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Zusammenfassung

Das Ziel dieser Arbeit ist es, mit Hilfe numerischer Simulationen unser Verständ-
nis von der Entstehung massereicher Sterne in Anwesenheit von Magnetfeldern zu
verbessern. Dabei konzentriere ich mich insbesondere auf protostellare Akkretionsraten,
die zeitliche Entwicklung und die Eigenschaften von protostellaren Scheiben und der
damit verbundenen Ausflüsse sowie die Wechselwirkung von Turbulenz und Magnet-
feldern und deren Auswirkung auf die Entstehung von protostellaren Scheiben. In einer
systematischen Parameterstudie zeige ich, dass sich die Akkretionsraten über einen
weiten Bereich von Anfangsbedingungen nur geringfügig ändern. Des Weiteren demon-
striere ich, dass sich beim Fehlen von Turbulenz für starke anfängliche Magnetfelder
keine Keplerschen Scheiben ausbilden können, was auf die Abbremsung der Rotation
durch die Magnetfelder zurückzuführen ist. Dieses Ergebnis scheint im Widerspruch zu
Beobachtungen zu stehen. Die Morphologie der Ausflüsse, die stark von den Anfangsbe-
dingungen abhängt, kann letztendlich auf die Struktur der zugrunde liegenden Scheibe
zurückgeführt werden. Wohl-kollimierte Ausflüsse mit hohen Ausflussgeschwindigkeiten
entwickeln sich nur, wenn eine Keplersche protostellare Scheibe vorliegt, anderenfalls
entwickeln sich langsam ausdehnende, sphärische Ausflüsse. Weiterhin analysiere ich den
Ausflussmechanismus mit einem analytischen Kriterium, das im Rahmen dieser Arbeit
entwickelt wurde. Sobald supersonische Turbulenz in den Simulationen berücksichtigt
wird, bilden sich, im Gegensatz zu den Simulationen ohne Turbulenz, Keplersche
protostellare Scheiben aus. Dieses Ergebnis steht im Einklang mit Beobachtungen von
sehr jungen protostellaren Objekten.

Abstract

The goal of this work is to improve our current understanding of the formation process
of massive stars in the presence of magnetic fields by means of numerical simulations.
In particular, I focus on protostellar accretion rates, the evolution and the properties
of protostellar discs and their associated outflows, and the interplay of turbulence and
magnetic fields and its impact on protostellar disc formation. In a systematic parame-
ter study I show that the accretion rates are remarkably constant over a wide range of
initial conditions. Furthermore, I show that in the absence of turbulence for strong ini-
tial magnetic fields only sub-Keplerian discs can form which is attributed to the strong
magnetic braking effect. This result seems to be in contrast to observational results. The
morphology of the outflows, which shows a strong dependence on the initial conditions,
can ultimately be linked to the structure of the underlying disc. Well-collimated outflows
with high outflows velocities only develop if a Keplerian protostellar disc is present, oth-
erwise slowly expanding, sphere-like outflows develop. Furthermore, I analyse the driving
mechanism of outflows with an analytical criterion derived in the course of this work.
When including supersonic, turbulent motions in the simulations, Keplerian protostellar
discs form in contrast to the non-turbulent simulations. This result is in agreement with
observations of early-type protostellar objects.
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1. Introduction

1.1. Motivation

Stars have played and still play a crucial role in the evolution of the present universe.
Firstly, by burning hydrogen via nuclear fusion in their interior, stars produce heavier
elements and thus were responsible for the chemical enrichment of the primordial gas,
which initially only consisted of hydrogen, helium, and traces of lithium. The fusion
products are dispersed to the ambient gas by stellar winds and supernova explosions.
Secondly, stars heat the interstellar as well as the intergalactic medium by the radiation
produced during the fusion reaction, which strongly affects the global thermodynamical
properties of the gas. And thirdly, stars inject large amounts of kinetic energy into
the interstellar medium (ISM): during their birth phase in form of molecular outflows
and jets, during their lifetime in form of stellar winds and – for stars more massive
than ∼ 8 M⊙ – in form of extremely energetic1 supernova explosions at the end of
their life. Beside effects like the differential rotation of the galaxy and gravitational
instabilities, these are the processes which determine the dynamical properties of the
ISM (e.g. Mac Low & Klessen, 2004; Elmegreen & Scalo, 2004).

All aforementioned feedback processes occurring during the entire lifetime of a star
strongly affect the ISM. However, as the formation of stars takes place in the ISM, these
processes also significantly influence the formation mechanism itself. As the formation
mechanism of stars in turn determines e.g. the mass distribution of stars, thus directly
affecting the feedback processes of stars during their lifetime, there exists a closed circle
of the birth, life and death of stars.

In particular the feedback processes of massive stars are very important. Stars are
usually denoted as massive if their final mass is above ∼ 8 M⊙. In general the feedback
of massive stars is up to several orders of magnitude stronger than that for low-mass stars.
For example only massive stars can produce very heavy metals up to iron. Furthermore,
as the luminosity of a star roughly scales with the fourth power of its mass, the heating
effect of massive stars on the ISM is much more pronounced (see e.g. Zinnecker & Yorke,
2007). Moreover, only massive stars end their lives with a supernova explosion and are
therefore much more important for the kinetic energy budget of ISM than low-mass
stars. Supernovae are also the only known way to produce elements heavier than iron.

As mentioned already before, there is a mutual influence of the different phases of a
star’s life. This in turn requires a detailed understanding of each individual phase, i.e.
the formation, main lifetime and death of stars, to be able to derive a complete picture of
stellar evolution and the influence of stars on the evolution of galaxies. However, despite

1The typical kinetic energy for a type II core collapse supernova is of the order of 1051 erg.
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1. Introduction

the above mentioned importance of massive stars, in particular their formation process is
far from being completely understood and still highly debated in the literature (see e.g.
the review by Zinnecker & Yorke, 2007, and Chapter 2 of this work). There are several
reasons for the lack of a comprehensive theory of massive star formation. To begin with,
massive star formation – as well as low-mass star formation – takes place in the densest
parts of the ISM. Therefore, the actual initial conditions of star formation as well as the
physical important processes are hard to observe since they are often hidden from the
observer by the surrounding gas. Moreover, massive stars – in contrast to low-mass stars
– usually form in dense stellar clusters, which makes is hard to entangle the effects from
surrounding protostars and the formation process itself. Furthermore, with a distance
of about 440 pc (e.g. Hirota et al., 2007) the Orion nebular, the nearest massive star
forming region, is about 3 times further away than the nearest low-mass star forming
regions, e.g. the ρ Ophiuchi cloud with a distance of ∼ 130 pc (e.g. Wilking et al.,
2008). Finally, since massive stars occur more rarely than low-mass stars and since their
formation times of 105 – 106 yr are relatively short compared to that of low-mass stars (in
general > 106 yr, e.g. McKee & Ostriker, 2007), they are less often observed than low-
mass stars. For all these reasons research on massive star formation has also to rely on
theoretical and numerical work, which is what will be the main focus of this work.

1.2. The formation of stars

In the following I give a short and very general overview of the star formation process.
For a more detailed discussion I refer the reader to Chapter 2.

Stars observed today are formed during the gravitational collapse of the interstellar
gas in galaxies. Due to its own gravity the gas contracts and reaches higher and higher
densities. At some point the gas will eventually get dense and hot enough to start burning
hydrogen – a star is born. The average rate in our own galaxy with which interstellar gas
is transformed into stars is of the order of 1 M⊙ yr−1 (e.g. Robitaille & Whitney, 2010,
and references therein). Although at first view this collapse process seems to be relatively
simply, a closer look reveals the difficulties in analysing this process. The star formation
process covers about 10 orders of magnitude in size from giant molecular clouds with sizes
of up to 100 pc down to stellar radii of the order of 106 km, about 13 orders of magnitude
for characteristical timescales from the dynamical timescale of molecular clouds (106 yr)
down to timescales of chemical reactions and radiative processes of the order of minutes
or seconds. The density even covers about 20 orders of magnitude from particle densities
of the diffuse ISM of 102 – 103 cm−3 up to protostellar densities of the order 1022 cm−3.
Furthermore, all the different physical aspects like gravitational interaction, radiative
processes, chemical reactions, turbulence, and magnetic field effects have to be taken
into account simultaneously when trying to completely describe the formation process
of stars. Hence, the development of a comprehensive star formation theory is extremely
challenging. For this reason, work done on this topic usually restricts itself to a limited
dynamical or spatial range and certain physical aspects. It is therefore not surprising

2



1.3. Magnetic fields and star formation

that to date a complete star formation theory from molecular clouds down to the final
star does not exist, yet.

1.3. Magnetic fields and star formation

In this work I restrict myself to the process of massive star formation. Since observations
of magnetic fields in star forming regions usually reveal relatively high field strengths (see
Section 2.1), its influence on the star formation process is expected to be significant. This
is why I will particularly focus on the role magnetic fields play in the formation process
of massive stars, a topic which has received attention only recently. Magnetic fields are
found to be ubiquitous in our galaxy, other galaxies and even in the intergalactic medium.
The origin of galactic magnetic fields, however, is not yet completely understood (see
Grasso & Rubinstein, 2001; Widrow, 2002, for a general overview). One possibility is
the amplification of an extremely weak, initial magnetic field with a strength as low as
10−30 G by the dynamo effect. In this mechanism the magnetic field lines are stretched,
twisted and folded by turbulent motions in the primordial gas resulting in a significant
increase of the field strength up to strengths observed nowadays, which are in general
of the order of 10−6 G or even larger. Another reason for the observed magnetic field
strength might be primordial magnetic fields formed in the earliest phase of the universe
with strengths of the order 10−10 G. In this scenario the primordial magnetic field is
amplified by the compression of the field due the collapse of the gas during the formation
of protogalaxies resulting in the observed field strengths.

Observations of the magnetic field structure in galaxies in general reveal two different
components, a well-ordered, large-scale component and a fluctuating, small-scale com-
ponent. The well-ordered, large-scale magnetic field in our galaxy has a mean strength
of about 6 µG, whereas in other galaxies typically values of 10 – 15 µG are found (see
e.g. the recent review by Beck, 2012). The ordered field is usually found in the interarm
region, i.e. between the spiral arms, oriented parallel to the adjacent spiral arms thus
revealing a spiral structure. This spiral structure is thought to be generated by compres-
sion at the inner edge of the spiral arm, by shear motions between the spiral arms or by
a mean-field dynamo. The rather randomly oriented, small-scale magnetic field in the
spiral arms themselves is in general significantly stronger than the large-scale field. The
actual strength, however, can vary significantly between individual clouds and embedded
cores. Polarisation measurements show that the magnetic field is unordered on scales of
a few 100 pc, i.e. on the scale of giant molecular clouds which points to the fact that
the random orientation is a product of the turbulent motions typical for star formation
activity.

Interestingly, the energy density of the average magnetic field in our galaxy is in ap-
proximate equipartition with the cosmic ray energy density and the energy of small-scale
turbulent motions. This already indicates that the magnetic field should have a signifi-
cant influence on the star formation process, both on the global galactic scale but also
on the small scale of individual stars. Indeed, the importance of magnetic fields on small
scales is demonstrated by the emergence of large (∼ 1 pc) outflows ejected by magnetic

3



1. Introduction

forces from protostellar discs around the forming stars (e.g. Arce et al., 2007, but see
also Chapter 2). Such protostellar discs are the birth places of planetary systems like
our own around the Sun. Moreover, the protostellar discs and their associated outflows
are basic keystones of the current star formation theory at least for low-mass stars. For
high-mass stars the picture of an accretion disc driven formation process is still highly
debated in the literature (see Chapter 2 for a detailed discussion) although recent ob-
servations of outflows and discs around massive protostars point to such a formation
mechanism. Hence, one of the main objectives of this work is to test the accretion disc
mediated high-mass stars formation scenario with numerical simulations.

1.4. Interstellar Turbulence

As stars are born out of the interstellar gas, the properties of the ISM, of which one
is its dynamical state, are of particular importance for the star formation process. Ob-
servations show that the ISM is in a highly turbulent state (e.g. Larson, 1981, but
see also Chapter 2) with kinetic energy injection from the differential galactic rotation,
gravitational instabilities and stellar feedback processes (e.g. Mac Low & Klessen, 2004;
Elmegreen & Scalo, 2004). During the formation phase of stars in particular molecular
outflows inject large amounts of kinetic energy in the surrounding medium thus also
affecting the global turbulent energy content. To what extent this kind of energy injec-
tion is important for the star formation process – compared to other sources – is still a
matter of debate (e.g. Banerjee et al., 2007; Nakamura & Li, 2007). There is no doubt,
however, that turbulence itself has a significant impact on the star formation process.
Furthermore, the interplay between magnetic fields and turbulence is an extremely com-
plex and highly non-linear problem, which is why in general this can be solved only by
means of numerical simulations. Hence, exploring the interaction of turbulent motions
and magnetic fields in massive star forming regions will be one of the goals of this work.

1.5. Objectives of this work

The goal of this work is to improve our understanding of the influence of magnetic fields,
rotation, and turbulence on the collapse of massive, gravitationally unstable cloud cores
and the subsequent formation of massive protostars. This is done by means of numerical
simulations with a particular focus on

• protostellar accretion rates,

• the structure and properties of protostellar discs,

• the driving mechanism and morphology of molecular outflows, and

• the combined effect of turbulence and magnetic fields on protostellar disc forma-
tion.

4



1.5. Objectives of this work

The above listed topics will be covered in the different parts of this thesis. In Chap-
ter 2 I will firstly give a brief overview of the observational and theoretical basics of
star formation focussing on the high-mass star formation process. In the following two
Chapters 3 and 4 I introduce the equations of magnetohydrodynamics and discuss the
magnetohydrodynamical wind theory. The numerical methods and initial conditions used
in my simulations are described in detail in Chapter 5. The combined influence of mag-
netic fields and rotation on protostellar disc properties and accretion rates is studies in
Chapter 6. This analysis is extended to the molecular outflows driven by the protostellar
discs in Chapter 7. The effect of turbulence on protostellar disc formation is studied in
detail in Chapter 8 before I summarise the main results of my work in Chapter 9.

5





2. Star formation theory

In this chapter I will review our current understanding of the star formation process. I will
discuss the conditions present in molecular cloud cores, which are the birth places of stars,
in particular focussing on the sites of potential high-mass star formation. Thereafter, a
brief overview of the star formation process, concentrating on current models of massive
star formation as well as on the role discs and outflows play in the formation process,
will be given. For a more extensive review on star formation in general as well as on
massive star formation I also refer to the recent reviews of McKee & Ostriker (2007)
and Zinnecker & Yorke (2007), respectively.

2.1. Initial conditions of star formation

Stars form in the densest parts of the interstellar medium (ISM) namely in molecular
clouds. In these giant (∼ 10 – 100 pc) and massive (104 – 106 M⊙) objects in turn, only the
densest parts are sites of star formation. The densest condensations in molecular clouds
are called molecular cloud cores, which are embedded in somewhat less dense but larger
objects called clumps. Following Williams et al. (2000), in this work we use the term
clumps for condensations which form clusters of stars whereas the term core is used for
condensations which form single protostars or a small number of gravitationally bound
protostars1. Clumps have typical masses of 50 – 500 M⊙ and sizes of 0.3 – 3 pc whereas
the somewhat smaller cores have masses and sizes of 0.5 – 5 M⊙ and 0.03 – 0.2 pc,
respectively (see e.g. Bergin & Tafalla, 2007, for an extensive review). Hence, in this
terminology cores are the birth places of low-mass stars.

High-mass star formation is believed to take place in Infrared Dark Clouds
(IRDCs) (e.g. Egan et al., 1998; Rathborne et al., 2006; Beuther & Sridharan, 2007;
Peretto & Fuller, 2010; Tackenberg et al., 2012; Miettinen, 2012b; Beuther et al., 2012)
embedded in giant molecular clouds. These objects are seen in absorption against the
mid-infrared background radiation. This is due to fact that these clouds are opaque
in the infrared and block out the infrared background radiation making them infrared
dark compared to their surroundings. IRDCs have masses of a few 100 up to about
10 000 M⊙ and sizes of 0.5 pc up to a few pc. The densities and temperatures are in
the range of 102 – 104 cm−3 and 10 – 20 K, respectively. In general IRDCs do not have
a spherical shape but rather reveal a filamentary structure which points to a gravotur-
bulent formation mechanism in larger scale molecular clouds (e.g Mac Low & Klessen,
2004). Furthermore, IRDCs often do not yet harbour young protostellar objects, which

1Here we note that the terminology for clumps and cores is not universal throughout the literature. In
particular for massive star formation the differentiation is not unambiguous.
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2. Star formation theory

would be seen in the near- to mid-infrared. Hence, IRDCs are believed to represent the
earliest stage, i.e. the initial conditions of massive star formation. As mentioned before,
the IRDCs reveal a filamentary substructure. Along these filaments overdense conden-
sations, so-called High-Mass Starless Cores (HMSCs), exist (e.g. Schneider et al., 2012),
which represent the first stage in the formation process of massive stars. Beuther et al.
(2007) define three subsequent stages of massive star formation:

• High-Mass Cores harbouring accreting low/intermediate-mass protostar(s) des-
tined to become high-mass star(s)

• High-Mass Protostellar Objects (HMPOs) with masses & 8 M⊙

• Final Stars

In this work we aim to simulate the evolution of a HMSC towards a High-
Mass Core harbouring accreting low/intermediate-mass protostars. A number of ob-
servations have revealed the characteristic properties of such massive cores (e.g.
Beuther et al., 2002b; Sridharan et al., 2005; Rathborne et al., 2006; Zhang et al., 2009;
Peretto & Fuller, 2010; Wilcock et al., 2011; Beuther et al., 2012; Tackenberg et al.,
2012, but see also Beuther et al. (2007) for a recent review) and here we summarise
the main results. Typical masses of high-mass cores range from about 50 M⊙ up to
1000 M⊙ with sizes of the order of 0.1 – 0.5 pc. The mean density of the cores lies
around 105 cm−3 with peak densities as high as a few 106 cm−3. Typical temperatures
of HMSCs are of the order of 10 – 20 K. The density of massive cores typically declines
outwards following a power-law profile

ρ ∝ r−p , (2.1)

where the exponent p is found to lie around 1.5 (Beuther et al., 2002b; Pirogov et al.,
2003; Pirogov, 2009).

Significant velocity gradients along a preferred direction are measured frequently in
massive cores. These velocity gradients are usually interpreted as a uniform rotation
of the cloud core along an axis perpendicular to the gradient (see Fig. 2.1 for an ex-
ample). Based on the velocity gradient one can infer the amount of rotational energy
present. Together with the mass of the core one can estimate the ratio of rotational
to gravitational energy βrot. Typical values from observations are found to range from
10−4 up to 1.4 with a mean around 0.01 (e.g. Goodman et al., 1993; Pirogov et al.,
2003; Csengeri et al., 2011). Hence, for the core itself rotation seems to play a rather
insignificant role. However, due to angular momentum conservation during the collapse
the importance of core rotation increases significantly in the further evolution. For this
reason, one of the main goals of this work will be to explore the effect of initial core
rotation on the formation of (massive) protostars in detail.

2.1.1. Magnetic fields

The ISM as a whole is found to be strongly magnetised. Typical magnetic field strengths
for the atomic ISM are of the order of 6 µG (e.g. Heiles & Troland, 2005; Beck, 2012,
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2.1. Initial conditions of star formation

Figure 2.1.: Contour map of the 879 µm dust emission superposed on the colour image of
the flux weighted velocity map of the CH3OH 147-156 line for the massive star forming region
G31.41+0.31. Black thick bars indicate the direction of the magnetic field. The line emission
(colour scale) reveals a clear velocity gradient along the grey dashed line usually interpreted as
core rotation. The magnetic field shows an hourglass-shaped structure. (From Girart et al. 2009,
Science, 324, 1408. Reprinted with permission from AAAS.)

and references therein). The strength of the magnetic field in the diffuse ISM is usually
measured by Faraday rotation or synchrotron observations. In contrast, for the dense,
molecular phase, in which stars form and which we are interested in, magnetic field
measurements are in general done by Zeeman splitting and the Chandrasekhar-Fermi
method (see Heiles & Crutcher, 2005, for an overview). With the Zeeman effect, i.e. the
splitting of hyperfine-structure lines, the line-of-sight magnetic field strength Blos can
be measured. The Chandrasekhar-Fermi method (Chandrasekhar & Fermi, 1953) is a
indirect method to determine the magnetic field strength in the plane of sky Bpos. Firstly,
by measuring the polarisation of light emitted from dust or molecular line transitions,
the morphology of the plane of sky magnetic field can be determined. In a second step
the plane-of-sky field strength can be estimated by comparing the fluctuations of Bpos

to the velocity dispersion. The physical motivation for this is that velocity fluctuations
will produce random magnetic field fluctuations, which are the stronger the weaker the
uniform field Bpos is.

In particular in the last decade there has been major progress in measuring the
magnetic field strength in IRDCs and embedded high-mass cores (Crutcher, 1999;
Lai et al., 2001; Curran & Chrysostomou, 2007; Falgarone et al., 2008; Girart et al.,
2009; Tang et al., 2009; Beuther et al., 2010; Crutcher et al., 2010; Koch et al., 2012).
All these authors typically find magnetic field strengths of the order of a few 100 µG up
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2. Star formation theory

to a few mG in massive cloud cores with masses ranging from ∼ 100 M⊙ to ∼ 1000 M⊙.
Interestingly, whereas for the diffuse ISM with particle densities n < 103 cm−3 the
magnetic field strength is more or less constant with values around 6 µG (e.g.
Heiles & Troland, 2005), for densities > 103 cm−3 the magnetic field strength increases
as B ∝ n0.65 (Crutcher et al., 2010). This suggests that molecular clouds/IRDCs prefer-
entially form by accumulation of mass along magnetic field lines. As soon as the gas has
reached a critical mass, the gas begins to contract also perpendicular to the magnetic
field resulting in the observed scaling property. This also explains the general observable
trend that magnetic fields are stronger in more massive and thus more dense cloud cores
(see above) than in low-mass cores (∼ 1 M⊙) with typical field strengths of the order of
10 – 30 µG (e.g. Kirk et al., 2006)

Similar to βrot, which compares the rotational energy to the gravitational energy, it
is common to express the magnetic field strength in a way to estimate its importance
compared to gravity. This is usually done in terms of the mass-to-flux ratio M

Φ where M
is the mass of the core and Φ the amount of magnetic flux through the core. The mass-
to-flux ratio for an oblate ellipsoid is usually expressed in units of its critical mass-to-flux
ratio (Mouschovias & Spitzer, 1976, but see Section 3.2 for details)

(

M

Φ

)

crit
=

0.13√
G
, (2.2)

where G is the gravitational constant. This value is denoted as critical as a cloud core
with a mass-to-flux ratio lower than this value will be prevented from gravitational
collapse by magnetic forces. Here we note that from now on during the whole course of
this work we will denote the normalised, dimensionless mass-to-flux ratio

µ =
M

Φ
/

(

M

Φ

)

crit
(2.3)

simply as the mass-to-flux ratio, keeping in mind that we actually mean the normalised
value. A cloud core with a value of µ > 1 is denoted as supercritical since here the
gravitational force is sufficiently strong to overcome the magnetic force and to induce a
gravitational collapse. In contrast, when µ < 1 the core is denoted as subcritical.

When the mass, size, and magnetic field strength of a molecular cloud core are known,
it is straightforward to determine the mass-to-flux ratio µ of the core. Observations of
high-mass cloud cores usually report mass-to-flux ratios which are only slightly super-
critical with values of µ . 5 (Crutcher, 1999; Lai et al., 2001; Curran & Chrysostomou,
2007; Falgarone et al., 2008; Girart et al., 2009; Tang et al., 2009; Beuther et al., 2010;
Crutcher et al., 2010; Koch et al., 2012). Hence, the magnetic field can be expected to
have a significant influence on the collapse of the cloud core and the subsequent star
formation process although it cannot completely prevent the collapse. From the numer-
ical side, however, the influence of magnetic fields on the formation process of massive
stars is explored only poorly. For this reason, one of the main objectives of this work is
to examine the effect of magnetic fields in detail, in particular in combination with an
overall core rotation as observed frequently (Goodman et al., 1993; Pirogov et al., 2003;
Csengeri et al., 2011).
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2.1. Initial conditions of star formation

Cloud core observations usually reveal a well-ordered magnetic field structure on scales
of the core. This suggests that the field is relatively strong and that it has a significant
impact in the formation of the core (e.g. Curran & Chrysostomou, 2007; Beuther et al.,
2010). Moreover, some of the massive cores reveal a magnetic field line morphology which
resembles an hourglass shape (e.g. Girart et al., 2009; Tang et al., 2009; Koch et al.,
2012). This peculiar shape is generated when an initially uniform magnetic field is
dragged inwards due to the inflow of the gas perpendicular to the field lines. Further-
more, the overall orientation of the magnetic field and the rotation axis are often found
to be aligned (see Fig. 2.1 for an example).

2.1.2. Turbulence

The theory of turbulence in an incompressible fluid was developed by Kolmogorov (1941)
and an extensive review of this topic can be found in the textbook by Frisch (1995).
For the ISM, however, the assumption of incompressibility is not valid anymore, which
significantly complicates the treatment. Indeed, no closed description for compressible
turbulence exists so far. Nevertheless, extensive work has been done to study the nature
of turbulence in the ISM. For a complete overview of the work done so far, which would
be by far beyond the scope of this work, we refer the reader to the seminal reviews
by Mac Low & Klessen (2004) and Elmegreen & Scalo (2004). In this section we par-
ticularly focus on turbulence in massive star forming sites, i.e. molecular clouds, IRDCs
and massive cores.

The ISM as a whole, i.e. the diffuse, atomic and the dense, molecular part are found
to be highly turbulent revealing supersonic motions. The turbulent motions are injected
by different processes like the differential rotation of the galaxy, supernova explosions,
large-scale gravitational instabilities in spiral arms, and – on smaller scales – stellar
winds around massive stars or outflows from protostars (see Mac Low & Klessen, 2004;
Elmegreen & Scalo, 2004, for a detailed overview of the different processes).

The turbulent properties of molecular clouds were studied in detail for the first time
by Larson (1981), who found that the velocity dispersion σ of clouds scales with the
cloud size l as

σ ∝ l0.38 (2.4)

over almost three orders of magnitude in size. In subsequent, more accurate observations
a scaling exponent of around 0.5 was established (e.g. Solomon et al., 1987). Further-
more, the turbulent motions in molecular clouds were found to be highly supersonic with
Mach numbers ranging from ∼ 5 up to ∼ 20.

Molecular clouds contain IRDCs which are thought to be the birth places of mas-
sive stars. Theses IRDCs reveal filamentary structures, which points to a formation
mechanism of IRDCs and their embedded massive cores via an interplay of grav-
ity and turbulence, called gravoturbulent fragmentation (Mac Low & Klessen, 2004).
And indeed, a number of molecular line observations of IRDCs and their substruc-
tures, i.e. massive cores reveal significantly broadened line widths much broader than
the usual thermal line broadening. This shows that supersonic or – in the case of
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2. Star formation theory

cores – at least transonic, turbulent motions are present in those structures down to
scales of ∼ 0.1 pc (Caselli & Myers, 1995; Di Francesco et al., 2001; Zhang et al., 2009;
Sadavoy et al., 2012; Miettinen, 2012a,b; Fontani et al., 2012). Typical non-thermal line
widths σturb found in IRDCs and massive cores are in the range of km s−1, which cor-
responds to turbulent Mach numbers of ∼ 1 up to ∼ 5. The simultaneous measurement
of the magnetic field strength allows for the determination of whether the observed
turbulent velocity fluctuations are in the sub-, trans- or super-Alfvénic range. Typi-
cally, observations of star forming regions reveal turbulent motions in the trans-Alfvénic
range (Crutcher, 1999; Falgarone et al., 2008), i.e. turbulent magnetic Mach numbers of
the order of

MA =
σturb

vA
∼ 1 , (2.5)

where vA is the Alfvénic velocity (see Eq. 3.12). Hence, magnetic and turbulent ener-
gies in molecular clouds and their substructures can in general be considered to be in
approximate equipartition.

2.1.3. Summary of the initial conditions

So far we have presented a short overview of where and under what conditions stars and
in particular massive stars form. Here we briefly summarise the main points. Massive
star formation typically takes place in infrared-dark clouds (IRDCs), in which high-mass
starless cores (HMSCs) are embedded. Each of these HMSCs is thought to form a single
or at most a few massive stars. These massive cores have typical masses of 50 – 1000 M⊙,
sizes of a few 0.1 pc, temperatures of 10 – 20 K, and densities between 105 – 106 cm−3.
Additionally, the cores are often found to rotate and are in general magnetised with
mass-to-flux ratios . 5. Furthermore, turbulent motions in the cores are found to be
supersonic and trans-Alfvénic.

2.2. The star formation process

In this section we briefly review our current understanding of the star formation pro-
cess in particular focussing on the theory of massive star formation (for comprehensive
reviews see McKee & Ostriker, 2007; Zinnecker & Yorke, 2007). We start with a very
general theory of star formation developed by Larson (1969) which – even after 40 years
of ongoing research — in general still holds for the case of low-mass stars. As discussed
before, stars form in dense and gravitationally bound molecular cloud cores. In the
first phase of star formation the cloud core collapses in nearly free-fall, i.e. the typical
timescale of this phase is the free-fall time

τff =

√

3π
32Gρ

, (2.6)

where G is the gravitational constant and ρ the density of the core. During this first
phase the protostellar collapse proceeds in an almost isothermal manner with T ∼ 10 K.
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This is due to the fact that at these densities the gas in the core is in general optically
thin. Hence, the thermal energy gained by the compression of the gas can be radiated
away very efficiently by molecular line and dust emission keeping the gas temperature
approximately constant. The isothermal collapse proceeds until a central density of the
order of 10−13 g cm−3 is reached. At this density the gas gets increasingly optically
thick, which prevents the compression heat being radiated away efficiently. Hence the
gas starts to become adiabatic, which results in an increasing temperature in the centre.
This thermal pressure gradient slows down the collapse bringing it almost to a halt
with a nearly hydrostatic equilibrium in the centre. This central, hydrostatic object is
called the first core and has a typical extension of ∼ 5 AU, a density of 10−13 g cm−3,
and a mass of ∼ 0.05 M⊙. In the following the first core keeps accreting gas from its
surroundings which results in an ongoing, slow contraction and heating of the core.
Once the core has reached a temperature of 2000 K, the molecular hydrogen starts to
dissociate. This endothermal reaction uses up the energy released by compression of the
gas thus leading to a slower increase of the central temperature. Therefore, the central
region becomes gravitationally unstable again, resulting in a second dynamical collapse.
This second collapse proceeds until most the of hydrogen molecules are dissociated. At
this point a small core in hydrostatic equilibrium forms which is called the second core.
This second core has a typical central density and temperature of 10−2 g cm−3 and
104 K, respectively, and can be considered as the progenitor of the final star though
with a much lower mass (∼ 10−3 M⊙).

2.2.1. Theoretical models of massive star formation

The picture of star formation sketched in the previous paragraph holds for the formation
of low-mass stars. In general low-mass star formation is characterised by formation times
shorter than the Kelvin-Helmholtz time (GM2

∗ /R∗)/L∗, where M∗, R∗ and L∗ are the
mass, radius and luminosity of the star, respectively. This means that a low-mass star
has assembled its final mass already before it stars burning hydrogen. For a high-mass
protostar this is vice versa, i.e. due to its relatively short Kelvin-Helmholtz time a mas-
sive protostar undergoes hydrogen burning already during its formation, which leads to
powerful radiation emission. Kahn (1974) and Wolfire & Cassinelli (1987) showed that in
the case of a spherically symmetric collapse accretion rates of the order of 10−3 M⊙ yr−1

are required to overcome the radiation pressure and to guarantee ongoing accretion onto
the protostar. This problem can be alleviated if accretion occurs along a preferred di-
rection, e.g. through an accretion disc, which channels the radiation flux towards the
low-density regions in the polar directions created by the outflows (Yorke & Sonnhalter,
2002). Observations of high-mass star-forming regions usually indicate accretion rates
of the order of 10−4 – 10−3 M⊙ yr−1 (e.g. Beuther et al., 2002a,c, 2003; Beltrán et al.,
2006) thus high enough to overcome the radiation pressure. Given these accretion rates
typical formation times of massive stars are of the order of 105 – 106 yr (see e.g. Section
4.3.1 in McKee & Ostriker, 2007, and references therein). In the following we present dif-
ferent concepts which describe the origin of massive stars and which are highly discussed
in recent literature.
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Monolithic collapse model

In the monolithic collapse model (McKee & Tan, 2002, 2003) the formation of massive
stars takes place in turbulent, gravitationally bound cores. The turbulent motions are
considered to be self-similar on all scales and are treated as an additional turbulent pres-
sure which supports the core against rapid gravitational collapse. The core is therefore
in an approximate virial equilibrium. Each core is expected to collapse to one or at most
a few protostellar objects with accretion rates – enhanced by supersonic turbulence – of
the order of 10−3 M⊙ yr−1, i.e. high enough to overcome the effects of radiation pressure.

The model nicely explains the correspondence between the core mass function and the
initial (stellar) mass function (Testi & Sargent, 1998) since each core more or less forms
only one star with a star formation efficiency ǫcore of the order of 0.5. When rotation
is included it also allows for discs and outflows frequently observed around high-mass
protostars (see Section 2.2.2). Hence, the monolithic collapse model can be considered
as an extrapolation of the low-mass star formation theory with increased accretion rates
due to supersonic turbulence.

However, there are some weak points in this model. First of all, the model requires that
the mass of the turbulence-supported, quasi-equilibrium core has to be pre-assembled
already before the collapse sets in. In a highly turbulent molecular cloud, however, it is
not clear how this can be achieved. Secondly, there is a timescale problem arising from
the collapse of cores with different densities and masses (Clark et al., 2007). Thirdly,
it was criticised that turbulent massive cores would fragment and form many low-mass
stars rather than a single high-mass star (Dobbs et al., 2005). However, it was shown
that radiative heating from the protostars heats up the core thus suppressing further
fragmentation and promoting the formation of a few massive stars (Krumholz et al.,
2007, 2010).

Competitive accretion

In the alternative competitive accretion model (Bonnell et al., 1997, 2001) stars form in
a clustered environment. Since many stars are present in a small region, they have to
compete with each other for the available gas. The ability to accrete strongly depends
on the position in the cluster and the protostellar mass. A protostar in the centre of
the cluster will have a higher accretion rate than one in the outskirts as on average
gas is flowing towards the centre due to its deeper gravitational potential. Similarly a
protostar with a high mass affects the gas in its immediate surroundings out to greater
distances than a low-mass protostar thus also increasing its ability to accrete gas from
the common gas reservoir. Both effects lead to the fact that already massive stars keep
on gaining mass with accretion rates higher than lower mass stars, which results in a
stellar mass distribution similar to the initial mass function. Hence, one of the main
differences to the monolithic collapse model is that in competitive accretion the mass of
a star is gathered during the star formation process whereas in the monolithic collapse
it is gathered already before star formation sets in.
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One point of criticism is that the numerical simulations used to study this model
usually have a turbulent energy Eturb significantly smaller than the gravitational energy
Epot, while observations suggest a ratio of Eturb/Epot ≃ 1. Another objection is that
the typical accretion rates found in these simulations are significantly smaller than that
expected in the monolithic collapse model and therefore might not be high enough to
overcome the radiation pressure which would cause the accretion to halt.

Stellar collisions

A third and somewhat exotic model of massive star formation was suggested
by Bonnell et al. (1998). The authors suggested that massive stars could form via stellar
collisions. However, stellar densities of ∼ 108 stars pc−3 are required for this, which is by
far greater than any stellar density observed in our Galaxy (e.g. Baumgardt & Klessen,
2011). Furthermore, the mass loss of such dense star cluster must be finely tuned to
reach observed stellar densities and to leave the cluster marginally bound. Finally, it
is difficult to explain how this model can account for the discs and outflows frequently
observed around massive protostars. Hence, this model is considered as being rather
exotic, nevertheless stellar collisions might occasionally occur under extreme condition
as present in the densest young cluster.

Fragmentation-induced starvation

A fourth model of massive star formation was recently suggested by Peters et al.
(2010a,b). In this model the gas flow directed to the centre of the core is shielded by pro-
tostars surrounding the central part. These protostars, which have been formed during
subsequent fragmentation of the core, accrete the infalling gas before it can reach the
protostars in the centre. Hence, the central objects, which are usually the most massive
objects as they have formed first, starve out of material they normally could accrete if
no surrounding protostars were present. This behaviour, which is opposite to the effect
of competitive accretion, was also detected in other, recent simulations of massive star
formation (Peters et al., 2011; Girichidis et al., 2011, 2012).

Summary of the massive star formation process

In this section we have introduced four different models of massive star formation. The
monolithic collapse model and the competitive accretion model are the best studied
models so far while stellar collisions nowadays are considered as rather unlikely. Though
partly describing opposite effects, this does not mean that the different models are ex-
clusive of each other. Which mode of star formation dominates in nature is not yet
answered by observations, however, most likely it is some combination of the different
models discussed above where the importance of each mode strongly depends on the
actual conditions.
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2.2.2. Discs and outflows

In the theory of star formation discussed so far we have neglected the effect of rota-
tion and magnetic fields. However, as already pointed out in Section 2.1, star form-
ing clumps/cores usually reveal some amount of rotational energy as well as rela-
tively strong magnetic fields. On core scales the amount of rotational energy found
is rather small (βrot ∼ 0.01). However, due to the conservation of angular momen-
tum during the collapse the rotation speed increases until the gas hits the centrifugal
barrier, i.e. a rotational supported accretion disc builds up, in which the protostars
form. As the discs are strongly magnetised, they can eject large amounts of gas up
to a few pc into the surrounding medium (see Section 4 for a detailed discussion of
the launching mechanism). These large-scale, so-called molecular outflows usually re-
veal a bipolar shape along the rotation axis of the disc (see for example Fig 2.2).
This picture was confirmed in numerous simulations of low-mass star formation (e.g.
Allen et al., 2003; Banerjee & Pudritz, 2006; Price & Bate, 2007; Mellon & Li, 2008;
Hennebelle & Fromang, 2008; Hennebelle & Teyssier, 2008; Hennebelle & Ciardi, 2009;
Duffin & Pudritz, 2009; Machida et al., 2011; Price et al., 2012). In the following we will
briefly mention the actually observed properties of discs and outflows around both low-
and high-mass protostars focussing on the earliest stage of protostellar evolution, i.e. the
Class 0 stage.

Over the last decades, there has been a large number of observations of discs and
outflows around young low-mass protostars (due to the large number of possible cita-
tions we rather refer to seminal reviews on this topic like Arce et al., 2007; Klein et al.,
2007; McKee & Ostriker, 2007; Williams & Cieza, 2011, including numerous important
references). Typical observed sizes of protostellar discs reach up to a few 100 AU, total
disc masses range from 10−3 – 10−1 M⊙ with an average around 0.005 M⊙. The out-
flows driven by the protostellar discs are significantly larger than the discs themselves
reaching typical sizes of 0.1 – 1 pc. Outflow velocities range from about 10 km s−1 up
to a few 100 km s−1 and derived dynamical ages2 for Class 0 objects from a few 103 yr
to a few 104 yrs. Typical mass and momentum outflow rates are of the order of 10−7 –
10−6 M⊙ yr−1 and 10−5 M⊙ km s−1 yr−1, respectively. Outflows from low-mass proto-
stars are usually highly collimated with collimation factors, i.e. the ratio of the length to
the width, ranging from 3 to > 20. To summarise, the picture of low-mass star formation
via disc accretion and associated outflows is a broadly confirmed theory widely accepted
among astrophysicists.

In the case of massive star formation the question whether massive protostars form
in accretion discs just as their low-mass counterparts was discussed controversially for a
long time. However, in the last years there has been an increasing number of observations
of discs around high-mass protostellar objects. These observations show that there seem
to exist two types of discs (see Cesaroni et al., 2007, for a recent review). The first one
are so-called toroids which are large-scale (∼ 10 000 AU) discs with masses in excess of

2The dynamical age of an outflow is defined as the size of the outflow divided by the characteristic
outflow speed.
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Figure 2.2.: CO emission (contours) overlaid on the grey-scale H2 emission in the massive star
forming region IRAS 05358+3543. The ellipses and arrows present the presumable positions of
molecular outflows. (Credit: Beuther et al. 2002a, A&A, 387, 931. Reproduced with permission
c© ESO)

10 M⊙ and in general more massive than the central protostellar object. These toroids
are usually not rotationally supported, i.e. sub-Keplerian discs with very high infall rates
of up to 10−2 M⊙ yr−1. The other kind of discs are rotationally supported discs with
masses of the order of 0.1 – 10 M⊙ and thus usually less massive than the central object.
Typical sizes of the rotationally supported discs range from a few 100 AU up to a few
1000 AU (e.g. Fuller et al., 2001; Shepherd et al., 2001; Fernández-López et al., 2011;
Preibisch et al., 2011).

Outflows observed around high-mass protostars are in general much more powerful
than those from low-mass protostars. Typical mass and momentum outflow rates are of
the order of 10−5 – 10−3 M⊙ yr−1 and 10−4 – 10−2 M⊙ km s−1 yr−1, respectively (e.g.
Beuther et al., 2002c; Zhang et al., 2005; Shi et al., 2010; Wang et al., 2011; Ren et al.,
2011). Sizes (0.1 – 1 pc) and characteristic velocities (10 – 1000 km s−1) of the massive
outflows on the other hand are similar to those around low-mass objects thus having
dynamical ages up to a few 104 yr, which corresponds to the protostar still being in the
Class 0 stage. In general, observations show that outflows around high-mass protostars
are less collimated than their low-mass counterparts with collimation factors around
2 (e.g. Ridge & Moore, 2001; Wu et al., 2004). However, also significantly better colli-
mated outflows with collimation factors as high as 10 have been found (Beuther et al.,
2002a, 2004, but see also Fig. 2.2). Interestingly there seems to be a correlation between
outflow age and collimation showing that young outflows (. 104 yr) seem to be stronger
collimated than older outflows. Based on this observation, Beuther & Shepherd (2005)
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suggest an evolutionary scenario in which in the earliest stage well-collimated, magnet-
ically driven outflows form. Later on, due to the increasing luminosity of the protostar
and the build-up of Hii-regions, the outflows get progressively less collimated over time.
Interestingly, massive outflows are often observed to consist of two different velocity
components, a fast, well-collimated inner component, and a low-velocity, wide-angle,
outer component in which the former is embedded (e.g. Beuther et al., 2004; Ren et al.,
2011). Such two components are also frequently observed around low-mass objects (see
Bachiller, 1996, for an overview).

To summarise, in the last years there has been an increasing number of observations of
discs and outflows around massive protostars indicating that massive stars indeed form
via disc accretion similarly to low-mass stars with disc sizes/masses and outflow rates
significantly above those of low-mass objects. However, radiation effects coming into play
at higher masses, i.e. later stages, will significantly influence the formation process in
that stage.

2.2.3. The initial mass function

One particularly interesting property of the star formation process is the distribution of
the initial stellar masses. This mass distribution reveals a surprisingly uniform shape in
many different star forming regions in the present day universe and is usually described
by the initial mass function (IMF), φ(m). The first determination of the IMF in the
solar neighbourhood was done by Salpeter (1955), who showed that the number of stars
with masses in the range m to m + dm is approximately given by

φ(m)dm ∝ m−2.35 dm. (2.7)

However, newer observations have shown that the approximation by a single power-
law is too simple. A frequently used parametrisation of the IMF is given by a broken
power-law (Kroupa, 2001)

φ(m) ∝















m−0.3 for 0.01 M⊙ ≤ m < 0.08 M⊙
m−1.3 for 0.08 M⊙ ≤ m < 0.5 M⊙
m−2.3 for 0.5 M⊙ ≤ m.

(2.8)

An alternative description of the IMF below ∼ 1 M⊙ is given by Miller & Scalo (1979),
who approximated φ by a log-normal distribution

φ(log m) ∝ exp

(

−log
(

m

mc

)2

/2σ2

)

(2.9)

with typical values of mc ≃ 0.2 M⊙ and σ ≃ 0.55 (Chabrier, 2005). Here, the IMF
is given in the logarithmic representation, i.e. φ(log m) gives the number of stars per
logarithmic mass interval3. Above 1 M⊙ the IMF is again given by Eq. 2.8.

3We note that in the logarithmic representation the absolute values of the exponents given in Eq. 2.8
are smaller by 1.
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We note that the distribution of the core masses (CMF) reveals a shape qualitatively
similar to the IMF (see e.g. the review by Ward-Thompson et al., 2007), which points
to a direct correlation between the CMF and the IMF. However, the nature of this
correlation as well as the actual functional form of the IMF are still highly debated (e.g.
Bastian et al., 2010). Several models have been developed in the past to explain the
particular shape of the IMF and its connection to the CMF. However, as a detailed
discussion of the IMF and its origin would be beyond the scope of this work, we refer
the reader to the recent review of Bastian et al. (2010). Finally, we note that in this
work we will not consider the effect of magnetic fields on the shape of the IMF for two
reasons. Firstly, we do not follow the simulations to the end of the star formation process
and secondly, only a couple of protostars form in our simulations, which makes reliable
conclusions about the IMF impossible.
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3. Magnetohydrodynamics

In this chapter I briefly describe the fundamental magnetohydrodynamical (MHD) equa-
tions which govern the evolution of an astrophysical fluid under the influence of magnetic
fields and self gravity. A more detailed consideration of the equations of MHD and their
derivation can be found in standard text books (e.g Shu, 1992; Padmanabhan, 2000). I
will also discuss two very general effects of the magnetic field in the formation process
of stars, namely the stabilisation against gravitational induced collapse and the removal
of angular momentum.

3.1. The magnetohydrodynamical equations

Conservation laws play an important role in fluid dynamics just like they do in other fields
of physics. Based on the conservation of mass, momentum and energy three fundamental
equations can be derived for a magnetised (astrophysical) fluid corresponding to the
three first moments of the Boltzmann equation. Two further equations governing the
evolution of the magnetic field and an equation of state are necessary to close this system
of equations. For the case of ideal MHD we assume that the conductivity of the fluid
is extremely high, ideally infinity, and that the gas and the magnetic field are coupled
perfectly to each other. In the following we briefly discuss the equations of MHD. We
note that all equations are given in the Eulerian frame. This is a fixed frame of reference
(laboratory frame) in which at all points in space the physical quantities are defined. In
contrast to that, in the Lagrangian frame of reference not considered here, the motion
of individual fluid elements is followed, i.e. a frame comoving with the fluid particle is
considered.

3.1.1. Mass conservation

The conservation of mass is described by the continuity equation

∂ρ

∂t
+ ∇(ρv) = 0 , (3.1)

where ρ is the gas density and v the velocity of the fluid element. The continuity equation
shows that the mass within a given volume can only be changed by a mass flux through
its surface. If different chemical species would be considered, a source term would appear
on the right hand side of Eq. 3.1. An astrophysical example would be the formation or
dissociation of molecular hydrogen. Since here no chemical processes are considered,
Eq. 3.1 remains valid for the course of this work.
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3. Magnetohydrodynamics

3.1.2. Momentum equation

The conservation of momentum under the influence of gravity and magnetic fields is
described by the equation of motion

∂(ρvi)
∂t

+
∂(ρvivk)
∂xk

= − ∂P

∂xi
− ρ

∂Φ
∂xi

− 1
8π

∂B2
k

∂xi
+

1
4π
Bk

∂Bi

∂xk
(3.2)

for the i-th component of the momentum. Here B is the magnetic field strength and P
the thermal pressure. The gravitational potential Φ is determined by Poisson’s equation

∆Φ = 4πGρ , (3.3)

where ∆ is the Laplace operator and G the gravitational constant. In vector notation
Eq. 3.2 reads

∂v

∂t
+ (v∇)v = −1

ρ
∇P − ∇Φ − 1

ρ

∇B2

8π
+

1
ρ

(B∇)B
4π

. (3.4)

The second to last term on the right hand side of this equation shows that there is a
contribution to the acceleration of gas due to the gradient in the magnetic pressure. This
part of the Lorentz force acts to spread out the magnetic field lines into a more uniform
configuration. The last term in Eq. 3.4 describes the magnetic tension, which tries to
stretch out curved field lines in analogy to a bent rubber band.

3.1.3. Energy conservation and equation of state

The conservation of energy can be formulated in vector notation as follows:

∂

∂t
e+ ∇

(

v

(

ρe+ P +
B2

8π

)

− 1
4π

(vB)B

)

= −ρv∇Φ . (3.5)

Here e is the total energy density of the fluid element, i.e. the sum of kinetic and thermal
energy density eint

e = ρ
v2

2
+ eint . (3.6)

The relation between the gas pressure and the thermal energy density is described by
the equation of state

P = (γ − 1)eint , (3.7)

where γ is the adiabatic exponent, which is set to 5/3 throughout this work. The tem-
perature can be calculated from the pressure via

P =
ρkBT

µmolmp
, (3.8)

where kB is the Boltzmann constant, mp the proton mass, and µmol the mean molecular
weight of the molecules of the gas. Throughout this work we use µmol = 2.3 for the mean
molecular weight, which is a reasonable value for molecular hydrogen gas in present day
star forming regions.

22



3.1. The magnetohydrodynamical equations

3.1.4. The induction equation

The above set of equations can be completed by further equations governing the evolution
of the magnetic field. The first equation is the induction equation, which can be derived
from Maxwell’s equations:

∂B

∂t
= ∇ × (v × B) . (3.9)

The induction equation describes the transport of magnetic flux with the gas under ideal
MHD conditions. In addition to that, one has to obey the constraint for the divergence
of the magnetic field

∇B = 0 . (3.10)

With the equations 3.1 – 3.10 we now have a closed set of equations which in principle
could be solved. However, due to the complexity of the equations an analytical solution is
possible only under very specialised circumstances. In general, however, only a numerical
solution, as done in the simulations presented in this work, is possible.

3.1.5. Magnetohydrodynamical waves

In analogy to the sound speed

cs =

√

kBT

µmolmp
(3.11)

for a fluid without any magnetic fields, one can derive the speed with which small
perturbations in a resting magnetised medium will propagate by linearising the mag-
netohydrodynamical equations. As the magnetic field imprints a preferred direction on
the fluid, the propagation speed of the magnetohydrodynamical waves depends on its
direction, e.g. parallel or perpendicular to the field lines. As the detailed derivation of
the magnetohydrodynamical waves is discussed in detail in numerous textbooks (see,
e.g. Shu, 1992; Padmanabhan, 2000), in the following we only present the main results.

There exist three different magnetohydrodynamical waves in a magnetised fluid. The
first one is the so-called Alfvén wave which has a propagation speed of

vA =
B√
4πρ

, (3.12)

where B is the strength of the local magnetic field. The Alfvén wave can be considered
as a transversal wave in which a perturbation δB perpendicular to the original magnetic
field B is transported along the direction of the field line. One can imagine the Alfvén
wave as a wave on a string where the restoring force is provided by the magnetic tension.

The two remaining waves are more complex in nature and represent a mixture of
acoustic waves and purely magnetic waves. For the fast magnetic wave the propagation
speed is

vA,fast =







c2
s + v2

A

2
+

√

√

√

√

(

c2
s + v2

A

2

)2

− c2
sv

2
Acos2ψ







1/2

, (3.13)
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3. Magnetohydrodynamics

where ψ is the angle between the propagation direction and the magnetic field and vA

the Alfvén velocity. Hence the speed of the fast magnetic wave, which sometimes is also

called the magnetosonic wave, ranges from max(cs, vA) for ψ = 0 up to
√

c2
s + v2

A for
ψ = π/2.

The other wave not discussed so far is the slow magnetic wave, which propagates with
a speed of

vA,slow =







c2
s + v2

A

2
−

√

√

√

√

(

c2
s + v2

A

2

)2

− c2
sv

2
Acos2ψ







1/2

. (3.14)

Hence, the slow magnetic wave travels with min(cs, vA) parallel to the magnetic field
whereas the transversal propagation is suppressed.

3.1.6. Non-ideal MHD effects

So far we have considered the behaviour of a fluid under the assumption of ideal MHD,
i.e. the conductivity is infinite and the gas and the magnetic field are coupled perfectly
to each other. When relaxing these conditions, one obtains two non-ideal MHD effects:
Ohmic dissipation in the case of a finite conductivity and ambipolar diffusion in the case
of an imperfect gas-field coupling.

We first consider the case that the conductivity σ of the fluid is finite. When deducing
the induction equation (Eq. 3.9) from Maxwell’s equations under the condition that σ
remains finite, the induction equation now reads

∂B

∂t
= ∇ × (v × B) − ∇ ×

(

c2

4πσ
(∇ × B)

)

. (3.15)

It can be easily seen that Eq. 3.15 reduces to Eq. 3.9 in the case of an infinitely high σ.
On the other hand, when assuming that σ is finite and spatially constant, the last term in
Eq. 3.15 reduces to c2

4πσ ∇2
B. Hence, in this case when setting v = 0, Eq. 3.15 resembles

a diffusion equation for the magnetic field with a diffusion coefficient D = c2/4πσ. By
comparing the two terms on the right hand side of Eq. 3.15 one can estimate the relative
importance of the advection (1. term) to the diffusion (2. term) for the magnetic field.
For typical astrophysical fluids it was shown that Ohmic dissipation, i.e. the second term,
starts to get important for densities above 10−12 g cm−3 (Nakano et al., 2002).

The second non-ideal MHD effect to consider is ambipolar diffusion. Strictly spoken
the magnetic field has no direct influence on the neutral molecules and dust grains
in the ISM but only acts on the charged ions, which for typical astrophysical fluid
account for a fraction of about 10−6 – 10−4 of all particles. However, the ions transfer
the force exerted by the magnetic field to the neutrals by the friction force, i.e. by
collisions between charged and neutral particles. For ideal MHD the coupling between
ions and neutrals is considered to be very efficient so that there is no relative motion
between both constituents, i.e. the collision frequency is (almost) infinitely high so that
the magnetic field more or less directly acts on the uncharged particles. However, if
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3.2. The mass-to-flux ratio

the coupling between ions and neutrals decreases, the influence of the magnetic field
on the bulk of material, i.e. the neutral part, decreases as well as. Hence, the ions, and
thus also the magnetic field, can develop a relative velocity with respect to the bulk
of material. In the induction equation the effect of ambipolar diffusion manifests itself
as (e.g. Brandenburg & Zweibel, 1994)

∂B

∂t
= ∇ × (v × B) + ∇ ×

[

((∇ × B) · B)
4πγADρiρn

B − B2

4πγADρiρn
(∇ × B)

]

, (3.16)

where ρi and ρn are the densities of the charged and neutral particles, respectively, and
γAD the collisional coupling constant. The term

ηAD =
B2

4πγADρiρn
(3.17)

is the ambipolar diffusivity. As can be seen, ambipolar diffusion does not only introduce
a magnetic diffusion part in the induction equation but also a second term proportional
to (∇×B) ·B, which has to be taken into account for the correct modelling of ambipolar
diffusion. However, just like for Ohmic dissipation, for an infinitely high coupling constant
γAD, i.e. a perfect coupling between ions and neutrals, Eq. 3.16 reduces to Eq. 3.9.

Although we consider only ideal MHD in the simulations presented in this work, also
here magnetic diffusion occurs. Since in the code the equations of MHD are approximated
by discretised differential equations, they are accurate only up to a certain order n in
space and time (usually n = 2 for the scheme used in this work), which results in errors of
the order of n+ 1. These discretisation errors mimic the existence of diffusive processes.
When numerical diffusion applies to the momentum equation (Eq. 3.4), one usually talks
about numerical viscosity, whereas when it applies to the magnetic field (Eq. 3.9), it is
often called numerical resistivity. Although numerical diffusion is usually reduced to a
minimum in standard Eulerian grid codes, it cannot be avoided completely. Hence, also
in the simulations presented in this work magnetic diffusion will occur, which in principle
allows the gas to slip perpendicular to the magnetic field lines.

3.2. The mass-to-flux ratio

Considering an oblate ellipsoid1 of gas that is threaded by a uniform magnetic field along
the minor axis, one can analyse its stability against gravitationally induced collapse by
applying the virial theorem (e.g. Spitzer, 1968). As can be shown, there exists a critical
mass below which the cloud is stabilised against collapse by the magnetic field

Mcrit =
c1

3π

(

5
G

)1/2

Φ . (3.18)

Here, c1 is a numerical constant that depends on the given geometry, G the gravitational
constant, and

Φ =
∫

A
BdA (3.19)

1The initially spherical core becomes oblate due to its contraction mainly along the field lines.
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3. Magnetohydrodynamics

the magnetic flux through the ellipsoid, where A is the cross section of the core. From
numerical calculations Mouschovias & Spitzer (1976) found c1 to be 0.53. Hence, there
is a critical ratio of the mass to the magnetic flux, denoted as the critical mass-to-flux

ratio, below which the collapse of a gas cloud perpendicular to the magnetic field lines
is suppressed. Its numerical value reads

(

M

Φ

)

crit
=

0.53
3π

(

5
G

)1/2

=
0.13√
G
. (3.20)

To estimate the dynamical importance of the magnetic field compared to gravity for a
given gas cloud, one can calculate its actual mass-to-flux ratio M/Φ and compare it to
the critical mass-to-flux ratio. Throughout this work we will express the mass-to-flux
ratio of a cloud in units of the critical mass-to-flux ratio, i.e.

µ =
M

Φ
/

(

M

Φ

)

crit
=
M

Φ
/

0.13√
G
. (3.21)

A cloud with a value of µ > 1 cannot be stabilised against gravitational collapse by the
magnetic field and is therefore denoted as supercritical whereas for µ < 1 the cloud is
stable and is denoted as subcritical.

We note that when normalising the mass and magnetic flux with the cross section of
the cloud, one can – at least approximately – rewrite the mass-to-flux ratio as

M

Φ
≃ Σ
B
, (3.22)

where Σ is the column density along any given field line. In this representation it can be
seen that for ideal MHD, where gas is allowed to move freely only along magnetic field
lines, the mass-to-flux ratio for a given field line can never change. However, in numerical
simulations for this to be true one would have to integrate along the entire field line,
which in general is difficult to accomplish and therefore usually not done. The fact that
Σ/B should not change under ideal MHD conditions is also denoted as flux freezing as
the magnetic field is perfectly coupled to the gas, in a manner of speaking frozen in the
gas. This flux freezing can also directly be inferred from the induction equation (Eq. 3.9).

We again emphasise that from now on whenever mentioning the mass-to-flux ratio we
always refer to the normalised, dimensionless mass-to-flux ratio (Eq. 3.21) and not to
the actual dimensional form M/Φ.

3.3. Magnetic braking

3.3.1. Aligned rotator

By taking the cross product of the momentum equation (Eq. 3.4) with the position
vector x, one can derive the angular momentum equation. From this equation it can be
inferred that also the magnetic field can transport angular momentum. In a simplified
setup Mouschovias & Paleologou (1980) calculated the typical timescale for the spin
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3.3. Magnetic braking

down of a cylindrical gas cloud due to magnetic fields. In the following we will briefly
recapitulate their derivation, for a more detailed consideration we refer to the original
publication.

We consider a cylindrical gas cloud of radius R, half-thickness Z and uniform density
ρc threaded by a uniform magnetic field Bc parallel to the cylinder axis. The cloud is
embedded in a low-density medium with constant density ρext and a magnetic field equal
to the cloud’s magnetic field. We assume that the cloud is initially rotating rigidly around
the symmetry axis with an angular frequency Ωc whereas the surrounding medium is
at rest. We place the centre of the cloud at the origin and set the cylinder axis, i.e.
the rotation axis, to the z-axis. Hence the magnetic field is Bc = (0, 0, Bc) and it is
advantageous to use the cylindrical polar coordinates (r, z, φ).

Under the afore made assumptions the induction equation in the ambient medium
(Eq. 3.9) reduces to

∂Bφ(r, z, t)
∂t

= rBc
∂Ω(z, t)
∂z

, (3.23)

where Ω = vφ/r is the angular velocity of the gas. Here the fact has been used that
Ω does not depend on r (as can be shown easily) and that Bφ has the functional form
Bφ = rf(z, t). In addition, from the φ component of the momentum equation (Eq. 3.4)
one can infer that

∂Ω(z, t)
∂t

=
Bc

4πrρext

∂Bφ(r, z, t)
∂z

. (3.24)

Combining Eqs. 3.23 and 3.24 we obtain a wave equation for the ambient medium

∂2Ω(z, t)
∂t2

= v2
A,ext

∂2Ω(z, t)
∂z2

, z > Z . (3.25)

Here vA,ext is the Alfvénic velocity in the external medium

vA,ext =
Bc√

4πρext
(3.26)

representing the propagation speed of torsional magnetic waves in the ambient medium.
To obtain the equation of motion for the cloud itself, we consider the change of its

angular momentum, which is equal to the magnetic torque N at the surface of the
cylinder, i.e. Ic∂Ωc(t)/∂t = N . The moment of inertia of the cylinder Ic per unit area
is 2Zρcr

2. The torque of the magnetic field at the surface of the cylinder, which can be
derived from the momentum equation, is N = 2rBcBφ(r, z, t)/4π, where the factor 2 is
due to the fact that the upper and lower surface of the cylinder have to be taken into
account. Hence, the equation of motion becomes

∂Ωc(t)
∂t

=
BcBφ(r, z, t)

4πrZρc

∣

∣

∣

∣

z=Z

. (3.27)

Taking the time derivative of this equation and using Eq. 3.23 to eliminate Bφ, one
obtains the following equation, which is valid at the upper/lower surface of the cylinder:

∂2Ωc(t)
∂t2

=
1
Z

ρext

ρc
v2

A,ext

∂Ω(z, t)
∂z

∣

∣

∣

∣

z=Z
. (3.28)
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3. Magnetohydrodynamics

In combination with Eq. 3.25 we can now describe the evolution of the angular velocity
of the cloud and the surrounding medium. With the boundary conditions

Ω(z = ∞, t) = 0, Ω(Z, t > 0) = Ωc(t > 0), Ω(z, t) = Ω(−z, t) (3.29)

and the following normalisation

τ =
t

Z/vA,ext
, ζ =

z

Z
, ρ =

ρc

ρext
(3.30)

one can rewrite Eqs. 3.25 and 3.28 as

∂2Ω
∂τ2

=
∂2Ω
∂ζ2

, ζ > 1 (3.31)

∂2Ω
∂τ2

=
1
ρ

∂Ω
∂ζ

, ζ = 1 . (3.32)

The solution of this system of differential equations is given by

Ω(ζ, τ) = Ωc exp(−(τ − ζ + 1)/ρ) if τ − ζ + 1 ≥ 0 ; (3.33)

= 0 otherwise (3.34)

and is valid for ζ ≥ 1. Here we have assumed that Ω(ζ < 1, τ) = Ω(ζ = 1, τ). The
above equation describes the propagation of a wavefront into the ambient medium. The
condition τ − ζ + 1 ≥ 0 simply reflects the fact that no perturbations can be present
ahead of the wavefront originating at ζ = 1 and τ = 0.

The angular velocity of the cylinder is now given by evaluating Eq. 3.33 at ζ = 1
giving

Ωc(τ) = Ωc exp(−τ/ρ) . (3.35)

Rewriting this in the dimensional form shows that the rotation of the cloud is slowed
down in a characteristical timescale of

tmag,‖ =
ρc

ρext

Z

vA,ext
. (3.36)

The physical interpretation of this timescale is easy to understand. The term Z/vA,ext is
the time the Alfvén wave in the external medium needs to travel the distance equal to
the half-thickness of the cylinder, which we refer to as the Alfvén crossing time. Hence,
the ratio of the cloud to external density times the Alfvén crossing time is exactly the
time the wave has to travel to set an amount of the ambient medium in rotation which
has the same moment of inertia Iext as that of the cloud Ic.

3.3.2. Perpendicular rotator

Next we consider the braking of a cylinder with a magnetic field perpendicular to the
rotation axis as derived by Mouschovias & Paleologou (1979). For reasons of clarity
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3.4. Summary

we will constrain our consideration on the main results only. We consider the same
cylinder as in the aligned case embedded in the same ambient medium. However, now
the magnetic field is perpendicular to the overall rotation, i.e. perpendicular to the
symmetry axis of the cylinder. The magnetic field in the ambient medium has initially
only a radial2 component

Br = B0
R

r
, r ≥ R (3.37)

whereas the toroidal and the z-component are initially zero everywhere. By a similar
approach as for the former case one obtains a similar set of differential equations

∂2Ω(ξ, τ)
∂τ2

=
1
ξ

∂

∂ξ

[

∂Ω(ξ, τ)
∂ξ

]

, ξ > 1 ; (3.38)

∂2Ω(ξ, τ)
∂τ2

=
2
ρ

∂Ω(ξ, τ)
∂ξ

, ξ = 1 , (3.39)

where

τ =
2t

R/vA,0
, ξ =

(

r

R

)2

, vA,0 =
B0√

4πρext
. (3.40)

The exact solution of the above problem, however, is very complex and includes Bessel
functions, exponential and trigonometric functions (Mouschovias & Paleologou, 1979)
which is why we do not consider it in detail here. Nevertheless, one can obtain a charac-
teristical timescale for which the cylinder will be slowed down in the case of a perpen-
dicular magnetic field, which is

tmag,⊥ =
1
2

[

(

1 +
ρc

ρext

)1/2

− 1

]

R

vA,0
. (3.41)

Physically this time can be understood as the time the Alfvén wave needs to travel
radially outwards until it has reached a distance where the moment of inertia of the
covered external medium is equal to the moment of inertia of the cloud Ic. For the
calculation of this quantity it has to be taken into account that the Alfvén velocity in
the ambient medium decreases as Br decreases.

In case of a very large value of ρc/ρext and for comparable Z and R one can see that
tmag,⊥ is roughly a factor of (ρc/ρext)1/2 smaller than tmag,‖ (Eq. 3.36), i.e. in the case
of a perpendicular magnetic field magnetic braking is more efficient. The reason for this
is that in this case the Alfvén wave travels radially outwards thus gradually affecting
regions with larger and larger moments of inertia.

3.4. Summary

In the beginning of this chapter we have presented the equations of ideal magnetohydro-
dynamics governing the evolution of a magnetised (astrophysical) fluid. In the following

2Here radial means cylindric radial with respect to the orientation of the cylindrical gas cloud.
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we list all relevant equations which have to be solved simultaneously for a general mag-
netohydrodynamical problem:

∂ρ

∂t
+ ∇(ρv) = 0

∂v

∂t
+ (v∇)v = −1

ρ
∇P − ∇Φ − 1

ρ

∇B2

8π
+

1
ρ

(B∇)B
4π

∂

∂t
e+ ∇

(

v

(

ρe+ P +
B2

8π

)

− 1
4π

(vB)B

)

= −ρv∇Φ

e = ρ
v2

2
+ eint

P = (γ − 1)eint

∆Φ = 4πGρ
∂B

∂t
= ∇ × (v × B)

∇B = 0 .

We again emphasise that the above equation are valid under the conditions of ideal
MHD only. We also briefly discussed non-ideal MHD effects like Ohmic dissipation and
ambipolar diffusion and how the enter the induction equation, and the origin of numerical
diffusion.

We also presented the different magnetohydrodynamical waves which can occur in a
fluid and discussed the stabilising effect of magnetic fields against gravitationally induced
collapse introducing the mass-to-flux ratio. We also briefly explained the general mecha-
nism of how magnetic fields can remove angular momentum from a rotating structure.
In the following we summarise all relevant quantities:

Alfvén velocity: vA =
B√
4πρ

Mass-to-flux ratio: µ =
M

Φ
/

0.13√
G

Magnetic braking time aligned rotator: tmag,‖ =
ρc

ρext

Z

vA,ext

Magnetic braking time perpendicular rotator: tmag,⊥ =
1
2

[

(

1 +
ρc

ρext

)1/2

− 1

]

R

vA,0
.
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theory

In the previous chapter we have discussed the equations of magnetohydrodynamics. Due
to their complexity these equations can be solved in their generality only numerically.
However, before we come to the numerical solution of the MHD equations in the context
of massive star formation, we firstly consider two examples relevant for this work where
exact analytical solutions exist. As pointed out already before, usually some additional
assumptions are required for an analytical solution of the equations of MHD. In what
follows these assumptions are

• stationarity and

• axisymmetry.

Stationarity means that the solution is time-independent, hence all terms containing
∂/∂t in Eqs. 3.1 – 3.10 can be omitted. Furthermore, the solution is symmetric with
respect to a particular axis, here the z-axis. Hence, all quantities in the MHD equations
only depend on two spatial coordinates, the cylindric radial coordinate r and the z
coordinate. For all the calculations made in the remainder of this chapter one has to
keep these assumptions in mind.

4.1. Centrifugally driven jets

Firstly, we consider the centrifugal acceleration mechanism describing the ejection and
acceleration of gas from a Keplerian disc. The responsible mechanism can directly be
inferred from the stationary and axisymmetric MHD equations, which have been ana-
lysed by several authors (e.g. Chandrasekhar, 1956; Mestel, 1961). The analysis is done
in cylindrical coordinates, i.e. r, z and φ. The subscript “pol“ stands for the poloidal
component of a vector quantity, i.e. the sum of the z- and r- component.

One key aspect of the solution of the stationarity and axisymmetric MHD equations
is that it includes four so-called surface functions. These surface functions are constant
on each magnetic surface, i.e. along any given magnetic field line. As the derivation of
these four constants is longish and does not give any new insights, in the following we
only show the final results by listing all four constants:

1. Combining the induction equation (Eq. 3.9), the divergence-free equation
(Eq. 3.10) and the continuity equation (Eq. 3.1) reveals that the poloidal velo-
city is always parallel to the poloidal magnetic field

ρvpol = kBpol , (4.1)
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4. The magnetohydrodynamical wind theory

where k, the so-called mass loading, is the first surface function, i.e. it is constant
along any given field line. The mass loading represents the ratio of the mass flux
to magnetic flux along each field line.

2. The second surface function that can be derived from the three aforementioned
equations is the angular velocity of the magnetic surface

ω =
vφ

r
− kBφ

rρ
, (4.2)

where vφ is the rotation speed of the gas. The angular velocity ω can be interpreted
as the local rotation speed of the magnetic field.

3. Using the equation of motion (Eq. 3.4) yields the third surface function, the angular

momentum invariant

l = rvφ − rBφ

4πk
. (4.3)

This is the angular momentum per unit mass removed by the outflow where a part
of it is carried by the magnetic field.

4. Finally, making use of the energy equation (Eq. 3.5) yields the energy invariant

along a poloidal field line

ǫ =
1
2
v2 + Φ + h− rωBφ

4πk
, (4.4)

where h is the enthalpy. This equation is also called the Bernoulli equation. For
the sake of simplicity, in the following analysis the effect of the thermal pressure
is considered to be negligible, i.e. the enthalpy h is omitted.

The above results can now be applied to a situation adapted to star formation (e.g.
Blandford & Payne, 1982; Pelletier & Pudritz, 1992; Spruit, 1996). For this purpose a
thin disc in the midplane, i.e. z = 0 threaded by a poloidal magnetic field is considered.

This disc is rotating with the Keplerian velocity vφ =
√

GM
r around a point mass of mass

M . As we consider a rotating system, it is helpful to go to a frame corotating with the
magnetic field, i.e. rotating with the angular velocity ω. This can be done by modifying
the Bernoulli equation (Eq. 4.4) as follows:

ǫ′ = ǫ− lω =
1
2
v2

pol +
1
2

(vφ − rω)2 + Φcg , (4.5)

where Φcg is the centrifugal-gravitational potential

Φcg(r, z, ω) = − GM√
r2 + z2

− 1
2
ω2r2 . (4.6)

As can be seen, ǫ′ is also a constant along any field line since it was derived by the
combination of three surface functions. When comparing Eq. 4.5 to Eq. 4.4 it can be
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4.1. Centrifugally driven jets

seen that all magnetic field terms have vanished. This is due to the fact that in the
rotating frame the gas flow is strictly parallel to the magnetic field and therefore the
Lorentz force vanishes. Nevertheless, Eqs. 4.4 and 4.5 are equivalent despite their very
different appearance.

Considering Eq. 4.2 one can put further constraints on the value of ω. Due to symmetry
arguments Bφ has to be zero in the midplane. Hence, the angular velocity of the magnetic
surface ω at radius r0 and z = 0 has to be equal to the gas rotation frequency in the
midplane1, i.e.

ω =
vφ(r0, z = 0)

r0
=

√

GM

r3
0

. (4.7)

This means that in the midplane the magnetic field and the gas are rotating with the
same angular frequency as expected from the conditions of ideal MHD.

For the further consideration it is now assumed that the magnetic field is strong enough
to retain a purely poloidal structure, i.e. it performs a rigid rotation which guarantees
that Bφ remains zero. Hence, also above the midplane each fluid element is forced to
corotate with the magnetic field like a bead on a wire. The rotation velocity is therefore
vφ = rω, where ω is the rotation frequency of the magnetic field line threading the fluid
element. Hence, Eq. 4.5 reduces to

ǫ′ =
1
2
v2

pol + Φcg . (4.8)

It can now be seen that the change of the poloidal gas velocity vpol only depends on
the behaviour of Φcg along a given field line. This is due to the fact that the gas can
move freely only along the magnetic field lines. To analyse for which magnetic field
configuration an outflow can be launched, in Fig. 4.1 the line where Φcg is equal to the
value at (r = r0, z = 0), Φcg(r0, 0) =

√

GM
r3

0

is shown. It can be inferred from Eq. 4.8

that, if the magnetic field line through the point (r = r0, z = 0) connects to a point
where Φcg is larger than

√

GM
r3

0

, this would cause vpol to drop and hence the gas to fall

back on the disc. From Fig. 4.1 it can be seen that this happens if the inclination is
too small, i.e. the magnetic field lines are almost perpendicular to the disc. Hence, a
minimum inclination of the field lines with respect to the z-axis is required so that they
reach to a region where Φcg < Φcg(r0, 0). In this case vpol will increase, i.e. an outflow
will be launched.

One can show that to first order in r and close to the point (r = r0, z = 0) the plotted
line in Fig. 4.1 can be parametrised as

z = ±
√

3(r − 1) , (4.9)

hence the gradient at (r = r0, z = 0) is
√

3. This means that magnetic field lines require
an inclination larger than

αmin = 90◦ − atan(
√

3) = 30◦ (4.10)

1Recall that the disc is rotating Keplerian.
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Figure 4.1.: Contour where Φcg = Φcg(r0, 0) =
√

GM
r3

0

. An outflow can be launched if the field

line starting from (r0,0) reaches to the right part where Φcg < Φcg(r0, 0). The units are chosen
such that r0 = 1.

for outflow launching, i.e. it will reach to the region right of the separating line in
Fig. 4.12. This 30◦-condition (Blandford & Payne, 1982) is one of the key results of the
centrifugal wind theory and will be applied later on when analysing the simulation results
to determine the underlying outflow launching mechanism. To rephrase the above results
in other words one could say that, if the projection of the centrifugal force along the
poloidal magnetic field line exceeds the projected gravitational force, which happens at
a magnetic field line inclination larger than 30◦, the gas will get accelerated out- and
upwards.

Two important points should be kept in mind whenever using the 30◦-criterion: firstly,
it was derived for Keplerian disc rotation and is therefore only applicable when the
underlying disc is rotating with the Keplerian velocity. Secondly, the criterion is only
valid at the surface of the disc, i.e. only slightly above the midplane. It is therefore not
of use when studying the outflow driving mechanism further above the disc.

Two further important predictions are made by the above described centrifugal wind
theory: the first is the maximum achievable outflow velocity, which is directly linked to
the rotation speed in the disc via (Michel, 1969; Pelletier & Pudritz, 1992)

vout,max ≃
√

2 vkep(r0)
rA

r0
. (4.11)

Here, vkep(r0) is the Keplerian velocity at the footpoint of the magnetic field lines and
rA the cylindrical radius where the outflow velocity exceeds the Alfvènic velocity vA

(Eq. 3.12). Beyond this point the assumption of a purely poloidal magnetic field breaks
down and the centrifugal acceleration mechanism as described above does not work
anymore. From detailed theoretical analysis it is found that the ratio of rA

r0
usually is of

the order of ∼ 3. Hence, the maximum outflow velocity is in general a factor of a few
higher than the maximum rotation velocity of the underlying disc.

2We note that an inclination towards the z-axis will not result in an outflow since in this case at some
point the magnetic field lines would inevitably enter again the region where Φcg > Φcg(r0, 0).
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4.1. Centrifugally driven jets

Figure 4.2.: Sketch of the magnetic field line structure for an X-wind. The wind is driven along
the open field lines while accretion onto the star occurs along the closed field lines.

A further key result of the above theory is the relation between the mass loss rate
in the outflow Ṁout and the mass accretion rate Ṁacc (e.g. Pudritz & Norman, 1986;
Pelletier & Pudritz, 1992). Under the assumption that the inwards transport of angular
momentum by the infall of gas is balanced by the extraction of angular momentum
through the magnetic field, one can find the approximate relation

Ṁout

Ṁacc
≃
(

r0

rA

)2

. (4.12)

As the value of rA

r0
typically lies around ∼ 3, in centrifugally driven winds the ratio Ṁout

Ṁacc

is in general of the order of 0.1. This demonstrates that even with a moderate mass loss
rate a significant amount of angular momentum can be extracted from the protostellar
disc.

To summarise, the centrifugal acceleration mechanism relies on a Keplerian disc which
is threaded by a poloidal magnetic field. Close to the disc the gas is forced to corotate with
the magnetic field which has a negligible toroidal component. Hence, a net centrifugal
acceleration overcoming the gravitational force arises, which accelerates the gas upwards
along the field lines. The outflow velocity and the outflow mass rate are directly coupled
to the rotation velocity in the disc and the mass accretion rate, respectively.

For the sake of completeness we also briefly mention an alternative model of driving an
outflow by magnetocentrifugal acceleration, the so-called X-wind model (see Shu et al.,
2000, for an extensive review). As we do not consider this kind of wind in our simula-
tions, in the following we only phenomenologically describe the launching mechanism. In
contrast to the aforementioned disc wind, here the main driving agent is the magnetic
dipole field of a central star surrounded by an accretion disc. The disc does not reach
down to the stellar surface but is separated from it by a gap. The inner edge of the disc
connects to the star via closed field lines while further out the field lines are opened up
(see Fig. 4.2). The disc at the inner edge is rotating with the Keplerian velocity and
since the star is connected with this inner part it is forced in corotation with the disc,
i.e. the star is rotating more slowly than its breakup speed. When the material accreted
through the disc reaches the inner gap a part of it is funnelled along the closed field lines
towards the polar caps of the star. The remaining gas – normally a fraction of about
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4. The magnetohydrodynamical wind theory

Figure 4.3.: Sketch of the magnetic field configuration in an outflow driven by the toroidal
magnetic field component.

10 – 30% – is flung outwards along the open field lines by centrifugal acceleration thus
forming a jet from the innermost part of the disc. We note that the general mathematical
treatment of this mechanism resembles that of the centrifugal disc wind, i.e. one obtains
a stationary, axisymmetric solution of the MHD equations from which the properties for
the inner field line structure can be inferred.

4.2. Magnetic tower flows

In the launching mechanism discussed in the section before, the dominating magnetic
field component is the poloidal component as the gas is forced to corotate with the
footpoint in the disc where the magnetic field is anchored. At the opposite end also an
almost purely toroidal field configuration is able to drive an outflow.

A detailed analysis of the driving mechanism is given by Lynden-Bell (1996, 2003).
However, here we only briefly describe the basic mechanism. Considering Fig. 4.3 where
the magnetic field configuration in such an outflow is sketched, it can be seen that the
outflow is dominated by a strong toroidal magnetic field Bφ. This toroidal component is
created by the rotation of the underlying disc, which was initially threaded by a purely
poloidal magnetic field. At the tip of the outflow a strong gradient in Bφ in the vertical
direction occurs. Likewise there could be a gradient in Bφ over the entire extension of the
outflow. However, the crucial point is that, as can be inferred from Eq. 3.4, a gradient
in the magnetic field or, to be more precise, in the magnetic pressure B2/8π exerts an
acceleration on the gas. Hence, in the situation displayed in Fig. 4.3 there is a magnetic
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force driving the tip of the outflow upwards. Moreover, if the gradient of Bφ extends
over the entire vertical range of the outflow, there will be a continuous acceleration of
the gas over the complete outflow extension. Such a configuration, i.e. an outflow driven
by the pressure gradient of the toroidal magnetic field is denoted as a ”magnetic tower
flow“ (Lynden-Bell, 1996, 2003).

In a more sophisticated analysis Lynden-Bell (1996) showed that the vertical growth
rate Ż of the outflow is proportional to the angular frequency Ω of the disc. This can be
understood in the way that the faster the disc rotates the faster Bφ is build up, which
in turn determines the magnetic pressure force and hence the acceleration of the gas.

To summarise, an outflow can be driven by the toroidal magnetic field if there is a
decline of Bφ along the vertical axis. The driving mechanism of such a magnetic tower
flow is in sharp contrast to a centrifugally driven outflow whereBφ is in general negligible.

4.3. Summary

In this chapter we have discussed three different theories explaining the generation of
magnetically driven outflows, namely the magneto-centrifugal acceleration, magnetic
tower flows and the X-wind model. The first two models describe two opposite regimes
of a magnetically driven disc wind. For a centrifugally driven wind the main driving agent
is the poloidal magnetic field whereas the effect of the toroidal field can be considered
negligible. In contrast, in a magnetic tower flow a highly wound up field line structure is
present where the gas is accelerated by the pressure of the toroidal magnetic field alone.
During the course of this work we will derive a theoretical framework for magnetically
driven winds which unifies both regimes in one set of equations and allows us to identify
the underlying outflow driving mechanism.
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5. Numerical methods and initial conditions

In this chapter I give an overview of the code used to perform the simulations as well as
of the additional specific features implemented in order to study the underlying problem.
Furthermore, I in detail describe the initial conditions of the simulations performed and
how they compare to recent observations.

5.1. Numerical methods

The simulations presented in this work are performed with the astrophysical code FLASH
in version 2.5 (Fryxell et al., 2000). The FLASH code is a versatile astrophysical MHD
code, which was successfully applied for a great number of astrophysical problems over
the last decade. It is designed to solve the magnetohydrodynamical equations on an
Eulerian grid. For this purpose the computation domain is divided in cubic subdomains
called blocks which consist of 83 cells. The MHD equations are solved with a scheme that
preserves positive states, i.e. density and internal energy, and applies well for astrophys-
ical – in particular highly supersonic – problems (Bouchut et al., 2007, 2010; Waagan,
2009; Waagan et al., 2011). Poisson’s equation (Eq. 3.3) for the gravitational potential
is solved with the tree gravity solver implemented by Richard Wünsch1. The code is
parallelised using the MPI2 library.

5.1.1. Grid refinement and sink particles

FLASH uses an adaptive mesh refinement (AMR) algorithm based on the PARAMESH
library (Olson et al., 1999). The linear spatial resolution between two neighbouring re-
finement levels differs by a factor of two, i.e. during a refinement process each cubic
cell is divided into 8 smaller cells with half the linear size. In order to keep the block
structure, always the complete block is refined/derefined. Whether an existing block will
be refined or derefined depends basically on two criteria:

• If the second spatial derivative of a chosen variable in a cell is larger/smaller than
a certain threshold, the entire block containing this cell will be refined/derefined.
For the simulations presented here we have chosen the gas density for the second
derivative refinement criterion. This guarantees that the protostellar discs and the

1Currently there is no publication available describing the implementation and testing of the tree gravity
solver in FLASH2.5. However, tests in our working group have revealed good scaling properties as
well as the capability to calculate the gravitational potential to high accuracy.

2Message Passing Interface
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5. Numerical methods and initial conditions

outflows are resolved on the highest level allowing for detailed conclusions about
their properties.

• The Jeans length λJ = cs

√

π
Gρ for a given cell is resolved by at least 8 grid cells.

This is done in order to avoid artificial fragmentation, which would occur if λJ is
resolved by less than 4 grid cells (Truelove et al., 1997).

The combination of both criteria guarantees that the densest parts as well as shocks,
e.g. at the tip of the outflows, will be resolved reasonably well.

As the maximum spatial resolution in the simulations is limited and the maximum
gas density keeps on increasing during a gravitationally induced collapse, at some point
the Jeans length cannot be resolved with more than 8 grid cells anymore. Hence, in
order to avoid the violation of this refinement criterion, a sink particle algorithm is
applied (Federrath et al., 2010). If the density in a cell exceeds a certain threshold ρcrit

a sink particle will be formed containing the mass of the cell in excess of ρcrit, i.e.

∆m = (ρ− ρcrit)dV , (5.1)

where ρ is the density of the cell and dV its volume. The density of the affected cell
will be set to ρcrit. In addition several further checks have to be fulfilled to prevent the
spurious formation of sink particles during the simulation (see Federrath et al., 2010, for
details):

• The gas has to converge along all three spatial axes.

• The gravitational potential has a local minimum at this position.

• The gas is Jeans unstable and gravitationally bound.

• The gas is not within one accretion radius racc of an already existing sink particle.

After a sink particle has been formed it can accrete gas from its surrounding cells
only if the cells are within a given accretion radius racc (see Section 5.2) and have a
density above ρcrit, and if the gas is gravitationally bound to the sink particle. In this
case the excess mass (Eq. 5.1) is added to the mass of the sink particle and the cell
density is set to ρcrit. We note that an additional refinement criterion is included which
guarantees that the sink particles always reside on the highest refinement level allowed
in the simulation.

We mention that while accreting gas and thus changing the density, the magnetic field
is not altered during the accretion process. This is done in order to avoid the violation of
the divergence-free condition for the magnetic field (Eq. 3.10). Keeping the magnetic field
unchanged is motivated also physically by the onset of non-ideal MHD effects like Ohmic
dissipation at densities of ∼ 10−12 g cm−3 (e.g. Nakano et al., 2002, and Section 3.1.6
of this work), which roughly corresponds to the chosen value of ρcrit (see Section 5.2).
In general, non-ideal MHD effects would allow the gas to slip against the field lines,
hence leaving them in the environment of the protostar. We emphasise that in all our
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simulations at some point in time the increase of the magnetic field strength within the
sink accretion radius ceases due to numerical diffusion. Numerical diffusion effectively
allows the magnetic field to partly decouple from the gas motions and to diffuse outwards
despite ongoing accretion onto the sink particle.

5.1.2. Gas cooling

A key property for the formation process of stars is the thermodynamical behaviour of
molecular hydrogen gas. The cooling routine modelling this behaviour was implemented
and extensively tested by Banerjee et al. (2004, 2006). Different cooling and heating pro-
cesses determine how the thermodynamical properties of the gas evolve. These processes
are due to line emission of molecules containing also heavier elements than hydrogen
like oxygen or carbon. Furthermore, dust particles significantly influence the thermody-
namical behaviour of the gas. Molecular hydrogen itself, however, plays only a minor
part although it is the most abundant molecule. The reason for this is its symmetric
structure without any dipole moment which does not allow for rotation transition and
the emission of corresponding photons.

Molecules provide an efficient way of getting rid of excess thermal energy. The
energy excess is radiated away by molecular line emission of excited molecules.
Neufeld & Kaufman (1993) and Neufeld et al. (1995) provide a detailed calculation of
the cooling rate due to molecular line emission of several cooling agents like H2O, CO,
H2, HCl, O2, C and O. The cooling rates depending on temperature and density are
available in a tabulated form, which is read in at the beginning of the simulation. Hence,
for any given density and temperature in a cell the corresponding molecular line cooling
rate Λline can be read off.

Beside molecular line cooling also cooling by the energy exchange between the gas and
the dust is modelled. Here basically the thermal energy of the gas is transferred to the
dust via collisions. The energy transfer rate for this process is (Goldsmith, 2001)

Λgd = 2 · 10−33
(

n(H2)
cm−3

)2 (∆T
K

)(

Tgas

K

)1/2

erg cm−3 s−1 , (5.2)

where n(H2) is the particle density. As can be seen, the energy transfer scales linearly
with the temperature difference ∆T = Tgas − Tdust between gas and dust.

The dust temperature is assumed to be the equilibrium dust temperature, which is
found by solving the equation

Γcr + Λgd − Λdust = 0 (5.3)

for Tdust. Eq. 5.3 includes the different heating and cooling processes of dust. The dust
is heated by the absorption of cosmic rays with a rate of (Goldsmith, 2001)

Γcr = 3.9 · 10−28
(

n(H2)
cm−3

)

erg cm−3 s−1 , (5.4)

where a dimensionless cosmic ray shielding parameter of 10−4 is assumed. Furthermore,
it is heated by the energy transfer from the gas with a rate of Λgd (Eq. 5.2). Finally, the
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dust cools via thermal emission of the dust grains. The corresponding cooling rate can
be expressed in a parametrised form

Λdust = κ(n, Tdust) σ̃ T 4
dust . (5.5)

Here κ is the density and temperature dependent opacity (see Goldsmith, 2001;
Semenov et al., 2003, for details) and σ̃ the Stefan-Boltzmann constant σ multiplied
by a factor of unity (Goldsmith, 2001)

σ̃ = 1.209σ . (5.6)

Inserting Eqs. 5.2, 5.4 and 5.5 into Eq. 5.3, the latter can be solved for the equilib-
rium dust temperature. However, due to the complicated functional form of Eq. 5.3, an
analytical solution for Tdust is not possible. Hence, in the code for each cell Eq. 5.3 is
solved iteratively with a Newton iteration scheme. With Tdust known, subsequently the
gas cooling rate due to the energy transfer to dust particles Λgd can be calculated.

At densities above ∼ 10−13 g cm−3 the gas starts to get optically thick preventing the
radiation from efficiently leaving the region where it has been emitted. For this reason
we apply a very crude approximation for the diffusion of radiation in the optically thick
regime, i.e. when ρ > 10−13 g cm−3. Assuming that in an optically thick gas the typical
lengthscale for the change of the radiation field is approximately given by the Jeans
length λJ, one can calculate the optical depth τ of the gas for a given opacity κ

τ ≃ κ · λJ . (5.7)

For gas above the aforementioned density threshold we assume that the ability of the
dust to cool via thermal blackbody radiation is reduced. We model this by replacing the
opacity κ in Eq. 5.5 by an effective opacity

κeff = min(κ, 1/λJ) . (5.8)

Now the modified dust cooling rate Λdust is used in Eq. 5.3 to calculate the dust equilib-
rium temperature Tdust, which finally enters the gas-dust cooling rate (Eq. 5.2) and thus
also affects the cooling ability of the gas. Furthermore, we also reduce the molecular line
cooling rate Λline by a factor of (1−τ) to account for the effect that in the optically thick
regime the radiation due to molecular line emission will be reabsorbed very quickly. To
guarantee positivity of the cooling rates, in the correction factor (1 − τ) the opacity τ
(Eq. 5.7) is limited to values between 0 and 1. We note that the above described, some-
what heuristic approximation for the optically thick regime is very crude. However, it
was shown that with this description the expected thermodynamical behaviour of mole-
cular gas is reproduced reasonably well (Banerjee et al., 2004, 2006; Banerjee & Pudritz,
2006).

To summarise, the total cooling rate Λtot of the gas consist of the molecular line cooling
rate Λline and of the rate of energy transfer from gas to dust Λgd. Both cooling rates
are density and temperature dependent. Additional heating terms – except the intrinsic
adiabatic heating due to compression of the gas – are not considered here.
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We apply the cooling routine described above after each hydrodynamical timestep.
After calculating the total cooling rate

Λtot = Λline + Λgd (5.9)

in each cell, the thermal energy eint is changed by

∆eint = −(Λtot · dt) . (5.10)

Using a subcycling scheme ensures that during one subcycle timestep dtsub the relative
change of thermal energy of each cell does not exceed 20%, i.e.

|Λtot · dtsub| ≤ 0.2 eint . (5.11)

In case the energy change would be above 20% the subcycling timestep is reduced such
that the energy change reduces to 20% and the thermodynamical variables will be up-
dated accordingly. Thereafter an updated cooling rate according to the new gas and
dust temperature is calculated and so on. The subcycling continues until the sum of the
subcycling timesteps dtsub is equal to the global hydrodynamical timestep dt.

5.2. Initial conditions

The aim of this work is to simulate the collapse of massive molecular cloud cores and
the subsequent formation of protostellar discs and molecular outflows and to study the
influence of magnetic fields and gas motions on these processes. Hence, in this section
we will firstly describe the numerical setup used to mimic typical initial conditions
for massive star formation as described in detail in Section 2.1. The results of these
simulations will be discussed in Chapter 6 and 7. The detailed initial conditions for the
simulations including turbulent motions will be described later during this work at the
beginning of Chapter 8. However, in the following as well as in Chapter 6 and 7 we omit
the influence of turbulence and focus on the effect of magnetic fields and rotation alone.
For this purpose we set up a spherical molecular cloud core (in the following simply
core) with a mass of 100 M⊙ and a diameter of 0.25 pc, which is in good agreement with
observational findings (see Section 2.1). The core is placed in a cubic simulation domain
with a length of 0.75 pc to avoid corruption of the simulation results by boundary effects.
The gas surrounding the core has a density 100 times lower than that at the edge of the
core which is why one can neglect its dynamical influence on the simulation results. In
order to assure pressure equilibrium at the edge of the core, the temperature of 2000 K
in the ambient gas is 100 times higher than the initially uniform temperature of 20 K in
the core. The density profile of the core declines as

ρ ∝ r−1.5 (5.12)

for radii larger than 0.0125 pc, i.e. larger than a tenth of the core radius. Inside this
radius the density profile follows a parabolic distribution

ρ ∝
(

1 −
(

r

r0

)2
)

(5.13)
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in order to avoid unphysically high densities in the centre of the core which would arise
for an r−1.5-profile. The density distribution inside 0.0125 pc is chosen such that there is
a continuously differentiable transition at r = 0.0125 pc. The density in the centre and
at the edge of the core are initially 2.3 · 10−17 and 4.2 · 10−19 g cm−3, respectively3.
For a mean molecular weight of µmol = 2.3 adopted in this work, this corresponds to a
particle density of n = 6.0 · 106 and 1.1 · 105 cm−3, respectively. The particle densities
as well as the exponent of the density profile are in good agreement with observations as
discussed in Section 2.1. Here we note that for a purely hydrodynamical situation with
initial turbulence, the chosen density profile defines the transition between systems with
low degree of fragmentation (for steeper density profiles) and with high susceptibility
for fragmentation (for shallower density profiles) as shown by Girichidis et al. (2011).

Calculating the average Jeans mass using a temperature of 20 K and the average
density of the core 〈ρ〉 = 8.27 · 10−19 g cm−3 reveals that the core contains about 56
Jeans masses and is therefore highly gravitationally unstable. This fact and the high
mass of 100 M⊙ show that the considered core is in principle suitable for massive star
formation.

Beside the mass distribution, which will not be changed in this work, there are two
further crucial parameters affecting the evolution of molecular cloud cores, namely the
rotational energy and the magnetic field strength. The first parameter we consider is the
magnetic field strength. In the beginning all simulations have a magnetic field which is
pointing in the z-direction only, i.e. B = (0, 0, Bz). Furthermore, Bz declines outwards
with the cylindric radius R as

Bz ∝ R−0.75 . (5.14)

This guarantees that initially in the equatorial plane the ratio of thermal to magnetic
pressure βplasma = P

B2/8π is constant. To guarantee ∇B = 0, which reduces to ∂zBz = 0
in our case, Bz is constant along the z-direction. The fact that the magnetic field declines
with the cylindric radius is a compromise between observations showing an hourglass-
shaped field configuration (e.g. Girart et al., 2009; Tang et al., 2009, but see also Fig. 2.1)
and a numerically feasible setup. However, by the time the first sink particle forms, in
all simulations a self-consistent, hourglass-like field configuration similar to observations
has built up. It is therefore expected that the chosen initial magnetic field configura-
tion does not change the results significantly compared to an initially hourglass-shaped
configuration.

The second parameter affecting the evolution of molecular cloud cores is the rotation
of the core. The cores studied here are initially all rotating rigidly around the z-axis, i.e.
the rotation axis is parallel to the magnetic field. We note that, as neither the density
field nor the velocity field have any perturbations at the beginning of the simulations,
one can expect a uniform and inward directed collapse to occur.

As mentioned in Section 2.1 the actual values for the strength of the magnetic field
and the rotational energy in star forming regions are subject to large variations. To
account for this variation, we perform a series of simulations varying the strength of the

3Hence, the density in the ambient medium is 4.2· 10−21 g cm−3.
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Run µ γ B [µG] βrot ω [10−13s−1]
26-20 26 1.13 · 10−3 132 2 · 10−1 7.07
26-4 26 1.13 · 10−3 132 4 · 10−2 3.16
26-0.4 26 1.13 · 10−3 132 4 · 10−3 1.00
26-0.04 26 1.13 · 10−3 132 4 · 10−4 0.316
10-20 10.4 7.06 · 10−3 330 2 · 10−1 7.07
10-4 10.4 7.06 · 10−3 330 4 · 10−2 3.16
10-0.4 10.4 7.06 · 10−3 330 4 · 10−3 1.00
5.2-20 5.2 2.82 · 10−2 659 2 · 10−1 7.07
5.2-4 5.2 2.82 · 10−2 659 4 · 10−2 3.16
5.2-0.4 5.2 2.82 · 10−2 659 4 · 10−3 1.00
2.6-20 2.6 1.13 · 10−1 1 318 2 · 10−1 7.07
2.6-4 2.6 1.13 · 10−1 1 318 4 · 10−2 3.16
inf-0 ∞ 0 0 0 0

Table 5.1.: Performed simulations with normalised initial mass-to-flux-ratio µ, ratio of magnetic
to gravitational energy γ, magnetic field strength in the centre B, ratio of rotational to gravita-
tional energy βrot, and the corresponding angular frequency ω. The results of these simulations
are discussed in Chapter 6 and 7.

magnetic field and the amount of rotational energy. The strength of the magnetic field is
often parametrised with the mass-to-flux ratio µ (Eq. 3.21). In the simulations presented
in this work µ varies from 2.6 for strong fields up to 26 for weak fields. This corresponds
to an initial magnetic field strength in the centre of the core ranging from about 100 µG
up to ∼ 1 mG. The amount of rotational energy is parametrised by the dimensionless
ratio of the rotational energy to the gravitational energy, βrot. In the models presented
here βrot ranges from 4 · 10−3 to 2 · 10−1 corresponding to rotation frequencies of the
order 10−14 – 10−13 s−1. In total we have performed 12 simulations with varying initial
conditions. The individual simulations and their corresponding initial values are listed in
Table 5.1. In the nomenclature of each run the first number gives the mass-to-flux ratio
and the second number βrot multiplied by a factor of 100. For comparative purposes we
also performed a simulation with zero magnetic field and zero rotation denoted as run
inf-0. We again note that the simulations without turbulence are not listed here.

As already pointed out in Section 2.1, observations of high-mass star-forming regions
typically reveal mass-to-flux ratios µ < 5 and magnetic field strengths between a few
100 µG and a few mG. In this work this range is covered with a number of simulations
(runs with µ . 5.2 in Table 5.1) but in addition to that we also consider initial configu-
rations with significantly weaker magnetic fields (µ > 10) as found in magnetohydrody-
namical simulations (e.g. Padoan et al., 2001; Tilley & Pudritz, 2007). For comparative
purposes with the rotational energy in Table 5.1 also the ratio of magnetic to gravita-
tional energy γ is given. The considered rotational energies coincide reasonably well with
values from observations ranging from 10−4 up to ∼ 1 with a mean around 0.01 (e.g.
Goodman et al., 1993; Pirogov et al., 2003; Csengeri et al., 2011). We note that both γ
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Figure 5.1.: Initial values of the 12 simulations performed. The initial rotational (βrot) and
magnetic energy (γ) are normalised to the gravitational energy. As can be seen, the starting
points bracket the curve where rotational and magnetic energy are equal (black line). The second
axes show the corresponding normalised mass-to-flux ratio µ and the rotation frequency ω.

and βrot are always smaller than 1 due to the high gravitational energy of the 100 M⊙
cores.

The distribution of the initial parameters in the magnetic field - rotation phase space
is shown in Fig. 5.1. For comparative purposes, beside the mass-to-flux ratio also the
ratio of the magnetic energy to the gravitational energy γ is shown. Here we note that
both γ and βrot are calculated numerically from the initial snapshot of each simulation.
In addition the rotation frequency is shown on the second y-axis. It can be seen from
Fig. 5.1 that beside the fact that both the magnetic and rotational energies extend over
more than two orders of magnitude, the simulations also bracket the line where γ equals
βrot.

Two further rather numerical aspects have to be mentioned in this context as they
are directly linked to the setup described above. The first aspect to mention is the used
spatial resolution. Initially the cloud core is resolved by a grid with a spacing of 302 AU
fulfilling the applied refinement criteria (see Section 5.1.1). During the simulation we
allow for 13 levels of refinement resulting in a maximum spatial resolution of

dx = 4.7 AU. (5.15)

With this resolution the gravitational collapse can be followed up to a density of
∼ 10−12 g cm−3 without violating the Jeans length refinement criterion. The resolution
is therefore sufficient to resolve the transition around 10−13 g cm−3 where the molecular
gas starts to get optically thick and heats up significantly. To guarantee that the Jeans
refinement criterion is not violated, sink particles are created if the density exceeds the
critical value of

ρcrit = 1.78 · 10−12 g cm−3 . (5.16)
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The accretion radius of the sink particles is

racc = 12.6 AU (5.17)

corresponding to 2.7 grid cells which was found to be a reasonable value4.
The second numerical aspect to discuss is related to the launching of an outflow after

the formation of the protostellar disc surrounding the sink particle. This outflow will
evacuate the regions above and below the disc thus significantly increasing the Alfvénic
velocity vA (Eq. 3.12) due to the low gas densities. This in turn would significantly
reduce the hydrodynamical timestep required for the stability of the numerical solution,
which would make the simulations prohibitively costly due to the significantly increased
number of timesteps necessary to follow the simulations over a reasonably long time. In
order to avoid this, we introduce a minimum density threshold within 67 AU5 around
the simulation centre as soon as the outflow is launched. Within this radius the gas
density is kept above a minimum value of 1 · 10−15 g cm−3. This means that whenever
the density in a cell falls below this threshold during one timestep, it is artificially set
to the limit of 1 · 10−15 g cm−3. Hence, one can avoid the hydrodynamical timestep
falling to prohibitively small values. The effects of this artificial density threshold will
be discussed in detail in Section 6.3.1.

To summarise, we will perform a series of collapse simulations of 100 M⊙ cores with
varying initial conditions concerning the magnetic field strength and the rotational en-
ergy of the core. For this purpose the initial conditions are adapted to recent observations
of massive star forming regions. Furthermore, the initial parameters for the magnetic
field and the core rotation are chosen in such a way that they cover a wide range in
parameter space. Hence, we are able to infer systematical effects of the initial conditions
on processes like protostellar disc formation and outflow launching. The results of this
analysis will be presented in the following two chapters. We again note that the inclusion
of turbulence typically observed in massive star forming cores but not present in this
setup will be postponed to Chapter 8.

4private communication with C. Federrath
5This value was found to be reasonable by visually inspecting the simulations.
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In Chapter 5 the numerical methods as well as the initial conditions of the simulations I
performed are described in detail. In this chapter I will analyse the results of these simu-
lations focussing on the formation of discs and protostellar accretion rates and discuss
potential consequences for the formation of massive stars. The evolution and properties
of the outflows launched from the protostellar discs will be discussed in Chapter 7. The
computational costs of all simulations presented here and in Chapter 7 sum up to about
1 000 000 CPU hours. The results and discussion presented in this chapter have been
published in Seifried et al. 2011, MNRAS, 417, 1054.

6.1. Introduction

The question of how massive stars form is still a highly debated field of research (e.g.
Zinnecker & Yorke, 2007). It is believed that massive star formation takes place in high-
mass molecular cloud cores with masses ranging from roughly 100 M⊙ up to a few
1000 M⊙. Characteristic for such cores are sizes of few 0.1 pc and peak densities up to
106 cm−3 (e.g. Beuther et al., 2007, but see Section 2.1). Furthermore, from observations
it is known that the interstellar medium as a whole is magnetised (see Beck, 2012, for a
recent overview). Also the star forming cloud cores partly reveal a significant magnetisa-
tion. To remind the reader, the importance of the magnetic field can be estimated by the
mass-to-flux ratio µ normalised to the critical mass-to-flux ratio (Mouschovias & Spitzer,
1976, but see Section 3.2):

µ =
Mcore

Φcore
/

(

M

Φ

)

crit
=
Mcore

Φcore
/

0.13√
G
. (6.1)

Observed mass-to-flux ratios in high-mass star forming cores are typically only slightly
supercritical with µ . 5 (Falgarone et al., 2008; Girart et al., 2009; Beuther et al., 2010;
Crutcher et al., 2010) indicating a significant influence of magnetic fields on the star
formation process. In magnetohydrodynamical simulations, however, also higher val-
ues of µ up to ∼ 20, i.e. weaker magnetic fields, are found (e.g. Padoan et al., 2001;
Tilley & Pudritz, 2007). Another common feature of star forming cores are their slow ro-
tation velocities. Observed cores have rotational energies normalised to the gravitational
energy which scatter around a mean of about 0.01 (Goodman et al., 1993; Pirogov et al.,
2003; Csengeri et al., 2011).

In the field of low-mass star formation there is a great number of observations of discs
and large-scale outflows which are the basic keystones of the widely accepted disc accre-
tion scenario for low-mass star formation (see, e.g. the reviews by Mac Low & Klessen,
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2004; McKee & Ostriker, 2007). A similar formation scenario for massive stars is sup-
ported by a growing number of discs and bipolar outflows observed around high-mass
protostellar objects (see Beuther & Shepherd, 2005; Cesaroni et al., 2007, for recent re-
views). Therefore, it is worthwhile to study the influence of magnetic fields and rotation
on the formation of discs and outflows in the context of massive star formation with
numerical simulations.

For low-mass star forming regions (Mcore ∼ 1 M⊙), the influence of magnetic
fields on the collapse of rotating cloud cores, the subsequent formation and evo-
lution of discs and the launching of outflows has received extensive attention (e.g.
Allen et al., 2003; Banerjee & Pudritz, 2006; Price & Bate, 2007; Mellon & Li, 2008;
Hennebelle & Fromang, 2008; Hennebelle & Teyssier, 2008; Hennebelle & Ciardi, 2009;
Duffin & Pudritz, 2009; Machida et al., 2011; Price et al., 2012). All authors find a more
or less significant influence of magnetic fields on the evolution of discs surrounding the
protostars. The perhaps most important result of these studies is that for a mass-to-flux
ratio of µ . 10 the formation of Keplerian discs is largely suppressed. This so-called
magnetic braking catastrophe (Allen et al., 2003; Mellon & Li, 2008) turned the tradi-
tional angular momentum problem upside down: In highly magnetised cores magnetic
braking seems to be so efficient that large-scale Keplerian discs, commonly observed
around low-mass protostars, cannot form. Low-mass star formation simulations also re-
veal a strong impact of magnetic fields on the fragmentation properties of discs. In
particular, strong magnetic fields tend to suppress disc fragmentation even in the pre-
sence of initial density perturbations (e.g. Hosking & Whitworth, 2004; Machida et al.,
2005; Hennebelle & Teyssier, 2008; Duffin & Pudritz, 2009). These results are in con-
trast with the observational fact that a large fraction of low-mass stars are binaries (e.g.
Duquennoy & Mayor, 1991).

The influence of magnetic fields on massive star formation, however, has received at-
tention only recently (Banerjee & Pudritz, 2007; Peters et al., 2011; Hennebelle et al.,
2011; Commerçon et al., 2011). Banerjee & Pudritz (2007) study the very early evolution
of a protostar, its surrounding disc, and the outflow performing a simulation with ex-
tremely high spatial resolution. The protostellar evolution over a timescale of some 104 yr
is examined by Peters et al. (2011), Hennebelle et al. (2011) and Commerçon et al.
(2011), the latter two authors focussing on the effect of magnetic fields and turbulence
while Peters et al. (2011) study the interplay of magnetic fields and radiation. In this
chapter we systematically study the influence of rotation and magnetic fields on the
formation and accretion history of massive stars and examine the question under which
conditions massive Keplerian discs can form in an already very early stage of protostel-
lar evolution. We perform a series of collapse simulations with different initial rotational
and magnetic energies following the protostellar evolution over a few 1000 yr. Rotational
and magnetic energies are selected in a way to cover a large range in parameter space
in accordance with observations and other numerical simulations (see Fig. 5.1). Thus,
we are able to detect systematic dependencies of the results on the initial conditions.
Furthermore, the simulations serve as a useful guide to select representative parameter
sets for subsequent and more detailed studies.
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This chapter is organised as follows. In the next section we present the results of
the simulations listed in Table 5.1. Since the simulation setup and the used numerical
methods are identical for this chapter and Chapter 7, all information on this can be
found in Chapter 5.1 and will not be repeated here. In the result section (Section 6.2)
firstly, the time evolution of the protostellar discs is presented for two representative
simulations. Next, we analyse the velocity structure and the magnetic properties of the
gas in the midplane. Afterwards, the accretion histories of the protostars as well as the
effects of disc fragmentation are examined. In Section 6.3 the results are discussed in a
broader context and are compared to other numerical and observational studies before
we summarise our results in Section 6.4.

6.2. Results

In the analysis of the results and in the discussion we will mainly focus on the phase after
the first sink particle has formed. However, in the next section we briefly describe the
initial collapse phase until the first sink particle forms before we analyse the subsequent
evolution of the protostellar discs and the sink particles in detail in the following sections.

6.2.1. The initial collapse phase

As pointed out in Section 5.2, the considered cores contain about 56 Jeans masses and
are thus highly gravitationally unstable. Hence, one can assume that the initial collapse
proceeds almost in free-fall. The typical timescale for the collapse is therefore the free-fall
time, which in the current setup is

τff =

√

3π
32Gρ

= 13.9kyr . (6.2)

Here we have used the density ρ = 2.3 · 10−17 g cm−3 in the centre of the core. In
Table 6.1 we list the formation time t0 of the first sink particle for all runs performed. It
can be seen that in the magnetised runs t0 is longer than τff by a factor of 1.1 to 1.4 and
that also in run inf-0 the collapse time is also somewhat longer than τff. For this reason
we performed a series of test runs for the setup of run inf-0 where the initial resolution in
the centre of the core is increased by a factor of 4, 8 and 16, respectively. The observed
collapse times t0 are then 15.0 kyr, 14.8 kyr and 14.7 kyr, respectively. Hence, there is a
slight dependence of t0 on the initial resolution of the order of a few 100 yr. In general,
however, t0 stays well above τff indicating that this is not a numerical effect. A physical
reason for the prolonged collapse time is probably the build-up of a strong pressure
gradient in the centre of the core counteracting gravity. Furthermore, the free-fall time
of 13.9 kyr has to be considered as a lower limit as the maximum density in the centre
of the core has been used for its calculation whereas it might be more appropriate to
calculate the free-fall time somewhat outside the centre at lower densities. Hence, the
somewhat prolonged collapse time t0 compared to τff in run inf-0 is most likely a real
effect. In contrast, the unexpected fact that t0 for run inf-0 is somewhat longer than for
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Run t0 Msink Ṁacc Nsinks tsim

(kyr) (M⊙) (10−4 M⊙/yr) yr
26-20 15.7 1.85(1.14) 3.69 20 5000
26-4 15.2 2.65(2.02) 5.30 12 5000
26-0.4 15.0 3.59 7.18 1 5000
26-0.04 15.0 4.16 8.31 1 5000
10-20 15.8 1.28 3.19 1 4000
10-4 15.3 2.23 5.57 1 4000
10-0.4 15.2 2.98 7.46 1 4000
5.2-20 16.7 1.78 4.45 1 4000
5.2-4 16.2 2.28 5.71 1 4000
5.2-0.4 16.1 2.55 6.37 1 4000
2.6-20 21.3 1.30 4.33 1 3000
2.6-4 20.5 1.48 4.93 1 3000
inf-0 15.1 4.39 8.77 1 5000

Table 6.1.: Formation time t0 of the first sink particle, total mass (the mass in brackets is the
mass of the most massive sink if more than one is formed) of all sink particles at the end of each
simulation, the corresponding time averaged total accretion rate, the number of sinks created,
and the time the simulations have being followed after the first sink particle has formed.

the runs 26-0.4 and 26-0.04 is most like a numerical issue. Turning on a weak magnetic
field (µ = 26) in a test run with no rotation results in a slightly shorter collapse time
of 15.0 kyr compared to inf-0. This suggest that the somewhat longer t0 in run inf-0
(compared to the runs 26-0.4 and 26-0.04) is an intrinsic effect of the numerical scheme
which we will not follow up further here.

However, in each simulation subset (equal µ or βrot) there are physically well motivated
trends in t0 recognisable. As can be inferred from Table 6.1, the collapse gets slowed
down with an increasing magnetic field strength and an increasing amount of rotational
energy as both counteract gravity. Interestingly, the variation of the rotational energy
by two orders of magnitude at a fixed magnetic field strength changes t0 by no more
than roughly 0.8 kyr, i.e. by ∼ 5%. In contrast, increasing the magnetic energy by a
factor of 100 for fixed rotational energies prolongs the collapse time by roughly 5 kyr,
i.e. ∼ 30%. However, as all cores are supercritical (µ > 1) and have rotational energies
well below the gravitational energy (βrot < 1), one cannot expect the collapse time t0 to
be significantly longer than the free-fall time τff. In the following sections we will focus
on the evolution of the protostellar discs and the sink particles after t0. Therefore, from
now on all time specifications will refer to the time elapsed since the formation of the
first sink particle at t0.
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6.2.2. Global disc properties

In this section we discuss the time evolution of the properties of the protostellar discs
found in the simulations. From the last column of Table 6.1 it can be seen that the
simulations are followed for several 1000 yr after the first sink particle has formed. The
reason that runs with stronger magnetic fields have been simulated less long is due to
the increased computational costs in these runs due to higher Alfvénic velocities, which
reduce the overall hydrodynamical timestep. However, despite the rather limited time
significant trends can be inferred from the simulation results.

Since in total 12 simulations have been performed, we will concentrate on two re-
presentative simulations and discuss the time evolution of the discs in these two runs
in detail. For this purpose, we consider run 26-4 and run 5.2-4, which have equal initial
rotational energies but different magnetic field strengths. To begin with, we compare the
properties of the gas in a well-defined region of interest at the miplane of the simulations
where the protostellar discs are located. This region is a cylinder with a height of 47 AU
above and below the midplane and variable radius. Here we mention that, although
this height does not reflect the real disc scale height, we will use it for three reasons.
Firstly, this choice allows for a numerically simple calculation of the desired quantities.
Furthermore, it guarantees that for different simulations and times identical areas are
compared. Finally, it is used as it is hardly possible to determine a well-defined disc
scale height as even in a single run the disc height varies in time and radial position.
For example, the frequently used approximation of the scale height for thin accretion
discs (e.g. Cesaroni et al., 2007)

H =
cs

ω
(6.3)

varies between a few AU and ∼ 100 AU for a single run. Here cs is the sound speed
(Eq. 3.11). Trying to fit the vertical density distribution above/below the midplane for
the simulation data by a Gaussian distribution gives scales height strongly varying with
the radial distance from the centre, but nevertheless in rough accordance with the afore
made theoretical estimate of 1 – 100 AU. Hence we argue that the choice of 47 AU,
located in the middle of this range, is reasonable.

In the following we will denote this region simply as the disc. The disc quantities
shown in the following are averaged vertically and azimuthally before consideration.
First we consider the radial dependence of the column density and of the mass-weighted
temperature in the discs in the runs 26-4 and 5.2-4. From the results shown in Fig. 6.1 it
can be inferred that in run 26-4 an accretion shock occurs where both, column density
and temperature experience a sudden increase. This is also true for run 5.2-4, although
here the increase in column density and temperature is somewhat smoother. In both
cases, however, the shock front moves outwards as time evolves reaching several 100 AU
in radius. In run 26-4 the density profile inside 100 AU is nearly flat with values around
a few 1025 cm−2. This corresponds to average volume densities of ∼ 10−14 g cm−3 and
maximum densities & 10−13 g cm−3 in the midplane of the discs. For run 5.2-4 the
density profile is declining outwards and seems to decrease slightly over time. In both

53



6. Disc formation and protostellar accretion

 10

 100

 10  100  1000

T
 / 

K

r / AU

 10  100  1000

r / AU

1022

1023

1024

1025

1026

N
 / 

cm
-2

26-4

t0
t0 + 1000 yr
t0 + 2000 yr
t0 + 3000 yr
t0 + 4000 yr
t0 + 5000 yr

5.2-4

Figure 6.1.: Radial profile of the column density (upper panel) and mass-weighted temperature
(bottom panel) for run 26-4 (left panel) and run 5.2-4 (right panel) at different times after the
formation of the first sink particle at time t0. The profiles are calculated by averaging azimuthally
and vertically over a disc with a height of 47 AU above and below the midplane. The region below
r = 10 AU is subject to resolution effects. Therefore, here and in the following plots we shaded
this area to guide the reader’s eye.

cases the mass-weighted temperature in the midplane increases up to a few 100 K, i.e.
by about one order of magnitude compared to the surroundings of the discs.

The temperature increase in the inner region is due to the fact that the gas gets opti-
cally thick at density around 10−13 g cm−3 (see Banerjee et al., 2006, and Section 5.1.2
for details of the applied cooling function). Therefore, the gas in the disc looses its ability
to cool efficiently and cannot fast enough radiate away the thermal energy transferred to
it by compression work. This results in temperatures of up to a few 100 K in the inner
disc region consistent with observational results (see e.g. the review of Cesaroni et al.,
2007, and references therein). Further out in the discs the gas experiences a strong tem-
perature increase due to shock heating. At the accretion shock at a few 100 AU kinetic
energy is converted relatively fast into thermal energy. Assuming that the gas gets de-
celerated by ∼ 1 km s−1 (see Fig. 6.3 further down) and the corresponding kinetic energy
is immediately transformed into thermal energy, this would result in a temperature in-
crease of roughly 90 K. This is in accordance with the observed increase of about 30 K
when taking into account that a good fraction of the energy will be radiated away and
that the conversion into heat does not happen all at once.
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Figure 6.2.: Radial profile of the toroidal component (top) and the radial component (bottom)
of the magnetic field for run 26-4 (left) and run 5.2-4 (right) at the same times as in Fig. 6.1. For
comparative purposes Bz (dashed lines) is shown in both panels as well. For radii & 20 AU in
both runs Br is comparable in magnitude to Bz whereas Bφ is larger than Bz for run 26-4 and
smaller than or comparable to Bz for run 5.2-4. At r < 20 AU Bz is in both cases the dominant
component.

Next we show the time evolution of the magnetic properties of the discs in the two
runs 26-4 and 5.2-4 in Fig. 6.2. For the calculation of Br and Bφ the absolute values
are used for the averaging procedure as both components have opposite signs above and
below the midplane and hence would cancel themselves out. For comparative purposes
we plot Bz (initially the only component in the simulations) and either Bφ (top) or Br

(bottom) in each panel. For the comparison we only consider the radial range above
10 AU as the region further inside is subject to resolution effects. As can be seen, the
different components in the disc reach values of up to about 1 G. Bz is somewhat larger
in run 5.2-4 than in run 26-4 due to the five times higher initial field strength in run
5.2-4. In both runs, however, for radii & 20 AU Br (bottom panel of Fig. 6.2) is of the
order of Bz. Br is created by the inwards drag of the magnetic field during the collapse
and later during the accretion process. In contrast to Br, the toroidal components differ
significantly between both runs (see top panel of Fig. 6.2). In run 26-4 Bφ is the dominant
component in the region within the accretion shock being larger than Bz and Br by up
to one order of magnitude. This is due to the fast rotation of the disc winding up the
poloidal field. In contrast, in the strongly magnetised run 5.2-4, Bφ is mostly smaller
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Figure 6.3.: Radial profile of the Keplerian velocity vkep, rotation velocity vrot and radial velocity
vrad (negative values) for run 26-4 (left) and run 5.2-4 (right). The velocities are averaged in the
same way as in Fig. 6.1 and shown for the same snapshots except that of t = t0. For run 26-4
a rotationally supported disc builds up while in run 5.2-4 the rotation velocity stays clearly
sub-Keplerian all the time with radial infall close to free-fall.

than Bz, which is attributed to the lower rotation velocity in this case (see Fig. 6.3 and
text below). For radii < 20 AU, in both runs Bz is the dominant component. However,
here already numerical effects come into play which in particular might hinder the build-
up of the toroidal magnetic field component. We also mention that all components show
signs of an accretion shock at a few 100 AU moving outwards with time in accordance
with the density and temperature field shown in Fig. 6.1. This is caused by the tight
coupling of magnetic fields and matter due to the conditions of ideal MHD. Furthermore,
a comparison with the thermal pressure shows that in both runs the magnetic pressure
in the region within the accretion shock is larger than or at least equal to the thermal
pressure. This implies that the magnetic field most likely plays a significant role in the
evolution of the protostellar disc and in the accretion history of the protostars.

Next we analysis the time evolution of the velocity structure in the two discs in run 26-4
and run 5.2-4. For this purpose, in Fig. 6.3 we show the radial dependence of the rotation
velocity vrot, the radial velocity vrad, and the Keplerian velocity vkep. The Keplerian
velocity is calculated using the total mass, including sink particles, within the sphere of
given radius r. It can be seen that for run 26-4 (left panel) a rotationally supported disc
builds up with rotation velocities close to the Keplerian value. The maximum radius,
where vrot equals vkep increases over time reaching about 150 – 200 AU after 5000 yr.
At the same time, as expected for a rotationally supported disc, the radial velocity in
the inner region nearly drops to zero.

The overall situation changes dramatically when considering run 5.2-4 (right panel).
Here, no rotationally supported disc builds up with vrot staying significantly below vkep

all the time. In fact, the absolute value of vrad is almost always higher than the rotation
velocity and of the order of the free-fall velocity vff =

√
2vkep. Nevertheless, as can be seen

in the top right panel of Fig. 6.1, a flat disc-like structure with a significantly increased
column density builds up. We emphasise that for both cases considering the behaviour
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within the central 10 AU is not conclusive since at such small radii the resolution limit
is reached.

The dramatically different evolution of the density, magnetic field and velocity struc-
ture in the midplane of both runs is also indicated in Fig. 6.4. Here we show the column
density integrated over the total disc height of 2 · 47 AU, the magnetic field strength
and the velocity field along a slice in the midplane for two different times. For run 26-4
(left panel of Fig. 6.4) a well-defined Keplerian disc with more or less sharp boundaries
develops, which was already indicated by the jump in the column density in Fig. 6.1.
The velocity field within the disc reveals a significant rotational component as already
seen in Fig. 6.3. Interestingly, despite the strong fragmentation occurring in the inner
200 AU, the overall disc-like structure is maintained. In contrast, in run 5.2-4 (right
panel of Fig. 6.4) there is no evidence for the development of a Keplerian disc and the
column density increases more or less smoothly towards the centre with nearly radial
infall. In contrast to run 26-4 only one sink particle has formed in the very centre. In
the bottom panel of Fig. 6.4 the z-component of the magnetic field in the midplane is
shown. As can be seen, a field strength of up to 1 G is reached with slightly higher values
for run 5.2-4. The close coupling of magnetic fields and matter due to the conditions of
ideal MHD is especially pronounced in run 26-4 in the left panel of Fig. 6.4. Here the
strong increase in the column density at r ∼ 350 AU coincides quite well with a jump
in Bz.

The strong coupling of the magnetic field to the gas density is demonstrated even more
clearly in Fig. 6.5 where the distribution of Bz and the total magnetic field strength |B|
over the whole density range is shown. Apart from local variations, the average of Bz

and |B|, calculated in density bins of equal size in log-space, scales roughly as ρ2/3 or
slightly weaker over more than 6 order of magnitude in density. This is in accordance
with the scaling of a magnetic field in case of a spherical collapse under the conditions
of ideal MHD.

As the sink particles keep on accreting and the magnetic field is not altered during
the accretion process, over the time a large amount of magnetic flux accumulates in the
centre. As in addition to that ideal MHD is considered, the field lines cannot diffuse
outwards. This is the cause of the bubble-like features seen in run 5.2-4: Beyond a
certain point in time, the magnetic pressure in the centre is strong enough to effectively
counteract gravity and starts to push material outwards reducing the magnetic flux in
the centre. Indeed, analysing the Bz component of the magnetic field in the bottom right
panel of Fig. 6.4 shows that the outwards moving gas is associated with a strong Bz.
This is also reflected in the radial profile of Bz which over time decreases slightly in
the very centre whereas at larger radii Bz increases (see right panel of Fig. 6.2). Such
a magnetic flux release, which was also observed by Zhao et al. (2011), will probably
hamper the formation of rotationally supported discs as the magnetic bubble expands
radially outwards and therefore prevents the gas in the disc to rotate around the central
objects. However, as it is not one of the main goals of this work to study these features
in detail, we will not follow this point much further.
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Figure 6.4.: Column density of the discs after 2000 yr (top) and at the end of the simulations
(middle), i.e. after 5000 yr for run 26-4 (left) and 4000 yr for run 5.2-4 (right). White dots mark
the projected positions of the sink particles, black vectors the velocity field in the midplane. In
run 26-4 the disc is well defined with its inner region being subject to fragmentation. In contrast,
in run 5.2-4 a disc with sub-Keplerian motions forms. Bottom: z-component of the magnetic field
in the midplane for run 26-4 (left) and run 5.2-4 (right) at the end of each simulations. The tight
correlation between field strength and matter is due to the conditions of ideal MHD. Note the
different spatial scales in the left and right panel.
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and run 5.2-4 (red) at the end of each simulation. The average is calculated in density bins of
equal size in log-space. The magnetic field is strongly coupled to the gas and scales roughly as
B ∼ ρ2/3 over more than 6 orders of magnitude in density.

6.2.3. Velocity structure

Next, we focus on the effect of the initial conditions on the velocity field in the midplane
around the central sink particle. We omit the time evolution of the individual runs as the
behaviour of each run is qualitatively similar to one of the two runs shown before and
concentrate on the situation at the end of each simulation. As already shown in Section
6.2.2, even small changes in the initial configuration of the core, i.e. a five times stronger
initial magnetic field, cause characteristical differences. The effects of core rotation and
magnetic field strength on the velocity structure at the end of the simulations can be seen
in Fig. 6.6. Beside the radial velocity vrad the ratio vrot/vkep is shown as well. Decreasing
the initial amount of rotational energy for runs with fixed magnetic field strength (see
individual panels of Fig. 6.6) reduces the centrifugal support against gravity resulting
in lower values of vrot/vkep and consistently in higher infall velocities. Additionally, the
differences for runs with varying βrot but fixed µ seem to decrease when the initial field
strength is increased. Furthermore, comparing runs with fixed βrot but varying field
strength (equal colours) shows that the centrifugal support, i.e. vrot/vkep decreases with
increasing field strength. This effect is pronounced strongest for high initial rotational
energies.

In principle, the simulations can be divided into two sets depending on the initial mass-
to-flux-ratio µ. In general, for runs with µ & 10 centrifugally supported discs develop
whereas for µ < 10 the formation of Keplerian discs is largely suppressed and only
sub-Keplerian discs form at this early stage (see Section 6.3.2 for a detailed comparison
with other numerical work). An overview of the observed dependency of disc formation
and fragmentation on the initial conditions is given in Fig. 6.7. We note that in the
runs 26-0.04 and 10-0.4 the structure formed in the midplane strongly resembles that of
centrifugally supported discs. However, as the rotational velocities are – at least at this
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Figure 6.6.: Radial profile of the velocity field for the simulations with µ = 26 (top left), 10.4
(top right), 5.2 (bottom left) and 2.6 (bottom right) at the end of each simulation. For better
comparison between the individual simulations the rotation velocity vrot is normalised to the
Keplerian velocity vkep. The plotted quantities are again averaged azimuthally and vertically in
a disc with a height of 47 AU. For higher βrot the ratio vrot/vkep is closer to unity as expected
for a Keplerian disc. Only in case of weak magnetic fields (top row) the rotation velocity reaches
the Keplerian velocity while it is significantly below vkep for strong magnetic fields. As expected,
the absolute value of vrad increases with decreasing vrot/vkep due to a lower centrifugal support
against gravity.

early stage – well below the Keplerian velocity and the radial infall velocities relatively
high, we do not denote them as Keplerian discs.

In the following, we qualitatively describe the track of a fluid particle moving along
the midplane towards the centre. For all simulations considered in this work, the fluid
particle first gets accelerated inwards until a radius of some 100 AU (depending on the
specific simulation considered) is reached. At this radius the gas experiences a decelera-
tion, meaning its infall motion decreases. This region can be identified as a so-called
magnetic barrier (Mellon & Li, 2008) and is found in all simulations. This kind of bar-
rier is different from a centrifugal barrier as here the rotation velocity is well below the
Keplerian velocity which would be necessary to balance gravity. The reason for decelera-
tion at such a magnetic barrier is twofold. Firstly, an outward directed thermal pressure
gradient accounts for a part of the deceleration. This can be inferred from the significant
increase in density and temperature at the corresponding radius (compare Fig. 6.1).
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Figure 6.7.: Phase diagram of magnetic field and rotational energy showing the results of the
simulations concerning the question of disc formation. For µ < 10 no centrifugally supported
discs form (blue triangles) as well as for the slowly rotating cores in the runs 26-0.04 and 10-0.4.
For weak magnetic fields Keplerian discs (black circles) form. Two of these discs are subject to
fragmentation (red squares). The black solid line shows the curve where rotational and magnetic
energy are equal.

Furthermore, the magnetic field itself slows down the infall motion via the combination
of an outward directed magnetic pressure gradient and the effect of magnetic tension,
which can be inferred from Fig. 6.2. All components of the magnetic field experience a
sudden increase in the region of deceleration, thus resulting in outward directed magnetic
forces. Both magnetic pressure and magnetic tension increase in strength for smaller µ
with magnetic tension starting to dominate for low µ. For cases with µ < 1 not con-
sidered here, we expect the collapse of the core perpendicular to the field lines to be
prevented completely by the Lorentz force as shown by Mouschovias & Spitzer (1976).

For radii within the magnetic barrier the velocity profiles start to differ significantly
from each other. For weak magnetic fields (top panel of Fig. 6.6) the gas infall speed stays
roughly constant. Due to angular momentum conservation the rotation velocity increases,
which in consequence leads to another slow down of the infall motion. For the highest
rotational energies a centrifugal barrier is encountered bringing the infall completely to
halt (see runs 26-20, 26-4 and 10-20). As seen in the top panel of Fig. 6.6, the occurrence
and extension of the centrifugal barrier depend strongly on the initial conditions. As an
increase in centrifugal support and hence a slowdown of infall gives magnetic braking
more time to operate (Mouschovias & Paleologou, 1980), angular momentum can be
extracted more efficiently. This is seen in the sudden drop of vrot/vkep for runs with
µ = 10.4 inside the centrifugal barrier causing a loss of centrifugal support and thus again
speed-up of the infall motion. This is also the case for runs with strong magnetic fields,
i.e. low µ (bottom panel of Fig. 6.7) where magnetic braking starts to act efficiently on
the gas directly after it passes the magnetic barrier so that no centrifugal barrier occurs
anymore. We note that the innermost drop of vrad (r < 10 AU) without a corresponding
increase in vrot/vkep is most likely caused by the limiting effect of numerical resolution
as this region is only marginally resolved by about 3 grid cells.
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6.2.4. Torques

The reason for the effective magnetic braking is shown in Fig. 6.8 where the edge-on
view of the runs 26-4 and 5.2-4 at two different times is plotted. As can be seen, due
to the collapse of the gas the magnetic field in the midplane has been dragged inwards
producing a long magnetic lever arm (Allen et al., 2003) with a large radial component
(see also Fig. 6.2). This lever arm connects the outer, slowly rotating region with the
inner, fast rotating region, hence significantly enhancing the magnetic braking efficiency.
As discussed before, in the case of strong magnetic fields (µ < 10) magnetic braking is
so efficient that large centrifugally supported discs do not form at such an early stage.
This is known as the magnetic braking catastrophe and was reported previously by
several authors for ideal MHD simulations (e.g. Allen et al., 2003; Mellon & Li, 2008;
Hennebelle & Fromang, 2008; Hennebelle & Ciardi, 2009). For a better qualitative and
quantitative understanding of the magnetic braking effect we calculate the z-component
of the two main torques acting on the disc, i.e. the torque exerted by the infalling gas

τgas = −
∫

dV∇ · (ρv · [r × v]z) (6.4)

and the torque exerted by magnetic fields

τmag =
1

4π

∫

dV [r × ((∇ × B) × B)]z . (6.5)

For the calculations we integrate over a disc with a height of 47 AU above and below
the midplane. Due to the nearly axisymmetric gravitational potential the gravitational
torque is smaller than τgas and τmag by 2 – 4 orders of magnitude which is why we safely
can neglect it in the following analysis.

In Fig. 6.9 the time evolution of τgas and τmag is shown for the runs 26-4 and 5.2-4. The
torques are averaged azimuthally and plotted against the radius. To allow for a better
comparison with τgas we plot −τmag. A positive τ denotes a flux of angular momentum
into the disc while for a negative τ angular momentum is removed from it. Hence, in
both runs the magnetic field is removing angular momentum from the disc, i.e. slowing
down its rotation (τmag < 0) whereas the gas exerts a positive torque on the disc. It can
be seen that the torques increase steadily with time (except for run 26-4 at 3000 yr). For
run 26-4 τgas is almost always larger than the magnetic torque whereas in run 5.2-4 τgas

is roughly balanced by −τmag from the very beginning. These differences show up even
more clearly in Fig. 6.10 where the torques at the end of each simulation are shown.
Analysing the different panels in Fig. 6.10, it can be seen that at large radii the gas
torques are always larger than −τmag. This implies that the magnetic field has only a
small effect on the collapse in the outer parts. In contrast, at smaller radii of a few
100 AU the effect of the magnetic field becomes more and more evident. For runs with a
weak magnetic field (top left panel of Fig. 6.10) the torque exerted by the gas is nearly
everywhere above the magnetic torque. Thus, there is a net flux of angular momentum
into the discs resulting in the observed build-up of centrifugally supported discs. Only
for run 26-20 −τmag equals or even exceeds τgas in the inner region although only on
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Figure 6.8.: Edge-on view of the central region for run 26-4 (left) and run 5.2-4 (right). Super-
posed on the column density are the velocity field (black vectors) and the magnetic field lines
(white lines). Also shown are the regions where the toroidal magnetic field dominates over the
poloidal field (black lines) and the region used for calculating disc properties (dark green line).
As can be seen, in run 26-4 the greatest part of the inner region is dominated by the toroidal
magnetic field whereas in run 5.2-4 only smaller parts further out are dominated by Bφ (see also
Chapter 7 for a detailed consideration of this result). Note the different spatial scales in the left
and right panel.

a low level. This is due to the large Keplerian disc, which has already formed in this
run having only very small infall velocities and thus a low τgas. The sharp jump of τgas

around r = 300 AU in this run is caused by the accretion shock at the edge of the disc
where vrad drops to zero (see top left panel of Fig. 6.6). When lowering µ, i.e. increasing
the field strength, the magnetic torque approaches τgas. In particular for the runs with
µ = 5.2 and 2.6 −τmag is very close to τgas (bottom panel of Fig. 6.10). This indicates
that an equilibrium between τgas and τmag is reached where as much angular momentum
is removed by magnetic braking as it is added due to the gas infall. Hence, in the case
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Figure 6.9.: Gas torque (solid lines) and magnetic field torque (dashed lines) exerted on the
disc for run 26-4 (left) and run 5.2-4 (right). The torques are averaged azimuthally and shown
at the same times as in Fig. 6.3. As τgas is negative, we plot −τgas for better comparison.

of strong magnetic fields the net angular momentum flux is roughly zero preventing
Keplerian discs from forming.

To summarise, centrifugally supported discs at very early stages only form in simula-
tions with µ & 10 (see Fig. 6.7 for an overview). In these cases magnetic braking is too
weak to remove angular momentum at the same rate as it is transported inwards by gas
motions so that Keplerian discs are able to form.

6.2.5. Accretion rates

Closely related to the velocity structure of the matter around the sink particles is the
accretion onto the particles themselves. The general behaviour of the accretion rate with
varying initial conditions can be inferred from Table 6.1 where we list the totally accreted
masses and the corresponding time averaged accretion rates. Additionally, in Fig. 6.11
the accretion rates of all runs are plotted against the initial mass-to-flux ratio. Up to
∼ 4 M⊙ are accreted during the simulations resulting in time averaged accretion rates of
a few 10−4 M⊙ yr−1. Interestingly, the accretion rates do not vary by more than a factor
of about 3 between the different simulations. This is remarkable, considering the large
range in parameter space covered by the initial conditions (see Fig. 5.1). For each set
of simulations with equal µ there is also a rough correspondence between the accretion
rate and the infall velocity shown in Fig. 6.6. As expected, higher infall motions result
in higher accretion rates.

For a more detailed analysis of the accretion rates, we consider their time evolution
in Fig. 6.12. We mention that for the runs 26-20 and 26-4, where more than one sink
particle is formed, both the total accretion rate on all sink particles (solid lines) and
the accretion rate of the first particle formed (dashed lines) are shown. A more detailed
analysis of the accretion history in the case of fragmentation will be carried out in Section
6.2.6. As can be seen in Fig. 6.12, for all runs without further fragmentation there seems
to be a slight decrease in the accretion rates over time. Numerical studies (e.g. Klessen,
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Figure 6.10.: Gas torque (solid lines) and magnetic field torque (dashed lines) exerted on the
disc for runs with µ = 26 (top left), 10.4 (top right), 5.2 (bottom left) and 2.6 (bottom right)
at the end of each simulation. As τgas is negative, we plot −τgas for better comparison. For high
magnetic field strengths the magnetic torque roughly balances the gas torque resulting in the
suppression of the formation of Keplerian discs.

2001; Schmeja & Klessen, 2004) as well as observational results (see Andre et al., 2000,
for an overview) indicate that there is indeed a decline in the accretion rate by orders
of magnitude, although timescales for this decline are typically of the order of several
104 yr and are therefore much longer than in our study. Another typical feature of
the accretion rates shown in Fig. 6.12 are the fast variations within a factor of about 2
around the mean value. This fast variations are caused by moderate density perturbations
developing in the midplane. Each time a perturbation moves through the centre, it causes
the accretion to vary around its mean. The variations are generally rather small (with a
few exceptions in the runs 26-20, 26-4 and 26-0.4) and would probably be smoothed out
in time by viscous effects in the inner disc not resolved here. However, we cannot exclude
that the varying accretion rates would influence the protostellar evolution as proposed by
stellar evolution models (e.g. Wuchterl & Klessen, 2001; Baraffe & Chabrier, 2010). For
the runs 26-20 and 26-4 where further sink particles are formed the total accretion rate
shows no signs of a decrease. In contrast, an increase of the total accretion rates seems to
occur as soon as fragmentation sets in. The accretion onto the first sink particle formed
(dashed lines), however, seems to decrease from this point on (see also Section 6.2.6).

65



6. Disc formation and protostellar accretion

 0

 2

 4

 6

 8

 10

 1 10

dM
/d

t /
 (

10
-4

 M
su

n/
yr

)

µ

βrot = 0.20
βrot = 0.04
βrot = 0.004
βrot = 0.0004

Figure 6.11.: Mean accretion rates of the different simulations plotted against the initial mass-
to-flux-ratio µ. Equal symbols denote equal initial rotational energies. The accretion rates seem
to converge with decreasing µ.

The only simulations where the accretion rates decrease significantly over time are the
runs with µ = 2.6 showing a sharp drop after roughly 2500 yr. This is caused by the
occurrence of magnetically driven bubbles in the midplane as shown exemplarily in the
right panel of Fig. 6.4.In the other runs, however, the accretion rates seem to decrease
only slightly showing no sign that the magnetically driven outflow, which is launched
from the protostellar disc shortly after the formation of the protostar, can significantly
reduce mass accretion over time. Similar results in related work on magnetic fields in
massive star formation are found by Peters et al. (2011) and Hennebelle et al. (2011) as
well. This is due to the fact the mass accretion through the disc is nearly unaffected
by the shut-off of gas infall from below or above the disc due to the outflow. This is
demonstrated in Fig. 6.8, clearly showing the ongoing accretion through the midplane.
In order to analyse to what extent the combined effect of magnetic fields and rotation
influences mass accretion, we performed the reference calculation inf-0 with no magnetic
field and zero rotation. In this run the sink particle accretes 4.39 M⊙ within the first
5000 yr corresponding to a time averaged accretion rate of 8.77 · 10−4 M⊙ yr−1. Hence,
the accretion rates in runs with magnetic fields and rotation are reduced to a level of
about 35% – 95% of this value (see Table 6.1).

As can be inferred from Table 6.1 and from Fig. 6.11, there are some systematical
trends in the time averaged accretion rates with varying initial conditions, although the
overall variation is not very large (. 3). Increasing the overall rotational support against
gravity, i.e. βrot, for fixed µ results in lower accretion rates. This is in agreement with
the increase in vrot/vkep and the decrease in vrad in the surrounding disc as shown in
Fig. 6.6. As already observed for the velocity structure in the midplane, the differences
in the accretion rates for runs with different βrot but fixed µ decrease with increasing
magnetic field strength as can be seen in Fig. 6.11. As shown before, this is due to the
efficient magnetic braking removing angular momentum at roughly the same rate as it is
transported inwards. As a consequence, the accretion rates are roughly independent of
the initial amount of angular momentum. An even further increase in the field strength
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Figure 6.12.: Total accretion rates of all runs performed with µ = 26 (top left), 10.4 (top right),
5.2 (bottom left) and 2.6 (bottom right). For the runs 26-20 and 26-4 also the accretion rate of
the first sink particle formed is shown (dashed lines). As expected, the accretion rates decrease
with increasing initial rotational energy for a given magnetic field strength. The differences in
the accretion rates for runs with fixed µ but varying βrot decrease with increasing magnetic field
strength.

would probably result in even lower accretion rates than the 4 – 5 ·10−4 M⊙ yr−1 observed
for µ = 2.6 due to stronger magnetic forces counteracting gravity.

The accretion rates for varying µ but fixed βrot show an interesting and less clear
behaviour. For high initial rotational energies, i.e. βrot = 0.20 and 0.04, respectively, the
accretion rates are roughly constant or even show a slight increase with decreasing µ
until µ = 5.2 and then drop for the case with µ = 2.6. For βrot = 0.004 the accretion
rate increases from µ = 26 to µ = 10.4 and start to decline at µ = 5.2 already. We
attribute this behaviour to two competing effects of the magnetic field. On the one
hand, magnetic fields act to enhance accretion onto the protostar by magnetic braking
reducing the centrifugal support against gravity. Hence, the effect of magnetic braking
alone would cause increasing accretion rates with decreasing µ as it is indeed observed for
low field strengths. The second effect influencing the accretion rates is the Lorentz force,
i.e. the combination of magnetic pressure and magnetic tension, induced by strongly bent
field lines (see Fig. 6.8). Magnetic pressure and magnetic tension counteract gravity by
exerting an outward directed force on the gas resulting in reduced accretion rates. The

67



6. Disc formation and protostellar accretion

strength of this effect increases with the field strength thus tending to lower the accretion
rates for low values of µ which is indeed observed in Fig 6.11.

The combination of both effects – magnetic braking enhancing accretion and the
Lorentz force counteracting accretion – results in the observed non-linear behaviour of
the accretion rates: By increasing the magnetic field strength at a given βrot up to a
certain critical value an equilibrium between the torques acting on the disc is reached
where the removal of angular momentum by magnetic braking balances its inwards
transport (see Fig. 6.10). Up to this value, an increase in the field strength is associated
with increasing or at least constant accretion rates as observed in our simulations. Further
increase in the field strength beyond this point cannot enhance the magnetic braking
efficiency anymore. In fact, now the increase of the magnetic field strength (decrease,
if µ is considered) leads to declining accretion rates due to the growing strength of
the Lorentz force counteracting gravity, in accordance with our findings of declining
accretion rates for strong fields with µ . 5. The exact value of µ, where this turnover
occurs, depends on the initial amount of rotational energy and decreases with increasing
βrot.

6.2.6. Disc fragmentation

As mentioned earlier, the runs 26-20 and 26-4 show rapid fragmentation of the proto-
stellar disc after the first protostar has formed. Due to a high amount of rotational energy
and a weak magnetic field, magnetic braking can only remove a small amount of angular
momentum leading to the formation of Keplerian discs with considerable extensions of a
few 100 AU (see top left panel of Fig. 6.6 for comparison). As the mass load onto these
discs exceeds their capability to transport material inwards by gravitational, viscous or
magnetic torques, the discs become unstable and fragment (e.g. Kratter et al., 2010). In
the simulations presented here, this happens ∼ 2500 yr after the formation of the first
sink particle. At the end of the simulations, i.e. after 5000 yr there are 12 sink particles
in run 26-4 and 20 in run 26-20. All other simulations show no fragmentation so far
although some of them form a Keplerian disc (see Fig. 6.7).

The accretion histories for run 26-20 and run 26-4 are shown in Fig. 6.13. Run 26-20
(left panel) exhibits a very symmetric disc fragmentation forming pairs of protostars at
roughly the same time and opposite positions (as seen from the centre). Even in their
further mass evolution each pair develops very similar as can be seen from the left panel
of Fig. 6.13 where the lines of each pair are nearly indistinguishable. For run 26-4 (right
panel) only the evolution of the second and third sink particle is symmetric, while at
later times there is no pairwise formation of sink particles anymore due to an asymmetric
evolution of the disc. We note that in both runs only the first sink particle created has
reached a mass above 1 M⊙ so far whereas all other particles have masses of at most
∼ 0.1 M⊙. For comparative purposes, in Fig. 6.13 we also plot the totally accreted mass
of all sinks formed. As can be seen, in both runs more than 60% of the total mass is
accreted onto the first sink particle.

After about 2500 yr, i.e. after the creation of further sink particles, there occurs a
slight but nevertheless noticeable decrease in the accretion onto the first sink particle
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Figure 6.13.: Accretion history of run 26-20 (left) and run 26-4 (right). The red lines show
the total mass of all sink particles. The formation of sink particles in run 26-20 occurs pairwise
(except the first one) and also the further evolution of each pair is nearly indistinguishable except
at the very end so that in the beginning each line represents two particles. Also shown is the
time evolution of the disc mass, which is of the order of or somewhat below the totally accreted
mass.

(see the dashed lines in the top left panel of Fig. 6.12). This fragmentation-induced
starvation (Peters et al., 2010a,b) is caused by the surrounding sink particles soaking
up the infalling material. This behaviour was also observed recently in related work on
massive star formation (Peters et al., 2011; Girichidis et al., 2011, 2012). However, in
these cases the starvation effect for the first sink particle, partly with a complete shut-
off of the accretion flow, is much more pronounced than in our case where the accretion
rates decrease by a factor of ∼ 2 only. The reason for this difference is probably the
longer physical time simulated by these authors.

Beside the sink masses, in Fig. 6.13 also the disc masses are shown. For the mass
determination we define the disc as follows: Firstly, we determine the maximum cylin-
drical radius rmax where the gas falls below a density of 5 · 10−15 g cm−3. This density
threshold was found to reasonably agree with the density at the accretion shock seen in
Fig. 6.1. The disc mass is then defined as the total mass of gas within a cylinder with a
height of 47 AU above and below the midplane and a radius of rmax around the centre.
As can be seen, at the end of the simulations the disc masses are of the order of 1 M⊙
and therefore somewhat below the totally accreted sink masses.

Next, we study the stability of the discs against gravitationally induced perturbations.
Disc stability is described by the Toomre parameter (Toomre, 1964) defined as

Q =
κcs

πΣG
(6.6)

with the epicyclic frequency κ, sound speed cs, surface density Σ, and gravitational
constant G. Disc are prone to gravitationally induced fragmentation if Q is lower than
1. As magnetic fields are present in the discs, one can define the magnetic Toomre
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parameter (Kim & Ostriker, 2001)

QM =
κ
(

c2
s + v2

A

)1/2

πΣG
, (6.7)

where vA is the Alfvénic velocity (Eq. 3.12) taking into account all components of the
magnetic field. In the following, we analyse the stability of the discs in the runs 26-20,
10-20, 5.2-20 and 26-0.4 as these simulations cover a wide range of initial conditions. In
particular, we concentrate on the stabilising effect of the magnetic field by comparing
QM and Q.

In Fig. 6.14 the face-on view of the discs at the end of each simulation as well as
the radial dependence of the Toomre parameters are plotted. Q and QM are calculated
numerically by the azimuthally averaged values of cs, vA, κ, and Σ and are shown for
several times. For the disc in run 26-20 (top left) we also show the situation after 4000 yr,
which corresponds to the time when the ring at 200 AU starts to fragment. It can be seen
that by then the hydrodynamical Toomre parameter Q drops below 1 around 200 AU
and 400 AU. However, only around 200 AU a fragmented ring is observed in the top-on
view of the disc, which agrees with the magnetic Toomre parameter QM dropping to
∼ 1 only at this position (at 4000 yr). After 5000 yr QM has increased again as a good
fraction of the gas has already been accreted by the sink particles. We note that we have
neglected the contribution of secondary sink particle to the column density. However,
their only effect would be to lower Q and QM in regions which are already unstable
and fragmenting but not outside it and therefore they would not change the results
qualitatively.

However, of more interest are the cases where no fragmentation has occurred. In run
10-20 (top right) no fragmentation has occurred in agreement with a value for Q of ∼ 1
except around 500 AU where it is lower. However, at this particular position as well
as everywhere else QM is above 1. This indicates that around 500 AU the magnetic
pressure contributes to the stability of the disc just as around r = 400 AU in run 26-20.
For the sub-Keplerian discs found in run 5.2-20 and 26-0.4 (bottom panel of Fig. 6.14) the
hydrodynamical Toomre parameter is below 1 over a wide range indicating instability.
However, no fragmentation occurs as can be seen in the top-on views. In contrast to
Q the magnetic Toomre parameter QM is in general above 1, which fits better to the
observed behaviour indicating that the magnetic field is responsible for stabilising the
disc. However, it is not clear to what extent the Toomre analysis, originally derived
for rotationally supported discs without infall motions, is applicable for strongly sub-
Keplerian discs with significant infall motions as presented here. We also note that
discs where found to be stable against fragmentation even for Q < 1. Kratter et al.
(2010), analysing the stability of discs under purely hydrodynamical conditions, find
stable discs with Q being locally smaller than 1. The authors attribute this to the
fact that Q = 1 indicates instability of axisymmetric perturbations in infinitely thin
discs (Toomre, 1964). For thick discs, as it is the case in our simulations, they argue that
the instability criterion is expected to be somewhat relaxed (Goldreich & Lynden-Bell,
1965). Hence, even in cases where Q is smaller than 1 and no fragmentation occurs,
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Figure 6.14.: Column density of the disc in the runs 26-20, 10-20, 5.2-20 and 26-0.4 (from top
left to bottom right) at the end of each simulation. Below each column density plot the Toomre
parameter Q (solid lines) and magnetic Toomre parameter QM (dashed lines) for t = 0 yr, 2000
yr and 4000 yr (for runs 10-20 and 5.2-20) and 5000 yr (for runs 26-20 and 26-0.4) plotted
against the radius are shown. The hydrodynamical Toomre parameter Q is of the order of 1 or
– in particular for the sub-Keplerian discs in the bottom panel – slightly below 1 whereas QM is
almost everywhere above 1.
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stability could be given due to the thermal pressure alone without the magnetic pressure
being needed.

To summarise, the Keplerian discs, also those in the other runs not shown here, are in
parts reasonably well described by the hydrodynamical Toomre parameter Q. However,
there is some indication that the magnetic pressure is required to stabilise the disc
against fragmentation. For sub-Keplerian the suppression of fragmentation seems to be
even more a consequence of the magnetic field. However, in this case the Toomre analysis
might be misleading due to the sub-Keplerian nature of the discs and the strong infall
motions not considered in the derivation of the Toomre criterion. We mention that we
expect fragmentation to occur also for other runs with low magnetic field strengths
(µ ≥ 10) if the evolution of the discs would be followed further. This assumption is
supported by the fact that the discs show a continuing growth due to ongoing infall and
are only marginally stable (Q ≃ 1).

6.3. Discussion

6.3.1. Numerical caveats

The simulations considered so far were run with a maximum resolution of 4.7 AU. In
order to test the resolution dependency of our results we performed two more simulations
with the same initial setup as in run 26-4 but with a resolution varied by a factor of
4 in either direction. A detailed comparison of the results is shown in the appendix A.
The results of the resolution study suggest that the spatial resolution of 4.7 AU used
in the simulations presented in this work is sufficient to properly follow the dynamical
evolution of the protostellar discs and of the accretion rates.

As mentioned in Section 5.2, a minimum density threshold of 1 · 10−15 g cm−3 in
the central 67 AU is applied after the formation of the first sink particle. The exact
amount of mass added artificially over the whole simulation time depends on the in-
dividual simulation but never exceeds a few 10−2 M⊙ corresponding to a mass rate of
10−6 – 10−5 M⊙ yr−1, which is significantly below the observed accretion rates of a few
10−4 M⊙ yr−1. Hence, we suppose that the dynamical influence of the density threshold
is negligible. Therefore its application seems to be appropriate in order to avoid very
small hydrodynamical timesteps which in turn would significantly increase the compu-
tational costs for the simulations.

It is not clear to what extent our results are affected by the chosen density profile
ρ(r) ∝ r−1.5. Girichidis et al. (2011) find that concerning fragmentation properties their
results strongly depend on the initial density profile which they attribute to the varying
relative importance of turbulence compared to gravity. As we do not include turbulent
motions in our simulations, our results should depend less on the density profile than
in the work of Girichidis et al. (2011), in particular with regard to the accretion rates,
which also vary only rather moderately in the work of Girichidis et al. (2011). Hence,
considering protostellar disc formation and accretion rates, we expect our results to be
representative for 100 M⊙ cores with the given rotational and magnetic energies.
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6.3.2. Disc formation

As demonstrated in Fig. 6.7, a transition from early-type, large-scale Keplerian discs
to sub-Keplerian discs occurs around a normalised initial mass-to-flux ratio µ of ∼ 10
independent of the initial amount of rotational energy. This is in good accordance
with a couple of papers studying the evolution of low-mass magnetised discs. While
Hennebelle & Fromang (2008) and Hennebelle & Ciardi (2009) find a value for µ be-
tween 5 – 10, below which Keplerian disc formation is suppressed, Allen et al. (2003)
and Mellon & Li (2008) find no Keplerian discs for µ up to at least 10. Duffin & Pudritz
(2009) studying the possible fragmentation of magnetised discs with an initial µ = 3.5
find sub-Keplerian rotation profiles as well in agreement with the results mentioned be-
fore. Although all these simulations apply to low-mass star formation with core masses
around 1 M⊙, the observed maximum value of µ for which the formation of large-scale
Keplerian discs is suppressed agrees remarkable well with our finding of 5 < µ < 10.

For the sub-Keplerian discs observed in our simulations the infall velocities are in gen-
eral significantly larger than the rotation speed, i.e. |vrot/vrad| < 1, and close to free-fall
(see right panel of Fig. 6.3 and Fig. 6.6). This is attributed to the highly gravitationally
unstable configuration of the cores containing about 56 Jeans masses and the lack of
rotational support due to the very efficient magnetic braking. Hence, the cores cannot
be stabilised against gravitational collapse by thermal pressure alone in contrast to low-
mass cores containing only ∼ 1 Jeans mass. Indeed, for highly magnetised low-mass cores
with sub-Keplerian disc rotation the infall velocities are significantly smaller than in our
case and usually even smaller than the rotation velocities (e.g Hennebelle & Fromang,
2008; Duffin & Pudritz, 2009).

For µ & 10 we find large-scale Keplerian discs in our simulations. Although this
value of µ is lower than usually measured in molecular cloud cores (Falgarone et al.,
2008; Girart et al., 2009; Beuther et al., 2010), the result concerning disc formation is in
agreement with an increasing number of observations of rotationally supported discs in
massive star forming regions made in recent years (see Cesaroni et al., 2007, and referen-
ces therein). As an example, discs with sizes of a few 100 AU to 1000 AU and masses
between 0.1 and about 10 M⊙ have been observed (Fuller et al., 2001; Shepherd et al.,
2001; Chini et al., 2004; Fernández-López et al., 2011; Preibisch et al., 2011). These discs
are similar in size to the discs obtained in our runs with weak magnetic fields and also
show Keplerian-like rotation profiles. In addition, our disc masses of ∼ 1 M⊙ calculated
in run 26-20 and run 26-4 (see Fig. 6.13) lie well in the mass range spanned by these
observations. However, the protostars observed by the authors mentioned before have
masses around 5 – 10 M⊙ and are therefore a factor of a few more massive than our most
massive sink particles. We attributed this to the fact that the observed disc/star-systems
are in a somewhat later evolutionary stage than our systems. Nevertheless, the fact that
the disc masses in our simulations are somewhat lower than the mass of the protostar(s)
fits well in the general trend observed by the authors mentioned before.

In contrast, for µ < 10 sub-Keplerian discs are observed in our simulations. Again,
we mention that our simulations end a few 1000 yr after sink particle formation, thus
in a very early phase. An observer looking at such a system from edge-on will observe
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a flattened structure similar to a Keplerian disc but without the typical signatures of
rotation (see right panel of Fig. 6.8). Indeed, there is a growing number of observations
of such flattened structures reported in literature (see Cesaroni et al., 2007, and referen-
ces therein), although these observations often refer to more massive structures and
more evolved protostellar objects than present in our simulations. Due to the insufficient
centrifugal support, these structures are not in equilibrium and show considerable radial
infall motions, in accordance with our findings (compare bottom panel of Fig. 6.6).

The reason for the lack of centrifugal support in such sub-Keplerian discs is the strong
magnetic torque acting on the midplane (see Fig. 6.10). Angular momentum is removed
by magnetic braking at roughly the same rate as it is provided by the infalling gas.
The angular momentum removed from the midplane is partly deposited in the out-
flow and partly in regions further out which are connected to the inner parts by the
magnetic lever arm (Allen et al., 2003) created through the equatorial pinching of the
magnetic field (see Fig. 6.8). A possible way to reduce the magnetic braking efficiency
would be the inclusion of non-ideal MHD effects like ohmic dissipation or ambipolar
diffusion in the simulations. However, recent numerical work including ambipolar dif-
fusion (Mellon & Li, 2009; Duffin & Pudritz, 2009), ohmic dissipation (Dapp & Basu,
2010; Dapp et al., 2012) and also both effects (Li et al., 2011) show that even in the
case of non-ideal MHD it is not possible to form Keplerian discs in such early stages. In
fact, the aforementioned authors find that the formation of rotationally supported discs
in the case of strong magnetic fields is suppressed down to scales well below our reso-
lution limit of roughly 10 AU unless a strongly enhanced resistivity – when including
Ohmic dissipation – is used (Krasnopolsky et al., 2010). Including the Hall effect can
result in the formation of large-scale Keplerian discs (Krasnopolsky et al., 2011). The
authors claim, however, that a Hall coefficient about one order of magnitude larger than
expected under realistic conditions would be required. Hence, at the evolutionary stage
considered in this work, we cannot expect to form a proper, large-scale Keplerian disc
even by including the effects of ambipolar diffusion, Ohmic dissipation or the Hall effect
in our calculations.

In the case of turbulent, strongly magnetised low-mass cores, Santos-Lima et al. (2012)
have reported the formation of 100 AU scale, Keplerian discs, which they attribute to the
effect of turbulent reconnection (Lazarian & Vishniac, 1999). However, as we have not
included turbulence in the simulations presented so far, we will postpone this particular
topic to Chapter 8 where we focus on the effect of turbulent motions on the formation
of protostellar discs.

The question now arises how Keplerian discs on 100 AU scale can form if the non-
turbulent cores have mass-to-flux ratios µ . 5. As seen from the previous discussion,
protostellar discs are frequently observed around massive protostars. Furthermore, even
if no clear indications of discs are found, in general the observation of well-collimated out-
flows requires the presence of an underlying disc (e.g. Beuther et al., 2002c; Zhang et al.,
2005). Hence, protostellar discs should be rather common around massive protostars.
However, this seems to be in contradiction with our simulation results, in particular as ob-
served star forming regions usually have mass-to-flux ratios which are only slightly super-
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critical with µ . 5 (e.g. Falgarone et al., 2008; Girart et al., 2009; Beuther et al., 2010).
Following the long term evolution of highly magnetised low-mass cores, Machida et al.
(2011) find large-scale Keplerian discs occurring after roughly 105 yr. The authors argue
that in their case magnetic braking only redistributes the angular momentum within
the collapsing cores but does not completely remove it. Additionally, they find that the
outflows are too weak to ultimately remove a significant fraction of mass and angular
momentum from the cores. Thus, most of the core’s mass and angular momentum finally
fall onto the midplane resulting in a large-scale Keplerian disc even for high magnetic
field strengths. However, we note that the authors might underestimate the total amount
of mass and angular momentum transferred into the interstellar medium since only low-
velocity outflows are modelled in their simulations. Considering high-velocity jets and
radiation-driven outflows, the amount of material ejected into the interstellar medium
could be considerably larger, thus impeding the formation of large Keplerian discs. For
massive stars we expect this to be even more severe as here radiation-driven outflows are
even more powerful and will be able to eject angular momentum – deposited in the enve-
lope by magnetic effects – at even higher rates than low-mass protostellar outflows (e.g.
Arce et al., 2007).

At the same time outflows also provide a possible solution of the disc formation prob-
lem by diluting the envelope in which the magnetic field lines are anchored (see also
Section 6.2.2 in Mellon & Li, 2008). As the magnetic braking timescale (Eq. 3.36)

tmag,‖ =
ρc

ρext

Z

vA,ext
∝ ρ

−1/2
ext (6.8)

increases with decreasing envelope density1, this allows large-scale, centrifugally sup-
ported discs to form in particular at later stages not considered in this work when most
of the envelope has been blown away by powerful outflows. This would agree with the
fact that most of the observed disc/star-systems (see Cesaroni et al., 2007, and references
therein) are in a later evolutionary stage than our systems. However, these observations
could also be biased by the fact that massive Class 0 objects are more difficult to detect.
For example, observations of low-mass Class 0 objects indicate that for the majority
of the objects discs are present from the very early stages on (Jørgensen et al., 2009;
Enoch et al., 2009, 2011). On the other hand, the picture of a successive growth of cen-
trifugally supported discs during the evolution into Class I / II is supported from the
theoretical side by Dapp & Basu (2010) and Dapp et al. (2012). Therefore, we expect
large-scale Keplerian discs to form in our runs if the evolution would be followed over a
much longer time, thus relaxing the problem of catastrophic magnetic braking.

In summary, our simulations suggest that in non-turbulent cloud cores Keplerian discs
do not form around massive protostars in the very early stage except for unusually weak
magnetic fields. Nevertheless, we expect that centrifugally supported discs will build up
during the subsequent evolution of the collapsing cores.

Another point not mentioned explicitly so far is the fact that disc fragmen-
tation seems to be suppressed for stronger magnetic fields which was also ob-

1Here the scaling of vA,ext ∝ ρ
−1/2
ext (see Eq. 3.12) was taken into account.
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served by other authors. For low-mass cores it was shown that fragmentation can
be suppressed by strong initial magnetic fields even if initial density perturbations
are present (Hosking & Whitworth, 2004; Machida et al., 2005; Hennebelle & Teyssier,
2008; Duffin & Pudritz, 2009). Similar results are found for turbulent high-mass cores
by Commerçon et al. (2011). Such a fragmentation inhibition in high-mass cores as ob-
served in our work and by Commerçon et al. (2011) raises the question of how massive
binaries can form. Even in the simulations where disc fragmentation occurs we do not
see indications for massive binaries so far but rather a single massive protostar with
a couple of low-mass companions (compare Fig. 6.13). Of course, these findings could
be a consequence of the early stage the simulations end. Nevertheless, our results indi-
cate that massive binaries possibly form in later evolutionary stages and that the initial
mass ratio should be far from unity with the more massive star sitting in the centre.
Observations, however, reveal that a significant fraction of massive binaries consists of
stars with nearly equal masses (e.g Mason et al., 1998; Pinsonneault & Stanek, 2006).
This apparent contradiction could be resolved by the work of Artymowicz & Lubow
(1996) and Bate & Bonnell (1997). By simulating circumbinary discs these authors find
that the masses of binary components, even when unequal in the beginning, tend to
equal as accretion within the disc occurs preferentially onto the lower-mass companion.
Also different binary formation scenarios like disc-assisted captures of a second proto-
star (Moeckel & Bally, 2007) might be at work.

6.3.3. Accretion rates

A prominent feature in run 5.2-4 are the bubble-like structures occurring around the
centre of the disc (see right panel of Fig. 6.4). These features also occur in other runs with
strong initial magnetic fields and are independently observed by Zhao et al. (2011). These
bubbles are a consequence of our assumption of ideal MHD and provide a possibility
to release magnetic flux from the centre. For runs with µ = 2.6 the bubbles show a
significant influence on the accretion rates (bottom right panel of Fig. 6.12) reducing
the accretion after 2500 yr. However, for runs with µ = 5.2 the influence of such bubbles
seems to be rather limited as we cannot detect any significant changes in the accretion
rates (see bottom left panel of Fig. 6.12). We therefore conclude that the accretion rates
are reliable for runs with µ down to ∼ 5 and – up to 2500 yr – even for the both
runs with µ = 2.6. A possible solution to avoid the formation of bubbles like features
could be the inclusion of the effects of non-ideal MHD such as ambipolar diffusion or
ohmic dissipation as done in recent work (Duffin & Pudritz, 2009; Mellon & Li, 2009;
Dapp & Basu, 2010; Dapp et al., 2012). However, Nakano et al. (2002) argue that ohmic
dissipation starts to act efficiently at particle densities above 10−12 cm−3, which is well
above the typical densities found in our discs. Hence, ohmic dissipation is not expected to
be capable of significantly reducing the magnetic flux in the centre. Ambipolar diffusion,
however, starts to act at lower densities (Duffin & Pudritz, 2009) and thus might be able
to reduce the field strength in the centre before magnetically driven bubbles can occur.

As shown in Fig. 6.11, the accretion rates of the different runs vary only by a factor
of ∼ 3, which is attributed to the two competing effects of the magnetic field namely
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magnetic braking and the Lorentz force. Adopting accretion rates of a few 10−4 M⊙ yr−1

as observed in our simulations, stars of about 30 M⊙ would form within some 104 yr up
to a few 105 yr roughly independent of the initial conditions. However, this only holds if
the accretion rates stay roughly constant over the entire formation process, which might
be an oversimplification as indicated by the slight decrease of the accretion rates on
individual sink particles seen in Fig. 6.12 (see also Klessen, 2001; Schmeja & Klessen,
2004). A possible way to significantly change accretion rates would be to vary the initial
density profile and mass of the molecular cloud core, parameters which are not explored
in this work in order to limit the computational costs (see e.g. Girichidis et al., 2011).
Fragmentation seems to increase the total accretion rate (top left panel of Fig. 6.12)
whereas it decreases the accretion onto the first (and innermost) sink particle (see also
Peters et al., 2010a,b, 2011; Girichidis et al., 2011, 2012)

Our observed accretion rates agree well with accretion rates from a number of
massive star formation simulations. To begin with, our accretion rates match those
necessary to overcome the radiation pressure as deduced from 1-dimensional calcula-
tions (Kahn, 1974; Wolfire & Cassinelli, 1987). Radiation-hydrodynamical collapse simu-
lations in 2 dimensions (Yorke & Sonnhalter, 2002; Kuiper et al., 2010) and 3 dimen-
sions (Krumholz et al., 2007, 2009; Kuiper et al., 2011) with similar core masses re-
veal accretion rates of a few 10−4 M⊙ yr−1 up to 10−3 M⊙ yr−1 very similar to ours.
Peters et al. (2010a,b, 2011) simulating the long term evolution of Hii-regions around
massive protostars find similar accretion rates as well. This suggests that in our sim-
ulations accretion would continue even if the effect of radiation would be included.
Girichidis et al. (2011) studying the effect of different initial conditions on massive star
formation find accretion rates around 10−3 M⊙ yr−1, somewhat higher than ours possibly
caused by the omission of rotation or magnetic fields counteracting gravity and thus mass
accretion. Similar accretion rates were also found in earlier work by Banerjee & Pudritz
(2007) studying the very early evolution of a collapsed cloud core under the influence
of magnetic fields and rotation using a significantly higher resolution than in our work.
Hennebelle et al. (2011) observe accretion rates of the order of 10−5 – 10−4 M⊙ yr−1

somewhat smaller than ours, which we attribute to the larger core size of ∼ 1 pc used
in their setup.

Furthermore, our accretion rates agree reasonably well with theoretical estimates as
well as with observational results. Calculating the accretion rates with the formula given
in the theoretical work of McKee & Tan (2003) adapted to our setup, we find a value
of about 3 · 10−4 M⊙ yr−1 very similar to the actually observed accretion rates. Obser-
vational results for accretion rates in massive star forming regions are hard to obtain
and are often calculated only indirectly via observed outflow mass rates. Nevertheless,
results from several high-mass star forming regions indicate accretion rates of the order
of 10−4 – 10−3 M⊙ yr−1 (e.g. Beuther et al., 2002a,c, 2003; Beltrán et al., 2006) again
in good accordance with our results.
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6.4. Conclusion

We have studied the collapse of massive molecular cloud cores with varying initial rota-
tional and magnetic energies. The cores are supercritical with mass-to-flux ratios between
2.6 and 26 and have rotational energies well below the gravitational energy. Containing
about 56 Jeans masses the cores are highly gravitationally unstable and hence are pre-
sumable sites of massive star formation. We focussed our discussion on the formation of
protostellar discs and on protostellar accretion as measured by sink particles. We find
that disc properties are highly sensitive to the initial magnetic field strength whereas
protostellar accretion rates are only marginally influenced by varying initial conditions.
In the following we summarise our main findings.

1. For normalised mass-to-flux ratios µ below 10 the formation of centrifugally sup-
ported discs is completely suppressed. Instead, for µ < 10 sub-Keplerian discs are
formed with almost no rotational support and radial infall velocities close to free-
fall. In contrast, for weak magnetic fields (µ & 10) well-defined Keplerian discs
with sizes of a few 100 AU build up over time. The finding of a critical value of µ
around 10 for Keplerian disc formation agrees well with several studies of collapsing
low-mass cores.

2. Sub-Keplerian rotation for strong magnetic fields (µ . 10) is caused by magnetic
braking. Analysing the torques acting on the midplane we find that angular mo-
mentum is removed due to magnetic braking at roughly the same rate as it is
transported inwards due to the gas infall thereby preventing Keplerian discs from
forming.

3. Observed accretion rates are of the order of a few 10−4 M⊙ yr−1 varying only
within a factor of ∼ 3 between the individual runs. This variation is remarkably
small considering the large differences in the initial conditions varying over more
than two orders of magnitude in parameter space. We attribute this to two com-
peting effects of the magnetic field. Increasing the magnetic field strength results in
an increased accretion rate due to an enhanced magnetic braking efficiency lower-
ing centrifugal support. Above a certain field strength, however, a further increase
leads to declining accretion rates due to the effect of magnetic pressure and tension.
This results in rather moderate changes in the accretion rates for different initial
conditions. Furthermore, accretion rates for different amounts of angular momen-
tum seem to converge with increasing field strength due to the effect of magnetic
braking.

4. For the majority of the simulations disc fragmentation does not occur. Analysing
the discs shows that in parts they are described reasonably well with the classi-
cal Toomre parameter Q, i.e. thermal pressure can stabilise the discs. However,
there is some indication, in particular for sub-Keplerian discs, that the magnetic
pressure is required to stabilise the discs. In two simulations, which are subject
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to fragmentation, neither thermal nor magnetic pressure can stabilise the discs.
Accordingly, both Q and QM are below 1.

5. In the two runs with disc fragmentation more than 10 sink particles are formed
during the first 5000 yr. Among these sinks only the first one created reaches a
mass above 1 M⊙ thus containing more than 60% of the totally accreted mass. All
other particles have masses of at most 0.1 M⊙. The discs formed in both runs reach
masses around 1 M⊙ somewhat below the totally accreted sink particle masses.

6. The outflows launched from the protostellar discs are not capable of significantly
reducing mass accretion over time. Compared to a run with zero magnetic field
and zero rotation, mass accretion is reduced to a level of 35% – 95%.

7. Radial profiles of column density and temperature exhibit accretion shock features
moving outwards as time evolves. The shocks occur when the infalling gas hits
either centrifugal or magnetic barriers thus strongly decreasing the infall speed.

A growing number of observations of discs and bipolar outflows around high-mass
protostars (see Beuther & Shepherd, 2005; Cesaroni et al., 2007, for recent reviews) sup-
port a high-mass star formation scenario via disc accretion. On the other hand, obser-
vations also reveal that prestellar cores with masses ranging from 2 – 2000 M⊙ are
usually only slightly supercritical with µ . 5 (Falgarone et al., 2008; Girart et al., 2009;
Beuther et al., 2010). Together with our numerical results this suggest that there should
be no Keplerian discs in the very early stages of typical high-mass star forming regions
but rather flattened, strongly sub-Keplerian structures. This apparent dichotomy has an
important impact on the formation of discs around massive stars. To enable the observed
presence of centrifugally supported discs in later stages, effects in the later evolution of
the system are required reducing the efficiency of magnetic braking. We discussed pos-
sible effects in the context of massive star formation like outflows and non-ideal MHD
leading to a successive growth of discs in the later evolution.

So far, the influence of turbulent initial conditions as indicated by observations (e.g.
Caselli & Myers, 1995) is completely neglected in our setup. The effect of turbulent
motions, in particular on the formation of protostellar discs will be studied in detail in
Chapter 8 of this work. For further simulations not performed in the course of this work
it would be also interesting to study the effect of ambipolar diffusion, which is expected
to act efficiently in the high density regime of protostellar discs. For this purpose, the
existing set of simulations serves as a useful guide to select representative simulations
to be repeated with increased resolution and additional physics. After having studied in
detail the influence of the initial conditions on accretion rates and disc formation, in the
next chapter we will discuss the formation and properties of protostellar outflows.
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In the previous chapter I studied the effect of the initial conditions on protostellar
accretion rates and the formation of protostellar discs for a series of simulations. In
this chapter I will analyse the effect of varying initial conditions on the formation and
evolution of molecular outflows for the same simulations. The numerical methods and
the setup of the simulations are described in detail in Chapter 5 and will therefore not
be repeated here. The results and the discussion presented in the following have been
published in Seifried et al., 2012b, MNRAS, 422, 347.

7.1. Introduction

The formation of massive stars and the evolution of associated protostellar outflows
is still a highly debated question (e.g. Beuther & Shepherd, 2005; Zinnecker & Yorke,
2007). It is believed that massive stars form in high-mass molecular cloud cores with
masses ranging from about 100 M⊙ up to a few 1000 M⊙. Such cores have charac-
teristic sizes of a few 0.1 pc and peak densities of up to 106 cm−3 (e.g. Beuther et al.,
2007). A crucial ingredient for the formation of outflows is the magnetic field in the cloud
cores. Its dynamical importance can be estimated by the mass-to-flux ratio µ normalised
to the critical mass-to-flux ratio (Mouschovias & Spitzer, 1976, but see Section 3.2).
For high-mass star forming cores the observed mass-to-flux ratio is typically slightly
supercritical with µ . 5 (Falgarone et al., 2008; Girart et al., 2009; Beuther et al.,
2010; Crutcher et al., 2010) indicating a significant influence of magnetic fields on the
star formation process. In large-scale turbulence simulations, however, also higher val-
ues of µ up to 20, i.e. weaker magnetic fields, have been found (e.g. Padoan et al.,
2001; Tilley & Pudritz, 2007). In combination with the observed overall slow rotation
of cores (Goodman et al., 1993; Pirogov et al., 2003) all necessary ingredients for the
formation of protostellar outflows are present. Indeed, there is a growing number of
observations of outflows around massive protostellar objects (see Beuther et al., 2002c;
Zhang et al., 2005, for recent compilations). The generation of such massive outflows, in
particular their underlying driving mechanism and their properties will be the focus of
our interest here.

For low-mass star formation (Mcore ∼ 1 M⊙), the generation, evolution and proper-
ties of protostellar outflows have been studied in great detail over the last years (e.g.
Allen et al., 2003; Banerjee & Pudritz, 2006; Mellon & Li, 2008; Machida et al., 2008;
Hennebelle & Fromang, 2008; Hennebelle & Ciardi, 2009; Commerçon et al., 2010;
Tomida et al., 2010; Duffin & Pudritz, 2009; Price et al., 2012). Despite the intensive
research in this field there is still no consensus about which exact mechanism drives
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the outflows except the fact that all outflows are magnetically driven. Different results
can be found in literature about whether the outflow is driven by centrifugal accelera-
tion (Blandford & Payne, 1982; Pudritz & Norman, 1986; Pelletier & Pudritz, 1992) or
by the pressure of the toroidal magnetic field (Lynden-Bell, 1996, 2003, but see Chap-
ter 4 for an overview of both models). A possible reason for this might be the different
methods used to analyse the outflows. In this work we seek to clarify this problem by de-
riving a fully self-consistent, generalised criterion from magnetohydrodynamical (MHD)
wind theory to determine the underlying driving mechanism. The criterion is applicable
in the same way to low- and high-mass protostellar objects.

Numerical studies on the influence of magnetic fields in massive star forming re-
gions have received attention only recently. The formation of a protostar and the
associated outflow in a magnetised high-mass core was studied for the first time
by Banerjee & Pudritz (2007) using a very high spatial resolution. The interplay of
magnetically driven outflows and ionising radiation is analysed by Peters et al. (2011),
who find a sphere-like outflow morphology. In this context we also mention the work
of Vaidya et al. (2011), who study the effect of outflow decollimation due to radia-
tion forces, but at much later times than presented here. Examining the influence of
initial turbulence, an aspect not considered in this chapter, Hennebelle et al. (2011)
and Commerçon et al. (2011) find that strong magnetic fields reduce the number of frag-
ments formed during the collapse. A similar trend was also reported in the Section 6.2.6
in this work but for the present simulations without turbulence. A second crucial re-
sult of the previous chapter that will be of particular importance in the following is
the fact that for simulations with strong magnetic fields (µ < 10) only sub-Keplerian
protostellar discs can form due to the very efficient magnetic braking (see Section 6.2.3
and in particular Fig. 6.7).

In the present chapter, we systematically analyse the influence of the rotational and
magnetic energy on protostellar outflows. We focus on the underlying launching mecha-
nism and how the initial conditions affect global outflow properties like mass, momentum
and the morphology. In particular, we are able to examine how the development of a
two-velocity-component outflow or a sphere-like outflow (Peters et al., 2011) depends on
the initial configuration. For this purpose we use the same simulations as in Chapter 6.
We note that the initial conditions are selected in a way to cover a large parameter space
in accordance with observations and numerical simulations. With the generalised outflow
criterion derived in this work we will show that magneto-centrifugally driven outflows
consist of two different regimes described by the MHD wind theory. In the first regime
close to the disc and the rotation axis, acceleration is dominated by the centrifugal force,
i.e. gas gets flung outwards along the poloidal magnetic field lines, whereas in the second
regime further away from the disc Bφ starts to dominate the acceleration. Furthermore,
we will also show that despite large morphological differences all outflows observed in
this work are launched by centrifugal acceleration and that the differences in collimation
are mainly caused by varying hoop stresses.

The chapter is organised as follows. In Section 7.2 we derive the generalised criterion to
determine the outflow driving mechanism. The results of our simulations (see Table 5.1)
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are presented in Section 7.3. Firstly, two representative simulations are discussed in
detail also testing the newly developed outflow criterion. Next, we analyse the long term
evolution and stability of the outflows before the effect of varying initial conditions on
the outflow properties are examined. In Section 7.4 the results are discussed in a broader
context and are compared to theoretical, numerical and observational studies before we
conclude in Section 7.5.

7.2. A generalised wind theory

In Chapter 4 we have presented the two classical MHD wind theories explaining the
launching and driving of molecular outflows. In the centrifugal acceleration picture (Sec-
tion 4.1) the gas is flung out- and upwards along poloidal magnetic field lines when the
field lines are inclined strongly enough so that the centrifugal force exceeds gravity. In
contrast in a magnetic tower flow (Section 4.2) the acceleration of the gas is due to a
gradient in the toroidal magnetic field Bφ. However, as can be seen later in the result
section, in outflows there are not only regimes where the magnetic field structure is
dominated either by the poloidal or the toroidal magnetic field so that neither of the
two mechanisms described before can exclusively be responsible for the outflow driving.

In order to properly analyse the outflow driving mechanism, in the following we develop
a criterion which is more general and therefore has less restrictions to the magnetic field
structure. The advantage of this criterion is that it is directly applicable to the simulation
data and that it can distinguish between a centrifugally driven outflow and an outflow
driven by the pressure gradient of the toroidal magnetic field. Moreover, in contrast
to the 30◦-condition derived in the centrifugal wind theory, the criterion presented in
the following can be applied to the entire outflow structure as well as situations with
sub-Keplerian discs.

Like the centrifugal wind theory the new criterion is based on the axisymmetric,
stationary MHD equations. The key points used for its derivation are again the four
surface constants listed in the Eqs. 4.1 – 4.4. For the sake of simplicity we neglect the
enthalpy h in Eq. 4.4. Making use of the Eqs. 4.1 and 4.2 one can rewrite Eq. 4.4 as
follows:

ǫ =
1
2
v2

pol +
1
2
v2

φ + Φ − vφ

vpol

1
4π

BφBpol

ρ
+

1
4π

B2
φ

ρ
. (7.1)

As can be seen, the energy invariant ǫ is now expressed in variables which can all directly
be inferred from the simulations data. The last term on the right hand side of Eq. 7.1
containing B2

φ describes the influence of the toroidal magnetic field on the dynamics of
outflows. It states that in magnetic wind theory, beside the poloidal magnetic field fling-
ing material outwards, also the toroidal magnetic field can contribute to the acceleration
of gas (see also Spruit, 1996, for a detailed discussion). Magnetocentrifugal acceleration
in an outflow therefore has two regimes: a centrifugally dominated and a Bφ (magnetic
pressure) dominated regime. In the following we will use centrifugal acceleration when
describing regions in which gas is accelerated mainly by flinging gas outwards along the
poloidal field lines as described in detail in Section 4.1. In contrast, magneto-centrifugal
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acceleration describes a situation where both centrifugal acceleration and acceleration
due to Bφ are at work. The magnetic tower described in Section 4.2 is the extreme case
of magneto-centrifugal acceleration where the gas acceleration is more or less exclusively
due to the effect of Bφ.

Whether gas gets accelerated or not, i.e. whether vpol increases or decreases, depends
on the behaviour of the terms on the right hand side of Eq. 7.1. As ǫ in total is constant
along each poloidal magnetic field line, the general condition for gas acceleration is
therefore

∂pol

(

1
2
v2

φ + Φ − vφ

vpol

1
4π

BφBpol

ρ
+

1
4π

B2
φ

ρ

)

< 0 . (7.2)

Here ∂pol denotes the spatial derivative along a given poloidal magnetic field line. Given
that the above criterion is fulfilled, the term 1/2v2

pol in Eq. 7.1 increases along the poloidal
field line, i.e. an outflow is launched. This criterion is universal and can be applied to
the entire outflow structure. It traces all regions where gas gets accelerated outwards
including those regions dominated by the effect of Bφ. In addition, it only contains
variables which are directly accessible from the simulations, which makes it very handy
for our purpose. During the course of this work we sometimes will refer to this criterion
as the general criterion.

However, this criterion alone is not too helpful as it traces the entire region where gas
gets accelerated, which – in principle – could also be inferred from the simulation data
directly. The main goal in this section, however, is to find a criterion which allows to
distinguish between centrifugal and Bφ dominated acceleration. Therefore the centrifugal
wind theory presented in Section 4.1 has to be modified such that is applicable to the
entire outflow structure as well as situations where sub-Keplerian discs are present.

The basis of the following analysis is just like in Section 4.1 the assumption that the
magnetic field is strong enough to retain a purely poloidal structure, i.e. Bφ = 0, which
would cause the gas to rigidly corotate with the magnetic field. Therefore, the rotation
frequency of the gas Ω can be set to the rotation frequency of the magnetic field,

Ω =
vφ

r
= ω . (7.3)

Hence, like in the centrifugal wind theory the basis for our further consideration is Eq. 4.8

ǫ′ =
1
2
v2

pol + Φcg .

Then the question of whether gas can get accelerated reduces to the question of how

Φcg(r, z, ω) = − GM√
r2 + z2

− 1
2
ω2r2 .

changes along a given magnetic field line. If Φcg decreases along the field line, vpol

increases, i.e. the gas gets accelerated and vice versa. To remind the reader, the 30◦-
condition in the centrifugal wind theory was derived by setting ω to the Keplerian value
at the footpoint of the magnetic field line in the disc. This will not be done here to
guarantee the more general nature of the desired criterion.

84



7.2. A generalised wind theory

The problem in a numerical simulation is that for an arbitrarily chosen point (r∗, z∗)
somewhere above the disc it is often not possible to determine the footpoint in the
disc where the magnetic field line passing through (r∗, z∗) is anchored. Therefore, in
the expression for Φcg it is not possible to set ω = Ω0 where Ω0 would be the angular
frequency at the (unknown) footpoint of the field line in the disc. However, under the
afore made assumption that the gas and the magnetic field corotate, this problem can
be circumvented. The angular frequency of the magnetic surface ω is simply replaced by
the local angular frequency of the gas, i.e.

ω∗ :=
vφ,∗
r∗

(7.4)

which is known from the simulation data. Hence, at any given point (r∗, z∗) one can
calculate the value of the centrifugal-gravitational potential

Φcg,∗ := Φcg(r∗, z∗) = − GM
√

r2∗ + z2∗
− 1

2
v2

φ,∗ . (7.5)

By solving the equation

Φcg(r, z, ω∗) = − GM√
r2 + z2

− 1
2
ω2

∗r
2 = Φcg,∗ (7.6)

for z under the assumption that the gas would rotate everywhere with ω∗ = vφ,∗/r∗, one
obtains the shape of an isocontour

z(r, ω∗,Φcg,∗) = −

√

−r6ω4∗ − 4r4ω2∗Φcg,∗ − 4r2Φ2
cg,∗ + 4G2M2

r2ω2∗ + 2Φcg,∗
. (7.7)

Along this isocontour – which of course passes through the point (r∗, z∗) – Φcg(r, z, ω∗)
remains constant with a value of Φcg,∗ as defined in Eq. 7.5. The contour therefore divides
the area in regions where the centrifugal potential is smaller/larger than the centrifugal
potential at (r∗, z∗). According to Eq. 4.8 and under the assumption that the gas is
rotating rigidly with the magnetic field, it can be seen that, if the magnetic field line
through (r∗, z∗) reaches to the region where Φcg is smaller than Φcg,∗, the gas will be
accelerated and vice versa. This can be tested by comparing the slope of the isocontour
(Eq. 7.7) with that of the magnetic field line (Bz/Br) at (r∗, z∗). Hence, taking the
derivative of Eq. 7.7 with respect to r and comparing it to the ratio Bz/Br yields the
desired criterion. For centrifugal acceleration to work at an arbitrarily chosen point the
criterion therefore is

r

z

1
GM

(

v2
φ

r2
(r2 + z2)3/2 −GM

)

/(

Bz

Br

)

> 1 . (7.8)

For the sake of simplicity the ∗ symbol was omitted in the above formula and Φcg was
replaced with the right hand side of Eq. 7.5. It is important to note that every quantity
in Eq. 7.8 has to be taken at the point considered, i.e. at (r, z).
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The above criterion was derived by setting Bφ = 0 and assuming rigid corotation of the
magnetic field and the gas, i.e. the gas is flung out- and upwards along the poloidal field
lines. In summary, the criterion in Eq. 7.8 traces centrifugally accelerated gas which is
why we will call it the centrifugal criterion in the following. When analysing simulation
data, regions of outflowing gas not traced by the centrifugal criterion should be fit by
the general outflow criterion (Eq. 7.2), which also takes into account the acceleration by
the toroidal magnetic field Bφ. Hence, by comparing the results of both criteria we are
able to distinguish between regions dominated by centrifugal acceleration and those by
acceleration due to Bφ.

Finally we note that Eq. 7.1 nicely demonstrates that a classification into centrifu-
gally driven outflows on the one hand and magnetic tower flows on the other might
be an oversimplification. In reality there is a coexistence of centrifugal acceleration and
acceleration due to the pressure gradient of Bφ both contained in Eq. 7.1. We will refer
to this several times in the course of this work.

7.3. Results

In this section, we present the results of our collapse simulations focussing on the evo-
lution and the launching mechanism of outflows. The evolution of the protostellar discs
and the accretion properties of the protostars were studied in detail in Chapter 6. We
limit our consideration to the phase after the first sink particle has formed to study the
time evolution of the outflow and its underlying launching mechanism in detail. In the
following, all times refer to the time elapsed since the formation of the first sink particle.

Before going into the details, it is of interest to give some rough estimate of the
maximum outflow velocities which can be obtained in our simulations. According to
Eq. 4.11, with sink masses of up to Mmax ∼ 4 M⊙ (Table 7.1) and a minimum spatial
resolution element of dx = 4.7 AU, the maximum reachable rotation velocities and thus
also the outflow velocities

vout,max ∼ vrot,max ∼ vkep,max =

√

GMmax

dx
(7.9)

are limited to about 10 km s−1.

In general, the outflows are launched shortly after the creation of the first sink particle
as soon as a protostellar disc builds up. In each simulation the outflow evolves over time
and shows no signs of re-collapse until the end of the simulation. However, outflow
morphologies and global properties like mass or momentum (see Table 7.1) differ signifi-
cantly between the individual runs. Hence, in the following we select two representative
simulations with equal initial rotational energies but different magnetic field strengths
to study the properties and the launching mechanism of the outflows in detail.
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Run Mout Pout L Msink tsim Ṁout Ṗout

(M⊙) (M⊙ km s−1) (AU) (M⊙) (yr) (10−4 M⊙ yr−1) (10−4 M⊙ km s−1 yr−1)
26-20 0.509 0.337 707 1.85 5000 1.02 0.673
26-4 0.853 2.37 3215 2.65 5000 1.71 4.74
26-0.4 0.526 2.23 3720 3.59 5000 1.05 4.46
26-0.04 0.080 0.202 856 4.16 5000 0.16 0.404
10-20 1.09 1.02 1240 1.28 4000 2.73 2.54
10-4 0.603 0.585 669 2.23 4000 1.51 1.46
10-0.4 0.164 0.177 445 2.98 4000 0.41 0.442
5.2-20 0.875 1.70 2110 1.78 4000 2.19 4.25
5.2-4 0.656 0.715 1128 2.28 4000 1.64 1.79
5.2-0.4 0.537 0.586 1100 2.55 4000 1.34 1.46
2.6-20 0.116 0.281 1942 1.30 3000 0.39 0.938
2.6-4 0.095 0.215 1455 1.48 3000 0.32 0.717

Table 7.1.: Listed are the mass, momentum and extension of the outflows, the total sink particle
mass at the end of each simulation, the time the runs have being followed after the first sink
particle has formed, and the time averaged mass and momentum outflow rates.

7.3.1. Weak field run 26-4

General properties

We start our consideration with run 26-4 which has a weak initial magnetic field (µ = 26)
and a moderate rotational energy (βrot = 0.04). In Fig. 7.1 we show the density, the
poloidal velocity field and the outflow velocity

vz,out = vz · z|z| (7.10)

of the outflow in a slice along the z-axis at two different times. It can be seen that
initially the outflow expands rather slowly into the surrounding medium as within the
first 2000 yr it has reached a height of ∼ 250 AU only. After 2000 yr the growth rate
increases and reaches a roughly constant value of about 1 AU yr−1 ≃ 4.7 km s−1. We
will discuss this behaviour in detail at the end of Section 7.3.1. Fig. 7.1 also shows
that a bow shock at the tip of the outflow develops extending down to the edge of
the centrifugally supported disc. As indicated by the velocity vectors, most of the gas
within the bow shock is directed vertically outwards with velocities up to 15 km s−1, in
agreement with the estimate made before. This velocity corresponds to highly supersonic
motions of Mach numbers up to ∼ 55 using a temperature of 20 K as present in the
undisturbed, ambient medium and Mach numbers of about 15 – 20 with respect to
temperatures of a few 100 K in the outflow itself. The outflow morphology at 2000 yr
and 5000 yr reveals a self-similar appearance. In particular the collimation factor of the
outflow, i.e. the ratio of the length to the width of one outflow lobe, settles around a
value of ∼ 4. We especially mention the very turbulent structure seen in the outflow
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Figure 7.1.: Slice along the z-axis in the weak-field run 26-4, at 2000 yr (for the density field
only) and 5000 yr after the formation of the first sink particle. The two top panels show the
density field and the poloidal velocity vectors (black arrows). Note the different spatial scales
between the left and right panel. The outflow velocity (vz,out, bottom panel) and the density
field after 5000 yr show a very turbulent structure caused by internal shocks.

after 5000 yr in both the density and the velocity field. Several internal shock fronts and
instabilities have occurred in the outflow although no perturbations are included in the
initial conditions. This turbulent structure is a consequence of instabilities and not of
episodic ejection events. We checked this by visually inspecting the time evolution of the
outflow, finding that continuous ejection occurs over the entire time range. Furthermore,
a highly time variable ejection rate would also require significant variations in the mass
accretion rate (e.g. Pudritz & Norman, 1986, but see also Eq. 4.12), which is clearly
not the case (see Fig. 6.12). A turbulent structure as observed here was recently also
reported by Staff et al. (2010) for jet simulations. The energy in the shocks dissipates
and heats up the jet possibly resulting in optical forbidden line emission (Staff et al.,
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Figure 7.2.: Position-velocity diagram for the weak-field run 26-4 after 5000 yr. The contours
have a logarithmic spacing. The bulk velocity increases with distance. The maximum velocity
shows several clear peaks which are attributed to internal shock fronts.

2010). Interestingly, despite the turbulent structure the outflow keeps expanding with
constant speed. Another interesting fact is that the gas is continuously ejected from the
disc over the whole 5000 yr although the protostellar disc starts to fragment around
t ≃ 2500 yr and has formed 11 further fragments by then (compare Fig. 6.13). Hence,
fragmentation does not necessarily terminate the driving of outflows, a fact which is also
observed in run 26-20.

To study the outflow structure in more detail, we show the position-velocity (PV) dia-
gram of the outflow at 5000 yr in Fig. 7.2. The PV diagram is frequently used by observers
to study the velocity structure of outflows (e.g Lada & Fich, 1996; Beltrán et al., 2011).
For the diagram shown here we only take into account outflowing gas. As indicated by
the contours, the velocity of the bulk of outflowing material increases with distance from
the midplane. Such a “Hubble Law” is frequently observed for outflows around low- as
well as high-mass protostellar objects (e.g. Lada & Fich, 1996; Arce & Goodman, 2001;
Beuther et al., 2003; Wang et al., 2011; Ren et al., 2011; Beltrán et al., 2011). The maxi-
mum outflow velocity saturates around 15 km s−1 showing several distinct peaks which
we attribute to the internal shocks in the outflow (see bottom panel of Fig. 7.1). Above
a distance of about 2000 AU, however, the maximum velocity experiences a significant
drop from about 15 to 10 km s−1. At the same time the ”Hubble law“ describing the
evolution of the bulk velocity truncates and the bulk velocity saturates at a value of
∼ 5 km s−1. We attribute this to a strong internal shock front and the very turbulent
structure at these distances, which reduce the maximum outflow velocity and prevent an
efficient overall acceleration although local gas acceleration is still possible. The position
where this happens gradually moves outwards in time whereas the bulk velocity above
this point remains almost constant with a value of ∼ 5 km s−1.

In Fig. 7.3 we show radial profiles of the density and outflow velocity at different
vertical positions. Both quantities are averaged azimuthally before plotting. As can be
seen, below 2000 AU the highest velocities occur close to the symmetry axis of the jet.
In particular the velocity profile at z = 500 AU shows a very well-confined, fast velocity
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Figure 7.3.: Radial profiles of the outflow velocity (top) and the density (bottom) at differ-
ent vertical positions for the weak-field run 26-4 after 5000 yr. The quantities are averaged
azimuthally before plotting. For z < 2000 AU the outflow velocity increases towards the z-axis
whereas at larger distances it has an almost flat radial profile. The density profiles are rather flat
showing only small variations and a prominent jump associated with the bow shock.

component with a rather sharp drop-off at a radius of 150 – 200 AU. This two velocity
components, the fast, central as well as the slower, enclosing component are also seen in
the PV diagram (Fig. 7.2) in particular in the region between z = 0 and −1000 AU where
two ”Hubble laws” seem to be present. The good collimation of the fast jet component
is most likely due to the strong hoop stress exerted by the toroidal magnetic field.
Such two-velocity-component outflows with a well-collimated, fast component close to
the axis of the outflow and a wider spread, slower component are frequently observed
around low-mass protostars (see e.g. Bachiller, 1996, for a review) and also around
massive protostars (e.g. Beuther et al., 2004; Ren et al., 2011). Furthermore, they are
also observed in jet simulations (e.g. Staff et al., 2010).

We note that the decrease of vz,out close to r = 0 at z = 500 AU (black line in the top
panel of Fig. 7.3) is most likely a numerical issue as gas very close to the z-axis cannot
get accelerated properly due to the limited resolution. Above z = 2000 AU the velocity
profile is more or less smooth over the whole radial range. In accordance with the PV
diagram (Fig. 7.2) for those distances no velocities higher than ∼ 6 km s−1 occur. The
density profiles (bottom panel of Fig. 7.3) show a relatively flat shape at all distances
with variations of about half an order of magnitude and possibly a slight increase towards
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Figure 7.4.: Magnetic field structure of the weak-field run 26-4 after 5000 yr in a slice along the
z-axis. All quantities are averaged azimuthally. Left: Ratio of the toroidal to poloidal magnetic
field. Black contours give the transition from the toroidally to the poloidally dominated region.
Almost the whole outflow area is dominated by Bφ. Right: Density field in the inner region. Also
shown are the poloidal magnetic field lines (white lines), the velocity field (black arrows) and the
contours where Bφ/Bpol = 1, 10 (black and dark blue lines, respectively). Almost everywhere
the poloidal magnetic field has inclination larger than 30◦ with respect to the z-axis suitable for
centrifugal acceleration.

the z-axis. At the outer edge the density experiences a strong increase due to the bow
shock confining the outflow. By carefully comparing with the top panel of Fig. 7.3, it
can be seen that the material in the bow shock partly reveals infall velocities.

Launching mechanism

Next, we analyse the underlying launching mechanism of the outflow in the weak field
case 26-4. Once again, in order to smooth out local perturbations, which inevitably
would occur in an arbitrarily chosen slice along the z-axis, the quantities shown in the
following are averaged azimuthally. Firstly, the relative importance of the toroidal (Bφ)
and poloidal magnetic field (Bpol) for the total magnetic energy content in the outflow
is studied. This is done in the left panel of Fig. 7.4 where the value of Bφ/Bpol in a
slice along the z-axis is shown. As can be seen, almost the complete outflow region is
dominated by Bφ. The toroidal component is created by the rotation of the protostellar
disc in which the initially purely poloidal magnetic field is anchored. Bφ reaches values
larger than Bpol by up to 2 orders of magnitude. Hence, Bφ should have a crucial effect
on the evolution of the outflow. Depending on the position, the absolute values of Bφ

and Bpol vary between ∼ 0.01 G and ∼ 1 G.
As mentioned in Section 4.2, outflows driven by the pressure gradient of the toroidal

magnetic field are often denoted as magnetic tower flows (Lynden-Bell, 1996, 2003). The
fact that the outflow region is mainly dominated by Bφ suggests that the outflow is
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such a magnetic tower flow. However, a closer inspection reveals that the region close to
the symmetry axis, where the highest velocities occur (see bottom panel of Fig. 7.1), is
either only weakly dominated by the toroidal magnetic field or even dominated by Bpol,
i.e. Bφ/Bpol ≤ 10. We emphasise that even a field configuration which is dominated
by Bφ does not contradict the centrifugal acceleration mechanism. Blandford & Payne
(1982) find values of Bφ/Bpol up to ∼ 10 (see their Fig. 4) in the acceleration region
in agreement with our findings. Therefore, we assume that the outflow is driven by
centrifugal acceleration although there is certainly a contribution to the acceleration by
Bφ as well. In the following we will quantitatively confirm this assumption.

To do so, in the right panel of Fig. 7.4 we analyse the magnetic field structure in detail
concentrating on the inner region where the jet is launched. The poloidal magnetic field
lines are overplotted on the density field. In addition, we show the poloidal velocity
field and the contours where Bφ/Bpol = 1, 10 respectively. As can be seen, the field
lines just above/below the disc are strongly inclined against the z-axis. Except for the
innermost part the inclination angle is everywhere above 30◦, which is required to launch
cold gas from the disc by centrifugal acceleration (Blandford & Payne, 1982). Here we
emphasise that an inclination angle smaller than 30◦ does not necessarily mean that
centrifugal launching is impossible. The 30◦-condition is valid only for a cold gas, i.e. if
thermal pressure can be neglected1. As soon as a thermal pressure gradient is present
aiding to accelerate the gas upwards, even inclination angles below 30◦ are sufficient
for jet launching. As there is clearly a pressure increase towards the centre in the disc,
the innermost region is suitable for centrifugal acceleration as well even though the
inclination is below 30◦. Furthermore, as pointed out before, in the inner region where
the actual acceleration takes place the magnetic field is not or only weakly dominated
by Bφ in agreement with the findings of Blandford & Payne (1982). In contrast, for
a magnetic tower flow (Lynden-Bell, 2003) one would expect a much more wound up
structure with a clearly dominating toroidal magnetic field component. However, we
note that the toroidal magnetic pressure also contributes to the acceleration of the gas
as implied in the MHD wind theory (see Eq. 7.2). As argued before, the launching from
the disc itself, however, is most likely due to centrifugal acceleration.

To further support the conclusion of a centrifugally driven wind, we apply the two
criteria derived in Section 7.2 (see Eqs. 7.2 and 7.8) to the simulation data at 5000 yr.
In contrast to the Blandford & Payne criterion, we can in general determine the driving
mechanism of the outflow away from the disc surface. The results are shown in Fig. 7.5,
where the regions where the two criteria are fulfilled are shaded grey. As can be seen,
within about 800 AU above/below the disc there is a continuous region close to the z-axis
where centrifugally dominated acceleration is possible (left panel). Also at larger heights
centrifugal acceleration partly works, in particular close to the symmetry axis of the jet.
The grey shaded region around the z-axis in the upper left panel of Fig. 7.5 agrees very
well with the region where the highest outflow velocities are detected. Hence, despite
the strong assumptions like stationarity, axis-symmetry and corotation used to derive
the criterion given in Eq. 7.8, it works reasonably well. In particular, it is applicable to

1Remember that we omitted the term h in Eq. 4.4 for the derivation of the 30◦-condition.
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Figure 7.5.: Slice along the z-axis in the weak-field run 26-4 after 5000 yr for two different
scales. Gray shaded areas show the regions where the criteria derived in Section 7.2 are fulfilled
(Eq. 7.8 in the left panel and Eq. 7.2 in the right panel). The left panels show that centrifugal
acceleration works mainly close to the z-axis up to a height of about 800 AU, which agrees very
well with the region where the highest velocities are found. The general criterion is more volume
filling and traces also regions in the outer parts.

regions far from the disc surface in contrast to the 30◦-criterion of Blandford & Payne
(1982). We therefore draw the following conclusions: The assumption of corotation is
reasonably well fulfilled in the inner part of the outflow (|z| ≤ 800 AU) despite the partly
significant toroidal magnetic field (see Fig. 7.4). Hence, the central jet can be considered
as centrifugally driven, i.e. gas gets flung out- and upwards along the poloidal magnetic
field lines. The result also demonstrates that the ratio of Bφ to Bpol and the 30◦-condition
– apart from the disc surface – are not sufficient to unambiguously determine the driving
mechanism above/below the disc.
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Taking into account the effect of Bφ in the most general expression of magneto-
centrifugal driving (Eq. 7.2) gives a markedly different result (see right panel of Fig. 7.5).
The grey shaded area is now much more volume filling, in particular in the outer parts
of the outflow with radii & 200 AU where outflowing gas is present as well. As purely
centrifugal dominated acceleration does not work in this region, here we expect Bφ to
be mainly responsible for the outflow driving. The results in the upper panel of Fig. 7.5
nicely demonstrate the capability of our criterion to distinguish between the different
driving mechanisms, which was the reason for its derivation. An increasing importance
of Bφ for the driving can also be seen in the upper parts of the outflow (|z| ≥ 800 AU).
Here the situation is less suitable for pure centrifugal acceleration (bottom left panel of
Fig. 7.5) but in general magneto-centrifugal acceleration is still possible in great parts
(bottom right panel). This is why we argue that Bφ must contribute significantly to the
outflow dynamics at great heights.

We note that even the general criterion given in Eq. 7.2 is not fulfilled everywhere in
outflow structure. This is due to the fact that the gas indeed does not get accelerated
everywhere, e.g. in the shock regions. Another possible reason is the azimuthal averaging
process. However, the very different results given by the two criteria, in particular in the
upper panel of Fig. 7.5, strongly indicate that the two distinct outflow regions are real.

Although the gas in the outflow experiences several internal shocks (see Fig. 7.1), the
bulk velocity steadily increases within about 2000 AU (Fig. 7.2). This can be explained
by the fact that acceleration is possible over almost the entire extension of the out-
flow (bottom right panel of Fig. 7.5). After experiencing a shock which decreases the
outflow speed, the gas gets reaccelerated again by centrifugal acceleration and/or the
toroidal magnetic field pressure. This happens repeatedly over the whole outflow exten-
sion thereby successively increasing the bulk velocity. This situation markedly differs
from episodic jet ejection, which also would produce internal shock fronts. Therefore,
the knotty structure often observed in protostellar jets is not necessarily a consequence
of several outflow ejection events but can also result from a continuously fed jet where
gas repeatedly shocks and reaccelerates (see also Staff et al., 2010).

As already seen in the right panel of Fig. 7.4 the magnetic field lines get straightened
very quickly above and below the disc. We attribute this to the hoop stress produced
by the toroidal magnetic field collimating the outflowing gas and therefore also the
magnetic field lines. Nevertheless, the gas still gets accelerated centrifugally despite the
almost vertical direction of the magnetic field lines (Fig. 7.5). Furthermore, as shown
in Fig. 7.4, the largest part of the outflow is dominated by the toroidal magnetic field
component. Therefore it is not surprising that over its complete extension the outflow
as a whole stays well-collimated.

As shown in the previous section, the expansion speed is not constant over time but ex-
periences a relatively sharp increase after about 2000 yr (compare Fig. 7.1). We attribute
this to a change in the underlying driving mechanism of the outflow. Indeed, analysing
the outflow with our criterion given in Eq. 7.8 shows that within the first 2000 yr purely
centrifugal acceleration is not possible indicating that in the beginning the outflow is
mainly driven by the toroidal magnetic pressure. The expansion speed in this phase
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is almost the same in the vertical and horizontal direction (see top panel of Fig. 7.1)
with the outer edge of the bubble coinciding with the position of the accretion shock at
the disc edge. It is only in this initial stage when we call the outflow a magnetic tower
flow (Lynden-Bell, 1996, 2003). In contrast to the situation at 5000 yr in this transient
phase there is no acceleration of gas from the disc. In fact, the gas is accelerated only at
the tip of the outflow. Therefore the situation differs significantly from the later stages.
After ∼ 2000 yr a fast, well-collimated outflow component, the centrifugal driven jet
develops in the region close to the z-axis. The launching of the jet coincides with the
build-up of a well-defined, extended (∼ 100 AU) Keplerian disc whereas prior to that
disc rotation is mostly sub-Keplerian (see red line in Fig. 6.3).

In summary, besides the magnetic field line structure the application of the criterion
derived in this work strongly indicates that the outflow in run 26-4 is mainly driven
centrifugally at |z| ≤ 800 AU while the dynamics of Bφ gets more important at large
radii and larger heights where the flow is magneto-centrifugally driven.

7.3.2. Strong field run 5.2-4

General properties

Next, we describe global properties of the outflow generated in run 5.2-4, which has a
5 times stronger initial magnetic field than run 26-4, i.e. µ = 5.2, but the same amount
of rotational energy (βrot = 0.04). The outflow shown in Fig. 7.6 reveals significant
differences compared to the outflow in run 26-4 (compare Fig. 7.1). Whereas the latter
is well collimated with a collimation factor of ∼ 4, the former has a rather sphere-
like morphology expanding with roughly the same speed in all directions, therefore also
maintaining a self-similar morphology for all times. The outflow velocities reach values
of up to 5 km s−1, about a factor of 2 – 3 lower than in run 26-4. The expansion speed
of the outflow is almost constant over time with a value of 0.28 AU yr−1 ≃ 1.3 km s−1.
This is noticeably smaller than the expansion speed of 1 AU yr−1 observed in run 26-4.
Consequently also the bow shock structure in run 5.2-4 is less pronounced.

A closer inspection of the outflow presented in Fig. 7.6 reveals that in particular close
to the symmetry axis and the centre of the bubble gas is still falling inwards even at
late times. Gas with outward directed motions occurs mainly in the outer wings. The
outflow direction in the inner part is almost radial and gets collimated at relatively
large radii of ∼ 500 AU. This is remarkably different to the situation in run 26-4 where
almost all the gas within the outflow area is moving outwards and preferentially parallel
to the z-axis. A consequence of the complicated velocity structure observed in Fig. 7.6
is the complex density structure showing several shock-like features in the bubble. We
remind the reader that the flattened structure in the midplane is a strongly sub-Keplerian
disc with significant infall motions (see Section 6.2.2). The sub-Keplerian rotation is a
consequence of the strong initial magnetic field decelerating the rotation of the initial
core via the magnetic braking mechanism (see Section 3.3).
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Figure 7.6.: Same as in Fig. 7.1 but for the strong-field run 5.2-4. The outflow is poorly
collimated and has significantly lower outflow velocities than the outflow in run 26-4.

Launching mechanism

The different morphologies of the outflows in run 5.2-4 and run 26-4 raise the question
whether the underlying launching mechanisms differ. Firstly, we examine the relative
importance of the toroidal and poloidal magnetic field components in the left panel of
Fig. 7.7. Here again – as in Section 7.3.1 – all quantities like velocity, magnetic field
and density are averaged azimuthally before being plotted in order to smooth out local
variations which might complicate the analysis. As can be seen, a great part of the
outflow bubble is dominated by Bpol in contrast to the outflow in run 26-4 (see Fig. 7.4).
Interestingly, the regions where Bφ dominates are usually associated with relatively fast
outflowing gas. In contrast, the regions which are dominated by Bpol have only slow
outflow velocities (. 1 km s−1) or even infall motions. The fact that outflowing gas
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Figure 7.7.: Same as in Fig. 7.4 but for the strong-field run 5.2-4. Left: Additionally the poloidal
velocity field (black vectors) is shown. Only parts of the outflow bubble, mainly associated with
outflowing gas, are dominated by Bφ. Right: The strong inclination of the poloidal magnetic field
lines is caused by the inwards drag of infalling gas in the disc.

seems to be associated with a strong toroidal magnetic field, i.e. Bφ/Bpol > 1, suggests
that the outflow might be driven by the pressure gradient of Bφ.

In the right panel of Fig. 7.7 the magnetic field line structure in the inner region is
considered in more detail. The poloidal field lines have a strongly pronounced hourglass-
shaped configuration with a strong radial component. This is caused by the rapid gas
infall in the disc which continuously drags the field lines inwards. Although the poloidal
field line structure seems suitable for centrifugal acceleration, i.e. the magnetic field
lines are inclined by more than 30◦ with respect to the z-axis, only in parts of the region
outflowing gas is present, in particular in regions more than 200 AU above/below the
disc. Hence, the 30◦-criterion does not work in this case.

The failure of the Blandford & Payne criterion is not surprising as it was derived for
Keplerian disc rotation only and therefore does not apply for strongly sub-Keplerian discs
as it is the case here. The physical reason for centrifugal acceleration to fail in the inner
region are the slow rotation velocities. Hence, the centrifugal force is reduced significantly
and close to the protostar and to the disc it cannot overcome gravity. Consequently gas
cannot get flung outwards along the poloidal magnetic field lines. Only at larger radii,
where the gravitational force is sufficiently reduced, does centrifugal acceleration work.
This fits with the observation that the bulk of outflowing material indeed emerges from
radii & 300 AU (see Fig. 7.7).

Our centrifugal launching criterion (Eq. 7.8) does not require an underlying Keplerian
disc. Hence, we also can apply it in this case. We show the result in the left panel of
Fig. 7.8 whereas the right panel shows the result of applying the general outflow criterion
(Eq. 7.2). For comparative purposes we also show the regions where gas feels a real, radial
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Figure 7.8.: Same as in Fig. 7.5 but for the strong-field run 5.2-4 and after 4000 yr. The black
contours enclose the regions where gas feels a real acceleration. Left: Centrifugal acceleration is
possible only in a small part of the outflow. Right: The general outflow criterion fits the regions
of gas acceleration very well.

outward directed acceleration (enclosed by black lines)

ar =
dv

dt
· er ≃

(

dv

dxi

dxi

dt

)

· er =
(

dv

dxi
vi

)

· er > 0 , (7.11)

where the time derivative is approximated by spatial derivatives. As already observed in
Fig. 7.7, regions of acceleration can be found at radii & 300 AU but also closer to the
z-axis and significantly above/below the disc. Purely centrifugal acceleration, however,
only works in the outer regions (grey shaded areas in left panel of Fig. 7.8). In the upper
outflow lobe the grey shaded region fits the outer region of acceleration reasonably well.
Although in the lower outflow lobe the agreement is rather poor, it shows that in case
of sub-Keplerian disc rotation the criterion clearly works better than the 30◦-criterion,
which would predict outflowing gas everywhere. Furthermore, the results suggest that the
bulk of outflowing material, which emerges from radii & 300 AU, is launched centrifugally
also in the case of sub-Keplerian disc rotation.

However, in particular in the lower outflow lobe and close the z-axis, the predicted
regions of purely centrifugal acceleration hardly match the regions of real acceleration.
Hence, as in the weak field case 26-4, we suppose that in these regions the toroidal
magnetic field strongly influences the outflow dynamics. Indeed, analysing the outflow
with the general criterion taking into account Bφ shows that now the grey shaded regions
fit the regions of real acceleration much better, in particular close to the z-axis (right
panel of Fig. 7.8). Naturally, the agreement is not perfect, which is probably due to
the azimuthal averaging process and due to the fact that the outflow is not stationary
as assumed for the derivation of the criterion. Nevertheless, it agrees remarkably well,
demonstrating the importance of Bφ. Hence, we tentatively suggest that in run 5.2-4 its
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influence on the driving is even more pronounced than in run 26-4 where the fast gas is
mainly driven centrifugally.

Next, we consider the reason for the poor collimation of the outflow. Outflow collima-
tion is due to the hoop stress produced by Bφ. Furthermore, we again note that the disc
has strongly sub-Keplerian rotation due to very efficient magnetic braking (see Chap-
ter 6). As magnetic braking basically transfers a part of the rotational energy of the disc
into energy of the toroidal magnetic field, one could naively expect Bφ in the outflow
to be relatively strong and hence the outflow to be well collimated. However, as already
indicated in Fig. 7.7, Bφ is larger than Bpol only in parts of the outflow suggesting a
rather moderate toroidal field strength. Indeed, comparing the absolute energy content
Emag,φ stored in the toroidal magnetic field of the outflow in the strong-field run 5.2-4
with that in the weak-field run 26-4 after 4000 yr, reveals that Emag,φ is more than 3
times larger in the latter. The reason for this is that in run 5.2-4 a significant fraction of
the angular momentum is removed by magnetic braking already before the gas falls onto
the disc. Indeed, the disc in run 5.2-4 has a 2 times lower specific angular momentum

ldisc =
Ldisc

Mdisc
(7.12)

than the disc in run 26-4. Therefore, there is less rotational energy left for being trans-
ferred into Emag,φ. Consequently, Bφ in the outflow and therefore also the hoop stress
responsible for collimation are significantly weaker. As at the same time the poloidal mag-
netic field is relatively strong in run 5.2-4, the collimation of the flow (and the poloidal
field lines) gets even more difficult thus resulting in the poorly collimated, sphere-like
outflow.

Peters et al. (2011), studying the interplay of ionising radiation and magnetic fields,
find a similar sphere-like outflow structure existing over a timescale of several 104 yr.
The authors simulated a 1000 M⊙ core with a resolution of 98 AU and a weaker initial
magnetic field (µ = 14) than in our run 5.2-4. Due to the fragmentation of the disc
as well as the effects of the emerging Hii region no well-defined Keplerian disc builds
up in their simulation. As argued above, this and the resulting weaker Bφ lead to the
development of a poorly collimated outflow. Hence, despite different initial conditions
the similarities between the outflows observed by Peters et al. (2011) and in this work
are not surprising.

To summarise, due to magnetic braking the gas in the disc in run 5.2-4 is rotating
relatively slowly (sub-Keplerian). Therefore, Bφ generated by rotation is weak resulting
in a poorly collimated outflow.

7.3.3. Long term evolution and jet stability

Due to computational cost reasons we cannot follow the outflow evolution over more than
a few 103 yr. Nevertheless, we can try to estimate whether these outflows will persist
over time or fall back due to the gravitational attraction of the central object and the
ram pressure of the infalling gas. For this purpose we compare the outflow velocity vz,out
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Figure 7.9.: Slice along the z-axis for the weak-field run 26-4 after 5000 yr (left) and the strong-
field run 5.2-4 after 4000 yr (right). The outflow velocity vz,out is overlaid by the contours where
vz,out equals the escape velocity vesc (black line) and the poloidal fast magnetosonic velocity
vA,fast (white line). For the weak magnetic field case 26-4 (left), vz,out is almost everywhere
higher than vesc and vA,fast. In contrast, for run 5.2-4 in most parts vz,out is smaller than vesc,
and exceeds vA,fast only in parts of the outflow. Note the three times larger spatial scale in the
left panel and the different colour scaling.

with two basic velocities. The first one to compare with is the escape velocity

vesc =

√

2GMsd

r
, (7.13)

where Msd is the mass of the star + disc system and r the spherical radius. For the
outflow to escape the gravitational potential of the central object vz,out has to exceed
vesc. In order to take into account the effect of thermal and magnetic pressure in the
surrounding gas which also might slow down the outflow, we furthermore compare the
outflow velocity to the maximum poloidal component of the fast magnetosonic velocity
(Eq. 3.13)

vA,fast ≃
√

v2
A,pol + c2

s . (7.14)

In Fig. 7.9 we show the azimuthal average of the outflow velocity vz,out and the contours
where vz,out equals the two velocities mentioned above in a slice along the z-axis for run
26-4 (left panel) and run 5.2-4 (right panel).

We first concentrate on run 26-4. As already seen in Fig. 7.3, below 2000 AU the
highest velocities occur close to the z-axis. Furthermore, it can be seen that the outflow
velocity exceeds the escape velocity and also the fast magnetosonic velocity in most parts
of the outflow. In Fig. 7.10 we plot the ratio of vz,out to vesc, the poloidal Alfvénic velocity
vA,pol = Bpol√

4πρ
and vA (Eq. 3.12) for run 26-4 along a vertical line at a radius of 100 AU

and 300 AU. As before the quantities are averaged azimuthally. The outflow velocity
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Figure 7.10.: Ratio of vz,out to the Alfvénic speed vA (top), to the poloidal Alfvénic speed vA,pol

(middle) and to the escape speed vesc (bottom) for run 26-4 along a vertical line at a radius of
100 AU (black line) and 300 AU (red line). The outflow velocity is significantly higher than vesc

and vA,pol whereas it is comparable to vA, probably indicating a self-regulated outflow speed.

exceeds the escape speed by up to one order of magnitude (bottom panel of Fig. 7.10)
and the poloidal Alfvénic velocity even by up to two orders of magnitude although the
average ratio is 5 – 10 (middle panel of Fig. 7.10). We attribute the higher value of
vz,out/vA,pol at a radius of 300 AU to somewhat lower values of vA,pol in this region.
The absolute outflow velocity, however, decreases with increasing radius as already seen
in Fig. 7.3 and 7.9. Interestingly, over the entire outflow extension the gas velocity is
comparable to or only slightly larger than vA (top panel of Fig. 7.10). This possibly points
to some kind of self-regulation in the outflow where the gas speed is held in the trans-
Alfvénic range by internal shocks: Once the gas reaches a significantly super-Alfvénic
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speed, the flow cannot be stabilised anymore leading to instabilities and shocks, which
in turn reduce the velocity to trans-Alfvénic speeds (see also Ouyed et al., 2003). Beyond
the shock the gas gets reaccelerated by magneto-centrifugal forces (Section 7.3.1) until
it shocks again. Interestingly, the gas speed is comparable to vA and not to vA,pol, i.e. Bφ

has to be taken into account. This indicates that Bpol is not the main agent stabilising
the flow although it certainly contributes (Ray, 1981). Indeed, Appl & Camenzind (1992)
show that jets with a toroidal magnetic field are even more stable than jets with a purely
poloidal field. In our case we therefore suppose that the stability of the jet is significantly
enhanced by Bφ. Despite ongoing fragmentation of the protostellar disc (see Section 6.2.6
for details), the driving of the outflow seems not to decline over time. As furthermore
vz,out is significantly larger than vesc and vA,fast, it can be expected that the outflow
in run 26-4 will escape the gravitational potential of the central star/disc-system and
finally will leave the core even when taking into account the ram pressure of the infalling
gas.

Considering run 5.2-4 in the right panel of Fig. 7.9 reveals a markedly different sit-
uation. Comparing vz,out to vA,fast shows that the gas is moving super-Alfvénic only
in parts of the outer wings of the outflow. Furthermore, a comparison with vesc shows
that the outflowing gas is moving almost everywhere with velocities below the escape
velocity. In general, vz,out exceeds vesc and vA,fast by a factor of at most 2. Therefore,
when taking into account the additional deceleration of the outflow by the ram pressure
of the infalling material, it might be possible that the outflow will re-collapse to the
star/disc-system.

To summarise, the outflows of the two simulations presented so far do not only differ in
their morphology and their kinematics but possibly also in their longer term evolution.
The well-collimated outflow is likely to overcome the gravitational potential of the central
protostar and leave the core whereas the sphere-like, slowly expanding outflow might
only be a short-lived, transient feature in the very early phase of massive star formation
possibly recollapsing again.

7.3.4. The influence of the initial conditions

So far only the outflows in the runs 26-4 and 5.2-4 have been considered in detail. We have
chosen these particular runs as they give representative examples for the outflows ob-
served in the other simulations. The remaining outflows reveal qualitative similarities to
one of the two outflows presented before. One of the main results of the previous sections
is that the different morphologies can be attributed to the different velocity structure in
the discs resulting in different radial positions where the outflows are launched and vari-
ations in the strength of the hoop stress, i.e. Bφ, responsible for outflow collimation. To
further confirm this picture, in the following we consider the complete set of simulations
and connect the outflow properties to the properties of the protostellar disc.

We start with the remaining weakly magnetised runs. The outflows in the runs 26-20,
26-0.4 and 26-0.04 show similar morphologies as the outflow in run 26-4. They are rea-
sonably well-collimated with collimation factors between 2 in run 26-20 and ∼ 4.5 in
run 26-0.4 and have outflow velocities preferentially parallel to the z-axis. Interestingly,
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Figure 7.11.: Slice along the z-axis in run 10-20 after 4000 yr showing the outflow velocity. Two
distinct outflow components are clearly visible, the inner, well-collimated, fast jet and the outer,
low-velocity outflow.

in the runs 10-20 and 5.2-20, whose outflows are rather poorly collimated, a fast and
well-collimated jet close to the z-axis develops after about 2500 yr embedded in the
slowly expanding, poorly collimated outflow. Similar applies to run 26-20 with the dif-
ference that by the end of the simulation the initial, slowly expanding, poorly collimated
outflow is overtaken by the faster, more collimated jet. For demonstrative purposes,
in Fig. 7.11 we show the situation in run 10-20 after 4000 yr. We mention that simi-
lar outflows consisting of two distinct components, an outer, slowly expanding and an
inner, fast component have recently also been observed in low-mass star formation simu-
lations (Banerjee & Pudritz, 2006; Machida et al., 2008; Hennebelle & Fromang, 2008;
Tomida et al., 2010; Duffin & Pudritz, 2009).

Analysing the magnetic field line structure in the runs 26-20, 26-0.4, 26-0.04, 10-20
and 5.2-20 reveals situations similar to that in run 26-4. In the inner region close to
the symmetry axis of the jet where the gas gets accelerated, the magnetic field is only
weakly dominated by the toroidal field component or not at all, i.e. Bφ/Bpol . 10.
Furthermore, the field lines at the disc surface are inclined by more than 30◦ with
respect to the vertical axis. As the discs rotate with Keplerian velocities just like in run
26-4 or as in the runs 5.2-20 and 26-0.04 with at least about half the Keplerian speed, we
therefore suppose that the gas gets launched from the discs by centrifugal acceleration.
Applying our centrifugal outflow criterion (Eq. 7.8) for these runs shows that above the
disc the region where purely centrifugal acceleration works is not as extended as in run
26-4. However, also in these cases the region of centrifugal acceleration is in general near
the z-axis. With the general criterion for magneto-centrifugal acceleration (Eq. 7.2),
however, we can fit the entire outflow regions by far better. Hence, considering the jets
as purely centrifugally driven might not be an appropriate choice too far from the disc.
The evidence shows that the pressure gradient of the toroidal magnetic field significantly

103



7. The formation of outflows

10-4

10-3

10-2

10-1

100

 1 10

β r
ot

µ

fast, collimated jet
slow, sphere-like outflow

Figure 7.12.: Phase diagram of magnetic field and rotational energy (see Table 5.1) showing the
results of the simulations concerning the question of jet formation. For runs with a weak magnetic
field (µ = 26) or high rotational energies well-collimated, centrifugally driven jets develop (red
squares). In contrast, for the remaining runs only slowly expanding, poorly collimated outflows
are generated (black circles).

contributes to the gas acceleration although, as pointed out before, the launching from
the disc itself is most likely to due to centrifugal acceleration. Comparing the results of
both criteria also suggest that the dynamics of the outer, slowly expanding outflows in
the runs 26-20, 10-20 and 5.2-20 are mainly determined by Bφ.

All remaining runs show poorly collimated, low-velocity outflows with outflowing gas
emerging almost radially at radii & 100 AU and gas infall close to the z-axis. Further-
more, the magnetic field line properties in the centre are similar to run 5.2-4 and the
protostellar discs driving the outflows are all clearly sub-Keplerian. Moreover, applying
the outflow criteria derived in Section 7.2 gives very similar results as for run 5.2-4.
Therefore we conclude that in these runs the outflow driving mechanism is very simi-
lar to that in run 5.2-4 , i.e. gas is launched centrifugally from the disc at large radii
(r & 100 AU) with support by Bφ. At larger distances Bφ is mainly responsible for the
further acceleration (see Section 7.3.2). To remind the reader, the poor collimation is a
consequence of the large launching radii and of the weak toroidal magnetic field in the
outflow. The larger launching radii are a result of the fact that close to the centre gravity
is too strong to be overcome by the weak centrifugal force.

In Fig. 7.12 we show the dependence of the outflow morphology on the initial condi-
tions. It can be seen that only for the runs with weak magnetic fields (µ ≥ 26) or high
rotational energies (βrot = 0.20) do well-collimated jets occur. Moreover, all runs with
clearly sub-Keplerian discs have poorly collimated outflows (see Fig. 6.7). This clearly
demonstrates that for a collimated, high-velocity jet to form a disc with (almost) Keple-
rian rotation is necessary. In contrast, if the disc is rotating clearly sub-Keplerian, both
outflow speed and collimation decrease significantly.

Next, we consider the influence of the initial conditions on global outflow properties
like mass and momentum. The results for each simulation are listed in Table 7.1. For
the calculation of the outflow mass and momentum we only take into account gas more
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than 47 AU above/below the midplane. By doing so, we avoid the outflow quantities to
be affected by material in the protostellar disc. For the momentum we only consider the
z-component. The outflow masses are of the order of 0.1 – 1 M⊙ thus significantly lower
than the sink masses (see also Section 7.3.5 below). The momenta of the outflows are of
the order of 0.1 – 1 M⊙ km s−1, which in combination with the outflows masses gives
average velocities of a few km s−1, thus lower than typically found in observations (e.g.
Beuther et al., 2002c, but see also Section 7.4.3 for a detailed discussion).

In general, for a fixed magnetic field strength both centrifugal and Bφ dominated
acceleration predict that the power of the outflow should increase with the rotation
speed of the protostellar disc. Hence, for larger amounts of initial rotational energy and
thus faster disc rotation, the outflow mass and momentum are expected be higher as
well. Indeed, comparing runs with equal µ in Table 7.1 reveals that except for run 26-20
the outflows are in general more powerful for higher βrot. We suppose that in run 26-20
the generation of the outflow might be slightly delayed as the material falling onto the
disc has a high excess of angular momentum, which has to be removed before moving
further inwards. Therefore, the accretion rate and consequently also the outflow rates
Ṁout and Ṗout are lower (see also Section 7.3.5).

Interestingly, there is no clear trend recognizable in Ṁout and Ṗout when considering
simulations with fixed βrot but varying µ (see Table 7.1). In general, for runs with µ ≥ 5.2
there are variations in Ṁout and Ṗout within about one order of magnitude. For strong
magnetic fields (µ = 2.6), however, there seems to be a rapid decline in outflow power.
Naively, it could be expected that the power of the outflows would increase with magnetic
field strength. This is not the case since for stronger magnetic fields disc rotation gets
more and more sub-Keplerian (see Section 6.2.3 for a detailed discussion). This results
in a weaker centrifugal acceleration and a weaker toroidal magnetic field responsible for
further accelerating the outflow. Therefore, for both driving mechanisms – centrifugal
acceleration and the magnetic tower flow – the outflow power is expected to decrease
for strongly sub-Keplerian discs in agreement with our observations. We emphasise that,
as the outflow morphologies differ significantly between the individual simulations with
equal βrot but varying µ, the results of such a comparison have to be taken with care.

In summary, we find that the generation of a fast (vz,out ≃ 10 km s−1), well-collimated
jet depends on the build-up of a Keplerian disc. In these jets the gas is most likely
launched centrifugally from the disc. Somewhat above/below the disc, however, we expect
the toroidal magnetic field to come into play contributing significantly to the acceleration
of the gas. In contrast, for sub-Keplerian discs slowly expanding, sphere-like outflows
develop, in which the gas is launched centrifugally from the disc as well although at
larger radii. Here as well Bφ plays an important role in accelerating the outflow at larger
distances. Although the outflow morphologies are very different, global properties like
mass and momentum vary only within a factor of 10 showing a decrease towards high
magnetic field strengths.
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Figure 7.13.: Ratio of the mass outflow rate over infall rate in the weak-field run 26-4 (left)
and the strong-field run 5.2-4 (right) as a function of the distance from the centre. The values in
both runs agree with theoretical estimates and other numerical work.

7.3.5. The ejection-accretion ratio

Next, we compare the mass outflow rates Ṁout with the mass infall rates Ṁin. To begin
with, we limit our consideration to the fiducial runs 26-4 and 5.2-4. In Fig. 7.13 we show
the ratio of outflow to infall rate Ṁout/Ṁin as a function of the distance d from the centre
for different times. The outflow and infall rates are computed on the surface of a cylinder
of radius d and height 2d centred around the midpoint of the simulation domain2. In
run 26-4 Ṁout/Ṁin is not constant over the outflow extension but varies between 0.1
and 0.4 for d > 500 AU. We attribute these variations to the internal shocks occurring
in the outflow (compare Fig. 7.1 or 7.9). Although being somewhat higher, in general
the observed range roughly agrees with theoretical estimates of ∼ 0.1 obtained for the
centrifugal acceleration mechanism (Pudritz & Norman, 1986; Pelletier & Pudritz, 1992,
but see also Eq. 4.12). The high value of Ṁout/Ṁin at d < 500 AU is due to the circulation
flow in the outer parts of the outflow (r ≃ 200 – 300 AU, see right panel of Fig. 7.4). As
the outflow speed of this material is not sufficient to escape the gravitational potential,
it falls back to the disc thus not contributing to the outflow rate at larger distances.
The shape of Ṁout/Ṁin in run 5.2-4 is qualitatively very different from that in run 26-4.
The ratio seems to saturate around a value of ∼ 0.1 for late times and small distances
(d ≤ 400 AU) in agreement with theoretical estimates. For larger distances, however,
Ṁout/Ṁin increases and reaches values of up to 0.6 pointing to the fact that part of the
outflowing material is entrained and does not stem from the disc. However, also for this
run the measured Ṁout/Ṁin is in reasonable agreement with theoretical predictions for
centrifugal acceleration even though partly somewhat higher.

Next, we consider Ṁout/Ṁin for the whole set of simulations performed. To avoid the
problem that even for an individual outflow this ratio is not constant in time and position,
we follow a simpler approach than before. For this purpose we approximate Ṁout/Ṁin

2We have chosen a cylinder instead of a sphere to lower numerical errors when computing the flux
through the surface.
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Figure 7.14.: Ratio of outflow mass to sink mass at the end of each simulation as a function of
µ (see Table 5.1). Equal symbols denote equal initial rotational energies. The calculated values
scatter around a mean of ∼ 0.3 in rough agreement with theoretical estimates.

by the ratio of the total outflow mass to the total mass accreted onto the sink particles
(see Table 7.1). The result is shown in Fig. 7.14. Excluding one exemption (run 10-20)
the ratios are all smaller than 0.5. The values have a mean of ∼ 0.3, which agrees very
well with other numerical work (Tomisaka, 1998, 2002; Hennebelle & Fromang, 2008;
Duffin & Pudritz, 2009) and which is only slightly higher than analytical estimates of
∼ 0.1. However, the scatter of the individual values is significant ranging from about 0.02
in run 26-0.04 up to 0.9 in run 10-20. Interestingly, run 26-20 has a value of Ṁout/Ṁin

around 0.3 in accordance with the other runs although the absolute values in this simu-
lation are very small (see Table 7.1). This confirms the explanation given in Section 7.3.4
that in run 26-20 the entire outflow ejection process is delayed due to the high excess
of angular momentum which causes lower accretion rates and in turn also lower outflow
rates. Furthermore, Ṁout/Ṁin is in general higher for higher βrot. As discussed in Sec-
tion 7.3.4, this is a consequence of the fact that the outflow power increases with βrot

whereas at the same time the accretion rates decrease due to an enhanced centrifugal
support. For varying µ, however, there is no clear trend in Ṁout/Ṁin recognizable ex-
cept a possible drop-off for the highly magnetised runs with µ = 2.6, which was already
observed in Section 7.3.4 for the absolute outflow quantities.

Although the derived values of Ṁout/Ṁin are in general somewhat higher than analyti-
cal predictions, they agree reasonably well with observational results ranging from about
0.1 to 0.3 (Richer et al., 2000; Beuther et al., 2002c; Klaassen et al., 2011). Furthermore,
a ratio of ∼ 0.3 is often used to estimate accretion rates of massive protostar from ob-
served outflow mass rates (Beuther et al., 2002a,c, 2003, 2004; Zhang et al., 2005). As
we have shown this value fits reasonably well over a wide range of initial conditions.
Hence, we suppose that accretion rates derived that way seem to be reliable within a
factor of a few.
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7.4. Discussion

7.4.1. The launching mechanism

Our analysis presented in the Sections 7.3.1 and 7.3.2 suggests that in all simulations
the gas is launched from the disc by centrifugal acceleration (Blandford & Payne, 1982).
At larger distances above/below the disc the pressure of the toroidal magnetic field sig-
nificantly contributes to the acceleration of the gas. Although Lynden-Bell (1996, 2003)
describe outflows whose dynamics are determined by the toroidal magnetic field, we em-
phasise that our outflows are for the most parts (in time and space) not such so-called
magnetic tower flows. In fact, the effect of Bφ is also implicitly contained in the MHD
wind theory as shown in Section 7.2 (see Eq. 7.2). Therefore, it is more appropriate to
consider our outflows in the framework of MHD wind theory as it contains both centrifu-
gal acceleration and magnetic pressure effects. In such a magneto-centrifugally driven
wind the gas is ejected from the disc surface and then gets accelerated towards larger
heights. In contrast, in a magnetic tower (Lynden-Bell, 1996, 2003) gas gets accelerated
only at the tip of the outflow – there is no sustained mass loss coming from the disc.
Tower flows are transient phases that arise only in the earliest stages of outflows.

For simulations with weak initial magnetic fields or high rotational energies the situ-
ation is as follows: Shortly after the formation of the first sink particle a sub-Keplerian
disc builds up driving a slow (∼ 1 km s−1) outflow whose driving is probably domi-
nated by the magnetic pressure. As soon as a well-defined, large-scale Keplerian disc
develops, in the inner region a fast (∼ 10 km s−1), well-collimated jet is launched
by centrifugal acceleration. At larger heights and radii & 200 AU, however, Bφ sig-
nificantly contributes to the acceleration. An outer, slowly expanding outflow compo-
nent is still clearly visible at the end of the simulations 26-20, 10-20 and 5.2-20 (see
Fig. 7.11). Such outflows consisting of two components, an outer, slowly expanding
and an inner, fast component have also been observed in low-mass star formation and
jet simulations (Banerjee & Pudritz, 2006; Machida et al., 2008; Hennebelle & Fromang,
2008; Duffin & Pudritz, 2009; Tomida et al., 2010; Staff et al., 2010) as well as observa-
tions (e.g. Bachiller, 1996; Beuther et al., 2004; Ren et al., 2011). For runs with strong
magnetic fields, the protostellar discs are sub-Keplerian all the time due to strong mag-
netic braking. Therefore, during the time covered by our simulations no fast, central jet
component develops and only a slowly expanding, poorly collimated bubble is present.
The gas seems to be mainly launched centrifugally although the toroidal magnetic field
has most likely a large impact on the driving of the outflow already close to the disc.

We tried to clarify the situation by applying the criteria derived in Section 7.2 which
only depend local quantities and the protostellar mass. In general, using the criteria for
the present simulations indicates that they are applicable despite the constraints like
axis-symmetry, stationarity and corotation assumed for its derivation. We show that
for strongly sub-Keplerian discs the centrifugal criterion (Eq. 7.8) acceptably fits the
region where the outflow gets launched (see left panel of Fig. 7.8) in contrast to the
30◦-criterion (Blandford & Payne, 1982), which fails when analysing the sub-Keplerian
cases. Together with the results from run 26-4 this demonstrates that simply considering
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the inclination of the magnetic field with respect to the z-axis is not necessarily sufficient
to determine the driving mechanism nor the region where the outflow gets launched: On
the one hand even for inclination angles smaller than 30◦ the outflow can be driven
centrifugally (see Fig. 7.4 and 7.5) whereas on the other hand there are situations where
purely centrifugal acceleration does not work despite inclination angles larger than 30◦

(see Fig. 7.7 and 7.8).

Again, we emphasise that in all runs the mechanism responsible for outflow launching
is centrifugal acceleration. Only at larger heights do the effects of the toroidal magnetic
field come into play. The situation is therefore not such that the outflow is either driven
centrifugally or by the toroidal magnetic pressure. Such a classification often found in
literature is an oversimplification not describing the situation appropriately as both
processes play an important role. We have shown that there is a continuous transition,
from centrifugal dominated acceleration to acceleration dominated by Bφ. These two
regimes are both implied in the solution of the stationary MHD equations presented
in Section 7.2 (see also Section 4.1 of Spruit, 1996). The different outflow morphologies
mainly result from the varying strength of Bφ responsible for collimation since for clearly
sub-Keplerian discs Bφ is too weak to properly collimate the outflows.

As mentioned before, several authors have simulated outflows consisting of two
different components. However, their conclusions as which component is driven
by which mechanism partly contradict each other. On the one hand, some au-
thors (Banerjee & Pudritz, 2006; Duffin & Pudritz, 2009) claim that the outer, larger
scale outflow is driven by the magnetic pressure (Lynden-Bell, 1996, 2003) whereas
the inner, fast outflow embedded in the first one is considered as a centrifugally
driven jet (Blandford & Payne, 1982). On the other hand, Machida et al. (2008) and
Tomida et al. (2010) find the situation to be exactly vice versa. All authors argue on
the basis of an analysis of the field line structure such as the ratio of Bφ to Bpol or the
field line inclination with respect to the protostellar disc. As we argued above, this kind
of consideration alone can be misleading, which might have caused the contradictory
results. Hence, it would be interesting to apply the criterion derived in this work to con-
firm the results in an independent way. This was recently done by Duffin et al. (2012)
in simulations of low-mass cores. The results support our interpretation that the outer
outflow component is magnetic pressure driven, and the inner component centrifugally
driven. Furthermore, this demonstrates the applicability of our criterion in equal measure
to low-mass and high-mass protostellar outflows without any further restrictions.

Studying the influence of the initial magnetic field strength on the formation of out-
flows around low-mass stars, Hennebelle & Fromang (2008) find striking similarities to
our results, i.e. a well-collimated, fast outflow component embedded in a slowly expand-
ing component for weak magnetic fields and a poorly collimated outflow for strong fields.
Their interpretation of a centrifugally driven wind for the latter component and a mag-
netic tower flow for the former component, however, is in opposition to our interpretation.
Hence, it would be interesting to apply our criterion derived here to test their conclusion
in a different way. Differences might also result from the fact that Hennebelle & Fromang
(2008) consider a low-mass core, which is less gravitationally unstable. Therefore, in par-
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ticular in the strongly magnetised case the disc seem to be less sub-Keplerian possibly
leading to different results.

In general, concerning outflow morphology our results agree remarkably well with
those of low-mass star formation simulations even over the wide range of initial conditions
covered in our work. However, the good agreement between our and the low-mass case
results could not be expected a priori as in contrast to low-mass cores the cores presented
here are highly gravitationally unstable (about 56 Jeans masses). Therefore the dynamics
and timescales of the whole system differ significantly from low-mass cores. Another
difference, though not covered here, is the influence of initial turbulence and radiative
feedback of the protostars. However, as we are still in a very early evolutionary stage,
we suppose that the effect of radiation is still rather limited. In contrast, the influence
of turbulence, which we will examine in Chapter 8, is expected to be significant (see also
Hennebelle et al., 2011).

7.4.2. The evolution and impact of outflows

For typical massive star forming regions the observed mass-to-flux ratios are usu-
ally only slightly supercritical, i.e. µ . 5 (Falgarone et al., 2008; Girart et al., 2009;
Beuther et al., 2010). Based on the results obtained in this work, the question arises how
well-collimated, fast outflows frequently observed around high-mass protostellar objects
can form (e.g. Beuther et al., 2002c, 2004; Beltrán et al., 2011). As we have shown, the
formation of such outflows is linked to the build-up of Keplerian discs. Therefore the
question reduces to how the magnetic braking efficiency can be reduced allowing Kep-
lerian discs to form. A possible solution is provided by the poorly collimated outflows
themselves evacuating the region above and below the disc therefore significantly re-
ducing the magnetic braking efficiency due to the enhanced magnetic braking timescale
(Eq. 3.36). Furthermore, Hennebelle & Ciardi (2009) and Ciardi & Hennebelle (2010)
showed that a misalignment between the rotation axis and the initial magnetic field
can reduce the magnetic braking efficiency. Simulations including non-ideal MHD effects
like ambipolar diffusion (Mellon & Li, 2009; Duffin & Pudritz, 2009) or ohmic dissipa-
tion (Dapp & Basu, 2010; Dapp et al., 2012; Li et al., 2011) show that these effects can
– if at all – reduce the magnetic braking efficiency only in later stages. All these possi-
bilities point to a successive build-up of Keplerian discs during the protostellar evolution
towards Class I/II objects, hence allowing the generation of well-collimated, high-velocity
jets for typically magnetised cores in later stages only (see also Section 6.3.2 for a more
detailed discussion). The role turbulence plays in the formation of Keplerian discs, pos-
sibly also in earlier stages, will be studied extensively in the next chapter.

As shown in Fig. 7.2, the position-velocity (PV) diagram for run 26-4 shows a typ-
ical ”Hubble law“-like behaviour also seen in observations (e.g. Lada & Fich, 1996;
Beltrán et al., 2011). Such a behaviour is a natural outcome of several wind models
like the jet-driven bow shock model or the wind-driven shell model (see Cabrit et al.,
1997, for an overview). However, the comparison between our results and those models
is not straightforward as in those wind models the velocity increase with distance is only
an apparent and no real acceleration. This apparent acceleration is a consequence of the
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inclination of the outflow with respect to the plane of the sky and the fact that mainly
gas swept up in the bow shock and not inside the outflow lobe contributes to the ob-
servable emission. In contrast, in our case the observed acceleration is real and is mainly
due to the gas inside the bow shock structure whereas the material in the shock itself
has mainly negative velocities (compare Fig. 7.3). Hence, an observed increase of the
bulk velocity with distance in outflows can also be real and not only due to a projection
effect.

However, an interesting point made by those wind models is the fact that the outflows
partly consist of gas entrained from the ambient medium. We tested this statement by
implementing a passive mass scalar in run 26-4 which reveals an outflow morphology
similar to that assumed in the wind models. This mass scalar is set to 1 within a disc
with a height of 75 AU above and below the midplane and gets advected with the gas.
Hence, we can test how much of the gas in the outflow stems from this disc and how
much from the ambient medium. The analysis shows that by the end of the simulation
about 92% of the gas mass in the outflow stems from this disc. Hence, most of the gas
gets accelerated from the bottom of the outflow up to the tip and only a small part is
entrained from the ambient medium. A possible explanation might be the high infall
velocities, which are a result of the highly gravitationally unstable configuration. We
suggest that the gas hitting the bow shock it is mainly deflected sidewards and gets
channelled downwards along the shock rather than getting stuck and being entrained
with the outflow. The situation might change if the core is less gravitationally unstable
and the infall velocities are smaller. We tentatively suppose that in this case it is more
likely that the gas gets entrained by the outflow.

Yorke & Sonnhalter (2002) and Krumholz et al. (2005) suppose that outflows create
low-density regions along the polar direction, which aid the formation of massive stars
by channelling the radiation outwards, therefore diminishing the radiation pressure and
allowing accretion to proceed. As seen in the right panel of Fig. 7.4, the material ejected
from the disc indeed carves a low-density region in the polar direction. It would be
interesting to see whether the density decrease in our simulations is sufficient to allow
radiation produced by the protostar to escape efficiently as recently seen in radiation-
hydrodynamical simulations by Cunningham et al. (2011). Furthermore it would be of
interest to see to what extent the radiation pressure would decollimate the outflow as
found recently by Vaidya et al. (2011) on the basis of 2-dimensional jet simulations.

7.4.3. Comparison to observations

In Table 7.1 we have listed the mass and momentum outflow rates of all runs per-
formed. The calculated mass-loss rates vary between 1.6 · 10−5 and 2.7 · 10−4 M⊙ yr−1.
Although at the lower end this is in agreement with typically observed mass loss rates
in high-mass star forming regions ranging from 10−5 up to a few 10−3 M⊙ yr−1 (e.g.
Beuther et al., 2002c; Zhang et al., 2005; Wang et al., 2011; Ren et al., 2011). Like our
simulations these observations refer to the very early stage of massive star formation
although the calculated dynamical timescales are of the order of a few 103 up to a few
104 yr, thus typically somewhat longer than ours. However, since for a large fraction of

111



7. The formation of outflows

the observed systems no signs of Hii-regions have been detected, the outflows are most
likely still magneto-centrifugally driven and not radiation driven winds which is why our
mass-loss rates compare reasonably well.

The calculated momentum outflow rates in our models range from 4.0 · 10−5

to 4.7 · 10−4 M⊙ km s−1 yr−1. This is at the lower end usually reported by ob-
servations of massive protostellar outflows finding Ṗout of the order of 10−4 to
10−2 M⊙ km s−1 yr−1 (e.g. Beuther et al., 2002c; Zhang et al., 2005; Shi et al., 2010;
Wang et al., 2011). However, as the outflow velocity in centrifugally driven jets is cou-
pled to the rotation velocity (Michel, 1969; Pelletier & Pudritz, 1992, and Eq. 4.11), the
maximum outflow velocities which can be reached in our simulations are of the order of
10 km s−1 (see Eq. 7.9), about one order of magnitude lower than typically observed.
Therefore, the lower values of Ṗout in our runs are not surprising. However, we expect our
momentum outflow rates to increase and to become comparable to observations if we run
the simulations over comparable timescales of a few 104 yr and with a higher resolution,
which would allow for faster outflow material arising from deeper in the gravitational
potential.

Observational results on outflow morphologies are still somewhat ambiguous. One the
one hand, outflows around massive protostars are usually found to be less collimated
than their low-mass counterparts revealing collimation factors of the order of 1 – 2 (e.g.
Ridge & Moore, 2001; Wu et al., 2004). On the other hand, Beuther et al. (2002a, 2004)
also find highly collimated, massive outflows with collimation factors as high as 10.
Based on this, Beuther & Shepherd (2005) propose an evolutionary scenario in which
well-collimated, magnetically driven outflows occur in the very early phase of massive
star formation. In its further evolution the outflows get progressively less collimated due
to the build-up of Hii-regions. According to this, early-stage outflows as presented here
should all be more or less well collimated. Obviously this is not the case since only runs
with a weak magnetic field (µ = 26) reveal well-collimated outflows with collimation
factors up to 4.5. Therefore, our results suggest that the collimation not only depends
on the evolutionary stage but also on the initial conditions of the molecular cloud core,
in particular on the magnetic field strength.

7.4.4. The evolution of outflow collimation

Our results suggest that during the very early stages (103 – 104 yr) outflows in typically
magnetised, massive cores (µ . 5) should rather be poorly collimated with collimation
factors of 1 – 2 instead of 5 – 10. This agrees with a number of observations of outflows
around young massive protostellar objects (e.g. Ridge & Moore, 2001; Torrelles et al.,
2003; Wu et al., 2004; Sollins et al., 2004; Surcis et al., 2011). Therefore, we suggest
that in the earliest stage, i.e. even before the scenario described by Beuther & Shepherd
(2005) applies, outflows are indeed rather poorly collimated except in case of an un-
usually weak magnetic field. In their further evolution, however, the collimation will
increase quickly due to the development of a fast, central jet component coupled to the
build-up of a Keplerian disc. Such a behaviour can in particular be seen in the runs
26-20, 10-20 and 5.2-20. Hence we suggest that, beside tracing later stages as proposed

112



7.5. Conclusion

by Beuther & Shepherd (2005), poorly collimated outflows around massive protostars
could also trace the very early stage of massive star formation. Hence, one might have
to be careful when trying to infer the actual stage of protostellar evolution from the
collimation of the outflow.

To confirm such an evolutionary scenario as proposed here, observations of the ear-
liest stage of massive star formation would be necessary in combination with magnetic
field measurements. Unfortunately, to date such observations are difficult to obtain and
therefore rather rare. However, there is an interesting observation which supports the
picture of very early stage, poorly collimated outflows successively collimating over time.
Observing two spatially adjacent, massive protostars in the star forming region W75N,
Torrelles et al. (2003) and Surcis et al. (2011) find the younger of the two having a
spherical outflow whereas the more evolved protostar has a well-collimated outflow. Due
to the close proximity to each other, the authors expect the environmental conditions
to be very similar and hence not to cause the morphological differences. Therefore, the
authors conclude that the differences are rather a consequence of different evolutionary
stages and that the younger, poorly collimated outflow is possibly only a transient fea-
ture. This interpretation fits perfectly into our above described evolutionary scenario in
which after some time a poorly collimated outflow gets overtaken by a well-collimated
jet.

7.5. Conclusion

We have studied the collapse of massive molecular cloud cores with varying initial ro-
tational and magnetic energies. The mass-to-flux ratio of the magnetically supercritical
cores ranges from 2.6 up to 26. The cores have rotational energies well below the gravita-
tional energy and contain about 56 Jeans masses. Hence, they are highly gravitationally
unstable and possible sites of massive star formation. In this chapter we focussed on the
launching mechanism and the properties of outflows in the earliest protostellar stage.
Furthermore, based on the stationary, axisymmetric MHD equations we derived a gene-
ralised criterion to determine the launching mechanism of the outflows. The criterion is
applicable to the entire outflow region and to situations with sub-Keplerian disc rotation.
In the following we summarise our main findings.

1. We showed that our outflow criterion (Eqs. 7.2 and 7.8) can successfully separate
the different driving mechanisms and that it works over the entire extension of the
outflows. We discuss an example where the outflow is centrifugally driven up to
a height of about 800 AU thereby demonstrating that considering only the ratio
of Bφ to Bpol is not sufficient to determine the driving mechanism. Furthermore,
we successfully apply the criterion to runs with clearly sub-Keplerian protostellar
discs where the frequently used 30◦-criterion for the inclination of magnetic field
lines fails.

2. The morphology and dynamics of the outflows critically depend on the magnetic
field strength: well-collimated, high-velocity jets for runs with weak magnetic fields

113



7. The formation of outflows

(µ ≥ 26) or high rotational energies (βrot = 0.20) and poorly collimated, slowly
expanding outflows for runs with strong fields. The development of fast jets is
coupled to the build-up of Keplerian discs. In none of the strongly magnetised
runs with clearly sub-Keplerian disc rotation a well-collimated jet is observed.

3. In all runs centrifugal acceleration is responsible for launching the gas from the
discs. With increasing distance from the disc the pressure gradient of the toroidal
magnetic field progressively contributes to the further acceleration of the gas. For
runs with sub-Keplerian discs the outflows are centrifugally dominated only at
large radii (& 100 AU) where gravity is sufficiently reduced to be overcome by the
centrifugal force. In these outflows Bφ seems to play a more important role in the
driving than in the fast jets.

4. The morphological differences of the outflows are mainly due to the varying
strength of the hoop stress responsible for outflow collimation. For sub-Keplerian
discs the generation of Bφ happens more slowly so that their corresponding out-
flows are less collimated.

5. We show that an outflow can be maintained despite the fragmentation of the
protostellar disc. Furthermore, knotty outflow structures can also be produced in
continuously fed jets by gas repeatedly experiencing shocks and reacceleration even
far from the disc. For such outflows the toroidal magnetic field seems to contribute
significantly to the overall stability.

6. The observed mass and momentum outflow rates are of the order of 10−4 M⊙ yr−1

and 10−4 M⊙ km s−1 yr−1, respectively, thus in reasonable agreement with obser-
vational results. The mass ejection-accretion ratios scatter around a mean of 0.3
in agreement with both theoretical estimates and observational results.

7. Based on the results of the strongly magnetised simulations (µ . 5), we suggest an
evolutionary scenario where a poorly collimated outflow is typical for the very early
stage of massive star formation. Over time the outflow collimation will increase due
to the development of a well-collimated, fast jet overtaking the slowly expanding
outflow. This picture is also supported by observations. Furthermore, analysing the
sphere-like, slowly expanding outflows suggest that they are possibly only transient
features, which might re-collapse during their further evolution.

We showed that a simple approach such as the value of Bφ/Bpol or the inclination
of magnetic field lines is not sufficient to determine the launching mechanism of out-
flows. This could be the reason for the partly conflicting results found in literature. We
therefore strongly suggest to use a self-consistent criterion which is applicable to the
entire outflow region as well as sub-Keplerian discs frequently found in numerical simu-
lations (e.g. Mellon & Li, 2008; Hennebelle & Fromang, 2008; Duffin & Pudritz, 2009,
and Chapter 6). Moreover, we emphasise that a separation in purely centrifugally or
purely magnetic pressure driven winds is probably an oversimplification not describing
the situation appropriately. We showed that magneto-centrifugal acceleration has two
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regimes, a centrifugally dominated and a Bφ dominated one and that within a realistic
outflow there is a continuous transition from one regime to the other.

A growing number of observations of discs and well-collimated, bipolar outflows around
high-mass protostars (see Beuther & Shepherd, 2005; Cesaroni et al., 2007, for recent
reviews) support a high-mass star formation scenario via disc accretion similar to low-
mass star formation. On the other hand, observations also show that prestellar cores
with masses ranging from 2 – 2000 M⊙ are usually only slightly supercritical with
µ . 5 (Falgarone et al., 2008; Girart et al., 2009; Beuther et al., 2010). Together with
our numerical results this suggest that typically there should be no well-collimated jets
in the very early stages of high-mass star formation but rather sphere-like, slowly expand-
ing outflow structures. As discussed in this chapter, the question of how well-collimated
jets are generated breaks down to the problem of how Keplerian discs can be formed in
highly magnetised cores. For this to happen, effects that reduce the efficiency of magnetic
braking are required. In the later evolution of the system, the initial, slowly expanding
outflows as well as non-ideal MHD effects could accomplish this, resulting in a succes-
sive growth of discs and the development of well-collimated jets over time. In the next
chapter we will discuss in detail the role turbulence plays in the formation of protostellar
discs and present a simple way how to form Keplerian discs from the very beginning on.
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In the previous two chapters I have shown that there exists a problem in forming Ke-
plerian protostellar discs and well-collimated outflows in typically magnetised (µ . 5)
molecular cloud cores. In this chapter I will add a main ingredient of massive star for-
mation, namely supersonic turbulence, to the simulations. So far turbulence has been
neglected in this work to be able to explicitly study the influence of rotation and mag-
netisation without any interaction from turbulent motions. In the following I will study
the influence of turbulence on the formation process of massive stars for a selected sub-
set of the simulations presented before. The results and the discussion presented in this
chapter have been published in Seifried et al. 2012a, MNRAS, 423, L40.

8.1. Introduction

In recent years a great number of simulations have been performed that in-
vestigate the formation of protostellar discs under the influence of magnetic
fields (e.g. Allen et al., 2003; Matsumoto & Tomisaka, 2004; Machida et al., 2005;
Banerjee & Pudritz, 2006, 2007; Price & Bate, 2007; Hennebelle & Fromang, 2008;
Hennebelle & Teyssier, 2008; Hennebelle & Ciardi, 2009; Duffin & Pudritz, 2009;
Commerçon et al., 2010; Peters et al., 2011, but see also Chapter 6 of this work). A
main result of these simulations was that for magnetic field strengths comparable to
observations, i.e. a mass-to-flux ratio µ . 5 (e.g. Falgarone et al., 2008; Girart et al.,
2009; Beuther et al., 2010) no rotationally supported discs were formed. As discussed
in Section 6.2.4, strong magnetic braking is responsible for the removal of angular
momentum, which is why this problem is also called the ”magnetic braking catastrophe”.
The results of these numerical simulations conflict with observations, which show that
well-defined discs are present already in the earliest stages of protostellar evolution. In
these observations well-defined protostellar discs were found around both high-mass (e.g.
Fuller et al., 2001; Shepherd et al., 2001; Chini et al., 2004; Fernández-López et al.,
2011; Preibisch et al., 2011, see also Cesaroni et al. (2007) for a recent review) and low-
mass protostellar objects (e.g. Jørgensen et al., 2009; Enoch et al., 2009, 2011). More-
over, a comparison of the spectral energy distribution of young stellar objects in different
evolutionary stages, i.e. in the Class 0 and Class I stage, shows that the disc masses
do not change significantly from Class 0 to Class I objects (Jørgensen et al., 2009).
This indicates that well-defined, rotationally supported protostellar discs frequently ob-
served around later Class I objects (see e.g. Williams & Cieza, 2011, for a recent review)
should also be present in the earlier Class 0 stage where direct observations are much
more difficult due to extinction by the surrounding gas. It is also well-known that out-
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flows are one of the first observable signatures of star formation. As shown in Chap-
ter 7, well-collimated outflows frequently observed around low- and high-mass stars (see
Beuther & Shepherd, 2005; Arce et al., 2007, for recent reviews) are coupled to the exis-
tence of well-defined, Keplerian discs. This is another strong indication that protostellar
discs should already form in the earliest stage of star formation. To summarise, it seems
that there exists some conflict between numerical simulations predicting the suppression
of protostellar disc formation and observations indicating the presence of protostellar
discs in the earliest stages of star formation already.

In recent years there have been some attempts to circumvent the ”magnetic braking
catastrophe” by incorporating non-ideal MHD effects into numerical simulations. The
inclusion of ambipolar diffusion (Mellon & Li, 2009; Duffin & Pudritz, 2009), however,
fails to produce Keplerian discs in the earliest evolutionary stages. Considering the effect
of Ohmic dissipation, Dapp & Basu (2010) and Dapp et al. (2012) find only very small
(∼ 10 solar radii) Keplerian discs forming in the Class 0 stage. The authors expect the
discs to grow to observed sizes of 10 – 100 AU during the subsequent evolution towards
a Class I / II object. Krasnopolsky et al. (2010) showed that only if an unusually high
ohmic resistivity is used Keplerian discs can form in the very beginning. Furthermore,
also the combination of ambipolar diffusion and Ohmic dissipation does not yield the
desired effect of Keplerian disc formation (Li et al., 2011).

However, recently two mechanisms solving the problem of ”catastrophic magnetic
braking” were proposed. Including the Hall effect Krasnopolsky et al. (2011) showed that
Keplerian discs can indeed form in typically magnetised cloud cores. However, in this case
the formation of rotationally supported discs is not a consequence of a reduced magnetic
braking efficiency but rather due to the spin-up of the disc due to the Hall effect. Another
mechanism to circumvent the ”magnetic braking catastrophe” is turbulent reconnection
as proposed by Santos-Lima et al. (2012). The authors argue that due to reconnection
of magnetic field lines – aided by turbulent motions – the magnetic flux in the disc is
lowered, which in turn reduces the magnetic braking efficiency and thus allows for the
formation of Keplerian discs.

In this chapter we remedy a shortcoming of the simulations presented in the two
previous chapters of this work and of the papers referred to in the beginning of this
section, namely their lack of turbulent motions. We present results from a number of
simulations investigating the possible role of turbulence in reducing the magnetic braking
efficiency and allowing for the formation of protostellar discs. In Section 8.2 we briefly
recapitulate the simulation setup, focussing on the changes made to the setup in the
previous simulations. In Section 8.3 the simulation results are presented focussing on the
formation of protostellar discs. A detailed discussion of the results including a comparison
to other numerical work will be presented in Section 8.4 before we summarise our results
in Section 8.5.
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8.2. Initial conditions and numerical methods

We now shortly recapitulate the basic simulation setup. As the starting point of our
simulations we have chosen the runs 2.6-4 and 5.2-4 (see Table 5.1). The cloud cores in
these simulations have a mass of 100 M⊙, are 0.25 pc in size and embedded in a 0.75 pc-
sized cubic simulation box of low-density gas (4.2·10−21 g cm−3). The density in the core
declines as ρ ∝ r−1.5 having a maximum of 2.3 · 10−17 g cm−3 in the centre1. The core is
rotating rigidly around the z-axis and is threaded by a magnetic field in the z-direction
declining radially outwards with R−0.75. We have chosen a ratio of the initial rotational
energy to the gravitational energy of βrot = 0.04 as this corresponds well to typically
observed values of molecular cloud cores (Goodman et al., 1993; Pirogov et al., 2003;
Csengeri et al., 2011). Two different magnetic field strengths are chosen so that the mass-
to-flux ratio µ (Eq. 3.21) is equal to 2.6 and 5.2, respectively, which is in agreement with
observational results (Falgarone et al., 2008; Girart et al., 2009; Beuther et al., 2010;
Crutcher et al., 2010). Moreover, this is the most interesting range since here magnetic
braking is very efficient and thus prevents the formation of Keplerian discs.

So far the setup is identical to the simulations presented before. We now superimpose
a supersonic turbulent velocity field on the initial uniform rotation. The turbulence field
consists of velocity fluctuations ∆v(k) where the distribution of kinetic energy stored in
the velocity fluctuations with a wave number k is described by the power spectrum

E(k) ∝ k−5/3 . (8.1)

This power-law relation with an exponent p = -5/3 is characteristic for fully developed,
incompressible turbulence (Kolmogorov, 1941). The modes consist of a natural mixing
of solenoidal (divergence free: ∇v = 0) and compressive modes (curl free: ∇ × v = 0)
with a ratio of 2:1. This ratio can easily be understood as there are two degrees of
freedom for transversal modes and only one for longitudinal modes. The wavelength of
the largest mode is chosen such that it approximately corresponds to the diameter of the
core, i.e. 0.25 pc. The amount of turbulent kinetic energy in the cores is set equal to the
rotational energy, i.e. βturb = 0.04, corresponding to a turbulent rms-Mach number of
∼ 2.5. This agrees reasonably well with observations of massive cloud cores, which usually
report significantly broadened line widths pointing to supersonic turbulent motions (e.g.
Caselli & Myers, 1995; Di Francesco et al., 2001; Sadavoy et al., 2012, but see also the
seminal review on interstellar turbulence by Elmegreen & Scalo (2004)). Here we note
that outside the core the turbulent velocity field is set to zero as this region is not of
interest for us and has negligible dynamical influence on the core and hence also on the
simulation results.

As pointed out by Girichidis et al. (2011) the realisation of the random turbulence field
can have a significant impact on the results, in particular with regard to fragmentation
properties. In order to check whether our results are affected by the random turbulent
realisation, we performed three simulations with different turbulence seeds but otherwise

1We remind the reader that we cut off the r−1.5-profile at a radius of 0.0125 pc in order to avoid
unphysically high densities in the centre of the core.

119



8. Disc formation in turbulent cloud cores

Run µ βrot βturb turbulence seed p
2.6-4-A 2.6 0.04 0.04 A -5/3
2.6-4-B 2.6 0.04 0.04 B -5/3
2.6-4-C 2.6 0.04 0.04 C -5/3
2.6-4-poly 2.6 0.04 0.04 A -5/3
2.6-4-A-b 2.6 0.04 0.04 A -2
2.6-0-A 2.6 0 0.04 A -5/3
5.2-4-A 5.2 0.04 0.04 A -5/3
2.6-4 2.6 0.04 0 – –

Table 8.1.: Initial conditions of the performed turbulence simulations including run 2.6-4 with-
out turbulence.

identical initial conditions (runs 2.6-4-A, 2.6-4-B and 2.6-4-C in Table 8.1). The simula-
tion 5.2-4-A with the weaker magnetic field (µ = 5.2) was performed with the identical
turbulence seed A already used for run 2.6-4-A. Observations of molecular cloud cores
frequently reveal a power-law exponent p of the power spectrum E(k) around -2 (Larson,
1981; Heyer & Brunt, 2004), which corresponds to pressureless Burgers turbulence. We
therefore also performed a simulation with a power-law exponent of -2 for the turbulence
seed A. Furthermore, we repeated the simulation with µ = 2.6, p = -5/3 and turbulence
seed A with a different cooling routine. In this cooling routine the temperature is directly
coupled to the particle density n via a polytropic index as follows:

T ∝ n(γ−1) with















γ = 1 for n < 109 cm−3

γ = 1.1 for 109 < n < 1011 cm−3

γ = 1.3 for 1011 < n < 1016 cm−3 .

(8.2)

Finally, we performed a simulation without any overall rotation but only a turbulent
velocity field. With the simulations given above we are able to test to what extent our
findings depend on the initial conditions as well as on the applied cooling routine. All
simulations performed are listed in Table 8.1.

The applied (standard) cooling routine takes into account dust cooling, molecular line
cooling and the effects of optically thick gas (see Banerjee et al., 2006, and Section 5.1.2
for details). The maximum spatial resolution used in the simulations is

dx = 1.2 AU (8.3)

and therefore a factor of 4 higher than in the previous simulations without turbulence.
This allows for a detailed analysis of the disc structures down to scales . 10 AU. In the
turbulence simulations we introduce sink particles above a density threshold of

ρcrit = 1.14 · 10−10 g cm−3. (8.4)

The sink particles have an accretion radius of 3.1 AU, a factor of about 2.6 larger than
the smallest cell size. As a refinement criterion we only use the Jeans criterion but not the
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second derivative criterion (see Section 5.1.1 for details) as otherwise the entire cloud core
would be refined due to small density perturbations induced by the turbulent motions,
which would make the simulations extremely costly. The Jeans criterion guarantees that
the Jeans length is resolved everywhere with at least 8 grid cells. We note that in
particular for magnetohydrodynamical turbulence simulations it has been suggested to
use an even higher resolution (Federrath et al., 2011). However, due to computational
cost reasons this could not be accomplished here.

In Section 5.2 we introduced an artificial density threshold in order to limit the Alfvén
velocity vA and prevent the hydrodynamical timestep to drop to prohibitively small
values. The density threshold was applied in a geometrically well-defined region around
the centre of the simulation domain. As in the turbulence runs sink particles do not
necessarily form in the centre, this criterion is useless. We therefore modified the criterion
for the density threshold as follows: The density threshold of 1 · 10−15 g cm−3 will be
applied only on the two highest AMR refinement levels and only in those cells in which
the hydrodynamical timestep, approximately calculated as

dt = dx/vA , (8.5)

falls below 3 · 106 s. This allows for a reasonable timestep without adding a significant
amount of mass to the simulation domain.

8.3. Results

In total we have performed 7 simulations with varying initial conditions. For reasons
of clarity we do not present the results of all runs in detail but focus on four fiducial
runs namely 2.6-4-A, 2.6-4-B, 2.6-0-A and 2.6-4-A-b. With these simulations we can
demonstrate how the results depend on the initial realisation of the turbulence field
(runs 2.6-4-A and 2.6-4-B), the exponent of the turbulence spectrum (run 2.6-4-A-b)
and the fact whether an overall rotation is present or not (run 2.6-0-A). We emphasise
that concerning disc formation the results of the runs 2.6-4-C, 2.6-4-A-p and 5.2-4-A are
qualitatively very similar to the four other runs. Hence, we are confident that the main
findings do not depend on the randomly chosen, initial turbulence field nor on the used
cooling function nor do they change if a slightly weaker initial magnetic field is used. We
again emphasise that we solely focus on the process of disc formation and leave other
points like fragmentation and accretion behaviour for future work.

Since we are interested in the properties and the evolution of protostellar discs, we
restrict our consideration to the time after the first sink particle has formed (t0). Depend-
ing on the simulation, this happens after roughly 15 – 20 kyr. At this point large-scale
filaments have developed, in which the discs form (for fragmentation and disc formation
in massive cores without magnetic fields see Banerjee & Pudritz, 2006; Girichidis et al.,
2011). From this point on we run the simulations for further 15 kyr (except run 2.6-0-A
which, for computational cost reasons, has been followed for 12.5 kyr only). In order to
determine global disc properties like mass, centre-of-mass, and the angular momentum
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vector, we only consider gas with densities larger than 5·10−13 g cm−3 around a sink par-
ticle. By visual inspection of the density isocontours and variation of this threshold we
found this value to be reasonable. Furthermore, it roughly corresponds to the threshold
where the gas gets optically thick (see Section 5.1.2). With respect to the centre-of-mass
and the orientation of the disc we now can calculate the rotation velocity vφ and the
radial infall velocity vrad for each grid cell in the disc, i.e. with a density above the
threshold of 5 · 10−13 g cm−3. Making use of a density threshold has the advantage that
gas from the outflow cavity above and below the disc is excluded in this consideration.
For the outer regions where no gas with densities larger than 5 · 10−13 g cm−3 is found,
we adopt a simple geometrical criterion considering all the gas within a height of 20 AU
above/below the midplane defined by the disc. The radius where this geometrical crite-
rion becomes necessary is usually of the order of 50 – 100 AU depending on the actual
simulation. Hence, we are able analyse the velocity structure outside the disc as well. In
order to get an impression of the scatter of the different velocity components, we do not
azimuthally average the values of vφ and vrad.

In Fig. 8.1 we show the radial dependence of vφ and vrad 15 kyr after the formation
of the first sink particle for all cells in the disc formed first in each of the runs 2.6-4-A,
2.6-4-B, 2.6-0-A and 2.6-4-A-b. To get an impression of whether the discs are rotationally

supported or not, we also plot the Keplerian velocity vkep =
(

GMr
r

)1/2
, where G is the

gravitational constant and Mr the mass of all sink particles and gas within a sphere of
radius r around the disc centre. As can be seen, vφ is close to vkep out to a radius of
∼ 50 AU or even more with a scatter of about 50% in each direction as indicated by the
dotted lines. This is a remarkable result since for previous simulations of low- and high-
mass cores with mass-to-flux ratios µ < 10 only sub-Keplerian discs were found (e.g.
Allen et al., 2003; Price & Bate, 2007; Mellon & Li, 2008; Hennebelle & Fromang, 2008;
Duffin & Pudritz, 2009, and Chapter 6 of this work).

We note that, although all runs contain more than one sink particle, only the disc
around the first sink formed has a considerable size of ∼ 50 AU or more. This disc
usually contains several sinks. Some of the remaining sinks do not have an associated
disc at all. This can be attributed to the ejection from an already existing disc due
to many-body interactions with nearby sinks. Therefore these ejected sinks have a high
relative speed with respect to the surrounding gas, which hampers the build-up of a disc.
Furthermore, some of the sinks without any large (& 50 AU) disc have been created only
shortly before the end of the simulation so that their discs are not yet well developed.
However, we emphasise that also these very young discs reveal Keplerian velocity profiles,
but to a radius of a few 10 AU only.

We note that in parts the angular momentum vectors of the discs are well off the
z-axis. For example, in run 2.6-4-B the disc orientation is almost perpendicular to the
overall rotation over the entire 15 kyr (see Fig. 8.2) and also for run 2.6-4-C initially the
angular momentum of the disc is well off the z-axis and approaches the z-axis only at the
end of the simulation. This demonstrates that the local angular momentum associated
with the turbulent motions strongly affects the formation of the discs. This is even more
clearly demonstrated by the formation of a disc in run 2.6-0-A, where no overall rotation
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Figure 8.1.: Radial dependence of the rotation (red) and radial velocity (green) for the disc
formed first in each of the runs 2.6-4-A, 2.6-4-B, 2.6-0-A and 2.6-4-A-b. The black solid line
shows the Keplerian velocity vkep, the dotted lines 50% and 150% of vkep. The regions below 4
AU are affected by resolution effects, therefore they are shaded grey to guide the reader’s eye.

is present. We note that the orientation of the discs varies only slowly over time as
the large-scale structure in which they reside does not change much during the time
considered (∼ 15 kyr). Furthermore, the discs presented here have masses of the order of
0.1 M⊙ and drive molecular outflows. However, due to the turbulent surroundings of the
discs with velocities comparable to the outflow velocity it is hard to track the outflow
by means of the velocity structure alone. Hence, it is hard to estimate a reliable mass
of the outflows driven by the discs, which is why we will not follow this topic further in
this work.

Furthermore, since in all discs shown in Fig. 8.1 vφ scatters around vkep, this indicates
that this result is neither an incidental consequence of the specific turbulence seed nor
of the power-spectrum exponent (run 2.6-4-A-b). Moreover, also changing the thermo-
dynamical behaviour of the gas using a polytropic equation of state (run 2.6-4-poly) or
removing the overall core rotation (2.6-0-A) does not change the result qualitatively. For
all discs we find that vrad scatters around zero and is almost always smaller than vφ and
significantly smaller than the free-fall velocity vff =

√
2vkep. This is in strong contrast to

the disc in run 2.6-4, which has the same initial setup as the runs presented here except
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Figure 8.2.: Edge-on view of the disc formed first in run 2.6-4-B. The column density is over-
plotted with the magnetic field lines (white) and the sink particles (black dots). The disc angular
momentum pointing into the x-direction is well off from the global angular momentum (pointing
into the z-direction) and the magnetic field structure is highly disordered.

the initial turbulence field. The disc was found to be strongly sub-Keplerian with vrad

close to vff. The difference becomes particularly clear when comparing the top-on view
of the discs formed first in the runs 2.6-4-A, 2.6-4-B, 2.6-0-A and 2.6-4-A-b (Fig. 8.3)
with that of highly magnetised runs without turbulent motions (compare right panel
of Fig. 6.4). The discs have a relatively well-defined outer boundary around a column
density of ∼ 3 · 1024 cm−2. The edge of the disc roughly corresponds to the radius where
the volume density in the disc drops below a value of 5 · 10−13 g cm−3. From the top left
panel of Fig. 8.3 it can also be inferred that the reason for the relative large values of
vrad seen in run 2.6-4-A around 20 AU (top left panel of Fig. 8.1) are due to a secondary
sink particle at this position.

Why, even in the case of such strongly magnetised cores, are Keplerian discs formed?
The suppression of Keplerian disc formation in previous studies without turbulence is
due to the very efficient magnetic braking (Mouschovias & Paleologou, 1980), which re-
moves angular momentum from the midplane at a very high rate (see Section 6.2.4 and in
particular Fig. 6.10). Hence, in the turbulence runs presented here the magnetic braking
efficiency has to be reduced significantly. Two possible mechanisms which could accom-
plish this have been discussed recently in literature. The first mechanism is the loss of
magnetic flux in the disc and in its surroundings. Secondly, it was shown that a misalign-
ment of the magnetic field and the angular momentum vector of the disc also reduces
the magnetic braking efficiency (Hennebelle & Ciardi, 2009; Ciardi & Hennebelle, 2010;
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8.3. Results

Figure 8.3.: Column density in logarithmic scaling for the top-on view of the four discs formed
first in the runs 2.6-4-A, 2.6-4-B, 2.6-0-A and 2.6-4-A-b (from top left to bottom right). Addi-
tionally, the velocity field (green vectors) and the projected position of the sink particles (black
dots) are shown. Note the different scale in the bottom right panel. The appearance of the discs
differs significantly from that of highly magnetised non-turbulent runs (compare right panel of
Fig. 6.4).

Joos et al., 2012). In the following we try to work out the reason why in our simulations
with initial turbulence Keplerian discs are formed.

In a first step we try to estimate the dynamical importance of the magnetic field for
the gas dynamics. In Chapter 6 we have shown that the magnetic field starts to play an
important role in the dynamical evolution of the gas as soon as the mass-to-flux ratio
drops below a value of ∼ 10, resulting in the suppression of Keplerian disc formation. For
this reason we firstly calculate the mass-to-flux ratio in a sphere with a radius of 500 AU
around the centre of each disc. For this purpose we calculate the volume-weighted, mean
magnetic field | 〈B〉 | as well as the mass M of the gas in the sphere. With these quantities
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Figure 8.4.: Mass-to-flux ratio µ in spheres with a radius of 500 AU around the centre-of-mass
of the same four discs as in Fig. 8.1 taking into account the gas mass only (solid lines) and the
sum of gas and sink particle masses (dashed lines).

the average mass-to-flux ratio in the sphere is defined as

µ =
M

πr2| 〈B〉 |/
0.13√
G
. (8.6)

We plot the time evolution of µ in Fig. 8.4 for the same four discs as in Fig. 8.1, i.e.
the discs formed first in each of the runs 2.6-4-A, 2.6-4-B, 2.6-0-A and 2.6-4-A-b. When
taking into account only the mass of the gas in the sphere (solid lines), µ varies around
a mean of 2 – 3, which is in rough agreement with the overall value of 2.6. Furthermore,
for the four discs considered µ stays well below the critical value of ∼ 10 for which in
both low- and high-mass protostellar cases the formation of Keplerian discs is suppressed
(see Chapter 6). Hence, from our previous results and those of other authors one would
expect that no Keplerian discs should build up, which obviously is not the case.

In Fig. 8.5 we plot the scaling of the magnetic field with the density. For this purpose
the mean magnetic field strength in density bins of equal width in log-space is calculated.
For reasons of clarity we only plot the results for run 2.6-4-A for different times but note
that the results of the other runs are qualitatively very similar. As can be seen, the
observed scaling B ∝ ρ0.5 is very similar to that of the non-turbulent run 2.6-4 (green
line). There seems to be a moderate build-up of magnetic energy between 10−15 and
10−11 g cm−3. The overall shape, however, does not change significantly. At late times
the magnetic field strength at densities above 10−11 g cm−3 does not grow anymore, a
result also observed in the other simulations. This could point to a flux loss at densities
larger than 10−11 g cm−3. However, this density is by far higher than the density in the
surroundings of the disc indicating that in the surroundings the magnetic field is reason-
ably well coupled to the gas. This seems to contradict the findings of Santos-Lima et al.
(2012), who propose that in the disc and its surroundings turbulent reconnection occurs,
which lowers the magnetic flux and thus the magnetic braking efficiency. However, fur-
ther comparison to their work is not possible as the authors do not consider the scaling
of the magnetic field.
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Figure 8.5.: Scaling of the magnetic field for different times in run 2.6-4-A as well as in the
non-turbulent run 2.6-4.
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Figure 8.6.: Inclination of the mean magnetic field 〈B〉 to the angular momentum vector of the
disc in spheres with a radius of 500 AU around the centre-of-mass for the same four discs as in
Fig. 8.1.

Another way of reducing the magnetic braking efficiency was investigated
by Hennebelle & Ciardi (2009), Ciardi & Hennebelle (2010) and Joos et al. (2012).
These authors found that even for a small misalignment of the overall magnetic field
and the rotation axis Keplerian discs can form. As we consider a turbulent flow, it is
very likely that the magnetic field and the rotation axis are misaligned. In Fig. 8.6 we
plot the angle α between the disc angular momentum vector and 〈B〉 in the spheres
around the four fiducial discs. The angle α is significantly larger than 0◦, which sup-
ports the picture of a reduced magnetic braking efficiency due to a misalignment of the
magnetic field and the rotation axis. However, when considering the magnetic field line
structure around the disc in run 2.6-4-B in an edge-on view (Fig. 8.2), one can see that
calculating an average magnetic field vector is a very crude approximation. As can be
seen, the magnetic field structure is highly disordered and approximating this structure
by a mean magnetic field is at least questionable. Also around the other discs the field
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8. Disc formation in turbulent cloud cores

structure is found to be highly disordered. Hence, beside α also the value of µ calculated
in Eq. 8.6 should be taken with caution. We note that the turbulent motions respon-
sible for the highly disordered magnetic field also explain the large variations in α seen
in Fig. 8.6. Due to the velocity fluctuations the magnetic field in the surroundings of
the discs changes relatively fast. This causes the large variations in the inclination of
〈B〉 with respect to the disc angular momentum vector, whose direction varies rather
moderately over time.

The highly disordered magnetic field indicates a third reason why the magnetic braking
efficiency is strongly reduced. Considering Fig. 8.3 it can be seen that in the surround-
ings of each disc the velocity field is highly turbulent with no signs of a coherent rotation
structure. Therefore, no toroidal magnetic field component (with respect to the coor-
dinate system of the disc) can be built up. But as the angular momentum is mainly
extracted by toroidal Alfvènic waves, it is not surprising that the magnetic braking ef-
ficiency is strongly reduced in the environment of the disc despite a low mass-to-flux
ratio (compare Fig. 8.4). Moreover, the disordered magnetic field structure itself im-
pedes the coupling of the fast rotating gas in the inner parts to slowly rotating gas
in the outer parts. Such a kind of field configuration with a long magnetic lever arm
(compare Fig. 6.8) connecting the inner and outer parts would even more increase the
efficiency of magnetic braking. To summarise, the magnetic braking efficiency is reduced
due to the lack of a proper toroidal magnetic field component and the highly disordered
magnetic field structure in the disc environment.

Despite the lack of a coherent rotation structure, locally the inwards angular momen-
tum transport can remain high due to local shear flows driving large angular momentum
fluxes. Such accretion flows, which deviate from a perfectly radial inflow and therefore
carry large amounts of angular momentum, can be seen in Fig. 8.3. We also note that
such a non-coherent flow cannot be slowed down by the magnetic field as efficiently as
it would be the case for large-scale, coherent rotational motions. This can be seen in our
previous simulations (Chapter 6) without initial turbulence where the angular momen-
tum is removed almost completely before the gas hits the disc. Hence, it is the shear flow
generated by turbulent motions that provides the required angular momentum to build
up Keplerian discs.

To quantify the above described picture, we calculate the torques of the gas τgas

(Eq. 6.4) and the magnetic field τmag (Eq. 6.5) in cylinders of variable radii and a total
height of 40 AU2 around the centre-of-mass of each disc. The symmetry axis of the
cylinders is determined by the angular momentum vector of the corresponding disc. In
Fig. 8.7 we plot the ratio of τgas to τmag for the first disc in each of the runs 2.6-4-A,
2.6-4-B, 2.6-0-A and 2.6-4-A-b and the disc in run 2.6-4 without turbulence. For the
turbulence runs τgas exceeds τmag on average by at least a factor of a few, i.e. angular
momentum is transported inwards at a higher rate than it is extracted by the magnetic
field. This is also observed for the discs in the other runs not shown here. We briefly note
that the gravitational torques not shown here are generally even smaller than τmag and

2This height is found to be reasonable by visually inspecting the discs in edge-on view. Furthermore, a
variation of this value does not qualitatively change the overall picture.
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Figure 8.7.: Ratio of τgas to τmag for the same four discs as in Fig. 8.1 (same colours as in
Fig. 8.4) and for the disc in run 2.6-4 without turbulence (light blue line).

are thus dynamically even less important. Hence, for the turbulence runs there is a net
transport of angular momentum inwards resulting in the observed build-up of Keplerian
discs. In contrast, for the non-turbulent run τgas is almost perfectly balanced by τmag,
which prevents the formation of rotationally supported discs.

This result fits in the picture described above where the magnetic braking efficiency
is reduced due to the disordered magnetic field and the presence of local shears flows
instead of a coherent rotation structure. To summarise, it seems that the turbulent disc
environment is the reason for the build-up of a Keplerian disc.

8.4. Discussion

8.4.1. Dependence on the initial conditions

Of particular interest was the question how different initial turbulence fields might in-
fluence the formation of protostellar discs. From the three runs 2.6-4-A, 2.6-4-B and
2.6-4-C with a Kolomogorov type turbulence spectrum it can be seen that the actual
realisation of the turbulence field has only little influence on the size and velocity struc-
ture of the discs (see Fig. 8.1 and 8.3). Furthermore, also different power-law exponents
of the turbulence spectrum seem not to affect the results significantly. This behaviour
is in agreement with recent results of Bate (2009) and Walch et al. (2012) showing that
varying the power-law exponent has only little influence on certain properties of star for-
mation like e.g. protostellar mass distributions. However, as Walch et al. (2012) pointed
out, the largest wavelength used in the turbulence spectrum can significantly influence
the results as this mode carries the largest amount of kinetic energy. Hence, in our case it
would be interesting to see what happens if we reduce the largest turbulence mode, which
currently roughly corresponds to the diameter of the core, to a significantly smaller scale.
Furthermore, as shown by Girichidis et al. (2011), the fragmentation properties critically
depend on the density profile of the core. Hence, it would be of interest to perform simu-
lations with a more flattened profile, which would be more susceptible to fragmentation.
However, due to computational cost reasons the effect of enhanced fragmentation and of
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8. Disc formation in turbulent cloud cores

the variation of the size of the largest turbulence mode could not be tested during the
course of this work.

8.4.2. Mass-to-flux ratio

In Section 8.3 we have considered the mean mass-to-flux ratio in spheres of 500 AU
around the discs only taking into account the mass of the gas. The reason for this
approach was the possibility to compare the results to those of Chapter 6 and thus
to estimate the importance of the magnetic field for the gas dynamics. However, when
including the mass of the sink particles in the mass M in Eq. 8.6, the value of µ at
the end of each run is larger by a factor of ∼ 5, i.e. µ ≃ 10 – 15 (see dashed lines in
Fig. 8.4). Hence, there occurs a real magnetic flux loss in the spheres and one could argue
that this flux loss would be enough to allow for Keplerian disc formation as now µ is in
the range where Keplerian discs have been found. However, we argue that to properly
estimate the importance of the magnetic field for the gas dynamics, it is more insightful
to take into account the mass of the gas alone. The reason for this is that magnetic
braking directly affects the rotation of the gas only and not that of already existing sink
particles. Moreover, the increase of µ due to the inclusion of the sink particles (compared
to the value of µ calculated with the gas mass only) is not constant but increases in time
since shortly after the formation of the sink particle the gas mass in the sphere dominates
over the sink mass. Hence, in the beginning (t . 10 kyr), which is the actual phase during
that the discs are formed, even the mass-to-flux ratio including the sink particle mass is
clearly below 10 indicating that the magnetic field should be strong enough to efficiently
remove angular momentum and to prevent Keplerian discs from forming. Since this is
not the case, the flux loss alone cannot explain the formation of the Keplerian discs.

We emphasise that in the case of initial turbulence the value of the mass-to-flux ratio
has to be taken with caution. One reason is that accretion onto the disc along the
magnetic field lines increases the mass-to-flux ratio when measuring it in a fixed (not
comoving) volume. Furthermore, the highly disordered structure of the magnetic field in
the vicinity of the discs (see Fig. 8.2 for an example) complicates the interpretation of
the mass-to-flux ratio, which originally was derived for a well-ordered, purely poloidal
magnetic field (Mouschovias & Spitzer, 1976). However, we tried to estimate the mass-
to-flux ratio in a different way: Calculating the magnetic flux through the surface of a
cylinder with diameter and height of 1000 AU and comparing the flux to its mass, we
find a mass-to-flux ratio similar to that found in Fig. 8.4 differing by a few 10% only.
Hence, the estimate of µ done in Section 8.3 seems to be rather robust and is only little
influenced by the highly disordered magnetic field line structure, but most likely by mass
accretion along the field lines.

8.4.3. The reduced magnetic braking efficiency

Recently Santos-Lima et al. (2012) have reported the formation of Keplerian discs in
turbulent, strongly magnetised low-mass cores. The authors attribute this to the effect
of turbulent reconnection (Lazarian & Vishniac, 1999) lowering the magnetic flux in
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the centre. Analysing the scaling of the magnetic field with the density, we find that
the observed relation B ∝ ρ0.5 is very similar to the non-turbulent case and more or
less constant over time indicating a good coupling between the magnetic field and the
gas. However, as pointed out before, some magnetic flux loss becomes apparent when
taking into account the sink particle masses in the calculation of µ. This flux loss is
even more pronounced when going to smaller scales of the order of the disc radius, i.e.
∼ 100 AU. This is reflected by a mass-to-flux ratio on these scales significantly larger
than 10 (including the sink particle mass), which cannot be explained by an artificial
increase of µ due to accretion along magnetic field lines alone. Hence, on these scales
clearly some magnetic flux loss has occurred. Therefore, it could be argued that turbulent
reconnection is happening on these scales. Also from Fig. 8.5 some flux loss is apparent
at densities above ∼ 10−11 g cm−3. Typical scales associated with this density are of
the order of 30 – 40 AU. However, on these scales (. 100 AU) where the magnetic flux
loss becomes clearly apparent the velocity structure seems to be relatively well-ordered
(Fig. 8.3), which makes turbulent reconnection unlikely to happen. Hence, we rather
attribute the flux loss to numerical diffusion.

One could now argue that the diffusion of the magnetic field on the disc scale is
responsible for the build-up of the Keplerian discs. Then, however, the question arises
why in the non-turbulent case magnetic diffusion is less efficient. This can be explained
by a simple, heuristic picture: The increased magnetic flux loss – compared to the non-
turbulent run – is a direct consequence of the increased timescale for the gas infall
compared to the diffusion timescale. This in turn means that the radial infall velocity
has to be decreased compared to the non-turbulent run. This decrease of the radial infall
velocity, however, requires the existence of a rotationally supported structure with infall
velocities already close to zero (compare Fig. 8.1). Hence, before magnetic diffusion can
become efficient at all, there must be enough angular momentum available to build up
a Keplerian disc. This in turn requires the magnetic braking efficiency to be reduced on
larger scales (& 100 AU), which – as we have shown – can be attributed to the disordered
magnetic field structure and the local shear flows around the discs. With other words,
the magnetic diffusion/flux loss on the scales of the disc is not the reason for the build-up
of a Keplerian disc but rather its consequence. Nevertheless, by means of the small-scales
flux loss magnetic diffusion certainly helps to keep the disc in a rotationally supported
state.

The large misalignment of the magnetic field of the spheres and the angular momentum
of the discs of up to 90◦ (see Fig. 8.6) also might weaken the effect of magnetic braking
as suggested by Hennebelle & Ciardi (2009), Ciardi & Hennebelle (2010) and Joos et al.
(2012). In their work, however, only uniformly rotating spheres with a well-ordered
magnetic field were considered, which is clearly not the case here (see Fig. 8.2 and 8.3).
Therefore, it is hard to tell to what extent in our case the misalignment affects the
magnetic braking efficiency. Moreover, it seems that the simulations of the authors men-
tioned before more or less represent a special case of the situation observed here namely
a somehow disordered (in their case misaligned) magnetic field and/or the missing of a
coherent rotation structure in the vicinity of the disc.
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We note that recently Hennebelle et al. (2011) and Commerçon et al. (2011) also per-
formed simulations of high-mass turbulent cloud cores where they found large-scale out-
flows. Since these outflows require the existence of well-defined protostellar discs, their
work clearly supports our simulation results. However, as these authors do not explicitly
consider the properties of their discs, a further comparison to their work is not possible.
Nevertheless, their and our results indicate that one should detach from the classical pic-
ture of magnetic braking for a coherently rotating structure threaded by a well-ordered
magnetic field. As we have shown, such a structure does not occur under realistic con-
ditions – at least in the case of massive star formation with highly supersonic turbulent
motions.

To summarise, two different aspects play a role in the formation of the discs. On large
scales (& 100 AU) magnetic braking is reduced due to a disordered magnetic field and
the missing of a proper toroidal field component. Simultaneously, the angular momentum
flux remains high due to local shear flows around the discs transporting mass and angular
momentum inwards. On small scales (. 100 AU) magnetic diffusion sets in, significantly
increasing the mass-to-flux ratio. This, however, can only happen if the infall velocity is
reduced due to an already existing Keplerian disc.

8.4.4. Early vs. late stage disc formation

Recently, Krasnopolsky et al. (2011) have proposed that including the Hall effect can
result in the formation of large-scale Keplerian discs. They claim, however, that a Hall
coefficient about one order of magnitude larger than expected under realistic condi-
tions would be required. Furthermore, in this case the spin-up of the disc is not due
to a reduced magnetic braking efficiency but due to the Hall-induced magnetic torque,
which depends on the direction of the magnetic field. This is demonstrated by the fact
that Krasnopolsky et al. (2011) find counterrotating discs, i.e. discs which rotate in the
opposite direction as the surrounding core when the field direction is flipped. Recently
it was also shown that Ohmic dissipation fails to produce Keplerian discs larger than
roughly 10 solar radii in the earliest evolutionary stage (Dapp & Basu, 2010; Dapp et al.,
2012), unless a strongly enhanced resistivity is used (Krasnopolsky et al., 2010). Fur-
thermore, also the inclusion of ambipolar diffusion does not help to form Keplerian
discs (Mellon & Li, 2009; Duffin & Pudritz, 2009). Hence, it seems that all three non-
ideal MHD effects cannot account for the formation of Keplerian discs. However, as
we have shown, already for the ideal MHD limit Keplerian discs can form in strongly
magnetised cores when turbulent motions are included. Therefore, it seems that non-
ideal MHD effects or turbulent reconnection are not necessarily required to avoid the
“magnetic braking catastrophe”.

Based on their simulations, the authors mentioned in the paragraph before suggest
that well-defined, Keplerian discs build up during the evolution of the central object
from the Class 0 to the Class I stage and are not present from the very beginning. In-
deed, earlier observations of individual Class 0 sources found cases where no well-defined,
Keplerian discs were detected (e.g. Belloche et al., 2002). These observations support the
picture of a successive build-up of discs during the evolution towards the Class I stage,
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which would alleviate the magnetic braking problem. These findings seem to contradict
our results presented here. However, comparing more recent observations of spectral en-
ergy distributions (SEDs) of a sample of Class 0 sources with detailed radiative transfer
models suggests that the majority of the objects harbours well-defined protostellar discs
forming in the earliest stages (Jørgensen et al., 2009; Enoch et al., 2009, 2011). Fur-
thermore, Jørgensen et al. (2009) do not find significant differences between the discs
masses in Class 0 and Class I objects. This might indicate that also other properties
like kinematics of Class 0 stage discs are similar to that of Class I stage discs, which
are in general observed to be rotationally supported (for an overview see section 4.3.3
in Williams & Cieza, 2011, and references therein). However, as the aforementioned ob-
servations usually do not provide a clear visual identification of the discs, one has to be
careful when interpreting these results. Indeed, there are some recent observations which
suggest that there are no well-defined discs around Class 0 objects (Maury et al., 2010).
We note that the aforementioned observations mainly refer to low- and intermediate-
mass protostars. For high-mass protostellar objects the observation of protostellar discs
is even more challenging due to the stronger extinction of radiation by the large amount
of surrounding gas. Nevertheless, there are observations of well-defined, Keplerian discs
with typical sizes of a few 100 AU around massive protostellar objects (Fuller et al., 2001;
Shepherd et al., 2001; Chini et al., 2004; Fernández-López et al., 2011; Preibisch et al.,
2011, but see also the review of Cesaroni et al. (2007)) although also these observations,
just like those mentioned before, often refer to the later, somewhat more evolved Class I
phase.

To summarise, one has to state that the question of whether protostellar discs form
already in the earliest (Class 0) stage as proposed in this work or by a successive build-
up towards the Class I stage remains highly debated. For this question to be answered,
high-resolution observations have to be performed, e.g. with the newly designed Ata-
cama Large Millimeter/submillimeter Array (ALMA). Nevertheless, our work clearly
shows that in massive star forming regions under realistic conditions, i.e. when including
supersonic turbulent motions, early type, rotationally supported protostellar discs can
indeed form.

8.5. Conclusion

We have performed collapse simulations of strongly magnetised (µ = 2.6, 5.2), 100 M⊙
cloud cores. A turbulent velocity field was superimposed on the uniform core rotation. We
find that after an initial collapse phase of ∼ 15 kyr discs with typical masses of ∼ 0.1 M⊙
form. The discs have radii of 50 – 100 AU and rotate with Keplerian velocities – a result
in strong contrast to previous simulations of strongly magnetised cores containing no
initial turbulence. By performing several simulations we showed that our findings do
neither depend on the random realisation of the turbulence field nor the exponent of the
turbulence spectrum nor the adopted cooling routine. We also showed that Keplerian
discs can be formed even if no overall core rotation is present.
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We suggest that the main reason for Keplerian disc formation is the turbulent sur-
roundings of the disc. As there is no coherent rotation structure on scales of several
100 AU, the generation of a toroidal magnetic field is suppressed therefore lowering the
magnetic braking efficiency already before the gas hits the disc. Furthermore, we find
that the magnetic field is highly disordered in the surroundings of the discs, which also
reduces the magnetic braking efficiency. At the same time there is a net inwards angu-
lar momentum transport by the gas due to local shear flows carrying large amounts of
angular momentum.

On scales of the disc itself (≤ 100 AU) significant magnetic flux loss is observable.
This enhanced flux loss might be the consequence of numerical diffusion, which is more
efficient than in the non-turbulent runs due to the lower infall velocities in the already
existing Keplerian disc. We again emphasise that this requires a reduced magnetic brak-
ing efficiency already at larger scales so that enough angular momentum is available on
scales of 100 AU to build up the disc. Furthermore, we suggest that the reduced magnetic
braking efficiency due to an inclination between the magnetic field lines and the rota-
tion axis as observed recently (Hennebelle & Ciardi, 2009; Ciardi & Hennebelle, 2010;
Joos et al., 2012) is a special case of a strongly disordered magnetic field as observed in
our simulations.

To summarise, our work strongly suggests that the “magnetic braking catastrophe” as
reported in numerous papers is more or less a consequence of the highly idealised initial
conditions neglecting turbulent motions. A turbulent velocity field in the surroundings
of the disc and a disordered magnetic field structure, as obtained with more realistic
initial conditions, is enough to allow for the formation of Keplerian discs. Other effects
like turbulent reconnection or non-ideal MHD effects seem to act only on scales of the
already existing discs. Hence, turbulence alone provides a natural and at the same time
very simple mechanism to solve the “magnetic braking catastrophe” problem.

In future work we plan to extend our analysis to an even wider parameter space, in
particular allowing for different initial core masses and turbulence strengths. Hence, we
will be able to test whether the mechanism explored in this chapter also applies to the
entire range of initial conditions typical for star formation. This will be particularly inter-
esting for the case of low-mass protostellar cores, where usually only subsonic turbulence
is observed and thus the velocity perturbations – the main driver of the formation of
Keplerian discs – are significantly smaller.
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9.1. Summary

In this work I have studied the influence of magnetic fields on various aspects of the
formation process of massive stars focussing on the earliest stage of protostellar evolution.
This was done by means of a number of large-scale numerical simulations of collapsing
molecular cloud cores. The cores had a mass of 100 M⊙, were threaded by a magnetic
field along the z-axis varying in strength from simulation to simulation, were rotating
with different rotation frequencies around the z-axis, and partly had a superimposed
turbulent velocity field.

9.1.1. Disc formation and protostellar accretion rates

In Chapter 6 I focussed on the effect of magnetic fields and rotation on protostellar ac-
cretion rates and on the formation and properties of protostellar discs. Turbulence was
not included in these simulations – studying its influence was postponed to Chapter 8.
For the non-turbulent simulations I showed that, despite the fact that the initial condi-
tions – regarding the magnetic and rotational energy – cover more than two orders of
magnitude in parameter space, the protostellar accretion rates are remarkably constant
varying only by a factor of ∼ 3. I attribute this fact to two competing effects of the
magnetic field simultaneously counteracting and enhancing accretion.

Another important result of this work is the fact that for non-turbulent cloud cores
the formation of Keplerian discs is suppressed for an initial mass-to-flux ratio smaller
than 10, i.e. for strong magnetic fields. In these cases I find that sub-Keplerian discs
with strong infall motions form. This is in good agreement with numerical work on
low-mass star formation by other authors finding a similar critical mass-to-flux ratio of
µ = 5 – 10 below which Keplerian disc formation is suppressed. However, this result
seems to conflict with observational results as observations usually show that typical
star forming regions have mass-to-flux ratios which are only slightly supercritical, i.e.
µ . 5, and that well-defined Keplerian discs are present in a very early protostellar phase
already. In contrast, my simulations of strongly magnetised, non-turbulent massive cloud
cores as well as related work on low-mass star formation of other authors suggest that
there should be no such discs in the earliest phase of star formation. This apparent
contradiction between numerical work for both low- and – as shown here – high-mass
star formation on the one hand and observational results on the other hand has led to
the formulation of the so-called “magnetic braking catastrophe”. This problem has been
investigated intensively over the last decade and at first sight also my work seemed to
confirm the existence of this problem.
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9.1.2. Outflow formation

In Chapter 7 of this work I expanded the analysis of the simulations presented in Chap-
ter 6 now focussing on the formation of outflows and the influence of the initial conditions
on outflow properties. Firstly, by generalising the magnetohydrodynamical wind theory I
derived an analytical criterion from the equations of magnetohydrodynamics with which
I can analyse the driving mechanism of outflows. In contrast to the already existing cri-
terion, with this new criterion I can examine the outflows well off from the disc as well as
situations with sub-Keplerian disc rotation as observed in a number of my simulations.

Considering the morphology of the outflows in the simulations I find significant dif-
ferences. Both, well-collimated, fast outflows and slowly expanding, sphere-like outflows
are found, where the former are observed for weak initial magnetic fields and fast core
rotation and the latter for strong magnetic fields (µ < 10). When relating the outflow
morphology to the velocity structure of the underlying protostellar disc that drives the
outflow, I showed that for the formation of well-collimated, fast outflows Keplerian discs
are required. Applying the newly derived wind criterion, I could show that all outflows
observed in the simulations are launched centrifugally from the discs with varying con-
tribution to the driving from the toroidal magnetic field, which is particularly important
at greater heights and larger radii. Furthermore, I demonstrated that analysing the field
line structure or the toroidal magnetic field strength as often done in literature is not
sufficient to unambiguously determine the launching mechanism of the outflow. I also
showed that the morphological differences of the outflows are mainly due to the varying
strength of the hoop stress responsible for outflow collimation.

I also introduced an evolutionary scenario in which the slow, sphere-like outflows
represent a transient feature in the earliest stage of protostellar evolution which might
recollapse again to the disc or will be overtaken by a fast, well-collimated jet developing
somewhat later.

9.1.3. Turbulent disc formation

From the work in the past decade on low-mass star formation and from this work on
high-mass star formation it has become clear that there is indeed a problem in forming
Keplerian discs in quiescent, i.e. non-turbulent cloud cores. As protostellar discs and
their associated outflows represent keystones in our current picture of star formation,
the incapability of numerical simulations to produce such discs presents a severe problem
in current research. However, in particular the simulations of massive cores studied in
Chapter 6 and 7 lack the presence of turbulent motions frequently observed in massive
star forming regions. Hence, the aim of Chapter 8 was to remedy this shortcoming and
to study the influence of turbulence on the formation of protostellar discs.

By including a supersonic turbulence field in simulations of a strongly magnetised core
for which previously no Keplerian disc was observed, I now find that Keplerian discs are
formed. This result remains unaltered when changing the initial turbulence field or even
when completely removing the overall core rotation. I showed that in the surroundings
of the Keplerian discs the magnetic field is highly disordered, which prevents an effi-

136



9.2. Outlook

cient coupling of the inner, fast rotating disc to the outer, slowly rotating environment
so that the magnetic braking efficiency is reduced significantly. Moreover, the lack of a
coherently rotating structure in the surroundings of the disc hampers the build-up of
a toroidal magnetic field thus also reducing the effect of magnetic braking. As simul-
taneously local shear flows created by the turbulent motions provide a high amount of
angular momentum, this results in the formation of Keplerian discs. This mechanism
of a turbulence-induced formation of Keplerian discs explored in this work presents a
powerful way to circumvent the “magnetic braking catastrophe”.

To summarise, I showed that the presumable magnetic braking problem, which I al-
ready discussed in the beginning of this work, is solved in the end in a very natural
manner, simply by including turbulent motions.

9.2. Outlook

9.2.1. Turbulent disc formation for a wider mass range

The turbulence-mediated disc formation process discovered in this work is most likely the
most important aspect of this thesis. However, so far this mechanism is tested only for a
fixed core mass of 100 M⊙ and a fixed turbulence strength. As this mechanism represents
an important aspect of the star formation theory, i.e. it allows for the formation of well-
defined, Keplerian discs at a very early stage already, it is of great importance to expand
this study to a wider range of initial conditions. Here, in particular the initial mass of
the core is of great interest as stars form in cores with masses ranging from a few solar
masses up to a few 1000 M⊙. As usually the turbulence strength varies with the size and
hence the mass of prestellar cores, a variation of the core mass would be particularly
interesting for low-mass cores. Here the turbulence is in general observed to be subsonic.
Hence, the velocity fluctuations, which are the main driver of the formation of Keplerian
discs as shown in this work, are much weaker and it will be of interest to see whether in
this case turbulence can still aid the formation of Keplerian discs or not.

9.2.2. Protostellar outflows in turbulent cores

So far I have not considered the outflows driven from the discs in the turbulent cores.
In this context it will be of interest to determine global outflow properties like mass or
momentum and to see whether the analytical outflow criterion derived in this work is also
applicable for such a turbulent environment. Moreover, since the turbulent simulations
represent the actual initial conditions of massive star formation much better than the
non-turbulent simulations, it would be interesting to compare the outflow properties of
the simulations to that of observations.

Furthermore, outflow structures observed in massive star forming regions are often
much more complex and less well-ordered than those in low-mass star forming regions.
Hence, it is worthwhile to test whether outflows in the turbulence simulations can re-
produce this particular structure of massive outflows. In this context, in particular the
post-processing of the data with a radiation transfer code would be desirable to produce
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synthetic observations which could directly be compared to observational results. This is
of particular importance due to the availability of new data with ever higher resolution
provided by modern telescopes like e.g. the Atacama Large Millimeter/submillimeter
Array.

9.2.3. Subgrid models for protostellar feedback

A problem with the direct comparison of the simulation data presented here to ob-
servational data is the fact that observations of massive star forming regions usually
refer to protostellar ages of a few 104 – 105 yr. Despite the remarkably long integration
times in my simulations of up to 15 kyr after the formation of the first sink particle,
such timescales are up to one order of magnitude longer than what is obtained in this
work. This leads to the requirement of performing simulations over much longer physi-
cal timescales. However, due to the very high spatial resolution used in the simulations
this would create enormous computational costs requiring several million CPU-hours
per simulation. A natural way out of this dilemma would be to use a coarser resolu-
tion. However, this in turn might affect the formation of protostellar discs and thus
also the self-consistent generation of outflows. If due to computational time limitations
the resolution is relatively coarse, probably no proper discs and associated outflows can
be formed anymore whereas for higher resolution they would be formed. This problem
can be circumvented by coupling a subgrid outflow model to the sink particles routine.
This subgrid model would model the ejection of gas form the protostellar disc due to an
outflow. With such an outflow subgrid model and a coarser spatial resolution it would
be possible to follow the simulations over a longer physical timescale while keeping the
computational costs on an acceptable level.

At later evolutionary phases also feedback from the radiation emitted by the proto-
stars will become important. By heating up the gas in the core, the radiation changes the
fragmentation properties of the core itself as well as of the protostellar discs. Further-
more, by exerting a radiation pressure on the infalling gas also the accretion behaviour
might change. In this context it would be of particular interest to see how efficiently
an outflow can channel the radiation along the polar directions. Hence, on a long term
view it would also be desirable to include the possibility to handle radiation transfer in
FLASH.

138



A. Appendix

A.1. A resolution study for run 26-4

Here we present a resolution study for run 26-4 (see Table 5.1 for the initial conditions)
by comparing this simulation with two more runs with identical initial conditions but
a maximum spatial resolution varied by a factor of 4 in either direction. The initial
resolution of the two other runs is identical to that in run 26-4, i.e. in the beginning
the mesh in the core has a spacing of 302 AU. We list the runs and their corresponding
parameters in Table A.1. The critical value of the density above which sink particles
are created is adapted in accordance with the resolution. For all runs performed the
refinement criterion applied guarantees that the disc region is resolved on the highest
level used. In particular, we focus in this analysis on accretion properties and radial
profiles of different quantities in the disc. Due to computational cost reasons caused by
the higher spatial resolution run 26-4-H is followed for 2000 yr only. Hence, we compare
the results of the three runs at this time.

First, we consider radial profiles of the density, temperature, and velocity in the disc.
The quantities in each run are averaged azimuthally and vertically in the disc with
a height of 47 AU above and below the midplane. The accretion shock occurring at
∼ 150 AU in the density profile (top left panel of Fig. A.1) is clearly resolved in the
runs 26-4-H and 26-4. In run 26-4-L, however, the shock is somewhat smoothed out
due to the limited resolution. Hence, a resolution of 4.7 AU seems required to properly
resolve the accretion shock. Within the accretion shock, however, the density increases
with resolution. We attribute this to the fact that the vertical structure of the disc is
not fully resolved at least in the runs 26-4 and 26-4-L. Here in large parts the vertical
disc height is represented by a few grid cells only (compare Fig. 6.8). Therefore, to fully
resolve the vertical disc structure, a higher resolution, probably even above that in run
26-4-H, would be needed, which is currently not feasible.

Run dx ρcrit t0 Msink

(AU) (10−12 g cm−3) (kyr) (M⊙)
26-4-L 18.9 0.0657 15.1 1.42
26-4 4.7 1.78 15.2 1.05
26-4-H 1.2 114 15.3 1.03

Table A.1.: Performed simulations for the resolution study with maximum spatial resolution,
threshold density for sink particle creation, formation time of the first sink particle and total
accreted mass after 2000 yr.
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Figure A.1.: Radial profiles of density (top left), temperature (top right), and velocity structure
(bottom) after 2000 yr for the runs 26-4-L, 26-4 and 26-4-H with a maximum spatial resolution
of dx = 18.9 AU, 4.7 AU and 1.2 AU, respectively. The accretion shock seen in the density and
temperature is not well resolved for run 26-4-L.

A similar result holds for the temperature profiles as well (top right panel of Fig. A.1).
The temperature jump at the accretion shock seems to be reasonably well resolved
in run 26-4 whereas in run 26-4-L it is smoothed out markedly. The higher the final
resolution the higher are the temperatures within the accretion shock. This is due to
the strong coupling of temperature and density above 10−13 g cm−3, where the gas
gets optically thick resulting in higher temperatures at higher gas densities. Different
densities and temperatures in the disc will also influence the susceptibility of the disc
for fragmentation. In general, fragmentation is delayed with lower spatial resolution due
to the lower densities in the disc. Whereas for run 26-4-L further fragmentation of the
disc occurs not until 6900 yr after the formation of the first sink particle, for run 26-4
and 26-4-H the disc starts to fragment already after 2600 yr and 1500 yr, respectively.

Next, we analyse the velocity structure in the disc (see bottom panel of Fig. A.1). In
run 26-4-L no Keplerian disc has built up yet. However, we mention that in its further
evolution the rotation reaches Keplerian velocities as well. In run 26-4 the rotation
is already Keplerian up to a radius of ∼ 60 AU in good agreement with run 26-4-H.
Furthermore, the comparison between both runs shows that in run 26-4 the decline in
vrot/vkep at 20 AU is most likely a resolution effect as in run 26-4-H this decline occurs
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Figure A.2.: Total accretion rate for the first 2000 yr in the runs 26-4-L, 26-4 and 26-4-H. The
lower the resolution the higher are the mean accretion rates (respectively the totally accreted
masses in Table A.1) although there is a clear convergence towards higher resolution.

at a roughly three times smaller radius of ∼ 8 AU. This supports the statement made
in Section 6.2.2 that the inner 10 AU in runs with a resolution of 4.7 AU are strongly
affected by numerical resolution. The radial velocities of all three runs agree qualitatively
reasonably well at radii larger 10 AU despite some minor quantitative details. Hence, we
conclude that regarding the velocity structure in the midplane run 26-4 is reasonably
well converged at radii larger than 10 AU, i.e. as soon as the radial distance is resolved
with more than a few grid cells.

In Fig. A.2 we show the time evolution of the total accretion rate for the three runs
considered. In run 26-4-H two more sink particles are created after roughly 1500 yr,
which cause the large variations in the accretion rate. In general, however, the accretion
rates of the three runs are of the same order of magnitude. It can also be inferred from
Table A.1 that the total accreted mass and accordingly the mean accretion rate decreases
with increasing spatial resolution. The accretion rate of run 26-4-L is higher than that of
run 26-4 by about 35%. We therefore conclude that regarding accretion properties run
26-4-L is not yet fully converged. The difference in accreted mass between run 26-4-H
and run 26-4, however, is of the order of 2% only and thus significantly lower than the
difference between run 26-4-L and run 26-4. Hence, there is a clear convergence of the
accretion rates with increasing resolution and we conclude that a resolution of 4.7 AU is
sufficiently high to properly describe the accretion properties of the protostars. From the
formation time t0 listed in Table A.1 it can also be inferred that t0 increases with spatial
resolution. This behaviour is expected as for higher resolution sink particles are created
at higher densities and thus later times during the collapse. However, the relative time
differences are of the order of 1% only and can therefore be considered as negligible.

In summary, one can see that a resolution of 4.7 AU is sufficiently high to properly
follow protostellar accretion rates, resolve the accretion shock at the edge of the disc, and
correctly display the velocity structure in the disc down to radii of about 10 – 15 AU. In
contrast, run 26-4-L with a resolution of 18.9 AU reveals significant differences from run
26-4-H showing that is not yet converged. However, also run 26-4 seems to be not fully
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converged regarding to the density and temperature structure in the disc. We attribute
this partly to the poor spatial resolution of the vertical disc structure. Hence, a higher
resolution, probably even above the one used in run 26-4-H, would be necessary to reach
convergence regarding this point. However, due to significantly higher computational
costs this has not been feasible so far wherefore a spatial resolution of 4.7 AU is used
throughout Chapter 6 and 7. This particular choice was also motivated physically as we
want to resolve the first core. As the first core builds up as soon as the gas starts to
get optically thick, which happens around 10−13 g cm−3 (see Section 5.1.2), the Jeans
length at densities above this threshold has to be resolved, which requires a resolution
of a few AU.
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