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Zusammenfassung

Wir untersuchen die étale Homotopie-Theorie von Brauer-Severi Varietäten über
Körpern der Charakteristik 0. Wir zeigen, dass die auf geometrischen Homotopie-
Invarianten (etwa `-adischen Kohomologie- oder auch höheren Homotopiegrup-
pen) induzierten Galois-Darstellungen nicht zwischen Brauer-Severi Varietäten
gleicher Dimension unterscheiden können. Ist der Grundkörper sogar von ko-
homologischer Dimension ≤ 2, so können wir im Falle von Brauer-Severi Kur-
ven noch mehr zeigen: Wir konstruieren einen Isomorphismus zwischen den
Hochschild-Serre Spektral-Folgen zweier beliebiger Brauer-Severi Kurven, welche
deren Kohomologie mit lokalen Koeffizienten berechnet. Weiter untersuchen
wir homotopie-rationale- und homotopie Fixpunkte von Brauer-Severi Varietäten
sowie deren Zusammenhang mit echten rationalen Punkten. Insbesondere werden
wir ein Analogon der schwachen Schnittvermutung für Brauer-Severi Varietäten
unter einer geeigneten Zusatzannahme an die erste pro-endliche Chernklassen
Abbildung zeigen. Über p-adischen lokalen Körpern konstruieren wir ein Gegen-
beispiel für dieses Analogon ohne besagte Zusatzannahme.

Abstract

We study the étale homotopy theory of Brauer-Severi varieties over fields of
characteristic 0. We prove that the induced Galois representations on geometric
homotopy invariants (e.g., `-adic cohomology or higher homotopy groups) are
all isomorphic for Brauer-Severi varieties of the same dimension. If the base
field has cohomological dimension ≤ 2 then we can show more in the case of
Brauer-Severi curves: There is even an isomorphism between the Hochschild-
Serre spectral sequences computing cohomology with local coefficients. Further,
we study homotopy rational and homotopy fixed points on Brauer-Severi varieties
and their connections to genuine rational points. In particular, we show that
under a suitable assumption on the first profinite Chern class map an analogue
of the weak section conjecture for Brauer-Severi varieties turns out to be true.
We can give a counter example to this analogue without the extra assumption
over p-adic local fields.
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1.3 The étale homotopy type à la Artin-Mazur. . . . . . . . . . . . . . 18
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Introduction

Background. In recent years there is a growing interest in homotopy theory
for algebraic schemes over base schemes, more general than the spectrum of
the complex or real numbers. Of particular interest is Voevodsky’s motivic- or
A1-homotopy theory he used in his celebrated proof of the Milnor- and later
even motivic Bloch-Kato-conjecture. It comes with a good notion of homotopy
groups (see [MV99] Chapt. 3 Prop. 2.14) as well as realization functors into other
homotopy theories, e.g., the classical homotopy theory of the real or complex
analytic realization (see [MV99] Chapt. 3.3) or the étale homotopy theory (see
[Isa04] resp. [Sch12] for the Nisnevich resp. étale A1-homotopy theory). From
an arithmetic point of view it has several nice properties, e.g., the existence of
a rational point is invariant under A1-weak equivalences in the Nisnevich setting
(see [MV99] Chapt. 3 Rem. 2.5), but also some rather unpleasant disadvantages,
e.g., the base scheme is always contractible (in contrast to a notion of a K(Γk, 1)
for a base field k with absolute Galois group Γk) and projective spaces over
algebraically closed fields are not simply connected (see [Mor12] Thm. 7.13 resp.
Sect. 7.3).

Much earlier, Artin and Mazur developed étale homotopy theory, or more
generally a homotopy theory for (pointed) connected sites. In contrast to the
classical homotopy theory of topological spaces where the homotopy type of a
space is its singular simplicial set, the homotopy type of a (pointed) connected
site is a pro-object in the homotopy category of (pointed) simplicial sets, given
levelwise by the simplicial set

π0(U.)

of connected components of the various hypercoverings U. of the site. Recall,
that a hypercovering is a generalization of the Čech nerve of a covering, i.e.,
the simplicial object given by all the self intersections of the covering. By the
Verdier hypercovering theorem the homotopy type of a (pointed) site captures the
cohomology theory of the site with locally constant coefficients. Further, there
are also the notions of homotopy (pro-) groups and the first homotopy (pro-)
group classifies descent data of local isomorphisms. In particular, if for a certain
class of fibres these descent data are all effective in our site (e.g., finite fibres in
the étale case or arbitrary fibres in the classical topological case), this first (pro-)
homotopy group classifies covering spaces with fibres in this class. Further, under
relatively mild assumptions, the homotopy type of the classical topological site
of a topological space is pro-discrete and isomorphic to its singular simplicial set.

But there are also some drawbacks in Artin and Mazur’s notion of a homotopy
theory: As mentioned earlier, the homotopy types of (pointed) connected sites
live in the pro-homotopy category of simplicial sets

ProH(SSets),

yet a morphism inducing isomorphisms on all homotopy (pro-) groups is only an
isomorphism up to a certain (non isomorphic) Postnikov replacement. Further,
Artin and Mazur’s notion of a homotopy type does not lift to a notion of a
topological type living e.g., in the category of pro-simplicial sets.
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These shortcomings where later fixed by Friedlander and Isaksen in the case
of the small étale site of a scheme, or more generally of a locally connected site
whose pointed neighbourhoods have a certain rigidity property (e.g., the Zariski
or Nisnevich site of a scheme): First, Friedlander defined the notion of an étale
topological type in the category of pro-simplicial sets inducing Artin and Mazur’s
étale homotopy type in the pro-homotopy category. Further, Isaksen defined a
proper simplicial closed model structure on the pro-category of simplicial sets
inducing a homotopy category on the nose

H(ProSSets)

whose weak equivalences between connected pointed pro-simplicial sets are pre-
cisely the morphisms inducing isomorphisms on all of Artin-Mazur’s homotopy
(pro-)groups. Let us also mention the related point of view of [Qui08]: In order
to deal with homotopy types having profinite homotopy groups from the get-go,
Quick defined a left proper closed model structure on the category of simplicial
profinite sets.

The étale homotopy theory has several nice properties: First, The profinite
completion of the first homotopy (pro-) group of a scheme is just Grothendieck’s
étale fundamental group. Next, there is a notion of a profinite completion of a
pro-homotopy type analogue to the notion of the profinite completion of a group
and the pro-homotopy types of schemes are already profinite complete under
very mild conditions. Further, the profinite completion of the pro-homotopy
type of a complex variety agrees with the profinite completion of the classical
homotopy type of its complex analytification. Similar, the profinite completion
of the pro-homotopy type of a real variety agrees with the profinite completion
of the ΓR-orbit space of a good model of the classical homotopy type induced by
its complex points. Finally, the étale homotopy type of the spectrum of a field
k is just the classifying space BΓk of the absolute Galois group Γk of k, i.e., an
Eilenberg-MacLane space K(Γk, 1).

Main Questions. As mentioned earlier, the existence of k-rational points is
invariant under A1-weak equivalences in the (Nisnevich) motivic homotopy theory
of smooth k-varieties: Indeed, the A1-homotopy type of Spec(k) is the point and
the canonical map

X(k) // [pt, X]HA1
Nis(Smk)

from the set of k-rational points of a k-variety X to the set of A1-homotopy classes
of maps from the point to X is surjective (see [MV99] Chapt. 3 Rem. 2.5). Denote
by [−,−]ét the homotopy classes of maps relative over BΓk in Artin and Mazur’s
pro-homotopy category ProH(SSets), Isaksens homotopy category H(ProSSets)
or similar (pro-) homotopy categories in which the étale homotopy theory can be
formulated. Unfortunately, the analogue statement about the canonical map

X(k) // [BΓk, X]ét

is not at all clear for the étale homotopy theory of X. Let us call an element in
the target a homotopy rational point. A very convenient setting to study this
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canonical map is the relative homotopy category H(ProSSets ↓ BΓk). It comes
equipped with a base extension functor

(−)\ ×BΓk EΓk : H(ProSSets ↓ BΓk) // ProH(SSetsΓk
) ,

where SetsΓk
is the category of discrete Γk-sets. We write X̄ for X\ ×BΓk EΓk.

Further, write [−,−]Γk for the homotopy classes of maps in this or similar (pro-)
equivariant homotopy categories and call an element in [EΓ,Y]Γk a homotopy
fixed point of the equivariant pro-homotopy type Y. Thus, at least in the
setting of the relative homotopy category H(ProSSets ↓ BΓk) any homotopy
rational point of a k-variety X induces a homotopy fixed point of X̄ and X̄ has
the correct homotopy type of the base extension X⊗k k̄ together with the induced
Γk-action under some rather mild conditions.

This brings us to our main questions:

Main Questions: Let X be an arbitrary element of an “interesting” class of
k-varieties.

(i) Are the canonical maps X(k) → [BΓk, X]ét and X(k) → [EΓk, X̄]Γk sur-
jective, as well?

(ii) Suppose the targets are non empty. Does this imply that the source X(k)
is non empty, as well? In other words: Does the existence of a homotopy
rational or fixed point already imply the existence of a genuine k-rational
point?

These questions are quite interesting. Consider them e.g., in the case of smooth
projective curves of genus at least 1 over a field k of characteristic 0: From the per-
spective of étale homotopy theory such a (pointed) curve (X, x̄) is a K(π, 1). In
particular, a (right-) splitting of the canonical map X → BΓk in Isaksens homo-
topy category or even in Artin and Mazur’s pro-homotopy category is equivalent
to a (right-) splitting of the induced map π1(X, x̄) → Γk (up to inner automor-
phisms), i.e., to a splitting of the exact sequence π1(X/k, x̄)

1 // π1(X ⊗k k̄, x̄) // π1(X, x̄) // Γk // 1 .

Now there is a negative answer to question (ii) for torsors under elliptic curves,
i.e. genus 1 curves: E.g. over p-adic local fields there are plenty of non split torsors
under a given elliptic curve whose fundamental group sequence admits a section
(see [Sti12] Prop. 183 - see also loc. cit. Prop. 185 for counter examples over
the rational numbers). In the case of projective anabelian curves, i.e. a smooth
projective curve of genus at least 2 (over k a finitely generated field), our first resp.
second question is equivalent to Grothendieck’s section conjecture, resp. to
the weak section conjecture (for details e.g., see [Qui11] Sect. 3.2).

An examples where Question (ii) has a positive answer is the case of real
varieties: By [Cox79b] Thm. 2.1, a real variety X has an R-rational point if and
only if cd2(X) = ∞. Since each element in [BΓR, X]ét resp. [EΓR, X̄]ΓR gives a
(left-) splitting of the canonical map

H•(ΓR; Λ) // H•(X; Λ)
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for Λ a discrete ΓR-module and R has infinite 2-cohomological dimension, X
admits an R-rational point.

Aim of the thesis. Our main interest during the work on this thesis was
exactly the second question for the class of Brauer-Severi varieties over a field
of characteristic 0. Recall, that a Brauer-Severi variety over a field k is a k-
variety whose base extension to an algebraic closure k̄/k of k is k̄-isomorphic to
the projective space Pn for a suitable n. It is a basic fact that a Brauer-Severi
variety has a k-rational point if and only if it is already isomorphic over k to
a projective space. We say that X splits in this case. There is an equivalence
relation on the set of isomorphism classes of Brauer-Severi varieties over a fixed
base field k generated by basic relations given by twisted linear subvarieties, i.e.,
maps of Brauer-Severi varieties whose base extension along k̄/k is isomorphic to
the inclusion of a linear subvariety of a projective space. It turns out that the
set of equivalence classes is isomorphic to the Brauer group

Br(k) = H2(k;Gm),

where the trivial Brauer class corresponds to the equivalence class consisting of
the projective spaces Pn over k. Thus, our second main question for a Brauer-
Severi variety X over k is equivalent to the question if non emptiness of [BΓk, X]ét

resp. [EΓk, X̄]Γk implies the triviality of the Brauer class of X in Br(k). In other
words, we have to show that the period of X, i.e., the order of its Brauer class,
is 1.

Let us assume that the Brauer-Severi variety X admits a homotopy rational
resp. fixed point s resp. s̄. We want to know if X splits. Recall the first profinite
Chern class map

ĉ1 : Pic(X) // H2(X; Ẑ(1)) .

It is not hard to see, that the first Chern class ĉ1[L] of the positive degree gener-
ator of Pic(X) is not divisible by any integer 6= ±1. Thus, one could try to show
that ĉ1[L] is divisible by d the period of X, as soon as X admits a homotopy
rational resp. fixed point s resp. s̄. Any such “dth-root” of ĉ1[L] restricts to the
Chern class of OX⊗kk̄(1) after base extension along k̄/k. In abuse of notation, call

an arbitrary such cohomology class in H2(X; Ẑ(1)) a k-structure of ĉ1[O(1)].

There is a unique k-structure αs of ĉ1[O(1)] which is killed by the pullback s∗.
If s is even given by a genuine rational point x of Pn, the resulting k-structure
αx is the Chern class of OPn(1) on the nose. In ProH(SSetsΓk

), cohomology
with coefficients in discrete Γk-modules Λ is representable by the pro-discrete
Eilenberg-MacLane spaces K(Λ, q). Combining this with the Dold-Kan corre-
spondence between simplicial discrete Γk-modules and chain complexes in sim-
plicial discrete Γk-modules, we can give an explicit construction of αs out of
the suitable truncated canonical map between homology and reduced homology
chains with resp. to a given homotopy rational point s of X. The class αs behaves
with respect to the twisted d-uple embedding

i : X � � // PN
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just as αx would behave with respect to the genuine d-uple embedding, i.e.

i∗αi∗s = d.αs.

Since the Chern class of L is nothing but i∗αy for y a rational point of PN , our
class αs is a good candidate for the desired “dth-root” of ĉ1[L].

Unfortunately αs fails to be such a “root” in general: For any class [A] in
the p-torsion part of the Brauer group of a p-adic local field k, the correspond-
ing Brauer-Severi variety XA contains a homotopy rational point without being
split. Indeed, a smooth projective curve whose relative Brauer group contains
[A] admits a map into XA and it is well known to anabelian geometers that there
are genus 1 curves C over k whose relative Brauer group contains [A] and whose
fundamental group sequence π1(C/k) splits, i.e. which admit homotopy rational
points.

A closer analysis of our classes αs shows, that two classes αs and αr given by
two homotopy rational points s and r differ by the constant

s∗αr = −r∗αs

in H2(Γk; Ẑ(1)). In particular, αi∗s differs from αy by the constant s∗ĉ1[L] and
thus, ĉ1[L] is divisible by d if and only if the class s∗ĉ1[L] is divisible by d in
H2(Γk; Ẑ(1)). This leads to our (partial) answer to the main question for Brauer-
Severi varieties over fields of characteristic 0:

Theorem. Let k be a field of characteristic 0 and X a Brauer-Severi variety over
k of period d admitting a homotopy rational point s in [BΓk, X]H(ProSSets↓BΓk)

resp. a homotopy fixed point s̄ in [EΓk, X̄]ProH(SSetsΓk
).

(i) The composition s∗ĉ1 resp. s̄∗ĉ1 is independent from the choice of s resp. s̄
modulo d.

(ii) Suppose that s∗ resp. s̄∗ trivializes the first profinite Chern class map ĉ1

modulo d. Then X splits over k, i.e., X admits a k-rational point.

(iii) Suppose that scd(k) ≤ 2dim(X). Then the homotopy fixed point s̄ is induced
by a genuine rational point of X if and only if s̄∗ trivializes the first profinite
Chern class map.

Recall that p-adic local resp. totally imaginary number fields are of strict co-
homological dimension 2, so the third statement of the theorem holds for all
Brauer-Severi varieties over p-adic local resp. totally imaginary number fields.

Structure of the thesis. The thesis is organized as follows: In Sect. 1 we recall
some basic facts on étale homotopy theory mainly taken from [AM69], [Fri82] and
[Isa01].

In Sect. 2 we deal with some technicalities needed in the following two sections:
First, we do some computation with the Čech topological type leading to base
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change theorems for étale homotopy types in Sect. 2.3. Next, in Sect. 2.4 we
compare the Hochschild-Serre spectral sequence with the hypercohomology spec-
tral sequence of a certain cochain complex computing the geometric cohomology
with local coefficients. In Sect. 2.5 we deal with a universal coefficient theorem for
pro-chain complexes and in Sect. 2.6 we express cohomology with locally constant
coefficients of k-varieties in the pro-homotopy category ProH(SSetsΓk

).

In Sect. 3 we discuss some difficulties in dealing with our main question: First,
in Sect. 3.1 we prove that the base extension along k̄/k of two Brauer-Severi
varieties of the same dimension induces isomorphic Γk-objects in the homotopy
category H(ProSSets). Thus, the induced Galois representations on all geometric
homotopy invariants (as e.g., `-adic cohomology or higher homotopy groups)
of these Brauer-Severi varieties agree. In Sect. 3.2 we define the notion of a
homology and quasi homology fixed point and show that quasi homology fixed
points are quite common for geometrically simply connected varieties over fields of
cohomological dimension ≤ 2. From the existence of quasi homology fixed points
we conclude in Sect. 3.3 that two arbitrary Brauer-Severi curves over such a field
have isomorphic Hochschild-Serre spectral sequences computing étale cohomology
with locally constant coefficients.

Finally, in Sect. 4 we discuss homotopy rational points and homotopy or (quasi)
homology fixed points and their connections to genuine rational points of Brauer-
Severi varieties over a field k of characteristic 0. In Sect. 4.1 we define and discuss
homotopy rational and homotopy fixed points and their connections with (quasi)
homology fixed points. In Sect. 4.2 we do some abstract nonsense constructions
needed for the explicit construction of the classes αs. We define the k-structures
αs of ĉ1[O(1)] in Sect. 4.3 and give the explicit construction using the results of
the preceding Sect. 4.2. In Sect. 4.4 we examine the maps induced by our classes
αs on homotopy fixed point sets. In particular we will see that these maps have
trivial fibres at homotopy fixed points induced by homotopy rational points over
fields of small strict cohomological dimensions (see Cor. 4.4.4 and Lem. 4.4.6).
In Sect. 4.5 we will proof the above theorem. Part (i) is Prop. 4.5.10, part (ii)
Thm. 4.5.11 and part (iii) Thm. 4.5.15. Finally, in Sect. 4.6 we explain a counter
example to an affirmative answer of question (ii) in the case of Brauer-Severi
varieties over p-adic local fields.

Notation. We collect a few notations used throughout the thesis. First, we
distinguish between “degreewise” and “levelwise” properties: The degree usually
refers to the simplicial degree of a simplicial object X. ∈ SC or C• ∈ Ch∗(A)
for the SC the category of simplicial objects of a category C or Ch∗(A) for
∗ = +,−, b, . . . the category of positive, negative, bounded,. . . chain complexes
of an abelian category A (and similar for cochain complexes). The level usually
refers to the pro-level of a representation I → C of an object X in the pro-
category ProC of a category C. E.g., a levelwise map f : X → Y in ProC is a
map induced by a natural transformation between realizations of X and Y with
a common index category.

For k is a field, fix a separable algebraic closure k̄/k and denote by Γk the
corresponding absolute Galois group Gal(k̄/k). In later parts of the thesis, if
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not otherwise stated the base field k will usually be a field of characteristic 0.
Usually, we will refer to its absolute Galois group Γk just by Γ. If we work over
C, denote by (−)an the analytification functor VarC → Top on the category of
C-varieties.

We fix the standard model structure on the category SSets of simplicial sets
resp. SSets• of pointed connected simplicial sets. If we choose a functorial fi-
brant resolution Ex(−) in SSets, always choose one preserving simplicial discrete
Γ-sets. This is possible e.g. via the small object argument (cf. Rem. 2.3.6 be-
low). For a simplicial set A. ∈ SSets and Λ an abelian group resp. a local
system of abelian groups on A. denote by C•(A.; Λ) resp. C•(A.; Λ) the standard
chain- resp. cochain complex computing the homology H•(A.; Λ) resp. cohomol-
ogy H•(A.; Λ). For a point a ∈ A0 denote by C̃•(A., a; Λ) the reduced complex
C•(A.; Λ)/C•(a; Λ) computing the reduced homology H̃•(A., a; Λ). If a : E.→ A.
is more generally a morphism with contractible source, we denote by C̃•(A., a; Λ)
the reduced complex given by the standard cone construction (cf. [GM03] Chapt.
III Sect. 2) induced by a and by H̃•(A., a; Λ) its homology. If the coefficients
Λ are just the integers, denote by C•(A.), C̃•(A., a), H•(A.) resp. H̃•(A., a) the
complexes resp. groups C•(A.;Z), C̃•(A., a;Z), H•(A.;Z) resp. H̃•(A., a;Z).

If F = {Fi}i∈I is a pro-system of sheaves on (say the small étale site or whatever
of) X, denote by H•(X;F) the pro-abelian group {H•(X;Fi)}i∈I . More general,
if not otherwise explicitly stated, never take limits of pro-systems, instead,
work in the resp. pro-category (e.g., ProAb, ProH(SSets) or ProD+(Ab),
etc.). Filtered colimits in contrast are exact in all the categories of our interest,
so we usually will take colimits.

If C is a homotopy-, pro-homotopy, derived or pro-derived category and X
and Y two objects in C, write [X,Y ]C for the homset HomC(X,Y ). By a weak
equivalence resp. quasi-isomorphism in a pro-homotopy resp. pro-derived category
we will usually mean a morphism inducing isomorphisms on all homotopy resp.
(co-)homology (pro-)groups. To stress this, we sometimes refer to these as weak
equivalence resp. quasi-isomorphism in the pro-sense.

If G is a group, denote by EG the 0th-coskeleton cosk0G in SSets. It comes
equipped with the free diagonal G action from the left, denote by BG the cor-
responding quotient G\EG. If Γ = {Γi}i∈I is a pro-group denote by EΓ resp.
BΓ the pro-simplicial set {EΓi}i∈I resp. {BΓi}i∈I . By K(Γ, 1) we usually mean
BΓ, by K(Λ, n) for an abelian group (or more generally, a discrete Γ-module
for a profinite group Γ, etc.) we usually mean the simplicial set (simplicial dis-
crete Γ-set, etc.) corresponding to Λ[−n] under the Dold-Kan correspondence.
In abuse of notation we also say that X. is a K(π, n), if X. is only weakly equiv-
alent to K(π, n). If we want to stress the difference between X. and K(π, n), we
sometimes say that X. has the K(π, n)-property.

Finally, if X is a scheme, we usually refer to its étale homotopy type Ét(X) in
ProH(SSets) or H(ProSSets) by X as well. Similar, we refer to Ét(X)\ ×BΓ EΓ
in ProH(SSetsΓ) just by X̄.
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scher Ordnung): Jochen Gärtner, Armin Holschbach, Alexander Ivanov, Andreas
Riedel, Alexander Schmidt (insbesondere für seine hilfreichen Bemerkungen zu
dieser Arbeit), Ullrich Schmitt, Martin Sigl, Matthias Spiegel, Malte Witte sowie
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1 Preliminaries: Étale homotopy theory

In this first chapter, we recall some basics on étale homotopy theory. These are
mainly taken from [AM69], [Fri82], [Isa01] and [Isa04].

1.1 The pro-homotopy category. We start with some facts about Artin
and Mazur’s pro-homotopy category ProH(SSets) resp. ProH(SSets•) (recall that
SSets• is the category of connected pointed simplicial sets):

1.1.1 Definition. Let X = {Xi}i∈I be a pro-homotopy type in ProH(SSets)
resp. (X, x) = {(Xi, xi)}i∈I in ProH(SSets•) and let Λ be an abelian group.

(i) Define the (pro-)set of connected components π0(X) as the pro-set given by
{π0(Xi)}i.

(ii) For q > 0 define the qth homotopy (pro-)group πq(X, x) as the pro-group
given by {πq(Xi, xi)}i.

(iii) Define the standard (pro-)chain complex C•(X; Λ) in ProD+(Ab) as the pro-
object given by {C•(Xi; Λ)}i. Denote its homology pro-groups by H•(X; Λ).

(iv) Define the standard cochain complex C•(X; Λ) in D+(Ab) as the complex
colimiC

•(Xi; Λ) (filtered colimits are exact!). Denote its cohomology groups
by H•(X; Λ).

Recall, that a local system on a simplicial set A. is a representation of the
fundamental groupoid Π(A.) in the category of abelian groups, i.e., functor
Π(A.) → Ab. Similar one can also define local systems with values in other
categories, e.g., in Grps, the category of groups. We define local systems on a
pro-simplicial set as follows:

1.1.2 Definition. Let X = {Xi}i∈I be in ProSSets.

(i) Define the category Loc(X) of local systems on X as the category consist-
ing of

Obj(Loc(X)) := colim
i

Obj(Loc(Xi))

as objects and for L′ and L′′ in Obj(Loc(X)) represented by the local sys-
tems L′i ∈ Obj(Loc(Xi)) and L′′j ∈ Obj(Loc(Xj))

HomLoc(X)(L′,L′′) := colim
σ:k→i,τ :k→j

HomLoc(Xk)(X
∗
σL′i,X∗τL′′j )

as morphisms.

(ii) Let L be a local system (of abelian groups) on X, say represented by
Li ∈ Loc(Xi). Define the complex C•(X;L) in D+(Ab) as the complex
colimσ:k→iC

•(Xk;X
∗
σLi). Denote its cohomology groups by H•(X;L).

We want to discuss the completion of a pro-homotopy type with resp. to a
class of groups, parallel to the completion of a pro-group with resp. to a class of
groups:
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1.1.3 Definition. In abuse of notation, a class of groups is a strictly full
subcategory C ↪→ Grps containing the trivial group 1, stable under subquotients
and extensions.
A class C is called complete, if moreover C contains HomSets(H,G) (with the
group structure induced by the group structure of G) for any G and H in C.

Let C be a class of groups. Recall that the inclusion of the full subcategory
ProC ↪→ ProGrps has a left adjoint

(−)∧C : ProGrps // ProC ,

the pro-C-completion. Write just (−)∧ in the case of C the complete class of
finite groups.

We get a similar completion for pro-homotopy types: Let

H(SSets•)C
� � // H(SSets•)

be the full subcategory given by all the pointed simplicial sets whose homotopy
groups all lie in the class of groups C.

1.1.4 Theorem. ([AM69] Thm. 3.4) Let C be a class of groups. Then the in-
clusion of the full subcategory ProH(SSets•)C ↪→ ProH(SSets•) has a left adjoint

(−)∧C : ProH(SSets•) // ProH(SSets•)C ,

the pro-C-completion. Write just (−)∧ in the case of C the complete class of
finite groups.

Next, we want to discuss the Postnikov tower construction in the sense of
[AM69]: Recall the following properties of the coskeleton functors

coskn(−) : SSets // SSets .

For n > 0 it preserves homotopy equivalences with respect to the standard cylin-
der object (since coskn∆1 = ∆1), i.e., weak equivalences between fibrant simpli-
cial sets. Thus, coskn(−) defines an endofunctor on H(SSets) resp. on H(SSets•).
Further, coskn(−) preserves fibrant objects and

πq(cosknA., a) =

{
πq(A., a) for q < n

1 for q ≥ n

for A. a fibrant simplicial set.

1.1.5 Definition. For (X, x) = {(Xi, xi)}i∈I in ProH(SSets•) define the Post-
nikov tower replacement

(X, x) // (X\, x)

as the canonical map to the pro-homotopy type given by

(X\, x) := {cosknXi}i∈I,n>0,

where the index category is just I × N for N the category of natural numbers as
objects and a unique morphism n→ m for n ≥ m.
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1.1.6 Remark. If we want to work in ProSSets• we have to choose a functorial
fibrant resolution Ex(−) and set

(X\, x) := {cosknEx(Xi)}i∈I,n>0.

Clearly, (X, x)→ (X\, x) induces isomorphisms on all homotopy resp. homology
pro-groups πq(−) resp. Hq(−; Λ). But (X, x) → (X\, x) is in general not an
isomorphism in ProH(SSets•): Take a fibrant simplicial set A. with non trivial
homotopy groups in arbitrary high degrees. Then the map A. → cosknA. can
never have a left inverse cosknA.→ A., since coskn(−) kills the homotopy groups
in degrees ≥ n. In particular, A.→ A.\ is not an isomorphism in ProH(SSets•),
e.g., by [Isa01] Lem. 2.3. Since (−)\ is an idempotent endofunctor, this makes
(X, x)→ (X\, x) to the paradigm case of the following definition:

1.1.7 Definition. A \-isomorphism is a morphism f : (X, x) → (Y, y) in
ProH(SSets•) s.t. the induced map

f \ : (X\, x) // (Y\, y)

is an isomorphism in ProH(SSets•).

For C a complete class of groups a C-local system on X is a local system
L ∈ Loc(X), say given by

Li : Π(Xi) // Ab ,

s.t. for all x ∈ Xi both the stalk Li(x) and the images of the induced map

π1(Xi, x) // AutAb(Li(x))

lie in C.

Let (X, x) be a connected pointed pro-homotopy type. From X → X∧C we get
a canonical map

(1.1.1) πq(X, x)∧C
// πq(X

∧
C , x)

for q > 0. By the explicit construction of the levels of the pro-C-completion of
X in [AM69] Cor. 3.6 we get an isomorphism for q = 1 (this is [AM69] Cor. 3.7).
Thus, a C-local system on X is the same as a local system on X∧C with stalks in
C.

1.1.8 Theorem. ([AM69] Thm. 4.3 and Cor. 4.4) Let C be a complete class of
groups. Then, for a map f : (X, x) → (Y, y) in ProH(SSets•) the following are
equivalent:

(i) f∧C : (X∧C , x)→ (Y∧C , y) is a \-isomorphism.

(ii) πq(f
∧
C ) : πq(X

∧
C , x)→ πq(Y

∧
C , y) is an isomorphism for all q.
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(iii) π1(f)∧C : π1(X, x)∧C → π1(Y, y)∧C is an isomorphism and for all C-local
systems L ∈ Loc(Y) the induced map f∗ : H•(Y;L) → H•(X; f∗L) is an
isomorphism.

Note that the equivalence (iii) ⇔ (i) implies that pro-C-completion for a
complete class of groups C preserves \-isomorphisms. Further, note that \-
isomorphisms induce isomorphisms on integral (pro-)homology groups by im-
plication (i) ⇒ (iii): Indeed, by the universal coefficient theorem, it remains to
check the cohomology groups with coefficients Q/Z.

1.1.9 Remark. An example for the usefulness of this theorem is the following
pro-version of the Hurewicz-Theorem: Let n > 0 and suppose (X, x) = {(Xi, xi)}i
is (n − 1)-connected in the pro-sense, i.e., πq(X, x) = 0 for all q < n. We get
natural homotopy fibre sequences

Fi // Xi // cosknXi

(see [AM69] the remarks following (2.5)) with the resulting homotopy fibre F
levelwise (n− 1)-connected. Thus, we can apply the classical Hurewicz-Theorem
levelwise to get isomorphisms

πq(F) // Hq(F)

for all 0 < q ≤ n. But with the help of Thm. 1.1.8 for C the class of all groups
together with the long exact sequence of a fibration we get that F → X is a
\-isomorphism, i.e., we get isomorphisms

πq(X) // Hq(X)

for all 0 < q ≤ n for X, as well (see [AM69] Cor. 4.5 for details).

1.1.10 Remark. As we have seen above, (1.1.1) is an isomorphism in degrees
≤ 1 for a connected (X, x) pro-homotopy type. Similar, (1.1.1) is an isomorphism
in degrees ≤ n for an (n − 1)-connected (X, x) pro-homotopy type: As in Rem.
1.1.9, we may replace X by F, i.e., we may assume, that X is even levelwise
(n − 1)-connected. But then again by the explicit construction of the levels of
the pro-C-completion of X in [AM69] Cor. 3.6 we see that

πq(X, x)∧C
// πq(X

∧
C , x)

is an isomorphism for all q ≤ n (see [AM69] Cor. 6.2 for details).

For the rest of this section, we want to discuss a version of Rem. 1.1.10 for
up-to-good-C-groups (n− 1)-connected pro-homotopy types:

1.1.11 Definition. Let C be a complete class of groups and Γ a pro-group.
Define Γ to be C-good, if for all Γ∧C-modules Λ whose underlying abelian group
lies in C, the canonical map

H•(Γ∧C ; Λ) // H•(Γ; Λ)

is an isomorphism.
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1.1.12 Remark. Suppose C is the complete class of all finite groups. Then any
group containing a subgroup of finite index which is solvable and moreover has
only finitely generated subgroups is C-good by [Sul74] Thm. 3.1. In particular,
all finitely generated abelian groups are C-good.

By the \-uniqueness of Eilenberg-MacLane spaces (see [AM69] Cor. 4.14), any
pro-homotopy type X having the K(Γ, 1)- resp. K(Γ∧C , 1)-property in the pro-
sense is \-isomorphic to BΓ resp. B(Γ∧C). Thus, Γ is C-good if and only if for
any pro homotopy type X having the K(Γ, 1)-property the completion X∧C has
the K(Γ∧C , 1)-property.

Now the up-to-good-C-groups version of Rem. 1.1.10 is the following theorem:

1.1.13 Theorem. ([AM69] Thm. 6.7) Let C be a complete class of groups con-
tained in the complete class of all finite groups. Let (X, x) in ProH(SSets•) be
simply connected with πq(X, x) C-good for all q < n. Then the canonical map

πq(X, x)∧C
// πq(X

∧
C , x)

is an isomorphism for all q ≤ n.

1.1.14 Remark. Before giving a sketch of the proof, we need a technical result:
In the following, let C be a complete class contained in the complete class of all
finite groups. Let

f : (X, x) // (Y, y)

be a levelwise map in ProH(SSets•) with Y levelwise fibrant. By [AM69] Lem.
5.3 we get a levelwise commutative square:

(X, x)
f //

��

(Y, y)

��
(X, x)∧C

f∧C // (Y, y)∧C

By using a functorial factorization in SSets•, we may replace f and f∧C by levelwise
fibrations and get a morphism of homotopy fibre sequences in ProH(SSets•):

F //

��

(X, x)
f //

��

(Y, y)

��
F̄ // (X, x)∧C

f∧C // (Y, y)∧C

By the induced long exact sequence of homotopy groups we get

F̄ ∈ ProH(SSets•)C ,

i.e., we get a canonical map

(1.1.2) F∧C
// F̄

Suppose that Y is levelwise simply connected in the above level representation
of f . Then this canonical map is a \-isomorphism by [AM69] Thm. 5.9.
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To prove Thm. 1.1.13 let us first assume that X has the K(∆, r)-property for ∆
a C-good pro-abelian group. By the \-uniqueness of Eilenberg-MacLane spaces
we may assume that X is even a levelwise Eilenberg-MacLane space K(∆, r) on
the nose. After application of a functorial factorization in SSets• we may replace
the point pt→ K(∆, r) by a levelwise fibration

E // // K(∆, r) .

We get a levelwise homotopy fibre sequence

F // E // K(∆, r)

with E levelwise contractible and F again a levelwise pointed Eilenberg-MacLane
space K(∆, r − 1). Thus, by induction on r using the \-isomorphism (1.1.2) we
get that K(∆, r)∧C is \-isomorphic to a K(∆∧C , r) for all r > 1, as well. Thus, we
get:

1.1.15 Proposition. ([AM69] Prop. 6.9) Let C be a complete class of groups
contained in the complete class of all finite groups. A pro-abelian group ∆ is
C-good if and only if for all r > 0 and and all pro-homotopy types X having the
K(∆, r)-property in the pro-sense, the completion X∧C has the K(∆∧C , r)-property
in the pro-sense.

Next, let X be any simply connected pro-homotopy type with πq(X, x) C-good
for all q < n. We have to show that

πq(X, x)∧C
// πq(X

∧
C , x)

is an isomorphism for all q ≤ n. Suppose X is even (r − 1)-connected. If r ≥ n,
then the claim follows by Rem. 1.1.10. If 1 < r < n we argue by descending
induction on r: By assumption, coskr+1X is a K(πr(X, x), r) in the pro-sense.
Application of a functorial factorization in SSets• gives a levelwise fibration

X′ // coskr+1X

with X′ levelwise weakly equivalent to X. Thus, we get a levelwise homotopy
fibre sequence

F // X′ // coskr+1X

with F r-connected and
πq(F) = πq(X)

for all q > r. By induction we get isomorphisms

πq(F)∧C
// πq(F

∧
C)

for all q ≤ n so the claim of Thm. 1.1.13 follows for X ∼= X′ using the \-
isomorphism (1.1.2) of Rem. 1.1.14.
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1.2 The homotopy type of a connected site. Next, we want to discuss the
homotopy type in ProH(SSets) resp. ProH(SSets•) of a connected resp. connected
pointed site S (for convenience: complete under finite limits, finite coproducts
and having enough points). Here, a site S is called locally connected, if every
object is (in a necessarily unique way) isomorphic to the direct sum of connected
objects, where an object of S is called connected, if it is not isomorphic to a
non trivial direct sum of objects in S. Thus, for S locally connected we get a
functor

π0 : S // Sets

mapping an object X isomorphic to
⊕

i∈I Xi for connected Xi to the set of
connected components {Xi|i ∈ I}. A locally connected connected site S is a
connected site, if the final object ptS is connected.

1.2.1 Remark. Let U → ptS be a covering of the final object of S and F a
finite set or more generally, a set s.t. S is closed under direct sums indexed by F .
A descent datum of the trivial covering

U ⊗ F // U

with fibre F is an isomorphism

ϕ : (U × U)⊗ F = (d0
1)∗(U ⊗ F ) // (d1

1)∗(U ⊗ F ) = (U × U)⊗ F

in S ↓ (U × U) s.t.
(d1

2)∗ϕ = (d2
2)∗ϕ ◦ (d0

2)∗ϕ,

where the dji ’s are just the face maps of the simplicial object cosk
S
0U in S. Now

an S ↓ (U × U)-automorphism of (U × U)⊗ F is just an element of

HomSets(π0(U × U), SF ),

where SF is the symmetric group on F . Thus, descend data of the trivial covering
U ⊗ F → U is classified by the pointed set

H1(π0(cosk
S
0U);SF ).

On the other hand, for a simplicial set A. the pointed set H1(A.;SF ) is isomorphic
to HomCat(P∗(A.), SF ), where P∗(A.) is the path category of A., i.e., to

HomCat(Π(A.), SF ).

Similar, for an abelian group L we get that the pointed set

H1(π0(cosk
S
0U); AutAb(L))

classifies both descend data for the constant sheaf L on U as well as local systems
on π0(cosk

S
0U) with stalks L. Further, by the sheaf property, all of theses latter

descent data are effective and C•(π0(cosk
S
0U);L) for such a local system L is just

the Čech complex Γ(cosk
S
0U ;L) of the resulting locally constant sheaf.
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Suppose that Cov(ptS) is cofiltered, i.e.

Cov(ptS) // H(SSets) , {U → ptS}
� // π0(cosk

S
0U)

induces a well defined object of ProH(SSets). Then the reasoning of Rem. 1.2.1
suggests that this object is up to \-isomorphism the correct homotopy type of the
site S.

Yet, there are two problems with this: First, the category of coverings of the
final object Cov(ptS) is not cofiltered in general. Further, Čech cohomology does
not agree with cohomology over S in general. We want to discuss the second
problem more closely:

1.2.2 Remark. Let F be a sheaf of abelian groups over S and let

0 // F // I•

be an injective resolution in Shv(S). As

Z[cosk
S
0U ]• // Z // 0

is exact (check this stalk wise and use that cosk0A is contractible for any set A),
we have a canonical quasi-isomorphism

RΓ(ptS ;F)
∼ // tot•Γ((cosk

S
0U)•II ; I•I) .

Suppose that the colimit in Ab over Cov(ptS) is exact (this would be the case e.g.,
if Cov(ptS) is cofiltered). By the second spectral sequence of a double complex,
the colimit over Cov(ptS) of the canonical map

Γ((cosk
S
0U)•;F) // tot•Γ((cosk

S
0U)•II ; I•I)

is an isomorphism if the corresponding colimit of

Hp
IIH

q
I Γ((cosk

S
0U)•II ; I

•I)

vanishes for q > 0. E.g., this would be the case, if for any covering U → ptS , any

p and any q > 0 we could kill any class α ∈ Hq
S((cosk

S
0U)p;F) after a refinement

of U in Cov(ptS).

Cohomology in degrees > 0 vanishes locally, so we want to replace cosk
S
0 (−)

of coverings in Cov(ptS) by a certain class of simplicial objects U. in S s.t. for
all p and all coverings V → Up, there is a refinement V.→ U. in this class whose
pth-degree Vp → Up is a refinement of our original covering. This leads us to the
definition of a hypercovering:

1.2.3 Definition. A hypercovering in S is a simplicial object U. in S s.t. the
canonical maps

Un // (cosk
S
n−1U.)n

are coverings for each n ≥ 0 (where we define cosk
S
−1U. to be ptS in the case

n = 0).
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Combining [AM69] Lem. 8.7, Lem. 8.8 and Lem. 8.9 we get the desired result:

1.2.4 Lemma. (e.g., see the proof of [AM69] Thm. 8.16) Let U. be a hypercov-
ering of S and let V → Up be a covering. Then there is a map of hypercoverings
(i.e., of simplicial objects in S) V. → U. s.t. Vp → Up is a refinement of the
original covering V → Up.

Proof: Use [AM69] Lem. 8.7 and Lem. 8.8 to get a refinement U.(p) → U. split

up to level p and pull back V to a covering V (p) → U
(p)
p . Then apply [AM69]

Lem. 8.9 to V (p) → U
(p)
p and U.(p) as in the proof of [AM69] Thm. 8.16 to get the

desired refinement. 2

For a simplicial set A. and a simplicial object X. of S define X.⊗A. degreewise
as the direct sum of Xn over An. Note, that π0(X.)×A. is just π0(X.⊗A.). We
say that two maps of hypercoverings U. ⇒ V. are strictly homotopic, if there
is a commutative diagram of the form

V.

U.

;;vvvvvvvvvv

;;vvvvvvvvvv //// U.⊗∆1

OO

where U. ⇒ U. ⊗∆1 are induced by the canonical maps pt ⇒ ∆1. We say that
two maps U.⇒ V. are homotopy equivalent, if these maps are equivalent with
resp. to the equivalence relation generated by strict homotopic maps.

1.2.5 Lemma. ([AM69] Cor. 8.13) Let HR(S) be the category consisting of hy-
percoverings of S as objects and morphisms of simplicial objects of S modulo
homotopy equivalence as morphisms. Then HR(S) is cofiltered.

Note, that π0(−) induces a functor Ver(S) : HR(S) → H(SSets), the Verdier
functor.

1.2.6 Definition. Let S be a connected site. Define the homotopy type of S
as the pro-homotopy type in ProH(SSets) given by the Verdier functor

Ver(S) : HR(S) // H(SSets) , U. � // π0(U.) .

1.2.7 Remark. If we start with a pointed connected site p : Sets → S we get
a pointed homotopy type in ProH(SSets•): Instead of hypercoverings, we use
pointed hypercoverings, i.e., hypercoverings U. ∈ HR(S) with a distinguished
point pt → p∗U. in SSets. These form a cofiltered homotopy category HR(S, p),
as well. There is a canonical natural transformation p∗ → π0, i.e., π0 induces a
functor

Ver(S, p) : HR(S, p) // H(SSets•) .

From this, we get back Ver(S) if we forget the point in ProH(SSets•): Indeed,
the canonical functor HR(S, p)→ HR(S) is cofinal (for details, see [AM69] Cor.
8.13).
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Taking together Rem. 1.2.2 and Lem. 1.2.4 we get:

1.2.8 Theorem. (Verdier-Hypercovering-Theorem for local systems). Let S be
a connected site and let L be a locally constant sheaf on S. Then there is a
canonical quasi-isomorphism

RΓ(ptS ;L) ' C•(Ver(S);L)

in the derived category D+(Ab).

1.2.9 Remark. Of course, the same arguments works for a corresponding state-
ment for general sheaves of abelian groups on S, as well.

Further, for U. a hypercovering of S the canonical map

U. // cosk
S
0U.

induces an equivalence between descent data relative to cosk
S
0U. and descent data

relative to U. by [AM69] Prop. 10.3. Thus, the discussion of Rem. 1.2.1 yields:

1.2.10 Proposition. Let (S, p) be a pointed connected site. The fundamental
group π1(Ver(S, p)) classifies descent data of locally trivial coverings in (S, p).
Further, the fundamental group π1(Ver(S, p)∧) of the profinite completion of
Ver(S, p) classifies descent data of locally trivial coverings in (S, p) with finite
fibres.

1.3 The étale homotopy type à la Artin-Mazur. In the following, we
want to discuss a bit closer the étale homotopy type Ver(Xét) resp. Ver(Xét, x)
for a (local) Noetherian scheme X together with a geometric point x ∈ X(Ω):
Recall, that for any étale covering U → X any descent datum for any finite
trivial covering U ⊗ F → U is effective. Thus, from Prop. 1.2.10 we get that
the profinite completion π1(Ver(Xét, x))∧ is just the étale fundamental group
πét

1 (X,x) (cf. [AM69] §10). Even more holds for X Noetherian, connected and
geometrically unibranched: In this case Ver(Xét, x) is already profinite complete,
i.e., Ver(Xét, x) has the correct homotopy type on the nose:

1.3.1 Theorem. ([AM69] Thm. 11.1) Let (X,x) be a pointed Noetherian con-
nected and geometrically unibranched scheme. Then the étale homotopy type
Ver(Xét, x) is profinite complete.

Sketch of proof: We have to show that πq(π0(U.)) is finite for all q and all
hypercoverings U. in a cofinal subcategory of HR(X,x). To see this we may first
assume that X is reduced. Since X is geometrically unibranched, each connected
étale U → X is already irreducible. Let

η : Spec(k(X)) // X

be the generic point. Then π0(U.) is just π0(η∗U.), i.e., we have reduced our
problem to the case of a hypercovering U. in (k(X))ét pointed by some extension
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Ω/k(X) with Ω algebraically closed or more generally in the classifying site BΓ
of a profinite group Γ (where the underling category is just Setsf

Γ, the category of
finite discrete Γ-sets, cf. [Mil80] Chapt. II Rem. 1.11) pointed by the restriction
to the trivial group. Here π0(−) is just the functor (−)/Γ taking coinvariants,
i.e., if we let Γ act trivially on π0(U.) we get a canonical map U.→ π0(U.) in BΓ.

Denote by p the canonical point of BΓ with p∗ = res1Γ. It is not hard to see that
p∗U. → pt is an acyclic fibration of simplicial sets (this holds for every pointed
site!). Using this, we can solve any lifting problem of the form

Λ2
k

//
� _

can.
��

π0(U.)

∆2

<<xxxxxxxx

(argue as in the proof of [AM69] Lem. 11.6), i.e., the path category P∗(π0(U.))
has finite endomorphism sets and each roof in P∗(π0(U.)) already has a solution
in at least one direction. Thus, Π(π0(U.)) has finite automorphism groups, i.e.,
π1(π0(U.)) is finite.

For the higher homotopy groups, it suffices to consider the total space of the
universal covering

A.→ π0(U.).

Since π1(π0(U.)) is finite, A. has to be degreewise finite and hence H•(A.) de-
greewise finitely generated. Thus, by the universal coefficients theorem together
with an induction argument using [Ser53] Chap. III Thm. 1 we see that it suffices
to show that Hq(A.;Z) is finite for all q > 0. By our above description of π0 as
coinvariants, we get the simplicial object (not necessary a hypercovering!)

V. := U.×π0(U.) A.

in BΓ (here Γ acts trivially on A.). By construction, π0(V.) is just A. from which
we started. Further, p∗V. is p∗U. ×π0(U.) A., since p∗ preserves finite limits. In
particular, p∗V.→ p∗U. is a simplicial covering space of a contractible simplicial
set, i.e., p∗V. itself is contractible. By our description of π0, both π0(−) and
p∗(−) preserves skn(−). Further, Γ acts via a finite quotient Γ � Γn on skBΓ

n V.
for each n. To show that Hq(A.;Z) is finite we choose n� 0 s.t.

Hq(sknA.;Z) = Hq(A.;Z)

and may thus assume that Γ is even a finite group.

For Γ finite and a Γ-module Λ (i.e., a sheaf of abelian groups on BΓ), the
composition

Λ
res1Γ //

·|Γ|

66p∗p
∗Λ

cor1Γ // Λ

is just multiplication by the order of Γ. Now

C•(A.; Λ) = C•(π0(V.); Λ) = Γ(V•; Λ).
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But p∗V. is contractible, so

Γ(V•, p∗p
∗Λ) = C•(p∗V.; p∗Λ)

is quasi-isomorphic to p∗Λ in degree 0. Thus, for q > 0 the cohomology group
Hq(π0(V.); Λ) is killed by the order of Γ, i.e., is torsion. But since A. = π0(V.) is
degreewise finite Hq(A.; Λ) is finitely generated and hence finite, which completes
the proof. 2

Next, we want to relate the étale homotopy type of a pointed connected C-
variety (X,x) in ProH(SSets•) to (the singular complex of) its analytification
(Xan, x) in H(SSets•). Denote by Xan

loc resp. Xan
top the site consisting of local

(with resp. to the source) isomorphisms U → Xan resp. open subsets U ↪→ Xan

in Top. For any hypercovering in Xan
loc there is a refinement even in Xan

top, i.e., the
canonical map

Ver(Xan
loc, x) // Ver(Xan

top, x)

is an isomorphism in ProH(SSets•). On the other hand, the analytification of
an étale map is a local isomorphism, i.e. we get a canonical morphism of sites
Xan

loc → Xét. The resulting canonical morphism

Ver(Xan
loc, x) // Ver(Xét, x)

induces isomorphisms on cohomology of local systems with finite stalks (see
[SGA73] Exp. XVI Thm. 4.1) as well as on the profinite completion of the fun-
damental groups (see [SGA73] Exp. XI Thm. 4.3), i.e., its profinite completion is
a \-isomorphism by Thm. 1.1.8.

Let U. be a hypercovering in (Xan
top, x) fine enough, s.t. each connected com-

ponent of each degree is contractible. We get canonical morphisms from the
diagonal simplicial set

diag(Sing.(U.)) // π0(U.)

and
diag(Sing.(U.)) // Sing.(Xan) ' Xan

in SSets•. It turns out that both morphisms are weak equivalences:

1.3.2 Theorem. (see [AM69] Thm. 12.1) Let (X,x) be a pointed connected C-
variety and U. a hypercovering in (Xan

top, x) s.t. each connected component of each
degree is contractible. Then the canonical morphisms

diag(Sing.(U.))

wwooooooooooo

''PPPPPPPPPPPP

π0(U.) (Xan, x)

are isomorphisms in H(SSets•). In particular, Ver(Xan
top, x) is pro-discrete and

isomorphic to (Xan, x).
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Summing up, we get a canonical ProH(SSets•)-morphism

(1.3.1) (Xan, x) // Ver(Xét, x)

whose profinite completion is a \-isomorphism. But even more is true:

1.3.3 Definition. Let C be a class of groups. Then a site S has local C-
dimension ≤ d if for any U in S there is a covering V → U s.t. Hq(V ;L) is
trivial for any q > d and any locally constant sheaf L on S with stalks in C.

Examples are the sites Xét and Xan
loc for our C-variety X: with resp. to C the

complete class of all finite groups both sites have local C-dimension ≤ 2dim(X).

1.3.4 Theorem. ([AM69] Thm. 12.5) Let f : S′ → S′′ be a morphism be-
tween two pointed sites of local C-dimension ≤ d for C a complete class of
groups. Suppose that the C-completion Ver(f)∧C of the induced map Ver(f) is a
\-isomorphism. Then Ver(f)∧C is even an ProH(SSets•)-isomorphism on the nose.

The last theorem applies in particular for the above canonical morphism of
sites

(Xan
loc, x) // (Xét, x) ,

i.e., the profinite completion of (1.3.1) is a ProH(SSets•)-isomorphism on the
nose. Thus, we get the generalized Riemann existence theorem from the usual
descent arguments:

1.3.5 Theorem. (see [AM69] Thm. 12.9, Cor. 12.11 and Cor. 12.12) Let k be
a field together with an embedding k → C and denote by (−)an the induced
analytification functor on Vark̄, as well. Then for (X,x) a proper pointed con-
nected k̄-variety resp. a pointed connected C-variety, the canonical ProH(SSets•)-
morphism

(Xan, x) // Ver(Xét, x)

is an isomorphism after profinite completion. In particular, if X is even geomet-
rically unibranched, (Xan, x) → Ver(Xét, x) is the profinite completion on the
nose.

1.4 The étale homotopy type à la Friedlander. Recall that we solved
the problem of Cov(S) not being cofiltered in general by replacing the Čech

nerves cosk
S
0U of coverings U → ptS by hypercoverings of S up to homotopy

equivalence. The price we had to pay was that the Verdier functor could not
factor over SSets, i.e., we did not get a notion of an étale topological type. In
the following we want to discuss Friedlanders notion of an étale topological type
fixing this disadvantage.

The central point of Friedlanders construction is the rigidity of pointed étale
neighbourhoods:

1.4.1 Lemma. (see [SGA71] Exp. I Cor. 5.4) Let X be a scheme, U → X
connected étale and V → X étale separated. Let f, g : U ⇒ V two X-morphisms
s.t. fu = gu for a geometric point u ∈ U(Ω). Then f equals g.
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For simplicity we restrict our self to k-varieties. Fix a “big enough” alge-
braically closed field Ω containing k (see the preceding remarks of [Fri82] Def.
4.2). Without the restriction to k-varieties, we have to choose such a field Ω for
each occurring characteristic of a residue field.

For X a k-variety and x ∈ X(Ω), the category Cov(Xét, x)◦ of pointed con-
nected étale separated neighbourhoods of the geometric point x in X is rigid in
the sense that there is at most one morphism between two objects: This is just
Lem. 1.4.1.

1.4.2 Definition. Let X be a k-variety. Define the category of rigid cover-
ings of X as the product category

RC(X) :=
∏

x∈X(Ω)

Cov(Xét, x)◦.

We define the category of rigid coverings over k-varieties RCk as the cat-
egory consisting of k-varieties together with a rigid covering as objects with the
obvious choice of morphisms.

It is clear how to enlarge the definition of RC(X) to ind-schemes of the form
X =

∐
iXi for arbitrary index sets.

1.4.3 Notation. Denote by
∐

(−) the forgetful functor

RC(X) // Cov(Xét) .

In abuse of notation, we usually will identify an object {(Ux, ux) → (X,x)}x of
RC(X), its induced covering

∐
{(Ux, ux)→ (X,x)}x and the ind-scheme

U =
∐
x∈X(Ω) Ux

// X

and omit the distinguished points ux of the pointed neighbourhoods (Ux, ux) in
our notation. If moreover the base space X is understood, we just write U for
our rigid covering {(Ux, ux)→ (X,x)}x.

For a diagram of rigid coverings

U //

��

W

��

V

��

oo

X
f // Z Y

goo

the fibre product in RCk exists and is given by the pointed neighbourhoods given
by the connected components of Ux ×Wz Vy containing the distinguished points
ux ⊗ vy for each x ∈ X(Ω) and y ∈ Y (Ω) with fx = z = gy.

1.4.4 Notation. We refer to the fibre product in RCk as the rigid product

U �rig
W V // X ×Z Y .

If f and g are the identity we just write U ×rig
W V .

22



Thus, RCk is closed under finite limits. Combining this with Lem. 1.4.1 we
get that RC(X) is rigid and closed under finite limits. In particular, RC(X) is
cofiltered.

Let f : Y → X be a map of k-varieties and U → X a rigid covering in RC(X).
Define the rigid pullback

f∗U // U

in RCk by the pointed neighbourhoods given as the connected components of
the naive pullback Uf(y) ×X Y containing the points uf(y) ⊗ y together with the
canonical projections (f∗U)y → Uf(y).

Recall that a cleavage of a fibre category Φ : F → B is the choice of an
inverse image for each object X of F and each B-morphism with target Φ(X).
The chosen inverse images are called transport morphisms of the cleavage.
If for all X the transport morphisms corresponding to idΦ(X) is just idX , the
cleavage is called normalized. Summing up, we get:

1.4.5 Lemma. The canonical functor RCk → Vark mapping a rigid covering
U → X to its base space X together with the rigid pullback is a fibred category
with a normalized cleavage which is fibrewise rigid and closed under finite limits.

Using the rigid pullback, we get a well defined functor

Č(−) : Vark // ProSSets

as follows:

1.4.6 Definition. Let X be a k-variety. Define the Čech topological type of
X as the pro-simplicial set given by the functor

Č(X) : RC(X)→ SSets, {U → X} 7→ π0(coskX0 U).

Suppose that every finite set of points in X is contained in an affine open. Then
H•(Č(X);L) agrees with H•(X;L) for any local system L on Xét by [Art71] Cor.
4.2, i.e., Rem. 1.2.1 suggest that Č(X) already has the right homotopy type in
this special case. Thus we define:

1.4.7 Definition. Let X be a k-variety. We say that X is of Čech type, if
every finite set of points in X is contained in an affine open.

Examples of k-varieties of Čech type include all quasi-projective varieties.

1.4.8 Remark. Let U → X étale and X of Čech type. Then U is of Čech type,
as well: Indeed, every finite set of points of U lie over an affine open subset of X.
But since the induced affine open subvariety of X is quasi-projective and an étale
open of a quasi-projective k-varieties is still quasi-projective, the claim follows.

Going back to a general k-variety X we define the category of rigid hypercov-
erings:
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1.4.9 Definition. Let X be a k-variety. Define the category HRR(X) of rigid
hypercoverings of X as the subcategory of simplicial ind-schemes U.→ X over
X together with the structures of a rigid covering on each of the canonical maps

Un // (coskXn−1U.)n

for n ≥ 0 (recall, that we defined coskX−1U. as X) together with morphisms of
simplicial ind-schemes over X s.t. the induced morphisms between the above
canonical maps come from maps of rigid coverings between the chosen structures
of rigid coverings. We define the category of rigid hypercoverings over k-
varieties HRRk as the category consisting of k-varieties together with a rigid
hypercovering as objects with the obvious choice of morphisms.

1.4.10 Notation. In abuse of notation, we usually will identify a rigid hypercov-
ering in HRR(X) and its underling morphism U.→ X of simplicial ind-schemes,
i.e. we will usually omit the extra structure on the maps

Un // (coskXn−1U.)n

in our notation. If moreover the base space X is understood, we just write U. for
our rigid hypercovering.

For a diagram of rigid hypercoverings

U. //

��

W.

��

V.oo

��
X

f // Z Y
goo

the fibre product

U.�rig
W V // X ×Z Y

in HRRk exists and is given by induction on n via the n-truncated simplicial
scheme given by the fibre product:

(U.�rig
W. V.)n

//

��

(coskX×ZYn−1 (U.�rig
W. V.))n

can.

��
Un �

rig
Wn

Vn
// (coskXn−1U.)n ×(coskZn−1W.)n

(coskYn−1V.)n

For the simplicial structural maps, we refer to [Isa04] Rem. 3.31.

1.4.11 Notation. We refer to the fibre product U.�rig
W.V. in HRRk as the rigid

product. If f and g is the identity we just write U.×rig
W.V. for the rigid product

in HRR(X).

Thus, HRRk is closed under finite limits. Again, combining this with Lem.
1.4.1 we get that HRR(X) is rigid and closed under finite limits. In particular,
HRR(X) is cofiltered.
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Let f : Y → X be a map of k-varieties and U. → X a rigid hypercovering.
Define the rigid pullback

f∗U. //

��

U.

��
Y

f // X

of U. in HRRk by induction on n via the corresponding diagram of n-truncated
simplicial schemes given by the rigid pullback along the induced morphism on
coskeletons (coskYn−1f

∗U.)n → (coskXn−1U.)n:

(f∗U.)n //

��

(coskYn−1f
∗U.)n

��
Un // (coskXn−1U.)n

Again, for the simplicial structural maps, we refer to [Isa04] Sect. 3.5.

Summing up, we get:

1.4.12 Lemma. The canonical functor HRRk → Vark mapping a rigid hyper-
covering U.→ X to its base space X together with the rigid pullback is a fibred
category with a normalized cleavage which is fibrewise rigid and closed under
finite limits.

Using the rigid pullback we get a well defined functor

Ét(−) : Vark // ProSSets

as follows:

1.4.13 Definition. Let X be a k-variety. Define the étale topological type
of X as the pro-simplicial set given by the functor

Ét(X) : HRR(X)→ SSets, {U.→ X} 7→ π0(U.).

We generalize the definition of the Čech resp. étale topological type of a k-
variety to simplicial k-varieties. The essential two observations are collected in
the following two remarks:

1.4.14 Remark. For a k-variety X we get back RC(X) resp. HRR(X) as the
fibre category of RCk → Vark resp. HRRk → Vark over X (cf. Lem. 1.4.5 and
1.4.12).

1.4.15 Remark. Let Φ : F → B be a fibred category together with a normalized
cleavage. Suppose it is levelwise rigid and closed under finite limits. Then the
induced functor Φ : SF → SB is of the same type. In particular, each fibre
category SF (X.) is cofiltered. Further, for a simplicial discrete object X in B the
fiber categories F (X) and SF (X) agree.
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By Rem. 1.4.15, we get a fibred category over simplicial k-varieties

SRCk
// SVark

resp.
SHRRk

// SVark

together with a normalized cleavage which is levelwise rigid and closed under
finite limits.

1.4.16 Definition. Let X. be a simplicial k-variety.

(i) Define the category RC(X.) of rigid coverings over X. as the fibre cat-
egory over X. of SRCk → SVark.

(ii) Define the category HRR(X.) of rigid hypercoverings over X. as the
fibre category over X. of SHRRk → SVark.

It is clear from the above, that RC(X.) resp. HRR(X.) is cofiltered.

For a map of simplicial k-varieties Y.→ X. define coskX.0 Y. as the bisimplicial
k-variety given in bidegree (m,n) as (coskXm0 Ym)n.

1.4.17 Definition. Let X. be a simplicial k-variety.

(i) Define the Čech topological type of X. as the pro-simplicial set given
by the functor

Č(X.) : RC(X.)→ SSets, {U.→ X.} 7→ diag(π0coskX.0 U.).

(ii) Define the étale topological type of X. as the pro-simplicial set given
by the functor

Ét(X.) : HRR(X.)→ SSets, {U..→ X.} 7→ diag(π0U..).

1.4.18 Remark. By Rem. 1.4.15, we get back RC(X) resp. HRR(X) for a (sim-
plicial discrete) k-variety X. Thus, our definition for the Čech resp. étale topolog-
ical type for simplicial k-varieties restricts to our old definition in the simplicial
discrete case.

As expected, for X any k-variety resp. for a k-variety of Čech type the étale
topological type Ét(X) resp. the Čech topological type Č(X) has the right homo-
topy type. Moreover, for a simplicial k-variety levelwise of Čech type the Čech
type and étale topological types are \-isomorphic:

1.4.19 Theorem. (see [Fri82] Prop. 4.5, Prop. 8.2 and [Art71] Cor. 4.2) Let X
be a connected k variety and Y. a (possible simplicial discrete) simplicial k-variety,
degreewise of Čech type.

(i) The pro-homotopy type in ProH(SSets) induced by the étale topological
type Ét(X) is isomorphic to Ver(Xét).

(ii) The pro-homotopy type in ProH(SSets) induced by the Čech topological
type Č(Y.) is \-isomorphic to the pro-homotopy type induced by the étale
topological type Ét(Y.).
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1.5 Isaksens closed model structure on the category of pro-simplicial
sets. A rather annoying drawback of working in the pro-homotopy category is
the following: A ProH(SSets•)-morphisms inducing isomorphisms on π0 and all
pro-homotopy groups is only a \-isomorphism and not an isomorphism on the
nose. To deal with this disadvantage, Isaksen defined a closed model structure
on ProSSets, whose weak equivalences are a suitable generalization of the \-
isomorphisms in ProH(SSets):

Let A. be a simplicial set. Taking together all the homotopy groups πq(A., a)
for the various points a ∈ A0 together with the isomorphisms

πq(A., d
1
1α) // πq(A., d

0
1α)

for the various paths α ∈ A1 gives a local system (of not necessarily abelian
groups in the case q = 1)

Πq(A.) ∈ Loc(A.).

For a map f : A. → B. the induced maps πq(A., a) → πq(B., f(a)) induce a
Loc(A.)-morphism

Πq(A.) // f∗Πq(B.) .

Thus, for a pro-simplicial set X = {Xi}i each Πq(Xi) defines a local system in
Loc(X) and we get a well defined pro-local system

Πq(X) := {Πq(Xi)}i

in ProLoc(X). Further, each ProSSets-morphism f : X→ Y induces a morphism
in ProLoc(X)

Πq(X) // f∗Πq(Y) .

Now we can define Isaksens model structure on ProSSets:

1.5.1 Definition. Let f : X→ Y be a map of pro-simplicial sets.

(i) Define f to be a weak equivalence, if π0(f) is an isomorphism in ProSets
and Πq(X)→ f∗Πq(Y) is an isomorphism in ProLoc(X) for all q > 0.

(ii) Define f to be a cofibration, if it is isomorphic to a levelwise cofibration.

(iii) Define f to be a fibration, if it has the right lifting property with respect
to all acyclic cofibrations.

1.5.2 Remark. For all pro-simplicial sets X the canonical map X → X\ is a
weak equivalence (recall that we defined (−)\ on ProSSets using a fixed functorial
fibrant replacement functor).

1.5.3 Theorem. ([Isa01] Thm. 6.4) Def. 1.5.1 gives a proper simplicial model
structure on ProSSets.

Denote the resulting homotopy category by H(ProSSets).
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1.5.4 Theorem. (see [Isa01] Thm. 7.3) A map of pro-simplicial sets f : X→ Y
is a weak equivalence if and only if π0(f) is an isomorphism in ProSets, the
canonical map

Π1(X) // f∗Π1(Y)

is an isomorphism in ProLoc(X) and for all L ∈ Loc(Y) the map on cohomology

H•(Y;L) // H•(X; f∗L)

is an isomorphism.

There is also a direct description of the fibrations in this model structure:
Define a map of pro-simplicial sets f : X→ Y to be a strong fibration, if it is
isomorphic to a levelwise map {X′i → Y′i}i∈I for I a cofinite directed set s.t. each
level X′i → Y′i induces isomorphisms on πq(−) for all q � 0 (depending on i) and
s.t. all the canonical maps

X′i
// Y′i ×(limj<iY′j)

(limj<iX
′
j)

are fibrations of simplicial sets.

1.5.5 Proposition. ([Isa01] Prop. 6.6) A map of pro-simplicial sets f : X → Y
is a fibration if and only if it is a retract of a strong fibration in ProSSets ↓ Y.

As in the pro-discrete case, the classifying space BΓ of a nice pro-group Γ is
fibrant:

1.5.6 Remark. Let Γ be a pro-group induced by a tower {Γn}n of epimorphisms.
Then BΓ is fibrant in ProSSets:

We proof that BΓ→ pt is even a strong fibration. Since {Γn}n is a tower, we
get

lim
m<n

BΓm = BΓn−1

for n > 0 resp. = pt for n = 0. Now BΓ0 is fibrant, so we have to show that

BG // BH

is a fibration for a group quotient G � H. By adjointness of the nerve functor,
it suffices to construct functor γ : B → G in the category of internal groupoids
in Sets making

A
α //

i
��

G

��
B

β // H

commutative for i : A→ B a fully faithful embedding which is an equivalence of
categories. To do this, we may assume A is connected. Pick a base object ∗ in A
and fix a morphism

ϕb : b // ∗
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for each object b in B with ϕ∗ = id∗. Further, choose a lift γb in G of β(ϕb) s.t.

γa = α(ϕa)

for all objects a of A. Let f : b′ → b′′ be any morphism in A. We set

γ(f) := γ−1
b′′ ◦ α(ϕb′′ ◦ f ◦ ϕ−1

b′ ) ◦ γb′ ,

which gives a well defined functor γ : B → G with the desired properties.

For −1 ≤ n ≤ ∞ a map f : X. → Y. of simplicial sets is an n-equivalence if
for all x ∈ X0 the induced maps πq(f, x) are isomorphisms for all q < n and an
epimorphisms for q = n. Similar, f is a co-n-equivalence if the induced maps
πq(f, x) are isomorphisms for q > n and a monomorphism for q = n. An n-
cofibration is a cofibrations which is also an n-equivalence and a co-n-fibration is
a fibration which is also a co-n-equivalence. By [Isa01] Prop. 3.3 we may factor
any map of simplicial sets into an n-cofibration followed by a co-n-fibration. The
following explicit factorization will turn out to be useful in Sect. 4.3:

1.5.7 Remark. Any ProSSets-morphism f : X→ Y can be factored as

X
i //

f

77X′
f ′ // Y

for i an acyclic cofibration and f ′ a strong fibration: By [AM69] Appendix Cor.
3.2 we may write f as a levelwise map. Further, by [EH76] Thm. 2.1.6 we may
assume that the index category I is cofinite (i.e. the set of isomorphism classes
of I is cofinite with resp. to the ordering given by the rule: [i] > [j] if and only if
there is a non isomorphism i→ j). Thus, we get a well defined height function

h : Obj(I) // N

with h(i) the maximal length of a chain

i = i0 // i1 // . . . // in

of non isomorphisms in I.

We construct the factorization inductively with respect to the cofinite index
category I. Thus, assume we constructed a factorization in indices j with i→ j
a non isomorphism (we say j < i). We may factor the canonical map

Xi // Yi ×limj<iYj limj<iX
′
j

into an h(i)-cofibration followed by a co-h(i)-fibration:

Xi
ii // X′i

// Yi ×limj<iYj limj<iX
′
j

Then the h(i)-cofibration ii together with the composition

X′i
//

f ′i :=

33Yi ×limj<iYj limj<iX
′
j

pr // Yi

defines our factorization in the index i. For details, see [Isa01] Prop. 15.1.
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1.5.8 Remark. Let

X
i //

f

77X′
f ′ // Y

be a factorization constructed as in Rem. 1.5.7 with index category I. The
full subcategory of I consisting of objects of heights ≥ n + 1 is cofinal. Thus,
restricting to this subcategory gives an isomorphic factorization

X̃
ĩ //

f̃

77X̃′
f̃ ′ // Ỹ

with f̃ ′ a strict fibration and ĩ an acyclic cofibration, which induces levelwise
isomorphisms πq (̃i) for all q ≤ n.

There is a second model structure on ProSSets, the strict model structure
of Edwards and Hastings:

1.5.9 Definition. Let f : X→ Y be a map of pro-simplicial sets.

(i) Define f to be a strict weak equivalence, if it is isomorphic to a levelwise
weak equivalence.

(ii) Define f to be a strict cofibration, if it is isomorphic to a levelwise cofi-
bration.

(iii) Define f to be a strict fibration, if it has the right lifting property with
respect to all acyclic strong cofibrations.

1.5.10 Theorem. ([EH76] Thm. 3.3.3) Def. 1.5.9 gives a model structure on
ProSSets.

Denote the resulting homotopy category by Hstrict(ProSSets). Since each strict
weak equivalence is a weak equivalence, we get the canonical localization functor

Hstrict(ProSSets) // H(ProSSets) .

For nice pro-simplicial sets we even get:

1.5.11 Proposition. ([Isa01] Prop. 10.9) Let X and Y = {Yi}i be pro-simplicial
sets and suppose for all i that Yi has only finitely many non trivial homotopy
groups. Then the canonical morphism

[X,Y]Hstrict(ProSSets)
// [X,Y]H(ProSSets)

is an isomorphism.

The last proposition applies in particular for Y = X\. Since X → X\ is a
weak equivalence and a map f : X → Y is a weak equivalence of a closed model
category if and only if it induces an isomorphism in the homotopy category (this
is standard homotopical algebra, e.g. see [DS95] Prop. 5.8), we get:
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1.5.12 Corollary. A map of pro-simplicial sets f : X→ Y is a weak equivalence
if and only if f \ : X\ → Y\ is a strict weak equivalence, i.e., is isomorphic to a
levelwise weak equivalence.

In particular, any weak equivalence in ProSSets resp. in ProSSets• induces a \-
isomorphism in ProH(SSets) resp. in ProH(SSets•). Using the equivalent rather
technical description of a weak equivalence in ProSSets of [Isa01] Thm. 7.3, we
get a converse statement in some sense, as well:

1.5.13 Proposition. (see [Isa01] Cor. 7.5) Let f : X→ Y be a map of pointed
levelwise connected pro-simplicial sets inducing a \-isomorphism in ProH(SSets•).
Then f is a weak equivalence in ProSSets resp. in ProSSets•.

Thus, from now on we refer to \-isomorphisms just as weak equivalences.

1.6 Hypercover descent. In this subsection we want to review the compar-
ison between the topological types of a k-variety X, the topological type of one
of its hypercoverings U. and the homotopy colimit of the topological types of the
simplicial degrees of U. due to Cox, Friedlander and Isaksen.

Let C be a simplicial closed model category closed under arbitrary colimits and
SC the category of simplicial objects in C.

1.6.1 Definition. Let X. be a simplicial object in C. Then its realization is
defined as the C-object

Re(X.) = ReC(X.) := colim{
∐i,j

σ∈∆i
j
Xi ⊗∆j

Xσ⊗id//

id⊗∆σ
//
∐
iXi ⊗∆i }.

Further, its m-truncated realization is defined as the C-object

Rem(X.) = ReCm(X.) := colim{
∐i,j≤m
σ∈∆i

j
Xi ⊗∆j

Xσ⊗id//

id⊗∆σ
//
∐
i≤mXi ⊗∆i }.

By the universal mapping property of colimits, we get a canonical C-map

Rem(X.) // Re(X.)

Some easy simplicial computations show:

1.6.2 Lemma. The functor Re(−) : SC → C is left adjoint to the functor

C → SC, Y 7→ Y ∆•

mapping Y to the path object Y ∆• given by the simplicial structure on C, while
the functor Rem(−) : SC → C is left adjoint to the functor

C → SC, Y 7→ coskCm(Y ∆•).

Toying around with these adjointness properties and doing a few more simpli-
cial computations we get the following lemma:
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1.6.3 Lemma. (see [Isa04] Prop. 4.7, [Hir03] Cor. 18.7.7) Let X.. be a bisim-
plicial set.

(i) The realization Re(X..) is nothing but the diagonal simplicial set diag(X..).

(ii) The realization Re(X..) and the homotopy colimit hocolimnXn. are weakly
equivalent.

(iii) The canonical map skmRem(X..)→ skmRe(X..) on the mth skeletons is an
isomorphism.

For a pro-simplicial set X we write skmX resp. coskmX for the levelwise mth

skeleton and coskeleton functors. For simplicial pro-simplicial sets we have:

1.6.4 Lemma. (see [Isa04] Prop. 4.9 and Prop. 4.11) Let X. be a simplicial pro-
simplicial set.

(i) The realization Re(X.) and the homotopy colimit hocolimnXn are weakly
equivalent.

(ii) The canonical map skmRem(X.) → skmRe(X.) on the levelwise mth skele-
tons is an isomorphism.

We want to compare levelwise truncated realizations with realizations of simpli-
cial pro-simplicial sets. The following lemma is a straightforward generalization
of [Isa04] Prop. 5.2. The proof essentially tells us how to compute the rather
complicated colimit ReProSSets

m in special cases, so we give the proof for complete-
ness:

1.6.5 Lemma. (cf. [Isa04] Prop. 5.2) Let Φ : F → B be a fibred category to-
gether with a normalized cleavage. Suppose it is fibrewise rigid and closed under
finite limits. Let π : F → SSets be a functor. Let X. be a simplicial object in B
and suppose that the canonical functor

SF (X.) //
∏

0≤ν≤m F (Xν)

mapping a simplicial object U. ∈ SF (X.) to the first m + 1 simplicial degrees
is cofinal. Then the levelwise m-truncated realization of the induced simplicial
pro-simplicial set π|SF (X.) agrees with its m-truncated realization in ProSSets:

(ReSSets
m ◦ π)|SF (X.) = ReProSSets

m (π|SF (X.)).

Proof: The truncated realization ReProSSets
m (π|SF (X.)) is isomorphic to the colimit

of the diagram

π|F (Xi) ×∆j σ
∗×id //

id×∆σ

��

π|F (Xj) ×∆j

π|F (Xi) ×∆i

, for i, j ≤ m and σ ∈ ∆i
j .
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All the occurring maps are strict, so by [Isa02] Sect. 3.1 and [AM69] Appendix
Prop. 4.1 we can write the truncated realization ReProSSets

m (π|SF (X.)) levelwise as

colim{
∐i,j≤m
σ∈∆i

j
π(Ui ×X∗σUj)×∆j

π(prUj )×id
//

π(prUi )×∆σ
//
∐
i≤m π(Ui)×∆i }

for
(U0, . . . , Um) ∈

∏
0≤ν≤m

F (Xν),

where prUj is the composition of the canonical maps prX∗σUj : Ui×X∗σUj → X∗σUj
and X∗σUj → Uj . By assumption,

SF (X.) //
∏

0≤ν≤m F (Xν)

is cofinal, so we may replace the index category
∏

0≤ν≤m F (Xν) by SF (X.) and

the Uν by the νth simplicial degrees of U. ∈ SF (X.).

Now for σ ∈ ∆i
j as above

Uσ : Ui // Uj

uniquely factors over the the transport morphism

X∗σUj // Uj

given by our cleavage. In particular, we get a (right-) splitting of the projection

prUi : Ui ×X∗σUj // Ui .

By assumption, there is at most one morphism between two objects in F (Xi), so
this projection has to be an isomorphism. Thus, we can write ReProSSets

m (π|SF (X.))
levelwise as

colim{
∐i,j≤m
σ∈∆i

j
π(Ui)×∆j

π(Uσ)×id//

id×∆σ
//
∐
i≤m π(Ui)×∆i }

for U. ∈ SF (X.). But this is exactly the pro-object (ReSSets
m ◦ π)|SF (X.), which

completes the proof. 2

For a pro-simplicial set X and m ≥ 2 the canonical map skmX → X induces
isomorphisms on fundamental groupoids as well as on cohomology in degrees
< m. Combining this with the isomorphisms

skmReCm
∼= // skmReC

of Lem. 1.6.3 resp. Lem. 1.6.4 for C the category of simplicial sets resp. of pro-
simplicial sets means that the canonical map

ReProSSets(π|SF (X.)) // (ReSSets ◦ π)|SF (X.)
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is a weak equivalence in ProSSets if and only if the same is true for the m-
truncated versions of this map for arbitrary large m. But the latter statement
holds by Lem. 1.6.5. Combining this with Lem. 1.6.4 (i) we get the following
corollary:

1.6.6 Corollary. Let Φ : F → B be a fibred category and X. a simplicial object
of B as in Lem. 1.6.5. Then we have weak equivalences in ProSSets

(ReSSets ◦ π)|SF (X.) ' ReProSSets(π|SF (X.)) ' hocolim
n

π|F (Xn).

We want to apply this to the special case of the Čech resp. étale topological
type: By Lem. 1.6.3 the realization on SSets is nothing but the diagonal simplicial
set. Thus, the Čech resp. étale topological type of a simplicial k-variety X. is
given by the functor

RC(X.)→ SSets, {U.→ X.} 7→ Re(π0coskX.0 U.)

resp.
HRR(X.)→ SSets, {U..→ X.} 7→ Re(π0U..).

This motivates the following definition:

1.6.7 Definition. Let X. be a simplicial k-variety.

(i) Define the m-truncated Čech topological type of the simplicial k-
variety X. as the pro-simplicial set given by the functor

Čm(X.) : RC(X.)→ SSets, {U.→ X.} 7→ Rem(π0coskX.0 U.).

(ii) Define the m-truncated étale topological type of the simplicial k-
variety X. as the pro-simplicial set given by the functor

Étm(X.) : HRR(X.)→ SSets, {U..→ X.} 7→ Rem(π0U..).

By definition we get canonical maps Čm(X.)→ Č(X.) and Étm(X.)→ Ét(X.).
As a direct consequence of Lem. 1.6.3 we get:

1.6.8 Corollary. Let X. be a simplicial k-variety. Then the canonical maps on
the levelwise mth skeletons

skmČm(X.) // skmČ(X.)

skmÉtm(X.) // skmÉt(X.)

are isomorphisms.

We conclude this section by comparing the topological types of a k-variety
X, of one of its hypercoverings U. and of the homotopy colimit over the resp.
topological type of the simplicial degrees of U.:
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1.6.9 Proposition. (see [Cox79a] Thm. IV.2 and [Fri82] Prop. 8.1) Let U.→ X
be a (rigid or non rigid) hypercovering of a k-variety X. Then the canonical map

Ét(U.) // Ét(X)

is a weak equivalence. If moreover X is of Čech type, then the corresponding
statement holds for the Čech topological type, as well.

Proof: For the first statement see [Cox79a] Thm. IV.2 and [Fri82] Prop. 8.1. The
last statement follows from the first one by Thm. 1.4.19 since U. is levelwise étale
over X and hence of Čech type, as well (see Rem. 1.4.8). 2

Both Vark categories RCk → Vark and HRRk → Vark satisfy the assumptions
of Lem. 1.6.5 by Lem. 1.4.5 and Lem. 1.4.12. Thus, combining Prop. 1.6.9 with
Lem. 1.6.5 and Cor. 1.6.6 we get:

1.6.10 Theorem. Let X be a k variety, U. → X a (rigid or non rigid) hyper-
covering and Y. a simplicial k variety.

(i) Čm(Y.) resp. Étm(Y.) is isomorphic to the realization

ReProSSets
m (n 7→ Č(Yn))

resp.
ReProSSets

m (n 7→ Ét(Yn)).

(ii) We have weak equivalences

Č(Y.) ' ReProSSets(n 7→ Č(Yn)) ' hocolim
n

Č(Yn)

resp.
Ét(Y.) ' ReProSSets(n 7→ Ét(Yn)) ' hocolim

n
Ét(Yn).

(iii) We have a canonical weak equivalence

hocolimn Ét(Un)→ Ét(X).

(iv) If moreover X is of Čech type, then we have a canonical weak equivalence

hocolimn Č(Un)→ Č(X).
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2 Some abstract nonsense

In this section we develop some abstract nonsense needed later in the thesis. In
the first three subsections we do some explicit computation with the Čech topo-
logical type leading to base change theorems for étale homotopy types in Sect.
2.3. In Sect. 2.4, we compare the Hochschild-Serre spectral sequence with the
Galois-hypercohomology spectral sequence of a certain cochain complex com-
puting geometric cohomology with local coefficients. In Sect. 2.5 we prove a
cohomological universal coefficient theorem for pro-chain complexes and finally,
in Sect. 2.6 we link cohomology with locally constant coefficients of k-varieties
to the corresponding Eilenberg-MacLane spaces in the pro-homotopy category
ProH(SSetsΓ).

2.1 A variant of the Čech topological type. Throughout the thesis, we fix
an algebraic closure k̄/k of k a field of characteristic 0. Let X be a geometrically
unibranched k-variety. For computational reasons, we restrict the set X(Ω) to
the set

X(k̄/k) := HomSchk
(Spec(k̄), X),

i.e., we forget the non closed points and consider points always relative over k.
Denote the resulting category of rigid coverings by RC(X/k). Clearly, RC(X/k)
is still cofiltered. The gain is, that RC(k/k) is the category of finite algebraic
subextensions of k̄/k on the nose.

Fix an embedding ι : k̄ ↪→ Ω. For U → X in RC(X) define

U (k̄/k) // X

in RC(X/k) using the induced map ι∗ : X(k̄/k) → X(Ω) as follows: For x a
geometric point in X(k̄/k) the map

U
(k̄/k)
x

// X

is just Uι∗x → X. We get a commutative diagram

Spec(Ω) //

uι∗x
++

ι

��

Spec(k(uι∗x)) //

��

U
(k̄/k)
x

��
Spec(k̄) //

x

33Spec(k(x)) // X

where k(x) and k(uι∗x) are the residue fields of the underling points. The left
square corresponds to a map of k̄-algebras

k̄ ⊗k(x) k(uι∗x) // Ω.

Since the left hand side is a finite dimensional k̄ algebra, it corresponds to a finite
disjoint union of closed points. It follows that this map has to factor uniquely
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over the residue field of one of these points, i.e. over k̄, since it is algebraically
closed. As a result, we get a unique lift

Spec(k̄) // Spec(k(uι∗x))

in the left square, i.e. we get a canonical point u
(k̄/k)
x in U

(k̄/k)
x (k̄/k) over x. This

construction is functorial and the resulting functor

RC(X) // RC(X/k)

is cofinal. Arguing as in Sect. 1.6, we get a cofinal functor

RC(X.) // RC(X./k)

between categories of rigid coverings for a simplicial k-variety X., as well.

Now define the Čech topological type of X./k as the pro-simplicial set
given by the functor

Č(X./k) : RC(X./k)→ SSets, {U.→ X} 7→ Re(π0(coskX.0 U.))

resp. the m-truncated Čech topological type of X./k as the pro-simplicial set
given by the functor

Čm(X./k) : RC(X./k)→ SSets, {U.→ X} 7→ Rem(π0(coskX.0 U.)).

Again, the gain is that Č(k/k) equals BΓk on the nose. We define the relative
Čech topological type of X./k as the canonical map

Č(X./k) // BΓk .

For U → X in RC(X) we have the canonical embedding U (k̄/k) ↪→ U over X.
Thus our cofinal functor RC(X.)→ RC(X./k) defines a strict map

Č(X./k)→ Č(X.).

Both sides compute the étale fundamental group resp. the Čech cohomology of
X., so our strict map is in fact a weak equivalence. Thus, if X. is degreewise of
Čech type, Č(X./k) is weakly equivalent to the étale topological type Ét(X.) by
Thm. 1.4.19.

However, to compare the Čech topological type of a k-variety with the Čech
topological type of its base change along a non algebraic field extension (e.g., its
generic fibre) it is convenient to drop our restriction to closed geometric points:

2.1.1 Remark. Let K/k be any field extension and fix a separable algebraic clo-
sure K̄/K. The relative algebraic closure of the resulting extension K̄/k induces
a canonical extension K̄/k̄ making the diagram

K K̄

k k̄
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commutative. For X a k-variety define RC(X/k)K and Č(X/k)K similar as
RC(X/k) and Č(X/k) with resp. to the set of geometric points X(K̄/k). We
get a canonical embedding

X(k̄/k) � � // X(K̄/k)

together with the induced functor

RC(X/k)K // RC(X/k) ,

which is an isomorphism resp. an equivalence for Spec(L) and L/k finite algebraic.
In particular,

Č(k/k)K = Č(k/k) = BΓk.

Clearly, the induced canonical ProSSets ↓ BΓk-morphism

Č(X/k) // Č(X/k)K

is a weak equivalence. Let x be a geometric point in

(X ⊗k K)(K̄/K) = X(K̄/k)

and (U, u) → (X,x) a pointed connected étale neighbourhood. Now the con-
nected component of the distinguished point in U×X (X⊗kK) defines a canonical
pointed connected étale neighbourhood of (X⊗kK,x) together with a projection
to (U, u). This induces a canonical functor

RC(X/k)K // RC(X/K)

which in turn induces a canonical commutative square:

(2.1.1) Č(X ⊗k K/K) //

��

BΓK

can.

��
Č(X/k)K // BΓk.

2.2 The Čech topological type of an étale covering. We want to study
the Čech topological type of an étale covering space f : Y → X.

First assume that f : Y → X is even Galois with group G. Let V be an
arbitrary rigid covering of Y/k. We will construct a map of rigid coverings

Ṽ // V

functorial in V ∈ RC(Y/k) with Ṽ a G-equivariant rigid covering, universal with
this property: For y ∈ Y (k̄/k) let Ṽy be the connected component of the product
(depending only on the G-orbit [y] of y)

Ṽ[y] :=
∏
σ∈G
{ Vσ(y)

// 77Y
σ−1
// Y }
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in SchY containing the distinguished point

ṽy := ⊗σ∈Gvσ(y).

This gives a morphism

(Ṽy, ṽy) // (Vy, vy)

of pointed étale neighbourhoods of (Y, y). By the commutative diagram

V(τσ)(y)

��

Vτ(σ(y))

��
Y

(τσ)−1

��

Y

τ−1

��
Y

σ // Y

the coordinate flip Ṽ[y] → Ṽ[σ(y)] given by right multiplication by σ−1 in the index
set gives the commutative diagram:

Ṽ[y]
//

��

Ṽ[σ(y)]

��
Y

σ // Y.

This coordinate flip restricts to an isomorphism

Ṽy // Ṽσ(y)

i.e., Ṽ → Y is indeed a G-equivariant rigid covering of Y/k. Thus,

U := Ṽ /G

is a rigid covering of X/k with f∗U = Ṽ .

Now let U be any rigid covering of X/k admitting a map

f∗U // V

Then there is a unique G-equivariant factorization over the above canonical map
Ṽ → V : Indeed, by the commutative diagram

(f∗U)y //

σ

��

Vy // Y

σ

��
(f∗U)σ(y)

// Vσ(y)
// Y

the compositions

(f∗U)y
σ // 33(f∗U)σ(y)

// Vσ(y)
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induce a Y -morphism (f∗U)y → Ṽy. By the rigidity of maps between pointed
étale neighbourhoods, the resulting map

f∗U // Ṽ

is unique and thus also G-equivariant.

In particular the rigid pullback

f∗ : RC(X/k) // RC(Y/k)

is cofinal for f an étale Galois covering. For an arbitrary connected étale covering
space f : Y → X we argue as follow: Let

f̃ : Ỹ // X

be a Galois covering dominating f , say with group G. The induced covering

g : Ỹ // Y

is Galois, say with group H ≤ G. By the above there is a rigid covering U of
X/k with a map

f̃∗U // g∗V .

Again by rigidity of maps between pointed étale neighbourhoods, this map is
H-equivariant and thus descends to a map

f∗U // V .

Thus, the rigid pullback

f∗ : RC(X/k) // RC(Y/k)

is cofinal for a general connected étale covering space f : Y → X, too. As a
result, we get the following:

2.2.1 Lemma. Let f : Y → X be a connected étale covering space. Then
Č(Y/k) is isomorphic to the pro-simplicial set given by the functor

RC(X/k)→ SSets, {U → X} 7→ π0(coskY0 f
∗U).

2.2.2 Remark. Of course, the analogue arguments give corresponding state-
ments for Č(Y ) and Ét(Y ), as well.

Suppose our covering is of the form X⊗kK → X for K/k finite algebraic. Note,
that the above construction of Ṽ → V is natural in rigid coverings of X ⊗k K/k
for k-varieties X, i.e. for f : X → Y a map of k-varieties and a commutative
diagram

V //

��

U

��
X ⊗k K

f⊗kK // Y ⊗k K
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we get a commutative diagram

Ṽ //

��

Ũ

��
V // U

functorial in the first diagram.

Thus, for K/k finite algebraic and X. a simplicial k-variety, the rigid pullback

RC(X./k) // RC(X.⊗k K/k)

is cofinal and we get:

2.2.3 Corollary. Let K/k finite algebraic and X. a simplicial k-variety. Then
Č(X.⊗k K/k) is isomorphic to the pro-simplicial set given by the functor

RC(X./k)→ SSets, {U.→ X.} 7→ Re(π0(coskX.⊗kK0 p∗U.)),

where p : X.⊗k K/k → X. is the canonical projection.

2.3 Base change for étale homotopy types. In this subsection we want
to relate the base change of a k-variety of Čech type along an algebraic extension
K/k to the corresponding extension of the relative Čech topological type. Fix an
algebraic extension K/k. Let K(k̄/k) be the set of k-algebra embeddings K → k̄
and write XK for the base extension X ⊗k K.

2.3.1 Remark. First note that

Γk\(EΓk ×K(k̄/k)) ∼= ΓK\EΓk

over BΓk, where the structural map

Γk\(EΓk ×K(k̄/k)) // BΓk

is given by the projection onto EΓk. To see this choose an Γk-isomorphism
K(k̄/k) ∼= Γk/ΓK . Now

EΓk × Γk/ΓK → ΓK\EΓk, (σ, [τ ]) 7→ [τ−1σ]

is well defined, surjective and descents to a map

Γk\(EΓk × Γk/ΓK) // ΓK\EΓk

over BΓk. It is easy to see that this map is injective, hence the claim.

2.3.2 Remark. From Rem. 2.3.1 we get that the canonical map

ΓK\EΓk // limK⊇L/k(ΓL\EΓk)
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is an isomorphism, where the limit runs over all finite subextensions L/k of K/k:
First, note that any k-algebra embedding K → k̄ is given by a compatible choice
of embeddings for the finite subextensions L/k, i.e.,

K(k̄/k) = lim
K⊇L/k

L(k̄/k).

Again, choose a Γk isomorphism K(k̄/k) ∼= Γk/ΓK . For a finite subextension L/k
the composition

Γk // // Γk/ΓK ∼= K(k̄/k) // // L(k̄/k)

factors over Γk → Γk/ΓL and thus give compatible choices of Γk isomorphisms
L(k̄/k) ∼= Γk/ΓL. Representing a class [σ, ι] by σ ∈ Γn+1

k with σ0 = 1 gives a
degreewise isomorphism

(Γk\(EΓk × L(k̄/k)))n ∼= Γnk × L(k̄/k),

natural in the algebraic extension L/k (but of course not in the simplicial degree
n). But this implies our claim, since K(k̄/k) = limK⊇L/k L(k̄/k).

We need an easy but technical lemma: Let Lν/k for 0 ≤ ν ≤ n be a a family
of finite algebraic extensions. Sending a tuple of geometric points ιν in Lν(k̄/k)
to the underling point of the ⊗-product

⊗νιν : L0 ⊗k . . .⊗k Ln // k̄

defines a surjection∏
0≤ν≤n

Lν(k̄/k) // // π0(Spec(L0 ⊗k . . .⊗k Ln)) .

It is Γk-equivariant, where Γk act diagonally from the left on the source and
trivially on the target.

2.3.3 Lemma. Let Lν/k for 0 ≤ ν ≤ n be a family of finite algebraic extensions.
Then the canonical epimorphism

Γk\(
∏

0≤ν≤n
Lν(k̄/k)) // // π0(Spec(L0 ⊗k . . .⊗k Ln))

is an isomorphism.

Proof: Let L/k Galois containing L0. Then L/L0 is Galois, say with group G.
It acts from the right on L(k̄/k) with orbit space

L(k̄/k)/G = L0(k̄/k).

Note that this G-action commutes with the Γk-action from the left. It follows
that

Γk\(L(k̄/k)×
∏

0<ν≤n
Lν(k̄/k))/G = Γk\(

∏
0≤ν≤n

Lν(k̄/k)).
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Further,

Spec(L⊗k L1 ⊗k . . .⊗k Ln) // Spec(L0 ⊗k L1 ⊗k . . .⊗k Ln)

is étale Galois with group G, so G acts on π0(Spec(L⊗k L1 ⊗k . . .⊗k Ln)) with
orbit space π0(Spec(L0 ⊗k L1 ⊗k . . .⊗k Ln)). The canonical epimorphism

Γk\(L(k̄/k)×
∏

0<ν≤n
Lν(k̄/k)) // // π0(Spec(L⊗k L1 ⊗k . . .⊗k Ln))

is functorial and henceG-equivariant, i.e. it suffices to show that this epimorphism
is an isomorphism. Enlarging L/k and arguing similar for the other factors Li
one by one, it suffices to show that the canonical epimorphisms

Γk\Gn+1 → π0(Spec(L⊗k(n+1)))

is an isomorphism. But the target has the same cardinality then the source, so
this clearly holds. 2

2.3.4 Remark. Let Lν/k for 0 ≤ ν ≤ n be a family of finite algebraic extensions.
For ι a tuple of embeddings in

∏
ν Lν(k̄/k) let Lι ↪→ k̄ be the embedding of the

composition of subfields ινLν of k̄. The automorphism of k̄/k given by γ in Γk
restricts to an isomorphism of fields

γ : Lι // Lγι .

For [ι] a class in Γk\(
∏
ν Lν(k̄/k)) we get that the k-algebra

L[ι] := (
∏
ι∈[ι]

Lι)
Γk

is again a field, isomorphic to the fields Lι but without a distinguished embedding
into k̄. Now sending a generator a0 ⊗ . . .⊗ an to the product ι0(a0) · . . . · ιn(an)
in the ι-component induces a map of k-algebras

L0 ⊗k . . .⊗k Ln // (
∏
ι Lι)

Γk =
∏

[ι] L[ι] .

Arguing similar as in Lem. 2.3.3 we can prove that this is an isomorphism: Again,
we reduce the problem to Lν = L finite Galois over k for each ν and then argue
by induction on n.

Now we can prove:

2.3.5 Lemma. Let X. be a degreewise geometrically unibranched and geomet-
rically irreducible simplicial k-variety with relative Čech type Č(X./k) → BΓk.
Then there is a canonical weak equivalence

Č(X.⊗k K/k) ' Č(X./k)×BΓk (ΓK\EΓk)

for K/k algebraic. If K/k is finite algebraic, we even get an isomorphism in
ProSSets.
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Proof: First, suppose K/k is a finite extension. Denote by K̃/k its Galois hull.
Let

p = pK : X.⊗k K // X.

be the canonical projection. Let U. → X. be a rigid hypercovering s.t. each
component of each degree (Un)x has the structure of a K̃-variety. Then the rigid
pullback

p∗U. // X.⊗k K

is just the naive pullback U.×X.(X.⊗kK). The subcategory of such rigid coverings
U. is cofinal inside RC(X./k). Thus by Cor. 2.2.3, Č(X. ⊗k K/k) is isomorphic
to the system given by the functor mapping a rigid coverings U. of such a type
to the simplicial set

Re(π0(coskX.⊗kK0 (U.×X. (X.⊗k K)))).

Let L/k be a finite Galois extension containing K and fix a point in i ∈ L(k̄/k).
We restrict ourselves further to rigid coverings U. whose components in each
degree have the structure of an L-variety and whose distinguished points lie
over i via the corresponding map U. → Spec(L). Thus, we get a map of rigid
hypercoverings

U. // (X.→ Spec(k))∗(L/k, i) .

In particular we get a factorization of the underling map of U. → X. over the
canonical map X.⊗k L→ X. and thus, the cartesian square

coskX.⊗kK0 (U.×X. (X.⊗k K)) //

��

coskX.⊗kK0 ((X.⊗k L)×X. (X.⊗k K))

��
coskX.0 U. // coskX.0 (X.⊗k L)

We need to show that π0 of the diagram stays cartesian. Since we may check this
degreewise, we may assume that X. = X is simplicial discrete. By assumption,
X is geometrically unibranched so we may restrict our self to the corresponding
cartesian square of generic points, i.e., of the Spec’s of function fields.

Now what we have to prove is (new notation!) that for K/k finite algebraic,
a family Lν/k finite algebraic s.t. K ⊂ Lν for every ν and L/k Galois inside the
intersection

⋂
ν Lν still containing K with the diagonal map L ↪→

∏
ν Lν , the

diagram

(2.3.1) π0(coskK0
∐
ν Spec(Lν ⊗k K)) //

��

π0(coskK0 Spec(L⊗k K))

��
π0(coskk0

∐
ν Spec(Lν)) // π0(coskk0Spec(L))

is cartesian.

By assumption, each Lν contains even the Galois hull K̃ of K/k. Using Lem.
2.3.3 we get natural isomorphisms

Γk\cosk0(
∐
ν Lν(k̄/k))

∼ // π0(coskk0
∐
ν Spec(Lν))

45



resp.

BGal(L/k) = Γk\cosk0L(k̄/k)
∼ // π0(coskk0Spec(L)) .

Further, (Lν ⊗k K)(k̄/K) is just Lν(k̄/k), so we get a canonical epimorphism

(2.3.2) ΓK\cosk0(
∐
ν Lν(k̄/k)) // // π0(coskK0

∐
ν Spec(Lν ⊗k K))

similar to the above. This is an isomorphism, as well. We can check this degree-
wise and componentwise by comparing the cardinality of the source and target.
Consider the canonical epimorphism

ΓK\cosk0(
∐
ν Lν(k̄/k))n // // Γk\cosk0(

∐
ν Lν(k̄/k))n .

There are surjections from ΓK\Γk to any Γk-orbit of any element in the source.
Combining this with Lem. 2.3.3 we get

|ΓK\cosk0(
∐
ν

Lν(k̄/k))n| ≤ [K : k]|Γk\cosk0(
∐
ν

Lν(k̄/k))n|

= [K : k]|π0(coskk0
∐
ν

Spec(Lν))n|

= |π0(coskK0
∐
ν

Spec(Lν ⊗k K))n|

in each simplicial degree n: Indeed, we have a degreewise isomorphism

(coskK0
∐
ν

Spec(Lν ⊗k K))n ∼= ((coskk0
∐
ν

Spec(Lν))⊗k K)n

and K̃ is contained in every Lν by assumption. Thus 2.3.2 is indeed an isomor-
phism. Similar, we get a canonical isomorphisms

ΓK\EGal(L/k) = ΓK\cosk0L(k̄/k)
∼ // π0(coskK0 Spec(L⊗k K)) .

In particular the diagram (2.3.1) is isomorphic to the diagram:

ΓK\cosk0(
∐
ν Lν(k̄/k)) //

��

ΓK\cosk0L(k̄/k)

��
Γk\cosk0(

∐
ν Lν(k̄/k)) // Γk\cosk0L(k̄/k)

It suffices to prove that this diagram is degree- and componentwise cartesian, i.e.,
that

ΓK\(
∏

0≤i≤n Lνi(k̄/k)) //

��

ΓK\(L(k̄/k)n+1)

��
Γk\(

∏
0≤i≤n Lνi(k̄/k)) // Γk\(L(k̄/k)n+1)

is cartesian. Denote by S the pullback of the underling pullback datum. Clearly
the canonical map

ΓK\(
∏

0≤i≤n Lνi(k̄/k)) // S

46



is surjective. To see that it is injective, assume we have i, j ∈
∏

0≤i≤n Lνi(k̄/k),
σ ∈ Γk and τ ∈ ΓK s.t. j = σi and resL(j) = τresL(i), where resL is component-
wise the restriction

Lν(k̄/k) // L(k̄/k) .

But then τ−1σ acts trivially on a k-embedding of the Galois extension L/k, i.e.,
lies inside ΓL ≤ ΓK . As a result σ itself lies in ΓK , i.e., [i] and [j] agree in
ΓK\(

∏
0≤i≤n Lνi(k̄/k)), which completes the proof of the injectivity.

We go back to our original notation. Note that π0(coskX0 XL) is nothing but
π0(coskk0Spec(L)) and π0(coskXK0 (XL×XXK)) just π0(coskK0 Spec(L⊗kK)) (since
X is geometrically connected). Thus, we have proven that

π0(coskXK0 (U ×X XK)) //

��

ΓK\EGal(L/k)

��
π0(coskX0 U) // BGal(L/k)

is cartesian. Varying L/k Galois in RC(k/k) over K/k and U in RC(X/k) over
the rigid pullback of L/k to X we finally get

Č(XK/k) = Č(X/k)×BΓk (ΓK\EΓk),

where the map Č(X/k)→ BΓk is just the relative Čech topological type and the
projection to ΓK\EΓk is just Č({XK → Spec(K)}/k).

For K/k algebraic but not necessarily finite and X. = X simplicial discrete note
that Č(XK/k) is weakly equivalent to limK⊇L/k Č(XL/k), where the limit runs

over all finite subextensions L/k of K/k: Indeed, the π0 part is trivial, π1 and πét
1

preserve cofiltered limits and π1Č(XL/k) = πét
1 (XL) by Thm. 1.3.1 (X is geomet-

rically unibranched) and similar for XK . Finally, the cohomology part follows in
the same manner from the Verdier-Hypercovering-Theorem. But then the claim
follows from the above canonical isomorphism ΓK\EΓk = limK⊇L/k(ΓL\EΓk).

For K/k algebraic but not necessarily finite and X. not necessarily simpli-
cial discrete we have to show that Č(X. ⊗k K/k) is still weakly equivalent to
limK⊇L/k Č(X.⊗k L/k): Denote by

SubExtf (K/k)

the category of finite subextensions of K/k. By Cor. 2.2.3, the cofiltered limit
limK⊇L/k Č(X.⊗kL/k) is isomorphic to the levelwise realization of the simplicial
pro-simplicial set induced by the functor

RC(X./k)× SubExtf (K/k) // SSSets

mapping rigid covering U. ∈ RC(X./k) together with a finite subextension L/k
of K/k to the bisimplicial set

π0(coskX.⊗kL0 p∗LU.),
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where pL : X.⊗k L→ X. is the canonical projection. Thus, Cor. 1.6.6 applies to
both pro-simplicial sets limK⊇L/k Č(X.⊗k L/k) and Č(X.⊗k K/k). But the nth

simplicial degrees are just limK⊇L/k Č(Xn⊗kL/k) resp. Č(Xn⊗kK/k). These are
weakly equivalent by the above, so our claim follows by the homotopy invariance
of homotopy colimits (see [Hir03] Thm. 18.5.1). 2

Our next goal is to derive the base extension

(−)×BΓk (ΓK\EΓk) : ProSSets ↓ BΓk // ProSSets ↓ (ΓK\EΓk) .

First, we need a relative Postnikov replacement in ProSSets ↓ Γk:

2.3.6 Remark. If we choose a functorial fibrant resolution Ex(−) in SSets, al-
ways choose one preserving simplicial discrete Γ-sets throughout the rest of the
thesis, e.g., the one given by the small object argument (cf. [Hir03] Prop. 10.5.16)
with resp. to the inclusion of horns Λnk ↪→ ∆n: Indeed, the functorial construc-
tion of this factorization is made out of colimits in Sets, which preserves discrete
Γ-sets.

2.3.7 Remark. Fix once and for all a functorial levelwise factorization

A. �
� //

f

55Ex(f) // // B.

in SSets. Let f : X→ BΓk be in ProSSets ↓ BΓk. Using [AM69] Appendix Prop.
3.1 we write f as a levelwise map {fi}i. Then

Ex(X) := { Ex(fi) // BΓi }i

is levelwise weakly equivalent to X in ProSSets ↓ BΓk and even levelwise fibrant
in ProSSets. Further, note that

cosknBC = BC

for any small category C and any n > 2: Indeed, for such n and any simplicial
set A.

P∗(sknA.) = P∗(A.)

holds for the path categories, so the claim follows by adjointness. In particular,

(BΓk)
\ = BΓk

holds for the naive Postnikov replacement of pro-systems of fibrant simplicial
sets. Thus, our levelwise fibrant replacement in the definition of a Postnikov
tower replacement (cf. Rem. 1.1.6) gives a Postnikov replacement relative over
BΓk

(−)\ : ProSSets ↓ BΓk // ProSSets ↓ BΓk

together with a natural levelwise weak equivalence id→ (−)\. If we want to stress
the difference to the naive Postnikov replacement of levelwise fibrant objects, we
write (−)h\ for the relative replacement and (−)n\ for the naive replacement.
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2.3.8 Lemma. The canonical map

X×BΓk (ΓK\EΓk) // X\ ×BΓk (ΓK\EΓk)

is a weak equivalence in ProSSets.

Proof: Both BΓk and ΓK\EΓk are already levelwise fibrant. The naive Post-

nikov replacements BΓk ' BΓn\k and ΓK\EΓk ' (ΓK\EΓk)
n\ are levelwise weak

equivalences if we restrict ourselves to coskn(−) for n > 2. Note that,

ΓK\EΓk // BΓk

is a levelwise simplicial covering, i.e., a levelwise fibration. Further, each such
coskn(−) preserves fibrations, so the canonical map

(ΓK\EΓk)
n\ // BΓn\k

still is a levelwise fibration. In particular, we get the commutative diagram

X×BΓk (ΓK\EΓk)

��

// Xh\ ×BΓk (ΓK\EΓk)

��
Xh\ ×

BΓn\k
(ΓK\EΓk)

n\

Ex(X)×BΓk (ΓK\EΓk) // (Ex(X)×BΓk (ΓK\EΓk))
n\

whose vertical arrows are levelwise weak equivalences by the classical theory of
homotopy cartesian diagrams (see e.g., [GJ99] Chap. II Cor. 8.13, for the equality
in the bottom right, note that coskn(−) preserves limits). Since

Ex(X)×BΓk (ΓK\EΓk)

is levelwise fibrant, the lower horizontal arrow is a weak equivalence in ProSSets,
which finishes the proof. 2

Recall that for Γ a profinite group, the category of simplicial discrete Γ-sets
SSetsΓ is just the category of simplicial sheaves over the classifying site BΓ. Thus,
it carries the structure of a proper simplicial closed model structure by [Jar86]
Cor. 2.7 (see also [Goe95] for a more elementary treatment) resp. [Jar87] Prop.
1.4 (note that properness for simplicial presheaves implies properness of simplicial
sheaves: indeed, sheafification preserves weak equivalences).

2.3.9 Corollary. The base extension functor

(−)×BΓk (ΓK\EΓk) : ProSSets ↓ BΓk // ProSSets ↓ (ΓK\EΓk)

preserves weak equivalences. Moreover, the relative Postnikov replacement (−)\

composed with the induced functor into ProSSets factors over Pro(SSetsΓk
) and

maps a weak equivalence to a morphism isomorphic in (the morphism category
of) Pro(SSetsΓk

) to a levelwise weak equivalence in Pro(SSetsΓk
).
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Proof: By Lem. 2.3.8 the first claim follows from the second. The factorization
statement is trivial (use Rem. 2.3.6). Let f : X → Y be a weak equivalence in
ProSSets ↓ BΓk. By Cor. 1.5.12 f \ is isomorphic to a levelwise weak equivalence.
Again by the classical theory of homotopy cartesian diagrams, this property is
preserved by our base change (−) ×BΓk (ΓK\EΓk), i.e. f \ ×BΓk (ΓK\EΓk) is
isomorphic in Pro(SSetsΓk

) to a levelwise weak equivalence in Pro(SSetsΓk
), just

as claimed. 2

Fix a point i0 ∈ K(k̄/k). Let U. be a rigid covering in RC(X./k). Restriction
of the rigid pullback p∗Un to the components of points

x⊗ i0 ∈ (Xn ⊗k K)(k̄/K) = Xn(k̄/k)

for x ∈ Xn(k̄/k) gives a rigid covering in RC(X. ⊗k K/K) together with a map
of (X.⊗k K)-schemes from this rigid covering to p∗U. in RC(X.⊗k K/k). Thus,
restriction to such coverings in RC(X.⊗k K/K) defines a map

Č(X.⊗k K/K) // Č(X.⊗k K/k)

natural in X. ∈ SVark which clearly is a weak equivalence. Note, that for Spec(k)
this is just the canonical map

BΓK = ΓK\EΓK // ΓK\EΓk .

By [Ser02] Chap. I Prop. 1 there is a section

s : ΓK\Γk // Γk

in ProSets of the canonical map Γk → ΓK\Γk. We may assume s[τ ] = 1 for
τ ∈ ΓK (otherwise, multiply s by the inverse of s[τ ]). Let r be the composition

Γk //

r

55ΓK\Γk
s // Γk .

For σ ∈ Γk we get r(σ) ≡ σ in ΓK\Γk, hence σr(σ)−1 ∈ ΓK . Further, for τ ∈ ΓK
we get r(τσ) = r(σ) and r(τ) = 1. It follows that the map

EΓk // EΓK

mapping a tuple σ componentwise to σr(σ)−1 is compatible with the left diagonal
action of ΓK and thus gives a (left-) splitting

ΓK\EΓk
∼ // ΓK\EΓK = BΓK

in ProSSets of our canonical map BΓK → ΓK\EΓk.

Summing up, we get the commutative diagram

Č(X.⊗k K/K)
∼ //

��

Č(X.⊗k K/k)
∼ //

��

Č(X./k)×BΓk (ΓK\EΓk)

pr
ttjjjjjjjjjjjjjjjj

BΓK //

id
))RRRRRRRRRRRRRRRR ΓK\EΓk

��
BΓK

,
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i.e., we get a weak equivalence in ProSSets ↓ BΓK between the relative Čech
topological type Č(X.⊗k K/K)→ BΓK and the composition

Č(X./k)×BΓk (ΓK\EΓk)
pr // 33ΓK\EΓk // BΓK .

Summing up we can prove:

2.3.10 Proposition. Let K/k be (not necessarily finite) algebraic. Then we get
a derived base change

H(ProSSets ↓ BΓk) // H(ProSSets ↓ BΓK) ,

mapping a degreewise geometrically unibranched and geometrically irreducible
simplicial k-variety of Čech type X. → BΓk to the scheme theoretical base ex-
tension X.⊗k K → BΓK .

Proof: By Cor. 2.3.9 the functor

(−)×BΓk (ΓK\EΓk) : ProSSets ↓ BΓk // ProSSets ↓ (ΓK\EΓk)

preserves weak equivalences. Further, ΓK\EΓk → BΓK is a weak equivalence as
splitting of a weak equivalence, i.e., the push forward

ProSSets ↓ (ΓK\EΓk) // ProSSets ↓ BΓK

preserves weak equivalences, as well. Thus the composition preserves weak equiv-
alences, i.e., derives in the naive way to our desired derived base change

H(ProSSets ↓ BΓk) // H(ProSSets ↓ BΓK) .

As we have seen above, the derived base change of the relative Čech type
Č(X./k)→ BΓk is isomorphic to the relative Čech type Č(X.⊗kK/K)→ BΓK .
But for X. degreewise of Čech type these are the relative étale homotopy types
X.→ BΓk resp. X.⊗k K → BΓK , hence the claim. 2

There is an equivariant version, as well:

2.3.11 Proposition. Under the assumptions of Prop. 2.3.10 we get an equivari-
ant derived base change

(−)\ ×BΓk (ΓK\EΓk) : H(ProSSets ↓ BΓk) // ProH(SSetsΓk
) .

For a degreewise geometrically unibranched and geometrically irreducible simpli-
cial k-variety of Čech type X.→ BΓk, the derived base change

X.\ ×BΓk (ΓK\EΓk)

is isomorphic to the Postnikov tower (à la [AM69]) (X. ⊗k K)\ of the scheme
theoretical base extension as a Γk-object in ProH(SSets). Further, the equivariant
derived base change is compatible with the derived base change of Prop. 2.3.10.
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Proof: Again, by Cor. 2.3.9, the composition of functors

ProSSets ↓ BΓ
(−)\×BΓk

(ΓK\EΓk)
//

++WWWWWWWWWWWWWWWWWWWWW Pro(SSetsΓk
)

��
ProH(SSetsΓk

)

maps weak equivalences to isomorphisms, i.e., we get our equivariant derived base
change in the naive way. Our weak equivalence

Č(X.⊗k K) // Č(X./k)×BΓk (ΓK\EΓk)

is Γk-equivariant, so the lower arrow in

Č(X.⊗k K)
∼ //

� _

∼
��

Č(X./k)×BΓk (ΓK\EΓk)� _

∼
��

ExČ(X.⊗k K) // ExČ(X./k)×BΓk (ΓK\EΓk)

is a Γk-equivariant weak equivalence in ProSSets and the second claim follows
from Cor. 1.5.12.

For the compatibility claim note that both base changes were derived in a naive
way, so it suffices for L/K/k a tower of algebraic extensions and

Y := X×BΓk (ΓK \ EΓk)

the ProSSets ↓ BΓK object used in Prop. 2.3.10 to show that we have an isomor-
phism

Y\ ×BΓK (ΓL \ EΓK) ∼= resΓK
Γk

(X\ ×BΓk (ΓL \ EΓk))

in H(SSetsΓK
). We have levelwise weak equivalences

Y = X×BΓk (ΓK \ EΓk) //

��

Ex(X×BΓk (ΓK \ EΓk)→ BΓK)

Ex(X→ BΓk)×BΓk (ΓK \ EΓk)

in ProSSets ↓ BΓK . Further, in ProH(SSetsΓk
) resp. ProH(SSetsΓK

) we have a
levelwise isomorphism

Xh\ ×BΓk (ΓL \ EΓk) ∼= (Z×BΓk (ΓL \ EΓk))
n\

for Z := Ex(X→ BΓk) as well as levelwise isomorphisms

Yh\ ×BΓK (ΓL \ EΓK) ∼= (Ex(Y→ BΓK)×BΓK (ΓL \ EΓK))n\

∼= ((Z×BΓk (ΓK \ EΓk))×BΓK (ΓL \ EΓK))n\.
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Thus, it suffices to show that the outer square of

Z×BΓk (ΓL\EΓk) pr
//

��

ΓL\EΓk //

��

ΓL\EΓK

��
Z×BΓk (ΓK\EΓk)

pr // ΓK\EΓk // BΓK

is cartesian, where the horizontal maps in the right square are the maps induced
by our fixed map

EΓk // EΓK

mapping a tuple σ to σr(σ)−1. Since the left square clearly is cartesian, it suffices
to show the same for the right square. First, suppose we have a tuple σ ∈ EΓk
and τ ∈ EΓK s.t.

τ ≡ (σr(σ)−1)

holds in BΓK = ΓK\EΓK , i.e. τ = γ(σr(σ)−1) for a suitable γ in ΓK . Since
r(γσ) = r(σ), the right side equals (γσ)r(γσ)−1. But γσ ≡ σ in ΓK\EΓk, so the
canonical map

ΓL\EΓk // (ΓK\EΓk)×BΓK (ΓL\EΓK)

is surjective. For injectivity assume we have two tuples σ′, σ′′ ∈ EΓk agreeing in
ΓK\EΓk s.t.

σ′r(σ′)−1 ≡ σ′′r(σ′′)−1

in ΓL\EΓK . Thus, there is a γ ∈ ΓK and a τ ∈ ΓL s.t.

σ′′ = γσ′

σ′′r(σ′′)−1 = τ(σ′r(σ′)−1).

Again, r(γσ′) = r(σ′), so

γ(σ′r(σ′)−1) = τ(σ′r(σ′)−1).

In particular, γ = τ already lies in ΓL, i.e., σ′ and σ′′ agree in ΓL\EΓk, which
completes the injectivity. 2

2.3.12 Notation. For a relative pro-simplicial set X → BΓ in ProSSets ↓ BΓ
set

X̄ := X\ ×BΓ EΓ.

2.4 The Hochschild-Serre spectral sequence. Throughout the rest of the
thesis denote the absolute Galois group Γk of k by Γ. Let X be a k-variety and
let p : X ⊗k k̄ → X be the canonical projection. Denote by HS•,•∗ (X;F) the
Hochschild-Serre spectral sequence

Ep,q2 = Hp(Γ;Hq(X ⊗k k̄;F))⇒ Hp+q(X;F)
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for a sheaf F on Xét given as the Grothendieck spectral sequence of the compo-
sition of functors

RH0(Γ;−) ◦ RΓ(X ⊗k k̄; p∗(−)).

Now Γ(X⊗k k̄; p∗(−)) together with the induced Γ-action is just the pushforward
f∗ of f : X → Spec(k) the canonical map. Thus, this spectral sequence is
isomorphic to the Leray spectral sequence

Ep,q2 = Hp(Γ;Rqf∗(F))⇒ Hp+q(X;F).

Denote by H•,•∗ (C•) the Galois-hypercohomology spectral sequence

Ep,q2 = Hp(Γ;HqC•)⇒ Hp+q(Γ;C•)

for C• a complex of discrete Γ-modules.

In this section we want to show that the Hochschild-Serre spectral sequence
HS•,•∗ (X; Λ) for Λ ∈ ModΓ is isomorphic to the Galois-hypercohomology spectral
sequence H•,•∗ (C•(X\ ×BΓ EΓ; Λ)):

2.4.1 Proposition. LetX be a k-variety and Λ a Γ-module. There is a canonical
isomorphism

HS•,•∗ (X; Λ) ∼= H•,•∗ (C•(X\ ×BΓ EΓ; Λ))

between the Hochschild-Serre spectral sequence HS•,•∗ (X; Λ) and the hypercoho-
mology spectral sequence H•,•∗ (C•(X\ ×BΓ EΓ; Λ)).

Again in abuse of notation, we will just write X̄ forX\×BΓEΓ in ProH(SSetsΓ).

Let
ex : X(Ω) =

∐
X(Ω) Spec(Ω) // X

be the canonical map from the “exploded scheme” X(Ω) to X given as the disjoint
union of all geometric points X(Ω). Call a sheaf G on Xét of Godement type,
if G is isomorphic to a sheaf ex∗A for A in

Shv(X(Ω)) =
∏
X(Ω)

Ab.

Before we will give the proof of Prop. 2.4.1, we will need a technical lemma.
Recall that ind1

Γ(A) for A an abelian group is the induced discrete Γ-module

ind1
Γ(A) := HomProSets(Γ, A).

The induction ind1
Γ(−) is right adjoint to the restriction res1Γ(−). Since the later

functor is isomorphic to π∗(−) for

π : Spec(k̄) // Spec(k)

the canonical map given by our fixed choice of the separable closure k̄/k, the
induction ind1

Γ(−) is isomorphic to the push forward π∗(−).
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2.4.2 Lemma. For a sheaf F on (X⊗k k̄)ét and U → X étale we have a canonical
isomorphism

Γ(U ⊗k k̄; p∗p∗F) = ind1
ΓΓ(U ; p∗F)

of discrete Γ-modules, natural in U → X and F .

Proof: In abuse of notation, we denote the canonical projection U ⊗k k̄ → U by
p, as well. We get the commutative diagram of canonical maps:

U ⊗k k̄
f̄ //

p

��

Spec(k̄)

π

��
U

f // Spec(k)

The discrete Γ-module Γ(U ⊗k k̄; p∗p∗F) is isomorphic to the discrete Γ-module
f∗p∗F . Now

f∗p∗F = π∗f̄∗F = π∗Γ(U ⊗k k̄;F)

and
Γ(U ⊗k k̄;F) = Γ(U ; p∗F)

holds by definition of push forwards. Further, the functor π∗(−) is isomorphic to
ind1

Γ(−), which completes the proof. 2

For a field K denote by K(Ω) the set of embeddings K ↪→ Ω (“we dropped the
Spec in our notation”). Fix a splitting

s : k(Ω) // k̄(Ω)

of the canonical surjection

π∗ : k̄(Ω) // // k(Ω) .

This in turn induces a splitting of the canonical surjection

p∗ : (X ⊗k k̄)(Ω) // // X(Ω) ,

i.e. we get a factorization of the exploded scheme map ex : X(Ω)→ X:

X ⊗k k̄
p

��
X(Ω)

ex
::uuuuuuuuu

ex // X

In particular, for each A ∈ Shv(X(Ω)) we get

ex∗A = p∗(ex∗A),

i.e. each sheaf of Godement type on Xét is a push forward along p. Thus, we get
from Lem. 2.4.2:
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2.4.3 Corollary. Let G be a sheaf of Godement type on Xét, say G = ex∗A for
A ∈ Shv(X(Ω)). Let U → X be étale. Then we have an isomorphism

Γ(U ⊗k k̄; p∗G) ∼= ind1
ΓΓ(U ;G)

of discrete Γ-modules, natural in U → X and A. This morphism is canonical up
to our choice of the splitting s of π∗ : k̄(Ω)→ k(Ω).

We come back to the proof of Prop. 2.4.1: Let G be a sheaf of Godement
type on Xét. It is flasque, e.g., by [SGA73] Exp. XVII 4.2. Combining this with
[SGA72] Exp. VII Cor. 5.8 we get

Hq(X ⊗k k̄;G) = colim
L/k

Hq(X ⊗k L;G) = 0

for q > 0, i.e. G is Γ(X ⊗k k̄; p∗(−))-acyclic. Thus, for

0 // Λ // G•

the Godement resolution of Λ on Xét, we get an isomorphism of spectral sequences

HS•,•∗ (X; Λ) ∼= H•,•∗ (Γ(X ⊗k k̄;G•)).

Denote by X̃ the pro-object in H(SSetsΓ) induced by the functor

HR(Xét)→ SSets, U. 7→ π0(U.⊗k k̄).

Then X̃ is weakly equivalent to X̄ in ProH(SSetsΓ) and it remains to construct
a canonical isomorphism

Γ(X ⊗k k̄,G•) ' C•(X̃; Λ)

in D+(ModΓ). This will be done in the following two lemmata:

2.4.4 Lemma. Let U.→ X be a hypercovering in HR(Xét). There is a canonical
weak equivalence in D+(ModΓ):

Γ(X ⊗k k̄;G•) ∼ // tot•Γ(U•II ⊗k k̄;G•I) .

2.4.5 Lemma. The canonical map Γ(U•⊗k k̄; Λ)→ tot•Γ(U•II⊗k k̄;G•I) induced
by the resolution Λ → G•I gives a quasi-isomorphism in D+(ModΓ) after taking
the colimit over all U. ∈ HR(Xét):

C•(X̃; Λ)
∼ // colimU.∈HR(Xét) tot•Γ(U•II ⊗k k̄;G•I) .

Since filtered colimits are exact in ModΓ, the colimit over U. ∈ HR(Xét) pre-
serves the weak equivalence of Lem. 2.4.4, which completes the proof of Prop.
2.4.1. Thus, it remains to prove Lem. 2.4.4 and Lem. 2.4.5:
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Proof of Lem. 2.4.4: The canonical map U.⊗k k̄ → X⊗k k̄ induces a morphism
of double complexes

(2.4.1) Γ(X ⊗k k̄;G•I) // Γ(U•II ⊗k k̄;G•I) .

Using Cor. 2.4.3 we have an isomorphism

Γ(U•II ⊗k k̄;G•I) ∼= ind1
ΓΓ(U•II ;G

•I).

The induction ind1
Γ(−) is exact (since it is also left adjoint to res1Γ(−)), i.e. we

get an isomorphism

Hq
IIΓ(U•II ⊗k k̄;G•I) ∼= ind1

ΓH
q
IIΓ(U•II ;G

•I).

But HqΓ(U•;G) is trivial for any q > 0 and any sheaf G ∼= ex∗A of Godement
type: Indeed, HqΓ(U•;G) is isomorphic to Hq(

∏
x∈X(Ω) HomSets(x

∗U•, Ax)), the
canonical map

Hq(
∏
x∈X(Ω) HomSets(x

∗U•, Ax)) � � //
∏
x∈X(Ω)H

qHomSets(x
∗U•, Ax)

is injective and the target vanishes, since x∗U. → pt is a hypercovering in Sets,
i.e., an acyclic fibration in SSets (see [AM69] (8.5)).

Further, H0Γ(V•;F) equals Γ(X ⊗k k̄;F) for any hypercovering V• of X ⊗k k̄
and any sheaf F (this is just the sheaf property), so we get:

Hp
I H

q
IIΓ(U•II ⊗k k̄;G•I) =

{
0 if q > 0

HpΓ(X ⊗k k̄,G•) = Hp(X ⊗k k̄; Λ) if q = 0
.

It follows that (2.4.1) induces an isomorphism between the induced spectral se-
quences of double complexes and hence a quasi-isomorphism

Γ(X ⊗k k̄;G•) ∼ // tot•Γ(U•II ⊗k k̄;G•I)

between the total complexes. 2

Proof of Lem. 2.4.5: The canonical morphism Λ ↪→ G• induces the morphism
of double complexes

Γ(U•II ⊗k k̄; Λ) // Γ(U•II ⊗k k̄;G•I) .

Now Hp
IIH

q
I Γ(U•II ⊗k k̄;G•I) equals Hp

IIH
q
ét(U•II ⊗k k̄; Λ) and we claim that the

colimit over U. ∈ HR(X) vanishes for q > 0:

We argue as in the proof of [AM69] Thm. 8.16: We have to kill the class
α ∈ Hq

ét(Up ⊗k k̄; Λ) via a refinement V. → U. in HR(X). The hypercovering U.
has a unique splitting

Up ∼=
∐
σ

Nσ,

where the coproduct runs over all surjective σ ∈ ∆n
p (see the remark after loc.

cit. Def. 8.1). Since q > 0, there are refinements N ′σ → Nσ in Xét killing the
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restriction of α to Nσ ⊗k k̄ after base change to X ⊗k k̄. Thus we get the desired
refinement V. → U. after iterative application of loc. cit. Lem. 8.9. Filtered
colimits in ModΓ are exact, so we get a quasi-isomorphism in D+(ModΓ) between
total complexes

colimU.∈HR(X) Γ(U• ⊗k k̄; Λ)
∼ // colimU.∈HR(X) tot•Γ(U•II ⊗k k̄;G•I)

again by the induced spectral sequence of double complexes. 2

2.5 Universal coefficients. Fix a discrete Γ-module Λ. Recall that an inner
hom object Hom(−,−) exists in ModΓ and is given by colim∆ HomMod∆

(−,−),
where the colimit runs over open subgroups ∆ ≤ Γ. In this subsection we want
to derive a functor

RHom(−,Λ) : (ProD+(ModΓ))op
fgb

// D+(ModΓ)

functorial in Λ ∈ ModΓ for a suitable full subcategory (ProD+(ModΓ))fgb of
ProD+(ModΓ) containing C•(X

\ ×BΓ EΓ) for all X geometrically unibranched,
geometrically irreducible and of Čech type, s.t. RHom(C•(X

\ ×BΓ EΓ),Λ) is
quasi-isomorphic to C•(X\ ×BΓ EΓ; Λ).

Let I be an injective discrete Γ-module. For ∆ ≤ Γ open of finite index res∆
Γ (−)

is also right adjoint to ind∆
Γ (−). In particular, restriction to ∆ preserves injective

objects, i.e., HomMod∆
(−, res∆

Γ (I)) and hence Hom(−, I) is an exact functor.
Next, fix an injective resolution

0 // Λ // I•

in ModΓ. Then

Hp
I H

q
IIHom(C•II , I

•I) = Hp
I Hom(HII

q C•II , I
•I)

natural in C•, i.e., the total complex

tot•Hom((−)•II , I
•I)

preserves quasi-isomorphisms by the first spectral sequences of a double complex.
As a result, tot•Hom((−)•II , I

•I) defines a derived functor

RHom(−, I•) : D+(ModΓ)op // D+(ModΓ)

which satisfies RqHom(M, I•) = Extq(M,Λ) for all M ∈ ModΓ by definition.
Further, it comes equipped with a Grothendieck spectral sequence

(2.5.1) Ep,q2 : RpHom(Hq(−), I•)⇒ Rp+qHom(−, I•).

We want to show that RHom(−, I•) is independent of the choice of the injective
resolution 0→ Λ→ I• on the full subcategory

Dfgb
+ (ModΓ)

of Db(ModΓ) given by all complexes C• with HqC• finitely generated as an abelian
group for all q and trivial for all q � 0. First, we need the following
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2.5.1 Lemma. Any complex in Dfgb
+ (ModΓ) is quasi-isomorphic to a complex

which is degreewise free and finitely generated as an abelian group.

Proof: First assume that C• is already degreewise finitely generated, say Cq is
generated by aq,1, . . . , aq,rq . Since each Cq is a discrete Γ-module, we may assume
that each of these sets of generators is already closed under the Γ-action. Define

F0,q := Z[aq,i, daq+1,j |1 ≤ i ≤ rq, 1 ≤ j ≤ rq+1] // Cq

as the canonical Γ-equivariant map to Cq. Mapping each aq,i to daq,i and each
daq+1,j to zero gives well defined differentials

dq : F0,q
// F0,q−1

i.e., we get a morphism of complexes

F0,• // C• .

By defining F1,q as the kernel of F0,q → Cq and by setting Fp,q = 0 for p > 1 this
extends to a morphism of double complexes

F•I,•II
// C•I

inducing isomorphisms on HI
pH

II
q (−). Thus

tot•(F•I,•II)
// C•

is a quasi-isomorphism with tot•(F•I,•II) degreewise free and finitely generated as
an abelian group.

It remains to show that an arbitrary C• ∈ Dfgb
+ (ModΓ) is quasi-isomorphic to

a complex degreewise finitely generated. By replacing C• with the truncation
τ≤nC• for n� 0 we may assume that Cq is trivial for all q � 0.

The homology HqC• is finitely generated in each degree q. Thus, we may find
a ModΓ-subcomplex

D
(0)
•

� � // C•

which is degreewise finitely generated and which induces epimorphisms on homol-

ogy in each degree. Say D
(0)
• ↪→ C• factors over a degreewise finitely generated

ModΓ-subcomplex

D
(n)
•

� � // C•

which induces epimorphisms on homology in each degree and even isomorphisms
in degrees < n.

We want to find another degreewise finitely generated subcomplex D
(n+1)
• of C•

inducing epimorphisms on homology in each degree and isomorphisms in degrees
≤ n. Denote by En the kernel of the epimorphism

ker(dn : D
(n)
n → D

(n)
n−1) //

(( ((RRRRRRRRRRRRRR
HnD

(n)
•

��
HnC•

.
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It is a finitely generated ModΓ-submodule of D
(n)
n and lies inside dn+1Cn+1 by

definition. Thus, there is a finitely generated ModΓ-submodule Fn+1 inside Cn+1

s.t.
En = dq+1Fn+1.

We set D
(n+1)
q := D

(n)
q for q 6= n+ 1 and D

(n+1)
n+1 the Γ-submodule of Cn+1 gener-

ated by the finitely generated submodules D
(n)
n+1 and Fn+1. It follows that D

(n+1)
•

is still a degreewise finitely generated subcomplex of C• inducing epimorphisms
on homology in each degree but isomorphisms in all degrees ≤ n.

By assumption Cq is trivial for all q � 0, i.e. this construction becomes sta-
tionary after finitely many steps. In particular,

D
(n)
•

� � // C•

is a quasi-isomorphism for all n� 0, which completes the proof. 2

Using this we get:

2.5.2 Corollary. The restriction of RHom(−, I•) to Dfgb
+ (ModΓ) is independent

of the choice of the injective resolution 0→ Λ→ I•. Thus we get

RHom(−,Λ) : Dfgb
+ (ModΓ)op // D+(ModΓ),

functorial in the discrete Γ-module Λ.

Proof: Let C• ∈ Ch+(ModΓ) be a complex with bounded and degreewise finitely
generated homology as abelian groups. By Lem. 2.5.1 and the Grothendieck
spectral sequence (2.5.1) we may assume that C• is degreewise free and finitely
generated as an abelian group. But then

Hom(Cp,−) = HomAb(Cp,−)

is exact and thus
tot•Hom(C•II , (−)•I)

preserves quasi-isomorphisms by the second spectral sequence of a double com-
plex, which finishes the proof. 2

Composing the induced functor on ind-categories

(ProD+(ModΓ))op // IndD+(ModΓ)

with the exact functor

colim : IndD+(ModΓ) // D+(ModΓ)

gives a functor

(2.5.2) RHom(−, I•) : (ProD+(ModΓ))op // D+(ModΓ) ,

60



whose restriction to the full subcategory (ProDfgb
+ (ModΓ))op is independent from

the injective resolution 0→ Λ→ I• and functorial in Λ. Let

(ProD+(ModΓ))fgb

be the full subcategory of ProD+(ModΓ) give by (pro-)complexes being quasi-
isomorphic in the pro-sense (i.e., connected by a roof of quasi-isomorphisms in

the pro-sense) to an object in ProDfgb
+ (ModΓ).

2.5.3 Corollary. RHom(−, I•) maps quasi-isomorphisms in the pro-sense to
quasi-isomorphisms. Thus, the restriction of RHom(−, I•) to (ProD+(ModΓ))fgb

is independent from the choice of the injective resolution 0→ Λ→ I• and we get

RHom(−,Λ) : (ProD+(ModΓ))op
fgb

// D+(ModΓ),

functorial in the discrete Γ-module Λ.

Proof: The Grothendieck spectral sequence (2.5.1) induces a functor from the
ind-category (ProD+(ModΓ))op to the ind-category of spectral sequences in Ab.
Since the canonical functor

Func(I,Ab) // IndAb

for a small filtered category I is exact (the dual statement holds by [AM69]
Appendix Prop. 4.1), we get a canonical functor from the ind-category of spectral
sequences in Ab to the category of spectral sequences in IndAb. Composition with
the functor induced by the exact functor colim(−) thus gives a spectral sequence
of abelian groups

Ep,q2 : RpHom(HqC•, I
•)⇒ Rp+qHom(C•, I

•).

natural in the (pro-)complex C•. Here RpHom(−, I•) is just the induced functor
(2.5.2) composed with Hp(−). Thus, any quasi-isomorphism of (pro-)complexes
induces an isomorphism between these spectral sequences. In particular, quasi-
isomorphic (pro-)complexes have quasi-isomorphic images under RHom(−, I•),
which completes the proof. 2

2.5.4 Remark. For an arbitrary (pro-)chain complex C• = {C•(i)}i in the pro-
derived category ProD+(ModΓ) we define the (pro-)chain complex

C]• := {τ≤nC•(i)}i,n>0

in ProDb(ModΓ). Note that there is a canonical natural quasi-isomorphism in
the pro-sense

C• // C]• .

Let X be a geometrically unibranched, geometrically irreducible k-variety of
Čech type. Again, we just write X̄ forX\×BΓEΓ in ProH(SSetsΓ). Recall that we
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defined X̃ as the object in ProH(SSetsΓ) given by the functor mapping an étale hy-
percovering U. ∈ HR(X) à la [AM69] to the set of Zariski connected components
π0(U. ⊗k k̄) in H(SSetsΓ). Then X̄ is weakly equivalent to X̃ in ProH(SSetsΓ),
i.e., C•(X̄) is quasi-isomorphic in the pro-sense to C•(X̃). Now π0(U. ⊗k k̄) is
levelwise finite since U. is levelwise of finite type. In particular, C•(X̃)] lies in

ProDfgb
+ (ModΓ). But then both C•(X̃) and C•(X̄) lie in (ProD+(ModΓ))fgb.

Now RHom(C•(X̄),Λ) is quasi-isomorphic to the colimit over HR(X) of the
total complex of HomAb(C•II(X̃), I•I): Indeed, C•(X̃) is degreewise finitely gener-

ated, so Hom(C•(X̃),−) is just HomAb(C•(X̃),−). But as in the last subsection,
this colimit is quasi-isomorphic to C•(X̄; Λ). Thus, taking everything together,
we get:

2.5.5 Corollary. Let X be a geometrically unibranched and geometrically irre-
ducible k-variety of Čech type. Then the complex C•(X

\×BΓEΓ) lies in the full
subcategory (ProD+(ModΓ))fgb. In particular,

RHom(C•(X
\ ×BΓ EΓ),Λ)

is well defined and natural in Λ ∈ ModΓ. Further, RHom(C•(X
\ ×BΓ EΓ),Λ) is

quasi-isomorphic to C•(X\ ×BΓ EΓ,Λ) in D+(ModΓ).

2.6 Eilenberg-MacLane spaces in the pro-homotopy category of sim-
plicial discrete Γ-sets. In this subsection we want to prove that in some
sense cohomology of k-varieties with coefficients Λ ∈ ModΓ is representable in
ProH(SSetsΓ):

2.6.1 Lemma. Let X be a geometrically unibranched, geometrically irreducible
k-variety of Čech type and Λ a discrete Γ-module. Then

[X\ ×BΓ EΓ,K(Λ, n)]ProH(SSetsΓ) = Hn(X; Λ).

Proof: First, let C• be an arbitrary complex in Ch+(ModΓ). Further, let I• be an
exact and degreewise injective complex in Ch+(ModΓ). Then tot•Hom(C•II , I

•I)
is still exact, since Hom(Cp,−) is left exact. Thus we get the derived functor

RHom(C•,−) : D+(ModΓ) // D+(ModΓ) .

By construction, RHom(D•,−)(Λ) agrees with RHom(−,Λ)(D•) for any D• in

the full triangulated subcategory Dfgb
+ (ModΓ).

Now let I• be any degreewise injective complex in Ch+(ModΓ). Any Cq sits in
a resolution

0 // F1
// F0

// Cq // 0

in ModΓ with Fi free as an abelian group. But we have already seen that
Hom(−, Ip) is exact and Hom(Fi, I

p) is H0(Γ;−)-acyclic since Hom(Fi,−) is right
adjoint to the exact functor (−) ⊗Z Fi. Thus, Hom(Cq, I

p) is H0(Γ;−)-acyclic
for all p, q, i.e., tot•Hom(C•II , I

•I) is degreewise H0(Γ;−)-acyclic. In particular,

RH0(Γ;−) ◦ RHom(C•,−) = RHomModΓ
(C•,−)
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holds by [KS06] Prop. 10.3.5 and we get a Grothendieck spectral sequence (the
local-to-global spectral sequence)

Ep,q2 : Hp(Γ;RqHom(C•,−))⇒ Rp+qHomModΓ
(C•,−).

Let C• be a (pro-)complex in (ProD+(ModΓ))fgb. Summing up and arguing as
in the proofs of Cor. 2.5.3 we get a spectral sequence

(2.6.1) Ep,q2 : Hp(Γ;RqHom(C•,Λ))⇒ Rp+qHomModΓ
(C•,Λ),

where RqHom(−,Λ) is the induced functor

(ProD+(ModΓ))fgb
// D+(ModΓ)

of the preceding subsection and RqHomModΓ
(−,Λ) is the colimit of the respec-

tive derived functor applied levelwise. Again, just write X̄ for X\ ×BΓ EΓ
in ProH(SSets). For C• = C•(X̄), this is just the hypercohomology spectral
sequence H•,•∗ (C•(X̄,Λ)) (use Cor. 2.5.5), which in turn is isomorphic to the
Hochschild-Serre spectral sequence HS•,•∗ (X; Λ) by Prop. 2.4.1. As a result,

Hq(X; Λ) = RqHomModΓ
(C•(X̄),Λ).

But the latter group is just

[X̄,K(Λ, q)]ProH(SSetsΓ)

by [Goe95] Lem. 3.13, which completes the proof. 2

Taking limits, we get for pro-Eilenberg-MacLane spaces:

2.6.2 Corollary. Let X be a geometrically unibranched and geometrically ir-
reducible k-variety of Čech type and Λ in Pro(ModΓ) a pro-discrete Γ-module.
Then

[X\ ×BΓ EΓ,K(Λ, n)]ProH(SSetsΓ) = limHn(X; Λ).

2.6.3 Notation. For a cohomology class a in limHn(X; Λ) let

ϕa : X̄ // K(Λ, n)

be the corresponding morphism in ProH(SSetsΓ).

Combining [Goe95] Lem. 3.13 with the local-to-global spectral sequence (2.6.1)
and Lem. 2.5.3 we get the following corollary:

2.6.4 Corollary. Let Λ be a pro-discrete Γ-module and let f : X → Y in
ProH(SSetsΓ) be a weak equivalence in the pro-sense. Further, assume that
Hq(X) and Hq(Y) are finitely generated as abelian groups in each degree q. Then

[f,K(Λ, n)]ProH(SSetsΓ)

is an isomorphisms between abelian groups.
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3 Why it is hard to distinguish étale homotopy types
of Brauer-Severi varieties

Let k be a field of characteristic 0. In this section, we want to discuss some of
the more easily accessible homotopy invariants of Brauer-Severi varieties.

As an example, cohomology with locally constant coefficients can distinguish
between two (Brauer-Severi) varieties of different dimension:

3.0.1 Remark. Let X be a geometrically unibranched and geometrically irre-
ducible proper k-variety of Čech-type. Then the étale homotopy type can detect
the dimension of X: Indeed, by the derived base change of Prop. 2.3.10, the étale
homotopy type of X can detect the cohomological dimension of the small étale
site (X ⊗k k̄)ét. This cohomological dimension is always ≤ 2dim(X) by [SGA73]
Exp. X Cor. 4.3. But since X is moreover proper, it is exactly 2dim(X), e.g., by
[Mil80] Chapt. VI Lem. 11.3.

Yet, it turns out that many of the more easily accessible homotopy invariants of
k-varieties can not distinguish between non isomorphic Brauer-Severi varieties of
the same dimension, e.g. it will turn out, that over fields of cohomological dimen-
sion ≤ 2 étale cohomology with locally constant coefficients can not distinguish
between different Brauer-Severi curves at all (see Cor. 3.3.5 below).

3.1 Galois representations on geometric homotopy invariants. Let X
be a Brauer-Severi variety over k. The multiplicative structure on the graded
`-adic cohomology ring

H•T(X,Z`) :=
⊕
q≥0

H2q(X ⊗k k̄;Z`(q))

is compatible with the Galois action (the integral Tate realization of the motive
of X). As a ring, it is generated by ĉ1[OX̄(1)] and Γ acts trivially on

Pic(X ⊗k k̄) = Z,

i.e. the Galois structure on H•T(X,Z`) is trivial. It follows, that `-adic cohomology
can not distinguish between two Brauer-Severi varieties of the same dimension.

In this subsection we will show that this is true for all Γ-representations on
geometric homotopy invariants (as e.g. higher homotopy groups): By a geometric
homotopy invariant we mean a functor

Vark̄
// C

factoring over the homotopy category H(ProSSets). Composition with base ex-
tension along k̄/k induces an abstract Γ-representation

Vark // CΓ

factoring over the functor mapping a k-variety X to the geometric étale homotopy
type of X (i.e. the étale homotopy type of X ⊗k k̄) together with the induced
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Γ-action as a Γ-object in H(ProSSets). We will show that two Brauer-Severi
varieties of the same dimension have isomorphic geometric étale homotopy types
in the category H(ProSSets)Γ of Γ-objects in H(ProSSets) (one can see this as
the universal Γ-representations on a geometric homotopy invariant).

First we need a few more technicalities:

3.1.1 Lemma. Let X be a geometrically unibranched proper and simply con-
nected k̄-variety and let Y be any normal k̄-variety. Then the canonical map

Ét(X × Y ) // Ét(X)× Ét(Y )

is a weak equivalence in ProSSets.

Proof: The morphism induced on πq by our canonical morphism sits in the
commutative diagram

πqÉt(X × Y )

))TTTTTTTTTTTTTTT

��

πqÉt(X)× πqÉt(Y )

πq(Ét(X)× Ét(Y ))

55jjjjjjjjjjjjjjj

and it suffices to show that the other two morphisms in the diagram are isomor-
phisms.

First, note that all the occurring homotopy groups are already profinite com-
plete: This follows from [Gro65] Prop. 16.15.10 and Thm. 1.3.1 since X resp. Y
is geometrically unibranched resp. normal.

For πqÉt(X × Y ) → πqÉt(X) × πqÉt(Y ) we argue as follows: Denote by Fy
the fibre of the projection X × Y → Y over y ∈ Y (Ω). Thus, the canonical map
from Fy to X is just the projection

X ⊗k̄ Ω // X ,

which induces isomorphisms on each πq(−) since X is proper (see [AM69] Cor.
12.12). In particular, Fy is simply connected. Further,

prY : X × Y // Y

is proper and thus, from [Fri73] Cor. 4.8 we get the exact sequence

. . . // πq+1(Y ) // πq(Fy) //

��

πq(X × Y )
prY //

prXxxrrrrrrrrrr
πq(Y ) // . . .

πq(X)

.
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The above isomorphism πq(Fy) ∼= πq(X) together with the map induced by prX
gives a (left-) splitting of the canonical map

πq(Fy) // πq(X × Y ) ,

i.e.,

πqÉt(X × Y ) // πqÉt(X)× πqÉt(Y )

is an isomorphism.

For the isomorphism πq(Ét(X)× Ét(Y ))→ πqÉt(X)× πqÉt(Y ), note that the
composition of the geometric realization | − | as functor SSets→ Kel (where Kel
denotes the full subcategory of Top consisting of Kelley spaces) with the singular
functor Sing.(−) gives a functorial fibrant replacement in SSets preserving finite
limits (see [GZ67] Chap. III the Thm. in Sect. 3.1). Thus, we may replace Ét(X)
and Ét(Y ) by levelwise fibrant models and can argue similar to the above using
the homotopy sequence of a fibration in SSets. 2

3.1.2 Lemma. Let Y be a non empty irreducible k̄-variety. Then the canonical
map

Y (k̄) // [EΓ, Y ]H(ProSSets)

is trivial.

3.1.3 Remark. Note that the claim is trivial, if we replace the homotopy cate-
gory H(ProSSets) with the pro-homotopy category ProH(SSets): Indeed, in the
latter case we have

[pt,Y]ProH(SSets) = limπ0(Y),

which is trivial for Y = Y by assumption. For a fibrant pro-simplicial set Y,

[pt,Y]H(ProSSets) = π0(limY)

and more generally for Y not necessarily fibrant, at least

[pt,Y]H(ProSSets) = π0(holimY)

by [Isa01] Prop. 8.4. But π0 does not preserve (even cofiltered) limits in general.

Thus, the difficulty of the lemma lies in the difference between π0(holimY)
and limπ0(Y), which can be made more precise for Y levelwise fibrant using the
spectral sequence

Ep,q2 = limp π−q(Y)⇒ π−(p+q)(holimY)

(with differentials in the usual directions!) in the case of complete convergence
(see [BK72] Chapt. XI 7.1). Unfortunately, the π0 part lies on the “fringed” line
of this spectral sequence, so we will avoid using this spectral sequence and make
explicit computations with suitable models of Y instead.
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Proof: Since Y is connected and quasi-compact, any two k̄-points y′ and y′′

can be connected via a finite chain of open affine subschemes. Thus, we may
even assume that y′ and y′′ factor over an open affine irreducible subscheme.
Replacing Y by the normalization of this open affine, we may assume that Y is
even geometrically unibranched and of Čech type. In particular, we may work
with the Čech topological type Č(Y/k).

Denote by S.(−,−) the mapping space functor of SSets. The canonical map

HomProSSets(pt, Č(Y/k)) // [pt, Č(Y/k)]H(ProSSets)

factors over the set of homotopy classes of maps π0(limS.(pt, Č(Y/k))). Thus, a
splitting of the canonical weak equivalence EΓ→ pt gives a factorization:

Y (k̄) //

��

[EΓ, Y ]H(ProSSets)

π0(limS.(pt, Č(Y/k)))

55jjjjjjjjjjjjjjj

But π0(limS.(pt, Č(Y/k))) is just π0(lim Č(Y/k)) so it suffices to show that the
limit of Č(Y/k) is a connected simplicial set.

First, note that

π0(A.) := colim{ A1

d0
1 //

d1
1

// A0 }.

We get that π0(Č(Y/k)) is levelwise trivial: Indeed, since Y is connected and
geometrically unibranched, for arbitrary y′, y′′ ∈ Y (k̄/k) and U ∈ RC(Y/k) there
are points y′ = y0, y1, . . . , yn = y′′ s.t. Uyi⊗Y Uyi+1 is nonempty for all i. Further,
the system Č(Y/k) is constant Y (k̄/k) in degree 0, so we are done if we can show
that lim Č(Y/k)1 → π0(coskY0 U)1 is surjective for any rigid covering U of Y/k.

We have to show that for any refinement U → V in RC(Y/k) the induced map

π0(U ×Y U) // π0(V ×Y V )

is surjective. Since Y is geometrically unibranched by assumption, all components
of U → V are dominant. But the composition of dominant morphisms as well
as the base change of a dominant morphism along an étale hence flat morphism
stays dominant, so

U ×Y U // V ×Y V

is dominant and thus π0(U ×Y U)→ π0(V ×Y V ) surjective. 2

Taking together the last two lemmata we can prove:

3.1.4 Corollary. Let G be a connected, quasi-projective group scheme over k̄.
Let µ : X×G→ X be a proper, simply connected and geometrically unibranched
G-space in Vark̄. Then the induced G(k̄)-action on X is trivial in H(ProSSets).
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Proof: Recall that the G(k̄)-action on X is given by

X = X × Spec(k̄)
id×g //

(−).g

44X ×G µ // X

for g ∈ G(k̄). As a connected, quasi-projective group scheme, G is smooth and
hence normal. By Lem. 3.1.1, application of Ét(−) gives

Ét(X) = Ét(X × Spec(k̄))
Ét(id×g) //

∼
��

Ét(X ×G)
Ét(µ) //

∼
��

Ét(X)

Ét(X)× Ét(k̄)
id×Ét(g)

// Ét(X)× Ét(G)

.

Now Ét(g) equals Ét(1) by Lem. 3.1.2, so the claim follows. 2

The composition of the canonical functor ProSSets → ProH(SSets) with the
functorial Postnikov tower (−)\ à la [AM69] maps weak equivalences to isomor-
phisms (see Cor 1.5.12), i.e., factors over the homotopy category H(ProSSets).
In particular we get:

3.1.5 Corollary. The PGLn+1(k̄)-action on P̄n resp. on (P̄n)\ is trivial in the
homotopy category H(ProSSets) resp. in ProH(SSets).

Let X be a Brauer-Severi variety over k of dimension n. Two trivializations

f, g : X̄
∼ // P̄n

over k̄ differ by the element h = gf−1 in PGLn+1(k̄). It follows from the last
corollary that they agree inH(ProSSets) and thus define a canonical isomorphism
in H(ProSSets). But for any such trivialization f and γ ∈ Γ, the translate
γ ◦ f ◦ γ−1 is another such trivialization, so our canonical isomorphism is even
Γ-equivariant. Thus we have proven:

3.1.6 Proposition. Let X,Y be two Brauer-Severi varieties over k of the same
dimension. Then the induced Γ-objects in the homotopy category H(ProSSets)
are canonical isomorphic in H(ProSSets)Γ. In particular, all Galois representa-
tions on geometric homotopy invariants of X and Y (e.g., `-adic cohomology,
higher homotopy groups, . . . ) are canonically isomorphic.

As we will see in the next subsections, at least for Brauer-Severi curves over
characteristic 0 fields of cohomological dimension 2 the situation is even worse:
Not only do the Γ-modules H•(X̄; Λ) for Λ ∈ ModΓ turn out to be independent
from the Brauer-Severi curve X, but also the much finer datum of the underling
complex C•(X̄; Λ) in the derived category Db(ModΓ). Note the difference to the
much more crude invariant of the corresponding complex C•(X̄; Λ) in the derived
category Db(Ab)Γ (of which we already know by the last proposition that it can
not distinguish between different Brauer-Severi varieties of the same dimension):
An isomorphism between the much finer invariant C•((−)⊗k k̄; Λ) in Db(ModΓ)
e.g. induces an isomorphism of Hochschild-Serre spectral sequences and thus even
an isomorphism on the cohomology H•(−; Λ).
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3.2 (Quasi) homology fixed points. Let k be a field of characteristic 0
with absolute Galois group Γ and let X be an arbitrary k-variety. As above, we
write just X̄ for X\ ×BΓ EΓ in ProH(SSetsΓ).

3.2.1 Definition. Denote by∫
: C•(X

\ ×BΓ EΓ) // C•(EΓ) = Z

the morphism induced by the canonical map X → BΓ. We call a (right-) splitting
of

∫
in ProD+(ModΓ) a homology fixed point of X. We call a (right-) splitting

up to quasi-isomorphisms in the pro-sense in ProD+(ModΓ) ↓ C•(EΓ) a quasi
homology fixed point.

3.2.2 Remark. If the focus of our interest is the cohomology of X, a quasi
homology fixed point is as good as a homology fixed point: Indeed, RHom(−,Λ)
maps quasi-isomorphisms in the pro-sense to quasi-isomorphisms in D+(ModΓ)
by Cor. 2.5.3.

As usually, we study the set of morphisms [C•(EΓ), C•]ProD+(ModΓ) for a (pro-)
chain complex C• ∈ ProDb(ModΓ) by looking at the limit of the (pro-)Galois-
hypercohomology of the (pro-)cochain complex C−• in ProDb(ModΓ). In abuse
of notation, we still write C• for that cochain complex. Now a (right-) splitting
of a map C• → C•(EΓ) corresponds to a lift of the element 1 in the target of the
induced map

limH0(Γ;C•) // limH0(Γ;C•(EΓ)) = Z.

A quasi-isomorphism in the pro-sense induces an isomorphism on (pro-)Galois-
hypercohomology groups H•(Γ;−): Indeed, the induced (pro-) hypercohomol-
ogy spectral sequences induces spectral sequences in ProAb still computing the
pro-Galois-hypercohomology groups (cf. the spectral sequence in the proof of
Cor. 2.5.3 for the dual case). But any quasi-isomorphism in the pro-sense in
ProDb(ModΓ) induces an isomorphism between the latter spectral sequences.
Thus we get:

3.2.3 Lemma. A geometrically unibranched k-variety X has a quasi homology
fixed point if and only if the canonical map∫

∗
: limH0(Γ;C•(X

\ ×BΓ EΓ)]) // limH0(Γ;C•(EΓ)) = Z

is an epimorphism. If cd(Γ) <∞ this in turn is equivalent to the surjectivity of
the canonical map

limH0(Γ; τ≤nC•(X
\ ×BΓ EΓ)) // limH0(Γ;C•(EΓ))

for any n ≥ cd(Γ) (here τ≤n means the truncation in D+(ModΓ) in contrast to
the truncation τ≤n in D+(ModΓ)).
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3.2.4 Notation. We call a class s̄ in limH0(Γ;C•(X̄)]) satisfying
∫
∗ s̄ = 1 the

class of a quasi homology fixed point or just quasi homology fixed point.
We denote the set of all quasi homology fixed points of X by

H0(Γ;C•(X̄)])∫
∗=1.

In abuse of notation, we denote the set of all homology fixed points of X
by

H0(Γ;C•(X̄))∫
∗=1.

Denote the (pro-) hypercohomology spectral sequence H•,•∗ (C•(X
\×BΓEΓ)]) by

H•,•∗ (X) and similar for other Γ-equivariant pro-homotopy types in ProH(SSetsΓ).
In abuse of notation, we denote the induced spectral sequence in ProAb comput-
ing the (pro-) hypercohomology groups by H•,•∗ (X), as well and similar for other
Γ-equivariant pro-homotopy types in ProH(SSetsΓ).

For the remaining section, suppose cd(Γ) ≤ 2. Consider the induced map of
spectral sequences ∫

∗
: H•,•∗ (X) // H•,•∗ (BΓ) .

To see that a geometrically unibranched k-variety X has a quasi homology fixed
point we have to show that this map is an epimorphism on the limits of the
abutments. To do this, we may as well replace X̄ by the weakly equivalent
Γ-equivariant pro-homotopy type X̃ given by the functor

HR(Xét) // H(SSetsΓ)

mapping a hypercovering U. → X to the Zariski connected components of the
hypercovering U.⊗k k̄. By the proof of Thm. 1.3.1 our replacement X̃ enjoys the
advantage of levelwise finite homotopy groups πq(X̃) on the nose. Thus, for q > 0
the homology groups Hq(X̃) are levelwise finite on the nose by [Ser53] Chap. III
Thm. 1. Using this replacement, we work with the level representation of the
induced pro-spectral sequence H•,•∗ (X̃). Now

H0(Γ;C•(EΓ)) = H0,0
∞ (BΓ) = H0(Γ;H0(EΓ))

since EΓ ' pt. In particular H0(Γ;C•(
∫

)) factors over H0,0
∞ (X).

Suppose that X̄ is simply connected. For a hypercovering U. → X the fun-
damental group πsimpl

1 (πZar
0 (U. ⊗k k̄)) classifies étale coverings of X̄, trivial over

U0 ⊗k k̄. Thus, this fundamental group has to be trivial, i.e., X̃ is even levelwise
simply connected. In particular, H2(Γ;πab

1 (X̃)) is even levelwise trivial on the
nose. Further, Hq(X̃) for q > 0 are levelwise finite and cd(Γ) ≤ 2, so for q ≥ 2
Hq+1(Γ;Hq(X̃)) is levelwise trivial on the nose, as well.

Thus, we get that H0,0
∞ (X̃) equals H0(Γ;H0(X̃)). In particular, we get that

our map H0(Γ;C•(X̄)]) → Z is at least isomorphic to the canonical levelwise
surjection

(3.2.1) H0(Γ;C•(X̃)]) // H0,0
∞ (X̃) .

We apply this to prove the following proposition:
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3.2.5 Proposition. Let k be a field of characteristic 0 and cohomological di-
mension ≤ 2 and let X be geometrically unibranched and geometrically simply
connected proper k-variety. Then X̄ has a quasi homology fixed point.

Proof: We have to show that the limit of the map of pro-abelian groups∫
∗

: H0(Γ;C•(X̃)]) // Z

is an epimorphism. As we have just seen, this is equivalent to the surjectivity of
the limit over the canonical levelwise surjection (3.2.1). Thus, we are done if we
can show that the kernel of the map (3.2.1) is a Mittag-Leffler system.

First, note that
H1,−1
∞ (X̃) = H1,−1

2 (X̃)

is trivial, since X̃ is levelwise simply connected and H2(X̃) levelwise finite. Fur-
ther,

H2,−2
∞ (X̃) = H2,−2

2 (X̃) = H2(Γ;H2(X̃)).

Indeed, H0(Γ;πab
1 (X̃)) vanishes again since X̃ is levelwise simply connected and

H4(Γ;H3(X̃)) vanishes since cd(Γ) ≤ 2. For the same reason plus the levelwise
finiteness of H3(X̃)

Hq,−q
∞ (X̃) = Hq,−q

2 (X̃)

vanishes for q > 2, as well. Hence

0 // H2(Γ;H2(X̃)) // H0(Γ;C•(X̃)]) // H0,0
∞ (X̃) // 0

is levelwise exact, i.e. it suffices to see that H2(Γ;H2(X̃)) is isomorphic to a
Mittag-Leffler pro-system. To do this, we may again replace H2(Γ;H2(X̃)) by
the isomorphic original pro-system H2(Γ;H2(X̄)).

We claim that H2(X̄) is the profinite completion of a finitely generated group.
As X can be defined over a finitely generated field extension over Q, it can be
defined over C, as well. Combining this with [AM69] Cor. 12.12, we may assume
that k is C. As Xan is a compact topological manifold, H2(Xan) is finitely
generated and our claim follows by Lem. 3.2.6 below applied to the profinite
completion Xan → X (see Thm. 1.3.5).

Profinite completion is a left adjoint and thus preserves colimits. In particular,
we can write H2(X̄) as a system with surjective transition maps. But cd(Γ) ≤ 2,
so H2(Γ;−) is right exact on torsion modules. Thus, H2(Γ;H2(X̄)) can still
be written as a system with surjective transition maps, i.e., is a Mittag-Leffler
system, which completes the proof. 2

3.2.6 Lemma. Let X be a pro-homotopy type in ProH(SSets•). Then Hq(X
∧)

is profinite for q > 0 and the map Hq(X) → Hq(X
∧) induced by the profinite

completion of pro-homotopy types X → X∧ is the profinite completion of pro-
groups.
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Proof: We may assume that each level of X∧ has finite homotopy groups. We
claim that any connected simplicial set A. having this property has finite homol-
ogy Hq(A.) in degrees q > 0 (in particular, Hq(X

∧) is profinite in these degrees).
If A. is simply connected, this follows from [Ser53] Chap. III Thm. 1. Thus, for
A. not necessary simply connected at least the universal covering space Ã. has
finite homology Hq(Ã.) in degrees q > 0. But then the Serre spectral sequence

E2
p,q = Hp(π1(A., a), Hq(Ã.))⇒ Hp+q(A.)

together with the finiteness of higher homology of finite groups with finitely
generated coefficients (see e.g. [Wei94] Cor. 6.5.10) give the claim.

We have a canonical isomorphism Hq(A.;Q/Z) → HomAb(Hq(A.),Q/Z) for
any simplicial set A. by the universal coefficients theorem (Q/Z is injective in
Ab). The profinite completion X→ X∧ induces the commutative diagram

Hq(X∧;Q/Z)
∼ //

∼
��

HomProAb(Hq(X
∧),Q/Z)

��
Hq(X;Q/Z)

∼ // HomProAb(Hq(X),Q/Z)

where the left vertical map is an isomorphism by Thm. 1.1.8. Now Hq(X
∧) is

profinite by the above, so its Pontryagin dual HomProAb(Hq(X
∧),Q/Z) is torsion.

Thus, each α ∈ HomProAb(Hq(X),Q/Z) factors over 1
nZ/Z for suitable n 6= 0. As

a result

HomProAb(Hq(X),Q/Z) = colimn HomProAb(Hq(X), 1
nZ/Z)

= colimn HomProAb(Hq(X)∧, 1
nZ/Z)

= HomProAb(Hq(X)∧,Q/Z)

,

i.e., Hq(X)∧ → Hq(X
∧) induces an isomorphism of Pontryagin duals, i.e., is itself

an isomorphism of profinite abelian groups. 2

3.3 Quasi homology fixed points of Brauer-Severi varieties. We apply
Prop. 3.2.5 to Brauer-Severi varieties. All the statements of this sections are
trivial for cd(Γ) < 2 (since the Brauer group Br(k) is trivial in this case), so we
assume cd(Γ) = 2.

3.3.1 Corollary. Let k be a field of characteristic 0 and cohomological dimension
2. Then every Brauer-Severi variety over k admits a quasi homology fixed point.

In the case of Brauer-Severi curves we get even more. Note that the pullback
along X → BΓ for X a Brauer-Severi variety induces an equivalence between
ModΓ and the category of local systems on X.

3.3.2 Theorem. Let k be a field of characteristic 0 and cohomological dimension
2. Let X and Y be two Brauer-Severi curves over k and let Λ be a Γ-module.Then
we get an isomorphism

C•(X̄; Λ) ' C•(Ȳ ; Λ)
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in the derived category D+(ModΓ) which agrees in D+(Ab)Γ with the canonical
isomorphism given by any Vark̄-isomorphism X̄ ∼= Ȳ (see Prop. 3.1.6).

Before we give the proof, we need another technical lemma:

3.3.3 Lemma. Let X and Y be two objects in ProH(SSetsΓ) with res1ΓX and
res1ΓY profinite complete. Further, assume that there is a Γ-equivariant isomor-
phism of pro-abelian groups

res1ΓHn(X) ∼= res1ΓHn(Y)

for an n > 0. Then this is even an isomorphism in Pro(ModΓ). In particular, we
can check if a ProH(SSetsΓ) morphism

f : X // Y

induces isomorphism on higher homology pro-groups after forgetting the Γ-action.

Proof: By assumption, we even have an isomorphism res1ΓHn(X) ∼= res1ΓHn(Y)
in (ProAbfin)Γ. Pontryagin duality applied twice gives the commutative diagram
of functors

Pro(Modfin
Γ )

can //
OO

∼
��

(ProAbfin)ΓOO

∼
��

Modtors
Γ

can // (Abtors)Γ

where the lower horizontal arrow is the canonical full embedding of torsion dis-
crete Γ-modules in arbitrary torsion Γ-modules. In particular, the upper hori-
zontal arrow is a full embedding, as well. But the Pontryagin dual of Hn(X) resp.
Hn(Y) is just Hn(X;Q/Z) resp. Hn(Y;Q/Z) and thus already lies in Modtors

Γ ,
which completes the proof. 2

Proof of Thm. 3.3.2: X has a quasi homology fixed point by the Cor. 3.3.1,
i.e., we get a ProD+(ModΓ)-morphism

Z ∼= C•(EΓ) // τ≤2C•(X̄)

by Lem. 3.2.3. The induced morphism is an isomorphism on the 0th homology
and is trivial on all higher (pro-)homologie groups. The canonical morphism

τ≥2τ≤2C•(X̄) // τ≤2C•(X̄)

induces an isomorphism on the 2nd homology and is trivial on all the other
homologie (pro-)groups. Further, by Prop. 3.1.6 any choice of a Vark̄-isomorphism

X ⊗k k̄ ∼= P1 ⊗k k̄

gives a canonical isomorphism

H2(X̄) = H2(X ⊗k k̄) // H2(Pn ⊗k k̄) = Ẑ(1)
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in (ProAbfin)Γ. Thus, H2(X̄) is even canonical isomorphic to Ẑ(1) in Pro(ModΓ)
by Lem. 3.3.3, i.e. in ProD+(ModΓ) we get

τ≥2τ≤2C•(X̄) = Ẑ(1)[−2].

All in all we have a zig-zag

(3.3.1) C•(EΓ)⊕ τ≤2τ≥2C•(X̄)

uukkkkkkkkkkkkkk ∼=
))SSSSSSSSSSSSSS

τ≤2C•(X̄) Z⊕ Ẑ(1)[−2]

in ProD+(ModΓ) which induces isomorphisms on all the (pro-) homology groups
(it induces even an isomorphism in ProD+(ModΓ) by Rem. 3.3.4 below - but we
will not need this). Clearly we get a similar zig-zag for Y as well.

In terms of Galois-hypercohomology the forgetful map on Hom-sets is just the
restriction map from Γ to the trivial group:

[C•(EΓ), τ≤2C•(X̄)]ProD+(ModΓ)

��

limH0(Γ; τ≤2C•(X̄))

resΓ
1

��
[C•(EΓ), τ≤2C•(X̄)](ProD+(Ab))Γ

limH0(1, τ≤2C•(X̄))

Now H0(1, τ≤2C•(X̄)) is isomorphic to the E0,0
∞ -term in the hypercohomology

spectral sequence and thus there is a unique (right-) splitting of the canonical
morphism

τ≤2C•(X̄) // C•(EΓ)

in ProD+(Ab). In particular this splitting is even Γ-equivariant and coincides
with the (ProD+(Ab))Γ-morphism induced by any choice of a quasi homology
fixed point of X. All in all we get that all choices of quasi homology fixed points
of X and Y are compatible in (ProD+(Ab))Γ with the canonical isomorphism
given by any choice of a Vark̄-isomorphism X ⊗k k̄ ∼= Y ⊗k k̄. A consequence of
this is that the above zig-zags of X and Y are compatible with this canonical
isomorphism as well.

The above zig-zags lie in the full subcategory (ProD+(ModΓ))fgb and their
right ends are independent from X resp. Y . Thus we get an isomorphism be-
tween C•(X̄; Λ) and C•(Ȳ ; Λ) in D+(ModΓ) by Cor. 2.5.3 and Cor. 2.5.5 (the
truncation τ≤2C•(X̄) is quasi-isomorphic in the pro-sense to C•(X̄) and similar
for Y ). Further, the last constructions are compatible with the forgetful functor

ProD+(ModΓ) // (ProD+(Ab))Γ

resp.

D+(ModΓ) // D+(Ab)Γ

and our zig-zags are compatible in (ProD+(Ab))Γ with our canonical isomorphism
given by Lem. 3.1.6. As a result our D+(ModΓ)-isomorphism

C•(X̄; Λ) ' C•(Ȳ ; Λ)
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agrees in ProD+(Ab)Γ with the canonical isomorphism induced by any Vark̄-
isomorphism

X ⊗k k̄ ∼= Y ⊗k k̄

(see Prop. 3.1.6), which completes the proof. 2

3.3.4 Remark. It follows from Lem. 4.3.4 below, that X̄ is isomorphic to a suit-
able levelwise simply connected pro-simplicial discrete Γ-set X̄ in ProH(SSetsΓ).
It follows that

C•(EΓ)⊕ τ≥2τ≤2C•(X̄) // τ≤2C•(X̄)

is even an isomorphism in ProD+(ModΓ). As a result, the analog zig-zag for X̄
isomorphic to (3.3.1) is even a ProD+(ModΓ)-isomorphism, i.e.

τ≤2C•(X̄) ∼= Z⊕ Ẑ(1)[−2].

By Prop. 2.4.1 we get:

3.3.5 Corollary. Let k be a field of characteristic 0 and cohomological dimension
2. Let X and Y be two Brauer-Severi curves over k and let Λ be a Γ-module.
Then we get a canonical isomorphism of Hochschild-Serre spectral sequences

HS•,•∗ (X; Λ) = HS•,•∗ (Y ; Λ)

in which the isomorphisms on the E2-tableau are just the canonical isomorphisms
induced by any Vark-isomorphism X̄ ∼= Ȳ . In Particular H•(X; Λ) is isomorphic
to H•(Y ; Λ) under H•(k; Λ).

Proof: Combining Prop. 2.4.1 and Thm. 3.3.2 we get an isomorphism

HS•,•∗ (X; Λ) ∼= HS•,•∗ (Y ; Λ)

canonical up to the choice of the quasi homology fixed points of X and Y . But
since the isomorphisms on the E2-tableau are just the canonical isomorphisms
given by any Vark-isomorphism X̄ ∼= Ȳ , our isomorphism is independent from
this choice, which completes the proof. 2
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4 Homotopy rational points and homotopy or (quasi)
homology fixed points of Brauer-Severi varieties

In this section we want to discuss homotopy rational, fixed and (quasi) homology
fixed points of Brauer-Severi varieties and their connection with rational points.

4.1 Homotopy rational points and homotopy fixed points. Somewhat
similar to a (quasi-) homology fixed points we define homotopy rational points
and homotopy fixed points:

4.1.1 Definition. Let X be a k-variety and X an equivariant pro-homotopy type
in ProH(SSetsΓ).

(i) A homotopy rational point of X is a morphisms BΓ→ X in the relative
homotopy category H(ProSSets ↓ BΓ).

(ii) A homotopy fixed point of X ∈ ProH(SSetsΓ) is an element of

[pt,X]ProH(SSetsΓ) = [EΓ,X]ProH(SSetsΓ).

(iii) A homotopy fixed point of X is a homotopy fixed point of

X̄ = X\ ×BΓ EΓ.

4.1.2 Remark. In [Goe95] Def. 2.1 Goerss defines a homotopy fixed point func-
tor

(−)hΓ : H(SSetsΓ) // H(SSets) .

Levelwise application induces the homotopy fixed point functor

(−)hΓ : ProH(SSetsΓ) // ProH(SSets) .

Unraveling the definitions, one sees that the limit over π0(XhΓ) is nothing but
[EΓ,X]ProH(SSetsΓ), the set of homotopy fixed points of X. Thus, we treat π0(XhΓ)
as [EΓ,X]ProH(SSetsΓ) enriched with the structure of a pro-set.

4.1.3 Remark. The equivariant derived base change in Prop. 2.3.11 induces a
canonical map from homotopy rational points to homotopy fixed points:

[BΓ, X]H(ProSSets↓BΓ)
// [EΓ, X̄]ProH(SSetsΓ) .

Further, mapping a pro-homotopy type X ∈ ProH(SSetsΓ) to the (pro-)chain
complex C•(X) defines a canonical map from homotopy fixed points to homology
fixed points:

[EΓ,X]ProH(SSetsΓ)
// H0(Γ;C•(X))∫

∗=1 .

Finally, (−)] induces a canonical map from homology fixed points to quasi ho-
mology fixed points:

H0(Γ;C•(X))∫
∗=1

// H0(Γ;C•(X)])∫
∗=1 .
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Let us also mention the canonical map of pro-sets

π0(XhΓ) // H0(Γ;C•(X)]) ,

whose limit factors over the canonical map from the set of homotopy fixed points
[EΓ,X]ProH(SSetsΓ) to the set of quasi homology fixed points H0(Γ;C•(X)])∫

∗=1.

4.1.4 Remark. For cd(Γ) ≤ n and Λ a (pro-)finite module in ModΓ there is a
nice description of the canonical map

π0(K(Λ, n)hΓ) // H0(Γ;C•(K(Λ, n))]) .

Note that there is a homotopy fixed point of K(Λ, n) admitting a model

r̄ : EΓ // K(Λ, n)

in Pro(SSetsΓ) (e.g., take the actual fixed point corresponding to the zero map
to Λ[−n]). Using the functorial standard cone in Ch+(ModΓ), we can define the
reduced homology (pro-) chains

C̃•(K(Λ, n), r̄).

The truncation τ≤nC̃•(K(Λ, n), r̄) is canonically levelwise quasi-isomorphic to
the image of K(Λ, n) under the Dold-Kan correspondence, i.e. we get a canonical
isomorphisms of pointed (pro-)sets

π0(K(Λ, n)hΓ, r̄) = (HomDb(ModΓ)(Z, τ≤nC̃•(K(Λ, n), r̄)), 0)

= (H0(Γ; C̃•(K(Λ, n), r̄)]), 0)

from the left adjointness of Z[−] and the Dold-Kan correspondence. By the
Galois-hypercohomology sequence of C̃•(K(Λ, n), r̄)] we get

H0(Γ; C̃•(K(Λ, n), r̄)]) = H0(Γ; τ≤nC̃•(K(Λ, n), r̄)).

Combining this with the long exact sequence linking the hypercohomology of
C̃•(K(Λ, n), r̄)] to the one of C•(K(Λ, n))], it is not hard to see that

H0(Γ;C•(K(Λ, n))]) = π0(K(Λ, n)hΓ, r̄)⊕H0(Γ;C•(EΓ))

and that the map π0(K(Λ, n)hΓ, r̄) → H0(Γ;C•(K(Λ, n))]) is just id ⊕ 1. In
particular, we get:

[EΓ,K(Λ, n)]ProH(SSetsΓ) = H0(Γ;C•(K(Λ, n))])∫
∗=1.

Rem. 4.1.4 shows the importance of a model of a homotopy fixed point in
Pro(SSetsΓ). The existence of such a model is not at all clear for an arbitrary
homotopy fixed point in ProH(SSetsΓ). The problem is that we work in a pro-
homotopy category instead of a genuine homotopy category. In particular, a map
in such a pro-homotopy category is given by a compatible system of homotopy
commutative diagrams. Since the index category of these compatible systems
usually are infinite, there is no reason for a compatible system of commutative
lifts of these diagrams to exist. Thus, the following simple observation will be
convenient in the following subsection:
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4.1.5 Remark. Let s ∈ [BΓ, X]H(ProSSets↓BΓ) be a homotopy rational point of a
k-variety X. Replacing X → BΓ by a fibrant replacement X � BΓ, we see that
s has a model

s : BΓ // X

in the model category ProSSets ↓ BΓ. In particular, the induced homotopy fixed
point s̄ ∈ [EΓ, X̄]ProH(SSetsΓ) has a model

s̄ : EΓ // X̄

in Pro(SSetsΓ). See Cor. 4.3.5 below for a refinement of this observation for a
careful choice of the fibrant replacement X � BΓ of X moreover a geometrically
simply connected k-variety.

4.1.6 Remark. Let Λ be a discrete Γ-module and f : X → Y a morphisms
of geometrically connected and geometrically unibranched k-varieties of Čech
type. Using Lem. 2.6.1, the adjointness properties of both the free abelian group
functor Z[−] and the truncation τ≤n(−) for n ≥ q together with the Dold-Kan
correspondence gives the commutative diagram

Hq(Y ; Λ)
f∗ // Hq(X; Λ)

[Ȳ ,K(Λ, q)]ProH(SSetsΓ)
f∗ // [X̄,K(Λ, q)]ProH(SSetsΓ)

[C•(Ȳ ),Λ[−q]]ProD+(ModΓ)
f∗ // [C•(X̄),Λ[−q]]ProD+(ModΓ)

[C•(Ȳ )],Λ[−q]]ProDb(ModΓ)
f∗ // [C•(X̄)],Λ[−q]]ProDb(ModΓ)

In particular, any homotopy or (quasi) homology fixed point s̄ induces a (left-)
splitting

s̄∗ : Hq(X; Λ) // Hq(Γ; Λ)

of the canonical map
Hq(Γ; Λ) // Hq(X; Λ) ,

which particularly, is a monomorphism.

Finally, let us also mention the following observation:

4.1.7 Remark. Let A and B be central simple algebras over k. We get the
twisted Segre embedding

sA,B : XA ×XB
// XA⊗B

between the corresponding Brauer-Severi varieties (cf. [Art82] (4.1)). Consider
the composition

XA
diag // X×nA

id×(n−2)×sA,A// X
×(n−2)
A ×XA⊗2

id×(n−3)×sA,A⊗2
// . . .

s
A,A⊗(n−1)

// XA⊗n .
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Since this composition induces maps on homotopy rational points and homotopy
or (quasi) homology fixed points, XA⊗n has a homotopy rational, homotopy or
(quasi) homology fixed point as soon as XA has one.

4.2 The first non trivial step of the Postnikov tower and homotopy
fixed points. In this subsection we want to give a Γ-equivariant construction
of the first non trivial step in the Postnikov tower of an m-connected (pro-)
simplicial discrete Γ-set for m ≥ 1 adapted to a given (model of a) homotopy
fixed point. Note that analogue constructions work for a (model of a) (quasi)
homology fixed point, as well.

4.2.1 Lemma. Let A. be an m-connected and E. a contractible simplicial dis-
crete Γ-set in SSetsΓ for m ≥ 1 together with a model a : E.→ A. of a homotopy
fixed point in π0(A.hΓ). Then the canonical map

A. // coskm+2Ex(A.)

for Ex(−) a functorial fibrant replacement in SSets is isomorphic in H(SSetsΓ)
to a canonical map

ϕa : A. // K(H̃m+1(A., a),m+ 1)

functorial in models of homotopy fixed points a : E.→ A. such that ϕa ◦a factors
over the zero map into K(H̃m+1(A., a),m+ 1).

Proof: Using the functorial standard construction of a cone in Ch+(ModΓ) (e.g.,
see [GM03] Chapt. III Sect. 2), we get a distinguished triangle

C•(E.)
a∗ // C•(A.) // C̃•(A., a)

−1 // C•(E.)[−1]

in Ch+(ModΓ) functorial in morphisms E. → A. (i.e. models of homotopy fixed
points). As usually we identify the category of simplicial discrete Γ-modules
with the category of chain complexes in ModΓ via the Dold-Kan correspondence
(for the classical case see e.g. [GJ99] Chapt. III.2). We get the composition of
canonical maps

A.
can. //

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXX Z[A.]
∼= // C•(A.) // C̃•(A., a)

��
τ≤m+1C̃•(A., a)

in H(SSetsΓ). Since A. is m-connected, the truncation

H̃m+1(A., a)[−(m+ 1)] = τ≥m+1τ≤m+1C̃•(A., a) // τ≤m+1C̃•(A., a)

is an isomorphism in D+(ModΓ) by Hurewicz (e.g., see [GJ99] Chapt. III Sect.
3). Let ϕa be the resulting H(SSetsΓ)-map

A. // K(H̃m+1(A., a),m+ 1) ,
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i.e. the functoriality claim and a∗ϕa = 0 hold by construction.

Again by Hurewicz, πq(ϕa) is an isomorphism for all q ≤ m. In particular,
ϕa is a H(SSetsΓ)-isomorphism for A. an Eilenberg-MacLane space K(π,m+ 1).
As A. is m-connected, coskm+2Ex(A.) is an Eilenberg-MacLane space. Thus by
functoriality of ϕa, we get a commutative diagram

E.

a

vvmmmmmmmmmmmmmmmmm
=:b

**UUUUUUUUUUUUUUUUUUU

A. //

ϕa

��

coskm+2Ex(A.)

ϕb '
��

K(H̃m+1(A., a),m+ 1)
can. // K(H̃m+1(coskm+2Ex(A.), b),m+ 1)

in H(SSetsΓ). The lower horizontal arrow is an isomorphism, which gives the
desired isomorphism between the canonical map A. → coskm+2Ex(A.) and ϕa.

2

Let b : E.→ A. be a second model of a homotopy fixed point in π0(A.hΓ). We
get a commutative diagram
(4.2.1)

τ≤m+1C̃•(A., a) τ≤m+1C•(A.) //

ϕb

**TTTTTTTTTTTTTTT
oo

ϕa

ttjjjjjjjjjjjjjjj
τ≤m+1C̃•(A., b)

τ≥m+1τ≤m+1C̃•(A., a)

can.'

OO

τ≥m+1τ≤m+1C•(A)

can.c:=

OO

hb:=

' //'
ha:=
oo τ≥m+1τ≤m+1C̃•(A., b)

can.'

OO

in D+(ModΓ). Further, denote by prA. the canonical map A.→ pt.

4.2.2 Lemma. Let A. be an m-connected and E. a contractible simplicial dis-
crete Γ-set in SSetsΓ for m ≤ 1 together with two models a, b : E. ⇒ A. of
homotopy fixed points in π0(A.hΓ). Then we get

ϕb = (hb ◦ h−1
a )∗(ϕa) + (ϕb ◦ a ◦ prA.).

In particular, ϕa and ϕb are isomorphic via a H(SModΓ)-morphism, if

a∗ϕb = b∗ϕa = 0

and we get (h−1
b )∗(ϕb) out of (h−1

a )∗(ϕa) via an isomorphic affine linear cohomol-
ogy operation on Hm+1(−;Hm+1(A.)) with constant a∗((h−1

b )∗(ϕb)) induced by
the canonical map of Hm+1(Γ;Hm+1(A.)) into Hm+1(−;Hm+1(A.)) in general.

Proof: The second and third claims follow directly from the first claim. It
remains to proof the first claim. Using adjointness properties of both the free
abelian group functor Z[−] and the truncation τ≤m+1(−) together with the Dold-
Kan correspondence translates our problem to the corresponding problem for the
maps in (4.2.1).

First, we claim that

(4.2.2) c ◦ h−1
a ◦ ϕa = id− (a ◦ prA.)

81



holds on τ≤m+1C•(A.) in D+(ModΓ). To see this, recall the distinguished triangle

Z a // C•(A.) // C̃•(A., a)
−1 // Z[−1]

in D+(ModΓ). From this we get the long exact sequence

. . .

−1
��

[τ≤m+1C•(A.),Z]D+(ModΓ)
a∗ // [τ≤m+1C•(A.), τ≤m+1C•(A.)]D+(ModΓ)

(ϕa)∗
��

[τ≤m+1C•(A.),Z[−1]]D+(ModΓ)

a∗

��

[τ≤m+1C•(A.), τ≤m+1C̃•(A., a)]D+(ModΓ)
−1oo

. . .

Now the maps induced by the canonical map prA. : A. → pt split the maps
induced by a. Further, note that

HomD+(ModΓ)(τ≤m+1C•(A.),Z[−1]) = R1HomModΓ
(τ≤m+1C•(A.),Z)

is trivial: Indeed, this follows from the hypercohomology spectral sequences

Ep,q2 = RpHomModΓ
(Hq(τ≤m+1C•(A.)),Z)⇒ Rp+qHomModΓ

(τ≤m+1C•(A.),Z)

since
HomD+(ModΓ)(H1(A.),Z) = 0

(A. is simply connected so H1(A.) = 0) and

R1HomModΓ
(H0(A.),Z) = H1(Γ;Z) = 0

(Γ is profinite and Z torsion free). Summing up we get a direct sum decomposition
of [τ≤m+1C•(A.), τ≤m+1C•(A.)]D+(ModΓ) into

[τ≤m+1C•(A.),Z]D+(ModΓ) ⊕ [τ≤m+1C•(A.), τ≤m+1C̃•(A., a)]D+(ModΓ)

via (prA.)∗⊕(ϕa)∗. Thus, it suffices to show (4.2.2) after application of (prA.)∗(−)
resp. (ϕa)∗(−).

We start with (prA.)∗(−): We have the commutative diagram

τ≥m+1τ≤m+1C•(A.) //

c

��

τ≥m+1Z

can.

��
τ≤m+1C•(A.)

prA. // Z

and τ≥m+1Z is trivial, so prA. ◦ c ◦ h−1
a ◦ ϕa is trivial. But (prA.)∗(−) applied to

the right hand side of (4.2.2) is trivial, as well, i.e. (prA.)∗(−) applied to (4.2.2)
holds.
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On the other hand ϕa ◦ c is just ha, so (ϕa)∗(−) applied to the left hand side
of (4.2.2) is just ϕa. But ϕa ◦ a factors over the zero map, so (ϕa)∗(−) applied to
the right hand side of (4.2.2) is ϕa, as well and (ϕa)∗(−) applied to (4.2.2) holds.

Using (4.2.2) we finally can compute:

hb ◦ h−1
a ◦ ϕa = ϕb ◦ c ◦ h−1

a ◦ ϕa
= ϕb ◦ (id− (a ◦ prA.))

= ϕb − (ϕb ◦ a ◦ prA.),

which completes the proof of the first claim. 2

4.2.3 Remark. There is an alternative way to proof Lem. 4.2.2: Recall that

[A.,K(Λ, n)]H(SSetsΓ) = RnHomModΓ
(C•(A.),Λ)

(see [Goe95] Lem. 3.13). Arguing similar as in the proof of Lem. 4.3.1 below
using the hypercohomology spectral sequences

Ep,q2 = RpHomModΓ
(Hq(A.),Λ)⇒ Rp+qHomModΓ

(C•(A.),Λ)

we get the direct sum decomposition

[A.,K(Λ, n)]H(SSetsΓ) = [E.,K(Λ, n)]H(SSetsΓ) ⊕ [A.,K(Λ, n)]H(SSets),

where the projections onto the two summands are given by a∗ resp. res1Γ(−). Now
it is not hard to see that

res1Γ(h−1
a ◦ ϕa) = res1Γ(h−1

b ◦ ϕb) :

Indeed, as morphisms in SSets with targetK(Hm+1(A.),m+1), it suffices to check
this after application of Hm+1(−, Hm+1(A.)). But since A. is m-connected, this
follows from

Hm+1(res1Γ(h−1
a ◦ ϕa)) = Hm+1(res1Γ(h−1

b ◦ ϕb)),

which in turn holds by construction of ϕa resp. ϕb. In particular, h−1
a ◦ϕa differs

from h−1
b ◦ ϕb by

(a ◦ prA.)
∗((h−1

b ◦ ϕb)− (h−1
a ◦ ϕa)) = h−1

b ◦ ϕb ◦ a ◦ prA.,

which completes the proof.

4.2.4 Remark. Let A. and E. be as in Lem. 4.2.1 and 4.2.2. Say we have a
commutative diagram

E.
a′ //

f
��

A.

g

��
E.

a′′ // A.
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in SSetsΓ with f ' idE. resp. g ' idA.. By the functionality of our cone construc-
tion, we get a map between distinguished triangles

τ≤m+1C•(E.)
a′∗ //

f∗
��

τ≤m+1C•(A.) //

g∗

��

τ≤m+1C̃•(A., a
′)

−1 //

=:h
��

τ≤m+1C•(E.)[−1]

f∗[−1]

��
τ≤m+1C•(E.)

a′′∗ // τ≤m+1C•(A.) // τ≤m+1C̃•(A., a
′′)

−1 // τ≤m+1C•(E.)[−1]

in D+(ModΓ), with f∗ ≡ idC•(E.) resp. g∗ ≡ idC•(A.). Further, we get a commu-
tative diagram

τ≤m+1C̃•(A., a
′)

h
��

τ≥m+1τ≤m+1C̃•(A., a
′)

can.
'
oo

h
��

Hm+1(A.)[−(m+ 1)]
ha′

'
oo

Hm+1(g)

��
τ≤m+1C̃•(A., a

′′) τ≥m+1τ≤m+1C̃•(A., a
′′)

can.
'
oo Hm+1(A.)[−(m+ 1)]

ha′′

'
oo

in D+(ModΓ) and Hm+1(g) is just the identity on Hm+1(A.) by assumption. As
a result, h−1

a ◦ ϕa is independent from homotopy equivalences. In particular, we
may replace A. by a fibrant resolution and thus may assume that a model of a
given homotopy fixed point of A. always exists.

Levelwise application of Lem. 4.2.1 and Lem. 4.2.2 gives the corresponding
statements in the pro-sense (we use analog notation as in the pro-discrete case
above):

4.2.5 Corollary. Let s̄ : EΓ → X be a model of a homotopy fixed point in
Pro(SSetsΓ) with X levelwise m-connected for an m ≥ 1. Then there is a levelwise
morphism

ϕs̄ : X // K(Hm+1(X),m+ 1)

in ProH(SSetsΓ) inducing levelwise isomorphisms πq(ϕs̄) for all q ≤ m+ 1. This
morphism is natural in the category Pro(SSetsΓ) ↑ EΓ of models of homotopy
fixed points. Further, ϕs̄ is isomorphic to the canonical map

X // coskm+2Ex(X)

for Ex(−) a functorial fibrant replacement in SSets and the pull back s̄∗ϕs̄ factors
over the zero map into K(Hm+1(X),m+ 1).

4.2.6 Corollary. Let s̄, r̄ : EΓ ⇒ X be two models of homotopy fixed points in
Pro(SSetsΓ) with X levelwise m-connected for an m ≥ 1. Then we get

ϕr̄ = (hr̄ ◦ h−1
s̄ )∗(ϕs̄) + (ϕr̄ ◦ s̄ ◦ prX).

In particular, ϕs̄ and ϕr̄ are isomorphic via a ProH(SModΓ)-morphism, if

s̄∗ϕr̄ = r̄∗ϕs̄ = 0

and we get (h−1
r̄ )∗(ϕr̄) out of (h−1

s̄ )∗(ϕs̄) via an isomorphic affine linear cohomol-
ogy operation on Hm+1(−;Hm+1(X)) with constant s̄∗((h−1

r̄ )∗(ϕr̄)) induced by
the canonical map of Hm+1(Γ;Hm+1(X)) into Hm+1(−;Hm+1(X)) in general.
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4.2.7 Remark. Note that the proof of Cor. 4.2.5 fails if we start with s̄ only a
homotopy fixed point or even a (quasi) homology fixed point without a model
in Pro(ModΓ) resp. ProCh+(ModΓ): Indeed, there is no functorial way to get a
cone in D+(ModΓ), so there is no reason for the levelwise cones of our map

C•(EΓ) // C•(X)

to determine a pro-object C̃•(X, s̄) in ProD+(ModΓ) for complicated index cat-
egories. But even if the index category of X is simple enough to permit the
construction of a (pro-) chain complex C̃•(X) (e.g., if X is induced by a tower of
simplicial sets), there is no reason to expect functoriality in ProH(SSetsΓ) ↑ EΓ
to hold.

4.3 k-structures of ĉ1[O(1)]. The connecting homomorphisms

δKum : H1(Y ;Gm) // H2(Y ;µm)

induced by the Kummer sequences for various m form a compatible system and
thus give a natural map

ĉ1 = ĉ1(Y ) : Pic(Y ) // H2(Y ; Ẑ(1)) ,

the profinite first Chern class map. For [L] ∈ Pic(Y ) we obtain a morphism

ϕĉ1[L] : Ȳ = Y \ ×BΓ EΓ // K(Ẑ(1), 2)

in ProH(SSetsΓ) via Lem. 2.6.1.

Let X be a Brauer-Severi variety over k. In abuse of notation, we call a class
of H2(X; Ẑ(1)) resp. of limH2(X; Ẑ(1)) mapping to the Chern class of OX⊗kk̄(1)

in H2(X̄; Ẑ(1)) resp. limH2(X̄; Ẑ(1)) a k-structure of ĉ1[O(1)]. Thus, a k-
structure of ĉ1[O(1)] is nothing but a compatible system of maps

X̄ // K(µm, 2)

resp. a map

X̄ // K(Ẑ(1), 2)

in ProH(SSetsΓ), whose restriction to ProH(SSets) is just the compatible system
of maps resp. the map given by ĉ1[OX⊗kk̄(1)].

4.3.1 Lemma. Let X be a Brauer-Severi variety over k admitting a homotopy
or (quasi) homology fixed point s̄. Let Λ be a pro-object of ModΓ. Then we get
a direct sum decomposition of [X̄,K(Λ, 2)]ProH(SSetsΓ) into

[EΓ,K(Λ, 2)]ProH(SSetsΓ) ⊕ [X̄,K(Λ, 2)]ProH(SSets),

where the projections onto the two summands correspond to s̄∗ resp. res1Γ(−).
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Proof: Let p : X̄ → X be the canonical projection. Consider the Hochschild-
Serre spectral sequence HS•,•∗ (X; Λ) for Λ ∈ ModΓ pro-discrete: We claim that
the differential

∂0,2
3 : HS0,2

3 (X; Λ) // HS3,0
3 (X; Λ)

is trivial: Indeed, the canonical map H3(Γ; Λ)→ H3(X; Λ) factors as follows:

H3(Γ; Λ) // H3(X; Λ)

HS3,0
2 (X; Λ) // // HS3,0

∞ (X; Λ)
?�

OO

By Rem. 4.1.6, any homotopy or (quasi) homology fixed point s̄ gives a (left-)
splitting of this map, i.e. the lower horizontal arrow is an isomorphism which
forces the image of ∂0,2

3 to be trivial (for general k-varieties, this argument would

give ∂1,1
2 = 0, as well).

Thus, for Λ not necessarily pro-discrete we get from the Hochschild-Serre spec-
tral sequence the levelwise exact sequence of pro-abelian groups

(4.3.1) 0 // H2(Γ; Λ) // H2(X; Λ)
p∗ // H2(X̄; Λ) // 0

and any homotopy or (quasi) homology fixed point s̄ gives levelwise compatible
splittings, i.e. a compatible levelwise direct sum decomposition:

H2(X; Λ) = H2(Γ; Λ)⊕H2(X̄; Λ),

where the projections onto the two summands are given by s̄∗ resp. p∗. Finite
products and finite sums agree in Ab, so this decomposition is preserved by limits
(use [AM69] Appendix Prop. 4.1). Thus, by taking limits and translating this
back via Lem. 2.6.1 we get a decomposition of [X̄,K(Λ, 2)]ProH(SSetsΓ) into

[EΓ,K(Λ, 2)]ProH(SSetsΓ) ⊕ [X̄,K(Λ, 2)]ProH(SSets)

and the projections onto the two summands correspond to s̄∗ resp. res1Γ(−). 2

4.3.2 Remark. By Lem. 4.3.1, any Brauer-Severi variety admitting a homotopy
or (quasi) homology fixed point admits k-structures of ĉ1[O(1)]. If k is even of
cohomological dimension ≤ 2, then HS3,0

∞ (X; Λ) is trivial and ∂0,2
3 vanishes for

any (Brauer-Severi) variety. Thus for cd(k) ≤ 2, any Brauer-Severi variety admits
k-structures of ĉ1[O(1)].

4.3.3 Notation. Let X be a Brauer-Severi variety admitting a homotopy or
(quasi) homology fixed point s̄. Denote by αs̄ the unique k-structure of ĉ1[O(1)]
in H2(X; Ẑ(1)) killed by s̄∗. We just write αs if s̄ is even induced by the homotopy
rational point s ∈ [BΓ, X]H(ProSSets↓BΓ).

Say X admits a homotopy rational point s ∈ [BΓ, X]H(SSets↓BΓ). In the follow-
ing we want to relate αs to the classes constructed in Sect. 4.2.
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First, we have to make sure that Cor. 4.2.5 and Cor. 4.2.6 applies to suit-
able models of homotopy fixed points induced by homotopy rational points of
a Brauer-Severi variety X resp. a geometrically unibranched and geometrically
simply connected k-variety Y of Čech-type in general (cf. Rem. 4.1.5). Thus, we
have to make sure that there is a fibrant replacement for Y → BΓ whose base
change to Pro(SSetsΓ) is levelwise simply connected:

4.3.4 Lemma. Let Y be a geometrically unibranched and geometrically simply
connected k-variety of Čech-type. Then there is a fibrant replacement

Y � � ∼ //

  BBBBBBBB Y

~~~~||||||||

BΓ

in ProSSets ↓ BΓ with Ȳ = Y\ ×BΓ EΓ levelwise simply connected.

Proof: We may assume that Y is reduced. Since Y is of Čech type, we may work
with the relative Čech topological type

Č(Y/k) // BΓ .

Recall that Č(Y/k) is levelwise connected. Let U be a rigid covering in RC(Y/k).
Note that π1(π0(coskY

0 U), y) is finite for any y ∈ Y (k̄/k): Indeed, since Y is
geometrically unibranched, we may apply [AM69] Lem. 11.6 to see that every
zig-zag from Uy to Uy in the path category P∗(π0(coskY

0 U)) can be represented
by one of the finitely many connected components of Uy ×Y Uy.

Denote by Ly the relative algebraic closure of k inside k(Uy). Then Uy admits
a Ly structure

Uy // Spec(Ly) .

Indeed, this is true if and only if the étale covering space

U ⊗k Ly // U

has a section. But this clearly holds for the open normal locus V ↪→ U and
V ⊗kLy ↪→ U ⊗kLy is dominant since Y is geometrically unibranched. It follows,
that the restriction of U ⊗k Ly → U to at least one of the connected components
is an isomorphism, so we get our section.

The distinguished geometric point uy in Uy(k̄/k) gives Ly/k the structure of a
rigid covering in RC(k/k). Note, that this is the maximal subextension L/k of
k̄/k such that Uy admits an L-structure. Let LU be the intersection in k̄ of all
the rigid coverings Ly/k over all the geometric points y in Y (k̄/k). This gives a
rigid covering LU/k in RC(k/k) together with a canonical map of rigid coverings

U // f∗(LU/k)

for f : Y → Spec(k) the structural map. In particular, we get a canonical map

(4.3.2) π0(coskY0 U)) // π0(coskk0LU )
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representing our map f : Č(Y/k) → BΓ. By construction, this map is maximal
among all the maps

π0(coskY0 U)) // π0(coskk0L)

in our representation of the strict morphism f .

Let L(0)/k is the maximal Galois subextension of an algebraic extension L/k.
For K/k finite algebraic L ⊗k K splits completely if and only if K is contained

in L(0). Further, all the L
(0)
y contain L

(0)
U and the intersection of all the L

(0)
y is

again Galois over k, so this intersection is just L
(0)
U .

Let Z → Y be any étale covering space. Since Y is geometrically simply
connected, it is just the pull back of a finite extension K/k. In particular, U
trivializes Z (i.e. U ×Y Z ∼= U ⊗F for a finite set F ) if and only if K is contained

inside L
(0)
y for any y ∈ Y (k̄/k), i.e. if and only if K lies inside L

(0)
U . But this

holds if and only if LU ⊗k K splits completely. Thus, our canonical map (4.3.2)
induces an isomorphism on the first non abelian cohomology

H1(π0(coskk0LU );SF ) // H1(π0(coskY0 U);SF )

for the symmetric group SF for F any finite set (see Rem. 1.2.1). But both
π0(coskk0LU ) and π0(coskY0 U) have finite fundamental groups, so the induced
map

π1(π0(coskY0 U))) // π1(π0(coskk0LU ))

is an isomorphism, as well. Thus, we can write the canonical map Č(Y/k)→ BΓ
as a levelwise map whose levels induce isomorphisms on fundamental groups.
Using [EH76] Thm. 2.1.6 we may assume that the index category is even cofinite.
Let I be the corresponding index category and write the corresponding levelwise
map as

Č(Y/k)′ // BΓ.

Thus, Rem. 1.5.8 gives a fibrant replacement

Č(Y/k)′ //

$$IIIIIIIII
Y

~~~~}}}}}}}}

BΓ

in ProSSets ↓ BΓ with Y→ BΓ a levelwise map inducing isomorphisms on πq(−)
for q ≤ 1 on each level. In particular,

Ȳ = Y\ ×BΓ EΓ = (Y×BΓ EΓ)\

is levelwise simply connected, which finishes the proof. 2

Using Lem. 4.3.4, it is easy to show the following refinement of Rem. 4.1.5:

4.3.5 Corollary. Let X and Y be two geometrically unibranched and geomet-
rically simply connected k-varieties of Čech-type. Then for any morphism

f : X // Y
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in H(ProSSets ↓ BΓ) the base change f̄ has a model

f̄ : X̄ // Ȳ

in ProSSetsΓ with X̄ and Ȳ both levelwise simply connected. If moreover X
admits a homotopy rational point s ∈ [BΓ, X]H(ProSSets↓BΓ) we even get a map
in Pro(SSetsΓ) ↑ EΓ between models of the induced homotopy fixed points s̄ and
f∗s̄.

Proof: Choose X and Y as in Lem. 4.3.4 Since Y → BΓ is fibrant and any
X→ BΓ is cofibrant, we get a model

X
f //

  AAAAAAAA Y

��
BΓ

of f in ProSSets ↓ BΓ. Since the derived base change of Prop. 2.3.10 works in
the naive way without the need of any fibrant or cofibrant replacement,

f̄ = f×BΓ EΓ : X̄ // Ȳ

is a model of f̄ in Pro(SSetsΓ), which completes the proof of the first claim. For
the second claim, use that X is fibrant in ProSSets ↓ BΓ, as well. 2

Before going on, let us first recall the fundamental algebraic topology of a
Brauer-Severi variety:

4.3.6 Remark. Let X be a Brauer-Severi variety over the characteristic 0 field
k. Using the homotopy fibre sequence

X̄ // X // BΓ

we may assume that k is algebraically closed and hence X is a projective space
Pn. Using [AM69] Cor. 12.12, we may even assume k = C. Then Pn is the
profinite completion of the complex analytification (Pn)an by Thm. 1.3.5. This
analytification (Pn)an in turn sits in the homotopy fibre sequence

S1 // S2n+1 // (Pn)an

given by the Hopf-fibration. The homotopy groups of spheres are finitely gener-
ated (use [Ser51] Chap. V.2 Prop. 1) and hence good with respect to the class
of all finite groups by Rem. 1.1.12. Thus from Thm. 1.1.13 we get for the pro-
homotopy groups (without Γ-action):

πq(X) =


Γ if q = 1

Ẑ if q = 2

πq(S
2n+1)∧ if q 6= 1, 2
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As Γ-module we have at least:

π2(X) = Ẑ(1).

Indeed, by Hurewicz π2(X) is just H2(X̄), which is canonically isomorphic to
H2(P̄n) by Prop. 3.1.6 and Lem. 3.3.3, i.e. we may again assume that X is a
projective space Pn.

Now for Pn we claim even more: ϕĉ1[OPn (1)] induces Pro(ModΓ)-isomorphisms
on homology in degrees ≤ 2n. This statement is trivial in degree 0 so we may
restrict our self to Hq(−) for q > 0. Arguing as above, we may again assume
k = C. Over C, our map ϕĉ1[OPn (1)] is the profinite completion of ϕc1[OPn (1)] for

c1 : Pic((Pn)an) // H2((Pn)an;Z)

the classical first profinite Chern class map given by the homotopy equivalence
(P∞)an ' K(Z, 2). Thus, profinite completion induces a commutative diagram

C•((Pn)an)
ϕc1[OPn (1)an] //

��

C•(K(Z, 2))

��
C•(Pn)

ϕĉ1[OPn (1)] // C•(K(Ẑ, 2))

The vertical maps in the induced diagram

Hq((Pn)an)
ϕc1[OPn (1)an] //

��

Hq(K(Z, 2))

��
Hq(Pn))

ϕĉ1[OPn (1)] // Hq(K(Ẑ, 2))

are just the profinite completions by Lem. 3.2.6. But under the identification
(P∞)an ' K(Z, 2), the canonical map ϕĉ1[OPn (1)] corresponds to the analytifica-
tion of the standard embedding

Pn � � // P∞ ,

which induces an isomorphism on homology in each degree ≤ 2n.

Combining the isomorphism H2(ϕĉ1[OPn (1)]) with Prop. 3.1.6 and the construc-

tions of Sect. 4.2 we can give an explicit construction of a class α̃s in H2(X; Ẑ(1))
which will turn out to be αs in Cor. 4.3.10 below:

4.3.7 Remark. Let X be a Brauer-Severi variety over k admitting a homotopy
rational point s ∈ [BΓ, X]H(ProSSets↓BΓ). From Cor. 4.3.5 we get a good model

(4.3.3) s̄ : EΓ // X̄

in Pro(SSetsΓ) of the induced homotopy fixed point s̄ of X with X̄ levelwise
simply connected. Application of Cor. 4.2.5 gives a class

(h−1
s̄ )∗(ϕs̄) ∈ H2(X;H2(X̄)).
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By Rem. 4.3.6, the second homology H2(X̄) is canonically isomorphic to Ẑ(1) in
Pro(ModΓ), so we finally get a class

α̃s ∈ H2(X; Ẑ(1)).

By construction, the class α̃s satisfies s∗α̃s = 0.

4.3.8 Lemma. Let X be a Brauer-Severi variety over k admitting a homotopy
rational point s ∈ [BΓ, X]H(ProSSets↓BΓ). Then the class α̃s in H2(X; Ẑ(1)) is
well defined, i.e. independent from the choice of the model (4.3.3) of the induced
homotopy fixed point s̄ of X.

Proof: To show that α̃s is independent from the choice of the good model
(4.3.3) of the induced homotopy fixed point s̄ of X, we argue similar as in
Rem. 4.2.3: Recall from Lem. 4.3.1 that we get a direct sum decomposition
of [X̄,K(Ẑ(1), 2)]ProH(SSetsΓ) into

[EΓ,K(Ẑ(1), 2)]ProH(SSetsΓ) ⊕ [X̄,K(Ẑ(1), 2)]ProH(SSets),

where the projections onto the two summands correspond to s̄∗ resp. res1Γ(−).
Thus, we have to check that both s̄∗(α̃s) and res1Γ(α̃s) is independent from the
choice of (4.3.3).

Since s̄∗(α̃s) is trivial by construction, the first statement clearly holds. For
the independence of res1Γ(α̃s) we argue as follows: We have to show, that res1Γ(−)
applied to the composition given by the diagram

X̄
ϕs̄ // K(H̃2(X̄, s̄), 2) '

h−1
s̄ // K(H2(X̄), 2)

''OOOOOOOOOOO

X̄

OO

// K(H2(X̄), 2)

'

OO

'
can. // K(Ẑ(1), 2)

is independent from the choice of (4.3.3). Since the target res1ΓK(Ẑ(1), 2) rep-
resents H2(−;Z(1)) on ProH(SSets), it suffices to check this after application
of H2(−;Z(1)). Further, all the pro-spaces involved are simply connected, so
it suffices to check this even after application of the second integral homology
H2(−). But H2(ϕs̄) is nothing but H2(hs̄), so H2(res1Γ(αs)) is just the canonical

isomorphism H2(X̄) ∼= Ẑ(1) of Rem. 4.3.6, i.e. independent from the choice of
(4.3.3). 2

Both classes α̃s and αs are killed by s∗. Further, res1Γ(α̃s) equals α̃x̄ for x̄
a geometric point in X(k̄): Indeed, by Cor. 4.2.6 these two classes differ by a
constant in the trivial group H2(Γk̄; Ẑ(1)). Thus, to show

α̃s = αs

we can argue as in the proof of Lem. 4.3.8 and have to show

α̃x̄ = ĉ1[OX⊗kk̄(1)].
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4.3.9 Lemma. Let y be a k-rational point of Pn. Then

α̃y = ĉ1[OPn(1)].

Proof: Let
ȳ : EΓ // Ȳ

be a good model of the homotopy fixed point ȳ of Pn induced by y. We have to
show that the diagram

(4.3.4) K(Ẑ(1), 2)

P̄n

ϕĉ1[OPn (1)]

88qqqqqqqqqqqq //

'
��

K(H2(P̄n), 2)

'
��

H2(ϕĉ1[OPn (1)])
hhQQQQQQQQQQQQQ

Ȳ
ϕȳ // K(H̃2(Ȳ, ϕȳ), 2)

h−1
ȳ // K(H2(Ȳ), 2)

commutes in ProH(SSetsΓ), where the lower square commutes by definition of
the upper horizontal arrow.

We argue similar as in the proof of Lem. 4.3.8: Using the direct sum decom-
position of [P̄n,K(Ẑ(1), 2)]ProH(SSetsΓ) into

[EΓ,K(Ẑ(1), 2)]ProH(SSetsΓ) ⊕ [P̄n,K(Ẑ(1), 2)]ProH(SSets),

via the projections ȳ∗ and res1Γ(−), we have to show that both ȳ∗(−) and res1Γ(−)
applied to (4.3.4) commutes in ProH(SSetsΓ) resp. ProH(SSets).

For ȳ∗(−) this holds, since ȳ∗ϕȳ is trivial by construction, resp. since

y∗ĉ1[OPn(1)] = ĉ1[y∗OPn(1)]

is trivial by Hilbert 90. To check if res1Γ(−) applied to (4.3.4) commutes, we
may again check this after application of H2(−) (cf. the proof of Lem. 4.3.8).
But H2(res1Γ(−)) applied to (4.3.4) commutes again since H2(ϕȳ) is nothing but
H2(hȳ), which completes the proof of the commutativity of res1Γ(−) applied to
(4.3.4). 2

Thus we have shown:

4.3.10 Corollary. Let X be a Brauer-Severi variety over k admitting a homo-
topy rational point s ∈ [BΓ, X]H(ProSSets↓BΓ). Then the class α̃s in H2(X; Ẑ(1))
is the unique k-structure αs of ĉ1[O(1)] satisfying s∗αs = 0.

4.4 Maps on homotopy fixed point sets induced by k-structures of
ĉ1[O(1)]. Let X be a Brauer-Severi variety over k admitting a homotopy rational
point s ∈ [BΓ, X]H(ProSSets↓BΓ) and let α ∈ H2(X; Ẑ(1)) be a k-structure of
ĉ1[O(1)]. In this subsection we want to study the map induced by

ϕα : X̄ // K(Ẑ(1), 2)
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on homotopy fixed point sets.

First, we go back to arbitrary levelwise m-connected models of homotopy fixed
points:

4.4.1 Lemma. For m ≥ 1, m+ 1 ≥ scd(Γ) let A. be an m-connected simplicial
discrete Γ-set in SSetsΓ together with a homotopy fixed point a in π0(A.hΓ). Then
the canonical map ϕa induces an injection of homotopy fixed point sets

π0(ϕhΓ
a ) : π0(A.hΓ) � � // π0(K(H̃m+1(A., a),m+ 1)hΓ) .

Proof: Let b ∈ π0(A.hΓ) be a homotopy fixed point. We may assume that b has
a model b : E.→ A. in SSetsΓ (cf. Rem. 4.2.4). We claim that π0(ϕhΓ

a ) has trivial
fibre at b. To see this, we may assume that b factors even over an actual fixed
point ∗ ∈ AΓ

0 : If not, replace A. by the weakly equivalent cone Cb.

Recall from Lem. 4.2.1 that ϕa is isomorphic in H(SSetsΓ) to the canonical
map

A. // coskm+2Ex(A.)

for Ex(−) a functorial fibrant replacement in SSets. As SSetsΓ is the category
of simplicial sheaves over the classifying site BΓ, it has functorial factorization,
as well. In particular, it has a functorial fibrant replacement ExΓ(−). From the
composition

A. //
11

coskm+2Ex(A.) � � ∼ // ExΓ(coskm+2Ex(A.)) =: B.

we get a fibrant factorization (with respect to SSetsΓ)

(A, ∗)

$$JJJJJJJJJ� _

∼
��

(F., ∗) // (A.′, ∗) // // (B., ∗)

with pointed fibre (F., ∗). By Lem. 4.4.2 below together with the long exact
homotopy sequence, F. is m+ 1-connected. As a fibre of a fibration, F. is fibrant
in SSetsΓ, as well. In particular, F.hΓ = F.Γ. The corresponding statement holds
for the fibrant simplicial discrete Γ-sets A.′ and B., too. Further, (F.Γ, ∗) is still
the fibre of

((A.′)Γ, ∗) // (B.Γ, ∗) .

This map is a fibration in SSets•, since (−)Γ : SSetsΓ → SSets is right adjoint to
the functor mapping a simplicial set to itself together with trivial Γ-action which
preserves acyclic cofibrations. We get a homotopy fibre sequence in H(SSets•)

(F.hΓ, ∗) // (A.hΓ, ∗) // (B.hΓ, ∗) ,

i.e. we have to show that F.hΓ is connected.

To see this, note that F. is m+1 connected and m+1 ≥ scd(Γ) by assumption.
Recall from [Goe95] Thm. 4.8 that there is a spectral sequence

Ep,q2 = Hp(Γ;π−q(F., ∗))⇒ π−(p+q)(F.
hΓ, ∗)
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fringed along the line p+ q = 0. Since m+ 1 ≥ scd(Γ), all the entries

Hq(Γ;πq(F., ∗))

along this line are trivial, i.e. F.hΓ is indeed connected by the Connectivity Lemma
of [BK72] Chapt. IX 5.1. 2

4.4.2 Lemma. Let f : A. � B. be a fibration in SSetsΓ with fibre F. over a
base point ∗ ∈ B0. Then the restriction of

(F., ∗) // (A., ∗) // (B., ∗)

to SSets• is a homotopy fibre sequence in SSets•.

Proof: Choosing a functorial factorization in SSets (cf. Rem. 2.3.6), we can factor
f sectionwise in SSetsΓ as

A.
f //� _

i ∼
��

B.

A.′
f ′

77ppppppppppppp

for i an acyclic cofibration in SSets (hence also in SSetsΓ) and f ′ a local fibration.
Denote by F.′ the fibre of ∗ with res. to f ′. Then we have to show that the induced
map

i|F : F. // F.′

is a weak equivalence in SSets.

The weak equivalence i induces an isomorphism in the relative homotopy cat-
egory H(SSetsΓ ↓ B.). Since f is a fibration in SSetsΓ, the inverse has a model

j : A.′ // A.

in SSetsΓ ↓ B. and both compositions j ◦ i resp. i ◦ j are homotopy equivalent
in SSetsΓ ↓ B. resp. SSets ↓ B. to the respective identities. We may find a
homotopy with resp. to any good cylinder object of A. resp. A.′ in SSetsΓ ↓ B.
resp. SSets ↓ B., since f resp. f ′ is a fibration in SSetsΓ resp. SSets. We choose
the standard cylinder object A.×∆1 resp. A.′×∆1. In particular, our homotopy
equivalences over B. restrict to homotopy equivalences

j|F.′ ◦ i|F. ' idF.

i|F. ◦ j|F.′ ' idF.′ ,

which completes the proof. 2

Levelwise application of 4.4.1 gives the corresponding statement in the pro-
sense:

4.4.3 Corollary. For m ≥ 1, m + 1 ≥ scd(Γ) let s̄ : EΓ → X be a levelwise m-
connected model of a homotopy fixed point in ProH(SSetsΓ). Then the canonical
map ϕs̄ induces an injection of homotopy fixed point sets

π0(ϕhΓ
s̄ ) : π0(XhΓ) � � // π0(K(H̃m+1(X, s̄),m+ 1)hΓ) .
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At least for fields of strict cohomological dimension ≤ 2 this gives us:

4.4.4 Corollary. Let X be a Brauer-Severi variety admitting a homotopy ratio-
nal point s ∈ [BΓ, X]H(ProSSets↓BΓ) over k a field of strict cohomological dimension
≤ 2. Then our k-structure αs of ĉ1[O(1)] induces an injection of homotopy fixed
point sets

π0(ϕhΓ
αs ) : π0(X̄hΓ) � � // π0(K(Ẑ(1), 2)hΓ) = H2(Γ; Ẑ(1)).

4.4.5 Remark. Cor. 4.4.4 applies e.g. for p-adic local resp. totally imaginary
number fields: a p-adic local resp. totally imaginary number field has strict co-
homological dimension 2 by [NSW08] Cor. 7.2.5 resp. [Hab78] Prop. 12.

For base fields of larger cohomological dimension at least we get:

4.4.6 Lemma. Let X be a Brauer-Severi variety over k admitting a homotopy
rational point s ∈ [BΓ, X]H(ProSSets↓BΓ). Assume that scd(Γ) ≤ 2dim(X). Then
the map

π0(ϕhΓ
αs ) : π0(X̄hΓ) // π0(K(Ẑ(1), 2)hΓ) = H2(Γ; Ẑ(1)).

induced by αs has trivial fibres at all homotopy fixed points induced by homotopy
rational points of X.

Proof: Let r be a homotopy rational point in [BΓ, X]H(ProSSets↓BΓ). We have to

show that that π0(ϕhΓ
αs ) has trivial fibre at r̄. Take a good model

r̄ : EΓ // X̄

of r̄ as in Cor. 4.3.5. This good model allows us to form the cone Cr̄ of r̄. Thus,
doing all the steps of the corresponding part of the proof of Lem. 4.4.1 levelwise
starting with the canonical map

X̄ // cosk3Ex(X̄)

and our good model of r̄, we have to proof the following: Let n ≥ scd(Γ) and Y in
ProH(SSetsΓ) weakly n-connected and even levelwise connected with ∗ ∈ limYΓ

0 .
Then the homotopy fixed point set π0(YhΓ, ∗) is the point (our Y corresponds to
the fibre F. in the proof of Lem. 4.4.1).

We prove this by descending induction on m, where Y is even levelwise m-
connected: First, assume m ≥ n (≥ scd(Γ)). Again, we make use of the spectral
sequence

Ep,q2 = Hp(Γ;π−q(A., a))⇒ π−(p+q)(A
hΓ, a)

fringed along the line p + q = 0 for A. ∈ SSetsΓ simply connected and a ∈ AΓ
0 :

Since m ≥ scd(Γ), all the entries Hq(Γ;π−q(Y, ∗)) are levelwise trivial, i.e. YhΓ

is levelwise connected by the Connectivity Lemma of [BK72] Chapt. IX 5.1.
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For 0 ≤ m < n arbitrary, we argue as follows: Arguing levelwise as in the proof
of Lem. 4.4.1, we get a levelwise fibrant replacement

(Y, ∗)

((QQQQQQQQQQQQQ� _

∼
��

(F, ∗) // (Y′, ∗) // // (ExΓ(coskm+2Y), ∗)

with fibre F. Now ExΓ(coskm+2Y) has levelwise the K(πm+1(Y, ∗),m + 1)-
property and F is levelwise m + 1 connected. As a result, it suffices to prove
the triviality of any Z in ProH(SSetsΓ) admitting a fixed point ∗ ∈ ZΓ and hav-
ing levelwise the K(π,m)-property for π a pro-Γ-group isomorphic to the trivial
pro-Γ-group and m > 0. Note, that this is trivial in the non equivariant case
(Z ∼= Z\ by assumption), so the only difficulty is to write down an Γ-equivariant
isomorphism between Z and the point.

If m = 1, we get levelwise isomorphisms

(Z, ∗) ∼ // (BΠ(Z), ∗)

(Bπ1(Z, ∗), ∗)

∼
OO

in ProH(SSetsΓ), where the horizontal arrow is the canonical map from Z to
the nerve of its fundamental groupoid Π(Z). But the pro-Γ-group π1(Z, ∗) is
isomorphic to the trivial pro-Γ-group, i.e.

Bπ1(Z) ' pt

holds in ProH(SSetsΓ) by the functoriality of the nerve functor

B(−) : Pro(Grps
Γ
) // Pro(SSetsΓ) .

Finally, for m > 1 we argue as follows: As usually, we identify SModΓ with
Ch+(ModΓ) via the Γ-equivariant version of the Dold-Kan correspondence. We
apply Cor. 4.2.5 to the fixed point ∗ ∈ ZΓ to get a levelwise map

ϕ∗ : Z // K(H̃m(Z, ∗),m) = H̃m(Z, ∗)[−m]

inducing levelwise isomorphisms πq(ϕ∗) for each q ≤ m. But Z has levelwise the
K(π,m)-property, so this map is even a levelwise isomorphism in ProH(ModΓ).
Now H̃m(Z, ∗)[−m] is isomorphic to 0 by assumption and Hurewicz, i.e. Z is
indeed isomorphic to the point in ProH(ModΓ). 2

The corresponding statement for quasi homology fixed points is less compli-
cated. First, we need to generalize the statement for ϕĉ1[OPn (1)] of Rem. 4.3.6 to
ϕαs for arbitrary homotopy rational points s or even more generally, to arbitrary
k-structures α of ĉ1[O(1)] of arbitrary Brauer-Severi varieties over k:
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4.4.7 Lemma. Let X be a Brauer-Severi variety over k and α ∈ H2(X; Ẑ(1)) a
k-structure of ĉ1[O(1)]. Then the canonical ProH(SSetsΓ)-morphism ϕα induces
a quasi-isomorphism in the pro-sense

τ≤2nC•(X̄) // τ≤2nC•(K(Ẑ(1), 2))

in ProDb(ModΓ) for n the dimension of X.

Proof: We have to check if Hq(ϕα) is an isomorphism in ProModΓ for q ≤ 2n.
This is clearly the case for q = 0. For q > 0 we argue as follows: Using Lem.
3.3.3 we can check this after restriction res1Γ(−). But

res1Γ(ϕα) = ϕĉ1[OX⊗kk̄(1)]

by the definition of a k-structure of ĉ1[O(1)], i.e. Hq(res1Γ(ϕα)) is indeed an iso-
morphism by Rem. 4.3.6. 2

Combining Lem. 4.4.7 with the hypercohomology spectral sequence H•,•∗ (−) we
get the following corollary:

4.4.8 Corollary. Let X be a Brauer-Severi variety over k and α ∈ H2(X; Ẑ(1))
a k-structure of ĉ1[O(1)]. Assume that cd(Γ) ≤ 2dim(X). Then the push forward
along the canonical map ϕα induces an isomorphism

(ϕα)∗ : H0(Γ;C•(X̄)])∫
∗=1

// H0(Γ;C•(K(Z̄(1), 2))])∫
∗=1

between the sets of quasi homology fixed points of X and K(Ẑ(1), 2).

4.4.9 Remark. Let s be a homotopy rational point of a Brauer-Severi variety
X over k a field of cohomological dimension ≤ 2. We get a commutative diagram

π0(X̄hΓ)
(ϕαs )∗ //

can.

��

π0(K(Ẑ(1), 2)hΓ)

can.

��
H0(Γ;C•(X̄))∫

∗=1

(ϕαs )∗ //

can.

��

H0(Γ;C•(K(Ẑ(1), 2)))∫
∗=1

can.

��
H0(Γ;C•(X̄)])∫

∗=1

(ϕαs )∗// H0(Γ;C•(K(Ẑ(1), 2))])∫
∗=1

where the horizontal maps are just the canonical maps given by Rem. 4.1.3. Now
the lower horizontal arrow is an isomorphism by Cor. 4.4.8 while the composition
of the vertical right arrows is an isomorphism by Rem. 4.1.4. Thus, Lem. 4.4.6
resp. Cor. 4.4.4 implies that the canonical map

π0(X̄hΓ) // H0(Γ;C•(X̄)(]))∫
∗=1
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mapping a homotopy fixed point to its induced (quasi) homology fixed point has
trivial fibres at homotopy fixed points induced by homotopy rational points if
dim(X) ≥ 2 (since scd(Γ) ≤ cd(Γ) + 1, see e.g. [NSW08] Prop. 3.3.3) resp. is
injective if k is even of strict cohomological dimension ≤ 2 (e.g. k a p-adic local
resp. totally imaginary number field).

Let α be an arbitrary k-structure of ĉ1[O(1)]. We still get a commutative
diagram

π0(X̄hΓ)
(ϕα)∗ //

can.

��

π0(K(Ẑ(1), 2)hΓ)

can.

��
H0(Γ;C•(X̄)])∫

∗=1

(ϕα)∗ // H0(Γ;C•(K(Ẑ(1), 2))])∫
∗=1

and the lower horizontal arrow is still an isomorphism by Cor. 4.4.8. Thus, Rem.
4.1.4 together with Rem. 4.4.9 implies:

4.4.10 Corollary. Let X be a Brauer-Severi variety over k a field of cohomolog-
ical dimension ≤ 2 admitting a homotopy rational point. Suppose dim(X) ≥ 2
resp. k is even of strict cohomological dimension ≤ 2 (e.g. k a p-adic local resp.
totally imaginary number field). Then the map

π0(ϕhΓ
α ) : π0(X̄hΓ) � � // π0(K(Ẑ(1), 2)hΓ) = H2(Γ; Ẑ(1)).

induced by α on homotopy fixed points has trivial fibres at all homotopy fixed
points of X induced by homotopy rational points resp. is injective.

Let k be a totally imaginary number field. For a finite place ν of k denote by
resν the restriction to the absolute Galois group Γν of the henselization khν and
by Xν the base extension of X along khν/k. We get a canonical map∏

ν

resν : π0(X̄hΓ) //
∏
ν π0(X̄hΓν

ν ) ,

where ν runs through all finite places of k. Let us mention the following obser-
vation:

4.4.11 Corollary. Let X be a Brauer-Severi variety over k a totally imaginary
number field admitting a homotopy rational point. Then the canonical map∏

ν

resν : π0(X̄hΓ) //
∏
ν π0(X̄hΓν

ν )

is injective.

Proof: Let s be a homotopy rational point. Using Prop. 2.3.10 we get homotopy
rational points sν of Xν over khν . The induced homotopy fixed point of sν is
just the restriction resν(s̄) of the induced homotopy fixed point s̄ of s (cf. the
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compatibility claim of Prop. 2.3.11). Thus, the restriction resν(αs) is nothing but
αsν and we get a commutative diagram

π0(X̄hΓ)
π0(ϕhΓ

αs )
//

∏
ν resν

��

H2(k; Ẑ(1))∏
ν resν

��∏
ν π0(X̄hΓν

ν )

∏
ν π0(ϕhΓν

αsν
)
//
∏
ν H

2(khν ; Ẑ(1))

Now both horizontal arrows are injective by Cor. 4.4.4 while the vertical right
arrow is a monomorphism by Brauer-Hasse-Noether: Indeed, this is just the map
on Tate-modules induced by the monomorphism

Br(k) � � //
∏
ν Br(khν )

and the functor taking an abelian group to its Tate-module is left exact (since it
is entirely build out of limits). As a result, the left vertical arrow is an injection,
just as claimed. 2

4.5 An analogue for the weak section conjecture for Brauer-Severi
varieties. We come back to the questions raised in the introduction. Recall
the following observation:

4.5.1 Remark. Let X be a geometrically connected and geometrically uni-
branched R-variety of Čech type. By Rem. 4.1.6 a homotopy rational, homology
or (quasi) homology fixed point splits the canonical map

H•(R; Λ) // H•(X; Λ)

for any ΓR-module Λ. In particular, cd2(X) is infinite and so X(R) in non empty
by [Cox79b] Thm. 2.1. Thus, X(R) is non empty if and only if X has a homotopy
rational point, homotopy fixed point resp. a (quasi) homology fixed point, i.e. an
analogue of the weak section conjecture holds for X.

4.5.2 Remark. Let k be a number field admitting a real place ν. In abuse
of notation refer to the real closure of k with resp. to the ordering given by the
induced embedding k ↪→ R as the henselization khν . We claim that the analogue of
Rem. 4.5.1, i.e. an analogue of the weak section conjecture, holds for X a proper
geometrically connected and geometrically unibranched khν -variety of Čech type,
as well: Indeed,

coskX0 (X ⊗k k̄) // X

resp. its base extension

(coskX0 (X ⊗k k̄))⊗k̄ k̄ν = cosk
X⊗

khν
kν

0 (X ⊗khν k̄ν) // Xkν

is a hypercovering, i.e. a weak equivalence by Prop. 1.6.9. Further, the canonical
map

(coskX0 (X ⊗k k̄))⊗k̄ k̄ν // coskX0 (X ⊗k k̄)
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induces an isomorphism on cohomology by [Fri82] Prop. 2.4 and [AM69] Cor.
12.12. As a result,

cd2(X ⊗khν kν) = cd2(X),

i.e., if X admits a homotopical rational, homotopy or (quasi) homology fixed
point point over khν , the base change X ⊗khν kν admits a kν-rational point, again

by [Cox79b] Thm. 2.1. But kν/k
h
ν is an extension of real closed fields, i.e. X

admits a khν rational point by [Pre84] Cor. 5.2, as well. If X is a Brauer-Severi
variety over khν there is also an algebraic reason for this: The canonical map

Br(khν ) // Br(kν)

is an isomorphism, i.e., X splits over khν if and only if X ⊗khν kν splits over kν .

We try to generalize Rem. 4.5.2 in this sections: Let X be a Brauer-Severi
variety over k an arbitrary field of characteristic 0 admitting a homotopy rational
point or at least a homotopy or (quasi) homology fixed point. Our aim is to
show an analogue of the weak section conjecture for X, i.e., that under some
possible (reasonable) extra assumptions X admits a rational point. This in turn
is equivalent to X being isomorphic to a projective space over k.

It turns out that the analogue of the weak section conjecture is wrong for
Brauer-Severi varieties in general (see Sect. 4.6 below). In this subsection we try
to find a reasonable extra assumption under which the weak section conjecture
does hold for Brauer-Severi varieties.

Fix a Brauer-Severi variety X over k. An easy application of the Hochschild-
Serre spectral sequence shows that Pic(X) is isomorphic to Z and that the canon-
ical map

p∗ : Pic(X) // Pic(X ⊗k k̄)

corresponds to the multiplication by the period d of X (i.e. the degree of its
Brauer class in Br(k)). Let [LX ] be the positive degree generator of Pic(X), i.e.
the unique generator satisfying

p∗[LX ] = [OX⊗kk̄(d)].

Further, let

i : X � � // PN

be the twisted d-uple embedding, i.e. the unique embedding for minimal N
with i∗[OPN (1)] = [LX ]. Thus its base change i ⊗k k̄ is isomorphic to the usual
d-uple embedding.

4.5.3 Lemma. Let X be a Brauer-Severi variety over k of period d admitting
a homotopy rational point s ∈ [BΓ, X]H(ProSSets↓BΓ). Then the twisted d-uple

embedding i : X → PN satisfies

i∗αi∗s = d.αs.
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Proof: We claim that under the canonical isomorphisms

H2(X̄) ∼= Ẑ(1) ∼= H2(P̄N )

given by Rem. 4.3.6 the induced map H2(̄i) is isomorphic to the multiplication
by d on Ẑ(1). If this holds, the Lemma follows from the functoriality claim of
Cor. 4.2.5.

To prove the claim, note that H2(̄i) is Pontryagin dual to the map between
torsion Γ-modules

ī∗ : H2(PN ⊗k k̄;Q/Z) // H2(X ⊗k k̄;Q/Z) .

Further, the Brauer groups of both X ⊗k k̄ and PN ⊗k k̄ vanish, since for any
field extension L, the Brauer groups Br(Pn ⊗k L) and Br(L) agree. By twisting
we therefore get the commutative diagram

H2(PN ⊗k k̄;Q/Z(1))
ī∗ // H2(X ⊗k k̄;Q/Z(1))

Pic(PN ⊗k k̄)⊗Q/Z

∼=

OO

ī∗ // Pic(X ⊗k k̄)⊗Q/Z

∼=

OO

But ī∗[OPN⊗kk̄(1)] = [OX⊗kk̄(d)], i.e. ī∗ and thus also ī∗ on H2(−) is just multi-
plication by d, which completes the proof. 2

4.5.4 Remark. Let X be a Brauer-Severi variety over k of period d admit-
ting a homotopy rational point s ∈ [BΓ, X]H(ProSSets↓BΓ). If we expect X to
split, we should at least expect the existence of a homotopy rational point r
in [BΓ, X]H(ProSSets↓BΓ) whose image under i∗ is the homotopy rational point
induced by a genuine rational point y ∈ Pn(k). By Lem. 4.5.3 we get

i∗αy = d.αr.

Further, Cor. 4.2.6 implies

αr = αs + s∗αr

αy = αi∗s + (i∗s)
∗αy,

i.e. we get
(i∗s)

∗αy = d.s∗αr,

again by Lem. 4.5.3. But (i∗s)
∗αy is just the pullback along s of the first profinite

Chern class of [LX ] by Lem. 4.3.9, i.e. s∗ĉ1[LX ] is divisible in H2(Γ; Ẑ(1)) by the
period d of X.

Rem. 4.5.4 suggests that our extra assumption for an analogue of the weak
section conjecture for s resp. s̄ a homotopy rational resp. homotopy or (quasi)
homology fixed point of a Brauer-Severi variety X should be the divisibility of
the class s∗ĉ1[LX ] resp. s̄∗ĉ1[LX ] in H2(Γ; Ẑ(1)) by d the period of X. We want
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to show that this extra assumption is independent from the choice of s resp. s̄
(see Prop. 4.5.10 below):

Let A be a central simple algebra over k of period d and Aop its opposite
algebra. Denote by XA resp. XAop the corresponding Brauer-Severi varieties, by
OA(q) resp. OAop(q) the line bundles OXA⊗kk̄(q) resp. OXAop⊗kk̄(q) and by [LA]
resp. [LAop ] the positive degree generator of Pic(XA) resp. Pic(XAop). We get
the twisted Segre embedding

sA,Aop : XA ×XAop // XA⊗Aop ∼= PN

(see e.g., [Art82] Sect. 4.1). Since

s̄∗A,AopOPN⊗kk̄(1) = OA(1) �OAop(1)

we get from the induced commutative diagram of the Picard groups

Pic(PN ⊗k k̄)
s̄∗
A,Aop

// Pic((XA ×XAop)⊗k k̄)

Pic(PN )
s∗
A,Aop

//

∼=

OO

Pic(XA ×XAop)
?�

OO
= Pic(XA ⊗k k̄)⊕ Pic(XAop ⊗k k̄)

that OA(1) �OAop(1) descents to XA ×XAop and

(4.5.1) s∗A,AopOPN (1) = (OA(1) �OAop(1))/Γ.

In abuse of notation, we just write s∗A,AopOPN (1) = OA(1) �OAop(1).

Now let s̄ be a homotopy fixed point of XA and r̄ a homotopy fixed point of
XAop . The canonical map

XA ×XAop // X̄A × X̄Aop

is a weak equivalence by Lem. 3.1.1. By Cor. 2.6.4

[−,K(Ẑ(1), 2)]ProH(SSetsΓ)

maps weak equivalences to isomorphisms. In particular, we get a unique map
X̄A × X̄Aop → K(Ẑ(1), 2) in ProH(SSetsΓ), making the square

XA ×XAop

∼
��

s̄A,Aop
// P̄N

ϕĉ1[OPN (1)]

��
X̄A × X̄Aop // K(Ẑ(1), 2)

commutative. Further, for ExΓ(−) a functorial fibrant replacement in SSetsΓ,

X̄A × X̄Aop // ExΓ(X̄A)× ExΓ(X̄Aop)

is a levelwise fibrant replacement (since πq(−) preserves finite products in SSets,
use the existence of a fibrant replacement preserving finite limits and the long
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exact homotopy sequence of a fibration). In particular, we get a ProH(SSets)-
morphism

X̄hΓ
A × X̄hΓ

Aop = (X̄A × X̄Aop)hΓ // K(Ẑ(1), 2)hΓ ,

i.e. we get a canonical pairing of pro-sets

(4.5.2) 〈−,−〉 : π0(X̄hΓ
A )× π0(X̄hΓ

Aop) // π0(K(Ẑ(1), 2)hΓ) = H2(Γ; Ẑ(1)).

4.5.5 Remark. Let k be a field of cohomological dimension ≤ 2 and assume
that XA resp. XAop admits a homotopy rational point. We want to study the
left- and right-kernels of our pairing (4.5.2), i.e. the fibres of the maps 〈−, r̄〉 resp.
〈s̄,−〉 for r̄ ∈ π0(X̄hΓ

Aop) resp. s̄ ∈ π0(X̄hΓ
A ).

By the symmetry of our construction it suffices to discuss the left-kernels. We
get a map

X̄A ' X̄A × EΓ
id×r̄ // X̄A × X̄Aop // K(Ẑ(1), 2) ,

i.e. a cohomology class βr̄ in H2(XA; Ẑ(1)), s.t. 〈s̄, r̄〉 is nothing but s̄∗βr̄. It
follows that 〈−, r̄〉 is nothing but the induced map

π0(ϕhΓ
βr̄ ) : π0(X̄hΓ

A ) // π0(K(Ẑ(1), 2)hΓ) = H2(Γ; Ẑ(1)).

Now res1Γ(r̄) is just the homotopy fixed point given by any geometric point ȳ
of XAop(k̄). It follows that res1Γ(ϕβr̄) corresponds to the composition

XA ⊗k k̄
id×ȳ //

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ (XA ⊗k k̄)× (XAop ⊗k k̄)
sA,Aop⊗kk̄ // PN ⊗k k̄

ϕĉ1[OPN⊗kk̄
(1)]

��
K(Ẑ(1), 2)

i.e. res1Γ(βr̄) is the class

(id× ȳ)∗(sA,Aop ⊗k k̄)∗ĉ1[OPN⊗kk̄(1)] = ĉ1[OXA⊗kk̄(1) � ȳ∗OXAop⊗kk̄(1)]

= ĉ1[OXA⊗kk̄(1)].

Thus, βr̄ is a k-structure of ĉ1[O(1)] and we get from Cor. 4.4.10 that 〈−, r̄〉 has
trivial fibres at all homotopy fixed points of X̄A induced by homotopy rational
points if rk(A) ≥ 3 and is injective if k is of strict cohomological dimension ≤ 2
(e.g. k a p-adic local resp. totally imaginary number field).

4.5.6 Remark. Suppose A is a matrix algebra over k, i.e. X̄A and X̄Aop are pro-
jective spaces. The spectral sequence of [Goe95] Thm. 4.8 suggests that ϕĉ1[OPn (1)]

induces an isomorphism between homotopy fixed point (pro-)sets

(4.5.3) π0((P̄n)hΓ) // π0(K(Ẑ(1), 2)hΓ) = H2(Γ; Ẑ(1))

103



and even a weak equivalence between homotopy fixed points

(P̄∞)hΓ // K(Ẑ(1), 2)hΓ

(unfortunately, it is fringed along the line s = t, so it does not necessarily compute
the homotopy fixed point (pro-)set). Under this later weak equivalence, the
additive structure of the target would correspond to the infinite Segre embedding

s∞ : P∞ × P∞ // P∞

(since s∗∞O(1) equals O(1) �O(1)). This suggests, that our pairing corresponds
to the one given by the abelian group structure of H2(Γ; Ẑ(1)) in the case of a
trivial Brauer-Severi variety.

What we do know is that (4.5.3) is injective for scd(k) ≤ 2 (see Cor. 4.4.4)
and has at least trivial fibers at all homotopy fixed points induced by homotopy
rational points if scd(k) ≤ 2n (Lem. 4.4.6). Further in the case cd(k) ≤ 2, arguing
as in Rem. 4.4.9 we see that (4.5.3) is surjective if and only if the canonical map

π0((P̄n)hΓ) // H0(Γ;C•(P̄n)])∫
∗=1

is surjective.

We go back to general Brauer-Severi varieties resp. general central simple alge-
bras. By the same arguments as above together with the integral Eilenberg-Zilber
Theorem the diagram

C•(EΓ)
∆∗ // C•(EΓ× EΓ)

∼=
��

C•(X̄A × X̄Aop)(]) //

∼=
��

Ẑ(1)[−2]

C•(EΓ)⊗ C•(EΓ)
s̄⊗r̄ // C•(X̄A)(]) ⊗ C•(X̄Aop)(])

in ProD+(ModΓ) induces canonical pairings for (quasi) homology fixed point sets

〈−,−〉 : H0(Γ;C•(X̄A)(]))∫
∗=1 ×H0(Γ;C•(X̄Aop)(]))∫

∗=1
// limH2(Γ; Ẑ(1)) ,

as well. Combining these pairings with Rem. 4.1.3 we also get “mixed” pairings
of the form

〈−,−〉 : [EΓ, X̄hΓ
A ]ProH(SSetsΓ) ×H0(Γ;C•(X̄Aop)])∫

∗=1
// limH2(Γ; Ẑ(1)) .

Note, that these pairings are compatible with the limit of the above pairing of
pro-sets (4.5.2) by construction.

4.5.7 Remark. Let us also mention, that the latter “mixed” pairing can be
enriched to a pairing of a pro-set with a set

〈−,−〉 : π0(X̄hΓ
A )×H0(Γ;C•(X̄Aop)])∫

∗=1
// H2(Γ; Ẑ(1)) .
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Indeed, fix a quasi homology fixed point r̄ in the set H0(Γ;C•(X̄Aop)])∫
∗=1. By

the Eilenberg-Zilber theorem we get the ProD+(ModΓ)-morphism

id⊗ r̄ : C•(X̄A) = C•(X̄A × EΓ) // C•(X̄A × X̄Aop) ,

i.e. a canonical ProD+(ModΓ)-morphism

C•(X̄A) // Ẑ(1)[−2] .

By adjointness this gives a canonical ProH(SSetsΓ)-morphism

X̄A
// K(Ẑ(1), 2) ,

i.e. a ProH(SSets)-morphism between homotopy fixed points

X̄hΓ
A

// K(Ẑ(1), 2)hΓ .

4.5.8 Lemma. Let s̄ be a homotopy or (quasi) homology fixed point of XA and
r̄ a homotopy or (quasi) homology fixed point of XAop . Then

d.〈s̄, r̄〉 = s̄∗ĉ1[LA] + r̄∗ĉ1[LAop ]

Proof: It follows from the definition and (4.5.1) that

(4.5.4) 〈s̄, r̄〉 = (s̄⊗ r̄)∗ĉ1[OA(1) �OAop(1)].

By the functoriality of the profinite first Chern class map we get

s̄∗ĉ1[LA] = (s̄⊗ r̄)∗ĉ1[pr∗XALA],

r̄∗ĉ1[LAop ] = (s̄⊗ r̄)∗ĉ1[pr∗XAopLAop ].

But in Pic(XA ×XAop) we have

d.[OA(1) �OAop(1)] = [pr∗XALA] + [pr∗XAopLAop ],

so the claim follows from (4.5.4). 2

4.5.9 Remark. Note that we could replace XA and XAop by Brauer-equivalent
Brauer-Severi varieties to get similar pairings still satisfying all of the last argu-
ments. We use this observation as follows: For n+1 divisible by the period of [A],
the Brauer class [A⊗n] is just the inverse of [A] in Br(k), i.e. equals [Aop]. Thus, if
XA admits a homotopy or (quasi) homology fixed point we replace XAop by XA⊗n

and get a pairings between non empty sets of homotopy or (quasi) homology fixed
points using Rem. 4.1.7.

Now let s̄′ be a second homotopy or (quasi) homology fixed point of XA and r̄
a quasi homology fixed point of XAop (which always exists for cd(Γ) ≤ 2 by Cor.
3.3.1). Applying Lem. 4.5.8 twice we get

(s̄′)∗ĉ1[LA] = s̄∗ĉ1[LA] + d.(〈s̄′, r̄〉 − 〈s̄, r̄〉)

in H2(Γ; Z̄(1)). If no such quasi homology fixed point r̄ exists, we use Rem. 4.5.9
and argue similar to get:
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4.5.10 Proposition. Let A be a central simple algebra of period d and s resp.
s̄ a homotopy rational resp. homotopy or (quasi) homology fixed point of the
Brauer-Severi variety XA. Then the classes s∗ĉ1[LA] resp. s̄∗ĉ1[LA] modulo d are
independent from the choice of s resp. s̄. In particular, the property that s∗ĉ1[LA]
resp. s̄∗ĉ1[LA] is divisible by d in H2(Γ; Ẑ(1)) is independent from the choice of
s resp. s̄.

Rem. 4.5.4 and Prop. 4.5.10 motivates our analogue of the weak section con-
jecture for Brauer-Severi varieties:

4.5.11 Theorem. Let k be a field of characteristic 0 and X a Brauer-Severi
variety over k of period d admitting a homotopy rational point resp. a homotopy
or (quasi) homology fixed point s resp. s̄. Suppose that the class s∗ĉ1[LX ] resp.
s̄∗ĉ1[LX ] is divisible by d in H2(Γ; Ẑ(1)) for [LX ] the (positive degree) generator
of Pic(X). Then X is isomorphic over k to a projective space Pn, i.e., X admits
a k-rational point.

We need two more easy technicalities for the proof:

4.5.12 Lemma. Let A be an abelian group with (pro-) Tate module

T(A) := {A[m]}m,

where the structural maps are given by the multiplication maps. Then T(A) is
torsion free in ProAb.

Proof: Multiplication by n is a levelwise map on T(A), i.e. its kernel T(A)[n]
is given as the levelwise kernels A[m][n] by [AM69] Appendix Prop. 4.1. The
induced structural maps

A[km][n]
k.(−) // A[m][n]

are trivial for all k divided by n, i.e. T(A)[n] is a Mittag-Leffler null system in
ProAb, i.e. trivial. 2

As a consequence we get:

4.5.13 Corollary. Let Y be a k-variety and let L be a line bundle on Y . Then
the Chern class ĉ1[L] is divisible by an integer r in H2(Y ; Ẑ(1)) if and only if the
class [L] is divisible by r in Pic(Y ).

Proof: Let {Z/mZ}m be the pro-system with the obvious transfer maps (i.e. this
is just Ẑ). We get the pro-system {Pic(Y )⊗ Z/mZ}m satisfying

Pic(Y )⊗ Z/rZ = {Pic(Y )⊗ Z/mZ}m ⊗ Z/rZ

(if Pic(Y ) is torsion free and finitely generated, this is just the profinite completion
Pic(Y )∧). Thus, it suffices to show that [L] is divisible by r in the pro-system
{Pic(Y )⊗ Z/mZ}m.
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From the Kummer sequences for various m we get the exact sequence of pro-
abelian groups

0 // {Pic(Y )⊗ Z/mZ}m
ĉ1 // H2(Y ; Ẑ(1)) // TH2(Y ;Gm) // 0 .

By assumption, the Chern class ĉ1[L] is divisible by r, say

ĉ1[L] = r.α

for a suitable class α in H2(Y ; Ẑ(1)). It follows, that the image of α in the
(pro-)Tate module TH2(Y ;Gm) is killed by r. But TH2(Y ;Gm) is torsion free
by Lem. 4.5.12, so α lies even in the image of the monomorphism ĉ1, i.e. [L] is
divisible by r in {Pic(Y )⊗ Z/mZ}m, which finishes the proof. 2

Proof of Thm. 4.5.11: As a generator, [LX ] is not divisible in Pic(X) by any
other integer except ±1. Thus, by Cor. 4.5.13 it suffices to show that ĉ1[LX ] is
divisible by d in H2(X; Ẑ(1)).

For the sake of our motivation in Rem. 4.5.4, let us first discuss the special
case of a homotopy rational point: By Lem. 4.5.3 we have

i∗αi∗s = d.αs

and by Lem. 4.3.9 together with Cor. 4.2.6

ĉ1[OPN (1)] = αy = αi∗s + (i∗s)
∗ĉ1[OPN (1)]

for y any k-rational point of PN . Combining this, we therefore get

ĉ1[LX ] = i∗ĉ1[OPN (1)] = i∗αi∗s + (i∗s)
∗ĉ1[OPN (1)]

= d.αs + s∗ĉ1[LX ],

i.e. ĉ1[LX ] is divisible by d in H2(X; Ẑ(1)) if and only if s∗ĉ1[LX ] is divisible by
d in H2(Γ; Ẑ(1)).

This of course is just an explicit version of the following easy argument working
for a general homotopy or (quasi) homology fixed point s̄, as well: By the proof
of Lem. 4.3.1, s̄ gives us a compatible levelwise direct sum decomposition

H2(X; Ẑ(1)) = H2(Γ; Ẑ(1))⊕H2(X̄; Ẑ(1)),

where the projections onto the two summands are given by s̄∗ resp. p∗. Now

p∗ĉ1[LX ] = ĉ1[OX⊗kk̄(d)] = d.ĉ1[OX⊗kk̄(1)],

so ĉ1[LX ] is divisible by d in H2(X; Ẑ(1)) if and only if s̄∗ĉ1[LX ] is divisible by d
in H2(Γ; Ẑ(1)). 2
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Next, we want to give a better characterization of the images of the canonical
maps

(4.5.5) X(k) //

**VVVVVVVVVVVVVVVVVVVVVV

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMM

!!CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
[BΓ, X]H(ProSSets↓BΓ)

��
[EΓ, X̄]ProH(SSetsΓ)

��
H0(Γ;C•(X̄))∫

∗=1

��
H0(Γ;C•(X̄)])∫

∗=1

.

4.5.14 Remark. Consider the canonical upper horizontal map

(4.5.6) X(k) // [BΓ, X]H(ProSSets↓BΓ) .

First, we discuss the actual image of this map if X(k) is nonempty, i.e. for X a
projective space Pn. By functoriality of the first profinite Chern class map ĉ1, the
composition x∗ĉ1 is trivial for any k-rational point x of Pn. Thus, for a homotopy
rational point s of Pn to come from a k-rational point of X, it is necessary that
the composition s∗ĉ1 is trivial.

On the other hand, it is not hard to see that (4.5.6) is in fact the constant
map for Pn: Indeed, two arbitrary k-rational points x and y in Pn(k) factor over
a suitable k-morphisms A1 → Pn. But A1 → BΓ is a weak equivalence, since
A1 ×BΓ EΓ is contractible in characteristic 0.

On the other hand for X an arbitrary Brauer-Severi variety and s a homotopy
rational point trivializing ĉ1, obviously s∗ĉs[LX ] is divisible by d, i.e. X(k) is
nonempty by Thm. 4.5.11. Thus, the set S of homotopy rational points s in
[BΓ, X]H(ProSSets↓BΓ) trivializing the first profinite Chern class map ĉ1 is either
empty or X splits and the canonical map

X(k) // S ⊆ [BΓ, X]H(ProSSets↓BΓ)

is the constant map.

Since all the non vertical maps in (4.5.5) factor through the canonical map
(4.5.6), either X(k) is empty or all these maps are constant by Rem. 4.5.14. We
want to give a different description of the resulting rational homotopy resp.
quasi homology fixed point: Again, for a homotopy or (quasi) homology
fixed point s̄ of X to come from a k-rational point of X, it is necessary that
the composition s̄∗ĉ1 is trivial. We will show that the converse statement holds
for homotopy resp. quasi homology fixed points over base fields of small (strict)
cohomological dimensions, as well:

4.5.15 Theorem. Let k be a field of characteristic 0. Let X be a Brauer-Severi
variety over k. Assume scd(Γ) ≤ 2dim(X) resp. cd(Γ) ≤ 2dim(X). Then the set
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of homotopy fixed points resp. quasi homology fixed points trivializing the first
profinite Chern class map is either empty or consists of the unique homotopy
fixed point resp. quasi homology fixed point induced by any k-rational point of
X. In particular X is isomorphic to a projective space Pn in the latter case.

In short: a homotopy or quasi homology fixed point of a Brauer-Severi variety
is rational if and only if it trivializes ĉ1.

Proof: We proof the claim for homotopy fixed points. Using Cor. 4.4.8 instead
of Lem. 4.4.6 the proof is similar in the case of homology fixed points.

Let s̄ be a homotopy fixed point of Pn trivializing the first profinite Chern
class map ĉ1. Since H2(Γ; Ẑ(1)) is the (pro-)Tate module of the Brauer group
Br(k) which is torsion free by Lem. 4.5.12, this is equivalent to the triviality
of the class s̄∗ĉ1[OPn(1)] in H2(Γ; Ẑ(1)). But under the identification of Lem.
2.6.1, s̄∗ĉ1[OPn(1)] corresponds to the homotopy fixed point (ϕĉ1[OPn (1)])∗s̄ of

K(Ẑ(1), 2). By triviality of s̄∗ĉ1[OPn(1)] this homotopy fixed point lies in the
fibre of

π0(ϕhΓ
αy ) : π0((P̄n)hΓ, ȳ) // π0(K(Ẑ(1), 2)hΓ, ∗)

for any k-rational point y ∈ Pn(k), which is trivial by Lem. 4.4.6, i.e. s̄ and ȳ
agree in π0((P̄n)hΓ), which finishes the proof for homotopy fixed points. 2

4.5.16 Remark. Again, Thm. 4.5.15 applies to all Brauer-Severi varieties over
p-adic local resp. totally imaginary number fields: a p-adic local resp. totally
imaginary number field has strict cohomological dimension 2 by [NSW08] Cor.
7.2.5 resp. [Hab78] Prop. 12.

As a Corollary we get a nice reformulation of our rationality condition on the
first profinite Chern class map given in Thm. 4.5.15:

4.5.17 Corollary. Let X be a Brauer-Severi variety over k admitting a homo-
topy resp. quasi homology fixed point s̄ and let

f : X // PN

be a non constant morphism of k-varieties. Further, suppose scd(Γ) ≤ 2dim(X)
resp. cd(Γ) ≤ 2dim(X). Then s̄ is rational if and only if the push forward f∗s̄ is
rational. If we only have scd(Γ) ≤ 2N resp. cd(Γ) ≤ 2N , then X splits if f∗s̄ is
rational.

Proof: Use that H2(Γ; Ẑ(1)) is torsion free as the Tate-module of Br(k). 2

Let L/k be a finite extension of a local p-adic or a totally imaginary number
field k and s̄ a homotopy or quasi homology fixed point of a Brauer-Severi variety
X over k. Restricting s̄ to ProH(SSetsΓL

) gives a homotopy or quasi homology
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fixed point s̄L := resΓL
Γ (s̄) of X ⊗k L. We get the commutative diagram

Pic(X ⊗k L)
ĉ1 // H2(X ⊗k L; Ẑ(1))

s̄∗L // H2(ΓL; Ẑ(1))

Pic(X)
ĉ1 //

·a

OO

H2(X; Ẑ(1))
s̄∗ //

OO

H2(Γ; Ẑ(1))

res
ΓL
Γ

OO

for a a suitable divisor of the period of X. The Galois cohomology group
H2(Γ; Ẑ(1)) resp. H2(ΓL; Ẑ(1)) is just the Tate-module of Br(k) resp. Br(L).
Since Tate-modules are torsion free (Lem. 4.5.12) and the restriction resΓL

Γ is just
multiplication by the degree [L : k] for k a p-adic local field ([NSW08] Cor. 7.1.4),
the vertical right map is a monomorphism in the p-adic local case. The same is
true in the case of a totally imaginary number field, as well: Apply the p-adic
local case to the commutative diagram

H2(k; Ẑ(1))
res

ΓL
Γ //

��

H2(L; Ẑ(1))

��∏
ν H

2(kν ; Ẑ(1)) //
∏
ν

∏
ω|ν H

2(Lω; Ẑ(1))

where ν runs through the places of k and ω through the places of L and use
Brauer-Hasse-Noether and the left exactness of the Tate-module functor (since it
is entirely build out of limits). Thus

a.s̄∗Lĉ1[LXL ] = resΓL
Γ (s̄∗ĉ1[LX ])

is trivial if and only if s̄∗ĉ1[LX ] is trivial, i.e. Thm. 4.5.15 together with Rem.
4.5.16 imply:

4.5.18 Corollary. Let L/k be a finite extension of a local p-adic or totally imag-
inary number field k and X a Brauer-Severi variety over k admitting a homotopy
or quasi homology fixed point s̄. Then s̄ is rational if and only if the base exten-
sion resΓL

Γ (s̄) is rational.

Arguing similar, we can proof a “local-to-global-principle” for the rationality of
homotopy fixed points of Brauer-Severi varieties over totally imaginary number
fields (compare this with Cor. 4.4.11):

4.5.19 Corollary. Let k be a totally imaginary number field and X a Brauer-
Severi variety over k admitting a homotopy or quasi homology fixed point s̄.
Then s̄ is rational if and only if for all finite places ν of k the restriction resν(s̄)
is rational.

Proof: The “only if” part is obvious, so let us assume that resν(s̄) is rational for
all finite places ν of k. Similar as above, there are positive integers aν s.t.

resν(s̄∗ĉ1[LX ]) = aν .resν(s̄)∗ĉ1[LXν ].
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Since the right hand side is trivial by assumption, Hasse-Brauer-Noether implies

s̄∗ĉ1[LX ] = 0,

i.e. s̄ is rational by Thm. 4.5.15 and Rem. 4.5.16. 2

4.6 A counter example. By the general weak section conjecture for Brauer-
Severi varieties we mean the statement of Thm. 4.5.11 without the assumption
on the first profinite Chern class map. Unfortunately, such a general weak section
conjecture does not hold for Brauer-Severi varieties in general: In this section we
will prove the existence of non split Brauer-Severi varieties over p-adic local fields
admitting a homotopy rational point.

Let Y be an arbitrary geometrically connected k-variety together with a geo-
metric point ȳ. Refer to the short exact sequence

1 // πét
1 (Y ⊗k k̄, ȳ) // πét

1 (Y, ȳ) // Γ // 1

given by [SGA71] Exp. IX Thm. 6.1 as π1(Y/k, ȳ). If Y is proper and geomet-
rically unibranched, these are just the first terms of the long exact homotopy
sequence given by the fibre sequence

Ȳ // Y // BΓ

(see [Fri73] Cor. 4.8). By a section of π1(Y/k, ȳ) we mean a section of the
canonical map πét

1 (Y, ȳ)→ Γ. Finally, by the relative Brauer group of Y we
mean the kernel

Br(Y/k) := ker( H2(Γ;Gm)
can. // H2(Y ;Gm) ).

Note, that the relative Brauer group of a Brauer-Severi variety XA corresponding
to the Brauer class [A] ∈ Br(k) is generated by [A]: This is Amitsur’s Theorem
(e.g. [GS06] Thm. 5.4.1) together with the injectivity of the canonical map

H2(X;Gm) // H2(k(X);Gm)

induced by the generic point (see e.g. [Mil80] Chap. III Ex. 2.22).

4.6.1 Remark. LetX be a smooth projective curve over a characteristic 0 field k
of genus ≥ 1 (e.g., a projective anabelian curve) admitting a section of π1(X/k, x̄)
for a suitable geometric point x̄ of X. Recall that X has the K(π, 1) property
(see e.g., [Sti02] Prop. A.4.1). Thus, the roof of canonical morphisms

BΠ(X)

X

∼
;;xxxxxxxxx

Bπ1(X, x̄)

∼
ffMMMMMMMMMM

induces an isomorphism X ∼= Bπ1(X, x̄) in H(SSets ↓ BΓ). In particular, our
section of π1(X/k, x̄) induces a homotopy rational point

s ∈ [BΓ, X]H(SSets↓BΓ)

by the functoriality of the nerve functor B(−).
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4.6.2 Remark. Let X be a connected smooth projective curve over a charac-
teristic 0 field k. Further, let [A] be a class in the relative Brauer group Br(X/k)
given by a central simple algebra A over k and let XA be the corresponding
Brauer-Severi variety. The central simple algebra A splits over the function field
k(X) of X, i.e. XA admits a k(X)-rational point. This k(X)-rational point ex-
tents to a non constant rational map

X
f //_____ XA

Spec(k(X))

can.

OO 99ssssssssss

which is even regular, since XA is proper over k: Say f restricts to a regular
function f|U on U ↪→ X open. The local rings of the closed points of X are
valuation rings so f|U extents uniquely to a regular function on X by the Valuative
Criterion of Properness.

Say, X is even a curve of genus ≥ 1 admitting a section of π1(X/k, x̄) for a
suitable geometric point x̄ of X. By Rem. 4.6.1 this section induces a homotopy
rational point s ∈ [BΓ, X]H(SSets↓BΓ), i.e. the push forward f∗s is a homotopy
rational point of XA.

For the rest of this subsection, let k be a p-adic local field. Recall from [NSW08]
Cor. 7.1.4 that

Br(k) = Q/Z.

Further, recall that the index ind(Y ) of a smooth projective curve Y over k is
the greatest common divisor of the degrees [k(y) : k] for all closed points y of Y .
Over p-adic local fields k, the index of Y equals the order of the relative Brauer
group Br(Y/k) (see [Lic69] Thm. 3), i.e.

Br(Y/k) =
1

ind(Y )
Z/Z.

4.6.3 Remark. Let X be a smooth projective curve over the p-adic local field
k of genus ≥ 1 (e.g., a projective anabelian curve) admitting a section s of
π1(X/k, x̄) for a suitable geometric point x̄ of X. Let [A] be the generator of
Br(X/k) and f : X → XA a morphism as in Rem. 4.6.2. Then

[L(0)
f ] := (f ⊗k k̄)∗[OX⊗kk̄(1)]

is a Γ-invariant class of a line bundle in Pic(X ⊗k k̄) with Brauer-obstruction [A]
(i.e. the differential ∂1,1

2 in the Hochschild-Serre spectral sequence HS•,•∗ (X;Gm)):
Indeed, [A] is the Brauer-obstruction of [OX⊗kk̄(1)] since Br(XA/k) is generated

by [A]. Thus, [L(0)
f ] is a geometric dth-root of

[Lf ] := f∗[LXA ]

for [LXA ] the positive degree generator of Pic(XA) and d the period of [A].
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Now for Br(X/k) to be trivial, it would suffices to check if s∗ĉ1[L] is divisible
by d in H2(Γ; Ẑ(1)): Indeed, then the induced homotopy rational point f∗s of XA

would satisfy the condition of Thm. 4.5.11, i.e. XA would split. Unfortunately
we do not know how to show this divisibility of s∗ĉ1[L] on genus ≥ 2 curves. For
genus 1 curves, this is wrong in general: See Cor. 4.6.6 below.

To get a counter example of the general weak section conjecture for Brauer-
Severi varieties it would therefore suffice to show the existence of a smooth pro-
jective curve X of genus ≥ 1 with non trivial relative Brauer group Br(X/k) ad-
mitting a section s of π1(X/k, x̄) for a suitable geometric point x̄ of X. Granting
the local weak section conjecture, this should be impossible for smooth projective
curves of genus > 1. Thus we restrict our search to genus 1 curves, i.e. torsors
under elliptic curves.

4.6.4 Lemma. Let X be a torsor under an elliptic curve E over k a p-adic local
field. Then X splits if and only if the relative Brauer group Br(X/k) is trivial.

Proof: As a torsor under an elliptic curve, the canonical map

X // Alb1(X)

into the Albanese-torsor of X is an isomorphism (cf. [Gro62] Thm. 3.3). As X is
a curve, Alb1(X) is just Pic1

X and the above isomorphism is an isomorphism of
E = Pic0

X -torsors. Thus, X splits if and only if it has index 1, i.e. if and only if
Br(X/k) is trivial. 2

Thus, any non split torsor under an elliptic curve over a local p-adic field
admitting a section of its fundamental group sequence would produce non split
Brauer-Severi varieties admitting homotopy rational points. Now it is well known
to anabelian geometers that such torsors do exist:

4.6.5 Lemma. (see [Sti12] Prop. 183) Let E be an elliptic curve over a local
p-adic field k. Then there are non split E-torsors X whose fundamental group
sequence π1(X/k, x̄) splits for a suitable geometric point x̄ of X.

Sketch of proof: By [Sti12] Cor. 177 there is an exact sequence

0 // Div(H1(k;E)) // H1(k;E)
δ // H2(k;π1(E ⊗k k̄)) ,

where Div(H1(k;E)) is the maximal divisible subgroup of H1(k;E) and δ maps
the class of an E-torsor to the class of its fundamental group sequence [π1(X/k)]
(see [Sti12] Prop. 174). But

Div(H1(k;E)) = (Qp/Zp)[k:Qp],

which could easily be computed using [Mil86] Cor. 3.4 and Lem. 3.3. Thus, there
are plenty of non split E-torsors X with a split exact fundamental group sequence
π1(X/k). 2

From [Sti10] Thm. 15 we know that the relative Brauer group Br(X/k) of a
torsor as in Lem. 4.6.5 is p-torsion. Combining this with Lem. 4.6.4 we get:
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4.6.6 Corollary. Let k be a local p-adic field and [A] a non trivial Brauer class
in the p-torsion part Br(k)[p∞] of the Brauer group. Then XA admits a non
rational homotopy rational point

s ∈ [BΓ, XA]H(ProSSets↓BΓ).

Proof: We have to show that any p-torsion class [A] of Br(k) lies in the relative
Brauer group of a suitable “bad” genus 1 curves as in Lem. 4.6.5.

Start with any elliptic curve E over k and X a non split E-torsor admitting a
section s of π1(X/k, x̄) for a suitable geometric point x̄ of X. Let

Y

h
��

BΓ

r
=={{{{{{{{

s // X

be a neighbourhood of the section s, i.e. h finite étale and r a section of π1(Y/k, ȳ)
for a suitable geometric point ȳ of Y , compatible with s under h. By the Riemann-
Hurwitz formula, Y is still a genus 1 curve, i.e. a torsor under an elliptic curve.
As

Br(X/k) ≤ Br(Y/k),

Y is still a non split torsors under an elliptic curve whose fundamental group
sequence π1(Y/k, ȳ) splits. Now Br(X/k) is non trivial by Lem. 4.6.4 so

colim
(Y,r)

Br(Y/k) ≤ Br(k)[p∞]

is unbounded by [Sti12] Prop. 122, where (Y, r) runs through all neighbourhoods
of the section s of X. But Br(k)[p∞] is just Qp/Zp, i.e. this colimit is already
Br(k)[p∞], which finishes the proof. 2

4.6.7 Remark. Using Cor. 4.5.18 we get that the homotopy rational point s of
XA given by Cor. 4.6.6 will never become rational after a finite extension L/k.
But XK ⊗k L splits for sufficiently large L/k, i.e. admits at least two homotopy
rational points: the rational and at least one non rational one.

Let k be a local p-adic field and [A] a (non trivial) Brauer class in the p-torsion
part Br(k)[p] of the Brauer group. We want to compare the homotopy rational
points of XA given by Cor. 4.6.6 resp. the induced homotopy or quasi homology
fixed points:

4.6.8 Proposition. Let k be a local p-adic field and [A] a (non trivial) Brauer
class in the p-torsion part Br(k)[p] of the Brauer group. Further, for ν = 1, 2 let
Xν be two genus 1 curves admitting a section sν of the resp. fundamental group
sequences. Suppose [A] is contained in both Br(Xν/k). We get two non constant
morphisms

fν : Xν
// XA

with induced classes of line bundles [Lfν ] = f∗ν [LXA ], i.e. two homotopy rational
points (fν)∗sν . Then the two induced homotopy or quasi homology fixed points
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(fν)∗s̄ν agree in π0(X̄hΓ
A ) resp. H0(Γ;C•(X̄A)])∫

∗=1 if and only if the two classes

s∗ν ĉ1[Lfν ] agree in H2(Γ; Ẑ(1)).

Proof: We proof the statement for homotopy fixed points, the proof of the state-
ment for quasi homology fixed points is similar.

Let rν be (fν)∗sν and r = r1. By the injectivity of π0(ϕhΓ
αr ) (see Cor. 4.4.4), it

suffices to compare the classes
r∗ναr.

Let d be the period of [A] and i : XA → Pn the twisted d-uple embedding. From
Lem. 4.5.3 we get

i∗αi∗r = d.αr

in H2(XA; Ẑ(1)). Further, as the Tate module of the Brauer group, H2(Γ; Ẑ(1))
is torsion free. Thus it suffices to compare the classes

(i∗rν)∗αi∗r.

Let y be any k-rational point of PN . From Cor. 4.2.6 we get

αy = αi∗r + (i∗r)
∗αy

in H2(PN ; Ẑ(1)), where (i∗r)
∗αy is a constant coming from H2(Γ; Ẑ(1)). Thus,

pullback of this constant along a homotopy fixed point is again the class (i∗r)
∗αy

in H2(Γ; Ẑ(1)), i.e. is independent form the choice of this homotopy fixed point.
It follows that it suffices to compare the classes

(i∗rν)∗αy.

But αy is just ĉ1[OPN (1)] by Lem. 4.3.9. Thus, unraveling the definitions we see
that in fact it suffices to compare the classes

s∗ν ĉ1[Lfν ]

in H2(Γ; Ẑ(1)), which was exactly our claim. 2
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