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Abstract

Mechanical force alters a protein’s stability not only due to its ability to un-

fold the biomolecule. As soon as a disulfide bond cross-linking the protein

is exposed to force, its reduction rate is altered. Our first aim was quantify-

ing the direct effect of force onto the chemical reactivity of sulphur-sulphur

bonds in contrast to indirect, e.g. steric or mechanistic, influences. To this

end, we evaluated the dependency of a disulfide bond’s redox potential on a

pulling force applied along the system. Our hybrid quantum and molecular

mechanics simulations of cystine as a model system take conformational dy-

namics and explicit solvation into account and show that redox potentials

increase over the whole range of forces probed here (30 - 3320 pN), and thus

even in the absence of a significant disulfide bond elongation (< 500 pN).

Instead, at low forces, dihedrals and angles as the softer degrees of freedom

are stretched and contribute to the destabilization of the oxidized state. We

find physiological forces to be likely to tune the disulfide’s redox potentials

to an extent similar to the tuning within proteins by point mutations.

Next, we asked how internal strain resulting from the protein structure

tunes redox potentials using free energy calculations, more precisely non-

equilibrium Molecular Mechanics transformations and the Crooks Gaussian

Intersection method. We added a residue to the Charmm force field that

models a disulfide bond in the reference state and that can be transformed

into a thiol in the product state. To our knowledge, this is the first approach

to open a covalent bond by means of free energy transformation. We tested

our method on E. coli and S. aureus thioredoxin, and could partly reproduce

relative redox potentials of the wild-type and some mutants. We discuss

promising routes to improve the accuracy of these challenging calculations.



Finally, we investigated the impact on force-induced unfolding by a special

type of disulfide bond, a vicinal disulfide that links two adjacent cysteines.

Our model system here is the von Willebrand factor (vWF) A2 domain.

We observe similar stabilities in equilibrium for both the native system

and its analogue with the disulfide bond broken and also similar collective

motions. Application of an external force, however, induces a difference:

Unfolding of the vWF A2 domain with the vicinal disulfide bond present

leads to higher rupture forces than when it is missing. This indicates that

the vicinal disulfide bond prevents the domain from unintentional unfolding.



Zusammenfassung

Mechanische Kraft kann ein Protein destabilisieren und entfalten. Kraft hat

außerdem einen direkten Einfluss auf einzelne chemische Bindungen im Pro-

tein. Wird eine Disulfidbrücke, die eine Quervernetzung des Biomoleküls

darstellt, einer Kraft ausgesetzt, verändert sich ihre Reduktionsrate. Unser

erstes Ziel bestand darin, den direkten Effekt von Kraft auf die chemische

Reaktivität der Schwefel-Schwefel-Bindung zu quantifizieren und ihn somit

von indirekter Krafteinwirkung, wie sie durch Sterik und Mechanik des

Proteins entsteht, abzusetzen. Wir haben untersucht, wie das Redoxpoten-

tials einer Disulfidbindung in unserem Testsystem durch Zugkraft verändert

wird. Hybride quantum- und klassische mechanische Simulationen von

unserem Modellsystem Cystin berücksichtigen Konformationsdynamik in

einem expliziten Lösungsmittel. Wir konnten zeigen, dass Redoxpoten-

tiale über den gesamten untersuchten Kraftbereich (30 - 3320 pN) ansteigen.

Dieser Energieanstieg konnte bereits in einem Kraftbereich beobachtet wer-

den, in dem die Länge der Disulfidbindung von der Kraft unberührt bleibt

(<500 pN). Stattdessen werden unter diesen kleinen Kräfte Dihedrale und

Winkel, also die weichen Freiheitgrade, gedehnt und tragen so zur Desta-

bilisierung des oxidierten Zustands bei. Kräfte, die unter physiologischen

Bedingungen auftreten, haben also das Potential, das Redoxpotential einer

Disulfidbindung um einen ähnlichen Betrag zu verändern wie Punktmuta-

tionen in Proteinen.

Als nächstes gingen wir der Frage nach, wie interne Spannung innerhalb

eines Proteins Redoxpotentiale verändert. Hierzu bedienten wir uns der

Methode der Freien Energie-Rechnungen, im Speziellen der nicht-Equilibrium

Molekülmechanik-Transformationen und der Crooks Gaussian Intersection

Methode. Wir erweiterten das Charmm Kraftfeld um ein Residuum, dass



die Disulfidbindung im Referenzsystem modelliert und in zwei Thiole umge-

wandelt werden kann, um das Zielsystem darzustellen. Nach unserem Wis-

sen ist dies der erste Ansatz, eine kovalente Bindung im Kontext einer Freien

Energie Umwandlung zu öffnen. Wir nutzten E. coli und S. aureus Thiore-

doxin als Testsysteme für unsere Methode. Relative Redoxpotentiale der

Wildtypen und einiger Mutationen konnten zum Teil reproduziert werden.

Wir diskutieren vielversprechende Möglichkeiten, wie die herausfordernden

Rechnungen verbessert werden könnten.

Am Ende der Arbeit untersuchen wir den Einfluss von kraftgestützter Ent-

faltung einer speziellen Disulfidbindung, der vicinalen Disulfidbindung, die

zwei benachbarte Cysteine verbrückt. Als Modellsystem diente uns hier die

A2 Domäne des von Willebrand Faktors (vWF). Wir verglichen die Domäne

unter nativen Bedingungen mit einer Domäne ohne Schwefel-Schwefel-Brücke.

Beide zeigen ähnliche Stabilitäten sowie hnliche kollektive Bewegung ihrer

Hauptkomponenten. Ein Unterschied besteht jedoch unter Krafteinwirkung:

Öffnen der Disulfidbindung senkt die Kraft die zur Entfaltung und zum

Abreißen der α-Helix, in welche die vicinale Disulfidbindung eingebettet

ist, aufgebracht werden muss. Dies deutet darauf hin, dass die vicinale

Disulfidbindung die Domäne vor ungewollter Entfaltung schützt.
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1

Introduction

Most fundamental processes in living organisms involve chemical reactions, i.e. a change

in covalent bonding. Within the extensive catalogue of biochemical reactions, redox

reactions represent a crucial class, being involved in processes such as respiration, cell

proliferation, or energy metabolism (1, 2). A very specific, yet important kind of redox

reaction involves the cleavage and closure of disulfide bonds. It controls the activity

and interaction of proteins with other biomolecules (2).

1.1 Disulfide Bonds in Proteins

Proteins are the molecular building blocks of life. Their components are the amino acids

that are attached to each other to form one long chain, which in turn is assembled into

a highly organized structure. Proteins act as molecular motors, transport metabolites

or ions, or catalyze essential reactions. Within a protein, disulfide bonds represent the

most common link between amino acids apart from the peptide bond. They stabilize the

protein and regulate its interaction with other proteins or DNA (2, 3). For example, if

a reducing agent needs to be transported in an unreactive form, formation of a disulfide

bond will prevent its reactivity. Formation and cleavage of disulfide bonds thus work

as a switch for protein activity. Consequently, the process and control of opening and

closing disulfide bonds are of particular interest and are the focus of this work.

Three possible mechanisms for the cleavage of disulfide bonds have been identi-

fied (4), namely the hydrolysis by either alkaline or acid-based activation and thiol /

disulfide exchange. The latter, which is the most common mechanism (5), is typically

1



1. INTRODUCTION

catalyzed by an oxidoreductase, a protein found in every living creature (6). The net

oxidation of thiols leads to the formation of a disulfide bond as follows.

2R− SH 
 R− SS −R+ 2 e− + 2H+ (1.1)

The net reduction, resulting in the cleavage of the disulfide bond, requires a reducing

agent such as NADPH/H+:

R− SS −R+NADPH/H+ 
 NADP+ + 2RSH (1.2)

In a thiol / disulfide exchange, reducing equivalents are transfered between two thiol

disulfide pairs (Eq. 1.3). The enzyme’s thiol, ESH, attacks the substrate disulfide bond,

forming a mixed disulfide intermediate. Then, a second enzyme thiol, undergoing

intermolecular thiol / disulfide exchange, binds to the mixed disulfide, releasing the

cleaved substrate. An oxidized enzyme remains.

ESH +R− SS −R 
 E − SS −R+RSH

ESH + E − SS −R 
 E − SS − E +RSH
(1.3)

While some proteins are active only in the reduced form, other enzymes require a

closed disulfide bond to operate (7). For example, reducing agents such as glutathione

require an open state. Proteins like Ero1 or protein disulfide isomerase on the contrary

are only active if the disulfide bond is closed, as their task is to oxidize thiols to

disulfides (8). The reactivity of a disulfide bond determines its function, a question of

interest in Chapters 3 and 4.

Disulfide bonds provide a protein with additional stability by cross-links, thereby

constraining some degrees of freedom. Hence, such a link decreases the entropy of the

unfolded state (3). Until recently, disulfide bonds were classified into catalytic or stabi-

lizing sulphur-sulphur bonds. Then, Schmidt et al. put forward another kind of bond,

the allosteric disulfide bond (9). Allosteric disulfide bonds mediate conformational

changes of the protein upon cleavage, thereby controlling its function (10). Often, they

link adjacent strands in an antiparallel β-sheet.

Another interesting kind of disulfide bond is the rare motif of vicinal disulfide

bonds (11). Studies have shown that nicotinic acetylcholine requires this disulfide

bond between the two adjacent cysteines to bind its receptor (12), and also methanol

2



1.2 Mechanochemistry

dehydrogenase is only active with a closed disulfide bond (13). In this light, a vici-

nal disulfide bond found in the A2 domain of the von Willebrand factor (vWF) has

been proposed to act as a redox activated conformational switch (14, 15), the role of

which is examined in Chapter 5. The vWF is a large multimeric protein found in

blood plasma. It is essential for normal hemostasis where it mediates the adhesion

of platelets to the sub-endothelial connective tissue (16, 17). To be able to adhere

blood platelets, the vWF needs to undergo unfolding, a procedure tightly controlled

by mechanical force (16). The role of the vicinal disulfide in the von Willebrand A2

domain has been discussed to enhance its thermal stability and also to act as a high

energy barrier, preventing the protein from spontaneous unfolding (14, 15). The high

reactivity of allosteric and vicinal disulfide bonds could be due to an internal strain

present in the unfavored configuration the disulfide bond is forced into by the protein

environment. A pressing question in this regard is, if disulfide bond reactivity can be

altered by mechanical force. This is a major focus of this thesis.

1.2 Mechanochemistry

A chemical bond like a sulphur-sulphur bond can be subjected to a mechanical force by

internal strain as potentially present in specific configurations or by an external pulling

force present e.g. during mechanical unfolding of a protein. We here ask if a force has an

impact on the bond itself and on its propensity to undergo cleavage. Mechanochemistry

describes the interplay between such a mechanical and chemical phenomenon (18).

From industrial processes in the rubber industry, it is known that a mechanical

force can break covalent bonds in polymers, leaving behind two radicals, that do not

necessarily recombine (19). More recent studies have revealed that mechanical force

derived from ultrasound can alter pericyclic reactions in an unexpected way (20). Pe-

ricyclic reactions follow the Woodward-Hoffmann rules (21). Depending on whether

they are induced by thermal or light energy, the ring opens con- or disrotatorically,

respectively as shown in Figure 1.1 a and b. Hickenboth et al. could show that pulling

the ring apart by a mechanical force opens a third reaction path: The opening takes

place such that the pulled ends of the molecule always move away from each other. As

a consequence, independently of the educt, the reaction always yields the E,E-isomer.

3



1. INTRODUCTION

Thus, the cis-isomer opens disrotatorically whereas the trans-isomer opens conrota-

torically (Fig. 1.1 c). In a similar way, even click reactions, which typically have a large

thermodynamic stability, could be reversed by means of mechanical force (22).

Figure 1.1: Pericyclic reactions triggered by different energy sources - While
light and thermal energy trigger pericyclic reactions following the Woodward-Hoffmann
rules, mechanical force enhances ring opening along a different pathway, namely along
the pulling direction.

What is to be expected from a mechanical force acting on bonds in biological sys-

tems? To answer this question, Wiita et al. applied mechanical force to a protein

substrate that contains a disulfide bond (23). Here, mechanical force was applied by

means of single molecule force spectroscopy. A single protein was stretched using an

atomic force microscope in force-clamp mode. The protein was unfolded, till the point

4



1.2 Mechanochemistry

where the disulfide bond hindered further unfolding. Then, it was reduced by either

E. coli or human thioredoxin (Trx, compare Figure 1.2). Overall, forces lead to an

increase in reduction rate. At low forces, acceleration of the reduction by human Trx

is larger than by E. coli Trx. At high forces, the opposite was found. Wiita et al.

concluded that two different reduction mechanisms were responsible for this finding.

Figure 1.2: Unfolding of a protein, followed by disulfide reduction - A protein
is unfolded by an external force until the disulfide bond hinders further unraveling.
Reduction of the disulfide bond using thioredoxin takes place with the mechanical
stretching force still present. Wiita et al. measured the dependency of reduction
kinetics on the external pulling applied (23).

A similar experimental setup using DTT as a reducing agent shows an exponential

increase in reaction rate depending on the applied force (24). Kucharsky et al. analyzed

that question by using a series of macrocycles containing differently strained disulfide

or carbon-carbon bonds and estimated the force in the scissile bond. In contrary to

Wiita et al., they claimed that mechanical force increases reactivity solely indirectly

by steric effects. More specifically, force deforms the molecule such that the reducing

agent can more readily access the disulfide bond (25). Wiita et al. expect that different

factors strongly influence a disulfide’s tendency to be cleaved. Parameters such as pH,

temperature, electrostatics and reducing agent play a crucial role (24). To understand

the impact of force alone we analyse in this thesis how an external pulling force alters

the reactivity of a cystine’s disulfide bond.
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1.2.1 The Bell and the Dudko Model

How does force influence chemical reactions? Bell was the first one to ask this question.

Based on a theoretical framework, he introduced a model to esimate the strength and

the life time, τ , of specific bonds (26). His model allows predicting how chemical bonds

can be broken via mechanical force instead of chemical reactions. He expects the life

time of a bond to depend on the reciprocal of the natural frequency of the oscillation

of atoms in solids, τ0 and exponentially on the bond energy E0, and the force F acting

on the bond, following

τ = τ0e
(E0−γF )/kBT ), (1.4)

where γ is an empirical parameter, kB is the Boltzmann constant, and T the temper-

ature. Equation 1.4 was transformed into Equation 1.5 and became known as Bell’s

formula,

k(F ) = k0e
(F∆x‡)/kBT . (1.5)

Figure 1.3: Single-well free energy surface - a) Intrinsic free energy with a minimum
at xr, and transition state at x‡ with a barrier height of ∆G‡. The product is found
at xp. b) Free energy surface under a force larger than zero. The free energy barrier
∆G‡(F ) is decreased with increasing external force F , resulting in a combined free
energy surface G(x) = G0(x)− Fx.

Here, k(F ) is the force-dependent reaction rate, k0 is the intrinsic rate coefficient at

zero force and ∆x‡ the distance between free energy minimum xr, and the transition

state, x‡. Knowing k(F ) allows to determine k0 and ∆x‡. For the first time, Bell

suggested that chemical bonds can not only be broken via chemical reactions but also

through mechanical force.
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1.3 Redox Potentials

According to Bell, the loading rate acting on the bond determines its unbinding

force. Under the pulling force F , the molecule moves along a combined free energy

surface G(x) = G0(x)−Fx along the pulling direction x. The bare free energy surface

G0(x) is assumed to have a single well at xr = 0 and a barrier of height ∆G‡ at x = x‡

(Fig. 1.3). An external pulling force lowers not only the free energy barrier but also

accelerates the reaction rate. This advance was later extended by Walton et al. They

put forward the idea that also the stiffness of the transducer has a strong impact on the

energy landscape (27). Their findings offer an explanation to contradictory observations

from different mechanochemical experiments.

The Bell model assumes the barrier of the reaction to only be decreased by force,

but not shifted. A refined theory to predict bond rupture has been introduced by

Dudko et al. (28) to account for the shift of the transition state at x‡ towards the

reactant upon force application. They surmise the average bond rupture to depend on

the pulling velocity v, following 〈F 〉 ∼ (ln v)2/3, whereas Hummer and Szabo at the

same time suggested the following dependency: 〈F 〉 ∼ (ln v)1/2 (29). In a joined work,

Dudko, Hummer and Szabo later suggested a formalism fulfilling both exigencies:

k(F ) = k0

(
1− νFx‡

∆G‡

)1/ν−1

e∆G‡[1−(1−νFx‡/∆G‡)1/ν ], (1.6)

where ν = 2/3 and 1/2 corresponds to a linear-cubic and cusp free energy surface both

of which are approximations. A linear-cubic energy surface is expected for very high

forces.

In a recent study, Li et al. could show that a pulling force not only speeds up the

reaction rate but also shifts the transition state (30). The higher the force, the shorter

the disulfide bond in the protein at the transition state. These simulations provide

molecular evidence for the Dudko-Hummer model.

1.3 Redox Potentials

Redox reactions play a key role in biology. They regulate processes as diverse as energy

metabolism, respiration, photosynthesis, gene expression, signal transduction, and pro-

tein folding (31). The mitochondrial respiratory chain for example is well understood

and revealed that redox events are tightly controlled by proteins or enzymes (32). Re-

dox reactions affecting the amino acids in a protein can only change the redox state
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1. INTRODUCTION

of cysteines and methionines. Oxidation / reduction processes taking place between

cysteine / cystine couples are very common in living systems. Enzymes such as Trx or

peptides like glutathione (GSH) control such redox reactions. GSH is responsible for

oxidative stress defense, redox regulation, signal transduction, and protein folding. Trx

is a cofactor to ribonucleotide reductase. The latter catalyzes the reaction from RNA

to DNA, and thus is essential for the DNA biosynthesis (7). Both, Trx and GSH re-

duce protein disulfide bonds. Though both undergo thiol / disulfide exchange, they act

under different conditions due to their different redox potentials. They can be regarded

as analogues to the NADH / NAD+ and NADPH / NADP+ couples, that take part in

different redox cycles (2). Thus, they show selective interactions for different proteins

and reactions.

Though redox reactions are widespread among biological reactions, many of them

are still poorly understood and require further investigation. Therefore, reducing agents

such as Trx or GSH are popular tools to study the effect of reduction of disulfide bonds

in proteins. Such studies help understanding the stability of allergenes (33) or the

shear-induced thiol / disulfide exchange in the vWF itself (34).

Determining redox potentials of proteins experimentally is elaborate. In principle,

redox potentials can be calculated from the concentration of the reducing agent during

titration (35). However, though redox potentials can be measured experimentally quite

precisely, measured redox potentials are known to vary depending on the (proteineous)

redox partner and experimental conditions. Also, tuning a redox potential by protein

mutagenesis is resource intensive, as the effects of a single mutant on a disulfide bond’s

stability depend on a number of factors. More precisely, the structure of the protein,

the pKa value of the disulfide, the strain on the bond and the protein’s electrostatic

environment but also the reduction partner have a large impact on the redox potential.

These measurands are accessable from computational models. Thus, having a fast and

simple way to calculate redox potentials from MD simulations would be desirable. We

chose Trx as a model system. The active site contains a CXXC-motif that is conserved

in all Trx-like proteins, and was shown to be essential for its activity (6). Mutations

of the C-terminal amino acid of the XX dipeptide have shown that this sequence has

a strong impact on the redox potential (6, 36). Given their importance, it is eligible

to establish techniques that offer easy access to redox potentials and the factors that
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influence them. It would allow a rational design of protein mutants with tailored redox

potentials. Computer simulations are thus a valuable tool also in this regard (37).

1.3.1 Calculating Redox Potentials

A number of methods have been introduced over the last decades that provide ways

to calculate redox potentials. The spectrum ranges from density function theory to

calculate not only the redox potential but also the electronic structure of metal ions

to pure Molecular Mechanics (MM) approaches. Calculations of individual metal ions

or metal complexes typically use pure quantum mechanical (QM) descriptions (37, 38,

39). For taking the effect of a protein surrounding into account, a hybrid quantum

mechanical / molecular mechanical (QM / MM) approach has been proven useful (40)

but also mere classical descriptions have been demonstrated to successfully predict

redox properties of enzymes which contain a reactive metal center that changes its

redox state (41, 42, 43). We here followed two alternative approaches and will discuss

their strengths and bottlenecks. We first used QM / MM calculations to investigate the

impact of mechanical force on redox potentials (Ch. 3), and secondly calculated redox

potentials of protein disulfide bonds, using classical molecular mechanics (Ch. 4).

1.4 Aims of this Project

We here asked how mechanical force tunes redox potentials on a molecular scale. We

were interested in both, forces deriving from an external stretching, and forces induced

by internal strain, in particular in their impact on disulfide bonds in proteins. We

applied an external pulling force to protein disulfides and estimated the redox potential,

using QM / MM calculations. In order to exclude electrostatic effects by the chemical

surrounding, the study was started using an isolated cystine, the response to stress

of which was later compared to the effects on stress observed for titin. Next, we

asked how internal strain resulting from the protein structure tunes redox potentials

as compared to different electrostatic environments. How do point mutations and thus

the chemical and electrostatic environment of a bond tune its redox potential? A

protein intensely investigated with respect to redox potentials and point mutations is

thioredoxin. Therefore, we chose it as a model system and calculated redox potentials,

using free energy calculations on the MM level of theory. Finally, we asked how the
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internal strain in vicinal disulfide bonds can impact protein function. These bonds

represent a rare motif in proteins and have been predicted to play an important role for

protein stability. This motif is found in the von Willebrand factor A2 domain, which

was subject of our investigations. We compared its stabilities towards mechanical force

with and without the vicinal disulfide bonds. This thesis reveals a significant impact

of mechanochemical effects on redox systems, resulting in changes of redox potential as

large as they derive from different chemical surroundings.
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Methods and Theory

This chapter outlines the theoretical framework of this thesis and the methods ap-

plied. We employed Molecular Mechanics (MM) to energetically describe the proteins

investigated in this thesis (Section 2.1 and Ch. 3 to 5). An MM description allows the

calculation of dynamic trajectories of proteins at reasonable computational expense and

was the major workhorse of this thesis. We combined MM with a quantum mechan-

ical description of the reactive center of the molecules for studying cystine reduction

under mechanical force (Sec. 2.2 and Ch. 3). Free energy calculations (Sec. 2.3) were

employed to predict redox potentials in thioredoxin (Ch. 4). Details on the particular

simulation setup will be given in each chapter.

2.1 Molecular Mechanics

An accurate theoretical description of the dynamics of any molecule is given by the

time-dependent Schrödinger equation,

HΨ = i~
∂Ψ
∂t
, (2.1)

where H describes the Hamiltonian, i.e. the sum of the kinetic and potential energy

operators, Ψ the wave function, and ~ = h/2π, with h being Planck’s constant. In

practice, computational resources limit the actual usage of Equation 2.1 and numer-

ical approximations thereof to a few atoms. A number of approximations are made

to describe larger molecules such as proteins that are built from several hundreds to

thousands of atoms. In this thesis, simulation systems comprise e.g. ∼ 18, 000 protein
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2. METHODS AND THEORY

and water atoms for simulations of E. coli thioredoxin. At current state, Molecular Dy-

namics (MD) simulations at the Molecular Mechanics (MM) level of theory is the most

common technique to reproduce the structure, dynamics, and energetics of proteins.

This method is based on two major approximations. The first one is the use of a force

field: molecules are described by a “ball and spring model”, where the balls represent

the nuclei, and bonds are described by springs. Electrons are not directly considered

but indirectly by fitting the force field parameters according to molecular behavior.

This approach follows the Born-Oppenheimer approximation. Since electrons are of

much less weight than the nuclei, they move much faster. Therefore, it can be assumed

that they immediately follow the nuclei’s motion. There are two major groups of inter-

actions between atoms in a force field, bonded and non-bonded interactions. Bonded

interactions, i.e. bonds, angles and dihedrals are described by potentials. Non-bonded

interactions comprise electrostatics and van-der-Waals terms.

The potential energy V of the system is given by the sum of bonded and non-bonded

energies:

V (R) = Vbonds + Vangles + Vdih + VCoul + VLJ

=
∑

bonds

kb(b− b0)2 +
∑

angles

kθ(θ − θ0)2 +
∑

dihedrals

kφ(1 + cos(nφ− δ))

+
∑

i

∑
j>i

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
qiqj

4πrij
,

(2.2)

where kb, b and b0 and kθ, θ and θ0 are the force constant, the time-dependent values

and the equilibrium values of the bonds and the angles, respectively. The third term

describes the torsional angle, or dihedral. kφ is the dihedral force constant, n is the

multiplicity of the function, φ is the dihedral angle, and δ is the phase shift. The final

two terms describe the Lennard-Jones and the Coulombic interactions, respectively. εij
and σij are the depth and the width of the Lennard-Jones potential for a pair of atoms

i and j. rij is the distance between the atoms, and qi and qj are their partial charges.

Some force fields, such as the Charmm force field (44), additionally use a cor-

rection term for the vibration of angles, which are then referred to as Urey-Bradley

angle vibrations. Also, “improper” dihedrals are not always described as suggested in

Equation 2.2. Instead of modeling them as a torsion, they are sometimes treated as

out-of-plane bending angles and written as harmonic functions, which depend on the

distance of the plane the atom under consideration is bending out from (44, 45).
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2.1 Molecular Mechanics

The second approximation is that the dynamics of the atoms are described by

classical mechanics, following Newton’s equation of motion (Eq. 2.3 to 2.5),

Fi = miai. (2.3)

Equation 2.3 states that the force Fi acting on the atom i is the product of its mass

mi and its acceleration ai. It can be written in terms of coordinates as

Fi = mi
d2ri
dt2

, (2.4)

where r specifies the coordinates of the atom, and t is the time. MD simulations

proceed in finite time steps, which should be smaller than the time scale of the fastest

motion in the simulation system. In the case of proteins considederd here, these are

bond vibrations including hydrogen atoms, which were constrained, allowing 2 fs time

steps. Forces are directly related to the potential energy given in Equation 2.2 with

Fi = −∂V
∂ri

. (2.5)

For a comprehensive description of MD, we refer to relavant text books (45, 46).

2.1.1 Principle Component Analysis

A protein at ambient conditions typically shows large anharmonic motions, which are

likely to be involved in the protein’s function. However, within the many uncoupled

thermal fluctuations, large correlated motions connected to the function might be dif-

ficult or even impossible to detect by visual observation of the trajectory. Principle

component analysis (PCA) has been shown to be a useful method to detect relevant

degrees of freedom from the trajectory of MD simulations of biomolecules. It is a sta-

tistical technique to find patterns in data of high dimensions. From the configurational

space, PCA filters few collective essential degrees of freedom comprising positional

fluctuations (47). These essential motions are called principle components. Comparing

such principle components for similar proteins, e.g. for a protein and a mutant or for

two different redox states of one protein, as we will demonstrate in Section 5.2, provides

a straight-forward way to reveal differences from the trajectories.

To determine the principle components of a trajectory, the covariance matrix of all

or a subset of atoms within the biomolecule is calculated and diagonalized. The follow-

ing definition is based on the original paper by Amadei at al. (47). For a biomolecule of
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N atoms, the vector x = (x1, x2, x3, ..., x3N ) describes the coordinates of these atoms.

The covariance matrix is given by

C = 〈(x− 〈x〉)(x− 〈x〉)T 〉, (2.6)

where 〈〉 denotes the ensemble average. The symmetrical covariance matrix C can be

diagonalized by an orthogonal coordinate transformation T into the diagonal matrix

Λ. Its diagonal elements are the eigenvalues λi.

C = TΛT T or Λ = T TCT. (2.7)

The ith column of the transformation matrix T corresponds to the normalized eigenvec-

tor and thus to the principle component µi of C and its eigenvalue λi. The eigenvalue

is the mean square positional fluctuation along the eigenvector and thus specifies its

contribution to the total fluctuation. Mostly, only a few eigenvectors describe the ma-

jor contributions of the fluctuations and therefore the essential degrees of freedom.

Projecting a trajectory x(t) on an eigenvector µi yields

pi(t) = µi · (x(t)− 〈x〉), pi(t) ∈ R (2.8)

For a PCA, the conformational ensemble sampled in the trajectory is usually pro-

jected on two or three eigenvectors to compare it with other emsemble in the same

reduced essential subspace. Additionally, projecting the principle components back in

the Cartesian space can be used to visualize atomic displacements associated with a

given eigenvector:

x′i(t) = piµi + 〈x〉. (2.9)

2.2 Hybrid Quantum / Molecular Mechanics

A Molecular Mechanics description of a molecule is a useful approximate for its quantum

mechanical nature, but in some cases involves restrictions not adequate for the problem

under investigation. One of the restrictions of MM is that no bonds can be broken or

reformed due to the harmonic approximation of chemical bonds (Eq. 2.2). In this the-

sis, we aimed at describing disulfide cleavage under mechanical force (Ch. 3). To this

end, we used a hybrid description of quantum and molecular mechanics (QM / MM).
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2.2 Hybrid Quantum / Molecular Mechanics

We described our reaction center, the disulfide bond and its adjacent atoms by quan-

tum mechanics. The rest of the system was treated by molecular mechanics, thereby

combining the advantages of a precise description of the reaction center with the high

computational efficiency of an MM description.

In the Gromacs software package (48), the QM system is embedded into the MM

system either through mechanical or electronic embedding. Through mechanical em-

bedding, only the configuration of the protein influences the motion of the QM subsys-

tem. This method is also referred to as QM + MM (37). The potential energy of the

system, Epot, is then determined by

Epot = EMM(all) + EQM(QM region)− EMM(QM region). (2.10)

The potential energy is calculated for the entire system by the MM code and for

the QM system by the QM code. For not adding the energy of the QM region twice,

the MM energy of the QM region is substracted (Eq. 2.10). Electronic embedding

includes the electrostatics of the MM atoms in close vicinity to the QM region (49).

The Hamiltonian for the QM system embedded into the MM system, HQM/MM, is given

by

HQM/MM = HQM
e −

n∑
i

M∑
J

e2QJ
4πε0riJ

+
N∑
A

M∑
J

e2ZAQJ
eπε0RAJ

, (2.11)

where e and ZA are the electronic and nuclear charge numbers of QM system, repec-

tively, QJ is the charge number of the MM system, riJ and RAJ are the distances

between the MM atoms and the electrons and nuclei of the QM system, respectively,

and ε0 is the electric field constant. The first term is the Hamiltonian of the isolated

QM system. The two sums compute the electrostatics between the n electrons and the

N nuclei of the QM system and the M charged MM atoms, respectively. All bonded

interactions between QM and MM system are treated by MM.

2.2.1 Natural Bond Orbitals

Quantum mechanical calculations including QM / MM methods provide results on the

molecular orbitals of the system. However, the wave functions describing the molecular

orbitals do not fit into the Lewis picture where two atoms share a bond and lone pair

electrons are localized. Natural Bond Orbital (NBO) analysis aims at approximating
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the Lewis picture. To this end, wave functions are optimally transformed into a local-

ized form, resulting in effective valence electron configurations for each atom (Natural

Atomic Orbitals, NAO) or bond (NBO) (50, 51). These configurations allow drawing

conclusions on the reactivity of certain bonds. We have applied NBO in Section 3.3.3

to get insight in the impact of mechanical force on the electronic configuration of the

disulfide bond.

2.3 Free Energy Calculations

Free Energy calculations are a widely used method to estimate energetic differences be-

tween different states of proteins, such as protein-ligand binding, drug partioning across

cell membranes (52), or redox potentials (41, 42). Various approaches have been devel-

oped of which the next section summarizes the most common ones. They can be clas-

sified into methods sampling at equilibrium (Sec. 2.3.1 to 2.3.3) or at non-equilibrium

(Sec. 2.3.4). We here used the latter, namely the Crooks Gaussian Intersection (CGI)

method, to calculate free energy differences between thioredoxin reduced and oxidized

states (Ch. 4).

2.3.1 Perturbation Theory

A simple way to calculate free energies is given by the perturbation theory (52). The

approach starts from an initial state, also referred to as the unperturbed, reference

state. This state is known. Then there is a state of interest, also called target state,

that can be reached through perturbation of the reference problem. The reference

state is described by a Hamiltonian, H0(x, px), which is a function of 3N Cartesian

coordinates x and their conjugated momenta px. The Hamiltonian of the target state

can be determined by

H1(x, px) = H0(x, px) + ∆H(x, px). (2.12)

The difference in Helmholtz Free Energy, ∆A, is given by

∆A = −kBT ln
Q1

Q0

, (2.13)

with

Q =
1

h3NN !

∫∫
exp

[
(−kBT )−1H

]
dx dpx. (2.14)
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h is Planck’s constant. Equation 2.13 can be written as

∆A = −kBT ln 〈exp [−kBT∆H(x, px)]〉0. (2.15)

∆A between the states 0 and 1 can be estimated by sampling only the equilibrium con-

figuration of the reference state. Thus, only one state is used to evaluate the Helmholtz

Free Energy by an instantaneous convertion of the initial to the final state. Equa-

tion 2.16 gives access to the potential energy difference, ∆V , between the reference and

the final state,

∆A = −kBT ln 〈exp (−kBT ∆V )〉0. (2.16)

This method has been demonstrated to work for minor changes such as the impact

of point mutations in DNA on its binding to netropsin (53), hydration free energy of

small solutes such as an argon atom or a methanol molecule, or protein-ligand binding

and host-guest chemistry (52).

2.3.2 Free Energy from Probability Densities

Another approach aims at sampling the entire phase space from the initital state 0 to

the target state 1, which can be understood as two minima in the free energy landscape

along a reaction coordinate ξ (compare Figure 2.1). This could be the distance between

two molecules, a torsion angle or the change of atomic charges. The lower the energy,

the more often the state is sampled. Thus, the free energy is related to the probability

density function P (ξ) of the reaction coordinate ξ through

A(ξ) = −kBT lnP (ξ). (2.17)

In a probability density calculation, the free energy is determined from the num-

ber of visits of each state under the given conditions along the trajectory (52). The

probability density of the sampled states can then be transferred to conditions different

from those used for the original simulation and thus is a straight forward approach to

calculate free energies.

On the downside, an energy difference of a few kBT reduces the probability P (ξ)

considerably, resulting in rare sampling of configurations with a large A(ξ). Therefore,

especially around the transition state, TS, few points are sampled. A rare sampling

of the TS leads to large statistical errors. Increasing the simulation time to the point
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where statistics of the TS become satisfying is not always feasible. Also in the present

thesis, MD time scales are too short to see spontaneous visits of both the open and

the closed sulphur-sulphur bond. Estimating a correct ∆G from differences in P (ξ) is

thus statistically problematic. A method sampling a larger phase space more easily is

therefore needed.

Figure 2.1: Thermodynamic Integration - sampling - The interval of interest is
split into subintervals. Thereby, the energy differences within each window is reduced.
Biasing the sampling to the restricted region within a window results in a more uniform
sampling, as compared to the “brute-force” sampling described in Section 2.3.2. ∆A is
the free energy barrier.

2.3.3 Thermodynamic Integration

Thermodynamic Integration (TI) uses a coupling parameter, λ, to describe the transi-

tion from the initial to the final state. It calculates the derivatives of the free energy

with respect to the order parameter along the transition path (52). Each state along

the transition is defined by the Hamiltonian Hλ, which is a linear combination of the

Hamiltonians H0 and H1, that in turn represent the starting state 0 and the final

state 1, respectively:

Hλ = (1− λ)H0 + λH1 (2.18)

As discussed in Section 2.3.2, sampling problems around the transition state can

occur as the probability of sampling a given structure depends on its energy. A powerful

method to circumvent this problem is the so-called stratification: The interval between
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the initial and final state is split along the reaction coordinate ξ into subintervals.

A biasing potential such as umbrella-sampling is used in each window. Thereby, a

uniform sampling can be reached within each window, decreasing the statistical error.

A number of other methods has been designed, such as Slow Growth thermodynamic

integration. Here, the structure in state 0 is being changed into state 1 continuously

and infinitely slowly by switching the coupling parameter λ from 0 to 1.

The work needed to perform the change along the reaction coordinate ξ corresponds

to the change in free energy. This method requires the system to stay close to equi-

librium. For a sufficiently smooth switching, the change in free energy can be written

as

A(ξ1)−A(ξ0) =
∫ ξ1

ξ0

dA

dξ
dξ, (2.19)

which is equivalent to
dA

dξ
=
〈
δH

δξ

〉
ξ

. (2.20)

The subscript ξ indicates that dA/dξ is calculated for a fixed interval, i.e. at a given

point on the reaction coordinate ξ (see Figure 2.1).

A similar method uses discrete numbers of intermediate points λ along the transition

path that are held fixed over the course of the simulation (54). This method requires

that sampling of each intermediate at a given λ occurs sufficiently close to equilibrium.

2.3.4 Non-equilibrium Transformations

In Sections 2.3.1 and 2.3.3, we have seen that free energies can be determined by a wide

range of approaches. The perturbation theory uses an ensemble of energies each derived

from a transformation in only one step, while TI requires infinitely slow transformations

from state 0 to 1. These two concepts can be considered as the limiting cases of the

more general formalism where the transformation takes place at finite rate (52).

For transformations at a finite rate, i.e. at non-equilibrium, the Jarzynski equation

offers a way to estimate the equilibrium free energy as given in the following equa-

tion (55),

〈e−W (τ)/kBT 〉 = e−∆A/kBT , (2.21)

where ∆A is the Helmholtz free energy. The work over the switching process of length

τ is given by W (τ) =
∫ 1

0
δHλ
δλ dλ. A coupling parameter λ switches the system from

state 0 to 1 (compare Eq. 2.18).
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Powerful relations can be derived if forward and backward transformations are com-

bined. The path direction may be returned, as the free energy is a state function. The

work W r accumulated on the reversed path, λr(t) = λ(τ − t) is given by

W r(τ) =
∫ τ

0

δH[z(t);λ]
δλ

∣∣∣∣
λ=λr(t)

λ̇r(t)dt, (2.22)

where t is the time and z(t) the time-dependent trajectory. This leads to the following

relation, originally derived by Crooks:

〈e−W r(τ)/kBT 〉 = e−[A(0)−A(1)]/kBT ≡ e∆A/kBT . (2.23)

With the second law of thermodynamics, that states that the work W (τ) performed

during non-equilibrium simulations is on average larger than or equal to the free energy

difference between the states, it follows

〈W (τ)〉 ≥ ∆A. (2.24)

In combination with Eq.2.21, this leads to an upper and lower bound for the free energy

difference according to

− 〈W r(τ)〉 ≤ ∆A ≤ 〈W (τ)〉. (2.25)

As shown by Crooks (56, 57), the distribution of work values for forward and back-

ward paths satisfies Equation 2.26, which is today known as the Crooks’ Fluctuation

Theorem (CFT).
Pf (W )
Pr(−W )

= ekBT (W−∆A) (2.26)

In combination with the Gaussian approximation from Equation 2.27 it allows cal-

culating the mechanical work W of a switching process of length τ in a highly paral-

lelizable and accurate way (58). The CFT links the work done on a system during a

non-equilibrium transformation to the free energy difference between the final and the

initial state. For a set of switching trajectories, the free energy, ∆A, is described by

the distributions of work performed on forward and backward transformations, Pf and

Pr.

The average of work distributions from a trajectory ensemble is given by the prob-

ability distribution P (W ) and can be approximated by a Gaussian function (58)

Pf,r(W ) ∼ 1
σf,r
√

2π
exp

[
−

(W −Wf,r)2

2σ2
f,r

]
, (2.27)
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where Wf,r and σf,r are the means and the standard deviations of the work distribu-

tions, respectively. The indices f and r refer to the forward (λ = 0→ 1) and backward

(λ = 1→ 0) transformation. This yields

∆Af = Wf −
1
2
kBσf and

∆Ar = Wr −
1
2
kBσr

(2.28)

with a statistical accuracy of

σ̄2
f,r =

σ2
f,r

N
+

(−kBT )2σ4
f,r

2 (N − 1)
. (2.29)

2.3.4.1 Crooks Gaussian Intersection Method

A straight-forward and highly parallelizable method uses Crooks’ Fluctuation Theo-

rem to estimate free energies. It is called Crooks Gaussian Intersection (CGI). CFT

(Eq. 2.26) causes that the change in free energy, ∆A, is equivalent to the work W for

which Pf (W ) = Pr(−W ). That corresponds to the intersection point of the forward

and backward work distributions (Fig. 2.2). Estimating this intersection point by the

use of a Gaussian approximation has been shown advantegeous (58).

Thus, the following equation can be used to estimate the free energy:

∆ACGI =

Wf

σ2
f
− −Wr

σ2
r
±
√

1
σ2
fσ

2
r
(Wf +Wr)2 + 2( 1

σ2
f
− 1

σ2
r
) lnσr

σf

1
σ2
f
− 1

σ2
r

, (2.30)

where Wf and Wr, and σf and σr are the mean values and standard deviations of the

work for the forward and backward transformation, respectively. For work distributions

with σf 6= σr, Equation 2.30 results in two intersection points, even though ∆A is

uniquely defined. Only σf = σr yields a unique solution that is equal to

∆ACGI =
Wf −Wr

2
. (2.31)

Typically, if two results are obtained, one is close to the mean value of the two dis-

tributions, the other one can be found in the tail region of the work distributions. In

general, the intersection point closer to the mean is the appropriate estimate of ∆A.
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Figure 2.2: Crooks Gaussian In-
tersection - CGI estimates the free
energy from the intersection point of
forward and backward work distribu-
tions, which are assumed to be Gaus-
sian.

2.3.5 The Thermodynamic Cycle

Instead of calculating the free energy of interest directly by one of the free energy

calculation methods described above, it is often beneficial or the only feasible way

to decompose the transition from state 0 to state 1 into several steps, i.e. reactions

along a thermodynamic cycle. In particular, redox potentials, the focus of this work,

are typically obtained from free energy changes along several steps. For example, the

oxidation of azurin takes place when the pH changes from acidic to basic. Bosch

et al. used the following thermodynamic cycle and yielded accurate relative redox

potentials (41).

azurin(ox,pH 9) + e−
∆Aredox

basic−−−−−→ azurin(red, pH 9)y∆AH+
ox

y∆AH+

red

azurin(ox,pH 5) + e−
∆Aredox

acidic−−−−−→ azurin(red,pH 5)

(2.32)

This approach follows Hess’ law: The change of energy is independent of the reaction

path. The reduction potential ∆Aredox, can be described by

∆Aredox = ∆Aredox
basic + ∆AH+

red

= ∆Aredox
acidic + ∆AH+

ox ,
(2.33)

where ∆Aredox
acidic and ∆Aredox

basic are the redox free energies at pH 5 and pH 9, respectively,

and ∆AH+

ox and ∆AH+

red are the free energies of deprotonation of the oxidized and reduced

states, respectively.
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2.3 Free Energy Calculations

2.3.6 Applications

MD-based free energy calculations have been applied to a broad range of biological

and chemical systems. Among others, they have been used to determine solvation

free energies (58), thermodynamic stabilities of proteins relative to their mutants (59),

or to estimate the binding affinity between DNA and proteins (54). Thermodynamic

Integration has been proven useful to calculate relative redox potentials of metallo-

proteins in which the central ion or a flavin core is reduced, resulting in a protonated

radical (41, 42).

In all previous cases we are aware of, free energy calculations have not been applied

so far to cases for which a chemical bond undergoes cleavage. Redox reactions involving

flavins or metal ions primarily feature changes in partial charges or protonation states.

We here added an additional challenge, and used MD free energy calculations to

reduce a disulfide bond that not only undergoes cleavage, but also comes along with

large conformational changes of the reaction site, as will be detailed in Chapter 4.

During the redox reaction exchanging a disulfide bond against two thiols, originally

bonded interactions need to be switched into non-bonded interactions, for which we

have developped a scheme within the CGI method described in Section 2.3.4.
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3

Redox Potentials from Hybrid

Simulations

3.1 Mechanochemistry of Disulfide Bonds

Similar to thermal or light energy, mechanical force can change chemical reactivity.

Some recent examples have been discussed in Section 1.2. An example for this kind of

mechanochemistry that we focused on here is the force-dependency of disulfide bond re-

duction. Generally, a pulling force accelerates the reduction of a disulfide by a chemical

reducing agent (24, 60), according to the Bell or the Dudko-Hummer model described

in Section 1.2.1. Divergence from this simple enhancement of reactivity by mechan-

ical work has also been observed. Namely, the reduction of a protein disulfide bond

with thioredoxin (Trx) was found to decelerate at low forces (< 200 pN) (23), and re-

dox reactions by metal ions as reducing agents were found to be largely insensitive to

forces (61). Hydroxide anions, in turn, show a decrease in susceptibility towards the me-

chanical force at large forces (> 500 pN) (62). Hence, the acceleration of disulfide bond

reduction strongly depends on the reducing agent. The observed differences between

reducing agents were ascribed to changes in the overall reaction mechanism (23, 61, 62).

To reconcile these findings, we here asked the fundamental question if mechanical

force alters the redox potential of a disulfide bond. A redox potential measures the

chemical stability of the bond and as such is independent from the reducing agent,

reaction mechanism, or steric hindrance. Also, in the particular case of mechanical

force, we can directly infer changes in the reactivity of the disulfide bond from the shift
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3. REDOX POTENTIALS FROM HYBRID SIMULATIONS

in redox potential by mechanical force, as kinetics and thermodynamics are directly

related. The reason is that, within the assumption that mechanical force tilts the

energy landscape along the reaction coordinate x by F · x (compare Eq. 1.4 (26)),

the shifts in the product and transition state free energy with respect to the reactant

free energy are linearly proportional. Therefore, a stabilization of the product with

respect to the reactant by mechanical force also involves an acceleration of the reaction

by lowering the activation energy. Thus, within the framework of the Bell model,

the redox potential is directly related to the relative reactivity of a bond and allows

the validation of our calculations by experimental measurements of force-dependent

reaction rates.

Previous theoretical studies have given detailed insight into the reduction and cleav-

age of disulfide bonds in the absence of mechanical force (63, 64, 65). In addition,

Rickard et al. could show that the electron affinity of partly optimized structures rises

when elongating the disulfide bond (66). Also, Iozzi et al. (67) recently presented

a study showing that forces in the range of 100 to 400 pN promote reduction of a

disulfide bond. The conclusions presented in these studies all result from restrained

optimizations performed in vacuo.

Figure 3.1: Reduction scheme - Scheme of cystine reduction by addition of two
hydrogens (and two electrons) under a constant mechanical force acting on the terminal
atoms, C and N, respectively, as indicated. QM atoms are shown as spheres.

The relevant experiments to compare to, however, are performed in water at ambient

conditions. For direct comparison, we here aimed at mimicking the force spectroscopy

experiments (24, 60, 61, 62) as closely as possible. We subjected the disulfide bond

containing molecule to a constant pulling force, that is applied on the terminal N and

C atom, respectively (Fig. 3.1). As a a simplified case, we used cystine as a model

system. Our Molecular Dynamics (MD) simulations, the general concept of which is

described in Chapter 2.1, take free dynamics and solvation into account. We solvated

our protein model system in explicit water and simulated at room temperature and
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1 bar. This is of particular importance, since experiments have shown a strong impact

of solvent on the disulfide mechanochemistry (60). We applied hybrid quantum and

molecular mechanical (QM / MM) calculations to this problem to allow bond opening.

For details on QM / MM, see Section 2.2. We indeed found a strong increase in redox

potential, i.e. a higher reactivity, with pulling force. Unexpectedly, elongation of the

disulfide bond itself sets in later than the destabilization of the system. Low forces (up

to ∼ 500 pN) stretch the angles and dihedrals enclosing the disulfide bond rather than

the bond itself. Still, a change in redox potential was observed within this range of

small forces. Obviously, chemical destabilization of the system arises from any minor

change in the conformation in the vicinity of the reaction center.

3.2 Calculating Redox Potentials

The redox potential can be calculated from the reaction free energy, ∆G, i.e. the

difference between the free energy of the disulfide-bonded oxidized state, Gox, and the

reduced state, Gred, that results from the addition of each two hydrogens and electrons

(Fig. 3.1). The relative change in redox potential due to the mechanical force F ,

∆E0
redox(F ), then is given by the difference between the reaction free energies at force

F , ∆G(F ), and at zero force, ∆G(F = 0), following Nernst’s equation,

∆E0
redox(F ) =

∆G(F )−∆G(F = 0)
Fc

, (3.1)

where Fc is the Faraday constant.

Full disulfide bond reduction includes the addition of two electrons and two pro-

tons, and results in a product with two thiols, i.e. with a broken sulphur-sulphur bond

(Fig. 3.1). Such an open state is force-independent, as the pulling force, acting on two

individual molecules in opposite directions, does not cause a restoring force anymore.

Therefore, Gred is force-independent. In principle, for estimating the redox potential

of a disulfide bond, other product states can be considered alternatively, namely a rad-

ical anion resulting from the addition of one electron, and a mono-protonated state.

However, also for those reaction intermediates, we find spontaneous opening of the

sulphur-sulphur bond at ambient conditions, even in the absence of force (see Sec-

tion 3.3.2). Thus, the force-independent reduced state cancels out in Equation 3.1, and
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we calculated the force-dependent redox potential, ∆E0
redox(F ), directly from the en-

ergy difference between the oxidized state at force F , G(F ) and zero force, G(F = 0).

As another consequence of the force-independent product state, the redox potential

calculations are also unaffacted from any assumption of the protonation state of the

product.

We approximated the free energy by the electronic energy of the quantum me-

chanically treated region (Fig. 3.1), EQM. Due to the electronic embedding into the

classically treated environment, EQM includes the electrostatic interaction with the

solvent and the rest of the cystine (see also Section 2.2).

It is a time average obtained from picosecond scale MD simulations, thereby cap-

turing the thermal fluctuations of the system. We note that choosing the full QM / MM

energy, which also include the interaction energy within the MM system, was unfea-

sible. The high fluctuations of the inter-water non-bonded interaction (in the 1000

kJ/mol range) impeded a reliable estimation of time-averaged energies (see Fig. 3.2).

Figure 3.2: Short-range interactions of water - a) Coulomb and b) Lennard-Jones
interactions between water molecules fluctuate significantly, prohibiting reliable time
averages of full QM / MM energies.

On the other hand, more efficient quantum mechanical methods, such as semi-

empirical functionals, would allow longer time scales but very likely would not be

accurate enough for treating the sulphur-sulphur bond opening.

Using Equation 3.1, we obtained ∆E0
redox(F ) for forces up to F = 3320 pN from

QM / MM MD simulations totaling more than 2.0 ns of simulation time.
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3.2.1 Simulation Setup

All Molecular Dynamics (MD) simulations were carried out using the Gromacs 4.0.5

package (48). For the hybrid QM / MM calculations we used Gromacs 4.0.5 interfaced

with Gaussian03 (68, 69).

A cystine, created with the Molecular Operating Environment software (MOE

2008.10; Chemical Computing Group, Quebec, Canada), was solvated in a box of ex-

plicit water of TIP4P (70). The box was large enough to allow a 1.5 nm distance in

x and y directions. We used a larger length of 8 nm in z-direction, along which the

molecule will be subjected to a pulling force (see below), in order to prevent interac-

tions with itself in periodic boundary conditions. A salt concentration of 0.1 mol/l was

chosen, resulting in 2370 water molecules and four ions of each sodium and chloride.

Cystine was chosen as a simple model system for disulfides in proteins. The disulfide

bond, the adjacent methylene groups and two link atoms were treated with QM, and

the remainder with MM, as shown in Figure 3.1.

3.2.2 Simulation Details

For all production runs, the following procedure was used: First, the system was en-

ergy minimized with a pure molecular mechanical description, using the steepest de-

scent algorithm. We used the OPLS-AA force field (71) for all MM simulations and

minimizations. Next, we performed a pure MM MD simulation, where the system was

heated to 300 K, using the Berendsen thermostat (72) over 20 ps at a time step of 2 fs.

The time step of temperature coupling was chosen as 0.1 ps and the pressure was kept

at 1 bar via isotropic coupling with the Parrinello Rahman barostat (73), with a time

constant of 1.0 ps. Thus, we here work with an NpT ensemble. Due to the small size

of the system it is important to couple the entire system to the temperature reservoir

to prohibit large energy fluctuations of the cystine. The Lincs constraint (74) was used

on all bonds. Non-bonded interactions were calculated within a cut-off of 1 nm. Elec-

trostatic interactions beyond 1 nm were treated with Particle-Mesh Ewald (75) with a

grid spacing of 0.12 nm.

The next step was a 10 ns MD simulation for equilibration, here using the Nosé-

Hoover thermostat (76, 77) with a coupling constant of 0.4 ps for temperature coupling.

Forces and velocities were taken from the heating simulation.
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From the equilibration, 10 configurations were chosen between 2 and 10 ns for sub-

sequent QM / MM simulations without force. First, a QM / MM energy minimization

was performed, using the steepest descent algorithm. An interface between Gromacs

4.0.5 (48) and Gaussian 03 (68) was used for these simulations, with the QM system

electronically embedded into the MM-system (69). The QM system was treated with

MP2/6-31+G* (78) as suggested by Bergès et al. (79) and included 10 atoms: the two

sulphur atoms, both CH2 groups and the link atoms between Cα and Cβ.

Figure 3.3: Potential energy of the QM system depending on the disulfide
bond length - The energy of the QM treated system as a function of sulphur-sulphur
bond length was obtained from restrained optimizations of cystine with pure QM, using
MP2/6-31+G* in vacuo. The bond length was elongated stepwise, then optimization
was performed, while freezing the position of both disulfide atoms. As expected, the
dissociation of the disulfide is described by a Morse-like potential. QM / MM calcula-
tions using the MP2/6-31+G* level of theory is a widely used method, which, however
requires validation for the disulfide system used here. To validate that the method
is appropriate, we calculated the single point energies for the disulfide bond elonga-
tion, using coupled cluster (CC), and conclude that using MP2 is of sufficient accuracy.
For better comparison, we set both minimum energy values to zero. See Table 3.1 for
details.

In restraint optimizations of the entire cystine in vacuo, the MP2/6-31+G* method

produces a Morse-potential for disulfide bond elongation in close agreement with the

results of a Coupled Cluster level of theory (see Figure 3.3), and thus can be expected
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to yield reliable energies for the redox potential calculations carried out here.

For all QM / MM calculations, the MM region was treated as described above.

Lincs constraints (74) were only applied to bonds involving hydrogen, and the time

step was changed to 0.5 fs. The Berendsen thermostat and barostat (72) were applied.

Other simulation parameters were the same as for pure MM MD simulations. As

conformations are sampled at 300 K, we did not use any zero point energy or thermal

corrections. The electronical embedding took solvation effects into account.

dSS [nm] Eelec MP2/6-31+G* [kJ/mol] CC/6-31+G* [kJ/mol]

1.80 -3779832 -3780049
1.90 -3779889 -3780108
2.00 -3779912
2.06 -3779916 -3780138
2.10 -3779914
2.20 -3779903 -3780128
2.30 -3779885
2.40 -3779862 -3780089
2.50 -3779838
2.60 -3779814
2.70 -3779790
2.80 -3779767 -3779998
2.90 -3779747
3.00 -3779728 -3779960
3.30 -3779721
4.60 -3779725

Table 3.1: Absolute electronic energies, Eelec, of optimized cystine at a given sulphur-
sulphur distance. Energies were optained from restrained optimization: The sulphur-
sulphur bond length, dSS, was elongated stepwise, while freezing the positions of the
sulphur atoms. Compare Figure 3.3.

10 simulations, each 20 ps in length, were performed without applying any force.

For evaluation of these zero-force simulations, only data for t> 10 ps was used. Simu-

lations at forces up to 498 pN were performed starting from a randomly chosen set of

coordinates and velocities of the zero-force QM / MM simulations. For any force larger

than 498 pN, the structure and velocities were read in from the MD simulation at the
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next-smaller force. Thereby, we did not introduce large errors into the simulation by

suddenly applying a large force to a structure equilibrated at zero force. We applied

the constant force onto the terminal N and C atoms in z-direction, i.e. in the longest

dimension of our simulation box. To check for convergence, we performed additional

simulations at F =166, 332 and 498 pN, which started from structures sampled at

830 pN instead of 0 pN. We did not observe any significant differences between these

force-quench and force-jump protocols in terms of geometries and energies after 5 ps,

and concluded that the 15 ps time scale was sufficient for full relaxation to the respec-

tive force. Overall, we performed 15 simulations each at F = 30, 50, 100, 166, 332, 498

and 830 pN and 5 simulations at F = 664, 1162, 1660, 2490 and 3320 pN, each lasting

15 ps, resulting in an overall simulation time of more than 2 ns.

3.3 Results

3.3.1 The QM / MM Setup

The reduction of a disulfide bond consists of several steps. Full reduction leads to two

thiols, as shown in Figure 3.1. However, the first reduction step is the addition of a

single electron. We first investigated this additional step of redox reaction in detail,

and modeled an isolated cystine in water. We compared its average energy to the

energy of its radical anion, sampling exactly the same configurations as the oxidized

cystine. Next, we sampled the structure of the radical anion and thereafter calculated

the energy of these sampled structures at the electronic state of the oxidized cystine.

Finally, we compared the energies of the equilibrated oxidized and radical structures

to the energies of the states differing by one electron. Table 3.2 summarizes the energy

values obtained from these calculations. Enforcing an electron into the structure of

a closed disulfide bond or taking it away from the radical structure both lead to an

increase in quantum energy.

One important parameter that strongly influences the outcome of a QM / MM cal-

culation is the way the QM part is implemented into the MM part. Two different

methods are here available: mechanical or electronic embedding. For mechanical em-

bedding, the QM part is only mechanically enforced to fit in the surrounding MM part.

Electronical embedding additionally takes the charges of the protein and surrounding

water molecules into account, thereby stabilizing the addition of a single electron to
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Comparison ∆Ea
QM ∆Ea

pot ∆Eb
QM ∆Eb

pot

(ox + e−) - ox 216 ± 66 1837 ± 2122 240 ± 2 241 ± 1776
red - ox -588 ± 98 -62 ± 1900 33 ± 2 -296 ± 188
(red - e−) - red 715 ± 109 2652 ± 2706 171 ± 2 180 ± 1987

Table 3.2: Difference in energy between a cystine and a cystine radical

a: electronic embedding

b: mechanical embedding

Errors represent the sum of the errors of the mean of both states.

a disulfide bond. The increase in energy upon adding or removing an electron was

independent from the embedding scheme. This holds for both the energy of the QM

subsystem, which we here refer to as the quantum energy EQM, and the potential en-

ergy Epot of the entire system. Such an increase is not surprising, as the cystine is

reduced or oxidized but reorganization is prevented. In case of electronic embedding,

Epot is influenced by the charges surrounding the system. We find a significant differ-

ence between the treatment of the quantum region for the energy difference between the

equilibrated structures of reduced and oxidized species: Only EQM using mechanical

embedding shows a higher energy for the reduced species. In all other cases, the radical

anion is surrounded by water that can stabilize the charge. EQM resulting from me-

chanical embedding shows the smallest fluctuations, but the lack of stabilization by the

water in mechanical embedding makes a wrong assumption. Therefore, we henceforth

work with electronic embedding.

As demonstrated by EQM derived from mechanical embedding and also evident

when comparing EQM to Epot, including the water in the energy calculations increases

the energy fluctuations. One approach to decrease water fluctuation would be to use

implicit solvent which, however, is known to be a rather poor approximation of solvent

effects on proteins or peptides. Instead, we compared the energy fluctuations of poten-

tial and kinetic energies and of the temperature for both protein and water seperately.

We found that due to the small system size, overall fluctuations could be minimized

by using temperature coupling on the entire system rather than on cystine and water

seperately.

To analyze if the chosen QM system was large enough, we set up a system with

a larger QM box, containing 20 QM atoms, for comparison. It is the next larger
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QM system possible, if one allows QM / MM boundaries only at single bonds, thereby

minimizing boundary affects on electronic conjugations. Figure 3.4 shows the test

system, a cystine with capped termini. Calculation times did not allow further analysis

of the larger QM box. While the system with the smaller QM region (compare Fig. 3.1)

allowed the calculation of 10 000 steps per day, the large QM system only yielded 135 -

220 steps per day, which is insufficient for comparison of structures and energies.

Figure 3.4: Larger QM system - To estimate size effects of the QM system, we set up
a larger system for comparison. QM / MM calculations of this enlarged system yielded
no more than 135 steps per day.

Thus, we used another comparison to confirm that the QM region was well chosen.

From the final snapshot of five independent trajectories at each force we performed a

pure QM single point calculation, using Gaussian03. We qualitatively find the same re-

sults as from QM / MM pulling simulations as will be detailed in Section 3.3.3. Another

important aspect to determine a sufficiently large QM region are the lowest unoccupied

(LUMO) and the highest occupied molecular orbitals (HOMO). The opening process of

a disulfide bond includes the formation of another disulfide bond to one of the sulphur

atoms. Therefore, the HOMO is going to react. Figure 3.5 shows the HOMO of cystine

for single point calculations for structures equilibrated at different forces. The HOMO

mainly concentrates on the disulfide bond and the adjacent Cβ-atoms. The higher the

forces, the smaller the HOMO as the HOMO is increasingly destabilized. We note that

the LUMO was calculated to be located on one of the oxygen atoms, an artifact which

we suppose to be due to the relatively restricted size of the QM system, which the MM

part, however, can partly compensate for.

We have seen that QM and QM / MM calculations qualitatively lead to similar

results. QM calculations, both restrained optimizations and single point calculations

are computationally less demanding than QM / MM MD calculations. However, struc-

tural optimizations involve sampling problems, which QM / MM dynamics in explicit
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Figure 3.5: HOMO of cystine - We performed single point QM calculations on
cystine configurations derived from QM / MM equilibrations at the given forces. The
HOMO is mainly concentrated on the disulfide bond and the adjacent Cβ-atoms for all
forces applied, as expected. These findings confirm that the size of the QM region is
reasonable.

water can prevent. Additional QM calculations further clarified this backdraw of QM

optimizations.

We performed QM optimizations of the QM region at different levels of theory for

the oxidized state (normal disulfide bond) and the radical anion of dimethyldisulfide

in implicit water. Then, we performed a rigid scan along the sulphur-sulphur bond

distance at both redox states. Finally, for the MP2 level of theory, we used restrained

optimization for further comparison. Figure 3.6 shows the Morse potentials of the

disulfide bond at different levels of theory.

Both, the energies of the oxidized and radical structure converged at UHF, UB3LYP

and MP2 level of theory, in contrast to the CASSCF reduced state (Fig. 3.6 d). All

scans show that the energy of the reduced state is lower than of the oxidized state, as

we have also observed from QM / MM calculations using electronical embedding. To

estimate the impact of the reorganization free energy, we next performed restrained

optimizations, at the MP2 level of theory using the 6-31+G* basis set in implicit

water. We allowed the methyl groups to structurally reorganize freely at each disulfide

bond length (Fig 3.7 a). At high sulphur-sulphur distance, they start moving towards

each other apparently because of beneficial dispersion interactions. This behavior is

the opposite of what is to be expected from a pulling force and an artifact from the

distance scans, even though this is a routinely applied technique.
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Figure 3.6: Energy of cystine for a range of disulfide bond lengths - We used
pure QM calculations to perform rigid scans, elongating the disulfide bond length of
dimethyldisulfide (MeS)2 and the corresponding radical anion. We used the following
levels of theory: a) UHF, b) UB3LYP, c) MP2, d) CASSCF(6,6) and CASSCF(3,3) for
the oxidized and reduced states, respectively. All data points were calculated using the
6-31+g(d,p) basis set and implicit water.
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We also considered the option of a spin-cross over. Restrained optimization of the

triplet state shows that this is not to be expected for sulphur-sulphur distances shorter

than 3.5 Å. To better immitate an external pulling force, we performed another scan of

restrained optimization, where we fixed the distance between the Methyl-C atoms and

allowed the sulphur atoms to organize freely (Fig. 3.7 b).

Figure 3.7: Stretching the molecule by restrained optimizations - a)Allowing
the methyl groups to reorganize during a restrained elongation of the sulphur-sulphur
bond leads to clustering of the methyl groups, a behavior contradictory of what is to be
expected from mechanical pulling forces. b) Restrained optimizations with a growing
yet fixed carbon-carbon distance leads to a jump in sulphur-sulphur bond length and
also a linear increase in energy with distance, again different from external pulling.

We elongated the C-C distance in steps of 0.1 Å. Up to C-C distances of 3.0 Å, this

leads to minor changes in the sulphur-sulphur distance of less than 0.1 Å, as we will

later also see for QM / MM calculations (compare Sec. 3.3.4). Instead, enlarging the

C-C distance from 3.0 to 3.5 Å results in a jump of 0.3 Å in disulfide bond length. We

find a linear increase in energy with the disulfide bond length, an effect opposed to

what QM / MM calculations show (compare Fig. 3.11). The triplet state at the same

carbon-carbon distance results in a completely different range of disulfide bond lengths,

and no overlap was found. In other words, the triplet state is energetically unfavored

and should dissociate spontaneously. Overall, the QM optimizations yield unrealistic

structures or energies, which we mainly attribute to that lack of solvent and thermal
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fluctuations.

Does QM / MM represent the charges on the sulphur atoms in an adequate way?

Adding a charge to the cystine QM / MM system leads to a negative charge, mainly

located and equally distributed over both sulphur atoms. In contrast, a pure QM

calculation of cystine allows only 6 % of the negative charge to distribute over the

disulfide groups, while 94 % are located on the more electronegative COOH groups.

Thus, the QM / MM description again represents the charge densities in a disulfide

bond more realistcally, in contrast to QM calculations.

The following conclusions have been drawn from these calculations. First, we have

seen that the energy difference between the oxidized structure itself and the same con-

formations with an electron enforced into it neglects the reorganization energy. We

assume the latter to play an important role in the redox potential and therefore in the

following allow structures to relax in MD simulations. Secondly, testing of the QM

subsystem has shown that it is chosen sufficiently large. Thirdly, and most impor-

tantly, rigid scans even if performed in implicit solvent are not optimally reproducing

the experimental conditions of external single molecule pulling in water and at room

temperature. While the reactant state, the disulfide bonded state, is clearly defined

and computationally easily accessible, the redox potential calculations also require a

proper definition of the reduced state. The latter is experimentally and theoretically

much debated. This is the topic of the next section.

3.3.2 Defining the Reduced State

A redox potential measures the energy difference between the reduced and oxidized

state. We here are interested in the change of redox potential upon force applica-

tion. Applying a range of mechanical forces to the oxidized state to calculate its force-

dependent energy is straightforward, as the disulfide bond can withstand forces up

to 3320 pN on the picosecond time scale. The question arises if the reduced state

can withstand mechanical forces, or opens the sulphur-sulphur bond. In the latter

case, its energy would be force-independent. Simple electron addition to a disulfide

bond, the primary reaction mostly chosen to study redox reactions quantum mechani-

cally (63, 64, 65), results in a radical anion, which was previously found to maintain a

chemical bond between the sulphur atoms in QM calculations of minimized structures

in vacuo (66).
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Figure 3.8: Dynamics of the re-
duced disulfide radical anion - The
radical anion of cystine opens in four
out of five independent trajectories at
F= 0 and at T= 300 K, resulting in
a thiolate anion and a thiyl radical.
As we find the open state to be the
equilibrium state, it is independent of
force. Thus, its energy can be ac-
counted for as a constant and the rela-
tive changes of the redox potential by
force are independent from the energy
of the reduced state.

As a first step of estimating the force-dependent stability of the reduced state,

we performed QM / MM calculations of the radical anion at ambient conditions, in

explicit solvent, and in the absence of force. These simulations were set up in a way

equivalent to simulations of the oxidized state: The same configurations from the pure

classical MD simulations that were used for QM / MM minimization in the oxidized

state were chosen and minimized with one additional electron in the QM region (charge

−1, multiplicity 2). Then, five independent QM / MM simulations were started, at the

same conditions used for the oxidized state, again with a charge of −1 and a multiplicity

of 2. We observed a dissociation of the disulfide bond within the first 40 ps for four out

of five simulations of the reduced state (Fig. 3.8).

As the radical introduces a negative charge and periodic boundary conditions were

used throughout all simulations, instabilities might arise from the net charge in the

simulation system. We therefore added a sodium cation to our calculations. Even

though energy fluctuations decreased, no increase in stability was achieved (Fig. 3.9).

Thus, in contrast to previous findings for the same system at 0 K in vacuo, the open

state is the equilibrium state of the radical anion in water at ambient conditions, even

in the absence of force.

The protonated radical, resulting from the addition of one electron and one proton,

can be considered as another feasible product state of the reduction reaction. Pre-

vious estimates for the pKa of a disulfide radical anion range from 6 to 10 (80, 81),
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Figure 3.9: Dynamics of the re-
duced disulfide radical anion with
an additional Na+-ion - Adding an
electron to the system introduces a
negative charge that is not cancelled
out. We could show that neutraliz-
ing the charge with a sodium ion did
not increase the stability of the sys-
tem. The distance between the two
sulphur ions still increases till the bond
breaks, in four out of five simulations
over 20 ps.

and strongly depend on the chemical surrounding. This is similarly the case for fully

reduced cysteine residues; while proteins predominantly contain protonated cysteines,

the catalytic cysteine in thioredoxins, for example, has been clearly shown to be depro-

tonated (82). We used a number of methods to check whether the protonated reduced

state as another possible product state was closed, and thus force-dependent. QM op-

timizations showed a closed state only for semi-empirical methods (AM1 and PM3),

whereas further refinement (UB3LYP, UMP2) showed that the bond dissociated upon

optimization. This was further confirmed by a QM / MM energy minimization at the

MP2/6-31+G* level of theory, which again lead to dissociation (Table 3.3). These find-

ings suggest that the addition of a proton to the radical anion does also not stabilize

the reduced state any further, as we observe spontaneous bond lengthening in both QM

and QM / MM optimizations for this uncharged radical species.

Obviously, the doubly protonated reduced state, that consists of two molecules of

cystein, does not feature a bond between the sulphur atoms, and as a consequence

its energy is independent of force. In summary, we considered three different pro-

ducts as possible reduced state: The doubly protonated reduced state, as shown in

Figure 3.1, the protonated radical and the radical anion. We found all three possible

product states to open at ambient conditions, and thus being independent of force. We

conclude that irrespective of its precise nature and protonation, the product state is

force-independent, and it is fair to estimate force-altered redox potentials solely on the

basis of the oxidized state. Thus, in the following, we only consider the closed, oxidized
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method dSS [Å]

AM1 1.99
PM3 1.95
UB3LYP/6-31+G* 3.19
UMP2/6-31+G* 3.93
QM / MM 3.25

Table 3.3: Optimization of the protonated radical, that is now neutral in charge, shows
dissociation for any level of theory higher than PM3

state, the cystine molecule.

3.3.3 Force-dependent Redox Potentials of Cystine

We here investigated the impact of mechanical force on the redox potential of the

disulfide bond in cystine solvated in water from MD simulations. To this end, we

applied mechanical forces in the range of 0 to 3320 pN to the N- and C-termini of

cystine. The changes in redox potential as a function of force are shown Figure 3.10 a.

As expected, we observed an overall increase in redox potential with mechanical force.

In other words, stretching forces acting on the molecule enhance the electron affinity

of the disulfide bond by destabilizing the molecule. However, this pronounced increase

in redox potential is only found for forces greater than 166 pN. Forces below 100 pN,

instead, show the opposite trend. Surprisingly, they stabilize the system slightly and

thus decrease the redox potential, as shown in the inset of Figure 3.10 a. Counter-

intuitively, this involves a shortening of the disulfide bond at low force (see further

below).

From single snapshots from the trajectories at different forces, we performed nat-

ural bond orbital (NBO) analysis. Methodological details are given in Section 2.2.1.

Restrained optimizations with the coordinates of the N- and C-termini frozen, were

performed with the 6-31+G* basis set on the MP2 level of theory, implemented in

Gaussian09 (83). NBO analysis was then performed by the NBO 3.1 program (51).

Figure 3.10 b shows the p-character of the two sulphur natural hybrid σS1−S2 bond

orbitals, which rises when force is increased. This observation confirms the finding that

the HOMO concentrates more strongly on the disulfide bond as force rises (compare

Fig. 3.5).
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3. REDOX POTENTIALS FROM HYBRID SIMULATIONS

Figure 3.10: Force fine-tunes redox potentials - a) Mechanical force changes the
redox potential towards higher reduction potentials. From our linear regression (solid
line), we estimated the distance on the reaction coordinate between reactant and prod-
uct, ∆xr,p. The redox potential ∆E0

redox continuously increases with force, except for
small forces (see main text). Error bars represent the s.e.m. obtained from the average
values over each trajectory at a given force, b) p-content of the sulphur-sulphur bond.

Assuming force to tilt the energy landscape linearly by F · x, one can obtain the

distance between the reactant and product state along the reaction coordinate, ∆xr,p.

This is the basic assumption of the Bell model (26), which relates mechanical force to

kinetic rates (Sec. 1.2.1). We here infer force-induced thermodynamic changes on the

same basis. The free energy landscape is linearly tilted by force, following

G(F, x) = G(x, F = 0) − Fx). (3.2)

Both, transition and product state are shifted linearly by force with respect to the educt

state. Though often thought of as the superior model, the Dudko model cannot be used

in this context. The Dudko model (Sec. 1.2.1) makes assumptions for the shape of the

energy landscape to deduce a non-linear change in transition barrier, ∆Gr,‡ > 0, and

thereby rate upon force application. It hence cannot make predictions for the force-

induced change in the overall reaction free energy, ∆Gr,p < 0, between reactant and

product state. Thus, we here follow the Bell model and estimate ∆xr,p, the distance

between reactant and product state (compare Fig. 1.3), from a linear fit to our force-

dependent redox potential data to be 0.37 Å over the entire range of forces probed
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Force range [pN] ∆xr,p [Å] ∆xr,‡ [Å]

0 - 830 0.25
0 - 3320 0.37
100 - 400 0.34a

100 - 400 0.23b

a: taken from reference (24)
b: taken from reference (60)

Table 3.4: Estimated ∆xr,p from linear regression and experimentally measured ∆xr,‡

here. Due to the non-linear dependency of ∆E0
redox on force (Fig. 3.10 a), we obtain a

smaller ∆xr,p of 0.25 nm for forces up to 830 pN (Table 3.4).

How does our estimated ∆xr,p compare to experimental data? Force clamp ex-

periments allow measuring the distance between the reactant and the transition state,

∆xr,‡. Such an experiment performed on a titin immunoglobulin domain yielded a

∆xr,‡ of 0.34 Å (24). Other thiol containing reducing agents resulted in ∆xr,‡ between

0.23 and 0.35 Å (23, 60) (compare Table 3.4). Overall, the experimental and calculated

values for the distance of the reactant to the transition and product state, respectively,

largely overlap, semi-quantitatively validating our results.

Force-dependent redox potential changes have not been measured, to our know-

ledge, to date. We here refer to distances measured along the reaction coordinate

from the changes in reduction rates upon stretching. In a disulfide bond reduction

by DTT, ∆xr,p ∼ 0.34 Å (24). Values vary with the reducing agent, between 0.23

and 0.35 Å (60). From the force-dependent redox potential, we similarly inferred the

distance, here between reaction and product state, to be ∆xr,p ∼ 0.25 - 0.37 Å. Thus,

our results overlap with the experimental results, or in other words, a similar force

sensitivity is found, which can be interpreted by a transition state close in structure to

the product state.

3.3.4 Structural Changes

The observed overall increase of the disulfide’s electron affinity can involve the defor-

mation of various degrees of freedom of the system in the vicinity of the bond. We

next analyzed the structural features of cystine under a stretching force that are likely

to cause the increase in redox potential and thus the enhanced tendency for sulphur-
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sulphur bond scission. As expected, the destabilization of the system by the applied

mechanical force, as measured by ∆EQM, overall involves a lengthening of the disulfide

bond (Fig. 3.11 a). Within the force range probed here, the bond elongates by up to

0.2 Å, which corresponds to roughly 10 % of the initial length, within the oxidized state.

However, our QM / MM calculations show that at low forces smaller than 500 pN, the

disulfide bond length does not increase steadily (black curve in Figure 3.11 b), even

though the end-to-end length between the cystine’s termini increases (blue curve). We

find that low to intermediate forces up to 500 pN lengthen and destabilize the oxidized

state significantly without considerably stretching the disulfide bond. Instead, unex-

pectedly, we even observe a slight shortening of the disulfide bond in the regime of

small force application (from 0 pN to 30 pN).

Figure 3.11: Structural changes - Mechanical force changes the redox potential of
cystine by shifting the conformational equilibrium to larger bond lengths, angles and
dihedrals. (a) Both the energy of cystine, ∆EQM, and the elongation of the sulphur-
sulphur bond, dSS, rise with mechanical force. However, at forces lower than 500 pN,
the destabilization of the cystine does not involve any significant bond lengthening.
(b) In addition to the lengthening of the sulphur-sulphur bond (black), force leads to a
lengthening of the whole molecule, measured by the distance between the termini, dCN

(blue). Taken together, these changes in softer and stiffer degrees of freedom cause the
energy ∆EQM (red) to rise over the whole range of forces. In all figures, the energy
and redox potential obtained at F = 0 pN served as a reference. Lines serve as guides
to the eye.
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The lengthening of the disulfide bond is significant only at forces larger than 500 pN

(Fig. 3.11 b), and thus can explain the observed rise in redox potential only partly.

Apparently, other degrees of freedom that contribute to the stability and thereby to

the redox potential of cystine are effected by mechanical force. Indeed, at forces be-

low 500 pN, the overall length of the cystine molecule, measured by dCN, increases

(Fig. 3.11 b). This lengthening at low forces is caused by changes in the dihedrals and

angles in proximity to the disulfide bond (Fig. 3.12). The dihedral angle enclosing

the disulfide bond is the degree of freedom that starts changing first. Without any

mechanical force applied externally, it samples angles around 80 ◦. Though flexible,

as evidenced by the large error bars, the dihedral angle expands already upon appli-

cation of the smallest force probed here, namely 30 pN, to around 115 ◦. At forces of

1160 pN and higher, the average dihedral angle is ∼ 170 ◦. As the maximum extension

is already reached, forces larger than 1160 pN do not increase the dihedral angle any

further. An analogous picture was found for the two CSS angles enclosing the disul-

fide bond. Increasing the force from zero to 1000 pN enlarges the angle from 103 to

∼ 105 ◦. For forces larger than 1160 pN - that is where dihedrals are already extended

to be nearly planar - angles are continuously being stretched up to 114 ◦. In a simplis-

tic view, we can infer a sequence of events upon stretching a disulfide bond from this

analysis. This is to say, cystine elongates first by extending soft dihedrals all the way

up to nearly 180 ◦, secondly by stretching angles, and lastly by elongating the compa-

rably stiff sulphur-sulphur connection itself. The high force-sensitivity of angles and

even more so for dihedrals implies that the extension of the overall cystine molecule at

low forces (Fig. 3.12 b) can be primarily attributed to the stretching of dihedrals and

angles, leaving the disulfide bond largely unchanged.

As already implied, fully releasing the force from 50 pN to 0 pN elongates the disul-

fide bond marginally by ∼ 10−3 Å (see Figure 3.11), thereby destabilizing the cystine

and leading to a rise in ∆E0
redox, as shown in the inset in Figure 3.10 a. Apparently,

low forces act on degrees of freedoms orthogonal to the disulfide bond length. This

counter-intuitive behavior is likely to be cystine specific, since it was not observed for

a larger protein (titin I27) (30).

To ensure that the bond shortening we observed is not an artifact of the QM / MM

calculations, we performed pure QM optimizations on a cystine, where we enlarged the

dihedral angle stepwise. The disulfide bond shows a minimum in bond length not in
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Figure 3.12: Impact of force on the angles and dihedrals surrounding the
disulfide bond - Changes of softer degrees of freedom of cystine, i.e. angles and
dihedrals, by mechanical force. a) Dihedral angles ω between the cystine side chain
atoms Cβ-S-S’-Cβ’ (see inset) increase already at forces as small as 50 pN, and open up
to ∼ 170 ◦. Other dihedrals show similar tendencies (not shown). b) Angles α1 and α2

between Cβ-S-S’ and S-S’-Cβ’, respectively, show changes over nearly the whole force
range (from F > 320 pN).

the fully optimized structure, but at a torsion that is 10 ◦ larger than the one found in

the minimized structure (see Figure 3.13).

3.4 Discussion

We here employed Molecular Dynamics simulations of cystine at ambient conditions

to assess the effect of mechanical force on disulfide reduction. By quantifying the re-

dox potential, our study allows conclusions independent from the reducing agent and

reduction mechanism. We find that a pulling force, even at forces as small as a few

100 pN, directly affects the redox potential, i.e. the chemistry of the disulfide bond.

This major result of our study, the thermodynamic destabilization of the oxidized state

by force, can be directly related to the force-altered kinetics of single molecule force ex-

periments. As mentioned in the Methods section, the increase in redox potential entails

a lowering in the activation barrier for reduction (compare Section 1.2.1, as the free

energy landscape is steadily tilted by force according to the Bell or other refined models

(see the linear fit to ∆E0
redox according to Bell in Figure 3.10 a) (26, 84). Our results
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Figure 3.13: Dihedrals surrounding the disulfide bond - Restrained optimization
of cystine with pure QM, using MP2/6-31+G* in vacuo. Here, the dihedral angle
enclosing the disulfide bond was enlarged step wise and restrained, while the optimiza-
tions was performed. In accordance with our QM / MM calculations, the disulfide bond
length shows a minimum for ω > ωmin.

thus can explain the enhanced reactivity observed in various recent force spectroscopy

experiments and in calculations (23, 24, 30, 60, 61, 62). Other factors such as substrate

accessibility or changes in the reaction mechanism can additionally alter the reaction

rates. However, as we here show, mechanical force does destabilize the oxidized sys-

tem directly, which is sufficient to explain the experimental rate enhancement by force.

In this light, the mechanical insensitivity of disulfides in strained ring structures (25)

is surprising and might possibly be caused by several compensating effects which are

subject to further investigations.

Remarkably, lower and medium forces (between 50 and 830 pN) primarily affect

the softer degrees of freedom, namely angles and dihedrals, while the disulfide bond

remains unstreched or even becomes shortened. Only at high forces (beyond ∼ 500 pN),

stretching of the disulfide bond itself sets in. Both effects jointly lead to a steady

destabilization of the system and thus an increase in redox potential throughout the

whole range of forces (30 - 3320 pN) probed here. At 3320 pN, the maximum force

investigated here, we found the disulfide bond to stretch by 0.2 Å and dihedrals to fully

open (i.e. close to 180 ◦). We compared these findings for the isolated cystine to a

cystine in a mutant of I27, a titin immunoglobulin domain, under different stretching
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forces. Again, the disulfide bond shows a slow increase in bond length upon stretching,

while angles and dihedrals enlarge already significantly in the low force regime (results

not shown). Also, angles and dihedrals in titin expand up to 180 ◦, in a similar way as

discussed for cystine, (compare reference (30)). Thus, our major findings are largely

independent from the system comprising the sulphur-sulphur bond. The decrease in

disulfide bond length, however, seems to be specific for cystine. How this shortening of

disulfide bond length at low forces is related to catch-binding (24, 85), could not yet

be understood and remains to be explored.

As opposed to our results, the COGEF study recently presented by Iozzi et al. (67)

predicts the bond to stretch by 0.35 Å till the rupture point - which is found for

∼ 3500 pN - but the dihedrals enlarge no more than up to 120 ◦. The major differences

between the two approaches is that we take solvation and dynamic fluctuations at

room temperature into account, whereas Iozzi’s study was performed in vacuo using

optimization, i.e. by comparing minimized structures. Apparently, these different

conditions cause very different degrees of freedom to be affected by mechanical force. In

other words, the dynamics at ambient conditions allow the structure to relax differently

to the relaxation taking place at 0 K in vacuo as it is the case for the COGEF approach.

We note that the different levels of theory used by Iozzi et al. (B3LYP) and us (MP2),

is unlikely to give rise to the discrepancies, as they yield similar bond lengths, and only

differ in their electron affinity for sulphur-sulphur systems (79).

How are the changes in redox potential upon force application related to previous

experimental findings? We above have quantified the sensitivity of our redox system

towards a mechanical force, in other words the extent to which the energy landscape

is tilted by a given force, in terms of ∆xr,p, the distance between reactant and product

state along the reaction coordinate (Table 3.4). The force-sensitivity of the redox

potential, measured by ∆xr,p, is of a similar magnitude as the force dependency of the

redox reactivity probed in experiments, in terms of ∆xr,‡. We can conclude that our

QM / MM calculations are in line with previous force spectroscopy experiments. They

suggest that the whole redox reaction is as susceptible to the mechanical force as the

transition barrier. The structural interpretation of ∆x then implies the transition state

to highly resemble the product state.

The above analysis of our force-dependent redox potential calculations is based on

the simple assumption that force tilts the energy linearly along the reaction coordinate,
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as originally proposed by Bell (26). However, other advanced non-linear models have

been put forward and have proven useful (84) to interpret force-altered reaction rates

probed experimentally. Devising a non-linear model for estimating force-depedent redox

potentials for the disulfide bond, i.e. a Morse potential, might further improve the

accuracy of our analysis, is, however, out of the scope of the present study.

How does the observed force-sensitivity of the disulfide bond redox potential com-

pare to the variation in redox potential of this bond in different chemical environ-

ments? Our calculations estimated a force of ∼ 300 pN to increase the redox potential

by ∼ 50 mV, while an external force as high as ∼ 1000 pN increases the redox potential

by ∼ 140 mV. On average over the whole force range, we obtain from ∆xr,p a force-

sensitivity of 0.23 mV/pN. In living organisms, we usually find redox potentials in the

range of 200 to 300 mV, i.e. variations < 100 mV. Figure 3.14 shows some examples of

thioredoxin mutations and their redox potentials (86). A single point mutation changes

the redox potential by no more than 32 mV. As another example, engineered disulfide

bonded GFP mutants feature redox potentials differing by no more than 10 - 20 mV.

Such an alteration of redox potential would require a pulling force of several tens of

piconewtons.

As demonstrated by this comparison (Fig. 3.14), a change in redox potential can

be similarly achieved by either a change in the biochemical neighborhood, e.g. a mu-

tation, or a mechanical force in the 100 pN range. The question arises if a mechanical

force of this magnitude is likely to act on a disulfide bond in the living cell. Titin

immunoglobulin domains have been shown to unfold at forces in the range of 150 to

300 pN (88). Another example for a biological system experiencing mechanical force is

the fibronectin / integrin cluster. Its bond strength is estimated to lie between 30 and

100 pN (89). In general, forces on a single molecule in living organisms are estimated

to be a few piconewtons or a few tens piconewtons large (90) and thus are able to tune

redox potentials significantly.

3.5 Conclusions

In conclusion, force can alter the redox biochemistry in the cell to an extent comparable

to single point mutations in redox reactive proteins. We expect our approach, by

including conformational sampling and explicit solvation, to reliably predict the correct
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Figure 3.14: How does force change the redox potential as compared to chem-
ical environments? - Redox potentials in biological systems in comparison to redox
potentials induced by mechanical force. Left: measured redox potentials for chem-
ical and biological reducing agents, namely DTT (87), E. coli thioredoxin (6), and
(S. aureus) thioredoxin, including two mutants (86). Right: Shifts in redox potential
for cystine from our QM / MM calculations, shown at the same scale. Force-altered
redox potentials cover a similar range as those sampled within different molecules and
mutants.
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tendencies in ∆E0
redox upon force application. A more thorough treatment based on

free energy calculations (42, 91) (Ch. 4) and taking proton uptake into account might

in future help to make quantitative estimates of force-altered redox potentials.

3.6 Outlook

Having succesfully calculated the redox potentials of cystine at different forces, we now

want to use this method to estimate the redox potentials of larger systems and to

further compare the impact of force to the impact of a chemical surrounding. To this

end, we built oligomers with a cystine in the center and one glycine residue at three

of the termini. The idea was to calculate a series of redox potentials with different

oligomers where one of the residues (X) is being exchanged (see Figure 3.15).

Figure 3.15: Oligomer models - A scan of oligomers in which X is by a number of
differend (e.g. charged aminoacids would alow to systematically characterize the effect
of the (electrostatic) environment on the sulphur-sulphur bond’s redox potential.

From an MD equilibration, we could see that such an oligomer was much more

confomationally flexible than expected so that conformational sampling might become

a bottleneck. A protein containing a similar pattern is Trx. The motif common for the

active site of all Trx and Trx-like proteins is the CXXC loop, consisting of two cysteine

residues C, enclosing two other amino acids X. It is thought of as a redox rheostat,

its sequence determines the redox potential (6). We followed the protocol given in

Section 3.2.2, and calculated redox potentials between the oxidized (disulfide bond is

closed) and doubly protonated reduced state for different Trx mutants. In contrast to

the force dependent redox potentials of cystine, here, the reduced state needs to be taken

into account as it differs for different mutants. However, we find the reduced state to

be easily deprotonated, thus unstable and difficult to sample in QM / MM simulations.

In addition, the redox potential calculations presented here have the disadvantage to

approximate the change in free energy during the redox reaction by the QM energy, a

potential energy. Entropic effects are thus fully neglected. For these reasons, we next
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devised an alternative approach, MM-based free energy calculations and applied it to

Trx and its mutants (Ch. 4).
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Free Energy Calculations

In Chapter 3, using hybrid quantum and classical mechanical calculations, we could

show protein disulfide bonds to be destabilized by mechanical force, which results in a

shift in redox potential, similar to shifts found when changing the chemical environment

of the bond. In this chapter, we devise an approach to calculate any redox reaction

free energy in order to compare disulfide bond stabilities in redox proteins.

4.1 Redox potentials from Free Energy Calculations

Differences in redox potential of proteins are the driving force of many vital biochemical

reactions. A fundamental understanding of redox processes under physiological condi-

tions opens up opportunities to get deeper insights into biochemical pathways. While

redox potentials of proteins are in principle experimentally accessible, an alternative

computational approach would allow to systematically screen and tune redox proper-

ties of proteins by mutagenesis, prior to the more elaborate experimental validation.

We use free energy calculations (FEC) to calculate the redox potential of proteins that

undergo thiol- / disulfide exchange.

To this end, we chose thioredoxin (Trx), a ubiquitous protein, as a model system

to design and test our method. Trx shares a common motif with all Trx-like proteins,

the CXXC motif, where C refers to cysteine and X to any other amino acid. It is

thought of as a redox rheostat, as its sequence determines the redox potential (6). Trx

is a thiol- / disulfide oxidoreductase, a family that occurs in all living organisms. As

the name suggests, these oxidoreductases catalyze the oxidation of thiols to disulfides
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and the backwards reaction but also disulfide isomerization. The XX dipeptide in the

active site is known to control redox properties, and is thus expected to be very useful

for the design of new thiol- / disulfide oxidoreductases with new redox potentials (92).

Quan et al. have shown that the CXXC also changes the protein’s ability to isomerize

disulfides (6), a feature that could be approached with the method introduced here.

Cleavage and isomerization behavior of disulfide bonds in proteins play a crucial role

in their activity and are thus of great interest. This chapter introduces an approach to

calculate the redox potentials of disulfide bonds in proteins when they undergo cleavage.

The redox potential of a cystine in a protein corresponds to the free energy of opening

that disulfide bond.

Figure 4.1: Disulfide reduction in thioredoxin - We use Trx of E. coli as a model
system to calculate the redox potential of disulfide bonds. Left: oxidized Trx, right:
reduced Trx. The cysteines of the active site are shown as sticks.

Since the redox free energy is a state function, it is independent of the reaction

path. Therefore, we expect optimized geometries of the initial state, which in our

case is the oxidized state, and of the final state (the reduced state) to provide the free

energy through an arbitrary path. In our FEC, the parameter λ switches the system in

an alchemical transformation from the oxidized to the reduced state (see Section 2.3).

Thereby, the Hamiltonian of the disulfide bonded state is exchanged by that of the

open state. When a bond shall be opened, not only the force constant of the bond

itself has to be set to zero. Also, angles and dihedrals that enclose the bond disappear.

Furthermore, whenever a bond exists, non-bonded interactions are excluded. Therefore,

in order to open a bond, they need to be introduced again. This represents a challenge

in the setup of the free energy calculations, which will be detailed in Section 4.2.1.
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4.2 Setup of Thioredoxin Free Energy Calculations

4.2.1 Simulation Setup

All Molecular Dynamics (MD) simulations were carried out using the Gromacs 4.5.5

package (48). For the wild-type E. coli Trx, solution NMR structures of the oxidized

and reduced form are available (pdb entry: 1XOA and XOB, respectively) (93). For

the wild-type and its mutants, P31S and P31T, of S. aureus Trx, X-ray structures were

available (pdb entries: 2O7K, 2O85, 2O87 (86), respectively. The S. aureus wild-type

and its mutants were missing residues 1 to 3, which is why the mutations refer to residue

31 instead of residue 34. The E. coli mutants P34A, P34D and P34K were modeled

through homology modeling from 1XOA, using the Molecular Operating Environment

software (MOE 2008.10; Chemical Computing Group, Quebec, Canada).

The protein was solvated in a box of explicit water of TIP3P (70). The box was large

enough to allow a 1.2 nm distance in all directions. A salt concentration of 0.1 mol/l

was chosen to mimic physiological conditions, resulting in approximately 5500 water

molecules and, depending on the mutant, 15 to 17 sodium and eleven chloride ions.

Thereby, the system was neutralized. We added a dummy atom, named HUD, of

the mass of a hydrogen atom and connected it to the sulphur atom of the cysteine

residue. It will later be transformed into the proton of the open cysteine. The atoms

that experience transformations of their Hamiltonian are the Cβ, the S and the HUD

atom. Each of them is additionally represented by another virtual site of mass zero

(see Section 4.2.3 for details).

4.2.2 Simulation Details

First, the system was energy minimized using the steepest descent algorithm. We used

the Charmm27 force field to which we added an additional residue, we here refer to as

CYD, see Section 4.2.3 for details. Next, the water was equilibrated while the motion

of the heavy atoms of the protein was restrained with a potential of 1000 kJ/mol at

300 K for 100 ps. Then, we released the position restraints and equilibrated for 15 ns at

λ = 0. The temperature was controlled using velocity rescaling (94), the time step for

temperature coupling was chosen as 0.4 ps. Protein and solvent were seperately coupled

to the thermostat. The pressure was kept at 1 bar, using isotropic pressure coupling

via the Parrinello-Rahman barostat and a coupling constant of 1.0 ps. We started each
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simulation with a random set of velocities. The Lincs constraint (95) was used on all

bonds containing a hydrogen atom or the dummy that was to be transformed into a

hydrogen. Hydrogen atoms are recognized by Gromacs due to their starting letter, H.

Therefore we named the dummy atom HUD. Non-bonded interactions were calculated

within a cut-off of 1.0 nm. Electrostatic interactions beyond 1.0 nm were treated with

Particle-Mesh Ewald (75) with a grid spacing of 0.12 nm. We used a time step of 2 fs

and periodic boundary conditions for all simulations.

From the 15 ns equilibration, we used 15 configurations, one every nanosecond,

starting from 1 ns. From each of these 15 starting structures, we initiated 10 inde-

pendent Fast Growth thermodynamic integration (FGTI) simulations with a different

set of starting velocities, resulting in 150 independent transformation simulations. The

transformation time τ was chosen as 500 ps, λ was changed with every simulation step,

resulting in ∆λ = 4 · 10−6 per step. Instead of using pressure coupling, we here work

with a canonical ensemble, to yield a free energy from the transformation. Non-bonded

interactions were calculated within a cut-off of 1.3 nm. Electrostatic interactions be-

yond 1.0 nm were treated with Particle-Mesh Ewald (96) with a grid spacing of 0.12 nm.

All remaining parameters were the same as for the equilibration at λ = 0.

For each of the λ0→1 transformations, we also performed a backward simulation,

λ1→0, starting from the final snapshot. The same parameters as for the forward trans-

formation were used. Here, λ started at 1 and ∆λ = −4 · 10−6. We further sampled

the open state (λ = 1) for 15 ns, using the same parameters as for λ = 0.

4.2.3 Transformation Details

In addition to the standard topologies of free cysteine (CYS) and disulfide bonded

cysteine (CYS2), we introduced an additional cysteine residue type, which is a copy of

CYS2. We expanded it by one atom and three virtual sites (vs), and refer to it as CYD.

The atom, a dummy of mass of 1.008 a.u. according to the hydrogen mass, is bonded

to the sulphur. We named it HUD, as it will be transformed into the hydrogen atom.

The three remaining virtual sites are located at the same positions as the Cβ, S and the

HUD, respectively. Virtual sites are constructed such that their position is determined

by a bond from the original CYS2 residue. Figure 4.2 shows the atoms and virtual sites,

including the transformed atoms and Cα. The upper level topology (with continous

bonds) shows the atoms. They have full Lennard-Jones and Coulomb potential in the
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Figure 4.2: Scheme of the CYD residue -
The residue CYD is a copy of the CYS2 residue,
expanded by one atom, HUD - that will be
transformed into a hydrogen - and three vir-
tual sites, Vc, Vs and Vh, that are located in
the same positions as Cβ, S and HUD, respec-
tively. Here, the virtual sites have not been
superimposed onto their respective atoms for
clarity.

λ = 0 state, as detailed below. The lower level (dotted bonds) shows the virtual sites

that are in exactly the same position as the atoms on top of them. Their Coulombic

potential is zero at λ = 0 and will be switched on in the course of the transformation.

For the λ = 1 state, they serve to describe the Lennard-Jones potentials of atoms that

are bonded in the initial state. A virtual site is not bonded, only its position is fixed to

the atom it represents. Table 4.1 shows which virtual site is positioned by which atom.

virtual site atom 1 atom 2 on top of

Vc Cα Cβ Cβ

Vs Cβ S S
Vh S HUD HUD

Table 4.1: Construction of the virtual sites. The position of each virtual site is con-
trolled by two atoms, atom 1 and atom 2.

In the Charmm27 force field used here, atoms connected by less than three bonds

do not interact via non-bonded interactions. Thus, for a disulfide bond, the two sul-

phur atoms do not “see” each other’s charges nor is there any Lennard-Jones potential

between them. Once the bond is removed, these interactions are necessary to correctly

simulate the open state. Within Gromacs, Lennard-Jones potentials can be controlled

via a list (the so-called pair-list), and in this way can be switched on from zero in the

oxidized state (λ = 0) to full Lennard-Jones interactions in the reduced state (λ = 1).

However, any interaction added to the pair list will also introduce a Coulombic inter-

action between the atoms that is only dependent on the charge of the atom and thus
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particle λ = 0 λ = 1

Cβ atom -0.1 0
Cβ virtual site 0 -0.11
S atom -0.08 0
S virtual site 0 -0.23
HUD atom 0 0
HUD virtual site 0 0.16

Table 4.2: Partial charges of transformed particles to correctly take the Coulombic
interactions of the oxidized (λ = 0) and reduced states (λ = 1) into account.

cannot be tuned through this list.

For example, transforming a Lennard-Jones potential of zero between two connected

sulphur atoms (λ = 0) to a non-zero Lennard Jones potential of two sulphur atoms in

cysteine thiols (λ = 1) also adds a non-zero Coulomb potential between the two sulphur

atoms even at λ = 0. At this oxidized state, however, the two directely bonded atoms

should not interact electrostatically. On the other hand, setting the charge of sulphur

to zero for the λ = 0 state would also set all its other Coulomb interactions, for example

those with the neighbored residue, to zero and thus would introduce errors, too.

How can one switch on non-bonded interactions between the cleaving residues with-

out introducing errors into the closed structure? This is where the virtual sites come

into play. We added a pair of one sulphur atom and one sulphur virtual site to the pair

list. At λ = 0, the Lennard-Jones potential is zero, the charge is non-zero. At λ = 1,

the Lennard-Jones potential is switched on, the charge is switched off. Instead, the

charge of the virtual site on sulphur changes from zero (at λ = 0) to -0.23 (at λ = 1)

(see Table 4.2). Charges derive from CYS and CYS2.

Virtual sites, however, involve another complexity to be aware of. The virtual sites

on the sulphur atoms interact via short-range Coulomb interactions as they are not

connected via bonds. Adding this interaction to the pair list would create an additional

Coulomb interaction and thus introduce an error. Thus, by adding the pair Satom−Svs

to the pair list, no Coulomb potential is added for that pair.

We proceed equivalently for Cβ and HUD. See Table 4.2 for details. By setting

the charge of the sulphur atoms to zero, also the Coulomb interaction between the

nitrogen atom in the backbone and the sulphur atom disappears. The nitrogen and the
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sulphur atom are separated by three bonds (compare Figure 4.3), the kind of interaction

typically controlled via the pair list. The interaction between the atoms is thus present,

the Lennard-Jones potential available for both λ = 0 and λ = 1. Only the Coulomb

interaction for the open state is missing. We therefore add the Natom − Svs pair to the

pair list, set the Lennard-Jones potential to zero for both closed and open state (it is

already available) and thus have added the missing Coulomb interaction.

Figure 4.3: Cystine reduction - Scheme of the reduction of cystine to two cysteines.

Table 4.3 summarizes all interactions that were added to the pair list. We note that

for some interactions such as the Cα-HS’ interaction, between Cα of one cysteine and

the HS atom of the other cysteine, the Lennard-Jones potential of the 1,4 interaction (in

case of the closed state) is different to the one of the open state. The same exclusions

were used for virtual sites as for the atoms that they represent.

We also tried to calculate the free energy by using snapshots from the open structure

equilibrated at λ = 1. We find the energies of the backwards simulations to be largely

shifted, thereby abrogating the overlap of the work distributions.

4.2.4 The Oxidized State

One of the main conditions for an FEC to be successful is the end points being correctly

represented (52). We therefore tested our initial and target structure upon their quality

to reproduce the oxidized and reduced state that they represent, respectively. For the

initial state, we chose the oxidized state, for which λ = 0. Even though virtual sites

have been introduced into the standard Charmm27 force field (see Section 4.2.3) the

disulfide bond is closed. No non-bonded interactions shall be found between the two

sulphur atoms nor between either of the two sulphur atoms to either of the adjacent

Cβ-atoms. A simulation at λ = 0 should sample the same configurational space as a

simulation of the oxidized species using the standard Charmm topology. We here use

the Trx of E. coli, for which NMR structures of both the oxidized and the reduced

species are known, and compare the CYS-CYS bonded interactions, as these will be

59



4. FREE ENERGY CALCULATIONS

particle 1 particle 2 λ = 0 λ = 1

Cα1 S2 1,4 potential open state
Cα1 SH1 dummy off on
Cβ1 Cβ2 1,4 potential open state
CβH1 (two) S2 1,4 potential open state
CβH1 (two) SH1 dummy off on
Cβ1 S2 dummy off on
S1 S2 dummy off on
CβH1 (two) SH2 dummy off on
S1 Cβ dummy off on
S1 Cα2 1,4 potential open state
Cα2 SH2 dummy off on
S1 CβH2 (two) 1,4 potential open state
Cβ1 SH2 dummy off on
S1 SH2 dummy off on
Cβ2 SH2 dummy off on
S2 SH1 dummy off on
SH1 dummy SH2 dummy off on
HN Cβ dummy off off
N S dummy off off
Cβ dummy O off off
CαH S dummy off off
S dummy Cbackbone off off

Table 4.3: Lennard-Jones interactions between transformed atoms and the remaining
residue. In some cases, Gromacs uses different potentials for non-bonded interactions
separated by exactly three bonds, i.e. between the atoms 1 and 4, here referred to as
1,4 interaction, and short-range interactions between atoms separated by more than
three bonds. To emphasize which value has been used, we here refer to the value of the
latter as open state.

changed during the non-equilibrium transformation. They include the sulphur-sulphur

bond length, the adjacent angles and dihedrals and also the non-bonded energy between

the two cysteine residues.

We here show the distribution of all relevant structural parameters that define the

bonded state and will be transformed upon bond opening. We compare the data from

60



4.2 Setup of Thioredoxin Free Energy Calculations

Figure 4.4: Structural validation of the λ = 0 state - We here compare the initial
state (λ = 0) to the closed disulfide structure of E. coli Trx sampled by a standard
topology (ox1, ox2 and ox3 from three independent MD simulations). We consider
disulfide bond length, angles and dihedrals in the oxidized state. a) disulfide bond
length, b) CβSS’ angle, c) SS’Cβ’ angle, d) dihedral along NCαCβS, e) dihedral along
CαCβSS’, f) dihedral along CβSS’Cβ’, g) dihedral along SS’CβCα’, h) dihedral along
S’Cβ’Cα’N’, i) oxidized state with labels given in (a - h).
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the λ = 0 state using a modified topology with virtual sites (Section 4.2.3) to the

corresponding values of three independent simulations of the oxidized state which uses

its default topology. We find a large overlap of the distributions for all parameters

observed with the λ = 0 ensembles varying within the range sampled by the ox1,

ox2 and ox3 simulations, which here serve as a reference. The disulfide bond length

and the angles barely differ from the reference structures ox1 to ox3 (Figure 4.4 a -

c). Among the dihedral angles, CαCβSS’ (Figure 4.4 e) is the only one uneffected by

the introduction of virtual sites into the topology. The S’Cβ’Cα’N’ dihedral shows

fluctuations from one simulation to another, with λ = 0 being in good agreement only

with ox1 (Figure 4.4 h). The remaining mean values of the dihedrals differ by five to ten

degrees. We suspect these differences to derive from the weight of the dummy atoms

attached to the sulphur atoms that will be changed into a hydrogen in the course of

the reduction. We conclude that the overall conformational space of the cystine in

E. coli Trx is largely unaffected by our topological modifications to the topology of the

oxidized state as required for the subsequent FECs.

Furthermore, a correctly parameterized λ= 0 state should provide the same energies

between the two connected cysteine groups as the closed state described with the default

topology. To test this, we calculated the non-bonded interactions between the two

cystine groups in the λ = 0 state. From the λ = 0 trajectory, for comparison, we also

calculated the energies that result when using the default closed structure topology. We

note that to this end, it is necessary to rewrite the trajectory of the λ = 0 equilibration

without any dummy atoms and to calculate interaction energies from it with closed

structure parameters. We further checked the non-bonded interactions within each

cysteine. For all Coulomb and Lennard-Jones interaction energies we obtain identical

values (within the precision of the calculations) and conclude that our λ = 0 topology

reliably describes the oxidized state.

4.2.5 The Reduced State

Reducing a disulfide bond results in two thiols, in our case in two cysteine residues. Two

hydrogen atoms have been introduced in the course of the reduction (where dummies

have served as placeholders in the oxidized state). The disulfide bond was taken away,

i.e. the force constant of the disulfide bond and both adjacent CβSS angles have been

transformed to zero and non-bonded interactions between the two cysteine residues are
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now switched on. To evaluate the quality of the description of the λ = 1 state, we again

compare our equilibration simulation to three independent simulations of the crystal

structure, in this case of the reduced structure using the default topology without any

virtual sites. We compare the sulphur-sulphur distance, the adjacent CαCβS angles

(Figure 4.5 a - c) and the NCαCN’ dihedrals (e - h) along the backbone from one cysteine

residue through the two linking residues to the second cysteine residue and also both

NCCS-dihedrals (d and i). We find the λ = 1 state to well reproduce the reduced

structure.

As for the oxidized state, we also compare the non-bonded energies between the two

residues to the non-bonded energies they have when modeled with the default topology

of the open structure. To this end, we again rewrite the trajectory of λ = 1 without

any dummy atoms (compare Section 4.2.3 for details) and calculate the energies for

every conformation within the trajectory according to the default topology created for

the NMR structure. Gromacs calculates two terms of non-bonded interactions: 1,4-

interactions for atoms that are separated by three bonds, and short-range interactions

that are found at distances within a certain cut-off, and additionally are separated by

more than three bonds. The sum of 1,4- and short-range interactions for both Coulomb

and Lennard-Jones interactions in our λ = 1 state is the same as the energies resulting

from the same trajectory using the default topology. Our comparisons also confirm the

reduced state to be correctly parameterized at λ = 1 with the virtual site approach

described in Section 4.2.3.

4.2.6 Thermodynamic Cycle

Keeping structural changes to a minimum in the course of a FEC ensures better results

as the system is likely to be closer to equilibrium. Thus, in our first approach, we

set up a thermodynamic cycle (compare Eq. 4.1 and Section 2.3.5) in order to allow

the system to adjust more slowly and therefore more accurately to the transformation.

As an intermediate, we introduced a structure with one protonated cysteine, and the

other one remaining a negatively charged thiolate. Such a residue did not yet exist in

our force field. Therefore we added the residue, hereafter called CYD−. Charges for

cystine and the cystine thiolate have been taken from ADF charge calculations by Swart

et al. (97). We here calculated the charge differences and adjusted CYD− accordingly
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Figure 4.5: Structural validation of the λ = 1 state - We here compare the fi-
nal state (λ = 1) to the open dithiol structure of E. coli Trx sampled by a standard
topology (red1, red2 and red3 from three independent MD simulations.) We com-
pare a) the distance between the two sulphur atoms that are now no longer bonded,
and angles and dihedrals in their close vicinity. b) CαCβS angle, c) Cα’Cβ’S’ angle,
d) dihedral along N32CαCβS, e) dihedral along the backbone N32CαC32N33, f) dihedral
along N33C33

α C33N34, g) dihedral along N34C34
α C34N35, h) dihedral along N35Cα’C35N36,

i) dihedral N35Cα’Cβ’S’, j) reduced state with labels given in (a - h). The reactive site,
CPGC, is shown with sidechains only for the two cysteines for clarity.
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Figure 4.6: Putative thiolate interme-
diate of reduced E. coli Trx as com-
pared to the doubly protonated form
- We here compare the native, doubly pro-
tonated reduced structure (blue) to the
structure of the reduced state with only
one of the cysteines protonated (orange).
The two residues between the cysteine
residues are part of an α-helix, indepen-
dently of the redox state of the cysteines.
However, the helix unravels if one of the
residues is a thiolate.

in our force field. To balance the appearing charge upon introducing CYD−, we further

added a dummy atom that we simultaneously transformed into a sodium cation.

S − S
H+ + 2 e−+ Na+

−−−−−−−−−→ S− + S −H +Na+

yH+ + 2 e−+ Na+

yH+− Na+

H − S + S− +Na+
H+−Na+

−−−−−−−−−→ HS + SH

(4.1)

Here, we used the reduced state as the reference state and transformed it to the

mono protonated state. We find the mono protonated state to be very unstable as

compared to both the oxidized protein with the closed bond and the doubly protonated

cysteine. We show the structure of the mono-protonated structure compared to the

doubly protonated structure in Figure 4.6.

Both, for the oxidized and fully protonated state, the residues close the cysteines

form an α-helix. Only for the anionic thiolate intermediate, this secondary structure

is destroyed. We assume that the additional charge destabilizes the protein. Given

the large distortion in the intermediate, we hereafter directly transform the disulfide

bond into the doubly protonated state to keep structural changes as small as possible,

thereby minimizing the space of free energy landscape that remains to be sampled.
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4.2.7 Redox Potentials from Crooks Gaussian Intersection Method

The aim here is the calculation of redox potentials for E. coli and S. aureus Trx and

some mutants. To this end, we prepared simulation systems and topologies which

allow a transformation from the oxidized to their reduced states and back using FEC.

This section describes the FEC. We chose a non-equilibrium CGI method as described

in Section 2.3.4.1. To this end, we performed FGTI of each of the Trx wild-type and

mutants for both the opening and closing process of the disulfide bond. The mechanical

work of the switching process is obtained from W =
∫ 1

0
δH(p,R,λ)

δλ δλ. According to

Jarzynski (98), the free energy ∆A is the work for which Pf(W) = Pr(−W), i.e. the

intersection point of the two work distributions. We calculated the latter from the

distribution of forward and backward work, following Equation 2.30. In this way, we

successfully calculated the redox potentials of three out of four mutants of E. coli

and two out of three mutants for S. aureus Trx (see Figure 4.7 a and b, respectively).

Though shifted in absolute numbers, we predict redox potentials for the three E. coli

mutants which correlate strongly with measured values (Eredox in the range of -254 to

-240 mV). A strong disagreement between experiment and our calculations is found

for the wild-type (at an experimental value of -270 mV) for which a different reduction

mechanism has been predicted (see Sec. 4.3 for further discussion).

Figure 4.7: Calculated versus experimental redox potentials - We calculated
the redox potentials for a) E. coli Trx wild-type and three of its mutants and for b)
S. aureus Trx wild-type and two of its mutants. Error bars represent the s.e.m.
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For S. aureus Trx, it is the P31T mutant (at an experimental redox potential of

-236 mV) relative to the other two proteins (wild-type and P31S), for which we under-

estimate the redox potential. A reason for this might be the larger spread of backwards

work distribution as compared to the other mutants, as further discussed in Section 4.3.

To obtain the results shown in Figure 4.7, we used 15 different input structures

from each of which we started ten FGTIs from λ = 0 to 1 within 500 ps. The final

structures were transformed backwards, from λ = 1 to 0. Figure 4.8 a shows sample

energy curves for forward and backward simulations. Integration of δH
δλ yields the work

(compare Sec. 2.3.4). Our data thus comprises 150 work values for each oxidation and

reduction. From 15 subgroups of each data set, we calculated 15 intersection points,

which we averaged. The standard error of the mean (s.e.m.) of these 15 intersection

points represents the error.

Figure 4.8: Thermodynamic integration for reduction and oxidation trans-
formation of wild-type E. coli Trx. - a) Change of dH/dλ along the reaction
coordinate λ for one forward (fw, reduction) and one backward (bw, oxidation) trans-
formation within 500 ps, b) Work distribution obtained from 150 dH/dλ curves each
for the forward and backward transformation.

4.2.8 Transformation Time

The transformation time and the number of samples play a crucial role in the accuracy

of the redox potential calculated (58). We tested transformation times at τ = 80, 200,
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320 and 500 ps and sampling sizes from 50 to 150 samples for each forward and backward

simulations. Figure 4.9 a shows the free energies obtained for forward and backward

simulations at τ = 80, 200, 320 and 500 ps, respectively. The longer the simulation

time, the larger the overlap of the interquartile range. The better the overlap of two

simulations, the more accurate the calculated free energy, according to reference (58).

In agreement to that, we find a large decrease in the error bars from τ = 80 ps to

500 ps. Additionally, from 200 to 500 ps the value of the calculated redox potential

shows smaller changes and thus likely converges (Figure 4.9 b).

Figure 4.9: Convergence of the calculated work value and the redox potential
in dependence of τ - a) Work distribution of the forward and backward transfor-
mation for τ = 80, 200, 320 and 500 ps, respectively. Longer transformation times
lead to a larger overlap of forward and backward work distributions, b) resulting redox
potentials for the transformation times shown in a). Error bars represent the s.e.m.

We also tested the influence of the size of our work data sets on the accuracy of

our FEC by comparing standard deviations of subsets. We used subsets of the size of

50, 100 and 150 data points. We found a slight improvement of standard deviation

between 50 and 100 data points, and no significant improvement from 100 to 150 data

points, suggesting 100 data points, i.e. 100 TI runs to be sufficient. In the following,

we show results from all 150 TI trajectories.

Another way to assess the quality of our calculations is the following. According to

Crooks’ fluctuation theorem (Eq. 2.26), the following equation should hold:

ln
Pf (W )
Pr(−W )

= kBT (W −∆A). (4.2)
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For a temperature of T = 300 K, β = 1/kBT = 0.4. Equation 4.2 shows a linear

dependency, which should be reproduced by a homogeneous data set. We use this con-

dition to analyze our data and find a significant improvement with the transformation

time τ . Figures 4.10 a - d show the according plots for τ = 80, 200, 320 and 500 ps,

respectively. The longer the transformation time, the better the linear fit. We further

found the value of β to improve with τ , with an exception found for τ = 320 ps.

β can be directly obtained from the slope of the graph. The intercept with the

y-axis corresponds to β · ∆F . Our calculations underestimate β by ∼ 30%. If longer

transformation times may improve this value and thereby the outcome of the calculated

redox potentials remains to be elucidated.

4.3 Discussion, Summary and Outlook

We here calculated redox potentials from MD simulations through FECs. To the best of

our knowledge, this is the first approach to open a covalent bond, using MM FECs. As

a reference to the closed (λ =0) and the open (λ = 1) state, we used three independent

MD simulations of each the oxidized and reduced forms of Trx, respectively, that were

derived from NMR structures. We compared the disulfide bond length, two angles and

five dihedrals enclosing the disulfide bond. We find a large overlap for the interquartile

range of all measurands, though the entire range is slightly shifted as compared to three

independent simulations of the oxidized state for the angles and three of the dihedrals

(compare Figure 4.4 b - d, f and g). This could derive from the mass of the dummy

atom that exists to be transformed into a hydrogen. It is the standard procedure not to

change masses in the course of FECs. Should the mass of the dummy atom be shown

to be the source of the shifted angles and dihedrals, it would be recommendable to

examine, if better results can be achieved by also changing the mass.

Comparison of the product state (λ = 1) to three independent simulations of the

reduced structure showed no difference in average values nor in the distribution of the

sulphur-sulphur distance, the angles nor the dihedrals. We find the direct transforma-

tion from the oxidized state to the doubly protonated fully reduced state to induce

smaller structural changes than by usage of an intermediate state.

Using the CGI approach with FGTI, we were able to predict relative changes in

redox potential for a subset of the mutants, suggesting an only limited accuracy due
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Figure 4.10: Quantifying our data quality according to Crooks’ Fluctuation
Theorem - For each energy distribution obtained with different transformation times,
τ , we tested the probability density of free energies to satisfy CFT. a) τ = 80 ps, b)
τ = 200 ps, c) τ = 320 ps, d) τ =500 ps. β should equal 1/kBT = 0.4 and serves as a
measure for the quality of the data.
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to systematic or statistical errors. However, the order of magnitude in redox potentials

covered in our simulations of ∼ 50 mV agrees well with the range probed experimentally

(∼ 30 mV) for the seven proteins under investigation.

The electron rich indole ring of the proline in the wild-type is in close vicinity to

the thiol. It has been discussed to possibly act as base, thereby assisting in deproto-

nating the thiol (86), and thus increasing its reducing power, which is reflected by its

lower redox potential. This catalyzing effect is neglected by our approach, and another

possible source of error.

Several tests indicate convergence of the transformation at τ = 500 ps. Cross-

valdation of the data is presented in Figure 4.10, however, did not yield correct values for

kBT . It is advisable to analyze, if longer transformation times lead to better agreement.

Overall, provided an improved accuracy by addressing these problems, this approach

can be transferred to other bond breaking reactions, and thus can widen the field of

MM FECs. A possible next step would be to apply the approach to other thiol-disulfide

oxidoreductases such as DsbA. Just like Trx, the latter contains the CXXC motif as

an active site, though redox potentials are in a completely different range. It would be

desirable to reproduce and later also predict redox potentials for mutants containing

more than a point mutation in the active site.

Further, such an approach could be used to study tensile disulfides, similar to what

we have shown in Chapter 3 but for disulfides in different chemical surroundings.
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5

Vicinal Disulfide Bond under

Force

Investigations on redox potentials of disulfide bonds (Ch. 3 and 4) have shown that

they are not only very sensitive to their chemical surroundings but also to mechanical

force. Some cystines exist in unusual patterns which have been suggested to have a

specific function, e.g. as regulators of the dynamic or mechanical reponse of a protein.

The X-ray structure of the von Willebrand factor (vWF) A2 domain revealed a vicinal

disulfide bond, a rare arrangement of two adjacent cysteine residues whose function

has not been clarified yet. In this chapter, we focus on this vicinal disulfide bond

and its potential to alter the vWF A2 function. We used Molecular Dynamics (MD)

simulations to analyze the A2 domain’s dynamics at ambient conditions and under a

pulling force, with the vicinal cysteines forming either a disulfide bond or two thiols.

5.1 Vicinal Disulfide Bonds

The formation of a disulfide bond between two adjacent cysteine residues leads to a

vicinal disulfide bond. Such disulfides are very rare motifs in proteins and functionally

important where they occur (99). Their function has been shown to be manifold,

ranging from controlling binding to protein activity (12, 13, 100) to redox-activated

conformational switches (11). The X-ray structure of the vWF A2 domain revealed

the existence of such a vicinal disulfide bond, but only speculative explanations have

been reported to date (15, 16). The vWF is a multidomain protein that plays a central
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5. VICINAL DISULFIDE BOND UNDER FORCE

role in hemostasis and thrombosis in the vascular system. The A2 domain is a shear-

sensor domain that is involved in the process of hemostatically regulating the length of

vWF (15). Unfolding of the domain by mechanical force controls cleavage of A2.

The vicinal disulfide bond occurs close to the C-terminus, between Cys1669 and

Cys1670 at the C-terminus region which has been shown to be the first part that unfolds

under external force (16). It induces a constrained turn of the backbone which is

significantly different to the reduced nature of the cysteines (11). Together with the

backbone of their residues, vicinal disulfides form a strained 8-membered ring. The

peptide bond is constrained to an ω angle of −152 ◦ ± 1, in contrast to the ω angles in

planar peptide bonds usually present in the backbone which occur at 180 ◦ (trans) or

at 0 ◦ (cis) (15). This pronounced difference between the two redox states suggests the

disulfide bond to act as redox switch, and to influence domain unfolding prior to the

proteolysis by ADAMTS-13 (14, 16).

The vicinal cystine represents a rigid pattern that could provide resistance of the

α6-helix against force, thereby influencing its unfolding behavior. Luken et al. observed

that vWF A2 temperature induced unfolding requires significantly higher temperatures

with the vicinal disulfide bond present as opposed to the open state (14). Here, we

aim at understanding how the A2 domain unfolds under mechanical stress when the

disulfide bond is reduced as opposed to the scenario of the closed bond, and thereby

elucidate its function, by using MD simulations. Figure 5.1 shows the structure of the

vWF A2 domain and the nomenclature of the structural elements that will be used

from here onwards.

5.2 Von Willebrand Factor A2 Domain at Equilibrium

How does the presence of the vicinal disulfide bond induce differences in structure and

dynamics of the vWF A2 domain? And do these differences lead to changes in the

unfolding behavior? We started with a comparison of the oxidized and the reduced

state of the domain under equilibrium conditions (when no external force is applied).

Sampling over five independent trajectories for both, the oxidized and reduced state,

each lasting 20 ns, revealed no significant changes in the global topology of the protein as

seen in the number of hydrogen bonds (h-bonds) within the α6-helix and also between

the α6-helix and the remaining part of the protein (Figure 5.1, Table 5.1). The root
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5.2 Von Willebrand Factor A2 Domain at Equilibrium

Figure 5.1: Nomenclature of structural el-
ements of the vWF A2 domain - The von
Willebrand factor A2 domain, derived by Zhang
et al. (15), highlighting the vicinal disulfide bond
(sticks) and the main secondary elements.

mean square deviation (RMSD) of the backbone atoms is marginally larger for the

reduced state as compared to the oxidized state, the radius of gyration is identical

for both redox states, thus not revealing any significant differences (Table 5.1). Thus,

independent from the redox state, the vWF A2 domain is stable at ambient conditions.

Observation oxidized reduced

h-bonds within α6 7.54 ± 0.43 7.64 ± 0.49
h-bonds from α6 to the remaining domain 6.67 ± 0.06 6.24 ± 0.27
RMSD [nm] 0.14 ± 0.01 0.17 ± 0.004
radius of gyration [nm] 1.476 ± 0.001 1.482 ± 0.002

Table 5.1: Comparison of the stability of the oxidized and reduced state of the vWF
A2 domain.

To detect local changes within the domain we carried out principle component

analysis (PCA, see Section 2.1.1). The projection of the trajectories of the equilibrium

simulations on the first eigenvector of the combined oxidized states show that the ma-

jor contributions to the dynamics for both, the oxidized and reduced state, derive from

the α6-helix with the vicinal disulfide, the α3-helix and the α4-less loop. Projecting

the combined trajectories of all oxidized and reduced state simulations on the first two

eigenvectors of the oxidized state shows similar collective motions for all but one of the

oxidized trajectories (Figure 5.2). The remaining four equilibrium simulations show

projections of the trajectories on the first two eigenvectors overlapping with all projec-
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5. VICINAL DISULFIDE BOND UNDER FORCE

Figure 5.2: Comparison of motion
along eigenvectors - Projection of
the trajectories of the oxidized and re-
duced equilibrium simulations on the
first two eigenvectors of the oxidized
trajectory.

Eigenvector %-age of motion

First 30 %
Second 11 %
Third 6 %
Fourth 4 %
Fifth 4 %

Table 5.2: Percentage of the first five eigenvectors of the overall motion.

tions of the reduced state. The outlier shows stronger motion of the three secondary

structure elements mentioned above as compared to the other trajectories. The rele-

vance of this exception to the stability against unfolding remains to be elucidated. The

first two eigenvectors account for more than 40 % of the overall motion of the protein.

The third and all following eigenvectors account for 6 % of the dynamics and less. The

explicit values are listed in Table 5.2.

We conclude that the two redox states are equally stable and show only minor

differences in their dynamics. To test if the two redox states respond differently to

force, we next performed force-induced unfolding.
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5.3 Force probed unfolding of the A2 domain

Figure 5.3: Force profile for unfold-
ing of the oxidized and reduced
A2 domain - The oxidized form rup-
tures at a slightly higher force than the
reduced structure. We here show slid-
ing averages over 200 frames in each
point, for both dCN and the force. The
gray area indicates α6 unfolding.

5.3 Force probed unfolding of the A2 domain

Baldauf et al. have recently shown that the vWF A2 domain unfolds stepwise under

pulling forces till the ADAMTS-13 cleavage site is exposed (16). A force acting on

both the N- and C-terminus of the domain peels off the C-terminus step-wise, starting

from the α6-helix that contains the vicinal disulfide bond we are interested in. We here

performed force-probed MD simulations with the vicinal cysteines forming a disulfide

bond in the first case and being reduced in the second case.

Figure 5.3 shows example force profiles for the oxidized (ox) and reduced (red) state

in dependence on the end-to-end distance, dCN. We find slightly higher rupture forces

for the oxidized α6-helix detaching from the rest of the protein compared to the forces

we observed for detaching the reduced α6-helix.

From five independent pulling simulations, we observe average rupture forces of

326±6 and 301±16 pN for the oxidized and reduced species, respectively. The oxidized

α6-helix is stiffer, as predicted, thus detaches as a rigid body from the rest of the protein.

The reduced structure allows the helix to peel off stepwise. Thus, slightly less force

is needed. Figure 5.4 shows snapshots along the trajectory of the α-helix detaching

from the rest of the protein. Starting at equal end-to-end distances, the oxidized and

the reduced α6 helix induce different unfolding patterns. After 10 ns, when the end-

to-end distance is at 3.42± 0.05 and 3.76± 0.07 nm for the oxidized and reduced state,

respectively, the α6 helix remains fully folded and detaches as a rigid body, only if the

disulfide bond is present. Without the disulfide bond the helix unravels step-wise. After
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20 ns, the helix is entirely destroyed for the reduced case, while parts of it remain folded

in the oxidized case. After 34 ns of pulling, the distance between N and C terminus was

found at 9.29± 0.06 and 9.86± 0.26 with the disulfide open and closed, respectively.

Thus, at equal pulling speed, the reduced species unfolds more easily.

We next asked how the vicinal disulfide bond influences the response to force of the

isolated helix. To address this issue, we performed force-clamp simulations at constant

forces, the results of which will be introduced in the next section.

5.3.1 Elongation of the A2 α6-helix

How does a vicinal disulfide bond change an α-helix’ response to mechanical force?

Berkemeier et al. recently reported on an α-helix linking two myomesin domains, that

at low forces could unfold and refold again (101). The 24 residue long myomesin helix

was stretched, using atomic force microscopy (AFM) and MD simulations. In a recent,

more detailed study, Xiao et al. found a balance of un- and refolding of that same

α-helix under constant forces of up to 15 pN (102). In analogy to these simulations,

we performed force-clamp simulations of the isolated helix at 5, 10 and 20 and 30 pN

and also compared it to the helix’ dynamics at equilibrium conditions. We especially

focussed on differences in presence and absence of the vicinal disulfide bond.

Without an external force, the isolated α6-helix has a strong tendency to coil, if

the vicinal cysteines form a disulfide bond (Fig. 5.5). Apparently, the isolated helix is

disturbed by the presence of the vicinal disulfide bond. However, the α6-helix is stabi-

lized in the presence of the disulfide bond when packed onto the domain, as we did not

observe this phenomenon for any of our equilibrium simulations (compare Section 5.2

and Fig. 5.1).

We analyzed the secondary structure for the helix in the oxidized (ox) and reduced

(red) state under different forces. Even though we observed a coiling of the helix

(Fig. 5.5 a), our analysis shows that the α6-helix remains intact around the central

residues during our 5 ns simulation, for both redox states of the cysteines. The con-

stant force pulling simulations were performed over 300 ns. For 5, 10, and 20 pN, we

performed five independent simulations for each redox state. Here, we show represen-

tative secondary structure plots (103). Stretching at 30 pN has been modeled once for

each redox state. At F = 5 pN large parts of the α-helix remain intact, though the

oxidized state appears to be more stable. At 10 and 20 pN, the helix unfolds to a large
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5.3 Force probed unfolding of the A2 domain

Figure 5.4: Detaching of the α6-helix - a) With the vicinal disulfide bond present,
the α6-helix is pulled away from the protein core like a rigid body before starting to
unravel, b) in absence of the vicinal disulfide bond, the helix detaches stepwise and
unravels while detaching.
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Figure 5.5: α6-helix with and without vicinal disulfide bond - a) With a vici-
nal disulfide bond present, the α6-helix shows a stronger tendency to coil at ambient
conditions as compared to b) with the disulfide bond being open.

Force [pN] dCN (ox) dCN (red)

5 1.98 ± 0.13 2.11 ± 0.19
10 2.36 ± 0.11 3.22 ± 0.33
20 3.56 ± 0.20 3.55 ± 0.22
30 4.24 4.79

Table 5.3: α6-Helix stretching under low forces

extent and partly refolds. At 30 pN, no refolding could be observed, regardless of the

redox state.

As a further measurement of unfolding and refolding, we measured the end-to-end

distances of the α6-helix and counted in how many states it has been sampled. Packed

in the protein, the 13 residue long helix has a length of approximately 2.2 nm. Under

a small mechanical load, we find a similar average length. Table 5.3 shows all average

helix lengths for F = 5, 10, 20 and 30 pN for the oxidized and reduced states. All data

derive from the last 100 ns of the simulations, when the helix has equilibrated under

force (Fig. 5.6). The average helix length, dCN, grows quicker in absence of the disulfide

bond than with the bond closed. One exception is found at 20 pN, where the oxidized

and reduced state reveal identical average values for dCN.

Comparison of the distributions of end-to-end distances at different forces reveals

a more detailed picture (Fig. 5.7). At 5 pN, we observe two peaks for the helix with

the vicinal disulfide bond (ox), while the length of the reduced helix shows a broad

distribution. The larger peak of dCN of the oxidized structure can be found at distances
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Figure 5.6: α-Helicity of vWF A2 α6-helix under force - Using the dssp pro-
gram (103), we analyzed the un- and refolding of the α6-helix. At forces up to 20 pN,
the unfolded helix can partly refold to an α-helix again. At 30 pN no refolding could
be observed. We show representative samples for the oxidized (ox) and reduced (red)
disulfide bond for F = 5, 10 and 20 pN. F = 0 and 30 pN have been sampled once.

81



5. VICINAL DISULFIDE BOND UNDER FORCE

slightly larger than 2 nm, a length matching the helix length within the A2 domain.

Shorter distances derive from coiling that takes place in spite of the small force applied

for both helices. The broader distribution of dCN of the reduced state indicates a larger

flexibility. At 10 pN, the reduced helix again shows a broader distribution than the

oxidized one. Further, it is shifted towards higher end-to-end distances. At F = 20 pN,

two broad peaks appear for the reduced state. Thus, the reduced helix preferably is in

the fully folded or in the unfolded state but not in a semi-stretched state, as found for

the oxidized helix. Though very different in their distribution, the resulting average

length of the two states is equal. At 30 pN, dCN shows a broad distribution for the

oxidized state and a clear peak for the reduced state. Apparently, the reduced state is

stretched more easily than the oxidized state.

We conclude that under small mechanical forces, the helix is unfolded more easily

in absence of the disulfide bond. This observation is in line with the slightly lower

rupture forces found for the unfolding of the reduced A2 domain.

5.4 Simulation Setup

All MD simulations were carried out using the Gromacs 4.5.5 simulation package (48).

We used the X-ray structure of the vWF A2 domain (pdb code 3GXB) and controlled

the redox state of the vicinal bond through the Gromacs program pdb2gmx. For equi-

librium simulations, the protein was set in a box of TIP4P water allowing a distance

of 1.2 nm in each direction. Pulling simulations of the A2 domain were performed

using a box that was 15 nm in x-direction, along which the protein will be pulled

apart. Thereby, we prevent interactions with itself through periodic boundary con-

ditions (PBC). A salt concentration of 0.1 mol/l was chosen to mimic physiological

conditions, resulting in 7659 water molecules, 34 sodium and 24 chloride ions in case of

the equilibrium simulation. For pulling, the protein domain was surrounded by 19850

water molecules, 48 sodium and 38 chloride ions.

The isolated α6-helix was put in a smaller box, 5.3 nm in each direction, thereby

preventing interactions with itself through PBC even if the helix rotates. It was solvated

by 4798 water molecules, 10 sodium and 9 chloride ions. Thus for all simulations, the

system was neutralized.
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Figure 5.7: α6-Helix stretching at different forces - We here show the end-to-end
(dCN) distribution of the α6-helix under constant stretching forces of 5, 10, 20 and
30 pN with the vicinal disulfide bond present (ox) and absent (red).
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5.4.1 Simulation Details

For all simulations presented in this chapter, we used the Gromacs 4.5.5 (48) software

package and the OPLS-AA force field (71). The first step was an energy minimization,

using the steepest decent algorithm. Next, the water was equilibrated at 300 K for 1 ns

while the motion of the heavy atoms of the protein was restrained with a potential of

100 kJ/mol. Then, we released the position restraints and performed five independent

equilibrium simulations for each the oxidized and the reduced state 20 ns in length.

For the pulling simulations, we isolated the equilibrated protein. We chose two

starting structures for each the oxidized and the reduced state, all offering identical

distances between the C and N termini, dCN, to allow starting conditions as similar as

possible for the pulling simulations of both redox state. We rotated the protein such that

each of the termini were in different halfs of the simulation box, and solvated the protein

as detailed in the simulation setup. We again used the steepest descent algorithm for

minimization and equilibrated the water at ambient conditions for 100 ps while using

position restraints on all heavy atoms before starting the pulling simulations.

For all simulations, the temperature was kept at 300 K, using the V-rescale algo-

rithm. Protein and solvent were treated in two independent temperature groups, the

time step for temperature coupling was chosen as 0.4 ps. We used the Parinello-Rahman

barostat (73) to keep a constant pressure of 1 bar, coupling took place every picosecond.

Each simulation was started with a random set of velocities. The Lincs constraint (74)

was used on all bonds containing a hydrogen atom. Electrostatics beyond 1.3 nm were

treated by Particle Mesh Ewald (75) with a grid spacing of 0.12 nm. We used a time step

of 2 fs and periodic boundary conditions. Equilibrium simulations of the A2 domain

lasted 20 ns.

Pulling simulations of the A2 domain were performed at constant velocity of 1.25 m/s,

that corresponds to 1/10 of the speed used by Baldauf et al. (16). We used the N and

C atoms of the corresponding termini pull groups. The spring constant was chosen as

500 kJ/mol. Pulling of both redox states was performed five times from each two dif-

ferent starting structures, both providing a distance of approximately 1.5 nm between

the termini. Force profiles were created from sliding averages over 200 frames of the

trajectories deriving from pulling simulations.

84



5.5 Discussion and Summary

For the isolated helices, we used constant force pulling, at 5, 10, 20 and 30 pN. The

helices were subjected to the first three forces in five independent simulations, each

lasting 300 ns. Force-probe simulations at 30 pN were only performed once for each

oxidized and reduced state.

5.5 Discussion and Summary

We here compared the vWF A2 domain in its native state to an equivalent structure

with the vicinal disulfide close to the C-terminus opened. Our analysis revealed highly

similar stabilities and collective global motions (Figure 2.1.1) under equilibrium condi-

tions. However, mechanical unfolding leads to diverging results depending on the redox

state. Force-probed unfolding of the entire domain shows a slightly higher rupture force

for the oxidized state, and the isolated α6-helix looses its structure at lower force in the

absence of the vicinal disulfide bond. Apparently, the vicinal disulfide bond provides

the helix with stability, a result that is in line with speculations put forward just at

the discovery of the vicinal disulfide bond (15, 16) and also with observations from

thermal unfolding (14). These results suggest that the structure and dynamics of vWF

A2 domain may be adapted to exploit redox changes (vicinal disulfide reduction) to

exert observed biological activity.

The vWF is the largest soluble vertebrate protein known, a feature leading to diffi-

culties in biosynthesis, storage and secretion (104). Biological spezialization overcomes

these challenges. The vWF travels through different storage places - to the endoplas-

matic reticulum, where most disulfide bonds are formed, then further to the trans-Golgi

network and later to nascent Weibel-Palade bodies. pH-conditions are different in all

surroundings, regulating the multimerization of the protein (104). Another feature that

is known to be pH-dependent is the redox potential, including the one of disulfide bonds.

We expect the vicinal disulfide bond to control unfolding. Such a pH-sensitive bond

could function as a redox switch to facilitate unfolding under certain pH-conditions.

85



5. VICINAL DISULFIDE BOND UNDER FORCE

86



6

Discussion and Summary

The goal of this thesis was to explore the impact of mechanical stress on disulfide bonds

in proteins. The major questions addressed in this context were how a cystine’s redox

potential changes when stretched by different forces, how this compares to the impact

of changes in the chemical surrounding as induced by point mutations, and finally,

how a specific disulfide bond pattern such as a vicinal disulfide between two adjacent

cysteines changes the protein’s stability against unfolding.

We used QM / MM hybrid calculations (Ch. 3) on a cystine to address the first

question. We observed a rise in redox potential even before elongation of the disulfide

bond itself sets in. Deformation of the angles and dihedrals enclosing the disulfide bond

were found to be responsible for the increasing ease of sulphur-sulphur bond opening

under force. Mechanical force alters the redox potential to the same amount as a point

mutation in the vicinity of a disulfide bond (compare Figure 3.14). A similar tendency

was also found for the engineered protein titin I27 when stretched and unfolded by

mechanical force: first the softer degrees of freedom such as dihedrals and angles, then

the disulfide bond length respond to the applied force (30).

Having analyzed the impact of an external force, the question arose how internal

strain changes a disulfide’s redox potential. Such strain exists ubiquitously through-

out proteins without external stress being applied. Just like small external stretching

forces deform the cysteine and thus change its redox potential, internal strain has been

observed to deform cystines. Therefore, we also expect it to tune redox potentials. A

simple example for a deformed cystine is the pattern of vicinal disulfide bonds, which

form an eight-membered ring with the protein backbone. These will be discussed in de-
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tail below. Another example of strained disulfide bonds is the one of a sulphur-sulphur

bond crossing antiparallel β-strands in a special conformation, which were classified as

-RHStaple by Schmidt et al. (9). A -RHStaple is defined as a disulfide bond enclosed

by five dihedral angles, of which the outer four have a negative value while the inner

one describing the CSSC torsion has a positive value. Such a pattern can be found

e.g. in the glycoprotein CD4, and has been predicted to exist also in at least one of

the C domains of the von Willebrand factor (vWF) (105, 106). It is typically stiff and

under high strain. Zhou et al. could extract the force within different disulfide bonds in

proteins (106) and the question arose how the redox potentials of these sulphur-sulphur

bonds correlate with their strain. Calculating the redox potentials with our QM / MM

approach failed due to sampling problems. While a force-dependent relative redox po-

tential of cystine can be calculated from the oxidized state alone (the reduced state

has equal energies for all forces), determining the redox potential of disulfide bonds

in different protein surroundings requires the energy of the reduced state. Unlike the

cystine under stress or the strained disulfide bonds, the reduced state is always very

flexible. Our short QM / MM simulations of CD4 or thioredoxin (Trx) in the reduced

state, each lasting 20 to 40 ps showed large fluctuations in energy of the reduced state,

leading to statistically unsignificant results.

Therefore, we developed another approach to calculate redox potentials that allows

more sampling. Free energy calculations (FEC) from a Molecular Mechanics (MM)

description of the system have been shown succesful for estimating redox potentials of

proteins. The redox states in those proteins differed in the charge of a central metal

ion (41) or in the oxidation state of a flavin group (42). In this thesis (Ch. 4), we

present a first approach to open a chemical bond, using FEC. Using a single topology

approach, we manipulated the force field such that a disulfide bond can be transformed

into two thiols. By comparing the oxidized (with disulfide bond) and reduced state

(without disulfide bond) to structures derived from the original topology, we assessed

the quality of our description.

E. coli and S. aureus Trx and some of their mutants served as a first test case of

the redox potential calculations. The protein family of oxidoreductases to which Trx

belongs offers a suitable data set for this proof-of-principle: Many members of the pro-

tein family have been crystallized and their redox potentials have been determined. To

date, our FEC approach correctly predicts three out of four relative redox potentials
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for E. coli Trx. Our structural validation of the oxidized form revealed small incon-

sistencies for the average CαCβS angles and for three of the dihedrals, the correction

of which we expect to significantly improve the results of calculated redox potentials.

These calculations are currently under way.

Point mutations lead to changes in redox potentials, a feature used in biochemical

experiments. The redox active group is a CXXC motif, consisting of the two disulfide

bridged cysteines C, enclosing two other amino acids X. Therefore, Trx and other

members of the oxidoreductase family represent a group of interesing disulfide redox

systems with a disulfide bond under different strains. Moreover, even though many

studies on point mutants of Trx and their resulting redox potentials exist, no systematic

scan has been performed experimentally. We expect our method, once the accuracy

could be improved, to allow such a scan, being both cheap and fast as compared to

experiments. Such a scan would allow predicting redox potentials for mutated Trxs

and other members of the oxidoreductase family. Also, it would provide the means for

a systematic analysis of the impact of point mutants on redox potentials in general.

As a biologically highly relevant example of stretched and strained disulfides, we

finally analyzed the impact of a vicinal disulfide bond on the unfolding behavior of

the vWF A2 domain (Ch. 5). It is strained due to its conformation and additionally

subjected to an external force when shear-induced unfolding takes place. Our investi-

gations show equal stability and dynamics of the domain in equilibrium for both the

oxidized and reduced state. However, when it comes to force-induced unfolding, the

oxidized state requires slightly higher forces than the reduced state. This observation

is in line with thermal unfolding experiments by Luken et al. (14). Furthermore, we

isolated the α-helix that contains the vicinal disulfide bond and stretched it at small

forces of up to 30 pN. On average, we observed longer end-to-end distances of the he-

lix’ termini for the reduced state. The helix unfolded to a larger extent and refolded

muss less as compared to an isolated α-helix from myomesin under equivalent condi-

tions (102). Interestingly, the A2 α6-helix unfolds more easily in absence of the disulfide

bond. We conclude that the vicinal disulfide bond contributes to the domain’s stability

and suggest opening of the sulphur-sulphur bond to regulate its rigidity. pH-dependent

studies mimicking the physiological conditions of the vWF in different storage places

(endoplasmatic reticulum, trans-Golgi or Weibel-Pallade bodies) could help elucidating

this question further.
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Vicinal disulfide bonds have been discussed to play a functional role (99). Our

observations support this hypothesis. A larger protein survey comparing the occurence,

redox potentials and unfolding behavior of proteins with vicinal disulfide bonds are the

objective of future studies.

Overall, this thesis could shed light on the mechanochemical coupling in biological

systems for the case of disulfide bonds. Our approach can be straightforwardly applied

to incidences of strained disulfide bonds and to other biochemical reactions potentially

regulated by force such as proteolysis.
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Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbst

verfasst und mich dabei keiner anderen als der von mir ausdrücklich be-

zeichneten Quellen und Hilfen bedient habe.
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