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senschaftlers.

Meinen Eltern. Die mich zu dem aufwachsen haben lassen, was ich heute bin.
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Summary

A bottle neck in malaria research is the investigation of Plasmodium falciparum liver

stage parasites because of technical issues in the infection of Anopheles mosquitoes

with these parasites and subsequent generation of infectious sporozoites. Therefore

I, in close collaboration with a colleague, established a combined in vitro/in vivo P.

falciparum life-cycle in our lab. For that a protocol was established that included

the generation of sexual P. falciparum stages in cell culture that were subsequently

transmitted to Anopheles mosquitoes utilizing a special membrane feeding system.

Later in the life-cycle sporozoites were extracted from the mosquito salivary glands

to finally infect liver cells for further studies. We were able to establish a constant

mosquito-infection rate for several months to perform experiments on P. falciparum

sporozoites and exo-erythrocytic forms.

To help decipher the in apicomplexans so far mostly uncharacterized cellular process

endocytosis I investigated the function and localization of an EH-domain contain-

ing dynamin-like protein in Toxoplasma and Plasmodium. It belongs to a family

of eukaryotic Eps15-homology domain containing proteins (EHDs) that have been

characterized in higher eukaryotes and especially vertebrates to be part of endocytic

events such as vesicular trafficking and endocytic recycling. I was able to show by an

in silico analysis that in contrast to vertebrates (four different EHDs) there is only

one protein member of this familiy existing in each apicomplexan. Nevertheless, the

apicomplexan EHD-protein has similar to all other EHD-proteins a predicted charac-

teristic ATPase-domain (dynamin-like G-domain) and the Eps15-homology domain

(EH). Through a fluorescent tagging approach I was able to show a dynamic localiza-

tion of the Toxoplasma EHD-protein member TgRME-1 (named after its ortholog

in C. elegans receptor-mediated endocytosis protein 1) within the parasites. It lo-

calized to a vesicular compartment within the parasites that did not colocalize with

known organelles so far. The compartment fragmented upon cellular division and is

most likely involved in vesicular trafficking of supply vesicles that transport lipids or

other nutrients to the newly forming daughter-cells. From the data obtained in this

thesis it can be hypothesized that the TgRME-1 labelled compartment represents

a storage compartment that is filled up during the non-replicative phase and dur-

ing endodyogeny helps to form daughter-cells. Structural analysis of the protein by

deletion of either the G-domain or the EH-domain revealed a similar architecture of

the protein compared to published data on mammalian EHDs. Investigation of the

Plasmodium berghei EHD (PbEHD) with an antibody generated against the protein

revealed a different localization in different parasite stages. Whereas the protein

localized to several vesicular compartments in the sporozoite stage it concentrated

to a single organelle-like compartment in liver-stages 24 hours after invasion. This

compartment later (48 hours after invasion) also fragmented and was distributed to

the newly forming merozoites during schizogony, similar to TgRME-1. This sub-

cellular localization indicated that both proteins might share a similar function in

tachyzoites of Toxoplasma and Plasmodium liver stage parasites. A phenotypical
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analysis of PbEHD via generation of a pbehd (-) parasite revealed a putative function

for the protein during intrahepatic development. The pbehd (-) liver stage parasite

showed a reduced growth rate in vivo and in vitro but was still able to complete

the life-cycle. In vivo, C57BL/6 mice infected with pbehd (-) parasites showed a

prolonged prepatency period and did not develop experimental cerebral malaria in

contrast to wildtype-infected mice. I was able to narrow down this protective effect

solely to both the prolonged liver-stage phase and the involvement of the immune-

modulator cytokine IL-10.

Even though a defined role for the EHD-protein in the apicomplexan parasites could

not be determined in this thesis I was able to characterize its architecure and local-

ization in Toxoplasma gondii and Plasmodium berghei. I was able to identify a so

far uncharacterized compartment in these parasites that is most likely involved in

endocytic-recycling and storage of nutrients such as lipids for the parasites. In addi-

tion, my studies showed that the apicomplexan EHD-protein is involved in processes

of the cellular division. A better understanding of these and other mechanisms of

endocytosis will lead to anti-parasitic strategies that may reduce the burden caused

by apicomplexan parasites.
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Zusammenfassung

Eine kritische Engstelle der Forschung an Plasmodium falciparum ist die Unter-

suchung von Leberstadien aufgrund technischer Hindernisse bei der Infektion von

Anopheles Stechmücken und der anschliessenden Erzeugung von infektiösen Sporo-

zoiten. Daher etablierte ich zusammen mit einem Kollegen einen kombinierten in

vivo/in vitro P. falciparum-Lebenszyklus in unserem Labor. Im Rahmen dessen

wurde ein Protokoll entwickelt, das die Erzeugung von P. falciparum-Sexualstadien

und anschliessende Übertragung des Erregers auf Anopheles Stechmücken beinhal-

tete. Im weiteren Verlauf des Lebenszykluses wurden Sporozoiten aus den Spe-

icheldrüsen der Stechmücken extrahiert und anschliessend Leberzellen mit diesen

infiziert. Es gelang uns, die Infektionsrate der Stechmücken über Monate hinweg

konstant hoch zu halten, um Experimente an Sporozoiten und exo-erythrozytären

Stadien von P. falciparum durchführen zu können.

Um zur Entzifferung des in Apicomplexa bisher weitestgehend unbekannten Prozesses

der Endozytose beizutragen, untersuchte ich die Funktion und Lokalisation eines

EH-Domänen-beinhaltenden Dynamin-ähnlichen Proteins in Toxoplasma und Plas-

modium. Dieses Protein gehört einer Familie von eukaryotischen Eps15-Homologie-

Domänen beinhaltenden Proteinen (EHDs) an, denen in höheren Eukaryoten und

speziell in Vertebraten eine Rolle bei vesikulären Transporten und endozytotischem

Recycling zugesprochen werden konnte. Ich konnte mittels in silico-Analysen zeigen,

dass im Unterschied zu Vertebraten (besitzen 4 EHD-Proteine) in Apicomplexa

nur jeweils ein Protein dieser Familie vorhanden ist. Dennoch besitzt auch das

EHD-Protein der Apicomplexa laut Prognosen von Datenbanken die charakteris-

tische ATPase-Domäne (Dynamin-ähnliche G-Domäne) und die Eps15-Homologie

(EH)-Domäne. Ich war in der Lage, mittels fluoreszentem Tag eine dynamische

Lokalisation des Toxoplasma EHD-proteins TgRME-1 (benannt nach seinem Or-

tholog in C. elegans: Receptor-mediated endocytosis protein 1) zu zeigen. Das

Protein befand sich innerhalb eines vesikulären Kompartiments innerhalb des Par-

asiten, welches in seiner Lokalisierung nicht mit einem bisher bekannten Organell

übereinstimmte. Während der Zellteilung teilte sich das Kompartiment und ist hi-

erbei höchst wahrscheinlich beteiligt an der Verteilung von Vesikeln, die Lipide oder

andere Nährstoffe zu den sich neu bildenden Tochterzellen bringen. Zusätzlich kann

von den in dieser Arbeit erzeugten Daten abgeleitet werden, dass es sich bei dem

TgRME-1-Kompartiment vermutlich um einen Speicher handelt, der während der

Nicht-Teilungsphase aufgefüllt wird und während der Endodyogenese die Bildung

der Tochterzellen unterstützt. Die strukurelle Analyse des Proteins ergab durch

Deletion von entweder der G-Domäne oder der EH-Domäne eine mit den Säuger-

EHD-Proteinen vergleichbare Architektur. Die Untersuchung des EHD-Proteins in

Plasmodium berghei (PbEHD) mittels eines gegen das Protein erzeugten Antikörpers

ergab eine unterschiedliche Lokalisation des Proteins in verschiedenen Stadien des

Erregers. Während sich das Protein in Sporozoiten in mehreren vesikulären Kompar-

timenten befand, war es auch in Leberstadien 24 Stunden nach der Invasion in einem
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einzigen Organell-ähnlichen Kompartiment zu finden. Dieses Kompartiment teilte

sich später (48 Stunden nach der Invasion) ebenfalls auf und verteilte sich während

der Shizogonie auf die einzelnen Merozoiten, vergleichbar mit TgRME-1. Diese sub-

zelluläre Lokalisation deutet darauf hin, dass beide Proteine eine ähnliche Funktion

in Tachyzoiten von Toxoplasma und Leberstadien von Plasmodium ausführen. Eine

phänotypische Analyse von PbEHD mittels Erzeugung eines pbehd (-)-Parasiten er-

gab eine mögliche Funktion des Proteins während der Leberstadienentwicklung. Die

pbehd (-)-Leberstadien wuchsen langsamer in vivo und in vitro, waren aber immer

noch in der Lage, den Lebenzyklus zu vervollständigen. In vivo zeigte sich in in-

fizierten C57BL/6 Mäusen im Gegensatz zu mit Wildtyp infizierten Mäusen eine

verlängerte Präpatenz und ein Schutz vor der Entstehung von experimenteller cere-

braler Malaria (ECM). Ich war in der Lage zu zeigen, dass dieser schützende Effekt

einzig der verlängerten Leberstadienphase und der Beteiligung des Zytokins IL-10

zuzuschreiben ist.

Obwohl dem EHD-Protein in Apicomplexa in dieser Arbeit keine definierte Funk-

tion zugeordnet werden konnte, war ich dennoch in der Lage die Architektur und

Lokalisation des Proteins in Toxoplasma gondii und Plasmodium berghei zu charak-

terisieren. Ich konnte ein bisher nicht charakterisiertes Kompartiment in diesen

Parasiten identifizieren, das höchst wahrscheinlich an endozytotischem Recycling

und Speicher von Nährstoffen wie beispielsweise Lipiden beteiligt ist. Zusätzlich

zeigten meine Untersuchungen, dass das Apicomplexa EHD-Protein beteiligt ist an

der Zellteilung der Parasiten. Ein besseres Verständnis von diesen und anderen

Mechanismen der Endozytose wird dazu beitragen, anti-parasitische Strategien zu

entwickeln, die die von Apicomplexa Parasiten verursachte Belastung vermindern

können.
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Chapter 1

Introduction

1.1 Apicomplexa

1.1.1 General

Apicomplexans are unicellular eukaryotic organisms (protists) that belong, together

with their two well-studied sister-lineages dinoflagellates and ciliates, to the higher

order of the assemblage of the alveolates1. Alveolates are characterized by a com-

mon feature, the so-called cortical alveoli, membrane-bound vesicles that can be

found in close association with the plasma membrane of the cell2. Apicomplex-

ans and dinoflagellates probably evolved from a group of predatory flagellates, the

colpodellids, that were shown to represent a sister group of the apicomplexans3.

Both, apicomplexans and flagellates, share a common mechanism of attaching to

the host cell (apicomplexans) or the prey (colpodellids), respectively, that is medi-

ated by similar organelles. Whereas both sister groups, the apicomplexans and the

colpodellids, kept these organelles within the course of evolution, dinoflagellates lost

them. But all three clades still share an endosymbiontically taken up red alga4, the

apicoplast, a remnant chloroplast, that in some alveolates still is photosynthetically

active5 6. Apicomplexans belong to a monophyletic group that is almost exclusively

obligate intracellular parasitic and affect human life in terms of veterinary medicine

and agriculture (Babesia, Theileria and Eimeria) and in terms of human health

(e.g. Toxoplasma, Plasmodium) on a daily basis. For an overview of pathogenic

apicomplexa infecting humans see Tab. 1.1.

1.1.2 Specific subcellular structures of apicomplexa

Apical secretory organelles

Unique to the invasive stages of apicomplexan protozoa are three types of electron-

dense secretory organells, namely rhoptries, micronemes and dense granules

(Fig. 1.1). These organelles are carrying characteristic secreted proteins that are

Table 1.1: Apicomplexan parasites infecting humans

Genera Transmission Disease

Plasmodium mosquito malaria
Toxoplasma felines/vertical neurological/congenital
Cryptosporidium fecal-oral watery-diarrhea
Isospora soil watery-diarrhea
Cyclospora soil watery-diarrhea
Sarcocystis predator-prey rare
Babesia tick zoonotic

1



CHAPTER 1. INTRODUCTION 1.1

involved in adhesion (AMA-1, MICs) and both the formation of the moving junction

and the PV/PVM (RONs, ROPs, GRAs)7, respectively. A number of key parasite

ligands that are located and released from these secretory organelles mediate the in-

teraction of the parasite with the host cell to facilitate and trigger invasion. Studies

on Plasmodium falciparum, e.g., have shown that the invasion process requires sev-

eral sequential steps like attachment to the erythrocyte surface, apical re-orientation

and release of proteins of the apical organelles, with micronemes being secreted first82

8 9. Micronemes are the smallest in size among the apicomplexan apical secre-

tory organelles and their number per cell varies highly between different genera,

species and developmental stages of apicomlexan parasites10. In general, parasite

stages that are able to glide and to invade cells have more micronemes in compari-

son to non-invading cells who contain few if not none. The majority of microneme

proteins (MICs) that are secreted upon host-cell contact have multiple adhesion-

domain types that lead to interactions between the parasite and the host-cell. For

this reason micronemes are secreting before all other secretory organelles since they

provide the initial contact through secreting them onto the parasite surface. Not

much is known about the factors triggering secretion but it has been shown that mi-

cronemal protein secretion is rapidly upregulated upon contact with the host cell84.

In case of P. falciparum external low potassium ion concentrations both internal

elevated cyclic AMP (cAMP) and Ca2+ concentrations are involved in triggering

this process20. Rhoptries are club shaped organelles that exist in the number of

8-12 per parasite cell and are located at the apical end of the parasite. The extended

apical end of these organelles, the so-called neck, is connected to the apical pole of

the parasite where rhoptry proteins can be released from the cell. Rhoptries are

acidified organelles, with a pH of about 3.5-7 (depending on the maturity of the

organelle)11 and occupy about 10-30% of the total cell volume7. Rhoptries harbour

about 30 different proteins, most of them located either within the bulbous part

(rhoptry proteins, ROPs) or at the neck of the organelle (rhoptry neck proteins,

RONs)12. Some of these proteins are important kinases that are essential virulence

factors and are secreted upon invasion of the parasites13 14 15 16(Fig. 1.2). Rhoptry

proteins are produced as pro-peptides at the ER and then processed, packaged and

sorted at the Golgi-apparatus into vesicular immature rhoptries. Some proteins are

also delivered to the rhoptries via the endosomal pathway in multivesicular bodies

and might therefore represent analogous organelles of secretory lysosomal granules of

mammalian cells17 18 19. The external signals and signaling mechanisms responsible

for secretion of rhoptry proteins are so far unknown in apicomplexan parasites 20.

Dense granuolar proteins are released during and after invasion of the parasites

into the host cell and they remain either soluble within the PV or are integrated

into the PVM or the TVM, a tubovesicular membranous network within the PV21.

Dense granule proteins are thought to modify the environment within the PV, are

release through an ”open IMC-window”22 (Fig. 1.2) and have been identified as

excretory/secretory antigens in Toxoplasma23.

2
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Figure 1.1: The morphology of apicomplexan parasites. Apicomplexa inva-
sive stages possess several clade-specific cellular organelles in addition
to the eukaryotic standard repertoir Golgi-apparatus, mitochondria
(not shown in this figure), endoplasmic reticulum and the nucleus.
Secretory organelles such as rhoptries, micronemes and dense gran-
ules contain secretable proteins that are required for motility, invasion,
formation of the PVM and establishment of the PV milieu. An ad-
ditional organelle is the apicoplast, a secondary endosymbiontic red
alga, that supplies the parasite with fatty acids. The conoid is a spiral
structure of undefined material and facilitates invasion into the host cell.
It can protrude from or retract into the apical polar ring, a MTOC
for the subpellicular microtubules that help to keep the parasite’s
elongated shape. The parasites are bounded by the pellicle, which con-
sists of the IMC and the parasite membrane. PVM: parasitophorous
vacoule membrane; PV: parasitophorous vacuole; MTOC: microtubule-
organizing center; IMC: inner membrane complex; Adapted from Mor-
rissette and Sibley, 200247.
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Figure 1.2: 3-D reconstruction of the secretory apical organelles during
initiation of invasion. Rhoptries (green) are secreted one at a time
through the conoid ring at the apical tip. Micronemes (red) dock to
the posterior polar conoid ring at the tip. Dense granules (dark blue)
are secreting through ”open IMC-windows” at the side of the apical
tip. The polarity and shape of the cells is maintained by subpellicular
microtubules (grey net of bundles). (Adapted from Paredes-Santos et
al., 201222)

Apicoplast

An apicomplexa-specific organelle first identified in 197524 harbors a circular extra-

chromosomal genome of prokaryotic origin, quite similar to that of plastids of plants

and algae25 26 27. In contrast to the confirmed plant- or algae-like origin it has been

shown that this plastid-like organelle lacks any genes involved in photosynthesis28.

Comparisons of the apicoplast with photosynthetic plastids of the ancestral apicom-

plexan parasite, Chromera velia, show that these plastids all share the same ancestry

and undoubtedly are of red algae origin. This alga was taken up into the parasites by

endosymbiosis29. Dinoflagellates also possess this plastid and therefore the endosym-

biosis of the red alga took place before dinoflagellates and apicomplexa separated5

(see 1.1). Another indicator that clearly supports the endosymbiosis theory is the

fact that the apicoplast possesses 3-4 membranes as observed in electron-microscopy

studies30. The apicoplast occurs in all members of the phylum apicomplexa with

exception of Cryptosporidium spp.31 32 33 and possibly gregarines, as well34. For

a long time no function of the apicoplast other than keeping itself alive has been

suggested28 35, in addition to the observation of the obvious loss of the photosy-

thetic activity. On the other hand disrupting the integrity of the apicoplast by

chemical or genetic intervention leading to delayed death showed that the plastid

is essential for the parasite36 37. Already in 1998 parasite genome projects made it

possible to identify apicoplast-specific genes involved in parasite metabolism. Waller
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et al. identified genes for an apicoplast fatty acid biosynthesis system in Toxoplasma

and Plasmodium, the type II fatty-acid synthesis (FASII) pathway38. Previously it

had been believed that apicomplexans were not able to synthesize their own fatty

acids de novo and these metabolites had to be scavenged from the host cell de

novo39. One of the key proteins involved in the FASII pathway in apicomplexa

is the acyl-carrier protein ACP. Conditional mutagenesis of this protein in Toxo-

plasma effects apicoplast biogenesis and results in death of the parasite39. But on

the other hand this pathway was not essential for blood- and mosquito-stages, but

essential for liver-stages, of Plasmodium, indicating for different needs of fatty-acids

in these cells or other mechanisms to de novo synthesize or salvage these metabo-

lites from host cells in different stages40 41. Some other de novo mechanisms like a

FASI-pathway (most apicomplexans except Theileria and Babesia)42 43 and a fatty

acid elongation pathway (Toxoplasma)39 have been identified, recently. In addition

to that other apicomplexan parasites harbouring an apicoplast (Babesia, Theileria)

are completely lacking the FASII synthesis machinery suggesting that they are de-

pendent on fatty acid salvage from the host44. This leads to the question what is

the potential role of the apicoplast in these organisms, something that still remains

to be experimentally addressed. Since the human FASI pathway components dif-

fer from the apicomplexan FASII, this makes it, at least for the stages depending

on this pathway, an interesting target for apicomplexan parasite prevention strate-

gies45. For an overview of the processes involved in the fatty acid metabolism in

Plasmodium liver stage parasites see Fig. 1.346.

Cytoskeleton

The cytoskeleton of apicomplexa consists of three different types of structural ele-

ments: Microtubules (and associated proteins), the subpellicular network (in-

cluding the inner membrane complex IMC) and the combination of actin/myosin.

The haploid stages of apicomplexa have two different forms of microtubules: Spin-

dle microtubules and subpellicular microtubules (Fig. 1.4A)47. The subpellicular

microtubules are spirally arranged and radiate from the apical polar ring down to

the region of the nucleus (approximately 2/3 of the length of the parasite), where

they end48 95 49 50 51 52. Underlying the inner membrane complex of the parasite

the subpellicular microtubules confer both polar orientation and elongated shape

of the parasite (compare Fig. 1.1, Fig. 1.2 and Fig. 1.4). Therefore replicative

parasite stages lacking the subpellicular microtubules are non-motile, non-polar and

non-invasive96 53. The apical polar ring (APR) (Fig. 1.1) acts as a microtubule

organizing center (MTOC) and laterally associates with the minus end of the sub-

pellicular microtubules 51 54. Spindle microtubules are employed by replicative

stages during mitosis. Since nuclear division of the parasites occurs without nu-

clear breakdown spindle microtubules associate with a spindle organizing structure

located within nuclear envelope invaginations during this process, the so-called cen-

trocone95 55 97 105 99 56 57 58. Close to the centrocone located is the centriol (except
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Figure 1.3: Schematic overview of the fatty acid metabolism pathways in
Plasmodium liver-stages. Fatty acids in the liver-stages can be ob-
tained in 4 different ways: Through 1) uptake from the host cell, 2)
de novo synthesis via the FASII-pathway taking place in the apicoplast,
3) recycling of membrane lipids or 4) modification and integration into
membranes. 1) The parasite-specific PVM resident protein UIS3 is in-
teracting with the liver host cell specific lipid carrier liver fatty acid
binding protein (L-FABP) and uptake is proposedly mediated by UIS3.
2) For the de novo synthesis of fatty acids in the apicoplast the main
precursor is acetyl-CoA, wich can be either synthesized from pyruvate
by the pyruvate-dehydrogenase complex (PDH) or from acetate via the
acetyl-CoA sythetase (ACS). Before going into the FASII elongation cy-
cle, where the fatty acid chain is elongated by two carbons a cycle, acetyl-
CoA is condensated with the acyl-carrier protein (ACP). Several enzymes
are involved in the several steps before either octanoyl-ACP (important
co-factor of the PDH) or C(10) to C(14) fatty acid chains are produced.
3) Free fatty acids can be realed from membrane turnover events. 4)
The activation of fatty acids to Acyl-CoA thioesthers is needed for most
cellular processes fatty acids are involved in. The process is mediated
by the enzymes ACL (acyl-CoA synthase) and ABP (acyl-CoA binding
protein). The fatty acids can then be modified by other enzymes in the
endoplasmic reticulum (ER). (Adapted from Tarun et al., 200946.)
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in Plasmodium merozoites and Theileria sporozoites), a specialized MTOC, that

does not seem to be necessary for nuclear division but might be necessary for api-

coplast division or serve as a nucleation site for the basal body of the flagellum of

microgametes 59. The subpellicular network was first identified in Toxoplasma

gondii (Fig. 1.4B). It was shown that a network of filaments of 8-10 nanometers in

diameter is underlying the plasma membrane (PM) of the parasites creating a three-

layered pellicle (PM, 2x IMC)60. Two of the main network proteinsare members of

the inner membrane complex (IMC) in Toxoplasma, TgIMC-1 and TgIMC-2. These

proteins are predicted to from coiled-coils similar to the ones formed by myosin

in order to stabilize the network47. The IMC is directly underlying the parasite’s

plasma membrane and is made of large flattened vesicles in Plasmodium sporo-

zoites. In other apicomplexans it is made of many cortical bound large vesicles,

the alveoli (Alveolata-specific), aligned in longitudinal rows61 62. The membranes

of the IMC are spiked with intramembranous particles (IMPs) that are also orga-

nized in rows and might represent transmembrane domains of proteins attached to

intermediate filaments, giving the whole cytoskeleton more stability (Fig. 1.4B)47.

Actin is expressed by two different genes in Plasmodium63, whereas Toxoplasma

actin is only expressed by one64. Most of the actin molecules in apicomplexa seem

to be in a monomeric state rather than existing as a polymerized form. Toxoplasma

tachyzoites for example only have about 2% of their actin in assembled filaments64

and only just a few years ago actin microfilaments could be observed in electron

microscopy studies for the first time95. However, artificially stabilizing actin in Tox-

oplasma with the drug jasplakinolide showed that indeed actin monomers can form

filaments in these cells and this most notably at the apical end of tachyzoites65 66

(Fig. 1.4C). In addition to that, more recent studies have shown that actin filaments

in Toxoplasma and Plasmodium are rather short, between 50 and 150 nm in length67

and undergo rapid structural reorganization and turnover68, mediated by polymer-

izing and depolymerizing factors such as ADF, ARP2/ARP3 etc.69 70. In artificially

hypothonically swelled Toxoplasma parasites α-actin antibodies labeled the region

between the plasma membrane and the IMC. Actin filaments have been shown to

be linked to the substrate extracellular parasites are binding to by transmembrane

adhesins that are reaching from the outside of the cell through the plasma membrane

to the actin filaments71. One of the major roles of actin filaments in extracellular

apicomplexan stages is the interaction with the substrate and formation of the motor

complex together with myosin and other accessory proteins (Fig. 1.5) (Fig. 1.5).

This actin-myosin based motor complex enables the parasites to glide on substrates

(gliding motility) and to penetrate and invade cells. Apicomplexans harbor only a

limited and rather uncommon repertoire of myosins including myosins of the unusal

class XIV, which is restricted to this phylum72. One of the most important roles for

apicomplexan myosins is exhibited by myosin A (MyoA). MyoA is anchored within

the IMC by accessory proteins73 74 and forms the motor protein complex for glid-

ing motility that directly interacts with the actin-filaments (Fig. 1.5). It has long
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been thought that MyoA is absolutely essential for gliding motility and invasion,

since tetracyclin-inducible conditional knock-out studies showed complete blockage

of invasion75 76, before recently new knock-out studies made it possible to com-

pletely knock-out MyoA while invasion to a certain degree is still possible (Nicole

Andenmatten and Markus Meissner, unpublished observations).

Figure 1.4: Components of the apicomplexa cytoskeleton. A) Micro-
tubules. Subpellicular microtubules radiate from the apical polar ring
(black ring at the upper end of the parasite) in close association with the
cytosolic face of the IMC towards the basal end of the parasite. Spindle
microtubules nucleate at the centrocones (invaginations of the nuclear
membrane) during mitosis and are associated with centrioles (dotted
circular structure) that might be needed for apicoplast division or serve
as nucleation site for the basal body of the flagellum of sexual forms. B)
The subpellicular network is an association of intermediar filaments
that underlie the inner membrane complex (IMC) and is connected with
this by transmembrane domains of membrane receptors to give stabil-
ity and rigidity to the parasite. C) Actin and myosin are located
between the IMC and the plasma membrane, actin associated with the
IMC, myosin anchored within the plasma membrane, and form, together
with other associated proteins, the motor machinery of the parasites.
(Adapted from Morrissette and Sibley, 200247.)

1.1.3 Replication of the apicomplexan pathogens

Life-cycle

Apicomplexa grow and replicate within parasitophorous vacoules in host cells and

do not undergo extracellular cell divison. This means apicomplexa have to rapidly

invade host cells, followed by parasite replication including cellular division, host cell
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Figure 1.5: Thhe apicomplexan gliding machinery. This caption shows a model
for the interaction of the MyoA motor complex with the micronemal
protein-host receptor complex. The MyoA motor complex is anchored
within the membrane of the IMC and can bind to and move along
the actin microfilaments. The actin-filaments themselves are connected
with microneme-secreted transmembrane proteins located in the para-
site membrane via an aldolase protein. The transmembrane proteins on
the outside of the parasite can bind to host receptors thereby promoting
parasite-host cell interaction and gliding of the parasite since the driving
force of the MyoA-complex can be transmitted to the substrate. Black
arrows indicate the movement of the complexes. Open arrows show pro-
teolitic cleavage sites. MyoA: Myosin A; IMC: Inner membrane complex;
(Adapted from Soldati and Meissner, 200457)
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lysis and reinvasion, in order to multiply and survive. Apicomplexa have developed

complex life-cycles in order to colonize their hosts and to be transmitted to a new

host (Fig. 1.6). Whereas Toxoplasma can be transmitted directly from vertebrate

to vertebrate via sporozoites stages within oocysts shed within the feces from cats

or via ingestion of tissue cysts by canine animals (Fig. 1.8) Plasmodium needs

an invertebrate vector to be transmitted from one host to the other. In order to

produce replicative stages, that multiply within the host cells, apicomplexa produce

extracellular invasive stages (Toxoplasma: Tachyzoites, Bradyzoites, Sporozoites;

Plasmodium: Merozoites, Ookinetes, Sporozoites) that possess specific organelles

required for invasion. They are motile to reach and invade new host cells (Fig. 1.6).

Whereas Toxoplasma can invade any nucleated cell of warm-blooded vertebrates77,

Plasmodium is restricted to specific cells types such as hepatocytes and red blood-

cells to productively replicate within.

Parasitophorous vacuole (PV)

After invasion of the apicomplexans into their host cell these parasites reside within

a parasitophorous vacuole surrounded by a membrane, the parasitophorous vac-

uole membrane (PVM)78. The PVM forms a physical barrier between the parasites

and the host cell cytosol protecting the parasite from host defense mechanisms. But

since the parasites are surrounded by this, and in addition to that, at least one other

membrane (host cell cytoplasma membrane) and therefore can not directly take up

nutritional factors from the surrounding medium the PVM plays also a specific role

in parasite-host-specific exchange. The entry of apicomplexan parasites is an active

process driven by the parasites’ ability to glide and to form a moving junction at the

connection point between the parasite and the host cell. The invasion is therefore

termed ”active” instead of ”induced” (bacteria) since the host cell does not take

part in this process79 80 81. Therefore the parasite first attaches to the host cell and

subsequently penetrates into a vacuolar invagination of the host cell membrane by

forming a moving junction between the parasite and the host cell surface82. It has

long been thought that the driving force of the invasion of apicomplexan parasites is

the motor complex, the so-called glideosome, an acto-myosin motor located between

the parasite plasma membrane and the inner membrane complex83 (Fig. 1.5). But

this biological dogma recently seems to have been proven wrong: Knock-out studies

of protein-members of the motor-complex of Toxoplasma gondii, previously said to

be essential for parasite invasion, did not completely abolish invasion of the para-

sites (Nicole Andenmatten and Markus Meissner, WTCMP Glasgow; unpublished

observations). The attachment of the parasites to the host cell membrane and the

invasion into it requires sequential secretion of specific proteins from apical parasite

organelles (1.1.2 Apical secretory organelles), termed micronemes, dense granules

and rhoptries84. These proteins and lipids, togehter with proteins and lipids pro-

vided by the host cell, are incorporated into the newly forming PVM 81 85 86 87 88

89. The mature PVs in Toxoplasma and Plasmodium differ to some extend. The
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Figure 1.6: Comparison of the life-cycles of Toxoplasma and Plasmodium.
The inner and the outer white circles represent the generic apicomplexan
and the Plasmodium life-cycle, respectively. The inner grey-shaded cir-
cle represents the Toxoplasma life-cycle. Rapidly proliferating haploid
asexual stages of apicomplexans are able to produce sexual stages (game-
tocytes). Gametocytes transform into gametes of both, male and female
gender, that fuse to form a diploid zygote. Via meiosis the zygotes are
transformed into haploid sporozoites that are able to initiate infection
in a new host individual. The sexual reproduction of Toxoplasma via
sexual stages can take place in the intestinal epithelium of cats only,
their definite host. Asexual reproduction, in contrast, can take place
in many other warm-blooded intermediate hosts (vertebrates) and
the replication of tachyzoites happens in many different cell-types and
organs. Tachyzoites can differentiate into slowly replicating bradyzoites
that form dormant cyst stages in muscle and brain tissues. These tissue
cysts are then infectious to carnivourus hosts again by bypassing the
sexual phase and reactivating tachyzoite production from the cysts. In
contrast to Toxplasma, Plasmodium species are restricted to a specific
host and a mosquito vector that is transmitting the sporozoites to a new
host individuum. Whereas the Toxoplasma zygotes directly transform
into sporozoites within the intestinal epithelium of cats Plasmodium zy-
gotes transform into motile ookinetes first, that cross the midgut epithe-
lium of the mosquito. Afterwards they transform into resident oocysts,
where meiosis is going on and sporozoites are produced, that travel to
the salivary glands of the vector. After maturing there, the parasites are
injected upon blood-meal of the mosquito into the skin and bloodstream
of a new host, to finally establish infection within liver-cells. Whereas
the asexual Toxoplasma tachyzoites are able to infect any nucleated cell
of their vertebrate host, Plasmodium merozoites, released by the liver
cell, can only infect non-nuleated red blood-cells, where they undergo
several rounds of asexual replication before they produce sexual stages
again. (The figure was adapted from Morrissetti and Sibley, 200247.)
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PV in Toxoplasma is a wide compartment with the parasites being connected at

the center and space remaining at the periphery90. The Toxoplasma PVM is tightly

associated with host cell mitochondria and endoplasmic reticulum (ER)91 and can

be prolonged by long extensions reaching into the host cell cytoplasm. In Plasmod-

ium, in contrast, the parasite membrane and the PVM are always tightly associated

and therefore difficult to distinguish from each other in fluorescence microscopy

analyses92. Plasmodium parasites differ in terms of the composition of their PVM

according to which host-cell type they are residing in. Liver-stage parasites have, in

comparison to blood-stages, different proteins residing in the PVM to achieve pro-

tein export into the PVM, the host-cell cytoplasm or beyond. In addition to that

liver-stage parasites are closely associated with the host-cell ER via the PVM93 to

scavenge host-derived lipids, something that is not possible in intraerythroctic.

Replication

The replication of apicomplexans in general to create two daughter-cells or multi-

ple progenie can occur through two different mechanisms: Whereas Plasmodium,

Eimeria, Babesia and Theileria replicate through a mechanism called schizogony

creating up to 64 daughter parasites94 95 96 97 98 99, in Neospora and Toxoplasma

replication occurs by endodyogeny100 101 102 103. In both mechanisms the nuclear

membrane remains intact throughout the whole nuclear division (cryptomitosis) and

the caryokinesis occurs without chromatin condensation104 97 105 99. Both processes,

endodyogeny and schizogony, are very similar and are differing mainly in the preser-

vation of the mother cell specialization (Fig. 1.7).

Endodyogeny During endodogeny two daughter-cells are formed within the mother

cell. The mother cell remains polarized during the whole replication cycle and

keeps the integrity of the inner membrane complex (IMC) and the subpellicular

membranes (Fig. 1.7A). Therefore the mother cell preserves the ability to glide

and to invade new host cells througout the complete life-cycle even if the host cell

lyses before the generation of the daughter-cells is complete. Each daughter-cell is

enclosed by its own IMC and associated subpellicular microtubules and filled with

the apical organelles in addition to a nucleus, mitochondrion, Golgi-apparatus and

the plastid106 103 107.

Schizogony In parasites undergoing schizogony subpellicular membranes and the

IMC are disassembled after invasion of the parasites into host cells and several rounds

of nuclear divisions take place (Fig. 1.7B). At the end of each cycle up to 64 (in

blood stages) or up to 30.000 (in liver stages) daughter nuclei have been formed and

move to the periphery of the cell where they assemble together with new sets of the

organelles, are incorporated each with their own newly formed IMC, and finally bud

of from the mother cell as merozoites. During the process of schizogony, in contrast

to parasites undergoing endodyogeny, parasites are not invasive any more because
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Figure 1.7: Schematic comparison of apicomplexan endodyogeny and
schizogony. A) Endodyogeny is producing two daughter-cells inside
the mother cell without loosing the shape and polarity of the mother
cell. The inner membrane complex (IMC, thick black line) and subpel-
licular microtubules of the mother cell remain intact troughout the whole
process and the daughter-cells are forming surrounded by their own IMC.
When the daughter-cell formation is complete the newly formed cells bud
off from the remnants of the mother cell. B) During schizogony the in-
tegrity and polarity of the mother cell is lost, the parasite rounds up and
subpellicular microtubules and the IMC are lost. Extensive cell growth
and nuclear division takes place before single nuclei align with single
sets of apical organelles, the IMC and subpellicular microtubules at the
periphery of the replicating cell.(represented as white circles) (Figure
adapted from Morrissetti and Sibley, 200247.)
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they lack cell polarity and the integrity of the organization of apical organelles94 95

96 99.

1.1.4 Epidemiology and pathogenicity

Toxoplasmosis and Malaria

Toxoplasmosis Toxoplasma replication and transmission follows a predator-prey

system that alternates between definite (sexual reproduction) and intermediate (asex-

ual reproduction) hosts (Fig. 1.6). It is very unique for Toxoplasma in its coccidian

group that transmission of the parasites can occur not only between definite and

intermediate host (sexual cycle), but also between two intermediate hosts by car-

nivorism (asexual cycle) and even between definite hosts by oocyst-contaminated

feces108 (Fig. 1.8). But the proportion of asexual and sexual cycles taking part in

transmission vary between given environments according to the structures of the

definite and intermediate host populations109. In general, Toxoplasma infection has

been described for more than 350 host species, mostly mammals and birds, and

the majority of these animals are living in a wild environment110. The contami-

nation of this environment is linked by the stray, domestic or wild feline definite

hosts shedding oocysts that are than taken up by intermediate hosts (Fig. 1.8), and

therefore the seroprevalence of Toxoplasma in the intermediate hosts mostly depends

on the felids in their environment. Most wild definite hosts have a seroprevalance

of close to 100%, but this depends on many different environmental factors such

as climatic conditions, susceptibility of the host, livespan and feeding behaviour111

112 113. Seroprevalence in humans also varies quite dramatically: In general, it

is assumed that about 25-30% of the world’s human population is infected with

Toxoplasma parasites114. Whereas low seroprevalences (10-30%) have been found in

North America, South East Asia, Northern Europe and Sahelian countries of Africa,

moderate prevalences (30-50%) have been found in Central and Southern Europe

and high prevalences in Latin America and in tropical African countries108. Impor-

tant factors for the seroprevalence of human populations are climatic conditions that

affect the survival of oocysts in the environment, infection rates in meat producing

animals, dietary habits (cooking of meat, handwashing, fertilization and collection

of vegetables, kinds of meat and vegetables consumed etc.) and the domestication of

cats. In addition to that, water contaminated with feces also plays a very important

role in transmission of Toxoplasma to humans. In general, most human infections

are acquired through horizontal transmission via ingestion of tissue cysts in infected

meat (30-63% of all risks in Europe) or by ingestion of feline feces-contaminated

soil (6-17% of all risks in Europe), water, or food with sporulated oocysts115. The

fact that most cases of new Toxoplasma infections in Europe are caused by con-

taminated food is especially surprising considering the fact that tissue cysts are

usually killed in deeply frozen food (below −12 ◦C) after 3 days or immediately by

heating them up to 67 ◦C 116 117. Two rather rare sources for an infection are the

horizontal transmission of tachyzoites through the plazenta from the mother to the
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unborn child (congenital), happening only if the mother acquired a primary acute

infection during the pregnancy, and infections related to organ transmission. For

a summary of all infection risks see Fig. 1.8. Pathogenesis during the course

of the infection in humans: After ingestion of cysts or oocysts into the human

body the respective forms, bradyzoites or sporozoites, invade the small intestinal

epithelium where they convert into the rapidly growing tachyzoites. The acute early

steps of the infection of this tissue finally lead to a transmigration of the parasites

through the epithelium to the basolateral side118, where the parasite invades mono-

cytes. These are the key cells for disseminating the parasites through the blood

flow to all organs, using them as shuttle service to cross biological barriers almost

”unseen” by the immune system119 120, being able to infect almost any nucleated

cell. Nevertheless, shortly after ingestion of the parasite into the human digestive

tract there is a local release of chemokines by the infected cells which then leads

to attraction of cells of the innate immune system121. Phagocytotic immune-cells

are recruited and a Th1-based immune-reaction is generated, which, if not tightly

regulated by IL-10 and TGF-β, can result in severe tissue damage in non-healthy

patients122 123. An overshooting Th1-immune-response might also be responsible for

the fatality of acute Toxoplasma infection during pregnancy124. Normally a Th2-

based immune-response leads to maternal-fetal tolerance but is destroyed by IFNγ

secretion during a Toxoplasma infection which can lead to serious damage if not

abortion of the unborn child124 125. On the other hand, in contrast to generating

an overwhelming immune-response during acute infection, Toxoplasma has evolved

many different techniques to avoid the host cell immune system and thereby estab-

lishing a lifelong persistent infection in its host. Some of the parasite strains for

example are able to get some of the secreted proteins transported into the host cell

nucleus, where they interfere with pathways of the host immune system126 127. In

addition to that it has also been demonstrated that the parasites are able to inhibit

apoptotic mechanisms of the cells they are residing in, thereby ensuring protection

from rapid clearance of intracellular tachyzoites from macrophages and oocysts from

tissues and prevent alerting of the immune system128 126. In 80% of all cases in im-

munocompetent individuals an acquired infection is asymptomatic114. In all other

cases in this group patients may experience fever, a swelling of cervical lympnodes

or other non-clinical symptoms. Yet, the severity of the disease outcome might be

dependend on the parasite strain since recent observations showed that countries

that have more virulent strains predominating generally have higher incidence rates

of severe disease. This severity is usually expressed by the existence of high rates

of corioretinitis, an inflammation of the patient’s eye129 130 131. But these strains

can also be responsible for the generation of lethal infections in immunocompetent

patients132. In contrast to immunocompetent individuals, Toxoplasmosis is always

life-threatening in immunocompromised patients108. Among these patients peo-

ple with an HIV-infection or under immunosuppressive therapies are considered at

the highest risk. Especially people receiving an organ via transplantation are at a
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very high risk since they can either develop Toxoplasmosis through reactivation of

cysts during their immuno-suppressive therapy or via the transplanted organ, that

may carry tissue-cysts itself133 134 135. In HIV patients the incidence of Toxoplas-

mosis is closely related to the number of CD4+ T-cells, the risk increasing with

decreasing cell numbers. The most affected organ in these patients is the brain,

where toxoplasmic encephalitis (TE) can occur. This inflammation of the brain can

lead to symptoms ranging from headache, lethargy and incoordination to loss of

memory, major motor seizures and finally death136. But also other organs can be

involved such as the lung, the eyes and the heart resulting in inflammation of the

tissue in these organs137 138. As described above one fatal outcome of the primary

infection in immunocompetent individuals can be the congenital Toxoplasmosis

in pregnant women. Here, tachyzoites that are circulating in the mother during

a recently acquired infection are transmitted to the child via vertical transmission

(Fig. 1.8) through the placenta, a target tissue for parasite replication139. The

severity of the disease thereby is highly dependent on the timepoint of the infection

of the mother during her pregnancy. During the first trimester the placental barrier

is highly efficient and only in 10% of the cases parasites pass through. This changes

with the 2nd and 3rd trimester when in 30% and 60-70% of the cases, respectively,

parasites can pass the barrier140. Nevertheless parasite replication at all times can

lead to inflammation of the placenta and in the fetus’ eye and brain tissue causing

severe damage to the child and finally may lead to abortion of the child.

Malaria To date malaria is still one of the most dangerous and deadly neglected in-

fectious diseases in the world. Even though the World Health Organization (WHO)

reported a 50% reduction of reported malaria cases in 43 of 99 countries with ongoing

tranmission (Fig. 1.9) between 2000 and 2010 in their World Malaria report 2011,

there are still more than 200 million malaria cases estimated each year141. Of these,

more than 80% are reported in subsaharan Africa resulting in 600.000 deaths per

year on this continent, mostly amongst children under the age of 5 years141. Malaria

is caused by at least five different species of the apicomplexan parasite Plasmodium

(see 1.1): P. vivax, P. malariae, P. ovale, P. knowlesi and P. falciparum, the lat-

ter of which causes Malaria tropica, the most severe form of all malaria diseases.

Today, more than 100 different Plasmodium species are known, infecting a broad

variety of vertebrates including mammals like humans and rodents, but also birds

and reptiles. The transmission of the Plasmodium parasites from host to host oc-

curs through an infectious blood meal of mosquitoes (see 1.1.3) of the genera Culex,

Anopheles, Culiceta, Mansonia and Aedes. After transmission of the parasites in

form of sporozoites by a mosquito they reach the liver (see 1.1) where they repli-

cate and remain clinically silent. In P. malariae, P. ovale and P. vivax liver-stage

parasites can form persistent stages, so-called hypnozoites, that can lead to dis-

ease relapses years after the initial infection. After replication within the liver-cells

merosomes budd-off and detach from the surrounding tissue142. These merozoite

filles vesicles are though to be derived from the host liver cell and its membranes143.
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Figure 1.8: Sources of Toxoplasma gondii infection for humans. (Adapted
from Robert-Gangneux and Darde, 2012108.)
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They release merozoites into the bloodstream of the host, where they undergo asex-

ual replication (see 1.1). It is during this phase of the parasite’s life-cycle that the

human host is suffering from clinical symptoms. The classical clinical symptoms of

malaria are intense chills, fever and sweating144. The chills will often be accompa-

nied by headaches, nausea and fatigue. One of the most characteristic symptoms of

a malaria infection in humans is the re-occurence of fever attacks. The frequency

of these fever attacks is dependend on the speed of the asexual replication and the

timing of the erythrocyte bursting. This bursting leads to a release of merozoites

as well as free antigens alerting the immune system and leading to an inflammatory

reaction resulting in fever145. All Plasmodium species infecting humans except P.

falciparum can only invade erythrocytes of a certain age. Therefore their replication

cycles and as a result the burst of the mature infected red blood cells (iRBCs) are

synchronized leading to a defined pattern of fever attacks. In a P. vivax and a P.

ovale infection the fever attacks are re-occuring every 48 hours (Malaria tertiana)

whereas in P. malariae they do every 72 hours (Malaria quartana). P. falciparum,

in contrast, can infect RBCs of any age and therefore the replication and burst of

iRBCs is not synchronized, the fever-attacks are irregular. Since replication of the

Plasmodium parasites leads to the burst of erythrocytes one of the complications

of malaria is anemia. P. falciparum, in contrast to the other parasite strains, can

also cause additional complications of the infection called severe malaria. Severe

malaria is characterized by acute renal failure, lung edema, severe anemia and aci-

dosis146. One reason for the higher virulence of P. falciparum is its ability to express

variant surface antigens like Pf EMP-1 on the iRBC surface that subvert immunity

and mediate sequestration from blood circulation to avoid spleen-dependent killing

mechanisms by sticking to endothelial cells147. This ability to sequester is one of

the most important features involved in both cerebral malaria (described below)

and pregnancy-associated malaria (PAM)148, both complications of severe malaria.

Pf EMP-1 protein variants are expressed by members of the var gene family that

have different exons lying in subtelomeric regions of the chromosomes. The var

genes undergo genetic recombinations of different subregions that can more or less

randomly be recombined through antigenic switching to express different protein

variants that are selected throughout the course of the infection147 149 150. Some

of the variants lead to adheasion in different tissues like the placental condroitin-

sulfate A (CSA) or the brain. The different adhesion properties are thought to be

mainly determined by specific Pf EMPs that can bind to ICAM-1, CD36, CSA or

other endothelial receptors and lead to agglutination and rosetting and other inter-

actions in the tissue capillaries151. Var genes can be separated into different groups

according to the genome architecture and genes within these groups are more likely

to recombine with each other than with others152 153 154. Variants expressed by

different groups seem to have different influence on the clinical outcome of the dis-

ease155. Whereas some of the var gene groups seem to be more associated with mild

malaria others are with severe malaria. For example variants that do not bind to
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CD36, a tissue marker that is only expressed in low numbers in the brain, are associ-

ated with severe complications such as cerebral malaria156 157. In addition, most of

these variants also do support iRBC rosetting, which is consistently associated with

severe malarial infections in children and partly with the development of cerebral

malaria158 159 153. This led to the conclusion that at least partially specific surface

proteins expressed by variant parasite genes (var) on iRBCs involved in binding to

specific tissues like the brain (ICAM-1) or the placenta (CSA) are responsible for

the clinical outcome of malaria infections152.

Figure 1.9: Countries and territories affected by Malaria in 2010. This map
was adapted from the WHO Malaria report 2010.

Cerebral malaria and experimental cerebral malaria

Cerebral malaria (CM) is a life-threatening complication of severe malaria infections

(see 1.1.4) in humans. The mechanisms are not fully understood in detail, yet. One

of the reasons for this is the difficult to study the parasitological and immunological

events within the affected organ, the brain, ante-mortem160. Therefore a mouse

model system has been found that is suppossed to mimic cerebral malaria events

and was called experimental cerebral malaria (ECM). It is currently highly under

debate if this ECM model system is of added value to the scientific CM community

and if its study is at all relevant to the humane CM disease160. Nevertheless, it is

the only system generating a similar Plasmodium-caused severe disease phenotype

in a model organism closely related to humans. Therefore, even if not directly

comparable to human CM, can give clues to what mechanisms may be underlying

the generation of the disease161.

Human cerebral malaria The WHO defines CM as an unrousable coma that is not

attributable to other causes than a severe malaria (see 1.1.4) infection162. Whereas
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adults generally are resistant to developing severe malaria, very young children are

at a high risk of developing severe malarial anemia. In contrast to that, older

children, who have had at least one previous malaria infection already, seem to be

at increasing risk of developing cerebral malaria163. Therefore the epidemiology

of severe malaria leads to the assumption of a major role of the immune system

in both initiation of (in children) and protection from (adults) cerebral malaria160.

Fields studies have shown that about 1% of all diagnosed P. falciparum infections

progress into CM. In about 10-20% of these CM patients the outcome is fatal leading

to 300.000-500.000 deaths per year160. In the last few years it has been shown that

the generation of CM is most likely caused by a combination of a host-immune re-

sponse to the parasite and the parasites’ ability to sequester in the brain of its host.

Cerebral malaria can rapidly develop in infected patients after 2-3 days of fever with

coma being the standard definition of CM. Early clinical symptoms like headache,

fits, vomiting and diarrhea can not be distinguished from symptoms generated by

meningitis, encephalitis and febrile convulsions160. But these can rapidly progress

into more severe symptoms and finally coma if immeditate medical treatment is not

provided. Two of the main pathological characteristics of CM have been seen in

post-mortem analyses of brain sections of patients having died of CM. In these sec-

tions haemorrhaging into the white matter of the brain tissue, indicating a leakage of

the blood-brain barrier (BBB) and sequestration of iRBCs within cerebral capillaries

could be observed164. In addition to that, accumulated and adherend leukocytes like

monocytes and macrophages could be found sequesterd together with the infected

cells and infiltrated into the brain tissue165. It is known, that endothelial recep-

tors in the brain play a very important role for sequestration of malaria parasites

during CM within the brain. One of the best studied receptors involved in iRBC

sequestration is ICAM-1166 167. It has been shown that ICAM-1 is upregulated on

cerebral vasculature endothelium157 166 during malaria infections and that iRBC

are binding to ICAM-1 molecules in vitro168 169 170. In addition to that, there is

evidence that the binding of iRBCs to ICAM-1 in vivo is associated with the risk

of developing CM, even though there is conflicting data on that matter160. There-

fore other receptors like VCAM-1, E-Selectin and ELAM-1 might be involved since

they have been shown to be upregulated in CM as well171 172 169. Rather than just

single receptor molecules being involved most likely P. falciparum-cytoadherence is

a multi-step process in which many different receptors are involved initiating first

contact, mediating rolling of the parasites and finally firm adhesion173 174. A widely

accepted model assumed for a long time that symptoms of CM were solely due to

blockage of the blood flow in brain microvessels by sequestered iRBCs175. In this

model parasites adhere to brain endothelial cells via surface proteins that interact

with endothelial receptors, combined with rosetting of infected and non-infected red

blood cells, thereby impairing blood flow leading to hypoxia, hypoglycemia and built

up of toxic waste products. This rapidly would lead to irreversible tissue damage160.

This being the only cause for CM symptoms is currently under debate176 177 178. Be-
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cause, even though parasite sequestration is usually seen in CM brains, there is also

deaths attributable to CM according to WHO guidelines that do not show sequestra-

tion179 180 164. In addition, parasite sequestration has also been observed in patients

that did not develop CM172 181. One of the other factors that might contribute to

the development of CM during severe malarial infections is the host immune sys-

tem. Highly characteristic cytokine profiles associated with acute severe malaria

prove evidence for the involvement of the immune response in the generation of CM.

Elevated levels of pro-inflammatory cytokines in the patients plasma such as TNFα,

IFNγ and increased production of anti-inflammatory cytokines such as IL-10 have

been observed consistently during the course of cerebral malaria182 183. Also high

concentrations of inflammatory cytokines in the cerebrospinal fluid could be asso-

ciated with the severity of the disease184. Nevertheless, most of the data acquired

on immune-cells and factors involved in the development of human CM were gained

from peripheral fluids. This is especially crucial when it comes to the analysis of

the involvement of T-lymphocyte subsets in the development of CM. So far only

data comparing peripheral blood T-cell populations in CM and non-CM cases could

be analyzed due to the inability to collect cells from crucial tissues at key time-

points185. Since it is hypothesized that there has to be a major migration of T-cell

subsets to the brain tissue in order to play a prominent role there, this explains the

lack of knowledge still present how exactly the immune system is involved in the de-

velopment of CM160. Therefore an experimental system is still needed to understand

the mechanisms behind the disease.

Experimental cerebral malaria The best accepted experimental model of CM is the

Plasmodium berghei ANKA (PbA) model160. Infection of susceptible inbred mice,

including the strains C57BL/6 and CBA, with this rodent malaria strain leads to

severe cerebral pathological symptoms such as ataxia, fitting, respiratory distress

and ultimately coma186. Depending on the genetic background of the host and on

the specific parasite clone the onset of clinical signs after infection is typically be-

tween 5-10 days post-infection186. As seen in humans upon the first occurence of

clinical signs of the infection usually there is a rapid decline of the condition of

the animals with death occuring within 4 or 5 hours after the onset of neurological

signs160. It has been observed in mice showing signs of ECM that there is disruption

of the blood-brain barrier with blood-leakage into the cortex and other regions of

the brain177 187, accumulation of iRBCs in blood vessels188 189 and signs of perivas-

cular inflammation in these regions190. Other factors, like cognitive dysfunction and

impaired visual memory191 during the course of a PbA infection lead to a progress-

ing decline of the general animal condition that has recently been made evaluable

by the definition of a ”coma and behaviour scale” documenting the progress for

the assessment of ECM in a murine model192. As shown for human CM, also the

susceptibility of mice to ECM is depending on genetic and environmental factors,

such as the genetic background (BALB/C vs. C57BL/6) and the age . It has been

shown, for example, that differences in the expression profile of genes in the brain of
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susceptible mice, compared with resistant mice, involve metabolic energy pathways,

immune activation, apoptosis and neuroprotection/-toxicity193 194 195. But most of

the characteristics involved are yet to be determined160. Since parasite sequestra-

tion in the brain is assumed to be one of the main factors involved in generation of

CM in humans the obvious question arises: Do PbA parasites also sequester in the

brain of mice showing signs of ECM and if yes, which parasite and host receptors are

involved in this? Indeed, PbA infected RBCs have been shown to be accumulated

in brain capillaries of mice showing signs of ECM on light and electron microscopy

level196 197 189. But it is not yet understood if the sequestration of the parasites

indeed is mediated by strong adherence, comparable to human CM, or rather tight

junctions or even only weak interactions160. In terms of receptors possibly involved

in PbA sequestration it has recently been shown that CD36-mediated sequestration

is involved in blocking of blood vessels in lung and adipose tissue but not in the

brain198. This has been interpreted as evidence for PbA-sequestration not being

important for the development of ECM in the PbA model199. Nevertheless, even

in human CM the role of CD36 for the sequestration in the brain is under debate

and the possibility of other endothelial receptors like ICAM-1 being involved is very

high (as discussed above). Additionally, it has been shown that at least the number

of parasites residing in the brain, shown by the parasite biomass present, is directly

correlated with the risk of ECM200 201 202. In line with the observation that CD36-

mediated sequestration does not play a major role in the generation of ECM it has

been shown that other endothelial receptors like ICAM-1, VCAM-1 and P-selectin

are upregulated on brain endotheliar cells in ECM-susceptible mice during a PbA

infection182 183. These results are in good agreement with the observations in human

brains affected by CM. In addition, ICAM-1 or P-selectin deficient mice did not de-

velop ECM, while leukocyte attachment in these mice in the brain was not impaired,

suggesting a major role of both ICAM-1 and P-selectin for iRBC sequestration in

these mice203 204 205. As described above, parasite proteins involved in sequestra-

tion of the human malaria parasite P. falciparum include variant antigenic proteins

expressed by var genes. There is no known homolog of var genes in other malaria

species but a protein family exists, the Plasmodium interspersed repeat (pir) family,

that is believed to be involved in antigenic variation and has been identified in P.

vivax a decade ago206. Since then members of the pir familiy have been investigated

also in rodent malaria parasites like the cirs (P. chabaudi), the birs (P. berghei) and

the yirs (P. yoelii)207 208 209. But a connection to P. berghei -induced ECM could so

far not be made160. The lack of information about receptors involved in the genera-

tion of the cerebral symptoms makes a detailed comparison of CM and ECM quite

difficult, but the majority of immunological features of human CM are recapit-

ulated during a PbA infection in C57BL/6 mice and can be compared160. Like in

human CM, the susceptibility of mouse strains to ECM has been directly correlated

with the strength of a pro-inflammatory immune environment in response to the

parasite210 211 201. A great variety of experiments in the field of ECM immunology
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has led to the conclusion, that a balance between Th-1 to regulatory T-cell responses

is determining the outcome of a PbA infection212 200 213, whereas manipulation of

the Th2-response (for example through ablation of the IL-4R) does not have a major

influence214. As already observed in human CM , also in ECM circulating cytokines

lead to an upregulation of the expression of endothelial receptors as well as increased

expression of chemokines in leukocytes. Thereby, one of the most important family

of leukocytes involved in the development of ECM seems to be CD8+-T cells. It has

been shown that CD8+-T-cells accumulate in the brain of susceptible but not resis-

tant mice immediately before the onset of neurological signs and it is believed that

these cells can directly cause the disruption of the blood brain barrier via secretion

of perforin, a pore-forming protein 215. In addition to that depletion of CD8+-T cells

either early (from start of the infection) or late (between day 4 and 5 post-infection)

completely inhibits the development of ECM in these mice216 217 218. The interplay

between the innate and the adaptive immune response also seems to play a major

role since it has recently been shown that NK cell-derived IFNγ is required for the

upregulation of co-stimulatory receptors on CD8+ T cells and for their subsequent

migration to and sequestration in the brain of susceptible mice219 220. Even though

CD4+-T cell depletion during early stages protects from development of ECM, their

role during coma stage of the infection is somehow contradictory. Whereas they do

not seem to play a role in some studies 217, in others their depletion also at later

timepoints of an PbA infection prevents from ECM and an adoptive transfer of PbA-

specific CD4+-T cells has been shown to reduce parasite burden and prevent ECM

in susceptible mice220 221. Therefore a role of CD4+-T cells during the generation

ECM can not be ruled out and this topic needs some further investigation.

1.2 Eps15-homology domain proteins

For the uptake of nutrients and signalling molecules membrane-bound receptors on

mammalian cells and other organisms need to be internalized and processed. In ad-

dition to that, the expression of adhesion molecules on the surface, ion channels and

the retrieval of synaptic vesicles in neurons need to be fine regulated222. But not all

of the receptors and membrane-bound proteins that are internalized are directed to

protein degradation. Some of the receptors need to be recycled back to the surface

of the cell by a process called endocytic recycling. Here, first receptors are collected

into the early endosome (EE) and then transported back to the plasma membrane.

This can happen either directly (fast recycling) or through an organelle first (slow

recycling), that is called endocytic recycling compartment (ERC)223 224 (Fig. 1.10).

One of the key groups of proteins involved in endocytic recycling is the family of the

Rab-GTPases (Rabs)225 226. Rabs are cycling between an inactive (GDP-bound)

and an active state (GTP-bound), which has a high affinity for effector proteins,

such as SNARE proteins e.g. These proteins mediate fusion between vesicles and

target organelles and they themselfes promote vesicular transport, fission of and fu-

sion with membranes227. Recently, another protein family has been identified that is
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involved in the regulation of endocytic recycling events, the Eps15-homology domain

(EHD) protein family. EHD-proteins have been identified in many different eukary-

otic organisms but are best studied in mammalian cells and in model organisms such

as Drosophila melanogaster and Caenorhabditis elegans. EHD-proteins have been

linked to Rab-proteins in a few studies not because of direct interaction but through

mutual interaction partners228 229 230. Whereas there are four different members

of EHD-proteins in mammalians, EHD1 to EHD4, there is only one ortholog in

both, Drosophila (Past-1) and C. elegans (Receptor-mediated endocytosis protein

1, Rme-1). In the following, I will mainly focus on the mammalian EHD-protein

family members since most functional and structural data have been obtained for

this family.

1.2.1 Protein architecture and function

EHD-proteins have a molecular mass of about 60 kDa and contain several distinct

architectural feaures: They harbor a G-domain at the N-terminal part of the pro-

tein, followed by a helical middle domain and an EH-domain at the C-terminus

(N-terminus in plant orthologs)282 (Fig. 3.5). The proteins are able to bind and

hydrolyze ATP, oligomerize around membrane tubules and use the energy created

by ATP-hydrolysis to pinch of vesicles from membranes.

G-domain

The G-domain harbours the nucleotide binding site of EHD-proteins and is predicted

to be similar to the nucleotide binding site-domain found in Ras and dynamin family

GTPases in the first place231, which is the reason why the domain has been named G-

domain. Later, it could be shown that EHD2 indeed is a P-loop-containing NTPase

(Guanosin-recognition motive: NKxD; P-loop motive: GQYSTGKT), binding and

hydrolyzing nucleoside-triphosphates, but instead of binding to GTP alone, it has

a way higher affinity for ATP283 282. Upon nucleotide binding EHD-proteins are

able to dimerize (Fig. 1.11 A) which then makes them able to bind to membranes.

It has been shown that nucleotide-binding of the G-domain is a prerequisite for

the protein to dimerize and to oligomerize in vivo since nucleotide-free mutants

of EHD2 could not bind to lipids anymore and the protein remained cytosolic282.

A recently developed model232 (Fig. 1.11 B) proposes a mechanism in which the

binding of ATP to the G-domain of an EHD-protein leads to an initial dimerization

step(Fig. 1.11 A), upon which the dimer undergoes conformational change and

becomes able to bind to lipid bilayers. The dimerization is mediated by a highly

conserved hydrophobic interphase within the G-domain (Fig. 1.11 A). After the

binding the dimer is able to oligomerize with other dimers to form a ring around

membrane tubules and is finally able to pinch off vesicles upon ATP-hydrolysis

(Fig. 1.11 B). This function as so-called ”membrane bender” has been characterized

for EHD2 in vitro, because it was shown that this protein tubulates liposomes,

forms ring-like oligomers around the tubules and induces the ATP-hydrolysis upon
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Figure 1.10: Regulation of endocytic transport and proteins involved. Inter-
nalized receptors are transported to the sorting/ early endosome (EE)
where their future fate will be determined. They can either be directly
recycled back to the surface via fast recycling or slowly, going into
the perinuclear endocytic recycling compartment (ERC) first. Proteins
destined for degradation can either be transported into the late en-
dosome, from where they are moving on into lysosomes, or they are
undergoing retrograde transport to the Golgi-apparatus. In all of these
processes vesicles need to be labeled and transported to their final
destination, which is mediated by trafficking proteins such as EHD-
proteins, Rab-GTPases and Rab-like proteins. The figure was adapted
from Naslavsky and Kaplan, 2011232.
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the binding of the membrane282 233. Nevertheless it is not sure, yet, if the tubulation

event also happens under endogenous gene expression (not overexpressed) in vivo.

EHD1 and EHD4 are the only EHD-proteins that have been found on endogenous

tubules in mammalian cells so far. EHD1 mutants that lacked the ability to bind to

tubules created an impaired ability in these cells to recycle receptors indicating for a

receptor-recycling function of these tubules234. But there is a question that remains

to be answered: Do these EHD-proteins tubulate/stabilate the liposomes within the

cells or do they only bind to the tubules after they have already formed232?

Helical middle domain

The helical domain is located downstream of the G-domain and can bind to lipids

with a polybasic stretch close to its N-terminal tip. Upon dimerization of the protein

via the G-domain the lipid-binding site is exposed and forms an interaction site for

lipids together with the second protein within the dimer (Fig. 1.11 A).

EH-domain

The C-terminal Eps15-homology domain was named after three homologous do-

mains at the N-terminus of the epidermal growth factor receptor tyrosine kinase

substrate Eps15235 236. EH-domains contain two calcium-binding helix-loop-helix

motifs (EF-hands) that give them a stable secondary structure. It has been shown

that EH-domains are protein-protein-interaction domains that bind specifically to

the tripeptide Asparagine-Proline-Phenylalanine (NPF)237 238. In addition to that,

it has been shown that EH-domains can also interact with phosphorylated phos-

phoinositides239. Even though EH-domains of EHD-proteins and other proteins

containing EH-domains are quite similar and all can possibly bind to NPF-motifs,

there is a clear need for selectivity of the domains in these organisms. There need to

be other factors involved in selecting to bind a specific protein via their EH-domain

other than just the NPF-motif. There is a clear difference between EH-domains in

EHD-proteins and in other proteins, respectively. In proteins where the EH-domain

is located N-terminally, such as in Eps15, the surface of the domain is generally

negatively charged, whereas it is positively charged in EHD-proteins240. Therefore

both proteins can only bind to NPF-motifs that are surrounded by amino acids of

the opposite charge241. It has been shown in addition, that EH-domains of EHD-

proteins can not only bind to NPF- but also to GPF-motifs, even though with a

much lower affinity242. During formation of homo-dimers of EHD2 the EH-domain

of one monomer binds to a GPF motif in the linker region between the EH-domain

and the helical domain of the other monomer282. In addition to the GPF motif in the

linker of EHD2 there is also a KPFxxxNPF-motif within the G-domain that might

be the connection point between the EH-domain of one dimer with the G-domain

of another dimer during oligomerization282.
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1.2.2 Function

The understanding of the function of EHD-proteins in mammalian cells have mainly

derived from point mutations observed in the protein and changes in the expression

level that lead to diseases in humans. It has been shown for example that in oral

squamous cell carcinoma cells there is a more than 10-fold increase of the expression

of EHD3 transcripts243. But EHD-proteins also seem to be involved during infections

of cells with pathogens since for example human brain endothelial cells binding to

P. falciparum infected red blood cells exhibit an almost 5-fold increase of EHD1

transcripts than compared to controls244. In general, the knock-out of EHD1 and

EHD4 leads to only minor phenotypes in mouse models in vivo, leading to the

conclusion that other EHD-proteins can take over the function and are at least

partially redundant245 246 247.

EHD1

EHD1 presents the highest homology to the orthologs in invertebrate organisms and

is the best characterized member of the four mammalian EHDs. It was shown to

be involved in receptor-recycling processes regulating the recycling of transferrin

receptors (Tfr) through a clathrin-dependent process248 and other receptors such as

major histocompatibility complex (MHC) class I and class II, the insulin-regulated

GLUT4 glucose transporter, potassium-channels, β1 integrins and other receptors

through a clathrin-independend process231 249 250 251 252. EHD1 can interact with

Rab11-FIP2 and localizes to peripheral endosomes229. Together with the fact that

it is also linked to dynein motors that drive early endosome (EE) to ERC transport

this suggests that EHD1 might be involved in the receptor-recycling transports from

EE to ERC (Fig. 1.10)253 254 255. But EHD1 has also been shown to be involved

in the retrograde transport of protein complexes from endosomes to the Golgi and

endocytic trafficking events in neuronal cells in addition to its involvement in the

regulation of cholesterol homeostasis and lipid droplet storage256. Together with

EHD2, EHD1 has also recently been shown to interact with FER1L5, a ferlin-like

protein, that mediates myoblast fusion for the generation and repair of muscle cells

in mammalians257.

EHD2

EHD2 appears to be unique among the mammalian EHD-proteins and shares only

about 70% sequence identity with EHD1. EHD2 so far has only been found to

form homo-oligomers282, whereas all other EHDs have been shown to form hetero-

oligomers258 259 283, as well. Even though EHD2’s function is not quite clear yet, it

has been shown to be involved in a few different pathways of endocytic trafficking,

most of them starting from the plasma membrane (Fig. 1.10). It was found to be

associated with the cell’s plasma membrane mainly, a localization crucially depend-

ing on ATP-binding of the G-domain260, and to be a binding partner of EHBP1,
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a protein harbouring five different NPF-motifs, that is involved in internalization

events of transferrin receptors and GLUT4261. Additionally, depleting EHD2 from

mammalian cells leads to delayed recycling of transferrin receptors from the ERC in

these cells262. It is likely, that in some tissues EHD2 shares a functional redundancy

with EHD1 since also EHD2 has been shown to be involved in myoblast fusion and

membrane resealing events by interacting with Fer1L5 and also Myoferlin263. More

recently, it has been shown that in addition to trafficking events EHD2 oligomers can

also act as scaffolding proteins stabilizing caveolae, special membrane invaginations

and part of lipid rafts, at the plasma membrane via interaction with actin filaments

and regulating the dynamics of the formation of these membrane invaginations264

265. Many endocytic proteins have been shown to regulate gene expression by under-

going nucleoplasmic shuttling into the nucleus. Whereas EHD1 and EHD3 did not

show such a behaviour, EHD2 indeed possesses a nuclear localization signal (NLS),

enters the nucleus and represses transcription266.

EHD3

EHD3 is quite similar to EHD1 according to their sequence identities (86%), but

nevertheless it seems to be more variably expressed in mammalian tissues, to a rather

weak degree in most tissues. It is strongly expressed in the brain, the liver, the

kidney and also myocytes of mice, where it seems to be important for the expression

and function of the sodium/calcium exchangers on the heart muscle cells267. EHD3

has been shown to form hetero-oligomers with EHD1 and seems to cooperate with

this protein and Rab8a to form a complex with Myosin Vb motors268. Like EHD1,

EHD3 was found to be involved in retrograd transport from the EE to the Golgi

(Fig. 1.10). This might represent a redundancy of function of both proteins and

explain, why EHD1 knock-out mice do only show a modest phenotype. Therefore a

generation of EHD1/EHD3 double-knock out mice would be interesting to study245

262.

EHD4

Like EHD3, also EHD4 can hetero-oligomerize with EHD1259 246. Both proteins

cooperate in the control of receptor-recycling events269 in the nervous system and

EHD4 has been assigned a tissue-specific role in the brain, even though no severe

neurological symptoms have been seen in ehd4 knockout mice. EHD4 depletion

leads to enlarged EEs and has been shown to be involved in the regulation of re-

ceptor transport from EE to the ERC and from the ERC to the lysosomal pathway

(Fig. 1.10) and it has been suggested that EHD4 functions at the EE, upstream of

EHD4 232.
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Figure 1.11: EHD2 dimer architecture and proposed model of EHD-protein
function. A) Ribbon-type presentation of the EHD2 dimer. One
of the molecules is coloured in red (α-helices) and light green (β-
strand). All structural interaction motifs are indicated. AMP-PNP:
Non-hydrolysable ATP-analogue to solve the structure. B) Monomeric
EHD-proteins in the cytoplasm bind ATP and dimerize. This causes
the formation of a membrane binding-site at the dimer and the molecule
associates with tubular membranes, undergoing oligomerization. The
EHD oligomers form a ring-like structure around the tubule and
ATP-hydrolysis finally leads to the abscission of vesicles containing
cargo/receptors. (The figure was adapted from Daumke et al., 2007282,
and from Naslavsky and Kaplan, 2011232)

1.3 Aim of this study

Apicomplexan protists are among the most important human and domestic animal

parasites influencing our lives on an almost daily basis. Two of these organisms,

Toxoplasma and Plasmodium, can cause severe diseases in humans but a promising

vaccine against these parasites is still not available. Both parasites have a complex

life-cycle involving both, asexual and sexual reproduction, that comes along with a

change in hosts. The different environments in these hosts led to the evolutionary

development of different parasite stages that are able to adapt to these different

environmental conditions. The investigation of these stages will hopefully lead to

the development of different anti-parasitic strategies to eradicate these diseases.

The investigation of Plasmodium falciparum exo-erythrocytic stages is a bottle neck

in malaria research because of the rare availability of these stages under laboratory

conditions. Only a few laboratories in the world have established a combined in

vivo/in vitro P. falciparum life-cycle in their facilities to both generate and allow

for the accessibility of the full array of P. falciparum stages. This is mainly because

of technical issues. Therefore one aim during my thesis was to establish a constant

combined P. falciparum in vitro/in vivo life-cycle that will enable researchers in the

lab to work on different stages of P. falciparum, especially the elusive liver-stages.

One of the major obstacles for the apicomplexa parasites is the fact that they are

replicating intracellularily. Even though this protects them from eradication by

factors of the immune system of their hosts it prevents them from free access to sur-
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rounding nutrients via several membranous barriers. Therefore the parasites have

evolved specialized organelles and cellular mechanisms that eventually supply them

with nutrients from the host cell to ensure their survival. One of the mechanisms

by which nutrients can cross the parasite membrane is endocytosis. This process

is not very well understood in apicomplexans so far. Therefore the aim of the sec-

ond project of my thesis was to characterize an Eps15-homology-domain containing

protein (EHD-protein) in both Toxoplasma and Plasmodium. Proteins of the EHD-

protein familiy have been shown in other eukaryotic cells already to take part in

endocytic trafficking and receptor-recycling. Therefore I hypothesized that the pro-

tein may be involved in endocytic events in Plasmodium and Toxoplasma parasites,

respectively . One of my goals was to characterize the localization of the protein in

different stages of Toxoplasma gondii and Plasmodium berghei by fluorescent tagging

and immuno-fluorescence assays. By colocalization studies with proteins of subcel-

lular localization, i.e. with organelles of the endocytic system of the parasites, will

assist in confirming a putative role for Apicomplexan EHD in endocytic trafficking.

Furthermore, endogenous depletion of the gene in both parasites will facilitate the

phenotypical characterization and hence function for the parasite life cyle.

A detailed characterization of this protein family in apicomplexan parasites will help

to further understand the process of how these organisms can survive intracellularly

and will ultimately pave the way to develop novel anti-parasitic strategies.
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Chapter 2

Materials and Methods

2.1 Laboratory equipment

AMAXA Nucleofector II electroporation machine Lonza, Koeln

Analytical scales BL510 Sartorius GmbH, Goettingen

Autoclave Systec GmbH, Wettenberg

Binocular Niko SMZ 1500 Nikon, Tokyo, Japan

Camera, DC 120 Zoom digital Kodak, New York, USA

Citation manager Endnote X Thomso Scientific, USA

Electrophoresis System Horizon 11.14 Whatman Inc., USA

Electrophoresis Power Supply EPS 301 Amersham Pharmacia Biotech, Freiburg

Electroporation cuvettes plus BTX, San Diego, USA

Film developer Hyperprocessor Amersham Pharmacia Biotech, Freiburg

Film developing cassettes Dr Goos suprema GmbH, Heidelberg

Freezer −80 ◦C Sanyo

Freezers −20 ◦C Liebherr, Biberach

Fridges Liebherr, Biberach

Heat block thermomixer comfort Eppendorf, Hamburg

Haemocytometer (Neubauer) Labotec, Labor-Technik, Goettingen

Ice machine AF 30 Scotsman, Milano, Italy

Imaging software Image J 1.45s National Institutes of Health, USA

Hera Cell Incubator Heraeus Instruments, Hanau

Shaking Incubator Innova 4000/4300 New Brunswick Scientific Co. Inc.

Multi-gas incubator (O2, CO2) Mytron, Heiligenstadt

Liquid nitrogen tank CBS, USA

Magnetic stirrer, Heidolph MR3001 NeoLab, Heidelberg

Megafuge 1.0R Heraeus Instruments, Hanau

Microcentrifuges 5415 R, 5415 D Eppendorf, Hamburg

Light optical microscope, Axiostar plus Zeiss, Jena

Light optical microscope, Axioskop Zeiss, Jena

Light optical microscope, Axiovert 25 Zeiss, Jena

DeltaVision Epifluorescence microscope Applied Precision; Washington, USA

Microwave oven MDA

Mosquito cages BioQuip Products Inc, USA

Nikon TE200 Inverted Microscope Nikon, Tokyo, Japan

GeneAmp PCR system 9700 Applied Biosystems, CA USA

Mastercycler Gradient Eppendorf, Hamburg

pH-meter Inolab, Heidelberg
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Photometer Eppendorf, Hamburg

Single channel pipettes Abimed, Langenfeld

12-channel pipette 200 µl Abimed, Langenfeld

Pipetting aid pipetus Hirschmann Laborgeraete, Eberstadt

Precision balance Mettler Toledo, Switzerland

SDS-PAGE system Heidelberg Amersham Pharmacia Biotech, Freiburg

SDS-PAGE system small Glasgow CTI GmbH, Idstein

SDS-PAGE system big Glasgow Biorad, Muenchen

Semi-dry blot apparatus CTI GmbH, Idstein

Sterile work bench Gelaire X Flow Laboratories, Meckenheim

Transmission electron microscope, 900 Zeiss, Jena

Ultra cryo-ultramicrotome Leica

Vortex Genie 2 Scientific Industries Roth, Karlsruhe

Water bath Julabo U3 Julabo, Seelbach

Wet blot system Amersham Pharmacia Biotech, Freiburg

Zeiss Axiovert 200M microscope Carl Zeiss, Obernkirchen

2.2 Consumables

14 ml polystyrene round bottom tubes with lid Greiner Bio-one, Frickenhausen

15 ml polypropylene tubes with lid Sarstedt, Nuembrecht

50 ml polypropylene tubes with lid Sarstedt, Nuembrecht

6-well cell culture plates, Cellstar Greiner Bio-one, Frickenhausen

8-well chamber slides Nunc, Langenselbold

96-well round bottom plates Greiner Bio-one, Frickenhausen

Cell culture flasks:

Cellstar (Filter Cap, 75 cm2) Greiner Bio-one, Frickenhausen

Nunc Flasks Nuclon (Filter Cap, 25 cm2) Nunc, Langenselbold

Cell strainer (70 µm) BD Biosciences, Heidelberg

Cuvettes Sarstedt, Nuembrecht

Cryovials Greiner Bio-one, Frickenhausen

Dialysis tube membrane Nadir Carl Roth GmbH, Karlsruhe

Filter paper Whatman TM 3MM Whatman, GE Healthcare, Dassel

Gloves, Peha-soft satin Hartmann, Heidenheim

Immersion oil Zeiss, Jena

Microscope cover slips Marienfeld, Lauda-Koenigshofen

Needles, BD Microlance Becton Dickinson; Heidelberg

Nitrocellulose membrane, Hybond ECL Amersham, GE Healthcare, Freiburg

Glass slides Marienfeld; Lauda-Koenigshofen

Parafilm Pechiney Plastic Packaging; USA

Pasteur capillary pipettes Wu; Mainz
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Petri dishes (94/16 mm) Greiner Bio-one, Frickenhausen

Pipette filter tips, Biosphere Sarstedt, Nuembrecht

Pipette tips Sarstedt, Nuembrecht

Reaction tubes (0.5 ml, 1.5 ml, 2.0 ml) Sarstedt, Nuembrecht

Sterile filtration devices (500 ml) Nalagene, Wiesbaden

Sterile pipettes (1 ml-25 ml) Cellstar Greiner Bio-one, Frickenhausen

Sterile syringe filter, Filtropur (0.22 µm pore size) Sarstedt, Nuembrecht

Syringe, BD Microlance Becton Dickinson, Heidelberg

Thermo well PCR tubes (0.2 ml) Sarstedt, Nuembrecht

2.3 Strains

2.3.1 Bacteria strains

Escherichia coli XL1 blue Stratagene; Agilent Technologies Sales

& Services GmbH & Co. KG

Escherichia coli XL10 Gold Stratagene; Agilent Technologies Sales

& Services GmbH & Co. KG

2.3.2 Cell lines

Huh7 human hepatoma cell line

HFF human foreskin fibroblasts

2.3.3 Parasite strains

P. falciparum NF54 (Ponnudurai et al. 1981)270

Plasmodium berghei ANKA GFPcon (Franke-Fayard et al. 2004)271

Plasmodium berghei ANKA cl15cy1 (Hall et al. 2005)

Plasmodium berghei NK65 (Yoeli and Most 1965)272

Toxoplasma gondii RHhxgprt(-) (Donald et al. 1996)273

2.3.4 Mosquito strains

Anopheles stephensii NIJ Nijmegen, Niederlande

2.3.5 Mouse strains

Naval Medical Research Institute (NMRI), Charles River Laboratory, Sulzfeld,

outbred Germany

C57BL/6, inbred mice Charles River Laboratory, Sulzfeld,

Germany
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2.4 Chemicals and reagents

Chemicals were typically purchased in p.a. quality from the companies Roth, Merck,

Sigma, Serva and AppliChem. Chemicals and reagents from other companies are

listed below.

Agarose Invitrogen, Karlsruhe

AP Conjugate Substrate Kit Biorad Laboratories, Muenchen

BactoTM-Agar Difco Laboratories, Augsburg

BactoTM-Trypton Difco Laboratories, Augsburg

BactoTM -Pepton Difco Laboratories, Augsburg

Cellulose powder CF11 (fibrous) Whatman, GE Healthcare, Dassel

CFSE Invitrogen, Karlsruhe

Heparin Braun, Melsungen

Nycodenz powder Axis-Shield PoC, Oslo

PBS-pellets Gibco Invitrogen, Karlsruhe

Sea salt Alnatura

Streptavidin-ALP Mabtech, Sweden

2.5 Oligonucleotides

Oligonucleotides were ordered as custom DNA oligonucleotides in a desalted purity

from Invitrogen, Karlsruhe. Lyophilised oligonucleotides were dissolved in ddH2O

in a concentration of 100 µM and stored at −20 ◦C.
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pDLPfullsenseAvrII 5’-CGCCTAGGAGTCGCTGGCTGCGAGGG-3’

pDLPfullantisensePacI 5’-CGTTAATTAATCGCTGAGTGGGTTT

GAGTCTCCGG-3’

pDLP∆ATPase senseAvrII 5’-CGCCTAGGGACATGGTTTCCTACCAGCAGC

TGATGCG-3’

pDLP∆EH antisensePacI 5’-CGTTAATTAACGTTCGACGTCGAGCGGCTG

GTGGAGAAATTTGTCG-3’

pPFC0190cAvrIIfor 5’-CGCCTAGGTCATTATATATGGTTGAAAG

GATGAGG-3’

pPFC0190cPacIrev 5’-CGTTAATTAATTATTTAATAATATCCTTGG

GAACCTTGGCAGG-3’

PbEHDkointegSacIIfor 5’-TCCCCGCGGAACCACTTCTCACAAGT

GGTGAC-3’

PbEHDkointegSpeIrev 5’-CGGACTAGTGAACAGGTGGAAAATCAC

CAAGTG-3’

T7 5’-TAATACGACTCACTATAGGG-3’

SP6 5’-ATTTAGGTGACACTATAGAA-3’

TgDHFR for 5’-CCCGCACGGACGAATCCAGATGG-3’

PbANKA 040280 KO 5’-CGGGGTACCCAGTTTTGACAGAATATA

5UTR for KpnI-HF TAATTTTC-3’

PbANKA 040280 KO 5’-CGGGGTACCCAGTTTTGACAGAATAT

5UTR for KpnI-HF ATAATTTTC-3’

PbANKA 040280 KO 5’-CTAGTCTAGATAACTCAGGATTGTTGAT

3UTR rev XbaI CTTATTTCA-3’

PbRME-1 RT-PCR F 5’-GCGGAATGAGAATAGGTCCA-3’

PbRME-1 RT-PCR R 5’-TTCCACTTAATACACCGGGAG-3’

2.6 Antibodies

2.6.1 Primary antibodies

Name Species Dilution

IFA WB

α-proTgM2AP-AK (Harper et al. 2006) R 1:500

α-TgCatalase (Ding et al. 2000) R 1:500

α-TgDrpB-AK (Breinich et al. 2009) M 1:1000

α-TgIMC-AK (Mann and Beckers 2001) R 1:1000

α-TgMic8EGF-AK (Meissner et al. 2002) R 1:500

α-TgNtRhop5-AK (T53E2; El Hajj et al. 2007) M 1:1000

α-ddFKBP12-AK (ABR, Rockford, USA) R 1:500

α-Pf EHD (T. Spielmann, BNI, Hamburg) M 1:1000

α-PbHSP70 (Hybridoma, supernatant) M undiluted
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2.6.2 Secondary antibodies

ALEXA Fluor antibodies were ordered from Invitrogen (Frankfurt). The gold la-

beled antibody for immuno-EM was ordered from BBInternational.

Name Species Dilution

IFA/iEM WB

ALEXA Fluor 488 α-mouse goat 1:1000

ALEXA FLuor 594 α-mouse goat 1:1000

ALEXA Fluor 488 α-rabbit goat 1:1000

ALEXA Fluor 594 α-rabbit goat 1:1000

α-rabbit IgG, HRP goat 1:5000

gold (15nm) α-mouse IgG goat 1:500

2.7 Media, buffers and solutions

2.7.1 Media and buffers for molecular biological methods

LB (Luria Broth) Medium: 10 % trypton

5 % yeast extract

10 % NaCl

pH 7,5; autoklave

LB Agar: LB-medium; 15 g/l agar

TAE (50 x): 2 M TRIS

1M acetic acid

50mM EDTA; pH 8.0

PBS (10 x): 0.01 M KH2PO4

1.37 M NaCl

0.027 M KCl

pH 7.2; autoklave

or dissolve 20 PBS tablets (Gibco) in 1 l ddH20; autoklave

PBS (1 x): 100 ml 10 x PBS, filled up with ddH2O to 1 l

or purchased from Invitrogen

TfB I: 30 mM potassium acetate

50 mM MnCl2
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100 mM KCl

10 mM CaCl2

15 % glycerine

The pH was adjusted to 5.8 with acetic acid. The buffer was sterile filtered and

stored at 4 ◦C.

TfB II: 10 mM MOPS

75 mM CaCl2

10 mM KCl

15 % glycerine

The pH was adjusted to 7.0 with NaOH. The buffer was sterile filtered and stored

at 4 ◦C.

3 M sodium acetate (NaAc)-solution: 24.06 g NaAc

add 100 ml H2O

pH 5.2

IFA-solutions

PFA-fixation solution: 4% PFA (w/v) in PBS

Permeabilisation solution: 0,2% Triton X-100 in PBS

Blocking solution: 2% BSA in permeabilization solution

or 10% FCS in PBS

Washing solution: 1% FCS or BSA in PBS

2.7.2 Media and solutions for cell culture

Cell culture media and supplements were purchased from Invitrogen or Gibco, Karl-

sruhe.
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Hepatocyte culture medium: 1 x Dulbecco’s Modified Eagle Medium

(DMEM complete) 10 % FCS

1 % penicillin/streptomycin;

sterile, stored at 4 ◦C

DMEM HFF culture: 500 ml DMEM

10% FCS (v/v)

1% Glutamine (v/v)

1x Gentamycin (20 µg/ml)

Cell freezing solution: 80 % FCS

20 % DMSO

or

90 % FCS

10 % DMSO

mixed 1 : 1 with complete culture medium

P. falciparum culture medium: 500 ml 1 x RPMI 1640

50 ml human serum A+

550 µl 1000 x Hypoxanthine

550 µl 1000 x Gentamycin (opt.)

sterile filtered

P. falciparum thawing solutions: Sterile 0.2% dextrose/0.9% NaCl

Sterile 1.6% NaCl

Sterile 12% NaCl

2.7.3 Media, buffers and solutions for parasitological methods

P. berghei transfection medium: 160 ml RPMI 1640 medium

(T-medium) 40 ml FCS (US certified)

heat inactivated for 30 minutes 56 ◦C

60 µl Gentamycin;

sterile filtered

P. berghei freezing solution: 10 % glycerine in Alsever’s solution (Sigma)
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Nycodenz stock solution: 110.4 g Nycodenz powder

5 mM TRIS/HCl; pH 7.5

3 mM KCl

0.3 mM EDTA; pH 8.0

fill up to 400 ml with ddH2O; autoclave; store at 4 ◦C

Pyrimethamine stock solution: 7 mg/ml Pyrimethamine in DMSO

store at 4 ◦C

Electroporationbuffer/Cytomix: 10 mM K2HPO4/KH2PO4

25 mM HEPES

2 mM EGTA pH 7,6

120 mM KCl

0,15 mM CaCl2

5 mM MgCl2

together with 5 mM KOH to pH 7,6

2 mM ATP

3 mM GSH

ATP (30 µl/ml) 100 mM in water

GSH (30 µl/ml) 100 mM in water

2.7.4 Buffers and solutions for biochemical methods

Saponin buffer: 1x PBS, 2% BSA, 0.5% Saponin; prepare fresh

PAA-Stock solution: 30% PAA

0,8% Bis-AA

Stacking gel buffer (SDS, 4x): 0,5 M Tris/HCl pH 6,8

0,4% SDS (w/v)

sterile filter

Stacking gel: 4% PAA (v/v)

25% 4x stacking gel buffer (v/v)

0,1 % APS 10%(v/v)

0,2% TEMED (v/v)
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Separating gel buffer (SDS, 4x): 1,5 M Tris/ HCl auf pH 8,8

0,4% SDS (w/v)

sterile filter

Separating gel: 8-15% PAA (v/v)

25% 4x separating gel buffer

0,1% APS 10% (v/v)

0,2% TEMED (v/v)

5x SDS-PAGE running buffer: 33 mM Tris/HCl pH 6,8

190 mM Glycin

0,1% SDS

4x SDS-PAGE sample buffer: 50% 4x Sammelgelpuffer (v/v)

40% Glycerol (v/v)

8% SDS (w/v)

0,2% Bromphenolblau (w/v)

400 mM DTT (w/v)

RIPA lysis buffer: 50 mM Tris-HCl, pH 7.5

150 mM sodium chloride (NaCl)

5 mM EDTA

50 mM sodium fluoride (NaF)

0.5% sodium deoxycholate (NaDOC)

0.1% SDS

1% Triton X-100

freshly added 1 mM DTT

protease inhibitor

Semidry-Blot-Transfer buffer: 48 mM Tris

39 mM Glycin

20% Methanol

10x TBS: 20 ml 1M Tris, pH 7.6

80 g sodium chloride (NaCl)

add 1 l H2O
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1x TBST: 100 ml 10x TBS

900 ml ddH2O

1 ml Tween 20

2.7.5 Antibiotics

Ampicillin 1000x 100 mg/ml in ddH2O

Tetracyclin 1000x 5 mg/ml in 70% Ethanol

Chloramphenicol 1000x 10 mg/ml in Ethanol

MPA 500x 12,5 mg/ml Methanol

Xanthin 500x 20 mg/ml 1 M KOH

Pyrimethamin 1000x 1 mM in Ethanol

Gentamycin 500x 10 mg/ml in H2O

2.8 Molecular biological methods

2.8.1 Cloning of the targeting constructs for parasite transfection

For the Toxoplasma RME-1 expression construct pTub8DDmCherryTgRME-1FL

(Fig. 2.1) the full length coding sequence of the gene TGME49 031210 was amplified

from Toxoplasma gondii RH∆HX cDNA using the oligo set pDLPfullsenseAvrII and

pDLPfullantisensePacI. The PCR-fragment was introduced into the Tub8DDmCherry-

HXGPRT plasmid via the restriction sites AvrII and PacI.

For the Toxoplasma RME-1 over-expression ATPase-domain deletion construct

pTub8DDmCherryTgRME-1∆ATPase (Fig. 2.2) the coding sequence of the gene

was amplified downstream of the sequence coding for the predicted ATPase do-

main using the oligo set pDLP∆ATPasesenseAvrII and the same reverse primer as

mentioned above for the full length construct. The PCR-product was subsequently

introduced into the Tub8DDmCherry-HXGPRT plasmid via the restriction sites

AvrII and PacI.

For generation of the TgRME-1 EH-domain over-expression deletion mutant con-

struct pTub8DDmCherryTgRME-1∆EH (Fig. 2.3) the coding sequence of the gene

was amplified upstream of the sequence coding for the predicted EH-domain with

a stop-codon added to the reverse Primer. Primers pDLP∆EHantisensePacI and

the full-length forward primer mentioned above were used to amplify the fragment

which was introduced into the plasmid pTub8DDmCherry-HXGPRT via the restric-

tion sites AvrII and PacI.

For generation of the construct pTub8DDmCherryPfc0190c (Pf EHD) (Fig. 2.4)

the full-length ORF of the gene PFC0190c/ PF3D7 0304200 (Pf EHD) was am-

plified from Plasmodium falciparum cDNA using the oligo set pPFC0190cAvrIIfor

and pPFC0190cPacIrev. The PCR-product was subsequently introduced into the

pTub8DDmCherry-HXGPRT plasmid via the restriction sites AvrII and PacI. For
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Figure 2.1: Vector map Tub8DDmCherryRME-1 full length.

transfection into Toxoplasma gondii parasites all Tub8DDmCherry-constructs were

linearized by KpNI restriction enzyme.

For generation of the single-crossover pbehd (-) targeting construct pFK01 (Fig. 2.5)

a 1kb fragment of the middle part of the ORF of PbANKA 040280 was amplified

from genomic DNA using the oligo set PbEHDkointegSacIIfor and PbEHDkoin-

tegSpeIrev. The PCR-product was subsequently introduced into P. berghei trans-

fection vector b3D.DT/H./D274 via the restriction sites SacII and SpeI. For trans-

fection the plasmid was linearized by HpaI restriction.

All vector maps were created using the Serial Cloner Tool (Version 2.5; Franck

Perez, SerialBasics). Other used vectors in this thesis:

Plasmid Source

Tub8ddmycGFP-TgDrpB Breinich et al., 2009

Tub8ddmyc-Rab5a AG Meissner

Tub8ddmyc-Rab7 AG Meissner

Tub8IMC-YFP AG Meissner

Amplification of the specific DNA fragments by Polymerase chain reaction

(PCR)

Specific DNA fragments were amplified by Polymerase chain reaction (PCR) (Saiki

et al. 1985) using specific oligonucleotides. All used oligonucleotides and their

sequences are noted in section 2.5. As templates served P. falciparum, P. berghei

or T. gongii gDNA or cDNA. For a standard PCR reaction 0.5 - 2 µl parasite
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Figure 2.2: Vector map Tub8DDmCherryTgRME-1∆ATPase.

Figure 2.3: Vector map Tub8DDmCherryTgRME-1∆EH.
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Figure 2.4: Vector map Tub8DDmCherryPfc0190c.

Figure 2.5: Vector map pFK01.
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gDNA/cDNA was used in a reaction volume of 10-50 µl. Furthermore the reaction

contained 50 pmol of the specific oligonucleotides (Invitrogen), 0.2 mM dNTPs,

1.5 mM MgCl2, 1 x Taq reaction buffer (+ KCl) and 2.5 U Taq polymerase (all

Fermentas) filled up to 10-50 l with ddH2O. Reaction tubes were placed into a

thermal cycler running the program with an initial denaturation of the dsDNA for 5

minutes at 95 ◦C, followed by 30 cycles with a denaturation at 94 ◦C for 30 seconds,

annealing of the specific oligonucleotides at 45-60 C for 30 seconds and extension

of the newly synthesised DNA strand 60 ◦C (72 ◦C in case of P. falciparum and T.

gondii) for 1 minute per amplified kilobase. A final extension for 10 minutes at

72 ◦C was carried out and amplified DNA was stored at 4 ◦C for short-term and at

−20 ◦C for long-term storage.

Analysis of DNA fragments by agarose gel electrophoresis

Amplified DNA fragments were separated by size by agarose gel electrophoresis.

For this 1% agarose was dissolved in 1 x TAE buffer by heating in the microwave.

Ethidium bromide (Sigma, Taufkirchen) was added to a final concentration of 50

ng/ml. Samples were mixed with 1/5 volume of 6 x Orange Loading dye (Fermentas)

and loaded along with 1 µg GeneRuler 1 kb DNA Ladder (Fermentas) into the

wells. The gel was run for 1 hour at 100-120 V in 1 x TAE buffer in a Whatman

Horizon 11.14 electropheresis chamber. Negatively charged DNA thereby migrates

in direction of the anode. Separated DNA fragments were visualized by exposure of

the DNA-intercalating ethidium bromide to UV-light and fluorescence was recorded

with the Electrophoresis Documentation and Analysis System 120 (Kodak).

Purification of DNA with Quiaquick PCR purification Kit

Amplified DNA fragments were purified with Qiaquick PCR purification Kit (Qi-

agen, Hilden) prior to digestion with restriction endonucleases and digested DNA

fragments as well as plasmid DNA also prior to ligation according to the manufac-

ture’s manual.

Digestion of double-stranded DNA

Purified DNA fragments or plasmid DNA were digested with specific restriction

endonucleases (New England Biolabs NEB, Frankfurt) prior to ligation (preparative

digest) or after plasmid isolation (control digest). For the preparative digest the

amplified and purified DNA fragments and the respective plasmid DNA were cut

with the same restriction endonucleases. The complete purified DNA fragment or

1 - 3 µg plasmid DNA were mixed with 10 - 20 Units of the respective restriction

enzymes, 5 µl of the matching buffer (10x) and 5 µl of BSA (10x), if necessary, and

filled up to 50 µl with ddH2O. The digest was typically incubated over night at 37 ◦C

(if not otherwise suggested by NEB). For the control digest of isolated plasmids the

approach was typically scaled down to 20 l reaction volume, using only 0.5 - 1 µg
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DNA. The reaction was then incubated for 2 hours at 37 ◦C. All digested DNA was

analysed by agarose gel electrophoresis as described in section 2.8.1 and preparative

digested DNA was purified prior to ligation as described in section 2.8.1. Prior to

parasite transfections 10 µg of the generated plasmids were digested completely with

up to 40 units of the respective enzymes in a volume of 100 µl over night at 37 ◦C.

Subsequently digested plasmid DNA was ethanol precipitated as described below.

Ligation of DNA

Digested and purified DNA fragments were ligated with equally restricted plasmids

in a ratio of 7:1 or 6:2 in a total reaction volume of 10 µl. 5 Units of the T4

ligase were used to catalyse the reaction in 1 x of the provided T4 ligase reaction

buffer (10 x, Fermentas). The ligation reaction was incubated for 2 hours at room

temperature or at 16 ◦C over night. Subsequently competent E. coli XL1 blue were

directly transformed with the ligated DNA constructs.

Preparation of transformation competent E. coli XL1 blue

E.coli XL1 blue were cultured over night in LB medium with tetracycline (5 µg/ml).

The over night culture was diluted 1 : 100 in LB medium with tetracycline (5 µg/ml)

and cultivated shaking at 37 ◦C until it reached an OD600 of 0.5. The culture was

cooled down on ice and spun for 5 minutes at 1500 x g at 4 ◦C. The cell pellet of

100 ml culture was resuspended in 30 ml cold TfBI, incubated for 15 minutes on

ice and spun again for 5 minutes at 1500 x g. The pellet was resuspended in 8 ml

TfBII and incubated another 15 minutes on ice. 200 µl aliquots of the suspension

were frozen at −80 ◦C.

Transformation of competent E. coli XL1 blue

Transformation competent E. coli XL1 blue, either purchased from Stratagene or

prepared as described above, were thawn on ice. 35 hboxµl of the purchased cells or

200 µl of the self-made competent cells were used for one transformation. Competent

cells were either treated for 10 minutes on ice with 0.68 hboxµl -mercaptoethanol

(1.42 M; Stratagene) and subsequently mixed with 2 µl of the ligation (Stratagene

competent cells) or directly mixed with 10 µl ligation (self-made competent cells).

The cells were incubated for 30 minutes on ice, followed by a heat-shock for 45

seconds at 42 ◦C in the water bath. Cells were incubated subsequently another

2 minutes on ice, then 1 ml pre-warmed LB medium was added and cells were

incubated, shaking at 37 ◦C for 1 hour. The cells were spread on LB agar plates

with ampicillin (100 µg/ml) and incubated over night at 37 ◦C.

Plasmid-isolation with Quiaprep Spin Miniprep Kit

After transformation single colonies were used to inoculate 3 ml LB medium with

ampicillin (100 µg/ml) each. These cultures were incubated shaking at 37 C over
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night. The over night cultures were spun for 2 minutes at 16,000 x g in a table-top mi-

crocentrifuge. The plasmid isolation from the cell pellet was performed as described

in the manufacturer’s manual. Isolated plasmids were control digested as described

under 4 and resulting DNA fragments were analysed by agarose gel electrophoresis

(described above) to confirm successful integration of the DNA fragments.

Preparation of bacteria glycerol-stocks

For conservation of transformed E. coli containing the generated plasmids over night

cultures were prepared as described under 8. 850 µl of the over night culture were

mixed with 150 µl glycerine (99.5 %, Roth) in a cryovial and stored at −80 ◦C.

Determination of DNA concentration by photometric measurement

In order to determine the DNA concentration of a plasmid preparation the DNA

was typically diluted 1 : 100 in ddH2O. The absorption of the DNA at 260 nm

was measured in a photometer (Eppendorf) and DNA concentration was calculated

according the following relation:

OD260 x 50 x dilution factor = concentration dsDNA [g/ml]

The purity of the DNA preparation was shown by the ratio of OD260/OD280 and

typically ranged from 1.8 to 2.0.

Ethanol precipitation of DNA

Digested DNA was ethanol precipitated prior to parasite transfection. For this

purpose 2.5 volumes 100 % ethanol and 1/10 volume 3 M sodium acetate, pH 5.2,

were added to the DNA solution and incubated at least 30 minutes at −80 ◦C. After

spinning for 15 minutes at 16,000 x g the DNA pellet was washed once with ice cold

70 % ethanol and again spun for 5 minutes at 16,000 x g. The ethanol was carefully

removed and the DNA pellet was air dried. Finally the DNA was resuspended in

1 x PBS to a final DNA concentration of 1 µg/µl. Digested and precipitated DNA

was once more analysed by agarose gel electrophoresis and stored at −20 ◦C until

parasite transfection.

2.8.2 Stage-specific RNA isolation and cDNA synthesis for RT PCR

Different parasite stages were isolated from infected mosquitos (2.10.2), in-vitro

hepatocyte cultures (2.9) or infected blood (2.10.1).

Isolation of total RNA with RNeasy Mini Kit (Quiagen)

Parasite cells were disrupted by addition of in 350 µl RLT buffer (supplied, Qiagen)

supplemented with 1 % -mercaptoethanol (14.3 M) and homogenised by vortexing

for 1 minute. Total RNA was isolated from the cell lysate according to the ”Animal

Cell Spin” protocol supplied in the manufacturer’s manual. Isolated RNA was stored

at −80 ◦C.
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Trizol extraction of total RNA

Parasites were resuspended in 1 ml Trizol Reagent (Invitrogen), 200 µl chloroform

was added and carefully mixed by inverting. After 3 minutes incubation at room

temperature it was mixed again and subsequently spun for 15 minutes at 12,000 x

g at 4 ◦C. The top aqueous layer, containing the RNA, was carefully transferred

to a fresh RNAse-free tube (Eppendorf). After addition of 500 µl isopropanol (2-

propanol) the solution was incubated for 10 minutes at room temperature and spun

for 10 minutes at 12,000 x g at 4 ◦C. The supernatant was discarded and the RNA

pellet was washed with 75 % ethanol and thoroughly mixed by vortexing. After a

final centrifugation for 5 minutes at 7,500 x g at 4 ◦C the RNA pellet was air dried,

resuspended in 10 µl DEPC-treated H2O and incubated for 10 minutes at 60 ◦C.

Isolated RNA was stored at −80 ◦C.

DNase treatment of total RNA

After RNA isolation remaining DNA contaminations were removed by digestion

with DNase. The RNA was mixed with 1/10 volume of 10 x TURBO DNase buffer

(Ambion) and 1 µl TURBO DNase (Ambion) and incubated for 30 - 45 minutes at

30 ◦C. 1/10 volume of the resuspended DNase Inactivation Reagent (Ambion) was

added, mixed thoroughly and incubated for 2 minutes at room temperature. The

reaction was centrifuged for 1 minute at 10,000 x g and the supernatant containing

the RNA was transferred to a fresh RNase-free tube (Eppendorf). DNase treated

RNA was stored at −80 ◦C.

First strand cDNA synthesis

RNA was transcripted into complementary DNA (cDNA) with the Fermentas ”First

Strand cDNA Synthesis Kit” according to the manufacturer’s manual using random

hexamer oligonucleotides. The initial optional denaturation step of the total RNA

for 5 minutes at 65 ◦C was performed. For each transcripted RNA one approach

without reverse transcriptase (-RT) was run to exclude DNA contaminations. The

transcripted product was directly used for reverse transcriptase PCR (below) or

stored at −20 ◦C.

Reverse transcriptase PCR (RT PCR)

A standard PCR approach was prepared as described above. In a reaction volume

of 20 µl 0.5 - 2 µl first strand cDNA of the different parasite stages were used as

template together with P. berghei or T. gondii gene specific oligonucleotides. For

each sample one tube with cDNA synthesised with reverse transcriptase (+ RT) and

one - RT control tube were prepared. Oligonucleotides specific for the P. berghei

aldolase, expressed constantly throughout the life cycle, were used as control. The

amplification was performed in a thermal cycler using the standard PCR program

as described above.
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2.9 Cell culture

2.9.1 In vitro liver-stage development of P. berghei in human hepatoma

cells Huh7

Frozen cell stocks of the human hepatoma cell line Huh7 were kept in 80% FCS,

20% DMSO in liquid nitrogen. Thawed cells were immediately transferred into pre-

warmed DMEM culture medium containing 10% FCS and 1% Penicillin/Streptomycin

(DMEM complete) and centrifuged for 5 minutes at 200 x g. The cell pellet was re-

suspended in fresh DMEM complete and transferred into a cell culture flask (25 cm2

or 75 cm2). Cells were incubated at 37 ◦C, 5% CO2 until a confluent monolayer was

reached. For further cultivation medium was removed, attached cells were washed

once with HBSS and detached with 0.25% Trypsin/EDTA (Gibco) for 3 - 5 minutes

at 37 ◦C. After addition of 10 ml DMEM complete cells were transferred to a 15

ml tube and centrifuged for 5 minutes at 200 x g. The cell pellet was washed once

with HBSS and finally resuspended in 10 ml DMEM complete. Depending on the

approach an aliquot of 200 µl up to 2 ml of the cell suspension were transferred to

a new culture flask and filled up to 15 ml with DMEM complete.

For the Plasmodium berghei in vitro liver cell development assay Huh7 cells cul-

tivated to a confluent monolayer were detached with 0.25 % Trypsin/EDTA and

washed as described. The cell pellet was resuspended in DMEM complete and

counted diluted in Trypan blue (0.4 %) using a haemocytometer. Either 25,000

cells per well on a 8 well chamber slide (nunc) or 200,000 cells per well on a 6 well

plate (greiner) were seeded and cultivated over night. Mature salivary gland sporo-

zoites were purified (described in section 2.10.1) and 25,000 - 35,000 sporozoites

or 100,000 - 200,000 sporozoites were added on the cultivated cells on the 8 well

chamber slide or 6 well plate, respectively. Sporozoites were allowed to invade for at

least 90 minutes, afterwards the sporozoite suspension was removed and cells were

incubated in DMEM complete plus anti-contamination cocktail. Liver-stage devel-

opment was stopped after different time points by either fixing them for 10 minutes

with 4% PFA or Methanol (icecold) for IFA-studies or harvesting the cells with 0.25

% Trypsin/EDTA as described before. The harvested cells were then transferred

into a 1.5 ml tube and centrifuged for 2 minutes at 16,000 x g and depending on the

application resuspended in RLT buffer, Trizol or PBS.

2.9.2 P. falciparum culture - asexual parasites

A small culture flask (25 cm2) with 5 ml complete Medium (10% human heat in-

activated A+ Serum, Gentamycin 50 µl/ml, Hypoxanthin; filtered through a 0,22

µm filter) and a final haematocrit of 5% (1:10 dilution out of stock: 50% weekly

freshly purified erythrocytes in complete medium) was inoculated with a freshly

thawed P. falciparum stock solution. Parasites were grown for several days while

culture was checked every second day for its parasitemia. If erythrocytes reach a

parasitemia between 5-10% the culture was split down to a new small culture flask
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to a concentration of 1% parasitized erythrocytes per flask. Therefore the volume

of the old culture that had to be transferred to a new culture flask was calculated as

follows: y= 11,1 x X x 500 µl (X is the needed dilution to obtain 1% parasitaemia;

for example 1:5 if the parasitaemia of the old culture is 5%). y was diluted in 5 - y

ml complete medium and 500 µl - y/11.1 fresh erythrocyte solution (see above) was

added. After at least 10 subculturing rounds the asexual culture was used to set up

a gametocyte culture. The parasite culture was maintained at 37 ◦C and 5% O2/

5% CO2/ 90% N2.

2.9.3 P. falciparum culture - gametocytes

To set up a gametocyte culture an asexual P. falciparum culture was grown to a

parasitaemia of 6-10%. This culture was then transferred into a big culture flask (75

cm2) with the volume calculated as follows: y= 11,1 x X x 2000 l (X is the needed

dilution to obtain 1% parasitaemia; for example 1:8 if the parasitaemia of the asexual

culture was 8%). y was diluted in 20 ml - (y+blood) complete medium (10% human

heat inactivated A+ Serum, without Gentamycin, Hypoxanthin; filtered through

a 0,22 m filter) and 2000 µl - y/11.1 blood was added. The culture medium was

changed every day, first week after setting up 15 ml, later 25 ml. Occasional blood

smears of the cultures were done from day 7 on to check for gametocyte production.

2.9.4 Cultivation of Toxoplasma gondii in human foreskin fibroblasts

(HFFs)

The virulent Toxoplasma gondii strain RH∆HX was cultivated in vitro in human

foreskin fibroblast (HFF) cells. HFF cells are primary culture cells that can not

be maintained for longer than 30 passages in culture. They form a single confluent

layer in cell culture flasks. The cells were kept in DMEM complete medium and

were splitted into new flasks every 3-4 days in a ratio of 1:3 or seeded into 6-cm

dishes in a ratio of 1:5 for Toxoplasma cultures. For parasites cultures a confluent

HFF dish was infectedd with extracellular parasites and kept until complete lysis of

the host cells under the conditions described above. After the lysis parasites keep

viable for another 12-24 hours before they die if they can not invade new cells. If

intracellular parasites are needed to be extracted from host cells for experiments the

infected cells can be scratched off from the dish bottom. Afterwards they can be

pressed through a 26G needle to release the parasites from the host cells. A washing

step of about 5-30 min centrifugation at 1000 x g and RT can purify the parasites

from surrounding medium for further experiments.
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2.10 Parasitological methods

2.10.1 Plasmodium methods

Determination of parasitemia in giemsa stained blood smears

A small drop of blood was obtained from the tail of the infected mouse or the P.

falciparum cell culture (spun down at 7000 rpm for 1 min) and a thin blood film

was prepared on a glass slide. The blood smear was air dried and fixed for 10

seconds with methanol. The fixed blood smear was stained with giemsa, diluted

1 : 10 in deionised water, for 15 minutes. The stained blood smear was washed

with water and parasites were examined under the light microscope using the 100 x

objective with oil immersion. In order to determine the parasitemia the number of all

erythrocytes and the infected erythrocytes were counted in 25 fields. Subsequently

the parasitemia was calculated using the following formula:

Number of infected erythrocytes/ total number of erythrocytes x 100 = parasitemia

(%)

Examination of exflagellating gametocytes

The hatching o male gametes from erythrocytes is called exflagellation, a process

that can be observed under the light microscope. A high number of exflagellating

parasites is important for a successful transmission to the mosquito and was hence

examined routinely before parasite transmission . For this a drop of tail blood or a

small volume (about 200 µl) of the P. falciparum cell culture was placed on a glass

slide and carefully covered with a cover slip. The slide was incubated for 10 minutes

at room temperature. Exflagellation was examined under the light microscope using

the 40 x objective lenses with phase contrast (Ph2). For a sucessful transmission

at least 3 to 5 exflagellation centres should be observed per field (P. berghei) or 1

exflagellation centre per field in the case of P. falciparum.

Cryopreservation of Plasmodium parasites

Plasmodium parasites were conserved during blood stage development, because in-

fected blood can be stored for long periods in liquid nitrogen. For this purpose 100

µl freshly withdrawn blood was mixed with 200 µl parasite freezing solution (10%

glycerine in Alsever’s solution) in a cryo vial and immediately frozen in liquid ni-

trogen. Thawed parasite stocks can be reinjected into mice to continue the parasite

growth.

Thawing of Plasmodium falciparum

Parasites vial (frozen culture) were taken from cold storage and thawn at 37 ◦C for

1-2 min. Culture was transfered to a 50ml centrifuge tubes with a sterile serological

pipette. Blood volume = V was measured and 0.1x V of 12% NaCl slowly added,
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drop wise while shaking the tube gently. Subsequently the tube rested 5 min before

10x V of 1.6% NaCl was added slowly, drop wise swirling the tube. Afterwards the

tube was centrifuged at 1,500 rpm at room temperature for 5 min. To remove the

supernatant a Pasteur pipette and the vacuum pump were used, carefully not to

remove any red blood cells. 10X V of 0.2% dextrose/0.9% NaCl in a 10ml syringe

was measured and added to the parasites slowly, drop wise mixing gently. The tube

was again centrifuged at 1,500 rpm at room temperature for 5 min. To remove the

supernatant a Pasteur pipette and the vacuum pump was used again, being careful

not to remove any red blood cells. Finally the pellet was re-suspended with 3mL

of complete RPMI medium with gentamycin, transfered to a 25cm2 tissue culture

flask and supplemented with two drops of 50% hematocrit washed blood. Incubation

followed at 37 ◦C.

Plasmodium falciparum membrane feeding

At day 16 after setting up a gametocyte culture, two cultures (16 and 14 days old)

were mixed and centrifuged in a 50 ml falcon tube at 2000 rpm/ 37 ◦C. After that

the resulting supernatant was removed and the pellet diluted 1:1 with freshly puri-

fied erythrocyte concentrate (O+, 37 ◦C). Finally this mixture of erythrocytes was

diluted to a final haematocrit of 60% with pre-warmed (37 ◦C) heat inactivated hu-

man serum (O+), mixed by pipetting up and down and filled into a membrane glass

feeder system by using a 1000-µl-eppendorf pipette (prewarmed tip). A. stephensi

mosquitoes were then allowed to feed through a parafilm membrane from the bottom

of the feeder for 20 min. After the bloodmeal the mosquitoes were maintained in a

humidity and temperature controlled incubator (80% humidity, 37 ◦C) and checked

for oocysts at day 7. At day 8 after infection a second bloodmeal with freshly pu-

rified human uninfected blood (see asexual culture above) was performed to supply

the mosquitoes with nutrients. An additional nutrient supply was provided every

day through applied cotton pads that were soaked in glucose/PABA solution (10%

glucose, 0,05% Para-aminobenzoic acid). At day 17 SGs were dissected from the

infected mosquitoes and SG sporozoites were extracted.

Plasmodium berghei transfection

The rodent Plasmodium parasite P. berghei was transfected with linearised DNA

using the AMAXA transfection system (Lonza). By a crossing-over event between

homolog regions the targeting constructs inserted into the targeted genomic loci.

Overnight culture and merozoite purification For one transfection typically 2 -

3 NMRI mice with a high level parasitemia (3 - 5% for P. berghei ANKA) were

used. Mice were sacrificed and blood was collected by heart puncture (see below).

The blood was combined in a 50 ml tube with 10 ml T-medium containing 250 µl

Heparin (200 p.i. in PBS) and centrifuged for 8 minutes at 400 x g without brake.

The medium was removed and the blood pellet was resuspended in 20 ml fresh T-
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medium. The blood suspension was carefully dropped by gravity into a conical flask

containing already 100 ml pre-warmed T-medium. The 50 ml tube was washed with

30 ml fresh T-medium and this was also dropped carefully into the flask without

swirling the blood. The parasites were cultivated at 37 ◦C, 5% O2, 5% CO2 and 90%

N2, shaking at 70 rpm. To enrich schizonts in the blood culture the incubation took

16 to 18 hours for P. berghei. Mature schizonts were purified by a Nycodenz density

gradient centrifugation. The Nycodenz stock solution was diluted to 55% or 60%

working solutions in PBS for P. berghei purification. The over night parasite culture

was transferred into four 50 ml tubes (approximately 35 ml per tube) and each tube

was under-laid with 10 ml Nycodenz solution pre-warmed to room temperature.

Tubes were exactly balanced and centrifuged for 25 minutes at 200 x g at room

temperature without brake. The mature schizonts appeared as a brown ring at the

interface and were carefully collected to two new 50 ml tubes. Tubes were filled up to

approximately 40 ml with T-medium (from top of the gradient) and centrifuged for

8 minutes at 400 x g. The schizont pellet was resuspended in fresh T-medium, the

volume depended on the size of the pellet and the number of constructs the parasites

should be transfected with. For one transfection 1 ml resuspended schizonts were

transferred in a 1.5 ml microcentrifuge tube and spun for 15 seconds.

AMAXA transfection and selection for transformants For each transfection, 100

µL of AMAXA human T cell nucleofector solution (Lonza) was added to 5 - 10

µg of digested and precipitated plasmid DNA. The DNA solution was then added

to the schizont pellet, mixed well, transferred to the AMAXA cuvette and pulsed

once using the U-033 pre-programmed setting on the AMAXA maschine. After

pulsing 50 µl fresh T-medium was directly added into the cuvette and transfected

parasites were immediately injected i.v. in nave NMRI mice. Typically 2 mice

per construct were used. 24 hours post-infection a giemsa stained blood smear

was prepared to record the starting parasitemia and pyrimethamine treatment of

the mice was started. For this the pyrimethamine stock solution was diluted 1 :

100 in tap water (final concentration 70 µg/ml) and provided as drinking water.

Parasitemia typically decreased to undetectable levels (blood smear) on day 2 post

infection and first resistant parasites appeared in giemsa stained blood smears from

day 7. When parasitemia reached at least 0.5 % mice were sacrificed and blood was

withdrawn by heart puncture. Blood was transferred to new mice, cryopreserved

and parasite gDNA was isolated (parental population). The transfer animals were

further treated with pyrimethamine and mice were sacrificed as soon as parasitemia

reached sufficient levels. The infected blood was again cryopreserved and purified

for parasite DNA isolation (transfer population).

Isolation of blood stage parasites for genomic DNA purification To isolate para-

sites from infected blood a column was made using a 5 ml syringe. The syringe was

closed with cotton wool at the bottom. Thereon a 2 - 3 cm thick layer of cellulose

powder CF11 (Whatman) was put and the column was completed with around 1
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cm glass beads (diameter 212 - 300 µm, unwashed; Sigma). The column was equi-

librated with 2 column volumes 1 x PBS and subsequently the infected blood was

transferred on the column. The erythrocytes were washed off the column with 1 x

PBS. Starting from the first red drop 15 ml erythrocyte suspension were collected

in a respective tube. The suspension was centrifuged for 8 minutes at 400 x g, with-

out brake, and the supernatant was carefully removed. The erythrocyte pellet was

resuspended in 10 - 15 ml 0.2% saponin in PBS to lyse the red blood cells. The

suspension was again centrifuged for 8 minutes at 1500 x g and the supernatant

was discarded. The parasite pellet was resuspended in 1 ml PBS and transferred to

a 1.5 ml microcentrifuge tube. The isolated parasites were once more centrifuged

for 2 minutes at 4500 x g and finally resuspended in 200 µl PBS. The parasite ge-

nomic DNA (gDNA) was subsequently isolated using the QIAamp Blood Mini Kit

with the ”Blood or Body Fluid Spin Protocol”. For this 20 µl Qiagen protease and

200 µl buffer AL were added to 200 µl parasites in PBS and thoroughly mixed by

vortexing. All following steps were performed according to the manufacturer’s in-

structions. The parasite gDNA was finally eluted in 100 - 150 µl elution buffer AE

(10 mM TRIS/HCl; 0.5 mM EDTA; pH 9.0) and stored at −20 ◦C.

Genotyping PCR of transfected parasites The isolated gDNA of parental and

transfer transfectants was tested for integration of the targeting constructs by PCR.

Templates for this genotyping PCR were typically 1 - 2 µl parasite gDNA of the

transfectants or wildtype (WT) parasites as control. As additional control the tar-

geting constructs were diluted 1 : 100 in ddH2O and also used as template for

the PCR. Usually three different oligonucleotide pairs were used for genotyping

PCR. The integration test oligonucleotides (test) typically bind inside the selectable

marker inserted and the parasite’s genome. Resulting fragments therefore verify

successful integration of the targeting construct inside the targeted genomic locus.

Control oligonucleotide pairs are usually WT or open-reading frame (ORF) specifc

oligonucleotides and vector specific oligonucleotides (episomal). The PCR approach

was prepared as described under above using the standard PCR program with an

annealing temperature of usually 54 ◦C. Resulting DNA fragments were analysed

by agarose gel electrophoresis.

Genotyping of the obtained parasite populations for the pbehd (-) parasite was per-

formed by specific PCRs using the following primer combinations:

PbANKA 040280 KO 5UTR for KpnI-HF/ PbANKA 040280 KO 3UTR rev XbaI

for the Wildtype population

TgDHFRTS for PbANKA 040280 KO 5UTR for KpnI

for the Integration population
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Parasite cloning

Successfully transfected parasite populations were selected for clonal parasites by

limited dilution. For this a frozen blood stock of the parental or transfer population

was injected i.p. into a nave NMRI mouse. Once the parasitemia ideally reached

0.3 - 0.5% the mouse was sacrificed and blood was withdrawn by heart puncture.

Parasitemia was determined very exactly by counting at least 80 fields. Assuming

on average 7 x 106 erythrocytes per µl mouse blood the number of parasites was

determined using the following formula:

7x 106 x parasitemia [%] x 10−2 = parasites/µl

A dilution series was prepared in RPMI medium to inject theoretically one parasite

per mouse. For this 100 µl blood was diluted 1 : 10 in RPMI, this dilution was again

diluted 1 : 10 in RPMI and so on. Typically the 1 : 106 dilution contained less then

one parasite per µl. The calculated amount of this dilution that theoretically held

one or in some cases three parasites was mixed with fresh RPMI medium and 10

nave NMRI mice were injected i.v. each with 100 l medium containing one parasite.

Mice usually became blood stage positive from day 7 post infection on and as soon

as sufficient levels of blood stage parasites were reached mice were sacrificed and

blood was collected. Not all injected mice developed a blood stage parasitemia,

typically mice were declared negative if there were no parasites visible in a giemsa-

stained blood smear up to 21 days post infection. Clonal parasites were isolated

from infected blood as described (above) and gDNA was tested for integration of

the respective targeting construct by PCR (see above).

Immuno-fluorescence analysis (IFA)

For the analysis of the expression and localization of the EHD-protein in Plasmod-

ium berghei blood stages, sporozoites and liver stages the parasites were fixed and

incubated with a primary α-Pf EHD antibody. For the investigation of the P. berghei

liver-stage development a primary α-PbHSP70 antibody was used, similar to the P.

falciparum liver-stage development assay where a α-PbHSP70 antibody was used.

These primary antibodies were then detected by a secondary fluorescently labeled

antibody. All antibodies used are listed in section 2.6.1 and 2.6.2.

In general, the parasites were fixed with 4% paraformaldehyde (PFA) at RT for

10-20 minutes and subsequently permeabilized with permeabilization solution for

20 minutes. Afterwards unspecific binding of the primary antibody was prevented

by blocking unspecific binding sites via incubating the parasites with blocking so-

lution for 20-60 minutes. Afterwards the primary antibody was incubated on the

cells diluted in blocking solution and subsequently removed by washing the cells

with washing solution 3 times for 5 minutes. Detection of the primary antibody via

a fluorescent secondary antibody (diluted in blocking solution) followed for 30-60

minutes. Afterwards unbound secondary antibody was washed away by incubating

the samples in PBS for 3 times for 5 minutes before the samples were mounted with

a 50% glycerol/PBS solution and covered with a coverslip. If a nuclear staining was
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desired a Hoechst-staining step incubating the cells with Hoechst diluted 1:1000 for

one minute was added before the second last washing step of the protocol.

The analysis of the fixed fluorescent samples was performed using the microscopes

listed in section 2.1.

Immuno-electron microscopy (iEM)

For cryo-immunolabelling, overnight P. berghei schizonts were fixed in 0.1 M sodium

cacodylate buffer, pH 7.2, containing 4% freshly prepared formaldehyde and embed-

ded in gelatin. The samples were infiltrated overnight in 2.1 M sucrose and rapidly

frozen by immersion in liquid nitrogen. Cryosections were obtained at −90 ◦C using

an Ultracut cryo-ultramicrotome (Reichert). Cryosections were thawed in methyl-

cellulose, blocked in PBS- 3% bovine serum albumin and then incubated in the

presence of the antibody α-Pf EHD. The cryosections were then incubated with 15

nm, gold-labeled α-mouse IgG (BBInternational), and observed in a Zeiss 900 trans-

mission electron microscope. For a detailed protocol see Lemgruber et al., 2011275.

2.10.2 Anopheles mosquito methods

Mosquito breeding

Anopheles stephensi mosquitoes were bred at 28 ◦C, 75% humidity under a 12-h

light/12-h dark cycle. Larvae were raised in 1�sea salt ddH2O, pupae were col-

lected and allowed to hatch in mosquito cages (BioQuip Products Inc; USA). Adult

mosquitoes were fed on a 10% sucrose/PABA solution provided on cotton wool

pads. In order to maintain the mosquito life cycle, female Anopheles mosquitoes

were blood fed on nave anaesthetized NMRI mice. Four days after the blood meal

dishes with 1�sea salt ddH2O soaked filter paper were put into the cages and fe-

male mosquitoes laid their eggs. Eggs were washed with 70% ethanol and twice with

1�sea salt ddH2O and again put in trays filled with 1�sea salt ddH2O. Hatched

larvae were fed on cat food (Brekkies) and split depending on the density.

Parasite transmission

For transmission of P. berghei and P. falciparum parasites 4-7 day old female

mosquitoes were blood fed on anaesthetized NMRI mice that had been infected

i.p. with parasite blood stocks. Mice were assayed for high levels of parasitemia

and the percentage of exflagellating male gametocytes was observed under the mi-

croscope. After the infective blood meal, mosquitoes were maintained at 21 ◦C,

80% humidity. On day 10 post feeding, mosquitoes were dissected in RPMI 1640

medium/ 3% BSA, and isolated midguts were examined for the infection rate. From

day 17 post infection mature sporozoites could be isolated from the salivary glands

(below). In order to maintain a continuous Plasmodium cycle nave rodents could

be exposed to bites of infected mosquitoes from day 17 post feeding, respectively.
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Mosquito dissection

Midguts of infected mosquitoes were dissected 10 days after the blood meal in or-

der to observe oocyst formation, 12 -14 days post feeding midgut sporozoites were

isolated from midgut oocysts. And 17 - 21 days post feeding salivary glands were iso-

lated and infectious sporozoites were extracted (below). For all dissections infected

mosquitoes were anaesthetised on ice. The dissection was performed in RPMI 1640

medium with 3% BSA under a stereo microscope in the insectary at 15 ◦C using

two needles (27 G and 23 G). Midguts and salivary glands were kept in RPMI 1640

medium with 3% BSA on ice until sporozoite extraction.

Sporozoite extraction from salivary glands

Mosquito midguts or salivary glands were disrupted mechanically in RPMI 1640

medium with or without 3% BSA using a pestle and spun for 3 minutes at 90 x g,

4 ◦C. The supernatant containing the sporozoites was transferred to a fresh tube and

the pellet was again squeezed with a pestle in fresh RPMI. A second centrifugation

was performed for 3 minutes at 100 x g, 4 ◦C and the supernatant was combined

with the first collected. Extracted sporozoites were subsequently count under the

microscope in a haemocytometer using the 40 x objective lenses with phase contrast

(Ph2). For counting the sporozoite solution was typically diluted 1/10 in RPMI.

The number of sporozoites was calculated with the following formula:

Number of sporozoites in 4 large squares / 4 x dilution factor x 104

The quantity of a mosquito infection was typically expressed as number of sporo-

zoites per mosquito.

2.10.3 Toxoplasma methods

Transient transfection of T. gondii

For a transient transfection of a plasmid into Toxoplasma parasites the plasmid was

not linearized to allow the parasites to maintain it extra-chromosomally. Therefore,

after some rounds of replication, the parasites lose the plasmid again since it lacked

an origin of replication (parasite-specific) that would have allowed autonomous repli-

cation of the plasmid. Since the transient transfection does not require a selection

procedure (described for the stable transfection below) it is a quicker procedure

as the stable transfection and produces faster results. But in contrast to a stable

transfection the transient one produces a very heterogenous transient population of

parasites that can not be cloned out.

The DNA was transfected into the parasites via electroporation. Therefore freshly

lysed tachyzoites were washed once with Cytomix and subsequently resuspended in

850 µl Cytomix. About 1x107 parasites were used for one single transfection with

about 60 µg of DNA that was ethanol precipitated, resuspended in 50 µl Cytomix

and supplemented with 25 µl ATP (100 mM) and 25 µl GSH (100 mM). This mix

was then added to 700 µl of parasite suspension and the whole volume (800 µl) was
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then transferred into electroporation cuvettes. The electroporation was subsequently

done in an Electro Square Por 830 machine (BTX) with two pulses at 1,7 kV for

176 µs. With the transfected parasites finally confluent HFF cells were inoculated.

Stable transfection of T. gondii

For a stable transfection of a second copy of an endogenous gene into Toxoplasma

parasites a linear plasmid (linearized in the backbone of the plasmid) was transfected

and randomly integrated into the genome. To select parasites that successfully inte-

grated the plasmid a selection marker (dhfrts or hxgprt) was cloned into the plasmid

that carried the gene of interest. Via this selection marker the addition of selective

drugs (pyrimethamine or mycophenolic acid, respectively) only leads to the death

of parasites that do not possess the selection marker. In case of the mycophenolic

acid (MPA) selection only the parasites carrying the HXGPRT-gene are able to use

Xanthin (additionally added to the medium) instead of Hypoxanthin, that is blocked

by MPA. The transfection procedure in general was carried out as described above

for the transient transfection. But in contrast to this procedure for the stable trans-

fection only 10 - 30 µg of DNA was transfected that was also mixed with 10 U of the

linearization enzyme previously to the transfection, a technique named REMI (Re-

striction Enzyme Mediated Insertion)276. After the transfection the parasites were

inoculated on HFF cells and maintained under drug pressure starting 12-24 hours

after inoculation. The selective drugs were used in the following concentrations:

Mycophenolic acid: 25 µg/ml

Pyrimethamine: 1 µM

Xanthin: 40 µg/ml

After about 1 week, depending on the type of selective drug, all parasites not carrying

the plasmid died and left a pool of transgenic parasites.

Isolation of stable clones via limiting dilution

To isolate parasite clones from the stable transfections mentioned above a limiting

dilution was performed in 96-well cell culture mikrotiter plates. After 5-7 dayes

plaques of lysed cells are visible in the wells that represent a parasite clone, each.

Only the wells that contained one plaque only from the beginning of the plaque

formation are wells that containe only one clone. These clones were then isolated

and expanded to 24-well cell culture plates and further characterized.

Induction of expression of DD-tagged proteins

To induce overexpression of DDmCherryTgRME-1 protein variants in Toxoplasma

gondii a destabilization domain (ddFKBP) was cloned in front of the mCherry-tag

under a strong promotor. In the absence of the ligand Shield-1 (Shld-1) the fusion
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protein is not stable within the parasites and is degraded288. Thereby parasites

carrying the modified or overexpressed protein of interested that might be toxic to

the parasites can be maintained in culture. When Shld-1 is added to the culture

medium it binds to the fusion protein and stabilizes the protein expression. Thereby

protein localization and influence of the overexpression of the respective protein can

be studied. Shld-1 was used in a concentration of 1 µM to overexpress the TgRME-1

fusion proteins in this thesis.

Plaque-assay

The intracellular replication of T. gondii leads to a lysis of the infected cell. The

emerged parasites then infect surrounding cells and the ongoing replication finally

leads to the generation of cell-free areas within a confluent cell layer, so-called

Plaques. In a Plaque-assay277 the ability of different parasite lines to grow, replicate

and finally lyse the host cells can be investigated. By comparing the numbers and

sizes of Plaques of WT parasites and parasites expressing the (modified) gene of

interest an influence of the protein of interest on the replication of the parasites

can be visualized. In this thesis 6-well titer plates with a confluend HFF cell layer

were inoculated with 50 cells per well. The parasites were maintained under Shld-1

protein expression or without (control) to investigate the influence of the overexpres-

sion of DDmCherryTgRME-1 and the deletion mutants of the protein on parasite

replication. After 6-8 days the cell layers were fixed with Methanol for 10 minutes

and subsequently stained with Giemsa-solution (see section 2.10.1).

Fluorescence-analysis of intracellular parasites

For the investigation of the fluorescent proteins investigated in this thesis in Toxo-

plasma intracellular parasites were induced with Shld-1 for 4-8 hours to express the

DDmCherry-fusion proteins. If no co-labelling with an antibody-staining was per-

formed the parasites were immediately fixed with 4% PFA for 10 minutes, shortly

washed afterwards and finally mounted as described in section 2.10.1 for the Plas-

modium IFAs. If an immuno-labelling was performed in addition to the expression of

a fluorescent protein an IFA was done as described in section 2.10.1 for Plasmodium

IFAs.

Live-imaging

For live-imaging of Toxoplasma parasites HFF cells were grown in µ-Dish35mm,high

ESS coated live-cell dishes (ibidi, Martinsried). These dishes had a really thin

bottom allowing an inverse objective of a fluorescent microscope to image through

the bottom. The HFF coated dishes were one day prior to imaging infected with the

DDmCherryTgRME-1 expressing parasites. About 4 hours before the live-imaging

protein expression was induced via addition of Shld-1 to the medium. To image

processes the mCherry-tagged TgRME-1 is involved in the dish carrying the infected
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cells was transfered into a live-cell chamber at a DeltaVision RT epifluorescence

microscope imaging system (Applied Precision; Washington, USA) at the imaging

facility of the Institute of Infection, Immunity and Inflammation of the University of

Glasgow (Glasgow, UK). This live-cell chamber was heated to 37 ◦C and in addition

connected to a CO2 supply. In a long-term imaging experiment pictures of the YFP-

signal (IMC-YFP construct) and the mCherry-signal (DDmCherryTgRME-1) of a

parasite cell of interest were taken every 10 or every 30 minutes for several hours

or over night. An autofocus mode provided by the microscope software (SoftWx)

was used to keep the moving cells in focus over time. An autotracking mode was

switched off since it did not prove to be usefull. Images were taking with a CoolSnap

HQ camera and later put together to a movie with ImageJ. The same procedure was

done for a short-term imaging study taking pictures of the DDmCherryTgRME-1

expressing parasites every 3-5 seconds to visualize rapid vesicular movement within

the parasites.

2.11 Animal experimental methods

Mice were purchased from Charles River Laboratories, Germany or Janvier, France

with a age of 18 - 20 days and animal care was done in a central facility of the Uni-

versity of Heidelberg (Interfakultaere Biomedizinische Forschungseinrichtung; IBF).

All animal experiments were conducted according to the European regulations and

approved by the state authorities (Regierungspraesidum Karlsruhe).

2.11.1 Administration of anaesthesia

Mice were anaesthetised with Ketamine (100 mg/ml)/Xylazin (3 mg/ml) (K/X)

administered into the abdominal cavity (intraperitoneal; i.p.).

2.11.2 Infection of rodents with Plasmodium parasites

In order to transmit Plasmodium parasites to the rodent host the mice were either

anaesthetized and exposed to bites of infected mosquitoes or isolated salivary gland

sporozoites were injected in various numbers (1,000 - 10,000 spz) into the tail veins

(i.v.). Furthermore blood stages injected either i.v. or i.p. established a Plasmodium

infection, isolated schizonts, freshly isolated infected blood or frozen blood stocks

were used.

2.11.3 Blood withdrawal by heart puncture

Mice were terminally anaesthetized with diethyl ether and the heart was uncovered

preferably fast. Blood was withdrawn using a heparinized needle (23 G) and a 2 ml

or 5 ml syringe from the right ventricle. Infected blood was immediately put on ice

and processed as fast as possible. Typically 0.7 - 1.5 ml blood could be obtained

from one mouse.
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2.12 Biochemical methods

2.12.1 Preparation of parasite lysate for SDS-PAGE

For the preparation of parasite material for the detection of the DDmCherryTgRME-

1 protein on a western blot (time-dependent expression in response to Shield1) a

confluent layer of HFF cells in a number of 6-cm cell culture dishes was inoculated

with the recombinant parasites. These parasite were allowed to replicate until a great

number of parasite vacuoles within the cell layer was visible but without allowing the

generation of plaques in this layer. When a great number of intracellular parasites

had formed Shield1 in a concentration of 1 M was added to the cell culture medium

in the dishes. Thereby the expression of DDmCherryTgRME-1 was induced in these

parasites and the parasites could be harvested after the desired time of induction.

The HFF cells including the intracellular parasites of each dish were then scratched

of from the bottom of the dish and pressed through a syring supplied with a 26G

needle (BRAUN). Thereby the parasites were released from the host cell, could be

washed with icecold PBS and then taken up in 1 ml PBS in an 1,5-ml-Eppendorf

tube. Washed parasites were then counted in a Haemocytometer and subsequently

pelleted in a centrifuge at 1000x g for 10 minutes at 4 ◦C. Afterwards the pellet

was either frozen down at −80 ◦C or resuspended in RIPA buffer and incubated on

ice for 5 minutes. The volume of the RIPA buffer was variable and adjusted to

reach a final concentration of 1,25 x 105 parasites per µl. After the incubation on

ice the lysate was pelleted at full speed for 60 minutes at 4 ◦C and the supernatant

was transfered to a new reaction tube and frozen down or directly mixed with SDS-

PAGE loading buffer and loaded onto a protein gel (see below). Per lane 6 x 106 of

the DDmCherryTgRME-1 parasites were loaded onto the gel.

2.12.2 SDS polyacrylamide gel electrophoresis (SDS-PAGE)

Proteins were separated according to their size by SDS polyacrylamide gel elec-

trophoresis. Components of the gels are described in section 2.7.4 and were mixed

in the indicated order there.

The addition of ammonium persulphate (APS) and TEMED starts the polymerisa-

tion. The anionic detergent SDS denatures the protein and applies a negative charge

therefore by SDS-PAGE proteins run towards the anode. First the separating gel

was poured between the two glass plates fixed in the gel caster (Amersham). The

gel was overlaid with a thin layer of isopropanol and allowed to polymerise. The

isopropanol was removed, the loading gel was poured on top of the separating gel

and a comp was placed in order to create the wells. As soon as the loading gel is

polymerized as well the comb can be removed and the gel is ready for electrophoresis.

Protein samples were mixed 1 : 4 with 4 x SDS loading buffer and heated to 95 ◦C

for 5 minutes prior to loading on the gel. Alongside 15 - 30 µl of the samples 10 µl

PageRuler Prestained Protein Ladder (Fermentas) was loaded on the gel. The gel

was fixed in the electrophoresis chamber (Amersham) and surrounded with running
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buffer. Electrophoresis was performed for 1 hour at 80 V, 25 mA and subsequently

for further 1 - 2 hours at 100 V. The proteins were then transferred to a nitrocellulose

membrane via western blot and detected with specific antibodies.

2.12.3 Western blot analysis

For specific detection of PbEHD and DDmCherryTgRME-1 with specific antibodies

the separated proteins were transferred from the SDS gel to a nitrocellulose mem-

brane. For this 4 x Whatman paper and 1 x nitrocellulose membrane were cut in gel

size and wet together with 4 blotting sponges in 1 x transfer buffer. The Western

blot sandwich was built starting with 2 blotting sponges on the cathode side of the

blotting cassette (Amersham), followed by 2 x Whatman paper, the SDS gel, the

nitrocellulose membrane, 2 x Whatman paper and finally 2 more blotting sponges.

The cassette was closed with the anode plate and protein transfer occurred for 1 -

1.5 hours at 125 mA, approximately 20 V in 1 x transfer buffer. The membrane was

subsequently blocked over night at 4 ◦C with 5% milk in TBST and washed three

times for 10 minutes with 1 x TBST at room temperature. The incubation with the

primary antibodies was carried out for 1 hour at room temperature or again over

night at 4 ◦C under continuous shaking. The membrane was again washed three

times for 10 minutes with TBST and the secondary HRP conjugated goat antibody

(1 : 10,000 in TBST; Sigma) was added for 1 hour at room temperature, shaking.

Washing was repeated as before. The chemiluminescent detection of the labeled

protein was performed with the ”ECL Western Blotting Detection Reagents” (GE

Healthcare). For this the substrate solutions 1 and 2 were mixed 1 : 1 and incubated

on the membrane for 1 minute. The membrane was subsequently transferred in a film

cassette, a film (Kodak) was incubated in the dark for 5 seconds up to 25 minutes

on the membrane and the light signal on the film was developed (Hyperprocessor

Amersham Pharmacia Biotech, Freiburg).

2.13 In silico analysis of apicomplexan EHD-proteins

The in silico analysis of apicomplexan EHD-proteins was based on the published

nucleotide and protein sequences of Toxoplasma, Plasmodium and vertebrate EHD-

proteins using the online databases Genebank, Uniprot, ToxoDB and PlasmoDB

and the prediction algorithms used in these databases. For alignments and further

analysis of the sequences the program CLC genomics workbench (CLC bio EMEA,

Denmark) was used.
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Chapter 3

Results

3.1 Establishment of a combined in vitro/in vivo P.

falciparum life-cycle

The investigation of Plasmodium falciparum exo-erythrocytic stages is a bottle neck

in malaria research. To obtain these stages infectious sporozoites first have to de-

velop in Anopheles mosquitoes that previously have been infected with sexual stages

of the parasite. This includes the generation of a high number of P. falciparum ga-

metocytes in an in vitro culture system and subsequently transferring these into the

in vivo situation in Anopheles mosquitoes. Even though there are standard proto-

cols278 existing for that process only a few labs in the world are able to perform it

and to successfully establish this process in our lab several factors had to be taken

into account: 1) We had to generate a constantly high gametocytemia in the sexual

P. falciparum cultures by optimizing the culture conditions to generate high infec-

tions of the mosquitoes. 2) A perfect timing of the gametocyte cultures and the

mosquito breeding had to be established to match mature gametocyte cultures with

the right age of the Anopheles mosquitoes. 3) The best breeding conditions and

age for the susceptibility of the Anopheles mosquitoes for a P. falciparum infection

had to be evaluated. 4) A membrane feeding protocol had to be established that

is allowing the transfer of viable mature gametocytes from the cell culture into the

midgut of the mosquitoes.

The aim of the whole project was to generate a constant combined P. falciparum

in vitro/in vivo life-cycle (Fig. 3.1) that enables researchers in the lab to work on

different stages of P. falciparum, especially liver-stages. In one of the projects the

sporozoites obtained from the infected mosquitoes were administered to primary hu-

man hepatocytes to identify and characterize liver stage antigens of P. falciparum,

a project I was not involved in (R. Frank. et al.)

3.1.1 Plasmodium falciparum asexual and sexual bloodstage in vitro

culture

To establish an in vitro P. falciparum life-cycle in our lab parasites of the NF54-

strain were cultivated in vitro under gametocyte-inducing conditions such as high

parasitemia to induce gametocytogenesis and a protocol was established to enrich

mature gametocytes within the in vitro culture (see section 2.10.1). The highest

gametocyte yields could be obtained when gametocyte-cultures were inoculated from

an asexual culture of parasitemias between 4-5% (small culture flask, 25 cm2) and

split down to a starting parasitemia of 1% in big culture flasks (75 cm). Mature

gametocytes were checked for maturity at day 15-17 via exflagellation assay and

63



CHAPTER 3. RESULTS 3.1

Figure 3.1: Combined in vitro/in vivo Plasmodium falciparum life-cycle.
To investigate Plasmodium falciparum liver-stage antigens a combined in
vitro/in vivo lifecycle was established. Inner circle: In vivo life-cycle.
Outer circle: Combined life-cycle established in the lab. The gener-
ation of liver-stages started with cultivation of gametocytes in in vitro
blood cell cultures followed by membrane feeding of Anopheles stephensi
mosquitoes. P. falciparum sporozoites were later extracted from A.
stephensi salivary glands and added to cultivated primary human hep-
atocytes, extracted beforehand from liver resections. Liver-stage de-
velopment was finally confirmed by immuno-fluorescence analysis (IFA)
detecting liver-stage specific antigens.
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subsequently transferred to A. stephensi mosquitoes via membrane-feed.

3.1.2 Membrane feeding of mature gametocytes to Anopheles stephensi

mosquitoes

To transfer mature gametocytes from the in vitro cell culture to A. stephensi mosquitoes

a standard membrane feeding protocol279 was optimized for our lab conditions (see

section ). Throughout the course of the experiments described in Frank, R. et al.

(in preparation) a stable transmission rate could be maintained that ceased again

afterwards for reasons discussed in chapter 5. To evaluate the success of the P.

falciparum-transmissions midguts and later salivary glands of a proportion of the

infected mosquitoes were analyzed for the presence of oocysts and salivary gland

sporozoites, respectively (Fig. 3.2). A high prevalence of infected midguts with a

high number of oocycst per midgut could be achieved that led to a sufficient number

of salivary glands sporozoites for subsequent experiments (Tab. 3.1.

Figure 3.2: Membrane transfer of Plasmodium falciparum in vitro cultures
to A. stephensi mosquitoes and analysis of parasite develop-
ment within the anophelene host. A) Membrane-feeding. Ma-
ture gametocytes were supplemented with fresh human blood and in-
jected into a glass-feeder sealed by a parafilm membrane on the bottom.
Mosquitoes were kept in paperboard cups and allowed to feed on the
blood distributed over the membrane for up to 20 minutes. B) Eval-
uation of the infection of mosquito midguts. P. falciparum in-
fected A. stephensi midguts were extracted from the mosquito carcass
and stained with mercurochrome red. Black arrows show some of the
parasite oocysts present in the midgut. C) P. falciparum salivary
gland sporozoites. Salivary gland sporozoites were extracted from
the mosquitoes and stained in an immuno-fluorescence assay (IFA) with
rabbit α-Pf CSP/alexa594 α-rabbit antibodies. (Bar: 5 µm)

Table 3.1: Prevalence and infectivity of P. falciparum-infected A.
stephensi mosquitoes.

Oocysts Sporozoites (No.)

Total amount 78,5% prevalence 2.700.00

Average number/individual 27 28.000

Total no. of individuals 14 93
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Figure 3.3: Liver-stage development of P. falciparum parasites in vitro in
hepatoma cells. P. falciparum sporozoites were allowed to invade Huh7
hepatoma cells for 30-120 minutes and to develop for 24h (upper panel)
or 48 h (lower panel), respectively. After liver-stage development par-
asites were fixed with Methanol and subsequently stained with mouse
α-Pf HSP70/alexa488 α-mouse antibodies. As shown in both panels par-
asites were able to generate exo-erythrocytic forms in humane hepatoma
cells and have started to undergo schizogony as shown by nuclear staining
(Hoechst) in the lower panel. (Bar: 8 µm)

3.1.3 Liver-stage development of Plasmodium falciparum in vitro

To obtain P. falciparum liver-stage parasites for further experiments described else-

where (Roland Frank, PhD thesis; Frank, R. et al. in preparation) sporozoites were

extracted from A. stephensi salivary glands and added to cultivated primary human

hepatocytes (Frank, et al., in preparation). An isolation and cultivation of primary

human hepatocytes was necessary since infection of immortalized liver cells such as

HuH7 cells did not work effectively. After invasion of hepatocytes for 30-120 min-

utes for evaluation of liver-stage development liver-stage parasites were allowed to

grow for 24-48 hours in primary cell culture and hepatoma cell lines (Huh7 cells)

and were subsequently fixed and stained for immuno-fluorescence analysis (IFA; Fig.

3.3). The evaluation of the IFAs showed that P. falciparum sporozoites were able

to invade both primary human hepatocytes and hepatoma cell lines and to develop

into liver-stage trophozoites (Fig. 3.3, upper panel) and early schizonts (Fig. 3.3,

lower panel).
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3.2 Characterization of EHD-proteins in apicomplexan

parasites

3.2.1 RME-1 encodes for a conserved EHD-family member in

apicomplexan parasites

In an attempt to identify new Dynamin-related proteins in apicomplexan parasites

we performed an in silico analysis of the Toxoplasma gondii genome searching for

genes harboring a predicted G-domain-coding sequence in apicomplexan parasites.

We identified a so far unknown member of the Eps15 homology (EH) domain-

containing protein family in these organisms. Whereas mammalian cells and other

higher eukaryotes possess several different EHD-proteins, C. elegans possesses only

one member, i.e. CeRME-1 (Receptor-mediated endocytosis protein 1)280. A phy-

logenetic analysis (kindly provided by Dr. Markus Meissner, Glasgow, UK) shown

in Fig. 3.4 demonstrates that also apicomplexan parasites possess only one EHD-

protein member, clustering tightly within this clade, that shows the characteristic

primary structure of EHD-proteins (Fig. 3.5).

The apicomplexa protein is harboring a predicted p-loop containing nucleoside

triphosphate hydrolase motif281, known to bind and hydrolase ATP in EHD-proteins

instead of GTP in other G-domain proteins282 283, and a predicted EH-domain. It

was named in Toxoplasma and Plasmodium TgRME-1 and PxEHD, respectively.

3.2.2 TgRME-1 localizes to not yet known subcellular structures within

Toxoplasma gondii

According to the ToxoDB database, TgRME1 transcripts as well as protein pep-

tides are readily detected in tachyzoites and oocysts of theToxoplasma gondii RH

stain 284 285. Additionally, transcriptomic analysis of the Toxoplasma tachyzoite

intracellular replication cycle shows that the relative RNA-expression of the gene

peaks with the mitosis phase of the parasite and decreases again upon G-phase

entry286. In order to analyze the subcellular localization of the RME-1 protein, I

generated a parasite line that expressed TgRME-1 that was N-terminally fused to a

fluorescent mCherry-tag. Therefore the full-length coding sequence of the gene was

cloned downstream of the sequence of a destabilization-domain (ddFKBP) and a

mCherry-tag (Fig. 3.6), controlled by a strong promotor (p5RT70), and the vector

was subsequently transfected and randomly integrated into the genome of Toxo-

plasma gondii RH∆HX parasites as a second copy of the gene. A selection marker

within the plasmid carrying the just described genetic sequences allowed to select for

parasites that successfully took up the linearized plasmid (restriction digest in the

backbone) after transfection of the parasites. To remove any non-integrated episo-

mal plasmids the selective drug was removed after resistant parasites were growing

in a normal replication rate in cell culture. Since expression levels of genes in the

integrated plasmids can vary depending on their genomic environment because of
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Figure 3.4: Phylogenetic tree of EHD-proteins. The evolutionary history was
inferred using the Neighbor-Joining method (Saitou N. and Nei M.
(1987). The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution 4:406-425.). Both,
ATPase- and EH-domain, were included into the analysis. The bootstrap
consensus tree inferred from 500 replicates (Felsenstein J. (1985). Confi-
dence limits on phylogenies: An approach using the bootstrap. Evolution
39:783-791.) is taken to represent the evolutionary history of the taxa
analyzed. Branches corresponding to partitions reproduced in less than
50% bootstrap replicates are collapsed. The percentage of replicate trees
in which the associated taxa clustered together in the bootstrap test (500
replicates) are shown next to the branches (Felsenstein J. (1985). Confi-
dence limits on phylogenies: An approach using the bootstrap. Evolution
39:783-791.). The evolutionary distances were computed using the JTT
matrix-based method (Jones D.T., Taylor W.R., and Thornton J.M.
(1992). The rapid generation of mutation data matrices from protein se-
quences. Computer Applications in the Biosciences 8: 275-282.) and are
in the units of the number of amino acid substitutions per site. The rate
variation among sites was modeled with a gamma distribution (shape
parameter 0̄.7693). The analysis involved 34 amino acid sequences. All
positions containing gaps and missing data were eliminated. There were
a total of 242 positions in the final dataset. Evolutionary analyses were
conducted in MEGA5 (Tamura K., Dudley J., Nei M., and Kumar S.
(2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA)
software version 4.0. Molecular Biology and Evolution 24:1596-1599.).
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Figure 3.5: General EHD-protein domain structure in apicomplexans. The
single predicted domains are represented by colored boxes. The
aminoacid motifs of the G-domain that represent the P-loop nucleotide
binding site (G...T) and the KPF, NKAD and PF protein-protein-
interaction motifs that are all conserved between the apicomplexan EHDs
and human EHD2 are shown in letters below the boxes (figure adapted
from Daumke et al., 2007 [1]). aa: Amino-acids

Figure 3.6: Tagging approach for subcellular localization analysis. TgRME-
1 and Pf EHD were N-terminally tagged with a mCherry-tag and a
destabilization-domain (DD) and expression of the gene was driven by a
strong promotor (p5RT70). After addition of the Shield-1 ligand to the
culture medium expression was induced via stabilization of the protein.
To create dominant-negative effects two deletion mutants lacking either
the ATPase-domain (∆ATPase) or the EH-domain (∆EH) were cloned
and expressed within the parasites. FL, full length; aa, amino-acids
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the random integration single parasite clones were selected for further analysis by

limiting dilution. By adding the synthetic ligand Shield-1 to the cell culture medium

a fluorescence could be observed in the parasite. The protein expression was ana-

lyzed by both Western blot and fluorescence assay. Through binding of the soluble

ligand Shield-1 to the ddFKBP-domain the protein was stabilized within the par-

asite287 288 and could be detected as early as 2h hours after induction by Western

blot (Fig. 3.7). In a time-course fluorescence assay parasites where fixed with 4%

Figure 3.7: Confirmation of the expression of DDmCherryTgRME-1. Left:
Fluorescence-microscopic analysis of PFA-fixed parasites in a time-
dependent manner after addition of 1µM Shield-1. Right: Western-Blot
analysis of the expression of DDmCherryTgRME-1 protein in a time-
dependent manner after addition of 1µM Shield-1.kDa: protein size;
kilodalton

paraformaldehyde (PFA) and the mCherry signal was fluorescence-microscopically

analyzed subsequently in response to the duration of Shield-1 exposure. Only a very

weak background cytosolic mCherry signal could be seen for the first two hours after

induction of protein expression. When the amount of protein increased over time

a distinct spot labeled by the mCherry signal within the parasite became appar-

ent (Fig. 3.7). In indirect immuno-fluorescence assay (IFA) colocalization studies,

where the parasite’s inner membrane complex (IMC) was labeled with an α-IMC

antibody detected by a green-fluorescent secondary antibody, we could show that

the tagged TgRME-1 localizes to an organelle-like compartment. This compartment

within the parasite does not always correspond to the same coordinates within the

cell (Fig. 3.8). The protein can be found in a single compartment at the apical end

(arrow heads) as well as in a single compartment at the basal end of the parasite

(arrows). In other occasions it localizes to the newly forming daughter-cells or can

also be found in several smaller vesicle-like structures distributed over the whole

parasite (Fig. 3.8). The localization of the over-expressed TgRME-1 does also not

seem to be synchronized between the single cells within the same vacuole. These
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observations already led to the hypothesis that TgRME-1 localization within the

parasite may be dynamic. To investigate this, we applied two different live-imaging

approaches, long- and short-term, to study localization of the tagged TgRME-1 pro-

tein during parasite replication within the host cell. Via short-term imaging, taking

a picture of the parasites every 4 seconds, we observed small mCherry-labeled vesic-

ular structures within the parasites that are rapidly moving in a multi-directional

manner, mainly circulating between the two poles of the parasite (suppl. video 2).

These vesicles had not been observed previously in fixed samples. This movement of

the TgRME-1 protein-labeled vesicles dramatically increases upon formation of the

daughter-cells within the mother cell. During long-term imaging studies, by taking

a picture of the parasites every 10 minutes, mainly in parasites undergoing cellular

division we observed dramatic structural re-organization of the TgRME-1-labeled

compartment (Fig. 3.9). During an early time point of the formation of daughter-

cells the TgRME-1 compartment fragments and smaller vesicles are transported to

the apical tip of the newly forming IMC (arrow heads, Fig. 3.9). At a late stage

of the endodyogeny the main TgRME-1 compartment within 30-40 minutes moves

from the apical to the basal pole of the parasite, upon a so far unknown trigger

(arrows, Fig. 3.9). When cytokinesis is completed TgRME-1-labeled compartments

can be found again at the apical pole of the two newly formed daughter-cells as well

as at their connection point at the residual body.

In order to confirm correlation of the long-term movement of the TgRME-1

compartment with the formation of daughter-cells in live-imaging studies we co-

transfected the DDmCherryTgRME-1-expressing parasites with a construct that

leads to the expression of an IMC-YFP fusion protein. Through that we were able to

image the formation of the IMC in daughter-cells and the movement of the TgRME-

1 compartment at the same time in living cells. In this approach again we were able

to show a reorganization of the TgRME-1 compartment upon formation of the IMC

of the daughter-cells. A smaller mCherry-labeled structure is embodied by the IMC

of the daughter-cells and the bigger compartment of the mother cell squeezes along-

side the daughter IMC to the basal pole of the mother cell (Fig. 3.10). My attempts

to colocalize the TgRME-1 protein with any organelle of the endosomal system, the

secretory system or any other organelle known in Toxoplasma failed so far (exem-

plary organelles shown in Fig. 3.11). Together my findings propose a localization of

TgRME-1 to a so far unknown organelle-like structure in Toxoplasma gondii that is

undergoing dramatic reconstruction during formation of daughter-cells.

3.2.3 Functional analysis of RME-1 in Toxoplasma gondii

To study the biological function of TgRME-1 in Toxoplasma parasites I created

two different over-expression constructs where either the sequence coding for the

predicted ATPase-domain or the predicted EH-domain was deleted. The truncated

protein was fused to a N-terminal DD/mCherry-tag in order to create an inducible

dominant-negative effect (Fig. 3.6). After transfection, random integration into
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Figure 3.8: Localization of DDmCherryTgRME-1 in Toxoplasma. mCherry-
tagged TgRME-1 expression was induced via addition of Shield-1 for 4
hours. After fixation of the cells an indirect immuno-fluorescence assay
was performed labeling the inner membrane complex (IMC) of the para-
sites with an α-IMC antibody. Localization of the tagged TgRME-1 was
directly imaged via the mCherry signal. Localization of the mCherry-
signal appeared in a dynamic vesicular labeling of the apical part of the
parasites (arrow heads) as well as the basal part (arrows). (Bar: 4 µm.)
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Figure 3.9: Time-lapse analysis of DDmCherryTgRME-1. 4h before imaging
DDmCherryTgRME-1 expression was induced via addition of Shield-1
to the culture. Intracellular parasites were then imaged in a live-cell
chamber taking a picture of the mCherry-signal every 10 min starting
at timepoint 0 (4h after induction of expression). Upon formation of
daughter-cells (0+90min) the mCherry-labeled apical compartment frag-
ments and smaller vesicles move to the apical end of the daughter-cells
(arrow heads). About 40 min after initiation of daughter-cell formation
(0+120min) the main apical TgRME-1 compartment starts to move to
the basal end of the parasite (arrows). (Bar: 4 µm.)
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Figure 3.10: Time-lapse analysis to investigate TgRME-1-IMC colocaliza-
tion. DDmCherryTgRME-1 parasites were transiently co-transfected
with a plasmid that allows constitutive expression of an IMC-YFP fu-
sion protein within the parasites. This expression was used to visualize
the formation of daughter-cells by live-cell imaging via visibility of the
IMC (Yellow-fluorescent protein; YFP). Upon initiation of formation
of the daughter-cells (T=0 min) the TgRME-1 compartment (mCherry
panel) fragments and smaller vesicular structures are incorporated by
the IMC of the forming daughter-cells (T=30 min). About 60 min after
initiation of daughter-cell formation the apical TgRME-1 compartment
starts to squeeze along the daughter-cell-IMC to move to the basal end
of the mother cell. (Bar: 4 µm.)
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Figure 3.11: Exemplified images of the colocalization of TgRME-1 with
organelles of the secretory and endosomal system, respec-
tively. Pictures show a selection of colocalization studies of TgRME-
1 with the secretory and the endosomal system. Co-localization was
either analyzed via indirect immuno-fluorescence assay (IFA) of the
organellar markers or via co-expression (DD-tag) of tagged proteins
(Rhop5: Rhoptries; Mic8: Microneme subset; ProM2AP: Early en-
dosome; Rab5A: Endosomal-like compartment; Rab7: late-endosomal
like-compartment). No colocalization could be observed for any of the
tested organelles. (Bar: 4 µm.)
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Figure 3.12: Expression of the TgRME-1∆EH deletion mutant. TgRME-1
lacking the Eps15-homology domain (EH) was N-terminally tagged with
a destabilization domain (DD) and a mCherry-tag. Over-expression of
the deletion mutant was induced via addition of 1 µM Shield-1 for 6
h and the parasites were subsequently fixed with 4% PFA. The in-
ner membrane complex (IMC) was detected via an indirect immuno-
fluorescence assay (IFA) using an α-IMC antibody. The localization of
TgRME-1∆EH was comparable to the full-length protein. (Bar: 4 µm)

the genome and successful cloning of single parasite lines I initially examined the

localization of the protein in the deletion mutants generated. Interestingly, whereas

localization of the TgRME-1∆EH protein was comparable to the wild-type local-

ization (Fig. 3.12), the subcellular localization of the TgRME-1∆ATPase protein

differed dramatically from the wild-type, in a sense that it appeared mainly cytoso-

lic (Fig. 3.13). When the parasites were subsequently analyzed for their ability to

grow while expressing the deletion mutant no growth defect was observed in stan-

dard plaque-assays (Fig. 3.14). All attempts to generate a potent knock-out of the

TgRME-1 gene in Toxoplasma parasites failed due to the inability to amplify the

3’UTR of the gene from genomic DNA for cloning.

3.2.4 Localization of Plasmodium falciparum EHD-protein PfEHD

To analyze the localization of the Plasmodium falciparum ortholog of TgRME-1,

Pf EHD, in collaboration with Florian Kruse (PhD-student, AG Spielmann, BNI-

Hamburg), the pfehd open-reading frame was fused C-terminally to a sequence cod-

ing for a GFP-tag and stably expressed in P. falciparum blood-stage parasites.

Analysis of the fixed transgene parasites under the fluorescence microscope revealed

a localization of the GFP-fusion protein to the periphery of the parasites, in close

association of the parasite plasma membrane (Fig. 3.15). A faint staining of the

cytoplasm as well as a strong focal staining of some areas of the plasma membrane

could be observed also.
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Figure 3.13: Expression of the TgRME-1∆ATPase deletion mutant.
TgRME-1 lacking the ATPase-domain was N-terminally tagged with
a destabilization domain (DD) and with a mCherry-tag, respectively.
Expression of the deletion version was induced via addition of 1 µM
Shield-1 for 6 h and parasites were subsequently fixed with 4% PFA. The
inner membrane complex (IMC) was detected via an indirect immuno-
fluorescence assay (IFA) using an α-IMC antibody. Localization of
TgRME-1∆ATPase was mainly cytosolic. (Bar: 4 µm)

Figure 3.14: Plaque-Assay of DDmCherryTgRME-1-expressing Toxo-
plasma parasites. Human foreskin fibroblast monolayers were in-
fected with Toxoplasma parasites expressing DDmCherryTgRME-1 in
presence or absence of Shield-1 for 7 days, fixed with Methanol and
subsequently stained with Giemsa-stain solution. No difference in par-
asite growth could be observed between parasites that are expressing
the fusion protein and that are not expressing it, respectively. (Bar: 1
mm)
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Figure 3.15: Localization of Pf EHD-GFP in Plasmodium falciparum
trophozoites. Pf EHD was C-terminally tagged with a GFP-tag and
expressed as additional copy to the endogenous protein in P. falciparum.
Stably expressing parasites were fixed with 4% PFA and the GFP-signal
was analyzed subsequently under a fluorescent microscope. The GFP-
signal could be observed at the periphery of P. falciparum trophozoites
closely and homogenously assoziated with the plasma membrane of the
parasite, as well as at distinct focal spots. (Bar: 2 µm)

3.2.5 Protein localization of TgRME-1 and PfEHD is interchangeable

between apicomplexans, but differs according to the intrinsic

protein architecture

To analyze the overall conservation of the single EHD-protein for apicomplexan par-

asites regarding both its subcellular localization and hence functionality we carried

out complementation studies by integrating the TgRME-1 gene into Plasmodium

falciparum and vice versa. Interestingly, when we transiently expressed Pf EHD in

Toxoplasma applying the exact same genetic strategy as for TgRME-1 (DDmCherry-

Tag, N-terminally, described in section 3.2.1), we observed a localization of Pf EHD

mainly concentrated to the parasite’s plasma membrane (Fig. 3.16). This is con-

sistent with the localization of Pf EHD in P. falciparum as shown in Fig. 3.15

and deccribed in section 3.2.4. When we stably expressed TgRME-1 in P. falci-

parum fused to a C-terminal GFP-tag the protein localized to a distinct spot within

the Plasmodium parasite, similar to its defined localization observed in Toxoplasma

parasites (Fig. 3.17; in collaboration with Florian Kruse, AG Spielmann, BNI-

Hamburg). Both experiments suggest a localization of each protein specific for a

distinct structure in apicomplexan parasites, that is interchangeable between both

parasites, meaning the cellular localization for Pf EHD and TgRME-1, respectively,

is the same in both organisms. Each apicomplexan EHD-protein localizes to the

same structure within both parasites, but this localization differs from the other

apicomplexan EHD-protein member, respectively. Therefore the localization of the

protein seems to be defined by its intrinsic architecture rather than its parasite-

specific interaction partners. This is consistent with the above mentioned finding

that deletion of the EH-domain of TgRME-1, generally known to be an important

site for protein-protein-interactions in other EHD-proteins289, does not lead to a
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Figure 3.16: Localization DDmCherryPf EHD in Toxoplasma. Plasmodium
falciparum EHD was tagged N-terminally with a destabilization domain
(DD) and an mCherry-tag and transiently transfected into Toxoplasma
gondii RH∆HX GFPcon (conditional cytosolic GFP-expressing) para-
sites. Pf EHD-protein expression was induced with Shield-1 for 6 h and
parasites were fixed subsequently. The mCherry-tagged protein local-
ized to the cytoplasma membrane of the Toxoplasma parasites. (Bar:
4 µm)

different localization of the protein. Furthermore, an alignment of the three apicom-

plexan EHD-protein family members of the human malaria pathogen P. falciparum,

the murine malarial parasite P. berghei and human Toxoplasmosis causing agent T.

gondii shows that, even though all three proteins are very similar regarding their

primary protein architecture, solely TgRME-1 harbors a long C-terminal stretch

downstream of the EH-domain (Fig. 3.18). This stretch seems to be highly phos-

phorylated as described recently by Treek et al.290.
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Figure 3.17: Comparison of the expression of GFP-tagged TgRME-1 (TgEHD) and Pf EHD in Plasmodium falciparum 3D7
parasites. TgRME-1 and Pf EHD were both C-terminally GFP-tagged and this version of the protein was stabelly expressed in
addition to the endogenous protein in Plasmodium falciparum. A) Expression of TgRME-1/TgEHD-GFP in P. falciparum.
TgEHD-GFP is expressed in distinc organelle-like compartments within the parasite as shown by fluorescence microscopy (lower panel)
and confocal 3D-reconstruction (upper panel) in blood-stage trophozoites. Some of the labeled spots seem to be associated with the
nucleus of the parasite. The parasite cytoplasm was co-stained with bodipy-stain in addition to DAPI-staining of the nucleus (Bar: 2
µm). B) Expression of Pf EHD-GFP in Plasmodium falciparum. Pf EHD-GFP localizes to the periphery, likely the plasma
membrane, of the parasite and concentrates at few distinc spots at this membrane. In addition to that some of the protein can also be
found in the parasite cytoplasm (Bar: 2 µm). C) Western blot detecting the fusion proteins TgEHD-GFP and Pf EHD-GFP with an
α-GFP antibody. The marker on the lefthand side indicates protein sizes in kDa.

80



CHAPTER 3. RESULTS 3.2

3.2.6 Expression and localization of the EHD-protein in P. berghei

In order to analyse expression and localisation of the EHD-protein in the rodent

malaria parasite Plasmodium berghei an antibody against the amino-acids 339-533

(compare Fig. 3.18) of the Pf EHD-protein was generated (kindly provided by Dr.

Tobias Spielmann, BNI Hamburg) and tested against the P. berghei protein in IFA

studies. In summary it could be shown that PbEHD is expressed on protein level in

bloodstages (BS), salivary gland sporozoites (SGS) and liver-stages (LS). When BS

were analysed on immuno-EM level a gold labeling of the parasite’s plasmamembrane

(PM) as well as structures within the parasite could be oberved (Fig. 3.19). When

a number of EM-sections (N1̄00) were analyzed for the number of events in which

certain organelles were labeled by gold particles combined with α-Pf EHD antibod-

ies in a semi-quantitative analysis (Fig. 3.20) a preferred localization of PbEHD to

the parasite cytoplasm, vesicles, the endoplasmic reticulum (ER) and the parasite

nucleus could be shown (Fig. 3.21). In less frequent occasions also a labeling of the

parasite’s mitochondria, the cytostome, the apicoplast and the surrounding mem-

branes (PM/PVM) and even a labeling of the red blood-cell lumen and membrane

could be seen (Fig. 3.21 and Fig. 3.20). When blood-stage parasites (schizont over-

night culture) were analyzed in an IFA only a very weak expression of the protein

could be observed (Fig. 3.22). When SGS were labeled with the antibody a vesic-

ular staining could be observed that is homogenously distributed over the whole

cytoplasm of the parasite (Fig. 3.23). This staining changes after the parasites in-

vade HuH7 hepatoma cells in vitro and develops into early extra-erythrocytic forms

(EEFs). After development of EEF trophozoites for 24h the protein can be found

in a single compartment of the parasite (Fig. 3.24). This compartment is aligning

with the plasma membrane (PM) of the parasite and appears to be dynamic since it

is forming extensions into the cytoplasm of the parasite. In most of the images ob-

served the localization of this compartment is polarized within the parasite towards

the host cell nucleus, were the labeling of the compartment by α-Pf EHD antibod-

ies appears to be stronger. After 48 h of EEF development, when schizogony has

taken place and first-generation merozoites begin to form, the EHD-labeled com-

partment splits up into vesicular structures that are distributed non-homogenously

over both the whole parasite and the PM (Fig. 3.25). Similar to what was observed

for TgRME-1 the localization of PbEHD seems to be highly dynamic, as well, since

tubular structures could also be seen in P. berghei (Fig. 3.25, bottom panel).

3.2.7 EHD gene deletion in murine P. berghei is not essential for

blood-stage development

Since functional studies in Toxoplasma failed (described above) and in order to

study the importance of EHD during the malarial life-cycle, I generated loss-of-

function mutants in the rodent Plasmodium parasite, P. berghei. I therefore applied

an integration strategy in order to disrupt the endogenous EHD gene locus by a

single cross-over homologous recombination291. For targeted gene-disruption a plas-

81



CHAPTER 3. RESULTS 3.2

Figure 3.18: Alignment of selected apicomplexan EHD-proteins. Pf EHD,
PbEHD and TgRME-1 were aligned according to their primary struc-
ture. Main sequence motifs coding for known functional domains are
shown in colored bars above the sequences (predicted p-loop contain-
ing nucleoside triphosphate hydrolase motif, green; KPF-binding motif;
short yellow bar; EH-domain, long yellow bar; phosphorylation sites,
red bars).

Figure 3.19: Immuno-EM of P. berghei bloodstage parasites labeling
PbEHD. P. berghei -infected red blood cells (iRBC) were fixed and
embedded using the Tokuyasu-method, cryo-sectioned (100nm) and la-
beled using an anti-Pf EHD primary antibody detected by 10nm gold-
bead conjugated secondary antibodies. Gold-beads can be found at the
parasite’s plasma membrane as well as in the cytoplasm and at vesicles.
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Figure 3.20: Semiquantative analysis of PbEHD localization in P. berghei
blood-stages in electron microscopy studies. The number of
events of labeled organellar structures on the EM sections were counted
and plotted as percentage of the total number of events (N1̄00). La-
beling of one organellar structure by several gold particles within the
same section was counted as only one event. ER: Endoplasmic reticu-
lum; RBCM: Red blood cell membrane; RBCL: Red blood cell lumen;
PM: Parasite membrane; PVM: Parasitophorous vacuole membrane;

Figure 3.21: Overview of the labeling of different organelles by α-PbEHD
antibodies in immuno-EM studies of blood-stages. Arrows point
to the gold-beads attached to antibodies labeling PbEHD. Pictures A-
F show examples of the organelles labeled by the antibodies. A: Mi-
tochondrion; B: ER (endoplasmic reticulum) profiles; C: Cytostome;
D: Apicoplast; E: PM/PVM (parasite membrane and parasitophorous
vacuole membrane) and nucleus - arrowhead points to nuclear pore; F:
Vesicle.
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Figure 3.22: Localisation of PbEHD in blood-stage parasites. Blood-stage
parasites enriched during a 15h over-night culture were fixed with
4% PFA and subsequently stained with mouse α-Pf EHD/α-mouse
Alexa488 antibodies. Only a weak staining of the parasites could be
observed in ring-stage trophozoites (upper and middle panel) and blood-
stage schizonts (arrow, lower panel). (Bar: 4 µm)
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Figure 3.23: Localisation of PbEHD in salivary gland sporozoites. PbANKA
sporozoites were extracted from salivary glands of A. stephensi
mosquitoes and allowed to glide on BSA-coated slides for 30 min. After
fixation in PFA an IFA was performed detecting PbEHD with the mouse
α-Pf EHD/α-mouse Alexa488 antibody. A vesicular staining covering
the entire cytoplasm of the parasites was observed. (Bar: 4 µm)
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Figure 3.24: Localization of PbEHD EEFs after development of 24h in
vitro. P. berghei parasites were allowed to develop within Huh7 hep-
atoma cells in vitro for 24h post invasion. In an IFA α-Pf EHD anti-
bodies were applied after PFA-fixation to visualize localization of the
protein within the parasites. A strong labeling of one compartment
within the parasites could be observed that has a polar orientation di-
rected to the host cell nucleus. Extensions of the compartment into the
parasite cytoplasm can be detected. (Bar: 8 µm)
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Figure 3.25: Localization of PbEHD EEFs after development of 48h in
vitro. P. berghei parasites were allowed to develop for 24h post in-
vasion and an IFA was performed as described in Fig. 3.24. A labeling
of vesicular structures within the parasites can be seen as merozoites
start to form. The structure is dynamic (vesicular and tubular; bot-
tom panel) and non-homogenously distributed over the whole parasite.
(Bar: 8 µm)
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mid carrying a fragment of the pbehd open-reading frame (ORF) and a selectable

marker (tgdhfr/ts) was linearized within the homologous region and transfected into

parasites of the P. berghei ANKA (PbA) reference line (Fig. 3.26A). By successful

integration of the full-length plasmid into the pbehd locus via homologous recombina-

tion the gene was truncated making it unlikely for the full-length mRNA of the gene

of interest (GOI) to be expressed. Applying a double cross-over strategy to replace

the endogenous locus of the GOI was however not possible, since the 3’ untranslated

region of the gene could not be amplified by PCR-reaction. This is consistent with

recent data from Pfander et al. who were also not able to include the 3’ part of the

pbehd ORF into their plasmoGEM database recombination vectors292. Transfected

parasites were selected with the antifolate Pyrimethamine and the parental blood-

stage population from a successful transfection, verified by genotyping-PCR, was

subsequently used to isolate four independent knock-out clonal lines, two of which

were used for phenotypical analyses (pbehd(-)#4/1 and pbehd(-)#4/2; Fig. 3.26B).

Since stable clones of the pbehd (-) strain could be obtained after transfection the

protein does not seem to be essential for the blood-stage phase of the parasite.

3.2.8 EHD mutant P. berghei parasites develop indistinguishable from

wildtype parasites during the intra-mosquito life-cycle

Blood-stage positive pbehd (-) and WT infected mice were analyzed for the existence

of mature gametocytes via exflagellation assay. When at least 2-5 exflagellation

centers per field could be observed at 400x magnification 5-7 days old Anopheles

stephensi mosquitoes were allowed to feed for 15 min on the anesthetized infected

mice. After 12 days 10 mosquitoes per group were killed and midguts were analyzed

for the numbers of oocysts present. The same midguts were afterwards combined and

mashed within an eppendorf reaction tube. Through that oocyst derived sporozoites

(ODS) were extracted and could be counted afterwards. At day 19 after the blood

meal 15-20 mosquitoes were killed, salivary glands combined and mashed in an

eppendorf reaction tube. After that salivary gland sporozoites (SGS) were counted

at 400x magnification.

In summary we observed no significant difference between wildtype parasites and the

pbehd (-) strain during development of the parasites within A. stephensi mosquitoes

as shown by similar numbers of oocysts, ODS and SGS (Fig. 3.27).
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Figure 3.26: A) Endogenous gene depletion resulted in pbehd (-) parasites.
pbehd was deleted via single cross-over integration strategy. For trans-
fection pFK01 was linearized with BstBI and the homologues sequence
of the pbehd ORF cloned into pFK01 (SacII/SpeI) was allowed to re-
combine with the endogenous gene locus. Thereby the phehd 5’ and 3’
fragments were separated and a resistance gene (Tgdhfr/ts) was inte-
grated. Parasites stably carrying the integrated plasmid were selected
with Pyrimethamine and successful integration was confirmed via PCR
(WT fragment 2,2 kb, Integration fragment 2,0 kb). B) Confirma-
tion of the integration of pFK01 into the pbehd locus. Clonal
parasite lines from two independent transfections and limited dilutions
were tested for the existence of the wildtype or the pbehd (-) locus (inte-
gration) via PCR. Depicted below the lanes are the respective templates
chosen for the PCR. Numbers 4/1 and 4/2 represent clones from the
1st transfection; Numbers 1/1 and 5/3 represent clones from the 2nd
transfection. Left: Primer combination to detect the WT locus cho-
sen. Right: Primer combination to detect the recombined locus chosen.
WT: wildtype; V: vector.
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Figure 3.27: Analysis of pbehd (-) parasite development in the mosquito
vector. A) Analysis of the oocyst formation in A. stephensi midguts.
B) Number of oocyst derived sporozoites per mosquitoes (numbers x
1000). C) Number of mature sporozoites per A. stephensi salivary gland
at day 19 after blood meal.
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Figure 3.28: Analysis of pbehd (-) parasite development throughout the lifecycle (significant value differences shown in bold)
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3.2.9 Depletion of EHD results in developmental slow-down during late

liver-stage development in P. berghei and protection of severe

pathology in C57BL/6 mice

When C57BL/6 mice were infected with salivary gland sporozoites (SGS) intra-

venously a significant delay in prepatency of approximately 1 day in mice infected

with pbehd (-) parasites in comparison to the WT could be shown by examination of

blood smears. An in vitro liver-stage development assay showed a slowed down de-

velopment of pbehd (-) parasites during the liver phase since the knock-out parasites

were significantly smaller than the wildtype at 48h after invasion (Fig. 3.29). When

C57BL/6 mice infected with sporozoites became blood-stage patent interestingly,

in addition to the delay in prepatency, also a striking difference in disease outcome

was observed. Infection of C57BL/6 mice with Plasmodium berghei ANKA parasites

represents a well-accepted murine model of experimental cerebral malaria (ECM),

which reflects symptoms observed in patients suffering from human cerebral malaria

(HCM)293. Mice in this model usually suffer from a neurological syndrom charac-

terized by paralysis, deviation of the head, ataxia, convulsions and coma between

six and 10 days after inoculation with parasitized red blood cells. Infection leads

to death in 60-100% of mice despite relatively low parasitemia294. In our approach,

whereas all PbANKA (PbA) wildtype-infected mice developed ECM around day 8

post infection at parasitemias not higher than 5%, none of thepbehd (-) infected

mice did show any signs of ECM rather going into hyper-parasitemia instead and

dying much later in result of anaemia (Fig. 3.30A and Fig. 3.30B). The protection

from ECM in pbehd (-) infected mice could be shown to be solely dependent on the

liver phase of the parasite since animals challenged with 1x106 iRBC of pbehd(-)

(blood-stage knock-out) parasites were not protected from developing ECM similar

to those infected with PbA iRBC (blood-stages) (Fig. 3.28). When brains of infected

mice were analyzed via Evan’s blue staining at the coma stage (in the case of a PbA

wildtype infection) or after the mice were sacrificed (pbehd(-) infection), a leakage of

the blood brain barrier was observed for the PbA-infected mice as had been shown

previously295, whereas no leakage could be observed for the pbehd (-) infected mice

(Fig. 3.30D). All of these results were confirmed for a second clone and are sum-

marized in Fig. 3.28. Since observations by Lewis et al. (unpublished observations)

indicated that IL-10 induction in the host might play a role in the protection from

ECM during the liver stage we depleted IL-10 via an IL-10 depletion antibody in 3

mice during the liverstage phase of pbehd (-) infected mice. Interestingly, 2 out of

3 pbehd (-) infected mice developed ECM when depleted from IL-10 comfirming a

protective role for IL-10 in this model.

92



CHAPTER 3. RESULTS 3.2

Figure 3.29: Liverstage development assay comparing pbehd (-) and WT
parasites. Parasites were treated as described in Fig.3.30 C and sizes
of the EEFs were analyzed at 24h and 48h post invasion.

93



C
H

A
P

T
E

R
3
.

R
E

S
U

L
T

S
3.2

Figure 3.30: A) Parasitemia curve after challenge of C57BL/6 mice with 10.000 sporozoites of WT and pbehd (-). 10.000 sporozoites
were injected intravenously into C57BL/6 mice (N=6). WT parasites died at low parasitemia around day 7 whereas pbehd (-) parasites
developed slower, were delayed in reaching the blood-stage phase, finally developed hyperparasitemia and died later of anemia symptoms.
B) Survival rate of mice after sporozoite inoculation. 1.000 and 10.000 sporozoites of wt and pbehd (-), respectively, where
intravenously injected into 3 C57BL/6 mice each. Whereas WT mice died around d7-8 post infection, showing strong symptoms of
experimental cerebral malaria (ECM), pbehd (-)-infected mice died of hyper-parasitemia around day 17, at no point during infection
showing symptoms of ECM. Spz: Sporozoites. C) In vitro liver-stage development. 10.000 sporozoites of wt and pbehd (-) parasites
where inoculated on Huh7 cells and developed for 24 h and 48 h. Parasites where stained with α-HSP70 antibodies and analyzed by
indirect immuno-fluorescence assay (IFA). Images were taken at a confocal-microscope and sizes of the parasites measured using the
ImageJ (Version 1.4.3.67) polygon selection tool. A highly significant difference (P < 0.001) was detectable between liver-stage sizes
of WT parasites and pbehd (-) at 48 h post invasion. D) Evans Blue staining of brains of infected mice. Evan’s Blue Dye
(EBD) was injected into mice when mice where showing ECM symptoms in the wt group and 2 hours later brains where taken out and
pictures shot. Leakage of EBD into the brains of wt infected C57BL/6 mice indicates damage of the blood brain barrier (BBB) in these
mice, whereas the BBB in pbehd (-) infected mice seems to be intact. Statistical analysis and plotting of the results was performed with
GraphPad Prism V.6.00.
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Chapter 4

Discussion

The aim of the work presented in this thesis was a twofold approach: 1) The es-

tablishment of a P. falciparum in vitro life-cycle in the host department and 2) the

characterization of a newly identified protein in apicomplexans of the EHD-protein

familiy in the two parasites Toxoplasma and Plasmodium.

4.1 Plasmodium falciparum transmission

The protocol established in this thesis led to P. falciparum infections of A. stephensi

mosquitoes that were sufficient (sporozoite numbers and prevalence) to infect pri-

mary human hepatoctes as well as immortalized hepatoma cell lines and to isolate

Plasmodium liver-stage RNA from these to investigate gene expression. We were

able to keep the mosquito infections high enough during the course of the exper-

iments but could not maintain a constant infection rate for more than just a few

months. Since the feeding procedure, the membrane transfer of mature gameto-

cyte cultures onto A. stephensi mosquitoes, was standardized only the change in

the quality of the Plasmodium gametocyte cell culture or the mosquitoes may have

led to the decline in the infection rate. Since it has been observed before that the

age of the mosquitoes at the feeding day is quite crucial (Van de Vegte-Bolmer,

M. and van Gemert, G.J., Radboud University Nijmegen Medical Center, personal

communication) we tried to standardize the feeding procedure in regard to that.

Unfortunately, the periodic mosquito breeding routine and the fluctuating avail-

ability of mosquitoes in the lab did not always allow to create the perfect timing

of the generation of a mature P. falciparum gametocyte culture (characterized by a

certain number of exflagellating gametes) with the correct mosquito age. Therefore

the susceptibility of the mosquitoes to a P. falciparum infection for some feeding

procedures might not have been high enough, even though it was always made sure

that the mosquitoes are feeding enough blood. The susceptibility of mosquitoes is

not only influenced by their pure age alone, but also by other factors. One of it

being the innate-immune system of the Anopheles mosquito, for example, that has

been shown to get alerted by Plasmodium ookinetes when these try to traverse the

midgut epithelium. As a result many of the ookinetes are killed by complement-like

mosquito-proteins or reactive oxygen species296 297 298 299. The immune system is

determined by genetic factors of the mosquito strains and might be influenced by

long rounds of inbreeding under laboratory conditions. In addition to that, a recently

published study showed that the gut microbiota of Anopheles gambiae has a strong

impact on the susceptibility of the mosquitoes to P. falciparum infections300. In this

study the authors could show that the gut microbiota in different adult wild-bred

mosquito populations differed widely due to bacterial contamination of their differ-
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ent larval habitats. The difference in the gut microbiota also correlated with the

ability of these mosquitoes to transmit Plasmodium parasites. Indeed, some of the

bacteria were actually needed by the parasites for a successful transmission, whereas

others correlated with non-susceptibility. The authors also compared insectary-bred

mosquitoes to field-collected ones and found great difference in the bacteria strains

mainly prominent in these mosquitoes. The authors speculate that the reason for

that might be the diverse mosqito-diet under both conditions is favouring different

bacteria species, something that has been shown to influence the gut microbiota be-

fore already301 302 303. Quite recently the inhibitory effect on Plasmodium parasite

transmission through destroying commensal gut microbes or alerting the mosquito

immune system by introducing unusal alpha-proteobacteria (Wolbachia) in Anophe-

les has also been desribed as a transmission blocking tool304 305. In summary, it

is not surprising that our insectary-bred mosquitoes are influenced by enviromental

factors such as their diet, the larvae breeding water etc., that vary over time and

thereby lead to a change in the mosquito immune-sytem and their gut microbiota.

This might have influenced the susceptibility of the mosquitoes to a Plasmodium

infection and thereby might explain the drop in the infection rate in our experi-

ments. This leads to the conclusion that for constantly high Plasmodium falciparum

transmission rates the mosquito-breeding needs to be standardized and factors such

as the pH of the breeding water, contamination of the larvae trays with bacteria

and sources of other bacterial contaminations that might influence the growth of a

gut ”Plasmodium-unfavorable” microbiota need to be controlled and maintained at

a constant level. Another factor that might have influenced the P. falciparum in-

fection rate in our experimental setup is the quality of the gametocyte culture

produced in vitro for the feeding of the mosquitoes. The aim for a sexual stage P.

falciparum gametocyte culture is to create a large percentage of infected erythro-

cytes that form gametocytes within the culture. Therefore an asexual culture flask

that is usually kept in a small volume and by replacement of iRBCs with fresh RBCs

is maintained at a parasitemia below 5 %, is expanded into a larger volume and no

fresh RBCs are added anymore. Thereby the parasitemia increases dramatically and

gametocytes are formed as a result of density stress306. The maturity of a game-

tocyte culture is represented by a high number of stage V gametocytes307 that are

able to form gametes when activated by external triggers such as pH-change of the

surrounding medium, temperature drop and a mosquito molecule, the xanthurenic

acid308 309 310 311 312. During this process that can be visualized under a light micro-

scope the male gametocytes form eight exflagellated gametes (exflagellation center)

that possess highly motile flagella309. We used this process to evaluate the maturity

of our gametocyte culture by examining the number of exflagellation centers per

volume induced by temperature drop (cell culture to lab room temperature) under

a light microscope. Even though we kept this number at a constant range for the

feeding over time and therefore the quality of the culture should have been constant,

this procedure might have been misleading. The exflagellation rate is only provid-
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ing information about the maturity of male gametocytes, not female. As has been

shown, though, a ratio of at least 50% of female gametocytes is needed to confer high

infection rates313. It has been reported, for example, that sex ratios in Plasmodium

sexual parasites vary in response to environmental factors such as host hormones

etc. and that this influences the transmission success314. Important to note hereby

is, that the human serum taken for the parasite in vitro culture in our setup was

ordered from the Heidelberg University Hospital Blood Bank. This serum is expired

donated material from donors of various genetic and health background and there-

fore the content is not standardized. Hence, the different batches of serum used for

the parasite cultures might have had an influence on the gametocyte production.

Therefore our evaluation of the maturity of our cultures by checking exflagellation

may have been wrong since the sex ratio of the gametocytes may have been wrong.

This may also have been influenced by the fact that the culture maintenance (ex-

change of the medium, inoculation of the cultures) was performed manually and not

standardized. Other laboratories that have established a constantly running P. fal-

ciparum-transmission system therefore installed an automated cell-culture system

that allows them to rely on perfectly mature cultures at certain timepoints and to

time their maturity with the maturity of the Anopheles mosquitoes. In this setup

they can also control the number of passages that have been made for maintaining

the asexual cultures and check, if the rate of the gametocytogenesis, the formation

of gametocytes, has dropped. This can happen if a parasite population has been

passaged for many times in asexual cultures without having had to go through the

mosquito cycle from time to time315 (Marga van de Vegte-Bolmer, Radboud Uni-

versity Nijmegen Medical Center, personal communication).

4.2 Characterization of EHD-proteins in apicomplexa

In this thesis I was able for the first time to identify a member of the EHD-protein

family in apicomplexan parasites by in silico analysis. Subsequently, I was able to

characterize the protein in regard to its localization and function in the parasites

Toxoplasma gondii and Plasmodium berghei/Plasmodium falciparum. The results

of my thesis have contributed to a better understanding of EHD-proteins in api-

complexan parasites. It is not quite clear yet, if the results obtained for the single

investigated organisms can be combined to one full picture or rather need to be

viewed seperately. Especially, if it comes to the comparison of EHD-proteins in

Toxoplasma and Plasmodium it might not be possible to compare localization and

function of EHD-proteins in both organisms, because of the different lifestyle of

both. Therefore most of the interesting results will be discussed individually in the

following.
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4.2.1 The apicomplexan EHD-protein family

The in silico analysis in this thesis has revealed that the apicomplexan parasites

Toxoplasma and Plasmodium each possess a single ortholog of proteins of the EHD-

protein family (Fig. 3.4). The protein clusters tightly within the apicomplexan

clade and is closely related to their orthologs in C. elegans and in vertebrates (Fig.

3.4). While C. elegans and apicomplexa only seem to have one predicted member

of the EHD-protein family each, vertebrates have four paralogs. One of the reasons

for the number of different paralogous proteins in vertebrates could be their higher

organisation into different tissues. It has been shown for mammalian EHD-proteins

that some have different functions in different tissues (see 1.2.2). EHD3 and EHD4

for example are specifically expressed in the glomerular endothelium of kidney cells

whereas the other two family members are not316. In other mammalian cells at least

some of the EHD-protein functions are redundant and depletion of just one member

does not lead to major defects in these cells (see 1.2.2). The fact that also other pro-

tozoan single cellular organisms like Entamoeba are also predicted to have more than

just one EHD-protein member (Fig. 3.4) seems to argue against this ”complexity-

theory”. But so far only in silico data are existing for Entamoeba EHD-proteins

making it difficult to interpret their existence. One could argue further against it,

that also the multicellular worm C. elegans possesses only one EHD-protein, Rme-1,

a protein shown to be involved in receptor-recycling events and also other cellular

processes280. But it has been shown that C. elegans can produce several different

isoforms of Rme-1 by alternative splicing that can likely exert different functions280.

In addition to that, also the Drosophila ortholog Past-1 has shown to be differ-

entially expressed in different transcripts317. Most of the studies on mammalian

EHD-proteins have lead to a clear picture of the EHD-protein function during one

specific process, the endocytic recycling in cells. Here, different EHD-proteins take

over a function in different endocytic trafficking events such as trafficking from the

plasma membrane to the early endosome (EE), from EE to the endocytic-recycling

compartment (ERC) or from the ERC back to the membrane or into protein degrada-

tion (see Fig. 1.10). Human EHD-1 exhibits the highest level of sequence homology

to the single EHD ortholog expressed in invertebrate organisms and the sequence

similarity of these orthologs is higher than between the EHD-paralogs in humans

themselves. This leads to the conclusion that an ancestral cell had only one protein,

quite similar to EHD-1, that later became multiplied in higher organisms to fullfill

different roles in the increasingly complex organisms. It seems to be very unlikely

that a complex process like endocytic recycling could be driven by just one EHD-

protein member in apicomplexans alone, since protein and receptor-recycling needs

to be tightly regulated. And it is not known wether isoforms of the EHD-protein in

apicomplexa may exist, something that will have to be investigated in the future.

But if there is only one EHD-protein version in these single-celled protozoans this

is leading me to the following conclusion: Either the EHD-protein has only one

specialized function in these organisms in a process that is not as complex as the
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endocytic-recycling of higher eukaryotes, or different proteins than EHDs are taking

part in this complex process.

4.2.2 Structure of the apicomplexan EHD-proteins

The in silico analysis performed in this thesis predicted that all characteristic do-

mains of EHD-proteins are also present in the apicomplexa member. The analysis

of the predicted amino-acid sequence showed a characteristic P-loop containing nu-

cleotide binding site in the G-domain that possibly binds and hydrolyses ATP,

even though this was not investigated in the present study. It has been shown for

human EHD2 that the binding of ATP by the G-domain is required for the dimer-

ization of two monomers (see chapter 1.2.1 and Fig. 1.11). Only upon dimerization

the EHD2 homo-dimer is then able to bind to membranes of target organelles or

structures via the helical middle domain of the protein. The ATP-binding and

dimerization/oligomerization of the apicomplexan EHD-protein itself has not been

investigated in this thesis but there are other results that lead to the assumption that

also the apicomplexan EHD-protein might be able to dimerize: I was able to show

that the deletion of the G-domain of TgRME-1 leads to a cytosolic localization of the

fluorescently tagged protein in Toxoplasma gondii (see chapter 3.2.3 and Fig. 3.13)).

This stood in contrast to the localization of the full-length protein tagged by the

same strategy which localized to distinct punctated and tubular structures within the

parasite (discussed in 4.2.3). A similar phenotype has been shown for the non-ATP-

binding mutant T72A of human EHD2282. In this study the mutation of Threonin

to Alanin in the nucleotide-binding site prevented ATP-binding of the protein and

thereby inhibited the dimerization of the protein in vitro. The overexpression of a

tagged version of the same mutant in vivo led to a cytoplasmic localization of the

protein in HeLa cells instead of a localization at tubules and punctated structures

as seen for the full-length protein282. The authors assumed that the lacking ability

of the mutated protein to bind ATP and to oligomerize prevented it from binding

to membranes. Therefore the protein did not show a localization to membranous

structures anymore. The ability of membrane binding can also be assumed for the

apicomplexan EHD-protein from its primary structure and homology to the human

EHD-proteins and also from the localization studies shown in section 3.2. Certainly

the depletion results in this thesis show that the G-domain of TgRME-1 is essential

for its localization. But in addition, similar to human EHD2, TgRME-1 depleted

from its G-domain and thereby from its ATP-binding site is loosing its ability to

bind to membranes and remains cytosolic, indicating also for a need of the protein to

dimerize via the G-domain to bind to membranes. One might argue that deleting the

whole G-domain of TgRME-1 might destroy a lot more interactions of the protein

by removing parts of its secondary structure than just preventing the ATP-binding

of the protein. This is certainly the case and in future studies a mutation of just the

ATP-binding site in this protein seems to be a more elegant method to narrow down

the domain-function on its ability to bind ATP. Nevertheless, the depletion of the
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G-domain in this thesis gives a first hint on the function of the G-domain in the Tox-

oplasma TgRME-1 and probably the orthologous EHDs in apicomplexa in general,

as well. Another important feature of the G-domain is the side-to-side KPFxxxNPF

amino acid motif. This motif is important in the mammalian EHD2 protein for the

oligomerization of the homodimer with other EHD2 proteins282. In this oligomer

the EHD-domain of one dimer is interacting with the NPF motif of another to form

the oligomer. Upon oligomerization the ATPase-activity is stimulated by the inter-

action. Interestingly, the apicomplexan EHD-protein ortholog does possess only the

KPF motif, not the NPF (see chapter 1.2.1 and Fig. 3.18). Even more surprising

is the fact that the second amino acid in the NPF tripeptide in both organisms,

Toxoplasma and Plasmodium, is mutated from the hydrophobic amino acid Proline

to a hydrophilic amino acid. In Toxoplasma Proline is mutated into Asparagine and

in Plasmodium into Serine. This is surprising since EH-domains have been found to

form a hydrophobic pocket that binds the hydrophobic residues of the xPF motif.

This leads to the hypothesis that oligomerization does not play a major role in the

working mechanism of the apicomplexan EHD or rather a weak interaction of the

oligomers is present since only one of the side-to-side xPF motifs is conserved in this

protein. An additional hypothesis is presented by the fact that, whereas the first of

the two side-to-side xPF motifs is also present in EHD1, EHD3 and EHD4, the NPF

motif is, like in apicomplexa, also not found in these paralogs of EHD2 even though

they are thought to form oligomers318. Therefore it has been hypothesized that in

these oligomers maybe other proteins that possess NPF motifs and interact with the

EH-domains of the dimers provide a scaffold for oligomer-formation, something that

still has to be experimentally confirmed. The G-domain of EHD-proteins is followed

downstream of the domain by a helical middle domain and further downstream by

an EH-domain (see chapter 1.2.1). The helical middle domain, that is known to

bind to lipid membranes, and the EH-domain are connected by a linker sequence.

This sequence comprises another xPF motif in all mammalian EHDs (GPF) that was

shown to be an interaction site for both EH-domains in the dimer with the opposite

monomer (see chapter 1.2.1). Interestingly, this xPF motif within the linker is also

present in the apicomplexan EHD-protein which could be another indicator for the

apicomplexan EHD-protein also being able to dimerize (Fig. 1.11). Nevertheless,

in both, Toxoplasma and Plasmodium, respectively, the first amino acid of the xPF

motif has mutated from a hydrophobic amino acid in mammalian EHDs (Glycin) to

a hydrophilic amino acid (Serine or Threonine, respectively). It is not quite sure, yet,

which impact this could have for the binding properties since most of the interaction

is mediated by the Proline and the phenylalanine289. To investigate the function of

the EH-domain of TgRME-1 in this thesis I generated an overexpression-mutant

of the protein tagged with a N-terminal fluorescent tag that lacked the EH-domain

(see chapter 3.2.3). The experiments showed, that deletion of the EH-domain in this

protein did not change its localization to a punctate structure within the parasite,

similar to the full-length protein (localization discussed in chapter 4.2.3). From the
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literature about human and other EHD-proteins it is known that the deletion of the

EH-domain could have several impacts on the protein: 1) The EH-domain is known

to be the interaction domain of an EHD-protein through which it binds to other

proteins that harbour NPF motives. A deletion of the EHD-domain therefore would

stop the proteins’ ability to interact with possible interaction partners. So far no

data are present suggesting a specific interaction partner of the apicomplexan EHD-

protein. Nevertheless, since the localization to the specific punctum structure of

the parasite is not affected in the EH-domain deletion mutant this localization does

not seem to be dependent on interaction partners mediated by an EH-domain-NPF

motif-interaction. 2) The EH-domain has been shown to be important for oligomer-

ization of human EHD-proteins as discussed above. Additionally, without certain

amino acid motives present in the apicomplexan EHD-protein it is not quite clear, to

which extend oligomerization is happening for these proteins at all. Nevertheless, if

at all happening in the full-length protein, deletion of the EH-protein should inhibit

oligomerization of the apicomplexa protein. This means, that also oligomerization

is not necessary for the localization of the apicomplexan EHD-protein to the punc-

tum structure within the parasite. This is in agreement with a third consideration:

3) EH-domains, in addition to binding to NPF motives in proteins, have also been

shown to be interacting with lipid-molecules such as phosphoinositides. The binding

of these lipids leads to a localization of EHD1 to long tubular endosomal membranes.

I was able to show a localization of TgRME-1 in tachyzoites and PbEHD in liver-

stage parasites on tubular structures, as well (discussed in chapter 4.2.3). Both, the

mutation of the lipid-binding site in the EH-domain and also the truncation of the

whole domain of mammalian EHD1 led to a change in the cellular localization of

the protein from a punctum-tubular intermediar phenotype to a solely punctated

phenotype239. This indicates, that the EH-domain, via the binding to phosphoinosi-

tides, is mediating the binding of EHD-proteins to tubular structures in the cell,

whereas the localization to punctate endosomes is not affected by this239. The same

seems to be true for the Toxoplasma TgRME-1 that also still showed localization

to the punctum when the EH-domain was deleted (Fig. 3.12). Since localization of

the TgRME-1∆EH deletion mutant to tubules was not further investigated in this

thesis a future investigation will be needed to confirm the assumptions made above

(Fig. 3.12). Most data gained in this thesis about the structural features of the

apicomplexan EHD-protein were obtained in Toxoplasma. Can they be transferred

to Plasmodium as well? Is there a difference in both proteins? Even though both

proteins share a high sequence similarity of almost 60% and their similarity of the

G- and EH-domains is even higher there is one striking difference about both pro-

teins and even all other EHD-proteins (Fig. 3.18). Toxoplasma RME-1, in contrast

to all other EHD-proteins investigated so far, has a long C-terminal stretch down-

stream of its EH-domain (Fig. 3.18). This stretch is more than 60 amino acids long

and possesses 6 experimentally confirmed phosphorylation sites290. Since all other

EHD-proteins do not have this stretch it seems unlikely that Toxoplasma kept it if
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it does not fullfill a defined purpose. The strong phosphorylation and its expres-

sion profile (upregulation during cytokinesis) could indicate for a function in signal

transduction, cell-cycle related activation or an interaction of this C-terminal tail

with other proteins via the phosphorylated sites. But an in silico analysis of this

C-terminal stretch did not show significant homology with special protein domains

known or any other protein sequence in other organisms. Therefore it will need

further analysis to narrow down a specific function on this protein sequence.

4.2.3 Localization and function of EHD-proteins in apicomplexa

The localization of the apicomplexan EHD-protein was investigated in this thesis

in the three different organisms Toxoplasma gondii, Plasmodium berghei and Plas-

modium falciparum. The studies were performed applying different techniques in

different organisms (T. gondii and P. falciparum: Fluorescently tagged EHD, live-

imaging and fixed parasites; P. berghei : EHD antibody detection, fixed parasites

only) and in different parasite stages. Therefore the results will be discussed seper-

ately for each organism in the following and in the end compared to each other,

as far as possible. To localize the Toxoplasma TgRME-1 within intracellular

tachyzoite cell cultures a second copy of the endogenous rme-1 gene was integrated

randomly into to parasite’s genome. Upstream of the open-reading frame of the gene

a sequence encoding a destabilization domain (DD) followed by a sequence encoding

a mCherry fluorescent tag were cloned (compare Fig. 3.6). A time-course assay

of the DDmCherryTgRME-1-expression after Shield-1-induction (1µM) showed a

time dependent expression of the protein by western blot in relation to the amount

of time spent after addition of Shield-1 (Fig. 3.7). The fusion protein blotted on a

western blot under reducing conditions revealed a molecular weight of slightly higher

than 100 kDa which is in the range of the calculated weight (TGME49 031210 66,7

kDa; mCherry-tag 28.8 kDa; DD-tag 12 kDa). After two hours of protein expression

only a weak cytosolic mCherry signal in IFA-studies could be observed within the

parasite. This changed after 4 hours of expression when few fluorescently labeled

puncta occured within the parasites (Fig. 3.7). Over time these puncta became

more apparent but even though there was still an increasing amount of protein pro-

duced between 8 and 24 hours (ON) after start of the induction as seen on the

western blot, there was no change in the localization of the fluorescent signal of the

parasites after 8 hours. This indicates for a saturated location of the protein on

the cellular level and that further overexpression of the protein does not change the

phenotype anymore. This was supported by the fact that also the increase of the

Shield1-concentration did not change the localization of the protein in the cell. Most

of the times in fixed parasites the mCherry signal could be found on only few puncta

within the parasites, one bigger punctum (a few hundred nanometer in diameter)

and some smaller ones. These structures could either be located at the apical end

of the parasites or at the basal end. To determine the origin of the labeled puncta

a colocalization study was performed co-labeling known parasite organelles of the
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secretory and endosomal system in addition to the fluorescently tagged TgRME-1

(Fig. 3.11). The endosomal system was chosen since EHD-proteins in mammalian

cells have been shown to localize to this network. No colocalization of the mCherry-

labeled organelle could be found for parasite secretory organelles such as Rhop-

tries, Micronemes and compartments of the endosomal system such as the early

endosome, endosomal-like compartment and the late endosomal-like compartment.

Nevertheless, the resolution of the images might have been too low to show partial

colocalization of the smaller vesicular mCherry-labeled puncta with some of these

organelles. But the big punctum labeled by the mCherry-tagged protein could not

been seen colocalizing with one of the mentioned organelles in any parasite. There

is no hint so far which compartment within the parasite TgRME-1 could localize

to since also another round shaped compartment, the apicoplast, of about the same

size of the big RME-1-punctum could not be colocalized. Another similar structure

has been seen before for the EHD-protein related protein dynamin-related protein B

(DrpB)319 (both share a dynamin-like G-domain). A tagged overexpressed version

of this protein in Toxoplasma tachyzoites also showed an accumulation of the DrpB

close to but distinct from the Golgi-apparatus. The protein, in addition, has been

proven to be important for the biogenesis of secretory organelles in this study. Dur-

ing replication of the parasites the DrpB accumulation breaks up and reassembles

again whithin the newly formed daughter-cells. The same dynamics were shown for

the DDmCherryTgRME-1 labeled compartment in this thesis when living parasites

were imaged live under a fluorescent microscope in a live-cell chamber. Most of the

time of the replication cycle the big punctum reamined at a distinc focus at the apical

part of the parasite. Via short-term live-imaging I was able to show that during this

phase small mCherry-labeled vesicles are rapidly shuttling between the big punctum

and the back end of the parasite (supplementary movie 2). When the parasites start

to form daughter-cells, analogous to DrpB, the big punctum fragments and smaller

fragments localize to the apical tips of the daughter-cells, as shown by long term

imaging (Fig. 3.9 and Fig. 3.10; supplementary movie 1). At a later timepoint dur-

ing the replication phase the apical mCherry-labeled compartment of the mother cell

moved to the back end of the cell, squeezing alongside the IMC of the newly forming

daugther parasites. After cytokinesis the TgRME-1 compartment has reemerged

at the apical tip of the parasite but also remained at the basal part of the vacuole

of the two newly formed parasites. Since dynamics and localization of DrpB and

TgRME-1 appeared quite similar a colocalization of both proteins was investigated

in this thesis (supplementary data; Fig. 5.1). Unfortunately, no colocalization could

be observed for both protein compartments. This leads to the conclusion that both

proteins probably localize to different cytosolic pool-like structures but nevertheless

underly similar dynamics and might exhibit comparable functions during endodyo-

geny of the parasites. Another recently identified new compartment in Toxoplasma

gondii (VAC) was shown to harbour a cathepsin-like protease, TgCPL320. The au-

thors showed a function for the protease in the proteolytic processing of propeptides
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destined to the secretory organelles of the parasite. They speculated about the

punctate structure it localizes to it might be a lysosome or a lytic vacuole. Whereas

the VAC did not colocalize with the DrpB-accumulation within the parasite either,

it showed at least partial colocalization with endocytic organelles. Interestingly, also

this VAC-compartment was shown to be a dynamic organelle that undergoes struc-

tural reorganisation during the cell cycle in their study. Comparable to TgRME-1 in

this thesis, also small TgCPL positive structures in the study of Parussini et al.320

are forming during fragmentation of the VAC upon daughter-cell formation and can

soon be found in the apical part of the daughter-cells. The authors could not distin-

guish in their study, if these structures move to the apical end of the daughter-cells

or rather to the posterior end of the mother cell where they might take part in the

proteolytical processing of proteins in the basal body. In the latter case the VAC

compartment in the daughter-cells would be formed and loaded with TgCPL de

novo or filled up with material from the compartment at the basal end. The same

question could also not be answered for the TgRME-1 labeled compartment in this

thesis where at least a movement of the compartment to the basal end of the para-

site could be shown. But here also smaller compartments appear at the apical pole

of the daughter-cells before the movement of the big compartment to the posterior

pole has been initiated. It will be interesting to study in the future, if the TgRME-1

labeled compartment might be the VAC identified in the study mentioned above.

But the comparison of the localization and colocalization in both studies, the one

from Parussini et al. and results of my thesis, lead to the hypothesis that both

might rather be two different vacuolar structures within the Toxoplasma parasite

and both possibly members of the endosomal system. The similar dynamics during

the replicative phase of the parasite leads to the hypothesis that there might be a

general inheritance mechanism used in Toxoplasma to distribute organelle members

of the endosomal system into the daughter-cells or a common specialized function

for the proteins inhabited by these organelles during replication. If VAC and the

TgRME-1 compartment are not the same structure then what the latter consists of

could not be defined in this thesis but will be interesting to study in the future.

One possibility for the functionality of the compartment identified in this thesis

would be that of an endosomal recycling compartment (ERC). Since verte-

brate EHD-proteins have been found to localize to the ERC (see chapter 1.2.2) a

colocalization with this organelle might be possible. Nevertheless, an ERC has never

been identified in Toxoplasma so far and its existence would raise the question: What

would be recycled or transported to the ERC? The intracellular forms of apicom-

plexan parasites reside within a parasitophorous vacuole in mammalian cells. This

means their internal organelles are surrounded by three membranes that block them

from nutrients in the surrounding medium: The plasmamembrane of the host cell

(HPM), the parasitophorous vacuole membrane (PVM) and the parasite membrane

(PM) (see chapter 1.1.2). To acquire nutrients they can not synthesize themselves

de novo. Therefore the parasites need to take up nutrients from their host cell cross-
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ing the lipid bilayers of the PVM and the PM. Whereas the PVM contains pores

facilitating passive diffusion of low molecular weight molecules into the PV the PM

is not permeable and needs active processes to be crossed321. One of these active

processes is endocytosis, still a mystery in apicomplexa today and hence not fully

understood. Nevertheless, first evidence has been found almost two decades ago

already that endocytosis is in fact occuring at a special site in the anterior half of

the parasite at the parasite membrane, the micropore322. This invagination of the

plasma membrane penetrates the parasite cytoskeleton, the IMC, to allow vesicular

trafficking into the parasite cytosol. In eukaryotic cells the endocytosis of nutrients

from the outside of the cells can be mediated either via fluid-phase endocytosis or

receptor-mediated endocytosis. During receptor-mediated endocytosis a receptor on

the surface of the cell is internalized via endocytosis while having bound a ligand.

This allows a specific uptake of molecules that are existing in a low concentration at

a high rate from outside the cell. The vesicles containing the receptors having bound

(or not having bound) their ligand are then transported to the early endosome (EE)

from where their content will be further transported to the final destination (see

Fig. 1.10). The receptors internalized together with their ligands will be recycled

back to the surface for several additional rounds of receptor-mediated endocytosis

via the fast route directly back from the early endosome, or through a slower pro-

cess that is organized at the endosomal recycling compartment (ERC)223. In these

receptor-mediated endocytosis and receptor-recycling processes many proteins of the

EHD-family are involved (see chapter 1.2.2). It is not clear because of the lack of

knowledge about endocytosis in apicomplexa, though, if receptor-mediated endocy-

tosis also occurs in these organisms and which receptors would be recycled. But

a conserved sorting motif in apicomplexa for intracellular trafficking known from

mammalian cells indeed indicates this process might also be conserved in apicom-

plexans323. Neither is it known, if an ERC exists in these parasites in addition to

early and late endosomes. But in addition to recycling receptors back to the cell

surface the ERC and recycling endosomes have been shown to play an important

role in cytokinesis, as well324 325. By trafficking of recycling endosomes and Golgi-

derived vesicles the cells contribute membrane to the cleavage furrow. In addition,

they have been shown to facilitate abscission during the last phase of the cytokine-

ses, an ability that is also known for EHD-proteins. Interestingly, the live-imaging

studies of the TgRME-1 in Toxoplasma have shown a localization of the protein

to the very end of the parasites after the cellular division has occured. Here the

protein localized to the connection point of the two daughter-cells and the residual

body where abscission might be facilitated by the TgRME-1 protein.

Another nutrient uptake different to receptor-mediated endocytosis the apicom-

plexan EHD-protein might be involved in is the scavenging and uptake of lipids from

host cells. It has been shown for Toxoplasma gondii for example that the parasite

can mobilize lipid resources from the host cell for its intracellular growth. The PVM

of the parasite after formation inside the host cell becomes rapidly associated to sites
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of the host cell lipid biosynthesis such as the ER and mitochondrial membranes326

327 328 329. In addition, it has been shown that Toxoplasma gondii scavenges lipid

resources such as low-density lipoprotein (LDL) and cholesterols from the host cell

to use them as a lipid source for the mass production of membranes330 331. Therefore

the parasite stores the uptaken lipids in so-called lipid bodies and endomembranes

and thereby maintains its lipid homeostasis. During replication neutral lipids are

transported from the lipid body to the ER and the Golgi to incorporate them into

the lipid metabolism. But the exact composition of lipid bodies is not yet known331.

Even though the parasites are able to produce fatty acids, precursors of all kinds

of lipids, through a special FASII-pathway, some parasite stages and some parasite

strains do need take up host-cell derived lipids to ensure optimal growth (see chapter

1.1.2). EHD-proteins in apicomplexans might be mediators of the uptake, storage

and/or trafficking of these lipids before and especially during cellular division. At

this timepoint in the lifecycle there is a very high demand of lipids for the production

of membranous structures in daughter-cells. Because of their lipid-binding ability

and their ability to pinch off vesicles from membranes apicomplexan EHD-proteins

might be a very good motor to help sort and distribute lipid resources during repli-

cation of the parasite. EHD1 for example has already been shown to be involved

in the regulation of cholesterol homeostasis and lipid droplet storage in mammalian

cells256. The TgRME-1 labeled compartment together with the structures seen

for Plasmodium liver stages discussed below might represent lipid storage compart-

ments of these parasites that are reorganized and trafficked during replication to

the newly forming membranous structures. To investigate localization of the EHD-

protein in Plasmodium berghei an antibody, generated against the amino-acids

339-533 of the Plasmodium falciparum EHD-protein (kindly provided by Dr. To-

bias Spielmann, BNI Hamburg), was used in IFA studies on sporozoites, liver-stages

and blood-stages. Since the respective amino acid sequences of both orthologous

proteins, PbEHD and Pf EHD, respectively, are highly similar the Pf EHD-specific

antibody promised to be detecting the protein in P. berghei, as well. Indeed, using

the antibody on PFA-fixed P. berghei sporozoites led to a specific signal of PbEHD

in a vesicular pattern within the sporozoites (see Fig. 3.23). This staining looked

very similar in all salivary gland sporozoites observed, indicating for rather static

dynamics, and the vesicles seemed to be distributed more or less homogenously over

the whole body of the parasite. Most of the vesicles located at the periphery of the

cytosol of the parasite in close association with the plasma membrane, even though

a lack of antibodies generated in a background other than mouse did not allow a

costaining with this membrane and other cellular markers. Depleting parasites from

PbEHD (discussed in detail further below) did not lead to a impaired development of

P. berghei salivary gland sporozoites which leads to the conclusion that the protein

is not needed during this phase of the parasites’ lifecycle. Therefore the abundance

of the PbEHD-labeled vesicles suggests them being a storage compartment harbor-

ing proteins or nutrients such as lipids etc. that are needed in later stages. It has
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been shown before that parasite stages already prepare themselves molecularily be-

fore they are transmitted to a new host that has different environmental conditions.

There they establish as different stages that require a rapid molecular and cellular

re-programming of the parasite. For example gametocytes have been shown to store

translationally repressed mRNAs and proteins that are required much later during

formation of ookinets in the mosquito332 333 334. In addition, protein storage has

been shown in Plasmodium sporozoites, as well. Most of these stored proteins known

so far are required for gliding motility, invasion of liver cells and formation of the

parasitophorous vacuole of the parasites and are released only by specific triggers

in the mammalian host. For example TRAP, a protein essential for the sporozoite

motility and cell invasion is stored in secretory organelles, the micronemes, and

released from the parasite upon a calcium trigger335 336 337. Most of the known

proteins stored in sporozoites are secretory proteins released from secretory apical

organelles, since they are needed immediately upon contact with host cells. The

fact that the PbEHD pattern in sporozoites suggests no localization of the protein

to apical organelles leads, together with the lack of any indication that it might be

secreted at all, to the assumption, that the protein is not secreted and needed upon

host cell contact.

Nevertheless, the presence and abundance of the protein in IFA studies in this thesis

during the sporozoite stage argues for a function of the protein shortly after the en-

try into the host. This is in concordance with the results obtained during liver-stage

development for a pbehd (-) parasite created in this thesis. In these parasites the

pbehd open reading frame (ORF) was disrupted by integrating a plasmid carrying

a resistance marker via single-crossover into it (see chapter 3.2.7). Thereby, even

though transcription might still occur, translation of the protein is most unlikely. A

double crossover replacement strategy was also followed up to completely remove the

open-reading frame from the parasite but was not successful because of an inability

to amplify the 3’UTR from the ORF of the gene. This goes in line with the results

of Pfander et al.292 who were also not able to include the 3’-part of the gene into

their recombination vectors. A reason for that might be a tight regulation of the

gene expression of this gene and the resulting tight packaging of the gene by histones

and other DNA-binding proteins on genomic level. Thereby the secondary structure

of the locus at the 3’ part of the gene might not be accessible for amplification and

cloning strategies. In this thesis, by integration of the whole plasmid into the pbehd

ORF the sequence was disrupted. A single-crossver integration can be reversible and

removed by the parasite from its genome. Therefore the parasites where checked

again for the existance of a wildtype population after having completed a lifecycle.

No reversion to the wildtype could be observed in these cases. The recombinant par-

asites did not show any growth defect during in vivo blood-stage and mosquito-stage

development and during in vitro liver-stage development 24 hours after invasion of

hepatocytes. But they were significantly smaller after 48 hours growth in vitro in

comparison to wildtype parasites. The invasion of sporozoites into hepatoma cells
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did not seem to be affected since the numbers of liver-stages in this setup did not

differ from the ones obtained for wildtype parasites. This also indicates that PbEHD

has a function for Plasmodium parasites during the liver phase. In addition, the de-

lay in liver stage growth was also confirmed by in vivo data showing a significant

delay of prepatency of mice infected with the pbehd (-) sporozoites in comparison

to wildtype-infected mice.

When the localization of PbEHD was investigated in wildtype liverstages in vitro

using the antibody described above an interesting pattern could be observed (see

Fig. 3.24 and Fig. 3.25). The dynamics of this pattern seemed to be similar to

the ones observed for the TgRME-1 compartment in Toxoplasma gondii discussed

above. In liver stage trophozoites 24 hours after invasion the protein localized to a

single compartment within the parasite. This compartment had a strongly antibody-

labeled core, indicating for a great amount of protein, and tubulated structures that

emerged from the core into the cytosol of the parasite. Interestingly, in most of

the parasites the core located to the periphery of the parasites in close association

with the host cell nucleus. In later stages 48 hours after invasion, when schizogony is

taking place, the PbEHD compartment fragmented and split up into vesicular struc-

tures and tubules that seemed to localize around the nuclei of the newly forming

daughter merozoites. Together with the fact, that in pbehd (-) parasites the growth

of the liver parasites between 24 and 48 hours is slowed down I would hypothesize a

function of PbEHD in liverstages for the supply of the parasites with nutrients. Scav-

enging of nutrients from the host cell has already been shown for P. berghei liver

stages. Quite recently, it has been shown that an essential cofactor for enzymes,

lipoic acid, is most likely taken up via the close association of the parasite and the

host cell endoplasmic reticulum338, though the exact mechanism is not known, yet.

In this study the blockage of the lipoic acid uptake via an lipoic acid analogue did

have a great impact on the liver stage parasites during later stages of development,

when schizogony was occuring, and led to an impaired but not complete blockage

of full liver stage development338. The fact that these data are quite similar to the

ones observed in this thesis for PbEHD does not necessarily mean that PbEHD is

involved in lipoic acid uptake. The localizations of lipoic acid and PbEHD in liver

stages differ to some extend, anyways. But it underlines again how important nu-

trient uptake for schizogony and maturation of liver stages is and that depletion of

some nutrients can lead to a phenotype observed for pbehd (-) parasites.

Another process that eukaryotic cells are using for nutrient supply is autophagy.

Even though the process is one of three different cell-death mechanisms it can also

be used to degrade the cell’s own constituents upon nutrients starvation or chang-

ing surrounding conditions339. During macroautophagy cytoplasmic components or

organelles are engulfed by lysosomal membranes for degradation340. This process

requires complex membrane dynamics340. Autophagosome formantion is a process

that is mediated by autophagy-related proteins (Atg)341 342 that have interestingly

also been identified in apicomplexan parasites340. It has been shown for Toxoplasma
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for example that depletion of TgAtg3 causes growth inhibition of the parasites343.

Also, the mitochondria in these parasites show anomalies indicating for a defect in

the autophagy of these organelles343. Furthermore, Plasmodium berghei liver-stage

parasites have been shown to harbour autophagosome-like double-membrane struc-

tures that might be involved in degradation of of micronemes344 345. In addition to

that, Atg8 localizes to abundant vesicles that are organized in a reticular network

in P. berghei345. During the erythrocytic stage, in contrast, Atg8 was found to lo-

calize to the apicoplast340. Autophagy in exo-reythrocytic stages, even though not

well studied yet, might represent an important step of the transition of Sporozoites

into liver-stages and from these into merozoites. During both transformation steps

organelles and structures such as the secretory organelles, the IMC, the nucleus

and mitochondria need to be degraded or built up and segregated. In Plasmodium

berghei liver-stage parasites it has been shown for example that during a so-called

cytomere-stage the parasite apicoplast begins to reorganize and to be segregated to

the newly forming merozoites346. The segregation pattern of the apicoplast shown in

the study of Stanway et al.346 looks very similar to that of PbEHD in liver-stages.

In addition to that, also in Toxoplasma parasites autophagic vesicles have been

shown to exist especially in intracellular dividing parasites343, similar to TgRME-1.

Therefore the TgRME-1-labelled compartment in Toxoplasma and the PbEHD-1

compartment in Plasmodium berghei liver-stage trophozoites might represent either

an autophagosomal-like compartment or might at least take part in the degradation

and segregation of organelles during the replication of the parasites. The PbEHD-

protein’s catalytic abilities might help to structure the complex membrane dynamics

of these processes.

The ability of EHD-proteins to bind and bend membranes and to transport lipids as

discussed above for TgRME-1 would make it likely to assume a lipid supply func-

tion for PbEHD. Plasmodium parasites, like Toxoplasma as well, are in great need of

lipids throughout their lifecycle. During schizogony in the liver one mothercell can

produce thousands of merozoites that all are individual cells requiring membranes to

surround them. This phase represents one of the fastest growth rates among eukary-

otic cells known so far93. To provide itself with enough lipids (and precursors such as

fatty acids) to built membranes the parasite has established two different methods, a

de novo synthesis and in addition a mechanism to scavenge lipid resources like fatty

acids from the host cell (see chapter 1.1.2 and Fig. 1.3). The scavenging of lipid

resources does likely involve host cell specific proteins that interact with parasite-

specific proteins to recruit lipids to the parasite. It has been shown for example

that UIS3, a parasite-specific protein upregulated in invasive sporozoites and known

to be essential for the liver stage development347 348, is located within the PVM349

with its C-terminal tail reaching into the cytoplasm of the liver cell. Thereby it can

interact indirectly with fatty acids via direct interaction with liver fatty acid binding

protein (L-FABP)349 350. Deletion of UIS3 in the parasites also renders the parasites

unable to develop into fully mature liver shizonts. Furthermore, downregulation of
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L-FABP in liver cells by RNAi greatly inhibits proliferation of Plasmodium parasites

whereas overexpression promotes growth349. By binding to L-FABP UIS3 may help

to recruit fatty acids to the PVM and into the PV, but how these are reaching the

cytosol of the parasite is not known. The further investigation of PbEHD may help

to solve this mystery. Besids, other proteins like EXP-1 (Nyboer et al., unpublished

observations) and Pf E1590w351 have been shown to interact with apolipoproteins

in liver cells. Both parasite proteins are located within the PVM and even though

apolipoproteins have rather shown to be involved in parasite invasion into host cells

it cannot be ruled out that they are also serving as a lipid source for liver stage par-

asites. The data acquired in this thesis together with the recent literature suggest

that PbEHD might be involved in storage and trafficking of lipid storage compart-

ments/vesicles or liposomes within the liver stage parasite and in later liver stages

to help tubulate and form membranes around the merozoites building up within the

mother cell.

Localization of the EHD-protein in Plasmodium blood stages was carried out in

two different ways: Plasmodium falciparum EHD was N-terminally tagged with a

GFP-tag and its localization was analyzed in fixed parasites (see chapter 3.2.5). This

strategy revealed a localization mainly to the plasma membrane of the parasites and

more prominent to a distinct spot close to it. In contrast to that, using an antibody

against the protein in Plasmodium berghei in IFA and immuno-EM (iEM) studies

showed a localization of the protein distributed over the whole parasite, but mainly

associated with membranous structures (compare Fig. 3.19). The signal obtained

from both was rather low, though, indicating for a low abundance of the protein

in blood stages. A semi-quantative analysis of the structures labeled by anti-EHD

antibodies in the iEM revealed that most of the protein seems to be locating to

structures in the cytoplasm followed by vesicular structures/endoplasmic reticulum

and the nucleus. Interestingly, also mammalian EHD2 has recently shown to be

travelling to the nucleus where it represses transcription266. Most interestingly, the

iEM analysis also showed a localization of PbEHD to the red blood cell membrane

and the red blood cell lumen, leading to the assumption that this protein might also

be exported in blood stages. Even though both techniques to identify the localiza-

tion of the EHD-protein in both, P. berghei and P. falciparum, differed, a similar

localization to membranes could be observed. Whereas in P. falciparum the tagging

revealed a prominent localization of the protein to the parasite membrane and likely

the cytostome (Dr. Tobias Spielmann, BNI Hamburg, personal communication), an

assumed hotspot for endocytosis in blood stages, the data obtained with antibody

labeling from PbEHD indicated the protein might be located at different intra- and

extracellular organelles, probably shuttling between them. For the comparison of

both, Pf EHD and PbEHD in blood stages, it has to be kept in mind that the tagging

of the Pf EHD (data provided by Dr. Tobias Spielmann, BNI Hamburg) was carried

out C-terminally. This strategy might interfere with the interaction of the protein

with interaction partners and therefore may lead to a mislocalization of the protein.

110



CHAPTER 4. DISCUSSION 4.2

Therefore future studies in P. falciparum should also include antibody labeling of

the Pf EHD in blood stages. The only low amount of data obtained for blood stages

in this study does not explain the protein’s function in these stages. But the normal

viability of the pbehd (-) blood stages leads to the conclusion that the protein is not

essential for these stages. Nevertheless, the affects might be more subtle and not

visible in a parasite growth curve.

In a complementation experiment I tried to investigate if both proteins, the Tox-

oplasma TgRME-1 and the Plasmodium falciparum Pf EHD can be transferred into

the other respective organism. If so the localization of both was to be compared.

This localization then should have led to a conclusion about the comparability of

the function and similarity of the protein structure of both orthologs. Meaning, that

if the orthologus protein localizes in a same pattern than the endogenous protein

both probably have the same architeture, the same interaction partners and the same

structures they can localize to and thereby they would be functional in the respective

other apicomplexan parasite, as well. This complementation project was performed

together with Florian Kruse (BNI, Hamburg) who conducted the experiment in

P. falciparum. To allow the comparison between the orthologs, both proteins, the

TgRME-1 and the Pf EHD, were expressed with the exact same strategy within the

respective organism (DDmCherry N-terminal tag in T. gondii tachyzoites; GFP-tag

C-terminal in P. falciparum blood-stages). Interestingly, the orthologous proteins

did not localize to the same compartment within the same organism but each protein

localized to the same parasite structure regardless of the parasite. This means, first

of all, that both proteins are determined to localize to distinc subcellular structure

by their intrinsic protein architecture. Alternatively it could mean, that, if inter-

action proteins are also needed to direct the proteins to disctint structures, these

interaction partners also seem to be present in the sister apicomplexan parasite.

Nevertheless, I was never able to stably express the tagged version of Pf EHD in

Toxoplasma gondii and the parasites did not seem to grow very well. This could

indicate that, even though Pf EHD does not localize to the same spot within Toxo-

plasma as the endogenous protein, it still might be inhibiting processes within the

parasite or block interaction partners away from the endogenous protein and there-

fore is toxic to the parasite. One of the problems of complementing both, TgRME-1

and Pf EHD, might have been the selection of the wrong stage for the comparison.

Both parasites, Toxoplasma and Plasmodium, have different life-cycles with different

developmental stages and host-cells they are residing in (chapter 1.1.3). Toxoplasma

gondii tachyzoites and Plasmodium falciparum asexual blood-stages where choosen

for complementation and localization studies because of technical issues. But even

though they are both asexual intracellular stages of their life-cycle tachyzoites are

residing in nucleated humane foreskin fibroblasts (in cell culture) whereas P. falci-

parum asexual stages are growing within non-nucleated human red blood cells. Both

cells represent totally different environments for the parasites and under such differ-

ent conditions the need and function of EHD-proteins might be different. From the
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localization studies of PbEHD in Plasmodium berghei liver-stages and from the more

similar cellular environment of liver-stage parasites and tachyzoites it seems likely

that they might share a more common EHD-protein profile than the one observed

for tachyzoites and blood-stages. Therefore a complementation study of TgRME-1

in Plasmodium liver-stages in future might lead to a more secure hypothesis about

the comparability of function and localization of both orthologs in apicomplexa. In

summary it can be concluded from this thesis that EHD-proteins in apicomplexan

parasites most likely take part in the nutrient supply of the intracellular parasites

and/or in autophagocytotic-like events to promote organelle-segregation. During the

growth phase of the parasite the protein localizes to a single compartment within

the parasite that may represent a storage compartment such as a lipid droplet or an

ERC-like compartment for lipids, recycling endosomes or other nutrients. During

this phase the EHD-protein takes part in vesicular trafficking most probably from

hotspots of endocytosis to the storage compartment and may also be involved in

the uptake of lipids from the host cell. Upon cellular division of the parasites, dur-

ing endodyogeny and schizogeny, the storage or autophagosome-like compartment

fragments and is distributed to the forming daughter-cells and locates to tubules as

well as vesicular structures. During this phase the protein is most-likely assisting

to distribute nutrients via recycling endosomes to the forming cells or building up

new membranes and segregating organelles. In addition, it is creating a new pool

of nutrients within the daughter-cell. During the late stage of the cytokinesis the

apicomplexan EHD-protein might also assist with the abscission of the parasites

from each other.

4.2.4 Virulence of the P. berghei ANKA strain depleted of PbEHD

When pbehd (-) sporozoites (discussed in chapter 4.2.3) were injected into C57BL/6

naive mice a delay in prepatency in these mice of about one day in comparison to

wildtype PbA infected mice was observed. This is in agreement with the observa-

tions made for the pbehd (-) liver stage development observed in in vitro development

assays where I could show that the deletion of PbEHD leads to a slowed-down liver-

stage development of the parasites. The fact that the parasites reach the blood of

the mice in vivo at all, only later than the wildtype, shows that they are in general

able to fully mature in the liver cell to produce merozoites and to infect RBCs.

The pbehd (-) parasites were generated in the PbANKA (PbA) background. The

wildtype PbA parasites normally are able to induce experimental cerebral malaria

(ECM) in C57BL/6 and CBA mice (ECM model explained in chapter 1.1.4). Very

surprisingly, when C57BL/6 mice were infected with pbehd (-) sporozoites they were

protected from developing ECM in 100% of the cases, went into hyperparasitaemia

and died several days later than expected. In contrast all of the mice inoculated

with PbA wildtype parasites developed ECM and died around day 7-8. But what is

the connection between the development of ECM and PbEHD? From what is known

about the generation of CM in the mouse model (chapter 1.1.4) two scenarios can
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be envisaged: Either pbehd (-) parasites are different to the wildtype in their abil-

ity 1) to sequester as bloodstages or 2) to alert the immune system of their host.

1) Which role could PbEHD play in the sequestration of bloodstages? Even

though in this thesis a role for PbEHD in receptor-recycling was not investigated,

there is still the possibility that the protein is involved in this process, at least in

blood-stages. As discussed in chapter 1.1.4 a role for parasite-specific receptors on

the surface of infected red blood cells (iRBCs) has been shown in the generation of

human cerebral malaria. By binding to endothelial receptors via parasite-specific

surface proteins the iRBCs sequester and block capillaries in the brain that block

blood the flow and lead to the recruitment of immune cells. Even though the role

of sequestration for the generation of ECM is not as clear as in human CM a few

observed factors have led to the conclusion that parasite-specific receptors might

be involved in this model as well (compare chapter 1.1.4). Therefore the possibility

exists that PbEHD is invovled in the receptor-recycling of adhesion molecules on the

surface of RBCs. The depleted expression of the protein in pbehd (-) parasites would

then lead to a reduced expression of surface markers of the iRBC because the recy-

cling and trafficking back to the surface is not possible anymore. It has been shown

for example, that siRNA knock-down experiments of human EHD-proteins resulted

in a blockage of the transferrin receptor-recycling of HeLa cells that remained within

the perinuclear region of the cell instead of trafficking to the cytoplasma membrane

as shown for EHD-expressing wildtype cells262. Nevertheless, since no receptor has

been identified in P. berghei so far that is mediating iRBC-edothelium contact this

receptor-recycling hypothesis could not be tested in this thesis. But to test if solely

the bloodstage phase is responsible for the protection from ECM symptoms in pbehd

(-) infected mice I circumvented the liver phase by directly transferring blood con-

taining 1x106 iRBCs to naive C57BL/6 animals. But surprisingly 2 out of 3 mice

in this setup were not protected from severe symptoms and died from ECM. This

means that even though the bloodstage phase and receptor-recycling therein might

play a partial role in the protection from ECM in the pbehd (-) C57BL/6 model

the main protection is meditated by the liverstage phase. During the liverstage the

second factor that is involved in the generation of human CM and ECM might play

a role, the immune system.

2) The immune system has been shown to play an important role in the generation

of human CM and ECM (chapter 1.1.4). But it is mostly unknown so far which

role the immune-reaction generated by the liverstage parasites is playing in the

generation of CM. Nevertheless, the results obtained from the pbehd (-) bloodstage

transfer discussed above indicate for a strong correlation between the liverstage and

protection from ECM. But what is the difference between the liverstages of pbehd

(-) and wildtype liverstage parasites and how could this difference influence the

outcome of ECM? The only difference between both parasite strains determined
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in this thesis was the growth rate during their liverstage development and as a

result the time they spent within the liver cell. In contrast to the wildtype PbA

parasites pbehd (-) parasites spent about 24 hours longer within these cells in average.

Could that lead to a difference in the generation of an immune reaction against the

parasites? Yes it could. Comparing the ECM-generating stain PbA to the non-ECM

strain NK65 shows, that also NK65 develops slower within the liver. Comparing

the immunological profile of both parasites showed that NK65 is inducing a higher

level of the anti-inflammatory cytokine IL-10 in infected mice than PbA and that

could then lead to a prevention of the generation of ECM symptoms (Lewis and

Joschko, unpublished obvervations). In fact, when IL-10 knockout mice were infected

with NK65 parasites ECM symptoms were induced (Lewis and Joschko, unpublished

obvervations). To test, if IL-10 also plays a role for the protection of mice infected

with pbehd (-) parasites from ECM, mice were depleted from IL-10 via an anti-IL10

depletion antibody during the liverstage phase. Indeed, 3 out of 3 mice infected

with pbehd (-) parasites and depleted from IL-10 did develop ECM whereas control

mice not depleted did not show ECM symptoms.

These results indicate that the slow down of the liverstage development of pbehd

(-) parasites does lead to a prevention of ECM in infected C57BL/6 mice. This

prevention is mediated by the anti-inflammatory cytokine IL-10. It is not clear,

if the prolonged development of the parasites in the liver generates a higher level

of IL-10 during this phase or if the later appearance of the parasites in the blood

gives the immune system more time to act against an overshooting immune-response

resulting in a cytokine storm. Higher mouse numbers for the statistical analysis

and an evaluation of the immunological profile of the mice will lead to a better

understanding of this phenomenon in the future.
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Figure 4.1: Summary of the working hypothesis for apicomplexan EHD-proteins in parasite stages residing in nucleated cells -
Toxoplasma. I) After invasion of the host cell a Toxoplasma tachyzoite is scavanging lipids and other nutritional factors from the host
cell that can not be synthesized de novo by the parasite itself. These factors are passively diffusing into the PV by pores inside the PVM
or actively trasported by transmembrane transporters. From the PV the factors are then endocytosed by the parasite into the parasite
cytosol, most likely at the micropore of the parasite. The endocytosed or authopagic vesicles are trafficked to the endosomal system
via EHD-proteins (red small circles) and other proteins and some will end up in the storage compartment labeled by the TgRME-1-
protein (red oval-shaped structure) or will be distributed by TgRME-1-vesicels to other organelles. II) During cytokineses the storage
compartment fragments and TgRME-1 distributes nutrients (possibly lipids etc.) to the cleavage furrow. In addition, a part of the
storage compartment migrates to the back end of the parasite and also appears in the apical part of the newly formed daughter-cells
(shown by the green IMC). It is not clear if this compartment in the daughter-cells is synthesized de novo (possibly as a autophagosome-
like structure) or transported into the cell in step III. III) After cellular division the daughtercells are still connected via a residual
body at the basal part and the TgRME-1 protein localizes to the locus where abscission takes place. Through oligomerization TgRME-1
might assist during abscission of the membranes. In addition, a compartment in the back end TgRME-1 localizes to might be used to
fill up a new storage compartment at the apical end of the dauhter cells with nutrients. (dark blue lines: membranes; red: TgRME-1;
green: IMC; dark blue circle: nucleus; light blue space: PV)
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Figure 4.2: Summary of the working hypothesis for apicomplexan EHD-proteins in parasite stages residing in nucleated cells -
Plasmodium liver stages. I) After invasion Plasmodium liver stages scavange lipids and other nutrients from the host cell. Uptake
of lipids into the PV might occur through the interaction of PVM resident proteins (EXP-1, UIS3) with L-FABP or apolipoproteins.
From the PV the taken up factors are then most likely endocytosed and stored inside the parasite, a process likely mediated by the
apicomplexan EHD-protein. The storage compartment (possibly an autophagosome-like structure) is directed towards the host cell
nucleus and possibly closely associated with the host cell ER. It is not known, yet, if there is a mechanism for direct trafficking between
the host cell ER and the EHD-storage compartment. II) During schizogony the EHD-labeled compartment is fragmenting and trafficking
to the newly forming daughter merozoites and either assisting with organelle segregation (ER, apicoplast) or transporting lipids to form
the new merozoite membranes. The protein can also be found on tubules that are not identified yet, but might represent membrane
accumulations or the mother cell ER that are/is segregated/autophagocytosed and separated by the EHD-protein. (dark blue lines:
membranes; red: PxEHD; dark blue circle: nucleus; light blue space: PV)
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Chapter 5

Supplementary data

Figure 5.1: Colocalization study of TgRME-1 with DrpB. Toxoplasma gondii
Dynamin-related protein B tagged with a DDmycGFP-tag was episo-
mally expressed in stably DDmCherryTgRME-1 expressing parasites.
Protein expression was induced with 1 µM Shield-1 in intracellular par-
asites 6 hours before the parasites were fixed with 4%PFA and imaged
under a epifluorescence microscope. (Bar: 4 µm)

Supplementary movie 1: Long-term live-imaging of DDmCherryTgRME-1 ex-

pressing parasites. Parasites were imaged as described in section 2.10.3. A picture

was taken every 10 minutes and subsequently put together as a video sequence in

ImageJ.

Supplementary movie 2: Short-term live-imaging of DDmCherryTgRME-1

expressing parasites. Parasites were imaged as described in section 2.10.3. A picture

was taken every 3 seconds and subsequently put together as a video sequence in

ImageJ.

The supplementary movies can be found on the attached DVD.
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