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Abstract

The human brain is the most complex organ of the human body and many aspects of

its functioning have not yet been understood. One of the most fascinating abilities of

the human brain is the skill to store and retrieve information, which is what we refer

to as memory. One attempt to get a deeper insight into the functioning of memory

is to analyze the complex activity pattern of the human brain that emerges while a

memory task is being processed. The understanding of memory is epistemologically

very intriguing since it is this ability that enables us to collect, to store and to recall

ideas, emotions and thoughts - hence, it builds our own identity. This thesis analyzes

age-related changes in functional connectivity networks related to episodic and work-

ing memory processing. The data for this study were measured using fMRI technique

and the sample set consisted of healthy individuals aging from 20 up to over 80 years.

Based on the fMRI data we construct correlation networks by correlating pairwisely the

measured voxel activity, the nodes of the network being brain voxels, the edges being

correlations. These networks are thresholded, anatomically clustered and analyzed by

computing statistical network measures, using spectral methods, computing network

entropy and calculating persistent homology. The main findings are: elderly individuals

exhibit expanded neural networks with less differentiation between episodic and work-

ing memory tasks. However, we observe compensatory mechanisms that accompany

this dedifferentiaon process. Network synchronizability is higher for elderly individu-

als. Network entropy increases as well with age, yielding a lower network vulnerability

for elderly individuals. Aging processes leave traces in the homology pattern of the

networks, whereas all brain networks exhibit different persistent homology features.
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Zusammenfassung

Das Gehirn ist das komplexeste Organ des menschlichen Körpers und viele funktionale

Aspekte sind noch unverstanden. Eine der faszinierendsten Fähigkeiten des Gehirns

ist das Vermögen, Informationen zu speichern und abzurufen. Eine Möglichkeit, tiefere

Einblicke in die Funktionsweise des Gedächtnisses zu erhalten, ist die Untersuchung der

Aktivitätsmuster im menschlichen Gehirn während einer Gedächtnisaufgabe. Das Ver-

stehen der Gedächtnisleistung ist epistemologisch sehr interessant, da es genau diese

Eigenschaft ist, die es uns ermöglicht, Ideen, Gefühle und Gedanken aufzunehmen,

zu speichern und wieder abzurufen - folglich bestimmt sie unsere Identität. Die vor-

liegende Arbeit untersucht altersabhängige Veränderungen in funktionalen Konnek-

tivitätsnetzwerken, speziell für das episodische und das Arbeitsgedächtnis. Die Daten

für diese Studie wurden mittels fMRI Methode gemessen, die Stichprobe bestand

aus gesunden Individuen im Alter zwischen 20 und 80 Jahren. Ausgehend von den

fMRI Daten konstruieren wir Korrelationsnetzwerke mittels paarweiser Korrelation der

gemessenen Voxel-Aktivitäten. Knoten im Netzwerk sind Voxel, Kanten sind Korrela-

tionen. Für diese Korrelations-Netzwerke setzen wir einen Schwellenwert und clustern

sie mittels anatomischer Information. Diese geclusterten Netzwerke charakterisieren

wir durch netzwerktheoretische Parameter, verwenden spektral-theoretische Methoden

und berechnen Netzwerk-Entropie sowie Homologie. Die Hauptergebnisse sind: ältere

Individuen weisen größere Netzwerke auf, bei gleichzeitig reduzierter Differenzierung

zwischen Arbeits- und episodischem Gedächtnis. Jedoch beobachten wir kompen-

satorische Mechanismen, die diesen De-Differenzierungsprozess begleiten. Die Synchro-

nisierbarkeit der Netzwerke ist höher bei älteren Individuen. Die Netzwerk-Entropie

nimmt ebenfalls mit dem Alter zu, was zur Folge hat, dass ältere Individuen eine gerin-

gere Netzwerk-Anfälligkeit aufweisen. Alterungsprozesse verändern das Homologie-

Muster der Netzwerke, wobei alle Netzwerke unterschiedliche Homologie-Eigenschaften

aufweisen.

ix



x



Chapter 1

Introduction

Motivation and goals. The human brain is the most complex organ of the human

body and many aspects of its functioning have not yet been understood. One of

the most fascinating abilities of the human brain is the skill to store and retrieve

information, which is what we refer to as memory. The understanding of memory

is philsophically very intriguing since it is this ability that enables us to collect, to

store and to recall ideas, emotions and thoughts - hence, it builds our own identity.

One attempt to get a deeper insight into the functioning of memory is to analyze

the complex activity pattern of the human brain that emerges while a memory task

is being processed. This thesis analyzes activity patterns that are associated with

memory processes. More precisely, experimental fMRI1 data is analyzed by generating

correlation networks which are then mathematically characterized. The data has been

collected from young and elderly individuals and it will be a major concern how to

discriminate the networks associated to young and elderly individuals, respectively.

The primary goal of this thesis is to obtain a deeper insight into the functioning of

memory with respect to changes caused by aging. In particular, this thesis aims at

mathematically characterizing functional brain correlation networks of young and

elderly individuals, which are related to both short-term and long-term memory.

We hope that the results of our analysis will enrich the knowledge about age-related

changes of memory processing and, in future, will be beneficial for the analysis of

pathological processes such as Alzheimer disease or dementia.

1fMRI = functional magnetic resonance imaging

1



2 Chapter 1. INTRODUCTION

From the experimental raw data we will generate correlation networks, and a

secondary goal of this thesis is to consider the functional brain networks as a

particular representative of the general class of correlation networks. We will an-

alyze the brain networks using persistent homology. To our knowledge, this is the

first study applying this method to correlation networks.

We expect that the methods used in our analysis, that is particularly the application

of persistent homology, will contribute to a better understanding of the general class of

correlation networks. Moreover, we hope that the application of this method to brain

networks will help to evaluate the appropriateness of this technique, in general.

State-of-the-art. It is commonly accepted that the memory processing deterio-

rates with age, even for otherwise healthy individuals. The underlying processes, and

the changes over the lifespan, however, are frequently studied but poorly understood.

Normal aging is associated with a deterioration of the cognitive functioning, and nu-

merous studies highlight impairments especially for the working and episodic memory

in elderly individuals, cf. [Gra08]. Working memory performance, reflecting the capa-

bility to simultaneously maintain and manipulate online information, cf. [Bad10], has

shown to decrease with age both in terms of processing speed and accuracy.

Imaging techniques, such as fMRI, give clues as to which brain areas are involved in

these processes and to the amount they are active during a given memory task in in-

dividuals of different age. Neuroimaging studies provide evidence for both over- and

under-activation in brain regions that are important for memory tasks (for a review see

[PNL+06]). Under-activation seems to be related to reduced performance and patho-

logical impairment, whereas over-activation is seen as an indication for reorganization

of the older brain and plays a compensatory role. Of course, the brain experiences

anatomical and physiological changes during aging, see supplement chapter on biolog-

ical background.

There are several network theoretic approaches to brain data, depending on how the

brain data has been measured, e.g. fMRI or MEG etc. For a review on the differ-

ent measurement and construction techniques, see [BS09]. A common approach is to

generate models of the so-called functional connectivity: nodes of the network are de-

fined as brain regions, an edge between two nodes is constructed if their respective



3

correlation pattern exceeds a predefined threshold. This is the approach presented in

[ECS+05], which we will also follow, see chapter 2. Most studies about fMRI data used

a seed voxel approach which is based on a hypothesis concerning a particular brain

region. There have previously been studies analyzing functional connectivity, mostly

using resting state data. For reference, see for example [MAB09], [SR07], [STE00] or

[SJS06].

We used the network construction method presented in [ECS+05]. Our approach

is explorative and completely hypotheses-free. To our knowledge, this is the first

study analyzing functional connectivity related to memory experiments and age dif-

ferences, simultaneously. Our results extend seed-based and BOLD-signal intensity

focused studies, and support present hypotheses like compensation and dedifferen-

tiation.

Spectral analysis of graphs has a long tradition, cf. [Chu97] or [GR01], and the appli-

cation of these methods to real-world networks has been presented in [BJc], [BJa] or

[Jos07]. Network entropy and network synchronizability as well have been previously

studied. We will adapt these methods to our situation and compute spectral plots, net-

work synchronizability and network entropy. Again, to our knowledge, these methods

have not been applied before to brain functional networks. As we will see, these tools

provide appropriate means for our purpose of characterizing the functional memory

networks.

Algebraic topology has a long tradition within mathematics, but its application to

real-world problems is quite novel: persistent homology has been introduced by Edels-

brunner (2002), [ELZ02] and Zomorodian (2005), [ZC05] and has been applied to net-

works in [HMR09]. We will embed the functional memory networks into an appropriate

filtered simplicial complex. It can be shown that persistent homology of a filtered sim-

plicial complex is equivalent to the standard homology of a particular graded module

over a polynomial ring, cf. [ZC05], which makes it computational accessible. However,

again to our knowledge, these topological methods have not yet been applied before to

correlation networks in general, and to functional connectivity networks in particular.

We will restate the methods and adapt them to our situation.

Results. The fMRI raw data was recorded for young and senior subjects during two

different memory paradigms. We generated networks of functional connectivity by pair-
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wise correlation of the BOLD signal for every pair of voxels, similarly to [ECS+05] and

by thresholding the correlation values, we obtained binarized graphs. We analyzed the

largest connected component of this graph by means of statistical network tools. This

analysis revealed that senior individuals exhibit expanded functional neural networks

with less differentiation between episodic and working memory demands, see chapter

4. We then clustered these networks using anatomical information provided by the

MNI Talairach atlas. The clustering was performed at different anatomical levels: lobe

structures, Gyri structures and Brodmann areas, see supplement chapter for a list of

abbreviations and atlas information. The clustered networks were then averaged over

the whole statistical sample, for the two age groups and two memory tasks, separately.

These anatomically clustered and statistically averaged networks were visualized:

Fig. 1.1: Example of a network visualization, here: working memory network for young individuals

at gyri level. Size of the nodes is proportional to the size of the anatomical region, the line thickness

indicates the strength of the connection, and the shading of the nodes represents the density of the

intraregional connections (dark = high intensity, bright = low intensity). See supplement chapter for

a list of abbreviations.

We identified so-called hubs in the anatomically clustered networks, i.e. nodes for which

the product of their degree and their betweenness is large. We observed asymmetric
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compensatory mechanisms, mainly in fronto-parietal regions, see chapter 4. From

now on, we will keep the anatomically clustered and averaged networks in the further

analysis.

We computed the spectrum of the normalized discrete Laplacian operator

∆v(i) := v(i)− 1

ni

∑
j,i∼j

v(j)

which is defined on the space L2(Γ) of all real-valued functions on the finite set of

nodes of the network Γ, see chapter 3. This operator is the discrete analog of the

well-known continuous Laplacian and can intuitively be motivated by discretizing a

diffusion process defined on the network. The spectrum of this operator contains a

lot of information about the underlying network structure. We used the ratio
λ2

λmax
to gauge the synchronizability (w.r.t. to a broad class of functions, see chapter 3) of

the networks, yielding higher synchronizability for the networks of elderly individuals.

We convoluted the Dirac delta function
∑

k δ(λ, λk) (i.e. the spectral density of our

operator) with a smooth kernel g(x, λ) and plot the resulting density function

f(x) =

∫
g(x, )

∑
k

δ(λ, λk)dλ =
∑
k

g(x, λk) .

This allows for an amenable visualization of the spectrum. This method of spectral

plots has been introduced by Jost in [BJ07] and aims at being a coarse classifier of

real-world networks. Our results fit well into the classification scheme presented in

[BJ07], yet defining a new sub-class. We quantified the structural differences using a

metric based on the Jenson-Shannon divergence measure D(Γ1,Γ2) :=
√
JS(f1, f2).

We computed network entropy in order to gauge network disorder and vulnerability.

To do so, we assumed the brain functional networks to be a result of a diffusive process

and linked dynamical uncertainty to random walks on the network, hence allowing for

a stochastic description of macroscopic properties. We adapted the entropy notion

presented in [DGO04], [MDV04], i.e. based on the variational principle

log λ = sup
P

[
−
∑
i,j

πipij log pij +
∑
i,j

πipi,j log aij

]
with respect to all compatible stochastic processes P = (pij). We computed the entropy

for all networks, yielding an increase of the network entropy with age:

H(Γold) > H(Γyoung)
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Together with the entropy-fluctuation theorem, cf. chapter 3, we can formulate the

following statement:

Statement: We postulate that life-long learning, i.e. neural rewiring, describes

a process to ever increasing entropy for the brain connectivity patterns. In other

words, older networks are noisier than younger ones. On a physiological level,

old networks are much more vulnerable in terms of cell defects (e.g. increased

oxidative stress) but this vulnerability is much better accepted by high-entropy

networks. Hence, neural aging can be described as an evolution to evolvability.

We computed persistent homology of the clustered networks, which provides a very

sensitive method to detect topological properties. We embedded the network into an

appropriate filtered simplicial complex K,

∅ = K0 ⊂ K1 ⊂ ... ⊂ Kl ⊂ ... ⊂ Kn = K ,

see chapter 4 for an exact definition of our chosen filtration. The choice of the filtration

algorithm remains to some extent arbitrary since there is no canonical evolution process

in the context of correlation networks. However, we believe that this does not reduce

the power of this method since we are interested in the global topological pattern of

the networks, and the benefit of persistent homology is that it filters out topological

noise, keeping only relevant information. Hence, it should not be important which

filtration one chooses because unimportant topological information will disappear due

to the method. We computed the p-persistent kth homology group of K l

H l,p
k := Z l

k

/(
Bl+p
k ∩ Z l

k

)
.

whereas 0 ≤ l ≤ p ≤ n. More precisely, we are interested in the rank of H l,p
k , i.e. in

the p-persistent kth Betti number:

βl+pk := rank H l,p
k .

Hence, for each possible pair of parameters (l, p) one obtains a Betti number and all this

information is optimally grasped visually, in so-called homology barcodes as suggested

in [CZCG05] and [HMR09]. We used this approach and visualized the homological

information, see chapter 3 for a detailed explanation and chapter 4 for the results.
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Computing persistent homology is about detecting long-lived topological features, i.e.

homology classes that survive a certain number of filtration steps. Short-lived topolog-

ical features disappear faster and can be considered as noise. A persistent homology

class in a higher dimension can be interpreted in such a way that, during its existence in

the filtration, informational flow needs to circumvent this obstacle in order to reach the

target. This obstacle is a higher-dimensional topological structure in the connectivity

pattern of the network. All brain networks show very different persistent homology

features. We formulate the most intriguing result as a statement:

Statement: aging processes leave traces in the homology pattern of the networks.

For example, comparing Fig. 4.13 and Fig. 4.17, i.e. the homology barcode plot for

working memory networks of elderly and young individuals, respectively, we see that

young individuals already achieve a topological Swiss Cheese pattern at weak

links (θ = 0.2), whereas almost the same pattern appears for the seniors only at

stronger links (θ = 0.4). Assuming that the working memory for young individuals

works better in terms of reliability and efficiency, i.e. defines a benchmark, we

can deduce from the homology analysis that elderly individuals compensate this

by over-activating, producing some topological noise as a side effect. We use the

informal notion Swiss Cheese to refer to the homological pattern which exhibits

non-vanishing homology up to high dimension. The non-vanishing homology can

be interpreted as higher-dimensional holes or voids in the connectivity pattern.

This compelling result could not have been deduced only by means of statistical or

spectral methods. Hence, we believe that persistent homology provides a very powerful

tool for the analysis of functional connectivity correlation networks.

Chapter organization. This thesis is organized in five chapters and one supplemen-

tary chapter: chapter two thoroughly explains the data acquisition and the construction

of the functional brain networks. Chapter three contains the mathematical methods

which we used in our analysis, these comprise spectral analysis tools, network entropy

as well as persistent homology. In chapter four we present our results as well as the

discussion of the findings. Chapter 5 gives a short outlook on possible future research,

and the supplementary chapter contains basic material on network analysis, on the

biological background as well as a list of anatomical abbreviations.
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Chapter 2

Experimental design and data

modeling

2.1 Data acquisition and experimental paradigm

The data that was used for this thesis consisted of fMRI experiment data from a total of

20 subjects of two age groups, cf. table (2.1). All participants were healthy volunteers

and showed no history of psychiatric or neurological disease. All subjects provided

written informed consent for the participation in the study. The study was approved by

the Ethics Committee of the Clinical Faculty of the University of Heidelberg, Germany,

and the functional MRI experiments were conducted at the Central Institute for Mental

Health in Mannheim, Germany.

Group Mean age std. deviation minimum maximum females/males

young 26.3 yrs ±2.65 21 yrs 30 yrs 6/4

old 67.8 yrs ±3.99 62 yrs 77 yrs 6/4

Table 2.1: Age and gender statistics for the two age groups, see also [MSB+12].

Each participant completed functional MRI scanning sessions comprising 470 scans,

which were acquired using an echo planar imaging (EPI) sequence. The functional

MRI was performed on a 3 Tesla TIM TRO Scanner (Siemens, Erlangen, Germany).

Each volume consisted of 24 axial slices of 4 mm thickness (1 mm gap), TR 2 s, FOV

9



10 Chapter 2. EXPERIMENTAL DESIGN AND DATA MODELING

220× 220mm2, 642 matrix and was angulated along the AC-PC plane. The first 5 vol-

umes of each run were discarded to minimize T1 effects. Data pre-processing of BOLD

signal was performed using SPM5 (Wellcome Department of Cognitive Neurology;

http://www.fil.ion.ucl.ac.uk/spm/software/spm5), involving realignment to the

first image which accommodates geometrical displacements due to head movements,

non-brain removal and normalization to the standard template brain (Montreal Neuro-

logical Institute, MNI) using an affine transform implemented in SPM software. SPM

software was further used to downscale the data volume by interpolating to a final

resolution of 6× 6× 6 mm voxel size. This resulted in three dimensional images with

27 voxel in x-direction, 33 voxel in y-direction and 23 voxel in z-direction. Spatial

smoothing using a Gaussian kernel has deliberately not been done.

The stimuli were presented using a block design, involving two tasks that are supposed

to address both the episodic and working memory, respectively. Two sets of 20 words

representing personal, i.e. autobiographic, and non-personal events were used as vi-

sually presented stimuli, whereas the list of autobiographic events was conducted via

a psychological interview and the non-personal events were selected by the subjects

from a presented list of possible words. The stimuli were presented in black letters on

light-gray background and all the 40 words were used as stimuli for 2 different tasks:

• The working memory task was build as a two-back-task. Subjects were asked to

decide if the actual word is identical with the penultimate word. The response

was conveyed through a button press, the index-finger represented the answer

”yes”, and the middle-finger represented the answer ”no”.

• The long-term memory task, i.e. the autobiographic memory task, consisted of

remembering the personal event as intense as possible, for example recalling all

persons which joined these events and the characteristics of the environment.

The stimuli were presented in a block design, whereas each block addressed solely the

short-term and long-term memory task, respectively. Within each block, each stimulus

was being presented for 2 seconds and during the inter-stimulus interval, which lasted

6 seconds, a fixation cross was presented. Each block had a length of 40 seconds and

was preceded by the corresponding task instruction. During the autobiographical task

5 words per block were presented. For the two-back-task 10 words were used, implying

an inter-stimulus interval of 2 seconds in this case. Each task was presented 4 times in

random order.
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2.2 Network construction

When dealing with networks, it is always of utmost importance that nodes and links,

which are abstracted from the underlying real-world system, are precisely defined,

see also supplementary chapter for reference. In this thesis, as already mentioned

previously, functional connectivity networks are being investigated. These networks

have been constructed using the same approach as [ECS+05].

In short, the nodes of the networks are defined as the voxels, i.e. the small cubical

brain sites into which the brain volume has been subdivided, and an edge between

two nodes is constructed if and only if the corresponding fMRI time series show a

statistical correlation that exceeds some predefined threshold.

The remaining part of this section will explain the network construction in detail and

will give a detailed account of the threshold selection.

(1.) For each participant, the fMRI time series were cut into sections according to the

block-design in order to separate episodic and working memory task signal. The

resulting pieces were re-concatenated in such a way that two time series were ob-

tained, each containing purely episodic and working memory signal, respectively.

Hence, for each participant two networks were constructed, based on the episodic

and working memory data, respectively.

(2.) The chosen fMRI resolution yields a total amount of 27×33×23 = 20493 voxels,

at this stage still containing non-brain volume. By using fMRI signal intensity

thresholding, non-brain volume has been removed, resulting in an amount of

∼ 2000 voxels per each participant, which were then considered as the nodes of

the network.

(3.) Each such set of extracted voxels defines the set of nodes of the corresponding

functional network, which is still unconnected at this stage. For each pair of voxels

(x1,x2) the Pearson correlation coefficient of the corresponding time series was

computed:

r(x1,x2) =
〈V (x1, t)V (x2, t)〉 − 〈V (x1, t)〉〈V (x2, t)〉

σ(V (x1))σ(V (x2))



12 Chapter 2. EXPERIMENTAL DESIGN AND DATA MODELING

whereas xi = (xi, yi, zi) denotes a voxel, σ2(V ((x)) = 〈V (x, t)2〉 − 〈V (x, t)〉2 and

〈·〉 are temporal averages, cf. [ECS+05]. This yields a square correlation matrix

of size n =∼ 2000 for each participant and each memory task.

(4.) The resulting correlation matrices have been globally thresholded at a value rc =

0.85, yielding a binary matrix for each correlation matrix. That means, if the

correlation coefficient for a given pair of nodes exceeded a threshold rc, the nodes

were considered as connected. The entirety of all nodes and edges then defined a

large network characterizing the functional connectivity of the brain during the

given memory task. The threshold selection is being discussed subsequently.

Fig. 2.1: Methodology used to extract functional networks from fMRI timeseries signal. Copyright:

Eguiluz et al. [ECS+05]
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Threshold selection. The choice of the threshold value rc is a very important step

in the generation procedure of the functional network. The correlation threshold can

be considered as a filter that separates more relevant from less relevant information. A

high threshold value yields a very specific network, whereas a low threshold value will

eventually include too much noise.

Fig. 2.2: Schematic of functional network visualization for increasing threshold values,

Achard et al. [ASW+06].

Networks obtained for low threshold values are furthermore very dense (i.e. contain

many links), which makes many statistical analyses computationally expensive. This

yields a conflict of interest: the correlation threshold is required to be high enough to

make computational analyses efficient, but being simultaneously low enough in order

not to loose relevant structural information. This problem has been solved by sys-

tematically varying the correlation threshold in the range between 0.6 and 0.95 and

computing the most important network parameters (e.g. the largest connected com-

ponent, the average clustering coefficient) for these differently thresholded matrices.

The result corroborates the chosen threshold θc = 0.85: there is no phase transition

for the computed pivotal network parameters, which in turn would have indicated a

natural threshold parameter. As a consequence, any value for the threshold in the afore-

mentioned range can be a meaningful choice, in particular θc = 0.85. More specifically,

most network parameters showed a linear or exponential increase (or decrease) with

θc. It has been suggested that local maxima in the dependence of the clustering coef-

ficient on the threshold can be used as a selection criterion (personal communication

with Katharina Zweig, University of Heidelberg)1. The clustering coefficient remained

roughly constant for a threshold variation between 0.65 and 0.85. After a value of 0.9 it

1The intuition behind this argument is as follows: since the data set is noisy, a random deletion of

edges decreases the clustering argument as it is the case for a random addition of edges.
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strongly decreased, and in the range between 0.85 and 0.9 local maxima were observed

in most datasets. We therefore chose to generate networks with a threshold of 0.85.

Fig. 2.3: This diagram depicts the clustering coefficient for different thresholds and age

groups. This analysis has been performed in collaboration with Franziska Zickgraf.

Nota bene: The approach of this thesis is to define connectivity between brain

voxels as to be high temporal correlation of the corresponding BOLD-signal time-

series. This is what is referred to be as functional connectivity. Of course, this

does not mean that the corresponding voxels are mutually connected (via chemical

neuro-transmitter or anatomical paths). The simplest counter-example is the case

of a common input activating both brain hemispheres, see (Chialvo, 2004).

Statistical testing of significance has deliberately not been done. Of course, one could

apply statistical testing methods in order to distinguish between significant and in-

significant correlations. For instance, one could define the threshold in terms of the

probability of the observed correlation P (rij > R) under the null hypothesis that rij
is less than an arbitrary value R. Hence, a functional connection between regions

would not be regarded as significant unless P (rij > R) was less than α, the p value

for an individual test at 5% over multiple dependent tests, cf. [ASW+06]. However,
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this approach would entail many more hypotheses on the statistical distributions of

the correlations than desired. One of the main motivations of this thesis has been to

look as ”blindly” as possible at the temporal activation patterns, i.e. in other words

using as few pre-assumptions as possible. The usage of the simple Pearson correlation

seemed most appropriate.

Anatomical and topological visualization of brain functional networks.

An important issue in neuroscience is the characterization of the underlying archi-

tectures of complex brain networks. This thesis analyzes functional networks in the

aforementioned sense and it is, of course, a natural question if and how these networks

are clustered. Classical network clustering algorithms have been applied to the con-

structed networks, namely the modularity approach by Mark Newman (cf. [?]) and the

approach presented by Kertesz et al., which is able to construct overlapping clusters.

Both approaches did not produce meaningful results and further network clustering

techniques have not been applied. However, a meaningful clustering of the functional

networks is desirable and it has been achieved by assigning anatomical information to

each voxel in the network.

A standard procedure to make fMRI images comparable to each other is spatial rescal-

ing to match the standardized MNI coordinates1. To retrieve anatomical information

for every voxel, MNI-coordinates of the voxel centers have been transferred to the Ta-

lairach space using the open source Matlab program mni2tal.m ,

see http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach.

The Talairach client has been used to access the Talairach daemon, a database

server storing anatomical data for the Talairach brain. After having retrieved this piece

of information, it has been necessary to assign the nearest gray matter to every voxel

center. In particular, each voxel has been assigned a hemisphere, lobe, smaller gyri

structure and, where possible, a Brodmann area.

The previously constructed functional networks have thus been clustered using

anatomical information provided by the Talairach daemon. Finally, the resulting

clustered networks have been averaged for each age group, producing so-called

consensus networks which are considerably smaller in size.

1MNI = monreal neurological institute
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The clustered and averaged functional networks are the main objects of interest during

the further analysis. However, basic statistical parameters were also computed for the

LCC1 of the unclustered networks, see the results chapter. The small-sized consensus

networks were visualized topologically and were analyzed using more intricate methods,

see also later.

The reader should continuously keep in mind how the networks have been con-

structed and what it means for two voxels to be functionally connected when in-

terpreting the results of the subsequent analysis. A major critique of the approach

of functional connectivity is that there is yet no direct evidence for the under-

lying architecture of human brain anatomical networks, cf. (Tootell et al. 2003),

[HCE07]. Characterization of such anatomical networks would be particularly help-

ful to reveal intrinsic structural and organizational principles in the human brain

and enhance our understanding of how functional brain states are associated with

their structural substrates, [HCE07].

1LCC = largest connected component



Chapter 3

Mathematical methods

3.1 Spectral graph theory and network entropy

Motivation

Spectral graph theory primarily deals with the analysis of the relationship between

the properties of a graph Γ = (V,E) and the eigenvalues of underlying matrices. In

particular, it is the analysis of the eigenvalues of the (normalized) graph Laplacian

operator. Spectral graph theory has a long tradition in the analysis of classical graphs.

It has been applied to classical graph theoretical questions, mainly in combinatorics,

but recently has proven to be a helpful tool in characterizing both global and local

structures of large networks. The spectrum of the normalized graph Laplacian1

∆v(i) := v(i)− 1

ni

∑
j,i∼j

v(j).

yields a very comprehensive set of invariants of the underlying network. We will use

this tool

• to classify the functional brain networks by producing spectral plots

• to gauge the synchronizability of the functional brain networks

1The normalized Laplacian operator has the same spectrum as the operator investigated in [BJc],

but it has a different spectrum as the usual (algebraic) graph Laplacian, studied in the literature, cf.

[Chu97] and [GR01] for reference. Here, v : Γ→ R are real-valued functions on the set of vertices Γ,

i ∼ j denote adjacent vertices, ni the degree of vertex i.

17
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• to quantify the structural difference between the networks using Jenson-Shannon

divergence measure

• to define and calculate network entropy as a measure for network disorder

Moreover, as we will especially point out in the discussion and outlook chapter, the

Laplacian spectra of the networks can give hints about their structural evolution and

could eventually be used to develop hypotheses leading to a synthetic network model.

A simple but very helpful tool in the spectral analysis of networks is the visual inspec-

tion of the Laplacian spectrum, which can furthermore serve as a classifier of networks.

Basically, we will convolute the spectral distribution with a smoothing kernel, e.g. a

Gaussian kernel, and plot the resulting function1:

f(x) =
∑
λj

1√
2πσ2

exp
(
− |x− λj|

2

2σ2

)
.

This has been done by [BJ07] and [BJa] for several real-world networks.

The results of this thesis may extend the list of networks that have been analyzed using

this method and may help to foster the acceptance of techniques that were previously

and successfully used in other domains.

Before giving the formal definitions and details of the methods it is worth stressing the

importance of the spectral method. Standard statistical tools, such as average shortest

path length, betweenness or transitivity, are a useful toolbox for the empirical analysis

of networks. But these global statistical measures are not refined enough to gauge

intricate features of networks, such as dynamic behaviour. For example, many networks

have been classified as having a power-law degree distribution, cf. [BA99]. However,

the power-law degree distribution fails to distinguish between systems that dynamically

behave completely different. Synchronizability can be strongly influenced by small

changes in the connectivity structure, whereas these small changes are not detectable

by means of global statistical measures, but they leave their trace in the spectrum. This

is why the Laplacian spectrum is important. Moreover, it helps unveiling processes

of graph formation like motif joining or duplication since these leave traces in the

1The eigenvalues λj were convoluted with a Gaussian kernel. The variance σ2 determines the width

of the Gaussian and, hence, smaller values of σ2 emphasize the finer details, whereas larger values

bring out more the global pattern. The value of σ2 will be once set and then kept fixed for all plots.
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Fig. 3.1: Example of a spectral plot of different protein-protein interaction networks, convoluted

with a smoothing kernel. Copyright and data source: A. Banerjee, [BJa].

spectrum. Last but not least, the (normalized) graph Laplacian fits well into the

broader class of Laplace-Beltrami operators1 Ln, n ≥ 0. These operators generalize the

graph Laplacian and can be purely defined with the help of boundary operators acting

on the simplicial clique complex, which can be naturally assigned to any network.

We will also make use of simplicial clique complexes but will rather look at their

homology (cf. next section) instead of higher Laplacian spectra. For the sake of

completeness, we want to mention the existence of such generalized operators, which

might be useful for possible further analysis.

The methods presented in this chapter are based on [BJ08], [BJ07], [JJ02], [IM02],

[BJc], [BJa], [Jos07]. Please see also [NMH03], [AJW04] and [PRK01] for further

reference. Unless otherwise stated, computations have been performed using Matlab

1The Laplace-Beltrami operators are defined by means of boundary and coboundary operators on

the chain groups: Ln := Bn+1B
T
n+1 + BTnBn. Here, Bn denotes the boundary operator on the n-th

chain group, written as an incidence matrix. Clearly, L0 = B1B
T
1 is our graph Laplacian ∆. Note

that B0B
T
0 = 0. The incidence matrices, i.e. boundary and coboundary operators, are defined on the

chain group of the associated clique complex to the underlying network. Please see next section for

details.
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software, applying the Cholesky decomposition algorithm for large graphs.

The normalized Laplacian operator

As we stated in chapter one, networks represent real-world systems, that is, in terms

of the formal structure of a graph. The vertices of a graph represent the units in

question, in our case brain cubical volumes, and an edge between vertices expresses

some correlation between the corresponding units. Here, for simplicity of presentation,

we only consider simple, undirected and unweighted graphs, although the methods

apply and the considerations remain valid in the general situation.

First, we will give the formal definition of the version of the Laplacian which will be

used in the course of the analysis, cf. [BJ09] or [Ban08a].

Definition 1. Let Γ be a finite and connected graph with N vertices. Vertices i, j ∈ Γ

that are connected by an edge of Γ are called neighbours, i ∼ j. The number of neighbors

of a vertex i ∈ Γ is called its degree ni. For real-valued functions v on the vertices of

Γ, i.e. v : Γ −→ R, we define the (normalized) Laplacian as

∆ : L2(Γ) −→ L2(Γ)

∆v(i) := v(i)− 1

ni

∑
j,i∼j

v(j).

whereas L2(Γ) denotes the space of real-valued functions, defined on the finite set of

graph vertices.

The normalized Laplacian differs from the (algebraic) Laplacian operator, which can

be mostly found in the literature, but it is the natural way to discretize the operator

underlying random walks on graphs, cf. [Chu97]. It also incorporates a conservation

law. The material presented here can be found in [GR01], [BJc] and [BJa].

There can be found different possible normalizations of the Laplacian in the literature.

The version we use here yields the following matrix form of the Laplacian ∆ = [aij]:

aij =


1, if i = j and ni 6= 0

− 1
nj
, if ij is an edge

0, otherwise
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The object of interest is, of course, the spectrum of this operator since it yields im-

portant invariants of the underlying graph Γ. It is also possible, as in the case of the

algebraic Laplacian, to essentially re-construct the graph from the spectral information,

essentially meaning up to isospectral graphs. For the sake of better readability and

unless otherwise stated, we will simply refer to the Laplacian instead of the normalized

Laplacian. The following list of properties is also based on [IM02] and [BJc].

The Laplacian operator ∆ is symmetric for real-valued functions u, v on the vertices

and for the product

(u, v) :=
∑
i∈V

niu(i)v(i) .

Moreover, ∆ is nonnegative, that is (, u) ≥ 0 for all u. From this we can conclude the

spectrum of ∆ is real and nonnegative, the eigenvalue equation being

∆u− λu = 0 .

A nonzero solution u is called an eigenfunction for the eigenvalue λ. The smallest

eigenvalue is λ0 = 0, which belongs to a constant eigenfunction. Since the graph Γ is

assumed to be connected, the multiplicity of this eigenvalue is 1, hence

λk > 0

for k > 0 , whereas the eigenvalues have been ordered as

λ0 = 0 < λ1 ≤ ... ≤ λN−1 ≤ 2

The eigenvalue λN−1 = 2 if and only if the graph is bipartite. This is equivalent to the

fact that whenever λ is an eigenvalue, then also 2 − λ. Subsequently, we summarize

the main results which are important for the qualitative analysis of networks.

• The normalized graph Laplacian ∆ is always positive semidefinite.

• The smallest eigenvalue is λ0 = 0 for every graph.

• The largest eigenvalue can be estimated by λN−1 ≤ 2 by means of the following

equation:

λi ≤ sup
f

∑
i∼j

(
f(i)− f(j)

)2∑
i f

2(i)ni
≤ 2
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• The eigenvalues may have a multiplicity > 1.

• The number of the connected components of the graph Γ is given by the multi-

plicity of the eigenvalue 0.

• For the largest eigenvalue it holds true: λN−1 = 2 if and only if Γ is bipartite.

• The difference |2− λn−1| quantifies how much the graph differs from a bipartite

one.

• For a complete graph Γ with n vertices the spectrum is:

λ0 = 0 and λ1 = λ2 = ... = λN−1 =
n

n− 1

Spectral plots. The Laplacian spectrum of a graph Γ under inspection is bounded

in [0; 2]. Though, the spectrum differs from graph to graph and hence, the number

of eigenvalues varies among networks of different sizes. In order to grasp the overall

structure of the spectrum, and hence of the underlying network, it is a simple but

effective way to visualize the spectrum, e.g. simply by plotting a histogram with the

desired numbers of bins. However, this will result in a very rough pattern. Another

possibility for visualizing the pattern of spectral density is to use a smoothing kernel.1

Hence, one convolutes the Dirac delta function
∑

k δ(λ, λk) (as a spectral density) with

a smooth kernel g(x, λ) and plot the resulting density function

f(x) =

∫
g(x, )

∑
k

δ(λ, λk)dλ =
∑
k

g(x, λk) .

We will use a Gaussian smoothing kernel, hence we plot the function

f(x) =
∑
λj

1√
2πσ2

exp
(
− |x− λj|

2

2σ2

)
.

By varying the parameter of the kernel one can obtain a fine tuning: smaller values

of σ2 yield a more fractuation of the spectrum, i.e. one inspects finer details, whereas

larger values emphasize on the global pattern. Of course, the parameter of the kernel

will be set once and then kept fixed. As will be later clearly stated again, we set the

parameter in accordance with the analyzed plots in [BJ08], i.e. σ = 0.025.

1One could use many different kernels, e.g. the Cauchy-Lorentz distribution 1
n

γ
(x−m)2+γ2 or the

Gaussian distribution 1√
2πσ

exp
(
− (x−m)2

2σ2

)
.
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Spectral plots of a graph present an effective and visually amenable way for the

classification of networks, at least to have a coarse filter at hand which helps dis-

tinguishing between different networks. This method has been used by Banerjee

and Jost in [BJb] and [BJ08] to suggest a classification of real-world networks.

Fig. 3.2: Spectral plots of (a) a random network by the Erdös-Renyi model with p = 0.05, (b) a

small-world network by the Watts-Strogatz model, (c) a scale-free network by the Barabasi-Albert

model. Copyright: [BJ08]
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Motif doubling and graph reconstruction In this last paragraph of this section

we will mainly recall some facts about motif doubling in graphs and its impact on

the Laplacian spectrum. This is particularly interesting if one wants to reconstruct a

network from its spectrum. As we will point out in the outlook chapter at the very

end of this thesis, this could be one possible direction for future research. Please see

[Ban08a], [Wag01] for proofs and reference.

Of particular importance is the multiplicity m1 of the eigenvalue 1 of ∆. m1 is the

number of linearly independent solution functions of Γv(i) = v(i) for all i, hence of∑
j,j∼i

v(j) = 0 for all i

In other words, m1 is the dimension of the kernel of the adjacency matrix of Γ. In view

of graph (re-)construction, such functions can be created by node duplication: take any

node i0 ∈ Γ and build a new graph Γ0 by adding a new node j0 to Γ and connecting it to

all neighbors of i0. Hence, i0 and j0 share the same neighbors. If one defines v(i0) = 1,

v(j0) = −1 and v(i) = 0 on all other nodes, one obtains a solution function. In other

words, node duplication increases m1 by 1. Similarly, doubling an edge connecting two

vertices i, j yields the eigenvalues λ = 1 ±
√

1
ninj

which, henceforth, are symmetric

about 1, the closer to 1 the higher the degrees of the respective nodes.

Fig. 3.3: Schematic of three different edge doubling which produce the eigenvalues 1
2 and 3

2 . Copy-

right: [Ban08a]

Understanding the structural processes, e.g. motif duplication, could be translated into

evolutionary processes of the underlying real-world system. For example, the structural

evolution of protein-protein interaction networks (PPIN) has been modeled by means
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of this method. For example, biological processes such as gene duplication or random

mutation, could have been explained by structural graph formation processes such as

motif duplication. Hence, one obtains a generic network model of the underlying real-

world system, which can better explain system-specific properties than the standard

models such as random or scale-free networks. However, the methods presented here,

focus on processes that produce eigenvalues 1
2
, 1, 3

2
and so on. It is necessary, espe-

cially in view of our functional brain networks, to explore different graph operations or

conformations that produce other specific eigenvalues, which will then help to unveil

the evolutionary processes. This will by far go beyond the scope of this thesis and has

been purely mentioned for possible future research.

Synchronizability

This subsection is mainly based on results presented in [LAJ07], [Jos05] and [BJ09].

Many properties of dynamical processes, which are defined on networks, cannot directly

be inferred from the statistical properties of the network in question. For example,

small local alterations in the network structure can sensitively influence the eigenvalues

relevant for synchronization, cf. [ABJ06], [BJ09].

Synchronizability is an important aspect to look at when analyzing functional brain

networks: the brain voxels behave as dynamical systems evolving to certain rules

and the links, i.e. high correlation values, can be considered as a proxy for inter-

regional interaction.

A typical pattern for interaction is a diffusion process, which naturally gives rise to the

Laplacian operator ∆, [ABJ06]. Thus it is almost obvious that dynamical properties,

e.g. synchronizability, are closely linked to the spectral properties of the network. As

a starting point, we look at the well-known coupled map lattice,

xi(t+ 1) = f(xi(t)) +
n∑
j=1

aij[f(xj(t))− f(xi(t))]

which has been written in a slightly more general form by using individual weights

aij ≥ 0 along the links instead of a global coupling constant. This system can be
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written in the obvious vector form

x(t+ 1) =
(
I −∆

)
F (x(t))

whereas x = (x1, ..., xn) and F (x) = (f(x1), ..., f(xn)). By definition, the network

synchronizes if limt→∞ |xi(t)−xj(t)| = 0 for all i, j provided that the initial conditions

belong to some appropriate open set1. Provided that we are in this situation, then the

system, asymptotically, approaches a synchronous state. By then, each node exhibits

the same time evolution: xi(t) = s(t) for all i. Hence, it follows that s(t+ 1) = f(s(t)),

i.e. the behaviour of the nodes for t −→∞ is identical to their behaviour in isolation.

Please note that we are neglecting any coupling delays in the network. If one considers

time-delay equations, then the synchronous solutions may be significantly different, cf.

[LAJ07].

In the subsequent paragraph, we will state a sufficient condition for local synchroniza-

tion of networks that encompasses a quite general class of functions. The presented

material is mainly based on [ABJ06]. Please see also [LAJ07], [BJ09]. We focus on

chaotic synchronization, that is, the case when f has a compact chaotic attractor A
and s represents some dense (and necessarily unstable) orbit in A, cf. [ABJ06]. We

assume that f is continuously differentiable, hence small perturbations u about the

solution s(t) are governed by u(t+ 1) = f ′(s(t))u(t) and the solution to this looks like

u(t) = u(0)
t−1∏
k=0

f ′(s(k)).

The condition to be imposed on the solution function s(t) for local asymptotic stability

is that

lim
t→∞

t−1∏
k=0

|f ′(s(k))| = 0.

However, this would not hold for any function s inside a chaotic attractor, but we can

always find some sufficiently large number α such that

lim
t→∞

t−1∏
k=0

e−α|f ′(s(k))| = 0.

1For further details, we refer to [ABJ06] but we dare to remark that the details will not be important

for the derivation which we present.
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It is easy to see, that the above equation holds true for all α satisfying

α > µ = lim
t→∞

1

t

t−1∑
k=0

log |f ′(s(k))| (3.1)

where µ denotes the Lyapunov exponent. In order to find the corresponding conditions,

we consider small perturbations u(t) = x(t)− 1s(t), which are governed by

u(t+ 1) = f ′(s(t))
(
I −∆

)
u(t).

Since we may assume that the eigenvectors of the Laplacian operator ∆ form a basis of

Rn, the perturbations u(t) can be taken along an eigenvector of the Laplacian operator:

u(t) =pi(t)ui, where i ≥ 2 since the perturbations along the direction 1 still yield a

synchronous solution. The function pi(t), i.e. the amplitude along the ith eigenvector,

behaves according to

pi(t+ 1) = f ′(s(t))(1− λi)pi(t) = pi(0)
t∏

k=0

f ′(s(k))(1− λi).

Hence, the synchronizability of the system holds true

lim
t→∞

t−1∏
k=0

|f ′(s(k))||1− λi| = 0, i = 2, ..., n.

Using the above stated connection to the Lyapunov exponent one can state a sufficient

condition for local synchronization as

max{ |1− λi| : i = 2, ..., n} < e−µ . (3.2)

By means of this simple condition we can define:

Definition 2. Using the above notation, we can define an appropiate synchronizability

measure for the network as

σ := max{ |1− λi| : i = 2, ..., n} .

Note that smaller values of σ enlarge the class of functions f for which the system

synchronizes. Hence, the Laplacian spectrum of a network characterizes its synchro-

nizability. Since we only assumed ∆ to have n linearly independent eigenvectors (which
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is always true), we can use σ to compare general networks with respect to their syn-

chronization properties. This includes directed and weighted networks, even in the case

of different network sizes. In the case of undirected weighted networks the measure σ

simplifies to

σ = max{|1− λ2|, |1− λmax|}

whereas λmax = λn. In the case of our functional brain networks we will find the

eigenvalues to be in the range λ2 ≤ 1 ≤ λmax, which implies that synchronizability

depends on both λ2 and λmax: higher values of λ2 and smaller values of λmax yield

better synchronizability because of the condition

λ2

λmax
>

1− e−µ

1 + e−µ

We will use the eigenratio
λ2

λmax
as a quantifier of the synchronizability of our

functional brain networks, larger values implying a better synchronizability.

Before closing this section we will briefly state the fact that synchronizability cannot,

in general, be inferred from global statistical properties of the underlying network. Of

course, it can be said that scale-free networks have poorer synchronization properties

compared to other network architectures, cf. [ABJ06]. However, it is not true that

a more homogeneous degree distribution always implies better synchronizability. The

main reason for this (and similar examples) is that grosso modo small structural changes

in the network, e.g. loosely adding a very small subgraph, leave their traces in the

spectrum, particularly affect λ2, but on the other hand these small change average out

and cannot be detected by statistical measures, cf. [ABJ06].

Jenson-Shannon divergence measure

This section presents a method, cf. [Ban08b] and [Nie11], to gauge the topological

distance between two networks of different size. The distance between the spectral

distributions will be considered as a measurement of the structural differences and will

be quantified by means of an existing divergence measure between two distributions.
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Fig. 3.4: The global statistics of the graph G are determined by H, whereas the small part S

independently influences the eigenvalue λ2. In particular, the two networks G and H are likely

to share many statistical properties but may possibly differ significantly in their synchronizability.

Copyright: [ABJ06]

The definition of the Jenson-Shannon divergence will be based on the Kullback-Leibler

divergence measure (=:KL) for discrete systems. The latter is defined on two proba-

bility distributions p1 and p2 of a discrete random variable X as

KL(p1, p2) =
∑
x∈X

p1(x) log
p1(x)

p2(x)

Note that this divergence measure is not defined if p2 = 0 and p1 6= 0 for any x ∈
X. Furthermore, KL divergence is not symmetric and does not satisfy the triangle

inequality, hence cannot be a metric.

Considering the two probability distributions p1 and p2, the Jenson-Shannon divergence

measure (=: JS) is defined as

JS(p1, p2) =
1

2
KL(p1, p) +

1

2
KL(p2, p)

where p = 1
2
(p1 + p2). Unlike the KL divergence, Jenson-Shannon is symmetric and

holds even if one of the probability measures is zero for some x. The square root of JS

divergence is a metric, please see [Ban08b] for further reference. Hence, we can define

our metric as:
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Definition 3 (Jenson-Shannon divergence, cf. [Ban08b]). Let Γ1,Γ2 be two graphs,

with the spectral distribution (of graph Laplacian) f1 and f2 respectively. Then we

define the Jenson-Shannon divergence measure between f1 and f2 as:

D(Γ1,Γ2) :=
√
JS(f1, f2)

One drawback of this tool is that, theoretically, there exist isospectral graphs which

cannot be distinguished by this means. However, it is very unlikely that one happens

to encounter two such isospectral graphs in real networks and, moreover, these would

be qualitatively very similar in most respects.

Fig. 3.5: Distance table between cellular networks of P horikoshii (ΓPh), E coli (ΓEc), S cerevisae

(ΓSc); protein-protein interaction network of H pylori (ΓHp); neuronal connectivity network of C

elegans (ΓCs) and US power-grid network (ΓPG). Copyright and data source: A. Banerjee, 2008,

[Ban08b].

Note that each network has a different size, but nevertheless we can compare their

spectral distribution and gauge the structural distance. The JS divergence measure

allows the quantification of the structural similarities (or differences) based on the

spectral distribution which captures the qualitative properties of the underlying graph

topology.

Network entropy

In this section we summarize results on how to calculate network entropy. We will

cite the entropy robustness principle, which basically states that higher entropy of a

network yields higher robustness. We will apply this methods to our functional brain
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networks. Network entropy will be used as a tool to measure the diversity of interactions

which define the system. Results for the brain networks can be found in chapter 4.

The material presented here is mainly based on [DGO04], [DM04], [MDV04], [DGO04],

[AGD94], [Ber93] and [Bil65].

When analyzing and characterizing networks, it is important to know the resilience of

the whole system against external and internal perturbations, which amount to changes

in the network parameters. One can, of course, analyze this phenomenologically, i.e.

in terms of experimentally observed resilience. This has been done, for example, by

Barabasi et al. in [BA99].

Here, we summarize results from a more structural approach using methods from sta-

tistical physics and ergodic theory. We will then apply these methods to our functional

brain networks since we believe that the formal requirements on the system are ful-

filled. The results, see next chapter, are very helpful for our intended classification of

different memory networks.

The central idea of this approach is that biological processes typically operate

at steady state, and hence, characteristic macroscopic observables do not change

for relatively long times. However, this does not mean that the underlying micro-

scopic variables are static but rather that their complex interplay results in a stable

phenotype, which we can observe, cf. [MDV04].

The diverse and stochastic microscopic processes determine the resilience against per-

turbations. Using erdodic theory of dynamical systems, one can quantify this un-

certainty by dynamical entropy (Kolmogorov-Sinai invariant). The importance for

biological network analysis stems from the fact that there is a fluctuation theorem for

networks, in analogy to the fluctuation-dissipation theorem in statistical mechanics,

[CW51] and cf. [MDV04]. We will later restate the formal definition but the theorem

says:

The entropy-robustness principle says that alterations in network entropy cor-

relate positively with alterations in the resilience of the macroscopic system against

microscopic perturbations, cf. [MDV04]. In other words, a higher entropy yields a

greater insensitivity of an observable to perturbation of the network.
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The described methods assumes that the (microscopic) processes are Markovian. We

will assume this as well in the case of our functional brain networks. Hence, this

will allow for a description of network entropy as a tool which gauges the diversity of

interactions which define the system, in our case, this will be the weighted correlation

links between small anatomical regions. The described methodology does not intend to

particularly describe topological properties, but rather treats them as side-effects of an

underlying functional property, which allows for a ranking of the networks according

to their resilience against random changes.

We will now recall the concept of dynamical entropy, defined for a Markov process:

P = (pij), which is given by (Billingsley, 1965), [Bil65]:

H = −
∑
ij

πipij log pij ,

whereas pij denotes the Markovian transition probabilites and πi are the components

belonging to the stationary process. Before we define this stationary process in detail,

we mention that there are many other possibilites to analyze complex dynmical systems

by means of microscopic modelling, e.g. differential equations, cellular automata, etc.

Statement: We will assume the brain functional networks to be a result of a dif-

fusive process. By linking dynamical uncertainty to random walks on the network,

we can stochastically describe the system and derive macroscopic properties. The

diversity of possible information pathways between the anatomical structures in the

brain networks can be characterized by the dynamical entropy of a Markov process

and, moreover, is related to the system’s resilience to random changes by means of

the fluctuation theorem (see below).

Now we define the technical tools and the concept of network entropy, which has been

introduced in cf. [DGO04], [DM04], [Dem97], [MDV04]:

Let Γ be a (weighted) network, and A = (aij) its adjacency matrix. The largest

eigenvalue λ of the matrix A is called Perron-Frobenius eigenvalue, we denote by v the

corresponding eigenvector. This dominant eigenvalue satisfies a variational principle

and is a topological invariant. The variational principle is similar to the minimization

of the free energy in statistical mechanics, cf. [Cal85].
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Definition 4. A stochastic process P = (pij) is said to be compatible with the adjacency

matrix A, if ∑
j

pij = 1 and pij = 0⇔ aij = 0.

In the case of brain functional networks the requirement on compatibility of stochas-

tic processes is based on the idea that microscopic variables, that is brain voxel

activity, only changes in response to changes of their interaction partners. To put

it differently, as a statement: we assume that information will primarily flow

along already existing high-correlations, i.e. interacting brain voxels or gyri struc-

tures. Of course, by doing so, we ignore possible voxel modifications, such as tissue

or physiological changes, which might trigger global network changes. But this is

justified due to the short measurement time during the experiment.

We define the stationary distribution, π, as the eigenvector belonging to the largest

eigenvalue 1 of the stochastic matrix P :

πP = π

The matrix P describes the Markov process and the long-time behaviour of which can

be characterized by the stationary distribution π. Now we add to our requirements

the assumptions of ergodicity, i.e. irreducibility of A and P . This implies that the

components πi satisfy πi > 0. These components represent the relative frequency with

which the node i is visited by the random walk on the network.

With respect to all compatible processes P = (pij) the variational principle for λ can

be written as

log λ = sup
P

[
−
∑
i,j

πipij log pij +
∑
i,j

πipi,j log aij

]
In [AGD94] it has been shown that in the case of strongly connected networks one

obtains the supremum for a unique matrix P̂ = (p̂ij), where

p̂ij =
aijvj
λvi
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The functional brain networks fulfill this requirement, i.e. they are weighted and fully

connected networks. Choosing the matrix P such as above, we can write the variational

principle as

log λ = −
∑
i,j

πip̂ij log p̂ij +
∑
i,j

πip̂ij log aij

Furthermore, we can write this latter equation as

log λ = H(P̂ ) + Φ(P̂ )

Now we have a link between the topological invariant λ on the one hand and the network

entropy H(P̂ ) as well as the ’potential’ Φ(P̂ ) =
∑

i,j πip̂ij log aij on the other. The

equation of the variational principle, where we started from, is completely analogous

to the Gibbs variational principle in statistical mechanics, cf. [CW51].

In the equation

log λ = H + Φ

the ’potential’ vanishes in the case of Boolean networks, whereas in the general case,

i.e. weighted and strongly connected networks, the potential Φ describes the difference

between H and the Perron-Frobenius eigenvalue.

In dynamical systems theory there are quite some theorems which link observables

at steady state to relaxation properties of a perturbed system, i.e. a system that

experienced perturbations and which then returns to the steady state, cf. [Bil65].

Now we restate the fluctuation theorem presented in [DGO04] and [DM04] which links

the concept of entropy to the macroscopic resilience of the system. Entropy, here, is

considered as a proxy measure of microscopic variability. We consider now a change of

an observable from steady-state, which is seen as the result of a perturbed microscopic

variable.

Fluctuation theorem, cf. [DGO04] and [MDV04]]: Let Pε(t) be the probability that

the sample mean deviates by more than ε from its unperturbed value at time t. As t

increases, Pε(t) converges to zero and we defne the fluctuation decay rate, R, as

R = lim
t→∞

[
− 1

t
logPε(t)

]
.

Then it holds that changes in R are positively correlated with changes in network en-

tropy:

∆H∆R > 0 .
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In this case, the entropy H is at steady state, whereas R describes the the system away

from the steady state. Small values of R entail large fluctuations around the mean

value, whereas large values of R correspond to small deviations of observables from the

steady-state condition.

As stated in [DGO04] and [MDV04], this concept is an extension of the Gibbs

formalism, which applies to equilibrium systems at steady state. But moreover,

this formalism can also be applied to non-equilibrium systems at steady-state, cf.

[Dem97]. This is assumed for many biological systems. The good thing for our

analysis of brain networks is that we can use this tool to describe resilience of the

system at a macroscopic level, regardless of our ignorance about the microscopic

processes.

3.2 Persistent homology

The basic idea of persistent homology of networks is to embed a network into

a simplicial complex via a filtration process, and, while doing so, calculating the

(simplicial) homology relative to all previous filtration steps. This allows for the

detection of long-lived topological features, i.e. homology classes which survive

several filtration steps.

Consequently, short-lived topological features are considered as noise, thus being ir-

relevant for the structural understanding of the network. Persistent homology will be

denoted as a parametrized version of a Betti number, being visually presented in a very

amenable way, so-called homology barcode plots.

This section is mainly based on [CZCG05], [ZC05], [HMR09] and [CCdS06]. Please see

also [ELZ02], [CSEH07], [Hat02], [May92] and [Bre97] for further reference. Computa-

tions, see chapter 4 for the results, have been performed with Matlab, using the free

software package PLEX, provided at
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http://comptop.stanford.edu/u/programs/jplex/. Regarding computational as-

pects, please see also the Computational HOmology Project, CHOMP,

http://www.math/gatech/edu/∼chomp , as well as [ZC05].

From a general viewpoint, algebraic topology provides methods to gauge qualitative or

global properties of a topological1 space X. The basic idea is to assign a collection of

algebraic objects to the space X which algebraically encode the geometrical information

contained in X and, moreover, which are topological invariants with respect to certain

classes of functions defined on X. Having assigned the set of algebraic objects to X

one uses algebraic techniques to analyze these objects and, hence, obtains insight into

the geometric information about the space X, please see for a general overview of the

field [Bre97], [Hat02].

Basically there are two methods which are prominent in the field of algebraic topology:

homotopy and homology. The first technique assigns so-called homotopy groups πi,

i ∈ N, to the space X. These groups contain information about the number and

variety of mappings from the k-dimensional sphere into X, whereas two spheres in

X are considered equivalent if they belong to the same equivalence class, i.e. are

homotopic to each other, cf. [HMR09]. Please see also [Bre97] for the exact definition.

This approach is very powerful regarding the amount of information which one obtains

about the spaceX. However, the computational demands are in general extremely high.

Homology, on the other hand, is computationally much more approachable. There are

very deep theoretical links between these two concepts, homotopy and homology, cf.

[Bre97], [Hat02]. The homological approach also assigns a set of invariants to the space

X, the so-called homology groups Hi(X). There are different homology theories, all of

which fulfill the same theoretical properties imposed by the Eilenberg-Steenrod axioms.

We will only make use of simplicial homology. For the sake of better readability and

unless otherwise stated, we will only refer to homology instead of simplicial homology.

The homology groups, that is Hk(X) for k ∈ N, contain structural information about

so-called chains, which are formed from simple and oriented objects, called simplices.

The homology groups consist of cycles, i.e. chains with vanishing boundary, and any

two k-cycles are considered equivalent if their difference is the boundary of a (k + 1)-

chain. To put it differently, the homology groups Hk(X) provide information about

the number of k−dimensional subspaces of X which do not have a boundary in X

1from the Greek τoπoσ, which means place, and λoγoσ, which means study
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and which are themselves not a boundary of some (k + 1)-dimensional subspace of

X. Contrary to homotopy groups, the computation of homology groups is much more

feasible and can be done by means of methods from linear algebra. However, the ease

in computation is to the detriment of topological insight. Nevertheless, as can be seen

in chapter 4, the results obtained from this method allow for a better discrimination

between our functional brain networks associated to memory.

Homology groups are computationally amenable and provide valuable information

about topological spaces.

Complex networks can be embedded into simplicial complexes (see below). While a

network is purely a one-dimensional object, the embedding into a simplicial complex

unveils much more structural information which was before, i.e. without the higher-

dimensional simplices attached, covertly encapsulated.

However, by computing the (simplicial) homology just for the final complex, in which

the network has been embedded, one does not account for the fact that there might

be topological noise contained in the network, i.e. one does not know whether some

homological property is reliable or has just been produced by some unimportant link

in the underlying network. Persistent homology is a means by which one can discern

relevant topological information from noise. Homological information is mainly about

the number and type of voids, i.e. abstract and higher-dimensional holes, and the

subject of persistent homology is to extract those voids that are persistent, i.e. long-

living, and, hence, are relevant. This is done by filtrating the simplicial complex and

by computing the homology at each filtration step, relative to all previous filtration

steps.

The concept of persistent homology has been introduced by Edelsbrunner, Letscher

and Zomorodian, cf. [ELZ02], [ZC05]. It has been first applied to point-cloud data,

analyzing the persistence of topological features over a long range of parameters. In

the rest of this section we present and summarize the concept and state the formal

definitions.

This section is mainly based on [HMR09], where the concept of persistence has

been applied to networks but only in a general case. We will use this method,
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see chapter 4, to analyze the functional brain networks as a special instance of

general correlation networks. To our knowledge, this is the first time that persistent

homology has been applied to correlation networks.

One can show that the concept of persistent homology can be formulated in the frame-

work of standard algebraic topology. More precisely, as is shown in [ELZ02], [ZC05],

the persistent homology of a filtered d−dimensional simplicial complex is simply the

standard homology of a particular graded module over a polynomial ring. However,

we will not present the material from this bird perspective and in this generality since

we believe that this would be to the detriment of readability. Our presentation follows

[HMR09].

The definition of a simplex, i.e. a simple geometrical unit which can be used to dis-

mantle a more complex geometical space, can of course be given in terms of geometry:

an n-simplex ∆n is an n-dimensional polytope in R with n + 1 vertices. However,

one also give a purely algebraic definition, circumventing any ambiguities arising from

the surrounding space. Moreover, it is only the algebraic approach which makes the

concept applicable to the coordinate-free concept of a network.

Definition 5 (cf. [Bre97]). An (abstract) simplicial complex is a set V = {v0, v1, ..., vn}
whose elements are called vertices, and a collection K of finite subsets of V , called

simplices, such that

σ ∈ K , ∅ 6= τ ⊂ σ ⇒ τ ∈ K
v ∈ V ⇒ {v} ∈ K

A simplicial complex K is called a simplicial n−complex if its largest simplex has at

most n+ 1 vertices.

The requirements imposed on K can be also read as follows: (i) the intersection of

two simplices is a simplex, (ii) the sub-simplices (=faces) of each simplex in K are also

in K. Moreover, we have the uniqueness property, i.e. each pair of simplices has a

distinct set of faces implying that each simplex is unique. It is possible, cf. [May92], to

assign a topological space |K| to such an abstract simplicial complex, which, for finite

complexes, is equivalent to a geometrical simplicial complex, cf. [Bre97].
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Note that for a sub-complex K ′ of a simplicial complex K, we have a canonical inclusion

map ι : K ′ → K, which induces a map between the respective homology groups (see

below for the definition): H∗(K
′)→ H∗(K).

A filtration of a simplicial complex K is a collection of subcomplexes {Ki} such that

∅ = K0 ⊂ K1 ⊂ ... ⊂ Kn = K

Two simplices σ and ρ are called q−connected if there is a sequence of simplices

σ, σ1, σ2, ..., σn, ρ, such that any two consecutive ones share a q−face, implying that

they have at least q + 1 vertices in common, cf. [HMR09]. Such a chain is called a

q−chain. The complex K is q−connected if any two simplices in K of dimensionality

greater or equal to q are q−connected. A convenient way to represent a simplicial

complex is via a so called incidence matrix, whose columns are labeled by its vertices

and whose rows are labeled by its simplices. Please see [HMR09] for reference.

In the simplicial framework one has the two notions of chains and cycles, which are

completely analogous to the notions of paths and loops in the continous domain. The

set of all k−chains can be equipped with a group structure, the group operation being

the (formal) addition of chains. Formally, one generates the free abelian group on the

set of all k−chains. This group is denoted as Ck. Hence, for all k ∈ N one obtains

a group Ck. This family of groups is endowed with a family of boundary operators,

linking subsequently indexed chain groups:

δk : Ck −→ Ck−1

whereas k = 0, 1, 2, .... The boundary operator δk assigns to any k−chain σ its bound-

ary δk(σ), which is a collection of (k − 1)-dimensional faces of σ, hence being itself a

(k− 1)-chain. The family of boundary operators endows the chain groups into a chain

complex,

∅ −→ Cn
δn−→Cn−1

δn−1−→ ... −→ C1
δ1−→C0

δ0−→ −→ ∅

with δkδk+1 = 0 for all k. The chain groups {Ck}k∈N have been defined as the free

abelian group Ck generated by the the k-chains, respectively in each dimension k. This

algebraic structure can be naturally considered as a Z-module. Hence, the boundary

operators δk are Z-linear maps and one has the notion of kernel and image: the kernel

of δk is the set of all k-chains with vanishing boundary . Please see [HMR09] as well

as [Bre97] and [Hat02] for reference.



40 Chapter 3. MATHEMATICAL METHODS

These two subspaces play an important role:

k-cycles : ZK := ker δk = {z ∈ Ck : δk(z) = ∅}

k-boundaries : Bk := im δk = {b ∈ Ck−1 : ∃b ∈ Ck : b = δk+1(z)}

Hence, we define the kth homology group as

Hk := ker δk / im δk+1 = Zk/Bk

The kth Betti number of a simplicial complexK is defined as the rank of the k homology

group:

βk := rank Hk = rank ker δk − im δk+1

The Betti number βk can intuitively be interpreted as the number of k-dimensional

holes, the Betti number beta0 reflects the number of component. Unless otherwise

stated we will always consider homology over Z.

Fig. 3.6: Schematic diagram of the boundary homomophism. Here, Z∗ denotes the kernel, B∗ the

image, respectively. Copyright: [ZC05].

Construction of simplicial complexes from graphs. Before we can precisely

define persistent homology, we need to clearly state how we embed the network into

a simplicial complex. This is, by far, not unique, however, there are several natural

ways to do this. Two possible methods are the so-called neighborhood complex and the

clique complex, cf. [HMR09]. Roughly summarized, the neighborhood complex N(Γ)

is constructed as follows: for each vertex v of the graph G there is a simplex containing

the vertex v, along with all vertices w corresponding to directed edges v → w. This is,
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obviously, only possible for directed networks. The clique complex C(Γ) is constructed

by means of all complete subgraphs as simplices and the vertices of Γ as its vertices,

hence it is the complete subgraph complex. For further reference on these definitions,

cf. [Jon07] and [HMR09].

Fig. 3.7: Example: the simplicical complex K and its one possible filtration. Copyright: [HMR09].

The choice of filtration can be seen as a proxy measure for the evolution of the

network as it evolves from the most simple case (just nodes) to the most complicated

one containing faces of the highest possible dimension. This filtration process is,

however, not unique. For the brain functional networks we will use the following

filtration algorithm in order to embed the network into a simplicial complex:

(1.) all nodes exist already at the beginning of the filtration, being 0-simplices.

(2.) we pick a start node v0, the choice of this seed node remains arbitrary but we

keep this choice fixed for all networks.

(3.) 1-dimensional simplex is added to this node, then 2-dim, 3-dim, etc. (up to

the highest possible dimension at this step).

(4.) at each filtration step we add one more node, once we have three nodes we

may add the face of a triangle, similarly in higher dimensions.
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(5.) these steps are iterated until all 0-simplices have been included and all sim-

plices have been added up to the highest possible dimension.

Note that this is not the only possible filtration, however, we believe that it is the most

appropriate one since it reflects well the possible dynamics of the network. Ideally,

one would like to know the exact sequence how the network was built but this cer-

tainly does not apply since out network was obtained from correlations of time series.

However, this method can be seen as a proxy to detect the (dynamic) evolution of the

network. Persistent homology then captures the long-living topological properties and

distinguishes relevant information from noise.

Definition of persistent homology. For a given network, we choose a filtration

into a simplicial complex, i.e.

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K

Each such Ki is a subcomplex and persistent homology is about the topological history

when this filtration is being constructed. In other words, we look at the homology

at each stage of the filtration with respect to the previous steps of the filtration. In

[ELZ02] and [ZC05], persistence is defined with respect to cycle and boundary groups

of complexes in the filtration. As we already mentioned, the definiton of persistence can

be set in the much more general frame of spectral sequences, which we will not follow for

the sake of a better intuition. Homology is about capturing equivalent classes of cycles

by factoring out the boundary cycles. In other words: the main focus is on counting the

non-bounding cycles whose lifespan is longer than a chosen threshold, i.e. longer than

a certain number of next filtration steps, cf. [HMR09]. Hence, persistent homology

is all about detecting long-lasting topological properties of the complex, hence, of the

underlying network. Those cycles, which survive through a number of filtration steps,

are important. To make this mathematically precise, let Z l
k and Bl

k represent the kth

cycle group and the kth boundary group, respectively, of the lth (sub-)complex K l

in the filtration sequence. See [HMR09] and [ZC05] for further details. Since we are

interested in the long-lasting non-bounding cycles, we factor the kth cycle group by

the kth boundary group p complexes later in the filtration, i.e. by K l+p. Formally, we

define the p-persistent kth homology group of K l as

H l,p
k = Z l

k

/(
Bl+p
k ∩ Z l

k

)
.
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This is, of course, well-defined since Bl+p
k ∩Z l

k is a group itself since it is the intersection

of two subgroups of C l+p
k . Hence, we can easily define the p-persistent kth Betti number

βl+pk :

βl+pk := rank H l,p
k

Note that superscripts indicate the filtration index and are not related to cohomology,

cf. [ZC05]. Again, this can be intuitively interpreted as the number of homology classes

in the complex Kp which came into existence in the complex K l or earlier. For each p

and for each pair (k, p), 0 ≤ k ≤ p ≤ n there is a Betti number. Intuitively, for p large

(i.e. long enough), the topological noise may vanish and only pertinent information

remains. For further reference on formal aspects, please be referred to [ZC05], [HMR09]

and [ELZ02].

Visualization of persistence homology. In order to capture this amount of infor-

mation it is helpful to visualize the parameterized Betti numbers in an accessible way,

see example below. One way to do this is to consider the state of the filtration as time,

hence the x-axis depicts the actual filtration step. The y-axis represents the number

of non-vanishing simplices, hence the Betti number. The whole diagram represents the

evolution of voids (0-dim, 1-dim, 2-dim, 3-dim, etc.) in the simplicial complex as it

evolves from the most simple case (only nodes) to the most complicated one, which

contains faces of the highest possible dimension.
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Fig. 3.8: An example of a barcode diagram for some arbitrary simplicial compley, shown above. The

rank of Hk equals the number of parameter intervals (=red barcode line). For the sake of simplicity

and better readability, the shown filtration deviates from the more complex one which we will use

for the brain networks. In step one, we already consider the given network, which by definition is

a one-dimensional simplicial complex. Then all possible 2-dim simplices are added at once, leaving

a 1-dim void that cannot be filled. The blue tetrahedron is filled in the last filtration step, closing

the previously generated 2-dim void. Hence, this void should be considered short-lived, whereas the

remaining 1-dim void is persistent. In the context of brain networks we will interpret this as an obstacle

for informational flow. The only persistent homologies are H0 and H1. Copyright: [HMR09].



Chapter 4

Results and Discussion

Statistical network analysis

First we will present the statistical properties of the functional brain networks. These

will allow for a global characterization of the network topology, furthermore we will

be able to gauge the importance of specific regions, as well as find a shift in local

connectivity. Most of the resutls presented here have been included into a joined

research paper, cf. [MSB+12] (under review).

Please recall the construction process of the functional brain networks, which has been

presented in chapter 2. First we analyzed the thresholded, but still anatomically un-

clustered, networks. For these networks, we computed the largest connected component

(LCC). The restriction to the LCC has been deliberately made since the second largest

connected component of the networks showed to be negligibly small compared to the

LCC. Compared to young individuals, seniors showed a strong increase in the size of

the LCC, as well as increased network density and increased transitivity. The follow-

ing boxplots and table present the statistical parameters, which were computed for the

LCC, see Fig. 4.1 and Table 4.1.

By inspection of the parameters, one observes differences in all characterizing statistical

parameters. One interesting observation concerns the small-worldness parameter. It

is significantly highest for young individuals during working memory processes, being

much lower for the episodic memory task, and also much lower for older individuals,

independent of the task. The small-worldness parameter quantifies wiring efficiency, i.e.

high clustering but short average path length. The largest connected component (LCC)

45



46 Chapter 4. RESULTS AND DISCUSSION

Fig. 4.1: Boxplot of different network parameters: size of the LCC (left), network density (middle)

and transitivity (right). See also [MSB+12].

Table 4.1: Statistical parameters for the functional connectivity networks. Shown are the size of the

LCC, the density, the average shortest path (asp), transitivity, cost efficiency and small-worldness.

Standard deviation is shown in brackets. See also [MSB+12].

young

working episodic

size of LCC 1429.80 (± 597.19) 1751.60 (± 675.96)

density 0.03 (± 0.02) 0.04 (± 0.01)

asp 4.41 (± 1.53) 3.41 (± 0.48)

transitivity 0.44 (± 0.06) 0.51 (± 0.04)

cost efficiency 0.42 (± 0.14) 0.32 (± 0.05)

small-worldness 20.58 (± 15.81) 9.29 (± 2.45)

old

working episodic

size of LCC 2642.60 (± 909.49) 2824.10 (± 904.06)

density 0.07 (± 0.04) 0.07 (± 0.03)

asp 3.19 (± 0.62) 3.06 (± 0.51)

transitivity 0.55 (± 0.06) 0.57 (± 0.05)

cost efficiency 0.29 (± 0.06) 0.29 (± 0.05)

small-worldness 7.29 (± 3.44) 6.59 (± 2.47)
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of the young individuals’ networks is smaller, as well as the young individuals’ network

density, comparing working and episodic memory tasks. For elderly subjects, there was

no such difference observed between the two different memory tasks. Remarkably, the

networks of the older individuals exhibit a much larger variability than it is the case

for the younger group.

A natural question is how to evaluate the importance of an anatomical structure for

the memory processing. From now on, we will consider the anatomically clustered

networks. Please see chapter 3 for the clustering process. Briefly restated, we used

the Talairach atlas to retrieve anatomical information for each voxel, and each voxel

has been assigned to a hemisphere, lobe, smaller gyri structure and, where possible,

a Brodmann area. In order to answer the aforementioned question, we computed for

every anatomical region its relative hubness, degree and betweenness. We chose to

represent the results as bar plots, see Fig. 4.2, 4.3 and 4.4. Due to the different size

of the anatomical structures, the resulting values had to be compared to the expected

value, that is, the value which would result if the parameter distribution were random

throughout the entire brain. These expected values are indicated by the solid line.

Hence, an anatomical structure is considered important if the parameter, i.e. the line

of the bar, is larger than the average, i.e. the bar exceeds the solid line. Naturally, one

has to be careful about statements concerning smaller anatomical regions, since these

are less reliable due to the fact that a smaller number of voxels enters the statistics.

We will therefore focus on the analysis of the medium and large structures.

We defined hubness not only on the basis of the node degree alone, we adapted this

measure in as much as to include also the betweenness of the node. This measure was

applied to identify important brain areas on the level of lobes and smaller structures.

Fig. 4.2 depicts the relative hubness of the different lobes, both for the left and right

brain hemisphere. One can observe that for younger subjects the hubness is rather

symmetrically distributed over the two hemispheres, whereas for elderly individuals

the left hemisphere exhibits higher relative hubness. In particular, the parietal and the

occipital lobes show exceeding hubness, whereas it is less in the limbic lobe.

Fig. 4.3 and Fig. 4.4 depict the relative hubness, the relative degree and the relative

betweenness of the smaller structures (gyri) and Brodmann areas. For both age groups

and for both memory tasks, the hubs are localized in the parahippocampal, postcentral

and middle occipital gyrus. By inspection, one can observe that the working memory
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Fig. 4.2: Relative hubness of the different lobes, for the left and right brain hemisphere. The bar

plots depict the number of voxels which contain LCC in the given lobes. The solid lines show the

expected1 value, relative to the size of the structure. An anatomical region is the more involved into

the processing of the memory task the more the bar exceeds the solid line. In collaboration with

Franziska Matthäus, see also [MSB+12].

task involves frontal areas, among which are the inferior and medial frontal gyrus, as

well as parietal/occipital areas, especially the cuneus and the middle occipital gyrus.

For the episodic memory task, it can be seen that a large number of parietal and

occipital areas are involved, e.g. the cuneus, the precuneus (old), and fusiform gyrus

(young). Moreover, the thalamus exhibits increased hubness, in particular for young

individuals.

The diagrams also allow for a classification of the different regions regarding their role

in memory processing. The postcentral gyrus, in particular for the young individuals

during the working memory task, clearly plays the role of a regulator / effector.1 This

1A node is called regulator / effector if it has a high degree because its activity correlates with a

large number of other nodes. One reason for this can be that this node regulates the activity of other

regions (regulator), or is dependant on the activity of many other nodes (effector). Nodes possessing

a high degree often also exhibit a high betweenness.
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Fig. 4.3: Relative hubness (left), relative degree (middle) and relative betweenness (right) of the

different gyri structures, for both working and episodic memory. The bar plots depict the number

of voxels which contain LCC in the given lobes. The solid lines show the expected value, relative

to the size of the structure. An anatomical region is the more involved into the processing of the

memory task the more the bar exceeds the solid line. In collaboration with Franziska Matthäus, see

also [MSB+12].
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Fig. 4.4: Relative hubness (left), relative degree (middle) and relative betweenness (right) of the

different Brodmann structures, for both working and episodic memory. The bar plots depict the

number of voxels which contain LCC in the given lobes. The solid lines show the expected value,

relative to the size of the structure. An anatomical region is the more involved into the processing of

the memory task the more the bar exceeds the solid line. In collaboration with Franziska Matthäus,

see also [MSB+12].
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is indicated by the higher degree. On the other hand the cuneus (BA 19) and the

precuneus (also for young subjects during working memory task) can be classified as

betweenness hubs.2

In order to visualize the network structure we proceeded as follows: the number of links

was counted within and between all anatomical regions and for all networks, i.e. for

all networks of the same age group and memory task. Then we normalized the inter-

and intraregional connectivites by the expected number of links for random wiring, i.e.

we used the following normalization factor: let p be the probability to find an edge

between two nodes in a random network, then the expected number of intraregional

links is given by pN(N − 1)/2, for a region of size N . Hence, the expected number of

edges between two regions of size N and M , respectively, is given as pMN .

Fig. 4.4, 4.5 and 4.6 display the network visualization on the lobe, gyri and Brodmann

level, respectively. By inspection, one can clearly observe large differences between

the network structures of the two age groups, but, moreover, there are also differences

between the two memory tasks within an age group. On the lobe level, young subjects

show rather intense connections between the left and right occipital lobes, and between

the left and right parietal lobes. However, the network structure in this age group is

very symmetric. For elderly individuals we also observe these connections but they are

dominated by a very strong connection beween the left parietal lobe and other lobes in

the left hemisphere. Moreover, the left parietal and left occipital lobe exhibit a much

stronger internal connectivity than their counterparts in the right hemisphere.

On the gyri stucture level we observe a strong connection of the parahippocampus

with many other, particularly occipital, areas. The strongest connection can be found

between the postcentral gyrus and the superior parietal lobule (young, working mem-

ory), middle and inferior occipital gyrus (both age groups), superior parietal lobule

and precuneus. For both age groups and both memory tasks there is a strong parietal

and an occipital cluster to be found. In addition, the frontal gyri in elderly subjects’

networks show a much stronger internal connectivity.

2A betweenness hub is characterized by a high betweenness but not necessarily by a high degree.

It can be considered as a connector / relay since it itself is not connected to many other nodes, but it

controls a large portion of paths travelling through this node.
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Fig. 4.5: Network visualization on the lobe level. Size of the nodes is proportional to the size of

the anatomical region, the line thickness indicates the strength of the connection, and the shading of

the nodes represents the density of the intraregional connections (dark = high intensity, bright = low

intensity). Moreover, WM = working memory and EM = episodic memory. In collaboration with

Franziska Matthäus, see also [MSB+12].
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Fig. 4.6: Network visualizaion on the gyri level, whereas only the strongest links are displayed. All

networks exhibit parietal and occipital clusters. For the elderly subjects, we additionally observe a

frontal cluster. Size of the nodes is proportional to the size of the anatomical region, the line thickness

indicates the strength of the connection, and the shading of the nodes represents the density of the

intraregional connections (dark = high intensity, bright = low intensity). For elderly subjects, the

pattern is more symmetric, having strong inter- and intra-connected clusters at a. cing , s. front, mi.

front and i. front. Please find a list of abbreviations in the supplement. Younger individuals show a

much more heterogenous pattern, having a focus in the parietal /postcentral region for the working

memory and similarly in the occipital / fusiform region for the episodic memory. In collaboration

with Franziska Matthäus, see also [MSB+12].
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Fig. 4.7: Network visualizaion on the Brodmann level, whereas only the strongest links are displayed.

All networks exhibit clusters in BA 10, BA 11, BA 47 as well as BA 6. The region BA 10 is more

prominent in the networks of older subjects, with respect to both inter- and intraregional connectivity.

Moreover, the difference between the two age groups are bigger for the episodic memory task. One

observes that for younger individuals there are more interregional connections between BA 17−19

and BA 37, whereas for elderly subjects there is a shift towards interregional connections, BA 3−4

and BA 6 and BA 10−11 and BA 47. In particular, the region BA 6 is much more interregionally

involved in the networks of older individuals than this is the case for younger subjects, independent

of the memory task. In collaboration with Franziska Matthäus, see also [MSB+12].
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Summary and discussion of key results, see also [MSB+12]:

• Age-related differences in the statistical network properties:

Networks of older individuals were characterized for both memory tasks by a

larger LCC, in size and density. Transitivity was also increased, whereas the

average shortest path length was lower compared to the young individuals.

The structural changes were evident for both memory task, but more appar-

ent for the working memory task. The greater size of the LCC for the elderly

subjects can be explained by an extended activity pattern. Many studies

have reported that elderly individuals recruit more brain areas during work-

ing memory tasks (and similar findings are available for episodic memory).

Studies with transcranial magnetic stimulation suggest that over-activation is

related to compensatory mechanisms, and a better performance is correlated

with the extent of over-activation. On the other hand, the extended activa-

tion also accompanies pathological changes. Another, maybe complementary

process, is believed to be a progressive dedifferentiation, where brain areas

become less specialized with age and start to engage in new functions. Small-

worldness is a measure for effective information processing and we found it to

be largest for the young subjects under working memory demand. In general,

small-worldness and cost-efficiency were reduced in elderly individuals, which

is in agreement with previous results for resting state networks. Hence, we

can generalize this result to working memory networks.

• Age-related differences in the hub structure of the functional connectivity:

Concerning the lobes, cf. Fig. 4.5, we found hubs for the young subjects in the

occipital, parietal and limbic lobe. Here, the distribution of the hubness was

very symmetric for both memory tasks. Seniors showed the largest hubness in

the occipital and parietal lobe, with a very strong asymmetry towards the left

hemisphere. For the episodic memory task also the left limbic lobe exhibited

hubness. In the young subjects hubness concentrated in frontal and less in

occipital areas for the working memory task. For the episodic memory task

the frontal areas were less, and the occipital areas much stronger involved.

Seniors showed additional hubness centers in parietal areas, and decreased

hubness in occipital areas, especially for the episodic memory task. Our
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hubness pattern is in good agreement with most findings recent studies, see

[MSB+12] for details.

• Age-related differences in the network connectivity structure:

Very symmetric connection patterns have been found between the two hemi-

spheres for young individuals, the strongest links being between the left and

right occipital, and the left and right parietal lobes. The occipital lobes play

a crucial role in the processing of visual information, which is the form in

which the memory tasks are presented. The involvement of parietal areas in

memory processing, especially in elderly individuals, has been shown before,

and is hypothesized to relate to attention processes, see also [MSB+12]. The

networks of elderly individuals exhibited a strong asymmetry, particularly

focused on the left parietal lobe. Our results are in good agreement with

previous findings, reporting a higher connectivity in frontal, and a reduced

connectivity in posterior areas for seniors compared to young subjects, see

[MSB+12] for references.

Statement: Our findings about the age-related reorganization can be explained

by two different hypotheses: overactivation and dedifferentiation. Over-activation

implies that additional structures are being involved in brain memory processes

as a result of compensatory purpose. Dedifferentiation means that brain areas

loose their specific task with ageing and engage in new and different tasks. We

found that the hubness of the ”young” networks was specific, in contrast to that of

elderly individuals, which was distributed over a larger area. Moreover, networks

for elderly individuals showed additional regions with increased hubness, which very

well agrees with previous studies, see [MSB+12] for further reference.
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Spectral analysis

In this section we present the results from the spectral graph analysis. Again, as stated

already in the previous section we will consider the anatomically clustered networks

for this analysis: the lobe network (size n=10), the gyri network (n=26) and the

Brodmann network (n=27). First we will show the spectral plots for these networks,

for each age group and both memory tasks. These plots will allow for a classification

of the functional brain networks, in particular with respect to structural differences of

networks from other domains and, for future research, to structural networks coming

from tensor imaging analysis. Please recall the spectral methods presented in chapter

4. We will use a Gaussian kernel for smoothing the spectral distributions, hence we

plot

f(x) =
∑
λj

1√
2πσ2

exp
(
− |x− λj|

2

2σ2

)
.

whereas we set σ = 0.01 for all plots.

The spectral plots for the anatomically clustered networks, i.e. Lobe, Gyri and Brod-

mann level, are depicted in Fig 4.8, 4.9 and 4.10. One observes that on all levels, the

spectra become more homogenous for the older age group, independent of the memory

task. Moreover, the networks of both age groups and both memory tasks do not ex-

hibit symmetry around 1, as it is the case, for example, for protein-protein interaction

networks, see [BJ07]. The networks for older subjects do exhibit a higher peak around

1 as it is the case for younger individuals, independent of the memory task. The most

prominent property of all networks, next to the non-existing symmetry, is the shift to

the left. As we will point out in the discussion and outlook chapter, this could be a

starting point for further analysis.

The spectral plots have been computed because they allow an easy visual distinction.

They should be thought of as a coarse fingerprint of the networks. This method has

been introduced by Jürgen Jost in [BJ07] and [BJ08]. To our knowledge, this method

has not been applied to functional brain networks before and our findings fit very well

into the classification zoo, which has been suggested by Jost and Banerjee, see also

[BJ07], [BJ08] and [Ban08a]. As we can deduce from there, the spectral plots of the

functional brain networks exhibit general similarities with biological networks, e.g. the

high and prominent peak around the eigenvalue 1. However, they are distinct enough

to build their own class. Future research should analyze the structural distinctions in
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detail.

Fig. 4.8: Spectral plots of Lobe level networks, n=10. We used σ = 0.01 in all network plots as

parameter for the Gaussian kernel. Comparing the two age groups and two memory tasks, the most

distinguishing facts are the more homogenous spectra for elder individuals and, in particular, the high

peak in the old age group, long-term memory. Moreover, all spectral plots do not exhibit symmetry

around 1. Instead, one observes a shift to the left.
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Fig. 4.9: Spectral plots of Gyri level networks, n=26. We used σ = 0.01 in all network plots as

parameter for the Gaussian kernel. Compared to the Lobe level spectra, the Gyri spectra are more

homogenous, in particular for the older individuals, independent of the memory task. Moreover, all

spectral plots do not exhibit symmetry around 1. Instead, one observes a shift to the left, as it is the

case for the Lobe level spectra. The high peak around 1 now appears for both memory tasks in the

elderly subjects’ networks.
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Fig. 4.10: Spectral plots of Brodmann level networks, n=27. We used σ = 0.01 in all network plots

as parameter for the Gaussian kernel. Similarly to the Gyri level spectra, the Brodmann spectra for

the older individuals are more homogenous, independent of the memory task. Moreover, all spectral

plots do not exhibit symmetry around 1. Instead, one observes a shift to the left, as it is the case for

the Lobe level spectra. As it is the case for the Gyri spectra, the high peak around 1 now appears for

both memory tasks in the elderly subjects’ networks.
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We used Jenson-Shannon divergence (JS) in order to quantify the distance between

the networks, in particular:

D(Γ1,Γ2) =
√
JS(f1, f2)

Please see chapter 3 for the exact definition of the JS metric. Of course, it makes only

sense to compare the networks of one coarse-graining level with each other, i.e. Lobe,

Gyri and Brodman networks seperately. The results are shown in Table 4.2, 4.3 and

4.4.

Network ΓLobe,WM,young ΓLobe,WM,old ΓLobe,EM,young ΓLobe,EM,old

ΓLobe,WM,young 0.0000 0.4438 0.3952 0.4474

ΓLobe,WM,old 0.4438 0.0000 0.4354 0.2567

ΓLobe,EM,young 0.3952 0.4354 0.0000 0.4257

ΓLobe,EM,old 0.4474 0.2567 0.4257 0.0000

Table 4.2: Jensen-Shannon divergence measure for the networks at Lobe level, whereas WM =

working memory, EM = episodic memory.

Network ΓGyri,WM,young ΓGyri,WM,old ΓGyri,EM,young ΓGyri,EM,old

ΓGyri,WM,young 0.0000 0.3495 0.1324 0.3791

ΓGyri,WM,old 0.3495 0.0000 0.3345 0.0897

ΓGyri,EM,young 0.1324 0.3345 0.0000 0.3629

ΓGyri,EM,old 0.3791 0.0897 0.3629 0.0000

Table 4.3: Jensen-Shannon divergence measure for the networks at Gyri level, whereas WM =

working memory, EM = episodic memory.

Network ΓBrod,WM,young ΓBrod,WM,old ΓBrod,EM,young ΓBrod,EM,old

ΓBrod,WM,young 0.0000 0.3531 0.2584 0.3593

ΓBrod,WM,old 0.3531 0.0000 0.3358 0.1556

ΓBrod,EM,young 0.2584 0.3358 0.0000 0.3715

ΓBrod,EM,old 0.3593 0.1556 0.3715 0.0000

Table 4.4: Jensen-Shannon divergence measure for the networks at Brodman level, whereas WM =

working memory, EM = episodic memory.

The most intriguing fact we observe from the tables is that the structural distance

between the networks for different memory tasks (within the same age group) becomes

much smaller with age, in particular:
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D(ΓGyri,WM,young,ΓGyri,EM,young) = 0.1324 > 0.0897 = D(ΓGyri,WM,old,ΓGyri,EM,old)

The relation holds true for Lobe level and Brodmann level networks as well. Hence, this

means that the networks not only change their structure with age, but also converge

together structurally. In other words, the functional networks for senior individuals are

much more similar to each other than this is the case for young subjects. Of course,

when interpreting these results we have to bear in mind that the data, which we

base our analysis on, come from a cross-sectional study. Hence, theoretically, it could

be the case that the structural changes are due to a bias in the population sample.

However, there is no evidence for such a bias and we (globally) assume our methods

are applicable.

Synchronizability analysis. We evaluated the synchronizability of the clustered

functional brain networks, i.e. we computed the eigenratio λ2
λN−1

. This ratio is a proxy

for the synchronizability of networks and holds for a large class of functions. The only

assumptions needed are continuous differentiability for the dynamics applied to the

nodes, as well as a compact chaotic attractor. Please see chapter 3 for details. The

results of this analysis are shown in Table 4.5, 4.6 and 4.7. We can read from the tables

that synchronizability of the networks increase with age, independent of the memory

task. This holds true for all levels: Lobe, Gyri and Brodmann. Hence we can state that

the functional networks for senior individuals allow for a much faster synchronization

than it is the case for younger individuals.

Network ΓLobe,WM,young ΓLobe,WM,old ΓLobe,EM,young ΓLobe,EM,old

Synchronizability 0.7147 0.8225 0.6899 0.8162

Table 4.5: Synchronizability measure for the networks at Lobe level, whereas WM = working

memory, EM = episodic memory.

Network ΓGyri,WM,young ΓGyri,WM,old ΓGyri,EM,young ΓGyri,EM,old

Synchronizability 0.6231 0.7738 0.6281 0.7757

Table 4.6: Synchronizability measure for the networks at Gyri level, whereas WM = working memory,

EM = episodic memory.
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Network ΓBrod,WM,young ΓBrod,WM,old ΓBrod,EM,young ΓBrod,EM,old

Synchronizability 0.6402 0.8012 0.5906 0.7881

Table 4.7: Synchronizability measure for the networks at Brodmann level, whereas WM = working

memory, EM = episodic memory.

Entropy analysis. We computed the Shannon entropy for the clustered functional

brain networks. Please recall that we defined the entropy as

H(P̂ ) = −
∑
i,j

πip̂ij log p̂ij =
∑
i

πiHi

whereas Hi is the standard Shannon entropy defined for each node i and πi are the

components of the stationary distribution, see [MDV04] or chapter 3 for a formal

definition. The results for the different networks are listed in table 4.8:

Network Γ Entropy H

Brodmann, old, episodic H = 4.5514

Brodman, old, working H = 4.505

Brodman, young, episodic H = 4.0010

Brodman, young, working H = 4.1212

Gyri, old, episodic H = 4.5960

Gyri, old, working H = 4.4644

Gyri, young, episodic H = 3.7790

Gyri, young, working H = 4.1111

Lobe, old, episodic H = 3.0994

Lobe, old, working H = 3.038

Lobe, young, episodic H = 2.7695

Lobe, young, working H = 3.114

Table 4.8: Entropy values of the different networks. The potential Φ has been normalized in order

to allow for a comparison.

From these results we can see that

H(Γepisodic,old) ≈ H(Γworking,old)

H(Γepisodic,young) < H(Γworking,young)
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whereas we denote by H(Γ) Shannon entropy measure for the networks, accordingly.

The two relations above hold true for all levels: Lobe, Gyri, Brodman. Besides this

result we have in general:

H(Γold) > H(Γyoung)

whereas only lobe level (and only for working memory) is an exception, which might

be considered as an outlier due to the very coarse structure at this anatomical level

(n = 10).

The results of the entropy analysis can be interpreted as follows: the networks of older

individuals are more noisy than the networks of younger subjects. However, we can tell

from the entropy-robustness principle that older networks are more robust, i.e. they

exhibit a faster approach to steady state. This result is very intuitive since, in general,

we can think of a brain state as a certain activity pattern which arises after some input

signal and/or processing. This is then the steady state, and older people are capable

of reaching this steady faster than younger people. Hence, this can be read as follows:

during ageing the brain builds certain well trotten trails, which are easier to reach for

older people after there has been some input signal. On the other hand, the network

of younger people might be more flexible and can more easily deviate from these paths.

Summary and discussion of key results:

• The spectral plots of all networks are asymmetric about 1 and exhibit a shift

to the left. Spectral plots of older individuals become more homogenous,

independent of the memory task. The spectral plots fit well into the clas-

sification scheme of network spectra, suggested by Jürgen Jost in [BJ07],

[BJ08]. The brain functional networks exhibit a similar spectral plot as other

biological networks, e.g. high peak around the eigenvalue 1, but there are

sufficiently distinct and network generation principles should be examined in

future research.

• The Jenson-Shannon divergence measure quantifies the structural distance

and reveils that the networks of both memory tasks become structurally sim-

ilar with age, i.e. the working and episodic memory networks converge in

their structure, from young age to older age.
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• The networks of senior individuals allow for a much better synchronizability

than it is the case for younger subjects. Synchronizability can be gauged by

two important eigenvalues from the Laplacian spectrum, and as we showed in

the theoretical part (chapter 3), applies to a broad class of possible functions

governing the dynamics. However, synchronizability is not easy to interpret

in the case of functional brain networks since these networks arise from cor-

relation networks. In order to interpret synchronizability, we consider the

edges in the correlation network, i.e. the high-correlation links as static and

as the only possible way for informational flow between the network nodes.

The result is in good agreement with the entropy result since older networks,

i.e. well trotten trails should be faster to synchronize.

• The networks of older people exhibit a higher entropy, i.e. older networks are

more noisy than younger ones. This corroborates very well our hypothesis

of over-activation, since these noisier networks exhibit more redundancy. On

the other hand, from the entropy-robustness principle we can tell that older

networks are more robust, i.e. they exhibit a faster approach to steady state.

Statement: We postulate that life-long learning, i.e. neural rewiring, describes

a process to ever increasing entropy for the brain connectivity patterns. In other

words, older networks are noisier than younger ones. On a physiological level, old

networks are much more vulnerable in terms of cell defects (e.g. increased oxidative

stress) but this vulnerability is much better accepted by high-entropy networks, see

entropy-fluctuation theorem in chapter 3. Hence, neural ageing can be described

as an evolution to evolvability.
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Persistent homology

In this section we will present the results obtained by the algebraic topological method.

We use persistent homology to analyse the networks, please see chapter 3 for the

definition. We will consider the anatomically clustered networks at lobe, Gyri and

Brodmann level. Please recall that these networks are represented by weighted and

normalized networks, see also the visualizations in Fig. 4.5, 4.6 and 4.7.

Computing persistent homology requires a filtration and we use the following algorithm,

which we already stated in chapter 3:

(1.) all nodes exist already at the beginning of the filtration, being 0-simplices.

(2.) we pick a start node v0, the choice of this seed node remains arbitrary but we

keep this choice fixed for all networks.

(3.) 1-dimensional simplex is added to this node, then 2-dim, 3-dim, etc. (up to the

highest possible dimension at this step).

(4.) at each filtration step we add one more node, once we have three nodes we may

add the face of a triangle, similarly in higher dimensions.

(5.) these steps are iterated until all 0-simplices have been included and all simplices

have been added up to the highest possible dimension.

Note that the choice of the seed node remains arbitrary but keeping the choice of this

node fixed for all networks allows for a comparison. Moreover, the actual choice is

rather unimportant since we are only interested in qualitative features of the networks.

As the results show this method is very fine and detects subtle changes in the structure

while distinguishing from noise at the same time. Since we will restrict ourselves on

presenting the results for the Gyri level networks, we will give a detailed interpretation

for these results, bearing in mind that it is completely analogous for the other networks.

We chose as seed node v0 the first node in the clustered connectivity matrix of the

network. The visualization of this network is shown in Fig. 4.6, starting at top and

going clockwise. Of course, this is not the only possible filtration, however, we believe

that it is appropriate since it reflects well the possible dynamics of the network. Ideally,

one would like to know the exact sequence how the network was built but this certainly
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does not apply to our case where the network was obtained from correlations of time

series. However, this method can be seen as a proxy to detect the (dynamic) evolution

of the network. As explained in chapter 3, persistent homology detects long-living

topological properties.

The graph of the persistent homolgy (PH), which is also called homology barcode,

consists of the time (x-axis) which quantifies the state of the simplicial complex

(SC). The y-axis represents the simplices whose number may be read off the digram.

Hence, the whole diagram represents the evolution of voids (0-dim, 1-dim and so

on) in the simplicial complex, as it evolves from the most simple case (just nodes)

to the most comlicated one containing faces of the highest possible dimension.

Computation was performed with Matlab, using the JPLEX package, provided as

free software from http://comptop.stanford.edu/u/programs/jplex/, see also the

theoretical section on this in chapter 3. It can be shown that the persistent homology

of a filtered simplicial complex is simply the standard homology of a particular graded

module over a polynomial ring, cf. [ZC05]. At the end of this section we include the

complete list containing the number of the simplices of different dimensions that appear

in the filtration.

When reading the homology plots one has to bear in mind that we analyse the anatom-

ically clustered and weighted networks. Hence, in order to do the homology compu-

tations we need to binarize the networks again. However, since we do not want to

loose the information given by the weights, we used four slicing parameters in a wide

range: θ = 0.2, θ = 0.4, θ = 0.6 and θ = 0.8. However, we will not account for the

weights given at the nodes, which are the intraregional connections in the respective

anatomical structure. These weights on the nodes will be globally normalized to 1.

Hence, we will only analyse the spatial organization of the correlations between the

individual regions. Nevertheless, we believe that this is not a drawback of the method

since we are primarily interested in the interplay of the regions. We computed the

homology for each of the three anatomical levels: Lobes, Gyri, Brodmann. However,

since we believe that the Gyri level contains most information, which is relevant for

our purposes, we will only present the plots for the Gyri level networks, see Fig. 4.11

until Fig. 4.18. Hence, we obtain four times four diagrams: each configuration, e.g.

episodic memory network for younger individuals, yields four diagrams, one per slicing
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parameter. However, as already mentioned, we include a comprehensive list, covering

all three anatomical clustering levels and containing the number of simplices of different

dimensions that appear in the filtration.

When looking at the plots for one possible configuration, one should look at them

all together at once and read them as they were kind of an evolution. By doing the

slicing from 0.2 to 0.8, one starts by forgetting the weakest interregional connections

and then finally only considering the strongest links.

Our first observation is that for all possible configurations (old/young, working/episodic)

the topological complexity first increases, i.e. when moving from slicing parameter 0.2

to 0.4 or 0.6 and then decreases again since by restricting to the strongest links the

networks strongly shrinks in size and, thus, reduces its complexity. Moreover, we ob-

serve from the diagrams that all networks show very different persistence features,

which indicates that the method is very sensitive in detecting topological changes of

the networks. The x-axis represents time, which in our case means the different steps

of the filtration process: moving from the most simple case (just nodes) to the most

complicated one containing faces of the highest possible dimension. The y-axis repre-

sents the number of the (generating) simplices in a particular dimension, hence it is

the dimension, or more precisely rank, of the free chain groups.

Topologically, we can interpret the different Betti numbers: the zeroth Betti number

reflects the number connected components. The 1-dimensional voids are calculated

by the first Betti number. In a certain way, the 1-dimensional voids reflect that

informational flow needs to be re-directed in order to reach the target nodes. The

same applies in a similar way to higher dimensions: a persistent homology class in a

higher dimension can be interpreted in such a way that, during its existence in the

filtration, informational flow needs to circumvent this obstacle. This obstacle is a

higher-dimensional topological structure in the connectivity pattern of the network.

It is also important to pay attention to the maximal Betti numbers, i.e. the maximal

dimension of voids present in the network and their duration. Some networks have

clearly longer lasting voids than others: for example, comparing Fig. 4.11 / 4.12 with

Fig. 4.15 / 4.16 , that is: episodic network of older individuals with that of younger

ones, we can see that
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(1.) The episodic network of older individuals, i.e. Fig. 4.11 / 4.12, exhibits only one

(long-lasting) component for slicing parameter 0.2 and 0.4, which we can tell from

the first barcode plot. This single component is being generated by one node, and

the network only starts falling apart when restricting to very strong links, that is,

i.e. for slicing parameter 0.6 and higher there are more than one component that

last over longer period of time. Interestingly, for slicing parameter 0.2 there are

several long-lasting voids of dimension 2, in other words two-dimensional holes

which persist over a longer period of filtration steps. These, however, do not

appear in dimension 1, and they become fewer when moving to slicing parameter

0.3.

(2.) The episodic network of younger individuals, i.e. Fig. 4.15 / 4.16, already ex-

hibits several (long-lasting) components at slicing parameter 0.2. This means, in

turn, that the weighted, clustered and connected Gyri network, which we started

from, is only held together by very weak links. This is contrary to the case of

older subjects’ network, for the same memory task. For the younger individu-

als, there is a similar pattern but this is shifted to lower slicing parameters, i.e.

the appearance of higher-dimensional voids already takes place at slicing level

0.2. Moreover, for youger individuals there are long-lasting voids of dimension 2,

which do appear for older people but only at slicing parameter 0.6.

A very intriguing observation concerns the homology barcode plots for young and

elderly individuals, working memory: from entropy analysis we know that the net-

works get noisier with age which corroborates the over-activation hypothesis. The

topological analysis of the networks helps to refine this statement: if we look at the

homology barcode plots for the working memory network of the elderly individuals

(Fig. 4.13) we see that at slicing parameter θ = 0.2 the homology pattern ends up

at dimension 2. Now, if we remove these weak links from the network, i.e. going to

slicing parameter θ = 0.4 , we see that the homology structure is almost identical

to that one for young individuals but at slicing level θ = 0.2. There are holes up to

dimension 5 and 6, respectively. This Swiss Cheese pattern is already achieved

by very weak links (θ = 0.2) for the young individuals (Fig. 4.17), whereas the se-

niors need to strengthen these links (θ = 0.4) in order to achieve the same pattern.

We use the informal notion Swiss Cheese to refer to the homological pattern which

exhibits non-vanishing homology up to high dimension.
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Fig. 4.11: Homology bar code for the episodic memory network at Gyri level and for older individuals,

slicing parameter 0.2 and 0.4, cf. [SHR12].
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Fig. 4.12: Homology bar code for the episodic memory network at Gyri level and for older individuals,

slicing parameter 0.6 and 0.8, cf. [SHR12].
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Fig. 4.13: Homology bar code for the working memory network at Gyri level and for older individuals,

slicing parameter 0.2 and 0.4, cf. [SHR12].
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Fig. 4.14: Homology bar code for the working memory network at Gyri level and for older individuals,

slicing parameter 0.6 and 0.8, cf. [SHR12].
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Fig. 4.15: Homology bar code for the episodic memory network at Gyri level and for younger

individuals, slicing parameter 0.2 and 0.4, cf. [SHR12].
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Fig. 4.16: Homology bar code for the episodic memory network at Gyri level and for younger

individuals, slicing parameter 0.6 and 0.8, cf. [SHR12].
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Fig. 4.17: Homology bar code for the working memory network at Gyri level and for younger

individuals, slicing parameter 0.2 and 0.4, cf. [SHR12].
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Fig. 4.18: Homology bar code for the working memory network at Gyri level and for younger

individuals, slicing parameter 0.6 and 0.8, cf. [SHR12].
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Fig. 4.19: Number of simplices of different dimensions that appear in the filtration, cf. [SHR12].
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Fig. 4.20: Number of simplices of different dimensions that appear in the filtration, cf. [SHR12].
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Fig. 4.21: Number of simplices of dfferent dimensions that appear in the filtration, cf. [SHR12].
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Summary of key results:

• All networks show very different persistent homology features. The homology

method is more sensitive than statistical or spectral methods regarding the

detection of structural changes.

• Episodic memory networks of older individuals exhibit only one connected

component up to slicing 0.6. Then it starts falling apart. At slicing level

0.4 there are long-lasting 3-dimensional voids. Episodic memory networks

of younger individuals already has several connected components at slicing

level 0.2. Compared to older subjects’ episodic network there are long-lasting

1-dim. and 2-dim. voids, at slicing level 0.2.

• Working memory networks of older individuals show only one connected com-

ponent compared to several ones for younger subjects, at slicing level 2. How-

ever, compared to the same age group and to the episodic memory task, there

are now several long-lasting voids in dimension 2, more prominent for older

subjects than for younger ones.

Statement: Ageing processes leave traces in the homology pattern of the networks.

For example, comparing Fig. 4.13 and Fig. 4.17, i.e. the homology barcode plot

for working memory networks of elderly and young individuals, respectively, we see

that young individuals already achieve a homological Swiss Cheese pattern at weak

links (θ = 0.2), whereas almost the same pattern appears for the seniors only at

stronger links (θ = 0.4). Assuming that the working memory for young individuals

works better in terms of reliability and efficiency, i.e. defines a benchmark, we

can deduce from the homology analysis that elderly individuals compensate this by

over-activating, producing some topological noise as a side effect. We use the infor-

mal notion Swiss Cheese to refer to a high-dimensional homological pattern which

exhibits non-vanishing homology up to high dimension. The non-vanishing homol-

ogy can be interpreted as higher-dimensional holes or voids in the connectivity

pattern.
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Chapter 5

Outlook

The results of this thesis attempt to contribute to an enhanced understanding of the

functional connectivity networks during episodic and working memory. The main re-

sult, grosso modo, is that senior individuals exhibit expanded functional neural net-

works with less differentiation between episodic and working memory demands. We ob-

served asymmetric compensatory mechanisms, mainly in fronto-parietal regions. More-

over, our findings show that older networks exhibit a higher entropy as well as a higher

synchronizability. Ageing processes leave traces in the topological structure, which can

be deduced from the homology analysis. However, there are many open questions that

could be addressed in future research on this topic. We would like to mention some

possible future research threads:

• Concerning the experimental data acquisition, we would like to suggest to ex-

tend and apply the network approach to resting state data in order to analyze

the dynamical interplay of network changes between active and resting states, re-

spectively. Future studies should, moreover, focus on regional changes in BOLD

responsitivity, which would allow for a further distinction between compensation

mechanisms and neural dedifferentiation. In addition, we would like to suggest

accompanying studies focusing on anatomical networks, using MNI tensor imag-

ing analysis.

• Concerning the functional brain networks, one should try to extend the spectral

analysis and persistent homology analysis to the unclustered networks, which we

considered in the very first part of the statistical analysis. However, this would

be computationally very cost-intense and was beyond the computational means
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we had at hand for this work. Moreover, one could also look in detail at the

different lobe structures and analyze their internal connectivity pattern by using

the spectral method and persistent homology.

• On the theoretical side, we would like to suggest further theoretical research on

(generic) network models, which would re-produce networks with a pre-defined

spectral pattern. For the time being, there are only very few network processes

known, e.g. random deletion, motif doubling, preferential attachment etc., but

these do not suffice to explain the spectral patterns which we obtained from

our analysis. Such models would then help to explain biological processes which

govern the connecvity patterns. Moreover, we would like to suggest further theo-

retical research on simplicial complexes of networks: on the one hand, one should

try to link higher-order Laplacian operators, e.g. Laplace-Beltrami, to properties

of the underlying network structure. Additionally, one could work on appropri-

ate entropy measures that can be defined on simplicial complexes. On the other

hand, it seems very interesting to link the persistent homology approach with the

dynamics of a network.
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Foundations of network analysis

This chapter provides the basics of network theory. The experienced reader is kindly

asked to skip this section, referring back if necessary. For reference on the material

presented here see, for example, [New03], [BA99] or [DM03].

Motivation

The historical origin of graph theory is rooted in the the physical world. In 1735

the legendary Swiss born mathematician Leonhard Euler (1707− 1783) solved the so-

called Königsberg bridge problem: he showed that it was impossible to traverse the

seven bridges across the Pregel river exactly once in a single trip, while starting and

returning at the same point. In his proof of the conjecture, Leonhard Euler represented

the problem as a small and undirected graph with multiple links, cf. [Har69].

Fig. 5.1: Original schematic diagram drawn by Leonhard Euler in 1735.

Leonhard Euler’s approach is today regarded as the birth of a new branch in mathe-

matics: graph theory. In the middle of the nineteenth century, graph theory had been

enriched by many theoretical concepts, being inspired both from real-world problems

87



such as the analysis of electrical circuits and the exploration of chemical isomers as

well as from inner-mathematical problems, cf. [Har69] and [Wes96].

Significant progress in network theory had been made in the course of the study of social

networks, cf. [WF94]. In 1967, the social psychologist Stanley Milgram (1933− 1984)

conducted a prominent experiment, cf. [Mil67]. He monitored paths of acquaintance-

ship across a large social network in the United States and discovered the impressive

smallness of the world of social relations. But the origins of this small-world phe-

nomenon remained obscure until in 1998 Duncan J. Watts and Steven Strogatz asso-

ciated it with specific types of connectivity, cf. [WS98]. Almost at the same time,

in 1999, the Hungarian physicists Albert-László Barabasi and Réka Albert unveiled

the scale-free structure of many real-world networks, cf. [BA99]. Both discoveries

launched a new era of network theory, first and foremost driven by insights from sta-

tistical physics. Today, network theory pervades many areas of science and networks

are widely used to represent technological, biological and social systems, cf. [New03],

[BLM+06], [DM03] and [AO04]. Neural systems have long been described as sets of

discrete elements linked by connections. Nonetheless, network theory has essentially

only been applied to neuroscience roughly in the past 15 years, cf. [BS09] and [Bre95].

Although in most of the literature the two notions graph and network are used inter-

changeably, we dare to give a semi-formal definition of what is nowadays understood

as being a network rather than a graph.

Definition 6. A network is a real-world system that is being represented as a

mathematical graph G = (V , E) in which each element of the real-world system is

represented by a node i ∈ V and a relationship or interaction between two elements

is represented by an edge eij ∈ E between the corresponding nodes in the graph.

By abuse of notation, we will continue using both notions, network and graph, in-

terchangeably but reminding ourselves of the possible distinction whenever it will be

necessary.

Basic network formalism According to definition (2.1), the representation of a

real-world system as a network requires the precise specification of nodes and edges.
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Two nodes are said to be neighbors if they are connected by an edge, and the degree ki
of node i is the number of neighbors it has. The complete description of a particular

graph is provided by its adjacency matrix (A)ij. An unweighted graph of N vertices

has an N × N adjacency matrix, having entry Aij = 1 if node i is connected to node

j, being 0 otherwise. Possibly, the boolean entries of A are replaced by values in [0; 1],

representing weights of the edges.

Fig. 5.2: Representation of a network as a graph, unweighted and weighted case. Copy-

right: Stam and Reijneveld (2007), [SR07].

Graph topology can be quantitatively described by a wide variety of statistical mea-

sures, some of which are discussed here. It is not yet established which measures are

most appropriate for the analysis of brain networks. We will later see that spectral

methods as well as methods using algebraic topology can give much more insight into

networks, especially into the global dynamics of networks.

Characteristic network measures

In the remaining part of the chapter we introduce some fundamental quantitative-

statistical network characteristics, which will be used in the course of the analysis. For
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further reference, please see, for example, [BA99], [SR07] .

Degree and degree distribution The simplest local characteristic of a vertex is

its degree ki: the total number of edges attached to a vertex. The degree is the most

fundamental network measure and most other measures are ultimately linked to this

concept. Hence, it appears to be obvious to look at the distribution of the degrees in

a particular network: the degree distribution P (k) is the probability that a randomly

chosen node in a random network has degree k:

P (k) =
〈N(k)〉
N

Here, 〈N(k)〉 is the average number of nodes of degree k in the network, whereas

the averaging is over the entire statistical ensemble. Of course, we assume that the

total number of nodes N stays the same. When doing empirical network research, i.e.

looking at one particular graph G, then one measures the frequency of occurence of

nodes with degree k in this graph: PG(k) = NG(k)/N . Here, NG(k) is the number

of nodes of degree k in graph G. This is also usually called degree distribution. In

random networks all connections are equally probable, resulting in a Gaussian and

symmetrically centred degree distribution, cf. [BS09]. Complex networks generally

have non-Gaussian degree distributions, often with a long tail towards high degrees.

For example, the degree distributions of scale-free networks follow a power law, cf.

[BA99]: that is, the probability that a node has degree k is given as P (k) ∼ k−λ.

In biological systems, the degree exponent λ often ranges between 2 and 3, and the

very gradual (heavy-tail) power law decay of the degree distribution implies that the

network lacks a characteristic scale - hence such networks are called scale-free networks,

cf. [BS09]. However, due to physical constraints, physically embedded networks, in

which nodes have limited capacity for making connections, often do not have pure power

law degree distributions. When analyzing these kind of networks one often experiences

exponentially truncated, or so-called cut-off power law degree distributions. This will

also be the case for the the fMRI1 networks which we analyze in this work.

Density The density of a network is the ratio between the number of existing edges

and the total number of theoretically possible links in a network of the same size, which

is, for a network of size N : N(N−1)
2

.

1fMRI = functional magnetic resonance imaging
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Clustering coefficient The notion of clustering coefficient of a network is a pivotal

concept which measures the extent to which the neighbors of a node are also connected.

Watts and Strogatz [WS98] defined the clustering coefficient of node i by

cwsi =
2Ei

ki(ki − 1)
(5.1)

where Ei is the number of edges between the neighbors of i. Usually, the arithmetic

mean of cwsi over all nodes is defined as the clustering coefficient Cp of the whole net-

work. Cp is a measure of the extent of local cluster or cliquishness of the network.

Clearly, 0 ≤ Cp ≤ 1; and Cp = 1 if and only if the network is fully connected, that is,

each node is connected to all other nodes.

An alternative measure for network clustering is given by [NMW00], also called tran-

sitivity. It is expressed by:

C∆ =
3× number of triangles

number of paths of length 2
(5.2)

where a triangle is a set of three nodes in which each contacts the other two. Both

notions of clustering are quite intuitive and are often in good agreement. For com-

putational reasons and for the sake of consistency with the existing literature, we will

mainly consider C∆ here, unless otherwise indicated. For further reference, see also

[New03], [BS09] and [HG08].

Average shortest path length Another important measure is the average shortest

path length. In the case of an unweighted graph the path length or distance di,j between

two vertices i and j is the minimal number of edges that have to be travelled to go

from i to j. This is also called the geodesic path between i and j. The average shortest

path length L of a graph is the mean of the path lengths between all possible pairs of

vertices:

L =
1

N(N − 1)

∑
i,j∈N, i 6=j

di,j

The average shortest path length is a global characteristic; it indicates how well inte-

grated a graph is, and how easy it is to transport information or other entities in the

network. This definition has been taken from [SR07].
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The degree distribution, clustering coefficient and path length are the core statistical

measures of graphs. On the basis of these measures four different types of graphs

can be distinguished: (i) ordered, (ii) small-world, (iii) random and (iv) scale-free. A

further sub-division is described in Amaral et al. [ASBS00]. Here, we will only briefly

describe random networks and the important concept of small worldness.

Random network This paragraph is based on [Dor09], please see also [NSW01] for

further reference. In terms of statistical physics, a random network is not a single

graph but a statistical ensemble. This ensemble is defined as a set of its members, i.e.

particular graphs, where each member has its own given probability of realization. By

this definition, a given random network is some graph with one probability, another

graph with another probability, and so on. To obtain a characterizing quantity of a

random network, one should, in principle, collect the full statistics for all members of

the statistical ensemble, or at least, and in practice, averaging over a large number

of realizations. The simplest random networks are so-called classical random graphs.

There are two main versions of classical random graphs: the Gilbert model and the

Erdös-Renyi model, we shall only make use of the latter one. The Erdös-Renyi model

is a statistical ensemble of all possible graphs of precisely N vertices and precisely E

edges, where each member of the ensemble has equal probability of realization. To put

it in a nutshell, an edge in this model is being put between each pair of nodes with

equal probability, independently of the other edges.

Random networks have low average clustering whereas complex networks have high

clustering, which is associated with high local efficiency of information transfer and

robustness.

Small-worldness The notion of small-worldness has been introduced by Watts and

Strogatz in [WS98] and is, intuitively, defined as follows: a network G is called a

small-world network if it has a similar average shortest path length but has a greater

clustering coefficient than an equivalent Erdös-Renyi random graph with the same

number of nodes and edges, whereas an Erdös-Renyi random graph is constructed by

uniquely assigning each edge to a node pair with uniform probability, cf. [Bol01] and

cf. [HG08].

Many real-world networks fall into the broad class of small-world networks: tightly

interconnected clusters of nodes and an average shortest path length that is similar
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Fig. 5.3: Schematic visualization of small-worldness, see Watts and Strogatz, [WS98].

to an equivalent random graph, cf. [HG08]. This definition of small-worldness is

semi-quantitative and yields a categorical distinction between networks, but it is un-

satisfactory that there remains uncertainty about the extent of a network’s small-world

status.

In order to give a quantitative definition of small-worldness we will adopt the approach

of [Spo06] and [HG08], see also [BMLA+06], [ASW+06] for further reference. The

trade-off between local cliquishness, i.e. high local clustering, and average shortest

path length can be used to quantify the notion of small-worldness. This will enable us

to compute and statistically determine the small-worldness of a given network.

Let G be a network with n nodes and m edges. Let Lg be the average shortest path

length of G and let C∆
G be its clustering coefficient, using definition (3.2). Let Lrand and

Crand be the respective quantities for the corresponding Erdös-Renyi random graph.

The intuitive notion of small-worldness implies that a network is said to be small-world

if Lg ≥ Lrand and C∆
g � C∆

rand. Now we put

γ∆
g =

C∆
g

C∆
rand

and λg =
Lg
Lrand

(5.3)
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Definition 7. A network G is said to be a small-world network if

S∆ :=
γ∆
g

λ∆
g

> 1 . (5.4)

Of course, a complete analogous definition can be given for Sws. However, due to

convenient computational properties of the notion of transitivity and as already stated

before, we will be mainly using C∆, hence S∆. For example, one can show analytically

that, under the conditions such as a constant rewiring parameter, the small-worldness

S∆ scales linearly with network size n. For further reference, see also [HG08] and

[Spo06].

Betweenness The betweenness of a node quantifies grosso modo the importance

of this node regarding the number of shortest paths passing through this node. In

particular, the betweenness of a node m is defined as the probability that a shortest

path between a pair of vertices of a network passes through this node. Let the total

number of the shortest paths between node i and node j be B(i, j), and B(i,m, j) be

the number of them passing through node m. Then we define:

b(m) =
∑
i 6=j

B(i,m, j)

B(i, j)

Unlike the degree, the value of the betweenness of a node reflects the topology of the

entire graph, nodes with a high betweenness play an important role in a network and

can be thought of as central bridges. This definition has been taken from [Dor09],

please see for further reference.

Cost-efficiency The cost efficiency of a network, see Achard and Bullmore [AB07], is

defined as the difference between the global efficiency Eglobal and the density, whereby

the global efficiency of a network is defined as the inverse of the harmonic mean of the

minimal path lengths,

Eglobal =
1

N(N − 1)

∑
i 6=j∈G

1

Li,j
,

normalized by the global efficiency of a fully connected graph of the same number of

nodes.
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Modularity and clustering For the sake of completeness, we shall mention the

notion of modularity when it comes to community detection in networks. The ba-

sic concept is an optimization task over all possible partitions of the given network

subject to the maximization of a so-called modularity function. However, we will de-

liberately not pursue this approach since at this stage we shall make intensive use of

the anatomical information that is contained in the raw data. This does not contradict

the completely blind, i.e. hypothesis-free, approach that we initially mentioned. To

the contrary, as we will see, we have not made use of any hypotheses up to that stage.

We will use the anatomical coordinates of the nodes in order to anatomically cluster

instead of using Newman’s modularity approach. Our strategy will be described in

detail at the end of the next chapter. For further reference on Newman’s modularity,

please see [New03].
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Biological background

In the appendix, we give a short summary of the biological background, including

neurophysiology, neuroanatomy and memory processing. This chapter, though relevant

and necessary, can be skipped and considered as a reference for later use.

Neurophysiology and neuroanatomy

This thesis analyses functional brain networks, and thus focuses on the large-scale

processing of memory related information. Nevertheless, we considered it necessary to

summarize the basics of neurophysiology as well as neuroanatomy. This section primar-

ily addresses the medically unexperienced reader and is based on [KSea09], [DSH05]

and [JW94].

Cytoarchitecture of neural cells

A neuron basically consists of a cell body (soma or perikaryon) and one or more

cellular projections. These projections can be further subdivided into dendrites and

axons. Dendrites receive the excitation signal which is triggered by a variation of

voltage-gated ion conductances. Axons serve as the connection to other neurons and

muscle cells, cf. Fig. (5.1).

The terminal split-up of the axons (telodendron) together with the neighboring cell

and the interjacent gap constitute the synapse, where the excitation transfer from

one neuron to the other takes place. In the central and peripheral neural system

the neuronal structures are enclosed by glial cells. Some glial cells primarily have
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Fig. 5.4: Schematic of a neural cell. Copyright: http://www.cns.nyu.edu/∼david/courses/
perception/lecturenotes/brain/ brain-slides/neuron.gif, Date: Sep 15th, 2011.

a supporting function, others control the internal environment of the brain, i.e. the

surrounding fluid of the neurons and the nutrifying of the neurons.

Action potential

Neurons are capable of triggering and transmitting informational signals by means of

changing the transmembrane potential difference. These changes are processed by ionic

currents (Na+ and K+) alongside the nerve fibre membrane. These local variations in

the transmembrane potential are called action potential and are used for informational

coding. The action potential itself is based on voltage-controlled ionic channels, which

become permeable for Na+ and K+, and is triggered by a depolarization (between the

interior and exterior of the cell) of the so-called resting potential, which is roughly

between -80 and -90 mV. The neurophysiological cycle of an action potential consists

of the following chronological chain of processes: the increasing depolarization, the

overshooting (i.e. reversal of the membrane potential) and the repolarisation phase

with hyperpolarization. The complete cycle lasts just about 1 ms.
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Transmission of excitation

Action potentials are transmitted alongside the nerve fiber and are conveyed to neigh-

boring neurons (so-called effector cells) via the synapses. This process is carried out by

transmitters which are emitted into the synaptic gap and which bind to post-synaptic

ionic channels. This yields a change in the post-synaptic membrane potential, either

excitatory (EPSP) or inhibitory (IPSP). In the case of an EPSP an action potential

will be triggered in the effector cell if the membrane threshold is exceeded.

Neuroanatomy

This section is a short summary of basic neuroanatomical results and is intended to

ease the readability of subsequent chapters. Further reference can be found in [Tre11].

The complete human nerval system contains roughly 1012 neurons and is subdivided

into the central nerval system and the peripheral nerval system. The central nerval

system is structured into white and grey matter. Grey matter is defined as those regions

in which neuronal cell bodies predominate. It consists therefore of cell bodies, neuropil,

glial cells and capillaries. White matter, in contrast, mainly contains myelinated axons.

Nuclei and cortices are regions where grey matter can be primarily found.

Based on morphological, phylogenetic and functional aspects, the human brain can be

subdivided in medulla oblongata, pons, mesencephalon, diencephalon, cerebellum and

telencephalon, also known as cerebrum, cf. Fig. (5.4).

The cerebrum is the most differentiated and largest part of the brain and can only

be found in such a way in the human organism. It consists, macroscopically, of two

hemispheres, divided by the media longitudinal fissure (fissura longitudinalis cerebri)

and connected by the colossal comissure (corpus callosum). Each hemisphere consists

of the frontal lobe (lobus frontalis), the parietal lobe (lobus parietalis), the temporal

lobe (lobus temporalis) and the occipital lobe (lobus occipitalis). Additional to this

structural classification, further anatomical structures are the insular cortex (lobus

insularis), which is located between the temporal and the frontal lobe, and the cin-

gulate cortex (gyrus cinguli), situated above the corpus callosum. The surface of the

cerebrum is folded with respect to a surface enlargement designated by ridges (so-

called gyri) and depressions (so-called sulci) of the cerebral surface. With respect

to cyto-architectonical aspects, the cerebrum has been classified by Korbinian Brod-
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Fig. 5.5: Diagram of the brain from a lateral view. Copyright: Kandel et al. 2000, [KSJ00]

mann [Bro09] in more than 50 areas with beginning enumeration in the postcentral

gyri (Brodmann’s area: BA 1–3), cf. Fig. (5.5). Phylogenetically, it can be divided in

the striatum, which consists of the caudate nucleus and the putamen (part of the basal

ganglia), the paleocortex, which is the most ancient part of cerebrum, the archicortex

and the neocortex, which appeared most recently in the phylogenesis of human brain.

The paleocortex comprises the rhinencephalon and parts of the olfactory system, as

well as the amygdala, a complex of grey matter which is deeply located in the temporal

lobe, and which is part of the limbic system. The limbic system is particularly associ-

ated with emotional functions. Several further functional aspects are assigned to the
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Fig. 5.6: Brodmann classification of the human cerebral cortex. Copyright: Kandel et al. 2000,

[KSJ00]

amygdala. Besides modulating vegetative functions in the hypothalamus, transmitting

fight-and-flight responses, the amgydala plays an important role in learning emotions

and developping memory.

The archicortex mainly consists of the hippocampus as well as parts of the para-

hippocampal gyrus and cingulate gyrus. Located in the medial temporal lobe, the

hippocampus constitutes a part of the limbic system and is relevant for vegetative

and emotional processes, as well as recognition. It can be divided in the dentate

gyrus, cornu ammonis, and subiculum. The cingulate gyrus, an important part of the

limbic system, is located immediately above the corpus callosum and affects vegetative,

psychomotoric and locomotive processes.

The neocortex or isocortex, which represents the largest part of cerebrum, is associ-

ated with higher mental functions and contains two types of neural cells: excitatory
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pyramidal neurons (85 % of neocortical cells) mostly releasing the neurotransmitter glu-

tamate, and inhibitory interneurons, transmitting GABA (gamma-Aminobutryc acid).

It can be subdivided in the following functional coponents: primary fields, which re-

ceive sensoric afferent information from the thalamus, secondary fields, which enable

first-processing of sensoric information in terms of perceiving and allocating sensoric in-

formation, and, thirdly, associative fields, which are connected afferently and efferently

with several primary and secondary fields and coordinate delivered information.

The following structures can be found in the frontal lobe: (i) the primary motor cortex

(M1) which is located in the gyrus precentral (equivalent to BA 4). It shows an

somototopic arrangement and is supposed to be involved in the voluntary movement

system. (ii) the premotor cortex and supplementary motor area (largely equivalent to

BA 6 and parts of BA 8) which are located next to M1. These regions are supposed

to be involved in modeling of motion-sequences and have a pre-processing function for

M1. The motoric speech centre, including Broca’s area, is located in the inferior frontal

gyrus and surrounding regions. The prefrontal cortex embraces the neocortical regions

in front of M1 and the premotor regions. It is associated to short-term memory and

higher cognitive performances. It receives afferent information from nearly all regions

of the cerebral cortex, from the medial nuclear group of the thalamus and the reticular

formation. The prefrontal cortex is efferently connected with numerous cortical areas

and the thalamus.

The parietal lobe is mainly engaged in the somatosensory system. An important cor-

tical structure in the parietal lobe is the postcentral gyrus (equivalent to BA 1, 2 and

3). It is located next to the lateral sulcus (Sylvian fissure) and seems to be the primary

terminal point of the somatosensitive pathway. In this region, sensory modalities like

temperature, proprioception and nociception become aware without further interpre-

tation. The secondary somatosensitive cortex (equivalent to BA 5 and 7) is located

next to the postcentral gyrus and enables a first-processing of somatosensitive impulses.

The angular gyrus (BA 39) lies near the boundary of the superior temporal sulcus and

is the central switchpoint between the visual cortex and the sensoric speech centre in

the secondary auditory cortex.

The occiptal lobe is the neocortical manifestation of the visual system. The primary

visual cortex (V1) (equivalent to BA 27) is also known as the striate cortex, because

of its macroscopically observable white band (band of Vicq d’Azyr). It can be found
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in and around the calcarine fissure. The secondary visual cortex or prestriate cortex

encircles V1 and comprises BA 18 and 19.

The temporal lobe is significatly involved in the auditory sensory system. The primary

auditory cortex (BA 41) can be found, specifically in the human organism, in the

transverse temporal gyrus, also called Heschl’s gyrus, cf. [GS80] and [LPKL98]. The

secondary auditory cortex (BA 22) is located lateral to A1. The brain functional

lateralization yields that Wernicke’s area is located in the dominant hemisphere, which,

for the majority of human beings, can be found in the left hemisphere.

The thalamus is the largest and most important part of the diencephalon and surrounds

the third ventricle. It consists of multiple nuclei groups with different functions, which

are connected to each other via associative fibres. Almost all sensitive and sensoric

pathways project into the thalamus, where information is re-diverted to the cerebral

cortex. At this connection, many integrative processes occur, which are crucial for the

selection of informational flow.

Memory and its age-related changes

Characterization of memory

Memory is the ability to store, preserve and recall information. William James (1842–

1910) was among the first who described memory as to be ”the knowledge of a former

state of mind after it has already once dropped from consciousness; or rather it is the

knowledge of an event, or fact, of which we have not been thinking, with the additional

consciousness that we have thought or experienced it before”, cf. [Jam90].

Memory can be differentiated into episodic and semantic memory, first proposed by

Endel Tulving in 1972, cf. [Tul72]. Both together make up the declarative memory.

Semantic memory is based on the knowledge which has been learned, whereas episodic

memory is connected to experience in spatiotemporal context and is rather autobio-

graphical in its nature, cf. [KG09] and [Con09]. However, the underlying processes of

extracting and representing experience in episodic memory still remain unknown.

Another distinction of different memory types is based on the persistence of memory
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and dates back to Hermann Ebbinghaus (1850-1909) and William James (1842-1910),

cf. [KG09]. According to this characterization, memory is being subdivided into imme-

diate memory (lasting seconds to minutes), short-term memory (lasting minutes to an

hour) and long-term memory (lasting more than an hour). The storage of information

in short-term memory for the purpose of further processing is also known under the

notion ”working memory”, cf. [BB08].

Nota bene: In the course of this thesis, especially regarding the analysis of

functional networks, we will not further distinguish between immediate memory and

short-term memory and mostly using the latter notion unless otherwise specified.

Analogously, and by abuse of notation, we will use the notions episodic memory

and long-term memory interchangeably.

Knowledge about the anatomical location of brain regions, which are involved in the

processing of memory, emerged in the 1950s for the first time. The examination of

amnestic loss after lesions, mostly in surgical patients, boosted the understanding of

memory localization, cf. [SM57], [GCC88], [ZMS85]. Furthermore, animal experiments

contributed as well to the understanding of memory localization, e.g. also confirmed

a diminuation of memory caused by bilateral lesions in the hippcampus, cf. [ZMS85]

and [Mis78].

Cortical structures that play a crucial role in the formation of memory comprise the en-

torhinal, perirhinal and parahippocampal cortices, cf. [ZMSAS89], [ZMSCR93]. After

memory has been acquired, the neocortex becomes more and more important regarding

memory storage and retrieval, cf. [SB07] and [TPR+06]. The activation of memory,

i.e. the retrieval of information, primarily passes through the hippocampus, which acts

as a hub for the perirhinal and parahippocampal cortex. There are three pathways

for the information flow through the hippocampus: firstly, the entorhinal-hippocampal

pathway (also known as the perforant pathway) from entorhinal cortex to the dentate

gyrus, secondly, the mossy fiber pathway from granule cells of dentate gyrus to Cornu

Ammonis area (=CA) 3 and thirdly, the Schaffer collateral pathway from CA3 to CA.

Memory comprises billions of so-called engrams, which are a hypothetical means by

which memory traces are stored as permanent physiological changes in the brain in re-

sponse to external stimuli. Engrams are built by long-term potentiation (LTP) giving
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due regard to a more cellular level, cf. [BL73]. It is the LTP which causes an enhance-

ment of synaptic transmission that underlies post-synaptically on a displacement of

Mg2+-ion plug from (NMDA)-receptor (N-methyl-d-aspartate). This entails a change

in the activation status of the cell membrane: from hypopolarization to depolarization,

cf. [BC93], whereas Ca2+-ions flow into the cell. Protein kinases, Ca2+-calmodulin and

retrograde signal generators are activated, which lead to enhanced release of glutamate

and trafficking of AMPA-receptors (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid receptor) to the membrane.

LTP can be sub-divided in an early (1–3 hrs.) and a late phase (beyond 24 hrs.),

whereas the early LTP occurs because of the binding of glutamate to AMPA-receptors

and adjacent depolarization. The late LTP, which is crucial for long-term memory, cf.

[ANB+97], [BAB+98] and [PHP+02], needs an induction of genes, cf. [FHK93] and

[QGC+93]. For the consolidation of short-term memory into long-term memory, the

phosphorylation of transcription factors is necessary. This involves the second messen-

ger cAMP1-dependent protein kinase, which modulates the expression of memory genes

like CREB-1 (cAMP response element-binding protein), cf. [ABK98] and [DHK90].

Age-related changes

Ageing is a physiological process which is associated with the deterioration of sensoric

and cognitive abilities, like the slowdown of information processing and the loss of

memory, cf. [BOH89], [GDR00] and [SPAea00]. It is correlated with atrophy, loss

of brain volume, increase in white matter hyper-intensities and vascular changes, cf.

[GJC+99], [KTCea08] and [FF10].

The causes for the loss of volume seem to be multifactorial, examples of which include

the loss of synaptic connections, cf. [Bar04], and the reduction of neuropil, cf. [PMS01].

In this regard, an age-related reduction in grey matter (12–14 %) and white matter

(23–26 %) can be found, which is observed to be non-linear in time, cf. [SPT+03].

In particular, the regression of white matter seems to be a reason for an impairment

of attentional and mental processes, specifically of deficits in memory, cf. [GDR00].

However, the age-related structural changes seem to be quite specific in the different

brain areas. By means of Diffusion Tensor Imaging (DTI) it has been found that there

1cAMP = cyclic adenosine monophosphate
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is an age-related reduction of synaptic connections in the prefrontal cortex that is

associated with attentional deficits, cf. [SMM+95]. In addition to the prefrontal cortex,

there has been found hyperintensities in MRI data of the medial temporal lobe and

the cingulum that are also related to attentional deficits, cf. [NRY+06]. Apparently,

an age-related loss of brain volume can primarily be found in the temporal and frontal

lobe, i.e. in regions that are involved in attentional processes and in working memory,

cf. [ABBD05], whereas the visual cortex seems not to be affected, cf. [RLR+05]. In

particular, the frontal and temporal lobe seem to be vulnerable for structural changes

during the life span, cf. [Gre07]. Because of its integrative function in cognition, the

frontal lobe is assigned an important role in cognitive aging, which is referred to, in

literature, as the ,,prefrontal cortex function theory to cognitive aging“, cf. [Wes96].

A further aspect is that a loss of volume in the hippocampus seems to occur only at

older age. Up to the age of 70 years there cannot be found any reduction of volume

in hippocampus, cf. [SMM+95], whereas after the age of 85 years extensive reductions

accumulate, cf. [MDM+96].

Although many processes can be observed and are assigned an important role in ag-

ing, the different findings are like pieces of an unsolved puzzle. It remains very much

unclear to what extent the structural changes and cognitive functions, such as perfor-

mance of memory, can be set in context, cf. [SKJ02] and [RR04]. However, examining

the age-related changes of interaction between brain areas, could initiate relevant con-

siderations. Grady et al. (2003) examined age-related changes in functional connectiv-

ity between hippocampus and cortical structures during recognition performance, cf.

[GMC03]. In the group of young adults (mean age: 23 years), activity of hippocam-

pus showed a correlation to activity of ventral prefrontal and extrastriate regions. At

this, increased activity of these regions was associated with better recognition. In

the group of older adults (mean age: 66 years) hippocampal activity was correlated

with dorsolateral prefrontal and parietal regions. Similarly to the younger adults, in-

creased activity in these regions was also connected to better memory performance.

The results show that ageing and its effects on memory performance is associated with

functional hippocampal interactions and a ventral/dorsal shift of involved functionally

connected regions. However, it is difficult to separate physiological effects of aging from

pathophysiological processes like Alzheimer’s disease and dementia, whose prevalence

increases with age, cf. [SPTea06].
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Functional magnetic resonance imaging

This section of the chapter briefly summarizes the physical foundations of MRI (resp.

fMRI). This technique has been used to measure the brain activity and, hence, yielded

the raw data for our analysis. Some physiological aspects which are related to functional

brain activation are highlighted. Further reference can be found in [SF06] and [GM10].

Physical background of fMRI

Functional magnetic resonance imaging (fMRI) is a non-invasive technique to mea-

sure and visualize the hemodynamic response (change in blood flow) related to neural

activity in the brain. This method features a comparatively good spatial resolution

(2–6mm) and abstains from using ionizing radiation. It was applied to the human

brain for the first time in 1991, cf. [BKM+91]. Moreover, fMRI allows for a precise

localization of specifically stimulated brain areas. The spatial resolution exceeds the

values that can be attained by other non-invasive techniques such as positron emis-

sion tomography (PET), magnetoencephalography (MEG) or electroencephalography

(EEG), cf. [HF00]. However, the temporal resolution of roughly 5–8 seconds is rela-

tively low compared to the other aforementioned techniques.

The physical phenomenon behind MRI is the effect of nuclear spin resonance, which

was described in 1946 for the first time, cf. [Blo46] and [PTP46]. The nuclear spin

is the total angular momentum of the nucleus, being composed of the orbital angular

momentum and the intrinsic angular momentum. The rotating nucleus features an

electrical charge which yields a dipole moment proportional to the angular (spin) mo-

mentum. The dipole moments in matter are lacking a structural organization, unless

there is some external influence. By applying a strong external magnetic field, the nu-

clear spins and hence, also the dipole moments, orient toward the magnetic field lines.

When applying a second external electromagnetic high-frequency field, the energetic

configuration of the nuclei will change and, as a consequence, the spatial orientation of

the dipole moments, accordingly. As soon as the second high-frequency field is turned

off, the nuclei will revert to their preferential alignment according to the weaker main

magnetic field. By doing so, the nuclei emit electromagnetic radiation which can be

measured: the emitted radiation induces an electric potential in a receptor coil, which

is then recorded as the magnetic resonance signal (=MR-signal).
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Random noise in the signal is assumed to be uniformly distributed and thus, can be

minimized by averaging the signal from stimulation and resting (or control) phases,

accordingly. Measuring the induced resonance signal always yields the sum signal for

all nuclear spins in the testing range. The cubic or ashlar-formed three-dimensional

measuring volume is sub-divided into smaller pieces, the so-called voxels.

Spatial encoding, such as slice selection, frequency or phase encoding, is used in order

to calculate the individual contributions of each voxel to the sum signal, cf. [Lau73]

or [MG73]. The spatially encoded MR-signal is henceforth recorded as a complex

number, having a frequency part and a phase part. By applying an inverse Fourier

transformation to these two-dimensional arrays of values one can reconstruct a phase

image in the real position space, i.e. the usual sliced MR-picture having grey scale

values and depicting different intensity values.

Fig. 5.7: Example of an fMRI picture. Copyright:

http://www.med.nyu.edu/thesenlab/group/images/fmri2.jpg
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Physiological background of fMRI

Hemoglobin enables the transport of oxygen and appears in two variants in the blood:

oxyhemoglobin and de-oxyhemoglobin. Increased neuronal activity yields a local rise

in the blood volume and also in the blood flow, thereby oxyhemoglobin is metabolized

into de-oxyhemoglobin. This increase in the concentration of de-oxyhemoglobin is

being over-compensated by a net increase in oxyhemoglobin, which is caused by the

inflow of fresh, oxygenized blood. The diamagnetic oxyhemoglobin does not influence

the magnetic field, whereas the paramagnetic de-oxyhemoglobin causes a change in the

susceptibility parameters and, as a consequence, to a decrease of the measured signal

strength. This change in the MR-signal is denoted by the term blood oxagenation level

dependent (BOLD) contrast, cf. [SHT+02].

The relaxation times for oxygenized (t= 181ms) and de-oxygenized (t=254ms) blood1

are different. Basically, it is the difference of intensity in the BOLD contrast, and thus

the different relaxation times between stimulation phases and control phases, that is

being measured. The activation of brain regions correlates with an increase in the

BOLD contrast in the corresponding areas and hence, yields a higher signal.

The hemodynamic response function, i.e. the hemodynamic impulse following a stimu-

lus onset, has a periodic length of about 20s to 25s and is thus relatively long compared

to the direct excitation transmission of the involved neurons, which in turn lasts only

about 1 millisecond. However, a complete fMRI scan, which covers all brain slices,

lasts about 2 seconds and is thus negligibly short compared to the period of the hemo-

dynamic response function, cf. [HOD04] and [BWF98].

1The relaxation times mentioned here refer to a magnetic field strength of B = 1.5 Tesla.
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Fig. 5.8: Typical hemodynamic response function. The thick bar on the vertical axis denotes

schematically the stimulus onset. Copyright: http://www.unc.edu/∼wenjiec/images/glover.jpg
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Abbreviations and Talairach atlas

Abbreviation Anatomical structure

caud caudate

a.cing anterior cingulate

s.front superior frontal gyrus

mi.front middle frontal gyrus

i.front inferior frontal gyrus

me.front medial frontal gyrus

ins insula

parahip parahippocampal gyrus

s.temp superior temporal gyrus

m.temp middle temporal gyrus

cing cingulate gyrus

postcen postcentral gyrus

precen precentral gyrus

i.parite inferior parietal lobule

s.pariet superior parietal lobule

precun precuneus

cun cuneus

ling lingual gyrus

fusi fusiform gyrus

i.occ inferior occipital gyrus

m.occ middle occipital gyrus

p.cing posterior cingulate

unc uncus

lenti lentiform nucleus

thal thalamus
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Fig. 5.9: Talairach atlas, including lobe, Gyri and Brodmann level. Copyright: [TT08]

112



References

[AB02] R. Albert and A.-L. Barabasi, Statistical mechanics of complex networks,

Rev. Mod. Phys. 74 (2002), 47–97.

[AB07] S. Achard and E. Bullmore, Efficiency and cost of econom-

ical brain functional networks, PloS Comp. Biol 3 (2007),

e17.doc10.1371/journal/pcbi.0030017.

[ABBD05] J.S. Allen, J. Bruss, C.K. Brown, and H. Damasio, Normal neuroanatomi-

cal variation due to age: the major lobes and a parcellation of the temporal

region., Neurobiol Aging 26(9) (2005), 1245–1260.

[ABJ06] F.M. Atay, T. Biyikoglu, and J. Jost, Network synchronization: Spectral

versus statistical properties, Elsevier 224 (2006), 35–41.

[ABK98] T. Abel, K.C. Bartsch, and E.R. Kandel, Memory suppressor genes:

Inhibitory constraints on the storage of long-term memory., Science

279(5349) (1998), 338–341.

[ADGPV06] A. Arenas, A. Diaz-Guilera, and C.J. Perez-Vicente, Synchronization re-

veals topological scales in complex networks, Phys. Rev. Letters 96 (2006),

114102.

[AGD94] L. Arnold, V. Gundlach, and L. Demetrius, Evolutionary formalism for

products of positive random matrices, Annals of Probab. 4 (1994), 859–

901.

[AJB00] R. Albert, H. Jeong, and A.L. Barabasi, Error and attack tolerance of

complex networks, Nature 406 (2000), 378–381.

[AJW04] F.M. Atay, J., and A. Wende, Delays, connection topology, and synchro-

nization of coupled chaotic maps, Phys. Rev. Letters 92 (2004), 144101.

113



[ANB+97] T. Abel, P.V. Nguyen, M. Barad, T.A. Deuel, E.R. Kandel, and

R. Bourtchouladze, Genetic demonstration of a role for pka in the late

phase of ltp and in hippocampus-based long-term memory., Cell 88(5)

(1997), 615–626.

[AO04] L. Amaral and J. Ottino, Complex networks: Augmenting the framework

for the study of complex systems, Eur.Phys. J. 38 (2004), 147–162.

[ASBS00] L.A.N. Amaral, A. Scala, M. Barthelemy, and H.E. Stanley, Classes of

small-world networks, Proc Natl Acad Sci USA 97 (2000), 11149–11152.

[ASW+06] S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, A

resilient, low-frequency, small-world human brain functional network with

highly connected association cortical hubs, J Neuroscience 26 (2006), 63–

72.

[BA99] L. Barabasi and R. Albert, Emergence of scaling in random networks,

Science 286 (1999), 509–512.

[BAB+98] R. Bourtchouladze, T. Abel, N. Berman, R. Gordon, K. Lapidus, and

E.R. Kandel, Different training procedures recruit either one or two crit-

ical periods for contextual memory consolidation, each of which requires

protein synthesis and pka., Memory 5(4-5) (1998), 365–374.

[Bad10] A. Baddeley, Working memory, Curr Biol 20 (2010), 136–140.

[Ban08a] A. Banerjee, The spectrum of the graph laplacian as a tool for analyzing

structure and evolution of networks, Universität Leipzig, Leipzig, 2008.

[Ban08b] , Structural distance and evolutionary relationship of networks,

arXiv:0807.3185 (2008).

[Bar03] A.L. Barabasi, Linked., London: Penguin. (2003).

[Bar04] G. Bartzokis, Age-related myelin breakdown: a developmental model of

cognitive decline and alzheimer’s disease., Neurobiol. Aging 25(1) (2004),

5–18.

[BB08] Ch. M. Bird and N. Burgess, The hippocampus and memory: insights from

spatial processing., Nature 9 (2008), 182–194.

114



[BBML08] D.S. Bassett, E. Bullmore, and A. Meyer-Lindenberg, Hierarchical or-

ganization of human cortical networks in health and schizophrenia., J.

Neuroscience 28(37) (2008), 9239–9248.

[BC93] T.V. Bliss and G.L. Collinridge, A synaptic model of memory: Long-term

potentiation in the hippocampus., Nature 361(6407) (1993), 31–39.

[Ber93] H.C. Berg, Random walks in biology, Princeton University Press, Prince-

ton, 1993.

[BFM+04] E.T. Bullmore, M.J. Fadili, V. Maxim, L. Sendur, B. Whitcher, J. Suck-

ling, and M. Bramer, Wavelets and functional magnetic resonance imaging

of the human brain., NeuroImage 23 (2004), 234–249.

[Bil65] P. Billingsley, Ergodic theory and information, Wiley, New York, 1965.

[BJa] A. Banerjee and J. Jost, Graph spectra as a systematic tool in computa-

tional biology, arXiv 0706.0113v1.

[BJb] , Laplacian spectrum and protein-protein interaction networks,

arXiv 0705.3373v1.

[BJc] , On the spectrum of the normalized graph laplacian, arXiv

0705.3772v1.

[BJ07] , Spectral plots and the representation and interpretation of biolog-

ical data, Theory Biosc. 126 (2007), 15–21.

[BJ08] , Spectral plot properties: Towards a qualitative classification of

networks, NHM 3 (2008), 395–411.

[BJ09] , Spectral characterization of network structures and dynamics, in:

Dynamics on and of Complex Networks (2009), 117–132.

[BKM+91] J.W. Belliveau, D.N. Kennedy, RC. McKinstry, B.R. Buchbinder, R.M.

Weisskoff, M.S. Cohen, J.M. Vevea, T.J. Brady, and B.R. Rosen, Func-

tional mapping of the human visual cortex by magnetic resonance imag-

ing., Science 254 (1991), 716–719.

[BL73] T.V. Bliss and T. Lomo, Long-lasting potentiation of synaptic transmis-

sion in the dentate area of the unanaestetized rabbit following stimulation

of the perforant path., Journal of Physiology 232(2) (1973), 331–356.

115



[BLM+06] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.U. Hwang, Com-

plex networks: structure and dynamics, Physics Reports 424 (2006), 175–

308.

[Blo46] F. Bloch, Nuclear interaction., Phys. Rev. 70 (1946), 460–474.

[BMLA+06] D.S. Bassett, A. Meyer-Lindberg, S. Achard, Th. Duke, and E. Bull-

more, Adaptive reconfiguration of fractal small-world human brain func-

tional networks, PNAS 103 (2006), 19518–19523.

[BOH89] T.R. Bashore, A. Osman, and E.F. Heffley, Mental slowing in elderly per-

sons: a cognitive psychophysiological analysis., Psychol. Aging. 4 (1989),

235–244.

[Bol01] B. Bollobas, Random graphs, Academic Press, New York 2nd edition

(2001).

[Bre95] S.L. Bressler, Large-scale cortical networks and cognition, Brain Res. Brain

Res. Rev. 20 (1995), 288–304.

[Bre97] G.E. Bredon, Topology and geometry, Springer, New York, 1997.

[Bro09] K. Brodmann, Vergleichende lokalisationslehre der großhirnrinde., Barth,

Leipzig, 1909.

[BS09] E. Bullmore and O. Sporns, Complex brain networks: graph theoretical

analysis of structural and functional systems, Nature 10 (2009), 186–198.

[BSHG07] L.M.A. Bettencourt, G.J. Stephens, M.I. Ham, and G.W. Gross, Func-

tional structure of cortical neuronal networks grown in vitro, Phys. Rev.

E. 75 (2007), 021915.

[BWF98] R.B. Buxton, E.C. Wong, and L.R. Frank, Dynamics of blood flow and

oxygenation changes during brain activation: the balloon model., Magn

Reson Med 39 (1998), 855–864.

[Cal85] H. B. Callen, Thermodynamics and an introduction to thermostatistics,

Wiley, New York, 1985.

[CCdS06] E. Carlsson, G. Carlsson, and V. de Silva, An algebraic topological method

for feature identification, Int J Comp Geometry 16 (2006), 291–314.

116



[CCM08] R. Cabeza, E. Ciaramelli, and M. Moscovitch, The parietal cortex and

episodic memory: an attentional account, Nature Reviews 9 (2008), 613–

625.

[Chu97] F. Chung, Spectral graph theory, AMS, 1997.

[Con09] M.A. Conway, Episodic memories., Neuropsychologia 47 (2009), 2305–

2313.

[CSEH07] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer, Stability of persistence

diagrams, Discrete Comput. Geom. 37 (2007), 103–120.

[CW51] H.B. Callen and T.A. Welton, Irreversibility and generalized noise, Phys-

ical Review 83 (1951), 34–40.

[CZCG05] G. Carlsson, A. Zomorodian, A. Collins, and L. Guibas, Persistence bar-

codes for shapes, Int J Shape Modeling (2005), 149–187.

[DDC08] S.W. Davis, N.A. Dennis, and R. Cabeza, Que pasa? the posterior-

anterior shift in ageing, Cerebral Cortex 18 (2008), 1201–1209.

[Dem97] L. Demetrius, Directionality principles in thermodynamics andevolution,

PNAS 94 (1997), 3491–3498.

[DGO04] L. Demetrius, V.M. Gundlach, and G. Ochs, Complexity and demographic

stability in population models, Theor. Popul. Biol. 65 (2004), 211–225.

[DHK90] P.K. Dash, B. Hochner, and E.R. Kandel, Injection of the camp-responsive

element into the nucleus of aplysia sensory neurons blocks long-term fa-

cilitation., Nature 345(6277) (1990), 718–721.

[DHM05] L. Donetti, P.I Hurtado, and M.A. Munoz, Entangled networks, synchro-

nization, and optimal network topology, Phys. Rev. Letters 95 (2005),

188701.

[DM03] S.N. Dorogovtsev and J.F.F. Mendes, Evolution of networks. from biolog-

ical nets to the internet and www, Oxford University Press, 2003.

[DM04] L. Demetrius and T. Manke, Robustness and network evolutionÑan en-
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