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Transporttheorie für skalare Quarks und Gluonen
Zusammenfassung

In dieser Arbeit werden die sogenannten Transport- und Constraintgleichungen für
skalare Quarks und Gluonen aufgestellt. Es wird gezeigt, dass die Transportglei-
chung ohne Berücksichtigung der Constraintgleichung in der Quasiteilchennäherung
zu einer Boltzmann-artigen Gleichung führt. Die Analyse aller auftretenden Selbst-
energiegraphen macht deutlich, welche Rolle sie spielen: Einige Graphen führen
zu den erwarteten Wirkungsquerschnitten, während andere Graphen Feynman-
Diagramme von Streuprozessen niedrigerer Ordnung renormieren.
Bei der Berechnung der Transportgleichung treten in einzelnen Selbstenergiegraphen
sogenannte Pinch-Singularitäten auf. Durch eine explizite Rechnung kann gezeigt
werden, dass sie sich im Gleichgewicht wegheben. Für Systeme im Nicht-
Gleichgewicht werden verschiedene Ansätze untersucht, die allerdings nicht zur
Aufhebung aller Pinch-Singularitäten führen.
Bei Berücksichtigung der Constraintgleichung erhalten die Propagatoren eine
endliche Breite, wodurch die Pinch-Singularitäten nicht mehr auftreten. Dafür wird
die Berechnung der Transportgleichung komplizierter, und sie kann nicht mehr in
eine Boltzmann-artige Form gebracht werden.

Transport theory for scalar quarks and gluons
Abstract

In this work, we have detailed the calculations of the transport and constraint equa-
tions for a theory of scalar quarks and gluons with self-interactions. Special care has
been taken in particular in understanding how the transport equation, taken on its
own, leads to a Boltzmann-like equation when considered in the quasiparticle ap-
proximation. Through the analysis of all self-energy graphs that occur it is evident
which role they play: certain graphs give rise to the expected cross sections, while
others serve to renormalize diagrams of lower order scattering processes.
In the calculation of the transport equation, so-called pinch singularities arise in
individual self-energy diagrams. We demonstrate explicitly how they cancel in equi-
librium. For the case of non-equilibrium, several ansätze are investigated, but none
of them leads to the cancellation of all pinch singularities.
Finally, the constraint equation is considered. This leads to the introduction of
a finite width into the propagators. The main advantage of this is that no pinch
singularities can possibly occur. The disadvantage, however, is that the calculations
become very cumbersome and it is no longer straightforward to cast the transport
equation into a form which can be recognized as being Boltzmann-like.
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Chapter 1

Introduction

In searching for the fundamental particles of matter, many new hadrons were found

in accelerator experiments in the 1950/60’s. In order to organize this ‘hadron-zoo’,

quarks were postulated as fundamental particles. Due to the Pauli-principle for

quarks in hadrons, it was necessary to postulate a new quantum number called

color which is the charge of the strong interaction. The number of colors (three)

is confirmed by several experiments. Under normal conditions only color neutral

objects (hadrons) are observed, i.e. three quark states (baryons) or quark-antiquark

pairs (mesons). Nevertheless, one believes that this confinement falls away for matter

under extreme conditions.

In the hadronic phase, confinement plays a dominant role and the chiral sym-

metry is spontaneously broken. For sufficiently high temperatures and/or baryonic

density a phase transition is believed to take place. The new phase is the so-called

quark-gluon plasma (QGP); quarks and gluons are free particles that are deconfined

and the chiral symmetry is restored. Note that it is often assumed that both phase

transitions take place simultaneously, i.e. at the same temperature.

In a naive view, this phase transition is frequently given heuristically as shown

in Fig. 1.1. There it is assumed that an equilibrium description is valid. It is

believed that the early universe passed approximately 10µs after the big bang -

when it was cool enough - through this phase transition. Obviously this was a

unique ‘experiment’ and cannot be repeated. But in relativistic heavy ion collisions

(RHIC) this phase transition should take place, too, since the conditions for the

phase transition, extremely high energy densities, can be reached.

Thus let us review the scenario for an ultra-relativistic heavy ion collision which is

shown schematically in Fig. 1.2. Its evolution in space-time is presented in Fig. 1.3.

For high beam-energies (ECM > 50GeV/nucleon), two Lorentz contracted nuclei

pass through each other. Then, shortly after the collision, an energy density of

3
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Figure 1.1: Phase diagram for hadronic matter.

one or two orders of magnitude greater than that of ground state nuclear matter

(0.15GeV/fm3) is expected to be attained. At this stage, one assumes that the

quarks and gluons are no longer confined and form a dense plasma. The excited

partons interact with each other, and if the interactions occur frequently enough, the

system reaches a local thermodynamic equilibrium, the quark-gluon plasma. Finally

the partons hadronize, i.e. hadrons are formed and recede from the collision region.

Note that due to the fact that the collision takes place over an extremely small time

scale, it is not clear that chemical and thermodynamical equilibrium are reached:

this underscores the cartoon like nature of Fig. 1.1.

Thus, in this thesis we address the question as to how the partons evolve after

the collision to a point in which thermodynamic equilibrium is possibly reached.

This evolution is described by the evolution equations for the distribution function

fa(x, p) in phase space where fa(x, p)d
3xd3p gives the probability of finding a parton

of type a in d3x around ~x and with a momentum in d3p around ~p. Now ordinary

zero temperature field theory is insufficient for a description of the evolution of the

system. One cannot assume that the system passes through a series of equilibrium

states, and therefore one needs a description in terms of non-equilibrium field theory.

Within this transport theory, the two evolution equations for the distribution func-

tion fa(x, p), the so-called transport and constraint equations can be constructed.

The natural underlying Lagrangian for the description of heavy ion collisions is

that of quantum chromodynamics (QCD). Studying this Lagrangian in the context
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Figure 1.2: Schematic drawing of an heavy ion collision.

of non-equilibrium field theory introduces several difficulties in addition to simply

the complexities that non-equilibrium theory gives rise to: these are gauge invari-

ance, renormalization and the non-abelian like nature of the interaction. Clearly

to develop a description which can simultaneously account for all these facets, an

exact description of the transport equations with all of these facets is required. To

the present date, however, each of these facets produces problems of their own. In

addition, transport theory per se has only been worked out for few simple inter-

acting systems often assuming contact and abelian interactions and also with the

restriction of understanding only the lowest order processes. Consequently the ap-

proaches in the literature address one or the other problem in some form. We list

some approaches that attempt to develop the relevant equations for QCD:

• Many authors rely on an intuitive extrapolation of the semiclassical Boltzmann

equation in their applications (see for example, Geiger and Müller [1, 2] who

examine heavy ion collisions in extreme conditions). Here an educated guess

at an extended Boltzmann equation is made in order to develop a numerical

simulation algorithm. An assumption about which processes should be con-

sidered in the collision integral is made on a purely heuristic basis. In such

an approach, often the transport equation alone is examined; the constraint

equation is simply neglected. In such studies a first attempt at putting this
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Figure 1.3: Space-time diagram of the evolution of an heavy ion collision.

application on a firm theoretical basis was subsequently made by [3].

• Some authors have centered their investigations on a full quantum treatment of

the non-equilibrium Green function equations (see for example [4, 5, 6]). This

approach has an aesthetic appeal, but in practice, there is little possibility of

its application, as the complexity of solving many (16 or more) coupled integro-

differential equations can only be performed under severe physical restrictions,

namely that of no collisions.

• Progress in understanding collision theory has been made with the recent de-

velopments in real time Green function theory to calculate properties of sys-

tems in equilibrium. A theoretical methodology for handling non-equilibrium

Green functions was developed by Schwinger and Keldysh [7, 8]. Later, in

the 1980’s, the development of thermal field theory was initiated by Umezawa

[9]. The resulting matrix of real time Green functions has revealed a strik-

ing resemblance to the matrix of Green functions that is obtained in the

Schwinger-Keldysh formalism. One can in fact quantifiably demonstrate that

Schwinger-Keldysh and real time thermal field theory yield the same results

in the limit that one considers equilibrium systems. Both formalisms are un-

wieldy, especially in contrast to the elegant formulation of equilibrium field

theory by Matsubara, that was developed in the 60’s, and which simply makes
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extensive use of function theory. The historically late development of real

time Green function theory is due to the fact that several difficulties in this

approach are immediately evident: Products of retarded and advanced Green

functions occur, so that integration along the real axis becomes problematic

as the infinitesimal element ε → 0: the contour is pinched and the function

is singular. So called pinch singularities also manifest themselves as products

of delta functions when working in a causal / acausal framework. The fact

now that two completely different formulations of equilibrium field theory ex-

ist has enabled one to understand these apparent difficulties in the real time

approach, and this in turn enables one by comparison, to investigate similar

situations in the non-equilibrium theory.

Our view in this work is directly to focus on the issue of constructing an exact

transport theory in which non-abelian interactions occur and which pushes transport

theory into the two-loop level and beyond in constructing an exact solution. In order

to do this, the issue of gauge invariance is an unnecessary added degree of complexity,

and we therefore do not investigate a gauge theory like QCD per se, but rather a

simpler model of QCD which has the properties that it is scalar, and secondly,

includes self-interactions in such a fashion that it describes pomeron behavior in

elastic quark-quark scattering. The last feature of pomeron behavior is essential

in some simulation models [10] that give good descriptions of experimental data

for heavy ion collisions at energies attainable today. For the colliders RHIC and

especially for LHC, it is unclear whether these pomeron based models will be able

to account for the physics, necessitating a deeper understanding of the evolution of

the constituents at a parton level.

Within our model of scalar quarks and gluons, we have been successful in building

an appropriate transport theory and constructing a collision term exactly for two

loop self-energies. This work goes beyond all previous analysis in that the complexity

of the interaction introduces a plethora of terms (previously unknown), and the

interpretation of which has been clarified. The results are generalized beyond the

two loop level and a Boltzmann-like equation is obtained. Multiparticle production

and annihilation processes associated with this interaction are seen to occur. Since

the quasiparticle approximation is used, the issue of pinch singularities arises, so

that it is necessary to check whether and how singular behavior is removed from the

transport equations. For consistency, the constraint equation is also examined.

This thesis is structured as follows. In Chapter 2, we introduce our model for

scalar quarks and gluons. Furthermore, we show how the pomeron like behavior

emerges from elastic quark-quark scattering in the Regge limit. Since the study



8 CHAPTER 1. INTRODUCTION

of transport theory is similar to equilibrium real time field theory, it is useful to

gain knowledge from comparison. Therefore Chapter 3 is devoted to the revision

of finite-temperature field theory and the transport and constraint equations are

constructed in transport theory. Then the collision term of the transport equation

is evaluated for the mean field self-energies in Chapter 4 and for the two loop self-

energies in Chapter 5. In Chapter 5, we will in addition address the question as

to which propagators should be used for the evaluation of scattering amplitudes

- non-equilibrium or T = 0 propagators. In Chapter 6, the contributions beyond

two loop self-energies to the collision term are considered. We devote Chapter

7 to the cancellation of pinch singularities. First, we demonstrate explicitly their

cancellation in equilibrium field theory for several cases. Then we tackle the question

whether and how pinch singularities are canceled in non-equilibrium. In Chapter

8, the second evolution equation, the constraint equation, is taken into account.

Finally we conclude in Chapter 9. Wigner transforms are listed in Appendix A for

completeness. Appendix B shows explicit calculations of color factors for two loop

self-energies.



Chapter 2

Model of scalar quarks and gluons

In this chapter, we introduce and discuss the scalar partonic model, and give the

equations of motion for quark and gluon fields. We briefly review high energy

scattering within this model.

2.1 Scalar partonic model

We study a partonic model of QCD inspired by Polkinghorne [11] and used by

Forshaw and Ross [12] that contains scalar partons. Quarks and antiquarks are

described by complex scalar fields φ, and gluons as the scalar field χ coupled through

the Lagrangian

L = ∂µφ†i,l∂µφi,l +
1

2
∂µχa,r∂µχ

a,r − m2

2
χa,rχ

a,r

−gmφ†i,l(T a)ji (T
r)ml φj,mχa,r − gm

3!
fabcfrstχ

a,rχb,sχc,t. (2.1)

The quark fields are regarded as massless, as one generally assumes for high

energy processes, while the gluons are usually assigned a mass m a priori in order to

avoid infra-red divergences. There is an interaction between quarks and gluons as

well as a cubic self-interaction between gluons. Since in QCD the quartic interaction

between gluons leads in elastic qq scattering to terms which are sub-leading in ln s,

such a quartic interaction among gluons is not included within this model.

One notes that both the quark and gluon fields carry two labels. Both of these

refer to color groups. The fact that a direct product of two color groups is necessary

can be seen on examining the three gluon vertex term. This term must be symmetric

under the exchange of two gluons since they are bosons. In addition, one expects

that the interaction vertex should be proportional to the (antisymmetric) structure

9
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constants of the color group. A single color group cannot meet these requirements,

and the simplest combination which can is a product of two SU(Nc) groups. Thus

the gluon field carries two color indices (a, r = 1...(N2
c − 1)). Since the quark field

transforms in the fundamental representation of both of these SU(Nc) groups, it

must carry two color indices as well (i, l = 1...Nc). The matrices T a and T r are the

generators and fabc and frst are the structure constants for the two SU(Nc) groups

respectively. Thus they satisfy

[T a, T b] = ifabcT
c, [T r, T s] = ifrstT

t. (2.2)

Note in Eq.(2.1) that the flavor index of the quark fields is suppressed.

The equations of motion for the fields can be derived from the Euler-Lagrange

equations. They are

2φ(†)i,l = −gm(T a)ij(T
r)lmφ

(†)j,mχa,r (2.3)

for the (anti-)quarks and

(2+m2)χa,r = −gm[φ†i,l(T a)ij(T
r)ml φj,m + fabcf rstχb,sχc,t] (2.4)

for the gluons.

2.2 Elastic qq scattering at high energies

The main advantage of this simple partonic model is that a calculation of the elas-

tic quark-quark scattering amplitude at high energies at T = 0 reflects pomeron

behavior. In this section, we simply quote these results, and for details, we refer

the reader to [12]. Note that these calculations are performed in equilibrium and at

T = 0 in contrast to the rest of this thesis.

Quark-quark scattering is calculated via the exchange of a color singlet. It is

assumed that the two quarks emerge from the scattering with the same color with

which they entered and that they have different flavors. Therefore one has to con-

sider only diagrams with at least two exchanged gluons, and one can neglect dia-

grams with quarks that are exchanged in the t-channel. The incoming quarks have

momenta p1 and p2, respectively. To lowest order, this process is shown in Fig. 2.1.

Denoting the transferred momentum as q = p1− p2, the Mandelstam variables read

as s = (p1 + p2)
2 and t = q2. In the case of Fig. 2.1, it is easy to show that Fig. 2.1

(b) follows from Fig. 2.1 (a) only by a kinematical transformation, so that it is only
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p2 p′2

p1 p′1

(a)

p2 p′2

p1 p′1

(b)

Figure 2.1: Leading order contribution to Pomeron exchange for elastic quark-quark

scattering.

necessary to calculate graphs of type (a). The imaginary part of the amplitude can

be identified according to the Cutkosky rules [13] to be

=A2.1(a) =
1

2

∫
d(P.S.2)A(g)

0 (k)A(g)†
0 (k − g), (2.5)

where A(g)
0 is the tree amplitude for single gluon exchange and reads as

A(g)
0 (k) = −g2m2 1

(k2 −m2)
(2.6)

up to a color factor.
∫
d(P.S.2) refers to the phase space of the two lines which are

cut, i.e.

∫
d(P.S.2) =

∫
d4l

(2π)3
d4l′

(2π)3
δ(l2) δ(l′2) (2π)4 δ4(p1 + p2 − l − l′). (2.7)

One integration can be immediately performed, leaving one further integral over the

momentum k of the exchanged gluon as∫
d(P.S.2) =

1

(2π)2

∫
d4k δ((p1 − k)2) δ((p2 + k)2). (2.8)

The further calculations are now performed in the center-of-mass frame in which

the incoming quarks are considered to be along the z-axis, i.e.

p1/2 =

(√
s

2
,±
√
s

2
, 0

)
. (2.9)

Then it is useful to parametrize the integrated momenta k in terms of Sudakov

parameters ρ and λ:

k = ρp1 + λp2 + k⊥ =

(
(ρ+ λ)

√
s

2
, (ρ− λ)

√
s

2
,k

)
, (2.10)
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where k⊥ is the momentum transverse to p1 and p2 and this two-dimensional vector

is represented by the boldface k. Then the phase space becomes∫
d(P.S.2) =

s

8π2

∫
dρ dλ d2k δ(−s(1− ρ)λ− k2) δ(s(1 + λ)ρ− k2) (2.11)

where s = 2p1p2 was used. In the Regge limit s� |t| the momentum transferred q

is dominated by its transverse component, i.e.

t = q2 ≈ −q2. (2.12)

Similarly one finds

k2 ≈ −k2 (2.13)

and

(k − q)2 ≈ −(k− q)2. (2.14)

Performing the integration over ρ and λ, one finds for the imaginary part of the

amplitude

=A2.1(a) =
(N2

c − 1)2

16N4
c

g4m4

16π2s

∫
d2k

1

k2 +m2

1

(k− q)2 +m2
(2.15)

where the color factor has been included.

One expects now to obtain leading lns contributions for the scattering amplitude

because the calculations are performed in the Regge limit. s/t is negative and

therefore the relation

ln
(
s

t

)
= ln

(
s

|t|
)
− iπ (2.16)

holds. Since A2.1(a) has an imaginary part, its real part must have a logarithm

with equal coefficient but opposite sign. The contribution of Fig. 2.1 (a) is thus

proportional to
1

s

(
ln

(
s

|t|
)
− iπ

)
. (2.17)

In order to obtain the contribution from Fig. 2.1 (b) the Mandelstam variable s is

replaced by u. Since u/t is positive, this diagram has no imaginary part. Therefore

its contribution reads
1

u
ln
(
u

t

)
. (2.18)

In the Regge limit u ≈ −s. Therefore the logarithms in A2.1 = A2.1(a) + A2.1(b)

cancel and we are left with the imaginary part of A2.1(a) given in Eq.(2.15).

The higher order calculations are tedious and we therefore state only the results.
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p2 p′2

p1 p′1

Figure 2.2: One-rung ladder diagram.

The next-to-leading order contribution is given by the so-called one-rung ladder

diagram shown in Fig. 2.2. Its contribution is of order g2 ln s relative to the leading

contribution calculated above. The other three gluon diagrams like vertex correction

diagrams or a digram with three exchanged gluons are subleading and therefore

neglected.

This result can be generalized. Thus the order (g2 ln s)n correction to the leading

order contribution is given by the n-rung uncrossed ladder diagram, n = 1...∞, as

shown in Fig. 2.3. The dashed line indicates the cut taken for the direct application

p2 p′2

p1 p′1

ki+1

ki

ki−1

Figure 2.3: n-rung ladder diagram with cut line (dashed line).

of the Cutkosky rules. Applying these rules and keeping only the leading ln s con-

tributions in evaluating the infinite sum of uncrossed ladder diagrams, one obtains
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the following result for the imaginary part of the scattering amplitude

=A(s, t) = (N2
c − 1)2

16N4
c

g4m4

16π2s

∫
d2k

1

(k2 +m2)((k− q)2 +m2)

(
s

|t|
)1+αP (t)

, (2.19)

with the trajectory

αP (t) ≈ −1 + g2N2
c

16π2

(
1 +

t

6m2

)
. (2.20)

In the Regge limit, the real part of A(s, t) vanishes. Therefore A(s, t) is purely

imaginary and given by Eq.(2.19).

We point out that the selection of ladder diagrams for the evaluation of the

scattering amplitude, as indicated in Fig. 2.3 is highly suggestive, particularly with

the cut drawn in. One might wish to conclude that (a) gluon production is dominant,

and (b) that only ladder type graphs need be considered in constructing gluon

emission / absorptive processes. As will be seen in transport theory, however, one

finds that (a) is true, having its basis in the 1/Nc expansion, but (b) cannot be

justified, as it depends on the special kinematical assumptions that are applicable

to the quark-quark scattering amplitude, but which do not occur in the self-energy

evaluation.



Chapter 3

Field theory in and out of

equilibrium

Since processes taking place in heavy ion collisions are most likely to occur out

of equilibrium, this chapter is devoted to non-equilibrium field theory, namely to

transport theory. As an introduction to and for comparison with non-equilibrium

field theory, the first section describes finite-temperature field theory in equilibrium.

3.1 Finite-temperature field theory

In this section, we briefly review the basic ideas of quantum field theory at non-zero

temperature in equilibrium (for more details see e.g. [14, 15, 16, 17, 18, 19, 20]).

There one can distinguish between two different approaches, the imaginary and the

real time formalism (for a comparison of both see e.g. [21]). We will only mention

the first one briefly and consider the second one in more detail. The imaginary

time formalism was introduced by Matsubara. It provides an elegant and simple

way of performing equilibrium calculations via integration in the complex plane.

Due to the formal similarities with zero temperature real time field theory, it is

simple to identify the correct graphs. This means of calculation is widespread in the

theoretical community due to its simplicity. By contrast, development of the real

time formalism for finite temperature has been much slower. The reasons for this

lie in the technical complexity and difficulties associated with real time formalism

that have only recently been resolved or which are currently being addressed. Two

famous candidates of the real time formalism are thermo field dynamics and the

closed time path method. Especially the latter is important for us since it leads

universally to all formalisms and in addition can be generalized to non-equilibrium

15
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cases.

We start now with quantum mechanics: the probability amplitude F (q′, t′; q, t)
of finding a particle at position q′ at time t′ when it was located at position q at

time t is given by

F (q′, t′; q, t) = 〈q′
∣∣∣e−iH(t′−t)

∣∣∣ q〉. (3.1)

Letting t→ −iτ , we find for the analytical continuation of F to imaginary time

F (q′,−iτ ′; q,−iτ) = 〈q′
∣∣∣e−H(τ ′−τ)

∣∣∣ q〉. (3.2)

In a standard fashion the path integral representation is derived for F as

F (q′,−iτ ′; q,−iτ) =
∫
Dq(τ ′′) exp

{
−
∫ τ ′

τ
dτ ′′

[
1

2
mq̇2(τ ′′) + V (q(τ ′′))

]}
(3.3)

with q(τ) = q and q(τ ′) = q′. Now we make the connection to quantum statistical

mechanics: the partition function is defined as

Z(β) = Tre−βH =
∫
dq 〈q

∣∣∣e−βH
∣∣∣ q〉, (3.4)

where β = 1/T is the inverse temperature. With the help of Eqs.(3.2) and (3.3), we

can express the partition function in terms of a path integral as

Z(β) =
∫
dq F (q,−iβ; q, 0)

=
∫
Dq(τ) exp

{
−
∫ β

0
dτ
[
1

2
mq̇2(τ) + V (q(τ))

]}
(3.5)

with the boundary condition q(β) = q(0), i.e. over paths with period β in imaginary

time. Now we turn to quantum field theory for a scalar field. The generating

functional Z[β; J ], with Z(β) = Z[β; J = 0], is then given as

Z[β; J ] =
∫
Dφ exp

{
i
∫
C
dt [L(φ) + J(t)φ(t)]

}
, (3.6)

where we have assumed that the Lagrangian does not contain derivative interactions.

For simplicity, the spatial coordinates are suppressed in this section. The fields are

subject to the (anti-)periodic boundary condition

φ(t− iβ) = η eβµ φ(t), (3.7)

with the chemical potential µ and η = ± for bosons and fermions respectively. The

contour C must end at a point tf differentiating from the starting point ti by −iβ:

tf = ti − iβ. (3.8)
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In addition to this requirement, the contour C must have a monotonically decreasing

imaginary part. The simplest choice for the contour would be a straight line along

the imaginary axis from ti = 0 to tf = −iβ. This so-called Matsubara contour leads

to the imaginary-time formalism (ITF) which we will not consider here any further.

Other choices for the contour include the real axis and lead therefore to the real-time

formalism. The standard contour is shown in Fig. 3.1. It goes from ti to −ti on the

<t
=t

0C1ti −ti

C3

−ti − iσC2

ti − iσ

C4

ti − iβ

Figure 3.1: Real time contour

real axis, then drops vertically down to −ti − iσ, runs parallel to the real axis back

to ti− iσ and finally down to ti− iβ. Here the parameter σ takes a value between 0

and β. One assumes that in the limit ti → −∞ the vertical segments of the contour

C decouple in the path integral and do not contribute to Green functions with time

arguments on the horizontal segments.

Writing the fields on the upper and the lower horizontal segments as functions of

real times, φ−(t) = φ(t) and φ+(t) = φ(t−iσ), respectively, the generating functional
for the Green functions reads as

Z[J−, J+] = Z[0, 0]〈TC exp
{
i
∫ ∞

−∞
dt φsJs

}
〉, (3.9)

where the sign index s runs over {−,+} and J−(t) is defined to be the source on

the upper segment and J+(t) = −J(t − iσ) the source on the lower one. The

minus sign in the latter absorbs the minus sign from the opposite direction of the

lower contour. Note, that in our notation the ‘-’ sign is associated with the upper

branch as in [23] and in contrast to [16]. In the 80’s, the ‘-’ fields were termed

physical fields according to the idea that physical observables would be expressible

in terms of Green functions with only ‘-’ fields on the external legs. The ‘+’ fields

were consistently called ghost fields. This is not a valid supposition. As a simple

example, the mass term ΠR is made up of both Π−− and Π−+, see Eq.(3.45). There

are also other interesting physical quantities with ‘+’ fields on their external legs,

see e.g. the collision term of Eq.(3.58).
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Differentiation with respect to J−(t) and J+(t) then gives the real-time Green

functions

Gs1...sN
σ (t1, ...tN) :=

δiJs1(t1)...δiJsN (tN ) Z[J−, J+]

Z[J−, J+]

∣∣∣∣∣
J−=0,J+=0

. (3.10)

The contour ordering TC implies that this real-time Green function is the thermal

average of a product of field operators where the ordering is such that the ‘-’ fields are

time-ordered and put on the right hand side and the ‘+’ fields are anti-time-ordered

and put on the left hand side. Performing a Fourier transform

Gs1...sN
σ (ω1, ..., ωN) :=

∫
dt1...dtN exp

{
i
∑
i

ωi ti

}
Gσ

s1...sN
(t1, ..., tN ) (3.11)

yields the relation between Green functions with different values of σ,

Gs1...sN
σ (ω1, ..., ωN) = exp


−

∑
i|si=+

σ ωi


 Gs1...sN

σ=0 (ω1, ..., ωN). (3.12)

Note that the value σ = 0 corresponds to a closed time path (CTP) or Schwinger-

Keldysh formalism, see Fig. 3.2, while σ = β/2 corresponds to the choice for Thermo

Field Dynamics.

t

−

+

Figure 3.2: Closed time path

There are two important relations which connect the Green functions for a given

σ. The first one is the so-called largest-time relation. For its derivation we set σ = 0.

Let the time tj be the largest one, i.e. tj > ti, i = 1, ..., j − 1, j + 1, ...N . Then we

find

Gs1...−...sN
σ=0 (t1, ..., tj, ...tN )−Gs1...+...sN

σ=0 (t1, ..., tj , ...tN)

= sgnP
{
〈T̃ (φ+...φ+) [φ(tj)T (φ−...φ−)]〉 − 〈

[
T̃ (φ+...φ+)φ(tj)

]
T (φ−...φ−)〉

}
= 0. (3.13)

Here sgnP gives the sign associated with the permutation that is needed to put the

fields in the right order. So far, the si for i 6= j were arbitrary. Therefore we can
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sum over all possibilities for the si’s with appropriate sign factors to get

∑
s1,...,sN

(−1)#(i|si=+)Gs1...sN
σ=0 (t1, ..., tN) = 0, (3.14)

where #(i|si = +) denotes the number of indices i for which si = +. This is the

largest-time equation although the special role of the largest time tj is not manifest

any more. Fourier transformation and Eq.(3.12) gives a similar relation for arbitrary

σ ∑
s1,...,sN

(−1)#(i|si=+) exp



∑

i|si=+

σ ωi


 Gs1...sN

σ (ω1, ..., ωN) = 0. (3.15)

It is important to notice that the largest time equation holds true in non-equilibrium

situations as well.

Now, the second important relation is the Kubo-Martin-Schwinger (KMS) rela-

tion. It is only valid in equilibrium. For its derivation, we consider an alternative

contour C̃ which can be obtained form the original one C of Fig. 3.1 with σ = 0 by

flipping it about the =t-axis. This contour gives rise to different Green functions

which satisfy a smallest time equation. These Green functions can be related to the

original ones. Fourier transformation and the use of Eq.(3.12) then yields the KMS

relation

∑
s1,...,sN

(−1)#(i|si=+)
∏

i|si=+

ηi exp



∑

i|si=+

−xi + σωi


 Gs1...sN

σ (ω1, ..., ωN) = 0, (3.16)

where xi = β(ωi − µi).

Finally, we state a complex conjugation relation for real-time Green functions

[Gs1...sN
σ (ω1, ..., ωN)]

∗ = Gs̄1...s̄N
σ (ω1, ..., ωN)

∏
si=+

ηi e
xi−2σωi , (3.17)

with the conjugate index s̄i = +,− if si = −,+.

Since we are ultimately interested in propagators, we consider now the case

N = 2. The largest-time equation (3.14) then reads

D−−
σ=0 +D++

σ=0 = D−+
σ=0 +D+−

σ=0. (3.18)

Taking into account momentum conservation (ω1+ω2 = 0) and charge conservation

(µ1 + µ2 = 0), the KMS relation (3.16) gives

D−−
σ=0 +D++

σ=0 = η ex1 D−+
σ=0 + η e−x1 D+−

σ=0. (3.19)

Subtracting these two equations yields the usual form of the KMS relation for 2-point

functions,

D−+
σ=0 = η e−x1 D+−

σ=0. (3.20)
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From Eq.(3.10) one obtains the real-time propagators as

iD−−
σ (t− t′) = 〈Tφ(t)φ(t′)〉

iD++
σ (t− t′) = 〈T̃φ(t− iσ)φ(t′ − iσ)〉

iD−+
σ (t− t′) = η〈φ(t′ − iσ)φ(t)〉

iD+−
σ (t− t′) = 〈φ(t− iσ)φ(t′)〉. (3.21)

These four propagators can be written in a compact matrix form as

Dσ =

(
D−−

σ D−+
σ

D+−
σ D++

σ

)
. (3.22)

Then performing a Fourier transform yields

Dσ(ω) =

(
DF (ω) 0

0 −D∗
F (ω)

)

+ [DF (ω)−D∗
F (ω)]

(
ηn(|ω|) eσω[Θ(−ω) + ηn(|ω|)]

e−σω[Θ(ω) + ηn(|ω|)] ηn(|ω|)
)
, (3.23)

where iDF is the zero-temperature Feynman propagator and n(ω) is the distribution

function defined by

n(ω) =
1

eβ(ω−µ) − η
. (3.24)

One popular choice is σ = β/2; then the matrix of propagators reads as

Dσ=β/2(ω) =

(
DF (ω) 0

0 −D∗
F (ω)

)
+ [DF (ω)−D∗

F (ω)]

(
ηn(|ω|) e

βµ
2

√
n(|ω|)

√
1 + ηn(|ω|)[ηΘ(ω) + Θ(−ω)]

e
−βµ
2

√
n(|ω|)

√
1 + ηn(|ω|)[Θ(ω) + ηΘ(−ω)] ηn(|ω|)

)
,

(3.25)

where the identity

eβ(ω−µ)/2 = Θ(ω)

√√√√1 + ηn(|ω|)
n(|ω|) + Θ(−ω)

√√√√ ηn(|ω|)
1 + n(|ω|) (3.26)

was used. For later use, we give the explicit form of the propagators for bosons

(η = +1) with vanishing chemical potential (µ = 0). With the Feynman propagator

for a scalar particle,

iDF (ω) =
i

ω2 −E2 + iε
, (3.27)
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and the relation

±i
ω2 − E2 ± iε

= P
±i

ω2 − E2
+ πδ(ω2 − E2), (3.28)

where P denotes the principal value, we find

iDF (ω)− iD∗
F (ω) = 2πδ(ω2 − E2) =

π

E
[δ(ω − E) + δ(ω + E)] . (3.29)

This gives for σ = β/2

iDσ=β/2(ω) =

(
i

ω2−E2+iε
0

0 −i
ω2−E2−iε

)
+

2πδ(ω2−E2)

eβ|ω| − 1

(
1 eβ|ω|/2

eβ|ω|/2 1

)
. (3.30)

Another popular choice is σ = 0. For scalar particles with vanishing chemical

potential the matrix of propagators reads as

iDσ=0(ω) =

( i
ω2−E2+iε

0

0 −i
ω2−E2−iε

)

+

(
2πδ(ω2−E2)n(|ω|) π

E
[δ(E − ω)n(|ω|) + δ(E + ω)(1 + n(|ω|))]

π
E
[δ(E − ω)n(|ω|) + δ(E + ω)(1 + n(|ω|))] 2πδ(p2−m2)n(|ω|)

)
.

(3.31)

The four propagators are not independent, since they fulfill Eqs.(3.18) and (3.20).

Therefore it is possible to transform the matrix such that at least one component is

vanishing. For a review of possible transformations see e.g. Ref. [22].

We now return to the general expression of Dσ(ω) in Eq.(3.23). In the vacuum

limit µ→ 0 and β →∞, the usual zero-temperature field theory should be regained.

In this limit, the distribution function n(|ω|) vanishes and we are left with

iDσ(ω)=

(
iDF (ω) 0

0 iD∗
F (ω)

)
+ [DF (ω)−D∗

F (ω)]

(
0 eσωΘ(−ω)

e−σωΘ(ω) 0

)
.(3.32)

In addition to this we perform the limit σ →∞ which is e.g. for the choice σ = β/2

automatically fulfilled. This gives

iD∞(ω) =

(
iDF (ω) 0

0 iD∗
F (ω)

)
, (3.33)

i.e. one has two identical decoupled copies of zero-temperature field theory as ex-

pected.

The real-time Feynman rules are much the same as in zero-temperature field

theory. The only difference is that a sign factor s = −,+ is assigned to each
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vertex. For Green functions and self-energies, the external vertices are fixed, and

all internal vertices are summed over (which multiplies the number of graphs, see

e.g. Fig. 5.2). A vertex with s = − corresponds to a factor −igm while a vertex

with s = + corresponds to a factor +igm. (In order to introduce a dimensionless

coupling constant g, a mass m is factored out.) A line connecting a vertex s with a

vertex s′ corresponds to a propagator Dss′
σ given in Eq.(3.21).

An example of a scattering amplitude is shown in Fig. 5.5. The external vertices

are fixed to be s = − while the internal vertices can be either ‘-’ or ‘+’ and one has

to draw all possibilities. The complex conjugate of such an amplitude (in position

space) is obtained by interchanging all ‘-’ vertices with ‘+’ vertices and vice versa

in the original amplitude.

The CTP formalism corresponding to the choice σ = 0 is now easily generalized

for non-equilibrium processes. This is the subject of the next section.

3.2 Transport theory

In this section, we briefly introduce the Schwinger-Keldysh formalism and the quasi-

particle approximation. For the purpose of establishing our notation, we give the

basic definitions and refer the reader to standard texts [23, 24, 25]. Then we derive

the so-called transport and constraint equations following the lines of [26, 27, 28, 4].

While the last section was quite general, we refer in this section only to the cases

that are relevant for us, i.e. for scalar quarks and scalar gluons (η = +1 and µ = 0).

The quark Green functions in the Schwinger-Keldysh formalism [7, 8] are defined

through their average over operator products,

iSc(x, y) =
〈
Tφi,l(x)φ†j,m(y)

〉
−
〈
φi,l(x)

〉 〈
φ†j,m(y)

〉
= iS−−(x, y)

iSa(x, y) =
〈
T̃ φi,l(x)φ†j,m(y)

〉
−
〈
φi,l(x)

〉 〈
φ†j,m(y)

〉
= iS++(x, y)

iS>(x, y) =
〈
φi,l(x)φ†j,m(y)

〉
−
〈
φi,l(x)

〉 〈
φ†j,m(y)

〉
= iS+−(x, y)

iS<(x, y) =
〈
φ†j,m(y)φi,l(x)

〉
−
〈
φi,l(x)

〉 〈
φ†j,m(y)

〉
= iS−+(x, y) (3.34)

and for the gluons as

iGc(x, y) =
〈
Tχa,r(x)χb,s(y)

〉
− 〈χa,r(x)〉

〈
χb,s(y)

〉
= iG−−(x, y)

iGa(x, y) =
〈
T̃ χa,r(x)χb,s(y)

〉
− 〈χa,r(x)〉

〈
χb,s(y)

〉
= iG++(x, y)

iG>(x, y) =
〈
χa,r(x)χb,s(y)

〉
− 〈χa,r(x)〉

〈
χb,s(y)

〉
= iG+−(x, y)

iG<(x, y) =
〈
χb,s(y)χa,r(x)

〉
− 〈χa,r(x)〉

〈
χb,s(y)

〉
= iG−+(x, y). (3.35)
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Here T and T̃ are the usual time and anti-time ordering operators respectively.

As given, the Green functions fall along the contour designated in Fig. 3.2. Our

sign convention follows that of Ref.[23]. Using a generic notation D = S or G as

appropriate, we summarize the Green functions in a compact matrix form as

D =

(
D−− D−+

D+− D++

)
. (3.36)

From the definition of the Green functions follows

[
iD−−(x, y)

]†
= iD++(x, y), (3.37)

while iD±∓ is hermitian (e.g. [iD−+(x, y)]
†
= iD+−(x, y)), and the largest time

equation (3.14) becomes,

D−−(x, y) +D++(x, y) = D−+(x, y) +D+−(x, y), (3.38)

demonstrating that the four components Dij are not independent. We define the

retarded and advanced Green functions in the standard way as

DR(x, y) := Θ(x0 − y0)[D
+−(x, y)−D−+(x, y)]

= D−−(x, y)−D−+(x, y) = D+−(x, y)−D++(x, y) (3.39)

DA(x, y) := −Θ(y0 − x0)[D
+−(x, y)−D−+(x, y)]

= D−−(x, y)−D+−(x, y) = D−+(x, y)−D++(x, y). (3.40)

The Green functions defined in Eqs.(3.34) and (3.35) satisfy a Dyson equation that

introduces the matrix of self-energies for either the quark or gluonic sectors, Σq or

Σg. Using a generic notation, Π = Σq or Σg as appropriate, one may write

D(x, y) = D0(x, y)−
∫
d4zd4wD0(x, w)Π(w, z)D(z, y)

= D0(x, y)−
∫
d4zd4wD(x, w)Π(w, z)D0(z, y), (3.41)

given in terms of the irreducible proper self-energy

Π =

(
Π−− Π−+

Π+− Π++

)
. (3.42)

The four components of the self-energy are also not independent. From their defi-

nition, the relation

Π−−(x, y) + Π++(x, y) = −(Π+−(x, y) + Π−+(x, y)) (3.43)
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can be seen to hold. The off-diagonal components are again hermitian, while the

diagonal ones fulfill [
iΠ−−(x, y)

]†
= iΠ++(x, y). (3.44)

The retarded and advanced self-energies are defined to be

ΠR(x, y) = Π−−(x, y) + Π−+(x, y) (3.45)

ΠA(x, y) = Π−−(x, y) + Π+−(x, y). (3.46)

The equations of motion that the Green functions satisfy are

(2x +M2)D(x, y) = −σzδ
(4)(x− y) +

∫
d4z σz Π(x, z)D(z, y), (3.47)

where

σz =

(
1 0

0 −1
)

(3.48)

and M is a generic parton mass, M = m for gluons and M = 0 for quarks. We now

consider specifically the equation of motion for D−+. This reads

(2x +M2)D−+(x, y) =
∫

d4z{Π−−(x, z)D−+(z, y) + Π−+(x, z)D++(z, y)}

=
∫

d4z{ΠA(x, z)D−+(z, y)− Π+−(x, z)D−+(z, y)

+Π−+(x, z)D+−(z, y)− Π−+(x, z)DR(z, y)} (3.49)

while the conjugate equation is

(2y +M2)D−+(x, y) = −
∫

d4z{D−+(x, z)Π++(z, y) +D−−(x, z)Π−+(z, y)}

=
∫

d4z{D−+(x, z)ΠA(z, y)−DR(x, z)Π−+(z, y)}, (3.50)

where D−+(x, y)† = −D−+(y, x) was used. In the second step the diagonal elements

of the Green functions and the self-energies were replaced via Eq.(3.39) and (3.46).

Moving to the center-of-mass variable X = (x+ y)/2 and the relative variable u =

x−y, a Fourier transformation with respect to the latter, or Wigner transformation,

D(X, p) =
∫

d4u eipuD
(
X +

u

2
, X − u

2

)
, (3.51)

is then performed on the above two equations to yield[
1

4
2X − ip∂X − p2 +M2

]
D−+(X, p)

= ΠA(X, p)Λ̂D−+(X, p)−Π+−(X, p)Λ̂D−+(X, p)

+Π−+(X, p)Λ̂D+−(X, p)− Π−+(X, p)Λ̂DR(X, p) (3.52)
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and [
1

4
2X + ip∂X − p2 +M2

]
D−+(X, p)

= D−+(X, p)Λ̂ΠA(X, p)−DR(X, p)Λ̂Π−+(X, p), (3.53)

with the differential operator

Λ̂ := exp
{−i

2

(←−
∂X
−→
∂p −←−∂p −→∂X

)}
. (3.54)

The details of the Wigner transformations are listed in Appendix A. The differ-

ence or sum of Eq.(3.52) and Eq.(3.53) gives the so-called transport and constraint

equation, respectively,

−2ip∂XD−+(X, p) = I− transport(
1
2
2X − 2p2 + 2M2

)
D−+(X, p) = I+ constraint

(3.55)

(3.56)

Here, I∓ is an abbreviation for the combined functions

I∓ = Icoll + IA∓ + IR∓ , (3.57)

and Icoll is the collision term,

Icoll = Π−+(X, p)Λ̂D+−(X, p)− Π+−(X, p)Λ̂D−+(X, p)

= Igaincoll − I losscoll . (3.58)

IR∓ and IA∓ are terms containing retarded and advanced components respectively,

IR∓ = −Π−+(X, p)Λ̂DR(X, p)±DR(X, p)Λ̂Π−+(X, p) (3.59)

and

IA∓ = ΠA(X, p)Λ̂D−+(X, p)∓D−+(X, p)Λ̂ΠA(X, p). (3.60)

In order to solve the Eqs.(3.55) and (3.56), we have to calculate the self-energies

Π that occur in Eqs.(3.58) to (3.60). The simplest possible approximation is the

so-called quasiparticle approximation, in which a free scalar parton of mass M is

assigned the Green functions

iD−+(X, p) =
π

Ep
{δ(Ep − p0)fa(X, p) + δ(Ep + p0)f̄ā(X,−p)} (3.61)

iD+−(X, p) =
π

Ep
{δ(Ep − p0)f̄a(X, p) + δ(Ep + p0)fā(X,−p)} (3.62)

iD−−(X, p) =
i

p2 −M2 + iε
+Θ(−p0)iD+−(X, p) + Θ(p0)iD−+(X, p)
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=
i

p2 −M2 + iε
+

π

Ep
{δ(Ep − p0)fa(X, p) + δ(Ep + p0)fā(X,−p)}

(3.63)

iD++(X, p) =
−i

p2 −M2 − iε
+Θ(−p0)iD+−(X, p) + Θ(p0)iD−+(X, p)

=
−i

p2 −M2 − iε
+

π

Ep
{δ(Ep − p0)fa(X, p) + δ(Ep + p0)fā(X,−p)}

(3.64)

with E2
p = p2 +M2, and which are given in terms of the corresponding scalar quark

and gluon distribution function, fa(X, p), and f̄a = 1 + fa, where a denotes the

parton type a = q, g while ā the antiparton type. These expressions for the Green

functions are formally the same as for Dσ=0 of Eq.(3.31). The only difference lies

in the fact that here fa andfā are unknown functions while in equilibrium both are

the Bose-Einstein distribution.

Our task is now to construct an equation for the distribution functions for quarks

and gluons fa(X, p) from Eqs.(3.55) to (3.60), using the quasiparticle Green func-

tions of the form given in Eqs.(3.61) to (3.64). To do so, it is necessary to integrate

the entire Eq.(3.55) and Eq.(3.56) over an interval ∆± which contains ±Ep(X). To

lowest order in the gradient expansion that sets Λ̂ = 1, the terms IR,A
± simplify

considerably. In particular

IR,A
− = 0 (3.65)

so that I− in Eqs.(3.55) and (3.57) becomes

I− = Icoll. (3.66)

The integration of Eq. (3.55) over ∆± requires a construction of the form

Jcoll = Jgain
coll − J loss

coll

=
∫
∆+

dp0 I
gain
coll −

∫
∆+

dp0 I
loss
coll (3.67)

for the right hand side. This integral can be easily performed, and one has

Jcoll =
∫
∆+

dp0Π
−+(X, p)D+−(X, p)−

∫
∆+

dp0Π
+−(X, p)D−+(X, p)

= −i π
Ep

Π−+(X, p0=Ep, ~p) f̄a(X, ~p) + i
π

Ep
Π+−(X, p0=Ep, ~p) fa(X, ~p),(3.68)

i.e. the off-diagonal quasiparticle self-energies are required to be calculated on-shell.

Thus the complete transport equation reads

2p∂Xfa(X, ~p) = iΠ−+(X, ~p) f̄a(X, ~p)− iΠ+−(X, ~p) fa(X, ~p) (3.69)
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This is the main result in this section and we will evaluate it in the next chapter.

In the same approximation, i.e. setting Λ̂ = 1 and neglecting the term propor-

tional to 2X , the constraint equation takes the form

[
−2p2 + 2M2 − 2ΠA(X, p)

]
D−+(X, p)

= Π−+(X, p)D+−(X, p)−Π+−(X, p)D−+(X, p)− 2Π−+(X, p)DR(X, p).(3.70)

It will be simplified and evaluated in Chapter 8.

Here and throughout this thesis, we work with the Green functions Dij (i, j =

−,+) since they are needed to calculate properties like the self-energy in a diagram-

matic expansion. But sometimes it is useful to choose another representation for

D. Since the four components of D as given in Eq.(3.36) are not independent of

each other, it is possible to transform this matrix so that at least one component

vanishes. One possible choice is

D′ = U−1 D U =

(
0 DA

DR F

)
(3.71)

with the transformation matrix

U =
1√
2

(
1 1

−1 1

)
. (3.72)

DR and DA are given in Eqs.(3.39) and (3.40), respectively, and F is defined as

F = D−− +D++. The same transformation gives for the self-energy

Π′ = U−1 Π U =

(
Ω ΠR

ΠA 0

)
, (3.73)

where ΠR and ΠA are defined in Eqs.(3.45) and (3.46), respectively, and Ω is given

as Ω = Π−− +Π++. The equation of motion (3.47) transforms to

(2x +M2)D′(x, y) = −σxδ
(4)(x− y) +

∫
d4z σxΠ

′(x, z)D′(z, y), (3.74)

with

σx =

(
0 1

1 0

)
. (3.75)

Performing a Wigner transformation as above gives

[
1

4
2X − ip∂X − p2 +M2

](
0 DA(X, p)

DR(X, p) F (X, p)

)

=

(
0 ΠA(X, p) Λ̂DA(X, p)− 1

ΠR(X, p) Λ̂DR(X, p)−1 Ω(X, p) Λ̂DA(X, p)+ΠR(X, p) Λ̂F (X, p)

)
.(3.76)
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In a semiclassical expansion, Λ̂ = 1 and the derivatives with respect to X in the

bracket on the left hand side are neglected. Then the equation for DR can be solved

easily to yield

DR(X, p) =
1

p2 −M2 +ΠR(X, p)
. (3.77)

Similar, one finds

DA(X, p) =
1

p2 −M2 +ΠA(X, p)
, (3.78)

which is just the hermitian conjugate of Eq.(3.77) and therefore contains no addi-

tional information. In Chapter 8, these expressions for DR and DA will be used.



Chapter 4

The collision integral - mean field

self-energies

In the last section, we found in the quasiparticle approximation for the transport

equation (3.69)

2p∂Xfa(X, ~p) = iΠ−+(X, ~p) f̄a(X, ~p)− iΠ+−(X, ~p) fa(X, ~p). (4.1)

Let us now examine it further. Since the number of particles can only be changed

via collisions, the right hand side of Eq.(4.1) is called collision term. The second

term of the right hand side is proportional to fa and is therefore identified as the

loss term [26], while the first one, proportional to f̄a = 1 + fa, is identified as the

gain term. Naturally, one would expect that it should always be possible to express

the collision term in terms of differential scattering cross sections as occurs in the

Boltzmann equation when only two body processes are present, or alternatively in

terms of transition matrix elements.

Several authors have followed this line of thought: for some simple scalar models

[29] and the NJL model [6], which contain only a simple form of interaction, it has

been shown rigorously that the theoretical generalization of the non-relativistic for-

malism indeed leads to the relativistic Boltzmann equation with two body scattering.

Particularly within QCD and quark-gluon dynamics, however this generalization is

far more difficult. Ref. [3] also attempts a formal identification of the Boltzmann

equation from quark-gluon dynamics to the two body scattering level in the Keldysh

formalism. This derivation is however in itself at the two-body level theoretically

incomplete. Furthermore, the two-body level is insufficient for the description of

the complex type of processes that can occur in such self-interacting systems, such

as multiple gluon production. A precise theoretical understanding of how such a

29
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transport theory should be generalized to include particle production within a non-

abelian model has not as yet been addressed. Rather, ad-hoc assumptions for the

form of such a generalized collision term have been made on the basis of empirical

expectations (see for example [1]). It has been to date unclear what the validity of

these assumptions is.

Our task is therefore to investigate the collision term in a non-abelian theory

exactly at the two-body level and beyond this, and to express, if possible, the self-

energies in terms of cross sections or, equivalently, in terms of scattering amplitudes.

Due to our particular choice of masses (quarks massless, gluons massive) the low-

est order processes that can occur, are the annihilation process qq̄ → g and the

decay process g → qq̄. One expects to obtain these processes from the mean field

self-energies. Two loop self-energies on the other hand should yield at least 2 → 2

scattering processes. These processes, which are far more complex than in a simple

model with a static interaction as in [6] for example, are detailed here. This com-

plexity also occurs in the QCD case, and the results here can easily be extrapolated

to this, in order to complete the derivations attempted in [3]. We then examine

higher order contributions to the aforementioned processes.

Naturally, one has to evaluate the constraint equation (3.70) simultaneously to

the transport equation (4.1). But to render the calculations tractable we will first

neglect it beyond the Hartree level in the following sections. Its influence will be

discussed in Chapter 8.

Now we return to the transport equation Eq.(4.1) and evaluate the self-energies

to first order in the interaction strength and illustrate their role in the transport

equation in the semi-classical limit.

4.1 Hartree self-energies

For the scalar parton model, two generic kinds of Hartree graphs can be identified

in the quark and gluon self-energies. These are depicted in Fig. 4.1.

For Hartree diagrams of any kind, off diagonal self-energies are per definition zero

and only diagonal elements can possibly be constructed, i.e. Σ−−
H or Σ++

H . However,

all such diagrams vanish identically in this model. The reason for this lies in the

color factors: for the quark self-energy graph in Fig. 4.1 that contains a quark-loop,

a single SU(3) color group leads to the associated color factor

FH,q = taiitr(t
a) = 0, (4.2)

since ta = λa/2, where λa are the Gell-Mann matrices. In the above expression,
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−iΣ−−
H,q =

−
s +

−
s

−iΣ−−
H,g =

−
s +

−
s

Figure 4.1: Quark and gluon generic Hartree self-energies. Solid lines refer to quarks,

wavy lines to gluons. The index s can take the values + or −.

i denotes the external quark momentum and is therefore not to be summed over.

For the quark self-energy containing a gluon line, the color factor for a single SU(3)

group is also vanishing,

FH,g = taiiT
a
bb = −itaiifabb = 0. (4.3)

Similar arguments apply to the gluon self-energies. Thus, no mass renormalization

occurs due to Hartree terms.

In case of vanishing self-energies, Eq.(4.1) is the equation for free streaming,

2p∂Xfa(X, ~p) = 0, (4.4)

while the constraint equation (3.70) becomes after an integration over ∆+

(E2
p − ~p2 −M2)fa(X, ~p) = 0. (4.5)

The last equation is the expression of the fact that the partons have to be on mass-

shell, and is consistent with the quasiparticle assumption, Eqs.(3.61) to (3.64) made

in the first place.

4.2 Fock self-energies

The next type of graph contributing to the mean field expansion is the Fock term.

The generic diagrams for the quark and gluon self-energies are shown in Fig. 4.21.

1Fig. 4.2(b) is strictly speaking a vacuum polarization graph for the gluons
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Σij
F,q = i j

Σij
F,g = i j

(a)
+

i j

(b)

Figure 4.2: Quark and gluon generic one loop self-energies. The quark self-energy

plus the first gluon self-energy are Fock diagrams, while (b) of this figure is a polar-

ization insertion.

We start with the quark sector and examine as an example, the gain term gen-

erated by the Fock term Σ−+
F,q (X, p). By inspection, one has

iΣ−+
F,q (X, p) = −g2m2F 2

F,q

∫
d4p1
(2π)4

∫
d4p2
(2π)4

S−+(X, p1)G
+−(X, p2)(2π)

4δ(4)(p−p1+p2),

(4.6)

and FF,q is the Fock color factor for a single SU(Nc) group,

FF,q = taijt
a
ji =

N2
c − 1

2Nc
δii. (4.7)

The contribution to the collision term that this makes, using Eq.(3.68) is

Jgain
F,coll = −i

π

Ep
Σ−+

F,q (X, p0 = Ep, ~p)f̄q(X, ~p), (4.8)

which, on inserting the explicit expressions for S−+(X, p) and G+−(X, p) from

Eqs.(3.61) and (3.62) leads to four distinct terms,

Jgain
F,coll = −g2m2F 2

F

π

Ep

∫ d4p1
(2π)4

∫ d4p2
(2π)4

(2π)4δ(4)(p+ p1 − p2)
π

E1

π

E2

4∑
i=1

Ti, (4.9)

where

T1 = δ(E1 − p01)δ(E2 − p02)f̄q̄(X, p1)fg(X, p2)f̄q(X, ~p)

T2 = δ(E1 − p01)δ(E2 + p02)f̄q̄(X, p1)f̄g(X,−p2)f̄q(X, ~p)

T3 = δ(E1 + p01)δ(E2 + p02)fq(X,−p1)f̄g(X,−p2)f̄q(X, ~p)

T4 = δ(E1 + p01)δ(E2 − p02)fq(X,−p1)fg(X, p2)f̄q(X, ~p). (4.10)

By attributing unbarred functions f to incoming particles and barred functions f̄ to

outgoing ones, one can see that T1..T4 correspond to the processes g → qq̄, Ø→ qq̄g,
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q → qg and qg → q. The last three of these are kinematically forbidden, while the

former is possible, since the gluons are endowed with a finite mass. Performing the

integrals over p01 and p02, Eq.(4.9) becomes

Jgain
F,coll = − π

Ep

∫
d3p1

(2π)32E1

d3p2
(2π)32E2

(2π)4δ(4)(p+ p1 − p2)

×|Mg→qq̄|2fg(X, ~p2)f̄q̄(X, ~p1)f̄q(X, ~p). (4.11)

The loss term is obtained in a similar fashion or by exchanging f with f̄ , since the

matrix element is symmetric. Combining both terms, the revised transport equation

for quarks is obtained from Eq.(4.1) as

2p∂Xfq(X, ~p) =
∫

d3p1
(2π)32E1

d3p2
(2π)32E2

(2π)4δ(4)(p+ p1 − p2)|Mg→qq̄|2

×
[
fg(X, ~p2)f̄q̄(X, ~p1)f̄q(X, ~p)− f̄g(X, ~p2)fq̄(X, ~p1)fq(X, ~p)

]
.(4.12)

This is the final expression for the Fock transport equation. One can alternatively

introduce a cosmetic recombination or decay rate in which case Eq.(4.12) can be

written symbolically as

2p∂Xfq(X, ~p) =
∫

d3p1
(2π)32E1

∫
dΩ

dσ

dΩ

∣∣∣∣
qq̄→g

F

×
[
fg(X, ~p2)f̄q̄(X, ~p1)f̄q(X, ~p)− f̄g(X, ~p2)fq̄(X, ~p1)fq(X, ~p)

]
,(4.13)

where F is the flux factor, and

∫
dΩ

dσ

dΩ
=
∫

dQ
|M|2
F

(4.14)

with the invariant phase space factor dQ given as dQ = (2π)4δ(4)(p+ p1 − p2)

d3p2/((2π)
32E2).

An analysis of the self-energy graph 3(a) of the gluon sector, Σ−+
F,g(a)(X, p) along

the previous lines leads to processes g → gg, Ø→ ggg, and gg → g, all of which are

kinematically prohibited. One thus obtains

(J
coll(a)
F,gain/loss)gluonic graph = 0. (4.15)

This can be attributed to the fact that the self-energies are evaluated on-shell, i.e.

we may write

Σ−+
F,g(a)(X, p0 = Ep, ~p) = Σ+−

F,g(a)(X, p0 = Ep, ~p) = 0, (4.16)
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which is the statement that an on-shell particle cannot decay into two on-shell

particles of the same kind.

The second graph in the gluonic case does not vanish. This self-energy Σ−+
F,g(b)

that enters into the description of the gain in gluons, is precisely that given in

Eq.(4.6), but with G+−(X, p2) replaced by S+−(X, p2). The color factor in this case

is also modified, being FF,g = 1/2δaa. An analysis of the self-energy along the same

lines leads to the processes q → qg, q̄ → q̄g, Ø→ gqq̄ and qq̄ → g, the last of which is

the only term that can contribute. Thus the time evolution of the gluon distribution

function is given by

2p∂Xfg(X, ~p) =
∫

d3p1
(2π)32E1

d3p2
(2π)32E2

(2π)4δ(4)(p+ p1 − p2)|Mg→qq̄|2

×
[
fq(X, ~p2)fq̄(X, ~p1)f̄g(X, ~p)− f̄q(X, ~p2)f̄q̄(X, ~p1)fg(X, ~p)

]
.(4.17)

We conclude this section by commenting on the result that while the Fock term

3(a) for gluons vanishes identically, the Fock term for the quark self-energy does

not. A term of this kind occurs in this model because the quarks are massless, while

the gluons are massive. The relevance of this Fock term thus depends on the form

of the underlying theory.



Chapter 5

The collision integral - two loop

self-energies

To calculate the collision integral beyond the mean field it is necessary to include the

two loop self-energies. Their generic diagrams are shown in Fig. 5.1 for the quark

−iΣ(2)
q =

Rainbow

+

Ladder

+

Cloud

+

Exchange

+

Quark-loop

−iΣ(2)
g =

Rainbow

+

Exchange

+

Quark-loop

+

Quark correction

+

Vertex (a)

+

Vertex (b)

+

Vertex (c)

Figure 5.1: Generic diagrams for the quark and gluon self-energies that contain two

loops.
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and gluon sectors. In the gluonic sector, there are more diagrams, as can be seen in

the figure. Note that in this sector, a ladder-like diagram is topologically equivalent

to the rainbow kind, and is therefore not included separately.

For clarity, we will consider the quark sector in detail. The calculations for the

gluonic sector are similar. To be specific, let us consider first the loss term for which

we need Σ(2)+−. All of its two loop contributions are shown in Fig. 5.2. According

to their topology, we denote these graphs as rainbow (R), ladder (L), cloud (C),

exchange (E) and quark-loop graphs (QL). In addition to this, one has to sum over

the inner vertices. There are four possibilities of arranging the signs at the inner

vertices, which yields the diagrams a) to d) for every type of topology.

Ra)
+ + −− Rb)

+ + +− Rc)
+− − − Rd)

+− +−

La)
+ −

+ −
Lb)

+ −

+ +

Lc)
+ −

− −
Ld)

+ −

− +

Ca)
+ −+

−
Cb)

+ −−

+

Cc)
+ −+

+

Cd)
+ −−

−

Ea)
+ −+ − Eb)

+ −− +
Ec)

+ −+ +
Ed)

+ −− −

QLa)
+ −

+ −

QLb)
+ −

+ +

QLc)
+ −

− −

QLd)
+ −

− +

Figure 5.2: All contributions to Σ(2)+−
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5.1 2→ 2 scattering processes

Let us deal first with the diagrams R a), L a), C a), C b), E a), E b) and QL a) of

Fig. 5.2. All of these diagrams are necessary to obtain all possible 2→ 2 scattering

processes as we will now show.

We first note that the diagram E b) is the exchange graph of QL a), because both

of these diagrams contain three off-diagonal quark Green functions. The similarly

becomes more evident if one redraws the diagram of Fig. 5.2 E b) as shown in

Fig. 5.3.

E b) =
+

−−
+

=
+ −

+ −

Figure 5.3: Diagram of Fig. 5.2 E b)

We call the sum of the two diagrams QL a) and E b)

Σ
(2)+−
quark−quark(X, p) = Σ

(2)+−
E,b) (X, p) + Σ

(2)+−
QL,a) (X, p) (5.1)

and collect the remaining five graphs in the construct

Σ
(2)+−
quark−gluon(X, p) = Σ

(2)+−
R,a) (X, p) + Σ

(2)+−
L,a) (X, p) + Σ

(2)+−
C,a) (X, p)

+ Σ
(2)+−
C,b) (X, p) + Σ

(2)+−
E,a) (X, p). (5.2)

This subdivision in Eqs.(5.1) and (5.2) to J
(2)loss
coll will be handled separately, as the

first term will be seen to lead to elastic quark-quark and quark-antiquark differential

scattering cross sections in the transport equation, while the Σquark−gluon term will

be seen to lead to processes involving gluons, such as the processes qq̄ → gg and

qg → qg.

5.1.1 Quark-quark and quark-antiquark elastic scattering

Explicit expressions for the quark-loop and its exchange diagram self-energies re-

quired in Eq.(5.1) are obtained as

Σ
(2)+−
Ql,a) (X, p) = −g4m4F 2

QL

∫
d4p1
(2π)4

d4p2
(2π)4

d4p3
(2π)4

d4p4
(2π)4

(2π)4δ(4)(p− p1 − p2)

×(2π)4δ(4)(p2 − p3 + p4)S
+−(X, p1)G

++(X, p2)

×S+−(X, p3)S
−+(X, p4)G

−−(X, p2) (5.3)
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and

Σ
(2)+−
E,b) (X, p) = −g4m4F 2

E

∫
d4p1
(2π)4

d4p2
(2π)4

d4p3
(2π)4

d4p4
(2π)4

(2π)4δ(4)(p− p1 − p2)

×(2π)4δ(4)(p2 − p3 + p4)S
+−(X, p1)G

−−(X, p2)

×S+−(X, p3)S
−+(X, p4)G

++(X, p− p3), (5.4)

where FQL and FE are color factors, that will be given explicitly in Appendix B.

Since they do not affect our argument, we suppress them in the following.

The collision integral for loss from Eq.(3.68) can be directly evaluated, to give

the quark-loop and exchange contributions

J
(2)loss
coll,q = ig4m4 π

Ep

∫
d4p1
(2π)4

d4p2
(2π)4

d4p3
(2π)4

d4p4
(2π)4

(2π)8δ(4)(p−p1−p2)δ(4)(p2−p3+p4)

×
{
G++(X, p2)G

−−(X, p2) +G−−(X, p2)G
++(X, p− p3)

}

×(−i π
E1

)(−i π
E3

)(−i π
E4

)
8∑

i=1

Ti, (5.5)

where

T1 = δ(E1 + p01) δ(E3 + p03) δ(E4 + p04) fq̄(−p1) fq̄(−p3) f̄q̄(−p4) fq(~p)
T2 = δ(E1 + p01) δ(E3 + p03) δ(E4 − p04) fq̄(−p1) fq̄(−p3) fq(p4) fq(~p)
T3 = δ(E1 + p01) δ(E3 − p03) δ(E4 + p04) fq̄(−p1) f̄q(p3) f̄q̄(−p4) fq(~p)
T4 = δ(E1 + p01) δ(E3 − p03) δ(E4 − p04) fq̄(−p1) f̄q(p3) fq(p4) fq(~p)
T5 = δ(E1 − p01) δ(E3 + p03) δ(E4 + p04) f̄q(p1) fq̄(−p3) f̄q̄(−p4) fq(~p)
T6 = δ(E1 − p01) δ(E3 + p03) δ(E4 − p04) f̄q(p1) fq̄(−p3) fq(p4) fq(~p)
T7 = δ(E1 − p01) δ(E3 − p03) δ(E4 + p04) f̄q(p1) f̄q(p3) f̄q̄(−p4) fq(~p)
T8 = δ(E1 − p01) δ(E3 − p03) δ(E4 − p04) f̄q(p1) f̄q(p3) fq(p4) fq(~p). (5.6)

One sees that there are eight terms, or eight processes in this expression. However,

due to energy-momentum-conservation T1, T2, T4, T6 and T7 vanish, leaving only T3,

T5 and T8. This is a direct consequence of the on-shell nature of the quasiparticle

approximation. Note that if this were relaxed, all terms would necessarily have to

be included.

We can reorganize this expression into a recognizable physical form by making

some simple manipulations. Letting pi → −pi for the antiquark states and perform-

ing the p01, p
0
3, p

0
4 and the p2 integration by absorbing the appropriate δ-functions,

we obtain

J
(2)loss
coll,q = −g4m4 π

Ep

∫
d3p1

(2π)32E1

d3p3
(2π)32E3

d3p4
(2π)32E4

(2π)4
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×
{
δ(4)(p+ p1 − p3 − p4) fq̄(~p1) f̄q(~p3) f̄q̄(~p4) fq(~p)

×
[
G++(X, p+ p1)G

−−(X, p + p1) +G−−(X, p+ p1)G
++(X, p− p3)

]
+δ(4)(p− p1 + p3 − p4) f̄q(~p1) fq̄(~p3) f̄q̄(~p4) fq(~p)

×
[
G++(X, p− p1)G

−−(X, p− p1) +G−−(X, p− p1)G
++(X, p+ p3)

]
+δ(4)(p− p1 − p3 + p4) f̄q(~p1) f̄q(~p3) fq(~p4) fq(~p)

×
[
G++(X, p− p1)G

−−(X, p− p1) +G−−(X, p− p1)G
++(X, p− p3)

]}
.

(5.7)

The first two terms of this expression can be combined if one makes the substitution

p1 ↔ p3 in the second term. The third term has a symmetry in p1 and p3 and can

be rewritten as one half the sum of two terms with p1 and p3 interchanged. The loss

term then becomes

J
(2)loss
coll,q = −g4m4 π

Ep

∫
d3p1

(2π)32E1

d3p3
(2π)32E3

d3p4
(2π)32E4

(2π)4

×
{
δ(4)(p+ p1 − p3 − p4) fq̄(~p1) f̄q(~p3) f̄q̄(~p4) fq(~p)

×
[
G++(X, p+ p1)G

−−(X, p + p1) +G−−(X, p+ p1)G
++(X, p− p3)

+G++(X, p− p3)G
−−(X, p− p3) +G−−(X, p− p3)G

++(X, p+ p1)
]

+δ(4)(p− p1 − p3 + p4) f̄q(~p1) f̄q(~p3) fq(~p4) fq(~p)

×1
2

[
G++(X, p− p1)G

−−(X, p− p1) +G−−(X, p− p1)G
++(X, p− p3)

+G++(X, p− p3)G
−−(X, p− p3) +G−−(X, p− p3)G

++(X, p− p1)
]}

.

(5.8)

Using the fact that [iG−−(p)]† = iG++(p) and making the substitution p1 ↔ p4 in

the second term, one is able to identify the absolute values squared of the Green

functions occurring in J
(2),loss
coll,q . One has

J
(2)loss
coll,q = g4m4 π

Ep

∫
d3p1

(2π)32E1

d3p3
(2π)32E3

d3p4
(2π)32E4

(2π)4δ(4)(p+ p1 − p3 − p4)

×
{
1

2

∣∣∣iG−−(X, p− p3) + iG−−(X, p− p4)
∣∣∣2 fq(~p) fq(~p1) f̄q(~p3) f̄q(~p4)

+
∣∣∣iG−−(X, p+ p1) + iG−−(X, p− p3)

∣∣∣2 fq(~p) fq̄(~p1) f̄q(~p3) f̄q̄(~p4)
}
.

(5.9)

Now one may recognize the scattering amplitude for elastic quark-quark scattering,

−iMqq→qq(p1→ 34) = (−igm)2
[
iG−−(p− p3) + iG−−(p− p4)

]
, (5.10)
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and the scattering amplitude for quark-antiquark scattering,

−iMqq̄→qq̄(p1→ 34) = (−igm)2
[
iG−−(p + p1) + iG−−(p− p3)

]
, (5.11)

occurring in Eq.(5.9), which may be concisely written as to give the final result

J
(2)loss
coll,q =

π

Ep

∫ d3p1
(2π)32E1

d3p3
(2π)32E3

d3p4
(2π)32E4

(2π)4δ(4)(p+ p1 − p3 − p4)

×
{
1

2
|Mqq→qq(p1→ 34)|2 fq(~p) fq(~p1) f̄q(~p3) f̄q(~p4)

+ |Mqq̄→qq̄(p1→ 34)|2 fq(~p) fq̄(~p1) f̄q(~p3) f̄q̄(~p4)
}
. (5.12)

The Feynman graphs corresponding to these processes are shown in Fig. 5.4 a)

and b) respectively.

5.1.2 Scattering cross sections involving quarks and gluons

We now turn our attention to the graphs of Σ
(2)+−
quark−gluon of Eq.(5.2), which will

lead to scattering processes that involve gluonic degrees of freedom. As in the

previous section, the Feynman rules for non-equilibrium processes can be applied

to these diagrams and the result Wigner transformed. This results in the following

expressions for the self-energies,

Σ
(2)+−
R,a) (X, p) = −g4m4F 2

R

∫
d4p1
(2π)4

d4p2
(2π)4

d4p3
(2π)4

d4p4
(2π)4

(2π)4δ(4)(p− p1 − p2)

×(2π)4δ(4)(p2 − p3 − p4)G
+−(X, p1)S

++(X, p− p3)

×G+−(X, p3)S
+−(X, p4)S

−−(X, p− p3) (5.13)

for the rainbow diagram,

Σ
(2)+−
L,a) (X, p) = −1

2
g4m4F 2

L

∫
d4p1
(2π)4

d4p2
(2π)4

d4p3
(2π)4

d4p4
(2π)4

(2π)4δ(4)(p− p1 − p2)

×(2π)4δ(4)(p2 − p3 − p4)G
+−(X, p1)G

++(X, p2)

×G+−(X, p3)S
+−(X, p4)G

−−(X, p2) (5.14)

for the ladder graph,

Σ
(2)+−
C,a)/b)(X, p) = −g4m4F 2

C

∫
d4p1
(2π)4

d4p2
(2π)4

d4p3
(2π)4

d4p4
(2π)4

(2π)4δ(4)(p− p1 − p2)

×(2π)4δ(4)(p2 − p3 − p4)G
+−(X, p1)G

±±(X, p2)

×G+−(X, p3)S
+−(X, p4)S

∓∓(X, p− p3) (5.15)
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a)−iMqq→qq = +

b)−iMqq̄→qq̄ = +

c)−iMqq̄→gg = + +

d)−iMqg→qg = + +

Figure 5.4: Feynman diagrams for the matrix element for elastic quark-quark scat-

tering, elastic quark-antiquark scattering, for the process qq̄ → gg, and for the

process qg → qg.

for the two cloud diagrams, and

Σ
(2)+−
E,a) (X, p) = −g4m4F 2

E

∫
d4p1
(2π)4

d4p2
(2π)4

d4p3
(2π)4

d4p4
(2π)4

(2π)4δ(4)(p− p1 − p2)

×(2π)4δ(4)(p2 − p3 − p4)G
+−(X, p1)S

++(X, p− p4)

×G+−(X, p3)S
+−(X, p4)S

−−(X, p− p3) (5.16)

for the first exchange diagram. FR, FL, FC and FE are appropriate color factors,

that will be discussed in detail in Appendix B, but which will be suppressed here.

Note that a factor 1/2 occurs in the expression for the ladder diagram because of

the gluon loop. The expressions for Σ(2)−+ are obtained from the ones for Σ(2)+− by

exchanging − and +. The loss term of Eq.(3.68) incorporating Σ
(2)+−
quark−gluon, is given
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as

J
(2)loss
coll,g = ig4m4 π

Ep

∫
d4p1
(2π)4

d4p2
(2π)4

d4p3
(2π)4

d4p4
(2π)4

(2π)8δ(4)(p− p1 − p2)δ
(4)(p2 − p3 − p4)

×
{
S++(X, p− p3)S

−−(X, p− p3) +
1

2
G++(X, p2)G

−−(X, p2)

+G++(X, p2)S
−−(X, p− p3) +G−−(X, p2)S

++(X, p− p3)

+S++(X, p− p4)S
−−(X, p− p3)

}
(−i π

E1
)(−i π

E3
)(−i π

E4
)

8∑
i=1

Ti, (5.17)

where

T1 = δ(E1 + p01) δ(E3 + p03) δ(E4 + p04) fq̄(−p1) fḡ(−p3) fḡ(−p4) fq(~p)
T2 = δ(E1 + p01) δ(E3 + p03) δ(E4 − p04) fq̄(−p1) fḡ(−p3) f̄g(p4) fq(~p)
T3 = δ(E1 + p01) δ(E3 − p03) δ(E4 + p04) fq̄(−p1) f̄g(p3) fḡ(−p4) fq(~p)
T4 = δ(E1 + p01) δ(E3 − p03) δ(E4 − p04) fq̄(−p1) f̄g(p3) f̄g(p4) fq(~p)
T5 = δ(E1 − p01) δ(E3 + p03) δ(E4 + p04) f̄q(p1) fḡ(−p3) fḡ(−p4) fq(~p)
T6 = δ(E1 − p01) δ(E3 + p03) δ(E4 − p04) f̄q(p1) fḡ(−p3) f̄g(p4) fq(~p)
T7 = δ(E1 − p01) δ(E3 − p03) δ(E4 + p04) f̄q(p1) f̄g(p3) fḡ(−p4) fq(~p)
T8 = δ(E1 − p01) δ(E3 − p03) δ(E4 − p04) f̄q(p1) f̄g(p3) f̄g(p4) fq(~p). (5.18)

Once again, eight terms result from this multiplication. Now, again due to energy-

momentum-conservation, T1, T2, T3, T5 and T8 vanish, and we are left with three

non-vanishing terms, T4, T6 and T7.

Applying the same procedure as for J
(2)loss
coll,q as in the previous section, one can

regroup the remaining terms to read

J
(2)loss
coll,g = g4m4 π

Ep

∫
d3p1

(2π)32E1

d3p3
(2π)32E3

d3p4
(2π)32E4

(2π)4δ(4)(p+ p1 − p3 − p4)

×
{
1

2

∣∣∣iG−−(X, p+ p1) + iS−−(X, p− p3) + iS−−(X, p− p4)
∣∣∣2

×fq(~p) fq̄(~p1) f̄g(~p3) f̄g(~p4)
+
∣∣∣iS−−(X, p+ p1) + iG−−(X, p− p3) + iS−−(X, p− p4)

∣∣∣2
×fq(~p) fg(~p1) f̄q(~p3) f̄g(~p4)

}
. (5.19)

In order to identify the physical processes that give rise to these terms, we examine

first all possible contributions to the annihilation process qq̄ → gg. The Feynman

graphs for this within this model are shown in Fig. 5.4 c). The scattering amplitude
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associated therewith is

−iMqq̄→gg(p1→ 34) = (−igm)2
[
iG−−(p+ p1) + iS−−(p− p3) + iS−−(p− p4)

]
.

(5.20)

In a similar manner, the elastic scattering process qg → qg, which is shown in

Fig. 5.4 d), has the scattering amplitude

−iMqg→qg(p1→ 34) = (−igm)2
[
iS−−(p+ p1) + iG−−(p− p3) + iS−−(p− p4)

]
.

(5.21)

One can identify the absolute value squared of Eqs.(5.20) and (5.21) in Eq.(5.19)

and therefore J
(2)loss
coll,g can be written as

J
(2)loss
coll,g =

π

Ep

∫
d3p1

(2π)32E1

d3p3
(2π)32E3

d3p4
(2π)32E4

(2π)4δ(4)(p+ p1 − p3 − p4)

×
{
1

2
|Mqq̄→gg(p1→ 34)|2 fq(~p) fq̄(~p1) f̄g(~p3) f̄g(~p4)

+ |Mqg→qg(p1→ 34)|2 fq(~p) fg(~p1) f̄q(~p3) f̄g(~p4)
}
. (5.22)

The complete loss term is obtained by adding Eq.(5.12) and (5.22),

J
(2)loss
coll = J

(2)loss
coll,q + J

(2)loss
coll,g . (5.23)

The gain term can be constructed by replacing f ↔ f̄ in the complete loss term.

With the relation
dσ

dΩ
=

|M|2
|~vp − ~v1|2Ep2E1

dQ

dΩ
(5.24)

and the phase space factor

Q = (2π)4δ(4)(p+ p1 − p3 − p4)
d3p3

(2π)32E3

d3p4
(2π)32E4

, (5.25)

the final form for the transport equation, calculated for two loop self-energy graphs,

is for quarks (a = q)

2p∂Xfa(X, ~p) =
∫
dΩ

d3p1
(2π)32E1

|~vp − ~v1|2Ep2E1

×
4∑

j=1

sj
dσj

dΩ

∣∣∣∣
ab→cd

[
f̄a(~p)f̄b(~p1)fc(~p3)fd(~p4)− fa(~p)fb(~p1)f̄c(~p3)f̄d(~p4)

]
,(5.26)

where partons b, c, and d can be a quark, antiquark or gluon, and j labels the four

processes j = 1...4 corresponding to qq̄ → gg, qg → qg , qq → qq and qq̄ → qq̄. The

sj are symmetry factors s1 = s3 = 1/2 and s2 = s4 = 1.

The transport equation for gluons can be obtained in an analogous way and

calculated for two loops, it takes the same form as Eq.(5.26) with a = g. Then j

labels the four processes j = 1...4 corresponding to gg → gg, gg → qq̄, gq → gq and

gq̄ → gq̄. The appropriate symmetry factors are s1 = 1/2 and s2 = s3 = s4 = 1.
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5.2 Higher order corrections to the process qq̄ → g

Now, we wish to demonstrate precisely that the remaining two loop graphs con-

tribute to corrections of order g3m3 to the lower order process qq̄ → g. To demon-

strate this, we arbitrarily examine the set of quark-loop diagrams. The QL a) graph

of Fig. 5.2 leads directly to the qq and qq̄ cross sections of Fig. 5.4 a) and b), while

the three graphs, QL b)-d) of Fig. 5.2 were not required for the evaluation of these

cross sections. We notice that the quark-loop self-energy graphs contain a self-energy

insertion which is just the gluonic Fock self-energy shown in Fig. 4.2 (b). To simplify

our notations, we call it in the following Πij(X, k) and it reads as

−iΠij(X, k) := (−)i+j(igm)2
∫

d4l

(2π)4
iSij(X, k + l) iSji(X, l) (5.27)

where the color factor is suppressed. Here i, j = +,− and (−)i+j = +1 (−1) for

i = j (i 6= j).

We commence now with the diagram QL b) of Fig. 5.2 which is given by

−iΣ(2)+−
QL,b) (X, p) = g2m2F 2

QL

∫ d4p1
(2π)4

d4p2
(2π)4

(2π)4δ(4)(p− p1 − p2) iS
+−(X, p1)

×iG+−(X, p2) (−iΠ++(X, p2))iG
++(X, p2), (5.28)

where F 2
QL is again the color factor given in Eq.(B.12). The corresponding loss term

of the collision integral of Eq.(3.68) to this self-energy reads as

J
(2)loss
coll,QL,b) = −i

π

Ep
Σ

(2)+−
QL,b) (X, p0 = Ep, ~p)fq(X, ~p). (5.29)

In this expression, the product iS+−(X, p1)iG
+−(X, p2)fq(X, ~p) occurs. Inserting

the quasiparticle approximation for the Green functions of Eqs.(3.61) and (3.62),

we obtain for this product the sum of four terms:

T1 =
π

E1

π

E2

δ(E1 − p01)δ(E2 − p02)f̄q(X, p1)f̄g(X, p2)fq(X, ~p)

T2 =
π

E1

π

E2

δ(E1 − p01)δ(E2 + p02)f̄q(X, p1)fg(X,−p2)fq(X, ~p)

T3 =
π

E1

π

E2
δ(E1 + p01)δ(E2 − p02)fq̄(X,−p1)f̄g(X, p2)fq(X, ~p)

T4 =
π

E1

π

E2
δ(E1 + p01)δ(E2 + p02)fq̄(X,−p1)fg(X,−p2)fq(X, ~p). (5.30)

By attributing again f to incoming particles and f̄ to outgoing ones, we see that

T1...T4 correspond to the processes q → qg, qg → q, qq̄ → g and qq̄g →Ø. Since the

quarks are massless while the gluons are endowed with a finite mass, the processes
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corresponding to T1, T2 and T4 are kinematically forbidden as also occurred in the

discussion of the Fock term in Sec. 4.2. One thus has one remaining non-vanishing

contribution iS+−(X, p1)iG
+−(X, p2)fq(X, ~p) = T3. This product is now inserted

into Eq.(5.29). In the resulting expression, we interchange p1 with −p1 and on

performing the p01 and p02 integrations, we find the result

J
(2)loss
coll,QL,b) = − π

Ep

g2m2F 2
QL

∫
d3p1

(2π)32E1

d3p2
(2π)32E2

(2π)4δ(4)(p+ p1 − p2)

×G++(X, p2) Π
++(X, p2)fq̄(X, ~p1)f̄g(X, ~p2)fq(X, ~p) (5.31)

as the remaining contribution of the QL b) graph to the collision integral.

Since T3 corresponds to the process qq̄ → g which has also come to the fare

in Section 4.2, we would like to take a closer look at this process. In Fig. 5.5, all

Feynman diagrams for this process are shown up to order g3m3. As mentioned in

−

a)

+ −
−

−
b)

+ −−

−
c)

− − −

d)

+ − + −

d’)

+ − − −

e)

+ − + −

e’)

−
−

−
f)

+ −
+

−
f’)

+ −
−

−

g)

+ −
+

−

g’)

Figure 5.5: The process qq̄ → g up to order (gm)3.

Sec. 3.1, the vertices linked to external lines are s = − (“physical fields”), while the

inner vertices can be of type − or + and one has to include all possibilities. That

leads to a doubling of the diagrams with inner vertices and we obtain, in addition

to the diagrams which one has in T=0 equilibrium field theory, i.e. diagrams with

only − vertices, (in our case graph a), b), c), d), e), f) and g)), also diagrams with

one + vertex, i.e. in our case graph d’), e’), f’) and g’).
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The scattering amplitude associated with Fig. 5.5 a) has purely a point-like

structure with color groups occurring:

−iMa)
qq̄→g = −igm taij ⊗ trlm (5.32)

while from Fig. 5.5 d), one has

−iMd)
qq̄→g = −igm[tbjitr(t

bta)]⊗ [tsmltr(t
str)]G−−(X, p2) Π

−−(X, p2), (5.33)

where taij is the matrix of the color group in the representation of the quarks. Now

note that using the fact that [iG−−]† = iG++ and FQL = taijt
b
jitr(t

bta), one can

rewrite Eq.(5.31) in terms of these matrix elements, i.e.

J
(2)loss
coll,QL,b) =

π

Ep

∫ d3p1
(2π)32E1

d3p2
(2π)32E2

(2π)4δ(4)(p+ p1 − p2)

×Ma)
qq̄→g[Md)

qq̄→g]
†fq(X, ~p)fq̄(X, ~p1)f̄g(X, ~p2), (5.34)

illustrating that the cross term between these two processes, denoted symbolically

as ad†, is derived from the self-energy diagram QL b) of Fig. 5.2. The gain term can

be obtained by replacing f with f̄ and vice versa in Eq.(5.34).

In a similar fashion, the collision integral can be constructed from the quark-

loop diagram QL c) in Fig. 5.2. One obtains an expression for the loss term as in

Eq.(5.31) with G++Π++ replaced by the combination G−− Π−−. Again J
(2)loss
coll,QL,c)

can be expressed by the scattering amplitudes of Eq.(5.32) and (5.33):

J
(2)loss
coll,QL,c) =

π

Ep

∫ d3p1
(2π)32E1

d3p2
(2π)32E2

(2π)4δ(4)(p+ p1 − p2)

×[Ma)
qq̄→g]

†Md)
qq̄→gfq(X, ~p)fq̄(X, ~p1)f̄g(X, ~p2), (5.35)

i.e. the second cross term a†d required in building a cross section of the basic com-

ponent a) and d) of Fig. 5.5 is obtained.

In an analogous fashion, one can show that the rainbow diagrams R b) and c)

lead to a collision integral containingMa)
qq̄→g[Mf)

qq̄→g]
† and the hermitian conjugate

of this product, the ladder diagrams Lb) and c) to a collision integral containing

Ma)
qq̄→g[Me)

qq̄→g]
† and its hermitian conjugate, the cloud diagrams C c) and d) to a

collision integral containingMa)
qq̄→g[Mc)

qq̄→g]
† and its hermitian conjugate, and finally

the exchange diagrams E c) and d) to a collision integral containingMa)
qq̄→g[Mb)

qq̄→g]
†

and its hermitian conjugate.

Note that if we would have only “physical” fields, i.e. only − vertices, then we

would be able to account for all mixed diagrams that would occur in the construction
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of the |Mqq̄→g|2 up to order g4m4, with the exception of the diagram g) of Fig. 5.5.

This graph does not enter into the collision integral, as it is a renormalization dia-

gram for the incoming quark, for which the momentum p is fixed externally.

Returning to our explicit example of the quark-loop self-energy of Fig. 5.2, one

sees that a simple graphical interpretation can be applied to each figure which we

have considered so far. A rule in which all lines that are connected by ± and ∓ are

cut in a single path, separates the graphs QL a) to c) into their component matrix

elements. This is illustrated in Fig. 5.6.

QL a)
+ −

+ −

b)
+ −

+ +

c)
+ −

− −

d)
+ −

− +

Figure 5.6: Quark-loop self-energy diagrams with cut lines (dashed lines).

This procedure, however, cannot be applied uniquely to the graph QL d), nor for

that matter to the remaining graphs which are not required for construction of the

mixed terms or direct contributions to the cross sections, i.e. the graphs R d) and L

d). We are thus now left with the three graphs QL d), R d) and L d) which at first

sight fit into no apparent scheme, and which therefore may present difficulties.

We commence with the investigation of L d). To each of the three gluon vertices

are associated three off-diagonal gluonic Green functions. Due to the quasiparticle

approximation, they have to be on-shell. Therefore each three gluon vertex corre-

sponds to a on-shell process of a (massive) gluon decaying into two (massive) gluons

which is forbidden. For this reason, the diagram L d) vanishes.

For the graphs QL d) and R d), the situation is different. For QL d) we obtain an

expression as in Eq.(5.28) with the product of the five Green functions replaced by

S+−(X, p1)[G
+−(X, p2)]

2S−+(X, p3)S
+−(X, p4). In the quasiparticle approximation

the off-diagonal Green functions are on mass shell:

p21 = p23 = p24 = 0 (5.36)

p22 = m2 (5.37)

In addition to this, the two δ-functions for the energy-momentum conservation of

Eq.(5.28) have to be fulfilled. Therefore we can write for example

0 = p23 = (p2 + p4)
2 = 2p2p4 +m2. (5.38)
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One possible choice which fulfills these equations is

p2 = (m, 0) and p4 = (−m/2, m/2). (5.39)

Here and in the following, the first component denotes the energy and the second

one the value of the three momentum leaving its direction arbitrary. From this one

obtains m3 = m2 +m4 = (m/2, m/2) which is on its mass shell.

Thus we are left with the two graphs QL d) and R d). Our task is now to rewrite

these self-energies in terms of a scattering product. We were able to express all other

self-energy graphs of Fig. 5.2 in terms of scattering amplitudes and saw afterwards,

that this corresponds to the cutting of all off-diagonal propagators. But for the

graphs QL d) and R d) we cannot use this cutting rule, since each graph consists of

five off-diagonal propagators and therefore cannot be cut in an obvious and unique

way.1

On the other hand, to obtain |Mqq̄→g|2 up to order g4m4 correctly, we still have

to consider the scattering amplitudes shown in Fig. 5.5 d’), e’) and f’). Since g’)

is again a renormalization graph for the incoming quark with fixed momentum,

we do not have to consider it. Let us first note that diagram e’) vanishes for the

same reason as the self-energy graph L d): the inner vertex corresponds to the (on-

shell) decay of a massive particle into two (on-shell) particles of the same species

which is forbidden. For this reason, we still need the products Ma)
qq̄→g[Md′)

qq̄→g]
†,

Ma)
qq̄→g[Mf ′)

qq̄→g]
† and their hermitian conjugates.

As mentioned in Sec. 3.1, to obtain the absolute square of a scattering amplitude,

one needs the scattering amplitude times its hermitian conjugate in position space.

The latter is obtained from the original scattering amplitude by interchanging −
with + vertices and vice versa [17]. So far, we have considered only scattering

amplitudes containing − vertices only, for which the hermitian conjugate in position

space, i.e. the same amplitude but all vertices are +, is also the hermitian conjugate

in momentum space, since [iD−−]† = iD++ and (−igm)† = +igm. But now we

have to consider scattering amplitudes containing both types of vertices, and the

difference between hermitian conjugation in position and momentum space therefore

matters.

After we have now clarified the meaning of hermitian conjugation, we take a

closer look at the diagram QL d) of Fig. 5.2.

As before, we obtain an expression for the loss term as in Eq.(5.31) with G++ Π++

1Note that the cutting rule must be derived as a consequence of a calculation and serves in

hindsight as an aid.
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replaced by G+− Π−+ to read as

−iΣ(2)+−
QL,d) (X, p) = g2m2F 2

QL

∫
d4p1
(2π)4

d4p2
(2π)4

(2π)4δ(4)(p− p1 − p2) iS
+−(X, p1)

×iG+−(X, p2) (−iΠ−+(X, p2))iG
+−(X, p2). (5.40)

On the other hand, the scattering amplitude of Fig. 5.5 d’) is given by

−iMd′)
qq̄→g = −igm[tbjitr(t

bta)]⊗ [tsmltr(t
str)]G+−(X, p2) Π

−+(X, p2). (5.41)

Therefore one can express J
(2)loss
coll,QLd) by the scattering amplitudes of Eq.(5.32) and

(5.41):

J
(2)loss
coll,QL,d) =

π

Ep

∫
d3p1

(2π)32E1

d3p2
(2π)32E2

(2π)4δ(4)(p+ p1 − p2)

×[Ma)
qq̄→g]

†Md′)
qq̄→gfq(X, ~p)fq̄(X, ~p1)f̄g(X, ~p2). (5.42)

Note that it is not possible to express J
(2)loss
coll,QL,d) in terms of Ma)

qq̄→g [Md′)
qq̄→g]

†. The

latter amplitude is obtained from the graph in Fig. 5.5 d’) by replacing all − vertices

with + vertices and vice versa. It reads

[−iMd′)
qq̄→g]

† = igm[tbjitr(t
bta)]⊗ [tsmltr(t

str)]G−+(X, p2) Π
+−(X, p2). (5.43)

Since in Eq.(5.40) p2 is integrated over, we are free to replace p2 by −p2. Noting

that G+−(X,−p2) = G−+(X, p2) and Π−+(X,−p2) = Π+−(X, p2), we obtain an

expression which superficially resembles the one in Eq.(5.43). However, on the other

hand, the second G+−(X,−p2) yields a factor f̄g(X,−p2) which does not correspond

to the process [−iMd′)
qq̄→g]

†, for which a gluon with momentum +p2 is outgoing.

In a similar fashion, one can show that the remaining rainbow graph R d) of

Fig. 5.2 leads to a collision integral containing [Ma)
qq̄→g]

†Mf ′)
qq̄→g. A collision integral

containing the hermitian conjugate term Ma)
qq̄→gMf ′)

qq̄→g]
† is not obvious, but is in

fact present. This is discussed in the following section.

We compare this result with real time thermal field theory for which cutting

rules were derived in the 1980’s by Kobes and Semenoff [30, 31] and in the 1990’s

by Bedaque, Das, and Naik [32] (for a comparison of these two approaches see [33]).

Kobes and Semenoff investigated in [31] self-energy graphs with one type of particles.

For the two loop self-energy graph containing a self-energy insertion (corresponding

e.g. to our quark-loop graph with only one type of particles) they found that three

graphs can be cut as shown in Fig. 5.6 and can be interpreted in terms of products

of scattering amplitudes, while the last graph (in our case Σ+−
QL,d)) cannot be cut, but



50CHAPTER 5. THE COLLISION INTEGRAL - TWO LOOP SELF-ENERGIES

corresponds to a product of scattering amplitudes of which one contains a + vertex

(in our case this is the product a†d′). To this extent, their result is similar to ours.

They concluded that decay amplitudes with only − vertices correspond directly to

specific cuts of the associated self-energy graph while decay amplitudes containing

some + vertices correspond to self-energy graphs which are not cuttable. They did

not state that one product (i.e. in our case a d′†) is missing nor is an explanation

given for this.

For the derivation of the cutting rules of Bedaque et al., the KMS relation was

used and can therefore not be generalized directly for non-equilibrium systems. In

their approach all “uncuttable” graphs cancel when a summation over the internal

vertices (s = −,+) is performed. The discrepancy with the approach of Kobes and

Semenoff lies in the difference in definition of the propagators which are to be cut. A

closer analysis of Gelis [33] has revealed that uncuttable graphs in the sense of Kobes

and Semenoff are hidden in the cuttable graphs of Bedaque et al. As an example,

they have investigated the two loop self-energy graphs with a vertex correction (these

graphs correspond to our cloud graphs with only one type of particles). But these

graphs are problem-free anyway and they have found the same products of scattering

amplitudes as we have.

For a further review of the different approaches for thermal cutting rules we refer

the reader to Ref. [34] while for cutting rules in the imaginary time formalism to

Ref. [35].

Let us conclude this section by commenting that the collision integral constructed

from a first set of two loop self-energy diagrams, i.e. the graphs R a), L a), C a) and

b), E a) and b), and QL a) of Fig. 5.2, was expressed in terms of all possible 2→ 2

cross sections. The collision integral constructed from the remaining self-energy

diagrams of Fig. 5.2 was rewritten in terms of products of scattering amplitudes of

the process qq̄ → g. In this fashion, however, it is not possible to obtain an absolute

square of the sum of amplitudes a) to f’) shown in Fig. 5.5 up to order g4m4 since

two products, i.e. Ma)
qq̄→g [Md′)

qq̄→g]
† and Ma)

qq̄→g [Mf ′)
qq̄→g]

† are still missing. We will

tackle this issue in the next section.

5.3 Another approach

We found in the last section that it was not possible to obtain an absolute square

of the sum of the amplitudes a) - f’) shown in Fig. 5.5 up to order g4m4 since two

products, i.e.Ma)
qq̄→g [Md′)

qq̄→g]
† andMa)

qq̄→g [Mf ′)
qq̄→g]

† are still missing.

For the first product, one requires [Md′)
qq̄→g]

† given in Eq.(5.43). This amplitude
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contains the self-energy insertion Π+−(X, p2) which cannot be obtained from the

self-energy graph Σ
(2)+−
QLd) as explained in the last section after Eq.(5.43). The only

other self-energy graph which could possibly supply this self-energy insertion is

obviously Σ
(2)+−
QLa) of Fig. 5.2. Thus let us look at this graph again in more detail: its

contribution to the collision integral reads

J
(2)loss
coll,QLa) = g2m2 π

Ep

∫ d4p1
(2π)4

d4p2
(2π)4

(2π)4 δ(4)(p− p1 − p2) iS
+−(X, p1)

×iG−−(X, p2)
[
−iΠ+−(X, p2)

]
iG++(X, p2) fq(X, ~p). (5.44)

Here and in the following we suppress the color factors for simplicity. Inserting

the quasiparticle approximation iS+−(X, p1) = π/E1{δ(E1 − p01)f̄q(X, p1) + δ(E1 +

p01)fq̄(X,−p1)} yields two contributions. The first one is proportional to f̄q(X, p1)

and is considered later. The second one is proportional to fq̄(X,−p1) and gives

J
(2)loss 2nd

coll,QLa) = g2m2 π

Ep

∫
d3p1

2E1(2π)3
d4p2
(2π)4

(2π)4 δ(3)(~p+ ~p1 − ~p2) δ(Ep + E1 − p02)

×iG−−(X, p2)
[
−iΠ+−(X, p2)

]
iG++(X, p2) fq̄(X, ~p1) fq(X, ~p),(5.45)

where p1 was substituted by −p1 and the p01-integration was performed. Now we in-

sert the quasiparticle approximation of Eqs.(3.63) and (3.64) for G∓∓(X, p2). Using

the relation ±i
p22 −m2 ± iε

= P
±i

p22 −m2
+ πδ(p22 −m2) (5.46)

and the fact that ∫
dp02 P

1

p22 −m2
δ(E2 ± p02) = 0, (5.47)

where P denotes the principal value, we find

J
(2)loss 2nd

coll,QLa) = g2m2 π

Ep

∫ d3p1
2E1(2π)3

d4p2
(2π)4

(2π)4 δ(3)(~p + ~p1 − ~p2) δ(Ep + E1 − p02)

×
[
−iΠ+−(X, p2)

]

∣∣∣∣∣P i

p22 −m2

∣∣∣∣∣
2

+
[
π

E2
δ(E2 − p02)

(
fg(X, p2) +

1

2

)

+
π

E2
δ(E2 + p02)

(
fg(X,−p2) + 1

2

)]2}
fq̄(X, ~p1) fq(X, ~p). (5.48)

The energy conserving δ-function yields p02 = Ep + E1 > 0. Therefore the term

proportional to δ(E2+p02) cannot contribute and the term in the curly bracket reads

∣∣∣∣∣P i

p22 −m2

∣∣∣∣∣
2

+
[
π

E2
δ(E2 − p02)

(
fg(X, p2) +

1

2

)]2
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=

∣∣∣∣∣P i

p22 −m2

∣∣∣∣∣
2

+
π2

E2
2

δ2(E2 − p02)
(
fg(X, p2)f̄g(X, p2) +

1

4

)

=

∣∣∣∣∣P i

p22 −m2

∣∣∣∣∣
2

+
π

E2
δ(E2−p02)f̄g(X, p2)

π

E2
δ(E2−p02)fg(X, p2) +

[
π

2E2
δ(E2−p02)

]2

=

∣∣∣∣∣P i

p22 −m2

∣∣∣∣∣
2

+
π

E2
δ(E2−p02)f̄g(X, p2) Θ(p02)iG

−+(X, p2) +
[
πΘ(p02)δ(p2 −m2)

]2

=

∣∣∣∣∣ i

p22 −m2 + iε

∣∣∣∣∣
2

+
π

E2
δ(E2−p02)f̄g(X, p2) iG

−+(X, p2). (5.49)

In the last step we have used p02 > 0 and Eqs.(5.46) and (5.47). Inserting this

expression in Eq.(5.48) gives

J
(2)loss 2nd

coll,QLa) = g2m2 π

Ep

∫ d3p1
2E1(2π)3

d4p2
(2π)4

(2π)4 δ(4)(p+ p1 − p2)
[
−iΠ+−(X, p2)

]

×


∣∣∣∣∣ i

p22 −m2 + iε

∣∣∣∣∣
2

+
π

E2
δ(E2 − p02)f̄g(X, p2) iG

−+(X, p2)




×fq̄(X, ~p1) fq(X, ~p). (5.50)

We can express the second term in terms of the scattering amplitude [−iMd′)
qq̄→g]

† of
Eq.(5.43) to obtain

J
(2)loss 2nd

coll,QLa) = g2m2 π

Ep

∫ d3p1
2E1(2π)3

d4p2
(2π)4

(2π)4 δ(4)(p+ p1 − p2)
[
−iΠ+−(X, p2)

]

×
∣∣∣∣∣ i

p22 −m2 + iε

∣∣∣∣∣
2

fq̄(X, ~p1) fq(X, ~p)

+
π

Ep

∫
d3p1

2E1(2π)3
d3p2

2E2(2π)3
(2π)4 δ(4)(p+ p1 − p2)

×Ma)
qq̄→g [Md′)

qq̄→g]
† fq(X, ~p) fq̄(X, ~p1) f̄g(X, ~p2). (5.51)

Let us comment on this result. The second term gives precisely the contribu-

tion we were looking for, i.e. the missing product of the scattering amplitudes

Ma)
qq̄→g [Md′)

qq̄→g]
†! The first term however gives the same contribution as Eq.(5.45)

with the non-equilibrium propagators G∓∓(X, p2) replaced by the T = 0 Feynman

propagators G
(∗)
F (p2) = (−)i/(p22−m2±iε). Therefore we can make the same manip-

ulations with this term as we did with the first term of Eq.(5.5) in Sec.5.1.1. There,

we found that only one term proportional to fq̄(X, ~p1) contributed to J
(2)loss
coll,QLa), i.e. T3

of Eq.(5.6). We showed that this term corresponds to the s-channel of the process

qq̄ → qq̄. Thus, we can rewrite the first term of Eq.(5.51) in a similar fashion to
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Eq.(5.12) and obtain for Eq.(5.51)

J
(2)loss 2nd

coll,QLa) =
π

Ep

∫
d3p1

2E1(2π)3
d3p3

2E3(2π)3
d3p4

2E4(2π)3
(2π)4 δ(4)(p+ p1 − p3 − p4)

×
∣∣∣Ms−channel

qq̄→qq̄

∣∣∣2 fq(X, ~p) fq̄(X, ~p1) f̄q(X, ~p3) f̄q̄(X, ~p4)

+
π

Ep

∫
d3p1

2E1(2π)3
d3p2

2E2(2π)3
(2π)4 δ(4)(p+ p1 − p2)

×Ma)
qq̄→g [Md′)

qq̄→g]
† fq(X, ~p) fq̄(X, ~p1) f̄g(X, ~p2), (5.52)

where for
∣∣∣Ms−channel

qq̄→qq̄

∣∣∣2 the Feynman propagator GF is used. Here, the gluon prop-

agator can be on-mass shell, and the difference between the non-equilibrium propa-

gator G−− and the Feynman propagator GF matters.

We consider now the contribution to J
(2)loss
coll,QLa) of Eq.(5.44) given by the first term

of iS+− proportional to f̄q(X, p1). We have already evaluated this contribution in

Sec.5.1.1. It gives the terms T5 - T8 of Eq.(5.6). We showed that only T5 and T8

were non-vanishing and lead to the t-channel of quark-antiquark scattering and to

the t- and u-channel of quark-quark scattering shown in Fig. 5.4 a) and b). In each

of these channels the gluonic propagator cannot be on-mass shell. Therefore the

on-shell part of G−− does not contribute and we can replace the non-equilibrium

propagator G−− by the Feynman propagator GF .

In Sec.5.1.1, we derived the mixed terms for quark-quark and quark-antiquark

scattering from the exchange graph Σ
(2)+−
Eb) given in Eq.(5.4). We investigate now the

question whether it is possible to replace the gluonic non-equilibrium propagators

G∓∓ by the Feynman propagators again. This difference only matters for the s-

channel where the gluonic propagator can be on-shell. Therefore we investigate

now the mixed term from the s- and t-channel of quark-antiquark scattering. This

mixed term is given in the first term of Eq.(5.8) and the contribution of the gluonic

propagators reads G−−(X, p+ p1)G
++(X, p− p3) +G−−(X, p− p3)G

++(X, p+ p1).

Setting G∓∓ = G
(∗)
F + Gn.e., where Gn.e. denotes the on-shell non-equilibrium part

of the diagonal propagators, and using the fact that the gluon propagator of the

t-channel is off-shell, we find

G−−(X, p+ p1)G
++(X, p− p3) +G−−(X, p− p3)G

++(X, p+ p1)

= [GF (X, p+ p1) +Gn.e.(X, p+ p1)] P
−i

(p− p3)2 −m2

+P
i

(p− p3)2 −m2
[G∗

F (X, p+ p1) +Gn.e.(X, p+ p1)]

= GF (X, p + p1) P
−i

(p− p3)2 −m2
+ P

i

(p− p3)2 −m2
G∗

F (X, p+ p1).(5.53)
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Thus the non-equilibrium part of the gluonic propagator of the s-channel does not

contribute and one can replace the non-equilibrium propagators by their Feynman

counterparts. To summarize, the contributions of Σ
(2)+−
QLa) and Σ

(2)+−
Eb) to the collision

integral read

J
(2)loss
coll,q =

π

Ep

∫
d3p1

2E1(2π)3
d3p3

2E3(2π)3
d3p4

2E4(2π)3
(2π)4 δ(4)(p+ p1 − p3 − p4)

×
{
1

2
|Mqq→qq|2 fq(X, ~p) fq(X, ~p1) f̄q(X, ~p3) f̄q(X, ~p4)

+ |Mqq̄→qq̄|2 fq(X, ~p) fq̄(X, ~p1) f̄q(X, ~p3) f̄q̄(X, ~p4)
}

+
π

Ep

∫
d3p1

2E1(2π)3
d3p2

2E2(2π)3
(2π)4 δ(4)(p+ p1 − p2)

×Ma)
qq̄→g [Md′)

qq̄→g]
† fq(X, ~p) fq̄(X, ~p1) f̄g(X, ~p2), (5.54)

where for the quark-quark and quark-antiquark scattering amplitudes T = 0 Feyn-

man propagators are used.

As was stated at the beginning of this section, the product Ma)
qq̄→g [Mf ′)

qq̄→g]
†

is still missing. Obviously it can only emerge from the self-energy graph Σ
(2)+−
Ra) .

Since the rainbow and the quark-loop graphs have similar topologies, this product

can be derived in an analogous way. In Sec.5.1.2, we showed that Σ
(2)+−
Ra) yield the

t- and u-channel of the process qq̄ → gg and the s- and u-channel of the process

qg → qg shown in Fig. 5.4. Due to our choice of masses, none of the propagators

of these channels can be on-mass shell, i.e. only the principal values of the propa-

gators contribute. Therefore it makes no difference if one uses the non-equilibrium

or the (temperature independent) Feynman propagators! We emphasize that the

self-energy graph Σ
(2)+−
Ra) not only yields the above mentioned absolute squares of

scattering channels but also the “missing” product Ma)
qq̄→g [Mf ′)

qq̄→g]
† without any

change of propagators! This result is quite surprising and could not be derived by

any “cutting rules”.

We comment that also the gluonic propagator is off-shell for the s-channel of the

process qq̄ → gg. Otherwise it could not decay into two on-shell gluons.

We conclude that only the exchange propagator of the s-channel of qq̄ scattering

can be on-mass shell, and only in this case the substitution of the non-equilibrium

propagator by the Feynman propagator matters.

We summarize the result of this section. Collecting all contributions of the Fock

and the two loop self-energies to the collision integral, the transport equation reads

2p∂Xfq(X, p) =
∫

d3p1
(2π)32E1

d3p2
(2π)32E2

(2π)4δ(4)(p+ p1 − p2)|Mg→qq̄|2
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×[fg(X, p2)f̄q̄(X, p1)f̄q(X, p)− f̄g(X, p2)fq̄(X, p1)fq(X, p)]

+
∫
dΩ

d3p1
(2π)32E1

|~vp − ~v1| 2Ep 2E1

×



4∑
j=1

sj
dσj

dΩ
|qa→bc

[
f̄q(X, ~p) f̄a(X, ~p1) fb(X, ~p3) fc(X, ~p4)

−fq(X, ~p) fa(X, ~p1) f̄b(X, ~p3) f̄c(X, ~p4)
]}

, (5.55)

where j denotes the four processes j = 1...4 corresponding to qq̄ → gg, qg → qg ,

qq → qq and qq̄ → qq̄. The sj are symmetry factors s1 = s3 = 1/2 and s2 = s4 = 1.

This equation is correct up to order g4m4.

For the evaluation of the 2→ 2 cross sections, the Feynman propagators, i.e. the

T = 0 equilibrium propagators were used, while for the evaluation of the process

qq̄ → g up to order g4m4 the non-equilibrium propagators of Eqs.(3.61) to (3.64)

were used.

One last comment is in order: for this derivation we evaluated the self-energy

graphs directly with the help of Feynman rules. We were able to rewrite each self-

energy graph in terms of one or several products of scattering amplitudes. It is not

possible to find “cutting rules” from which the same result could be obtained.

Let us now compare our work with results found by other authors. Blaizot

and Iancu [36] found a collision term containing the absolute square of a matrix

element corresponding to the t-channel of particle-particle scattering, and to the s-

and t-channel of particle-antiparticle scattering. The u-channel of particle-particle

scattering nor the mixed terms between the channels are included. For the evaluation

of the scattering amplitudes the equilibrium retarded propagator is used and not the

causal propagator as we have.

Baier, Dirks, and Redlich [37] study the production of thermal dileptons in a

hot pion gas, examining the two loop diagrams that can occur within the theory.

In their approach, these graphs are subdivided as giving rise to real and virtual

processes, and in doing so, the exchanged meson is represented accordingly by its

principal or thermal parts respectively.
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Chapter 6

Three and more loop self-energies

Up to this point, we have made a semiclassical expansion that involves keeping

only the leading term in expanding the exponential in Eq.(3.54) (here the factor

h̄ has been set to one.) In addition, we have examined sets of diagrams organized

according to the number of interaction lines, i.e. according to the coupling strength.

We have found that all generic types of graphs are required in order to build up the

cross sections that ultimately occur in a Boltzmann-like equation. However, at the

level of two exchanged gluons, we are already faced with five types of graphs, and

this number increases rapidly with the number of exchanged gluons. One possible

simplifying assumption is the additional imposition of an expansion in the inverse

number of colors. According to such a criterion, the ladder, the rainbow and the

cloud diagrams are leading, since their color factors for one color group are of order

O(N2
c ) while for the quark-loop diagram it goes as Nc and for the exchange diagram

only as N0
c (see Appendix B).

Since the ladder and the rainbow diagram lead to cross sections involving gluons

while the quark-loop diagram leads to elastic quark-(anti)quark cross sections, one

can conclude that the quark degrees of freedom are suppressed in comparison with

the gluon degrees of freedom. This is in agreement with the results of an evaluation

of the quark-quark scattering amplitude within this model [12], in which the quark

degrees of freedom are neglected, however due to kinematical reasons. Although the

ladder and the rainbow diagram are both of order O(N2
c ), the ratio of their color

factors for one color group is not one, but

FR

FL
=

CF

CA
, (6.1)

which is 4/9 ≈ 1/2 for Nc = 3. Since in the rainbow diagram the second gluon

couples at the quark-line while in the ladder diagram it couples at the first gluon,
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two quark-quark-gluon vertices are suppressed by a factor 4/9 per color group in

comparison with two 3-gluon vertices. Thus, there is no strict ordering of the gluon

graphs according to a single class of diagrams, in an expansion in 1/Nc. Although

the ladder graphs and the processes that they lead to appear largest, one should

note that the symmetry factors of the other graphs compensate for this. A numerical

study is essential to determine the actual order of magnitude of each graph.

Note that an expansion in color also incorporates the coupling strength. Assum-

ing that g ∼ 1/Nc, we find that the Fock term ∼ g2N2
c and the ladder diagram

∼ g4N4
c are of the same order.

Note also that the result here stands in apposition to the naive expectations

from the scalar quark-gluon model that was discussed in Chapter 2. Here, the fact

that the ladder diagrams dominate the elastic scattering process could lead one to

heuristically develop a transport theory that favors only these types of graphs. We

have however found no reason to justify such an assumption.

6.1 Three loop self-energies

In the case of the two loop self-energy for quarks, we found five generic types of

diagrams. For the three loop self-energy however the number of generic types of

diagrams is much larger. To reduce this we make an expansion in 1/Nc as explained

above and omit all graphs containing quark-loops. The number of the remaining self-

energy diagrams is still enormous. Therefore we will not perform the calculations

in any detail but rather outline it. We start with the three loop rainbow and ladder

diagram and all possible mixtures between them shown in Fig. 6.1. To be specific,

Figure 6.1: Generic three loop ladder, rainbow and mixed diagrams.

we consider Σ(3)+− which is needed for the construction of the loss term. Then

there are 16 possibilities of arranging the − or + indices at the remaining four

vertices. Let us first choose the possibility where only + vertices on the left hand

side of each diagram are placed and only − vertices on the right hand side. This

gives the diagrams shown in Fig. 6.2. These four graphs then lead to the squared



6.1. THREE LOOP SELF-ENERGIES 59

+ −

+ −
+ −

+ −+ −

+ −

+ −+ −

+ −

+ −+ −+ −
Figure 6.2: One possible index arrangement for Σ(3)+−.

scattering amplitudes of individual channels of processes containing three gluons.

For kinematical reasons only processes with at least two partons in the initial and

final state are involved. Since we are considering the loss term, one quark must be

in the initial state. This gives us the four processes qq̄ → ggg, qg → qgg, qq̄g → gg

and qgg → qg. Calculations analogous to the ones in Sec. 5.1 prove this. For the

first two processes the generic Feynman diagrams are shown in Fig. 6.3.

−iMqq̄→ggg = + + +

−iMqg→qgg = + +

+ + +

+ + +

Figure 6.3: Generic Feynman diagrams for the processes qq̄ → ggg and qg → qgg.

The mixed terms between single channels are provided by the self-energy dia-

grams shown in Fig. 6.4 as we have checked.
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Figure 6.4: Generic three loop self-energy diagrams leading to mixed terms between

single channels of scattering processes involving three gluons.
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The last six diagrams of Fig. 6.4 are not symmetric, and it is to be understood

that the mirror reflected diagrams must also be taken into account. Note that

our expansion in 1/Nc is not rigorous since we are keeping non-planar diagrams

which can be of lower order in 1/Nc than diagrams containing quark-loops. For

comparison see the case of two loop self-energies where the exchange diagram is

subleading compared to the quark-loop graph.

We saw in Sec. 5.2 that the two loop self-energies not only lead to 2 → 2 cross

sections but also to corrections to processes of lower order, i.e. to the annihilation

process qq̄ → g. Similarly we expect the three loop self-energies to provide correc-

tions of order g6m6 to all 2→ 2 processes obtained in Sec. 5.1 and also to qq̄ → g.

Since the derivation of these corrections follows the one given in Sec. 5.2 and above,

we will not list them here but give only one final example: The process qq̄ → g is

shown in Fig. 5.5 up to order g3m3. Hence, the product of two amplitudes among

b) to g’) of Fig. 5.5 is of order g6m6. The three loop self-energy diagrams which give

the squared amplitudes bb†, cc†, ee† and ff † are shown in Fig. 6.5. Since self-energy

graphs containing quark-loops are neglected, the product dd† cannot be obtained in

this approximation.

− +

− +

− +

− +− − + + − +− +− + − +−

−

+

+

Figure 6.5: Generic three loop diagrams leading to corrections of order g6m6 of the

process qq̄ → g.

6.2 n to m processes

Of the self-energy diagrams of order O(g2n), we take again only the diagrams which

are leading in an expansion in 1/Nc. On evaluation, the ladder diagram, the rainbow

diagram and all possible mixtures between these two lead to the scattering process

qq̄ → ng and all possible crossed processes, such as qq̄g → (n− 1)g, qg → q(n− 1)g,

... in which at least two partons occur both in the initial and final states. In addition

to this, the leading self-energy diagrams provide corrections of order O(g2n) to lower
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order processes. The transport equation for quarks then reads

2p∂Xfq(X, ~p) =
∫

d3k

(2π)32Ek

d3p1
(2π)32E1

(2π)4δ(4)(p+ k − p1)|Mqq̄→g|2

×
[
f̄q(X, ~p)f̄q̄(X,~k)fg(X, ~p1)− fq(X, ~p)fq̄(X,~k)f̄g(X, ~p1)

]

+
∞∑

m,n=1

∫
d3k

(2π)32Ek

d3p1
(2π)32E1

...
d3pm+n

(2π)32Em+n
(2π)4

×
{
δ(4)(p+ k + p1 + ...+ pm−1 − pm − ...− pm+n)

×sm−1sn+1 |M(qq̄ (m− 1)g → (n+ 1)g)|2
×
[
f̄q(~p)f̄q̄(~k)f̄g(~p1)...f̄g(~pm−1)fg(~pm)...fg(~pm+n)

−fq(~p)fq̄(~k)fg(~p1)...fg(~pm−1)f̄g(~pm)...f̄g(~pm+n)
]

+ δ(4)(p+ p1 + ... + pm − k − pm+1 − ...− pm+n)smsn |M(q mg → q ng)|2
×
[
f̄q(~p)f̄g(~p1)...f̄g(~pm)fq(~k)fg(~pm+1)...fg(~pm+n)

−fq(~p)fg(~p1)...fg(~pm)f̄q(~k)f̄g(~pm+1)...f̄g(~pm+n)
]}

(6.2)

with the symmetry factors sn = 1/(n!). This is our final result for the transport

equation and its resemblance to the Boltzmann equation is obvious.



Chapter 7

Pinch singularities

When dealing with transport theory, and in particular when applying the quasi-

particle assumption to processes of higher order, it becomes mandatory to examine

another possible problem which can arise, the issue of so-called pinch singularities.

To elucidate this, let us look again at the quark-loop self-energy diagrams shown in

Fig. 5.2. We can write the sum of these four self-energy graphs as

Σ
(2)+−
QL (X, p) ≡ Σ

(2)+−
QLa) (X, p) + Σ

(2)+−
QLb) (X, p) + Σ

(2)+−
QLc) (X, p) + Σ

(2)+−
QLd) (X, p)

= ig2m2
∫

d4k

(2π)4
iS+−(X, p− k) iF+−

QL (X, k) (7.1)

with

F+−
QL (X, k) ≡ G++(X, k) Π+−(X, k)G−−(X, k) +G++(X, k) Π++(X, k)G+−(X, k)

+G+−(X, k) Π−−(X, k)G−−(X, k) +G+−(X, k) Π−+(X, k)G+−(X, k)

(7.2)

where Πij is defined in Eq.(5.27) and all color factors are suppressed for simplicity.

We see that in Eq.(7.2) each term contains two gluonic propagators with the

same argument. Since the off-diagonal propagators are on-shell and also the diagonal

propagator contain on-shell parts, seen in the δ-functions in k that are present, we

obtain for each term a product of two δ-functions, which is clearly divergent.

This is a manifestation of so-called pinch singularities. The etymology is made

evident if we express F+−
QL in terms of the retarded and advanced components given

in Eqs.(3.39), (3.40), (3.45) and (3.46):

F+−
QL (X, k) ≡ GR(X, k) ΠR(X, k)G+−(X, k) +G+−(X, k) ΠA(X, k)GA(X, k)

−GR(X, k) Π+−(X, k)GA(X, k). (7.3)
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In the last term, the product

GR(X, k)GA(X, k) =
1

k2 −m2 + iε

1

k2 −m2 − iε
(7.4)

has a pinch singularity, since an integration contour running along the real k0 axis is

“pinched” between the two poles for ε→ 0. For the rainbow and ladder self-energy

graphs of Fig. 5.2, the situation is similar as for the quark-loop graph: each graph

contains two propagators with the same argument. Therefore pinch singularities

may occur in these terms, too.

In equilibrium, however, studies over the last decade show that pinch singularities

vanish in the calculations of physical quantities [14, 38] in a well-defined theory (such

as thermal field theory). Therefore we start our investigation in equilibrium.

7.1 Cancellation of pinch singularities in equilib-

rium

To get a feeling of how the cancellation of pinch singularities happens, we investigate

a couple of cases in equilibrium.

7.1.1 Model with one type of particle

We start with a simplified model that contains only one type of particle. Therefore

the number of generic two loop self-energy diagrams reduces drastically. Then the

rainbow, ladder and quark-loop graphs are topically equivalent as well as the cloud

and exchange graphs; i.e. the number of generic graphs reduces to two, see Fig. 7.1.

Self-energy with zero momentum

It is useful now to make another simplifying assumption: we calculate the self-

energies at zero momentum. For this case, the labeling of momenta is shown in

Fig. 7.1. Note that the cloud diagram has two pairs of propagators with the same

argument while the rainbow diagram has in fact three propagators with the same

argument. Thus both are possible candidates that might display pinch singularities.

We start now with the investigation of the rainbow diagrams which are shown for

Σ−−
R and Σ−+

R in more detail in Fig. 7.2. From these two self-energies, the retarded

self-energy can be constructed as

Σr
R = Σ−−

R + Σ−+
R . (7.5)
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ΣR(X, 0) =
klk

k
l−k

(a)

ΣC(X, 0) =
kl

l k

k−l

(b)

Figure 7.1: Generic two loop self-energy diagrams for one parton type and vanishing

momentum.

Σ−−
R =

- - - -

a)

+ - + - -

b)

+ - - + -

c)

+ - + + -

d)

Σ−+
R =

- - - +

e)

+ - + - +

f)

+ - - + +

g)

+ - + + +

h)

Figure 7.2: Rainbow self-energy diagrams for Σ−−
R and Σ−+

R .

Since the retarded self-energy is a physically relevant property, that enters, for exam-

ple, into the constraint equation Eq.(3.56), we would like to investigate the diagrams

of Fig. 7.2 in more detail. In each of the diagrams b), c) and f) of Fig. 7.2, it is pos-

sible to identify an internal vertex to which lines three off-diagonal Green functions

are attached. Since these Green functions are on mass shell, this corresponds to a

decay of an on-shell particle into two on-shell particles of the same species. This is a

forbidden process, and therefore these three diagrams vanish. We now take a closer

look at Fig. 7.2 g). The propagator of the larger bow has an on-shell momentum.

Since the self-energy is calculated for vanishing momentum, the two propagators

D−− and D++ have to be on-shell too. Thus each of the inner vertices corresponds

to a decay of an on-shell particle into on-shell particles and this graph is therefore

also vanishing. Consequently, Σr
R is the sum of the remaining diagrams a), d), e)

and h):

Σr
R(X, 0) = (−igm)4

∫
d4k

(2π)4
d4l

(2π)4

{
[D−−(k)]3D−−(l − k)D−−(l)
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+D−−(k)[D−+(k)]2D++(l − k)D++(l)

−D−−(k)[D−+(k)]2D−−(l − k)D−−(l)

−D++(k)[D−+(k)]2D++(l − k)D++(l)
}
. (7.6)

This construction appears to contain pinch singularities, evidenced by the fact that

products ofD(k) occur, and it is imperative to show that while the individual graphs

diverge, their combination leads to the fact that the apparent divergence vanishes

through cancellation.

Since physical quantities should be independent of the choice of σ we are free to

choose to take σ = β/2 as e.g. in [39, 40]. Then the propagators given in Eq.(3.30)

read

iDσ=β/2(ω) =

( i
ω2−E2+iε

0

0 −i
ω2−E2−iε

)
+

2πδ(ω2−E2)

eβ|ω| − 1

(
1 eβ|ω|/2

eβ|ω|/2 1

)

=

(
D1 +Dβ D′

β

D′
β D2 +Dβ

)
(7.7)

so defining D1, D2, Dβ and D′
β
1. Clearly, D1 is just the Feynman propagator for a

scalar particle, iDF defined in Eq.(3.27). For this subsection, we stay with above

notation, corresponding to that of Ref. [39].

Now consider the last term of the retarded self-energy in Eq.(7.6):

∫ d4l

(2π)4
D++(l − k)D++(l) =

∫ d4l

(2π)4
{D2(l − k)D2(l) +D2(l − k)Dβ(l)

+Dβ(l − k)D2(l) +Dβ(l − k)Dβ(l)}
=

∫
d4l

(2π)4
{−D1(l − k)D1(l)−D1(l − k)Dβ(l)

−Dβ(l − k)D1(l) +Dβ(l − k)Dβ(l)}
= −

∫ d4l

(2π)4
D−−(l − k)D−−(l). (7.8)

In the first step, we have made use of the relations [39]

∫
d4l

(2π)4
D1(l − k)D1(l) = −

∫
d4l

(2π)4
D2(l − k)D2(l) (7.9)

and ∫
d4l

(2π)4
D1(l − k)Dβ(l) = −

∫
d4l

(2π)4
D2(l − k)Dβ(l). (7.10)

1Our notation leaves out a factor i in the last matrix, in order to establish consistency with the

standard use of thermo field theory users [39].
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In the second step, we have made use of the fact that the fourth term, Dβ(l−k)Dβ(l),

has to vanish, since together withD′
β(k) of Eq.(7.6) it corresponds again to the decay

of an on-shell particle into two on-shell particles. With Eq.(7.8), we can rewrite

Eq.(7.6) for the retarded self-energy as

Σr
R(X, 0) = (gm)4

∫
d4k

(2π)4
d4l

(2π)4
D−−(l − k)D−−(l)

×
{
[D−−(k)]3 − 2D−−(k)[D−+(k)]2 +D++(k)[D−+(k)]2

}
.(7.11)

It is now convenient to make use of the following representation of δ-function,

2πδ(k2 −m2) =
i

k2 −m2 + iε
− i

k2 −m2 − iε
= D1(k) +D2(k). (7.12)

Expressing Dβ and D′
β in terms of D1 and D2 as

Dβ(k) = [D1(k) +D2(k)] fB

D′
β(k) = [D1(k) +D2(k)] gB (7.13)

with the Bose-Einstein distribution fB = 1/(eβ|k0| − 1) and gB = eβ|k0|/2/(eβ|k0| −
1), possible pinch singularities will manifest themselves no longer as products of

δ functions but rather as products of D1D2. Then the term in curly brackets of

Eq.(7.11) is evaluated to give

{...} = [D1 + (D1 +D)fB]
3 + [D2 + (D1 +D2)fB](D1 +D2)

2g2B

−2[D1 + (D1 +D2)fB](D1 +D2)
2g2B. (7.14)

Using the fact that f 2
B − g2B = −fB, we find

{...} = (D1)
3 + [(D1)

3 + (D2)
3]fB. (7.15)

This expression is well defined, since no products of D1D2 occur any longer. With

the relation

[D1(k)]
3 + [D2(k)]

3 = −1
2

(
∂

∂m2

)2

[D1(k) +D2(k)]

= −1
2

(
∂

∂m2

)2

2πδ(k2 −m2), (7.16)

we can write the retarded self-energy as

Σr
R(X, 0) = (gm)4

∫
d4k

(2π)4
d4l

(2π)4
D−−(l − k)D−−(l)

×

[D1(k)]

3 − 1

2

(
∂

∂m2

)2

2πδ(k2 −m2)fB


 . (7.17)
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We conclude that for the retarded rainbow self-energy Σr
R, no pinch singularities

occur.

We now have to consider the cloud self-energy of Fig. 7.1 (b). The retarded self-

energy is constructed in a similar way as for the rainbow diagram. The calculation of

such a diagram within the framework of φ3 theory has been performed in [39]. This

result can be simply taken over for our purposes, and we quote the final expression

here:

Σr
C(X, 0) = (gm)4

∫
d4k

(2π)4
d4l

(2π)4

[
(D1(k))

2 + χ(k)
]

× [D1(l − k) +Dβ(l − k)]
[
(D1(l))

2 + χ(l)
]
, (7.18)

where the function

χ(k) = 2D1(k)Dβ(k) + [Dβ(k)]
2 − [D′

β(k)]
2

= 2P
i

k2 −m2
2πδ(k2 −m2)fB

= i
∂

∂m2
2πδ(k2 −m2)fB (7.19)

is free of singularities. Thus we conclude that in equilibrium, the two loop retarded

self-energies Σr
R/C have no pinch singularities for vanishing momentum. Note that

it was necessary to consider the retarded self-energies which are the sum of Σ
(2)−−
R/C

and Σ
(2)−+
R/C since only the sum of both terms is free of pinching and not each term

in itself. The reason for this lies in the fact that the rainbow diagram contains not

only two propagators with the same argument but three.

Self-energy with non-zero momentum

As a next step, we now consider the case for self-energies with non-vanishing mo-

mentum but still with only one particle type. In order to establish our labeling of

momenta, the generic rainbow and cloud diagram are shown in Fig. 7.3 for finite

momentum. One notices immediately that the cloud self-energy in Fig. 7.3 has no

pair of propagators with the same argument. Therefore no pinch singularities can

arise in this case and we only have to examine the rainbow self-energy further. We

start with Σ−−
R shown in Fig. 7.2 a) to d). For the same reason a mentioned above

the diagrams b) and c) vanish. The remaining two graphs give

Σ−−
R (X, p) = (−igm)4

∫
d4k

(2π)4
d4l

(2π)4
D−−(k − p)

{
D−−(l − k)D−−(l)[D−−(k)]2

+D++(l − k)D++(l)[D−+(k)]2
}
. (7.20)
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ΣR(X, p 6= 0) =
klk

k−p
l−k

p

(a)

ΣC(X, p 6= 0) = p
kl

l−p k−p
k−l

(b)

Figure 7.3: Generic two loop self-energy diagrams with non-zero momentum.

Pinch singularities can only occur for k on-shell. In this case we are allowed to use

Eq.(7.8) and find

Σ
−−(PS)
R (X, p) = (−igm)4

∫
d4k

(2π)4
d4l

(2π)4
D−−(k − p)D−−(l − k)D−−(l)

×
{
[D−−(k)]2 − [D−+(k)]2

}
. (7.21)

With the help of Eqs.(7.7) and (7.13), we can express the term in curly brackets in

terms of D1 and D2 as

{...} = D2
1 + 2(D2

1 +D1D2)fB + (D1 +D2)
2(f 2

B − g2B). (7.22)

Using again the fact that f 2
B − g2B = −fB, we obtain

Σ
−−(PS)
R (X, p) = (gm)4

∫
d4k

(2π)4
d4l

(2π)4
D−−(k − p)D−−(l − k)D−−(l)

×
{
[D1(k)]

2 +
(
[D1(k)]

2 − [D2(k)]
2
)
fB
}
, (7.23)

which is free of pinch singularities.

Now we turn to Σ−+
R shown in Fig. 7.2 e) to h). Diagram f) vanishes as explained

above while for diagram g) the above given argumentation does not hold true any

more and it gives a finite contribution. On the other hand pinch singularities can

only arise if the momentum k is on-shell. For this particular choice of k the inner

two vertices of graph g) contribute to the forbidden process of an on-shell particle

decaying into two on-shell particles of the same species. Therefore only graphs e)

and h) can possible display pinch singularities:

Σ
−+(PS)
R (X, p) = −(−igm)4

∫ d4k

(2π)4
d4l

(2π)4
D+−(k − p)D−−(l − k)D−−(l)

×
{
D−+(k)

[
D−−(k)−D++(k)

]}
. (7.24)

Since D−+(k) is on-shell we are allowed to use Eq.(7.8) again. Using Eqs.(7.7) and

(7.13) the term in curly brackets reads

{...} = (D1 +D2)gB (D1 −D2) (7.25)



70 CHAPTER 7. PINCH SINGULARITIES

and we therefore obtain

Σ
−+(PS)
R (X, p) = (gm)4

∫
d4k

(2π)4
d4l

(2π)4
D+−(k − p)D−−(l − k)D−−(l)

×
(
[D2(k)]

2 − [D1(k)]
2
)
gB, (7.26)

where no products of D1D2 occur any longer.

We summarize our result found in this subsection: for only one particle type, the

two loop self-energies are given as Σ−− = Σ−−
R +Σ−−

C and Σ−+ = Σ−+
R +Σ−+

C . Then

for finite momentum p both, Σ−−(X, p) and Σ−+(X, p), are free of pinch singularities

while for vanishing momentum only the sum of both, i.e. the retarded self-energy

Σr(X, p) is free from pinching.

7.1.2 Model with two particle types

In this subsection, we consider the inclusion of different kinds of particles interacting

with each other as in our model introduced in Chapter 2. Our task is now to show

that the pinch singularities vanish in equilibrium. Since we want to generalize later

on our results for systems in non-equilibrium if possible we choose this time the

σ = 0 representation. For our purpose, it is helpful to use following relations,

Π−−(p) = −Π++(p)∗ (7.27)

=Π−−(p) =
i

2

[
Π−+(p) + Π+−(p)

]
(7.28)

Π+−(p) = eβp0 Π−+(p). (7.29)

The first two are valid in general (see Eq.(3.43) and (3.44)) while the last one is the

KMS relation of Eq.(3.16) and holds only in equilibrium.

We consider only Σ(2)+− shown in Fig. 5.2. The calculations for Σ(2)−− can then

be performed in a similar way. Only rainbow, ladder and quark-loop graphs are

possible candidates for pinch singularities since they contain a pair of propagators

with the same argument. We start with the sum of the four quark-loop graphs QL

a) to QL d) of Fig. 5.2 and given in Eq.(7.1). With the help of the above relations

F+−
QL defined in Eq.(7.2) can be written as

F+−
QL = <Π−− [−G++ G+− +G+− G−−]

+i=Π−−
[
G++G+− +G+− G−− − 2eβp0

eβp0 + 1
G++ G−− − 2

eβp0 + 1
G+− G+−

]
(7.30)
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where the arguments (X, k) are suppressed. The propagators of Eq.(3.23) read for

σ = 0 as

Dσ=0(k) =

(
DF (k) 0

0 −D∗
F (k)

)

+ [DF (k)−D∗
F (k)]

(
n(|k|) [Θ(−k0) + n(|k|)]

[Θ(k0) + n(|k|)] n(|ω|)
)
.(7.31)

Inserting these expressions for the propagators, one can express F+−
QL in terms of GF

and G∗
F . After some algebra, one finds

F+−
QL (X, k) = <Π−−(X, k)

[
G2

F (X, k)−G∗2
F (X, k)

]
[Θ(k0) + n(|k|)]

+i=Π−−(X, k)
[
G2

F (X, k) +G∗2
F (X, k)

] 1

e−βk0 + 1
. (7.32)

No products of the form GF G∗
F occur, and therefore one may conclude that this

expression is also free of pinch singularities.

For the sum of the four rainbow graphs shown in Fig. 5.2 R a) to R d), one obtains

a similar expression by replacing the gluonic propagators by quark propagators and

the self-energy insertion Π by the quark Fock self-energy ΣF,q shown in Fig. 4.2.

One finds

F+−
R (X, k) = <Σ−−

F,q (X, k)
[
S2
F (X, k)− S∗2

F (X, k)
]
[Θ(k0) + n(|k|)]

+i=Σ−−
F,q (X, k)

[
S2
F (X, k) + S∗2

F (X, k)
] 1

e−βk0 + 1
, (7.33)

which is also free of pinch singularities.

For the sum of the four ladder graphs shown in Fig. 5.2 L a) to L d) one cannot

perform an analogous calculation since the graph Σ+−
Ld) vanishes due to the vertices

with three on-shell gluons. One finds the expression for F+−
L (X, k) to be

F+−
L = G++ Π̃+− G−− +G++ Π̃++ G+− +G+− Π̃−− G−−, (7.34)

where Π̃ is the gluonic Fock self-energy Σ−+
F,g(a) shown in Fig. 4.2 (a). Since pinch

singularities can only occur on-shell, we consider now the self-energy insertions on-

shell and find

Π̃+−(X;Ek, ~k) = Π̃−+(X;Ek, ~k) = =Π̃−−(X;Ek, ~k) = 0 (7.35)

Π̃−−(X;Ek, ~k) = −Π̃++(X;Ek, ~k) = <Π̃−−(X;Ek, ~k). (7.36)

Inserting this into Eq.(7.34) yields

F+−
L (X;Ek, ~k) = <Π̃−−(X;Ek, ~k)

[
G2

F (X;Ek, ~k)−G∗2
F (X;Ek, ~k)

] [
Θ(k0) + n(|k|)

]
.

(7.37)
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This expression is also free from pinching, and therefore F+−
L (X, k) for arbitrary k

has no pinch singularities.

We summarize that in equilibrium in single two loop self-energy graphs pinch

singularities can occur, but the sum of the graphs a) to d) of one generic type

(i.e. rainbow, ladder or quark-loop graphs) is free of pinching.

7.2 Pinch singularities in non-equilibrium

Our task is now to investigate if and how the pinch singularities cancel in non-

equilibrium. We start with the ladder diagrams of Fig. 5.2 for which we showed in

the last section that the pinch singularities vanish. For this derivation only relations

(7.27) and (7.28) were used. Hence it holds also in non-equilibrium, and we conclude

that even for arbitrary distribution functions fg(X, p) the ladder diagrams have no

pinch singularities.

Unfortunately, the calculations for the rainbow and quark-loop diagrams of

Fig. 5.2 performed in the last section in equilibrium cannot be generalized for the

case of non-equilibrium field theory since the use of the KMS relation which is only

valid in equilibrium was crucial in this derivation.

A similar result was found by Altherr and Seibert [41]. They investigated a scalar

self-energy diagram with an inserted self-energy like our rainbow, ladder or quark-

loop diagram. They found that a cancellation of pinch singularities only occurs if

the condition

[Θ(p0)n(p)−Θ(−p0) (1 + n(p))] Σ+−(P ) = ε(p0) [Θ(p0) + n(p)] Σ−+(P ) (7.38)

is fulfilled. For p0 > 0 this gives

n(p)Σ+−(P ) = [1 + n(p)] Σ−+(P ) (7.39)

and if n(p) is the Bose-Einstein distribution this condition reduces to the KMS

relation (7.29). The time evolution of the particle number density reads

−2ip0dn(p, t)
dt

= [1 + n(p)] Σ−+(P )− n(p)Σ+−(P ). (7.40)

If condition (7.39) it fulfilled, one is left with

dn(p, t)

dt
= 0. (7.41)

On first sight, this is very unsatisfactory for a non-equilibrium field theory. But on

the other hand, the time variation of the density matrix has to be slow compared to
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the typical time scale of the particle interactions. Otherwise the Fourier transfor-

mation of the propagators does not make sense. Although there is reversibility at

the microscopic level, one can impose the condition of irreversibility at the macro-

scopic level. Even if a slow variation of the density matrix is assumed, the condition

(7.39) is not guaranteed to hold. The micro-reversibility conditions are only satis-

fied by equilibrium distributions. The only alternative would be to give up energy

conservation at the vertices.

Note that relation (7.39) implies that the collision term of Eq.(4.1) vanishes.

Then clearly the system is in equilibrium and therefore no pinch singularities arise.

Although Altherr and Seibert found that only for systems in thermal and chem-

ical equilibrium the pinch singularities cancel, there are several attempts to find

solutions to this problem for systems out of equilibrium.

We start with a subsequent paper of Altherr [42]. There, the propagators are

expressed in terms of the retarded and advanced propagators

∆R/A(K) =
±i

K2 −m2 ± iγk0
, (7.42)

where γ is an arbitrary finite width. Due to this width the pathologies associated

with multiple products of delta-functions are regularized. The width is introduced

here heuristically “by hand”, but it can in fact be calculated perturbatively. We will

come to this point again in the next chapter.

A couple of years later, Dadić developed two mechanisms for the elimination of

pinch singularities in non-equilibrium field theory [43]. The first one is based on the

vanishing of phase space at the singular point, and it can be applied e.g. to QED with

massive electrons and massless photons. This however does unfortunately not apply

to our theory, since we have massless quarks and massive gluons. In massless QCD,

this method fails, too. But here the second mechanism holds: the pinch singularities

cancel due to the spinor/tensor structure of the single self-energy insertion. Since

we consider scalar particles, this mechanism does not work in our case either.

Bedaque [44] argued that pinch singularities are an artifact of an infinite interac-

tion time. If the interaction is switched on at a finite time then the integration range

over time becomes limited. In this bounded domain the functions are well behaved.

In momentum space, the limited range of integration over time produces fractions

of the form i/(α+ iη) instead of delta-functions. Clearly this fraction is related via

Eq.(3.28) to delta-functions but the singularities produced from multiple products of

delta-functions cancel with the singularities from the principal value. Therefore for

a finite interaction time, no pinch singularities can occur. Should on the other hand

the fields have interacted since t = −∞, then they should have attained equilibrium
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by any finite time and pinch singularities would cancel anyway.

Greiner and Leupold [45] have also argued that the pinch singularities are due

to the infinite duration time of the interaction and can be regulated by a finite

duration time. In addition they pointed out the relation of pinch singularities to

Fermi’s golden rule known from elementary scattering theory.

We conclude by commenting that in out of equilibrium field theory the pinch

singularities in our rainbow and quark-loop diagrams do not cancel. But in a more

realistic model with massless vector gluons and scalar or spinor quarks (either mass-

less or massive) the pinch singularities would in fact cancel [43]. Another possibility

is to use propagators with a finite width instead of the quasiparticle approximation.

We will tackle this issue in the next chapter.

We present now another attempt to solve the problem with pinch singularities

in the rainbow and quark-loop diagrams of Fig. 5.2: we use dressed gluons instead

of the bare ones. A dressed gluon is the sum of the bare gluon plus all possible

self-energy insertions in the bare gluon. This is shown in Fig. 7.4 up to the Fock

level where a dressed gluon propagator is denoted by a thick gluon line. One could

= + + + . . .

Figure 7.4: Full gluon propagator.

dress the quark propagator as well but this must be done with caution. Using

now the dressed gluon propagators, the number of generic quark self-energy graphs

reduces and they are shown up to the two loop level in Fig. 7.5. The rainbow and

+ + +

Figure 7.5: Generic self-energy diagrams up to two loops with dressed gluons.

ladder diagrams of Fig. 5.2 are now included in the Fock diagram of Fig. 7.5. We

assume that the resumed gluon propagator is free from singularities, in particular

from pinch singularities, since multiple self-energy insertions can be summed over

as in the random phase approximation. As an example this is shown graphically in
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i j
+

i j i j
+

i j i j i j
+ . . . =

i j

1−i
j

i

Figure 7.6: Summation of propagators with gluon-loop insertions

Fig. 7.6 for the case of multiple gluon-loop insertions with indices i and j.

Hence, the pinch singularities of the quark-loop diagram of Fig. 5.1 have disap-

peared. Nevertheless, this approach is not very satisfactory: The pinch singularities

displayed in the rainbow diagram are still present. Furthermore, without the ladder

and quark-loop diagrams it is not possible to construct the squared scattering am-

plitudes of all 2→ 2 processes shown in Fig. 5.4 since squared amplitudes of single

channels are missing. Additional problems in obtaining a Boltzmann-like equation

are also generated when moving away from δ-function distributions.
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Chapter 8

The constraint equation

So far we have treated only the transport equation (4.1) as an isolated equation.

As we have seen, this in itself has a complexity in deriving an extended Boltzmann

equation. The main assumption that has been made is the quasiparticle approxima-

tion, and this has been inserted into every level of calculation of the self-energy. In

principle, however, the transport equation does not stand alone, but must be solved

simultaneously with the constraint equation, which in practice must be newly eval-

uated for each additional term in the expansion (here in the coupling constant and

of the self-energy) that has been used. In Section 4.1, we demonstrated explicitly

that the constraint equation gives rise to the quasiparticle approximation for free

streaming. Here this corresponds to the Hartree approximation for the self-energy.

In general, however, this is not so. We thus take a closer look at the constraint

equation (3.70). Using the relations (3.37), (3.38) and (3.43), we can rewrite the

constraint equation in a simpler form as

[
p2 −M2 + <Π−−(X, p)

]
D−+(X, p) = Π−+(X, p)<D−−(X, p). (8.1)

With the aid of Eqs.(3.37), (3.39), (3.40), (3.77) and (3.78), we can express the real

part of D−− as

2<D−−(X, p) = D−−(X, p)−D++(X, p) = DR(X, p) +DA(X, p)

=
1

p2 −M2 +ΠR(X, p)
+

1

p2 −M2 +ΠA(X, p)
. (8.2)

Using Eqs.(3.44) to (3.46), one finds

<ΠR(X, p) = <ΠA(X, p) = <Π−−(X, p) (8.3)

=ΠR(X, p) = −=ΠA(X, p) = p0 Γ(X, p), (8.4)

77
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where the width Γ is defined as

Γ(X, p) =
i

2p0
(Π+− − Π−+). (8.5)

Inserting Eqs.(8.3) and (8.4) into Eq.(8.2) leads to

<D−−(X, p) =
p2 −M2 + <Π−−(X, p)

[p2 −M2 + <Π−−(X, p)]2 + [p0 Γ(X, p)]2
. (8.6)

Substituting p with −p in Eq.(8.1) yields the relation

[
p2 −M2 + <Π−−(X, p)

]
D+−(X, p) = Π+−(X, p)<D−−(X, p). (8.7)

Subtracting (8.1) from (8.7) gives

[
p2 −M2 + <Π−−(X, p)

]
A(X, p)

= 2p0 Γ(X, p)
p2 −M2 + <Π−−(X, p)

[p2 −M2 + <Π−−(X, p)]2 + [p0 Γ(X, p)]2
, (8.8)

where the spectral density A is defined through the combination

A(X, p) = iD+−(X, p)− iD−+(X, p). (8.9)

For p2 −M2 + <Π−−(X, p) 6= 0, Eq.(8.8) gives

A(X, p) =
2p0 Γ(X, p)

[p2 −M2 + <Π−−(X, p)]2 + [p0 Γ(X, p)]2
. (8.10)

If A is calculated, one can immediately find expressions for the off-diagonal Green

functions via

iD−+(X, p) = Θ(p0)A(X, p) fa(X, p)−Θ(−p0)A(X, p) f̄ā(X,−p) (8.11)

iD+−(X, p) = Θ(p0)A(X, p) f̄a(X, p)−Θ(−p0)A(X, p) fā(X,−p) (8.12)

and subsequently for the diagonal Green functions with the help of Eqs.(3.63) and

(3.64). In the limit of vanishing self-energies (and therefore vanishing width Γ) A
simplifies to

A(X, p) −→ 2πδ(p2 −M2) sign(p0) (8.13)

and for the Green functions one regains the quasiparticle approximation Eqs.(3.61)

to (3.64) as it should be.

One thus finds the situation that higher order corrections to the transport equa-

tion should, strictly speaking, be evaluated with propagators that contain a finite
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width Γ. This has both advantages and disadvantages. The main advantage is that

no pinch singularities can possibly occur with the use of a finite width by definition

(see also Ref. [42]). Thus, one may definitively state that non-equilibrium theory

is non-singular; any apparent singularities are a result of using an inconsistent ap-

proximation and these may be removed by the introduction of a cutoff related to a

width.

The disadvantages of using a finite width are manifold: Firstly the presence of

a finite width automatically admits all possible processes: for example, the first

exchange and quark-loop diagrams led to a sum of eight terms Eq.(5.6). These in

turn led to two possible types of scattering processes that were admissible, with the

restriction being directly due to the quasiparticle assumption. In the presence of

a finite width, all eight terms would be non-vanishing. In this sense, the theory

is expanded well over the Boltzmann approach. Furthermore, an additional com-

plexity arises. The transition from Green functions to the more physical quantities,

the distribution functions, in terms of which the Boltzmann equation is expressed,

no longer becomes possible. Thus the evaluation of physical entities becomes more

distanced from our knowledge of the Boltzmann equation. It is our point of view

that research in both directions is interesting. While it is more easily conceivable to

do physics in extending the Boltzmann equation, it is equally necessary to attempt

to solve the exact equations, and determine the difference between these two ap-

proaches. From an analytic point of view, it is not simple to extract this difference.

Rather numerical calculations should prove interesting and insightful.
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Chapter 9

Summary and conclusions

In this work, we have derived the transport and constraint equations for a theory of

scalar quarks and gluons. Special care has been taken in particular in understanding

how the transport equation, taken on its own, leads to a Boltzmann-like equation

when considered in the quasiparticle approximation. Thus, our aim has been to

express the collision integral of the transport equation in terms of cross sections or,

more generally, in terms of squared scattering amplitudes. For this purpose, the

self-energy diagrams are organized according to their order in the coupling strength

and built into the collision term. We have examined this systematically. Most facets

of this study show the following:

1. We have been successful in expressing the collision integral up to the two

loop level in terms of products of scattering amplitudes using non-equilibrium

propagators. The differential cross sections of all possible 2 → 2 processes

are obtained. However, for the absolute square of the complete amplitude of

the process qq̄ → g up to order g3m3 two products of single amplitudes are

missing.

2. By the use of T = 0 Feynman propagators instead of non-equilibrium ones in

the evaluation of the 2 → 2 scattering amplitudes the two missing products

could be gained. Hence the complete absolute square of the process qq̄ → g

up to order g3m3 evaluated with non-equilibrium propagators is obtained.

3. Thus, taking the transport equation on its own in the quasiparticle approxi-

mation, a generalized Boltzmann equation is found. This applies to all orders.

4. No leading class of diagrams like the ladder graphs in elastic quark-quark

scattering has been found. But an expansion in 1/Nc reduces the number of

self-energy graphs and favors gluon production.
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5. The quasiparticle approximation causes artificial difficulties - pinch singulari-

ties occur as a consequence of products of delta-functions. Within the scope

of these calculations they do not cancel in non-equilibrium.

6. A simultaneous consideration of the constraint equation leads to a finite width

in the propagators. On one hand, this prevents the appearance of pinch sin-

gularities, but on the other hand, added complexities arise which make it

impossible to cast the transport equation into a Boltzmann-like form.

7. The study shows a definite association of non-equilibrium self-energy graphs

with Feynman graphs of scattering and particle production / annihilation pro-

cesses. The association of several graphs with standard two body scattering is

clear. Not obvious, however, is the renormalization of lower order diagrams by

the remaining self-energy graphs of higher order. In addition to this there are

some diagrams that cannot be easily classified anywhere. We have clarified

which graphs lead to which processes.

8. It is not possible to define universal non-equilibrium cutting rules which give

in a simple way the relation between self-energy diagrams and products of

scattering amplitudes.

There are many interesting applications and challenges which have to be investigated

in the future. The most natural continuations of this work are

• To calculate the transport equation consistently with the constraint equation,

i.e. with propagators containing a finite width.

• To evaluate the transport and constraint equations up to higher orders in the

gradient expansion.

• To check with the help of numerical studies whether a class of self-energy dia-

grams is leading. Then the calculations including higher order loop diagrams

could be simplified.

• To use massless vector gluons and/or spinor quarks (massless or massive)

instead of scalar partons, to finally extend these results to real QCD.

• Generally numerical simulations, in conjunction with existing pomeron theo-

ries.

The applications of transport theory are manifold: it describes not only heavy ion

collisions but also the evolution of the early universe and in general of every system
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in non-equilibrium. Therefore it is essential to put the existent approaches on a

solid footing and derive the evolution equations from first principles. We believe

that with this work an important step has been made in this direction.
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Appendix A

Wigner transforms

For completeness, we list the Wigner transforms which were necessary to obtain

Eqs.(3.52) and (3.53):

∂µ
xf(x, y) −→

(
−ipµ + 1

2
∂µ
X

)
f(X, p) (A.1)

∂µ
y f(x, y) −→

(
ipµ +

1

2
∂µ
X

)
f(X, p) (A.2)

2xf(x, y) −→
(
1

4
2X − i

h̄
p∂X − 1

h̄2 p
2
)
f(X, p) (A.3)

2yf(x, y) −→
(
1

4
2X +

i

h̄
p∂X − 1

h̄2p
2
)
f(X, p) (A.4)∫

d4z f(x, z) g(z, y) −→ f(X, p) Λ̂ g(X, p) (A.5)

with the differential operator

Λ̂ = exp

{
−ih̄

2

(←−
∂X
−→
∂p −←−∂p −→∂X

)}
. (A.6)

These relations can be derived simply from the definition of the Wigner transform

in Eq.(3.51) (a proof of the last relation is given for example in Ref. [46]).

The Green functions and self-energies are now assumed to vary slowly with X

as it is the case for weakly inhomogeneous systems. In addition, it is assumed that

they are strongly peaked near u = 0. These assumptions are equivalent to the

requirement

|f(X, p)| � |∂X∂p f(X, p)| �
∣∣∣(∂X∂p)2 f(X, p)

∣∣∣ , (A.7)

where f(X, p) is a Green function or a self-energy respectively. This condition

justifies the expansion of Λ̂ in gradients which was used in Sec. 3.2 where Λ̂ was set

to 1 in lowest order.
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Appendix B

Color factors

In this Appendix, we deal with the color factors which were neglected so far. We

calculate them for one SU(N) color group. The overall color factor for both color

groups is then obtained by squaring it.

The matrices (ta)ij are the matrices of the color group in the representation of

the quarks, while (T a)bc = −ifabc are the color matrices in the adjoint representation

and fabc are the structure constants of the color group, see Eq.(2.2). The ta’s are

normalized to

tr(tatb) =
1

2
δab. (B.1)

The “square” of the generator in some representation must be proportional to the

unit operator (Schur’s Lemma). Therefore

(ta)ij(t
a)jk = CF δik (B.2)

and

T a
bdT

a
dc = fbadfcad = CAδbc, (B.3)

where the numbers CF and CA are the Casimir operators of the fundamental and

adjoint representation, respectively. They take the values (see for example [47])

CF =
N2

c − 1

2Nc
(B.4)

and

CA = Nc. (B.5)

Consider now the quark self-energies that were evaluated in Section 5.1. Let i denote

the external parton color index. It is therefore not to be summed over. The color

factor for the rainbow graph is

FR = tbijt
a
jkt

a
klt

b
li = C2

F δii =
(N2

c − 1)2

4N2
c

δii. (B.6)
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For the ladder graph, one finds

FL = (−ifabc)(−ifcbd)taijtdji = CAδadt
a
ijt

d
ji = CACF δii =

N2
c − 1

2
δii. (B.7)

For the cloud graph, one obtains

FC = (−ifacb)taijtbjktcki = −
N2

c − 1

4
δii, (B.8)

where the relation (see for example [47])

−ifabctatb = CA

2
tc (B.9)

has been used. The color factor for the exchange graph is

FE = taijt
b
jkt

a
klt

b
li = −

N2
c − 1

4N2
c

δii, (B.10)

where the relation [47]

tatbta =
−1
2Nc

tb (B.11)

has been used. Finally, for the quark-loop graph the color factor is given by

FQL = taijt
b
jitr(t

atb) =
N2

c − 1

4Nc
δii. (B.12)

In an expansion in 1/Nc, some of the self-energy diagrams are subleading. For details

see Chapter 6.
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Mein Dank gilt auch Prof. Jörg Hüfner und Prof. Michael G. Schmidt für ihre

stetige Diskussionsbereitschaft und für hilfreiche Anregungen. Außerdem danke ich
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