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Chapter 1

Introduction

1.1 General remarks

With the construction of the European market for greenhouse gas emission permits, the
European Union has created a new energy market which is also referred to as the European
carbon market. This thesis predominantly deals with the econometric analysis of this new
market. Section 1.1.1 describes the general framework of the carbon market, provides an
overview on the carbon price development, and motivates the central research questions
related to this market. In addition to the analysis of the European carbon market, the
thesis is concerned with the econometric investigation of the relationship between the
oil price and U.S. stock market performance in consideration of developments in the
macroeconomic environment. Section 1.1.2 motivates and summarizes the corresponding

research questions.

1.1.1 The carbon market

Given the concerns of adverse effects of anthropogenic climate change on ecological sys-
tems and mankind caused by a considerable extension of the concentration of greenhouse
gases in the atmosphere (see United Nations Framework Convention on Climate Change
(1992)), in 2003 the member states of the European Union agreed to establish an economi-
cally efficient market for tradable greenhouse gas emission permits. This market is referred
to as the European Union Emissions Trading Scheme (EU-ETS) and entered into force
in January 2005. According to Directive 2003/87/EC, the EU-ETS is supposed to assist
the EU member states to cost-effectively comply with their target to reduce aggregate
greenhouse gas emissions in the period 2008 to 2012 relative to the level of 1990 by 8%, as

defined under the Kyoto Protocol. While multilateral emissions trading between countries
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is defined under Article 17 of the Kyoto Protocol, the EU-ETS is designed as a trading
platform for greenhouse gas emissions at the company level that according to Chevallier
(2012) covers roughly 50% of the EU-wide greenhouse gas emissions. Companies that
own production units in energy-intensive sectors, including the sectors combustion, pulp
and paper, iron and steel, and cement and lime, do have to underlay their greenhouse
gas emissions by European Union Allowances (EUAs).! Each EUA warrants the right to
emit one tonne of COs-equivalent during a specified commitment period such that with
the entry into force of the EU-ETS companies do have to pay a price for the emission
of greenhouse gases which in turn implies that EUAs constitute an input factor in the
companies’ production process.? The first commitment period covered the years 2005
to 2007 and was considered a test period. The second period coincides with the Kyoto
period and lasts from 2008 to 2012. Finally, the post-Kyoto period covers the years 2013
to 2020. The three commitment periods are referred to as Phases I, II, and III.

The EU-ETS is designed as a cap-and-trade system in which the cap defines the number of
EUAs available on the market, and hence, determines EUA supply. According to Article
9 of Directive 2003/87/EC each member state has to set up a National Allocation Plan
(NAP) for Phases I and II. The NAPs contain the number of EUAs the member states
intend to assign to the production units covered by the EU-ETS and have to be approved
by the European Commission. Chevallier (2012) points out that the number of annually
issued EUAs has been reduced from 2.2 billion in Phase I to 2.08 billion in Phase II. Dur-
ing Phase I1I the number of issued EUAs is linearly reduced by 1.74% each year such that
2.039 billion EUAs will be issued in 2013 (see also Resolution 2010/634/EU). A second
conceptual change concerns the allocation mechanism. While in Phases I and II at least
90% of the issued EUAs were allocated free of charge, the portion of freely distributed
EUAs will be reduced from 80% in 2013 to 30% in 2020 (see Directive 2009/EC/29). The
second component of the cap-and-trade system is the opportunity to freely trade issued
EUAs on the carbon market.?

In accordance with Article 12 of Directive 2003 /87 /EC companies covered by the EU-ETS
have to verify their emissions for each compliance year and surrender the appropriate num-
ber of EUAs to the national authorities by April 30. Companies that lack EUAs to fulfill
regulatory requirements can purchase EUAs on the markets, while superfluous EUAs can

be sold on the markets. Within a given commitment period, companies can also transfer

! According to directive 2009/29/EC the European Commission has decided to also cover the aviation
sector’s emissions by the EU-ETS from 2012 on.

2Besides carbon dioxide, the EU-ETS accounts for methane, nitrous oxide, hydro fluorocarbons, per-
fluorocarbons, and sulphur hexafluoride.

3These markets are: ECX (London), NordPool (Oslo), EEX (Leipzig), Eurex (Stuttgart), BlueNext
(Paris), EXAA (Vienna) and Climex (Utrecht).
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EUAs of a compliance year to the consecutive one, or employ EUAs of the next com-
pliance year to fulfill regulatory requirements of the current year. The transfer of EUAs
between Phases I and II is prohibited.

Figure 1.1 shows the development of EUA spot and futures prices during the period
April 25, 2005 to April 25, 2011. The bold line refers to the spot price of the EUA con-
tract traded at BlueNext in Paris. The dashed line shows the price development of the
rolled-over December EUA futures contract with maturity in Phase II traded at ECX in

London.*® Apparently, Figure 1.1 reveals substantial differences in EUA spot and futures

35

2006 2007 2008 2009 2010 2011

2005

Figure 1.1: Carbon price dynamics from April 2005 to April 2011

price dynamics. These differences were particularly pronounced in Phase I. The most
significant break in both markets’ price development occurred in the last week of April
2006, when the first EU member states announced that their verified emissions were con-
siderably below the number of allocated allowances, which in turn pointed to a substantial
overallocation with EUAs in the first commitment period (see also Alberola et al. (2008)).
While futures prices have stabilized immediately after the breakdown and even increased
after 2006, spot prices converged to zero towards the end of Phase I. The development of

spot prices can be traced back to the prohibition of the utilization of Phase I allowances to

4According to Chevallier (2012) BlueNext (ECX) is the most liquid EUA spot (futures) market at-
tracting 72% (96%) of the total EUA spot (futures) market turnover. In contrast to futures market
trading at ECX, BlueNext spot market trading started on June 24, 2005.

5For a detailed description of the construction of the futures price series see Sections 2.4.1, 3.4.1,
and 4.4.1.
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satisfy Phase II regulatory requirements. However, even for the period before April 2006,
Figure 1.1 exhibits substantial deviations of spot prices from futures prices. Moreover,
the prices of both markets prove to be more volatile in the first commitment period than
in the second one. With the convergence of spot prices towards zero, trading activity in
this market entirely collapsed, while trading activity in the futures market has steadily
increased over both commitment periods. In strong contrast to the significant differences
in both markets’ price dynamics in Phase I, from the start of Phase II on spot and futures
prices have obviously evolved very similar throughout the whole compliance period. EUA
prices declined strongly during the financial crisis of 2008/2009 and increased slightly
during the economic recovery after the crisis.

After the EU-ETS entered into force a new area of economic research called “carbon fi-
nance” has emerged. Studies of this research area are concerned with the empirical anal-
ysis of EUA price dynamics. While Paolella and Taschini (2008), Benz and Triick (2009),
and Daskalakis et al. (2009) focus on the stochastic properties of EUA spot or futures
returns, Benz and Hengelbrock (2008) analyze the joint price development of EUA futures
contracts traded at different venues. Other studies such as Mansanet-Bataller et al. (2007)
and Alberola et al. (2009a) identify fundamental determinants of EUA prices, including
energy prices and weather. The analysis of the relevance of regulatory conditions on the
EUA price development is provided by Alberola et al. (2008) and Mansanet-Bataller and
Pardo (2009), while Oberndorfer (2009) and Veith et al. (2009) analyze the link between
EUA prices and the stock market performance of electricity companies. In contrast to
the above-mentioned studies which refer to the first commitment period, this thesis pre-
dominantly focuses on the econometric analysis of EUA prices during the second period.
The first part of the thesis is concerned with the incorporation and transmission of infor-
mation in EUA spot and futures prices. Figure 1.1 suggests that regulatory conditions
(e.g. the market collapse as a consequence of the overallocation with allowances) as well
as general macroeconomic conditions (e.g. the financial crisis and the economic recovery)
affect EUA price dynamics substantially. This observation motivates the first research
question of whether EUA prices systematically respond to the release of new information
concerning such regulatory and macroeconomic conditions. Interesting releases include
announcements on the number of EUAs distributed to the EU member states for the
second commitment period as well as announcements on key macroeconomic figures re-
flecting current and future economic activity.

The second research question is directed towards the transmission of information between
EUA spot and futures markets. Commencing with the spot market crash in April 2006,

Figure 1.1 clearly reveals the decoupling of spot and futures prices that is most pronounced
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in the end of Phase 1. For Phase II the figure detects remarkably similar dynamics of spot
and futures prices which points to the existence of a stable long-term relationship between
both prices. This in turn raises the second research question of whether one market sys-
tematically adjusts prices faster to new information and such sets a price signal to which
the other market responds. Put differently, the question is whether one market can be
identified as the price-leading market.

In contrast to the first and the second research questions that are related to the in-
vestigation of the EUA spot and futures price development, the third research question
is directed towards the link between EUA prices and the stock market performance of
companies covered by the EU-ETS. Since EUAs constitute an input factor in their pro-
duction process, EUA price fluctuations could affect the profits of these companies which
in turn could have an effect on their stock price. This research question aims at investi-
gating whether companies of different sectors and countries are heterogeneously affected
by changing EUA prices and whether the link between EUA prices and the stock market
performance is stable over Phases I and II.

While the implementation of the EU-ETS can be rationalized by economic theory, the
trading system has been attracting substantial attention in the current political debate,
even seven years after its entry into force. In this context, questions related to the appro-
priateness of the system to assist EU member states in achieving their emission reduction
targets, the efficiency of the carbon market, and the overall stringency of emissions caps
play a major role in the discussion. This thesis can be considered a contribution to the

clarification of these questions.

1.1.2 Qil, stock prices, and the macroeconomy

According to the annual energy review 2010 of the Energy Information Association (EIA),
U.S. energy expenditure as share of U.S. GDP has been in the range of 5.9% to 13.7%
over the period from 1970 to 2009, in which a considerable fraction of total energy expen-
diture went back to expenditure on crude oil. Given the high relevance of crude oil for
the U.S. economy as implied by these numbers substantial empirical economic research
on the link between the oil price and macroeconomic performance as well as stock mar-
ket performance has been provided. Studies such as Hamilton (1983, 1985, 2003) find a
negative effect of oil supply shocks on macroeconomic growth which suggested the con-
jecture that recessions were caused by oil supply shocks induced by exogenous events in
the Middle East. More recently, Kilian (2009) argues that changes in global aggregate
demand and changes in oil market specific demand rather than changes in oil supply are

the main determinants of the oil price development. In the methodological framework
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of Kilian (2009), Kilian and Park (2009) show that an increase in oil prices caused by
global aggregate demand induces a positive stock price response, while a negative stock
price reaction is caused by an increase in oil prices that can be traced back to oil market
specific demand. Consequently, the relation between oil and stock prices may change over
time and depend on whether the oil price is predominantly driven by oil market specific
demand or by global aggregate demand. Further evidence for time-variation in the oil-
stock relation is provided by Miller and Ratti (2009) and Filis et al. (2011).

The evidence of a time-varying relationship between oil and stock prices combined with the
relevance of aggregate demand in the determination of the oil price imposes the research
question of whether the oil-stock relation is affected by changes in the macroeconomic
environment. In this context, the thesis aims at analyzing whether macro variables re-
flecting current and future economic activity as well as inflation measures can be used
to anticipate changes in the oil-stock relation. Moreover, the question of how external
events like the invasion of Kuwait and the first Gulf War in 1990/1991 affect the relation
between stock and oil prices is addressed in this thesis.

While the previous research question considers the link between oil prices and aggregate
stock index prices the second research question is directed towards the effects of the oil
price on industry-specific stock returns. Previous studies such as Nandha and Faff (2008)
and Narayan and Sharma (2011) find that the oil price affects stock returns across differ-
ent industries heterogeneously. While increasing oil prices are accompanied by increasing
stock prices of oil and gas exploring companies, companies of other industries rather ex-
hibit negative stock price responses to increasing oil prices. Against this background, the
thesis is concerned with the question of whether investors holding these stocks require
premia for risk associated with the oil price and whether the required risk premia vary

over time and across industries.

1.2 Outline of the thesis

The thesis consists of five self-contained research articles and is organized in two parts.
Part T contains Chapters 2 and 3; Part II consists of Chapters 4, 5 and 6. Part I assesses
the incorporation of information in the European markets for emission allowances at
high-frequency. While Chapter 2 investigates the effects of the announcement of macroe-
conomic and market-specific news on EUA futures returns during the first and the second
commitment period of the EU-ETS, Chapter 3 analyzes the transmission of information
between the spot and the futures market in the second commitment period. Part II

analyzes the link between stock market performance and energy prices. Chapter 4 con-
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centrates on the relationship between stock returns of companies covered by the EU-ETS
and the EUA price, while the relation between the U.S. stock market and the oil price is
investigated in Chapters 5 and 6.

Chapter 2 is based on the article “Modeling and explaining the dynamics of Euro-
pean Union Allowance prices at high-frequency” which is joint work with my supervisor
Prof. Dr. Christian Conrad and my colleague Dr. Waldemar Rotfuf8. This article is pub-
lished in Energy Economics.® The basis of Chapter 3 is the single-author paper “Price
discovery and volatility spillovers in the European Union Emissions Trading Scheme: A
high-frequency analysis” published in the Journal of Banking and Finance. Chapter 4 is
based on the single-author paper “Carbon and the stock market: A policy evaluation of
the EU-ETS”. The paper is invited for resubmission to Fcological Economics. Chapter 5
is joint work with Prof. Dr. Christian Conrad and my colleague Karin Loch entitled “On
the macroeconomic determinants of the long-term oil-stock correlations”. Chapter 6 is
based on the single-author paper “Pricing the risk of oil in the Intertemporal CAPM: An
industry-level study”.

Explaining EUA prices at high-frequency

Chapter 2 models EUA price returns at high frequency. While previous studies such as
Benz and Triick (2009) or Paolella and Taschini (2008) focus on the statistical properties
of daily EUA returns, we provide a thorough investigation of such properties at the in-
traday horizon. At high-frequency we find a seasonality pattern in the second conditional
moment of the returns that is very similar to the one of stock returns and exchange rates
described in Andersen and Bollerslev (1997, 1998). In a first step, we remove this de-
terministic pattern from the high-frequency data. Then, we model the conditional mean
and the conditional variance equation jointly making use of various GARCH-type mod-
els that account for asymmetric effects, power transformations, and the long memory
property. We show that the Fractionally Integrated Asymmetric Power GARCH (FIAP-
GARCH) model of Tse (1998) outperforms more parsimonious specifications obtained by
certain parameter restrictions imposed on the FIAPGARCH model in terms of in-sample
fit, while restricted specifications that exclusively account for the long memory property
(and asymmetric effects) yield the best out of sample volatility forecast accuracy. Second,
we investigate the EUA price response to the release of macroeconomic as well as market-

specific news. While previous studies predominantly employ simple regressions to capture

6Parts of this paper are published in the Ph.D. dissertation “On the High-Frequency Price Reac-
tions of European Union Allowances to News” of Dr. Waldemar Rotfufl accepted by the Rechts- und
Wirtschaftswissenschaftliche Fakultit at the Friedrich-Alexander-Universitat Erlangen-Niirnberg.
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the impact of energy prices, economic activity, and weather conditions on the EUA price
at daily frequency (see Mansanet-Bataller et al. (2007) and Alberola et al. (2009a)), we
investigate the high-frequency response of EUA returns to the surprise component of
price-relevant announcements. Following Andersen et al. (2003) and Conrad and Lamla
(2010), we employ the market’s expectations obtained from survey data which are sub-
tracted from the realized value of the according macroeconomic variables to construct
the surprise components. In addition to macro variables, we investigate the relevance of
announcements on the total number of allowances allocated to the EU member states as
determined by the European Commission and published in the National Allocation Plans
(NAPs). In contrast to survey expectations, we use the expectation formation model of
RotfuB et al. (2009) to construct the surprise component. The empirical analysis reveals
that EUA returns instantaneously react to the surprise component in the NAPs. In accor-
dance with economic theory, tighter than expected emissions caps induce an EUA price
increase. Moreover, we find that the surprise component of announcements that reflect
current and future economic activity in Germany and the U.S. generate instantaneous
price reactions which are also consistent with the implications of economic theory. In par-
ticular, EUA price increases are induced by higher than expected macroeconomic activity
reflecting higher than expected demand for EUAs. This result challenges the finding of
the loose connection between macroeconomic variables and the carbon market as pointed
out in Chevallier (2009). The results of Chapter 2 imply that EUA prices incorporate

new information similar to asset prices of more mature markets.

Price discovery and volatility spillovers

Chapter 3 turns to the analysis of price discovery and volatility spillovers in EUA spot
and futures markets during Phase II of the EU-ETS, and hence, investigates the trans-
mission of information in the most liquid spot and futures markets after the spot market
re-entered into operation. In contrast to Chapter 2, the analysis of Chapter 3 has to
be restricted to Phase Il due to the collapse of the spot market in Phase I as a conse-
quence of the overallocation with allowances in this phase associated with the prohibition
of the utilization of Phase I allowances to fulfill Phase II regulatory requirements. For
Phase I, Benz and Hengelbrock (2008) find a stable long-term relation between the prices
of EUA futures contracts traded at different venues and identify the European Climate
Exchange in London as the price leading market. Given the cost-of-carry model that
relates spot and futures prices of a commodity good by directly assessing the costs and
benefits of physically holding the commodity good also implies the existence of such a

stable long-term relation between EUA spot and futures prices. Nevertheless, the results
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of the previous literature are mixed. Studies such as Uhrig-Homburg and Wagner (2009),
Milunovic and Joyeux (2010), and Chevallier (2010) analyze the link between EUA spot
and futures prices at daily frequency. In contrast to these studies, we assess both markets’
contribution to the price discovery process at the intraday frequencies of 10 and 30 min-
utes making use of the common factor measures based on vector error correction models
(VECM) as proposed by Schwarz and Szakmary (1994), Gonzalo and Granger (1995),
and Hasbrouck (1995). We clearly reveal the existence of a stable long-term relation be-
tween EUA spot and futures prices. In line with Hasbrouck (1995) and Theissen (2002)
we show that the analysis of the price discovery process should take place at highest fre-
quencies due to increasing contemporaneous correlation between both markets’ residuals
at lower frequencies which induces an identification problem. For the early stage of the
second commitment period we find that about 70% of the price discovery process can be
attributed to the futures market. During the more mature stage of Phase II the relevance
of the futures market’s informational role even increases. For the second step, we remove
the intraday seasonality pattern from the residuals of the VECM (see also Chapter 2). In
addition to the investigation of information transmission in EUA spot and futures prices,
we analyze the structure of volatility spillovers. Put differently, we assess the transmission
of information in the second conditional moment. For this we estimate a dynamic version
of the unrestricted extended CCC-GARCH model introduced by Conrad and Karanasos
(2010). We reveal close links between the conditional volatilities of both markets which
clearly contradicts the Phase I results of Milunovich and Joyeux (2010) who observe a
weak link between both markets’ uncertainties employing daily data. In particular, we
find unidirectional volatility spillovers from the futures to the spot market, while both
markets’ uncertainties are affected by lagged shocks in the respective other market. In
conclusion, our results clearly point to the existence of a close link between the spot and
the futures market. Even for the period directly after the spot market re-entered into
operation the data provide evidence for a structure of informational spillovers between
the spot and futures market that is similar to the one observed for mature markets as

reported by Tse (1999) among others.

Carbon and the stock market

In Chapter 4 we empirically analyze the impact of the EU-ETS on the stock performance
of companies covered by the trading system. Oberndorfer (2009) and Veith et al. (2009) re-
veal a positive link between the carbon price and the stock returns of European electricity
companies during the first commitment period. Both studies focus on electricity compa-

nies since more than 60% of the allowances available on the market have been allocated to
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the electricity sector. Because of this, the authors argue that the restriction to electricity
companies should maintain relevance for the whole EU-ETS. In contrast to these studies,
we conjecture that the generalization of the results on the relation between electricity
stocks and the carbon price to companies of other sectors could induce spurious or even
misleading conclusions. Kettner et al. (2008), Ellerman and Joskow (2008), and Convery
et al. (2008) reveal considerable differences in sector-specific net-compliance positions. On
average, electricity companies are net-short in allowances, whereas non-electricity com-
panies have received more allowances than needed to fulfill regulatory requirements. In
general, companies with net-long positions should rather benefit from increasing prices
since superfluous allowances can be sold on the market at higher prices implying the re-
alization of higher regulatory profits. On the other hand, net-short companies have to
purchase additional allowances on the market which negatively affects their profitability
as far as they are not able to pass through the full costs to consumers. Given these find-
ings, we also consider companies operating in the sectors iron and steel, pulp and paper,
chemicals, and cement and lime. In contrast to Oberndorfer (2009) and Veith et al. (2009)
who focus on Phase I, we explicitly investigate whether the link between the carbon and
the stock market has changed over Phases I and II. Further, given the findings of consid-
erable heterogeneity in country-specific net-compliance positions pointed out in Kettner
et al. (2008), we also analyze whether the effect of the carbon price on stock performance
is different across individual member states. In particular, the results of Chapter 4 al-
low us to draw inference on the transmission of regulatory burden to the shareholders
of companies under the EU-ETS. We reveal a rather loose relationship between the car-
bon and the stock market during Phase I, where only electricity stocks are affected by
changes in the carbon price. Consistent with Oberndorfer (2009) and Veith et al. (2009),
we find that increasing carbon prices are accompanied by electricity stock price increases.
The main contribution of this chapter to the existing literature is the identification of a
close relationship between the carbon and the stock market during Phase II, where the
structure of the relationship across the individual sectors tends to reflect the sector- and
country-specific net compliance positions. Stock returns of electricity companies located
in countries with more restrictive emissions caps are negatively affected by increasing
carbon prices. In strong contrast, for non-electricity companies we reveal that stock price
increases are accompanied by increasing carbon prices. The effects are stronger in sectors
characterized by more generous allowance allocation. We also find that the effect tends to
be more pronounced in countries with less restrictive emissions caps. In conclusion, the
results are consistent with the view that investors consider the carbon price as a relevant

pricing factor during the second commitment period.
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Long-term oil-stock correlations

In Chapter 5 we analyze the relationship between the U.S. stock market and the oil
price. Hamilton (1983, 1985, 2003) argues that during the 1970s and 80s the oil price has
strongly been affected by oil supply shocks which preceded 9 out of 10 recessions in the
U.S. after World War II. According to Hamilton (2003) such supply shocks were caused
by exogenous events in the Middle East including the oil crises of 1973 and 1979 as well
as the Irag-Iran War (1980-1988) and the Gulf War (1990-1991). In contrast to these
studies, Kilian (2009) argues that even during the 1970s the oil price has mainly been
driven by oil market-specific demand shocks, rather than by supply shocks. In line with
Harris et al. (2009), Kilian (2009) finds that shocks in the global demand for industrial
goods predominantly have determined the oil price development since the second half of
the 1990s. Therefore, Kilian and Park (2009) argue that explaining the impact of the
oil price on stock prices by regressing stock returns on oil returns could induce spurious
conclusions because of reverse causality since the global demand for industrial goods is
also a driving factor of U.S. stock prices. Moreover, the authors argue that not only the
magnitude but even the sign of the stock price response to an oil price shock depends on
the type of the specific underlying shock. While oil price shocks caused by shocks in the
global demand for industrial goods induce positive stock price reactions, a negative stock
price response is observed in case that the oil shocks can be traced back to oil market-
specific demand shocks. To reconsider the oil-stock relation, we develop an econometric
specification in the general framework of the Dynamic Conditional Correlation MIxed
DAta Sampling (DCC-MIDAS) approach of Colacito et al. (2011) that allows us to dis-
tinguish between daily fluctuating short-term correlations and slowly moving long-term
correlations which in turn are explicitly linked to the macroeconomic environment. We
endogenize the long-term correlation between crude oil and stock returns with respect
to economic activity. We consider macro variables that reflect the current stance of the
economy, the future economic outlook, and the inflation dynamics. In addition to the
long-term correlation analysis, we employ the MIDAS approach of Engle et al. (2009) to
reveal the link between long-term oil market volatility and the macro environment in-
cluding the same variables used in the correlation analysis. We reveal that the long-term
oil market volatility is counter-cyclically linked to the macroeconomic activity and can
be well anticipated by key macroeconomic figures. We also show that such figures affect
oil market and stock market long-term volatility similarly. Current or expected economic
expansions (contractions) predict decreases (increases) in both markets’ volatilities. The
main contribution of Chapter 5 is the identification of a counter-cyclical relationship be-

tween the long-term oil-stock correlation and macroeconomic activity that is driven by
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those macro variables that also anticipate oil and stock market long-term volatility. Dur-
ing recessions and the early phase of the economic recovery the long-term correlation is
positive, while it is negative in periods of economic expansions. We argue that during
recessions declined profit expectations induce the depreciation of stock prices while the
contraction in aggregate demand generates negative oil price movements. This in turn
explains the positive correlation in this phase. With the economic recovery stock prices
increase due to improved profit expectations, while stimulated aggregate demand induces
the oil price to rise such that the long-term correlation remains positive. During economic
expansions characterized by strong growth above trend increases in the oil price induce
higher production costs which negatively affect the profit expectations. This negative
effect overcompensates the positive effect of simultaneously increasing oil and stock prices
observed for the early phase of the expansion and such forces the oil-stock correlation to

turn negative.

Pricing the risk of oil

Motivated by the findings of Chapter 5, Chapter 6 investigates the relationship between
the U.S. stock market and the oil price from an empirical finance viewpoint. In contrast
to previous studies such as Jones and Kaul (1996) or Driesprong et. (2008) that use ad
hoc specifications to reveal the effects of the oil price on the stock market, we take the
Intertemporal Capital Asset Pricing Model (ICAPM) of Merton (1973) as the theoretical
fundament of our empirical analysis. The ICAPM models the expected excess return on
a risky asset as a linear function of the covariance between the excess returns on the
risky asset and the market portfolio and the covariance between the excess return on the
asset and changes in state variables that are related to changes in the investor’s future
consumption. Merton (1973) shows that the sign of the impact of the covariance with the
state variable is determined by the elasticity of the investor’s marginal utility of wealth
with respect to the state variable. For the oil price this sign is unclear ex ante. However,
the empirical literature implies two competing views. Using the structural decomposi-
tion of the global oil price suggested in Kilian (2009), Kilian and Park (2009) show that
the stock price response to oil price shocks depends on the type of the specific oil price
shocks. Aggregate demand shocks lead to increasing stock prices, while shocks related to
oil market-specific (precautionary) demand induce stock price contractions. Hence, the
sensitivity of the investor’s marginal utility of wealth with respect to the oil price depends
on the dominance of the shocks within the period investigated. Our empirical analysis
reveals that the marginal utility of wealth and the oil price are inversely related which

confirms the finding of Kilian and Park (2009) that mainly aggregate demand shocks
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have driven the price of oil. Moreover, the results reveal that the investor sacrifices some
expected return for holding stocks that tend to pay off when the oil price is low and the
marginal utility of wealth is high. We identify that such stocks belong to the industries
consumer staples, consumer discretionary, health care, industrials, and financials. How-
ever, we also reveal that the picture changes dramatically after the peak of the financial
crisis in September 2008. The correlations between oil and stock price changes turn pos-
itive across all industries. This generates positive expected risk premia for stocks of all
industries which is consistent with the view that none of the stocks can be used to hedge
against decreasing oil prices after September 2008. Besides the specific patterns of the
expected risk premia associated with the oil price, we investigate the relationship between
expected return and market risk. Our results suggest a positive risk-return relation. We
show that the dynamic evolution of the market risk premia is pretty similar across the in-
dividual industries, while their magnitude differs considerably. Finally, we reveal that the
conditional covariation between stock returns and changes in macroeconomic risk factors
induce statistically significant risk premia, where in particular, the signs of the premia

are consistent with those implied by economic theory.
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Chapter 2

Explaining EUA prices at
high-frequency

2.1 Introduction

In this article we analyze the high-frequency price dynamics of European Union Al-
lowances (EUAs) traded on the European Union Emissions Trading Scheme (EU ETS).
Our contribution to the literature on the modeling of the EUA price dynamics is twofold.
First, we establish that EUA high-frequency return data are characterized by a distin-
guished intraday seasonality pattern in their second conditional moment. Such intraday
seasonality has been proven to exist in stock returns and exchange rates (see Andersen and
Bollerslev (1997) and Andersen and Bollerslev (1998)), but the finding of such a pattern
which is linked to the intensity of the intraday market activity is novel for EUA returns.
Hence, a meaningful econometric analysis of the data requires a preliminary step in which
the returns are filtered in order to remove the seasonality. The autocorrelation function
of the absolute values of the appropriately filtered return series is then shown to display
a very slow decay behavior, which is typical for time series obeying long memory in their
conditional second moment. In addition, there is clear evidence for heteroskedasticity and
asymmetric responses to positive and negative shocks in the conditional variance. We find
that a fractionally integrated asymmetric power GARCH (FIAPGARCH) model is best
suited to capture all the stylized facts in the high-frequency EUA returns. This model has
been suggested by Tse (1998) and combines the long memory property of the fractionally
integrated GARCH (FIGARCH) specification of Baillie et al. (1996) with the asymmetric
power GARCH (APGARCH) model of Ding et al. (1993). While previous research on
EUA prices had already established the conditional heteroskedasticity in daily returns (e.g.
Benz and Triick (2009), Paolella and Taschini (2008) and Chevallier (2009)), the finding
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of long memory in intraday returns is novel to this article. Since the FIAPGARCH model
nests several other GARCH specifications under certain parameter constraints, we can use
standard information criteria and likelihood ratio tests in order to rank the competing
models. We clearly show that the long memory FIAPGARCH specification outperforms
the short memory GARCH models in terms of in-sample modeling performance. In addi-
tion, the superiority of the long memory models is also confirmed out-of-sample by means
of a volatility forecast comparison. Since accurate volatility forecasts are crucial in many
financial applications such as option-pricing or risk management, the explicit modeling of
the long-memory property is of fundamental economic importance.

Second, we provide a detailed analysis of the real-time response of EUA prices to the
releases of major macroeconomic announcements. The previous literature has identified
political and institutional decisions on the overall cap intensity, economic activity, energy
prices and temperature as the main EUA price drivers. For a comprehensive survey on
current research we refer to the overview article by Zhang and Wei (2010). Our contri-
bution has many distinguishing features. First of all, the previous literature was entirely
based on the analysis of daily data. However, since the response to news usually oc-
curs very quickly in financial markets, our high-frequency perspective appears to be more
appropriate. Further, for measuring the strength of the response of EUA prices to the
release of new information, we construct surprise variables which are based on the dif-
ference of the actual figures and the market’s expectations. The expectations data are
obtained from surveys among market participants. This approach to measure announce-
ment effects is commonly used in e.g. exchange rate markets (see Andersen et al. (2003)
and Conrad and Lamla (2010)). In contrast, previous articles on the link between EUA
prices and economic fundamentals have either exclusively made use of the actual figures,
but did not take into account expectations, or simply employed dummy variables which
indicated the occurrence of certain news events, but did not control for the specific con-
tent of the news. In the empirical analysis we focus on the releases of i) the European
Commission’s (EC’s) decisions on second National Allocation Plans (NAPs), i) macroe-
conomic indicators about the future economic outlook and i) figures about the current
economic stance. We show that EUA prices react most strongly to the EC’s decisions
on second NAPs. The price adjustment occurs immediately after the release of the new
information and is highly significant. The direction of the price adjustment is in line with
what economic theory would suggest: a higher than expected allocation of emission rights
leads to a fall in the EUA price. This finding extends and complements the results in
Mansanet-Bataller and Pardo (2009) and RotfuB et al. (2009).

In addition, we find that EUA prices react to the releases of macroeconomic figures.
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Announcements related to the current economic activity as well as the future economic
development in Germany and the U.S. induce significant and immediate EUA price re-
actions. Positive news which indicate higher than expected economic activity lead to the
expectation of increasing demand for emission allowances and, hence, an increase in the
EUA price. This finding is of central importance because previous studies based on daily
data, such as Chevallier (2009), have concluded that the carbon market is only remotely
connected to macroeconomic variables. In contrast, our results based on a high-frequency
framework provide strong evidence for the existence of a link between EUA prices and
variables related to macroeconomic performance. In response to surprise macroeconomic
announcements, EUA prices typically react on impact, i.e. within a few minutes after
the release. The finding that mainly German announcements lead to significant price
reactions can be explained by the observation that the German economy is the largest
within Europe, highly industrialized and, thus, highly emissions-driven. Finally, the sig-
nificance of the U.S. announcements can be rationalized by the fact that financial market
participants preferably use U.S. figures to gauge the future development of the European
economy and, thereby, the future demand for European emissions allowances.

The remainder of this article is organized as follows. Section 2.2 discusses the main fea-
tures of the EU ETS. Related literature is reviewed in Section 2.3. Section 2.4 describes
the data and the econometric models. Section 2.5 presents the empirical results, while

Section 2.6 concludes.

2.2 The European Union Emissions Trading Scheme

In 2003 the European Union (EU) established a scheme for greenhouse gas emission
allowance trading. The scheme is substantially larger and far more complex than the
pioneering U.S. system for sulfur dioxide. It is based on the Directive 2003/87/EC and
formally entered into operation in January 2005; ten years after the U.S. predecessor
began operating. The purpose of the European trading scheme is to promote reductions of
greenhouse gas emissions in a cost-effective and economically efficient manner. It aims to
assist EU Member States (member states in the following) in meeting their commitments
under the Kyoto Protocol at minimum costs and has been called the “New Grand Policy
Experiment” of market-based policies in environmental regulation (see Kruger and Pizer
(2004), for more details). The scheme requires selected industrial units to participate
in the trading of emission allowances. The program covers carbon dioxide emissions
from four broad sectors: energy, production and processing of ferrous metals, minerals,

and other energy-intensive activities (in particular production of pulp and paper). One
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emission allowance grants the participating installation (or some other holder of it) the
right to emit one metric tonne of carbon dioxide equivalent (tCO2e) during a specified
commitment phase. For a legal description of the EU ETS, see European Parliament and
Council (2003).

The EU ETS is divided into three commitment phases (Phase I: 2005-2007, Phase II
2008-2012, Phase III: 2013-2020) and runs on the basis of a “cap-and-trade” system. The
EU ETS emission cap is defined for each commitment phase by the so called “National
Allocation Plans”. We term these various plans as first, second, or third NAPs according
to the commitment phases. The NAPs are defined by each member state and contain
both the national total of allowances as well as a rule for distributing the allowances to
the participating installations. The EC approves each NAP and thereby sets the EU
ETS emission cap. In total there are 27 NAPs and 27 decisions of the EC on the first
and second NAPs, respectively.! The allowances are grandfathered or auctioned, with
grandfathering having been the most common allocation rule in the first two phases.
According to European Parliament and Council (2009) auctioning should be the basic
principle for allocation from 2013 onwards. The allowances are freely tradable after they
have been allocated to the participating installations.

The participating installations are required to verify their emissions and to surrender
the equivalent number of EUAs or other eligible instruments to a national competent
authority on an annual basis. Installations which have spare allowances can sell them on
the market. Inversely, any installation which lacks allowances has to purchase them from
other installations or market participants.

Trading in emission rights takes place on organized markets and over-the-counter (OTC).
The trading in EUASs is not specifically regulated or supervised by the EC, although it sets
the framework. Trading is regulated by the member states and their national regulating
authorities. The most liquid EUA spot market is BlueNext in Paris, which attracts
approximately 70 percent of the total daily turnover of the whole organized spot market.
Besides an active EUA spot market there is also a vital derivatives market, where futures,
options, and other derivatives on EUAs are traded. The most liquid futures market is ICE
Futures in London, which absorbs circa 90 percent of the daily turnover in EUA futures.

The trading rules on all organized EUA spot and futures markets are largely identical.

I'Note that the national totals in Phase III will decrease linearly from the average national quantity of
allowances in Phase II without any additional EC approval. For more details, see European Parliament
and Council (2009).
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2.3 Related literature

This article can be considered part of a relatively new research area called “carbon fi-
nance”. The recent papers by Paolella and Taschini (2008), Benz and Triick (2009)
and Daskalakis et al. (2009) primarily focus on stochastic properties of EUA prices at
a daily frequency. Among other things, these authors provide evidence for conditional
heteroskedasticity in daily EUA returns. In another stream of articles the authors try
to establish which fundamentals are the main price drivers in the EUA market. The
role of regulatory issues has been considered by Mansanet-Bataller and Pardo (2009) and
Alberola et al. (2008) who find that the approval of the overall cap or the verification of
actual emissions significantly affect the EUA price. Other fundamental factors such as
energy prices, weather or the overall economic activity are analyzed, among others, in
Mansanet-Bataller et al. (2007) and Alberola et al. (2009a). Their results suggest that
EUA prices are closely connected to energy markets, in particular to electricity, gas and
crude oil prices. In addition, Alberola et al. (2009b) conclude that sectoral production
also significantly determines the EUA price. On the contrary, it has been argued by
Chevallier (2009) that macroeconomic risk factors, such as the default spread, short-term
interest rates or selected market portfolios are only loosely related to the EUA price.

Despite the growing interest in “carbon finance”, very few studies focus on the relation
between the EUA price and its fundamentals at high-frequency. The first work in this
direction has been done by Benz and Hengelbrock (2008) and Rotfufi (2009), where the
former analyze the joint development of two different exchange-based EUA price series
and the latter provides selected features of the intraday price formation and volatility
in the EU ETS. More recent studies, for example Rittler (2012), focus on the relation
between EUA spot and futures prices at high-frequency. The present article builds on
the study of Rotfufl et al. (2009) in which the relation between EUA prices and one fun-
damental factor, namely the determination of the overall supply of EUAs in the second

phase is analyzed.

2.4 Data and methodology

2.4.1 Data
Price data

In the empirical analysis we employ high-frequency price data for second-phase EUAs
which were obtained from the ICE Futures/European Climate Exchange (ECX), the lead-
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ing exchange for trading in EUA futures. We focus on price series of the EUA futures
contracts maturing in December 2008 (from 01/11/2006 to 15/12/2008), in December
2009 (from 16/12/2008 to 15/12/2009), and in December 2010 (from 16/12/2008 to
09/07/2010). Data prior to November 2006 is not considered due to low liquidity in
these instruments. Each EUA futures contract has a maturity of more than three years.
They were launched in 2005 and matured on 15/12/2008, 14/12/2009, and 15/12/2010,
respectively. In total, we consider 931 trading days, whereby we restrict the analysis to
on-exchange transactions. Trading in ICE Futures takes place every working day between
7:00 and 17:00 GMT. The raw data files contain a total of 1,012,646 irregularly spaced
transaction records. Each transaction record consists of the transaction price, the trans-
action volume and the corresponding time stamp (measured up to the second) in GMT.
In order to explore the intraday price dynamics, we transform the irregularly spaced
transaction prices to equidistant price series. Figure 2.1 displays the equidistant 10-
minute EUA prices for the period under consideration. The frequency of the series used
in our analysis is chosen to be h = 10, 30 and 60 minutes, with 7:00 GMT being the first
equidistant point in time. At each equidistant point in time the corresponding price is
calculated as the mean of the preceding and the immediately following price, unless there
is a transaction at the equidistant point itself. If there is no transaction at 17:00 GMT,
the last equidistant price equals the last recorded transaction price. To avoid overnight

effects, we do not take the mean of transaction prices of two consecutive trading days.

‘Figure 2.1 about here. ‘

Equidistant returns are constructed from the price series as follows
R; (k) =100 x (log(P;x(h)) —log(Pig-1(h))), t=1,..T and k=1,.., K(h),

where P, ;(h) represents the equidistant EUA price at the end of the k-th interval at
day t given frequency h. T is the total number of trading days and K (h) the number of
equidistant intervals per trading day. P, o(h) is defined as the last equidistant price on
the preceding trading day ¢ — 1, unless there is a transaction exactly at 7:00 GMT.2

At all three frequencies, the descriptive statistics (not reported) reveal that the EUA
returns have a mean which is not significantly different from zero, are slightly skewed to
the right and have a kurtosis that is considerably greater than three. The Jarque-Bera
statistics reject normality and the outcome of the Engle LM tests suggest that there is

conditional heteroscedasticity. As often reported for high-frequency data, there is some

2In addition to returns we also calculate the transaction volumes at the three intraday frequencies. In
the empirical analysis the transaction volumes will be used as a predictor for the market volatility.
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evidence for serial correlation at low lags in the high-frequency returns, possibly due to
microstructure effects. In sharp contrast, Figure 2.2 shows that the absolute returns are

highly correlated even for long lags.

Figure 2.2 about here.

The figure depicts exemplarily the sample autocorrelation function of the 10-minute ab-
solute EUA returns for five consecutive trading days. The intraday periodic pattern is
clearly observable. Due to the 10-minute frequency and a trading session of ten hours, we
have 60 equidistant intervals per trading day. The figure reveals a peak at the first lag
and a fast decay of the sample autocorrelation function within the first half of the trading
day (up to lag 30). After lag 30, the autocorrelation begins to increase towards a second
peak at the beginning of the next trading day (lag 60). The same seasonality pattern is
observed for the following days, whereas the amplitude of the subsequent peaks is slowly
decreasing. The pattern results from the intraday seasonality due to the time-varying

intensity of market activity which is illustrated in Figure 2.3.

Figure 2.3 about here. ‘

The figure shows the average absolute returns, fx(h) = 7 S |Rik(h)], for each interval
k =1,...,60. The average absolute returns are high at the beginning of the trading ses-
sion and then decrease until mid-day. After mid-day, the average absolute returns again
increase slightly. Although less pronounced, this pattern of the absolute EUA returns
resembles the typical intraday U-shaped pattern observed in other financial markets (see,
e.g., Andersen and Bollerslev (1997)).

There are several ways to deal with the intraday seasonality (see, e.g., Martens et al. (2002)).
A simple but very effective method is to standardize Ry x(h) according to the following

rule:

_ Rig(h)
fi(h)

The standardization simply scales each return R;(h) by the average absolute return of

Tt,k(h)

the interval k. Figure 2.4 illustrates the effect of the filtering by displaying the sample
autocorrelation function of |r(h)| for five consecutive trading days, where again we fix
the frequency at h = 10. As evident from the figure, the sample autocorrelation function
does not exhibit any remaining seasonality. In fact, it decreases smoothly with increasing
lags. However, while the autocorrelations initially decay fast they are characterized by
an extremely slow rate of decay thereafter. Such behavior is typical for long memory
processes and suggests that the volatility of EUA returns should be modeled as a frac-
tionally integrated process (see Andersen and Bollerslev (1997)). In order to formally test
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the hypothesis of long memory and fractional integration we apply the R/S statistic sug-
gested by Lo (1991) as well as the Geweke (1983) estimator of the fractional differencing
parameter d to the squared and absolute filtered return data. The results presented in
Table 2.1 show that according to the R/S statistic we can reject the short memory null
hypothesis against the long memory alternative for all series. Similarly, the estimated

fractional differencing parameters d are significantly greater than zero in all cases.?

‘Figure 2.4 about here. ‘

‘Table 2.1 about here. ‘

Announcement data

As mentioned before, previous research has identified political and institutional decisions
on the overall cap stringency, energy prices, temperature events and economic activity
as the main EUA price drivers. In our high-frequency analysis of announcement effects
we will focus on regulatory issues and measures of economic activity. Further, among
the measures of economic activity we distinguish between those which capture the future
economic outlook and those which capture the contemporaneous macroeconomic situa-
tion. More specifically, we consider the releases of i) the EC’s decisions on second NAPs,
i1) leading economic indicators that are supposed to reflect the views of the market par-
ticipants on the future economic development, and i) macroeconomic figures that are
supposed to capture the real economic activity in the European Union and its biggest
members states (Germany, Great Britain, and France). In addition, we also make use of
data from those U.S. announcements which have been shown to affect other European
assets prices in previous studies (see, e.g., Andersson et al. (2009)). The econometric
analysis of the announcement effects is then based on the differences of realized and ex-

pected figures.

‘Table 2.2 about here. ‘

In total we make use of i = 13 announcement series which span the period 11/2006 to
07/2010. The individual observations for each of the announcement series consist of the

time stamp of the announcement release (¢,k), the realized value y;k, and the median

3Interestingly, the long memory property has recently been established in the volatility of other energy
price series, e.g. crude oil prices (see Kang et al. (2009) and Wei et al. (2010)). Hence, our findings for
EUA returns complement the results from this strand of literature.
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/y:f,k of the corresponding expectations of the market participants. With the exception
of the decisions on second NAPs, all realized and expected data were obtained from
the Forex Factory (forezfactory.com, FF in the following) database. FF compiles the
expectations either from the Bloomberg or from the Reuters press releases, which are
publicly available shortly after the announcements. The expectation data are consensus
forecasts, which Bloomberg and Reuters obtain by means of surveys few days prior to
the announcements. Since there are no expectations data available regarding the EC’s
decisions on second NAPs, we construct the expectation variable by assuming that market
participants anticipate the EC’s decisions by using the national total in Phase I as a
reference point. The expectation for a certain member state is set equal to the number of
EUAs submitted to the EC if this number is below a lump sum cut amount of the national
total approved in Phase I and equal to the lump sum cut amount otherwise. Assuming
that expectations are formed in such a way is reasonable since it was clear to all market
participants that the EC will only allow tight caps in the second commitment period. For
the subsequent analysis we have chosen the lump sum cut to be 7.5 percent.

An overview of the announcement data along with a test for the unbiasedness of the
expectations is provided in Table 2.2. The standard procedure to test for the unbiasedness
of expectations is to run a linear regression of the realized value on an intercept and the
expected value. The expectations can be assumed to be unbiased if the estimates for
the intercept and the slope coefficient are not jointly significantly different from zero and
unity. As can be seen from Table 2.2, in all regressions the R? is relatively high and the
null hypothesis of unbiased expectations, Hy : f; = 0 and (5, = 1, can only be rejected
in one out of the thirteen cases at the 5% level. Thus, we conclude that the expectations
data can be considered as being of good quality.

Since the units of measurement differ across the various announcement variables, we follow
Balduzzi et al. (2001) and standardize the surprise variables, i.e. the difference between

the realized and expected values, as:

[
bk sdi

where sd’ is the sample standard deviation of the forecast error for announcement i. We
refer to the resulting variables Sy, as the standardized surprises.
Next, we briefly discuss the expected effects of surprises in the three groups of announce-

ment variables. Since a positive surprise in the NAP represents an unexpected increase

4This value was suggested in Rotful et al. (2009) and is in line with unbiased expectations (see
Table 2.2). Moreover, we have checked the robustness of our results with respect to reasonable variations
in the lump sum cut ranging from 5 to 10 percent.
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of the national total in Phase II of a member state, we should expect a price decline
simply because of increasing supply. Similarly, better than expected figures on the actual
economic activity or the future economic development should signal a higher (future)

demand for emission allowances and, hence, induce an increase in EUA prices.?

2.4.2 Methodology

In order to capture the news effects on EUA prices, we model the continuously com-
pounded EUA returns as a function of their own first lag and the contemporaneous
and P lagged values of the standardized surprise variables. To simplify the notation,
we now change the index of the return and surprise variables from (¢, k) to n, where

n=1,...,TK.® The mean equation is then given by

13 P
— A0+ Y Y 05,5, + e, (2.1)

=1 p=0

where the error term ¢, is given by ¢, = 0,7, with {Z,,} being a sequence of independent
and identically distributed random variables with E(Z,) = 0, E(Z2) = 1 and o2 being
the conditional variance. Since the empirical autocorrelation function of the absolute
filtered returns revealed a clear pattern of long memory and persistence, we follow Tse

(1998) and model the conditional variance as a fractionally integrated asymmetric power
GARCH (FIAPGARCH(1,d, 1)) process given by

J Q
(1—-pL)o, = w+ZZwMW —q

Jj=14q

I
-

+((1=BL) = (1= oL)(1 = L)) (leul = 72a)’,  (2:2)

where L denotes the lag operator and /¢ are the autoregressive/moving average param-
eters of the variance equation. The fractional differencing parameter 0 < d < 1 captures
the long memory in the volatility and 6 > 0 denotes the optimal power transformation.
In addition, the asymmetry term |y| < 1 ensures that positive and negative innovations
of the same size can have asymmetric effects on the conditional variance. Note that for

the conditional variance to be positive almost surely for all n, the parameter combination

®Alberola et al. (2009b) argue that the response to surprises in the actual activity may depend on
the potential long/short compliance positions held by the industrial sectors. Their results suggest that
important industrial sectors had net long compliance positions in the period 2005-2006. In such a situation
even a positive surprise on the actual economic activity can lead to declining EUA prices.

6Note that we also suppress the reference to the frequency h by simply writing r,, instead of r,(h).
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(8,d, ¢) has to satisfy the inequality constraints derived in Conrad (2010) and Conrad
and Haag (2006). The explanatory variables Wg_q are the (lagged) values of the filtered
transaction volume and dummy variables which indicate whether an announcement takes
place or not.”

The flexible FIAPGARCH specification nests several standard GARCH models. For § = 2
it reduces to an asymmetric FIGARCH (FIAGARCH) specification and under the addi-
tional constraint that v = 0 to the symmetric FIGARCH one (see Baillie et al. (1996)).
On the other hand, for d = 0 the model reduces to a short memory asymmetric power
GARCH (APGARCH) specification and under the additional constraint that 6 = 2 to
the asymmetric GARCH (AGARCH) model (see Ding et al. (1993)). In this last case,

the conditional variance takes the familiar form 02 = w+ a(|e,_1]| —ven_1)*+ Bo2_; with

a=q¢—p.

All models are estimated by using the quasi-maximum-likelihood method as implemented
by Laurent and Peters (2003) in the GQRCH package for Ox, which allows us to draw
robust inference even if the return data are non-Gaussian. Finally, we can use standard
information criteria and likelihood ratio tests to discriminate between the most general
FIAPGARCH model and the nested GARCH specifications (see also Conrad et al. 2011)).8

2.5 Empirical results

2.5.1 Baseline specifications
Estimation at intraday frequencies

We begin the empirical analysis by first estimating the four GARCH specifications at
the 10-, 30- and 60-minute frequency without including any explanatory variables. By
doing so, we will identify the GARCH specification which is best suited for modeling
the high-frequency EUA return data. The results are presented in Tables 2.3, 2.4 and
2.5. At the 10-minute frequency, the autoregressive and moving average parameters are
highly significant in all four GARCH specifications. In addition, the asymmetry term is

significantly positive in all four models, which suggests that the conditional variance of

7As for the return series, we filtered the transaction volume by first eliminating a time trend and then
removing the intraday seasonality pattern.

8Because of the excessive number of zero returns in the U.S. SO, market in the period 1999-2006,
Paolella and Taschini (2008) suggest to use mixed normal GARCH specifications to analyze emissions
allowances. However, in our data set for Phase II of the EU ETS the liquidity in the market for COq
allowances is sufficiently high such that the zero returns problem is not evident (in our sample, the average
time between two consecutive trades is 56 seconds). Instead the predominant feature of the return series
is the long memory property in the second conditional moment.
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EUA returns increases considerably more in response to negative innovations than to pos-
itive ones of the same size. The fractional differencing parameter in the FIAGARCH and
FIAPGARCH models take values around 0.25 which are significantly above zero. Such a
degree of volatility persistence is well in line with the ones observed in other financial mar-
kets, such as exchange rates (see, e.g., Conrad and Lamla (2010)). Clearly, the evidence
for long memory which was already evident from Figure 2.4 and Table 2.1 is reinforced by
our coefficient estimates.” The estimated FIAGARCH and FIAPGARCH parameter com-
binations (3, d, ¢) satisfy the inequality constraints derived in Conrad (2010) and, thus,
guarantee the non-negativity of the conditional variances. Further, the optimal power
transformation in the FIAPGARCH model is estimated to be significantly greater than
two and, hence, restricting it to two may lead to suboptimal modeling and forecasting
performance (see Brooks et al. (2000)). Comparing the Akaike and Schwartz information
criteria (AIC and SIC) of the FIAPGARCH model with those from the models which
impose the restrictions § = 2 (FIAGARCH), d = 0 (APGARCH) or § =2 and d = 0
(AGARCH) clearly leads to the conclusion that the most general FIAPGARCH specifi-
cation is the preferred one. This conclusion is reinforced by the results of the likelihood
ratio tests, which clearly reject the restricted models in favor of the most general specifi-
cation in all cases. Also, the Ljung-Box statistics show that there is no remaining serial
correlation in the squared standardized residuals from the FIAPGARCH specification. In
sharp contrast, the hypothesis of uncorrelated squared standardized residuals is strongly
rejected for the short memory APGARCH and AGARCH models. Finally, in the mean
equation the estimated constants are insignificant for all four models, while the first order
autoregressive coefficient is significant for the FIAGARCH and FIAPGARCH at the 15%

level only.

‘Table 2.3 about here. ‘

As can be seen from Table 2.4, the empirical results at the 30-minute frequency are quite
similar to the ones at the 10-minute frequency. The information criteria and the likelihood
ratio tests unanimously favor the FIAPGARCH specification as the best one. At the
60-minute frequency, the FIAPGARCH model still clearly dominates the short memory
specifications, but we obtain identical information criteria for the FIAGARCH and the
FIAPGARCH model. As can be seen from Table 2.5 the power term ¢ in the FIAPGARCH
model is not significantly different from two and, consequently, the likelihood ratio test
does no longer reject the nested FIAGARCH against the FIAPGARCH.

9 Also note that the sum of the a and 3 parameters in the two short memory GARCH specifications
is close to and not significantly different from one. This feature is often called the ‘integrated GARCH
(IGARCH) effect’ and — as argued in Baillie et al. (1996) — is due to misspecification of the conditional
variance equation because of the neglected long memory property.
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‘Table 2.4 about here. ‘

‘Table 2.5 about here. ‘

In summary, based on the results for the four GARCH specifications the most general
FIAPGARCH model can be clearly identified as producing the best fit to the data at the
10- and 30-minute frequencies. At the lower 60-minute frequency the FIAGARCH and
the FIAPGARCH model produce comparable fits. In the subsequent analysis of the an-

nouncement effects we will employ the FIAPGARCH model as our baseline specification.

On the importance of long memory

The analysis in the previous subsection has clearly shown that the in-sample fit of the long
memory GARCH specifications is superior to the one of the corresponding short memory
specifications. Because volatility forecasts are a crucial input into option pricing formulas
and portfolio selection models, we analyze the economic significance of the long memory
property by comparing the success of the different GARCH specifications in forecasting
volatility out-of-sample. The usual applications such as Value-at-Risk computations typ-
ically require volatility forecasts at a daily frequency. Hence, we first construct a series
of 931 daily EUA returns from our full sample. Then each specification is re-estimated
for the period 01/11/2006 to 31/12/2009 (i.e. over the first 800 observations) and out-of-
sample volatility forecasts are constructed for the period 01/01/2010 to 09/07/2010. In
order to be able to evaluate the forecast performance of the competing specifications at
different forecast horizons, we produce 5-, 10- and 15-step-ahead predictions in addition
to one-step-ahead forecasts. For the forecast evaluation we construct the daily realized
volatilities as the sum of the squared 10-minute intraday returns and then calculate the
mean square error (MSE) and the mean absolute error (MAE) statistics over the relevant
forecast horizons.

We only briefly comment on the in-sample estimation results for the daily data, because
the findings were quite similar to the ones using the intraday data. In particular, we again
find strong evidence in favor of long memory, i.e. the fractional differencing parameter
is significantly different from zero as well as one in all long memory specifications (see
Table 2.6, first column). As at the 60-minute frequency, the estimated power terms are
not found to be significantly different from two and, in addition, the significance of the
asymmetry term becomes weaker. Because of these two findings we additionally estimated
the simple GARCH and FIGARCH models.

The results of the forecast comparison are summarized in Table 2.6. According to the



30 CHAPTER 2. EXPLAINING EUA PRICES AT HIGH-FREQUENCY

MSE and MAE statistics, the long memory specifications generate considerably more ac-
curate volatility forecasts than their short memory counterparts. That is, at each forecast
horizon the FI(A)GARCH specifications clearly provide the best volatility forecasts, as
indicated by both evaluation criteria. More specifically, the FIGARCH model dominates
at the 1- and 5-step-ahead horizons and the FIAGARCH one at longer forecast horizons.
This finding is in line with the recent evidence in Engle (2010) who argues that modeling
asymmetry is particularly important for producing accurate long-run volatility forecasts.
The forecast comparison clearly shows that neglecting the long memory property leads to
inferior volatility predictions.!® Hence, the analysis of daily data reinforces the evidence
of long memory in the volatility of EUA returns and highlights the importance of this

finding for financial applications.!!

2.5.2 Measuring announcement effects
Announcement effects over different time horizons

We now augment the FIAPGARCH specification from above by the contemporaneous
standardized surprise variables from the 13 macroeconomic announcement series in the
conditional mean and by additional control variables in the conditional variance. The cor-
responding results for the three intraday high-frequency series are presented in Table 2.7.
We first focus on the releases of the EC’s decisions on second NAP’s. The reaction to
announcements of the EC’s decisions is significant at the 1% level at the 10-minute fre-
quency and at the 5% level at the 60-minute frequency. In line with our discussion in
Section 2.4.1, a higher than expected allocation of emission rights leads to an immediate
decline in the EUA price. The price drop is strongest after ten minutes with a value of
—3.1364 and takes a value of —0.6703 after 60 minutes.

‘Table 2.7 about here. ‘

Among the variables which capture the tendency of the future economic development,
the U.S. ISM manufacturer index clearly evokes the strongest price reaction. At the 10-
and 30-minute frequencies the effect is positive and highly significant (at least at the 5%
level). Similarly, the coefficients for surprises in the DE ifo index and DE new orders are
positive and significant (at the 5% or 10% level) at various intraday frequencies. The fact

that the estimated coefficients are always positive is in line with the argument that the

OTnterestingly, the APGARCH model has the worst performance at all forecast horizons. Also the
FIAPGARCH model does not perform as well as the long memory models which impose the restriction
0 = 2. Thus, for forecasting daily EUA volatility the optimal power transformation appears to be two.

HSimilarly, Kang et al. (2009) and Wei et al. (2010) provide convincing evidence for the economic
implications of long memory in crude oil price volatility.
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prospect of stronger than expected economic growth and, hence, rising emissions will lead
to an increase in the demand for allowances.!?

Looking at the variables which reflect the current stance of the economy, we find a sim-
ilar picture as for the indictors on the future economic development. That is, surprise
announcements on German and U.S. variables lead to immediate and significant market
reactions. More specifically, the U.S. nonfarm payrolls evoke the strongest price reaction
which is highly significant (at least at the 5% level) at all three frequencies. Similarly, the
surprises in the DE industrial production induce significant price reactions at the 10- and
30-minute frequency (at the 5% and 15% level, respectively). In all cases, higher than
expected production levels lead to increasing EUA prices.

Note that we augmented the conditional variance equation by the first lag of the fil-
tered trading volume and a binary variable (EU NAP dummy) which indicates whether
a NAP announcement takes place or not. At the intraday frequencies the lagged trading
volume has a positive and highly significant (at the 1% level) effect on the conditional
variance, i.e. higher trading volume leads to more volatility. This finding is in line with
the sequential information arrival hypothesis as first developed by Copeland (1976) and
empirically supported by Darrat et al. (2003) among others. On the contrary, the binary
NAP variable is weakly significant (at the 10% level) at the 10-minute frequency only.
This is a remarkable finding because it suggests that the NAP announcements signifi-
cantly affect the level of the EUA prices with almost no effect on volatility.!* Further,
note that the estimated values of the structural coefficients in the conditional mean and
variance equations of the three high-frequency specifications are almost identical to the
corresponding ones that we obtained for the baseline specifications. Also, based on the
Ljung-Box statistics there is no evidence for misspecification in the squared standardized
residuals.

In summary, we find that the NAP approvals have an immediate, long lasting and by
far the strongest effect on EUA prices. In addition, German and U.S. figures on the
future economic development as well as on the contemporaneous economic activity have
immediate — but compared to the NAP announcements — rather short-lived effects on the
EUA price process. In line with the argument that higher than expected contemporane-
ous/future economic activity will increase the demand for EUA allowances, the estimated

reaction coefficients for those variables are all positive. Interestingly, we find no significant

12The only exception is the DE ZEW index for which the results are mixed: a negative coefficient at
the 60-minute frequency and a positive coefficient at the 10-minute frequency (significant at the 10% and
15% level, respectively).

13We also experimented with dummy variables for the other announcements. However, none of these
were found to be significant.



32 CHAPTER 2. EXPLAINING EUA PRICES AT HIGH-FREQUENCY

effects in response to the EU, French or British announcements. The fact that German
and U.S. announcements are predominant may be explained as follows: i) Germany is the
largest European economy, heavily industrialized and, thus, highly emissions-driven and
ii) financial markets typically use information about the U.S. economy as a predictor for
the future development of the European economy.

Finally, we would like to note that at a daily frequency none of the macroeconomic indi-
cators appear to evoke significant price reactions (results not reported). This observation
squares with the findings in Chevallier (2009) and at the same time highlights the impor-
tance of taking a high-frequency perspective. In contrast, even based on daily data the
negative effect of the NAP announcements is still observable and significant at the 5%

level.

Lagged announcement effects

In the previous subsection we investigated contemporaneous announcement effects but
did not take into account the complicated lead lag structure which is often observed in
financial markets in response to the release of macroeconomic news. Hence, in a second
step we rerun the regression at the 10-minute frequency, but now include several lagged
values of the surprise variables. The results for this extended model are presented in Table
2.8. We include up to 3 lags of the standardized surprise variables such that a 40-minute

period is covered.!

‘Table 2.8 about here. ‘

As before, the overall reaction to the NAP announcements is negative. However, it is
interesting to note that after the strong price decline within the first ten minutes, there is
a significant price reversal which is then followed by a final price decline. This interesting
observation cannot be made by simply looking at the reaction at different frequencies (as
is done in Table 2.7), but requires the inclusion of lagged surprises.

The results for the forward looking indicators confirm our previous findings. Again, pos-
itive surprises in DE new orders and the U.S. ISM manufacturer index lead to increasing
EUA prices on impact. Both effects are highly significant. In line with our previous
results, the coefficient estimates for the DE Ifo index suggest that the reaction to this
indicator is somewhat delayed. Apart from the second lag of the DE ZEW index, all
significant coefficients are of the expected sign and, hence, imply positive price reactions

to positive surprises.

“Tncluding additional lagged values did not change our conclusions in a significant way. Of course, the
results are available from the authors upon request.
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Concerning the variables representing the current economic stance, the results are also
in line with those of Table 2.7. Again, macroeconomic announcements related to the
economies of Germany and the U.S. affect EUA prices the strongest. Positive surprises in
DE industrial production and the U.S. nonfarm payrolls lead to positive EUA price reac-
tions which are immediate and highly significant. In addition, the second lag of surprises
in EU industrial production affects EUA prices positively and highly significantly (at the
1% level). No significant effects can be observed in response to surprises in the industrial
production of the U.K. and France.

Definitely, the analysis with lagged standardized surprise variables allows us to gain some
additional insights into the way the EUA prices adjust to new information. First, EUA
prices react most strongly to NAP announcements. However, while the overall reaction
is negative there is some price reversal effect at the second lag. This effect might also
explain why we do not find a significant reaction to the NAP announcements in Table 2.7
at the 30-minute frequency. Second, immediate reactions are observed in response to
German and U.S. macroeconomic announcements on the future economic development as
well as the current economic stance. In most cases the new information is priced within
the first ten minutes after the release of the announcement. Lagged surprise variables
are significant in a few cases only. Hence, for the German and U.S. announcements our
results are in line with the findings for other financial markets in which the adjustment
to new information typically takes place within a few minutes or even seconds (see, e.g.,
Andersen et al. (2003)). This is remarkable, since the EU ETS is still a relatively new
market. On the contrary, the finding that there are almost no price reactions in response

to EU, French and British announcements is rather surprising.

2.6 Conclusions

This article contributes to the steadily expanding literature on the modeling and explain-
ing of the movements in EUA prices. The distinguishing feature of our contribution lies
in investigating the price dynamics from a high-frequency perspective. We show that the
price dynamics of the EUA futures contracts maturing in December 2008, 2009, and 2010
are very well captured by a fractionally integrated asymmetric power GARCH specifica-
tion. Thus, we establish that high-frequency EUA returns do not only obey conditional
heteroscedasticity, but are also characterized by long memory, power effects and asymme-
try in their second conditional moments. The finding of long memory in the volatility of
EUA returns complements the recent evidence by Kang et al. (2009) and Wei et al. (2010)

of long memory in oil price volatility. Additionally, we have shown that the long memory
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specifications clearly outperform their short memory competitors in terms of out-of-sample
forecast performance. Since volatility forecasts are crucial for risk management as well as
optimal portfolio allocations, the long memory property in the volatility of EUA returns
is of considerable economic relevance.

Moreover, we investigate how EUA prices respond to the release of the EC’s decisions on
second NAPs, macroeconomic announcements on the future economic development and
the actual economic activity. We find that the reaction to the EC’s decisions on second
NAPs is immediate and of the expected sign. Similarly, the empirical evidence suggests
that German as well as U.S. leading economic indicators, which point towards higher than
expected growth in the future, induce an immediate increase in EUA prices. The same
results are found in response to German and U.S. announcements on the actual economic
activity, i.e. positive news regarding the current stance of the economy generate positive
and significant price reactions within the first ten minutes after the release. However, we
were not able to establish a link between EUA prices and announcements in other major
European countries. This result is surprising and opens an interesting avenue for future
research.

Finally, from the size and the strength of the response of EUA prices to the various data
releases, we conclude that NAP announcements which directly affect the supply of emis-
sion allowances are by far the most important driving force of EUA prices, while on the
demand side U.S. nonfarm payrolls, the U.S. ISM manufacturer index, German industrial

production as well as German new orders generate the strongest effects on EUA prices.
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Figure 2.2: Autocorrelation function of absolute 10-minute EUA returns for five consec-
utive trading days
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Figure 2.3: Average absolute 10-minute EUA returns for each 10-minute interval during

a trading day
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Figure 2.4: Autocorrelation function of filtered 10-minute absolute EUA returns for five
consecutive trading days
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Table 2.1: Tests for Long Memory in Absolute/Squared Filtered Returns
Ire(10)]  r7,(10)  [reu(30)[  77.(30)  [rk(60)[ 17, (60)

R/S 5.3912 5.0109 4.1346 3.0370 3.4485 2.2169
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

d 0.1309 0.3074 0.1647 0.3814 0.1909 0.3127
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

Notes: The entries in the first line are the values of Lo’s (1991) R/S statistic. The entries
in the second line are the Geweke (1983) estimated fractional differencing parameters. The
numbers in brackets are p-values.

Table 2.2: Announcement Data and Tests of Unbiasedness of Expectations

Announcement 7 obs. 51 B2 R? Wald test
Policy Variable
EU NAP 27 0.434 0.982  0.997 1.75
(1.397) (0.011) [0.194]
Future Economic Outlook
DE Ifo index 44 0.241 0.998  0.972 0.03
(2.547) (0.026) [0.970]
DE ZEW index 44 0.771 0.964  0.955 0.82
(1.275) (0.032) [0.447]
EU Consumer confidence 44 —0.325 0.992  0.969 0.38
(0.490) (0.027) [0.688]
DE New orders 45 —0.003 0.637  0.169 1.59
(0.005) (0.216) [0.216]
EU New orders 44 0.002 0.987  0.605 0.42
(0.002) (0.123) [0.662]
U.S. ISM manufacturer index 45 1.607 0.971 0.914 0.39
(2.267) (0.045) [0.683]
U.S. Uni-Michigan index adv. 44 3.167 0.946  0.888 1.34
(3.849) (0.052) [0.274]
Current Economic Activity
DE Industrial production 45 —0.003 1.316  0.484 1.98
(0.002) (0.207) [0.150]
EU Industrial production 44 —0.001 0.944 0.735 0.75
(0.001) (0.088) [0.481]
FR Industrial production 45 —0.002 1.231  0.268 0.71
(0.002) (0.310) [0.499]
GB Industrial production 45 —0.002 1.464  0.503 4.81
(0.001) (0.222) [0.013]
U.S. Nonfarm payrolls 45 —11.916  0.979  0.933 0.66
(10.916) (0.040) [0.520]

Notes: The first two columns contain the name and the number of observations of the announcement
series. The third to fifth columns contain the estimates from the regression y; , = 81+ 827} ;. +n} .
and the corresponding R?. The last column shows the results of a Wald test of the joint hypothesis
Hp : f1 = 0 and B2 = 1. Numbers in parentheses are standard errors, numbers in brackets are
p-values.
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Table 2.3: GARCH Models at 10-Minutes Frequency

AGARCH APGARCH FIAGARCH FIAPGARCH
Mean Equation
1 —0.0072 —0.0067 —0.0069 —0.0066
(0.0055) (0.0054) (0.0052) (0.0052)
—0.0029 —0.0027 0.0086+ 0.0082F
(0.0058) (0.0057) (0.0054) (0.0053)
Variance Equation
w 0.0138"F 00138 0.1057* 0.0862"*
(0.0062) (0.0063) (0.0153) (0.0161)
a 0.0317***  0.0304***
(0.0089) (0.0092)
b 0.4625*** 0.4659***
(0.0395) (0.0467)
B 0.9628***  0.9625*** 0.6427*** 0.6102***
(0.0111) (0.0111) (0.0348) (0.0437)
vy 0.0986*** 0.0944*** 0.1082*** 0.0972***
(0.0235) (0.0222) (0.0222) (0.0197)
é 2.1056*** 2.1774***
(0.1055) (0.0653)
d 0.2923*** 0.2515***
(0.0176) (0.0236)
AIC 3.565 3.565 3.546 3.544
SIC 3.566 3.566 3.547 3.546
Q2(20) 163.028 153.724 23.787 20.373
[0.000] [0.000] [0.162] [0.312]
LR 1143.558 1133.066 68.494
[0.000] [0.000] [0.000]

Notes: The numbers in parentheses are Bollerslev-Wooldridge robust stan-
dard errors. ***, ** * + indicate significance at the 1 %, 5 %, 10 % and
15 % level. AIC and SIC are the Akaike and Schwartz information criteria.
The numbers in italic letters indicate the model with the smallest value of the
information criteria. Q2(20) is the Ljung-Box statistic for the squared stan-
dardized residuals at lag 20. LR is the likelihood ratio test LR = 2[Lyr—LRg],
where Ly g is the likelihood of the unrestricted FIAPGARCH specification
and Ly the likelihood of the restricted model. The numbers in brackets are

p-values.

Table 2.4: GARCH Models at 30-Minutes Frequency

AGARCH APGARCH FIAGARCH FIAPGARCH
Mean Equation
“w —0.0081 —0.0076 —0.0054 —0.0053
(0.0086) (0.0085) (0.0084) (0.0084)
—0.0019 —0.0014 —0.0023 —0.0022
(0.0088) (0.0087) (0.0086) (0.0084)
Variance Equation
w 0.0133*** 0.0137*** 0.0757*** 0.0591**
(0.0049) (0.0050) (0.0205) (0.0235)
a 0.0444*** 0.0419***
(0.0088) (0.0085)
& 0.4158*** 0.4009***
(0.0730) (0.1156)
15 0.9494*** 0.9481*** 0.6080*** 0.5362***
(0.0108) (0.0108) (0.0743) (0.1252)
¥ 0.1067*** 0.0985*** 0.1421*** 0.1279***
(0.0302) (0.0299) (0.0315) (0.0279)
1 2.1825*** 2.2467***
(0.1594) (0.0279)
d 0.3034*** 0.2389***
(0.0225) (0.0340)
AlIC 3.374 3.378 3.364 3.863
SIC 3.381 3.380 3.368 3.366
Q2(20) 92.137 81.875 24.494 21.797
[0.000] [0.000] [0.139] [0.241]
LR 280.344 274.336 26.444
[0.000] [0.000] [0.000]

Notes: As in Table 2.3.
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Table 2.5: GARCH Models at 60-Minutes Frequency

AGARCH APGARCH FIAGARCH FIAPGARCH
Mean Equation
m —0.0092 —0.0103 —0.0086 —0.0086
(0.0121) (0.0124) (0.0118) (0.0118)
0 —0.0027 —0.0026 —0.0032 —0.0032
(0.0119) (0.0120) (0.0126) (0.0126)
Variance Equation
w 0.0138*** 0.0133*** 0.0629*** 0.0621***
(0.0051) (0.0047) (0.0207) (0.0221)
a 0.0450*** 0.0516***
(0.0093) (0.0104)
¢ 0.4497*** 0.4504***
(0.0874) (0.0888)
1] 0.9480*** 0.9482*** 0.6436*** 0.6415***
(0.0111) (0.0105) (0.0767) (0.0832)
ol 0.1301*** 0.1603*** 0.1638*** 0.1627***
(0.0402) (0.0531) (0.0475) (0.0510)
6 1.6245*** 2.0116***
(0.1670) (0.1459)
d 0.3177*** 0.3145***
(0.0340) (0.0537)
AlIC 3.349 3.348 3.339 3.339
SI1C 3.355 3.353 3.846 3.346
Q2(20) 41.060 48.864 19.488 19.410
[0.000] [0.000] [0.362] [0.367]
LR 94.836 81.316 0.220
[0.000] [0.000] [0.639]

Notes: As in Table 2.3.

Table 2.6: Forecast Evaluation

1-step-ahead

5-step-ahead 10-step-ahead

15-step-ahead

Model MSE MAE MSE MAE MSE MAE MSE MAE
FIdAF(JC{rAi(l;{lCH 6.435 2.099 9.835 2.734 14.430 3.449 17.670 3.879
= (0.1564)
FIAGARCH 5.137  1.887 8.487 2.558 12.520 3.205 15.700 3.621
4= 03353,
F;IE;(SAE%H 5.093 1.894 8.423 2.531 13.030 3.289 16.990 3.792
T (0.1725)
APGARCH 7.117  2.249  11.000  2.89) 16.590 3.722 20.700 4.246
AGARCH 5.611 2.007 8.922 2.616 13.590 3.360 17.650 3.878
GARCH 5.539 2.012 8.827 2.600 13.960 3.382 18.140 3.937

Notes: MSE and MAE are the mean square and mean absolute forecast error, respectively.
The bold/italic numbers indicate the model with the lowest/highest value of the MSE/MAE.
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Table 2.7: FIAPGARCH Model with Contemporaneous Surprises

10-min 30-min 60-min
Mean Equation
m —0.0059 —0.0052 —0.0073
(0.0052) (0.0084) (0.0117)
(% 0.0101* —0.0025 —0.0017
(0.0053) (0.0085) (0.0127)
EU NAP —3.1364*** —0.7492 —0.6703**
(0.8419) (0.5584) (0.3486)
DE Ifo index 0.2244 0.2993** 0.0685
(0.1798) (0.1505) (0.1329)
DE ZEW index 0.27161+ —0.1211 —0.2964*
(0.1876) (0.1615) (0.1740)
EU consumer confidence —0.0209 —0.1701 —0.1826
(0.2351) (0.2209) (0.2170)
DE new orders 0.3313** 0.1894 0.0401
(0.1636) (0.1972) (0.1961)
EU new orders —0.0484 —0.0347 —0.1599
(0.1873) (0.2020) (0.1674)
U.S. ISM manufacturer index 0.5119*** 0.3609** —0.0697
(0.1966) (0.1906) (0.1979)
U.S. Uni-Michigan index adv. 0.0726 0.2256 0.1173
(0.1425) (0.1622) (0.1520)
DE industrial production 0.7018** 0.26161+ 0.1903
(0.3080) (0.1746) (0.1793)
EU industrial production —0.0207 0.1370 0.0986
(0.1484) (0.1108) (0.1269)
FR industrial production 0.1576 —0.0645 0.1147
(0.2038) (0.1750) (0.1662)
GB industrial production 0.1792 —0.0878 —0.0119
(0.1322) (0.2200) (0.1374)
U.S. nonfarm payrolls 1.2040*** 0.5520** 0.5357***
(0.2635) (0.2559) (0.2451)
Variance Equation
w 0.1025*** 0.0667*** 0.0621***
(0.0183) (0.0239) (0.0206)
10} 0.4608*** 0.4184*** 0.5044***
(0.0502) (0.1253) (0.0904)
B 0.6034*** 0.5516*** 0.6830***
(0.0483) (0.1313) (0.0723)
¥ 0.1146*** 0.1348*** 0.1919***
(0.0207) (0.0285) (0.0573)
é 2.1619*** 2.2300*** 1.9928***
(0.0667) (0.1014) (0.1449)
d 0.2416*** 0.2357*** 0.3027***
(0.0230) (0.0329) (0.0497)
EU NAP dummy 9.1105* 3.3068 0.5638
(4.9633) (2.5301) (0.8472)
Lagged volume 0.0553*** 0.0385*** 0.0395***
(0.0146) (0.0148) (0.0151)
Q%(20) 20.124 20.764 20.961
[0.326] [0.291] [0.281]

Notes: The numbers in parentheses are Bollerslev-Wooldridge robust standard
errors. *** ** * + indicate significance at the 1 %, 5 %, 10 % and 15% level.
The numbers in brackets are p-values.
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Table 2.8: FIAPGARCH Model with Lagged Surprises at 10-Minutes Frequency

Mean Equation

Lag
0 1 2 3
“w —0.0060
(0.0053)
0 0.0101*
(0.0053)
EU NAP —3.3259***  2.3826*** —0.8866** 0.0415
(0.8308) (0.4588) (0.4227) (0.2696)
DE Ifo index 0.2239 0.0235 0.2819F —0.2093
(0.1805) (0.1218) (0.1678) (0.1877)
DE ZEW index 0.2766F —0.2963 —0.3685**  —0.0617
(0.1842) (0.2304) (0.1497) (0.1349)
EU consumer confidence —0.0209 0.0086 —0.2239 —0.0780
(0.2347) (0.2484) (0.2299) (0.2714)
DE new orders 0.3261** 0.1265 —0.0740 0.2184
(0.1646) (0.3433) (0.2032) (0.2700)
EU new orders —0.0476 0.0543 —0.1292 —0.2012
(0.1851) (0.1925) (0.2298) (0.1790)
U.S. ISM manufacturer index 0.5106*** —0.1085 0.1873 —0.1251
(0.1953) (0.2104) (0.1882) (0.2759)
U.S. Uni-Michigan index adv. 0.0768 —0.1585 0.1572 —0.0127
(0.1417) (0.1771) (0.2101) (0.1785)
DE industrial production 0.7003** 0.0083 —0.1956 0.0729
(0.3072) (0.1843) (0.2580) (0.2347)
EU industrial production —0.0224 —0.1133 0.3640*** —0.2010
(0.1439) (0.0874) (0.0994) (0.1620)
FR industrial production 0.1645 —0.2112 0.0603 0834
(0.2044) (0.1590) (0.1391) (0.3029)
GB industrial production 0.1963 —0.3778 0.1851 0.0581
(0.1411) (0.3480) (0.2141) (0.2565)
U.S. nonfarm payrolls 1.2115*** —0.1853 —0.0845 0.2053
(0.2635) (0.2398) (0.2177) (0.2046)
Variance Equation
w b1 51 ~y & d EU NAP dum. Lagged Vol. Q?%(20)
0.1026*** 0.4560*** 0.5988*** (0.1138*** 2.1664*** 0.2410*** 7.5040F 0.0559*** 19.875
(0.0184)  (0.0501)  (0.0487)  (0.0207)  (0.0665) (0.0231) (4.8805) (0.0148) [0.339]

Notes: As in Table 2.7.
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Chapter 3

Price discovery and volatility

spillovers

3.1 Introduction

Since the implementation of the European Union emissions trading scheme (EU-ETS)
in January 2005, trading activity within the futures markets for European Union Al-
lowances (EUAs) has steadily expanded over the first two commitment periods. However,
as a consequence of the overallocation with allowances in Phase I in association with the
prohibition of the utilization of Phase I allowances to fulfill regulatory requirements in
Phase II, spot market trading activity broke down and prices converged to zero within
this period. With the start of Phase II, spot market trading activity strongly rose and
was even higher compared to the period prior to the spot market collapse.

The main objective of this study is to analyze the price discovery process in the most
liquid EUA spot and futures markets in Phase II of the EU-ETS, that is, after the spot
market re-entered into operation. In addition, we investigate the joint volatility dynamics
in both markets. Consequently, the paper directly attempts to assess the structure of
information transmission in the EU-ETS. Contrary to previous studies such as Uhrig-
Homburg and Wagner (2009), Milunovich and Joyeux (2010), and Chevallier (2010), we
make use of daily as well as intraday data at the frequencies of 10 and 30 minutes. We
conduct the investigation of the price transmission between both markets on the basis of
vector error correction models. Besides the analysis of common factor measures as sug-
gested by Schwarz and Szakmary (1994), Gonzalo and Granger (1995), and Hasbrouck
(1995) to reveal the long-run price discovery process, we also investigate the short-run
causality structure by means of Granger-causality tests. In order to assess the transmis-

sion of information in the second conditional moment, we estimate a dynamic version of
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the unrestricted extended CCC-GARCH model as developed by Conrad and Karanasos
(2010), where each market’s conditional volatility is determined by lagged volatilities and
lagged shocks of both markets. This model is flexible enough to capture negative volatility
spillovers, leverage effects and dynamic conditional correlations.

The first result is the absence of a cointegration relationship in daily spot and futures
prices. Hence, at this frequency we cannot identify any market to be the price leading
market. This result is in line with the findings of Milunovich and Joyeux (2010) and
Chevallier (2010). However, extending the data from daily to intraday frequency, the
analysis reveals a completely different picture. Based on high-frequency data, the results
strongly support the existence of a cointegration relationship, and hence underpin the
close link between both markets. Moreover, we show that drawing meaningful economic
inference on each market’s contribution to the price discovery process requires to conduct
the analysis on the basis of data at the highest frequency of 10 minutes. The reason
for this is an increasing correlation between the innovations of the two markets at lower
frequencies which induces an identification problem. Most importantly, we find that the
futures market incorporates information first and then transfers it to the spot market.
While at the early stage of Phase II the futures market attracts 70 percent of the price
discovery process, this portion even increases over time. Consequently, our results consid-
erably extend the findings of Uhrig-Homburg and Wagner (2009) and Chevallier (2010)
as they show the close relationship between both markets and the futures market’s infor-
mational role.

Second, concerning the short-run causality structure, we find unidirectional Granger-
causality from the futures to the spot market in daily data. However, the investigation
of high-frequency data reveals a bidirectional causality structure between both markets.
This result is robust with respect to the choice of the intraday frequency.

Third, in the volatility analysis we observe a similar pattern as in the price discovery
analysis. In the early stage of Phase II we find unidirectional spillovers from the futures
market volatility and from shocks in the futures market to the spot market’s volatility.
There is no such impact into the opposite direction. Contrary, in the more mature stage
only lagged spot market shocks but not lagged spot market volatility affect futures market
volatility. In addition, the impact of lagged futures market volatility on current spot mar-
ket volatility considerably increases over time. Consequently, the results of the volatility
analysis confirm the existence of the close link between both markets, which we also find
in the price discovery analysis. Further, these results contradict the findings of Milunovich
and Joyeux (2010) who observe a weak link between both markets’ uncertainties in Phase

I making use of daily data. Finally, the investigation of the DCC-structure indicates
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that the dynamic conditional correlation between spot and futures returns increases from
about 0.1 at the start of Phase II to approximately 0.6 at the end of the sample period.

In summary, we find strong evidence for a close relationship between the price and volatil-
ity dynamics in both markets that even intensifies over time. Further, making use of
high-frequency data, we identify the futures market to be the price leading market. This
result is consistent with previous findings for mature financial markets, as Tse (1999)
among others reports.

We organize the remainder of the paper as follows. In Section 3.2, we give an overview
on the related literature while Section 3.3 summarizes the key elements of the EU-ETS.
Section 3.4 describes the data and gives an overview on the relationship between com-
modity spot and futures prices in general. Section 3.5 outlines the methodology we use in
the empirical analysis, while Section 3.6 summarizes the estimation results and provides

an interpretation of the empirical findings. Finally, Section 3.7 concludes.

3.2 Related literature

With improved data availability since the introduction of the EU-ETS, a fast growing
number of empirical studies related to this market has been conducted. Besides the
analysis of the impact of market fundamentals and regulatory aspects on the allowance
price dynamics (see Mansanet-Bataller et al. (2007), Alberola et al. (2008) or Mansanet-
Bataller and Pardo (2009) among others) and the relationship between macroeconomic
performance and allowance prices (see Chevallier (2009) or Conrad et al. (2012) among
others), the investigation of statistical price properties is in the focus of this field of re-
search. While Paolella and Taschini (2008), Daskalakis et al. (2009) or Chevallier and
Sevi (2011) investigate individual volatility dynamics in the spot or the futures market,
other studies explicitly assess the relationship of the joint dynamics of spot and futures
prices.

Uhrig-Homburg and Wagner (2009) investigate the joint development of spot and futures
EUA prices in Phase I in the framework of a cost-of-carry relationship. The authors argue
that for companies under the EU-ETS there is no benefit of holding EUAs in terms of
meeting unexpected demand to keep the production process going since these companies
need EUAs only once a year to fulfill regulatory requirements. In their empirical analysis,
Uhrig-Homburg and Wagner (2009) find a cointegration relationship between observed
futures prices and theoretical futures prices which they derive in the cost-of-carry model.
They find that the futures contract leads the long-run price discovery process. Contrary,

Milunovich and Joyeux (2010) find mixed evidence on the existence of such a relationship,
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and doubt the validity of the cost-of-carry relation. More recently, making use of vector
error correction models and controlling for structural breaks, Chevallier (2010) confirms
the results of Milunovich and Joyeux (2010) for Phase II.

As a whole, previous studies assessing the relationship between spot and futures prices
yield mixed evidence. Yet, apart from Chevallier (2010) all studies refer to Phase I,
and moreover, Uhrig-Homburg and Wagner (2009), Milunovich and Joyeux (2010), and
Chevallier (2010) conduct their analysis on the basis of daily data, which the authors
justify by the low spot market liquidity in Phase I. However, Hasbrouck (1995) and Tse
(1999) among others show that the usage of intraday data leads to more informative re-
sults compared to daily data. For the EU-ETS, Benz and Hengelbrock (2008) provide
a first high-frequency price discovery analysis for Phase I. They study the joint price
dynamics of futures contracts traded at the ECX and at NordPool, respectively. The
authors find strong evidence for the existence of a cointegration relationship and the price
leadership of the futures contract traded at the ECX. However, they critically mention
the low trading activity at NordPool.

Concerning the transmission of information in the second conditional moment, that is the
analysis of volatility spillovers, empirical evidence is rare. Only Milunovich and Joyeux
(2010) address this topic in the framework of the GARCH-BEKK model. The authors
conclude that there seems to be minor relevance of informational spillovers in the volatil-
ity of spot and futures prices. However, the study again refers to Phase I and is based on
daily data.

3.3 The European Union emissions trading scheme

In this section we briefly summarize the most important features of the EU-ETS accord-
ing to Directive 2003/87/EC.! Within the framework of the Kyoto Protocol the Euro-
pean Union has established the EU-ETS with the main objective to reduce greenhouse
gas emissions in a cost efficient way.? To fulfill their commitments defined under the
Kyoto Protocol, the European Community and its Member States agreed to construct an
efficient European market for greenhouse gas emission allowances. Companies operating

in the sectors steel and iron, pulp and paper, minerals, and energy do have to under-

For a detailed formal description of the EU-ETS we refer to the Directives 2003/87/EC and
2009/29/EC.

2In contrast to the multilateral trade of emissions between national states as defined in Article 17 of
the Kyoto Protocol, the EU-ETS is designed as a trading platform for greenhouse gas emissions on the
firm level.
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lay their greenhouse gas emissions with European Union Allowances (EUAs) where one
EUA warrants the right to emit one tonne of COs-equivalent during one of three specified
commitment phases.®>** The commitment phases cover the periods 2005-2007 (Phase I),
2008-2012 (Phase II), and 2013-2020 (Phase III).

For Phases I and II the total number of EUAs available in the market is determined by
National Allocation Plans (NAPs). In accordance with Article 9 of Directive 2003/87/EC
each Member State has to set up a NAP for each period containing the number of EUAs
the state intends to assign to participating installations. These plans have to be approved
by the European Commission. With the start of Phase III the number of issued allowances
is linearly reduced yearly by 1.74% from the average annual quantity of allowances issued
in the Phase IT NAPs.®> In Phases I and II, at least 95% and 90% of the issued EUAs have
been allocated free of charge, while only a small portion has been auctioned. According to
Directive 2009/29/EC, from 2013 onwards the portion of EUAs allocated free of charge
is reduced from 80% to 30% in 2020. After their allocation, allowances can be traded
over-the-counter and on several organized markets.® In addition to spot market trading,
some of the exchanges also offer derivative products.

By April 30, each participating installation has to surrender the adequate number of
EUAs required to underlay its greenhouse gas emissions of the previous year to the na-
tional authorities. Installations that do not have enough EUAs to fulfill the regulatory
requirements can purchase additional allowances on the markets, while on the other hand
superfluous allowances can be sold on the markets. Within a given commitment period,
installations can also transfer superfluous allowances of one compliance year to the consec-
utive one, or employ EUAs of the next compliance year to fulfill regulatory requirements
in the current year. However, the transfer of allowances between Phases I and II is not
permitted. Installations that fail to meet the requirements, do have to pay a penalty of
40 (100) Euros for each excess tonne of COy-equivalent in Phase I (Phase II).

3 According to Directive 2009/29/EC the European Commission plans to also cover the aviation sector’s
emissions by the EU-ETS from 2012 on.

4Besides carbon dioxide, the EU-ETS accounts for methane, nitrous oxide, hydro fluorocarbons, per-
fluorocarbons and sulphur hexafluoride.

® According to Resolution 2010/634/EU the total number of EUAs that will be allocated in 2013 equals
2,039 millions.

6These markets are: ECX (London), NordPool (Oslo), EEX (Leipzig), Eurex (Stuttgart), BlueNext
(Paris), EXAA (Vienna) and Climex (Utrecht). For a comprehensive description of the trading frame-
works at the various markets see Mansanet Bataller and Pardo (2008).
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3.4 Data

3.4.1 Spot and futures markets

To analyze price discovery, causality and volatility spillovers, we construct time series
based on spot market and futures market trading. For the spot market series, we use
tick-by-tick data provided by the BlueNext, which attracts about 70 percent of the total
daily spot market transaction volume (Rotfufl (2009)). For the futures market series we
use tick-by-tick data provided by the ECX, which attracts about 90 percent of the total
daily futures market transaction volume. Hence, our analysis covers a substantial portion
of exchange-based trading. Due to the lack of spot market transactions in Phase I of
the EU-ETS, we only consider transactions within the period 01/05/2008 to 15/12/2009
where we concentrate on the futures contracts with maturity in December 2008 and in
December 2009, respectively.” Before March 2009, spot market trading takes place from
07:00 to 15:00 GMT. From March 2009 onwards, spot market trading time is extended
to 06:00 to 15:30 GMT. Trading in the futures market is feasible from 06:00 to 16:00
GMT. To exclusively consider the trading period where spot as well as futures market
trading is possible, we restrict the daily series within the empirical analysis to 07:00 to
15:00 GMT. We transform the irregular price data to equidistant intraday log prices at

frequencies h = 10 and 30 minutes.

Taking the immediately preceding and following
quote at the end of each h-minute interval, we compute the mean to obtain the log price
at the h-minute mark. If the observed time stamp of the transaction equals the h-minute
mark, we use the corresponding price as the equidistant intraday price at frequency h. If
there is no transaction at the first A-minute mark at 07:00 the first intraday price equals
the last price of the preceding trading day. To avoid overnight effects, we do not take the
mean of transaction prices of two different days. The price of the last A-minute mark of

the trading day at 15:00 equals the price of the last observed transaction before 15:00.

3.4.2 Relating EUA spot and futures prices

A considerable part of the commodity pricing literature addresses the relationship between
spot and futures prices of particular commodity goods. According to Fama and French

(1987), valuation of futures contracts consists of two approaches. The first approach

"Since the deadline for submitting allowances for the preceding year’s emissions is on April 30 of
the consecutive year, the trading period corresponding to Phase I does not end on 31/12/2007 but on
30/04/2008. Hence, we do not consider transactions before 01,/05/2008.

8Besides the frequencies of 10 and 30 minutes we analyze other intraday frequencies as well. The
results are similar to those Section 6 reports.
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uses a risk premium to model the relationship between spot and futures prices. The
second approach directly investigates the cost and benefit of holding a commodity good
and models the relationship between this good’s spot and futures price in the cost-of-
carry framework such that the no-arbitrage condition holds (see also Borak et al. (2006)).

Generally, the cost-of-carry relationship states
pf(T) — €(Tt+ut_6t)(T_t)pf, (31)

where pf'(T') denotes the observed futures price in ¢ of a contract with maturity in 7', p?
denotes the spot price in ¢, r; states the risk-free interest rate in ¢, u; are the storage costs
in ¢, and, following Brennan (1991) and Uhrig-Homburg and Wagner (2009), J; is the
convenience yield in . On the one hand, there is a negative effect of holding a commodity
good in the form of forgone interest yields (r;) and storage costs (u;). On the other hand,
there is a positive effect (4;) of holding the commodity good due to uncertainty caused by
fluctuations in supply and demand, where the opportunity of meeting unexpected demand
in the production process immediately justifies this benefit.

The cost-of-carry relationship as stated above holds for a range of commodity goods and
has to be evaluated in case of the European Union allowance market.® Uhrig-Homburg
and Wagner (2009) and Borak et al. (2006) point out that contrary to other production
factors like raw materials or energy, companies under the EU-ETS need EUAs only once
a year for compliance requirements. Moreover, the authors argue that storage costs are
negligible. This implies that there is no economic rationale for the existence of convenience
yields in the European Union allowance market. Hence, the relationship between spot

and futures prices given by Equation (3.1) reduces to

pif(T) = e 0p}. (3-2)

‘ Insert Figure 3.1 about here. ‘

r(T=ps with the observed

We now compare the theoretical futures price p!*(T) = e
futures price p!'(T') which should be identical if the cost-of-carry relationship without
convenience yields holds.'® The risk-free interest rate r, we use in the empirical analysis is

the monthly EURIBOR on a daily basis. Observing theoretical futures prices lying above

9The cost-of-carry relationship holds within markets for intertemporally storable commodity goods
like gold or oil. Caution is advised when modeling the relation of intertemporally non-storable commodity
goods within the cost-of-carry framework.

10Note that other authors as Joyeux and Milunovich (2010) or Chevallier (2010) model the relationship
between spot and futures prices by directly comparing the spot and the futures prices. However, applying
this methodology does not alter our empirical findings.
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observed futures prices could be evidence for the existence of convenience yields. Using the
aforementioned emissions market data, we illustrate the price dynamics of the observed
futures price of the contract with maturity in December 2009 and the theoretical futures
price derived within the cost-of-carry-model neglecting convenience yields in Figure 3.1.
Besides the observed and theoretical futures prices, Figure 3.1 also presents the spot price.
The figure shows that within the first two months of Phase II the theoretically derived
futures price lies above the observed futures price. From 01/07/08 (observation 40) on,
the relationship between the theoretical and the observed futures price postulated by the
cost-of-carry model virtually seems to hold.!* Within the whole sample period, the spot
price clearly lies below the observed futures price, where the difference decreases as the

time to maturity decreases.

Insert Figure 3.2 about here.

Figure 3.2 shows the log-returns in the spot and the futures market at the frequency of
30 minutes. The graphs clearly exhibit volatility clustering. Furthermore, a first visual
inspection implies that the evolution of volatility in both markets is closely linked. Periods
of high (low) volatility in the futures market accompany periods of high (low) volatility

in the spot market.

3.5 Methodology

In this section, we describe the models we employ to investigate price discovery, causality
and volatility transmission in the spot and futures markets. We make use of a two step
sequential estimation procedure. In the first step, we estimate a vector error correction
model within the Engle and Granger (1987) framework, using the series of the theoretically
derived futures prices and the series of the empirically observed futures prices. Following
Theissen (2002) and Benz and Hengelbrock (2008), we afterwards compute price discovery
measures based on common factors as introduced by Schwarz and Szakmary (1994) and
by Hasbrouck (1995). We perform Granger-causality tests, and finally, use the residuals
of the first estimation step to estimate a bivariate asymmetric unrestricted extended
DCC-GARCH model, as introduced by Conrad and Karanasos (2010) to investigate the

transmission of volatility between both markets.

1 Besides the illustrated contract with maturity in December 2009, we also observe the circumstance
that the observed futures price of the contract with maturity in December 2008 is smaller than the
theoretical futures price within the period from 02/05/08 to 30/06/08. Again, from 01/07/08 the observed
futures price and the theoretical futures price are virtually identical.
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3.5.1 Estimating the vector error correction model

Let p; = (pI'*', pI') be the two-dimensional price vector containing the theoretical futures

price p/ T and the observed futures price p! , where we assume both individual series to be
I(1).'2 Following Engle and Granger (1987), the series p! ©" and p!” are cointegrated if both
components of p; are I(1) and a (2 x 1) vector B # 0 exists, such that z; = B'p; ~ I1(0).

Consider the vector autoregressive (VAR) model in levels of order k, given by

k
pr=p+ Y Api+e, (33)

i=1

where the matrices {A;}F_, are the (2 x 2) coefficient matrices of the lagged endogenous
variables and p is a (2 x 1) vector of constants. We assume the (2 x 1) error vector &;
to be uncorrelated over time with mean vector 0 and covariance matrix Q. If p/'* and
pl are cointegrated, then following the Granger Representation Theorem the series have

a vector error correction model (VECM) representation of order (k — 1), given by

k—1
Ap; = p+afBpii + Y Tilp,_i+e, (3.4)

i=1
where @ =TI =" A, —~Tand T, = — Zfziﬂ A;. The vector IIp,_; ~ I(0) states
the long-run relationship, while the matrices {T'; f:ll contain the short-run dependencies.
If pI't and p!” are cointegrated then IT is singular with rk(IT) = 1 and rk(a) = rk(8) = 1.
Moreover, 3 = (BTF, BF') is the cointegrating vector and a = (o™, o)’ is the loading
vector that controls the speed of adjustment to the long-run equilibrium path. According
to the efficient-market hypothesis of Fama (1970), both markets’ price processes should
incorporate new information immediately. Moreover, price differences should exist only
temporarily due to arbitrage reasons such that both price processes should incorporate
the new information equally. Therefore, we impose the restriction 3 = (1 — 1)’ on the
cointegrating vector. Since Ap; is a stationary process it has a Wold representation and

can be expressed as a vector moving average (VMA) process of infinite order

Apy=fi+ > W.L'e =i+ ¥(L)e, (3.5)
s=0

12Making use of the ADF and the KPSS tests, we emirically justify the assumption of the I(1) hypoth-
esis (not reported).
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where W =1, o = ¥(1)p, and ¥(1) = > 2, ¥,. Following Hayashi (2000) ¥(z) is of
full rank everywhere on |z| < 1. Moreover, rk(¥(1)) = 1, '®¥(1) = 0 and ¥(1)ax = 0.
With (L) = ¥(1) + (1 — L)¥*(L), where ¥ = — 7 | ¥, iterating backwards and
summing up yields the relationship in levels

t
P =060+ it + ¥(1)> &;+ ¥ (L)e,. (3.6)
Jj=1

The elements of the (2 X 2) moving average impact matrix W(1) are the cumulative VMA

coefficients (see also Yan and Zivot (2010)). ¥(1) Z;Zl g; ~ I(1) measures the long-run
t

impact of the innovations at time ¢ on each of the prices. Hence, ¥(1) > j—1 €; describes
the stochastic trend. The term W*(L)e; ~ I(0) represents the transitory portion of the
price change. Further, o is a (2 x 1) vector of constants depending on py and &o.

Due to the orthogonality of 3 = (1 — 1)’ and ¥(1), the moving average impact matrix
contains identical rows, that is, the long-run impacts of an innovation on the prices in
both markets are identical. Defining 1 = (11, 15) as the common row vector of ¥(1), we

can rewrite the VMA in levels as
. 1 t
pr = 8o+ fit + (Jw 25]- + W (L)e,. (3.7)
=

Following Hasbrouck (1995), we define (1 1)'a 22:1 g; ~ I(1) as the common trend that
describes the common efficient price in the two markets. Finally, Baillie et al. (2002) show

that for 8 = (1, —1)’ the impact matrix can be expressed as

_F _TF
(1) = B, = (j ;”}) =ﬁ<_jF jTF>, (38)

where the vectors a; and B, are the orthogonal complements to the vectors e and 3

such that &’a; = 0 and #'3, = 0 and 7 as well as 7 are scaling factors.

3.5.2 Price discovery measures and causality analysis

The main objective of price discovery analysis is to identify the process of the incorpora-
tion of permanent changes in the price of equal or closely linked assets traded on more
than one market (see Hasbrouck (1995) and Harris et al. (2002)). Put differently, the cen-
tral question is whether one market adjusts prices faster as a response to new information

than the other market which would lead to different prices across both markets after the
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incorporation of the information in the faster reacting market. Economic theory, however,
suggests that according to the law of one price and due to arbitrage considerations price
differences can only exist temporarily. Hence, theory predicts that the price reaction in
the first market generates a price reaction in the second market such that arbitrage op-
portunities do not remain permanently.

In his seminal paper, Hasbrouck (1995) develops a general framework for analyzing a mar-
ket’s contribution to the price discovery process. The starting point is the assumption of
a common implicit efficient equilibrium price in all the markets the asset is traded on.
In particular, the measure of a market’s contribution to the price discovery process is
called the market’s information share, which is defined as the portion of the variance of
an innovation to the common efficient price that can be attributed to this market relative
to the total variance of such an innovation. As an alternative price discovery measure,
Schwarz and Szakmary (1994) propose the common factor weights. In the framework of
an error correction model a market’s common factor weight equals the relative magnitude
of the coeflicients of the adjustment vector. Gonzalo and Granger (1995) show that the
common factor weights can be derived from a common factor model. Moreover, Baillie
et al. (2002) show that both measures provide similar results as far as the correlation
between the error correction model’s residuals is weak or moderate.

Besides the analysis of price discovery in markets for identical assets (see Hasbrouck
(1995) or Theissen (2002) among others) the investigation of price discovery in spot and
futures markets has gained interest in the literature. In general, for mature markets the
futures usually is the price leading market. Tse (1999) explains this finding by relatively
low transaction costs and inherent leverage in the futures market. In case of the EU-ETS
only Uhrig-Homburg and Wagner (2009) and Benz and Hengelbrock (2008) provide em-
pirical studies. While the former report the predominant informational role of the futures
relative to the spot market based on daily data making use of common factor weights,
the latter also compute information shares to investigate the price discovery process of
EUA futures traded on different markets. Based on intraday data, Benz and Hengelbrock
(2008) highlight the relevance of the ECX. However, both studies refer to the first com-
mitment period.

In the following, we present the common factor weights and the information shares. More-
over, we introduce a methodology for assessing the short-run causality structure.
Consider the loading matrix a of the VECM described by Equation (3.4). As can be seen
from Equation (3.8) the coefficients ot and of represent the permanent effect that a
shock has on the system. In particular, the equation shows that a’* —af constitutes the

system’s total adjustment to a shock in the markets. An intuitive measure of a market’s
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contribution to the price discovery process in this bivariate system constitutes the portion
of the total adjustment that can be attributed to the respective other market (see also
Theissen (2002)). Hence, following Schwarz and Szakmary (1994) the common factor

weights of the futures and the spot market are given by

TF F

a and CFWTF—=__¢

F _
CFW" = oTF — oF olF — oF "

(3.9)

If the price discovery process exclusively takes place in the futures market, then only
the spot market reacts to deviations from the equilibrium path which implies o # 0,
while of = 0 yielding CFW¥ =1 and CFWTF = 0. If each of the two markets equally
contributes to the price discovery process, then the markets’ common factor weights are
identical.

Besides the common factor weights, Hasbrouck (1995) develops the information share
concept to assess a market’s contribution to the price discovery process. Consider the
moving average impact matrix W(1) of the VMA representation derived by applying
the Beveridge-Nelson decomposition to the VECM. Hasbrouck (1995) defines a market’s
information share as the market’s contribution to the total variance 94}’ of an innovation
to the permanent portion of the price change relative to ¥€Q1)’. Hence, if the VECM errors

are uncorrelated, that means €2 is diagonal, the information share of market ¢ is given by

. Q/J?Un'

- 'lpﬂ'lp/’

where 1); is the ith element of @ and o;; is the ¢th diagonal element of €. If the resid-

uals are contemporaneously correlated, the off-diagonal elements of €2 representing the

IS;

(3.10)

covariance between both markets’ residuals have to be accounted for in the construction
of the price discovery measure. In order to minimize and bound the impact of the corre-
lation, Hasbrouck (1995) suggests to conduct the analysis on the basis of data at highest
frequencies and to make use of the Cholesky decomposition £ = FF’, where F is a lower
triangular matrix, leading to the information share

1S; = ([F])* (3.11)

P’
of market i, where [¢F]; is the ith element of the row vector F. Baillie et al. (2002)
point out that by substituting the expressions of Equation (3.8) into Equation (3.11), the

ratio of the information shares is given by I.S;/ISy = (—Of‘T—FFFH + Fy)%/FZ, and since
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157 + IS5 = 1 the information shares can be expressed as

(—(fT—FFFn + Fi)?
(_QQTI;‘Fll + Fn)? + F3,

2
F22

[Sl == o 5 5 "
(—Srr P+ Fn )? + F

and 1S5 =

(3.12)

However, the computed value of a market’s information share is not invariant to the
ordering of the series in the VECM as we attribute the contemporaneous correlation to
the market represented by the VECM’s first equation. Nevertheless, we derive an upper
(lower) bound for a market’s information share by ordering the price series of this market
first (second). Having constructed the upper and lower bounds of the information shares,
we compute the mean and each information share’s range.

Finally, in order to analyze the short-run causality structure, we apply Granger-causality
tests as proposed by Granger (1969). Within the framework of the VECM, we test
whether the lagged log-returns of one market are jointly significant in the equation of the
other market. Rejecting the null hypothesis indicates that the corresponding market does

Granger-cause the other market.

3.5.3 Volatility spillovers

In addition to the transmission of information in the spot and futures returns, we analyze
the volatility transmission between the two markets. According to Andersen (1996), the
latent underlying flow of information to the market drives an asset’s volatility process.
Consequently, the price leadership of one market could also induce the existence of a
causal relationship in both markets’ volatility dynamics (see also Chan et al. (1991)).

In order to capture the joint volatility dynamics of both markets, as a baseline specifi-
cation, we employ the unrestricted extended CCC-GARCH (UECCC-GARCH) model of
Conrad and Karanasos (2010) that allows for volatility spillovers of either sign.'® More-
over, in order to allow the conditional correlations between spot and futures returns to
vary over time, we generalize the UECCC-GARCH model to the asymmetric unrestricted
extended DCC-GARCH (AUEDCC-GARCH) specification by adopting the dynamic con-
ditional correlation (DCC) structure of Engle (2002).1

We now set up a specification along the lines of the aforementioned models which we
estimate on the basis of the fitted residuals of the spot and the futures market obtained

from the VECM. However, before estimating the bivariate volatility specification, we first

13For a comprehensive overview on multivariate GARCH models and appropriate estimation techniques
see Bauwens et al. (2006).

14We leave the application of fractionally integrated specifications allowing for long memory in the
variance equation (see Conrad et al. (2011)) for future research.
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have to transform the residual vector. Conrad et al. (2012) point out that the absolute
EUA returns exhibit a strong intraday pattern which induces deterministic seasonality in
the autocorrelation function of the absolute returns and reflects the time-varying intraday
trading activity. This pattern carries over to the fitted residuals of the error correction
model as Figure 3.3 illustrates in case of the absolute spot market residuals at 10 minutes

frequency.

Insert Figure 3.3 about here.

To extract the deterministic pattern, we scale each fitted residual of an intraday interval
by the average absolute residual of the corresponding interval over all trading days (see
also Tse (1999) and Conrad et al. (2012)).

Let e, = (ey,ex) be the (2 x 1) vector of the filtered residuals with filtration F;_;
generated by the information up through time ¢ — 1. For the volatility specification, we
define e, = z; ® h 12 _ (216v/h11s, 220V haos)', where ® denotes the Hadamard product
and A indicates elementwise exponentiation. We assume the (2 x 1) vector z; = (21, 29;)’
to be independent and identically distributed with mean zero, finite second moments, and

dynamic correlation matrix

dijt
Ri=1|piisl..,, = [7} , (3.13)
[ j,tL,J_l,Z \/m 12
where
Qi = [Gijal; joyp = (1= P99 = P9)Q + 0Pz 127, + 8P9CQu . (3.14)
Furthermore, Q is the unconditional covariance matrix of z; and a”““ and BP¢C are

non-negative scalars satisfying a?¢¢ + pP¢C < 1. Consequently, the DCC-specification
models the covariance matrix of z; as a GARCH-type equation itself.

Finally, the structure we impose on the conditional variances is given by

hy = w+ Ae}?, + Bhy_;1 + T (€)% © 1e,_,<0), (3.15)
where w = (wi,ws)" are constants, A = [ayl; ;5 B = [by], ;150 T' = [yl 210
and 1, <0 = (1ey, <051y, 1<0) is a bivariate vector of indicator functions where

le,, 1<0,@ = 1,2, is equal to one if e;;_1 < 0 and zero elsewise. For ['Vij]ij:1,2 =0
and aP¢¢ = BPCC = () the model equals the UECCC-GARCH(1,1) specification of Con-
rad and Karanasos (2010). The authors derive necessary and sufficient conditions for

h; > 0 that do not place any restrictions on the signs of the coefficients in the B ma-
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trix, such that negative volatility spillovers are explicitly allowed for. The coefficient aqo
(ag1) indicates to which extend the squared lagged innovation of the futures market (spot
market) affects the conditional variance of the spot market (futures market). Hence, we
refer to this effect as ARCH spillover effect. Further, by (be;) indicates the extend to
which the lagged conditional variance of the futures market (spot market) determines the
conditional variance of the spot market (futures market) within the current period and is
called GARCH spillover effect. Furthermore, the structure we impose on the conditional
variances allows both market’s positive and negative shocks to asymmetrically affect both
markets variances.

We estimate all specifications making use of quasi maximum likelihood estimation (QMLE)
following Bollesrlev and Wooldridge (1992).

3.6 Empirical results

Section 3.4 provides a first graphical illustration of spot and futures price dynamics.

Our full sample covers data from 02/05/2008 to 15/12/09, where we conduct the investi-
gation on the basis of the most actively traded futures contract.'® Table 3.1 presents the

descriptive statistics of daily and high-frequency returns.

‘ Insert Table 3.1 about here. ‘

As a whole, the sample covers 394 trading days yielding 6304 and 18912 equidistant high-
frequency observations at the 30 and 10 minutes frequency, respectively. The means of the
returns are negative but very close to zero at each frequency, while the standard deviations
increase with decreasing frequencies. Moreover, the summary statistics indicate that the
return distributions are slightly right-skewed at most of the analyzed frequencies. Positive
skewness in combination with strong excess kurtosis leads to the rejection of the null-
hypothesis of normally-distributed returns as the Jarque-Bera-statistics indicate. In order
to analyze the evolution of both markets’ informational roles over time, we split up the full
sample into two subsamples. The first subsample refers to the pre 15/12/2008 period, and
hence, studies the December 2008 contract, while the second subsample covers the post

15/12/2008 period, and consequently studies the December 2009 contract. Descriptive

5 Note that in order to save space we denote the theoretically derived futures price as spot price and
the empirically observed futures price as futures price.

6Within the period 01/05/2008 to 15/12/2008 the futures contract with maturity in December 2008
is the most actively traded futures contract, whereas in the post 15/12/2008 period the contract with
maturity in December 2009 attracts the highest trading volume. Note that the contract with the highest
trading volume does not have to be the contract with the closest time to maturity, since, futures with
maturity in March of each year are traded as well.
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statistics of both subsamples are similar to those Table 3.1 presents (not reported).

In a next step, we check the integration order of the series. For this, we apply the ADF
test and the KPSS test. Concerning the series in levels, we account for a time trend and
a constant, while in case of the series in first differences, we do not account for a time
trend. The Schwarz information criterion chooses the number of lags in the tests. The
results (not reported) clearly indicate the existence of a unit root in the levels series and
the absence of a unit root in the series in first differences. Consequently, we treat all series
as integrated of order one.

Based on these results, the appropriate specification to investigate the price transmission
mechanisms is a vector error correction model. Again the Schwarz information criterion

determines the optimal lag order.

3.6.1 The vector error correction model

Table 3.2 shows the long-run relationship between the spot and the futures series as
implied by the estimated VECM with restricted cointegration vector 8 = (1, —1)".17
Within the VECM, we check whether the error correction term p!f; — pf", of period
t — 1 significantly enters the equation of the spot and/or futures series. While Panel A
shows the results of the estimated error correction models on the basis of the spot and
the futures market concerning the full sample, Panels B and C refer to the first and the
second subsample, respectively. The results of Panel A indicate that the error correction
term enters the spot equation statistically significant at least at the five percent level
at each of the analyzed intraday frequencies. Further, the error correction term enters
the futures equation statistically significant at the five percent level at the frequency
of 10 minutes, while it does not enter the futures equation at the 30 minutes frequency
statistically significant. Spot prices exceeding futures prices in period t—1 lead to positive
price reactions in the futures market and to negative price movements in the spot market
in the consecutive period. This is consistent with what one would expect in case of
deviations from the equilibrium relation with p/* > p!",. Finally, the price reaction in
the spot market is about 2.5 times as strong as the price reaction in the futures market.
Moreover, both reactions decrease with increasing frequencies.

The results of Panels B and C refer to the futures contracts with maturity in December
2008 and 2009, respectively. The estimated adjustment coefficients (&7F and a") shown in

Panel B imply that both markets react statistically significant to deviations from the long-

1"We also estimate the models with unrestricted cointegration vector 3. The results are not qualita-
tively different from those we report in this section. Moreover, in almost each case, we cannot reject the
hypothesis of the cointegrating vector being equal to 3 = (1, —1)" at least at the five percent level.
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run equilibrium. In each of the estimated error correction models the term plf; — pf”,
enters the spot and the futures equation at the one percent level at the frequencies of
10 and 30 minutes. At each intraday frequency the sign of the estimated adjustment
coefficients is the expected one. Contrary to the full period, price reactions in the spot
market induced by deviations from the long-run equilibrium are only about 1.5 times
as strong as price reactions in the futures market at 10 minutes frequency, while at the
lower frequency of 30 minutes the effect in the spot market exceeds the one in the futures
market slightly. The results provided by Panel C, however, reveal a different situation in

the second subsample.

‘ Insert Table 3.2 about here. ‘

While the error correction term enters the spot market equation at least at the 10 percent
level at both intraday frequencies, the error term does not significantly enter the futures
market equation at any intraday frequency. This indicates that in the second subsample
exclusively the spot price adjusts to the long-run price equilibrium in case of deviations
which implies that there is no transmission of information from the spot to the futures
market anymore. The speed of adjustment in the spot market is similar in both subsam-
ples.

In order to compare the results of our study with those of previous investigations such
as Uhrig-Homburg and Wagner (2009), Milunovich and Joyeux (2010), and Chevallier
(2010), we also report the results of the analysis on the basis of daily data. Neglecting
the information contained in the high-frequency data, however, leads to the spurious con-
clusion of no cointegration relationship between spot and futures prices since the error
correction term does neither enter the spot nor the futures equation significantly in the
full sample and the second subsample. This in turn is in strong contrast to the findings
of the high-frequency analysis.!® Moreover, the absence of a cointegration relationship
in daily data is in line with Chevallier (2010) who does not find such a relationship for
Phase IT after controlling for structural breaks, whereas the sample he analyzes is slightly
shorter than our sample. In addition, the result is mainly consistent with the one of
Milunovich and Joyeux (2010) who consider Phase I. Finally, the result contradicts the
one of Uhrig-Homburg and Wagner (2009) who also for Phase I find evidence for the
existence of a long-run relationship in daily data.

In conclusion, there is strong evidence for a cointegration relationship at each of the
intraday frequencies. This finding implies the importance of expanding the analysis to

a high-frequency level and extends the results of Uhrig-Homburg and Wagner (2009),

18We also confirm this result by the Johansen cointegration test (not reported).
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Milunovich and Joyeux (2010), and Chevallier (2010). In particular, the intradaily find-
ings underpin the close relationship of the joint dynamics of spot and futures prices which
we do not detect in daily data. Moreover, the results are consistent with findings of
high-frequency studies for mature financial markets, as e.g. Tse (1999) reports for the

DJIA-index and the corresponding index-futures.

3.6.2 Price discovery measures and causality analysis

Based on the estimates Table 3.2 presents, we now investigate both markets’ contributions
to the price discovery process. Since the error correction term does neither enter the
spot nor the futures market equation at the daily frequency, we abdicate to report the
price discovery measures in these cases. Table 3.3 presents the common factor weights
for both markets as well as the mean and the range of the futures market’s information
share. In the last column, we report the estimated residual correlation p? ¥ between both
series. Panel A shows the estimates concerning the complete period. According to the
common factor weights, the portion the futures market contributes to the price discovery
process is about 70 percent at both frequencies. This is confirmed by the futures market’s
information share of 0.687 at 10 minutes frequency, while the range of the information
share equals 0.521. Hence, the ranges of the spot and futures markets’ information shares
slightly overlap. At the lower frequency of 30 minutes the futures market’s information
share reduces to 57.9 percent while the range increases to 0.794. The extension of the
range is consistent with Theissen (2002) who observes that an information share’s range
increases considerably by switching the analyzed frequency from 1 to 5 minutes intervals in
the analysis of German stocks. The reason for this is that according to Equation (3.11),
we have to attribute the residual correlation that increases from 0.587 to 0.827 with
decreasing frequency to one of both markets. Consequently, the range of the information
shares at the lower frequency of 30 minutes is more than 1.5 times as large as the range of
the information shares at the 10 minutes frequency. This is in line with Baillie et al. (2002)
who show that high residual correlation strongly affects the upper and the lower bounds
of a market’s information share. In conclusion, the results of Panel A indicate the futures
market’s predominant informational role in the price discovery process which is consistent
with the findings for more mature markets as e.g. Tse (1999) reports. Panels B and C
shed light on the evolution of both markets’ contribution to the price discovery process.
While in the first subsample the common factor weights of the futures market are less than
the ones we report for the full period, the futures market’s factor weights in the second
subsample are clearly higher at both frequencies. Both measures confirm this finding,

whereas the increase is less pronounced in case of the information share which we trace
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back to an increase of the contemporaneous correlation that induces an increase of the
range of the information shares. Consequently, at the lower frequency of 30 minutes the
range of both information shares are strongly overlapping which leads to the dilution of
any conclusion, such that we have to draw economically meaningful inference on the basis
of the data at the highest frequency. Again, this is consistent with the findings of Baillie
et al. (2002) and Theissen (2002). As a whole, the results indicate the futures market’s
predominant informational role in the price discovery process which even increases over

time.

‘ Insert Table 3.3 about here. ‘

Consequently, the results clearly extend those of Uhrig-Homburg and Wagner (2009) who
find the price leadership of the futures contract in Phase I. Moreover, the results underpin
the predominant role of the ECX as already pointed out by Benz and Hengelbrock (2008).
Table 3.4 addresses the question of the short-run causality dynamics. We perform Granger-
causality tests to check whether one market’s lagged log-returns affect the other market’s
current log-returns. The y2-distributed test statistics imply that at the 10 percent level,
we have to reject the hypothesis that the futures market does not Granger-cause the spot
market in the short-run context on the basis of daily data, while we cannot reject the
hypothesis that the spot market does not Granger-cause the futures market. Hence, the
results imply unidirectional Granger-causality from the futures to the spot market in the
full sample. Concerning the high-frequency analysis, we reject the hypothesis that the
spot market does not Granger-cause the futures market at least at the five percent level
for each of the analyzed samples and frequencies. Similarly, we reject the opposite direc-
tion hypothesis that the futures market does not Granger-cause the spot market at the
one percent level for each of the analyzed samples and frequencies. In contrast to the
long-run price discovery analysis in which we identify the futures market as predominant
contributor to the price discovery process, Table 3.4 implies bidirectional feedback in the
returns. In conclusion, the results of the daily analysis are in line with the findings of
Chevallier (2010). However, considering more informative intraday data again reveals a

different situation.

‘ Insert Table 3.4 about here. ‘

3.6.3 Volatility spillovers

In the previous subsections, we provide an analysis of the price transmission mechanisms
between spot and futures markets. In addition, we now study the informational spillovers

in the volatility of both processes.
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‘ Insert Table 3.5 about here. ‘

For this, we only make use of 10 minutes frequency data since in the previous subsection,
we show that meaningful inference should be based on data at the highest frequency.
Table 3.5 presents the results, where Panel A refers to the full sample, Panels B and C
to the two subsamples, respectively. For each sample, we estimate three specifications.
In the first row of each panel, we present the general specification as described by Equa-
tion (3.15). The second row refers to the model that does only allow for ARCH spillovers,
that is, we impose the restriction by = by; = 0. Finally, in each panel’s last row, we
additionally restrict a;o and as; to zero and do not allow for asymmetric effects. Conse-
quently, the last rows represent the DCC-model of Engle (2002). We compare the two
restricted specifications with the general specification making use of the x?-distributed
likelihood-ratio statistic LR = 2-(Lygr — Lg), where k is the number of restricted parame-
ters, Lyg is the likelihood of the unrestricted asymmetric UEDCC-GARCH specification
and Lg is the likelihood of the restricted model. Each specification satisfies the stationary
conditions of Engle (2002) and the non-negativity conditions of Conrad and Karanasos
(2010). In the following, we discuss the estimation results.

First, we provide a summary of the results of the general bivariate asymmetric UEDCC-
GARCH specification. For each sample the GARCH spillover coefficient from the spot
to the futures market, by, is insignificant. Consequently, we set this coefficient equal to
zero in each of the estimated specifications. In the full sample, the volatilities of both
markets significantly react to lagged shocks in the other market, whereas the response
of spot market volatility to a shock in the futures market is about six times higher than
the response of the futures market volatility to a shock in the spot market.!® Moreover,
the current spot volatility significantly reacts to the lagged volatilities of both markets,
whereas the reaction to its own past is slightly stronger than the reaction to lagged futures
volatility. Finally, both markets asymmetrically react to positive and negative shocks of
the same size. Bad news increase volatility stronger than good news. Investigating the
subsamples reveals further interesting details of the evolution of both markets’ condi-
tional volatilities. In the first subsample both markets’ lagged volatilities affect the spot
market volatility. Moreover, we observe ARCH spillovers only from the futures to the
spot market. Furthermore, the effect of lagged futures market volatility on current spot
volatility is slightly weaker than in the full sample. Consequently, in the early stage of
Phase I, there is evidence for unidirectional transmission of information from the futures

to the spot market. The situation is very different for the second subsample. While

YEven though, we do not standardize the series, the magnitude of the unconditional volatilities of both
markets are very similar, as Table 3.1 shows.
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lagged shocks of both markets significantly affect both markets’ volatilities, the impact of
lagged futures market volatility on current spot market volatility is considerably stronger
than in the first subsample. Most importantly, lagged spot market volatility does not
affect the current spot market volatility anymore, while the spillover effect b;o = 0.8285
is very large and highly significant. As a whole, the findings strongly confirm the futures
market’s informational role that we observe in the price discovery analysis. Furthermore,
the results contradict the findings of Milunovich and Joyeux (2010) who only find a weak
relation between the volatilities of both series. Equally important, our results are in line
with those for mature markets as e.g. Tse (1999) reports.

Second, we compare the results of the general asymmetric UEDCC-GARCH specifications
with those of the restricted models. For each sample and for each restricted specification,
the likelihood ratio test statistics unambiguously indicate that restricting coefficients to
zero significantly reduces the likelihood of the model. Additionally restricting bs; to zero
induces severe biases in the coefficient estimates. Compared to the general specification,
the restricted models strongly overestimate the effect of the lagged spot volatility. This
overestimation is even more pronounced in the second subsample. Contrary, setting byo
equal to zero does not influence the estimated coefficients in the futures market equation.
The same is the case for additionally restricting a2 and a9, to zero and not allowing for
asymmetric effects.

Finally, we analyze the evolution of the dynamic conditional correlation between both
series. Figure 3.4 illustrates the evolution of the dynamic correlation and provides a very

interesting picture.

Insert Figure 3.4 about here.

At the beginning of the sample period the correlation between both series is only slightly
larger than zero. Moreover, in the early stage of the sample the dynamic correlation is
very volatile compared to the later stage of the period. The figure shows that over time
the correlation between both series strongly increases reaching values of approximately
0.65. These results are in line with the residual correlations of the full sample and both
subsamples as Table 3.3 reports. Moreover, Table 3.5 shows that these findings are also
consistent with the estimated coefficient 3°¢“ which is higher in the second subsample

than in the first one.

3.7 Conclusion

This paper addresses the question of information transmission in European spot and fu-

tures markets for emission allowances in the second commitment period of the EU-ETS
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making use of high-frequency data. Previous studies based on daily data such as Uhrig-
Homburg and Wagner (2009) and Milunovich and Joyeux (2010) find mixed evidence for
the relationship between spot and futures prices in the first commitment period. More-
over, based on low-frequency data and after controlling for structural breaks, Chevallier
(2010) does not find a cointegration relationship between spot and futures prices in the
early stage of the second commitment period.

We show that this is due to the focus on the analysis of daily data. Based on high-
frequency data, however, we find unambiguous evidence for the existence of a cointe-
gration relationship between spot and futures prices. Moreover, we clearly identify the
futures market as the price leading market. According to the price discovery measures of
Schwarz and Szakmary (1994), Gonzalo and Granger (1995), and Hasbrouck (1995), 70
percent of the price discovery process take place in the futures market. Further, the in-
formational content of futures trading increases over time. The results of the conditional
volatility analysis further confirm the findings of the price discovery analysis. Contrary
to Milunovich and Joyeux (2010) who find evidence for a loose dynamic relationship be-
tween spot and futures volatility in the first commitment period, we find strong evidence
for volatility spillovers from the futures to the spot market but not into the opposite direc-
tion. Moreover, the analysis reveals that both markets’ lagged shocks affect the volatilities
in the other market. Finally, the results of the DCC-structure analysis indicate that the
link between both markets considerably intensifies over time as the dynamic conditional
correlation increases from 0.1 at the early stage of Phase II to about 0.65 at the end of
the sample period.

In conclusion, our results help to understand the mixed evidence previous studies report
and highlight the informational role of the futures market. Moreover, they indicate that
the price discovery process in the European allowance markets is similar to the one in
more mature markets as Tse (1999) reports. This finding is remarkable due to the imma-
ture character of the EU-ETS.
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Figure 3.2: Log-returns in the spot and futures market at the frequency of 30 minutes.
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Table 3.1: Descriptive Statistics

Full Sample

Series # obs. Mean Stand. Dev. Skewness Kurtosis Jarque-Bera
APTF(10) 18912 —2.82-107° 0.0039 0.8735 76.6531 >{()})(())(0)P
APF(10) 18912 —2.52-107° 0.0042 0.4806  58.2754 >{()})9)(0)}0
APTF(30) 6304 —8.46-107° 0.0070 0.2478 20.672 >[0.1O(38]0
APF(30) 6304 —7.52-107° 0.0075 0.0092 18.8685 >{()})(())(0)P
APIF(d) 394 -0.0014 0.0285 -0.0807 4.3949 3[3036%]9
APF(d) 394 -0.0013 0.0283 0.0316 4.3406 29.568

[0.000]

Notes: p-values in brackets.

Table 3.2: Long-run Relationship I - VECM

adjustment vector

frequency aTr af
Panel A - Full Sample
10 —0.0176*** 0.0069**
(0.0029) (0.0032)
30 —0.0213** 0.0079
(0.0094) (0.0096)
daily —0.0347 0.0244
(0.1444) (0.1439)
Panel B - Contract with maturity in December 2008
10 —0.0427*** 0.0302***
(0.0049) (0.0057)
30 —0.0540*** 0.0607***
(0.0162) (0.0178)
daily 0.4241 0.5993**
(0.2964) (0.2935)
Panel C - Contract with maturity in December 2009
10 —0.0297*** 0.0073
(0.0055) (0.0059)
30 —0.0339* 0.0008
(0.0177) (0.0175)
daily —0.0979 —0.0092
(0.2572) (0.2564)

Notes: The table shows the estimation results of the VECM with
restricted cointegration vector 8 = (1, —1)’. The numbers in paren-
theses are robust standard errors. x x %, *x, % indicate significance at
the 1 %, 5 % and 10 % level.
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Table 3.3: Long-run Relationship II - Price Discovery

frequency CFW IS for futures pl B F
futures spot mean range
Panel A - Full Sample
10 0.7193 0.2807 0.6866 0.5212 0.5874
(0.4260;0.9472)
30 0.7293 0.2707 0.5793 0.7936 0.8272
(0.1825;0.9761)
Panel B - Contract with maturity in December 2008
10 0.5857 0.4143 0.6473 0.3597 0.3793
(0.4675;0.8272)
30 0.4709 0.5291 0.4973 0.6950 0.6949
(0.1498;0.8448)
Panel C - Contract with maturity in December 2009
10 0.8021 0.1979 0.6904 0.5776 0.6743
(0.4016;0.9792)
30 0.9762 0.0238 0.6071 0.7804 0.8810

(0.2144;0.9998)

Notes: Price discovery measures are only shown if the error term at least enters one of the equations at the
corresponding frequency and both coefficients obey the expected sign. Numbers in parentheses are lower and upper
bounds of the futures market’s information share.

Table 3.4: Short-run Dynamics - Granger-causality

frequency futures does not cause spot spot does not cause futures
Panel A - Full Sample
10 1379.01 241.60
[0.000] [0.000]
30 315.87 102.03
[0.000] [0.000]
daily 6.85 5.76
[0.077] [0.124]
Panel B - Contract with maturity in December 2008
10 522.98 18.03
[0.000] [0.001]
30 215.52 9.81
[0.000] [0.020]
Panel C - Contract with maturity in December 2009
10 662.19 265.21
[0.000] [0.000]
30 83.76 110.04

[0.000] [0.000]
Notes: The shows the x2-distributed test-statistic on the Granger-causality tests in the
bivariate specifications.




Table 3.5: Coefficient Estimates AUEDCC-GARCH Specification

bco pPec w1 w2 a1l a2 b11 b2 Y11 Y22 a2 a1 b12 ba1 LR

Panel A - Full Sample

0.0159***  0.9801*** 0.0071 0.0057***  0.0616***  0.0226***  0.4975***  0.9563***  0.0356***  0.0153***  0.0764***  0.0127***  0.3379*** — -

(0.0020) (0.0029) (0.0100) (0.0008) (0.0079) (0.0021) (0.0527) (0.0027) (0.0109) (0.0024) (0.0081) (0.0014) (0.0458)
0.0212***  0.9722***  (0.0135** 0.0095***  0.0293** 0.0431***  0.9246***  (0.9381*** 0.0153 0.0119**  0.0351***  0.0116*** — — 154.06
(0.0028) (0.0125) (0.0059) (0.0033) (0.0117) (0.0086) (0.0213) (0.0120) (0.0109) (0.0056) (0.0115) (0.0041) [0.000] E
0.0122** 0.9853***  (0.0089**  0.0062***  0.0342***  0.0396***  0.9634***  (0.9585*** — — — — — — 705.24Q
(0.0049) (0.0068) (0.0040) (0.0020) (0.0102) (0.0064) (0.0107) (0.0068) [0.000]
Panel B - Contract with maturity in December 2008 =~
0.0392***  0.8810***  (0.1899** 0.0148** 0.0287 0.0425** 0.4674***  0.9390*** —0.0021 0.0177 0.1881*** 0.0058 0.2699** — —
(0.0123) (0.0422) (0.0835) (0.0068) (0.0268) (0.0139) (0.1427) (0.0166) (0.0415) (0.0113) (0.0574) (0.0049) (0.1096)
0.0124 0.9858***  0.0496*** 0.0118 0.0005 0.361** 0.8949***  0.9406*** 0.0181 0.0271***  0.0877*** 0.0078 — — 139.2
(0.0101) (0.0128) (0.0190) (0.0074) (0.0048) (0.0157) (0.0289) (0.0197) (0.0148) (0.0096) (0.0299) (0.0054) [0.000]
0.0283***  0.9052*** 0.0514 0.0192** 0.0436* 0.0544***  0.9419***  (0.9387*** — — — — — — 699.42
(0.0109) (0.0450) (0.0333) (0.0082) (0.0230) (0.0145) (0.0287) (0.0169) [0.000]

Panel C - Contract with maturity in December 2009

0.0155***  0.9796***  —0.0931* 0.0040** 0.0377** 0.0145*** 0.0424 0.9664*** 0.0391 0.0081**  0.0628***  0.0146***  0.8285*** - —

(0.0052) (0.0100) (0.0523) (0.0018) (0.0162) (0.0038) (0.3276) (0.0027) (0.0248) (0.0041) (0.0167) (0.0050) (0.3243)
0.0161***  0.9756*** 0.0017 0.0046** 0.0201***  0.0300***  0.9671***  0.9591*** — — 0.0108*** 0.0092** - — 23.8
(0.0052) (0.0103) (0.0014) (0.0020) (0.0056) (0.0052) (0.0081) (0.0085) (0.0034) (0.0039) [0.000]
0.0105***  0.9851*** 0.0021** 0.0025** 0.0205***  0.0267***  0.9787***  (0.9724*** — — — — — — 168.56
(0.0025) (0.0044) (0.0010) (0.0011) (0.0048) (0.0049) (0.0050) (0.0052) [0.000]

Notes: The table shows the estimation results of the volatility transmission structure. The first equation represents the spot market, while the second equation refers to the
futures market. Panels A, B, and C refer to the full sample, the first subsample and the second subsample. In each Panel the first row represents the general bivariate asymmetric
UEDCC-GARCH specification with ARCH and GARCH spillover effects. The specifications represented by the second row only allow for asymmetric effects and ARCH volatility
effects. The specifications represented by the third row do neither allow for spillover nor for asymmetric effects. The entries in the last column are likelihood ratio statistics LR,
with LR =2-(Lygr — LRr), where Ly g is the likelihood of the unrestricted asymmetric UEDCC-GARCH specification, while L is the likelihood of the restricted models. Numbers
in parentheses are Bollerslev-Wooldridge robust standard errors, numbers in brackets are p-values. * x %, *x, % indicate significance at the 1 %, 5 % and 10 % level.
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Part 11

Energy markets, stock markets, and

the macroeconomy
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Chapter 4

Carbon and the stock market

4.1 Introduction

With the implementation of the EU-ETS companies covered by the system do have to pay

! Hence, emission allowances which certify

a price for the emission of greenhouse gases.
the right to emit a specific amount of COs-equivalent can be considered an input factor
in the production process of these companies. This in turn generates additional costs
which constitute the regulatory burden of the system. From the viewpoint of a company
covered by the EU-ETS allowances are assets in the company’s balance sheet, while the
number of allowances the company receipts is determined by decisions of national authori-
ties approved by the European Commission. If the number of allowances a company holds
exceeds the number of allowances it needs to fulfill regulatory requirements the company
is characterized by a net-long compliance position and can sell superfluous allowances on
the market and thus realize additional revenues.? Contrary, a company that is net-short
in allowances has to purchase extra allowances on the market. Consequently, profits of
companies with different net-compliance positions are likely to be affected heterogeneously
by carbon price variations. While companies with net-long positions should rather ben-
efit from increasing carbon prices, the opposite is the case for companies with net-short
positions. Kettner et al. (2008), Ellerman and Joskow (2008), and Convery et al. (2008)
describe strong heterogeneity in the generosity of allowance allocation across the sectors
covered by the EU-ETS which has led to considerable discrepancies in sector-specific net-
compliance positions. While electricity companies on average hold net-short positions,

non-electricity companies are characterized by net-long positions. Ellerman et al. (2007)

'For a detailed description of the trading scheme see e. g. Ellerman et al. (2010) or Chevallier (2012).

2Profits generated by the disposal of superfluous allowances should not be confused with windfall
profits arising from the incorporation of the market value of allowances allocated free of charge in the
electricity price (see Woerdman et al. (2009)).
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trace back the sector-specific differences in emissions caps to the policy makers’ concerns
of negative impacts of the EU-ETS on the competitiveness of non-electricity companies.
While electricity companies are assumed to be able to pass through additional costs to
the consumer, non-electricity companies face international competition that prevents them
from passing through the full costs. This in turn implies that even a net-short electricity
company could benefit from increasing carbon prices by incorporating the market price
of carbon in the electricity price as far as allowances are (at least partly) allocated free
of charge. Besides sector-specific differences in the emissions caps, Kettner et al. (2008)
and Ellerman and Joskow (2008) also highlight essential heterogeneity in the stringency
of emissions caps across the member states of the European Union.

The main objective of this study is to put the considerations of Kettner et al. (2008),
Ellerman and Joskow (2008), and Convery et al. (2008) one step further and analyze
whether shareholders of companies that belong to individual sectors covered by the EU-
ETS do have to carry regulatory burden of the system or whether they even benefit from
the regulation. For this, we analyze the effect of variations in the carbon price on the
market value of these companies. Hence, the study investigates the relevance investors
attach to the input factor carbon in the valuation of company stock returns and enables
us to assess the effects of the carbon price on net profits of investors. We also aim at
analyzing changes in the relationship between the carbon and the stock market over the
first and the second commitment period.

Our econometric specification is based on multifactor panel regression models (see e.g.
Fama and French (1992)) motivated by arbitrage pricing theory. Excess returns on com-
pany stocks are explained by excess returns on the market portfolio and energy price
excess returns as well as macroeconomic risk factors. In order to account for the specific
error structure of large finance panels, we adopt the estimation method of Thompson
(2011) which yields consistent estimates of the covariance matrices even if the errors are
correlated over time and across companies.

The first result of the paper is the finding of a loose relationship between the carbon mar-
ket and the stock market in the first commitment period. Allowing carbon price changes
to affect stock prices heterogeneously across individual sectors but restricting the effects
to be identical across countries reveals that carbon price changes affect stock returns in
the electricity sector only.® For the electricity sector this confirms the results of Obern-
dorfer (2009) and Veith et al. (2009) who find a significantly positive effect of carbon
price changes on stock returns adopting an estimation strategy that does not explicitly

correct covariance matrices for correlation across time and companies. In the more de-

3Sectors included in the study are (i) electricity, (ii) iron and steel, (iii) chemicals, and (iv) cement.
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tailed country- and sector-specific analysis, we find a positive effect on electricity stock
returns of German& Austrian, Scandinavian, and UK companies which is again consistent
with the findings of Oberndorfer (2009). For non-electricity companies there is only very
weak evidence for such an effect. In contrast to our study neither Oberndorfer (2009) nor
Veith et al. (2009) analyze the impact of the carbon price on non-electricity stocks. Both
studies justify the restriction to electricity companies by the major portion of allowances
allocated to electricity companies.* In contrast to these studies we argue that it is essen-
tial to not only focus on electricity stocks but also on stocks of companies which belong to
other sectors under the EU-ETS. The main argument behind the inclusion of such com-
panies is the considerable heterogeneity in the restrictiveness of sector-specific emissions
caps which have led to different net compliance positions across the sectors. Our results
imply that policy decisions on the sector- and country-specific stringency of allowance
allocation are not reflected in the relationship between carbon and stock returns.
Second, for Phase II our study is the first one to analyze the link between the carbon and
the stock market. In contrast to Phase I, we observe a completely different picture. First,
the results clearly reveal close links between carbon price changes and stock returns. For
electricity companies located in countries with more restrictive emissions caps, we find a
negative impact of increasing carbon prices on stock returns. Shareholders of these com-
panies are hit by the regulatory burden of the system. For non-electricity companies we
find positive and significant effects, which are stronger in countries with more generous al-
lowance allocation. Hence, in contrast to the concerns of negative impacts of the EU-ETS
on the competitiveness of internationally active non-electricity companies (Ellerman et
al. (2007)), shareholders of these companies do not bear regulatory burden of the system
but benefit from the regulation. The results reflect the sector- and country-specific strin-
gency of emissions caps. Finally, we control for asymmetric price effects. In contrast to
the Phase I results of Oberndorfer (2009), for Phase II we find that carbon price increases
(decreases) are accompanied by stronger price responses of electricity (non-electricity)
stocks than price decreases (increases) of the same size. This result is consistent with
the view that with increasing carbon prices investors expect that electricity companies
have to purchase additional allowances at advanced prices which in turn negatively affects
these companies’ profitability.

In conclusion, this study can be interpreted as an evaluation of policy decisions of national
authorities and the European Commission. Hence, our findings are relevant not only for

market participants in terms of risk management and investment strategy purposes but

4Oberndorfer (2009) and Veith et al. (2009) argue that such installations receive almost two-thirds of
the total number of allowances. Veith et al. (2009, p. 607) even argue that “a restriction to the power
industry maintains relevance for the trading system as a whole.”.
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especially for regulatory authorities themselves.

We organize the remainder of the paper as follows. In Section 4.2, we summarize the re-
lated literature, while Section 4.3 outlines the methodology used in the empirical analysis.
Moreover, we construct hypotheses concerning the relation between sector-specific returns
and the carbon price factor. Section 4.4 describes the data. Section 4.5 summarizes the
estimation results and provides an interpretation of the empirical findings. Finally, we

provide a policy discussion and the conclusion in Section 4.6.

4.2 Related literature

Recent empirical work in the field of carbon finance often addresses the modeling of the
carbon price and price volatility dynamics in one or more markets (see Paolella and Tas-
chini (2008) or Benz and Triick (2009) for analyses of Phase I and Rittler (2012) for Phase
IT). These studies estimate various GARCH-type specifications to capture specific statis-
tical properties of the data. Moreover, the investigation of fundamental factors driving
the carbon price has gained interest in the carbon finance literature. Mansanet-Bataller
et al. (2007) and Alberola et al. (2009b) identify energy prices and weather as relevant
determinants of the carbon price development during Phase 1. This is confirmed by Bredin
and Muckley (2011) and Mansanet-Bataller et al. (2011) for Phase II. Moreover, Albreola
et al. (2008, 2009) show that the sector production in the sectors electricity generation,
paper, and iron affects the carbon price, while the authors reveal heterogeneity in the ef-
fects across countries included in the studies. In contrast to the sector-specific analysis of
Albreola et al. (2008, 2009), Chevallier (2011) aims at analyzing the impact of aggregate
economic activity in the EU on the carbon price. Using a Markov-switching methodology;,
Chevallier (2011) shows that the effect of the EU industrial production on the carbon price
depends on the state of the economy. Finally, in their high-frequency analysis Conrad et
al. (2012) show that the carbon price immediately adjusts to the surprise component in
macroeconomic and market-specific announcements.

Even though the afore-mentioned studies imply that there is a close relationship between
the carbon market and the real economy which could also imply a link between the car-
bon and the stock market, empirical evidence on the impact of the EU-ETS on the stock
performance of companies covered by the system is rare. Given the concerns of negative
impacts on the competitiveness of companies under the EU-ETS relative to competitors
from outside the EU (see Ellerman et al. (2007) among others), some studies analyze the
economic effects of the introduction of the system making use of simulation studies. In the

framework of a European energy market model Lise et al. (2010) conclude that electricity
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companies can pass through 70%-90% of the carbon price to consumers which in case
of free allocation implies the realization of considerable windfall profits. Demailly and
Quirion (2008) and Smale et al. (2006) find similar results for the steel sector and Smale
et al. (2006) for the cement sector, whereas in these sectors the portion of the carbon
price producers can pass through to consumers is smaller than in the electricity sector. In
contrast to these simulation studies, Oberndorfer (2009) and Veith et al. (2009) directly
assess the impact of changes in the carbon price on the net profits of European electric-
ity companies during Phase I. While Oberndorfer (2009) analyzes spot market data of
the European Energy Exchange (Leipzig), Veith et al. (2009) also include futures market
data in their analysis.® Both studies adopt the methodological framework of multifactor
modeling to assess the link between the carbon and the stock market. Excess returns on
electricity stocks are explained by excess returns on the market portfolio and excess re-
turns on energy factors including carbon. Oberndorfer (2009) as well as Veith et al. (2009)
reveal a weak but significant positive effect of the carbon price on electricity stock returns.
In addition, Oberndorfer (2009) does not find evidence for asymmetric effects of positive
and negative carbon price changes. Veith et al. (2009) show that the carbon price does
not affect stock returns of electricity companies which generate electricity based on green
technologies that avoid the emission of greenhouse gases.

In a related strand of the literature Convery et al. (2008), Kettner et al. (2008), and
Ellerman and Buchner (2008) reveal considerable heterogeneity in the net-compliance
positions across the sectors covered by the EU-ETS. Figure 4.1 shows these specific net
compliance positions as percentage of allocated allowances for selected sectors. The num-
bers are taken from Kettner et al. (2008, p. 52). Apparently, the sectors pulp and paper,
iron and steel, and cement and lime are characterized by net-long positions, while the
figure presents a net-short position for the power and heat generating sector. Ellerman
et al. (2007) point out that the sector-specific differences reflect the concerns of policy
makers that in contrast to electricity companies, non-electricity companies cannot pass

through the full carbon price to consumers because of international competition.

‘Insert Figure 4.1 about here.

Besides varying allocation patterns across individual sectors, Kettner et al. (2008) and

Ellerman and Buchner (2008) show that there is also strong evidence for heterogeneity

®Note that Paolella and Taschini (2008) hint at the problem of extremely low trading activity in
the carbon market before 2006. Moreover, Chevallier (2011) points out that in Phase I spot prices are
contaminated by the carbon market crash in April and May 2006.

6This argument is consistent with the regulatory framework of the EU-ETS. According to Direc-
tive 2009/29/EC, the allocation of allowances to electricity companies is more restrictive compared to
companies of other sectors.
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in the stringency of country-specific emissions caps. Figure 4.2 summarizes the net com-
pliance positions of selected member states. The numbers are taken from Kettner et
al. (2008, pp. 46).

Insert Figure 4.2 about here.

For Germany, the Scandinavian countries, and countries of Western Europe, the figure
presents net-long positions while the opposite is the case for Italy, Spain, Ireland and
the UK. Finally, Ellerman and Joskow (2008) explain that national authorities and the
European Commission further tightened the Phase II emissions caps of Italy, Spain and
the UK compared to 2005 verified emissions of these countries.

More recently, Bushnell et al. (2011) adopt the framework of an event study analysis
to capture the impact of the carbon price on abnormal returns of companies that be-
long to different sectors covered by the EU-ETS during the carbon market breakdown in
April/May 2006. The authors find that net compliance positions indeed affect the stock

price response during this specific period.

4.3 Methodology and hypothesis construction

4.3.1 Estimation strategy

The factor model we estimate to capture the link between the carbon and the stock market

is given by the panel regression
rie = X3 + i, (4.1)

with ¢ = 1,...,n companies and ¢t = 1,...,T time periods. 7r; are the company stock
returns, x;; is a vector of explanatory variables and 3 contains the corresponding factor
loadings. € is a potentially heteroskedastic error term with E(e;|x;) = 0. We assume
that the error can be correlated over time for a particular company (time effect), that is
E(eyeik|xit, Xix) # 0. Moreover, we assume that the error can also be correlated across
companies at a given period of time (company effect), that is E(e;e;¢|xit, X;1) # 0.

Under these assumptions, we have to apply a specific estimation strategy in order to obtain
unbiased standard errors. According to Petersen (2009), former approaches like Fama and
MacBeth (1973), Huber (1967), or Rogers (1983) assess the problem of error correlation
only in one dimension (either correlations over time or correlations across companies).
Thompson (2011) suggests an alternative procedure that generates consistent standard

errors in the presence of correlation simultaneously over time and across companies. In the
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panel regression described by Equation (4.1) the OLS-estimator of the coefficient vector

can be written as

B =H! Z XYt = B + H! Z XitEit, (4.2)

it it
with H = >7, , x;x},. The variance of B can be approximated by H-'GH™! in large
samples, where G is given by G = Var <Zl . Xité-fit) = Z” B (Xitsitsjkxgk). Thompson

(2011) shows that under the given error assumptions, the covariance matrix that is robust

with respect to correlation over time and across companies is given by

Var(8) = H™! Z cccH '+ H™ Z sss H ' —H™! Z Z XX, H 1, (4.3)
i t Pt

TV
Vcompany Vtime thite

where ¢; = ), X;:&;; is the sum over all observations for company i and s, = >, x;€; is the
sum over all observations for time ¢. Replacing c; and s, by their estimates ¢; = ), x;€;

and §, = Y. x;&; with & =1 — x;t,[; leads to
Var(B) = vcompany + vtime - vwhitea (44)

where Vcompany =H! > ¢;¢/H ™! is the formula for the estimation of standard errors
clustered by companies, Vtime = H! > étégH_l is the formula for the estimation of
standard errors clustered by time, and Vpie = H™! o> Exux, H™ ! is the covariance

matrix of White (1980) which is robust to heteroskedasticity.

4.3.2 Empirical specifications

In this section we describe the vector of explanatory variables x;; and the corresponding
factor loadings B of the general model defined in the previous section. In our baseline

specification x},3 is given by

BO + ﬁmrm,t + ﬁbrrbr,t + ﬁgrg,t + ﬁcrc,t + ﬁtsAtSt + ﬁdsAdSt- (45>

In this model, we control for the excess returns on the market portfolio, 7, ; and for the
excess returns on the energy commodities oil, ry,,, gas, r4,, and carbon, r.;. In addition,
we augment the specification by two macroeconomic risk factors, the term spread, ts;, and
the default spread, ds;. In case of both variables we construct first differences to obtain

stationary series. This specification does not account for sector-specific effects. Rather,
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the effect of the carbon factor is restricted to be identical across all sectors.
The second specification explicitly allows for sector-specific effects, in order to ensure that
the carbon price factor as well as the other energy price factors can affect stock returns of

companies operating in different sectors heterogeneously. In this model x},3 is given by

ﬁO + Z ﬁO,st + ﬁmrm,t + ﬁbrrbr,t + ﬁgrg,t + ﬁcrc,t + ﬁtsAtSt + ﬁdSAdSt

ses
+ Z Bm,strm,t + Z Bbr,strbr,t + Z ﬁg,stTg,t + Z BC,SDSTc,ta (46)
seS seS seS seS

where S = {steel, chemicals, cement} and D; is a dummy variable that equals one if the
corresponding observation belongs to sector s and zero elsewise. [, describes the effect
of the carbon price factor on electricity stock returns, 5. + 3., captures the effect on
stock returns of companies operating in sector s. Analogously, we construct the sector-
specific effects of the oil and the gas price factors. Sector-specific constants are given by
Bo for electricity companies and by 3y + By s for sector s. To check whether the carbon
price significantly affects electricity stock returns we test the hypothesis Hy : 5. = 0
against the alternative Hy; : . # 0. To check whether the carbon price significantly
affects stock returns of sector s, s € {steel, chemicals, cement}, we test the hypothesis
Hy : Bc + Bes = 0 against the alternative H; : 8. + (.5 # 0. Accordingly, we perform
similar tests to assess the sector-specific impact of the oil and gas price. The F-distributed
test statistics are computed on the basis of the covariance matrix given by Equation (4.4).
In order to capture individual effects of the carbon price on country- and sector-specific

company stock returns, we estimate a further specification in which x},3 is given by

BO + Z Z ﬁO,ind,rDindDr + ﬁmrm,t + ﬁbrrbr,t + ﬁgrg,t + ﬁcrc,t + ﬁtsAtSt + ﬁdSAdSt

indel reR
+ E ﬁm,indDindTm,t + E Bbr,indDindTbr,t + E ﬁg,indDindrg,t + E ﬁc,indDindrc,t
indel indel indel indel
+ E ﬁc,ind,rDindDrTc,t (47)
reR

D;,qis a dummy variable that equals one if the corresponding observation belongs to sector
ind, ind € {electricity, steel, chemicals, cement}, and zero elsewise, while D, equals one
if the corresponding observation belongs to region r, r € R with R = {northern europe,

western europe, southern europe, united kingdom} and zero elsewise.” We individually

"Countries assigned to Northern Europe are Denmark, Finland, Norway, and Sweden. Western Europe
consists of France, Belgium, The Netherland, and Luxembourg. Southern Europe contains Portugal,
Spain, Italy and Greece. Great Britain and Ireland are assigned to the region United Kingdom.
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estimate Equation (4.7) for each sector. The set I contains all sectors apart from the
sector for which we estimate the model. To assess the impact of the carbon price factor
on electricity stock returns, we estimate Equation (4.7) for the electricity sector, such that
I = {steel, chemicals, cement}. Hence, 3, represents the effect of the carbon price factor
on German&Austrian electricity stock returns, while 3. + B; ciectricity,» captures the effect
on stock returns of electricity companies located in region r. Accordingly, we compute
the country-specific effects for the other sectors. To check whether the carbon price fac-
tor significantly affects German& Austrian electricity stock returns we test the hypothesis
Hy : 5. = 0 against the alternative H; : 5. # 0. To check whether the carbon price factor
affects electricity stock returns in region r we test the hypothesis Hy : 8.+ B ciectricity,r = 0
against the alternative Hy : 8. + Be cicctricity,r 7 0.

Following Zachmann and von Hirschhausen (2008) and Oberndorfer (2009), we investi-
gate the impact of asymmetric effects. That is, we analyze whether there are different
responses to increasing and decreasing carbon prices in sector-specific stock returns. In

the corresponding specification x;,3 is given by

BO + Z Z ﬁO,ind,rDindDr + ﬁmrm,t + ﬁbrrbr,t + ﬁgrg,t + ﬁcrc,t + ﬁtsAtSt + ﬁdSAdSt

indel TeR

+ E ﬁm,indDindTm,t + E Bbr,indDindTbr,t + E ﬁg,indDindrg,t + E ﬁc,indDindrc,t

indel indel indel indel

+ E ﬁc,ind,rDindDrTc,t + ﬁpostosrc,t + E ﬁpos,indeosDindrc,t

reR indel

+ ﬁc,ind,pos,g&aDpong&aDind'rc,t + E Bc,ind,pos,rDindDrDposrc,t- (48)

reR

We introduce the dummy variable D,,s that equals one for positive carbon price changes
and zero elsewise. As Equation (4.7), we estimate Equation (4.8) individually for each
sector. To capture asymmetric effects of the carbon price on electricity stock returns
we estimate Equation (4.8) for the electricity sector. Hence, 8. + Becpos + Be.clec,pos.g&a
(B.) describes the effect of increasing (decreasing) carbon prices on the stock returns
of German& Austrian electricity companies. G. + Becicer + Bpos + Be.etecposr (Be + Beelecyr)
represents the effect of increasing (decreasing) carbon prices on stock returns of electricity

companies located in region 7.

4.3.3 Hypothesis construction

From the viewpoint of companies under the EU-ETS, allowances constitute an input factor

in the production process which is comparable to other production factors like energy
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commodities (see also Benz and Triick (2009) and Borak et al. (2006)). Formally, emission
allowances are assets in a company’s balance sheet such that changes in the carbon price
also affect the market value of the company which could influence the company’s stock

price. Based on these considerations we construct the following hypotheses.

Hypothesis H1: Carbon price changes do not affect company stock returns.

Alberola et al. (2008, 2009b) and Chevallier (2011) show that sectoral and aggregate
industrial production affect the carbon price. Moreover, for Phase I Oberndorfer (2009)
and Veith et al. (2009) find that the carbon price positively influences electricity stock
returns. Thus, we expect that hypothesis H1 has to be rejected.

Hypothesis H2: The effect of the carbon price on stock returns is stable over both phases.

First, Borak et al. (2006) point out different statistical properties of the carbon price
dynamics (see also Figure 1). Second, according to Ellerman and Buchner (2008) and
Ellerman and Joskow (2008) there is a fundamental difference in the net-compliance po-
sitions of the whole system. While due to the overallocation with emission allowances in
Phase I the system on average is long, there is a short position of the whole system in
Phase II. Thus, we expect the impact of the carbon price on company stock returns to

vary over both commitment periods so that hypothesis H2 is expected to be rejected.

Hypothesis H3: The effect of the carbon price on stock returns is stable across sectors.

As aforementioned, main determinants of the carbon price impact on company stock re-
turns are the company’s net-compliance position and its ability to pass through the carbon
price to consumers. Figure 4.1 shows considerable differences in the net compliance po-
sitions across the sectors covered by the EU-ETS. In Phase I the electricity sector is the
only sector characterized by a net-short compliance position, while all other sectors are
net-long. Ellerman and Joskow (2008) describe a similar picture for the second commit-
ment period. Moreover, the portion of regulatory costs companies can pass through to
consumers also seems to vary across sectors (see Smale et al. (2006) and Lise et al. (2010)).
Hence, we expect stock returns of companies of different sectors to be affected heteroge-

neously by carbon price changes such that hypothesis H3 has to be rejected.

Hypothesis Hj4: The effect of the carbon price on company stock returns is stable across

participating member states.

Besides sector-specific differences in the stringency of emissions caps, Ellerman and Joskow

(2008) also highlight heterogeneity in the generosity of allowance allocation across member
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states (see also Figure 4.2). We expect stock returns of companies located in countries
with more restrictive emissions caps to be more (less) sensitive to increasing carbon prices
in sectors characterized by net-short (net-long) compliance positions. On the other hand,
we expect stock returns of companies located in countries with less restrictive emissions
caps to be less (more) sensitive to increasing carbon prices in sectors characterized by
net-long (net-short) compliance positions. Consequently, we conjecture that hypothesis
H/ has to be rejected.

Hypothesis H5: The asymmetric effects of the carbon price on company stock returns is

identical across sectors.

Given the existence of sector-specific effects of the carbon price on stock returns, de-
creasing and increasing carbon price changes could induce heterogenous stock price re-
sponses which also differ across the individual sectors. While Oberndorfer (2009) does not
find asymmetric effects on electricity stock returns during Phase I, Zachmann and von
Hirschhausen (2008) reveal that electricity prices are asymmetrically affected by positive

and negative carbon price changes.

4.4 Data

4.4.1 Carbon market data

Our sample covers the period from January 2006 to June 2010. We make use of carbon
price data of the European Climate Exchange (London) as this is the most liquid market
for EUAs. We drop all bank holidays and all trading days with non-regular trading as
e.g. December 31. Based on daily closing prices of futures contracts with maturities in

December 2008, 2009, and 20108, we construct daily log-returns according to

retr = 100 - [In(pet) — In(pei—1)] (4.9)

and compute excess returns by subtracting the risk free interest rate from the daily re-
turns. For the risk free returns we use the 3-month EURIBOR on a daily basis.

Our full sample covers a substantial part of the whole development of the price dynamics

8For the period January 1, 2006 to December 15, 2008 we use the contract with maturity in December
2008. For the period December 16, 2008 to December 14, 2009 we adopt the December 2009 contract
and for the post December 14, 2009 period we consider the December 2010 futures contract. This implies
that we use the contract with the highest trading activity as measured by transaction volume for each
period.
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in the EU-ETS since its formal implementation. The full sample consists of the two sub-
samples that constitute the first and the second commitment period. The first subsample
covers data of the period January 2006 to April 2008, the second subsample spans the
period May 2008 to June 2010. This translates to 1139 observations in the full period and
to 592 (547) observations in the first (second) subsample, respectively. Figure 4.3 shows

the carbon price development over the full sample.

‘Insert Figure 4.3 about here.

Apparently, the carbon price is more volatile in the beginning of the sample. Moreover,
for the early stage of the EU-ETS the figure shows the carbon market breakdown in April
and May 2006, where the carbon price decreases by about 50 percent within only two
weeks. After a further decrease to 12 Euros, a strong upward trend follows until July
2008. Then, accompanied by the economic and financial crisis the carbon price decreases
to less than 10 Euros. Towards the end of the sample period the carbon price slightly
increases and realizes values of about 15 Euros.” Table 4.1 summarizes the descriptive

statistics of the carbon returns.

‘Insert Table 4.1 about here. ‘

4.4.2 Stock market data

Motivated by the sector-specific compliance positions (see Figures 4.1 and 4.2), besides
electricity companies we include companies that belong to the sectors pulp and paper, iron
and steel, and cement and lime. Furthermore, we also consider companies of the chemical
sector since these companies also own installations covered by the EU-ETS. According to
the industry and sector classification of the EURO STOXX 600, we include each company
listed in the index over the full period.!® As a whole, the corresponding sample consists
of 16 electricity, 11 steel, 16 chemical, and 7 cement companies.!! Table 4.2 summarizes
these four sectors and the classification criteria according to the EURO STOXX 600.

Table 4.3 provides detailed descriptions of all companies.

‘Insert Tables 4.2 and 4.3 about here. ‘

9For a more detailed description of the price development in the EU-ETS we refer to Chevallier (2011)
and Chevallier and Sevi (2011) and the references therein.

0All company data is taken from DataStream.

1 The EURO STOXX 600 does also contain stocks of companies located in Switzerland. However, the
EU-ETS does not cover Switzerland. Consequently, we dropped these observations to avoid dilution of
the estimation results.
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For electricity stocks, we exclusively consider companies that belong to the subsectors
conventional electricity or multiutilities. We do not include companies of the subsector
alternative electricity. According to the supersector classification of the EURO STOXX
600, we assign the single company of the pulp and paper sector to the group of steel stocks.
Following Equation (4.9), we construct company stock returns based on daily closing
prices, where we first transform all prices into Euros making use of the corresponding
exchange rates. Then, we compute excess returns by subtracting the risk free rate from

the daily returns (see Table 4.1 for the descriptive statistics of the company stock returns).

4.4.3 Control variables

In the previous asset pricing literature, Fama and French (1992) among many others
identify variables which are relevant pricing factors for company stock returns. This
set contains an overall market factor, firm-related factors as well as macroeconomic risk
factors. More recently, Bali and Engle (2010) confirm the relevance of these factors for
company stock valuation in the framework of the Intertemporal CAPM. Moreover, they
argue that each variable that influences a company’s market value potentially constitutes
a pricing factor. Following Obernorfer (2009) and Veith et al. (2009) we also include oil
and gas price changes in addition to the carbon price factor.

The EURO STOXX 600 index serves as a proxy for the market portfolio as this index is the
broadest European index that covers the 600 largest listed European companies. For the
oil price we take the one month ahead crude oil brent futures contract. Finally, the price
of the one year ahead gas futures contract traded at the Anglo-Dutch energy exchange
(APX-ENDEX) is used for the gas price. Prices of contracts in foreign currencies are
transformed into Euros. Then, we compute excess returns of the market portfolio, the oil
price, and the gas price on the basis of daily closing prices according to Equation (4.9).12
Table 4.1 presents the descriptive statistics. We also control for the default spread and
the term spread. We define the default spread as the difference between daily yields
on BAA-rated and AAA-rated corporate bonds. Finally, the term spread equals the
difference between daily yields on 10-year and 3-month bonds of the ECB. In order to
have stationary series, we take the first difference of each macroeconomic risk factor.

Again, Table 4.1 shows the descriptive statistics.

12Linking the gas price series of contracts with different maturities induces extreme jumps. In order
to make sure that these jumps do not contaminate our estimation results, we replace the corresponding
returns by the mean of the return of the last day before and the return of the first day after the linking
of both series.
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4.5 Empirical results

4.5.1 Baseline specification

We first show the results of the initial specification. Equation (4.5) describes the model
which explains company stock returns by returns on the market portfolio and by energy
returns as well as by macroeconomic risk factors. We estimate Equation (4.5) based on
data of all companies. That is, we do not account for potential heterogeneity across com-
panies of different sectors. Table 4.4 presents the estimation results, where the columns
refer to the full sample as well as to the first and to the second subsample, respectively.
The subsample analysis allows us to capture changes in investors’ expectations concerning

the impact of the carbon price on stock returns.

‘Insert Table 4.4 about here. ‘

First, Table 4.4 shows that the market beta is highly significant for each sample and takes
on values about one. Compared to Oberndorfer (2009) and Veith et al. (2009) the market
beta is slightly larger which we attribute to the inclusion of a broader set of companies
in our study. Second, the table shows that the estimated coefficients on the energy price
factors considerably vary over the two subsamples. While the oil price factor is positive
and significant in the first subsample, the gas price factor is only marginally significant
in this period. Moreover, the table shows that there is also a difference concerning the
impact of the carbon price. Only in the second subsample this factor affects company
stock returns significantly. This in turn, can be interpreted as first evidence that in Phase
IT shareholders on average benefit from the regulation of the EU-ETS. Most importantly,
the table shows that there seems to be a change in the investors’ valuation of the carbon
price factor’s relevance over the two phases.

Finally, we refer to the results concerning the macroeconomic risk factors.'® In the second
subsample, the default spread is negatively related to company stock returns at the 1%
level. The impact of this factor in the second subsample has more than doubled compared
to Phase I. Reasons for this finding could be the recession and the financial crisis that
mainly occur in this period. In contrast, we do not find a significant impact of the term
spread on company stock returns for any subsample.

In conclusion, the initial analysis indicates that the effects of the pricing factors on stock
returns vary over Phase I and II, which requires to perform subsample analysis. Con-

sequently, hypotheses HI and H2 as constructed in Section 4.3.3 have to be rejected.

13Note that Chevallier (2009) finds a loose relationship between macroeconomic risk factors and the
carbon price.
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Moreover, the results imply that we should control for the impact of the macroeconomic
risk factors in the subsequent analysis since at least the default spread affects stock re-

turns.

4.5.2 Sector-specific analysis

As pointed out in Sections 4.3.3 and 4.4.2 heterogeneity in sector-specific net compliance
positions could affect the impact of the carbon price factor on company stock returns. In
the previous regressions we do not explicitly allow for this, since the effect of the carbon
price on stock returns is restricted to be identical across all sectors. Now, we augment the
initial specification by interaction terms which control for sector-specific effects. Equation

(4.6) describes the model and Table 4.5 presents the estimation results.

‘Insert Table 4.5 about here. ‘

The table shows that the interaction terms between the market returns and the sector-
specific dummy variables are highly significant for each period and sector which implies
that the stock price response to price changes in the market portfolio differs across the
individual sectors. Further, the table confirms the estimation results on the macroeco-
nomic risk factors obtained in the previous section. For the gas price factor we do not find
any significant interaction terms at all, while there is weak evidence for heterogeneity in
the effects of oil price changes on sector-specific stock returns. Most importantly, for the
carbon price factor we find that 5 out of 9 interaction terms are significantly different from
zero, while the magnitude of the estimated coefficients on the interaction terms is higher
in Phase II. These findings reveal that the carbon price factor affects stock returns across
individual sectors differently. In order to formally capture the sector-specific effects, we
perform F-tests to check the joint significance of the corresponding variables as described
in Section 4.3. Table 4.6 shows the estimated effects and the corresponding values of the
F-distributed test statistics in brackets.

‘Insert Table 4.6 about here. ‘

First, we summarize the results concerning the sector-specific impact of price changes in
the market portfolio. For each sample period the market beta for electricity stocks is
considerably smaller than 1 which implies that electricity stocks tend to pay off less than
the market when the market return is high. In strong contrast, steel and cement stocks
rather tend to pay off more than the market, when the market return is high as indicated
by a market beta that is considerably greater than 1 for such stocks. Finally, given a

market beta close to 1, chemical stocks perform similar to the market portfolio. We now
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turn to the sector-specific effects of the oil and gas price factors. For the electricity sector
we find that neither the oil nor the gas price factor significantly affects stock returns. For
Phase I, the findings concerning the gas price factor are predominantly in line with Veith
et al. (2009) and Oberndorfer (2009), while depending on their econometric specification
these authors find positive or negative effects of the oil price factor. In the steel sector
increasing oil prices are accompanied by increasing stock prices (at least in the full sample
and the first subsample), while there is no effect of gas price changes on stock returns. For
the chemical sector we do not find any significant effects of the gas and oil price factors.
Finally, the results for the cement sector show a negative and highly significant effect of
the oil price factor and no significant effect of the gas price factor in Phase II and the full
sample, while we do not find any significant effects of these two factors during Phase 1.
Next, we investigate the relation between sector-specific returns and the carbon price
factor. For the full sample, we do not find a significant effect of this factor on electricity
stock returns. For the first subsample, the estimated coefficient is positive and signifi-
cant at the 1% level. This finding confirms the Phase I results of Veith et al. (2009) and
Oberndorfer (2009) and implies that increasing carbon prices are accompanied by increas-
ing electricity stock prices, even though the electricity sector is net-short in this period
(see Kettner et al. (2008)). This in turn could reflect the realization of windfall profits
caused by the free allocation of allowances in Phase I. Consequently, on average owners of
electricity companies benefit from the regulation under the EU-ETS in the pilot period.
In strong contrast, for Phase II we find a completely different picture for the electricity
sector. Now, the effect of the carbon price factor on electricity stock returns is negative
and the magnitude of the effect is similar to the one of Phase 1. However, the effect is not
statistically significant. Despite the net-short position of the electricity sector in Phase II
(see in particular Ellerman and Joskow (2008)), the results are consistent with the view
that investors expect changing carbon prices to not affect the market value of electricity
companies on average. Hence, the result does not point to the shift of regulatory burden
to the owners of electricity companies.

For the steel sector, we observe a completely different picture. Even though the system
as a whole and the steel sector in particular are characterized by net-long compliance
positions in Phase I, we do not find a significant effect of the carbon price factor on steel
stock returns for this period. Consequently, investors do not consider the carbon price
factor to be relevant in the valuation of steel stocks. This also implies that sharehold-
ers of steel companies do not carry regulatory burden of the system in Phase I. Again,
looking at the results of Phase II reveals a considerably different picture. For this period,

we find a positive and highly significant effect of the carbon price factor on steel stock
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returns, which implies the high relevance of the factor in the valuation of steel company
stocks. A 1% carbon price increase is accompanied by a 0.06% stock price increase. This
result points to the realization of regulatory profits of owners of steel companies. With in-
creasing carbon prices, steel companies can sell superfluous allowances at advanced prices
which finally leads to positive stock price reactions. In addition, our findings clearly
document that the magnitude of the effect of the carbon price factor on steel stock re-
turns is considerably higher compared to all other sectors. This reflects the steel sector’s
most significant net-long position among all sectors covered by the system as described
by Ellerman and Joskow (2008) and illustrated by Figure 4.1, such that the number of
superfluous allowances that steel companies can sell at advanced prices is higher than in
other sectors.

The findings for the chemical sector are pretty similar to those of the steel sector. For
Phase I, we do not find a significant effect of the carbon price on stock returns. For Phase
IT, we reveal a positive significant effect that is considerably stronger than the one of
Phase I but smaller than the Phase II effects in the steel sector and the cement sector.
In particular, a 1% carbon price increase is accompanied by a 0.04% stock price increase.
In conclusion, the sector-specific analysis reveals that on average shareholders of chemical
companies do neither benefit from the EU-ETS nor do they carry regulatory burden of
the system in Phase I, while in the Phase II such shareholders benefit from increasing
carbon prices.

Finally, for the cement sector, the results are consistent with those of the steel sector and
the chemical sector. This holds for both commitment periods. For Phase I, we find a
negative but insignificant effect of the carbon price on cement stock returns indicating
that shareholders of cement companies are not hit by the regulatory burden of the system
nor that they benefit from the regulation. In contrast, the carbon price factor positively
affects cement stock returns in Phase II indicating the factor’s relevance in the valuation
of cement company stocks, where a 1% carbon price increase is accompanied by a 0.04%
stock price increase. The results for Phase II imply that owners of cement companies
benefit from the regulation of the EU-ETS. However, the effect is smaller than the one in
the steel sector.

In conclusion, the results of the sector-specific analysis point to a considerable change in
the investors’ perception of the relevance of the carbon price factor in the stock valua-
tion of companies covered by the EU-ETS such that hypothesis H3 has to be rejected.
Generally, the link between the carbon and the stock market is rather loose in Phase I.
Positive effects are only found for electricity companies implying the realization of regu-

latory profits of the corresponding companies’ owners in this period. For Phase II, there
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is evidence for a closer link between the carbon and the stock market. While owners of
non-electricity companies benefit from the EU-ETS and realize regulatory profits, share-
holders of electricity companies do neither carry regulatory burden of the system, nor do
they benefit.

4.5.3 Country and sector-specific analysis

By additionally controlling for country-specific effects, we now analyze whether the impact
of the carbon price on sector- and country-specific company stock returns also reflects the
heterogeneity in the stringency of country-specific emissions caps. This allows us to ana-
lyze whether regulatory burden of the system is heterogeneously shifted to shareholders
of companies located in different regions. We estimate the specification given by Equa-
tion (4.7) individually for each sector for Phases I and I1." In contrast to the analysis
conducted in the previous section, we have to compute the F-statistics on the basis of the
White covariance matrix or the covariance matrix clustered by time. The reason for this
is the small number of companies per country and sector which can induce misleading
results by computing standard errors clustered by firms. Table 4.7 presents the estimation
results, where F-statistics are computed on the basis of the covariance matrix clustered

by time.!?

‘Insert Table 4.7 about here. ‘

The table shows that pooling the effects of the carbon price factor on company stock
returns over all countries leads to a number of spurious conclusions. First, we summarize
the results for Phase I. We find positive and significant effects of the carbon price factor
on electricity stock returns in Germany& Austria, Northern Europe, and the UK. This
is mainly in line with Oberndorfer (2009) and with our sector-specific results. Hence,
our estimation results imply that owners of electricity companies located in these regions
benefit from the regulation under the system. For the remaining regions Southern Europe
and Western Europe, we do not find any significant effect. Interestingly, countries that
belong to regions in which stock returns are significantly affected by the carbon price ex-
hibit strong heterogeneity in the stringency of allowance allocation. The same is the case
for countries that belong to regions in which the carbon price factor does not affect stock
returns. Hence, the results do not reflect the country-specific net compliance positions

illustrated in Figure 4.2. For the steel sector the findings of Section 4.5.2 are broadly

MDue to space considerations we do not report the coefficient estimates of the respective models.
Results are available upon request from the author.

15The F-statistics and the corresponding p-values obtained from the specification with White standard
errors are very similar.
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confirmed. Only in case of Western Europe the carbon price factor significantly affects
steel stock returns at the 15% level, while we do not find significant effects in any of the
other regions. For the sectors chemicals and cement we do not find any links to the price
of carbon at the 10% significance level. Hence, for these sectors the results support the
findings of the sector-specific analysis.

Second, we refer to the results of Phase II. Taking country-specific effects into account re-
veals some further interesting relationships between the carbon price factor and company
stock returns during this commitment period. Despite the insignificant effect of the car-
bon price factor on electricity stock returns in the sector-specific analysis (see Table 4.6),
Table 4.7 shows that the stock returns of electricity companies located in Southern Europe
and the UK are negatively affected by increasing carbon prices (at least at the 5% level).
In both regions a 1% carbon price increase is accompanied by a stock price decrease of
0.055%. The negative effects closely reflect the net-short position of the electricity sector
in combination with less generous allocation of allowances in countries covered by these
regions as pointed out by Kettner et al. (2008) and Ellerman and Joskow (2008) and
shown in Figure 4.1. In order to fulfill regulatory requirements, these companies do have
to purchase additional allowances on the market at advanced prices due to the net-short
position which in turn induces higher production costs and reduces their profitability such
that finally stock prices decrease. In strong contrast, for Northern Europe we even find a
positive and significant effect which is consistent with the least restrictive emissions caps
in the countries of this region. For the other regions, we do not find a significant impact
of the carbon price factor on electricity stock returns. The results imply that in electricity
stock valuation investors seem to take sector- and country-specific compliance positions
into account. This in turn points to a considerable change in the investors’ perception
of the relevance of the allowance price in electricity stock valuation over both commit-
ment periods. Most importantly, the analysis clearly shows that regulatory burden that is
shifted to the owners of electricity companies is carried by owners of companies located in
countries with more restrictive emissions caps. In contrast, owners of companies located
in regions with more generous allowance allocation are not hit by the regulatory burden.
Restricting the effects to be identical across all regions as in the sector-specific analysis
leads to the spurious conclusion of no significant link between the price of carbon and
the performance of electricity stocks. Moreover, the result contradicts the conjecture that
electricity companies can pass-through the full carbon price to consumers as put forward
in simulation studies (see e.g. Lise et al. (2010)).

For steel companies the findings also extend the results of the sector-specific analysis. We

find the strongest effects for Western Europe and Germany&Austria where a 1% carbon



92 CHAPTER 4. CARBON AND THE STOCK MARKET

price increase is accompanied by a stock price increase of 0.22% and 0.09%. This implies
that the effect is more pronounced for companies located in countries with less restrictive
emissions caps. In line with more restrictive caps in Southern Europe, we do not observe
a significant effect of the carbon price factor on steel stock returns. Surprisingly, we also
fail to observe a significant impact on the performance of Northern European steel stocks.
For Western Europe and Germany& Austria investors consider the carbon price factor to
be highly relevant for steel stock valuation. Moreover, the results are consistent with
the view that with increasing carbon prices investors expect companies in these regions
to realize additional profits since such companies can sell superfluous allowances at ad-
vanced prices. Consequently and in strong contrast to owners of electricity companies,
shareholders of steel companies are not hit by the regulatory burden of the system but
benefit from the regulation.

For chemical companies, the country-specific analysis also reveals some further interest-
ing details on the heterogeneity in the impact of the carbon price factor on stock returns.
While we observe positive and highly significant effects for the regions Northern Europe
and Germany& Austria, we do not find any significant effect for companies of the re-
maining regions. In Northern Europe (Germany&Austria) a 1% carbon price increase is
accompanied by a 0.09% (0.06%) stock price increase. Again, these results reflect the
heterogeneity in the stringency of the country-specific emissions caps. The results imply
that in the identified countries owners of chemical companies benefit from the regulation
under the EU-ETS. However, compared to the steel sector the magnitude of these profits
tends to be smaller.

Finally, for cement companies, we find positive and significant effects for the regions
Germany&Austria and Western Europe which also confirms the findings of the sector-
specific analysis. In Western Europe (Germany&Austria) a 1% carbon price increase is
accompanied by a 0.06% (0.08%) stock price increase. Again, consistent with the stricter
UK emissions cap, owners of UK cement companies do not benefit from increasing carbon
prices as implied by a negative but insignificant coefficient. As in the other non-electricity
sectors the results point to the existence of regulatory profits of shareholders which tend
to be more pronounced in countries with less restrictive emissions caps.

In conclusion, our results extend those of the previous analysis. We find considerable
differences in the investors’ perception of the relevance of the carbon factor in stock valu-
ation. While in Phase I the link between the carbon and the stock market is rather loose,
the link has considerably intensified in Phase II. For Phase I, we find no evidence for the
shift of regulatory burden to investors. In Phase II regulatory burden is shifted to owners

of electricity companies, while shareholders of other sectors’ companies benefit from the
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regulation. As a consequence, hypothesis H4 as constructed in Section 4.3.3 has to be

rejected.

4.5.4 On the role of asymmetric price effects

Zachmann and von Hirschhausen (2008) find that carbon price changes affect electricity
prices asymmetrically. In particular, increasing carbon prices induce stronger electricity
price reactions. In contrast, Oberndorfer (2009) does not reveal asymmetric effects of
the carbon price on electricity stock returns in Phase 1. To analyze whether the impact
of increasing and decreasing carbon prices on stock returns differs across the individual

sectors in Phase II, we estimate Equation (4.8). The results are summarized in Table 4.8.

‘Insert Table 4.8 about here. ‘

Basically the results support the findings of the previous analysis. In contrast to Obern-
dorfer (2009) who does not find asymmetric effects of carbon price changes on electricity
stock returns during Phase I, the results of our analysis reveal further details when con-
trolling for positive and negative carbon price changes which lead to the rejection of
hypothesis H5. Stock returns of electricity companies located in the UK and Southern
Europe are affected stronger by increasing prices which is consistent with the view that
with increasing carbon prices investors expect that such companies have to buy additional
allowances at advanced prices which in turn negatively affects these companies’ profitabil-
ity. Contrary, negative carbon price changes tend to be accompanied by more pronounced

stock price responses of non-electricity companies.

4.6 Conclusion and policy discussion

We empirically investigate the impact of changes in the price of European Union emission
allowances on the market value of companies covered by the EU-ETS. In particular, the
study constitutes a comprehensive policy evaluation of the EU-ETS since it investigates
the relevance of price variations in the input factor emission allowances in the stock val-
uation of companies covered by the system from the view point of investors. The study
allows us to capture the role of policy decisions concerning the stringency of emissions
caps on the link between the carbon and the stock market. Hence, the study enables us
to detect whether shareholders of companies under the EU-ETS carry regulatory burden
of the system or even benefit from the environmental regulation. In contrast to previous
studies, we make use of a comprehensive data set containing companies of all sectors un-

der the EU-ETS, which we motivate by the heterogeneity in sector-specific net-compliance
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positions found in the previous literature (see for example Kettner et al. (2008) or Eller-
man and Joskow (2008)).

To analyze the effect of the carbon price on company stock returns we adopt the method-
ology of multifactor panel regression models making use of the estimation strategy of
Thompson (2011) in order to obtain consistent standard errors. We explicitly investigate
the impact of sector- and country-specific effects on the link between the carbon and the
stock market. Even though we have to interpret the estimation results with caution since
we only consider companies listed in the EURO STOXX 600, we find that the investors’
perception of the system’s relevance in stock valuation has considerably changed over the
first and the second commitment period.

In Phase I the links between the carbon market and the stock markets are rather weak.
For this period the results imply that the carbon price almost exclusively affects the mar-
ket value of electricity companies in Germany& Austria, Northern Europe, and the UK.
There are no or at most very weak effects on the market value of non-electricity compa-
nies. Despite strong heterogeneity in sector-specific compliance positions the hypothesis
of identical effects of the carbon price on the market value of companies across different
non-electricity sectors cannot be rejected. A possible explanation following Zachmann
and von Hirschhausen (2008) and Oberndorfer (2009) could be the inexperience of in-
vestors during this commitment period. Moreover, this result points to the realization
of regulatory profits in the electricity sector in Phase I. Further, the results imply that
shareholders of non-electricity companies neither bear regulatory burden, nor benefit from
the regulation.

For Phase II the results point to a significant change in the investor’s perception of the
system’s relevance in stock valuation compared to Phase 1. In particular, we detect a
close link between the carbon market and financial markets on which stocks of the corre-
sponding companies are traded. First, increases in the carbon price are accompanied by
decreasing stock prices of electricity companies located in countries with more restrictive
emissions caps. Second and in strong contrast, the stock prices of non-electricity compa-
nies are positively related to increasing carbon prices. The effects are stronger in countries
with more generous emissions caps. Especially, the direction and the magnitude of the
links reflect the sector- and country-specific net compliance positions which in turn are
determined by policy decisions of national authorities approved by the European Com-
mission. The results of our study are consistent with the view that restrictive allowance
allocation to electricity companies leads to the shift of regulatory burden of the system
to owners of such companies. On the other hand, our results unambiguously point to the

realization of regulatory profits of non-electricity company owners which reflects the gen-
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erous allocation of allowances to these companies. In contrast to the concern of negative
consequences on the competitiveness of internationally active non-electricity companies
accompanied by the shift of regulatory burden of the system to such companies’ owners
as argued by Ellerman et al. (2007), investors rather seem to perceive the EU-ETS as
an advantage for these companies. Superfluous allowances that are not needed to fulfill
regulatory requirements can be sold on the market which generates additional revenues
that shareholders would not have realized without the implementation of the EU-ETS.
Finally, we also control for asymmetric price effects. Generally, our results support the
findings of the sector- and country-specific analysis. The results provide weak evidence
that sector-specific stock returns asymmetrically respond to positive and negative carbon
price changes. Positive price changes induce stronger electricity stock price reactions in
countries with more restrictive emissions caps, while negative price changes tend to induce
stronger price reactions of non-electricity stocks.

In conclusion, we find that policy decisions of national authorities and the European
Commission concerning the stringency of allowance allocation in individual sectors and
member states are reflected in the relationship between the carbon price and the market

value of companies covered by the EU-ETS.
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Figures and tables

Pyl and Paper “

Iron and Steel

Cement and Lime

Po Me-

-10 -5 0 5 10 15 20 25

Figure 4.1: Sector-specific compliance positions in Phase I according to Kettner et
al. (2008)
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Table 4.1: Descriptive statistics

series mean sd kurtosis skewness JB-statistic series mean sd kurtosis skewness JB-statistic
Te -0.021 2.895 11.245 -0.878 337[20.]703 M:EGR -0.057 2.664 2.999 0.291 16[.(())]96
Tm -0.021 1.515 6.036 -0.035 4370.]77 L. TEN 0.037 2.976 5.586 -0.457 357[[.)]112
To 0.018 2.203 4.017 0.162 54[.(?]68 M:UPM -0.037 2.445 2.546 0.069 %(9,'060%?
Tg -0.069 1.651 3.166 0.445 38[.53]35 O:VAS 0.005 3.371 4.738 -0.16 148[[.)]176
ATERM 0.001 0.05 3.428 0.562 68.5355 D:TKA 0.013 2.75 4.26 0.072 76.(()305
ADEF 0 0.029 31.878 2.9 411’?4)].337 H:AKZO 0.008 2.216 8.627 0.517 155[%]076
I:A2A -0.031 1.968 7.877 0.091 113[%.]279 D:BAS 0.029 2.092 7.156 -0.102 821[[.)]596
DRXG -0.039 2.198 2.813 -0.085 [%:(2)%3] D:BAYN 0.023 1.973 4.178 -0.124 68[.07]97
EON -0.024 2.091 8.775 0.061 15830.616 CRDA 0.053 2.32 3.139 -0.084 [5322%]
F:EDF -0.002 2.121 5.573 -0.039 314[.)?171 JMAT -0.01 2.435 4.152 -0.038 63[.3]81
E:ELE 0 1.84 6.08 0.049 45(%[.)619 D:SDF 0.1 3.215 3.442 -0.333 30(.)31
I:ENEL -0.045 1.817 12.555 -0.115 43‘3E[5;.]105 M:KEMR 0.008 2.59 12.503 -0.218 42[9]E1().]706
M:FORT 0.012 2.155 5.338 -0.115 261(.)856 D:DSMX 0.001 2.217 7.782 -0.177 109%]987
F:GSZ -0.005 2.218 12.999 0.691 483[%]635 D:LXS 0.023 2.874 2.744 0.178 [%(1)411]
E:IBE -0.016 2.264 10.792 0.536 29350.]793 D:LIN 0.028 1.942 5.367 0.154 27(%[.)1]347
NG. -0.019 1.79 12.355 0.051 415%).]281 F:RHA -0.04 3.588 3.028 -0.056 [?)(73;)%
IPR 0.004 2.33 3.875 -0.243 47.(?06 B:SOL -0.025 1.838 4.334 0.143 88[.(()3]02
G:PPC -0.039 2.721 8.242 -0.309 132[20.]193 B:UM 0.016 2.906 2.857 -0.207 [?) (1)(1)11]
E:REE 0.01 1.691 7.3 -0.017 877[[.)4]102 VCTA 0.028 2.503 36.922 -2.37 5567[5].258
D:RWE -0.013 1.791 11.092 0.08 31080.688 N:YARA 0.055 3.356 3.908 -0.396 68[.08]54
SSE -0.007 1.791 9.149 -0.11 179%645 W:ASSB 0.019 2.525 3.109 0.194 Egg?

I: TERN 0.03 1.358 5.745 0.027 35’?;]8]54 CRH -0.024 2.767 2.811 -0.074 [?}gg’i
E:ACX 0.004 2.037 3.01 0.095 [})Zg% DK:FLB 0.066 2.877 2.922 -0.154 [%38'27]
H:MT 0 3.587 4.93 -0.304 19%[.)]235 D:HEI -0.05 3.057 9.614 0.131 207%053
M:OUTO -0.001 3.195 5.242 -0.289 25%{.)?03 F:LFG -0.034 2.578 4.643 0.035 128[[.)2]347
M:RRUK -0.047 3.055 2.648 -0.278 20(.)]54 F:GOB -0.034 2.901 5.532 0.203 312[[.)(])49
D:SZG 0.007 3.432 5.929 -0.309 42[5[[.)1]368 O:WNBA -0.097 3.181 5.141 -0.483 261[(.)]841
W:SSAA 0.015 3.399 2.917 -0.22 [%%(1):93] F:AIR 0.025 1.767 3.962 0.021 44.(())]06

Notes: The table presents the company covered in the study and the classification according to industry, supersector,
sector, and subsector as applied by the EURO STOXX 600. The column Code contains the Data Stream Codes. The last

column shows the countries in which the head quarters of the companies are located.
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CONCLUSION AND POLICY DISCUSSION

Table 4.2: Company classification

Group Industries Supersectors Sectors Subsectors
Electricity  Utilities Utilities Electricity; Gas, Conventional Electricity;
Water and Multiutilities Multiutilities

Steel Basic Materials

Chemicals  Basic Materials

Cement Industrials

Basic Resources

Chemicals

Construction
and Materials

Industrial Metals and
Mining; Forestry and Paper

Chemicals

Construction
and Materials

Iron and Steel; Paper

Commodity Chemicals;
Special Chemicals

Building Materials
and Fixtures

Notes: The table presents the classification structure according to the EURO STOXX 600. We set up
the groups energy, steel, chemicals, and cement. Each EURO STOXX 600 company that belongs to the
respective industry, supersector, sector and subsector is assigned to the corresponding group.

99



Table 4.3: Company classification

Company Industry Supersector Sector Subsector Code Country
A2A Utilities Utilities Electricity Conventional Electricity I:A2A IT
ACERINOX Basic Materials Basic Recources Industrial Metals and Mining Iron and Steel E:ACX ES
AIR LIQUIDE Basic Materials Chemicals Chemicals Commodity Chemicals F:AIR FR
AKZO NOBEL Basic Materials Chemicals Chemicals Specialilty Chemicals H:AKZO NL
ARCELORMITTAL Basic Materials Basic Recources Industrial Metals and Mining Iron and Steel H:MT LU
ASSA ABLOY Industrials Construction and Materials Construction and Materials Building Materials and Fixtures W:ASSA SE
BASF Basic Materials Chemicals Chemicals Commodity Chemicals D:BAS DE
BAYER Basic Materials Chemicals Chemicals Specialilty Chemicals D:BAYN DE
CRH Industrials Construction and Materials Construction and Materials Building Materials and Fixtures CRH IE
CRODA INTERNATIONAL Basic Materials Chemicals Chemicals Specialilty Chemicals CRDA GB
DRAX GRP Utilities Utilities Electricity Conventional Electricity DRXG GB
E.ON Utilities Utilities Gas, Water and Multiutilities Multiutilities D.EON DE
EDF Utilities Utilities Electricity Conventional Electricity F:EDF FR
ENDESA Utilities Utilities Electricity Conventional Electricity E:ELE ES
ENEL Utilities Utilities Electricity Conventional Electricity I:ENEL IT
FLSMIDTH & COMPANY Industrials Construction and Materials Construction and Materials Building Materials and Fixtures DK:FLB DK
FORTUM Utilities Utilities Electricity Conventional Electricity M:FORT FI
GDF SUEZ Utilities Utilities Gas, Water and Multiutilities Multiutilities F:GSZ FR
HEIDELBERGCEMENT Industrials Construction and Materials Construction and Materials Building Materials and Fixtures D:HEI DE
IBERDROLA Utilities Utilities Electricity Conventional Electricity E:IBE ES
INTERNATIONAL POWER Utilities Utilities Electricity Conventional Electricity IPR GB
JOHNSON MATTHEY Basic Materials Chemicals Chemicals Specialilty Chemicals JMAT GB
K+ S Basic Materials Chemicals Chemicals Specialilty Chemicals D:SDF DE
KEMIRA Basic Materials Chemicals Chemicals Specialilty Chemicals M:KEMR FI
KONINKLIJKE DSM Basic Materials Chemicals Chemicals Specialilty Chemicals D:DSMX NL
LAFARGE Industrials Construction and Materials Construction and Materials Building Materials and Fixtures F:LFG FR
LANXESS Basic Materials Chemicals Chemicals Commodity Chemicals D:LXS DE
LINDE Basic Materials Chemicals Chemicals Specialilty Chemicals D:LIN DE
NATIONAL GRID Utilities Utilities Gas, Water and Multiutilities Multiutilities NG. GB
OUTOKUMPU Basic Materials Basic Recources Industrial Metals and Mining Iron and Steel M:OUTO FI
PUBLIC POWER CORPORATION Utilities Utilities Electricity Conventional Electricity G:PPC GR
RAUTARUUKKI K Basic Materials Basic Recources Industrial Metals and Mining Iron and Steel M:RRUK FI
RED ELECTRICA CORPORATION Utilities Utilities Electricity Conventional Electricity E:REE ES
RHODIA Basic Materials Chemicals Chemicals Specialilty Chemicals F:RHA FR
RWE Utilities Utilities Gas, Water and Multiutilities Multiutilities D:RWE DE
SAINT GOBAIN Industrials Construction and Materials Construction and Materials Building Materials and Fixtures F:GOB FR
SALZGITTER Basic Materials Basic Recources Industrial Metals and Mining Iron and Steel D:SZG DE
SCOTTISH & SOUTHERN ENERGY Utilities Utilities Electricity Conventional Electricity SSE GB
SOLVAY Basic Materials Chemicals Chemicals Speciality Chemicals B:SOL BE
SSAB A Basic Materials Basic Recources Industrial Metals and Mining Iron and Steel W:SSAA SE
STORA ENSO R Basic Materials Basic Recources Forestry and Paper Paper M:EGR FI
TENARIS Basic Materials Basic Recources Industrial Metals and Mining Iron and Steel I: TEN 1T
TERNA Utilities Utilities Electricity Conventional Electricity I. TERN IT
THYSSEN KRUPP Industrials Industrial Goods and Sevices General Industrials Diversified Industrials D:TKA DE
UMICORE Basic Materials Chemicals Chemicals Speciality Chemicals B:UM BE
UPM KYMMENE Basic Materials Basic Recources Forestry and Paper Paper M:UPM FI
VICTREX Basic Materials Chemicals Chemicals Speciality Chemicals VCTA GB
VOESTALPINE Basic Materials Basic Recources Industrial Metals and Mining Iron and Steel O:VAS AT
WIENERBERGER Industrials Construction and Materials Construction and Materials Building Materials and Fixtures O:WNBA AT
YARA Basic Materials Chemicals Chemicals Speciality Chemicals N:YARA NO

Notes: The table presents the company covered in the study and the classification according to industry, supersector, sector, and subsector as applied by the
EURO STOXX 600. The column Code contains the Data Stream Codes. The last column shows the countries in which the head quarters of the companies are

located.
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Table 4.4: Energy prices and macroeconomic risk factors
Full sample First subsample  Second subsample

market portfolio  1.0224*** 0.9956*** 1.0330***
(0.0448) (0.0507) (0.0470)
oil price 0.0159 0.0338** 0.0017
(0.0116) (0.0134) (0.0155)
gas price 0.0197F 0.0155 0.0206
(0.0122) (0.0119) (0.0176)
carbon price 0.0131** 0.0054 0.0229*
(0.0065) (0.0073) (0.0137)
term spread 0.0100 —0.0005 0.0174
(0.0220) (0.0245) (0.0281)
default spread —0.0826*** —0.0418 —0.0907***
(0.0270) (0.0328) (0.0306)
constant 0.0217+ 0.0509*** —0.0118
(0.0144) (0.0168) (0.0257)

Notes: The table presents the results of the panel regression of the baseline spec-
ification augmented by macroeconomic risk factors without sector and country-
specific effects. Numbers in parentheses are Thompson (2011) robust standard errors.
* % %, %%, %, + indicate significance at the 1%, 5%, 10%, and 15% level.
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Table 4.5: Sector specific effects
Full sample

First subsample Second subsample

market portfolio 0.7515*** 0.6622*** 0.7962***
(0.0541) (0.0537) (0.0628)
market portfolioxsteel 0.5004*** 0.6783*** 0.5107***
(0.0848) (0.1074) (0.0921)
market portfolioxchem 0.2442*** 0.3462*** 0.1881**
(0.0869) (0.0888) (0.0971)
market portfolioxcement — 0.4872*** 0.5247*** 0.4591***
(0.0953) (0.0903) (0.1206)
oil price 0.0091 0.0050 0.0061
(0.0167) (0.0166) (0.0242)
oil x steel 0.0435* 0.0974*** 0.0168
(0.0347) (0.0348) (0.0435)
oilx chem 0.0086 0.0149 0.0081
(0.0241) (0.0214) (0.0343)
oil x cement 0.0184 0.0184* —0.0395
(0.0276) (0.0276) (0.0293)
gas price 0.0165 0.0056 0.0222
(0.0184) (0.0178) (0.0258)
gasxsteel 0.0171 0.0332 0.0064
(0.0351) (0.0401) (0.0460)
gasx chem 0.0036 0.0166 —0.0055
(0.0244) (0.0253) (0.0343)
gasXxcement —0.0123 —0.0191 —0.0091
(0.0320) (0.0341) (0.0445)
carbon price 0.0068 0.0248*** —0.0251
(0.0101) (0.0086) (0.0205)
carbon xsteel 0.0165 —0.0263 0.0856**
(0.0183) (0.0208) (0.0355)
carbonx chem 0.0093 —0.0214* 0.0607**
(0.0139) (0.0125) (0.0280)
carbon x cement —0.0021 —0.0481** 0.0699*
(0.0225) (0.0204) (0.0382)
term spread 0.0100 —0.0005 0.0174
(0.0220) (0.0246) (0.0282)
default spread —0.0826*** —0.0418 —0.0907***
(0.0270) (0.0330) (0.0306)
steel 0.0176 0.0248 0.0070
(0.0382) (0.0456) (0.0656)
chem 0.0360 —0.0132 0.0895x
(0.0282) (0.0344) (0.0503)
cement, 0.0000 —0.0216 0.0246
(0.0392) (0.0431) (0.0702)
constant 0.0063 0.0527** —0.0455
(0.0195) (0.0218) (0.0331)

Notes: The table presents the results of the panel regression of the baseline specification
augmented by macroeconomic risk factors and sector-specific effects but no country-specific
effects. Numbers in parentheses are Thompson (2011) robust standard errors. x * *, %, x, +
indicate significance at the 1%, 5%, 10%, and 15% level.
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Table 4.6: Sector specific effects 11

Electr. Steel Chemicals Cement
Full sample
market 0.751***  1.318*** 0.996*** 1.239***
[192.79] [390.38] [231.01] [311.18]
oil 0.009 0.053* 0.018 —0.030"
[0.30] [3.28] [1.38] [2.51]
gas 0.017 0.034 0.020 0.004
[0.80] [1.39] [1.30] [0.04]
carbon 0.007 0.023* 0.016* 0.005
[0.45] [2.92] [3.73] [0.08]
First subsample
market 0.662***  1.340*** 1.008*** 1,187 **
[152.18] [234.94] [185.73] [375.03]
oil 0.005 0.102*** 0.020 0.023
[0.09] [10.67] [1.76] [1.30]
gas 0.006 0.039 0.022 —0.014
[0.10] [1.51] [1.26] [0.35]
carbon  0.025***  —0.002 0.003 —0.023
[8.23] [0.01] [0.15] [0.18]
Second subsample
market 0.796***  1.307*** 0.984*** 1.125%**
[160.51] [321.24] [198.55] [191.01]
oil 0.006 0.023 0.014 —0.070**
[0.01] [0.43] [0.46] [7.47]
gas 0.022 0.029 0.017 0.013
[0.74] [0.54] [0.45] [0.21]
carbon  —0.025  0.061** 0.036** 0.045%
[1.50] [5.82] [3.63] [2.56]
Notes: The table presents the results of the panel regression

of the baseline specification augmented by macroeconomic risk
factors and sector-specific effects but no country-specific effects.
Numbers in brackets are F-statistics. x % %, %%, %, + indicate sig-
nificance at the 1%, 5%, 10%, and 15% level.
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Table 4.7: Sector and country specific effects
First subsample

Electr. Steel Chemicals Cement
Northern Europe 0.085*** —0.002 0.003 —0.036
[16.57] [0.01] [0.03] [0.38]
Southern Europe 0.007 —0.008 — —
[0.61] [0.25]
Germany& Austria 0.035* —0.013 —0.008 —0.012
[3.50] [0.17] [0.29] [0.33]
Western Europe 0.015 0.045% 0.014% —0.021F
[1.08] [2.47] [2.43] [2.43]
United Kingdom 0.041*** — 0.000 —0.024
[15.21] [0.00] [1.63]
Second subsample
Electr. Steel Chemicals Cement
Northern Europe 0.061* 0.023 0.090*** 0.037
[2.96] [0.55] [7.02] [0.03]
Southern Europe —0.056™** 0.024 — —
[7.84] [0.59]
Germany& Austria 0.038 0.092** 0.056** 0.077*
[1.46] [6.00] [4.93] [2.72]
Western Europe 0.034 0.225*** 0.015 0.065*
[1.21] [16.48) [0.42] [3.73]
United Kingdom —0.054** — 0.008 —0.045
[4.12] [0.11] [0.96]

Notes: The table presents the results of the panel regression of the base-
line specification augmented by macroeconomic risk factors, sector-specific
effects, and country-specific effects. Numbers in brackets are F-statistics.
* % %, %%, %, + indicate significance at the 1%, 5%, 10%, and 15% level.

Table 4.8: Asymmetric effects

Positive carbon price changes
Electr. Steel ~ Chemicals Cement

Northern Europe 0.013 —0.059 0.057 —0.061
[0.02] [0.47] [0.41] [0.56]

Southern Europe —0.124* —0.043 — —
[2.87] [0.27]

Germany&Austria  —0.014 0.045 0.007 —0.112
[0.03] [0.24] [0.01] (1.14]

Western Europe —0.040  0.190% —0.051 —0.023
[0.23] [2.66] [0.44] [0.07)

United Kingdom —0.142% — —0.048 —0.125
[3.04] [0.36] [1.54]

Negative carbon price changes
Electr. Steel ~ Chemicals Cement
Northern Europe 0.063 0.056 0.080™ 0.085***

[1.25] [1.52] [2.29] [3.25]
Southern Europe —0.035 0.044 — —
[1.05] [0.63]
Germany&Austria  0.044 0.094+ 0.059 0.205***
[0.67] [2.08] [1.89] [8.77]
Western Europe 0.044 0.216** 0.033 0.103**
[1.23] [5.61] [0.42] [4.17]
United Kingdom —0.016 — 0.018 —-0.014
[0.17] [0.16] [0.04]

Notes: The table presents the results of the panel regression of the base-
line specification augmented by macroeconomic risk factors, sector-specific
effects, and country-specific effects. Numbers in brackets are F-statistics.
* % %, *%, %, + indicate significance at the 1%, 5%, 10%, and 15% level.




Chapter 5

Long-term oil-stock correlations

5.1 Introduction

Given the empirical evidence in, e.g., Hamilton (1983, 1985, 2003) on the negative im-
pact of oil price shocks on economic activity, it does not seem surprising that studies
such as Jones and Kaul (1996) also find a negative relationship between oil prices and
stock returns. In this article, we revisit the oil-stock market relationship by analyzing the
dynamic correlations between crude oil prices and U.S. stock market returns during the
period 1993-2011. The rolling window of yearly realized correlations in Figure 5.1 clearly
reveals that there is considerable time-variation in the correlation between the two return
series with extended periods of positive correlations. Using a two-component dynamic
correlation model, we aim at explaining these variations by changes in the U.S. macroeco-
nomic environment. Our specification allows us to separate day-to-day fluctuations (the
dashed line in Figure 5.1) from gradual long-term movements (the bold line) which are
related to the stance of the economy. The dynamic correlations plotted in Figure 5.1 are
obtained from a specification which explains the long-term component by variations in
the Chicago Fed national activity index (NAI). Figure 5.1 clearly shows the close link
between the oil-stock correlation and the business cycle. In particular, note the positive

oil-stock correlation during recessions and thereafter.

‘Figure 5.1 about here

Our econometric specification is based on the Dynamic Conditional Correlation - MIxed
Data Sampling (DCC-MIDAS) model proposed in Colacito et al. (2011). The DCC-
MIDAS model combines the Engle (2002) DCC specification with the GARCH-MIDAS
framework of Engle et al. (2009). The GARCH-MIDAS framework extends the simple

GARCH specification by modeling volatility as consisting of a short-term and a long-term
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component. Most importantly, the long-term component is specified as a function of the
macroeconomic environment. In the original DCC specification with correlation target-
ing each quasi-correlation follows a ‘GARCH type’ process which is mean-reverting to the
unconditional correlation of the volatility-adjusted residuals. The basic idea of Colacito
et al. (2011) is to replace this unconditional correlation with a slowly time-varying long-
term component which is driven by lagged realized correlations. The quasi-correlation
then fluctuates around this long-run trend. Hence, the new specification can be consid-
ered as a two component model for the dynamic correlations. In the spirit of Engle et
al. (2009) the short-term component fluctuates at a daily frequency while the long-term
component adjusts at the lower monthly frequency. Colacito et al. (2011) assume that the
long-term component can be expressed as a weighted sum of the lagged monthly realized
correlations between the volatility-adjusted residuals.

Using the GARCH-MIDAS framework, we first analyze whether the long-term oil market
volatility is related to the U.S. macroeconomy and whether oil and stock volatility respond
to the same macroeconomic information. Next, we extend the DCC-MIDAS model by
directly incorporating information on the macroeconomic development in the long-term
correlation component, i.e. we replace the realized correlations by monthly macroeco-
nomic variables. Since the macroeconomic variables — unlike the realized correlations —
are not restricted to the minus one to plus one interval, we suggest a new specification for
the long-term component. Similar to Christodouklakis and Satchell (2002), we assume
that the Fisher-z transformation of the long-term component can be written as a linear
function of the weighted lagged macroeconomic variables. The weights are again deter-
mined using the MIDAS approach. We refer to this new specification which includes a
macroeconomic explanatory variable as the DCC-MIDAS-X model.

In broad terms, our results can be summarized as follows. First, we find that the move-
ments in long-term oil market volatility can be well predicted by various measures of
U.S. macroeconomic activity. Our empirical results provide convincing evidence for a
counter cyclical relationship between measures which either describe the current stance
of the economy, e.g. industrial production, or provide forward looking information about
the future state of the economy, e.g. the leading index for the U.S., and oil market volatil-
ity. Current and expected increases (decreases) in economic activity clearly anticipate
downswings (upswings) in long-term oil volatility. This result strengthens the argument
of Barsky and Kilian (2004) and Harris et al. (2009) that the oil price development is
very much synchronized with the business cycle and that there is indeed reverse causality
from macroeconomic variables to the oil price. Interestingly, we also find that long-term

oil and stock market volatility are determined by the same macroeconomic factors, while
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Kilian and Vega (2011) report that oil price returns in contrast to stock returns do not
respond instantaneously to macroeconomic news.

Second, our empirical results show that changes in the long-term oil-stock correlation
can be anticipated by the same macroeconomic factors which also affect the long-term
volatilities. We provide strong evidence for a counter cyclical behavior of the long-term
oil-stock correlation. The economic rationale behind is best explained by again looking
at Figure 5.1 which exemplarily relates the oil-stock correlation to changes in the NAIL
The phases with positive long-term oil-stock correlations correspond to values of the NAI
which either indicate recessions or the beginning of expansions with growth still below
or at trend. On the other hand, a negative long-run correlation emerges when the NAI
signals strong growth above trend. Clearly, the positive correlation during recessions is
driven by the simultaneous drop in oil and stock prices. The economic recovery during
the early phase of an expansion then leads to increasing oil prices due to higher demand
as well as to rising stock prices because of the improved outlook for corporate cash flows.
The combination of these two effects causes the long-run oil-stock correlation to remain
positive. This interpretation squares with the findings in Kilian and Park (2009) regarding
the positive short-run effect of an unexpected increase in global demand on oil and stock
prices. Finally, during boom phases with strong growth above trend both the further
increasing oil prices as well as the expectation of rising interest rates have a depressing
effect on the stock market. Hence, for these periods our model predicts a negative long-
term correlation.

Third, the long-term correlation component can be interpreted as the predicted or ex-
pected correlation given a certain state of the economy. Since the macroeconomic vari-
ables which drive the long-term component represent aggregate demand, the deviations
of the short-term from the long-term component should be driven by other factors re-
lated to the stock and/or the oil market. Typical examples would be either oil specific,
i.e. precautionary, demand shocks or supply shocks. The fact that various measures of
macroeconomic activity lead to a convincing and coherent fit of the long-term correlation
suggests that aggregate demand is the most important factor for the oil-stock relation-
ship. Our results can thus be understood as further empirical evidence for Kilian’s (2009,
p.1068) claim that “models of endogenous oil prices should focus on the aggregate demand
side of the oil market”.

Fourth, the fact that the sign of the oil-stock correlation critically depends on the state of
the economy reinforces the argument by Kilian and Park (2009) that simple regressions
of stock returns on oil price changes can be very misleading. This point may well explain

the conflicting empirical evidence on the oil-stock relationship in Jones and Kaul (1996),
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Wei (2003) and others.

Fifth, as shown in Colacito et al. (2011) the explicit modeling of the long-term correlation
component can be very beneficial when it comes to portfolio choice, hedging decisions or
risk management. In the oil-stock context we expect the potential efficiency gains to be
highly relevant, since the time-varying correlations are relatively large and — in contrast
to backward looking models — the DCC-MIDAS-X specification allows us to anticipate
changes in correlations.

Finally, several remarks are in order. The DCC-MIDAS-X specification remains a re-
duced form model. Hence, while we find that measures of economic activity are helpful
predictors for the long-term oil-stock correlation, our estimates do not necessarily have
a causal interpretation. Further, the model does not explicitly distinguish between dif-
ferent types of shocks to oil prices as in, e.g., Kilian and Park (2009) or Kilian (2009).
However, we can interpret our long-term correlation component as the correlation that
would be prevalent if the aggregate demand side dominates. Oil specific shocks due to
precautionary demand or supply shocks are rather reflected by the short-term component
and can be considered as a reason why the short-term component can deviate from the
long-run trend. The behavior of the short-term component during the invasion of Kuwait
in August 1990 and the second Gulf War in 2003 are in line with this interpretation.
Finally, we focus on economic activity measures for the U.S. only, while the oil price is
driven by global demand. Nevertheless, we believe that our U.S. activity measures are
likely to be highly correlated with global demand for most of the time.

The remainder of the article is organized as follows. Section 5.2 reviews the related lit-
erature while Section 5.3 discusses the GARCH-MIDAS and DCC-MIDAS models. The
data and empirical results are presented in Sections 5.4 and 5.5. Section 5.6 provides

some robustness analysis and Section 5.7 concludes the article.

5.2 Related literature

Our analysis is based on two strands of literature. The first one is concerned with the
modeling of long-term movements in volatilities and correlations, the second one with the
relationship between oil, the macroeconomy and stock prices.

The idea of having short- and long-term component models of volatilities dates back
to Ding and Granger (1996) and Engle and Lee (1999). In their specifications, both
components simply follow ‘GARCH-type’ processes but with different degrees of persis-
tence. Similarly, Davidson (2004) proposed the HYGARCH specification which can be

considered as a two component model with the short-term component being a GARCH
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process while the long-term component follows a FIGARCH process (see also Conrad,
2010). While these specifications allow to separate the two volatility components, both
components are assumed to be driven by the same shocks. In addition, the unconditional
variance is still constant over time. Engle and Rangel (2008) and Engle et al. (2009)
relax this assumption and propose specifications in which the long-term component can
be considered a time-varying unconditional variance. While in the Engle and Rangel
(2008) Spline-GARCH model both components fluctuate at the same frequency, Engle et
al. (2009) assume that the long-term component evolves at a lower frequency than the
short-term component. Using the MIDAS framework of Ghysels et al. (2005, 2007), they
directly relate the long-term component to the evolution of macroeconomic time series
such as industrial production or inflation. In line with the earlier findings in Schwert
(1989), the GARCH-MIDAS model provides strong evidence for a counter cyclical be-
havior of financial volatility. Recently, Conrad and Loch (2011) extend the analysis of
Engle et al. (2009) by using a broader set of macroeconomic variables including leading
indicators and expectations data from the Survey of Professional Forecasters. The DCC-
MIDAS model proposed in Colacito et al. (2011) simply extends the two component idea
from volatilities to correlations. However, instead of relating the long-term correlation di-
rectly to its potential macroeconomic sources, Colacito et al. (2011) only consider lagged
realized correlations as explanatory variables.

Since the seminal articles of Hamilton (1983, 1985, 2003) exogenous oil supply shocks
were suspected to be causal for recessions and periods of low economic growth. Based
on this presumption, several empirical studies have analyzed the relationship between oil
prices and stock market returns. While Jones and Kaul (1996) or Nandha and Faff (2008)
indeed find that oil price increases negatively affect stock prices, Huang et al. (1996) or
Wei (2003) cannot establish a significant relationship. Recently, Miller and Ratti (2009)
provide evidence for a time-varying relationship. For the period after 1999 they even
report a positive connection. Hence, the empirical evidence is far from being uncontro-
versial. Kilian and Park (2009) provide two explanations for the conflicting results. First,
although the oil price is often assumed to be exogenous with respect to the U.S. economy,
there may be reverse causality at work (see also Barsky and Kilian, 2004). Similarly, Har-
ris et al. (2009) argue that — in contrast to the 1970s when supply shocks were likely to
be predominant — oil prices are mainly driven by high global aggregate demand since the
mid-1990s. Thus, stock and oil price changes may be induced by the same macroeconomic
factors and, hence, regressions of stock returns on oil price changes may be misleading due
to endogeneity. The empirical results in Ewing and Thompson (2007) confirm the pro-

cyclical behavior of oil prices and specifically indicate that crude oil prices lag industrial
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production. Second, Kilian and Park (2009) argue that the sign of the effect of an oil price
increase on the stock market depends on the type of the underlying shock and, hence, may
change over time. While shocks due to an unanticipated economic expansion may have
a positive impact, shocks related to precautionary demand are likely to have a negative
impact. For several oil-importing and oil-exporting countries Filis et al. (2011) show that
the oil-stock correlation is indeed time-varying. Although they informally relate phases of
positive or negative correlations to demand and supply shocks, their simple DCC-GARCH
model does not explicitly incorporate information on the state of the economy. In partic-
ular, their model does not allow to forecast changes in correlations in response to changes

in the macro environment.

5.3 The DCC-MIDAS model

In this section, we develop the econometric framework to analyze the impact of macroeco-
nomic variables on long-term volatility and correlations. We consider the bivariate vector
of asset returns r, = (ry,,72), where 71, refers to the stock and r9; to the oil returns,
and denote by F;_1 = o(ry_1,ri_o,...) the o-field generated by the information available
through time ¢ — 1. Let E[r|Fi—1] = p, = (f14, 24) and define the vector of residuals
r,— p, =€ = (€14, €2¢)". We assume that conditional on F;_; the residuals are normally
distributed with Var[e,|F;,_1] = Hy, i.e. &/|F_1 ~ N (0,H,). Following Engle (2002), we

decompose the conditional covariance matrix into H, = D;R;D; where

1 h 0
R, = Piag and D= "M ). (5.1)
P12t 1 0 h2,t

Finally, we define the standardized residuals 1, = (14,72,) as n, = D; 'e;. Note that
Var([n,|Fi—1] = R;. The DCC framework allows us to separately model the conditional

variances and the conditional correlations.

5.3.1 Conditional variances

To capture the impact of macroeconomic variables on return volatility, we adopt the
GARCH-MIDAS framework of Engle et al. (2009). We assume a multiplicative component
model for each conditional variance, i.e. we specify h;; = g;;m; ., where g;, is the short-
run and m; , the long-run component. While the transitory volatility component changes
at the daily frequency t, the long-run component changes at the monthly frequency 7 only.

We denote by N(™) the number of days within month 7. Specifically, we assume that the
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short-run volatility component follows a mean-reverting unit GARCH(1,1) process

(Tz‘,t—l - Mz‘,t—1)2

1, T

gip = (1 —a; — ;) + + Bigit-1, (5.2)
with o; > 0, 6; > 0, and «; + 5; < 1. The long-term component is modeled as a slowly

varying function of exogenous variables X, using the MIDAS specification

Ky
log(miz) = mi + 6; Y pr(w;) Xr_p, (5.3)
k=1

where the log transformation guarantees the non-negativity of the conditional variances
when the exogenous variables can take negative values. The X, will be monthly macroe-
conomic variables. For the weighting scheme, we follow Engle et al. (2009) and adopt a
restricted beta weighting scheme where the weights are computed according to

(1 k/K, )

Wwi) = )
(:Dk( ) llivl(l . Z/Kv)wifl

k=1,.. K, (5.4)

For all w; > 1, the weighting scheme guarantees a decaying pattern, where the rate of
decay is determined by w;. Large (small) values of w; generate a rapidly (slowly) decaying
pattern. Given a maximum lag order K, the weighting scheme entails a data driven
lag-length selection, depending on the scale of w;. K, itself can be determined by the
Akaike information criterion (AIC).

In the following, we will refer to the component model with explanatory variables as
GARCH-MIDAS-X. Finally, note that when 6; = 0 the long-run component is simply
a constant and h;; follows a GARCH(1,1) process with unconditional variance o} =

exp(my).

5.3.2 Conditional correlations

The DCC-MIDAS specification proposed by Colacito et al. (2011) provides a natural
extension of the GARCH-MIDAS model to dynamic correlations. We first decompose
the conditional correlation matrix as R, = diag{Q,} *Q.diag{Q,} /2, with Q, =

@ij.t)i.j=1.2, and specify the quasi-correlations as

Q =(1—a—-bRi+an_m_; +bQ1, (5.5)
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with @ > 0, b > 0, and a +b < 1. In the Engle (2002) DCC model with correla-
tion targeting the matrix R; does not depend on time and equals the empirical corre-
lation matrix of m,, i.e. has ones on the main diagonal while the off-diagonal elements
are pp = 17! Zthl MM, In contrast, in the DCC-MIDAS framework introduced in
Colacito et al. (2011) the off-diagonal elements are the long-term correlations pys . As in
the GARCH-MIDAS equation the long-term correlation component does not vary at the
daily frequency t but at the lower frequency 7. That is, the short-run quasi-correlations

fluctuate around the time-varying long-run correlations:

Qo = P12+ + a(Me—1M24—1 — Prz.r) + b(qr2e—1 — Pra.r)- (5.6)

Colacito et al. (2011) assume that p12, can be expressed as a weighted average of the K.

past realized correlations RC:

K.
P12,r = Z@k(wm)ROr—kn (5.7)

k=1

with
N,
Zt:NT_lJrl 771,t772,t

N, 2 N, 2
t=N,_1+1 1t Zt:NT,lﬂ N2t

RC, = ) (5.8)
where N, = Y7 N@ and N, = 0. The weights are again given by equation (5.4) with
w; and K, replaced by wis and K., respectively. Since the weights ¢y (w12) sum up to one
and the RC. are correlations, the long-run correlation will itself lie within the [—1, +1]
interval.

We extend the DCC-MIDAS model by directly incorporating information on the macroe-
conomic development in the long-run component. Similarly as in the GARCH MIDAS
setting — where the specification for m; - has to ensure the non-negativity of the long-term
volatility — our specification has to ensure that the long-run correlation lies within the
[—1, +1] interval although the macroeconomic explanatory variables do not. We follow
Christodoulakis and Satchell (2002) and use the Fisher-z transformation of the correlation
coefficient, i.e. we assume that

exp(2z12,) — 1

Bro. = , 5.9
P exp(2m2,) + 1 59

with
K.

Z12,7 = Mz + b2 Z or(wi2) Xrp, (5.10)
k=1
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where X, denotes either a macroeconomic explanatory variable or the realized correla-
tions. Note that in our non-linear specification, from # we can only infer the sign but not
directly the marginal effect of a macroeconomic variable on the long-term correlation.
Finally, in the DCC-MIDAS model - as in the standard DCC model - the short-run corre-
lations are obtained by rescaling, i.e. p12; = qi2,¢//q11,1G22¢- In the subsequent analysis we
refer to the specifications with either macroeconomic explanatory variables or the realized
correlations as DCC-MIDAS-X or DCC-MIDAS-RC models, respectively.

5.3.3 Estimation

Following Engle (2002) and Colacito et al. (2011) the model parameters can be estimated
using a two-step procedure. This is feasible because the log likelihood function to be

maximized

T T
Z 2log(27) + 2log(|Dy|) + €,D; *et) Z log(|R¢|) + MR, 'm, — m\m,)
t=1 t=1

(5.11)

can be separated into two parts. The first sum in equation (5.11) contains the data and
the variance parameters while the second sum depends on the volatility-adjusted residuals
and the correlation parameters. Hence, in the first step we estimate the GARCH-MIDAS
parameters individually for each return series and use the estimated volatility-adjusted

residuals in the second step to obtain the correlation parameters.

5.4 Data

Since we apply the MIDAS approach, our data consists of observations at the daily as
well as the monthly frequency. We combine daily stock market and crude oil price data
with monthly observations on the macroeconomic variables. While the stock series was
obtained from the Kenneth R. French data library, the oil prices and the macroeconomic
data are taken from the FRED database at the Federal Reserve Bank of St. Louis. Our
data covers the period from January 1993 to November 2011.

5.4.1 Oil and stock market data

For the stock series, we employ the daily returns on the CRSP value-weighted portfolio,
which is based on all NYSE, AMEX and NASDAQ stocks and can be considered the best

available proxy for ‘the stock market’. In addition, the CRSP data facilitates comparison
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of our results with those of Engle et al. (2009) and Conrad and Loch (2011). As in Kilian
and Vega (2011), the oil price returns are constructed from the West Texas Intermediate
(WTTI) crude oil spot price. Panel A of Table 5.1 provides summary statistics for the
two return series. While the sample mean of the returns is positive for both markets,
the table provides first evidence for stronger price fluctuations in the oil than in the
stock market. The annualized unconditional standard deviation of the oil price returns is
39.18% and, hence, considerably higher than the 19.41% of the CRSP returns. Finally,

the unconditional correlation between oil and stock returns is 0.15.

‘Table 5.1 about here‘

5.4.2 Macroeconomic data

We divide the monthly macroeconomic data into three categories. Those which measure
the current stance of the economy, forward looking indicators and measures of inflation.
The first category contains the following variables: industrial production (IP), nonfarm
payrolls (NFP), and the unemployment rate (UR). The forward looking indicators are
the national activity index (NAI)! and the leading index (LI)? for the U.S. They are
supposed to reflect the role of market participants’ expectations concerning the future
economic development. The final category consists of the producer price index (PPI) and
the consumer price index (CPI) and captures inflation dynamics.

For the variables IP, PPI, and CPI we compute month-to-month growth rates accord-
ing to 100 - [In(X;) — In(X,_1)], while in case of UR and NFP we use month-to-month
changes. Finally, NAI and LI are included in levels. Panel B of Table 5.1 provides the
summary statistics for the macroeconomic data. Figure 5.2 shows the dynamics of the

macroeconomic variables for the period from January 1993 to November 2011.

‘Figure 5.2 about here‘

I'The NAI is standardized weighted average of 85 monthly indicators of national economic activity
including figures that represent (i) production and income, (ii) employment, unemployment, and hours,
(iii) personal consumption and housing, and (iv) sales, orders and inventories. The NAI is computed and
published by the Federal Reserve Bank of Chicago. Positive realizations indicate growth above trend,
while negative realizations indicate growth below trend. The variables IP, NFP, and UR are among the
indicators used for the computation of the NAI

2The LI predicts the six-month growth rate of the US coincident index based on variables that lead
the economy including housing permits, unemployment insurance claims, delivery times from the ISM
manufacturing survey, and the term spread. The LI is published by the Federal Reserve Bank of Philadel-
phia.
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5.5 Empirical results

We first present the estimation results for the GARCH-MIDAS models which relate the
long-term volatilities to the macroeconomic environment. Thereafter, the DCC-MIDAS

specifications which focus on the long-run correlations are discussed.

5.5.1 Determinants of long-term volatilities

Tables 5.2 and 5.3 present the estimates for the various stock and oil GARCH-MIDAS
models. In addition to the models which include the macroeconomic explanatory vari-
ables, we also consider the restricted version of equation (5.3) with 6; = 0. Recall, that in
this benchmark specification the GARCH-MIDAS model reduces to a GARCH(1,1) with
constant unconditional variance. Since this model is nested within the class of GARCH-
MIDAS models, we can use likelihood-ratio tests (LRT) and the AIC to compare the fit of
the models which are augmented by macroeconomic variables with the benchmark spec-
ification. Further, since the serial correlation in daily stock and oil returns is negligible,
we choose p;; = p; in both conditional means. Based on the AIC we choose K, = 36 for
both markets, i.e. our specifications cover three MIDAS lag years. However, all results
are robust to moderate changes in K,. The constant p; is significant in all stock return
models, but insignificant in the oil return specifications. In all cases the estimated «; and
B; parameters are highly significant. Interestingly, while the «; (3;) parameters are esti-
mated to be slightly higher (lower) in the stock than in the oil market, the sum «; + (; is
almost identical in both markets and always less than one. That is, in all specifications the
short-run volatility component is mean-reverting to the long-run volatility trend. Next,

we discuss the estimated 6; and w; parameters individually for the two markets.

‘Tables 5.2 and 5.3 about here‘

Table 5.2 shows that each variable in the two categories current stance of the economy
and future economic outlook has a significant effect on long-term stock market volatility.
For IP, NFP, NAI, and LI the estimated coefficient 0; is negative and highly significant,
while it is positive and highly significant in case of UR. Since the sign of #; measures
whether an increase of the respective variable leads to an upswing or downswing in the
long-run volatility, the estimates imply that higher (lower) levels of economic activity lead
to a reduction (rise) in long-term stock market volatility. In stark contrast, both inflation
measures do not significantly affect long-term stock market volatility. The LRT which
compare the GARCH-MIDAS-X models with the restricted benchmark specification im-
ply that we can reject the hypothesis that 6; = 0 for all specifications with significant
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macroeconomic variables. This result is also confirmed by the AIC. Finally, the loglike-
lihood function, the LRT, and the AIC unambiguously identify the model including the
unemployment rate as the one with the best fit.

Our results are consistent with the findings in Engle et al. (2009) and Conrad and Loch
(2011). Engle et al. (2009) consider industrial production and producer price inflation
as explanatory variables and report that industrial production strongly influences long-
term U.S. stock market volatility. In line with our results, they find significant effects of
inflation when it was high and volatile in the 1970s, but insignificant ones during the post-
1985 period of the Great Moderation.®> Conrad and Loch (2011) consider various other
measures of economic activity including several leading indicators and find that variables
which can predict the future state of the economy have explanatory power for long-run
volatilities. This squares with our highly significant #; estimates for LI and NAI. These
variables are likely candidates to affect uncertainty concerning future cash flows and risk
premia. In summary, our findings deliver further support for the view that long-term
stock market volatility behaves counter cyclical.

In Table 5.3 we now turn to the analysis of the macroeconomic determinants of long-term
oil market volatility. As in case of the stock market, the estimates for 6, suggest that
long-term oil price volatility is closely linked to each of the macroeconomic variables de-
scribing the current stance of the economy as well as the future economic outlook. In
particular, the results imply that downturns in U.S. economic activity, i.e. decreases in
IP, NFP, NAI, and LI and increases in UR lead to higher levels of long-term oil market
volatility. The empirical evidence implies that changes in variables which measure eco-
nomic activity do precede changes in long-term oil market volatility. Although this result
does not necessarily invalidate the assumption that “oil price changes cannot be predicted
from earlier movements in macro variables” (see Hamilton, 2008), it challenges the view
that oil price movements are exogenous with respect to the U.S. economy. We will return
to this issue in the next subsection. The fact that measures of economic activity help
to anticipate changes in oil price volatility also supports the argument of Barsky and
Kilian (2004), Kilian (2009), and Harris et al. (2009) that oil prices are mainly driven by
aggregate demand and to a much lesser extend by oil supply shocks. Hence, an economic
downturn can be viewed as a negative aggregate demand shock which increases long-term
oil price volatility.* Similarly as for the stock returns, neither PPI nor CPI significantly

affect oil price uncertainty. This, in turn, is consistent with the argument in Harris et

3In addition to the levels, Engle et al. (2009) also investigate whether the uncertainties about IP and
PPI affect stock volatility.

4The finding is analogous to the leverage effect in the stock market. A positive (negative) demand
shock leads to increasing (decreasing) oil prices and thereby decreases (increases) oil market uncertainty.
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al. (2009) that in contrast to the 1970s, the relationship between inflation and oil prices
is muted during the 2000s. Similarly, Ewing und Thompson (2007) have shown that oil
prices lag industrial production but lead consumer prices in the period 1982-2005. Lastly,
the LRT and the AIC in Table 5.3 reveal that all GARCH-MIDAS-X specifications with
significant macroeconomic variables achieve a better fit than the restricted GARCH(1,1).
While the information criteria of the various GARCH-MIDAS-X specifications are pretty
similar, it is interesting that UR and LI achieve the best fit which is in line with the stock
market results.

Figure 5.3 shows the GARCH-MIDAS-UR estimates of the annualized long-term volatility
components for the two markets. While the level of oil price volatility is about twice as
high as the one of the stock prices, the evolution of the two components is very similar
across markets. The observation that the macroeconomic environment affects long-term
oil and stock volatility in almost the same way is very interesting. Recently, Kilian and
Vega (2011) investigated whether oil prices can be viewed as asset prices. By regressing
daily oil price changes on macroeconomic news they find that oil prices do not react to
U.S. macroeconomic aggregates and, hence, conclude that oil prices behave very differ-
ently from asset prices. However, our results suggest that at least the second moments of

oil and stock returns respond in a comparable fashion to macroeconomic news.

Figure 5.3 about here

Based on the estimates &; and 6;, we now quantitatively compare the persistence and the
magnitude of the effect of changes in the macro variables on long-term volatility in both
markets. As can be seen from Tables 5.2 and 5.3, for each macroeconomic variable with
significant 6;, the corresponding estimate w; is considerably larger in the oil than in the
stock market. Hence, the effect of changes in macro variables on long-term volatility is less
persistent in the oil market than in the stock market. Following Engle et al. (2009), we can
compute the magnitude of an effect of a one percent (unit) change in the macroeconomic
variable X, on the long-term volatility in month 7+1 according to exp(6;-¢1(&;))—1. Even
though we observe differences in the persistence of the effects across markets, we find that
the magnitude of the effects in 7+ 1 is pretty similar. In case of the GARCH-MIDAS-UR,
a one percentage point increase in this variable is accompanied by an increase in long-term

stock market volatility of 0.799%, while oil price volatility increases by 0.712%.

5.5.2 Determinants of long-term correlations

Next, we analyze the macroeconomic determinants of the long-term oil-stock correla-

tion. Now we consider two benchmark specifications. The first natural benchmark is the
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DCC-GARCH model which is obtained from the DCC-MIDAS specification by replac-
ing p12, with the unconditional correlation of the volatility-adjusted GARCH residuals.
The second benchmark specification follows Colacito et al. (2011) and uses backward-
looking monthly realized correlations as explanatory variables. We estimate two versions:
one where mis und 615 vary freely (DCC-MIDAS-RC) and one where we restrict these
parameters to miy = 0 and 612 = 1 (DCC-MIDAS-RC restr). In the DCC-MIDAS-X spec-
ifications we replace the realized correlations with key macroeconomic figures. In order
to facilitate comparison between the various DCC, DCC-MIDAS-RC and DCC-MIDAS-
X models, the first step volatility-adjusted residuals for all models are taken from the
benchmark GARCH(1,1) specification. As in case of the long-term volatilities, we find
that the optimal lag length is equal to three MIDAS lag years, i.e. we choose K. = 36.

Table 5.4 presents the estimation results. Clearly, in all specifications the estimated pa-
rameters a and b are highly significant and sum up to a value of less than one. That is,
the quasi-correlations are mean-reverting either to the unconditional correlation in the
DCC-GARCH case or to the long-term correlation in the various DCC-MIDAS-X specifi-
cations. The estimates of #;, indicate that all variables which represent the current stance
of the economy or the future economic outlook significantly affect the long-run oil-stock
correlation. In line with our analysis in Section 5.5.1, we find negative 65 coeflicients on
IP, NFP, NAI, and LI, while the coefficient on UR is positive. The estimates imply that
a contraction of macroeconomic activity leads to an increase of the long-term correlation.
Moreover, none of the two inflation measures can explain the long-run co-movements
in stock and oil prices which again reinforces our findings from the long-term volatility

analysis.

‘Table 5.4 about here‘

According to the LRT, all DCC-MIDAS-X specifications with significant 6, estimates as
well as the restricted DCC-MIDAS-RC model are preferred to the nested DCC-GARCH.
Hence, there is convincing evidence in favor of the component models which allow for a
time-varying long-term correlation. In addition, a comparison of the information criteria
also confirms the superiority of the DCC-MIDAS-X models relative to the DCC-MIDAS-
RC benchmark specification. Finally, according to the AIC the DCC-MIDAS-NAI model
achieves the best fit among all specifications. We explain below that the forward look-
ing properties of the NAI which gauges future economic activity as well as inflationary
pressures (and thereby future monetary policy) are particularly relevant for anticipating
changes in the oil-stock correlation. Note that the model which includes UR still performs
second best.

Figure 5.1 shows the estimated dynamics of the short- and long-run correlations based
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on the DCC-MIDAS-NATI specification together with a rolling-window of yearly realized
correlations. First, although the unconditional correlation between stock and oil returns
was found to be 0.15, the figure shows that there is substantial time-variation in the re-
alized correlations with prolonged periods of positive or negative correlations. While the
short-run component closely follows the behavior of the realized correlations, the long-
run correlation evolves much more smoothly. Both the realized correlations as well as the
short-run correlations follow this long-run trend component. Figure 5.1 reveals a very
interesting cyclical pattern in the evolution of the long-run correlation. At the beginning
of the sample period in 1993 the correlation takes a value of 0.14 and then starts to
decrease until it reaches a minimum of -0.12 in 1994. It stays in the negative territory
until mid-2000. From mid-2000 onwards the long-term correlation starts to increase and
turns positive before the recession of 2001 (first shaded area). The correlation further
increases until it reaches a peak of 0.25 at the end of the recession. The figure shows
that the long-term correlation remains above (0.2 for the two subsequent years, which are
followed by a smooth decrease and a period of negative correlations during the years 2005
to 2006. Again, the long-term correlation starts to increase almost two years before the
recession of 2007-2009 and becomes positive clearly before the beginning of the recession
(second shaded area). At the end of this recession we observe a peak at 0.60. Finally, the
correlation starts to decrease smoothly.

To provide an economic interpretation of the correlation dynamics we refer to Figure 5.4
which depicts the long-term correlation along with the NAI. First, the figure clearly shows
the inverse relationship between the NAI and the long-term oil-stock correlation which
was already evident from the negative 615 estimate in Table 5.4. On average, the oil-
stock correlation is positive (negative) when the NAI takes negative (positive) values,
i.e. when the economy is expanding below (above) trend growth. Interestingly, when the
NAI turns negative before and during the 2001 and 2007-2009 recessions the long-term
correlation steeply increases, while it decreases more gradually when the NAI stays in the
negative territory in the aftermath of the recessions. On the other hand, the long period
of growth above trend from 1994 to 1999 is accompanied by a period of negative oil-stock
correlations.” Our empirical evidence for a counter cyclical oil-stock correlation is again
perfectly in line with the recent evidence in Harris et al. (2009) and Kilian (2009) in favor
of a positive oil-growth relation. Similarly, the results in Section 5.5.1 support the view
that good news on the macroeconomy are also good news for the oil price, i.e. reduce

oil volatility. Increasing economic activity leads to higher oil demand and, consequently,

50nly during 1995 when the NAI takes a few negative values the long-term correlation temporarily
increases but remains negative.
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higher oil prices. Further, Kilian and Park (2009) argue that in an early phase of an
expansion increasing oil prices may not have negative effects on the stock market. This is
because in the short-run the positive effect of higher economic activity on expected future
cash flows dominates and, hence, the oil-stock correlation will be positive. However, in the
long-run the negative effect of increasing oil prices on corporate cash flows will dominate

and turn the oil-stock correlation negative.

Figure 5.4 about here

The long-term correlation in Figure 5.4 very much supports these views. Before and
during both recessions bad news on the NAI lead to sharply decreasing stock and oil
prices and, therefore, to a positive oil-stock correlation. The fact that the correlation
turns positive well before both recessions is remarkable and suggests that the long-term
oil-stock correlation may itself be used as an early recession indicator. During the recov-
ery phases in 2002-2003 and 2010-2011 the improvement in the NAI leads to increasing
oil prices and at the same time to upward revisions concerning firms’ expected dividends
and cash flows. In these periods the oil-stock correlation remains positive, but smoothly
decreases. The same rationale also applies to the first year of our sample, which falls into
the recovery period after the recession of 1990/91 (see Section 5.6). Finally, during the
years 1994-1999 and 2005-2006 the NAI grows above trend for a protracted period which
again should positively affect oil prices. However, the (expected) oil price increases now
dampen the outlook for future corporate cash flows, i.e. during these periods the good
news on the macroeconomy — through the indirect effect via increasing oil prices — turn
into bad news for the stock market. Alternatively, the negative effect might also work
via interest rates. When the economy is already close to full employment, good news on
the NAI should signal higher future interest rates and, hence, be bad news for the stock
market. During these strong boom phases the negative effect dominates and leads to a
negative long-run oil-stock correlation.

Since the evolution of the long-term correlation is purely driven by variables which rep-
resent U.S. aggregate demand, deviations of the short-term component from the long-run
trend must be related to other factors which either affect stock and/or oil returns. Typ-
ical oil related factors would be oil supply shocks or oil specific, i.e. precautionary, de-
mand. Specifically, the temporary deviation in 2003 may be due to precautionary demand
provoked by the second Iraq war (see Figure 5.1). Another example would be the posi-
tive correlation signaled by the short-term component as well as the realized correlations
around 1998/99. Following the Asian and Russian financial crises, this positive short-term
correlation can be explained by simultaneously falling oil and stock prices. Nevertheless,

the fact that these deviations occur only for relatively short periods suggests that the
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oil-stock correlation can be well explained by U.S. economic activity for most of the time.
This result is very much in line with Kilian (2009, p.1068) who reasons that “models of
endogenous oil prices should focus on the demand side of the oil market”.

A particulary interesting conclusion that can be drawn from the time-varying oil-stock
correlation is that regressions of stock returns on oil price changes are likely to be mis-
leading, since the result will depend on the state of the economy. This insight may explain
the controversial empirical findings on the oil-stock relationship and squares with the ar-
guments put forward in Kilian and Park (2009).

Next, we discuss the MIDAS lag structure and its implications more closely. Recall that
the higher wys the more weight will be given to the more recent observations of the macro
variable and, hence, the faster the weights will decline to zero. Table 5.4 reveals that
the lowest wyy is estimated for IP and the highest for NFP. Since the DCC-MIDAS-NAI
model produced the best fit for the correlations, we plot in Figure 5.5 the corresponding
weighting function. For comparison, we also plot the weighting functions for the GARCH-
MIDAS-NAI models for the stock and oil market. The figure shows that the weighting
function of the correlation model is nearly linear while the weighting functions of the
volatility specifications are rapidly declining. This in turn implies that changes in the
NAI have a much more persistent effect on the long-run correlation than on the long-run
volatilities. We obtain similar results for each of the other significant macroeconomic

variables.

Figure 5.5 about here

In the previous considerations we mainly focused on the DCC-MIDAS-NAI specification
to explain the dynamic behavior of the slowly-moving long-run correlation component.
However, Table 5.4 clearly reveals that the fit of the DCC-MIDAS-X specifications with
IP, NFP, UR, and LI are only slightly inferior. Figure 5.6 displays the estimated long-run
correlations from the corresponding specifications. The figure nicely illustrates that the
long-term components of all specifications follow the same pattern and, hence, further
support our argument that the long-term oil-stock correlation is counter cyclical. Note
that the exceptional deviation in the long-term correlation component predicted by IP for
October 2005 can be traced back to a significant contraction in industrial production one
month earlier which is not reflected to such a strong intend in the other macroeconomic

figures (compare Figure 5.2).

‘Figure 5.6 about here
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5.6 Robustness

In this section we present evidence on the robustness of our results by considering alter-
native measures of the stock market and extending our sample period. We first make
use of two alternative return series representing the stock market: the S&P 500 and the
DJIA index (both were obtained from the FRED database). Second, we extend the initial
sample to the period 1986-2011 and thus include the first Gulf War from 1990 to 1991.

5.6.1 S&P 500 and DJIA

Tables 5.5 and 5.6 refer to the specifications including the S&P 500 and the DJIA in-
dex, respectively. The coefficient estimates in both tables broadly confirm the results
presented in Table 5.4. Again, all variables on the current economic stance as well as the
future economic outlook significantly affect the long-term correlation between stock and
oil prices. As for the CRSP, the DCC-MIDAS-NATI specification achieves the best fit in

both cases.

‘Tables 5.5 and 5.6 about here‘

5.6.2 Extended sample

The parameter estimates for the extended sample are qualitatively identical to the ones
for the original sample and, hence, strongly confirm our previous interpretations.® Nev-
ertheless, the extended sample allows for some further insights into the behavior of the
long- and short-term correlation components. Both components are plotted in Figure 5.7
for the DCC-MIDAS-NAI model. While the behavior of the long-term correlation com-
ponent during the recession of 1990/91 exhibits the same pattern as described above, the
short-term correlation component sharply declines from 0.15 to —0.30 with the invasion of
Kuwait on August 2. In line with Kilian (2009), we view the evolution of the short-term
component as mainly triggered by precautionary demand. On January 18, the short-term
component realized an all-time minimum of —0.47 as a consequence of the 40% oil price
drop accompanied by a stock market recovery of more than 3%. This was caused by
the decision of the Bush administration to compensate for shortfalls in oil supply by re-
leasing the strategic crude oil reserves. Finally, at the beginning of 1993 the short-term

correlation reverts to the long-term component.

Figure 5.7 about here

6The estimates are not reported but are of course available upon request to the authors.



5.7. CONCLUSION 123

5.7 Conclusion

We investigate the effect of changes in the U.S. macroeconomic environment on the long-
term co-movements between crude oil and stock price returns. For this, we extend the two-
component DCC-MIDAS model of Colacito et al. (2011) by allowing the slowly-moving
long-term correlation component to be determined endogenously by the variation of key
macroeconomic figures. We show that changes in macroeconomic variables which reflect
the current stance of the economy as well as the future economic outlook can anticipate
counter cyclical fluctuations in the long-term correlation. More specifically, our model
predicts a negative correlation during prolonged periods of strong economic expansions,
while a positive correlation is observed during recessions and recoveries. The correlation
pattern suggests that during recessions (expansions with growth below or at trend), bad
(good) news on the macroeconomy are bad (good) news for the stock as well as for the
oil market. However, during periods with strong growth above trend, good news on the
macroeconomy are still good news for the oil market but become bad news for the stock
market. This is because both the further increasing oil prices as well as the expectation
of rising interest rates have a depressing effect on the stock market.

Our results provide further evidence for the argument put forward in Barsky and Kil-
ian (2004) and Kilian (2009) that oil price changes should not be considered exogenous
with respect to the U.S. economy. The counter cyclical behavior of the long-term oil-
stock correlation squares with the recent evidence in Harris et al. (2009) and Kilian and
Park (2009) that oil price developments have been synchronized with the business cycle.
Moreover, the finding that the sign of the oil-stock correlation varies with the state of
the economy, may explain the conflicting empirical evidence in previous studies on the
oil-stock relationship when simple regressions of stock returns on oil price changes are
employed.

Finally, we also assess the impact of macroeconomic developments on the long-term
volatilities of crude oil and stock price returns. Our results show that the long-term
volatilities in both markets are driven by the same macroeconomic factors. Hence, while
Kilian and Vega (2011) report that oil prices in contrast to asset prices do not respond
to U.S. macroeconomic news, at the least the second moments of oil price returns behave

very much like those of asset prices.
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Tables

Table 5.1: Descriptive Statistics (January 1993 - November 2011)

Variable Obs Min Max  Mean Std. Dev.* Skewness Kurtosis

Panel A (Daily return data)
Oil 4744 -17.09 16.41 0.0332 39.18 -0.19 7.73
CRSP 4744  -9.00 11.52 0.0365 19.41 -0.15 11.07

Panel B (Monthly macro data)
Current stance of the economy

1P 227  -4.23 2.15 0.17 0.69 -1.73 11.30
NFP 227 -820 508 98.21 234 -1.46 5.93
UR 227  -0.50 0.60 0.01 0.18 0.62 4.37
Future economic outlook

NAI 227  -4.46 1.55 -0.14 0.87 -1.92 8.71
LI 227  -3.82 2.84 1.17 1.20 -1.83 7.25
Inflation rates

PPI 227  -5.48 2.94 0.24 1.11 -1.30 8.97
CPI 227  -1.83 1.37 0.21 0.28 -1.79 16.56

Notes: *The standard deviations are annualized for the daily return series.




Table 5.2: GARCH-MIDAS parameter estimates: CRSP

Variable M1 a1 51 mi 91 w1 LLF LRT AIC

Current stance of the economy

1P 0.0678**  0.0843***  0.9056***  0.3873* —0.9893** 2. 7737 -6520.74  4.48 2.7487
(0.0119) (0.0123) (0.0137) (0.2339) (0.4961) (1.2659) [0.1065]

NFP 0.0680***  0.0873***  0.8998***  0.3714*  —0.0019*** 8.8520 -6518.19  9.58 2.7476
(0.0119) (0.0128) (0.0147) (0.2038) (0.0005) (5.6496) [0.0083]

UR 0.0688***  0.0863***  0.9010*** 0.1403 3.9929*** 5.5678* -6515.07 15.82 2.7463
(0.0117) (0.0121) (0.0138) (0.2015) (0.7600) (2.9746) [0.0004]

Future economic outlook

NAI 0.0682***  0.0864***  0.9010*** 0.1036 —0.6120*** 6.0568 -6517.63  10.7 2.7474
(0.0118) (0.0126) (0.0144) (0.2077) (0.1382) (4.1461) [0.0047]

LI 0.0681***  0.0867***  0.8999***  0.6557***  —0.4055*** 5.8714 -6515.83  14.3 2.7466
(0.0118) (0.0125) (0.0142) (0.2117) (0.0814) (4.5227) [0.0008]

Inflation rates

PPI 0.0666***  0.0823***  0.9098*** 0.2506 —0.0895 15.8835 -6522.44  1.08 2.7494
(0.0119) (0.0120) (0.0131) (0.2658) (0.1545) (27.6558) [0.5827]

CPI 0.0664***  0.0815***  0.9106*** 0.1806 0.1907 532.2708***  -6521.69  2.58 2.7491
(0.0119) (0.0117) (0.0127) (0.2566) (0.1486) (0.0188) [0.2753]

Benchmark model

GARCH(1,1) 0.0665***  0.0822***  0.9099***  0.0112*** - - -6522.98 - 2.7488
(0.0119) (0.0119) (0.0129) (0.2281)

Notes: The numbers in parentheses are Bollerslev-Wooldridge robust standard errors. ***, ** * indicate significance at the 1 %, 5 %, and 10 % level. LLF is the
value of the maximized likelihood function and AIC is the Akaike information criterion. The numbers in bold letters indicate the model with the smallest value
of the information criterion. LRT is the likelihood ratio test LR = 2[Lyr — Lr], where Ly g is the likelihood of the unrestricted GARCH-MIDAS-X specification
and Lg is the likelihood of the restricted benchmark model. The numbers in brackets are p-values.
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Table 5.3: GARCH-MIDAS parameter estimates: Oil market

Variable 142 o Ba mo ) w2 LLF LRT AIC

Current stance of the economy

1P 0.0486  0.0582***  0.9230***  1.8422***  —0.4641**  6.9842***  -10589.1 5.2 4.4620
(0.0331) (0.0157) (0.0221) (0.1389) (0.2353) (2.2342) [0.0743]

NFP 0.0475  0.0597*** 0.9225***  1.8526***  —0.0008**  16.5369*** -10589.2 5.0 4.4621
(0.0331) (0.0158) (0.0212) (0.1485) (0.0004) (6.1789) [0.0821]

UR 0.0497 0.0579***  0.9230***  1.7406***  1.6849*** 13.4396** -10586.3 10.8  4.4609
(0.0327) (0.0146) (0.0202) (0.1310) (0.6116) (6.1886) [0.0045]

Future economic outlook

NAI 0.0484 0.0571*** 0.9251*** 1.7239***  —0.2890**  15.1178** -10588 7.4 4.4616
(0.0331) (0.0156) (0.0215) (0.1378) (0.1148) (6.8522) [0.0247]

LI 0.0481 0.0573*** 0.9239***  2.0059***  —0.2084*** 18.8496*** -10586.5 10.4  4.4609
(0.0329) (0.0154) (0.0212) (0.1542) (0.0609) (7.0180) [0.0055]

Inflation rates

PPI 0.0461 0.0582*** 0.9264*** 1.8007*** —0.0881 16.0532*  -10591.1 1.2 4.4629
(0.0333) (0.0164) (0.0209) (0.1549) (0.1196) (9.3534) [0.5488]

CPI 0.0470  0.0599***  0.9248***  1.7799*** 0.0291 5.9839 -10591.7 0.0 4.4631
(0.0331) (0.0156) (0.0197) (0.2252) (0.7773) (14.9089) [1.0000]

Benchmark model

GARCH(1,1) 0.0470 0.0599***  0.9248***  1.7858*** - - -10591.7 - 4.4623
(0.0332) (0.0156) (0.0196) (0.1586)

Notes: See Notes of Table 5.2.

9¢1

SNOILLVTAHHOO MOOLS 110 WHHL-ONOT ¢ H4LdVHO



Table 5.4: DCC-MIDAS parameter estimates: CRSP and oil market

Variable a b mi2 912 w12 LLF LRT AIC

Current stance of the economy

1P 0.0189***  0.9713*** 0.2143*** —0.6888***  1.5996* -4665.09 13.1 1.9668
(0.0063) (0.0107) (0.0594) (0.1936) (0.8845) [0.0044]

NFP 0.0190**  0.9706**  0.1982*** —0.0010**  3.8517 -4664.52 14.24  1.9665
(0.0064) (0.0118) (0.0545) (0.0003) (3.3013) [0.0026]

UR 0.0204***  0.9636*** 0.0582 2.6018**  1.7203** -4663.00 17.28  1.9659
(0.0058) (0.0112) (0.0360) (0.6054) (0.7918) [0.0006]

Future economic outlook

NAI 0.0192**  (0.9659*** 0.0462 —0.3502***  2.0487** -4662.10 19.08 1.9655
(0.0057) (0.0108) (0.0368) (0.0771) (1.1143) [0.0003]

LI 0.0192***  0.9684***  0.3450*** —0.2142***  2.2960 -4663.71 15.86  1.9662
(0.0059) (0.0110) (0.0800) (0.0544) (1.6828) [0.0012]

Inflation rates

PPI 0.0190**  0.9774*** 0.1669 —0.1590 7.7937  -4671.24 0.8 1.9694
(0.0076) (0.0105) (0.1055) (0.1990) (10.2830) [0.8495]

CPI 0.0201**  0.9744**  0.4247* —1.5224 3.7484*  -4670.59 2.1 1.9691
(0.0074) (0.0113) (0.2352) (1.1307) (2.1652) [0.5519]

Benchmark models

DCC-RC 0.0225***  (0.9582*** 0.0324 0.8704*** 5.3086* -4668.95 5.38 1.9684
(0.0058) (0.0108) (0.0366) (0.3202) (2.7355) [0.1460]

DCC-RC restr 0.0228***  (0.9574*** - - 4.7764** -4669.56  8.98 1.9678
(0.0060) (0.0101) (2.3004) [0.0414]

DCC 0.0191**  0.9775*** - - - -4671.64 - 1.9683
(0.0035) (0.0046)

Notes: See Notes of Table 5.2. The LRT compares the unrestricted DCC-MIDAS-X models with the DCC-GARCH specification.
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Table 5.5: DCC-MIDAS parameter estimates: S&P 500 and oil market

Variable a b mio 912 w12 LLF LRT AIC

Current stance of the economy

IP 0.0212***  0.9680*** 0.1888*** —0.6734*** 1.6217* -4662.74 1296  1.9658
(0.0065) (0.0109) (0.0585) (0.1877) (0.8294) [0.0047]

NFP 0.0214***  0.9668*** 0.1737*** —0.0010***  4.0441 -4661.84 14.76  1.9654
(0.0065) (0.01162) (0.0528) (0.0002) (3.1617) [0.0020]

UR 0.0229***  0.9595*** 0.0354 2.5942***  1.7862** -4659.96 18.52  1.9646
(0.0060) (0.0114) (0.0354) (0.5858) (0.7948) [0.0003]

Future economic outlook

NAI 0.0215***  0.9619*** 0.0233 —0.3485***  2.1222*  -4659.20 20.04 1.9643
(0.0059) (0.0110) (0.0362) (0.0744) (1.0954) [0.0002]

LI 0.0215***  0.9648*** 0.3189*** —0.2114*** 24474  -4660.93 16.58  1.9650
(0.0061) (0.0111) (0.0769) (0.0516) (1.6603) [0.0009)

Inflation rates

PPI 0.0212**  0.9745*** 0.1416 —0.1549 7.3416  -4668.84  0.76 1.9683
(0.0079) (0.0111) (0.0962) (0.2013) (9.3929) [0.8590]

CPI 0.0227***  0.9701***  0.4476* —1.7569 3.2581  -4667.84  2.76 1.9679
(0.0074) (0.0114) (0.2585) (1.2303) (2.3148) [0.4301]

Benchmark models

DCC-RC 0.0251***  0.9543*** 0.2739 0.8521***  5.5409** -4666.33  5.78 1.9673
(0.0059) (0.0116) (0.0346) (0.3037) (2.6691) [0.1228)

DCC-RC restr 0.0254***  0.9534*** - - 4.8424**  -4666.92  4.60 1.9667
(0.0061) (0.0109) (2.2679) [0.0320]

DCC 0.0211***  0.9749*** - - - -4669.22 - 1.9672
(0.0074) (0.0102)

Notes: See Notes of Table 5.4.
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Table 5.6: DCC-MIDAS parameter estimates: DJIA and oil market

Variable a b mi2 912 w12 LLF LRT AIC

Current stance of the economy

1P 0.0248***  0.9628***  0.1692*** —0.6670***  1.3994**  -4642.36  12.7 1.9572
(0.0068) (0.0115) (0.0558) (0.1806) (0.5774) [0.0053]

NFP 0.0252**  0.9607***  0.1552***  —0.0010*** 3.0553 -4641.41  14.6 1.9568
(0.0065) (0.0116) (0.0515) (0.0003) (2.2618) [0.0022]

UR 0.0264***  0.9533*** 0.0153 2.6614***  1.5454*** -4638.81  19.8 1.9557
(0.0060) (0.0116) (0.0345) (0.5519) (0.5393) [0.0002]

Future economic outlook

NAI 0.0252***  0.9552*** 0.0034 —0.3542***  1.8093** -4638.19 21.04 1.9554
(0.0060) (0.0115) (0.0350) (0.0714) (0.7539) [0.0001]

LI 0.0252***  0.9591***  0.3020*** —0.2126™**  2.0039*  -4640.40 16.62  1.9564
(0.0063) (0.0114) (0.0741) (0.0503) (1.0740) [0.0008]

Inflation rates

PPI 0.0239**  0.9707*** 0.1216 —0.1418 6.4377 -4648.21  1.00 1.9597
(0.0087) (0.0127) (0.0868) (0.2063) (9.4750) [0.8013]

CPI 0.0267***  0.9630***  0.5362* —2.2800 2.3720 -4646.32  4.78 1.9589
(0.0072) (0.0117) (0.3168) (1.4860) (2.1948) [0.1886]

Benchmark models

DCC-RC 0.0288***  0.9460*** 0.0248 0.9111**  4.8276*** -4643.71 10.00 1.9578
(0.0059) (0.0123) (0.0321) (0.2532) (1.7707) [0.0186]

DCC-RC restr 0.0289***  0.9456*** _ - 4.5605***  -4644.13  9.16 1.9571
(0.0060) (0.0116) (1.6072) [0.0025]

DCC 0.0237**  0.9713*** - - - -4648.71 - 1.9586
(0.0081) (0.0115)

Notes: See Notes of Table 5.4.
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Figures

1994 1996 1998 2000 2002 2004 2006 2008 2010

Figure 5.1: The figure shows the DCC-MIDAS-NAT estimates of the short-term (dashed
line) and long-term (bold black line) oil-stock correlation. The circles correspond to one-
year rolling window realized correlations. Each series is shown at a monthly frequency.
Monthly realizations of the daily short-term and realized correlations are obtained by
computing monthly averages. Shaded areas represent NBER recession periods.
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Figure 5.2: The figure shows the development of the macroeconomic explanatory variables.
Shaded areas represent NBER recession periods.
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Figure 5.3: The figure shows the annualized long-term volatility components (standard
deviations) obtained from the GARCH-MIDAS-UR specification. The bold line refers

to the stock market, the dashed line to the oil market. Shaded areas represent NBER
recession periods.
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Figure 5.4: The bold black line (left scale) represents the DCC-MIDAS-NAI estimate of
the long-term oil-stock correlation. The dashed line (right scale) corresponds to the NAI.
Shaded areas represent NBER recession periods.
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Figure 5.5: The figure shows the estimated weighting functions for the long-term volatil-
ities based on the GARCH-MIDAS-NAI and for the long-term correlation based on the
DCC-MIDAS-NAI. While the bold black line refers to the long-term correlation, the light-
gray and the dark-gray dashed lines refer to the long-term volatilities of CRSP and of oil
price returns, respectively.

Figure 5.6: The

1994 1996 1998 2000 2002 2004 2006 2008 2010

figure shows the DCC-MIDAS-X estimates of the long-term oil-stock

correlations for all significant macroeconomic variables. Shaded areas represent NBER

recession periods.
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Figure 5.7: The figure shows the DCC-MIDAS-NAT estimates of the short-term (dashed
dark-gray line) and long-term (bold black line) correlation for the extended sample (1986
- 2011). Each series is shown at a daily frequency. The vertical dashed line indicates the
beginning of the shorter sample. Shaded areas represent NBER recession periods.



Chapter 6

Pricing the risk of oil

6.1 Introduction

In this paper, we empirically investigate the relationship between the U.S. stock market
and the oil price during the 10-year period from June 2001 to June 2011 in the framework
of Merton’s (1973) Intertemporal Capital Asset Pricing Model (ICAPM).

Even though there has been substantial empirical research on the impact of the oil price
on stock performance, previous studies usually employ rather ad hoc specifications to as-
sess industry-specific oil-stock relations. Using a market model augmented by oil returns,
Faff and Brailsford (1999) and Nandha and Faff (2008) analyze the impact of the oil price
on industry-specific stock returns for the Australian stock market and for global industry
indices, respectively. Both studies conclude that the oil and gas industry benefits from
increasing oil prices, while for other industries the opposite is the case. Recently, Narayan
and Sharma (2011) broadly confirm these results for individual U.S. stocks. Other studies
such as Sadorsky (2001) or Boyer and Filion (2007) estimate panel specifications to reveal
whether the oil price affects stock returns. Studies on the aggregate level are provided by
Jones and Kaul (1996) and Driesprong et al. (2008).

Besides the lack of theoretical motivation, Kilian and Park (2009) argue that the specifi-
cations used in the previous literature are generally inappropriate to capture the impact
of the oil price on the stock market. First, the authors hint at the problem of reverse
causality as oil and stock prices have been driven by the same forces since the 1970s.
Second, making use of the structural oil price decomposition introduced in Kilian (2009),
Kilian and Park (2009) reveal that the stock price reaction to an oil shock depends on
the specific type of the shock. Moreover, the authors argue that the relative importance
of the shocks could change over time. Finally, Conrad et al. (2012) show that the con-

ditional correlation between stock index and oil returns is closely linked to the business
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136 CHAPTER 6. PRICING THE RISK OF OIL

cycle and considerably fluctuates over time taking on positive as well as negative values
which confirms the argument of Kilian and Park (2009) that regressing stock returns on
oil price changes could induce spurious conclusions.

In line with Cifarelli and Paladino (2010, 2012), we suggest to take Merton’s (1973)
ICAPM as the theoretical basis for our empirical analysis as opposed to the ad hoc re-
gressions estimated in the previous studies. In equilibrium, the ICAPM predicts that
the representative risk-averse investor charges a market risk premium and a premium for
bearing the risk of adverse shifts in the investment opportunity set that negatively affect
the investor’s future wealth. While the market risk of an individual stock is measured
by the covariance between the returns on the stock and the market portfolio, the risk of
adverse shifts in the investment opportunity set is represented by the covariance between
the return on the stock and changes in state variables that are related to the investor’s
intertemporal consumption. Merton (1973) shows that the model implies a positive rela-
tionship between market risk and expected return. The sign on the relationship between
the expected return and the risk associated with changes in the state variables is deter-
mined by the sensitivity of the investor’s marginal utility of wealth with respect to the
state variables. Put differently, a state variable is priced in the ICAPM as far as the
investor’s marginal utility of wealth depends on the level of the state variable. In general,
the investor demands stocks that tend to pay off in periods of a high marginal utility of
wealth.

In this paper we aim at analyzing whether the price of oil can be considered a state
variable in the ICAPM. In particular, we are interested in whether the marginal utility
of wealth is positively or negatively related to the oil price. Based on the sign of the
sensitivity of the investor’s marginal utility of wealth with respect to the oil price we
can re-evaluate the findings of the previous literature. According to the structural oil
price decomposition of Kilian (2009) used in Kilian and Park (2009), the dominance of
aggregate demand shocks would imply that high oil prices are accompanied by strong
economic performance. Hence, the investor is well off when the oil price is high such that
the marginal utility of wealth and the oil price are inversely related. In contrast, the
dominance of supply-side shocks and/or precautionary demand shocks would imply that
periods of high oil prices are accompanied by weak stock market performance. In this
case the marginal utility of wealth would be high when the oil price is high.

Using an extension of the bivariate CCC-GARCH-in-mean specification of Scruggs (1998),
Cifarelli and Paladino (2010, 2012) reveal a positive relation between expected weekly
DJIA index returns and market risk, though, the estimated market risk coefficient is

considerably smaller than the reasonalbe estimates of Scruggs (1998) or Bali and En-



6.1. INTRODUCTION 137

gle (2010). Furthermore, the authors find that DJIA returns are positively affected by
the conditional covariation between stock and oil returns during the period 2000-2009.
Scruggs and Glabadanidis (2003), however, point out that models that impose a constant
correlation structure are inferior to models that allow the correlation to vary over time.
Given the strong fluctuations in the oil-stock correlations shown in Conrad et al. (2012),
we conjecture that this is of crucial importance for our study. Following Bali and En-
gle (2010) our identification strategy is a three-step estimation approach that allows to
include a large number of individual stocks. First, we estimate conditional variances of
and dynamic conditional correlations between excess returns on each available S&P 500
stock, the market portfolio, and changes in the state variables. Based on the estimated
variances and correlations we construct conditional covariances. For the last step, Bali
and Engle (2010) propose to estimate panel regressions of the individual stock returns on
the conditional covariances employing Zellner’s seemingly unrelated regression approach.
Given this empirical framework, we investigate the risk-return relation with a special
focus on whether the price of oil constitutes a priced state variable in the ICAPM. Fur-
thermore, we analyze the dynamic structure of the market and the oil risk premia across
the individual industries contained in the S&P 500 index.

The main findings of the paper can be summarized as follows. Our empirical results
clearly confirm the existence of a positive relationship between market risk and expected
return which advocates the findings of previous studies such as Scruggs (1998), Guo and
Withelaw (2006), or Bali and Engle (2010) among many others. We find that investors
require significantly positive risk premia for holding stocks that positively covary with
the market, and hence, tend to pay off when market performance is strong. Our model
predicts statistically significant and economically reasonable market risk premia across in-
dividual industries. While the evolution of the industry-specific premia is pretty similar,
their magnitude differs strongly. Highest expected risk premia are observed for financials
and energy stocks. Investors require relatively low premia for consumer staples, health
care, and utility stocks which implies that these stocks are used to hedge against the
market. For each industry the model predicts exploding required risk premia after the
bankruptcy filing of Lehman Brothers in September 2008 where again financials and en-
ergy stocks exhibit the highest premia. Interestingly, we find that the risk premia for such
stocks are still considerably higher after the crisis compared to the pre-crisis levels.

The inclusion of the conditional covariance between stock and oil returns in the baseline
specification reveals that the relative risk aversion coefficient estimated in the baseline
specification is too large which generates too high required industry-specific market risk

premia. Nevertheless, controlling for intertemporal hedging demand induced by the con-
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ditional covariation with changes in the oil price confirms the existence of a positive
risk-return relationship. Most importantly, our results show that the price of oil can be
considered a priced state variable in the ICAPM. In particular, we find that the investor’s
marginal utility of wealth is inversely related to the oil price. In periods of high oil prices,
the investor values an additional unit of wealth less than in periods of low oil prices since
the investor is already financially better off. This result is consistent with the argument
in Barsky and Kilian (2004) and Kilian and Park (2009) that the oil price is predomi-
nantly driven by aggregate demand shocks, and hence, by the same forces as economic
activity and stock prices. The finding contradicts the view that within our sample period
supply-side shocks have been responsible for the oil price development.

The finding that the investor’s marginal utility of wealth is negatively related to the oil
price implies that decreasing oil prices reflect an adverse shift in the investment oppor-
tunity set. To hedge against this shift the investor increases his demand for stocks that
are negatively correlated with the oil price since these stocks tend to pay off when the
oil price is low. Hence, the investor accepts negative risk premia for such stocks, while
he charges positive risk premia for stocks that have high association with the oil price
and tend to pay off when the oil price is high. We show that even the sign of the cor-
relation between oil returns and most industry-specific stock returns changes over time
such that the usage of models that are not able to capture dynamic correlations (as in
Scruggs (1998) and Cifarelli and Paladino (2010, 2012)) are inappropriate to model the
dynamic risk premia. Taking the dynamic correlations into account reveals significant dif-
ferences in the estimated risk premia across the industries. During the expansion period
between the recessions 2000/2001 and 2007-2009 investors require positive oil risk premia
for stocks of the industries energy, materials, and utilities since the returns on these stocks
positively covary with the oil price. For stocks of the remaining industries the investor
accepts lower expected returns due to increased hedging demand. The picture changes
dramatically in the aftermath of the bankruptcy filing of Lehman Brothers in September
2008. Our model predicts extreme upswings in the required oil risk premia for stocks of
each industry that can be traced back to simultaneously collapsing stock and oil prices
leading to high positive oil-stock correlations in combination with high conditional stock
and oil price volatilities. The extreme risk premia reflect that none of the stocks serves as
a hedging vehicle against decreasing oil prices anymore due to the high positive covaria-
tion, and that investors massively reduce their demand for risky stocks because of extreme
uncertainty. Towards the end of the recession 2007-2009 and during the expansion period
after this recession the estimated oil risk premia steadily decrease. However, for none of

the industries the pre-crisis level is reached until the end of our sample period.
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Motivated by the findings in the empirical asset pricing literature and the literature on the
oil-stock relation, we include additional factors in our model to evaluate the robustness
of the relation between risk and expected return. In particular, we control for the impact
of the Fama-French factors, macroeconomic risk factors as well as lagged oil and market
returns. Finally, we control for additional risk premia induced by the conditional covari-
ation with financial and macro factors. The empirical results imply that our findings on
the risk-return relation are robust with respect to all additional factors.

We organize the remainder of the paper as follows. In Section 6.2, we briefly summarize
the theoretical model and set up the econometric framework for our empirical analysis.
Section 6.3 describes the data. Section 6.4 presents the estimation results and provides

an interpretation of our findings. Finally, Section 6.5 concludes.

6.2 Methodology

6.2.1 Theoretical model

The theoretical framework for our empirical specification is given by the Intertemporal
CAPM of Merton (1973). In this section we briefly summarize the ICAPM and discuss

the role of the oil price in the model.

The Intertemporal CAPM

In the ICAPM the representative investor’s indirect utility U(W;, Sy, t) of period ¢ depends
on his wealth W, and k state variables Si4,...,S;; which are related to the investor’s
investment opportunity set. The state variables are collected in the vector S;. In accor-
dance with Scruggs (1998), for k = 1 the equilibrium relation between risk and return for

asset ¢ is given by

—UwwW
Uw

—U, L
B i) = | = | Cov itk Fia] + | % | Cov I ASs Il (6)

w
where E[r;¢|F;—1] is the expected excess return on asset ¢ given the information set
Fi—1, Cov [ris, rime|Fi1] is the expected conditional covariance between the excess re-
turn on asset ¢ and the market portfolio, and Cov [r;+, ASy 4| Fi—1] is the expected con-
ditional covariance of the excess return on asset ¢ with the changes in the state variable.
Consequently, in equilibrium the investor is compensated for the market risk given by
Cov 1+, rm | Fi—1] and for the risk of adverse changes in the investment opportunity set

represented by Cov [r; 4, ASy +|Fi_1].
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Uw, Uww, and Uy, denote the first and the second partial derivatives of the utility
function with respect to wealth W and the state variable S;. In particular, Uy, mea-
sures the investor’s marginal utility of wealth. The risk aversion assumption implies that
Uy > 0 and Uy < 0. Hence, the expression \g = [—Uww W/Uw|, which represents
the investor’s relative risk-aversion, is greater than zero such that the ICAPM predicts a
positive risk-return relation. The elasticity of the marginal utility of wealth with respect
to the state variable, Uy g,, can either be positive or negative. This implies that the
ratio A\; = [~Uws, /Uw] can be positive or negative. If an increase in the state variable
affects the optimal consumption negatively, this increase leads to an unfavorable shift in
the investment opportunity set.! In periods accompanied by high realizations of the state
variable the marginal utility of wealth is high. An additional unit of wealth increases
the investor’s utility relatively strong because in such periods the investor is financially
less well off. This in turn implies Uy g, > 0. In periods of small realizations of the state
variable the marginal utility of wealth is low, since the investor is financially already bet-
ter off. In contrast, if an increase in the state variable affects the optimal consumption
positively then the marginal utility of wealth is high (low) when the state variable takes
on small (high) values.

To smooth intertemporal consumption the investor wants to hedge against unfavorable
shifts in the investment opportunity set. In general, the investor demands assets that tend
to pay off when the marginal utility of wealth is high. If increases in the state variable
negatively affect the optimal consumption then the investor demands assets that have
high positive covariance with the state variable since these assets tend to pay off when
the marginal utility of wealth is high. This in turn implies that the investor sacrifices some
expected return for holding assets that have higher association with the state variable. If
the optimal consumption is positively affected by increases in the state variable then the
investor requires higher expected returns for assets that have higher covariance with the

state variable since such assets pay off when the marginal utility of wealth is low.

The role of oil in the ICAPM

In general, we aim at investigating whether the oil price can be considered a state variable
that affects the investor’s optimal consumption which implies that the investor’s marginal
utility of wealth depends on the level of the oil price such that Uy s, # 0. Even if the
marginal utility of wealth indeed depends on the oil price, it is unclear ex ante whether

it is positively or negatively related to the oil price. If Uygs, < 0 (Uws, > 0), then the

L An unfavorable shift in the investment opportunity set implies that the risk-return trade-offs of each
attainable portfolio changes adversely.
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investor is financially well off (less well off) when the oil price is high. While a priori the
sign of Uy g, is not determined, there are two competing views that can be derived from
the empirical literature.

Numerous studies focus on the impact of oil price shocks on the U.S. economy and stock
market. Hamilton (1983, 1985, 2003) conjectures that exogenous oil supply shocks were
responsible for economic contractions during the 1970s. In his seminal paper, Kilian
(2009) introduces a structural VAR model that facilitates the decomposition of the global
oil price into three components. In particular, Kilian (2009) makes a distinction between
shocks related to the global supply of crude oil, shocks related to the global demand for
industrial goods and shocks related to precautionary demand. In contrast to Hamilton
(1983, 1985, 2003), Kilian (2009) argues that even during the 1970s economic contractions
were caused by precautionary demand rather than supply shocks, while thereafter the oil
price has predominantly been driven by global demand. For the period starting in the
mid-1990s, Harris et al. (2009) confirm the finding of Kilian (2009), which is further
supported by Hamilton (2008) for the 2000s. Given the methodological framework of
Kilian (2009), Kilian and Park (2009) show that the stock market response to oil price
shocks strongly depends on the type of the underlying shock. While increasing oil prices
caused by precautionary demand induce stock price depreciations, demand-side-related
shocks lead to increasing stock prices.? Consequently, the elasticity of the investor’s
marginal utility of wealth with respect to the oil price depends on the type of the shocks
that predominantly drive the oil price. In case of the dominance of demand-side-related
shocks, the optimal consumption is positively linked to the oil price, which implies that
Uws, < 0 and A\; > 0. The investor is well off in periods of high oil prices such that
an additional unit of wealth generates a relatively small utility increment. Decreasing oil
prices would imply an adverse shift in the investment opportunity set. To hedge against
such shifts, the investor increases his demand for stocks that tend to pay off when the
oil price is low. In equilibrium, negative oil risk premia should be observed for stocks
that negatively covary with the oil price. In contrast to such stocks, the investor requires
positive oil risk premia for stocks that have high association with the oil price, since they
tend to pay off in periods the investor is already well off. On the other hand, the dominance
of precautionary demand shocks and/or supply shocks would imply an inverse relation of
the optimal consumption and the oil price. High oil prices would be accompanied by weak
stock market performance such that increasing oil prices would imply an unfavorable shift

in the investment opportunity set. In particular, the investor would be well off in periods

2In particular, Kilian and Park (2009) find that shocks in the aggregate demand induce decreasing
stock prices in the short-run, while in the long-run the effect turns positive.
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of low oil prices such that Uyg, > 0 and A\; < 0.

Given the empirical evidence that the oil price has mainly been determined by aggregate
demand-side-related shocks as argued in Kilian (2009) and Kilian and Park (2009), we
conjecture that the investor’s marginal utility of wealth is decreasing in the oil price such
that A; > 0.

6.2.2 Empirical specification

Following Bali and Engle (2010), we implement a three-step estimation strategy that
allows to precisely capture the development of the time-varying variances and dynamic
correlations based on the DCC-GARCH model of Engle (2002) and the cross-sectional
variation among stock returns in the framework of Zellner’s seemingly unrelated regres-
sion approach.

Let r,,¢ be the excess return on the market portfolio, r, = (714, . .. ,Tm)/ the n-dimensional
vector of stock excess returns, and S; = (Sig,. ~>Sk,t), the k-dimensional vector of
state variables. We define y; = (v}, 7. S;)" with E[y:|Fi—1] = p,, where Fy =
0(yi-1,¥¢—2,...) is the filtration generated by the information available through time
t —1. Given F;_1, the residual vector €; = y; — p, is assumed to be normally distributed
with Var = [g;|F;_1] = H;, where H; can be decomposed into H; = D;R;D;. R; is the
correlation matrix of €;, while D, contains the standard deviations h%z of the individual
residuals ¢;, on the main diagonal. All off-diagonal elements of D; equal zero. Finally,
the vector of standardized residuals is given by z; = D; 'e,. We implement the following
three-step estimation strategy as suggested in Bali and Engle (2010).

In the first step, for each component of y; we individually model the conditional mean
and the conditional variance as a univariate AR(1)-GARCH(1,1) process. The conditional

mean is given by
Yir = Ki +0iYis—1+ Eiyy (6.2)

where k; is the intercept and 6; the autoregressive parameter. The equation of the condi-

tional variance is given by
hi,t = W; + O[z‘g?,tfl + ﬁz‘hm_l, (63)

where w;, «;, and [3; are constants with w;, ; > 0, 3; > 0, and «; + 5; < 1. The models
are estimated using the quasi-maximum-likelihood method of Bollerslev and Wooldridge

(1992). For each element of y; we construct the conditional variances h;; and the stan-
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. . 1/2
dardized residuals z;; = €;+/h;’; -

In the second step, we estimate the elements of the conditional correlation matrix Ry
based on the first-step standardized residuals. Following Bali and Engle (2010), we es-
timate bivariate specifications which yield the correlation dynamics between each stock
and the market portfolio, the oil price, and the state variables. As in Engle (2002), R; is
decomposed as R, = diag{Q,}~'/?Q,diag{Q,} /2, where

Q= (1—-a—bRgy+azi 1z, ; + bQu_1, (6.4)

witha >0,0>0,anda+b<1. Ry=T"" Zthl z:Z, is the empirical covariance matrix
of z;. The DCC-parameters a and b are allowed to take on different values in each of the
bivariate specifications. Given this estimation strategy, Bali and Engle (2010) point out
that the resulting correlation matrix for the full system is not enforced to be positive def-
inite, however, each correlation is bounded to the interval [—1, 1]. Based on the results of
the first and the second step we compute the conditional covariance between the returns
on stock ¢ and the market portfolio, A;,, ., and the conditional covariance between the
return on stock ¢ and changes in the state variable S;¢, h;ag; ¢

In the third estimation step, we use the estimated conditional covariances to explain vari-
ations in stock excess returns. Following Bali and Engle (2010), the empirical formulation

of Equation (6.1) with a single state variable S;; can be written as
Tig = Ci+ N Nime + A1 - hyas, e + Uiy, (6.5)

where 7;; is the excess return on stock 7 at day ¢t and h;,,+ is the time-t conditional
covariance between the return on stock ¢ and the return on the market portfolio obtained
from the second-step estimation. h; ag, ¢ is the conditional covariance between the return
on stock 7 and the change in state variable S;. ¢; are constant intercepts that are allowed
to vary across each stock. In Equation (6.5), expected returns are replaced by ex-post
returns, while expected covariances are replaced by covariances estimated on the basis
of the information available through time ¢ — 1. According to Equation (6.1), the stock-
specific intercepts equal zero, while )¢ is given by [—UwwW/Uw| and represents the
investor’s relative risk aversion coefficient. As implied by theory, we restrict Ay to be
identical across all stocks included in the panel. Similarly, Equation (6.1) requires that
A1 = [-Uws, /Uw] is identical across all stocks. Following Bali and Engle (2010) the
panel is estimated using Zellner’s seemingly unrelated regression approach that yields
estimated standard errors which are robust to heteroskedasticity, autocorrelation, and

contemporaneous correlation in the residuals.
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6.3 Data

Our sample covers the 10-year period from June 15, 2001 to June 14, 2011, yielding a
total of 2502 observations at the daily frequency.

6.3.1 Stock and oil data

While Bali and Engle (2010) predominantly focus their analysis on DJIA 30 companies,
we extend the number of companies contained in our analysis considerably. Based on
the composition of the S&P 500 index of June 14, 2011, we include all companies for
which data are available for the whole sample period, yielding a total of 417 companies.
According to the Global Industry Classification Standard (GICS) the companies belong
to the 10 industries: energy, materials, industrials, consumer discretionary, consumer
staples, health care, financials, information technology, telecommunication services, and
utilities. All company data are taken from DataStream. Table 6.1 lists the industries
and the number of companies that belong to the respective industries. Given the large
number of companies, we do not report descriptive statistics due to space considerations.
We compute continuously compounded stock returns and subtract the risk free rate given
by the one-month Treasury bill rate transformed to daily frequency as obtained from the

data library of Kenneth R. French to construct excess returns.

‘Insert Table 6.1 about here‘

For the market portfolio we use the CRSP value-weighted NYSE/AMEX/NASDAQ index
which is considered the best proxy for the “market” in the previous literature. Returns
are obtained from the data library of Kenneth R. French. Following Kilian and Vega
(2011) and Conrad et al. (2012) the West Texas Intermediate (WTI) crude oil spot price
is used to construct continuously compounded oil returns. The data are taken from the
FRED database at the Federal Reserve Bank of St. Louis.

6.3.2 Macroeconomic risk and financial factors

Given the daily frequency in our empirical analysis we have to restrict macroeconomic
factors to variables available at that frequency. Following Bali and Engle (2010), we
opt for the default spread computed as the difference between the BAA-rated and AAA-
rated corporate bond yields. In addition, we include the term spread computed as the
difference between the yields on the 10-year Treasury bond and the 3-month Treasury

bill. All macroeconomic variables are taken from the FRED database.
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Besides macroeconomic risk factors, we include the Fama-French size (SMB) and book-to-
market (HML) factors. While the SMB factor is computed as the difference between the
average return on three small portfolios and the average return on three big portfolios, the
HML factor is given by the difference between the average return on two value portfolios
and the average return on two growth portfolios (see also Fama and French (1992, 1993)).

The financial factors are obtained from the data library of Kenneth R. French.

6.4 Empirical results

In this section we summarize the empirical results. First, we present the industry-
specific results without accounting for intertemporal hedging demand. Second, we analyze
whether investors require a risk premium for the conditional covariation with the oil price.
Further, we check whether the results are robust with respect to additionally controlling
for macroeconomic risk factors, financial factors, and lagged returns. Finally, we analyze
whether conditional covariation with financial and macro factors induce additional risk
premia and whether the inclusion of these factors affects the results on the risk-return

relation.

6.4.1 Baseline specification

In the reference specification, stock returns are exclusively explained by the conditional
covariance between stock and market returns. That is, we do not control for any other
factor nor do we account for intertemporal hedging demand. We estimate conditional
covariances by Equations (6.2)-(6.4). Each stock that violates the conditions a; > 0,
B; > 0, and o; + f; < 1 in the GARCH(1,1)-specification is removed from the sample.
The numbers of stocks of the corresponding industries included in the regression are
summarized in Table 6.1. For each pair of variables that does not satisfy the conditions a >
0,b >0, and a4+ b < 1 in the DCC-specification, we estimate the conditional correlation
making use of the CCC-GARCH model of Bollerslev (1990). The panel regression of the

third estimation step is given by
Tit = Ci+ Ao it + Uiy, (6.6)

where h; ., is the conditional covariance between the excess returns on stock ¢ and the

market portfolio. The estimation results are summarized in Table 6.2 under Model 1.

‘Insert Table 6.2 about here‘
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The table shows that the estimated relative risk aversion coefficient equals 2.388 and
is significant at the 1% level. The Wald-statistic referring to the null hypothesis that
all intercepts are zero cannot be rejected at any reasonable level of significance which
in combination with the positive estimate of \g implies the validity of Merton’s (1973)
ICAPM for our sample period. The result confirms a positive relation between expected
returns and market risk. The investor charges a positive risk premium for stocks that have
higher association with the market. He is willing to sacrifice some expected return for
holding stocks which are negatively correlated with the market and tend to pay off when
the market performance is weak. The estimate of the relative risk aversion coefficient is
economically reasonable and confirms the previous findings for earlier periods as reported
in Scruggs (1998), Guo and Whitelaw (2006), and Bali and Engle (2010) among many
others.

To assess the economic significance of our estimation results we compute the expected
dynamic market risk premium. Implied by Equations (6.1) and (6.6), this premium is
given by the product of the relative risk aversion coefficient Ay and the time-varying
covariance between the returns on the stocks and on the market, h; ., ;. Figure 6.1 presents
the expected daily annualized market risk premia for each industry computed as the daily

average of the estimated risk premia over all stocks that belong to the respective industry.?

Insert Figure 6.1 about here‘

First, the graphs reveal that the expected risk premia across the different industries evolve
very similarly. During the recession 2000/2001 (first shaded area) the risk premia realize
a first peak in each of the non-energy industries. It is not surprising that the highest
expected premium is observed for the information technology industry as this recession
is closely linked to the collapse of the dot-com bubble. After significantly decreasing
required market risk premia during the economic recovery of 2002, the stock market
correction of July 2002 has led to higher expected risk premia, whereas the period 2003-
2007 is characterized by extremely low expected risk premia in each industry. With the
beginning of the recession 2007-2009 (second shaded area) we only observe a modest
upswing in the premia. According to the logic of the ICAPM, the sharp price declines
across all industries on September 15, 2008 induced by the bankruptcy filing of Lehman
Brothers can be rationalized by exploding market risk premia. This in turn reflects the
investor’s reluctance to hold risky assets during this period of high uncertainty at all. The
highest required premia are observed for financial and energy companies. Towards the end

of the recession 2007-2009 the expected risk premia strongly decrease. However, even for

3The annualized risk premia are obtained by multiplying the product of the risk aversion coefficient
and the conditional covariance by 252.
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the phase of economic recovery after the recession the graphs reveal higher required risk
premia compared to the period 2003-2007. Second, despite the similar evolution of the
expected premia, the graphs reveal significant differences in the magnitude of the premia
across individual industries. Table 6.3 shows the average and the standard deviation of

the expected industry-specific risk premia for the periods identified above.

‘Insert Table 6.3 about here‘

In the period between the two recessions (referred to as Expansion period I in the table)
investors require the highest risk premium for holding stocks of the industries informa-
tion technology (8.69%), materials (6.55%), and consumer discretionary (6.31%) implying
that during the rather calm period these stocks exhibit the highest association with the
market. Lower risk is observed for stocks of the industries consumer staples (3.65%), util-
ities (4.21%), and health care (4.85%). For the recession period 2007-2009 the increase
in the premia predicted by the model is most pronounced in the industries financials and
energy. Interestingly, in the period after the recession the expected risk premia for con-
sumer staples (4.33%), utilities (4.52%), and health care (5.32%) have almost reached the
pre-recession levels, while the required premia for financial and energy stocks still are con-
siderably higher than before the recession. In conclusion, investors expect that consumer
staples, utility, and health care stocks tend to (also) pay off when market performance is

weak and such serve as a hedge against the market.

6.4.2 Oil price risk premium

We now extend the baseline specification by the conditional covariation between stock
and oil returns. Again, the conditional covariances are estimated in the first two steps
described by Equations (6.2)-(6.4). The third-step panel of Equation (6.5) is given by

Tit = Ci+ Ao Nims + A1+ Riop + Uiy, (6.7)

where )\ is the common slope coefficient on the conditional covariance between stock and
oil returns, h;,;. The estimation results are summarized in Table 6.2 under Model 2.
The estimated coefficient Ay equals 1.932 and is significant at the 1% level. This result
confirms the finding of a positive relation between expected return and market risk found
in the previous section. However, including the conditional covariance between oil and
stock returns as an additional explanatory variable reveals that the specification without
intertemporal hedging demand suffers from omitted variable bias. The relative risk aver-

sion coefficient is considerably overestimated which in turn generates too high expected
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market risk premia. Nevertheless, in line with our previous results the Wald-statistic
implies that the null hypothesis that all intercepts equal zero cannot be rejected, which
leads to the conclusion that the ICAPM holds given the positive estimate of the relative
market risk aversion coefficient.

The estimate of A\; is 1.398 and significant at the 1% level such that the oil price can be
considered a priced state variable in the ICAPM of Merton (1973) which is consistent with
the results in Cifarelli and Paladino (2010, 2012). According to Equation (6.1), Ay > 0
implies that the marginal utility of wealth and the oil price are inversely related, that is,
Uws, < 0. In periods of high oil prices the investor values an additional unit of wealth
lesser than in periods of low oil prices which reflects that high oil prices are realized in
periods in which the investor is financially well off, while he is less well off during periods
of low oil prices. Put differently, the oil price is positively related to optimal consump-
tion opportunities which indicates that decreasing oil prices reflect an adverse shift in the
investment opportunity set. To hedge against such adverse shifts the investor expands
his demand for stocks that tend to pay off when the oil price is low. In general, stocks
that are negatively correlated with the oil price tend to pay off in such periods. Hence,
the investor sacrifices some expected return for holding such stocks. On the other hand,
stocks that have high association with the oil price tend to pay off when the oil price is
high and the marginal utility of wealth is low such that the investor requires a positive
risk premium for holding stocks that positively covary with the oil price. In equilibrium,
such stocks generate higher expected returns.

The estimated elasticity of the marginal utility of wealth with respect to the oil price,
Uws, < 0, can be interpreted as further evidence in favor of Barsky and Kilian (2004)
and Kilian and Park (2009). The authors argue that the oil price is mainly driven by
aggregate international demand, and hence, by the same forces as stock prices. Accord-
ing to this argument periods of high (low) oil prices are related to strong (weak) stock
market performance reflecting low (high) marginal utility of wealth which in turn implies
A1 > 0. In contrast, Uygs, < 0 clearly contradicts the view that positive oil price shocks
and /or precautionary demand shocks have predominantly been the drivers of the oil price
within our sample period. In this case, high oil prices should be accompanied by weak
stock market performance which would imply that with increasing oil prices the investor
expands his demand for stocks that positively covary with the oil price.

We now turn to the estimated industry-specific oil risk premia. To provide a first im-
pression of the evolution of the conditional correlation between oil price changes and

industry-specific returns we refer to Figure 6.2.

Insert Figure 6.2 about here
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The figure shows the dynamic conditional correlations between oil and stock returns av-
eraged over all stocks that belong to the respective industries. The graphs reveal extreme
variability in the dynamic correlations in each industry. In the energy industry the cor-
relation is positive throughout the whole sample, while in the industries materials and
utilities positive correlations are observed for the majority of the sample period. In strong
contrast, for the remaining seven industries we observe prolonged periods of positive and
negative correlations which is in line with the finding on the dynamic correlation between
returns on the CRSP portfolio and oil returns as reported by Conrad et al. (2012). Conse-
quently, restricting the dynamic correlations to a constant as suggested in Scruggs (1998)
or Cifarelli and Paladino (2010, 2012) could generate covariances that exhibit the wrong
sign during certain periods, and hence, induce misleading estimates of the risk premia.
In particular, each specification with constant conditional correlation is able to produce
either negative or positive risk premia depending on the unconditional correlation be-
tween the corresponding series. The heavily fluctuating dynamic correlations shown in
Figure 6.2 clearly advocate the usage of models that explicitly capture the dynamic struc-
ture in the correlations. Figure 6.3 presents the daily annualized oil risk premia for each
industry computed as the daily average of the estimated risk premia over all stocks that

belong to the respective industry.

Insert Figure 6.3 about here

The graphs clearly exhibit considerable differences in the estimated oil risk premia across
the individual industries. Implied by negative dynamic correlations in the non-energy
industries in combination with A; > 0, the estimated oil risk premia in the expansion
period between the recessions of 2000/2001 and 2007-2009 is negative for the majority of
these industries which reflects the hedging demand for such stocks. This in turn shows
that investors sacrifice some expected return for holding stocks that tend to pay off in
periods of low oil prices and high marginal utility of wealth. On the other hand, positive
correlation especially in the energy industry, but also in the industries materials and
utilities, reduces the hedging demand for such stocks which leads to positive required oil
risk premia that generate higher expected returns. This mechanism explains the more
pronounced negative risk premia in the non-energy industries during the first half of the
recession 2007-2009. After a first increase in the recession period the oil price starts to
decline considerably. The investor wants to hedge against such an unfavorable shift and
increases his hedging demand for stocks that exhibit negative correlation with the oil price
which induces the downswing in the estimated oil risk premia before the bankruptcy filing
of Lehman Brothers in September 2008. However, in the aftermath of the bankruptcy

filing the picture changes dramatically. The price of all stocks as well as the oil price
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begin to decrease massively, which induces the conditional oil-stock correlations across
all industries to turn positive. In particular, this implies that stocks which the investor
has used to hedge against adverse shifts in the investment opportunity set now exhibit
high association with the oil price such that the stocks do not serve as a hedging vehicle
anymore. As a consequence the ICAPM implies that the investor requires high positive
risk premia to hold any risky asset. This effect is even magnified by extremely high
conditional variances reflecting the uncertainty in the oil and the stock market during
this period. Towards the end of the recession 2007-2009 we observe strong downswings
in the required oil risk premia across all industries which can mainly be traced back to
the considerable contraction in the conditional volatilities. During the economic recovery
in the second half of 2009 the correlations between oil and industry-specific stock returns
remain high due to simultaneously raising oil and stock prices. Hence, even during this
period of economic expansion the investor requires positive risk premia for non-energy
stocks.

Finally, we provide summary statistics of the industry-specific oil risk premia for the

periods defined above. The corresponding results are reported in Table 6.4.

‘Insert Table 6.4 about here‘

As in Table 6.3, Panel A shows the respective market risk premia across the individual
industries based on the estimates of Equation (6.7). The magnitude of these premia
is about 81% of those obtained in the previous section which has to be traced back to
the biased estimate of Ay because of the omission of h;,,; in the baseline specification.
However, the interpretation of the previous section is still valid and our model produces
economically reasonable and statistically significant market risk premia. Panel B sum-
marizes the expected industry-specific oil risk premia. We identify the highest required
risk premia for oil companies for each sample, while for the full sample we observe pos-
itive oil risk premia for each industry caused by the high positive correlation during the
recession 2007-2009. Most importantly, the table shows that for the industries indus-
trials, consumer staples, consumer discretionary, health care, financials, and information
technology the negative average of the estimated risk premia during the first expansion
period supports our previous arguments. Note that the significant downswings in the oil
risk premia of non-energy stocks in the early phase of the recession 2007-2009 are not
accounted for in the numbers referring to Expansion period I. Extending this period until
the bankruptcy filing of Lehman Brothers, however, results in more pronounced negative
oil risk premia for all industries apart from energy, materials, and utilities. Finally, a
direct comparison of the market and oil risk premia across the industries shows that the

investor requires similar oil and market risk premia for energy stocks, while for non-energy
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stocks the market risk premia considerably exceed the oil risk premia. Again, this finding
has to be traced back to the high correlation between oil and energy stock returns. In
conclusion, not only the industry-specific market risk premia but also the oil risk premia

is economically reasonable.

6.4.3 Robustness

In this section we control for factors that the previous literature has identified to affect

company stock returns.

Financial factors

In our first robustness check, we extend Equation (6.7) by the size (SMB) and the
book-to-market factor (HM L) introduced by Fama and French (1992, 1993). Based on
the conditional covariances obtained from the first two steps, we estimate the following

system of equations
Ti,t =C; + )\0 . hi,m,t + )\1 . hi,o,t + )\2 . SMBt_l + /\3 . HMLt_l + ui,t- (68)

The estimation results are summarized in Table 6.2 under Model 3. The table shows
that both factors negatively enter the specification significant at the 5% level. Most
importantly, Table 6.2 shows that the coefficient estimates of A\g and \; are robust with
respect to the inclusion of the Fama-French factors which confirms our findings on the
relation between market and oil risk and expected returns. Moreover, the outcome of the

Wald-statistic is in favor of the null hypothesis that all intercepts equal zero.

Macroeconomic risk factors

Following Engle and Bali (2010) we directly include unexpected news in macroeconomic
risk factors into Equation (6.7). The panel regression of the third estimation step is given

by
Tit =Ci + Xo - Nigmt + A - hior + Ao - ADEF, 1 + X3 - ATERM,; 1 + u;4, (6.9)

where ADEF and ATERM denote the change in the default spread and the change in
the term spread, respectively. Model 4 reported in Table 6.2 shows the estimation results.
Interestingly, neither unexpected news in the term spread nor unexpected news in the
default spread affect the stock returns. As in the previous robustness check the estimates

and significance levels of A\¢ and A, are consistent with those obtained from Equation (6.7).
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The Wald-statistic implies that the null hypothesis that all intercepts equal zero cannot

be rejected at any level of significance.

Lagged market and oil returns

Recently, Narayan and Sharma (2011) find that stock returns of specific industries are
negatively affected by lagged oil price changes in the post-2000 period. To control for this
effect in the ICAPM framework, we directly include lagged oil returns into Equation (6.7).
In addition, we also include lagged market returns. For both variables the slope coefficient
is restricted to be identical across all stocks that belong to the same industry. The

estimated panel model is given by
Tit = Ci+ Ao Nime + A - Rior + Aoy Tt + A3j - Tor—1 + Uiy, (6.10)

where Ay ; and A3 ; are the industry-specific slope coefficients on the lagged market and
oil returns, respectively. The results are presented in Table 6.2 under Model 5. The
table shows that the lagged market return negatively affects current stock returns across
all industries highly significant. We reveal a negative impact of lagged oil returns on
expected stock returns of the industries industrials, consumer discretionary, consumer
staples, and health care, which is broadly in line with Narayan and Sharma (2011). The
table confirms the magnitude of the estimated coefficients A and A;. Both coefficients

are significant at the 1% level.

Hedging demand induced by financial factors

In the first two robustness checks we have investigated whether the estimates on \g and/or
A are affected by the incorporation of financial factors or macroeconomic risk factors.
Following Bali and Engle (2010), we now reveal whether conditional covariation with these
factors induce additional risk premia and whether our previous results are affected. Our

third-step panel regression is given by
Tit = Ci+ Ao Nime + A1 - Rior + No- Ny sy + Az i man e + Wiy, (6.11)

where h; syt (higap:) is the time ¢ — l-expected conditional covariance between the
returns on stock ¢ and the size (book-to-market) factor. The estimation results are sum-
marized in Table 6.2 under Model 6. First, the estimates of A\g and \; are in line with
those of the previous section and the Wald-statistic is in favor of the null-hypothesis that

all intercepts equal zero. Hence, our conclusions on the relation between risk and expected
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return are robust with respect to the inclusion of risk premia induced by conditional co-
variation with the Fama-French factors. Second, we observe a positive and significant
(insignificant) coefficient on the covariance between stock returns and the SMB (HML)
factor. The result concerning the SMB factor is economically plausible. SMB is defined
as the difference between the average return on small portfolios and big portfolios. On
average small companies are hit stronger by economic crises than larger companies which
can be traced back to the lower degree of diversification of small companies. Hence, the
SMB factor should tend to have smaller values during crises such that optimal consump-
tion and the SMB factor are positively linked. This implies that a positive change in the
SMB factor indicates a favorable shift in the investment opportunity set. The investor
reduces his hedging demand for stocks that positively covary with the SMB factor which

in turn induces the expected excess return to increase.

Hedging demand induced by macroeconomic risk factors

In line with the last robustness check we now augment Equation (6.7) by the conditional
covariance between stock returns and macroeconomic risk factors. The corresponding

panel regression is given by
Tit =Ci+ N Nimt + M - Rior + Ao~ hiapEF: + A3 - hi ATERM + Uig, (6.12)

where h; apgr: (hiarerim:) is the time ¢t — 1-expected conditional covariance between
the excess return on stock 7 and the change in the default (term) spread. The estimation
results are shown in the last column of Table 6.2. The table shows that in line with our
previous robustness checks the findings on the risk-return relation discussed above are
confirmed. The coefficient estimates and significance levels of Ay and \; are very similar
to those of Section 6.4.2. We observe a negative (positive) and significant coefficient on
the covariance between stock returns and changes in the default (term) spread. Both
results are economically reasonable. The default spread measures the difference between
corporate bond yields on BAA- and AAA-rated stocks. This difference increases during
recessions such that the investor’s marginal utility of wealth is increasing in the default
spread, that is, Uyg, > 0 and Ay < 0. A positive change in the default spread implies
an adverse shift in the investment opportunity set. In equilibrium, the investor is willing
to sacrifice some expected return for holding stocks that tend to pay off when the default
spread is large and the marginal utility of wealth is high. In contrast to the default spread,
the term spread is most pronounced during economic expansions and starts to decline prior

to recessions. Consequently, Uy g, < 0 and A3 > 0. A decrease in the term spread hints
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at a deterioration of economic performance, and hence, implies an unfavorable shift in
the investment opportunity set which leads to increasing expected returns of stocks that

have high association with the term spread.

6.5 Conclusion

In this paper we use Merton’s (1973) ICAPM to empirically assess the link between the
U.S. stock market and the oil price. In equilibrium, the investor is compensated for bear-
ing the market risk and for the risk of adverse changes in state variables that are related
to the investor’s future consumption. Following Bali and Engle (2010) we implement
a three-step estimation strategy. First, using the DCC-GARCH model of Engle (2002)
we estimate conditional variances of and covariances between each stock of the S&P 500
index, the market portfolio, and a set of potential state variables including the oil price,
financial factors, and macro factors. Then, we explain stock returns by the estimated con-
ditional covariances in a large panel making use of Zellner’s seemingly unrelated regression
approach. We focus on the 10-year period June 15, 2001 to June 14, 2011 and provide a
thorough investigation of the dynamics of the estimated industry-specific market and oil
risk premia.

Our study reveals that the ICAPM holds for the analyzed period and confirms the exis-
tence of a positive relation between risk and return which is in line with previous studies
such as Scruggs (1998) or Bali and Engle (2010). In particular, our findings confirm Mer-
ton’s (1973) prediction that the investor accepts lower returns for stocks that less strong
covary with the market and tend to (also) pay off when market performance is weak. The
evolution of the expected market risk premia across the individual industries is pretty
similar over time, whereas the magnitude of the premia differs strongly. Investors require
the highest risk premia for financials and energy stocks. Interestingly, the risk premia for
these stocks are still considerably higher after the recession 2007-2009 compared to the
period of economic expansion during the recessions 2000/2001 and 2007-2009, while the
premia for consumer staples or health care stocks have almost reached their low pre-crisis
levels.

In contrast to the relation between market risk and expected stock returns, the link be-
tween stock returns and the oil price is unclear ex ante. Our findings indicate that the
investor’s marginal utility of wealth is negatively related to the oil price. Put differently, if
the level of the oil price is high the marginal utility of wealth is low which implies that the
investor is financially well off in periods of high oil prices. According to Kilian (2009) and
Kilian and Park (2009), the result provides further evidence for the view of Barsky and
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Kilian (2004) that the oil price is predominantly driven by shocks induced by unexpected
changes in aggregate demand, rather than by precautionary demand shocks or shocks
related to the supply-side in our sample period. We find that the risk premia associated
with the oil price fluctuate considerably over time and across industries. During the ex-
pansion period 2002-2007 investors charge positive risk premia for energy, materials, and
utility stocks since the returns of these stocks are positively correlated with the oil price
and tend to pay off when the oil price is high. In contrast, during this period investors
accept negative risk premia for stocks that are inversely related to the oil price which
implies that these stocks are used as a hedge against decreasing oil prices. We show that
the picture changes dramatically in the months after the bankruptcy filing of Lehman
Brothers in September 2008. Now, extreme upswings in the correlations lead to positive
required risk premia for stocks of each industry. Hence, none of the stocks serves as a
hedging vehicle in this period anymore.

Finally, we show that our results are robust with respect to the inclusion of hedging de-

mand induced by macroeconomic risk factors and by the financial factors of Fama and
French (1992).
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Table 6.1: Industries

Industry number of companies companies included
S&P 500 417 388
Energy 35 33
Materials 26 25
Industrials 55 51
Consumer Discretionary 64 63
Consumer Staples 37 37
Health Care 42 39
Financials 64 51
Information Technology 58 58
Telecommunication Services 6 5
Utilities 30 26

Notes: The table summarizes the industries included. The second column presents the
number of companies that belong to the respective industry in the initial sample. The last
column presents the number of companies included in the empirical analysis. Stock return
series that do not satisfy the conditions @ > 0, 8 > 0, and o + 8 < 1 in the first estimation
step are removed from the sample.




Table 6.2: Estimation results company-level

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Pim, t 2.388*** 1.932*** 1.935*** 1.836*** 1.836*** 2.034*** 1.683***
(0.270) (0.282) (0.282) (0.282) (0.282) (0.332) (0.287)
Ri.ot 1.398*** 1.364*** 1.498*** 1.466*** 1.242*** 1.149***
(0.313) (0.313) (0.314) (0.313) (0.315) (0.314)
SMB;_1 0.044**
(0.017)
HML;_ 4 —0.041**
(0.017)
ADEF;_4 —0.002
(0.004)
ATERM; 4 0.000
(0.001)
hi,SMB,t 3.469***
(1.192)
hi mar,e 1.395
(0.887)
hi,ADEF,t —(.837***
(0.309)
hi, ATERM,t 0.456***
(0.081)
Wald-statistic 218.62 218.58 217.59 217.87 219.92 215.49 216.16
[0.999] [0.999] [0.999] [0.999] [0.999] [0.999] [0.999]
Model 5
EN MA IND CD cs HC FI IT
T t—1 —0.042***  —0.057*** —0.046*** —0.036*** —0.050*** —0.025*** —0.141*** —0.077**
(0.013) (0.010) (0.009) (0.009) (0.008) (0.010) (0.010) (0.010)
Tot—1 0.002 —0.006 —0.010** —0.011** —0.008** —0.008* —0.004 0.002
(0.007) (0.005) (0.004) (0.005) (0.004) (0.005) (0.005) (0.005)

Notes: The first row entries of the table show the estimated relative risk aversion coefficients. Model 1 refers to the baseline specification including the conditional
covariance between the excess returns on the individual stocks and the market. Column 2 shows the results on the baseline specification augmented by the conditional
covariance between the excess return on stock ¢ and changes in the oil price.
null-hypothesis that the stock-specific intercepts cy, .

the 1%, 5%, 10%. Numbers in brackets are p-values.

Models 3 to 7 constitute robustness checks.
.., ca3gg are jointly equal to zero. Numbers in parentheses are standard errors. * % x, %x, * indicate significance at

The Wald statistics correspond to the
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Table 6.3: Industry-specific market risk premia

Full sample Expansion period I Recession period Expansion period II
Industry Mean Stand. Dev. Mean Stand. Dev. Mean Stand. Dev. Mean Stand. Dev.
Energy 12.30 22.91 6.04 5.01 40.56 47.10 9.86 5.38
Materials 11.96 18.35 6.55 4.39 35.90 36.34 9.35 4.56
Industrials 10.31 13.74 6.14 4.35 28.66 26.10 8.15 4.22
Consumer Discretionary  10.64 14.47 6.31 4.76 30.04 27.32 7.87 4.03
Consumer Staples 5.78 7.84 3.65 2.55 15.71 15.47 4.33 2.00
Health Care 7.11 9.54 4.85 3.53 17.93 19.44 5.32 2.33
Financials 13.29 24.67 5.54 4.48 48.92 46.93 9.22 5.24
Information Technology  11.98 13.06 8.69 6.75 27.51 24.01 8.50 3.66
Telecommunication 8.83 13.99 6.00 6.36 25.07 27.52 4.61 2.20
Utilities 6.66 11.74 4.21 4.69 19.15 24.31 4.52 2.69

Notes: The table shows the predicted annualized market risk premium averaged over all stocks of the individual industries obtained from
Model 1. Annualized risk premia are obtained by multiplying the product of the conditional covariances and the relative risk aversion
coefficient by 252. The full sample contains all observations from June 15, 2001 to June 14, 2011. Expansion period I covers the phase
between the NBER recessions of 2001 and 2007-2009. Hence, the period contains the observations from December 1, 2001 to November
30, 2007. The recession periods are June 15, 2001 to November 30, 2001 and December 1, 2007 to June 30, 2009. Expansion period II
coincides with the period after the recession of 2007-2009.
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Table 6.4: Industry-specific market and oil risk premia

Full sample Expansion period I Recession period Expansion period II
Industry Mean Stand. Dev. Mean Stand. Dev. Mean Stand. Dev. Mean Stand. Dev.
Energy 9.95 18.54 4.89 4.06 32.81 38.10 7.98 4.35
Materials 9.68 14.84 5.30 3.55 29.05 29.40 7.56 3.69
Industrials 8.34 11.12 4.97 3.52 23.19 21.12 6.60 3.42
Consumer Discretionary — 8.61 11.71 5.11 3.85 24.30 22.10 6.37 3.26
Consumer Staples 4.67 6.35 2.96 2.06 12.71 12.51 3.50 1.61
Health Care 5.76 7.72 3.92 2.86 14.51 15.73 4.30 1.89
Financials 10.75 19.96 4.48 3.63 39.58 37.97 7.46 4.24
Information Technology  9.69 10.57 7.03 5.46 22.26 19.42 6.88 2.96
Telecommunication 7.14 11.31 4.85 5.15 20.28 22.27 3.73 1.78
Utilities 5.39 9.49 3.41 3.79 15.49 19.67 3.66 2.17

Panel B: Oil risk premia in individual industries

Full sample Expansion period I Recession periods Expansion period 11
Industry Mean Stand. Dev. Mean Stand. Dev. Mean Stand. Dev. Mean Stand. Dev.
Energy 9.19 10.45 5.70 4.22 23.51 20.07 8.01 291
Materials 3.28 5.77 0.66 3.50 10.68 10.50 5.57 2.55
Industrials 1.57 4.18 -0.20 3.43 5.50 7.97 3.94 2.53
Consumer Discretionary  0.71 3.85 -0.48 3.63 2.82 8.16 2.89 2.18
Consumer Staples 0.28 1.78 -0.48 1.97 1.52 3.49 1.63 0.84
Health Care 0.68 1.92 -0.03 2.72 1.94 3.84 1.97 1.01
Financials 1.17 4.97 -0.43 3.75 3.88 10.70 4.14 2.66
Information Technology  1.49 3.73 -0.03 5.10 4.53 6.86 3.75 2.07
Telecommunication 0.98 3.00 0.03 4.94 3.69 5.98 1.90 1.31
Utilities 1.48 2.57 0.51 3.87 4.04 5.08 2.32 1.32

Notes: Panel A (B) shows the predicted annualized market (oil) risk premium averaged over all stocks of the individual industries obtained
from Model 2. Annualized market (oil) risk premia are obtained by multiplying the product of the respective conditional covariances and
Ao (A1) by 252. The full sample contains all observations from June 15, 2001 to June 14, 2011. Expansion period I covers the phase
between the NBER recession of 2001 and 2007-2009. Hence, the period contains the observations from December 1, 2001 to November
30, 2007. The recession periods are June 15, 2001 to November 30, 2001 and December 1, 2007 to June 30, 2009. Expansion period II
coincides with the period after the recession of 2007-2009.
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Figure 6.1: Annualized average daily market risk premium for the individual industries.
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Figure 6.3: Annualized average daily oil risk premium for the individual industries.
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