 4
SW4-5 0.65 4 4 SW5-5 0.50 2 4
SW4-6 0.80 4 4 SW5-6 0.70 2 2
SW4-7 0.90 4 4 SW5-7 0.80 2 2
SW4-8 1.00 4 4 SW5-8 1.10 2 2
SW4-9 1.20 4 4 SW5-9 1.30 2 2
SW4-10 1.45 4 4 SW5-10 1.60 2 2
SW4-11 1.50 4 4 SW5-11 1.90 2 2
SW4-12 1.70 4 4 SW5-12 2.10 4 4
SW4-13 1.90 4 2 SW5-13 2.30 4 4
SW4-14 2.10 4 2 SW5-14 2.50 4 4
SW4-15 2.30 4 4 SW5-15 2.70 4 4
SW4-16 2.45 4 4 SW5-16 2.90 4 4
SW4-17 2.55 4 4 SW5-17 3.00 4 4
SW4-18 2.65 4 4 SW5-18 3.30 4 4
SW4-19 2.75 4 4 SW5-19 3.50 4 4
SW4-20 2.85 4 4
SW4-21 3.15 4 4 Locality Jardim 19
SW4-22 3.35 4 4 Sample-ID m Lithologic unit MFT

Locality Rita Cacete 5 A1-13 0.00 1 1
Sample-ID m Lithologic unit MFT A1-14 0.20 1 1

A1-15 0.25 1 1
RC5-1 0.00 2 4 A1-16 0.30 1 1
RC5-2 0.20 2 4 A1-17 0.50 1 1
RC5-3 0.40 2 4 A1-18 0.55 1 1
RC5-4 0.60 2 4 A1-19 0.70 1 1
RC5-5 0.80 2 4 A1-20 0.85 1 1
RC5-6 1.00 2 4 A1-21 0.95 1 1
RC5-7 1.20 2 2 A1-22 1.05 1 1
RC5-8 1.40 2 2 A1-23 1.15 1 1
RC5-9 1.60 2 4 A1-24 1.20 1 1
RC5-10 1.90 2 4 A1-25 1.25 1 1
RC5-11 2.00 2 4
RC5-12 2.30 2 4 Locality Jardim 1
RC5-13 2.60 2 2 Sample-ID m Lithologic unit MFT
RC5-14 2.80 2 2
RC5-15 3.00 2 4 A5-1 0.00 1 1
RC5-16 3.30 2 2 A5-2 0.10 1 1
RC5-17 3.50 2 4 A5-3 0.20 1 1
RC5-18 3.80 2 4 A5-4 0.25 1 1
RC5-19 4.00 2 4 A5-5 0.35 1 1

A5-6 0.55 1 1
Locality Jardim 31 A5-7 0.70 1 1
Sample-ID m Lithologic unit MFT A5-8 0.85 1 1

A5-9 1.00 1 1
A8-1 0.00 1 1 A5-10 1.15 1 1
A8-2 0.30 1 1 A5-11 1.25 1 1

A8-3 0.50 1 1 A5-12 1.35 1 1
A8-4 0.80 1 1 A5-13 1.45 1 1
A8-5 1.00 1 1 A5-14 1.55 1 2
A8-6 1.20 1 1 A5-15 1.60 1 2



A8-7 1.40 1 1 A5-16 1.75 1 2
A8-8 1.60 1 1 A5-17 1.80 1 2

Locality Jardim 30 Locality Jardim 29
Sample-ID m Lithologic unit MFT Sample-ID m Lithologic unit MFT

A2-1 0.00 1 2 A24-1 0.00 2 2
A2-2 0.10 1 2 A24-2 0.50 2 2
A2-3 0.20 1 2 A24-3 1.10 2 2
A2-4 0.30 1 2 A24-4 1.50 2 2
A2-5 0.50 1 2 A24-5 2.00 2 2
A2-6 0.80 1 2 A24-6 2.80 2 2
A2-7 1.00 1 2 A24-7 3.20 2 2
A2-8 1.20 1 2 A24-8 3.80 2 2
A2-9 1.35 1 2 A24-9 4.00 2 2
A2-10 1.55 1 2 A24-10 4.50 2 2
A2-11 1.70 1 1 A24-11 5.20 2 2
A2-12 1.90 1 1 A24-12 6.20 2 2
A2-13 2.10 1 1 A24-13 7.10 2 2
A2-14 2.40 1 1 A24-14 7.60 2 2
A2-15 2.50 1 1 A24-15 8.30 2 2
A2-16 2.60 1 1 A24-16 8.90 2 2
A2-17 2.80 1 1 A24-17 9.50 2 2

A24-18 9.80 2 2
A24-19 10.30 2 2
A24-20 10.60 2 2
A24-21 10.70 2 2
A24-22 10.80 2 2
A24-23 11.10 2 2



Appendix 3 :  Stable isotope values

Sample-ID m δ carbon δ oxygen
Laranjeiras
C 652
SW1-2 0.10 1.08 -3.73
SW1-5 0.20 0.91 -3.89
SW1-8 0.70 0.66 -3.80
SW1-13 1.45 1.53 -4.06
SW1-15 1.60 2.35 -4.06
SW1-18 2.20 0.60 -3.80
SW1-20 2.55 1.09 -3.61
SW1-25 3.40 1.48 -3.75
SW1-30 4.30 1.06 -3.91
SW1-35 5.40 2.48 -4.19
SW1-36 5.60 2.19 -3.99
SW1-37 5.90 2.06 -4.19
SW1-39 6.65 0.96 -4.00
SW1-40 6.70 1.24 -4.00
SW1-43 7.45 1.88 -4.15
SW1-44 7.60 1.95 -4.11
SW1-45 7.85 1.63 -4.22

Itaporanga
Rita Cacete 4b
SW4-2 0.15 2.77 -3.39
SW4-4 0.45 2.77 -3.20
SW4-6 0.80 2.68 -3.30
SW4-9 1.20 2.68 -3.10
SW4-12 1.70 2.63 -3.11
SW4-16 2.45 2.66 -3.41
SW4-19 2.75 2.50 -3.43

Rita Cacete 5
SW5-2 0.20 3.27 -3.45
SW5-5 0.60 3.08 -3.50
SW5-6a 1.10 1.12 -3.29
SW5-8 1.50 2.32 -3.43
SW5-11b 1.90 3.11 -3.70
SW5-14 2.55 2.06 -3.49
SW5-19 3.50 2.20 -3.42

Japaratuba
Jardim 29
A24-1 0.00 0.57 3.83
A24-3 1.00 0.96 -3.79
A24-4 2.00 -0.08 -3.87
A24-6 2.80 0.33 -3.73
A24-8 3.80 -0.56 -1.89
A24-10 4.40 -0.94 -3.37
A24-14 5.30 -0.67 -3.76
A24-16 5.70 -1.12 -3.75
A24-18 6.80 -1.35 -3.62



Sample-ID m δ carbon δ oxygen
A24-18 6.80 -1.35 -3.62
A24-20 7.80 -2.07 -3.59
A24-21 8.50 -3.51 -3.89

Jardim 30
A2-1 0.00 2.01 -3.47
A2-4 0.50 1.66 -3.46
A2-8 0.80 -1.75 -3.3
A2-9 2.00 -0.89 -3.53
A2-10 2.20 0.33 -2.66
A2-14 3.00 0.78 -2.19
A2-17 4.20 1.43 -2.76

Jardim 1
A5-2 0.20 2.33 -3.5
A5-5 0.85 1.34 -3.84
A5-8 1.30 2.07 -3.42
A5-11 1.70 2.35 -3.35
A5-15 2.10 0.55 -3.36

Jardim 19
A1-3 0.50 2.54 -3.4
A1-20 1.20 2.29 -3.31


