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Zusammenfassung

In den letzten eineinhalb Jahrzehnten hat die breite Nutzung der Hochdurch-
satzmethoden in der Molekularbiologie zu großen Mengen von Datensätzen
geführt, die eine unerwartete Komplexität der Zellregulation zeigen. Die
kürzlich veröffentlichten Ergebnisse des ENCODEProjekts (ENCODE Pro-
ject Consortium et al., 2012) haben das Ausmaß dieser Mechanismen im
menschlichen Genom gezeigt und sicherlich werden in der Zukunft noch
weitere entdeckt. Diese Komplexität innerhalb einer einzelnen Zelle, ganz
zu schweigen von Zell-Zell-Wechselwirkungen oder dem Einfluss der Mi-
kroumgebung, ist schwer zu erfassen. Dieses Verständnis ist allerdings der
Schlüssel zur Entwicklung von individuell angepassten Behandlungen gene-
tischer Krankheiten oder Störungen, darunter auch Krebs.

In der Mathematik geht man solche komplexen Probleme mit Methoden
an, die die Komplexität reduzieren, so dass man sie in auflösbarer Weise mo-
dellieren kann. In der Biologie haben Forscher diese Methode angewandt, um
das Systembiologiekonzept zu entwickeln, welches das Verständnis der Zell-
regulationsmechanismen vereinfacht. Die meisten veröffentlichten Studien,
in denen Hochdurchsatz-Technologien verwendet wurden, waren jedoch nur
auf eine einzige Art der Zellregulation ausgerichtet und können daher nicht
als solche verwendet werden, um die Regulationswechselwirkungen zu un-
tersuchen. Außerdem ist bei solchen Studien die Unterscheidung zwischen
auslösenden Faktoren und Störfaktoren schwierig.

Diese beiden Punkte waren meine ursprüngliche Motivation für die Ent-
wicklung statistischer Methoden, die die integrative und vergleichende Ana-
lyse von verschiedenen Arten von Datensätzen ermöglichen. Es wurden drei
verschiedene Softwares entwickelt, um dieses Ziel zu erreichen. Erstens, “cus-
tomCDF”: dies ist eine Methode, um die Custom Definition File (CDF)
des Affymetrix GeneChip R©s neu zu definieren; dies dient im Wesentlichen
dazu, die ständige Aktualisierung der Sequenz des menschlichen Genoms
und dessen Annotationen zu erfassen. Zweitens, “aSim”: eine Methode, um
Microarray-Daten zu simulieren; dies erstellt die notwendigen Daten um die
entwickelten Algorithmen auszuwerten. Drittens, eine Reihe von kombinier-
ten statistischen Methoden, die integrative Analysen ermöglichen und die
schließlich durch gezielte Modifikationen auch vergleichende Analysen er-
lauben. “CustomCDF” und “aSim” wurden auf unabhängigen Datensätzen
validiert, währen die entwickelten analytischen Methoden auf “aSim” simu-
lierten Dateien und öffentlich verfügbaren Datensätzen validiert wurden.



Die oben beschriebenen Methoden wurden angewandt, um zwei biologi-
sche Fragen zu beantworten. Zunächst wurden zwei Retinoblastom-Daten-
sätze benutzt, um die Auswirkung von Genom-Aberrationen auf die Gen-
Expressionen zu untersuchen. Dann, motiviert durch die Tatsache, dass
Retinoblastom-Patienten im späteren Leben ein höheres Risiko haben ein
Osteosarkom zu entwickeln als der Durchschnitt der Bevölkerung, wurden
Datensätze von beiden Tumoren vergleichend analysiert, um Ähnlichkeiten
und Unterschiede zu identifizieren. Trotz der eher begrenzten Anzahl von
Datensätzen waren beide Ansätze dank ihrer hohen Präzision und niedrigen
Fehlerrate erfolgreich und haben so die Basis für größere Analysen gebildet.

In der Tat hat die hier angewandte integrative Analyse des Retino-
blastoms gezeigt, dass dem Zugewinn des Chromosoms 6 eine wichtige Be-
deutung in der Progression der Krankheit zukommt, was wiederum darauf
hinweist, dass viele Gene auf diesem Chromosom eine Krebsentwicklung
fördern. Im Vergleich zu Microarray-Standardanalysen war diese Analyse
darüber hinaus in der Lage, die Interaktion von Regulierungsmechanismen
zu entdecken: Beispiele von positivem und negativem Ausgleich der Gen-
expression in Regionen mit DNA-Zugewinn beziehungsweise -Verlust, sowie
Beispiele von Antisense-Transkription, Pseudogen- und snRNA-Regulation
wurden in diesem Datensatz identifiziert.

Durch die vergleichende Analyse hingegen konnte gezeigt werden, dass
Retinoblastome und Osteosarkome große Ähnlichkeit aufweisen und darüber
hinaus, dass beide Vorteil aus ihren jeweiligen Mikroumgebungen ziehen
und damit verschiedene Signalwege, PKC/Calmodulin in Retinoblastom und
GPCR/RAS in Osteosarkom, zu nutzen scheinen.

In dieser Arbeit konnte die Bedeutung und der Nutzen der entwickel-
ten Softwares und statistischen Methoden demonstriert werden: durch sie
konnten präzise Antworten auf die zwei gestellten biologischen Fragen ge-
funden werden. Desweiteren konnte dadurch eine Reihe interessanter Hy-
pothesen aufgestellt werden, die weitere Untersuchungen erfordern. Diese
Softwares sind nicht auf Microarray-Analysen begrenzt, sondern können auf
alle Hochdurchsatz-Daten appliziert werden: mittels der hier entwickelten
Methoden kann das Konzept der Systembiologie auf die Erforschung der
Karzinogenese angewandt werden.



Abstract

In the last one and a half decades, the generalization of high throughput
methods in molecular biology has led to the generation of vast amounts of
datasets that unraveled the unfathomed complexity of the cell regulatory
mechanisms. The recently published results of the ENCODE project (EN-
CODE Project Consortium et al., 2012) demonstrated the extend of these
in the human genome and certainly more regulation mechanisms will be dis-
covered in the future. Already, this complexity within a single cell - without
taking into account cell-cell interaction or micro-environment influences -
cannot be abstracted by the human mind. However, understanding it is the
key to devise adapted treatments to genetic diseases or disorders, among
which is cancer.

In mathematics, such complex problems are addressed using methods that
reduce their complexity, so that they can be modeled in a solvable manner.
In biology, it led researchers to develop the concept of systems biology as
a mean to abstract the complexity of the cell regulatory network. To date,
most of the published studies using high throughput technologies only focus
on one kind of regulatory mechanism and hence cannot be used as such to in-
vestigate the interactions between these. Moreover, distinguishing causative
from confounding factors within such studies is difficult.

These were my original motivations to develop analytical and statistical
methods that control for confounding factors effects and allow the integrative
and comparative analysis of different kinds of datasets. In fine, three differ-
ent tools were developed to achieve this goal. First, “customCDF”: a tool to
redefine the Custom Definition File (CDF) of Affymetrix GeneChip R©s.
It results in the increased sensitivity of downstream analyses as these ben-
efit from the constantly evolving human genome reference and annotations.
Second, “aSim”: a tool to simulate microarray data, which was required to
benchmark the developed algorithms. Third, for the integrative analysis, a
set of combined statistical methods and finally for the comparative analysis,
a modification of the integrative analysis approach. These were bundled in
the “crossChip” R package.



The “customCDF” and “aSim” tools were first validated on independant
datasets. The developed analytical methods (“crossChip”) were first vali-
dated on “aSim” simulated data and publicly available datasets and then
used to answer two biological questions. First, using two retinoblastoma
datasets, the effect of genomic copy number variations on gene-expression
was investigated. Then, motivated by the fact that retinoblastoma patients
have a higher chance to develop osteosarcoma later in life than the average
population, datasets of both these tumors were comparatively analyzed to
assess these tumors similarities and differences.

Despite a rather limited number of samples within the selected datasets,
the developed approaches with their higher sensitivity and sensibility were
successful and set the ground for larger scale analyses. Indeed, the inte-
grative analysis applied to retinoblastoma revealed the high importance of
the chromosome 6 gain at a later stage of the disease, indicating that many
genes on that chromosome are beneficial to cancerogenesis. Moreover, in
comparison to standard microarray analyses, it demonstrated its efficacy
at detecting the interplay of regulatory mechanisms: examples of positive
and negative compensation of gene expression in lost and gained regions,
respectively, as well as examples of antisense transcription, pseudogene and
snRNAs regulation were identified in this dataset. The comparative analysis
on the other hand revealed the high similarity of the retinoblastoma and os-
teosarcoma tumors, while at the same time showing that either of them take
advantage of their distinct micro-environment and consequently appear to
make use of different signaling pathways, PKC/calmodulin in retinoblastoma
and GPCR/RAS in osteosarcoma.

The developed tools and statistical methods have demonstrated their va-
lidity and utility by giving sensible answers to the two biological questions
addressed. Moreover, they generated a large number of interesting hypothe-
ses that need further investigations. And as they are not limited to microar-
ray analysis but can be applied to analyze any high-throughput generated
data, they demonstrated the usefulness of “systems biology” approaches to
study cancerogenesis.
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Chapter 1

Introduction

The subject of this work is to assess the potential of integrative and compar-
ative analyses to study genetics in cancer. In the first part of this introduc-
tion, our current knowledge about cancer will be detailed as well as possible
causes for tumorigenesis. I will then further focus on the two types of
tumors studied in this work: Retinoblastoma and Osteosarcoma. Fi-
nally, I will detail the analyses performed and especially concentrate on
their combination as an example to describe the benefit of such integrative
and comparative analyses to extract the relevant, likely causative, events
that lead to tumorigenesis.

1.1 Cancer

This work concentrates on two specific types of, mostly pediatric, tumors:
Retinoblastoma and Osteosarcoma. A detailed description of these will
be provided in the following sections, preceded by an historical description
of cancer research to introduce key findings that delineate our current un-
derstanding of the biology of cancer.

1.1.1 A history of research

First description: The description of cancer and cancer cells first occured
in the second half of the nineteenth century and a century later not much
progress had been made as to explaining why cancer arises. By that time
it was known that cancer cells are normal cells, which proliferation went
uncontrolled. In addition it appeared that:

• the majority of the tumor mass were clonal cells issued from a unique
founder cell that had gone awry

• any cell type of an organism could undergo that process
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• tumor could metastasize, the main reason for almost every cancer
death

Despite that research century being unable to decipher any of the cancer
mechanisms, it provided the research community with a detailed classifica-
tion of tumors. These are classified into 4 major groups: epithelial, mes-
enchymal, hematopoietic and neuroectodermal, nowadays split in numerous
sub-classifications. This classification is constantly refined by new findings
and is maintained by the “World Health Organization” (WHO) in their
International Classification of Diseases (ICD-10) (World Health Orga-
nization, 2010). The major discoveries in molecular biology of the following
decades, e.g. the deoxyribonucleotide acid (DNA) structure, although
helpful to explain many biological processes, were still unable to shed light
on the mechanism of cancer.

A viral breakthrough: The breakthrough came from an entirely differ-
ent field of biology, that of virology. In the first decade of the twentieth
century, a major discovery was made by Peyton Rous: in his experiments
he was able to transmit the sarcoma tumor from a hen to another just by
injecting the “receiver” with the filtrate of the donors’ ground tumor (Rous,
1911). The identified causative virus is known as the Rous Sarcoma Virus
(RSV). Many more viruses were identified that could transform normal cul-
tured cells into tumorigenic ones, indicating the presence of powerful onco-
genes in these viruses’ genome. The final breakthrough occurred when
researchers realized that the oncogenes harbored by these viruses were just
modified copies of genes present in every vertebrate genome. This was first
established when the RSV oncogene v-src was identified as the copy of the
c-src gene, present in a normal cellular genome and lead to the discovery of
many more transforming viruses (Stehelin et al., 1976). An additional dis-
covery shed further light on cancer pathogenesis: non-transforming viruses
were able to induce cultured cell malignant transformation as well. This was
traced back to the integration of viral DNA in front of or within genes of
the host cell, thus deregulating or changing the function of so-called proto-
oncogenes. Viruses are nowadays known to be the causative factor of a fitfh
of the human cancers worldwide. Studying these viruses lead to the first anti-
cancer vaccine being developed against the causative agent of the cervical
cancer: the Human papillomavirus (HPV). Harald zur Hausen, professor
at the Heidelberg University and former director of the German Cancer
Research Center (DKFZ), was awarded the Nobel Price of Medicine for
his work on HPV in 2008.

Oncogenes’ discovery: By the end of the 1970’s, it was hypothesized
that the pathogenesis of the remaining 80% of cancer could be explained by
somatic mutations affecting proto-oncogenes, resulting in an uncontrolled
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cell growth. Indeed it had been shown that structural or regulatory changes
affecting a gene could lead to cancerogenesis. For example, the chromosomal
translocation t(9;22)(q34;q11) was shown to result in the hybrid gene
bcr/abl, a major causative factor of the Chronic Myelogenous Leukemia
(CML) and Acute Lymphoblastic Leukemia (ALL). Despite the newly
acquired understanding of the origin of oncogenes and their role in cancer
pathogenesis, much remained to be explained. Among these open questions,
one received a lot of attention in the early 1980s: how could cancer cells
escape the tight proliferation control placed on their normal counterparts?

The implication of cell signaling: A part of the answer to that ques-
tion came from the study of oncogenes such as erbB, which is closely related
to the epidermal growth factor (EGF) receptor. It established the link
between growth factor signaling and cell transformation and through the
years, most signaling pathways have been associated with cancer, see Table
1.1 extracted from Baudot et al. (2010) that lists some examples. The first
deciphered pathways act through the phosphorylation of target protein(s)
on specific Tyrosine residue(s), an event that leads to the activation of these
proteins and through it to the propagation of the signal. The phosphorylat-
ing proteins are often the signal initiator as they are either part of, or coupled
to, extra-cellular receptors, and are grouped under the term Receptor Ty-
rosine Kinase (RTK). They recruit key signal transduction components:
the small GTPase Ras and the lipid kinase phosphatidylinositol-3OH
kinase (PI(3)K) that influence many cellular processes such as growth, dif-
ferentiation, migration, apoptosis, etc.

RTKs are no the only signal transduction mechanism, many more have
been described involving for example Serine/Threonine Kinases - e.g.
the Transforming Growth Factor Beta (TGF-β) receptor - or inte-
grins, receptors that sense the association between the cell and the extra-
cellular matrix (ECM). Overall, these discoveries can be summarized as
the establishment of the first hallmark of cancer: the self-sufficiency
in growth signals (McCormick, 1999).

Tumor suppressors: The discovery of the oncogenes and of the implica-
tion of the cell signaling circuitry still was not satisfying to explain most
cancer arousal. Indeed it required the responsible agent to be a domi-
nant trait, which is the case for viral infections but not for the remain-
der of cancer where a viral origin could not be established. Hence, in
the 1970s and 1980s researchers hypothesized the existence of tumor sup-
pressor genes: recessive cancer inducing genes. A very essential finding
in the genetics of tumor suppressor genes came from the study of a rare
childhood tumor: retinoblastoma. Retinoblastoma, as will be described
in more detail in the related section 1.1.2, page 16, can be declined in
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Table 1.1 – Example of cellular pathways associated to specific cancer
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two forms: unilateral and bilateral. The bilateral cases are most of-
ten a familial form, whereas the unilateral ones are mainly sporadic. The
pedigree of families with bilateral cases shows a mendelian inheritance
of a recessive allele, in accordance with the presence of a tumor suppres-
sor gene. Knudson (1971) devised from that a - since then well-established
- theory: the two-hit hypothesis. Based on 48 cases of retinoblastoma
of both kinds, he could establish a statistical model explaining that two
hits (mutations) are necessary for retinoblastoma to occur, see Figure 1.1.
As familial cases already carried a mutation, their likelihood of develop-
ing retinoblastoma was increased as well as was its bilateral occurence.

Figure 1.1 – Knudson two-hit hypoth-
esis model - adapted from The Biology of
Cancer (Weinberg, 2007), Copyright 2007 (c)
Garland Science.

This breakthrough consolidated the
tumor suppressor gene hypothesis:
tumor suppressor genes are recessive
genes essential to prevent cancer; i.e.
both copies of these genes need to
be altered for an effect on the cell
phenotype to be observed. Since tu-
mor suppressor genes are recessive, it
is extremely difficult to prove that a
gene is a tumor suppressor gene and
not just a silent gene or an unrelated
bystander of the cancerogenesis. In
other words it is difficult to establish
a supposedly tumor suppressor gene
as a “cause” and not a “consequence”.
For that reason the definition of a tu-

mor suppressor gene is complex. Weinberg (2007) describes it as: a gene
whose partial or complete inactivation, occurring in either the germ line
or the genome of a somatic cell, leads to an increased likelihood of cancer
development (Weinberg, 2007).

pRb and TP53 : Two major tumor suppressor genes were quickly identi-
fied: retinoblastoma gene (RB1 ) and tumor protein p53 (TP53 ). RB1
is a key element of the cell cycle: a strict series of events that allows a cell
to duplicate its DNA content and divide into two daughter cells. Its dereg-
ulation is an essential step to cancerogenesis and especially the proteins
involved in the regulation of the cell cycle G1 checkpoint, the R point, are
affected. The R point decides of the cell fate between growth and quies-
cence. When a normal cell is subjected to enough cumulative mitogenic
signal it commits to undergo mitosis. One of the master regulators of this
decision point is RB1 . After its isolation in 1986, it was shown that its
protein phosphorylation state changes around the R point. During most of
the G1 phase it is not phosphorylated. Ahead of the R point, it becomes
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hypophosphorylated and is progressively getting hyperphosphorylated until
the end of the mitosis (Figure 1.2). RB1 is the R point gate keeper ; it is

Figure 1.2 – pRb phosphorylation cycle - adapted from The Biology of Cancer
(Weinberg, 2007), Copyright 2007 (c) Garland Science.

the main receptor of the mitogenic signals. Once this major checkpoint is
overcome, the cellular machinery is anyway committed to going through the
cell cycle.

But the de-regulation of the cell cycle alone was not sufficient to re-
produce cancerogenesis in mouse models. The observed tumor presented a
very high level of apoptosis. This discovery led to the understanding of
the apoptosis role in cancer and of one of its major players: TP53 . TP53
was first identified through its interaction with viral oncoproteins, however
its classification as an oncogene or tumor suppressor gene was for a long
time a matter of discussion. Hence, it does not follow the Knudson model
of tumor suppressor genes: TP53 -/- mouse models are viable and do not,

Figure 1.3 – Combinations of wild-type
(blue) and mutant (red) TP53 proteins -
adapted from The Biology of Cancer (Weinberg,
2007), Copyright 2007 (c) Garland Science.

unlike other tumor suppressor
gene mouse models, die during
embryogenesis. The reason is
that TP53 acts as a homote-
tramer and that the presence
of a single mutant allele in a cell
is enough to deregulate TP53
functionalities. More than 50%
of all cancers harbor a mutant
TP53 allele; it is often a dom-
inant negative trait. With an
equal proportion of both alleles,
only 1/16 of the complex will
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have their normal ability as shown in Figure 1.3. The remaining wild-type
complexes are able to maintain a certain level of the TP53 normal abili-
ties as most cancers show a concurrent loss of heterozygosity (LOH) at
the TP53 locus, either through deletion or duplication of the mutant al-
lele. It is established that in most cases the TP53 mutation precedes the
LOH event. During the early 1990s, most of the activating signals and the
TP53 ’s downstream effects were discovered, see Figure 1.4. TP53 is the

Figure 1.4 – TP53 activating signals
and effects - adapted from The Biology of
Cancer (Weinberg, 2007), Copyright 2007 (c)
Garland Science.

master guardian of the cell as well
as its executioner. It monitors the
cell and its environment: DNA struc-
ture, lack of nucleotides, presence of
oxygen, cell cycle status, etc. and
reacts accordingly to any perturba-
tion by triggering e.g. DNA repair,
cell cycle arrest, etc. to restore an
healthy cell state. But in cases where
the damages are too important, it re-
sorts to apoptosis. It is surprising
that most of the control over the cell
fate has been empowered to a single
protein, but explains why it is so of-

ten mutated in cancer. Moreover, it has been shown that when TP53 is not
directly mutated, its regulators are, e.g.

• mouse double minute 2 (Mdm2) ubiquitinates TP53 and results
in its rapid degradation. An over-expression of Mdm2 results in the
constant degradation of TP53 .

• Alternative Reading Frame (p14ARF) targets Mdm2 and results
in its translocation to the nucleolus, hence avoiding TP53 degrada-
tion. Therefore, a down-regulation of p14ARF results in a constant
degradation of TP53

Moreover, the p14ARF locus is overlapping with the p16INK4A locus
and in the close vicinity of the p15INK4B one; they are all located in a 40 kb
locus. These last two genes encode proteins that are inhibiting the activity
of a specific Cyclin Dependant Kinases (CDKs): the CyclinD-CDK4/6
complex. CDKs are other cell cycle master regulators; in continuously di-
viding cells, these proteins are associated with proteins the levels of which
have cyclic fluctuations: the Cyclins. There are five major Cyclin-CDK
complexes: Cyclin D-CDK4/6, Cyclin E-CDK2, Cyclin A-CDK2, Cyclin
A-CDC2 and Cyclin B-CDC2, which are only active in a given time-frame
during the cell cycle: G1, G1-S transition, S, S-G2 transition and M, re-
spectively. Consequently, a homozygous deletion of the p14ARF, p16INK4A,
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p15INK4B locus affects both the retinoblastoma and TP53 pathways and
leaves the cell control-free. The discovery of the pRb and TP53 functions
and their importance in cancerogenesis established another hallmark of can-
cer: the insensitivity to anti-growth signals (McCormick, 1999).

The other hallmarks of cancer: As mentioned, by the end of the
1980s, it became clear that a hallmark of cancer is the ability of its cells
to generate their own mitogenic signals endogenously, de-facto bypassing
all the constraint established on normal cells. To achieve this, different

Figure 1.5 – The Ras effector pathway -
adapted from The Biology of Cancer (Weinberg,
2007), Copyright 2007 (c) Garland Science.

signaling pathways can be tar-
geted, e.g. Ras, PI(3)K, Nu-
clear Factor - Kappa B (NF-
κB), Jak/Stat, Notch, Patched,
TGF-β, Wnt/β-catenin. More-
over, the more pathways were
analyzed, the more cross-
connections were identified, see
Figure 1.5 for an example of
the Ras effector pathway. De-
spite this complex intricateness,
a still unexplained confounding
fact is that a tumor of the same

tissue of origin from different patients will often have the same mitogenic
pathway affected, e.g. 90% of pancreatic carcinoma patients carry a mutant
K-ras oncogene. This realization and the ever increasing complexity of can-
cer biology in the following 20 years led Hanahan and Weinberg (2000) to
define hallmark of cancers, in an effort to summarize cancer as a whole.
These are the traits that describe the capabilities of cancer cells:

• Self-sufficiency in growth signals
As introduced previously (paragraph 1.1.1, page 3), cancer cells are
able to produce their own mitogenic signals or to stimulate neighboring
cells to do so.

• Insensitivity to anti-growth signals
As introduced, see paragraph 1.1.1, page 5, cancer cells to prolifer-
ate efficiently have to weaken the strict controls maintaining tissue
homeostasis; the main targets being RB1 and TP53 for their cell
monitoring function.

• Evading apoptosis
Another TP53 functionality that cancer cells must disrupt, is its abil-
ity to induce apoptosis. TP53 can up-regulate the expression of the
BCL2-associated X (Bax ) gene in response to sensing DNA damage,
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which forces mitochondria to release cytochrome C, a potent cat-
alyst of apoptosis. Cancer cells have devised other means to avoid
apoptosis, e.g. by over-expressing pro-survival genes such as those of
the PI(3)K-protein kinase B (AKT/PKB) pathway or by disabling
inhibitors of such pathways as e.g. phosphatase and tensin ho-
molog deleted on chromosome 10 (PTEN).

• Limitless replicative potential
These three first hallmarks of cancer would appear to be sufficient for
a cancer cell to thrive endlessly, but it is not the case. Cells have yet
another means of controlling proliferation by a mechanism uncoupled
from the cell cycle. After a given number of replications, a cell will stop
growing; it has a finite number of doublings independent of the RB1
and TP53 induced senescence. Double null mutants would eventu-
ally reach a crisis state characterized by massive cell death, karyotypic
disarray showing chromosome end-to-end fusions. In the 1990s, it was
realized that telomeres are shortening with every replication. Indeed,
during the cell cycle the DNA polymerase is unable to completely
replicate the 3’ ends of chromosomes, resulting in a 50-100bp loss per
duplication. Eventually no telomere remains and chromosome ends
fuse, which results in the observed karyotypic disarray and cell death.
In culture, 1 in 107 cells survives that crisis and become truly immor-
talized (Hanahan, 2000). Further research showed that this can be
achieved in two ways, either by over-expressing the enzyme responsi-
ble for the telomere maintenance: the telomerase that adds hexanu-
cleotides (TTAGGG) to the end of the telomere or by an alternative
process named ALT, where the telomeres are maintained by means of
homologous recombination and copy switching (Dunham et al., 2000).
In this mechanism, proteins involved in recombination such as RAD51
and RAD52 create a replication loop among or within telomeres taking
advantage of the tandem-repeat structure of the telomeres. It results
in a dynamic maintenance of the telomeres length, where sequence
material can be added, removed or exchanged between telomeres.

• Sustained angiogenesis
The hallmarks of cancer described so far only focus on the cancer
cells. This research approach: reductionism got more and more
challenged during the 1990s as it could not explain another hallmark
of cancer: the sustained angiogenesis of more advanced primary cancer.
Additional observations, e.g. the fact that most Hodgkins lymphoma’
cells (>99%) are not neoplastic, indicated that a tumor is a complex
tissue, where heterotypic signaling (i.e. cell signaling across different
types of cells) is essential, see Figure 1.6.
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Figure 1.6 – Tumor as complex tissues - from Hanahan and Weinberg
(2000)

During cancerogenesis, tumors that have acquired the hallmarks of
cancer previously described are seldom able to reach a life threatening
size. The rate at which they proliferate is balanced by the rate at
which they undergo apoptosis or necrosis. As cancer cells replicate,
several physical constraints arises:

– the local pressure increases as the available space for expansion
is limited

– hypoxia appears in the inner tumor part as it is not vascularized;
oxygen can only diffuse as far as 0.2 mm within a normal tissue

However, more advanced tumors are able to reshape their tissue boundaries
and present a developed vasculature. They often express platelet-
derived growth factor (PDGF), a growth factor that attracts stromal

Figure 1.7 – The cell types recruited by tumors and their heterotypic
interactions - adapted from The Biology of Cancer (Weinberg, 2007), Copyright
2007 (c) Garland Science.
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cells. Among these, fibroblasts stimulated by the tumor micro-environment
secrete stroma-derived factor-1 (SDF1) to attract endothelial pre-
cursor cells, the capillaries building blocks. This eventually results in

Figure 1.8 – Balancing the angiogenic “switch” - adapted from The Biology
of Cancer (Weinberg, 2007), Copyright 2007 (c) Garland Science.

the neo-vasculature of the tumor. Fibroblasts are not the only cell
types present in the stroma that are induced to support the tumor;
among others macrophage and mast cells are attracted and hijacked
to release pro-angiogenic factors, see Figure 1.7. This ability to pro-
voke neo-angiogenesis that changes a tumor from being contained
to a thriving tumor mass was originally refered to as the angiogenic
switch (Coussens et al., 1999). However, further research showed how
the field of angiogenesis, and as a whole the micro-environment of a
tumor is a complex one. As of today, 10s of genes have been assigned
to be pro or anti-angiogenic, see Figure 1.8. It appears that cancer
cells are able to switch it on through mutations, but only with the
support of the hijacked stroma.

• Tissue invasion & metastasis
This hallmark of cancer, as described by Hanahan and Weinberg

(2000), is the one that leads to 90% of all deaths by cancer. This
process, although known and studied for more than a century, is still
only vaguely defined at the molecular level. Both the trait of inva-
sion and the ability to form a metastasis have been tied together
and unlike earlier theories, are not acquired late in cancerogenesis.
This is supported by the Cancer of Unknown Primary (CUP),
where the patient suffers of metastases, while the primary tumor can-
not be found (about 70% will be after autopsies, but 30% remains
elusive). Despite these uncertainties, the overall process is well under-
stood and described as the invasion-metastasis cascade, see Figure
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1.9. During the 1990s and since then, the observation that tumors are

Figure 1.9 – The invasion-metastasis cascade - adapted from The Biology
of Cancer (Weinberg, 2007), Copyright 2007 (c) Garland Science.

wounds that never heal, shed new light on the mechanism by which a
cancer cell could acquire the intravasation and extravasation abili-
ties. At the periphery of a wound, the epithelial cells undergo a trans-
formation into mesenchymal like cells: the Epithelial Mesenchymal
Transition (EMT). This gives them a motility ability, which they will
use to resorb the wound. Once this is achieved, they undergo the mir-
ror transition: the Mesenchymal Epithelial Transition (MET) to
reform the epithelial layer. It has been shown that in epithelial cells,
which are normally immotile and bound together by tight junctions,
the motility/immotility balance is regulated through two proteins: the
N-cadherin and the E-cadherin, respectively. This model has got-

Figure 1.10 – The importance of the stroma - adapted from The Biology
of Cancer (Weinberg, 2007), Copyright 2007 (c) Garland Science.

ten more and more support over the last decades. It is now known
that this process is dependent on the micro-environment, e.g. the ex-
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perimental removal of TGF-β and Tumor Necrosis Factor alpha
(TNF-α) expressed by the stroma cells leads to noninvasive tumors,
see Figure 1.10. The existence of this latent program in epithelial cells

Figure 1.11 – The role of EMT and MET in metastases establishment:
it would appear that the EMT is necessary for intravasation. During their
transport, cancer cells remain in a mesenchymal state, which is reverted
by the MET during the process of extravasation and the establishment of
a metastasis - adapted from The Biology of Cancer (Weinberg, 2007), Copyright
2007 (c) Garland Science.

led to the proposal that carcinoma cells use it for metastasizing, see
Figure 1.11. This heterotypic signaling has to be complemented by
gene alterations within the tumor. Many affected genes have been
reported among which, especially relevant for osteosarcoma, are the
Matrix Metallo-proteinases (MMP)s and urokinase Plasmino-
gen Activator (uPA), all involved in the ECM degradation.

An additional complexity of that hallmark of cancer is the non ran-
dom, cancer specific sites, at which cancer cells will create metastases,
see Figure 1.12. This was observed as early as 1889 by the british
pathologist Stephen Paget, who suggested a seed and soil hypothesis,
i.e. that metastases will only thrive in environment similar to that
of the primary tumor. It has since then been amended, as it can-
not explain for example, the rarity of contra-lateral metastases, e.g.
breast or kidney cancer will rarely metastasize to their contra-lateral
organ. The current understanding is that large amounts of cancer
cells will evade from the primary tumor and their dispersion depends
on the vasculature they reach (this explains > 65% of all breast metas-
tases). Eventually, some circulating cancer cell will get trapped in a
capillary and extravasate, creating a micrometastasis. If the micro-
environment is benefitial, this micrometastasis can develop and turn
into a macrometastasis.
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Figure 1.12 – The non random distribution of metastases - adapted from
The Biology of Cancer (Weinberg, 2007), Copyright 2007 (c) Garland Science.

Otherwise, if the micro-environment is inappropriate, it might stay
as a micrometastasis unless it acquires abilities to adapt to its new
environment.

An increasingly more complex puzzle: Recent discoveries even ex-
tended the number of hallmarks of cancer. First, cancer cells have the
ability to evade the immune response. Second, what was thought to
be a consequence of cancer progression, i.e. the cancer cell genomic insta-
bility, seems to be a more pro-active factor of the tumorigenesis. Indeed,
acquiring genomic instability appears to be necessary for cancer cells to
thrive. Recently, Stephens et al. (2011) and Rausch et al. (2012) showed a
new mechanism by which cancer cells can gain this trait: chromotripsis; a
one step event resulting in catastrophic DNA rearrangements. Moreover, it
is now evident that human cells have evolved many different mechanisms of
regulations, some of which have been only recently discovered, for example:

• Johnson et al. (2005) showed that Ras is regulated by the microRNA
let-7. let-7 targets the untranslated region of H-ras, N-ras and K-ras
and its deletion leads to an elevation of the Ras activity.

• Kowalczyk et al. (2012) discovered a new kind of messenger ribonu-
cleotide acid (RNA) (mRNA), resulting from the transcription of al-
ternative tissue-specific promoters producing abundant, spliced, mul-
tiexonic poly(A)+ RNA (meRNA)s. What the role of these meRNA
might be is still unclear.

This complexity implies that no cancer can be cured by targeting a single
gene or its product. Although there are quite some successful drugs on the
market, patients treated with these will eventually suffer from a relapse, as
the cancer cells endeavor new escape paths, see Figure 1.13. Therefore, it
is important to start working at the systems level by integrating the results
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of different technical approaches and understanding their combined effects
on broader phenotypic traits, i.e. to approach cancer “not as a collection
of genes” but as “a system of interactions”1. Ultimately this understanding

Figure 1.13 – Pathway circuitry influences therapeutic response: the action
of the Rapamycin drug, inhibiting the mTOR pathway, is circumvented by Ras
mutations. Adapted from Shaw and Cantley (2006).

will help define therapies best adapted to every single cancer patient, a
necessity as every cancer is probably as different as different individuals are.
In that regard, the unprecedented troughput of genomic technologies have
made the bio-medicine research aim to “personalize” medicine reachable in
the coming next decade(s). However, in the recent years, the ease with
which humongous amounts of data have been generated revealed that the
current bioinformatics analytical capabilities are the limiting factors (Park,
2009; Pepke et al., 2009; Koboldt et al., 2010; Scholz et al., 2012) and that
consequent efforts have to be invested to implement the necessary tools
for Systems Biology analyses. Relevant approaches to this issue will be
presented in more details (c.f section 1.2, page 21) after a short overview of
both tumors analyzed in this work.

1Adapted from Noble (2008)
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1.1.2 Retinoblastoma

Retinoblastoma is an embryonic malignant neoplasm of retinal origin, that
occurs most often in early childhood and is often bilateral - i.e. affecting
both eyes - in hereditary cases. The retinoblastoma gene (RB1 ) was the
first tumor suppressor gene (see paragraph 1.1.1, page 3) to be cloned in
1986 and it validated more than a decade of theories on how tumor suppres-
sor genes could be involved in tumorigenesis. RB1 was mapped to the band
14.2 of the q arm of chromosome 13 (13q14.2) and its role elucidated; it is a
negative regulator of the cell cycle, binding the transcription factor (TF)
E2F and repressing the transcription of genes necessary for the cell cycle
S phase. Although Zhang et al. (2012) report very few chromosomal aber-
rations, RB1 has been associated with aneuploidy and Chromosomal
INstability (CIN). Zielinski et al. (2005) reported frequent aberrations:
gains on chromosome arms 1q, 2p, 6p and 13q and losses on chromosome
arms 13q and 16q.

Symptoms: The most common retinoblastoma symptoms are leukocoria
(a late sign) and strabismus (an early sign), but many other ocular signs
have been observed such as pseudohypopyon, elevated intraocular pressure,
diffuse intra-ocular seeding - i.e. diffuse clusters ot tumor cells-, etc.2

Figure 1.14 – A leukocoria -
adapted from The Biology of Can-
cer (Weinberg, 2007), Copyright 2007
(c) Garland Science.

Diagnosis: Ophthalmoscopic examination
often shows a white ’cat’s eye’ reflex, a sign
of a leukocoria, i.e. an opacity that ob-
scures the retina, see Figure 1.14. This
leukocoria signals the presence of a retinal
tumor in one or both eyes, usually diagnosed
by the age of 3 years.

Prevalence: Retinoblastoma is a rare dis-
ease; rate between 1 in 23,000 (live birth in
the US) and 1 in 200,000 (children under
15 in the US) are found in the literature.
This difference in rate is probably due to the existence of inherited familial
retinoblastoma as opposed to sporadic cases.

Inheritance: Familial retinoblastoma is often affecting both eyes: 2/3 of
the hereditary cases are bilateral. In total, about 35% to 45% of all cases
are hereditary. Bilateral tumors are almost never observed in sporadic cases.
In most cases, one of the RB1 alleles is lost by LOH, while the remaining

2The original source of information for this and the remaining sections on retinoblas-
toma is the Online Mendelian Inheritance in Man database (OMIM) entry 180200
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mutated allele is significantly more frequently of paternal origin. Diverse
theories have been proposed to explain that fact, from a difference between
spermatogenesis and oogenesis to a lack of DNA repair in the early embryo
for paternal chromosomes.

Penetrance: The penetrance of the mutated allele is highly dependent on
the mutations affecting RB1 . There are many possible mutations affecting
different regions of the gene. Nonsense mutation usually result in more ag-
gressive phenotypes. Missense mutations or deletions, affecting the protein
function, have different degrees of penetrance. The mutant having the least
penetrance will often manifest by the development of retinoma, a benign
neoplastic growth.

Secondary tumors: More than 2/3 of the secondary tumors are of mes-
enchymal origin. 60% of those are osteosarcomas while others are soft tis-
sue sarcomas. Strikingly, there’s a 500 fold increase of osteosarcoma for
retinoblastoma hereditary cases. Additionally, some familial cases will de-
velop a trilateral tumor, where the pineal gland (the so-called third eye,
due to its shared tissue of origin) will present a morphologically similar
neoplasm.

Treatment: As of today, most of the time, the eventual treatment is
the enucleation. Other approaches, irradiation, transscleral cryocoagula-
tion, argon laser photocoagulation of tumors and feeder vessels, combination
chemotherapy, etc. often fail to cure the disease.

Therapy: Very recently, Zhang et al. (2012) showed by a Next-Generation
Sequencing (NGS) approach using four retinoblastoma samples and matched
germline controls that only RB1 had mutations. However, by analyzing the
epigenetic profile, they observed the induction of the proto-oncogene Spleen
Tyrosine Kinase (SYK ) gene. Additional experiments in-vitro and in-
vivo showed that targeting SYK with a small-molecule inhibitor resulted
in retinoblastoma cell-death. This discovery is an interesting prospect for
therapy.
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1.1.3 Osteosarcoma

Osteosarcoma is a malignant neoplasm arising from mesenchymal trans-
formed cells showing osteoblastic differentation. It is the most common
form of primary bone cancer. Unlike other cancers, not much is known
about the molecular genetics of osteosarcoma. As described in paragraph
1.1.2, page 16, it is often a secondary tumor associated with retinoblastoma,
indicating a possible pre-dominant role of RB1 in its tumorigenesis. An-
other interesting fact is that bones are a preferred metastatic site for many
of the cancers occurring in the Western world, e.g. breast, lung and prostate
carcinomas. Bones are a lively tissue, where osteoblast and osteoclast re-
new 10% of the skeletal mass per year. Osteoclast demineralizes the bones
and then degrades the ECM. Osteoblast reconstructs them. This allows our
skeleton to adapt to the possibly changing physical constraints of our bodies.
Bones seem to be such a beneficial micro-environment for metastases because
the bone ECM is unusually rich in trophic and mitogenic factors. Therefore
metastases will thrive there once they deregulate the osteoclast/osteoblast
balance toward one or the other, resulting in osteolytic metastasis, where
bone is dissolved or osteoblastic metastasis where bones accumulate in the
tumor vicinity.

Osteosarcoma, certainly benefit from that micro-environment, but apart
from its pathology presented next3, not much more is known.

Molecular genetics: As discussed, pRb is frequently affected. But unlike
for retinoblastoma, it is here not a sufficient condition for a tumor to appear.
Additional mutations of TP53 or CHEckpoint Kinase 2 (CHEK2 ) have
been reported. Recently, Sadikovic et al. (2009) have shown the possible im-
plication of Runt-related transcription factor 2 (RUNX2 ), Dedicator
Of CytoKinesis 5 (DOCK5 ), Tumor Necrosis Factor Receptor Su-
perFamily member 10A (TNFRSF10A) and Tumor Necrosis Factor
Receptor SuperFamily member 10D (TNFRSF10D). RUNX2 is in-
volved in the cell cycle regulation and DOCK5 , TNFRSF10A and D encode
for receptors involved in apoptosis.

Cytogenetics: As expected by the involvement of pRb and TP53 , LOH
of chromosome 13q14 and 17p13 are frequently observed. Additional aberra-
tions have been reported, such as a 18q LOH, and in a recent study, Sadikovic
et al. (2009), showed additional aberrations: 1q21.1-q21.3 and 6p21.1-p12.3
gain and 8p21.3-p21.2 deletion.

Diagnosis: Osteosarcoma will often first be misdiagnosed as cysts or mus-
cle problems. Only x-ray or scans, e.g. CT-scan, can reveal the existence of

3The original source for these information is OMIM, Entry 259500
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the tumor.

Symptoms: Patients complain of pain and if the tumor is large a swelling
can appear. As the bone structure is affected, pathological fractures can
occur.

Inheritance: As previously mentioned, c.f. paragraph 1.1.2, page 17, fa-
milial inheritance of a mutated RB1 allele increases the risk of osteosarcoma.
Additional inherited conditions predispose to the disease:

• Bone dysplasias such as the Paget’s disease

• Li-Fraumeni syndrome, where a TP53 mutated allele is inherited

• Rothmund-Thomson syndrome

Prevalence: The incidence rate is of 5 per million per year in the general
population in the US. Almost half of these affected are children under 15,
making it the 6th most common childhood cancer.

Penetrance: Variable penetrance has been reported in familial cases. In
murine animal models, it varies from very low to a 100% depending on the
gene(s) mutated. Based on these observations, one can expect a similar
situation for human osteosarcoma.

Treatment: The treatment relies on chemotherapy and surgical resection.

In the next sections, the bioinformatics’ methodologies used to analyze
the biology of these two cancers will be described.
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1.2 Microarray and data analysis

During the last two decades, our abilities to decipher in the laboratory the
genetic characteristics of a cell, such as karyotypes, genomic aberrations,
epigenetic modifications, gene expressions, protein levels, etc. have been
extended many folds through the establishment of high throughput tech-
nologies. For the analysis of genomic aberrations and gene expression - as
performed in this thesis - it first started with the establishment of the mi-
croarray technology that offered an unprecedented resolution until the recent
advent of NGS instruments. The upcoming of these high throughput tech-
nologies led to the development of a new field: bioinformatics. Indeed, the
amount of generated data could no more be analyzed manually and specific
softwares and algorithms had to be developed, requiring the interaction of
the biological, chemical, statistical and computational fields. This occurred
across a decade and turned microarray into an understood and mature tech-
nology. The developed tools gave researchers the possibility to move away
from a reductionistic - i.e. focusing on a gene - to a systematic approach of
the cancer disease. This shift is still occurring slowly, as it challenges both
our bioinformatics competencies and resources as well as our human ability
to understand such complex data. It is however a necessary step if we want
to cure cancer. Very recently, Rausch et al. (2012); Stephens et al. (2011);
Zhang et al. (2012) have demonstrated the advantages of such approaches.

1.2.1 Microarray technology overview

DNA microarrays consist of an arrayed series of thousands of microscopic
spots of DNA oligonucleotides, originally printed on a coated silicon or glass
slide support. Every spot contains picomoles of a unique DNA fragment:
a probe (or a feature), to which the complementary DNA or cDNA frag-
ment (the target) will hybridize. The targets have been modified to carry
a fluorochrome (see Figure 1.15 4) and the amount of fluorescence emitted
after excitation is recorded as the raw result. Signal intensities need to be
normalized for both technical and biological variations before they can be
used for further analyses.

History: The first approach at high throughput gene expression screening
by Augenlicht and Kobrin dates back to 1982. The first experiment using
an array of distinct DNA sequences with a computer assisted scanning and
image processing was performed by Kulesh et al. in 1987. The first minia-
turized array use was reported in 1995 by Schena et al. and the first com-
plete eukaryotic genome on microarray, that of Saccharomyces cerevisiae
was reported in 1997 by Lashkari et al. Rapidly, conventional genomics ap-
proaches were ported to microarrays e.g. the development of a microarray

4This image is from www.en.wikipedia.org/wiki/DNA microarray
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Figure 1.15 – The principle of microarray

based Comparative Genomic Hybridization (CGH) by Solinas-Toldo
et al. (1997). These successes lead to industrialization and many companies
started to produce microarrays, among which Agilent, Affymetrix, Illumina
and Nimblegen. But before the microarray became an established every-
day technique in most molecular genetics laboratories, many of these were
producing their own spotted microarrays.

Technologies: There are as many technologies as there are microarray
manufacturers, however they all share the same common protocol described
in Figure 1.165. The main difference is how the microarrays are generated.
Independent laboratories use robots to print their own collection of probes,
usually on a coated glass support. These microarrays are called “spotted”
microarray. Their production is time and cost efficient for small production.
The scalability is limited and the quality depends on many environmental
conditions such as temperature, humidity, etc.. Finally, their storage time
is relatively short. Probably for these reasons the four main manufacturers
have developed their own technologies:

5This image is from www.en.wikipedia.org/wiki/DNA microarray
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Figure 1.16 – The microarray procedure.
First, the DNA or mRNA is extracted from
the sample. In the case of mRNA it is con-
verted into cDNA using a retro-transcriptase
enzyme. Then the DNA/cDNA is labeled
with fluorochromes, usually Cy3 and/or Cy5.
The targets are then hybridized onto the mi-
croarray and this one is subsequently washed
to remove weak, aspecific, bindings. The mi-
croarray is then placed into the scanner. This
one uses a laser to excite the fluorochromes
and record the emitted fluorescence. The
recorded fluorescence is the raw data gener-
ated by the scanner and is the basis of the
bioinformatics pipeline where the data qual-
ity will be checked, and if deemed reasonable,
followed by the data normalization.
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• Affymetrix uses a photolithographic approach. The probe sequences
are assembled base per base on a coated support. At every synthesis
step, UV light shading masks are used that protect the sequences that
should not be extended during that particular step. This process limits
the probes size to 25bp. To circumvent this short probe size issue -
i.e. 25bp probes are likely to map to multiple place in the genome
- Affymetrix designed sets of probes per feature: the so-called probe-
sets. The very first microarray from Affymetrix was called GeneChip R©

(Lockhart et al., 1996) and for that reason are microarrays commonly
known as chip.

• Agilent uses a technology based on industrial scale inkjet printing.
The probes are longer, between 50 and 70bp long, as is the case for
the next two platforms. Particular care is taken during the design
to avoid possible probes cross-hybridization or formation of secondary
structures that would impair the hybridization of the target.

• Illumina uses beads to which the probes are attached. The beads
are dispersed on a microwell chip, each well being able to contain
only a single bead. Every bead possesses a unique sequence identi-
fier decrypted during the scanning process. This randomization of
the probes’ position helps avoiding border effects observed with other
kinds of microarrays. In addition, the higher number of probes present
on a single bead in comparison to that on a flat printed surface helps
reducing the amount of starting material and Illumina claims that
there is no need for sample Polymerase Chain Reaction (PCR)
amplification prior to the hybridization.

• Nimblegen uses a proprietary system: the Maskless Array Syn-
thesizer (MAS), similar to that of Affymetrix, but instead of using
masks, they use digitally controlled micromirrors to redirect the UV
light used to deprotect the sequences that need to be extended.

Applications: First, it is important to mention a crucial difference in the
technical application of the afore mentioned technologies: whether they are
used as single or two channel microarray. Single channel microarrays are
used for quantitative measurements, whereas two channels are used for rel-
ative measurements. The advantage of a dual channel platform is that the
difference between two samples is readily available with a single hybridiza-
tion: e.g. two samples, one from the tumor and one from healthy tissue,
marked with two different fluorochromes are hybridized on the same array.
Most commercial manufacturer platforms are single channels, but there are
a few two-channel specific products such as the Agilent Dual-Mode platform.
Traditionally, spotted microarrays are dual channel.
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Both can be used for numerous biological applications, an excerpt of
which is listed in the following list. Microarrays are commonly used in two
domains: for genomics and transcriptomics.

For transcriptomics:

• Expression Profiling (EP): DNA fragments of genes are spotted
or synthesized on the array. In the case of Affymetrix GeneChip R©,
the probes are selected mostly from the 3’ end of the gene. This
was the original design for many microarrays as the 3’ end of genes
would be least affected by mRNA degradation. Given the relative low
density achieved on such a chip, it was as well a way to measure several
isoforms at the same time. Newer generations of microarrays, as well
from other manufacturers, now have probes disseminated along the
genes.

• Alternative Splicing: although probes are located along the whole
genes for recent EP microarray design, and thus should allow to deci-
pher isoform expression, the actual signal deconvolution is so complex
that it has not been successful to date. To circumvent this issue, so-
called exon arrays were developed, including probes overlapping the
exon-exon junctions, offering a direct measurement of the correspond-
ing isoforms.

• Single Nucleotide Polymorphism (SNP): Many diseases are known
to originate from SNPs. The 1000 Genomes Project Consortium has
reported in 2010 approximately 15 million of them. On average, each
person carries 250 to 300 loss-of-function variants due to SNPs, small
insertions and deletions or structural variants. The probes on
these arrays represent different heterozygous SNPs, aiming at identi-
fying the hybridization difference between allelic variants.

• Tiling array: These are very high density arrays, where the probes
can even be partially overlapping. Rather than having known features
(e.g. genes, exons,. . . ) represented on the array, probes are designed
that span entire genomic loci. This is useful for characterizing unan-
notated regions of the genome and to identify transcripts/expressed
regions de-novo. Using such arrays, Xu et al. (2009) showed the bi-
directionality of the transcription.

For genomics:

• CGH: the array based version of the CGH technique that compares
the genomic content of two samples. This application developed by
Solinas-Toldo et al. (1997); Pinkel et al. (1998), named either array-
CGH or matrixCGH, relies on dual channel microarrays.
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• Copy Number Variation (CNV): This application can be seen as a
matrixCGH follow-up. Recent, very high density single arrays are used
to quantify the genomic content of a sample and its variations. The
higher resolution offers the possibility to discover smaller aberrations
and to pinpoint more precisely chromosomal breakpoints.

• ChIP-on-chip: This application combines a chromatin immunopre-
cipitation with the hybridization of the precipitated DNA sequence
on a microarray such as a tiling array. This has been widely used to
identify the binding events of TFs and more recently of specific histone
modifications.

• Methylation: There have been many kinds of microarrays developed
to analyze the genome methylation, especially for looking at CpG
Islands. An implementation using dual channel microarray was pro-
posed by Pfister et al. (2007). Other applications, such as MeDIP-chip
use Methyl-DNA immunoprecipitation (similar to ChIP-on-chip) fol-
lowed by an hybridization on microarray (Weber et al., 2005) or more
recently on tiling array (Pälmke et al., 2011).

• Chromosome Conformation Capture (3C): This technique used
to identify possible intra and inter chromosomal interactions based on
PCRs has been modified to be used in conjunction with microarrays.
In Circularized 3C (4C), one end of the chromosomal interaction
is known and microarrays are used to find its mate(s). In Carbon-
Copy 3C (5C), the generated fragments are amplified using a multi-
plex ligation-mediated amplification, i.e. a technique where multiple
targets can be amplified with a single primer pair, before their hy-
bridization to a microarray, allowing to screen for multiple interacting
loci at once.

In this thesis, EP and matrixCGH data are analyzed, which were gener-
ated using the Affymetrix GeneChip R©, and in-house produced 6,200 spots
microarrays, respectively.

Data Analysis: A microarray data analysis consists of two steps: the
pre-processing that deals with converting the raw data into normalized
data and the post-processing, where this data is analyzed in the light of
the experimental design to answer a particular biological question.

The pre-processing starts with the image analysis: the obtained intensi-
ties along with additional control parameters are used for Quality Assess-
ment (QA). If the quality is within acceptable standards, the intensities are
normalized and associated with their respective feature either through an an-
notation file or through specific identification processes. The pre-processing
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results in normalized intensity values ready for post-processing. In the fol-
lowing paragraphs, additional details specific to the EP and matrixCGH
microarrays used in this thesis will be given.

Image Analysis: In the case of Affymetrix, this process is fully au-
tomated within the scanner. In the case of spotted microarray, this process
requires software able to determine the position and the size of the spots.
Spots the shape of which are not circular enough, the fluorescence of which
are not homogenous or the signal of which are indiscernible from the sur-
rounding background signal (due to non-specific target hybridization), etc.
are filtered out. Evaluating the proportion of those is the first QA step.

Quality Assessment: Additional Quality Controls are performed
that need to be adapted to the particular experimental design at hand. For
spotted arrays, one would look for example at possible local effects, denot-
ing fluctuating concentration of material during the hybridization process.
For Affymetrix arrays, one would look at “spiked-in” controls, i.e. controls
that should have an expected fluorescence intensity. In addition, the bio-
logical design of the experiment might offer additional means of ensuring
quality, e.g. the results of technical or biological replicates can be com-
pared. Many softwares are available to perform such analyses, an example
for the Affymetrix platform is the Bioconductor package arrayQualityMet-
rics (Kauffmann et al., 2009).

The next pre-processing steps, annotation, feature identification and nor-
malization are intertwined and their order depends on the platform used.
For that reason, they will be introduced in an arbitrary order in the following
paragraphs.

Annotation: One of the limitation of microarrays is our incomplete
knowledge of the genome. Indeed, an array is designed based on the genome
version available at the time of creation. Given the update rate of most
genomes, especially since the advent of NGS techniques, the annotation of
the probes might change drastically. For example, only about 70% of the
probes of a 10 years old Affymetrix GeneChip R© (HG-U95Av2) map uniquely
in the latest version of the human genome This underlines the importance
of keeping the probe annotation up-to-date. In the case of Affymetrix,
these annotations are stored in a Custom Definition File (CDF). This file
records the probe genomic position, as well as their probe-set membership.
An additional file records the associated gene information. In the case of
matrixCGH arrays, the important information is the genomic location, as
accurate as possible, of the probe. Indeed, in a matrixCGH experiment,
the final results - gains or losses of chromosomal material and their extend
- is not a prior knowledge and can only be determined after normalization
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using specialized softwares. Keeping the probe information up-to-date is the
task of dedicated softwares, such as “customCDF”, which was developed for
this thesis work; see appendix C, page 197 for the submitted version of the
corresponding manuscript.

Feature Identification: This step is important for matrixCGH ar-
rays. After normalization of the data, it is important to identify the fea-
tures of interest: the CNV and their boundaries. The process used for this
is called segmentation. Many algorithms have been published involving
different implementations ranging from circular binary segmentation to
the use of Hidden Markov Model (HMM). Most of these methods have
been reviewed by Lehmussola et al. (2006) and as no method outperforms
the others, the choice of a segmentation method depends essentially on the
data at hand.

Normalization: This is an essential step of the data pre-processing.
Without it, it would be impossible to compare values within and between
arrays. Within arrays, local fluorescence variability, possible cross hybridiza-
tion, GC nucleotide percentage of the probe sequences, etc. are parameters
that need to be adjusted for. Between arrays, variation due to the local con-
dition of the run (humidity, temperature, etc.), as well as technical variation
(more potent fluorochrome, variation of the camera position, etc.) need to
be corrected. Popular Bioconductor packages that implement such normal-
ization for Affymetrix microarray data are: rma (Irizarry et al., 2003) and
vsn (Huber et al., 2002).

Post-processing normalized data: This step is entirely dependent
on the experimental design. Commonly for microarray, differences between
samples will be investigated, e.g. differences of mRNA abundance between
tumor and control samples. Numerous analysis tools have been developed
and this for every microarray application field. Not to list all these, only
the selection of tools used in this work are detailed in the Materials and
Methods chapter (chapter 3, page 41).

Although microarrays are restrictive - the observable data is con-
strained by their design - they are very powerful tools to investigate gene
expression, CNV, etc. Each of these tools has a targeted application and
although it might bring useful insight into a particular problem, its systemic
resolution is limited by the biological complexity in general, and of cancer
in particular. To alleviate that complexity and help discerning causes from
consequences, a solution is to combine several of these tools together and/or
with other non-microarray based approaches. This is the topic of the next
section.
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1.2.2 Integrative analysis

Relatively early in the usage of microarray, researchers realized that the
large amount of data generated could not be analyzed by traditional means.
Indeed, by lack of better approaches, most studies would focus on a few can-
didates from the hundreds or thousands identified. The candidates choices
were rather arbitrary and a lot of information remained unveiled. The need
for integrative techniques of analysis recognized, a large body of studies
started to report their implementation: functional enrichment analysis, tran-
scriptional network analysis, interactome analysis, etc. florished (reviewed
in Rhodes and Chinnaiyan (2005)). At the same time Segal et al. (2005)
underlined the importance of looking at gene modules, i.e. set of genes
involved in the same biological processes rather than at a handful of candi-
dates; an approach that relies on using interactome and Gene Ontology
(GO) annotation. The drawback is that such information are incomplete:
e.g. most of the interactions in the interactome databases come from yeast
2 hybrid experiments, which due to that method technicalities are mostly
about soluble proteins, including only few membrane proteins - as are mito-
genic receptors. This is not the only issue as cancer samples usually consist
of an heterogenous combination of cell types and present additional source
of variability - e.g. chromosome instabilities - that introduces confounding
effects. In this context, combining different kinds of data obtained from
identical samples allow to condense the data to a more relevant subset, as
was achieved by Garrett-Mayer et al. (2008);  Lastowska et al. (2007) for EP
and matrixCGH data.

In parallel to these integrative approaches, in-silico procedures to rep-
resent gene modules have been undertaken. They offer the possibility to
manipulate them, by changing their input state or by refining their circuitry
in order to assess the outcome of given mutations. Franke et al. (2008) re-
ported the effect of infection by H.pylori on the c-Met signal transduction
network by performing in-silico knock-outs and validating their prediction
in-vivo.

Integrative analyses have become an essential part of the studies of can-
cer, but despite successful recent stories, e.g. Sadikovic et al. (2009) or
Rausch et al. (2012) who used such analyses in a specific context, it is still
difficult to integrate data from different approaches into results that are
conceivable to our understanding. To achieve this at the scale of a complete
dataset in a statistically sound manner is complex and has not been done
to date, although an attempt at analysing the effects of CNV gains on gene
expression levels was done by Hyman et al. as early as 2002. A decade
later, there is still very few literature available on this topic in biology and
bioinformatics. To compare discrete data (such as arrayCGH CNVs) with
continuous data (such as EP values) is not trivial and of concern in the
field of statistics only. However, a number of statistical methods have been
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developed to adress that question in the research field of economy. Among
these, 5 methods - some of which are common correlation methods - can be
applied to biological data:

• Eta: originally developed in the field of economics, it is a measure
of the relationship between the statistical dispersion within individual
categories and the dispersion across the whole data.

• Weight: the original method described in Hyman et al. (2002). It
evaluates whether the mean difference between two categories can be
explained by the sum of the variation within these catagories. A large
score is indicative of a correlation between the continous and corre-
sponding discrete values. It is however limited to two categories and
every category has to have at least 2 members.

• Welch: a modified F-test for unequal variance introduced by Welch
in 1951. Since it uses a weighted approach based on a constant, it
cannot be applied in cases where the variance is null, nor if any of the
categories has no members.

• Pearson: an established parameterized correlation method assuming
that the data is normaly distributed and homoscedastic.

• Spearman: rank based parameter free Pearsons’ equivalent, indepen-
dent of the normality and equal variance assumptions.

These methods were applied in this thesis work in addition to de-novo de-
veloped approaches detailed in the Materials and Method chapter (chapter
3, page 41).

The obtained correlation values are in the [−1, 1] range. While positive
correlation are expected (e.g. a gene CNV gain resulting in its expression
increase), anti-correlation would be more surprising (e.g. a gene CNV loss
resulting in its expression increase). Table 1.2 shows the correlation range
and the possible gene expression dosage effect for an arrayCGH - EP inte-
grative analysis.

To summarize, integrative analyses are tools meant for combining datasets
obtained from a similar source (e.g. a tumor type) in order to increase the
detective power of these and limit confounding factors’ effects.
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arrayCGH/EP -1 1

-1
• w ∈ (0, 1]

• decrease

• w ∈ [−1, 0)

• positive compen-
sation

1

• w ∈ [−1, 0)

• negative compen-
sation

• w ∈ (0, 1]

• increase

Table 1.2 – Contingency table of the w correlation score ranges for arrayCGH
(change in copy number) - EP (change in expression) pairs observed in an
integrative analysis and their respective meaning on gene expression.
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1.2.3 Comparative analysis

Combining different technical approaches to get a better understanding of a
system, as done by integrative analyses, is one way to address the complexity
of these diseases. Another approach is the so-called comparative analysis
that combines data from different conditions, tissues or organisms to get an
overview of system-wide processes. Such approaches have been successful
for example to identify the subset of cells within a primary tumor, the
signature of which is identical to that of the metastases (Ramaswamy et al.,
2003) supporting the theory that the ability to form distant metastases is a
consequence of alterations in a subset of cells of the primary tumor and not
due to a selection pressure promoting the invasion/metastasis phenotype.
Another example of such analyses is the use of animal models to create in-
vivo models of tumor development. Brumby and Richardson (2005) reviewed
Drosophila melanogaster models of several hallmarks of cancer, including cell
growth and proliferation, invasion and metastasis, survival, and the failure
to differentiate.

As both the integrative and comparative analyses have been seldom de-
scribed in the literature and are a major achievment of the present work,
they’ll be extensively detailed in the Materials and Methods chapter (chap-
ter 3, page 41)

Ideally, combining these two kinds of analyses should give us an even
better understanding of complex problems. For this approach, the fact that
familial retinoblastoma patients will have in the majority of cases a subse-
quent osteosarcoma, analyses of secondary tumors is an interesting setup.
But prior to these analyses, it was necessary to establish the validity of the
algorithms and equations developed for them. It required the development
of yet another tool able to accurately simulate various kinds of microarrays
data, introduced in the next section.

1.2.4 Microarray simulation

The use of biologically realistic simulated data is the most appropriate way
to benchmark newly developed algorithms and test the validity of their
assumptions as the true outcome is known. Accurate True Positive Rate
(TPR) (sensitivy) and False Positive Rate (FPR) (1− specificity) can be
deduced. They help correct for type II and type I errors, respectively, and
can be easily visualized as Receiver Operating Characteristic (ROC)
curves.

An important aspect for the validity of this approach is the adequate se-
lection of the data generating models. For example, EP microarrays models
shoud be derived from experimental data by re-sampling or by constructing
differential equation models, which describe the time courses of gene expres-
sion as in Chen et al. (2000). These models are then modified by including
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systematic bias and stochastic noise (Cho and Lee, 2004; Dror et al., 2003;
Tu et al., 2002). A set of models, obtained by defining a set of parameters
adequately describing the experimental data, is then used to build artifi-
cial datasets with known characteristics. The comparison of the observed
versus the expected outcome of a given data analysis algorithm applied to
simulated data, enables the data analyst to evaluate the strengths and re-
strictions of the algorithm under different conditions (Costa et al., 2008;
Willenbrock and Fridlyand, 2005).

Besides the validation and improvement of single data analysis algo-
rithm, microarray data simulators are useful tools for the design of ex-
periments. By simulating entire microarray experiments, it is possible to
estimate the sample size (and the amount of arrays) required to test a hy-
pothesis (Gadbury et al., 2004) or to pinpoint possible problems during the
data analysis procedure.

As of today, several microarray simulators have been published (Sing-
hal et al., 2003; Balagurunathan et al., 2002; Nykter et al., 2006; Wierling
et al., 2002) - most of them focus on measuring the performance of image
segmentation software, which is required to calculate the raw data values
for each feature of a microarray after image scanning. The simulators from
Balagurunathan et al., Nykter et al. and Wierling et al. therefore create in
silico images and benchmark the impact of critical parameters for the image
analysis like spot distortion, or background signal effects.

The microarray simulator by Singhal et al. (2003) creates feature val-
ues as obtained after image segmentation (raw values) and normalization
(Huber et al., 2002; Smyth, 2004). It is a useful tool to benchmark data
analysis algorithms, which identify differences in RNA expression levels be-
tween sample groups. Unfortunately, its design restricts it to single channel
EP microarray data as obtained e.g. from nylon filters or Affymetrix arrays.
To date, there seem to be no microarray simulator available, which generates
feature extracted data for different array platforms like those dedicated to
EP or arrayCGH.

To address this need, I implemented a generic microarray simulator,
which generates data with realistic biological and statistical characteristics,
as an R package: aSim. aSim provides methods to simulate data for a
variety of microarray platforms and is not limited to a specific array lay-
out (Affymetrix, Agilent, Illumina, custom-made, etc.). In addition, the
simulation parameters are part of the aSim output, which allows the exact
reproduction of the simulated data and offers the possibility to exchange
these parameters within the microarray community.

The implementation and validation of aSim will be described in the
next chapters. It was an essential tool to ensure the rigorous integrative
and comparative analyses of the retinoblastoma and osteosarcoma dataset
presented in this thesis.
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Chapter 2

Aims of this doctoral work

The first aim of this thesis work was the development and enhancement of
bioinformatics approaches to better analyze high throughput data generated
using microarrays. In the recent past, these have been used to investigate
every step of the “central” dogma of biology: matrixCGH has been used to
characterize DNA copy number changes, EP microarrays to monitor gene
expression and protein-arrays to determine protein modifications, interac-
tions, etc. A large number of datasets, each concentrating on one of these as-
pects, have been produced and with their analyses came the realization that
cellular mechanisms were even more complex than anticipated. However,
understanding these is key to develop preventive, diagnostic and curative
methods for a large number of genetic diseases. To start to undertand the
complexity, two essential pre-requisites had to be adressed: first the effects
of confounding factors needed to be - if not removed - controlled for. Here,
the quality assessment, the normalization and the use of proper annotation
for pre-processing the microarray data played a key role. Second, the data
complexity needed to be deconvoluated so that its elements could be effi-
ciently analyzed, implying the development of new statistical and analytical
approaches.

These methods are of a broader interest as they are not restricted to
microarray data analysis but can be declined to perform any high through-
put generated data analysis. Hence, the second aim of this was to validate
them by addressing two cancer relevant biological questions: first, the effect
of CNV on gene-expression was investigated in an integrative analysis ap-
proach using retinoblastoma datasets. Then, based on the observation that
retinoblastoma patients have a higher chance than the average population
to develop osteosarcoma, the similarities and differences of these two tumors
were assessed at the gene expression level.
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Finally, the overall aim of this work was to demonstrate the feasibility
and efficacy of systems biology approaches to study cancerogenesis, with
the ultimate goal to develop personally adjusted therapies.
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Chapter 3

Material and Methods

3.1 Material

Seven sets of data have been used in this study. Five Affymetrix GeneChip R©

(Lockhart et al., 1996) EP experiments were retrieved from the Gene Ex-
pression Omnibus (GEO) (Barrett et al., 2007) database. The sixth, a
matrixCGH experiment (Solinas-Toldo et al., 1997; Wessendorf et al., 2002),
was generated in-house and shares the same samples as one of the EP sets.
The final set, performed in-house as well, consists of 3 additional EP sam-
ples.

3.1.1 Biological samples

Only the samples handled in the Division of Molecular Genetics at the
DKFZ are described here, the remaining are listed in the section 3.1.2, page
42.

matrixCGH samples: These samples, seventeen cases of retinoblastoma,
have been described in Zielinski et al. (2005). Shortly, three were hereditary,
among which two are bilateral. Among the fourteen non-hereditary, only one
was bilateral.

EP samples: These samples, 3 in total, were obtained from different
sources. One was provided by Professor Dr. Lohmann from the Institut
of Human Genetics at the University Hospital of Duisburg-Essen, Germany.
Another one was provided by Dr. Stephan Wolf, in collaboration with the
University Hospital of Heidelberg, Germany. The last one was purchased
from Clontech Laboratories, Inc. This last one is a sample pooled from 29
male/female caucasians, see Appendix A, page 175 for more details. For the
sample description, see Table A.1, page 177 in the same appendix.
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3.1.2 In-silico data

Five datasets of EP data were retrieved from the GEO database. These
were:

• GSE5222: a dataset, companion of the matrixCGH dataset from
Zielinski et al. (2005), used in the retinoblastoma studies by Grase-
mann et al. (2005); Gratias et al. (2007). For the sample description,
see Table A.1, page 177 in the appendix A. The samples were hy-
bridized to Affymetrix GeneChip R© HG-U133A.

• GSE29683 and GSE29684: this dataset originates from the study
of Mcevoy et al. (2011), who reported that retinoblastoma cells show
multiple features of different other cell types of ocular origin. See
the Table A.2 and A.3, page 178-180 in the appendix A for more
details. The samples were hybridized to Affymetrix GeneChip R© HG-
U133Plus2.

• GSE14359: this dataset from the Fritsche-Guenther et al. (2010)
study compares osteosarcoma primary tumor with lung metastasis tis-
sue and non-neoplastic osteoblasts. See the Table A.4, page 181 for
more details. The samples were hybridized to Affymetrix GeneChip R©

HG-U133a.

• GSE14827: this dataset is from the Kobayashi et al. (2010) study,
which investigated 27 cases of osteosarcoma with or without pulmonary
metastases to clarify the genomic basis of the development of such
metastases. The samples were hybridized to Affymetrix GeneChip R©

HG-U133Plus2. See the Table A.5, page 182 for additional information
about these samples.

• GSE5350: this dataset is from the MicroArray Quality Control
(MAQC) study (MAQC Consortium et al., 2006) that investigated the
reliability and reproducibility of microarray experiments accross mi-
croarray platforms and facilities. Here, only the results from the hy-
bridization of the Universal Human Reference RNA (UHRR) sample
from Stratagene to Affymetrix GeneChip R© HG-U133Plus2 are con-
sidered; a total of 30 microarrays that consist of 5 replicates done in
6 different facilities. The UHRR sample has been commercialized by
Strategene as a universal control for microarray experiments. See the
Table A.6, page 183 for a summary.
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3.2 Microarray methods

3.2.1 Quality Assessment

The QA is performed on all datasets to identify and remove microarrays,
the inclusion of which would introduce confounding factors. For the ma-
trixCGH dataset an in-house software - ChipYard (Toedt et al., b) - is
used for performing the QA. For the EP datasets, the R Bioconductor pack-
age arrayQualityMetrics (R Development Core Team, 2009; Gentleman
et al., 2004; Kauffmann et al., 2009) is used. See appendix B, page 184 for
an example of a QA report generated by that package on the DKFZ dataset.

3.2.2 Probe-set annotation

Affymetrix GeneChip R©: Affymetrix GeneChip R©s, as introduced (see
paragraph 1.2.1, page 27), depend on CDFs to combine their probes into
probe-sets. These probe-sets represent one gene-related feature, e.g. a tran-
script, a gene, etc., and the intensity readouts of their individual probes
need to be combined into a single value, representing their expression level.
Since the introduction of these arrays, more than a decade ago, the human
genome has been constantly refined. These updates imply that the CDF
files need to be refined as well. Several attempts to create custom CDFs
have been conducted (Gautier et al., 2004; Dai et al., 2005; Ferrari et al.,
2007; Lu et al., 2007), some very successful, but always using a very strin-
gent approach. For example, these custom CDFs will ignore about 30% of
all the probes present on the HG-U95Av2 GeneChip R©, because they do not
map a gene, or map antisense to it, or map several places in the genome.
These unused probes can be grouped into interesting probe-sets, and this
approach was taken in the division of Molecular Genetics, DKFZ, to develop
a new CDF pipeline (Delhomme et al., submitted), see the manuscript in
Appendix C, page 197.

Shortly, the probes are aligned against the genome version of choice. Using
the corresponding Ensembl (Flicek et al., 2011) version, the probes’ anno-
tations are retrieved based on their genomic location. The probes are then
grouped into probe-sets in a transcript-centric manner whenever possible. If
several transcripts of the same gene are identified, this information is stored
in the annotation. If all transcripts are mapped, then the annotation be-
comes gene-centric for that particular probe-set. This process is done using
probes uniquely mapping the genome, provided that there are more than 5
probes per probe-set, a criterion based on the statistical analyses performed
by Lu et al. (2007) that should achieve appropriate robustness without sig-
nificant loss of power. This is similar to the other CDF generation pipelines
mentioned, except for a few differences:
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• their probe-sets are all gene-centric

• Ferrari et al. (2007) enforce the probe-sets to have a number of member
probes similar to that of Affymetrix, i.e. 11 to 16 probes per sets.

In addition, in this approach the probes having no associated feature are
collected and processed to become part of three groups:

• probes antisense to a gene are grouped into sets provided that the
resulting set has at least 5 members and that the inter-probe distance
is not larger than 1kb.

• probes located in non-genic regions are grouped into probe-sets with
the same limitations as that of the antisense probe-sets.

• multiple mapping probes are grouped into probe-sets, transcript-centric
or gene-centric as described above, in a manner that minimizes the
amount of locations.

After this process, only a minimal number of probes are discarded (1%) and
valuable probe-sets added to the CDF.

Inhouse matrixCGH: The inhouse spotted matrixCGH uses a library
consisting of 6,200 Bacterial Artificial Chromosome (BAC) genomic
fragments. 3,200 originate from the Wellcome Trust Sanger Institute and
the remaining 3,000 are either from the RZPD or Invitrogen (CalTech BAC
library). To ensure traceability, these probe’s information was first stored
in a local database (CloneBase) that interacted with the Laboratory In-
formation Management System (LIMS) QuickLIMS (Kokocinski et al.,
2003) established in the lab. This system was replaced by PIMS (Probe In-
formation Management System) (Blond and Delhomme, unpublished) that
ensures that these probes’ annotations are kept up to date by frequently -
once every other month - retrieving the lastest Ensembl (Flicek et al., 2011)
relevant genomic and genic information. PIMS has been tightly coupled to
the other tools developed in the department: ChipYard (Toedt et al., b, un-
published) and the Flexible Annotation and Correlation Tool (FACT)
(Kokocinski et al., 2005). FACT offers the possibility to manually curate
and re-annote the probes’ information.

3.2.3 Expression Profiling

An expression profiling data analysis consists of several steps: QA, sample
selection, sample normalization, experimental design and if adequate, Dif-
ferential Expression (DE) analysis. Only after these steps the data can
be biologically interpreted. In the following paragraphs, the normalization,
experimental design and DE methods used in this manuscript are described.
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Selecting the normalization method: There are four main methods
to analyze Affymetrix GeneChip R© data. The Affymetrix proprietary MAS5

method will not be used nor discussed here. The results of the three remain-
ing methods: rma (Irizarry et al., 2003), gcrma (Wu and Irizarry, 2005) and
vsn (Huber et al., 2002) - all implemented in packages available from Biocon-
ductor (Gentleman et al., 2004) - are compared using the GSE5222 dataset
and the corresponding Ebased CDF. This is achieved using the customCDF

R package (Delhomme et al., submitted). This package is under review to
be added to Bioconductor. The normalized results obtained using the three
different methods are then compared pair-wise.

Creating the experimental designs: Creating a proper experimental
design is essential for the final result interpretation. For the datasets in-
troduced previously (section 3.1.2, page 42), this is straightforward as they
define at most two conditions, e.g. tumor vs. control, see Table 3.1.

GEO ID Condition 1 Condition 2 Experimental Design

GSE5222 Tumor Control Tumor - Control
GSE3791 Stem Cell - -

GSE29683 Tumor - -
GSE29684 Tumor Single Cell - -
GSE14359 Tumor Control Tumor - Control
GSE14359 Metastasis Control Metastasis - Control
GSE14359 Tumor Metastasis Tumor - Metastasis
GSE14827 Tumor with or with-

out metastasis
- -

GSE16088 Tumor Control Tumor - Control
GSE16091 Tumor - -

Table 3.1 – GEO datasets original experimental design extracted from the
GEO entries and relevant publications.

Differential expression analyses: To validate the Ebased CDF, a set
of DE analyses were performed, first using the GSE16088 dataset and its
original experimental design (see Table 3.1), then using the GSE29683 tu-
mor and GSE5222 control data in the same “Tumor-Control” experimental
design. Every mentioned EP dataset was normalized independently in R
using the svn package (Huber et al., 2002) encapsulated in the customCDF

package (Delhomme et al., submitted). Then for both DE analyses, the re-
spective “within-array” normalized datasets are normalized again to correct
for “between-array” effects using the R limma package. Finally, using the
linear models approach implemented in the same package, the DE values are
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calculated. The obtained p-values are adjusted for multiple testing using the
Benjamini and Hochberg (1995) correction and - unless specified otherwise
in the results (chapter 4, page 67) - only probe-sets with p-values lower than
0.05 and an absolute log2 fold change higher than 2 are returned, i.e. fold
changes smaller than 0.25 or larger than 4.

3.2.4 matrixCGH

Wet laboratory methods: The sample preparation, BAC-clone selec-
tion, DNA-extraction and the matrixCGH microarray preparation, labelling
and hybridization are described in Zielinski et al. (2005). The dataset was
hybridized in two separate batches using a different microarray layout, see
Table 3.2.

Chip ID Sample ID Sample Sex Control Sample Control Sex Batch

560 M22058 F male pool M 2
561 M22590 F male pool M 2
562 M22860 F male pool M 2
563 M23869 M female pool F 2
564 M24733 M female pool F 2
565 M24820 M female pool F 2
566 M20517 M female pool F 1
567 M22067 M female pool F 1
568 M22233 M female pool F 1
569 M22641 M female pool F 1
570 M22731 M female pool F 1
571 M23209 M female pool F 1
572 M23215 M female pool F 1
573 M24430 M female pool F 1
574 M24794 M female pool F 1
575 M22808 F male pool M 2
576 M23449 F male pool M 2

Table 3.2 – Details of the two batches of the (Zielinski et al., 2005) dataset.
Note that the samples are matched to an opposite sex control pool (of healthy
donors’ blood).

In-silico methods: The data-acquisition is described in Zielinski et al.
(2005), however, the processing and analysis - although following the same
procedure - are performed anew to use more recent tools and annotations.

Probe filtering: In addition to the three filters mentioned in Zielinski
et al. (2005): Mean to Median, Signal to Noise and Replicate SD, probes the

46



intensities of which are not above a minimal value were filtered out. This
Minimal Signal filter is introduced to remove probes which signal was too
close (≤ 1.2 times) to that of the whole array noise level to be likely to be
informative. This filter is a global signal-to-noise filter in comparison to the
above Signal to Noise that assesses local signal variations.

Segmentation algorithm: Numerous methods for segmenting array-
CGH data - identifying loci showing CNV - have been developed after the
original analysis performed by Zielinski et al. (2005), using:

• an HMM approach (Fridlyand et al., 2004)

• a non-parametric change-point method (DNAcopy) (Olshen et al.,
2004; Venkatraman and Olshen, 2007)

• a Gaussian model-based approach (GLAD) (Hupé et al., 2004)

• by building hierarchical clustering-style trees along each chromosome
(CLAC) (Wang et al., 2005)

• a penalized likelihood criterion to estimate breakpoints (Picard et al.,
2005)

• an expectation/maximization-based method (Myers et al., 2004)

• a Bayesian model that uses parameterized prior distributions and a
prior-less maximum a posteriori (MAP) technique to estimate the un-
derlying model (Daruwala et al., 2004)

• a wavelet approach (Hsu et al., 2005)

• etc.

These methods were assessed inhouse and based on published benchmark-
ing (Willenbrock and Fridlyand, 2005; Lai et al., 2005; Lehmussola et al.,
2006), GLAD was deemed the most appropriate for the Zielinski et al. (2005)
dataset. A modified implementation, optimized for the inhouse spotted ar-
ray: Alterations (Toedt et al., a, unpublished) available in ChipYard (Toedt
et al., b, unpublished) is used.

Missing value imputation: For discretized CNV data - the results
of arrayCGH data segmentation - missing values that impede the statistical
power of the downstream analyses were imputed whenever possible. Per
chromosome, a sliding window involving 5 probes was used to calculate a
median CNV value. This value was associated a confidence score - from 0
to 1 - based on the probes’ consistency within the window and the quantity
of missing values to infer. If that confidence score was above a selected
threshold of 0.8, the missing values were imputed.
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Breakpoint detection: As for the segmentation algorithm (see para-
graph 3.2.4, page 47), many tools had been published since the original
analysis. The same procedure led to the selection of GLAD for the the
breapoint detection within the Zielinski et al. (2005) dataset. As previ-
ously its ChipYard (Toedt et al., b, unpublished) implementation was used:
Alterations (Toedt et al., a, unpublished).

3.2.5 Integrative analysis

The term integrative analysis describes analysis that combines different kind
of data to increase its detection power. In the following, the different inte-
grative analyses performed in this thesis work are listed.

Multidimensional scaling: The R package MASS was used to perform a
Multidimensional Scaling (MDS) on the Zielinski et al. (2005) arrayCGH
dataset. The results were analyzed in conjunction with the clinical data.

Hierarchical clustering: Using the clinical data, the arrayCGH samples
from the Zielinski et al. (2005) dataset were subjected to a hierarchical
clustering using the R package hclust. The euclidean distance was used
as the metric and the ward method was used for clustering.

3.3 Microarray simulation

To assess the validity of newly developed techniques, it is important to be
able to assess their sensitivity - to estimate the type II error rate, i.e. to
count how many of the true positive features are identified - and specificity
- to estimate the type I error rate, i.e. to count how many true negative fea-
tures are identified. For doing so, knowing the expected outcome is essential
and is achieved through artificially generating data. As no simulator was
available that implemented the necessary assumptions about the arrayCGH
and EP data, I created one bundled in a R package: aSim.

3.3.1 Simulation workflow

The simulation workflow is described in Figure 3.1. The definition of the
simulation parameters can be done by the user (manual mode) or automat-
ically. In either modes, the simulation requires groups of probes/features to
be defined. The actual grouping method depends on the microarray type.
For matrixCGH, physically linked regions are used, while for expression pro-
filing clusters of probes representing genes, usually independent of physical
linkage are defined. A feature can only be assigned to a single group. In the
automatic mode, the groups are created as follows (Figure 3.1, step a-d):
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Figure 3.1 – The diagram of the aSim workflow.

• Let G = {g1, g2, . . . , gk} be the set of all defined groups

• Let F = {f1, f2, . . . , fn} be the set of all features to be assigned to a
group

Every group gi is defined by:

1. a model Mi, of the data generating process defined by model parame-
ters pi - e.g. for a Gaussian model, pi is given by:

pi = (µi, σ
2
i )

where µi is the mean and σ2i is the variance - which is used to model
regulatory effects (Figure 3.1, step c-d).

2. a state indicator (Figure 3.1, step b)

si ∈ {−1, 0, 1}
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used to define the category of the regulatory effect observed in the
data: changes in DNA copy numbers (arrayCGH) or gene expression
levels (expression profiling).

• a value of 1 is used for a DNA copy number gain or “high-
expressed” gene.

• a value of−1 represents a DNA copy number loss or “low-expressed”
gene.

• a value of 0 is synonymous with balanced DNA copy numbers or
“average gene expression”. Note that this state, albeit discrete,
is Without Loss Of Generality (WLOG) as it just indicates
the direction of the effect observed in the group gi; the actual
parameters of this effect (i.e. its strength, its frequency, etc) are
entirely described by the model Mi.

3. a set of features:

fi = fi,1 , . . . , fi,j , subset of F

Every feature fi,j of a set fi is assigned a generated data value vi,j
drawn from the model Mi distribution and modified by the state in-
dicator si:

vi,j =

{ ∏
mi,j , si ∀si ∈ {−1, 1}

mi,j otherwise
(3.1)

where mi,j is the value drawn from the model Mi distribution.

The output of the simulator contains the list of groups G, describing the
data generation parameters used during the simulation and the list of all
features F with their associated values. These are the simulated data and a
representation of the mixture of the models described by the list G - mix-
ture models have been proposed in the literature to describe microarray
data (Ghosh and Chinnaiyan, 2002; Hoyle et al., 2002). In the context of
benchmarking data analysis algorithms, the G list describes the reference to
which the algorithms outcome has to be compared.

aSim can simulate any type of microarray data, which can be abstracted
in the described way. For arrayCGH and expression profiling, the simulator
can be used in an automatic fashion, given a less detailed input. To achieve
this, the necessary simulation parameters were extracted from five datasets
of diverse origin. The datasets, parameter extraction and automatic simu-
lation are the topic of the three next sections.

3.3.2 Datasets description

Five datasets, totaling 225 microarrays have been used to develop the aSim

simulator. Table 3.3 describes these datasets.
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Dataset number
of arrays

type description availability

Mendrzyk
et al. (2006)

88 arrayCGH ependymoma GEO GSE3435

Snijders et al.
(2001)

15 arrayCGH 12 fibroblast,
2 chorionic
villus and 1
lymphoblast
cell strains

GLAD R package

Sültmann
et al. (2005)

74 EP kidney cancer kidpack R package

Thuerigen
et al. (2006)

46 EP primary breast
cancer

GEO GSE4056

Veltman et al.
(2003)

2 arrayCGH bladder cancer GLAD R package

Table 3.3 – Publicly available datasets used for developing the aSim simulator.

3.3.3 Parameter extraction

Expression profiling: For simulating microarray data, the following pa-
rameters have to be extracted for every group of probes: status, distribution
model, expected value and standard deviation. For the expression profiling
data, the cluster set G is created by grouping the original probes using a
k-means clustering. Depending on the total number of probes, the number
of clusters is adapted to generate probes group sizes, which are in the range
of the KEGG (Kanehisa et al., 2012) pathway size (min = 1, max = 299,
median = 31). For the kidney dataset (Sültmann et al., 2005) G consists of
50 clusters, whereas for the breast dataset (Thuerigen et al., 2006) it con-
sists of 300 clusters. This generates a distribution of the probe group sizes
similar to the KEGG one (minimum = 2, maximum = 64, median=33).
For every gi, the mean and standard deviation of their members’ values
is calculated. Their state - i.e. “average”, “low” or “high-expressed” - is
determined according to their mean value as in:

si =


0 if µ̄− 2σ̄ < µi < µ̄+ 2σ̄
1 if µi ≥ µ̄+ 2σ̄
−1 if µi ≤ µ̄− 2σ̄

where µi is the mean of the cluster members’ values, µ̄ and σ̄ the mean and
sd of all the values, respectively.

arrayCGH: For the arrayCGH data, GLAD - a data segmentation algo-
rithm that detects chromosomal breakpoints and assigns a genomic status
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to every identified chromosomal region - is used and the set of regions G is
extracted from its results. For every region gi, the mean and standard devi-
ation of their members values is calculated and the state derived from these
results. Finally, the last parameter set is the distribution model. The data
model that would best represent EP and arrayCGH data is highly debated
in the community and no consensus has been reached so far (Hoyle et al.,
2002; Huber et al., 2002; Li and Yang, 2002; Huber et al., 2003; Steinhoff
and Vingron, 2006). Hence, the commonly accepted standard were chosen:

• the Gaussian distribution for the arrayCGH features located in bal-
anced regions and for the EP probes showing no change in expression.

• the log-normal distribution to represent the probes located in the ar-
rayCGH aberrant regions and the differentially expressed EP clusters.

3.3.4 Automatized simulation

These are based on arrayCGH and EP experimental data. First, the key
parameters for the simulation are extracted, then the groups are defined
and finally the simulation is performed. The following description is based
on the default simulator models: Gaussian and log-normal. Additional
distribution models can be integrated in the simulator as additional modules
and they do not need to rely on the parameters (i.e. offset and shape)
described and used below.

In the first step of the automatic process, the standard deviation to be
used for the groups is determined. This is done by calculating the Median
Absolute Deviation (MAD) of experimental values issued from balanced
regions or having an “average” gene expression. The mad estimator is pre-
ferred here for its outliers robustness. The calculated value madg, describes
the overall array variance to be simulated.

The next step is the group definition. For arrayCGH, a group represents
a genomic aberration with a defined chromosomal start and end position.
For expression profiling, a group defines a probe cluster. Its members rep-
resent genes, which can be located on different chromosomes (i.e. a subset
of a gene pathway or all genes controlled by a specific transcription fac-
tor). These two group-building processes will be detailed in the next two
paragraphs.

As described above, every group gets assigned a state si and a distri-
bution model Mi, with its offset (e.g. mean) and its shape (e.g. standard
deviation). For a group state of 0 (no aberration/no change in expression),
the default distribution is Gaussian, the offset is set to 0, and the standard
deviation is given by the estimate madg. For a group state 6= 0, the default
distribution is log-normal, the standard deviation is madg and the offset is
set to a default offset od, equal to 0.46 for arrayCGH and 3.1 for expression
profiling. This default value od was determined by the analysis of the 225
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microarrays described previously in section 3.3.2, page 50. The last step
consists of the value assignment for every probe as described in equation
(3.1).

arrayCGH groups: These are defined by chromosomal start and end
positions. Genomic imbalances identified by arrayCGH are physically linked
regions; i.e. features are grouped by chromosomal regions having the same
status. Therefore G = g1, g2, . . . , gK is the set of all regions, aberrant or
not. It is assumed that the number of chromosomal aberrations for every
chromosome arm is defined by a Poisson distribution Po(λ = 0.1).

Let N = {n1, n2, . . . , ns}

be the resulting set of chromosomal arms aberration counts.

Let ∀nj , Aj = {an,1 , an,2 , . . . , an,j }

be the set of aberrations on a chromosome arm. Every aberration aj , is
defined by:

1. its state sj ∈ {−1, 1}

2. its length lj in base pairs (bp)

3. its model Mj (as described in equation (3.1))

In cancer, an aberration can vary in size between one bp and the length of
a complete chromosome arm. This is modeled by a log-normal distribution
with the default parameters µ = 15.2 and σ2 = 2.12, therefore:

lj ≈ log(µ = 15.2, σ2 = 4.41)

The set of aberration Aj is distributed randomly on its respective chromo-
some arm and every aj receives a chromosomal locus. Aj is a subset of G,
for the aberrant regions of a given chromosome arm. Remaining loci on
this chromosome arm not covered by any aberration are determined. Their
occurrence oj ∈ {0, . . . , nj + 1}, depends on the locations and sizes of Aj .

Let Bj = {b1, b2, . . . , bn,j } for oj 6= 0

be the set of normal regions. Every bj has its length derived and is assigned
a state value of 0 and a model as described above. G is the union of all the
Aj and Bj .
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EP groups: The EP groups are probe clusters. Expression levels iden-
tified by expression profiling do not need to have any physical linkage,
but features having similar expression patterns - e.g. features identifying
genes regulated by a given transcription factor - may be grouped in clusters.
Therefore G = {g1, g2, . . . , gK} is the set of all these clusters. Each cluster
gi is defined by:

1. a state si ∈ {−1, 0, 1}

2. a set of member features Fi = {fi,1 , . . . , fi,J }

3. a model Mi (as described in equation (3.1)).

For every cluster gi∀i ∈ {1, . . . , n − 1}, the amount of member features
mi is determined from an hyperbolic distribution which approximates the
observed pathway sizes from KEGG (Kanehisa et al., 2012) -pathway size:
min = 1, max = 299, median = 31 - as in:

mi ≈ H(π = 8, ζ = 1, δ = 1, µ = 1)

using the first parameterization of Barndorff-Nielsen and Blaesild (1983).
The mi features are then drawn from F to build fi. The state si is de-
termined from two Bernoulli distributions. In the first one, p - the success
probability - is the probability of the cluster to show a high or low expression.
The second one, determines the direction of that change:

si = Bernoulli(p = 0.06)× ((Bernoulli(p = 0.5)× 2)− 1)

3.3.5 Performance

The simulator performances were assessed by generating a series of microar-
rays of different sizes from 1, 000 to 100, 000 features.

3.4 Microarray integrative analyses

3.4.1 Selected datasets

For demonstrating the advantages of integrative analyses, the arrayCGH
and EP obtained from the Zielinski et al. (2005); Grasemann et al. (2005);
Gratias et al. (2007) studies are used.

Different pre-processing steps need to be performed on the EP and array-
CGH data to render them comparable for performing an integrative analysis:

1. combining the EP control samples.

2. defining the EP expression states.
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3. rescuing the arrayCGH sex probes.

4. imputing the arrayCGH missing ratios.

5. defining and imputing arrayCGH virtual probes.

Combining the control samples: The EP dataset originally had only
one control sample. Two additional samples were hybridized (see section
3.1.1, page 41), the Clontech one twice, as technical replicates. The GeneChip R©

HG-U133A being no more available - the one used for the Grasemann et al.
(2005); Gratias et al. (2007) studies - the HG-U133Plus2 GeneChip R© was
used instead. To compare the original control sample with the 3 new ones,
the probe-sets correspondance between the two GeneChip R©s had to be de-
termined. The expression values between the samples hybridized on both
platforms were then compared pair-wise using the Pearson correlation.

Defining the expression states: The DE of the EP data was calculated
as described previously (see section 3.2.3, page 44), using all 4 control sam-
ples defined in the former paragraph. The threshold for significance was set
to an adjusted p-value of 1e−4. Probe-sets with a negative significant log2
Fold Change (log2 FC) were attributed a −1 state, whereas those with a
positive one were attributed a 1 state. The non-significant probe-sets were
given a default 0 state. This state matrix ( probe-sets × samples) was then
refined per probe-sets. First, Z-scores were calculated per probe-set:

z =
x− µ
σ

with x the log2 FC values for that probe-set, µ the fitted log2 FC value
obtained from the DE analysis and finally σ the standard deviation of these
probe-set values. These Z-scores were used to refine the state of the probe-
set within every sample. If its absolute value was smaller than 1.85, no
changes were applied. If its value was more extreme, then a value of 1
was subtracted or added for the lower (negative Z-score) or higher (positive
Z-score) extremes, respectively.

Rescuing the sex probes: As the arrayCGH microarrays used had an
opposite sex matched design (i.e. the microarrays used were dual-channel),
the CNV state and log-ratio for the sexual chromosome had to be corrected.
For male samples, there should have been a 1X loss of the X chromosome
and a 1X gain of the Y chromosome. The situation was reciprocal for the
female. As a consequence the median log2 FC of the reported 1X gain or
loss was calculated and this value subtracted from the Y chromosome and
added to the X chromosomes’ probes for male samples and vice-versa for
female ones.
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Imputing the missing log-ratio: As the arrayCGH experiment used
spotted microarrays, missing log-ratio values had to be imputed (as previ-
ously described for the states, see the related paragraph in section 3.2.4,
page 47). In the present case, the state value (i.e. discretized CNV) of the
upstream and downstream windows surrounding the value(s) to be imputed
were compared. If they were equal (i.e. being in a region of common CNV
status), then the missing values were imputed using the aSim simulator. The
necessary simulation parameters (i.e. distribution, mean, sd) were “Gaus-
sian” and the median and MAD of the log ratio values calculated for every
possible state value.

Defining virtual clones and imputing their values: As the array-
CGH spotted microarray probes achieved only a partial coverage of the
genome, virtual probes lying in between actual probes or chromosome phys-
ical boundaries (centromere, telomere, heterochromatin regions) were de-
fined. Their values was imputed as described above for the missing values
and previously in section 3.2.4, page 47.

3.4.2 Integrative analysis workflow

The following paragraphs describe the different steps performed to compare
the two datasets.

Overlay definition: Based on the genomic annotation of the arrayCGH
BAC-clones and of the EP probes (contained in the CDF file), the overlap
between these two sets of probe was calculated. Probes were paired when
their genomic loci overlapped; this information was then stored in an overlay
structure on top of both datasets. The overlay was minimized so that it
contained the smallest number of the largest possible regions.

Summarization and visualization: Using the overlay, a combined dataset
was defined that merged the arrayCGH and EP data; e.g. for the arrayCGH
discrete data, we obtained a matrix m×n, with m the set of non-overlapping
loci and n the samples. The dataset consisted of 4 such matrices, 2 per array
kind, one for the discrete and one for the continous values. An additional
matrix was generated by combining the discrete value matrices; it summa-
rized the co-occurence of the arrayCGH and EP states and had therefore a
size of m×n2. This matrix was used to calculate a contingency table and
the R vcd package was used to produce an assocation plot (suggested by
Cohen (1980) and extended by Friendly (1992)) indicating deviations from
the expected independence model, in the present case the residuals were the
signed contribution to the Pearson’s χ2.

56



Correlation: Five methods, as presented in section 1.2.2, page 30 have
been implemented:

1. Eta

2. Pearson

3. Spearman

4. Weight

5. Welch

Each of these statistic were calculated per probe-set/gene (i.e. the matrix
row).

Eta: η2 is the percent of variance in the dependent variable (the con-
tinuous data) explained linearly or nonlinearly by the independent variable
(the discrete data, i.e. the states). The formula to calculate η2 is:

η2 =

∑n
i=1 ni(ȳi − ȳ)2∑n

i=1

∑ni
j=1(yij − ȳ)2

, η2 ∈ [0, 1] (3.2)

where n describes the number of members of every discrete data class (i.e.
there are five classes: N = [−2,−1, 0, 1, 2] in the discrete data), ȳi is the
mean of the continous value of the class ni, ȳ is the overall mean and yij are
the single continous value of the class ni.

Pearson: The Pearsons’s r statistic based on a sample of paired data
(Xi, Yi) is:

r =
1

n− 1

∑
i=1

n(
Xi − X̄
σx

)(
Yi − Ȳ
σy

) (3.3)

where X̄ and σx are the mean and standard deviation, respectively.

Xi − X̄
σx

is actually the standard score (i.e. the Z-score).

Spearman: The Spearman’s ρ statistic was calculated by the formula:

ρ = 1− 6
∑
D2

N(N2 − 1)
, ρ ∈ [−1, 1] (3.4)

where D is the difference between the ranks of the arrayCGH and EP ratios
and N is the number of pairs of values.
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Weight: w was modified from Hyman et al. (2002), where they only
considered positive CNV, i.e. gain of chromosomal material. The original
equation:

w =
µg − µn
σg + σn

where µg and σg are the mean and Standard Deviation (SD) of the EP
log2 FC from amplified regions and µn, σn their counterpart for normal
regions, was extended to:

w =
|µg − µn|+ |µl − µn|

σg + σl + σn

where µl, σl are representative of the EP log2 FC of the lost regions. The
numerator represents the distance between every class and can be further
abstracted to any number of classes n by the formula:

w =

∑
i 6=j |ȳi − ȳj |
n− 1

∑
i σi

, w ≥ 0 (3.5)

for i, j = 1, . . . , n.

Welch: v2 is a modified F-test for unequal variances (Welch, 1951). It
is calculated by:

v2 =

∑k
i=1wi

yi−ŷ2
k−1

1 + 2(k−2)
k2−1

∑k
i=1

1
fi

(1− wi∑
wi

)2
(3.6)

where yi, i ∈ [1, . . . , k] are statistical quantities i.i.d and fi the number of
degree of freedom:

f̂1 = (k − 1)

f̂2 = [
3

(k2 − 1)

k∑
i=1

1

fi
(1− wi∑

wi
)2]−1

Since the weight used in Welch statistic is wi = 1/λiσ
2
i , where λi is a con-

stant, one cannot compute the statistic if any one group has a zero standard
deviation. Moreover, sample sizes of all groups have to be greater than or
equal to zero.

Extreme cases correction: As just described for Welch, the mentioned
algorithms have a certain number of limitations, for which corrections can
be applied. The evaluated methods were:
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1. compact

c =
C

N
+
D

N
×

d∑
i=1

|Di,1 −Di,2|), c ∈ [0, 1] (3.7)

where N is the total number of arrayCGH - EP pairs, C,D the number
of concordant and discordant pairs and Di−1 − Di−2 the distance of
the discordant pairs.

2. gamma (Goodman and Kruskal, 1972)

γ =
C −D
C +D

, γ ∈ [−1, 1] (3.8)

where C is the number of concordant arrayCGH - EP pairs and D the
number of discordant ones.

3. kappa is modified from Cohen (1960).

κnew =
B − C
1− C

, κnew ∈ [0, 1] (3.9)

where B and C are respectively the sum and sum of squares of the
arrayCGH - EP pairs contingency matrix diagonal.

4. none no correction applied.

5. percent

p =
C

N
, p ∈ [0, 1] (3.10)

where C and N are as described for equation (3.7).

Not all corrections make sense for every method, i.e. Pearson and Spearman
do not need any, while Welch can not be corrected by either gamma or kappa.

Benchmarking: To benchmark the five available algorithm families, a
dataset of diverse arrayCGH and EP experiments was simulated using the
package aSim (introduced in section 3.3, page 48). The original parameters
used are described in Table 3.4. To be able to create ROC curves and mea-
sure the Area Under the Curve (AUC), the specificity and sensitivity
of every method was measured on a dataset series where the noise was in-
creased stepwise, i.e. the σ value was increased and a new data dataset was
generated, the FPR and TPR recorded and so on until the different method
results converged. By that time, the simulated data had no biological char-
acterisctics anymore. To visualize the effect of noise increase, the AUC was
recorded for every method and every condition and plotted against delta:
the inverse of the noise.
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kind model µ σ

arrayCGH gain log-normal 0.40 0.15
arrayCGH loss log-normal -0.48 0.15

arrayCGH no change normal 0.016 0.08
EP diff. exp. log-normal 1.24 0.99

EP no exp. change normal 0.002 0.16

Table 3.4 – aSim parameters used to simulate the first benchmarking dataset.

Gene annotation: Candidate gene annotation were retrieved from http://www.genecards.org
(Rebhan et al., 1997).

3.5 Gene Ontology analyses

GO term enrichment analysis were performed using Ontologizer (Bauer
et al., 2008). Enrichment were measured using the Parent-Child method
(Grossmann et al., 2007) and corrected for multiple testing using the Benjamini-
Hochberg correction (Benjamini and Hochberg, 1995). An adjusted p-value
cutoff of 10% was used for the integrative analysis analysis and of 1% for
the comparative analysis.

The ontologies and gene annotations for Homo sapiens were automatically
retrieved by Ontologizer from the www.geneontology.org website.

For the enrichment analysis, the population was defined as all the genes
present on the respective microarray, e.g. 12, 599 genes were used when the
data originated from an experiment performed on Affymetrix GeneChip R©

HG-U133A.

All GO evidence codes were used when the study sets were of small sizes
(≤ 200 genes), otherwise the IEA (Inferred from Electronic Annotation)
code were filtered out, as they are of lower quality (see Table 1 in Rhee
et al. (2008))

3.6 Microarray comparative analysis

The comparative analysis performed between retinoblastoma and osteosar-
coma made use of the same statistical approaches described previously for
the microarray integrative analysis, see section 3.4, page 54 with a few mod-
ifications described below.
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3.6.1 Sample selection

As the samples were not matched, e.g. primary retinoblastoma and re-
lated osteosarcoma metastases, samples were selected from the Mcevoy et al.
(2011) and Kobayashi et al. (2010) studies (see section 3.1.2, page 42). Both
were hybridized to Affymetrix GeneChip R© HG-U133Plus2, which has twice
more probe-sets ( 50, 000) than the HG-U133A. After performing the QA,
15 samples from both studies, the most similar ones, were selected and as-
signed an arbitrary common sample name. Since both these studies do not
have a proper set of controls, the appropriate samples from the GSE5350
dataset (MAQC Consortium et al., 2006) were selected.

3.6.2 Workflow modifications

Due to the fact that every sample originated from EP studies - unlike the in-
tegrative analysis performed previously - two steps of the previously detailed
workflow had to be adapted.

Defining the expression states: First, the expression states were calcu-
lated for both datasets - GSE29683 (Mcevoy et al., 2011) and GSE14827
(Kobayashi et al., 2010) - as described in paragraph 3.4.1, page 55.

Defining the overlay: Second, since both datasets share the same plat-
form, there was no need to create an overlay and the data was directly
subjected to the Weight correlation with a percent correction, see equa-
tions (3.5) and (3.10).

The rest of the analyses is similar to that described in sections 3.4 and
3.5
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Chapter 4

Results

Here, the results of the different methods introduced in the previous chapter
are presented; first the EP, then the matrixCGH and finally the integrative
and comparative analyses results will be described.

4.1 Expression Profiling analyses

This section describes the pre-processing results as well as the higher level
analyses performed on the EP Affymetrix GeneChip R©s for both tumors:
retinoblastoma and osteosarcoma. A total of 6 datasets were retrieved from
GEO: 3 retinoblastoma (GSE5222, GSE29683 and GSE29684), 2 osteosar-
coma (GSE14359 and GSE14827) and a control set extracted from the GEO
GSE5350 MAQC study. For the GSE5222 dataset, an additional set of 3
control samples was generated in the division of Molecular Genetics, DKFZ.

4.1.1 Quality Assurance

For every dataset, a number of microarray samples had to be removed as they
did not pass the QA criteria. These, based on the results of the Bioconduc-
tor package arrayQualityMetrics (Kauffmann et al., 2009), were stringent
to ensure the highest possible similarity of the different samples within a
dataset. As the integrative and comparative approaches need to combine
several of these datasets together, this is necessary to limit the effect of con-
founding factors. The number of samples removed are listed in the Table
4.1. For an example of a QA report, generated for the GSE5222 dataset,
see appendix B (page 184).
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Figure 4.1 – Number of alignments per probe against the Homo sapiens cdna
(Ensembl version 53) reference for the HG-U133 Plus2 GeneChip R©. Note that
the x axis is on a log scale.

Figure 4.2 – Number of alignments per selected probe against the Homo
sapiens cdna and dna (Ensembl version 53) reference for the HG-U133 Plus2
GeneChip R©
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GSE
5222

GSE
29683

GSE
29684

GSE
14359

GSE
14827

GSE
5350

Fail 3/21 17/62 4/20 4/20 6/27 5/30
% 14.3 27.4 20 20 22.2 16.7

Table 4.1 – EP dataset QA summary

4.1.2 Probe-set annotation

To analyse GeneChip R© microarrays, it is important to use accurate probe-
set information. As described in section 3.2.2, page 43, a probe-set consists
of a variable number of probes (16 on average) identifying the same gene.
The quick pace of the human genome re-sequencing necessitates a frequent
update of the probe-set containing information file: the Custom Defini-
tion File (CDF) file. As presented in the manuscript (Delhomme et al.,
submitted) (see Appendix C, page 197), in comparison to the other CDFs
our Ebased CDF offers a higher sensitivity, is more frequently updated and
uses as many probes as possible to benefit from all the possible informa-
tion present on a GeneChip R© microarray. In addition, it contains addi-
tional probe quality information, such as the number of genes mapped by a
given probe-set. Applied on the frequently analyzed ALL dataset (Chiaretti
et al., 2004, 2005), it unravels three new potential candidate genes, with
implications in cancer already shown in other tumors. A few additional key
properties of these CDFs, not presented in the manuscript, are introduced
here:

1. the maximum number of alignments taken into consideration

2. the different probe-set classes

Maximum number of alignments: Some probes will return a humon-
gous number of alignments. As these probes are consequently uninformative,
probes aligning to more than 5 different loci are discarded. The reason for
that choice of threshold is that given the probability that a gene is expressed
- and detectable using microarrays - in a tissue being 30%− 40% (Su et al.,
2002; Ramsköld et al., 2009), there is still one chance in four that the value
observed for a probe-set mapping to 5 different gene loci comes from the
expression of a single one of them - i.e. the likelihood, given a binomial
distribution with a probability value of 0.4, of a single value from a group of
5 to be TRUE is 26%. The figure 4.1 shows the number of alignments per
probes against the Homo sapiens cdna (Ensembl version 53) (Flicek et al.,
2011) reference for the Affymetrix GeneChip R© HG-U133 Plus2. About 93%
of the probes have less than 6 reported alignments. The proportion is a little

69



higher (95%) for the alignment against the Homo sapiens dna (Ensembl ver-
sion 53) reference (not shown); as detailed previously, only the probes with
a maximum of 5 alignments are kept. The cdna alignments not spanning
any exon-exon junction (EEF) are a subset of the dna alignments. After
combining these common alignments, more than 80% of the probes have a
unique alignment, about 10% align to 2 different loci and the remaining 10%
to 3 or more (see Figure 4.2).

The different probe-set classes: As introduced - see section 3.2.2, page
43 - the Ebased CDF defines 3 main classes of probe-sets: transcript and
gene-centric and genomic. This last class can not be associated with any
gene information. These 3 classes can be refined in sub-classes, e.g. the
antisense class that identifies a probe-set antisense to the related transcript
or gene. As can be seen in Figure 4.3, showing the 6 different kinds of
sub-classification, about 30% only are of the “transcript” class, a fact that
underlines the necessity to use updated CDFs to decrease the false discov-
ery rate of any downstream analysis.

Figure 4.3 – Proportion of the different probe-set classes determined for the
HG-U133 Plus2 GeneChip R©
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Note that this representation of the classification is redundant, a probe-
set being possibly a member of different sub-classes. When looking at the
“transcript” or “gene” centric probe-set non redundant classes (see Figure
4.4 and 4.5), the vast majority of the generated probe-sets match a unique
feature. About 17% match untranslated loci, mostly in the 3’UTR region of

Figure 4.4 – Proportion of the
different transcript-centric probe-set
classes determined for the HG-U133
Plus2 GeneChip R©

Figure 4.5 – Proportion of the dif-
ferent gene-centric probe-set classes
determined for the HG-U133 Plus2
GeneChip R©

the genes - an expected effect since Affymetrix used Expressed Sequence
Tags (ESTs) to design the probes at the 3’end of the transcripts. An ad-
ditional 17% of the probe-sets are associated with multiple features, the
proportion of which can be seen in Figure 4.6.
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Figure 4.6 – Gene count per probe-set for the HG-U133 Plus2 GeneChip R©

Half of the probe-sets are associated with two genes whereas the other
half is associated with three or more. In the same figure it is interesting
to note that 60% of the probe-sets have a unique target while 20% have
no identified targets. These are the “non-genic” probe-sets created by the
Ebased CDF generation process, see section 3.2.2, page 43. Altogether,
using the Ebased CDFs adds one third more information that using any
other custom CDF.
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4.1.3 Data normalization

Selecting a normalization method: As introduced in the previous sec-
tion, custom CDFs were created to enhance the Affymetrix GeneChip R©

probes’ usage. To evaluate the possible effects of the redefined probe-sets on
the commonly used Affymetrix normalization methods in R - rma (Irizarry
et al., 2003), gcrma (Wu and Irizarry, 2005) and vsn (Huber et al., 2002)
- the GSE5222 dataset was normalized using these three methods and the
results compared pair-wise. In Figure 4.7, the comparison of the gcrma and
rma normalization methods on the M20517 sample of the GSE5222 dataset
is shown. The gcrma normalization takes into account the probes’ sequence,

Figure 4.7 – Comparison of the gcrma and rma normalization methods on the
M20517 sample of the GSE5222 dataset. The color scale blue (sparse) - yellow
(dense) represents the density of the data points.

structure and affinity to correct the probe-set expression value. As can be
seen in the Figure 4.7, this results in the majority of the probe-sets having
extremely low log2 expression values with a mean of 2. The detection limit,
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commonly accepted on Affymetrix microarray due to its signal-to-noise ra-
tio, is within a log2 value range of 5-6; hence the affinity correction applied
here by the gcrma approach is innapropriate - determining experimentally
the exact probes’ affinity values and providing them to gcrma would prob-
ably correct this - and therefore this normalization method cannot be used.

The comparison of gcrma and vsn gives the same results and is not shown
here.

The comparison of the rma and vsn methods, shown in Figure 4.8, reveals

Figure 4.8 – Comparison of the vns and rma normalization methods on the
M20517 sample of the GSE5222 dataset. The color scale blue (sparse) - yellow
(dense) represents the density of the data points.

that both yield highly similar results (the Pearson correlation score being
very close to one), however the vsn package variance stabilization effects
are clearly visible: the characteristic “banana-shape” of the scatterplot and
the vsn expression values distribution close to the expected shape of a log2
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distribution. These indicate that the variance was stabilized across the 10
log2 FCs of the distribution: i.e. high expression values that tend to have
larger variance and low expression values, where the variance tends to be
much larger than the actual expression values, have had their variance har-
monized, rendering the data homoscedastic, a pre-requisite for downstream
analyses assuming a normal or log-normal distribution (e.g. the linear mod-
els used in the following sections). Consequently, the vsn normalization was
selected.

Finally, the last step of normalization - the normalization between arrays -
is adequate as shown in the Figure 4.9 boxplots for the GSE5222 dataset,
where every sample distribution is highly similar. For comparison, the third
page of the QA report presented in the appendix page 184 show the corre-
sponding raw data boxplot.

Figure 4.9 – Boxplots showing the normalized distribution of the expression
values of all GEO GSE5222 samples.

To conclude, using the redefined CDFs does not have an effect on the
data normalization.
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4.1.4 Differential Expression

To validate the Ebased CDF, two differential expression analyses are per-
formed, one with retinoblastoma and one with osteosarcoma data. Both
follow the same experimental design “Tumor vs. Control”.

Retinoblastoma: The tumor samples from the GSE29683 dataset are
compared to the GSE5222 control samples using the R limma package. Only
probe-sets having a p-value lower than 0.05 and a log2 FC higher than 2
are conserved. 988 probe-sets pass these criteria, the 20 first of which are
reported in Table 4.2, 11 are up and 9 down-regulated.

Over-expressed genes1: The results presented in this table validate
the Ebased CDF and indicate that the normalization approach has cor-
rected possible technical bias (such as the GeneChip R© being prepared and
hybridized in different facilities). Indeed, 6 genes identified by the 11 over-
expressed probe-sets (from a total of 9 genes) have been associated with
cancer: RRM2 and ASPM are implicated in neo-angiogenesis (Zhang et al.,
2009; Lin et al., 2008), TMSB15A is implicated in cell migration and metas-
tasis (Tang et al., 2011), TOP2A is amplified in breast cancer and is the
target of therapeutic agents such as trastuzumab and anthracyclines (Ar-
riola et al., 2008), NUF2 is implicated in a cell cycle checkpoint (DeLuca
et al., 2003) and CDC2 is an essential cell cycle member. EFHC2, LCORL,
EZH2 have not yet been clearly associated with cancer.

Down-regulated genes: All the genes (n=8) identified with the 9
down-regulated probe-sets are present in differentiated tissue, and are retina-
specific. RHO is a retina pigment, PDE6A is a phosphodiesterase expressed
in retina rod cells, SAG is a major soluble photoreceptor protein, PPEF2 is
involved in the rhodopsin (the product of the RHO gene) dephosphorylation
(Ramulu et al., 2001), PTGDS is involved in the regulation of non-rapid eye
movement sleep in mice, binds small non-substrate lipophilic molecules such
as retinoic acid and is possibly involved in the development and maintenance
of the blood-retina barrier in human, TTR mutation may result in vitreous
opacities, GNG13 is an heterotrimeric G protein gamma subunit and is
expressed in retina, RLBP1 is a soluble retinoid carrier essential for the
function of both rod and cones photoreceptors.

1gene annotation from http://www.genecards.org (Rebhan et al., 1997)
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Gene sym-
bol

Gene name log FC Avg.
expr.

Adj. p-
value

Gene
count

RRM2 Ribonucleoside-diphosphate
reductase subunit M2

6.19 11.53 0.00 1

RRM2 Ribonucleoside-diphosphate
reductase subunit M2

5.44 11.38 0.00 2

RHO Rhodopsin -5.17 8.06 0.00 1
TMSB15A NB thymosin beta 5.07 11.47 0.00 1
TOP2A topoisomerase (DNA) II al-

pha 170kDa
5.04 10.18 0.00 1

PDE6A Rod cGMP-specific 3’,5’-
cyclic phosphodiesterase
subunit alpha

-4.84 7.95 0.00 1

PPEF2 Serine/threonine-protein
phosphatase with EF-hands
2

-4.83 7.04 0.00 1

SAG S-arrestin -4.82 9.23 0.00 1
RRM2 Ribonucleoside-diphosphate

reductase subunit M2
4.80 10.68 0.00 2

EFHC2 EF-hand domain-containing
family member C2

4.69 10.72 0.00 2

PTGDS Prostaglandin-H2 D-
isomerase Precursor

-4.65 8.95 0.00 1

TTR Transthyretin Precursor -4.59 8.54 0.00 1
ASPM Abnormal spindle-like

microcephaly-associated
protein

4.55 9.47 0.00 1

NUF2 Kinetochore protein Nuf2 4.46 9.59 0.00 1
CDC2 Cell division control protein

2 homolog
4.39 10.97 0.00 1

GNG13 Guanine nucleotide-binding
protein G

-4.38 7.25 0.00 1

LCORL Ligand-dependent nuclear
receptor corepressor-like
protein

4.37 9.56 0.00 1

RLBP1 Retinaldehyde-binding pro-
tein 1

-4.37 7.77 0.00 1

PTGDS Prostaglandin-H2 D-
isomerase Precursor

-4.36 9.30 0.00 1

EZH2 Polycomb protein EZH2 4.21 10.62 0.00 2

Table 4.2 – retinoblastoma GSE29683 (tumor) vs. GSE5222 (control) differ-
ential expression. The top 20 probe-sets are presented.

77



Genomic probe-sets: Another validation of the Ebased CDF comes
from the first identified “genomic” probe-set:
“15 38743354 38743629 plus genomic at” that maps just downstream of the
CASC5 gene - the “cancer susceptibility candidate 5” gene - probably in
its 3’ UTR region, see Table 4.3. The UTR regions are difficult to define
experimentally in human and have been shown to vary in size depending on
the tissue, i.e. different termination/poly-adenylation sites exist for single
genes and their usage is regulated in a tissue-dependent manner (Zhang
et al., 2005).

ID log FC Avg. expr. Adj. p-value

15 38743354 38743629
plus genomic at

3.87 8.79 0.00

Table 4.3 – The first most significant “genomic” probe-set of the retinoblas-
toma GSE29683 tumor vs. GSE5222 control differential expression analysis.

Osteosarcoma: The GSE14359 tumor and metastasis samples are com-
pared with the non-neoplastic osteoblast samples. The data from the Fritsche-
Guenther et al. (2010) study allow four kinds of comparisons:

1. Tumor vs. Control

2. Metastasis vs. Control

3. Tumor and Metastasis vs. Control

4. Tumor vs. Metastasis (the Control samples cancelling each-other out)

all of which were performed to determine the significant transcripts in-
volved in osteosarcoma primary and metastasis development, as well as those
specific for the metastazation process.

Tumor and Metastasis vs. Control: The Table 4.4 contains the
results of applying linear models to determine significant changes in gene
expression using the same parameters as above (see paragraph 4.1.4, page
76); the 20 most significantly changed probe-sets are shown. 10 of the down-
regulated genes (n = 17 in total) are precursors of either trophic or mitogenic
factors or of protein receptors. This is as expected for healthy bone tissue
- see section 1.1.3, page 18 - which ECM acts as a reserve for such factors.
The 5 remaining genes: HSPB6, AHNAK2, PDLIM2, NQO1, PAPB2, PT-
GIS can all be related to cancer. HSPB6, as well knows as Hsp20, has
been associated with a proliferation suppression effect - unlike most other
heat shock proteins - in hepatocellular carcinoma (Matsushima-Nishiwaki
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et al., 2011). AHNAK, which has a high sequence homology to AHNAK2,
has been shown to be downregulated in cell lines of neuroblastoma, small
cell lung carcinoma and Burkitt lymphoma (Amagai, 2004). PDLIM2 and
NQO1 are both negative regulators of the NF-κB pathway (Tanaka et al.,
2007; Jamshidi et al., 2012). PAPB2 is involved in the poly(A) tail forma-
tion (Hurschler et al., 2011), a process often deregulated in cancer (Audic
and Hartley, 2004). Finally, PTGIS is involved in the prostacyclin path-
way. An analog of this lipid molecule has been shown to inhibit non-small
cell lung cancer (Tennis et al., 2010). The last down-regulated probe-set -
of the “genomic” class - lies in a gene empty region and cannot clearly be
associated with any genic feature. Moreover, as some of its probes map mul-
tiple locations any analysis without further experimental validation would
be speculative.

Concerning the up-regulated genes, two of the probe-sets -
“ENST00000292896 ENST00000380237 transcript multiple at” and
“ENST00000361970 transcript antisense at” - need further analyses. The
first one, associated with the gene HBE1, has probes mapping over genes.
A closer look reveals that those genes: HBD, HBG2, HBG1, HBB are all
Hemoglobin subunits. The second probe-set, antisense to the CCDC152
actually overlaps the 3’ UTR region of the SEPP1 gene located on the
opposite strand. That later gene has often been associated with cancer
(Persson-Moschos et al., 2000; Gonzalez-Moreno et al., 2011), but as being
down-regulated. Finally the RNASE1 gene has been associated with cancer
(Leland et al., 2001; Barrabés et al., 2007), but its role not clearly elucidated.

Even though the results are sensible, it is difficult to determine which
genes are causative and which not, i.e. the change in expression of 12 out
of the 20 most significantly differentially expressed genes is probably a side
effects of the de-differentiation of osteoblasts during cancerogenesis. In the
following, other comparisons are performed on this dataset to assess whether
it can help resolve this issue.

Tumor only vs. Control: To assess whether the metastasis samples
are introducing confounding factors that affect the results, the DE analysis
was performed next using only the tumor samples. The obtained list of
differentially expressed genes is very similar to the former one, see Figure
4.10 for a Venn diagram comparing the identified probe-sets. Only 3 probe-
sets differ in the first 30 of both lists, identifying two down-regulated genes,
both coding for protein precursors: N-sulphoglucosamine sulphohydrolase
Precursor and CD44 antigen Precursor. These probe-sets became significant
in the tumor-only DE analysis because their expression in metastasis is
highly variable as exemplified on Figure 4.11 for CD44. That gene is involved
in many biological processes: cell proliferation, migration, etc. and has been
reported as being over-expressed in many cancers. The fact that it is down-
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regulated here agrees with the hypothesis of the previous paragraph: i.e.
that these precursors are produced to be stored in the bone ECM. However,
focusing on the tumor samples only for the DE analysis did not help to
identify more likely causative genes.

Figure 4.10 – Venn diagram of the
probe-sets differentially expressed
in the tumor-only and tumor +
metastasis analyses

Figure 4.11 – Dotchart of the GEO
GSE14359 dataset CD44 gene ex-
pression values. The metastasis sam-
ples show a higher variability.

Metastasis only vs. Control: As in the previous paragraph, per-
forming a DE expression using only the metastasis samples did not reveal any
potentially causative genes, only one differs in the first 40 - the Cytokine-like
protein 1 Precursor - when comparing the complete and the metastasis-only
differentially expressed gene lists with each other, see Figure 4.12. It encodes
another protein precursor, which seems not to be expressed in metastasis
samples - the microarray detection limit is within the range of 5 to 6 -, see
Figure 4.13.
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Figure 4.12 – Venn diagram of the
probe-sets differentially expressed
in the metastasis-only and tu-
mor+metastasis analyses

Figure 4.13 – Dotchart of the GEO
GSE14359 dataset CYTL1 gene ex-
pression values. The metastasis
samples have values very close to
the Affymetrix microarrays detection
limit.

Figure 4.14 – Volcano plot of the GSE14359 primary vs. metastasis DE
statistic significance. The orange doted lines represent the log2 FC cutoff used
while the dashed ones represent the commonly used one in the rest of the
analyses.
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Osteosarcoma primary vs. metastasis samples: Neither the com-
parison of the primary tumors nor that of the metastasis with the osteoblast
controls yielded evidence as of which genes may be causative of the cancero-
genesis. The direct comparison of the primary and metastasis samples offers
a possibility to reduce the effect of the confounding factors, i.e. those genes
that are differentially expressed as a consequence of cancerogenesis. As both
kinds of samples are similar, the likelihood to observe differential expression
is lower; as a consequence the log2 FC threshold has been reduced to 1 in-
stead of 2, a choice justified by the volcano plot presented in Figure 4.14.
The 20 most significantly differentially expressed genes are shown in Table
4.52. In that table, it is evident that other confounding factors appear: e.g.
Pulmonary surfactant-associated proteins, SLC34A2 that may have a role
in the synthesis of surfactant in the lungs’ alveoli, etc. However some inter-
esting candidates show up, such as HMBOX1 that encodes a TF that acts
as a transcriptional repressor, HOPX that may be a tumor suppressor gene,
MCTS1 that is versatilely associated with cancer and TACSTD2 that may
function as a growth factor receptor.

Limiting confounding factors: To further remove the confounding
factors, the 4 candidate lists obtained from the different comparisons of the
GSE14539 dataset are intersected, see the Venn diagram in Figure 4.15.

Figure 4.15 – Venn diagram of the four candidate genes lists obtained by
comparing the different samples of the GSE14359 dataset. The comparison are
numbered as introduced on page 78, e.g. “comp. 1” is the first comparison:
tumor + metastasis vs. control.

2gene annotation retrieved from www.genecards.org (Rebhan et al., 1997)
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GeneSymbol GeneName Description

Over-expressed in metastasis

CLIC3 Chloride intracellu-
lar channel protein 3

may participate in cellular growth con-
trol, based on its association with
ERK7, a MAP kinase

NPR3 natriuretic peptide
receptor C

involved in metabolic and growth pro-
cesses

CAV1 Caveolin-1 co-activator of the NF-κB and Wnt
pathways

CSTA Cystatin-A has been proposed as prognostic and
diagnostic tools for cancer.

TM4SF1 Transmembrane 4 L6
family member 1

plays a role in the regulation of cell
development, activation, growth and
motility; highly expressed in different
carcinomas.

S100A6 Protein S100-A6 Involved in the cycle progression and
differentiation. Chromosomal rear-
rangements and altered expression
have been implicated in melanoma.

MEST Mesoderm-specific
transcript homolog
protein

Involved in development. It is im-
printed, exhibiting preferential expres-
sion from the paternal allele. The loss
of imprinting has been linked to cancer
and may be due to promotor switching.

Over-expressed in primary tumor

MAD2L1 Mitotic spindle as-
sembly checkpoint
protein MAD2A

a component of the mitotic spindle as-
sembly checkpoint. Prevents the on-
set of anaphase until all chromosomes
are properly aligned at the metaphase
plate

MNAT1 CDK-activating ki-
nase assembly factor
MAT1

Involved in cell cycle control and
in RNA transcription by RNA poly-
merase II

RRM2 Ribonucleoside-
diphosphate re-
ductase subunit
M2

involned in neo-angiogenesis, see sec-
tion 4.1.4, page 76

PRAME Melanoma anti-
gen preferentially
expressed in tumors

transcriptional repressor, inhibiting the
signaling of retinoic acid (RA) through
the RA receptors. Prevents RA-
induced cell proliferation arrest, differ-
entiation and apoptosis.

Table 4.6 – Subset of the candidate genes that are differentially expressed
between the primary and metastasis samples of the GEO GSE14359 dataset.
(source: www.genecards.org) 85



36 probe-sets are differentially expressed between the tumor vs. the con-
trols and metastasis respectively. Half of them are trophic factor precursors
(n=15), genomic loci (n=4) or their known annotation irrelevant (n=4).
The remaining genes are presented in Table 4.6. Both cell populations are
different, supporting the hypothesis that metastasis is not a trait appearing
late in tumors (see section 1.1.1, page 11).

Despite how revealing these results are, they are still obscured by con-
founding factors. It is clear that such approaches solely based on microarray
EP, although refining our knowledge of cancer, are not sufficient to grasp
the cancerogenesis process. To address this, integrating and comparing the
EP results with that of other analyses is necessary. In the next section, I
introduce a complementary arrayCGH dataset used for that purpose.
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4.2 Array based CGH

The dataset from Zielinski et al. (2005) was actually performed in two
batches using different microarray layouts, see paragraph 3.2.4, page 46.
The QA and segmentation analysis -including the data filtering and nor-
malization - were performed on both sets independently. It is important
to note that the samples have been matched with an opposite sex control
as an additional QA. This has the drawback that the sexual chromosome
abberations cannot be determined.

4.2.1 Quality Assurance

All seventen samples pass the QA. For an example of a quality report, see
appendix B, page 184. The sample presented there is M23215, one of the
samples failing to pass the QA in the GSE5222 EP dataset (see section 4.1.1,
page 67).

Merging batches: As mentioned, the Zielinski et al. (2005) dataset was
performed on two batches. The quality of both batches is similar and not
affected by the use of different microarray layouts. The two layouts used
contain the same probes in an equal number of replicates, only their po-
sitioning differs. This actually offers an additional control for the possible
technical artefacts such as “border effects” - i.e. when the measured in-
tensity of a spot would be affected by a physical boundary such as a chip
edge.

4.2.2 Profile segmentation

The segmentation performed using the Alterations (Toedt et al., a, unpub-
lished) tool, an optimized implementation of GLAD (Hupé et al., 2004) for
ChipYard (Toedt et al., b, unpublished) (Toedt et al., b) gave similar re-
sults as that of the original analysis performed by Zielinski et al. (2005).
The Figure 4.16 shows the results for the M23215 (Chip ID: 572) sample
and the Figure 4.17 shows the CNV results for the whole dataset.
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Figure 4.16 – CNV segmentation and state assignment of the M23215 sample.
In blue are the non-aberrant loci, in green and in red are represented gains and
losses of genomic material, respectively. The dark blue region is the one used
as a reference to infer the loci state. 88



Figure 4.17 – Frequency of alterations in the complete arrayCGH dataset.
Shown in green are the gains and in red the losses. The chromosome X and
Y are technical artefacts, i.e. the samples were opposite-sex matched. The
proportion of male in the analysis - represented by the loss of X and the similar
gain of Y - roughly 70%, is as expected (12 males/17samples) validating the
overall experiment.
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Almost all the abberations are found that have been identified in Zielin-
ski et al. (2005) (case #12, table 1, page 296, n=19). As can be seen in
the tables 4.7 and 4.8, the identified alterations encompass the ones previ-
ously identified, with only two differences. The chromosome 22q13.2 gain

locus type

1 1q21.1-1q44 gain
2 2q37.1-2q37.3 gain
3 5p15.33-5p12 gain
4 5q11.1-5q35.3 gain
5 6p25.3-6p21.1 gain
6 10q24.31-10q26.3 gain
7 13q12.13-13q34 gain
8 20p13-20p13 gain
9 6q22.33-6q27 loss

10 8p23.3-8p12 loss
11 11q22.1-11q22.1 loss
12 17p13.3-17p11.2 loss

Table 4.7 – Aberrations identified in
the M23215 sample using the Alter-
ations tool

locus type

1 1q21-1q44 gain
2 2q37.2q37.3 gain
3 5p15.32p15.31 gain
3 5p13.2p13.2 gain
4 5q11.2q11.2 gain
4 5q13.2q13.2 gain
4 5q23.1q35.3 gain
5 6p21.33p21.1 gain
6 10q24.31q25.1 gain
6 10q25.2q25.2 gain
6 10q25.3q25.3 gain
6 10q26.11q26.12 gain
6 10q26.13q26.3 gain
7 13q12.13q34 gain
8 20p13p13 gain

13 22q13.2q13.2 gain
9 6q22.33q27 loss

10 8p23.3p12 loss
12 17p13.2p11.2 loss

Table 4.8 – Aberrations originally
identified in the M23215 sample by
Zielinski et al. (2005).

originally observed falls under the detection threshold of the new method,
whereas an almost high level loss on chromosome 11q22.1 was originally
overseen. Overall, the frequency previously observed and newly calculated
are identical as shown in Table 4.9. Numerous additional aberrations are
found affecting mostly a few individuals (n = 1-3), but for the chromosome
11q22.1 band that is lost in 60% of the cases and gained in 18 others.
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locus %gain %loss

Zielinski et al. (2005)

1q 71
2p 29
6p 59
13q 12 12
16q 41
17p 18
19p 12
19q 24

newly identified

1p 12
2q 12
3p 6
5p 6
5q 6
6q 9
7p 6
7q 9
8p 6
8q 6
10q 6 6
11q 18 60
12p 6
14q 6 12
15q 6
16q 6
18q 6
19p 12
19q 12
20p 6
20q 6
21q 6
22q 6

Table 4.9 – Alterations originally reported and newly identified in the Zielinski
et al. (2005) dataset.
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Genes present on band 11q22.1: Three genes are found in that region,
see Table 4.10. Among those, PGR could be an interesting candidate as it
is involved in cell proliferation and differentiation.

Gene symbols Gene names

CNTN5 Contactin-5 precursor (Neural recognition
molecule NB-2) (hNB-2).

Q96M56 HUMAN Pseudogene, weakly similar to Homo sapiens
oligophrenin 1.

PGR Progesterone receptor (PR).

Table 4.10 – Genes mapped to the chromosome 11q22.1 band, lost in 60%
and gained in 18% of the samples of the Zielinski et al. (2005) dataset.

4.2.3 Integrative analysis using clinical parameters

The availability of clinical data - see Table A.1, page 177 in the Appendix
A, page 175 - allowed us to look for correlations between the CNVs and
different traits.

Multidimensional Scaling: The first approach using MDS to reduce
confounding factors did not reveal any striking correlation between the ar-
rayCGH data and the clinical factors, as can be see on Figure 4.18.

Hierarchical clustering: The second approach, using hierarchical clus-
tering revealed that the presence of vitreous seeding correlates with the
number of aberrations, see Figure 4.19. Tumors without vitreous seeding
have a median of 1 aberration per tumor, whereas their converse have a me-
dian of 6 aberrations per tumor, a statistically significant difference (Welch
Two Sample t-test p-value of 0.02). A similar finding had been reported
in Gratias et al. (2007). It is interesting to note that out of the 4 samples
with few aberrations and no vitreous seeding, two are hereditary and bilat-
eral, while a third one - spontaneous - is unilateral but multifocal, indicative
of a possible germline mutation, which was experimentally confirmed. As
expected from the Knudson two-hit hypothesis, patients with a germline
mutation (n = 6 from a total of 14 - 3 values are missing) have less aber-
rations: a median value of 3 vs. 5 respectively (Welch Two Sample t-test
p-value of 0.1). However the association between the gain on chromosome
1q and a later onset of the disease, reported in Gratias et al. (2005) could
not be verified - median values of 675 vs. 550 days with a Welch Two Sample
t-test p-value of 0.9.
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Figure 4.18 – MDS of the Zielinski et al. (2005) dataset. Only the first two
dimensions are represented. In every panel, the title describe the trait under
investigation and in the upper right corner are the different values color coded.
There is no obvious grouping of the data points according to a trait.
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270

Figure 4.19 – hierarchical clustering of the Zielinski et al. (2005) dataset.
The samples are ordered by similarities, using the Euclidean distance and the
Ward clustering. The aberrations are reported in green (gain) and red (loss).
The vitreous seeding status is indicated on the right of the figure.
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These interesting results show the potential of performing integrative anal-
yses, however the rather small amount of arrayCGH samples makes it diffi-
cult to draw more significant conclusions. To achieve the later, as presented
in the section 4.4, page 103, I have combined the retinoblastoma arrayCGH
with the EP data. This required the development of new statistical analysis
methods, which in turn needed to be assessed for their sensitivity and speci-
ficity. This is best done using simulated data, i.e. the outcome (expected) is
well defined and can be used to score the method results (observed). As no
simulator could be identified that implemented the necessary data models, I
developed a microarray simulator, which assumptions and performances are
shortly evaluated in the next section.
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4.3 Microarray simulation

As introduced in the section 3.3, page 48, the developed aSim package uses
mixture models to simulate EP or arrayCGH data. Figure 4.20 presents
an example of a mixture model as used in the simulations and analyses
introduced further on.
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Figure 4.20 – arrayCGH mixture model: plotted are the simulated values
from the chromosome 8 of the ependyma sample X924 from the Mendrzyk
et al. (2006) dataset. The overall density function (in black) is the result of
the convex combination of the density functions of the four groups present -
i.e. the four regions having different copy numbers.

4.3.1 Simulations setup

In order to generate biologically realistic microarray data with aSim, the
simulation parameters of 225 arrays issued from 5 publicly available mi-
croarray datasets (see Table 3.3, page 51) were extracted. An example of
these parameters for the Veltman et al. (2003) “p9” sample chromosome 2
are presented in Table 4.11. Using these parameters, series involving the

chr start end offset sd state model

2 1 90899990 -0.14 0.10 0 normal
2 95694714 173121000 -0.14 0.10 0 normal
2 173121001 212567000 0.41 0.06 1 log.normal
2 212567001 242951149 -1.06 0.09 -1 log.normal

Table 4.11 – Parameter set to simulate the Veltman et al. (2003) arrayCGH
“P9” sample chromosome 2. The second half of the q arm presents first a single
copy gain, then a complete loss of its telomeric part.
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225 chips representative for the datasets were simulated. In total more
than 14, 000 simulations were performed. For the expression profiling, the
parameter extraction process was stringent, to ensure a high similarity be-
tween the original and simulated data and prove the simulators principle.
For the arrayCGH data, the GLAD (Hupé et al., 2004) algorithm was used to
extract the simulation parameters, to prove the simulators concept of test-
ing algorithms. For all the simulations, the simulator default distribution
models, i.e. Gaussian and log-normal were used.

4.3.2 Data comparison

Independently of the platform being simulated, the expectations are that the
original and simulated data agree and correlate with each other. Spearmans
rank correlation coefficient was computed to compare the simulated data
with the original data. To assess the similarity between the original and the
simulated data, two criteria were computed: the Limits of Agreement
(LOA) (Bland and Altman, 1999) and the Total Deviation Index (TDI)
(Lin et al., 2007). For both the arrayCGH and EP simulation method, series
of 5 simulations per sample were performed.

Expression profiling simulation: A high similarity between the origi-
nal and simulated EP data, due to the stringent parameter extraction, is
observed, as exemplified in the Figure 4.21.
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Figure 4.21 – Agreement tests (LOA and TDI performed on the first Sült-
mann et al. (2005) EP sample. The mean difference is close to zero, both
agreement tests yield similar results. The variability increase for larger mean
difference is expected, as the variance in de-regulated gene clusters is higher
than in unchanged ones.)
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All the datasets show a high Spearmans rank correlation coefficient (close
to 1), and a small TDI (close to 0). There is no systematic mean shift in the
data (close to 0) and, as expected under this condition, the TDI tolerance
interval [-TDI, TDI] and the LOA are very similar. This shows that the
simulator principle is able to simulate data highly similar to the original
one.

Array CGH simulation: For the arrayCGH simulations, the expecta-
tions are the same. The TDI is small, there is no systematic mean shift
in the data and the TDI tolerance interval [-TDI, TDI] is almost identical
to the LOA: the simulated data “agrees” with the original data. However,
the Spearmans rank correlation coefficients are very variable: 0.13 − 0.8.
Actually, the coefficients correlate with the chip variability (Pearsons cor-
relation coefficient = 0.84 (95% Confidence Interval (CI): 0.77 − 0.9)),
which is a measure of the standard deviation of a chip, based on its number
of aberrations and their size as in:

variability = SD(µ1 × w1, µ2 × w2, . . . , µn × wn)

with n being all the regions present on the chip, µ their average log ex-
pression and w a representation of their size. For example, an arrayCGH
profile with a few small aberrations will have a low variability (hence a low
correlation coefficient) and one with numerous wide aberrations will have
a higher variability (therefore a high coefficient). To explain this correla-
tion, consider the data as having a structure made of two layers: the first
one describing the variation introduced by the aberrations and the second
one describing the additional variation introduced by the “noise” in these
regions. In a chip with a low variability, the overall “noise” effect is greater
and results in a smaller correlation coefficient. Since the Spearmans cor-
relation is based on ranks, one could think that they would vary more in
a chip with a low variability, where all the data are close to each other,
compared to a chip with a higher variability. Using the Pearsons correla-
tion instead, leads to the same conclusion (data not shown). However, we
observed that the Pearson correlation coefficient between the original and
the replicates of the simulated data has a narrow distribution; it only spans
a small range, and it is specific for every chip. This can be explained by
the dual structure of the data: the aberrations are responsible for the chip
specificity of the correlation coefficient and the “noise” is responsible for
the narrow distribution. This property describes the relation between the
original and simulated data. If the parameter extraction by GLAD and the
simulators assumptions are correct, this property should be conserved in a
set of simulated data.
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Figure 4.22 – Comparison of the simulated-simulated and simulated-original
Pearson correlations of every arrayCGH samples. 16% of the samples. shown
in red, fail this test.
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The expectation is that the correlation range of independently simulated
data (e.g. simulated-1 versus simulated-2) will overlap with the correlation
range of these simulated data against the original one (e.g. original versus
simulated-1 and original versus simulated-2). A method using this property
was implemented, and for every arrayCGH chip a hundred simulations were
performed (a total of 10, 500 simulations). The range spanned by the cor-
relation coefficient between the original and simulated data was compared
with the one of the correlation coefficient obtained pair-wise between the
simulated data. These tests assess whether the data model assumption used
during the parameter extraction (implemented by GLAD) and the simulation
are valid. As shown in Figure 4.22, only 84% of the samples pass the cor-
relation range test, suggesting that either both or one of the GLAD or aSim

assumptions are not optimal for every sample.

4.3.3 Parameter extraction limits

For the arrayCGH data, in every dataset some of the correlation ranges (sim-
ulated/simulated versus original/simulated) did not overlap. A deeper anal-
ysis done by tuning the GLAD parameters to over-fit them to the original data
was performed to find out the best simulations parameters. In this context,
two GLAD parameters are important: “bandwidth” (the maximal bandwidth
for the Adaptive Weight Smoothing (AWS) number of iterations) and
“qlambda” (the scale parameter for the AWS stochastic penalty). Using dif-
ferent values of these parameters for extracting the simulators input for all
the affected chips allowed defining which set of the GLAD parameters max-
imizes the correlation coefficient between the original and simulated data
as shown on Figure 4.23 for the Snijders et al. (2001) “gm03134” sample.
These optimal GLAD parameters were then used to extract the simulators
input. The correlation range test was performed again for the chips failing
at the previous test with the new simulators input. As shown in Figure
4.24 for the fibroblasts gm03134 sample, the simulated/simulated and sim-
ulated/original ranges are then overlapping. This is a proof of concept that
aSim can be used to assess the parameter range of existing or new algorithms
and can be used to benchmark them.

4.3.4 Performance

In addition to the ability of reproducing data, the minimal time required
for their generation is a critical parameter. To assess the aSim perfor-
mances, expression profiling simulations were done with an increasing num-
ber of probes. Times for 1k, 5k, 10k, 20k, 50kand100k probes simulation were
recorded (5 replicates each) on a desktop PC (2.8GHz, 1GB RAM) and on a
Quad-Core server (2.7GHz, 8GB RAM), using one CPU. The results shown
in Figure 4.25 indicate that aSim has a time complexity O(n2).
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Figure 4.23 – Identification of the “badwidth” and “qlambda” parame-
ters value that maximizes the correlation score for the Snijders et al. (2001)
“gm03134” sample. In that example, it is important that the qlambda value
is lower than 0.94
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Figure 4.25 – aSim performance

4.3.5 Customized simulations

The aSim default parameters - e.g. number of genomic aberrations - reflect
the analysis outcome of the ependymoma (Mendrzyk et al., 2006) and breast
cancer (Thuerigen et al., 2006) experimental data. It is possible to customize
any level of the simulation process, i.e. all the parameters can be modified
to alter the data simulation, e.g. increasing the number of differentially
expressed gene clusters. In addition, the default data models can be replaced
by custom ones. This flexibility permits the implementation of virtually
any kind of data-model to simulate microarray data, an important point for
testing the different statistical models used for the integrative analysis, see
section 4.4, page 103.
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4.4 Microarray integrative analysis

First, the different developed methods were evaluated using simulated data.
Then, after their previous introduction (see section 4.2.3, page 92) and for
further demonstrating the advantage of performing integrative analyses, the
arrayCGH and EP data from the Zielinski et al. (2005); Grasemann et al.
(2005); Gratias et al. (2007) studies were analyzed using the method selected
in the first step.

4.4.1 Method selection

Determining the best correlation method: For integrating the array-
CGH and EP discrete and continuous data together, five methods have been
identified in the literature and extended: Eta, Pearson, Spearman, Weight
and Welch. To determine, which method was the most sensitive and most
specific, they were all benchmarked against a dataset simulated using the
package aSim (see section 3.3, page 48 and 3.4.2). By increasing the dataset
noise stepwise and recording the specificity and sensitivity of the different
methods for every of these conditions, ROC curves were constructed, as
shown in Figure 4.26. At low noise level, the Pearson, Spearman and Welch
performed poorer than Eta and Weight. At higher noise level, the results
obtained from that first set of methods were actually random (i.e. they over-
laid the ROC curve diagonal). For the Eta and Weight group, the kappa
and percent correction functions were the most accurate, while compact had
an higher FPR and gamma had a maximal recall of 75% after which the
assignment were random.
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Figure 4.26 – By increasing the noise stepwise in the simulated datasets and
recording the TPR and FPR for each conditions, ROC curves were obtained.
In the upper panel, the dataset had distinct characteristics whereas these were
confused by a high noise level in the lower panel.
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To validate these results, the AUC was calculated for every condition
and every method and plotted against delta (the inverse of the noise) as
shown in Figure 4.27. Based on these results the Weight method and percent

Figure 4.27 – The AUC recorded for every condition for every method
was plotted against delta: the inverse of the noise. The weight.percent and
weight.kappa had the best recall even in high noise conditions.

correction were chosen for the analysis.

4.4.2 Data pre-processing

Once the method was selected the raw data were pre-processed, requiring
different steps for the EP and arrayCGH data, as described in the following
paragraphs.

Expression profiling dataset pre-processing: The original EP dataset
had the limitation that only a single control experiment was performed.
This resulted in a lower detection power as compared to the GSE29683
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analysis described previously (see section 4.1.4, page 76), 257 vs. 988 signif-
icantly differentially expressed probe-sets respectively. 70% of the GSE5222
dataset are common to the GSE29683. The log2 FC for the common probe-
sets is significantly enriched for higher absolute values (Student t test p-
value = 0.015 and 5.88e-5 for the GSE5222 and GSE29683 respectively)
indicating a good agreement between both datasets, but as well the exis-
tence of confounding factors. To increase the detection power within the
GSE5222 dataset, additional control samples were hybridized, however on
HG-U133Plus2 GeneChip R©s rather than on the HG-U133A as the rest of
the dataset.

HG-U133Plus2 and HG-U133A probe-sets concordance: The
HG-U133Plus2 GeneChip R© actually combines updated versions of the HG-
U133A and HG-U133B GeneChip R©s. 22, 142(> 98%) probe-sets of the up-
dated Ebased HG-U133A CDF are found in the Ebased HG-U133Plus2 CDF.
There are 382 probe-sets that are specific to the Ebased HG-U133A and are
all either of the “multiple” or “dubious” class as shown on Figure 4.28.
Altogether they involve only 1, 325 probes (0.5% of the amount of probes
present on the GeneChip R©). The control samples performed on the HGU-

Figure 4.28 – Classification of the HG-U133A specific probe-sets that are
not part of the HG-U133Plus2 probe-sets. All of them are either mapping
“multiple” loci or “dubious”.

133Plus2 platform can therefore easily be restricted to the set common to
both platforms.
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Control samples comparison: To assess whether the expression ob-
served for the control sample hybridized on the Ebased HG-U133A GeneChip R©

was similar to that of the three other samples hybridized to the Ebased HG-
U133Plus2 GeneChip R©, their log2 FC was compared using a Pearson com-
parison, both before and after normalizing the samples between arrays using
a cyclic loess approach. The results of the normalization can be observed
in the Figure4.29, it has only a slight impact on the results of the Pearson

Figure 4.29 – Scatterplot of the log2 FC of the GEO GSE5222 Retina-4 (HG-
U133Plus2) vs. Retina-1 (HG-U133A) samples. The right panel shows the in-
between array normalized data, which slightly increase the Pearson correlation
(0.81 to 0.84)

correlation, 0.03 on average. The results of the pair-wise sample correla-
tion is presented in the Table 4.12 and show values expected for biological
(≥ 0.8) and technical (≥ 0.9) replicates of good quality. As the 4 samples

Retina1 Retina2 Retina3 Retina4

Retina1 1
Retina2 0.94 1
Retina3 0.94 0.99 1
Retina4 0.84 0.81 0.81 1

Table 4.12 – Pairwise correlation of the GEO GSE5222 retinoblastoma con-
trol samples. The technical replicates (Retina2 and Retina3) show a close
to 1 correlation as expected. These show with the other biological replicates
(Retina1 and Retina4) excellent correlation too.

correlate nicely, they are all retained for the analyses. All the GSE5222
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samples expression values are reduced to the probe-sets list defined previ-
ously and normalized between arrays. Performing a DE analysis using a
linear model between the “tumor” and “control” samples and comparing
the list of significantly differentially expressed genes with the results of the
GSE29683 analysis described previously (see section 4.1.4, page 76), showed
an increase in the detection power as compared to the similar analysis per-
formed in the first paragraph of the section 4.4.2. 531 probe-sets are found
to be differentially expressed, 350 of which are identified by the GSE29683
analysis as well (60%). This time, however, the common subset is extremely
significantly enriched in higher log2 FC, p-value ≤ 2.2e− 16.

Defining expression states: The statistics used for the integrative
analysis take advantage of both continuous and discrete values. For that
reason, expression states - e.g. down or up-regulated - were defined using
the tumor vs. control log2 FC and the corresponding DE p-value. Figure

Figure 4.30 – The left pannel shows the density of all the log2 FC (black line),
the density of the significantly differentially expressed probe-sets histograms
and a set of arbitrary cutoffs (orange line). The right panel shows the observed
Z-score density and the expected one (standard normal distribution)

4.30 shows in the left panel the log2 FC of the probe-sets significantly dif-
ferentially expressed at an adjusted p-value cutoff of 1e−4, roughly 10% of
all probe-sets and show the advantage of a selection based on a DE p-value
cutoff rather than using an arbitrary log2 FC cutoff (such as the orange
lines). Indeed, many smaller log2 FC are kept and some larger ones are
discarded (e.g. probe-sets where the variance due to outliers is so high that
even a large log2 FC is not significant), increasing our detection power. The
right panel shows the distribution of the Z-scores calculated on the same
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values. Another validation of the presented approach is the very close fit of
the observed Z-score distribution (black) with the expected standard normal
distribution (Gaussian). The proportion of absolute Z-score larger than 2
is expected to be 5%. The implemented procedure is conservative as only
4% of the Z-score are above that value, and the threshold has to be re-
duced to 1.85 to get a 5% proportion. This value corresponds in the normal
distribution to a 6.9% proportion, indicating that the designed approach
only fails to explain 1.9% of the variability of the data. The proportion
of the different states is presented in Table 4.13. The negative states rep-

State -2 -1 0 1 2

Occurence 274 23,553 265,770 20,158 233

Table 4.13 – GEO GSE5222 expression states occurence

resent a down-regulation observed for the probe-set, and the converge an
up-regulation. The −2, 2 states represent larger variations in probe-set ex-
pression, i.e. they are outside the 95% confidence interval defined by the
Z-score.
The EP dataset is ready for the integrative analysis. In the next paragraph
the arrayCGH data preparation is detailed.

ArrayCGH pre-processing: As the microarrays used for the arrayCGH
experiments differed from the ones used for EP, additional pre-processing
steps were required, namely the sex-probes rescue and the missing data
imputation that are described in the following paragraphs.

Sex specific probes’ rescue: As the arrayCGH data used an opposite
sex matched sample for the second channel - the microarrays used were
dual-channel - it is not possible to decipher directly the CNV state based
on the log-ratio. However, a male sample is expected to show a 1X gain
of the Y chromosome and a 1X loss of the X chromosome. Based on this
assumption (and the reciprocal one for female samples), the log2 FC values
were corrected. This allows the identification of a loss on chromosome X for
the M22808 sample: dim(Xp11.22q23) as reported in Zielinski et al. (2005)
(Case #3 in Table I, p.296). The corrected log2 FC are shown in Figure
4.31.
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Figure 4.31 – The rescue of the sex chromosome probes allowed the identifi-
cation of a loss on chromosome X for the sample M22808.

As can be seen from this figure, the values for the chromosome Y are
very sparsed and very variable and this independently of the sample gender.
This variability is more likely due to the high heterochromatin content -
roughly 50% of the 59Mb- of the Y chromosome and the high similarity of
the rest of it with chromosome X (pseudo-autosomal regions) than to real
CNV. Moreover, there are only 30 probes covering it: half the number of
probes for chromosome 22, which has a similar euchromatin content (n =
75). Finally, there are only 45 known genes reported on chromosome Y. For
these reasons, the values for chromosome Y are ignored for the rest of the
integrative analysis.

Data imputation: As the arrayCGH experiment was based on spot-
ted microarrays, a variable proportion of spots had been manually flagged by
the experimentator as being innapropriate for further analyses (e.g. presence
of an air bubble, disformed shape, inconsistent fluorescence, etc.): between
0.003% and 17% of the 6318 probes present on the microarray. These miss-
ing values were imputed and across the 14 arrays only 21 probes could not
be imputed, with at most 4 per array. Imputing the data has no effect on
the log2 FC distribution (Welch two-sample t-test p-values: [0.84, 0.99]).

Virtual probe imputation: As the arrayCGH spotted microarrays
only have a partial coverage of the genome (31%), 5458 virtual probes were
created spanning the loci between probes and physical barriers such as cen-
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tromeres, in order to increase the number of arrayCGH - EP pairs taken
into consideration by the integrative analysis. The values for these probes
were imputed as described in section 3.4.1, page 56. Between 10 − 14
virtual probes per sample could not be imputed, a proportion of 0.2%.
The imputed value distributions of the virtual and experimental probes
are very similar to the respective mean µ = 0.02 and 0.007 and SD σ =
0.18 and 0.19, although these two distributions have a significantly different
mean (Welch t-test p-value of 2.2e−16, with a 95% confidence interval of:
0.12 ≤ mean difference ≤ 0.16).
The arrayCGH data are now ready as well for the integrative analysis that
will be described in the next section.

4.4.3 Data Analysis

Using the obtained overlayed arrayCGH and EP data (see section 3.4.2,
page 56), a pre-analysis is performed using the “discrete” states and the
calculated contingency table. Then, the entire set of data is used for more
complete statistical analyses.

Contingency table analysis: The contigency table is obtained by sum-
marizing the arrayCGH and EP data (see Table 4.14). No obvious effect can

arrayCGH/EP -2 -1 0 1 2

-2 0 3 42 3 0
-1 13 1,110 10,903 541 2
0 351 30,663 337,055 25,138 269
1 15 1,771 27,721 2,809 55
2 0 124 2,506 296 6

Table 4.14 – Contingency table of the arrayCGH change in copy number and
EP change in expression states.

be identified, i.e. almost every arrayCGH-EP pairs has at least one state
value of 0. To discover and statistically evaluate the presence of any bias in
the data distribution, the Pearson signed χ2 contribution - a measure of the
residuals from a model assuming the independence of the contingency table
variables - is calculated. Its result is shown in Figure 4.32.
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Figure 4.32 – Association plot of the contingency table showing the residuals
of the independence model. The area of every rectangle is proportional to
the difference between the observed and expected frequencies. The direction
of that rectangle to its baseline indicates whether the contribution is higher
(above) or lower (below) than expected. In addition the rectangles are colored
according to the Pearson signed χ2 contribution: from red (negative) to blue
(positive).

It becomes visible that there is a positive contribution when the two
states have the same sign (e.g. a copy number gain and an increased ex-
pression) and a negative contribution for the reciprocal cases. This is as
expected - i.e. when a locus is gained, one expects an increase in expression
- and validates the integrative analysis approach: the two considered vari-
ables are not independant when the states are not equal to 0.

In the next paragraphs, additional analysis are performed to further
validate this integrative analysis approach.

Correlation results validation: The results obtained from the selected
method - the w correlation score - are first evaluated for their validity.

The w correlation score is sound: The w correlation scores ob-
tained (see equation 3.5, page 58) are compared to their calculated signifi-
cance (i.e. p-value and False Discovery Rate (FDR)). The results are as
expected: large score (in absolute value) correlate with the best significance
score, see Figure 4.33. Moreover, it underlines the importance of calculating
the FDR using permutations, as this removes a high number of false posi-
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Figure 4.33 – The w correlation score of every arrayCGH - EP pair is com-
pared to its significance values: p-value and FDR. The p-value density is de-
scribed by the gray (sparse) to gold (very dense) scale. The FDR is represented
as a dashed line.

tives that would be kept when using just a p-value based threshold. Given
this result, an FDR cutoff of 10% is selected for the rest of the integra-
tive analysis. As mentioned before, chromosome Y values are ignored (see
section 4.4.2, page 109).

Overlap with the expression profiling results: At that FDR thresh-
old, 271 significantly correlated pairs are identified involving 210 EP probe-
sets. Comparing this set with the significant sets identified in the EP results
from the section 4.1.4, page 76 and section 4.4.2, page 105 using the same
adjusted p-value revealed a common subset of 55 probe-sets (26%). This in-
dicates that the expression change of the remaining 74% cannot be identified
by just an EP approach, i.e. the gene variation between control and sample
is not sufficient to be deemed significant with the threshold used. The Table

113



4.15 shows the contingency table of the correlation score. Positive correla-

arrayCGH/EP -1 1

-1 5 1
1 33 132

Table 4.15 – Contingency table of the w correlation score sign for the array-
CGH - EP pairs based on their observed status. The majority (80%) behaves as
expected while the remaining show either positive (n = 1) or negative (n = 33
compensation

tion scores are expected, while negative scores indicate putative regulation
of the gene expression, see section 1.2.2, page 30. These will be analysed in
more details in the next paragraph.

Distribution of the w correlation score: About 20% of the w cor-
relation scores are negative - e.g. showing an expression decrease while that
region is frequently gained - with all the occurences but one located on
chromosome 6. The exception is on chromosome 16: the gene SALL1 is
over-expressed in a LOH region. SALL1 is involved in transcription reg-
ulation and in Wnt signaling among other processes. SALL1 is identified
by the EP performed previously (as the 292 most significant gene), but the
present results give it a much higher importance. For the identified genes lo-
cated on chromosome 6, many are associated with immune response (AIF1,
HLA-A, C, D and E, MICA, PSMB8 and TAPBP) and signal transduction
in general (e.g. GMPR, RCAN2 ). The remaining ones are mostly involved
in trancription (e.g. FOXC1, FOXF2 ) and cell cycle regulation (e.g. IDE4,
NEDD9 ). Only 40% of these genes were identified by the EP analysis.

The probe-set “multiple” class is over-represented: Unexpect-
edly, the 210 probe-sets contained a lot of “multiple” mapping, see Figure
4.34. These were manually curated and in most cases, these “multiple”
mapping situations resulted from the presence in the reference genome of
three different haplotypes of a chromosome 6 region: 6, 6COX and 6QBL.
Additionaly, the few “antisense” and “untranslated” probe-sets were cu-
rated. Interestingly, a number of them adresses (processed or not) pseudo-
genes: SUCLA2P, PTMAP1 and PIP5K1P1, a newly retrotransposed gene:
NUP50P2 and one small nuclear RNA (snRNA): U6. In total 203 probe-
sets were kept, while for the 7 filtered ones, additional in-vitro experiments
would be needed to validate them - for example to verify whether or not the
pseudogenes are expressed - and determine what their role might be; e.g.
transcription regulation by processed pseudogenes has been reported in the
literature (Tam et al., 2008).
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Figure 4.34 – Classification of the 210 selected EP probe-sets. The left panel
shows the classification for the gene probe-sets, while the right one shows that
of the transcript probe-sets. Both have a high proportion of “multiple”.

This set of results display the sensibility of the undertaken integrative anal-
ysis approach. In the following paragrahs, the biological significance of the
obtained result is presented.

Correlation results analysis: The obtained significant arrayCGH - EP
pairs are retrieved and their implication on the biology of retinoblastoma
analyzed.

Chromosome 6 is enriched in significant pairs: The analysis re-
vealed that 271 arrayCGH and EP pairs are significant at that FDR cut-
off. The chromosomal localisation of the arrayCGH corresponding probes
(n = 125) is shown in Table 4.16 and agrees with the known reported aber-

chromosome 1 2 6 16
occurence 21 2 93 9

Table 4.16 – Summary of the chromosome associated with a significant cor-
relation of the arrayCGH and EP data at a cutoff of 10% FDR

rations (see Table 4.9, page 91). Moreover, this analysis reveals that the
chromosome 6 is the only one among the 4 to be significantly enriched for
correlated pairs, possibly implying an higher importance of that chromo-
some in the tumorigenesis. Indeed, based on the probability derived from
the data that 1/10 arrayCGH probe shows a CNV, knowing that 405 probes
cover chromosome 6 and assuming that the probes are independant, the
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likelihood to record 93 affected probe pairs is 2.1e−14. The density distri-
butions and the probability for every chromosome is shown in Figure 4.35;
chromosome 6 only showing an enrichment in significant correlated pairs.

Figure 4.35 – The binomial density of the 4 chromosomes harboring signif-
icantly correlated pairs is shown in purple. The dashed orange vertical lines
represent the number of occurence recorded for that chromosome (see Table
4.16). Only chromosome 6 shows an enrichment, i.e. its number occurence is
to the right of the density peak.

The chromosomal regions containing the significant pairs are: 1q21.3-1q44,
2p25.2-2p25.1, 6p25.3-6p11.2 and 16q12.1-16q23.3, in agreement with the
conclusions from Zielinski et al. (2005). Only the chromosome 2 region is
smaller (the complete chromosome 2p arm gain was reported) and the chro-
mosome 16q gain does not appear to be of statistical significance here. The
minimal overlap region reported on chromosome 2p by Zielinski et al. (2005):
2p24.2-2p24.1 is located slightly downstream of the region identified here.

Known targets: DEK and E2F3 are recalled: Among the iden-
tified genes, E2F3 and DEK, reported by Grasemann et al. (2005), are as
well identified as having the 5th and 14th highest absolute coefficient in the
present study, respectively.
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The integrative analysis reveals antisense regulation: Two of
the probe-sets map antisense to transcripts 3’UTR, while there’s no evi-
dence for transcription on that strand in downstream regions of the gene
loci. The genes are DST and EEF1E1, the first one involved in cell cycle
arrest and the second one being a negative regulator of the cell cycle and a
positive regulator of apoptosis. In the hypothesis of a negative regulation
by antisense transcription, these results are interesting but would need to
be validated in vitro.

Gene ontology enrichment analyses: The integrative analysis should
have removed some of the confusing factors observed in the EP (see section
4.1.4, page 76). To verify this, one approach is to perform GO enrichment
analyses on the different gene subsets.

gene.symbol coef p.value fdr.local

KIFC1 5.42 0.00 0.00
RCAN2 -4.88 0.00 0.00
GMNN 4.78 0.00 0.00
HLA-DRA -4.43 0.00 0.00
E2F3 4.29 0.00 0.00
ELOVL2 4.18 0.00 0.00
HLA-DPA1 -4.01 0.00 0.00
MCM3 3.90 0.00 0.00
ATAT1 3.88 0.00 0.00
FOXF2 -3.87 0.00 0.00
HNRNPL 3.67 0.00 0.00
CDKAL1 3.58 0.00 0.00
PCSK2 3.55 0.00 0.00
DEK 3.41 0.00 0.00
NEDD9 -3.40 0.00 0.00
HIST1H4C 3.39 0.00 0.00
SOX4 3.27 0.00 0.00
DSP -3.26 0.00 0.00
ID4 -3.25 0.00 0.00
BTN3A3 -3.18 0.00 0.00

Table 4.17 – The 20 most strongly associated arrayCGH - EP pairs, i.e.
having the highest absolute correlations are listed. DEK and E2F3 have been
previously reported by Grasemann et al. (2005). See appendix D, page 206 for
the complete gene list.

The 203 curated probe-sets identify a total of 171 genes, 34 (20%) having
a negative w score and the remaining 137 a positive one. See Table 4.17 for
the most strongly associated pairs and Table D, page 206 for all of them.
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The genes identified by several probe-sets show consistant w scores and only
the largest w score was kept when reporting the values in these tables. The
tight variability of these scores originating from different probe-sets is a
further validation of both the approaches at generating the probe-sets (i.e.
the CDF creation) and performing the integrative analysis.

The GO enrichment analysis performed on the 171 identified genes re-
veals a clearer picture than that obtained by performing the same analysis
on the previously obtained EP data (section 4.1.4, page 76, GO analysis
results not shown). As shown in Table 4.18 for all gene ontologies, and in
Figure 4.36 for the “biological process” one, only a handful of processes are
identified, among which the cell cycle, angiogenesis and immune response -
three of the hallmarks of cancer - are represented. Moreover, all the angio-
genesis related genes are upregulated, while the immune response ones are
negatively regulated.

Figure 4.36 – GO enrichment analyses of the genes associated with the inte-
grative analysis significant arrayCGH - EP pairs. Only the “biological process”
ontology is shown in the figure, the results for the other ontologies are presented
in Table 4.17.
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GO term ontology population study

cell cycle process BP 855 32
MHC protein complex MF 32 7
cell cycle BP 1125 34
soft palate development BP 5 3
organelle CC 7641 126
endoplasmic reticulum membrane CC 559 16
alpha DNA polymerase:primase
complex

CC 5 3

macromolecular complex MF 2978 62
artery morphogenesis BP 31 5
artery development BP 38 5
antigen processing and presentation BP 140 9
sympathetic nervous system devel-
opment

BP 20 4

nucleus CC 4348 93
autonomic nervous system develop-
ment

BP 38 5

integral to lumenal side of endoplas-
mic reticulum membrane

CC 10 4

DNA replication, synthesis of RNA
primer

BP 2 2

organelle part CC 4730 85
nuclear outer membrane-
endoplasmic reticulum membrane
network

CC 573 16

RNA polymerase II transcription
coactivator activity

MF 18 4

intracellular CC 9003 137

Table 4.18 – GO enriched terms. The population represents the total num-
ber of genes present on the microarray that are associated with the term.
The study is the number of genes present in the integrative analysis signifi-
cant subset. Even at an 0.1 adjusted p-value (Benjamini-Hochberg) threshold,
some highly generic or very specific terms e.g. “intracellular”, “alpha DNA
polymerase:primase complex” are identified. The terms not falling in either
categories are highlighted in grey. The ontology abbreviations are: Biological
Process (BP), Cellular Component (CC) and Molecular Function (MF).
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In Table 4.18, despite the stringent 0.1 adjusted p-value (Benjamini-
Hochberg) cutoff, some very generic terms (i.e. the population size is large)
- e.g. “nucleus” - as well as some very specific terms (i.e. the population
and study sizes are both small and very similar ) - e.g. “soft palate devel-
opment” - are still identified. This is a typical GO analysis bias mainly due
to incomplete gene annotations. For clarity, the most relevant terms have
been highlighted in grey in the table.

These results conclude the integrative analysis performed on matched
retinoblastoma arrayCGH and EP samples. Its displayed sensitivity and the
sensibility of its results, encouraged me to conduct the same kind of analysis
across tumor kinds, i.e. performing a comparative analysis, to further assess
the developed methods. This is the topic of the next section.
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4.5 Comparative analysis

This section describes the comparative analysis of retinoblastoma and os-
teosarcoma tumors. The pre-processing is similar to that performed for the
retinoblastoma EP dataset used for the integrative analysis above. The se-
lected statistical method and parameters used are identical as well and hence
not presented here. The next sections present briefly the results of the data
pre-processing before focusing on the biological significance of the obtained
results more in details.

4.5.1 Data pre-processing

As there was no suitable control for either the retinoblastoma or osteosar-
coma dataset, the UHRR sample was used as a control for both EP analyses.
The possible effect on the expression state calculation for both datasets was
consequently assessed anew.

Expression profiling vs. Stratagene Universal Control: Using the
UHRR control sample, 40% and 47% of the 50, 513 probe-sets were sig-
nificantly differentially expressed for the osteosarcoma and retinoblastoma
datasets, respectively, at the 10−4 adjusted p-value threshold previously used
for the GEO GSE5222 retinoblastoma sample. These results show the high
sample similarity within the three datasets used: GSE29683, GSE14827 and
GSE5350, as well as their heterogeneity with one another. The very large
proportion of significant adjusted p-values indicates that using the UHRR
sample as a control is sub-optimal. This however does not affect the rest
of the analyses as its effects cancel out when comparing the retinoblastoma
and osteosarcoma datasets together. Neither, as shown in the following
paragraph, does it have an effect on the Z-score calculation.
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Defining expression states: The obtained Z-scores are very close to the
expected distribution, see Figure 4.37. The difference is smaller than that
obtained previously for the integrative analysis (see paragraph 4.4.2, page
108): only 1.4% of the data variability is not captured. The proportion

Figure 4.37 – The left and right panel show the observed Z-score density
and the expected one (standard normal distribution) for the GSE14827 and
GSE29683 dataset, respectively .

of the different states for the 15 retinoblastoma samples selected from the
GEO GSE29683 dataset are shown in Table 4.19. The 15 selected samples

State -2 -1 0 1 2

Occurence 0.42 22 52 25 0.72

Table 4.19 – GEO GSE29683 expression states proportion

from the osteosarcoma GEO GSE14827 dataset have the state proportion
presented in Table 4.20.

State -2 -1 0 1 2

Occurence 0.3 18.2 58.3 22.5 0.7

Table 4.20 – GEO GSE14827 expression states proportion

This reveals that the use of the UHRR control did not affect the cal-
culation of the Z-score. Moreover, the proportion of expression states for
both tumor types is similar. To further assess their similarity, a contingency
table analysis was performed, the resultsof which are described as the first
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part of the next section that later on focuses on the biological implications
of the comparative analysis results.

4.5.2 Data analysis

Contingency table analysis: The Table 4.21 shows the contingency ta-
ble of the tumors’ expression states. The diagonal appears to be enriched,

osteosarcoma
retinoblastoma

-2 -1 0 1 2

-2 26 1,580 1,332 239 8
-1 1,435 82,691 70,300 13,860 381
0 743 44,976 274,801 71,055 2,169
1 92 8,098 92,291 83,195 2,994
2 2 180 2,652 2,478 117

Table 4.21 – Contingency table of the change in expression states for the
retinoblastoma and osteosarcoma datasets.

but for a better visualization of the contingency table, the Pearson signed
χ2 contribution - a measure of the residuals from a model assuming the
independence of the contingency table variables - is shown in Figure 4.38.
The diagonal is significantly enriched, indicating that both tumors are very
similar at the gene expression level; an observation reinforced by the fact
that every discordant state pairs (e.g. a gene being highly expressed in one
tumor while lowly expressed in the other one) is strongly decreased.

This results indicate that the use of the UHRR control should not affect
the comparative analyses.

Identified probe-sets: 1, 171 significant pairs are identified at a 1% FDR
cutoff. As the layout is the same for both datasets in use, this implies that
that exact number of probe-sets is significantly correlating between both
tumor kinds. In the next paragraphs, these correlations and related probe-
sets are described.

Correlation scores contingency table: Unlike for the integrative
analysis, both positive and negative correlations are expected, as two dif-
ferent tumor types are compared together. A positive correlation reveals
a common feature - e.g. a gene similarly deregulated - shared between tu-
mors while negative correlations identify discordant features. The Table 4.22
summarizes the concordant and discordant pairs. Both tumor kinds seems
very alike; 93% of the pairs display similar effects. The 18 pairs displaying
no change in expression in osteosarcoma were manually checked and none
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Figure 4.38 – Assocation plot of the contingency table showing the residuals
of the independence model. The area of every rectangle is proportional to
the difference between the observed and expected frequencies. The direction
of that rectangle to its baseline indicates whether the contribution is higher
(above) or lower (below) than expected. In addition the rectangles are colored
according to the Pearson signed χ2 contribution: from red (negative) to blue
(positive).

retinoblastoma
osteosarcoma

-1 1

-1 305 12
0 9 9
1 35 526

Table 4.22 – Contingency table of the w correlation score sign for the
retinoblastoma - osteosarcoma pairs based on their observed status. The large
majority (93%) agrees between tumor kinds, whereas 65 pairs show discordant
tendencies.

has its values close to the threshold selected for determining the expression
states; i.e. these are genuine observations and not technical artefacts.
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Overlap with the expression profiling results: Between 16 and 32%
of the 1, 000 most significant probe-sets identified by the retinoblastoma and
osteosarcoma EP analyses, respectively, are present in the set of significant
probe-sets from the comparative analysis. This proportion is similar to that
previously obtained for the integrative analysis.

No chromosomal locus enrichment: The distribution of the identi-
fied probe-sets does not show a significant enrichment at any genomic locus,
unlike previously observed for the integrative analysis.

Probe-sets classification and manual curation: Out of the 1, 171
significant probe-sets, the “dubious” and “genomic multiple” were ignored:
14% of the total. Of the remaining 1, 006 probe-sets, 473(47%) were man-
ually curated as they belong to non-exonic classes (e.g. untranslated, anti-
sense) or possibly have multiple targets. 77 probe-sets were discarded and
77 had their annotation updated; a total of 30% of the curated probe-sets.
In fine, 896 probe-sets remain after curation.

Probe-sets associated genes: There are 789 unique genes identified
by the curated probe-sets. 526 are commonly up-regulated, 305 commonly
down-regulated, 35 are specifically up-regulated in osteosarcoma while the
remaining 30 are specific to retinoblastoma, being either more or less ex-
pressed in comparison to osteosarcoma.

Evidence of transcript isoform regulation: Out of the 896 probe-
sets, 186 redundantly identify 79 genes. As for the integrative analysis,
these show almost invariable w correlation scores. Only one gene: MAP1B,
identified by two probe-sets mapping in its 3’UTR region presents a discrep-
ancy, as indicated in Table 4.23. The second probe-set, furthest away from

5 71536979 71538579
plus genomic at

5 71540574 71540953
plus genomic at

retinoblastoma 2.90 2.50
osteosarcoma 1.70 0.60

Table 4.23 – MAP1B is identified by two probe-sets that map within its
3’UTR region. While the first probe-set, closer to the gene stop codon is
over-expressed in both tumors, the second one shows a statistically signifi-
cant difference (p-value = 1e−4) between both tumors, as well as within the
osteosarcoma tumor.

the gene stop codon, shows a significant expression difference (Welch Two
Sample t-test p-value of 1e−4) between retinoblastoma and osteosarcoma,
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which could be explained by a different, tissue-specific, regulation of that
gene transcript isoforms. Indeed, MAP1B has been reported to be involved
in microtubule assembly and suggested to play an important role in the
development and function of the nervous system.

Gene ontology analyses: The GO enrichment analyses were per-
formed on 5 subsets of genes from the 789 identified genes by the compar-
ative analysis as well as on the 1, 000 most significant genes retrieved from
both retinoblastoma and osteosarcoma EP analyses; as follow:

1. the full comparative analysis set

2. the positively correlated over-expressed subset

3. the positively correlated down-regulated subset

4. the negatively correlated retinoblastoma specific subset

5. the negatively correlated osteosarcoma specific subset

6. the retinoblastoma EP set

7. the osteosarcoma EP set

As shown in Figure 4.39, the full set shows significant enrichment for the
extra-cellular environment, immune process, locomotion, cell activation and
coagulation. The analyses performed on the positively correlated subsets
(i.e. the gene expression changes is identical in both tumors) reveals that
the coagulation process is down-regulated, see Table 4.24 while the other
ones are up-regulated (data not shown).
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Figure 4.39 – GO enrichment analysis for the set of 789 genes identified by
the comparative analysis. Only GO terms with an adjusted p-value higher
than 1% are shown.
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Name Adj. p-value Study
Count

Population
Count

amine metabolic process 0.004 25 (11.2%) 460 (3.7%)
steroid metabolic process 0.004 17 (7.6%) 194 (1.6%)
aminoglycoside antibiotic
metabolic process

0.015 5 (2.2%) 8 (0.1%)

response to jasmonic acid
stimulus

0.022 3 (1.3%) 4 (0.0%)

cellular response to jasmonic
acid stimulus

0.022 3 (1.3%) 4 (0.0%)

protein-lipid complex 0.024 5 (2.2%) 22 (0.2%)
extracellular region 0.024 36 (16.1%) 954 (7.8%)
glycoside metabolic process 0.024 5 (2.2%) 14 (0.1%)
coagulation 0.024 22 (9.9%) 459 (3.7%)
regulation of body fluid levels 0.042 22 (9.9%) 494 (4.0%)

Table 4.24 – GO over-representation analysis with settings ”Parent-Child-
Union/Benjamini-Hochberg”. For this analysis, a total of 12, 277 genes were
in the population set, of which a total of 223 genes were in the study set. A
cutoff of 5% on the adjusted p-value was used.

While most of the enriched GO terms can be explained in a tumor en-
vironment, the fact that the immune response - a child of the response to
stimulus term - is up-regulated is surprising, even though receptor activity,
SMAD binding and signal transduction are GO terms significantly enriched
in the positively correlated up-regulated subset. Whereas no GO terms are
enriched for the retinoblastoma specific subset, the osteosarcoma one shows
enrichment for the extracellular matrix, as well as for the immune response,
apoptosis and leukocyte migration. Finally, although the EP subsets recall
the results of the comparative analysis, they identify 3 times more terms at a
stringent 1% adjusted p-value cutoff, in line with the hypothesis that most of
these gene alterations are consequences and not causes of the cancerogenesis.

Retinoblastoma specific genes3: The seldom fact that there is no
GO term enrichment for the retinoblastoma specific subset is very likely
due to the sparse GO annotation of its genes. These are presented in Table
4.25. Grouping them according to their annotations reveals some interesting
clusters:

• FAH, HARS2, RPS21 encode important cellular components (ribo-
somes, tRNAs) or are involved in essential pathways (tyrosine catabolism).

3gene annotation from http://www.genecards.org (Rebhan et al., 1997)
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symbol gene name Rb Ots

NFIB Nuclear factor 1 B-type 1 0
OLFM1 Noelin Precursor 1 0
ANAPC10P1 anaphase promoting complex subunit 10 pseudo-

gene 1
1 0

HTR1A 5-hydroxytryptamine receptor 1A 1 0
MAP1B microtubule-associated protein 1B 1 0
P4HA1 Prolyl 4-hydroxylase subunit alpha-1 Precursor -1 0
PRKAR2B cAMP-dependent protein kinase type II-beta regu-

latory subunit
1 -1

MT1E Metallothionein-1E -1 0
C10orf58 Uncharacterized protein C10orf58 Precursor 1 -1
AP1S2 AP-1 complex subunit sigma-2 1 -1
BEX4 brain expressed, X-linked 4 1 -1
FAH Fumarylacetoacetase -1 0
HPCAL1 Hippocalcin-like protein 1 -1 0
SNX9 Sorting nexin-9 -1 0
STOM Erythrocyte band 7 integral membrane protein -1 0
TSC22D3 TSC22 domain family protein 3 -1 0
PGRMC2 Membrane-associated progesterone receptor com-

ponent 2
1 0

SCRN1 Secernin-1 1 -1
TRIM37 Tripartite motif-containing protein 37 1 -1
UBE2B Ubiquitin-conjugating enzyme E2 B 1 0
PRKAR2B cAMP-dependent protein kinase type II-beta regu-

latory subunit
1 -1

AQP3 Aquaporin-3 1 -1
MCM7 DNA replication licensing factor MCM7 1 -1
CLGN Calmegin Precursor 1 -1
MARCKSL1 MARCKS-related protein -1 0
PLSCR1 Phospholipid scramblase 1 -1 0
TRIM24 Transcription intermediary factor 1-alpha 1 -1
RPS21 40S ribosomal protein S21 1 0
HARS2 D-tyrosyl-tRNA 1 -1
SUMO1 Small ubiquitin-related modifier 1 Precursor 1 0

Table 4.25 – List of the 30 genes which expression is specific to retinoblas-
toma. Abbreviations are Rb and Ots for Retinoblastoma and Osteosarcoma,
respectively.
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• BEX4, HPCAL1, HTR1A, MAP1B, OLFM1 were localized to the
brain or associated with neural processes.

• ANAPC10, MCM7, NFIB, SUMO1, TRIM24, TRIM37, TSC22D3,
UBE2B are related to transcriptional activity. While ANAPC10 was
not directly identified here, its pseudogene ANAPC10P1 was.

• SUMO1, TRIM24, TRIM37, UBE2B were associated with the tran-
scription regulation achieved through ubiquitination.

• AP1S2, HTR1A, PGRMC2 , PLSCR1, PRKAR2B , SCRN1 , SNX9
are involved in signaling and protein trafficking.

• CLGN, HPCAL1, MARCKSL1, PLSCR1, SCRN1, STOM are in-
volved or related to calcium signaling. HPCAL1 is a member of
a neuron-specific calcium-binding proteins family found in the retina
and brain. It may be involved in the calcium-dependent regulation of
rhodopsin phosphorylation and may be of relevance for neuronal sig-
nalling in the central nervous system. CLGN has only been reported to
be involved in spermatogenesis so far, but binds calcium. MARCKSL1
couples the protein kinase C and calmodulin signal transduction sys-
tems. PLSCR1 and SCRN1 are activated upon calcium binding.

• AQP3 is a water channel required to promote glycerol permeability
and water transport across cell membranes.

• MT1E, P4HA1 have no relevant annotations.

Although some of the identified genes might be just confounding factors (e.g.
RPS21 ), the analysis revealed potential new gene candidates and might have
unravelled some signaling processes specific to retinoblastoma.

Osteosarcoma specific genes4: In addition to the enriched GO terms
they reveal, the 35 genes specific to osteosarcoma present additional inter-
esting characteristics listed in the following. The complete list of genes is
presented in Table 4.26.

• involved in signal transduction: RAB5B, FYN, S100A10, RAB31,
IGFBP7, ITGB5, ATP6AP2

• related to the ECM: ISCU, TNC, TIMP1, CTHRC1, NID1, POSTN,
SPARC, COL1A2, COL1A1, SH3PXD2B, COL5A2

4gene annotation from http://www.genecards.org (Rebhan et al., 1997)
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symbol gene name Rb Ots

RAB5B Ras-related protein Rab-5B -1 1
COL1A2 Collagen alpha-2 -1 1
TPST2 Protein-tyrosine sulfotransferase 2 -1 1
ISCU Iron-sulfur cluster assembly enzyme ISCU, mito-

chondrial Precursor
-1 1

GSN Gelsolin Precursor -1 1
SERF2 Small EDRK-rich factor 2 -1 1
FYN Proto-oncogene tyrosine-protein kinase Fyn -1 1
TNC Tenascin Precursor -1 1
RBM9 RNA-binding protein 9 -1 1
TIMP1 Metalloproteinase inhibitor 1 Precursor -1 1
NID1 Nidogen-1 Precursor -1 1
CNN3 Calponin-3 -1 1
SH3BGRL SH3 domain-binding glutamic acid-rich-like protein -1 1
POSTN Periostin Precursor -1 1
COL1A2 Collagen alpha-2 -1 1
CTHRC1 Collagen triple helix repeat-containing protein 1

Precursor
-1 1

SATB1 DNA-binding protein SATB1 -1 1
S100A10 Protein S100-A10 -1 1
COPZ2 Coatomer subunit zeta-2 -1 1
COL1A1 Collagen alpha-1 -1 1
SPARC SPARC Precursor -1 1
SCARF2 Scavenger receptor class F member 2 Precursor -1 1
IGFBP7 Insulin-like growth factor-binding protein 7 Precur-

sor
-1 1

ITGB5 Integrin beta-5 Precursor -1 1
GPX8 Probable glutathione peroxidase 8 -1 1
MYO1B Myosin-Ib -1 1
RAB31 Ras-related protein Rab-31 -1 1
SH3PXD2B SH3 and PX domain-containing protein 2B -1 1
PMP22 Peripheral myelin protein 22 -1 1
SLC7A8 Large neutral amino acids transporter small sub-

unit 2
-1 1

FAM46A Protein FAM46A -1 1
LRRC15 Leucine-rich repeat-containing protein 15 Precur-

sor
-1 1

PPT1 Palmitoyl-protein thioesterase 1 Precursor -1 1
COL5A2 Collagen alpha-2 -1 1
ATP6AP2 Renin receptor Precursor -1 1

Table 4.26 – List of the 35 genes the expression of which is specific to osteosar-
coma. Abbreviations are Rb and Ots for Retinoblastoma and Osteosarcoma,
respectively.
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• involved in vesicular transport and secretion: TPST2, COPZ2, MYO1B,
SLC7A8

• binding or activated by calcium: GSN, CNN3, SPARC

• related to smooth muscle: CNN3, IGFBP7, MYO1B, LRRC15, PPT1

• involved in cell migration: SH3PXD2B, MYO1B, PPT1

• involved in transcription regulation: RBM9

• linked to metastasis SATB1

• associated with cell growth regulation SPARC, PMP22

• important for cell adhesion POSTN, SCARF2, IGFBP7

• producing or degrading Reactive Oxygen Species (ROS) SH3PXD2B,
GPX8

• with vasodilating effects ATP6AP2 IGFBP7

In this section, I have presented the results of the methodological develop-
ments to enhance microarray annotations, to simulate realistic microarray
data and to perform statistical integrative analysis and comparative analy-
ses. The developed methods are sensitive and the obtained results sensible.
In particular, the integrative analysis and comparative analysis approaches
are broad hypothesis-generating methods. Some of the hypothesis raised by
the described analyses of the retinoblastoma and osteosarcoma tumors will
therefore be discussed in the next chapters.
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Chapter 5

Discussion

In the previous chapter, the results of the developed methods have been pre-
sented and this raised a number of interesting biological hypothesis related to
the retinoblastoma and osteosarcoma cancerogenesis. In this chapter, some
of the details of the developed methods will be discussed before focusing on
these biological results and their possible implications.

5.1 Developed methods

In the frame of this doctoral work, I have enhanced or newly developed three
main method kinds. The first dealt with probe and probe-set annotations,
the second with simulating microarray data and the final one with the de-
velopment and validation of statistical methods for performing integrative
analyses and comparative analyses.

5.1.1 Annotation: the Ebased CDFs

Given the fast pace of the human genome re-sequencing and the increasing
number of haplotypes discovered by e.g. the 1000 Genomes Project Consor-
tium (2010), it is necessary to frequently update the annotation files used
for microarray experiments as a whole and for EP in particular. It is even
more critical for Affymetrix GeneChip R©s, due to their design where a gene is
identified by a set of probes: a probe-set. The information of the probe ap-
partenance to a probe-set is contained in a CDF. Numerous methods have
been published that redefine these CDF, however these are stringent and
discard up to 30% of probes that may be valuable. The approach presented
in Delhomme et al. (submitted) rescues but for 1% of these probes.

Among these rescued probes are some mapping to genomic loci - i.e.
probe-sets of the “genomic” class - often in the 3’ UnTranslated Region
(UTR) of genes. This is expected as the probe-sets were originally designed
by Affymetrix from EST libraries. As RNA extraction protocols were not
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well established and sample degradation common, these were designed in
the 3’UTR end of these ESTs and for that reason are the GeneChip R©s nick-
named “3-prime arrays”. The definition of UTR is complex in higher organ-
isms and explains why genome refinements might have shifted probe-sets in
and out of gene’s 3’UTRs. That such probe-sets are accurately recalled, is
one of the validation of the approach at regenerating CDFs.

The same holds true for the “untranslated” probe-set class, where the
probe-sets are located within gene’s introns. As shown in the results, most
will identify alternative transcripts or transcripts that have since then been
associated with intron-retention. In addition, some of them identify retro-
transposed genes or pseudogenes (processed or not). Finally, although this
has not been seen in the analyses presented in this study, these probe-sets
have the potential to identify transcripts targeted for Nonsense-mediated
Decay (NMD).

Another portion of the probe-sets affected by the genome refinements
now map, rather unexpectedly, “antisense” to transcripts. In some cases,
this results from the overlap of the 3’UTRs region of two genes located on
opposing strands and is a failure of the CDF approach to correctly associate
the probe-set and its target gene. However, in the remaining cases these
probe-sets can - to our current knowledge - only identify a potential antisense
transcript.

As shown in Delhomme et al. (submitted), applied on the frequently
analyzed ALL dataset (Chiaretti et al., 2004, 2005) the newly generated
CDF unravels three new potential candidate genes with implications in other
tumors. Such CDFs are therefore enhanced tools to perform Affymetrix
microarray analyses on either new or published data and by this means
extend our biological knowledge.

This was further demonstrated in the present work: the results of the
retinoblastoma EP analysis presented in Table 4.2, page 77 show that 6 of
the first 9 most significantly over-expressed genes have been associated with
cancer: ASPM is implicated in neo-angiogenesis (Zhang et al., 2009; Lin
et al., 2008), RRM2 has been associated with many cancers and described
as a possible therapeutic target (Morikawa et al., 2010b,a), TMSB15A is
implicated in cell migration and metastasis (Tang et al., 2011), TOP2A is
amplified in breast cancer and is the target of therapeutic agents such as
trastuzumab and anthracyclines (Arriola et al., 2008), NUF2 is implicated
in a cell cycle checkpoint (DeLuca et al., 2003) while CDC2 is an essential
cell cycle member.

These results confirm the potential of the refined CDF generation. The
additional probe-set classes are great sources for defining new hypotheses to
be further analyzed at the bench:

• “untranslated” may identify alternative regulatory mechanism such
as NMD or intron-retention, which importance has been reviewed in
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Matlin et al. (2005)

• “antisense” might reveal transcript antisense regulation, a mechanism
that has been shown to be linked to fine-tuning the expression of some
gene class (Xu et al., 2011)

• “genomic” may reveal pseudogene expression (Kalyana-Sundaram et al.,
2012)

On the other hand, using the Ebased CDFs requires some caution. Par-
ticular attention need to be paid to the new probe-set classes, whether “un-
translated”, “antisense” or “genomic”. For these a manual curation is nec-
essary to avoid mis-assigning gene expression, although in most cases, an in
silico validation is sufficient. However for every probe-set of the “multiple”
class, usually matching a single gene family - as seen for the hemoglobins
in the results (see paragraph 4.1.4, page 78), a wet lab validation would be
required.

5.1.2 Simulation: the aSim package

A globally accepted approach to test newly developed statistical analyses is
to use in silico generated datasets as a gold standard. This data represent
the “truth” against which the results of the methods under evaluation are
compared to in order to assess these methods’ sensibility and sensitivity.
It is essential for these artificial datasets to model realistic technical and
biological variation. To evaluate the integrative analysis approach described
in this thesis, there was a need for a microarray simulator able to generate
pre-processed data. However, current publicly available microarray data
simulators (Singhal et al., 2003; Balagurunathan et al., 2002; Nykter et al.,
2006; Wierling et al., 2002) mainly focus on generating images to benchmark
image analysis software and provide limited capabilities for analyzing post-
processing algorithms.

This led me to develop a fast and flexible microarray simulator: aSim,
which is able to simulate microarray data arising from different platforms on
a pre-processed data level. It simulates data, which are gathered after fea-
ture extraction and normalization of the raw-data read-out from the scanner.
It assumes that proper feature quality controls are applied, as well as the
right normalization method, so that the effect of technical noise within the
array becomes negligible. The default settings of aSim invoke the Poisson
distribution for the number of altered groups within an array and the Gaus-
sian and log-normal distribution for the generation of a measurement within
a group. To complement these default models, aSim offers the possibility to
replace them by custom-defined ones, e.g. for EP the Zipfs law, power law
or the related Pareto (Li and Yang, 2002) distributions, which are distribu-
tions frequently mentioned in the literature to model EP data. In a similar
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fashion, additional noise parameters can be introduced in the simulation
process e.g. based on the variance stabilization model proposed by Huber
et al. (Huber et al., 2002, 2003); a model to simulate the consequence of the
inhomogenous cell population frequently observed in tumor samples could
be devised. As seen in the results of the comparative analysis, c.f. section
4.5.2, page 130, there’s an enrichment in the tumor sample of the “immune
response” GO term that is likely due to the presence of many activated
macrophages and lymphocytes, attracted by the wounds and inflammation
resulting from cancerogenesis.

aSim, given its flexibility and extensibility, is a good tool to benchmark
new or existing algorithms and to test their model assumptions under dif-
fering conditions. As demonstrated for the arrayCGH data segmentation
algorithm GLAD, discrepancies between the original and simulated data can
be explained by specific conditions in the parameter space of the algorithm.
A possible origin of these discrepancies could be the simulator itself, e.g. if
the distribution models used to simulate the data were not describing the
original data properly. Indeed, as revealed by Hu et al. (2007) and confirmed
in my results neither the fibroblast nor the ependyma or the bladder data
are normally distributed, challenging the simulator assumptions. However,
changing the distributions used to simulate the fibroblast dataset did not
result in a significant change of the correlation range test results, see sec-
tion 4.3.3, page 100. Testing different parameters for GLAD revealed that
its default parameters resulted in finding fewer segments than there really
are in the data introducing a bias in the simulations and explaining the
observed discrepancies. An interesting co-finding from this comparison is
that the Pearsons correlation coefficient is not influenced by the technical
variability of the data only, but by its biological properties as well . This
suggests that the results from Pearsons correlations, often used to compare
microarray data in the literature, have to be taken with a greater caution
and properly cross-validated. Finally, the modular structure of aSim enables
a variety of applications, ranging from benchmarking arrayCGH segmenta-
tion algorithms up to simulating altered pathways in gene expression profiles
- an interesting way to benchmark Genetic Regulatory Network (GRN)
(Lee et al., 2002; Nykter et al., 2006) analysis tools.

In the general context of algorithm benchmarking, several evaluations of
arrayCGH and EP segmentation algorithms have been done (Picard et al.,
2005; Willenbrock and Fridlyand, 2005; Lehmussola et al., 2006) using simu-
lated data, but their results are difficult to compare and to reproduce, which
is a major drawback of simulation studies in general. In aSim, a particular
attention has been given to that point - the simulation parameters are part
of the results - which gives the researcher the possibility to replicate data
locally, to test additional simulation conditions and to share data model
assumptions (abstracted as aSim parameters) with collaboration partners.
Using a standardized simulator ensures reproducibility across the research
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community. In addition, the possibility to use data simulated under differ-
ent data model conditions will safeguard against cases where an algorithm
will be favored by the fact that it implements the same assumptions as the
simulation process does.

Finally, at the community level, there is a demand for a simulator focus-
ing on generating pre-processed data. aSim was designed for microarrays,
but its flexibility allows for generating NGS data as well. In this new,
quickly expanding research field, more and more algorithms dealing with
pre-processed and normalized data are developed, that eventually need to
be benchmarked. To easily do so, a simulator needs to be capable of generat-
ing any kind of data: EP, CNV, Tissue Microarray, etc. for any kind of data
model: mixture models for microarrays, negative binomial for RNA-Seq
data, . . . So far, to my knowledge, no other simulator is that flexible. To
summarize, aSim simulations are fast and the results reproducible from one
simulation to the next. The simulation process is flexible, computationally
cheap and extensible: it can be used to simulate other kinds of data such as
NGS data. Finally, aSim allows users to share with other researchers, their
data model assumptions through a reduced set of parameters.

5.1.3 Data analysis: statistical methods

For performing the integrative analysis and comparative analysis of retinoblas-
toma and osteosarcoma, a number of statistical methods have been devel-
oped and evaluated. Assumptions made during this process are discussed in
the following, as are limitations and possible enhancements concerning the
arrayCGH data imputation and sex rescue, the EP state definition and the
integrative analysis statistics.

ArrayCGH data imputation: Imputing values might introduce some
bias in the data (i.e. increase in both type I and II errors), however if prop-
erly performed, it provides the statistical methods with a significant power
gain. As missing values impede the detection power of statistical methods
by decreasing the number of observations, replacing them by realistic values
drawn from data distributions taking into account these values context - i.e.
missing value within a gained region will be imputed differently than these
in a lost region - is a reasonable way to impute values. On the other hand,
imputing successive values located within large chromosomal regions - i.e.
too many successive missing values - or close to chromosomal breakpoints
is certainly less acurate. For that reason, in order not to reduce the gained
detective power, such values were not imputed.

In the integrative analysis study, only the arrayCGH microarray data for
the Zielinski et al. (2005) dataset had to be imputed. This was performed
after the data had been normalized within and between arrays. This of-
fers the advantage that the data (i.e. log2 FC) is homoscedastic (i.e. the
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variance is constant accross arrays) and normally distributed. Based on
these robust assumptions, it is possible to use the aSim simulator to create
log2 FC values using the “normal” distribution and parameterized by the
median and MAD values extracted from the data. Using the median and
MAD rather than the mean and SD makes this approach robust to outliers
that may exist in the raw data. As the imputed data does not affect the
overall distribution of the log2 FC, this procedure is therefore unlikely to
have introduced a bias affecting the rest of the analyses.

In the same study, virtual arrayCGH probes were defined spanning the
chromosomal loci between the probes present on the array. These virtual
probes cover 69% of the genome and their median length is 2.3 times larger
(377 vs. 164kb) than that of the spotted probes. Imputing the arrayCGH
virtual probe values resulted in a statistically significant mean difference of
the virtual vs. experimental log2 value distributions. However this mean
difference (0.12) is neglectable in regard to the data spread: [−1.3, 1.4] and
[−3.1, 3.6], respectively. It might result in a decrease of sensitivity, but is
compensated by the massive increase of data available for the comparison:
1.86 times more probes and a 3.22 fold increase of the genomic coverage.

In the analyses presented in this thesis, values were imputed to increase
the detection power and the obtained results are sensible and do not chal-
lenge the chosen approach. However, it is certain that imputing these values
has increased the analyses error rates. A possibility - not evaluated - to con-
trol for such unwanted effects would be to associate the imputed values with
a confidence score, e.g. a weight on a [0, 1] scale, that would be taken into
account to refine the p-values obtained by the statistical analyses.

ArrayCGH sex rescue: The microarrays used have an opposite sex
matched design, therefore the log-ratio for the sex chromosome have to be
corrected, e.g. for male samples, a 1X loss of the X chromosome and a 1X
gain of the Y chromosome should be observed. Based on this assumption
(and the reciprocal one for female samples), the log2 FC values were cor-
rected. This approach, although basic, allowed the identification of a loss on
chromosome X for the M22808 sample: dim(Xp11.22q23) which was previ-
ously reported by Zielinski et al. (2005). However it did not help correct the
values for the Y chromosome, mainly for two reasons. First, there are only 30
probes covering this 59Mb large chromosome. Second, 50% consists of highly
variable heterochromatin content, while the other half has partial homology
to the X chromosome (pseudo-autosomal regions). Clearly, these probe val-
ues cannot be retained for any analysis as they are too variable. Even if this
might affect the analyses, the consequences should be extremely limited, as
the Y chromosome is rather gene-poor: 45 genes only are reported. In fine,
this concerns only 0.5% of the data used in the integrative analysis. These
sex-matched protocols, originally used as an internal control for arrayCGH
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experiments, leading to data loss have since then been replaced by other
- more appropriate - experimental designs such as hybridizing the tumor
sample against the patients own blood or healthy tissue.

Expression Profiling state definition: To define the EP state - i.e.
the discrete expression values - the results of the Differential Expression
(DE) of the EP data were binned according to the selected adjusted p-value
significance level. This resulted in probe-set centric states, e.g. probe-sets
with a significant negative log2 FC were attributed a −1 state. As the result-
ing mono-dimensional vector is not representative of the variability across
samples, Z-scores were calculated per probe-set using as the expected mean
µ the fitted log2 FC value obtained from the DE analysis. The Z-scores
were then used to refine the probe-set centric states for every sample. A
major assumption of this process is that the microarray normalization has
transformed the data distribution into a “normal distribution” - i.e. a Gaus-
sian distribution of mean µ and variance σ. If that assumption holds, then
the Z-scores should follow a “standard normal distribution” with parame-
ters µ = 0 and σ = 1. As observed for both the integrative analysis and
comparative analysis, this assumption holds as the observed Z-scores dis-
tributions do not significantly differ from the expected standard normal
distribution. Only 1.9 and 1.4 percent of deviation are observed, respec-
tively, which can originate from several factors including, but not limited
to, possible unasserted biological and/or technical variability, innacurate
data normalization, innacurate linear models, small sample size, etc. That
last point might be the reason for the 0.5% difference when this procedure
is applied to the retinoblastoma (for the integrative analysis) and osteosar-
coma (for the comparative analysis) datasets, as this last one contains twice
more samples, i.e. the mean and SD can more accurately be determined,
hence refining the obtained Z-scores. In any case, this slight deviation is
not worrysome and on the contrary validates the approach. Moreover, it
shows that either combining control samples hybridized on different plat-
forms, as in the retinoblastoma EP study, or using an independent set of
controls, such as the UHRR used for the osteosarcoma study, does not affect
the calculation of the EP states.

ArrayCGH and expression profiling integrative analysis: The use
of integrative analysis in molecular biology is not recent (Glass, 1980), how-
ever it has only recently been applied to the field of molecular genetics in
large scales - reviewed in Rhodes and Chinnaiyan (2005). Moreover, af-
ter the pioneer study from Hyman et al. (2002) comparing CNV and EP
- actually only chromosomal gains and gene over-expression - very few has
been done for comparing such data until recently (Sadikovic et al., 2009).
In that last study, the integrative analysis was only based on comparing
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the gene-sets identified by three different techniques - arrayCGH, EP and
Me-DIP-chip (methylated DNA immunoprecipitation followed by microar-
ray hybridization to an Affymetrix Human Promoter 1.0R Tilling Array) -
using Venn diagrams. Moreover, the significance of these associations was
not tested, even though some case examples were validated by additional
experiments, such as mass-spectrometry. Moreover, the “copy number and
DNA methylation analysis excluded sex chromosomes to avoid bias in the
identification of significant genes/regions owing to sex differences between
some tumor samples and male human osteoblast controls”1. In compari-
son, the introduced approach - correcting for such effects and evaluating the
significance of the different data type associations - is more robust. Con-
cerning that last point, whereas the equation used in Hyman et al. (2002)
was a mere observation, its implementation - weight w - presented in this
study has been generalized and relies on solid statistical assumptions. As
shown, it out-performs standard statistical methods (e.g. eta η2, welch)
used in other fields (e.g. banking) for performing that kind of integrative
data comparison. Furthermore, η2 and w are related: a classic approach for
comparing data-sets is to perform an ANalysis Of VAriance (ANOVA),
which relies on partitioning the total sum of squares SS into components
related to the effects used in the selected model. The simplest type is:

n∑
i=1

n∑
j=1

(xij − x̄)2 =

n∑
i=1

n∑
j=1

(xij − x̄j)2 +

n∑
j=1

nj(x̄j − x̄)2

and can be expressed as SS = SSt+SSe, where SSt and SSe represents the
effect and error, respectively.

eta2 - see equation 3.2, page 57 - relates to an ANOVA as follows:

η2 =
SSe
SS

, η2 ∈ [0, 1]

And likewise w does - see equation 3.5, page 58:

w =

∑
i 6=j |ȳi − ȳj |
SSe

Moreover, since
∑

i 6=j |ȳi− ȳj | is an estimator of SS, w is related to eta2.
The fact that w uses a distance metric rather than one based on the mean
- as η2 - is probably what makes it more accurate.

However, as observed, even w has limitations, e.g. some peculiar cases
need to be corrected through the use of sub-methods, a process that is sub-
optimal.

An alternative approach could be to use a polyserial correlation: “it
measures the correlation between two continuous variables with a bivariate

1Extracted from Sadikovic et al. (2009)
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normal distribution, where one variable is observed directly, and the other is
unobserved. Information about the unobserved variable is obtained through
an observed ordinal variable that is derived from the unobserved variable by
classifying its values into a finite set of discrete, ordered values”2(Olsson
et al., 1982). Presently, in the context of the integrative analysis, the ob-
served variable would be the EP values while the discrete ones would be the
arrayCGH segmentation results. A limitation, there, might be the bivariate
normality assumption, in particular for studies with few samples or samples
with uneven quality.

A better approach, not extensively relying on such assumptions, might
be to further refine the w method. As it is performed per gene, the current
w has limitations when a class - e.g. CNV gain - consists of one observation
only or when there’s only a single class: e.g. only balanced cases are present.
In such cases, a sub method, for example “compact” or “percent”, has to
be used. Another w limitation is that it penalizes correlation pairs with
a large SD, e.g. if one EP value is highly amplified in the context of no
CNV gain. However, these issues can be relatively easily adressed: the later
one by multiplying the numerator of w (see equation 3.5, page 58) by the
corresponding discrete class value - i.e. the arrayCGH label. For the former
one, if instead of the distance divided by the SD, the mean value of every
class is considered, there is no need for a “correction” sub-method. Finally,
the score for every class should be pondered by the number of - if any -
missing values and the classes sum returned as the correlation score. If
values were imputed - as in this work -, their imputation confidence score
could be used to refine that ponderation. The following equation describe
this new “weight2” method w2

w2 =
∑
l

µl × ll × wl (5.1)

where µl is the mean of the continuous values - i.e. EP values - observed for
the class label ll - the arrayCGH values - and their associated weight wl.

Preliminary results show that w2 out-performs both w and η2 but further
validations would be required.

A possible caveat: Although the sensitivity and specificity of the
methods were assessed and deemed more than satisfactory, a possible caveat
remains: the possible effects of the “multiple” class probe-sets. These probe-
sets have member probes that map several positions of the genome and pos-
sibly record the expression of different genes or different members of the
same gene family, as observed for the hemoglobins in osteosarcoma para-
graph 4.1.4, page 78. On the brighter side, the use of “tumor vs. control”
contrasts for the EP analyses performed in this work should be sufficient to

2description from www.sas.com
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nullify this risk - i.e. any non-specific effect of the “tumor” samples will be
cancelled out by the same effect from the “control” samples.

As presented, a number of methods have been developed during this doc-
toral work that enhance the analyses performed on microarrays data. While
the CDFs are definitely dedicated to microarrays, both aSim and the in-
tegrative and comparative analyses (ICA) methods can be applied to gen-
erate/study other data. For the ICA, the only constraint is that the data
has to be normalized prior to the analysis; e.g. for comparing NGS CNV
with RNA-Seq data, the CNV data should be segmented - in a similar fash-
ion as for microarrays - while the RNA-Seq data should be summarized
by transcripts or gene-models and normalized using a negative binomial
model. Such a procedure can already be performed in R using the fastseg,
easyRNASeq and DESeq packages (Klambauer et al.; Delhomme et al., 2012;
Anders and Huber, 2010); consequently the ICA methods developed in this
thesis can readily be applied to publicly available NGS datasets.

The following sections focus on the biological pertinence of the results
obtained applying these methods to a series of retinoblastoma and osteosar-
coma datasets.
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5.2 Data Analyses

It is important to point out that in this section all the results were obtained
from in-silico methods and would need a wet-lab validation. However, the
high confindence results obtained from these analyses, often validated by
published work, appear sensible. The previously introduced methods are
therefore to be seen as wet-lab “hypothesis-generating” methods and their
obtained results discussed as such in the following.

5.2.1 Expression Profiling analyses

All the EP analyses performed came up with results validated by a large
body of literature. Indeed, an average 80% of the over-expressed genes pre-
sented in the results among the 20 - 40 top candidates for either tumor had
been previously associated with cancer. Similarly, the vast majority of the
down-regulated genes could be associated to features of the differentiated
tissue of origin, e.g. in retinoblastoma the gene RHO encoding rhodopsin, a
retina pigment. Moreover, the refined undertaken approach - mainly the re-
definition of the CDFs - revealed additional candidates that have so far
hardly been investigated: e.g. in retinoblastoma the over-expression of
EZH2 (Polycomb protein EZH2) and LCORL (Ligand-dependent nuclear
receptor corepressor-like protein) that could indicate an implication of re-
pressor protein complexes in the cancerogenesis process. Finally, these CDFs
helped identify entirely novel targets. The retinoblastoma EP experiment
identified a strongly up-regulated “genomic” probe-set (its log2 FC close to
4) located downstream of the reported 3’UTR of the CASC5 (cancer su-
ceptibility candidate 5) gene. UTR regions are difficult to define in-silico
and might vary in-vivo depending on the tissue in which that gene is ex-
pressed. Moreover, GeneChip R© microarrays have been originally designed
using ESTs libraries to specifically target the 3’ end of genes. The probe-set
location, next to its 3’UTR makes CASC5 the most sensible candidate; : a
gene that would not be identified by traditional CDFs.

Retinoblastoma: As expected for retinoblastoma tumors, many genes in-
volved in the cell cycle were identified as being significantly de-regulated,
e.g. CDC2, NUF2, . . . Also, as mentioned above, differentiated tissue
specific genes were down-regulated indicating that this tumor although ap-
pearing in a differentiated tissue consisted of cells that had “regressed” to a
less differentiated state or were originally of a less differentiated origin, i.e.
stem cells. These results, although interesting and significant in themselves,
gave few clues about possible causative factors. It would be possible to use
them to further investigate a small number of candidate genes, but hardly
for investigating cancerogenesis as a “system”.
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Osteosarcoma: Identical observations were made when looking at the os-
teosarcoma EP results, even though the setup of the selected experiment
(Fritsche-Guenther et al., 2010) consisting of primary and - unrelated -
metastasis tumors offered some additional insights. Indeed 4 different con-
trasting analyses could be performed, see section 4.1.4, page 78, e.g. such
as evaluating the DE between all tumor samples vs. the control samples.

First contrast: all tumors vs. control: This analysis recapitu-
lated the observations from the retinoblastoma analysis above. First, tissue-
specific genes were down-regulated: in the case of osteosarcoma the most
affected were precursors of either trophic or mitogenic factors. Indeed, as
introduced - see section 1.1.1, page 11 and 1.1.3, page 18 - the ECM of
healthy bone tissue is a reserve for such factors. Then, among the other
genes, a number were involved in the regulation of NF-κB, the upregulation
of the corresponding signaling pathway having been reported of importance
in osteosarcoma and its metastases (Felx et al., 2006; Asai et al., 2002). It
was interesting to observe that the two most affected genes within this path-
way: NQO1, PDLIM2 were down-regulated negative regulators. Singling
these possible tumor-suppressors as well as other cancer relevant genes out of
the large number of non-causative tissue-specific down-regulated genes was
not an easy task. Hence, it was hardly achievable to have comprehensive
analyses - such as pathway analyses - reach a meaningful detection power.

Nevertheless, these results were interesting for gene centric analyses as
well as for generating study hypotheses. In that context, the re-definition of
the CDFs brought up among the 20 most up-regulated probe-sets two new,
potentially interesting, targets:

• “ENST00000292896 ENST00000380237 transcript multiple at”

• “ENST00000361970 transcript antisense at”

The first one, associated with the gene HBE1, had probes mapping several
genes. A closer look revealed that those genes: HBD, HBG2, HBG1, HBB
are all Hemoglobin subunits. Provided that this was not a technical artifact
(see paragraph 5.1.3, page 145), it is unclear why hemoglobin genes would be
over-expressed in osteosarcoma. Is it due to the comparison of a tumor mixed
cell population against a more unique cell type sample - i.e. osteoblasts cells
were used as controls - or could it be relevant to the tumor neo-angiogenesis?

The second probe-set, antisense to CCDC152 actually overlaped the
3’ UTR region of the SEPP1 gene located on the opposite strand. This
gene has often been associated with cancer (Persson-Moschos et al., 2000;
Gonzalez-Moreno et al., 2011), but as being down-regulated. Without fur-
ther experimental validation, this candidate could not be validated, i.e. is
it really the SEPP1 gene that was expressed or was some antisense regula-
tion of the CCDC152 gene involved? Answering this question would give
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an insight into a potentially new role of either gene. However, as for the
retinoblastoma analysis above, these detailed results did not help conceive
a more “systemic” view.

Additional insights from the other contrasts: It is interesting
that two other contrasts: “primary tumor vs. control” and “metastasis vs.
control” resulted in extremely similar candidate tables: only 3 probe-sets
in 30 and 1 in 40, respectively differed from the “all tumor vs. control”
contrast. Was it the presence of confounding factors that rendered them so
similar or was it due to their shared origin? Metastases - at least those that
pass the micrometastasis state - are more aggressive than primary tumors
and two of the three genes identified by the 4 probe-sets specific to these
contrasts supported this:

• CD44 involved in cell proliferation, migration, etc. was over-expressed
in most metastasis sample - by 1 log2 FC in 25% and 2 in 50% of all
samples.

• CYKL involved in chondrogenesis (Kim et al., 2007) in an autocrine
fashion was down-regulated in metastasis samples. Whether this was
due to a more de-differentiated state of the metastasis compared to the
primary tumor, or to a different micro-environment and whether the
presence of this cytokine was benefitial or not for the primary tumor
remain open questions.

The forth analyzed contrast: “primary tumor vs. metastasis” gave some
hints to answer the first question. Indeed, despite the presence of confound-
ing factors - e.g. numerous Pulmonary surfactant-associated proteins coding
genes appeared among the most signifiantly differentially expressed candi-
dates, a fact due to the lung localization of the metastasis - a more detailed
analysis revealed that the primary tumor and the metastases seemed to
have deregulated key cellular mechanisms in different ways. In the primary
tumor, more cell cycle components: MAD2L1, MNAT1, RRM2 were af-
fected. In the metastases, components of the NF-κB, Wnt and MAPK/ERK
pathways were stimulated (CLIC3, CAV1 ), as were cell growth (NPR3,
S100A6, TM4SF1 ) and motility (TM4SF1 ) processes. In addition, the fact
- contra-intuitive at first - that PRAME - Preferentially expressed antigen
of melanoma, a gene that “functions as a transcriptional repressor, inhibit-
ing the signaling of retinoic acid through the retinoic acid receptors RARA,
RARB and RARG and prevents retinoic acid-induced cell proliferation ar-
rest, differentiation and apoptosis”3 - was over-expressed in primary tumors
(see Table 4.5, page 84) indicated that this gene was actually down-regulated
in the metastases favoring cell-proliferation and apoptosis-escape through an
independance to anti-growth signal, in particular retinoic acid (RA).

3from http://www.genecards.org (Rebhan et al., 1997)
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These results are important for two reasons; first they are in line with the
more commonly accepted hypothesis that metastasis is not a trait appearing
late in tumors - see section 1.1.1, page 11 - and second they demonstrated
that more complex experimental and analytical designs offer the possibility
to raise “systemic” hypotheses.

Confounding factors remained: As observed for the four different EP
comparisons performed on the GEO GSE14359 dataset above and as seen
for the retinoblastoma EP analysis, the down-regulation of a large number
of genes appeared to be the consequence of the cancerogenesis rather than
a causative factor. As such, these were considered confounding factors
that diluted the detection power of the true causative factors within these
analyses. Nevertheless, some interesting hypotheses could be derived, e.g.
for the osteosarcoma “tumor vs. metastasis” comparison, it appeared that
the primary tumor might have a more de-regulated cell cycle whereas the
metastasis could be self-sufficient with regards to growth-signals.

5.2.2 ArrayCGH analyses

Copy Number Variation analysis: The arrayCGH analysis performed
on the Zielinski et al. (2005) dataset gave results identical to those presented
in that study, with only minor variations due to the use of improved segmen-
tation algorithms. For example, the original analysis found smaller regions,
which might be explained by the missing data imputation performed by the
new analysis. The only significant differences were a non-recalled 22q13.2
gain and the identification of an high amplification on chromosome 11q22.1.
Concerning the 22q13.2 gain previously reported, it fell below the detection
threshold of the new improved method. Given the refined segmentation as-
sumption, this gain probably originated from technical variations although
a biological explanation could not be excluded. The 11q22.1 gain was not
reported in the original study whereas I could observe it in that study’s
results. This raised the question whether it has been not reported due to
insufficient evidences obtained from the analyses performed or if it was dis-
carded as a technical artifact (i.e. based on the knowledge that some of the
probes were misannotated or mislabeled). Verifying the probes located in
that locus did not help answer that question; the locus was covered by 4
BAC clones totaling 0.72Mb and 3 additional virtual BAC clones spanned
the remaining of that locus, covering an additional 1.6Mb. According to
the PIMS annotation, there was no evidence of a technical artifact and nei-
ther were the probes spanning known repetitive regions. It could still be
that some of these clones contained degenerated repetetive elements such as
Long Terminal Repeats (LTR), Long INterspersed Elements (LINE), Short
INterspersed Elements (SINE), etc. , which adds up to about 42% of the
human genome (Lander and International Human Genome Sequencing Con-
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sortium, 2001). The presence of such elements could explain an artifactual
high amplification gain, but it would likely have been reported as such in the
annotation. Therefore, wet-lab experiments would be required to validate
this locus.

Three genes were found in that region, see Table 4.10, page 92. In the
context of cancerogenesis, among those, PGR could be a potential candi-
date as it is involved in cell proliferation and differentiation. The other two
genes involvement would be more speculative: CNTN5 having only been re-
ported during the nervous system development and Q96M56 HUMAN being
a pseudogene similar to oligophrenin-1: a Rho-GTPase-activating protein,
which affects cell migration and cell morphogenesis. Although these anno-
tations could help devise a role for these genes, the evidences are too weak
to do so confidently.

Clinical factor integrative analysis: Using the clinical factors, two
kinds of integrative analyses were performed: MDS and hierarchical clus-
tering. While the MDS did not reveal any correlations between the data
and factors, the hierarchical clustering approach was more fruitful. First, as
already reported by Gratias et al. (2007), a significant correlation could be
observed between the occurence of vitreous seedings and the number of aber-
rations per tumor - i.e. the more aberrations, the more vitreous seedings
arised. Similarly, it was verified that the number of aberrations negatively
correlated with the presence of a germline mutation - the presence of the
later decreased the likelihood to observe numerous aberrations, as expected
from the Knudson two-hit hypothesis (see section 1.1.1, page 3). Also, even
though the correlation reported by Gratias et al. (2005) between a 1q gain
and a later onset of the disease could not be verified - the observed 0.9
p-value for a Welch Two Sample t-test being certainly due to the smaller
dataset size in comparison to the original study: 14 vs. 76 samples - a weak
correlation could be observed between the number of aberrations and the
age at diagnosis (Pearson’s product-moment correlation of 0.48 with a p-
value of 0.08 and a confidence interval of [−0.06, 0.8]. In addition, the age
at diagnosis differed between the samples with and without a germline mu-
tation: a mean value of 495 vs. 846 days (Welch Two Sample t-test p-value
of 0.09). The relationships between age at diagnosis, number of abbera-
tions and the presence of a germline mutation can be visualized in Figure
5.1. Taken together - and despite the limited number of samples - these
results are in line with the common theory describing cancerogenesis: i.e.
that a minimum number of events occuring across a “long” period of time
are necessary for a cell to acquire a tumorigenic potential. However, from
Figure 5.1, it appears that this might not be the only way a cell can acquire
such potential: the sample with the largest number of aberrations was in-
deed diagnosed at an age compatible with a germline mutation. This could
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Figure 5.1 – Number of abberrations - identified using the refined segmen-
tation algorithm - vs. the number the age at diagnosis. A weak correlation
appears between both. On that same picture the effect of the germline muta-
tion on both the number of aberrations and the age at diagnosis is evident.

indicate that a catastophic event such as chromothripsis described recently
in different tumors by Stephens et al. (2011) and Rausch et al. (2012) took
place instead.

These results’ sensibility despite the limited number of sample is cer-
tainly due to the refined methods used that have an enhanced sensitivity.

Confounding factors presence: As in the EP analyses discussed previ-
ously, it is difficult to determine whether a CNV is a consequence or a cause
of the cancerogenesis. For this reason, an integrative analysis approch was
undertaken combining these 2 datasets. As shown in Figure 5.2, such ap-
proaches help determine the common factors identified by the independent
analyses. These factors are likely only a subset of all causative factors, as
they can originate from other sources of deregulation than CNV, such as
methylation, short RNAs, alternative splicing, alternative poly-adenylation,
etc. On one hand, concentrating on only 2 types of datasets limited the
range of the undertaken integrative analysis approach. On the other hand,
it helped validate that very approach and as discussed in the next section,
could be extended to take advantages of additional dataset types.
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Figure 5.2 – A scheme representing the advantage of performing an integrative
analysis over performing separate data analyses.

5.2.3 Retinoblastoma integrative analysis

As discussed previously - see section 5.1.3, page 143 - the statistical meth-
ods developed for performing an integrative analysis of EP and arrayCGH
datasets were convincingly tested on simulated data. Applied to biological
data this analysis revealed a number of interesting facts, unlikely due to
confounding factors. These results and their implications are discussed in
the following by order of importance to the aim of the present work.

Minor relevance results: These first points, although “minor” in this
thesis work context, further validated the sensitivity of the whole process
(CDFs re-generation, etc. ) and brought up some interesting hypotheses.

The w score was almost invariable: The 203 curated probe-sets
identify 171 genes, of which 24 have two and 4 have three probe-sets. Their
w score were almost invariable: the corresponding Z-scores were contained
in the 20−80% range of the probability distribution, with the vast majority
(24 out of 28) within the 30 − 60% range. Obtaining such stable w score
from different probe-sets was a strong evidence of the method validity. Ac-
tually, a statistical advantage could be taken of this probe-set multiplicity
by increasing the corresponding genes significance, e.g. an additional weight
could be added to the w2 calculation model presented in paragraph 5.1.3,
page 143.

Known genes were recalled: A similar approach by Grasemann
et al. (2005), using a more basic methodology, reported the genes E2F3
and DEK as being over-expressed and within gained loci. These genes: a
major cell cycle TF and a known oncogene were identified as the 5th and
14th candidates in the present work, respectively. This finding from an inde-
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pendant study using almost the same dataset was an additional validation
of the introduced method.

Known aberrations were recalled: All the significant pairs were
located in CNV regions previously reported by Zielinski et al. (2005); yet
another validation of the approach. In the arrayCGH results, an high ampli-
fication gain was reported for chromosome 11q22.1 - as discussed previously,
see paragraph 5.2.2, page 150 - but none of the arrayCGH - EP pair showed a
significant correlation at that locus, which could be indicative of a technical
artifact.

The “multiple” probe-set class was over-represented: In the
203 curated probe-sets, 99 were of the “multiple” class, in comparison to the
4 to 10% proportion on the whole GeneChip R© for the gene and transcript
probe-sets, respectively; see paragraph 4.1.2, page 70. This was explained by
the presence of three different chromosome 6 haplotypes (6, 6COX, 6QBL)
in the microarray annotation. These probe-sets, once manually curated,
all resolved to a common gene set, i.e. that set of gene was present 3
times, once for every haplotype. Given the amount of ongoing resequencing
project, the amount of haplotypes in the database is likely to increase and
these should be differentiated from “real” multiple loci mapping probe-sets;
a future improvement to the Ebased CDF generation. At the same time, it
is yet another indirect validation of the probe-set generation process.

Evidence of pseudogene involvment? Three of the curated probe-
sets were associated with pseudogenes: SUCLA2P, PTMAP1 and PIP5K1P1.
The last two ones are “processed” pseudogenes - i.e. pseudogenes that are
transcribed but not translated. As described by Tam et al. (2008) - and oth-
ers in a growing body of literature - there are evidences of gene regulation by
the mean of pseudogenes. One mean of regulation is the creation of “endoge-
nous small interfering RNAs (endo-siRNAs), which are often processed from
doubled stranded RNAs formed by hybridization of spliced transcripts from
protein-coding genes to antisense transcripts from homologous pseudogenes.
An inverted repeat pseudogene can also generate abundant small RNAs di-
rectly”4. These would trigger the RNA interfence pathway and therefore
decrease the expression of the corresponding protein-coding genes. In the
present case, the corresponding genes were PTMA, involved in immune re-
sistance to opportunistic infections and in modulating histone 1 interactions
with the chromatin and PIP5K1 involved in signal transduction through
the generation of Phosphatidylinositol 4,5-bisphosphate (PIP2), an impor-
tant cell second messenger. The GeneChip R© HG-U133A, used for perform-
ing the EP did not contain any probe-set for PTMA but for three PIP5K1

4extracted from Tam et al. (2008)
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family members: A,B,C. Only PIP5K1B probe-sets (n=2) showed a signif-
icant (according to the parameter used in this study) down-regulation of 2
log2 FC while the other ones showed a slight non-significant up-regulation
(n=3, 0.8 log2 FC). This pseudogene regulation hypothesis would need to be
validated, however it further demonstrates the use of integrative analyses.

Regulation through small RNA? One of the curated probe-set
identified the U6-snRNA, a key element of the major - canonical - spliceo-
some (Sheth et al., 2006). As of the date of this manuscript, U6-snRNA has
not been reported to be directly associated with cancer although alternative
splicing has been (Venables, 2004; Skotheim and Nees, 2007) for a long time.
As the original GeneChip R© - as well as that of other microarray platforms -
design relied on mRNA, it is likely that snRNA have been overseen in large
scale microarray studies. The recent development of less limited technolo-
gies, such as RNA-Seq (Mortazavi et al., 2008) might change this. It might
as well be that even if U6-snRNA came up in a EP study, it was discarded
as a confounding factor: i.e. given the proliferative attribute of tumors, it
is understandable that genes involved in processes such as replication, tran-
scription, splicing, etc. are considered deregulated as a consequence and not
a cause of cancer. The fact revealed here - i.e. that its expression correlated
with its locus CNV state - might indicate a more important role of that
snRNA.

Evidence of antisense regulation? For the genes DST and EE1F1E1,
both involved in the negative regulation of the cell cycle and for the second
one in the positive regulation of apoptosis, probe-sets were identified that
were significantly over-expressed in conjonction with a chromosomal 6p gain.
However, these two probe-sets map uniquely in the genome on the opposite
strand of the 3’UTR region of the 2 mentioned genes. For these loci that
have no reported haplotypes, it is likely that the probe-sets are recording
an antisense expression of their target genes. In addition, the context of
retinoblastoma - a tumor known for its cell cycle deregulation - renders
these results even more interesting.

Major relevance results:

Only a minority of genes were recalled from EP: Among the
171 genes identified by the 203 curated significant pairs, only 55 (26%) over-
laped with the candidate list of the EP analysis performed on the GSE5222
dataset. This was indicative that a large number of the EP candidate genes
were confounding and not causative factors. Moreover, it meant that for
potential causative factors, their expression variation between samples and
controls was not sufficient to be significant. This can be explained by the
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smaller sample subset within the dataset displaying that gene de-regulation,
e.g. only 59% of the samples show a gain on chromosome 6p.

Performing a GO analysis on the commonly identified 55 genes revealed
the “cell cycle process” and “cell cycle” terms as the most significant - as
expected for retinoblastoma. This displayed the integrative analyses ap-
proaches power to remove confouding factors. In addition, it enabled addi-
tional analyses by reporting both positively and negatively correlating pairs:
about 20% of the reported pairs had a negative correlation, indicative of
more complex gene regulation. Among these pairs’ associated gene, SALL1
- involved in transcription and Wnt signal transduction - is over-expressed
while located in an LOH region. The other genes, all on chromosome 6p
- frequently gained - were all down-regulated, see section 4.4.3, page 114.
These genes are involved in different processes such as immune response,
signal transduction, transcription and cell cycle regulation. These results
were suggestive of gene dosage compensation, but whether this is a natural
response (e.g. resulting from a feedback mechanism) or actively orchestred
by the tumor cells remains an open question, although observed facts give
more support to the second hypothesis: 9 genes involved in immune response
were repressed, as were genes involved in other cell processes: ID4, which is
a “basic helix-loop-helix transcription factors which can act as tumor sup-
pressors”5 and NEDD9 that “plays a central coordinating role for tyrosine-
kinase-based signaling related to cell adhesion”6. For other genes, such as
the two member of the Forkhead box (FOX) family: FOXC1, FOXF2, a
down-regulation is more difficult to explain as they are member of a “family
of transcription factors that play important roles in regulating the expression
of genes involved in cell growth, proliferation, differentiation, and longevity.
Many FOX proteins are important to embryonic development.” FOXC1
“has been shown to play a role in the regulation of embryonic and ocular de-
velopment” and FOXF2 “has been shown to transcriptionally activate several
lung-specific genes”7. It appears that our knowledge about these genes is
still too sparse to postulate any hypothesis concerning their role.

Chromosome 6 was enriched in significant pairs: A very inter-
esting finding that shed some light on retinoblastoma cancerogenesis was the
fact that the chromosome 6p arm was enriched in significant pairs: 149 out
of the 171 genes present in significant pairs were located on chromosome 6p.
This could not be explained as an artifact introduced by the pre-dominance
of this CNV in retinoblastoma (59% of the samples used present that aber-
ration) as chromosome 1q gain and 16q loss although very frequent (71%
and 41%, respectively) did not show a similar enrichment.

5however it lacks DNA binding activity and consequently, the activity of the encoded
protein depends on the protein binding partner”

6from http://www.genecards.org (Rebhan et al., 1997)
7from http://www.genecards.org (Rebhan et al., 1997)
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The importance of chromosome 6p was already reported by Grasemann
et al. (2005) - implicating the DEK and E2F3 genes, see paragraph 5.2.3,
page 153 - for a smaller region of the chromosome: 6p21-pter and by the
Zielinski et al. (2005) study that originally reported a minimal deleted region
located on 6p21.33-p21.31. A GO analysis of these 149 genes revealed - at
the 10% FDR threshold selected in the present work - two terms: “artery
morphogenesis” and “artery development”. Similar GO analyses performed
on the different mentioned subsets: 6p11.2-p12.3, 6p21.33-p21.31 and 6p21-
pter (13, 57, 128 genes from significant pairs, respectively) did not reveal
any functional enrichment. However, the same GO analysis performed on
the significant pairs not on chromosome 6p (n = 22) showed an enrichment
for “cell cycle” and “cell cycle process”. This hinted that the “limitless
replication” hallmark of cancer is acquired prior to the neo-angiogenesis
trait.

In addition, as reported by Grasemann et al. (2005), the chromosome 6p
gain is more frequently observed in tumor first diagnosed at a later age: 890
days vs. 305 for those without.

These results taken together seem to indicate that the chromosome 6p
gain is an event occuring late in the tumor development and that it might
benefit the tumor by providing a large number of slight advantages. In-
deed, despite the rather consequent number of genes, no particular pathway
enrichment appeared, but for “artery morphogenesis” and “artery develop-
ment”. This could possibly due to a lack of GO annotation for these genes,
but is unlikely given the significant results obtained for the 22 genes not
on chromosome 6. It is therefore reasonable to postulate that the chromo-
some 6p gain is not one of the principal causative events of retinoblastoma
cancerogenesis but that it brings a large palette of enhancements to an
already established tumor, among which at least one hallmark of cancer:
neo-angiogenesis.

Four hallmarks of cancer were identified: As introduced in the
previous paragraphs and conforted by the GO analyses, the results of the in-
tegrative analysis identified a number of hallmarks of cancer: neo-angiogenesis,
self sufficiency in growth signal, insensitivity to anti-growth signals - here
to the immune response - and limitless replicative potential - here through
cell cycle processes.

These results are sensible but could be enriched by a different pathway
analysis approach, indeed GO annotation are far from being complete and
a lot of complementary information is available, e.g. from KEGG, Uniprot,
etc. Moreover, as done in this doctoral work, ignoring Inferred Electronic
Annotation (IEA) - the actual vast majority of the GO annotation, see (Rhee
et al., 2008) for their significance - results in less powerful but more sensitive
GO analyses. For example, the integrative analysis results revealed a number
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of genes involved in DNA repair (MSH5, MDC1, MCM3 ) but this term is
not significantly recalled. This is a known issue that does not challenge the
approach undertaken in this work but it lessen its outcome. Nevertheless,
the obtained results are sensible and more easily interpretable than those
obtained separately for the EP or arrayCGH analyses alone.

The integrative analysis as presented here is a first step in our under-
standing of a tumor as a whole and the analysis performed underlined the
difficulty of the challenges that remain to be addressed. Toward that goal,
it is important to note that the integrative analysis developed in the present
work is not limited to the datasets used and that it can be used for other
technologies - especially those emerging from the rapid raise of NGS e.g.
RNA-Seq, MEDIP-Seq, ChIP-Seq, etc - or for different analyses as discussed
in the next section.

5.2.4 Retinoblastoma - Osteosarcoma comparative analysis

The observation that motivated such a comparative analysis is that patient
with retinoblastoma have an higher chance to develop osteosarcoma further
in life that the average population. As the microarray databases - such as
GEO and ArrayExpress - content has been expanding exponantially a num-
ber of publicly available datasets resulting from the study of either of these
tumors were readily available However, such a database oriented approach
of retrieving data has several disadvantages that decreased the analysis de-
tection power. First of all, the different tumor samples - although carefully
selected - were not matched. A much better dataset would be one consist-
ing of both tumors originating from the same patients group, but that’s -
even just logistically - very difficult to achieve. Second, none of the datasets
identified as eligible from either microarray databases had a proper set of
associated control samples. For that reason, the Universal Human Reference
RNA (UHRR) control used in the MicroArray Quality Control (MAQC)
study (MAQC Consortium et al., 2006) was selected. This again was sub-
optimal, as it consisted of a mix of different tumors and healthy tissues and
had consequently a RNA content possibly vastly different from the tumors
of interest here - as strongly suggested by the very significant score obtained
for most of the genes while performing EP analyses on either tumors (sec-
tion 4.5.1, page 121). Finally, the probe-sets had to be - as discussed for the
integrative analysis - manually curated. About 10% of them had their an-
notation updated (e.g. probe-set of the antisense or untranslated class) and
an additional 10% were discarded as only wet-lab evidence would decide of
their validity. This in itself was a rather minor hindrance in comparison to
the analysis power gain obtained by using the refined probe-sets. Moreover,
the large number of samples of the different studies (n = 91 in total) helped
rescue part of the statistical power of the comparative analysis - challenged
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by the first two points raised above, as presented in the following.

Minor relevance results:

No evidence of locus enrichment: Unlike for the integrative anal-
ysis above and somewhat expected, no chromosomal loci enrichment could
be observed between the tumors.

Known tumor-specific genes were recalled: Known tumor-specific
genes were recalled: e.g. the genes RUNX2, DOCK4, TNFRSF17 osteosarcoma-
specific (see section 1.1.3, page 18) were identified with an FDR of 0%. These
results validated the comparative analysis specificity.

Evidence of isoform differential expression: As discussed at the
beginning of this chapter, regenerating the CDF file in a transcript-centric
manner offered the possibility to measure transcript specific expression rather
than gene expression. Out of the 896 probe-sets identified for the compara-
tive analysis, 186 were associated with 79 genes, possibly recording differen-
tial isoform expression. As for the integrative analysis, the obtained w score
were very consistant between probe-sets associated with the same gene but
for MAP1B that showed a differential expression between retinoblastoma
and osteosarcoma. The probe-sets that allowed for detecting this differen-
tial isoform expression between tumor types were both located downstream
of the reported 3’UTR region of that gene. The difference of expression could
hence be the consequence of a different, tissue-specific, poly-adenylation site
usage rather than a consequence of cancerogenesis. This example showed
the abilities of the comparative analysis approach to look for isoform differ-
ential expression. However, doing so is not trivial, as the data deconvolution
might be complex for genes with more than 2 isoforms. Looking at the genes
identified by the retinoblastoma integrative analysis, 20 genes were reported
that have 2 isoforms. Out of these, 3 (see Table 5.1) had probe-sets that
identify possibly different transcripts or one transcript and the gene as a
whole (i.e. that records the expression - in theory - of both transcripts):

• RANBP9 showed no difference in expression between the gene and
transcript probe-sets, which is explained by either a similar level of
expression or no expression of the second isoform.

• CENPF had its ’untranslated’ probe-set mapping in the 3’ region of
one of the isoform or in an intronic region of the other isoform, 8-10kb
away from its 3’UTR in a 60kb long gene. The original design of the
Affymetrix GeneChip R© using EST to identify 3’ gene regions increases
the likelihood that both probe-sets identified the different isoforms, in
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probe-set gene symbol mean exp.

gene ENSG00000112308 C6orf62 -0.10
transcript ENSG00000112308 C6orf62 0.58

gene ENSG00000010017 RANBP9 0.73
transcript ENSG00000010017 RANBP9 0.52

transcript ENSG00000117724 CENPF 3.50
transcript untranslated ENSG00000117724 CENPF 0.24

Table 5.1 – Among these three genes having two reported isoforms, the avail-
able probe-sets expression might indicate a differential isoform expression for
C6orf62 and CENPF

which case they were significantly differentially expressed (Welch Two
Sample t-test p-value of 2e−9).

• C6orf62 had its ’gene’ probe-set records a significantly lower expres-
sion that the ’transcript’ probe-set (Welch Two Sample t-test p-value
of 5e−4). This indicated a differential expression of both isoforms, i.e.
the higher expression of the recorded isoform had to be negated by a
decreased expression of the non recorded one to result in an overall
lower expression of the gene.

These results further demonstrate the strength of the undertaken ap-
proach to create new biological hypotheses, to be taken up in the lab. They
might explain why CENPF, which “encodes a protein that associates with
the centromere-kinetochore complex”8 and appears to be involved in chro-
mosome segregation during mitosis is over-expressed9. And they could help
associate a role and give a name to the, as of yet, “unidentified” C6orf62
gene.

Major relevance results:

Both tumor kinds appeared very similar: As observed for the in-
tegrative analysis, the overlap of the probe-sets identified by the comparative
analysis approach and these identified by the retinoblastoma and osteosar-
coma EP was low: 16 and 32%, respectively. As discussed previously, this
is likely due to the presence of confounding factors, i.e. the Sanger Cancer

8from http://www.genecards.org (Rebhan et al., 1997)
9CENPF“is a component of the nuclear matrix during the G2 phase of interphase. In

late G2 the protein associates with the kinetochore and maintains this association through
early anaphase. It localizes to the spindle midzone and the intracellular bridge in late
anaphase and telophase, respectively, and is thought to be subsequently degraded. The
localization of this protein suggests that it may play a role in chromosome segregation
during mitotis”
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Gene Census (Futreal et al., 2004) database reports only 487 genes (as of
December 2012) that may be causative of cancerogenesis.
The comparative approach, which potentially removed a number of these
confounding factors - a fact difficult to validate due to our ignorance of the
true set of causative genes - revealed 789 genes significantly correlating be-
tween both tumors. Among these, 90.5% showed similar behaviors, 37% of
which is a down-regulation. Among the almost 10% that showed negative
correlations, 30 genes were specifically expressed in retinoblastoma and 35
in osteosarcoma. This indicates that these two tumors uses very similar
mechanism. It is however unclear how much of this similarity would be
shared with other tumors. It is known that different tumors affect different
regulatory mechanisms: e.g. colorectal cancer is often associated with a
Wnt pathway deregulation, whereas basal cell carcinoma is often reported
associated with a Hedgehog pathway deregulation. While it is evident that
different pathways have different affectors, the effectors are probably very
similar since cancerogenesis results in the same phenotype: essentially an
uncontrolled cell growth. It would be interesting to evaluate this by com-
paring either of the retinoblastoma or osteosarcoma tumors with an entirely
unrelated tumor type.

GO analyses revealed common hallmarks of cancer: The same
hallmarks of cancer as these identified by the integrative analysis were re-
ported by the comparative analysis - cell activation, neo-angiogenesis, and
(in)sensitivity to stimuli - as well as a new one: cell motility. But unlike
previously, while most of the enriched GO terms could be explained in a
tumor environment, the fact that the immune response was up-regulated
is surprising, although receptor activity, SMAD binding and signal trans-
duction were terms significantly enriched in the positively correlated and
up-regulated subset. It is known that most tumors - recognized by the or-
ganism as “non-self” - are infiltrated by numerous lymphocityc cells. Hence,
some of the results observed here might be caused by the “contamination”
of the selected tumor samples by a variety of other non-cancerous cell types
(e.g. fibroblasts), as theorized by (Hanahan and Weinberg, 2000), see the
introductory paragraph 1.1.1, page 9. Obtaining the expression profile of
only the cancer cells subset from the tumor cell population is a challenge
now faced by the community. A number of technologies such as cell sorting,
microfluidics and single-cell sequencing, which are being developed, should
help tackle it.

Despite the likely heterogeneity of the samples analyzed here, a number
of trait specific to either or both tumors appeared. First, both tumors -
or their environment - had genes involved in the coagulation process down-
regulation, which is in agreement with the necessary neo-angiogenesis of
tumors. In parallel, both had their cell-cycle and cellular processes up-

161



regulated as a whole. Moreover, genes involved in cell motility were as well
up-regulated. This is understandable for the osteosarcoma dataset that con-
tains a number of metastasis sample, but the presence of these genes in the
retinoblastoma dataset indicates that the “invasion” hallmark of cancer pro-
cess was probably acquired early during the cancerogenesis process. Finally,
as discussed above, both tumor appeared to have developed a self-sufficiency
in growth signals.

GO analyses revealed tumor specificities: Although the tumors
seemed extremely similar, the GO analysis showed that whereas no GO
terms were enriched for the retinoblastoma specific subset, the osteosar-
coma was enriched for terms such as ECM, immune response, apoptosis and
leukocyte migration. The enrichment observed for the ECM is expected as
a large number of trophic factors are naturally stored in the bone ECM
and these are likely to be beneficial to the tumor cells. The presence of the
leukocyte migration GO term further validated the observation made earlier
that the analyzed tumor samples are certainly heterotypic.
The absence of any significant term for the retinoblastoma subset is surpris-
ing, but can be attributed in part to the rather poor GO annotation of the
observed genes but might as well be due to the high similarity of the tumors
- i.e. the pathways involved in retinoblastoma were a subset of those present
in osteosarcoma.

Detailed analysis revealed additional specificities: The lack of
GO annotation for the retinoblastoma and osteosarcoma specific subsets of
genes was compensated by a detailed analysis of their respective 30 and 35
specific genes.

• retinoblastoma10

4 genes were associated with neural processes, 2 of them being asso-
ciated with neural specific signaling pathway, which seems relevant as
the retina is of ectodermal origin and retinoblastoma might take ad-
vantage of these signaling pathways. A total of 9 genes were related to
signaling pathways. Another 10 genes were involved in transcriptional
activity and regulation, indicative of differences in the tumor cell pro-
cesses. But more importantly, 5 genes specific to retinoblastoma were
involved in calcium signalling and a sixth gene: aquaporin involved in
osmotic regulation. This lead to hypothesize that the protein kinase C
/ calmodulin pathway might be an important player in the retinoblas-
toma “self-sufficiency in growth factors” hallmark of cancer.

10gene annotation from http://www.genecards.org (Rebhan et al., 1997)
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• osteosarcoma11

12 genes were related to the ECM, another indication that tumors take
advantage of their direct micro-environment. 2 had vaso-dilatating ef-
fect, interesting in the context of neo-angiogenesis. 7 were related to
cell migration and metastasis, in agreement with the fact that the
osteosarcoma dataset contains samples from tumors at a more ad-
vanced state than the retinoblastoma dataset, as well as metastasis
samples. Finally, 15 genes were involved in signal transduction and
at least three of them (RAB5B, RAB31, ATP6AP2 ) were involved in
the GPCR/RAS signaling pathway.

The observed facts and devised hypotheses demonstrated the advantage
of conducting comparative analyses. Better designed studies than the one
presented here are likely to result in more strongly supported hypotheses
to be taken up in the wet-lab and help us get a better understanding of
cancerogenesis and devise tumor specific targets for therapies.

11gene annotation from http://www.genecards.org (Rebhan et al., 1997)
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5.3 Concluding remarks

The methods and algorithms developed during this doctoral work have in-
creased the detection power of the various analyses performed and resulted
in a number of interesting hypotheses related to retinoblastoma and os-
teosarcoma cancerogenesis and this at different levels, from very detailed to
system-wide processes. These results are summarized in Figure 5.3.

Figure 5.3 – A scheme representing the different hypotheses raised from the
findings of the different analyses performed on the retinoblastoma and osteosar-
coma datasets.

The “take-home” message of this set of analyses comparing retinoblas-
toma and osteosarcoma is that although both tumors appeared similar at the
molecular level, either of them take advantage of their micro-environment
and in addition, due to their different embryonal origin “mis-use” tissue spe-
cific pathways resulting in a unique tumor-specific signature. Discovering
and understanding these tumor specificities is an essential step to in fine be
able to develop tumor-specific therapies.
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Nicolas Delhomme, Ismaël Padioleau, Eileen E Furlong, and Larsm Stein-
metz. easyrnaseq: a bioconductor package for processing rna-seq data.
Bioinformatics, Jul 2012.

Nicolas Delhomme et al. Ensembl based custom definition file for affymetrix
genechip. submitted.

Jennifer G DeLuca et al. Nuf2 and hec1 are required for retention of the
checkpoint proteins mad1 and mad2 to kinetochores. Curr Biol, 13(23):
2103–9, Dec 2003.
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Chapter 6

Conclusion and Outlook

The main aim of this thesis work was the development and enhancement of
bioinformatics approaches to better analyze high throughput data generated
using microarrays. Another aim was to investigate the effect of CNV on
gene-expression in an integrative analysis approach and finally to assess
how similar retinoblastoma and osteosarcoma tumors are, as the later are
the prefered site of relapse of the former.

Four different tools have been developed to achieve these goals:

1. “customCDF”: a tool to redefine the Custom Definition File (CDF)
of Affymetrix GeneChip R©s. Essential to take advantage of the con-
stantly evolving human genome reference and annotations.

2. “aSim”: a tool to simulate microarray data. Critical to benchmark
the developed algorithms.

3. integrative analysis: a set of statistical methods combined in a pipeline
to address the second goal.

4. comparative analysis: a modification of the integrative analysis to
adress the final goal.

The first tool, by rescuing as many information as possible for microar-
ray analyses - a process that has not been done extensively so far - was
critical to this study: it raised the discovery power of the downstream anal-
yses. The integrative and comparative approaches revealed themselses as
highly hypothesis-generating. These relatively high confidence hypotheses
- generated in-silico - can then be transfered to the wet-lab to be further
scrutinized. That meaningful hypothesis - at a fine grained or at the sys-
tems scale - can be raised shows the success of the chosen approaches and
the potential of the developed methods and tools.

Concerning the biological aim of this thesis, the integrative analysis ap-
plied to retinoblastoma revealed the high importance of the chromosome 6
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gain, indicating that many genes on that chromosome helps cancerogenesis
and this at a later stage of the disease. Moreover, it showed the existence
of positive and negative compensation of gene expression in lost and gained
regions, showing the complexity of the cancerogenesis mechanism and empa-
phizing the need to use systemic approaches. This last statement is further
supported by the in-silico evidence of antisense, pseudogene and snRNA
regulation shown in this work. Finally, the integrative analysis revealed that
out of all the hallmarks of cancer: deregulation of cell cycle (well known in
retinoblastoma) and angiogenesis, as well as the inactivation of the immune
response were most prominent, which might help developing more targeted
therapies.

In parallel, the comparative analysis revealed the high similarity of the
retinoblastoma and osteosarcoma tumors, while at the same time show-
ing that either of them take advantage of their distinct micro-environment
and consequently appear to make use of different signaling pathways: the
PKC/calmodulin pathway for retinoblastoma and the GPCR/RAS for os-
teosarcoma.

These results first need to be validated by wet lab experiments. One
limitation of the presented approach was the use of sub-optimal publicly
available data; studies specifically designed for integrative and/or compara-
tive analyses should raise even stronger biologically relevant hypotheses. On
the other hand, this “limitation” showed that mining the data present in
public microarray repositories can be an easy way to define work hypotheses
to be tested in the lab. On the mid term, such analyses should be performed
routinely and help us get a better understanding of the complex, heterotypic
cancer system, and hopefully on the long term give raise to personalized -
a thought supported by the current exponential development of sequencing
and microfluidics techniques - anti-cancer therapies.
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Appendix A

Samples and Datasets

In this appendix are described the different samples and datasets used.

• On page 176 is the description of the retina sample purchased from
Clontech.

• On page 177 is the description of the matrixCGH and EP dataset
generated at the DKFZ and at the University of Duisbuirg-Essen.

• On page 178 is the GEO GSE29684 dataset samples description.

• On page 180 is the GEO GSE29683 dataset samples description.

• On page 181 is the GEO GSE14359 dataset samples description.

• On page 182 is the GEO GSE14827 dataset samples description.

• On page 183 is the GEO GSE5350 dataset samples description.
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GEO ID Sample ID Sample type Pass QA

1 GSM736290 mad767 single retinoblastoma tumor cell TRUE
2 GSM736291 mad768 single retinoblastoma tumor cell TRUE
3 GSM736292 mad769 single retinoblastoma tumor cell TRUE
4 GSM736293 mad770 single retinoblastoma tumor cell TRUE
5 GSM736294 mad771 single retinoblastoma tumor cell TRUE
6 GSM736295 mad772 single retinoblastoma tumor cell TRUE
7 GSM736296 mad773 single retinoblastoma tumor cell FALSE
8 GSM736297 mad774 single retinoblastoma tumor cell TRUE
9 GSM736298 mad775 single retinoblastoma tumor cell TRUE

10 GSM736299 mad776 single retinoblastoma tumor cell FALSE
11 GSM736300 mad777 single retinoblastoma tumor cell TRUE
12 GSM736301 mad778 single retinoblastoma tumor cell TRUE
13 GSM736302 mad779 single retinoblastoma tumor cell TRUE
14 GSM736303 mad780 single retinoblastoma tumor cell FALSE
15 GSM736304 mad781 single retinoblastoma tumor cell FALSE
16 GSM736305 mad782 single retinoblastoma tumor cell TRUE
17 GSM736306 mad783 single retinoblastoma tumor cell TRUE
18 GSM736307 mad784 single retinoblastoma tumor cell TRUE
19 GSM736308 mad785 single retinoblastoma tumor cell TRUE
20 GSM736309 mad786 single retinoblastoma tumor cell TRUE

Table A.2 – GEO GSE29684 dataset. In gray are highlighted the samples
that did not pass the QA.
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GEO ID Sample ID Sample type Pass QA

1 GSM736228 mad353 cell line Weril TRUE
2 GSM736229 mad355 cell line Y79 TRUE
3 GSM736230 mad357 primary tumor FALSE
4 GSM736231 mad358 primary tumor TRUE
5 GSM736232 mad359 primary tumor TRUE
6 GSM736233 mad360 primary tumor TRUE
7 GSM736234 mad361 primary tumor TRUE
8 GSM736235 mad362 primary tumor TRUE
9 GSM736236 mad363 primary tumor TRUE

10 GSM736237 mad364 primary tumor FALSE
11 GSM736238 mad365 primary tumor TRUE
12 GSM736239 mad366 primary tumor TRUE
13 GSM736240 mad367 primary tumor TRUE
14 GSM736241 mad368 primary tumor TRUE
15 GSM736242 mad369 primary tumor TRUE
16 GSM736243 mad370 primary tumor TRUE
17 GSM736244 mad371 primary tumor FALSE
18 GSM736245 mad372 primary tumor TRUE
19 GSM736246 mad373 cell line RB1 13 TRUE
20 GSM736247 mad374 cell line RB355 TRUE
21 GSM736248 mad375 primary tumor TRUE
22 GSM736249 mad382 primary tumor TRUE
23 GSM736250 mad383 primary tumor TRUE
24 GSM736251 mad384 primary tumor TRUE
25 GSM736252 mad385 primary tumor TRUE
26 GSM736253 mad386 primary tumor TRUE
27 GSM736254 mad387 primary tumor TRUE
28 GSM736255 mad388 primary tumor TRUE
29 GSM736256 mad389 primary tumor TRUE
30 GSM736257 mad390 primary tumor TRUE
31 GSM736258 mad391 primary tumor TRUE
32 GSM736259 mad392 primary tumor TRUE
33 GSM736260 mad393 primary tumor TRUE
34 GSM736261 mad394 primary tumor TRUE
35 GSM736262 mad395 primary tumor TRUE
36 GSM736263 mad402 primary tumor TRUE
37 GSM736264 mad403 primary tumor TRUE
38 GSM736265 mad404 primary tumor FALSE

continued on next page
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continued from previous page

GEO ID Sample ID Sample type Pass QA

39 GSM736266 mad405 primary tumor TRUE
40 GSM736267 mad406 primary tumor FALSE
41 GSM736268 mad407 primary tumor FALSE
42 GSM736269 mad408 primary tumor FALSE
43 GSM736270 mad409 primary tumor TRUE
44 GSM736271 mad410 primary tumor TRUE
45 GSM736272 mad411 primary tumor TRUE
46 GSM736273 mad542 primary tumor FALSE
47 GSM736274 mad543 primary tumor TRUE
48 GSM736275 mad544 primary tumor FALSE
49 GSM736276 mad617 primary tumor FALSE
50 GSM736277 mad618 primary tumor TRUE
51 GSM736278 mad619 primary tumor FALSE
52 GSM736279 mad620 primary tumor TRUE
53 GSM736280 mad621 primary tumor TRUE
54 GSM736281 mad681 primary tumor FALSE
55 GSM736282 mad686 primary tumor FALSE
56 GSM736283 mad687 primary tumor FALSE
57 GSM736284 mad688 primary tumor FALSE
58 GSM736285 mad707 primary tumor FALSE
59 GSM736286 mad708 primary tumor FALSE
60 GSM736287 mad709 xenograft-passaged TRUE
61 GSM736288 mad710 xenograft-passaged TRUE
62 GSM736289 mad714 xenograft-passaged TRUE

Table A.3 – GEO GSE29683 dataset. In gray are highlighted the samples
that did not pass the QA.
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MAQC.ID GEO.ID Sample QA.pass

1 AFX 1 A1 GSM122774 UHRR FALSE
2 AFX 1 A2 GSM122775 UHRR TRUE
3 AFX 1 A3 GSM122776 UHRR TRUE
4 AFX 1 A4 GSM122777 UHRR TRUE
5 AFX 1 A5 GSM122778 UHRR TRUE
6 AFX 2 A1 GSM122794 UHRR TRUE
7 AFX 2 A2 GSM122795 UHRR TRUE
8 AFX 2 A3 GSM122796 UHRR TRUE
9 AFX 2 A4 GSM122797 UHRR TRUE

10 AFX 2 A5 GSM122798 UHRR TRUE
11 AFX 3 A1 GSM122814 UHRR TRUE
12 AFX 3 A2 GSM122815 UHRR TRUE
13 AFX 3 A3 GSM122816 UHRR TRUE
14 AFX 3 A4 GSM122817 UHRR TRUE
15 AFX 3 A5 GSM122818 UHRR TRUE
16 AFX 4 A1 GSM122834 UHRR TRUE
17 AFX 4 A2 GSM122835 UHRR FALSE
18 AFX 4 A3 GSM122836 UHRR TRUE
19 AFX 4 A4 GSM122837 UHRR FALSE
20 AFX 4 A5 GSM122838 UHRR FALSE
21 AFX 5 A1 GSM122854 UHRR TRUE
22 AFX 5 A2 GSM122855 UHRR TRUE
23 AFX 5 A3 GSM122856 UHRR TRUE
24 AFX 5 A4 GSM122857 UHRR TRUE
25 AFX 5 A5 GSM122858 UHRR FALSE
26 AFX 6 A1 GSM122874 UHRR TRUE
27 AFX 6 A2 GSM122875 UHRR TRUE
28 AFX 6 A3 GSM122876 UHRR TRUE
29 AFX 6 A4 GSM122877 UHRR TRUE
30 AFX 6 A5 GSM122878 UHRR TRUE

Table A.6 – GEO GSE5350 dataset. In gray are highlighted the samples that
did not pass the QA.
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Appendix B

QA

In this appendix are presented selected QA reports generated for every
dataset.

EP: The first example is for the DKFZ Affymetrix GeneChip R© dataset.
It clearly demonstrate that the sample M23125 does not pass the QA.

arrayCGH: The second example, starting page 193 shows the QA of the
same sample used for arrayCGH. On the first page is shown the overall QA
of the first arrayCGH batch from the Zielinski et al. (2005) dataset (see
paragraph 3.2.4, page 46). The graphs - top to bottom and left to right -
show:

1. The number of probes filtered per ChIP and per filter (see paragraph
3.2.4, page 46). The abbreviations are:

• M2M: Mean to Median

• S2N: Signal to Noise

• MinS: Minimal Signal

• Csd: Replicate Std Deviation

2. The raw intensities of the red and green channels, i.e. emitted from
the Cy5 and Cy3 dyes respectively as there is no dye-swap in this
dataset.

3. The density plots of the normalized intensities of the red and green
channels.

4. The density plot of the intensities of the spots flagged out by the M2M
filter.

5. The same as above for the S2N filter.
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6. As above for the Csd filter.

All the chips have similar performances and pass the QA. Additional QA
are performed per chip and are described in the subsequent pages.
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arrayQualityMetrics report for affyBatch(obj)

Section 1: Between array comparison
Distances between arrays
Principal Component Analysis

Section 2: Array intensity distributions
Boxplots
Density plots

Section 3: Variance mean dependence
Standard deviation versus rank of the mean

Section 4: Affymetrix specific plots
Relative Log Expression (RLE)
Normalized Unscaled Standard Error (NUSE)
RNA digestion plot
Perfect matches and mismatches

Section 5: Individual array quality
MA plots
Spatial distribution of M

Browser compatibility

This report uses recent features of HTML 5. Functionality has been tested on these browsers: Firefox 10, Chrome 17, Safari 5.1.2

- Array metadata and outlier detection overview
array sampleNames *1 *2 *3 *4 *5 *6 sample ScanDate

1 M20517.CEL 1 09/30/03 12:49:19
2 M22058.CEL 2 09/26/03 09:49:57
3 M22067.CEL 3 09/30/03 09:39:25
4 M22233.CEL 4 09/26/03 10:00:25
5 M22590.CEL 5 09/26/03 11:22:23
6 M22641.CEL 6 09/30/03 12:59:56
7 M22731.CEL 7 09/02/03 11:34:12
8 M22808.CEL 8 09/02/03 11:24:01
9 M22860.CEL 9 09/26/03 11:32:45

10 M23209.CEL 10 09/26/03 11:43:08
11 M23215.CEL x x x x x 11 09/30/03 10:10:45
12 M23449.CEL x 12 09/30/03 10:00:21
13 M23869.CEL 13 09/30/03 13:20:40
14 M24430.CEL 14 01/09/04 13:19:37
15 M24733.CEL 15 01/09/04 11:48:38
16 M24794.CEL 16 01/09/04 11:58:58
17 M24820.CEL 17 01/09/04 11:25:50
18 Retina.CEL 18 01/09/04 13:09:17

The columns named *1, *2, ... indicate the calls from the different outlier detection methods:

outlier detection by Distances between arrays1.
outlier detection by Boxplots2.
outlier detection by Relative Log Expression (RLE)3.
outlier detection by Normalized Unscaled Standard Error (NUSE)4.
outlier detection by MA plots5.
outlier detection by Spatial distribution of M6.

The outlier detection criteria are explained below in the respective sections. Arrays that were called outliers by at least one criterion are
marked by checkbox selection in this table, and are indicated by highlighted lines or points in some of the plots below. By clicking the
checkboxes in the table, or on the corresponding points/lines in the plots, you can modify the selection. To reset the selection, reload the
HTML page in your browser.

At the scope covered by this software, outlier detection is a poorly defined question, and there is no 'right' or 'wrong' answer. These are hints
which are intended to be followed up manually. If you want to automate outlier detection, you need to limit the scope to a particular platform
and experimental design, and then choose and calibrate the metrics used.

Section 1: Between array comparison
- Figure 1: Distances between arrays.

arrayQualityMetrics report for affyBatch(obj) file:///Users/delhomme/Documents/DKFZ/Project/Rb/analysi...

1 of 7 23/03/2012 01:09
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Figure 1 (PDF file) shows a false color heatmap of the distances between arrays. The color scale is chosen to cover the range of distances
encountered in the dataset. Patterns in this plot can indicate clustering of the arrays either because of intended biological or unintended
experimental factors (batch effects). The distance dab between two arrays a and b is computed as the mean absolute difference (L1-distance)
between the data of the arrays (using the data from all probes without filtering). In formula, dab = mean | Mai - Mbi |, where Mai is the value of
the i-th probe on the a-th array. Outlier detection was performed by looking for arrays for which the sum of the distances to all other arrays, Sa
= Σb dab was exceptionally large. One such array was detected, and it is marked by an asterisk, *.

- Figure 2: Outlier detection for Distances between arrays.

Figure 2 (PDF file) shows a bar chart of the sum of distances to other arrays Sa, the outlier detection criterion from the previous figure. The
bars are shown in the original order of the arrays. Based on the distribution of the values across all arrays, a threshold of 13 was determined,
which is indicated by the vertical line. One array exceeded the threshold and was considered an outlier.

- Figure 3: Principal Component Analysis.

array
sampleNames
sample
ScanDate

Figure 3 (PDF file) shows a scatterplot of the arrays along the first two principal components. You can use this plot to explore if the arrays
cluster,  and whether  this  is  according  to  an  intended experimental  factor  (you can indicate  such a  factor  by  color  using  the  'intgroup'
argument), or according to unintended causes such as batch effects. Move the mouse over the points to see the sample names.
Principal component analysis is a dimension reduction and visualisation technique that is here used to project the multivariate data vector of
each array into a two-dimensional plot, such that the spatial arrangement of the points in the plot reflects the overall  data (dis)similarity

arrayQualityMetrics report for affyBatch(obj) file:///Users/delhomme/Documents/DKFZ/Project/Rb/analysi...
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between the arrays.

Section 2: Array intensity distributions
- Figure 4: Boxplots.

Figure 4 (PDF file) shows boxplots representing summaries of the signal intensity distributions of the arrays. Each box corresponds to one
array. Typically, one expects the boxes to have similar positions and widths. If the distribution of an array is very different from the others, this
may indicate an experimental problem. Outlier detection was performed by computing the Kolmogorov-Smirnov statistic Ka between each
array's distribution and the distribution of the pooled data.

- Figure 5: Outlier detection for Boxplots.

Figure 5 (PDF file) shows a bar chart of the Kolmogorov-Smirnov statistic Ka, the outlier detection criterion from the previous figure. The bars
are shown in the original order of the arrays. Based on the distribution of the values across all arrays, a threshold of 0.379 was determined,
which is indicated by the vertical line. One array exceeded the threshold and was considered an outlier.

- Figure 6: Density plots.

array
sampleNames
sample
ScanDate

Figure 6 (PDF file) shows density estimates (smoothed histograms) of the data. Typically, the distributions of the arrays should have similar
shapes and ranges. Arrays whose distributions are very different from the others should be considered for possible problems. Various features
of the distributions can be indicative of quality related phenomena. For instance, high levels of background will shift an array's distribution to
the right. Lack of signal diminishes its right right tail. A bulge at the upper end of the intensity range often indicates signal saturation.

arrayQualityMetrics report for affyBatch(obj) file:///Users/delhomme/Documents/DKFZ/Project/Rb/analysi...
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Section 3: Variance mean dependence
- Figure 7: Standard deviation versus rank of the mean.

Figure 7 (PDF file) shows a density plot of the standard deviation of the intensities across arrays on the y-axis versus the rank of their mean
on the x-axis. The red dots, connected by lines, show the running median of the standard deviation. After normalisation and transformation to
a logarithm(-like) scale, one typically expects the red line to be approximately horizontal, that is, show no substantial trend. In some cases, a
hump on the right hand of the x-axis can be observed and is symptomatic of a saturation of the intensities.

Section 4: Affymetrix specific plots
- Figure 8: Relative Log Expression (RLE).

Figure 8 (PDF file) shows the Relative Log Expression (RLE) plot. Arrays whose boxes are centered away from 0 and/or are more spread out
are potentially problematic. Outlier detection was performed by computing the Kolmogorov-Smirnov statistic Ra between each array's RLE
values and the pooled, overall distribution of RLE values.

- Figure 9: Outlier detection for Relative Log Expression (RLE).

Figure 9  (PDF file) shows a bar chart of the Kolmogorov-Smirnov statistic Ra  of the RLE values, the outlier detection criterion from the

arrayQualityMetrics report for affyBatch(obj) file:///Users/delhomme/Documents/DKFZ/Project/Rb/analysi...
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previous figure. The bars are shown in the original order of the arrays. Based on the distribution of the values across all arrays, a threshold of
0.161 was determined, which is indicated by the vertical line. One array exceeded the threshold and was considered an outlier.

- Figure 10: Normalized Unscaled Standard Error (NUSE).

Figure 10 (PDF file) shows the Normalized Unscaled Standard Error (NUSE) plot. For each array, the boxes should be centered around 1. An
array were the values are elevated relative to the other arrays is typically of lower quality. Outlier detection was performed by computing the
75% quantile Na of each array's NUSE values and looking for arrays with large Na.

- Figure 11: Outlier detection for Normalized Unscaled Standard Error (NUSE).

Figure 11 (PDF file) shows a bar chart of the Na, the outlier detection criterion from the previous figure. The bars are shown in the original
order of the arrays. Based on the distribution of the values across all arrays, a threshold of 1.09 was determined, which is indicated by the
vertical line. One array exceeded the threshold and was considered an outlier.

- Figure 12: RNA digestion plot.

array
sampleNames
sample
ScanDate

Figure 12 (PDF file) shows the RNA digestion plot. The shown values are computed from the preprocessed data (after background correction
and quantile normalisation). Each array is represented by a single line; move the mouse over the lines to see their corresponding sample
names. The plot can be used to identify array(s) that have a slope very different from the others. This could indicate that the RNA used for that
array has been handled differently from what was done for the other arrays.

- Figure 13: Perfect matches and mismatches.
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Figure shows the density distributions of the log2 intensities grouped by the matching type of the probes. The blue line shows a density
estimate (smoothed histogram) from intensities of perfect match probes (PM), the grey line, one from the mismatch probes (MM). We expect
that MM probes have poorer hybridization than PM probes, and thus that the PM curve be to the right of the MM curve.

Section 5: Individual array quality
- Figure 14: MA plots.

Figure 14 (PDF file) shows MA plots. M and A are defined as:
M = log2(I1) - log2(I2)
A = 1/2 (log2(I1)+log2(I2)),
where I1 is the intensity of the array studied, and I2 is the intensity of a "pseudo"-array that consists of the median across arrays. Typically, we
expect the mass of the distribution in an MA plot to be concentrated along the M = 0 axis, and there should be no trend in M as a function of A.
If there is a trend in the lower range of A, this often indicates that the arrays have different background intensities; this may be addressed by
background correction. A trend in the upper range of A can indicate saturation of the measurements; in mild cases, this may be addressed by
non-linear normalisation (e.g. quantile normalisation).
Outlier detection was performed by computing Hoeffding's statistic Da on the joint distribution of A and M for each array. Shown are the 4
arrays with the highest value of Da (top row), and the 4 arrays with the lowest value (bottom row). The value of Da is shown in the panel
headings. 2 arrays had Da>0.15 and were marked as outliers. For more information on Hoeffing's D-statistic, please see the manual page of
the function hoeffd in the Hmisc package.

- Figure 15: Outlier detection for MA plots.
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Figure 15 (PDF file) shows a bar chart of the Hoeffding's statistic Da, the outlier detection criterion from the previous figure. The bars are
shown in the original order of the arrays. A threshold of 0.15 was used, which is indicated by the vertical line. 2 arrays exceeded the threshold
and were considered outliers.

- Figure 16: Spatial distribution of M.

Figure 16 (PDF file) shows false color representations of the arrays' spatial distributions of feature intensities (M). Normally, when the features
are distributed randomly on the arrays, one expects to see a uniform distribution; control features with particularly high or low intensities may
stand out. The color scale is proportional to the ranks of the probe intensities. Note that the rank scale has the potential to amplify patterns that
are small in amplitude but systematic within an array. It is possible to switch off the rank scaling by modifying the argument scale in the call of
the aqm.spatial function.
Outlier detection was performed by computing Fa , the sum of the absolutes value of low frequency Fourier coefficients, as a measure of large
scale spatial structures. Shown are the 4 arrays with the highest value of S (top row), and the 4 arrays with the lowest value (bottom row). The
value of Fa is shown in the panel headings.

- Figure 17: Outlier detection for Spatial distribution of M.

Figure 17 (PDF file) shows a bar chart of the Fa, the outlier detection criterion from the previous figure. The bars are shown in the original
order of the arrays. Based on the distribution of the values across all arrays, a threshold of 0.108 was determined, which is indicated by the
vertical line. None of the arrays exceeded the threshold and was considered an outlier.

This report has been created with arrayQualityMetrics 3.11.7 under R version 2.14.1 Patched (2011-12-23 r57982).

(Page generated on Thu Mar 22 23:24:41 2012 by hwriter )
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B.0.1 Fluorescence gradient

To ensure that the chip were homogeneously hybridized, the raw intensity
of the red and green channel are projected onto the chip layout: Figure
B.1 and B.2. In addition, the ratio of both intensities is calculated and
displayed in Figure B.3. The green channel shows a clear technical artefact

Figure B.1 –
M23215 Cy3 gradi-
ent

Figure B.2 –
M23215 Cy5 gradi-
ent

Figure B.3 –
M23215 Cy3/Cy5
ratio gradient

in the left-most column. The red channel presents some localized artefacts.
The ratio plot shows only very local high or low ratios, unrelated to the
technical artefacts observed in the separate channels.

B.0.2 Intensity distribution

As already shown in the previous QA, the intensity differs between the chan-
nels: Figure B.4. This variation is successfully controlled for and normalized,
see Figure B.5. In addition, a normalization for the print order is as well
applied (QA not shown).

B.0.3 Scatterplot

The final QA consist of a comparison of the intensities for the M23125
sample with that of a control - an opposite sex-matched healthy donors’
blood sample, female in the present example. In the Figure B.6, the raw
intensities are displayed and colored according to their filter status; the
M23215 is on the y axis, while the control is on the x-axis. In Figure B.7,
the normalized intensities are displayed. On neither figure can a technical
artefact be identified. Finally in Figure B.8, the density of the normalized
intensities is displayed - from dark blue (low density) to dark red (high
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Figure B.4 – Cy3 and Cy5 raw intensities distribution

Figure B.5 – Cy3 and Cy5 normalized intensities distribution

density). As expected, the sample having a few CNVs, most of the data lies
on the diagonal, i.e. the sample and the control having mostly the same
genomic copy numbers.
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Figure B.6 – M23215 (y-axis) vs.
control (x-axis) raw intensities. The
dots are colored according to their fil-
ter status.

Figure B.7 – M23215 (y-axis) vs.
control (x-axis) normalized intensi-
ties. The dots are colored according
to their filter status.

Figure B.8 – M23215 (y-axis) vs. control (x-axis) normalized intensities. The
dots density is represented by a gradient dark blue (low) - dark red(high). The
spot flagged out during the original image analysis (Genepix flagged) are in
red and ignored in the density gradient.
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Appendix C

Ebased custom CDF

This appendix shows the manuscript: Ensembl based Custom Defini-
tion File for Affymetrix GeneChip as submitted for peer-review at the
journal Bioinformatics.
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ABSTRACT
Motivation: In addition to the chip definition file (CDF) provided by
Affymetrix, there are a number of custom CDFs available, which
redefine the aggregation of probes into probe-sets representative of
a gene. Despite being more accurate, the usage of these CDF’s
is limited, due to infrequent updates and a conservative generation
process that ignores up to 30% of the probes. To address these
issues, we present a custom CDF, retaining all map-able probes,
which is automatically updated every other month, in concordance
with the Ensembl database.
Results: We compared our custom Ensembl based CDF (Ebased)
with the publicly available custom and Affymetrix CDFs. The
Affymetrix probes’ assignation differs by 30% from every other CDF.
Custom CDFs are at least 90% identical. Applied on experimental
data, our Ebased CDF is more efficient than the other custom ones
and unravels considerably more information due to its extended
probes’ assignation that adds 30% more probe-sets. It provides
the most up-to-date annotation and is a valuable tool to mine the
Affymetrix microarray data available from GEO and ArrayExpress.
Availability: The Ebased CDFs and the customCDF R package,
Bioconductor compliant, are available from the web address:
http://www.dkfz.de/en/genetics/pages/projects/
bioinformatics/Custom Chip Definition File.html.
Contact: delhomme@embl.de

1 INTRODUCTION
The human genome assembly is not as stable as expected
after the completion of the Human Genome Project in 2003.
The development of new technologies, such as Next-Generation
Sequencing, is completing, correcting and even extending the
so-called reference genome at an unprecedented pace. This
represents an issue for all the probe-based techniques like

∗to whom correspondence should be addressed

human DNA microarrays, as it affects the probe’s annotation. It
seems particularly critical for Affymetrix microarrays, since the
technology relies on a collection of probes identifying an individual
transcript, the so-called probe-sets, to evaluate gene expression. The
probes’ assignment into a probe-set is defined in a Chip Definition
File (CDF), which is updated, for homo sapiens chips, only once
per genome build, i.e. early 2006 for the genome build 36 and
end 2009 for the genome build 37. Due to the human genome
and gene build changes since then, many probe-sets are known to
hybridize different and sometimes multiple genes. These wrong
annotations greatly affect the experimental data calculated from
the respective microarrays. This issue has already been addressed
by different groups (Gautier et al., 2004; Dai et al., 2005; Lu
et al., 2007; Ferrari et al., 2007), which created custom CDFs.
Among these, the ones from Ferrari et al. (2007) (GeneAnnot (GA))
and from Dai et al. (2005) (MBNI) have been integrated into the
Bioconductor package suite (Gentleman et al., 2004). However,
their update frequency is rather low (Dai -12 month, Ferrari - 6
month) and does not keep up with the genome updates. In addition,
both of them have a conservative approach and discard 20-30%
of the probes as being uninformative. Hence, we introduce a new
Ensembl based custom CDF (Ebased), which retains as many
probes as possible and is updated as frequently (every other month)
as the Ensembl (Flicek et al., 2011) database. Similarly to existing
CDFs, it defines probe-sets of variable size with a minimum of five
members as suggested by Lu et al. (2007), to be robust to outliers
and have a decent statistical power when summarizing intensity
values. To track the expression of transcript variants, we create
transcript-centric probe-sets (Lu and Zhang, 2006; Sandberg and
Larsson, 2007; Stalteri and Harrison, 2007) and in cases where
this is not applicable, we revert to gene-centric probe-sets. In
addition, probes left un-annotated by this process are combined
into genomic loci probe-sets, which potentially identify unknown
or modified transcripts. Finally, multi-mapping probes, unlike any
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other custom CDFs, are not discarded but assembled into multi-
gene probe-sets. The last decade has seen the generation of millions
of array based expression profiles. GEO, the Gene Expression
Omnibus (Edgar et al., 2002; Barrett et al., 2007), and ArrayExpress
(Parkinson et al., 2009), the major gene expression / molecular
abundance repositories, hold data from more than 735,000 samples.
Alone, the most commonly used Affymetrix GeneChip R©platform,
the Affymetrix Human Genome U133 Plus 2.0 Array, has been
used in almost 2400 studies totaling more than 65,200 samples.
This wealth of data has been generated and analyzed to answer
very specific biological questions, whereas it could be used to
answer unrelated questions without having to repeat experiments
or be mined in a genome wide fashion as pioneered recently by
Lukk et al. (2010). A possible weakness of such approaches is that
most of the available data has neither had its annotations updated
nor its expression values recalculated, taking into consideration
the increased knowledge about the human genome. Using up to
date CDFs and extended annotations has the potential to shed light
on splice variants differential expression or reveal un-annotated
expressed loci like these SUTs (stable un-annotated transcripts)
and CUTs (cryptic unstable transcripts) identified in yeast (Xu
et al., 2009) from either published or newly generated data. To
support such approaches, we are providing optimized Ensembl
based custom CDFs, together with their respective gene and probe
annotations. We demonstrate that these files perform better than the
original Affymetrix annotations and other custom CDFs and that
they reveal previously undetectable information.

2 METHODS

2.1 Aligning the probe sequences to the reference
genome

For a given GeneChip R©, the probe sequences are retrieved from the
corresponding Bioconductor probe package. For any maintained Ensembl
release, all the sequences are aligned to a set of two nucleotide databases
addressing different “genomic” levels. The first one, “cdna”, contains the
sequences of all Ensembl transcripts, including all known splice variants,
as well as non-coding RNAs. The second one - “dna” - is the complete
reference genome used by Ensembl for the given release. The alignments
are performed using the short read aligner: “bowtie” (Langmead et al., 2009),
with the following parameters: -v 2 -y -a. A valid alignment therefore has a
maximum of 2 mismatches along the whole probe length (25nt), as suggested
by He et al. (2005).

2.2 Getting the gene annotation
The biomaRt R package (Durinck et al., 2005) is used to connect the
Ensembl mart database to retrieve the genic information: its chromosomal
mapping, and potential cross-references with Ensembl, Entrez Gene,
Locuslink, and UniProt.

2.3 CDF and additional packages generation
Using the alignment information, probes are grouped into probe-sets,
transcript-centric whenever possible, ensuring that they contain at least 5
probes, a requirement for unbiased downstream analysis (Lu et al., 2007).
If that fails, multi-transcript or gene-centric probe-sets are created. Finally,
probes that fail to map any gene and are separated by a maximum of 1kb from
each other are grouped into probe-sets. All the probe-sets are bundled into a
“CDF” R package and, in addition, the probe (e.g. nucleotide sequence, grid
position, etc.) and gene annotation (e.g. genomic locus, Ensembl gene ID,
EntrezGene ID, etc.) packages are generated.

2.4 Other CDFs, annotation and probe R packages
The original Affymetrix (http://www.affymetrix.com) and GeneAnnot CDFs
were downloaded from Bioconductor (version 2.3). The MBNI ones were
retrieved from the Brainarray website (http://brainarray.mbni.med.umich.edu
/Brainarray; version 11). The corresponding annotation and probe packages
were retrieved from the same sources. These CDFs will be referred to as
Affymetrix, GA and MBNI respectively. Our custom CDF will be referred to
as Ebased.

2.5 Comparison of CDFs
CDFs from the different providers are first compared for the probe
assignment into probe-sets. Every probe-set from a CDF (the query) is
compared with every probe-set of a second CDF (the reference). Similarities
are assessed for every possible combination of query and reference. Then,
for those probe-sets that are identical, the Entrez Gene IDs are retrieved
from the annotation packages and compared for every possible combination
of query and reference.

2.6 CDF update rate evaluation
The comparison of the annotation and probes packages generated using
Ensembl version 50, 51 and 52 (the packages version 1.0.3, 1.0.4 and
1.0.5, respectively) allows the assessment of the changes occurring between
updates of the human genome. As above, the probes assignment into probe-
sets and the Entrez Gene ID annotations are compared sequentially between
versions.

2.7 Benchmarking dataset: acute lymphoblastic
leukemia

The previously published adult acute lymphoblastic leukemia (ALL) dataset
(Chiaretti et al., 2004, 2005) has been frequently used for benchmarking and
comparing algorithms (Jiang and Gentleman, 2007; Oron et al., 2008) and is
publicly available at Bioconductor. It consists of 128 samples hybridized to
the hgu95av2 Affymetrix GeneChip R©microarray. In this study, the dataset
is restricted to the 79 B-cell samples having either a t(9;22)(q34;q11)
translocation resulting in the BCR/ABL gene fusion or being negative for that
genotypic trait. These genotypes are identified as BCR/ABL and NEG further
on. The dataset CEL files (raw data) are processed in R and their quality is
assessed using the arrayQualityMetrics package (Kauffmann et al.,
2009). All the arrays that do not fail any of the QA tests (n=66) are kept. This
batch is then background-corrected, normalized and summarized using RMA
(Irizarry et al., 2003; Bolstad et al., 2003). This last step is performed with
every CDF, i.e. the original and the three custom ones (GA, MBNI, Ebased)
resulting in four different expression matrices.

2.8 Probe-set size and expression variability depending
on the CDF

A critical question to the ALL dataset is the identification of differential
expression between the BCR/ABL and the NEG genotypes, while a critical
question to this manuscript is to determine the CDFs’ effect on calling
differential expression. To assess the effect of the probe-set size and of
the variability of its probes’ expression values, every expression matrix is
first filtered for non-specific probe-sets using the genefilter R package.
As in Jiang and Gentleman (2007), non-informative probe-sets are filtered
out. A probe-set is considered non-informative, when its expression values
across all samples is almost invariable; i.e. when the Inter Quartile Range
(IQR) of these values is smaller than a cutoff value of 0.5. For the Ebased
matrix, an additional filtering step is performed and two sets are generated
that retains the probe-sets associated with a maximum of one or two genes,
respectively. Then, for every probe-set, the raw expression values of its
member probes are retrieved and their standard deviation calculated. At the
same time, the probe-set size is retrieved. Finally, the comparison between
CDFs is performed using either all filtered probe-sets; i.e. the four sets have
different sizes, or using only those probe-sets common to all four CDFs,
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based on their gene mapping; i.e. all four sets are a subset of the original
ones and all have the same size.

2.9 Gene Set Enrichment Analysis using a linear model
(regression) framework

Gene Set Enrichment Analysis (GSEA) is performed as suggested by Oron
et al. (2008). Every expression matrix is filtered for non-specific probe-sets
using the genefilter R package. Probe-sets are kept, which have an
IQR greater or equal to 0.5 within all samples and a single Entrez Gene
ID assigned. Using the Category R package, these genes are mapped to
their chromosomal locations. Chromosomal band and sub-bands containing
more than 5 genes are kept for the downstream analysis and their probe-set
members’ residuals calculated.

2.10 Comparison of the “Gene Set Residuals” obtained
for the different CDFs

Every obtained residual set is subdivided per genotype (BCR/ABL or NEG).
Subsets belonging to the same genotype are compared. The median of every
sample residuals distribution within a subset are computed and used to
cluster the CDFs using the pvclust R package (Suzuki and Shimodaira,
2006). The distance method used is Euclidean and the linkage method is
complete.

2.11 “Gene Set Residuals for the Y chromosome
As above, every residuals set is subdivided per genotype (BCR/ABL or
NEG). The residuals of probe-sets located on the non-autosomal part of
the Y chromosome are extracted and their distribution compared between
CDFs by the mean of an unsupervised classification using an Expectation-
Maximization (EM) iterative method (mclust R package).

2.12 Genotype comparison using a linear model
For every expression matrix, we apply a linear model using the R limma
package (Smyth, 2004) to find the genes differentially expressed between
the two different disease’s genotypes of interest (BCR/ABL vs. NEG). Only
the genes having an adjusted p-value (Benjamini and Hochberg, 1995) lower
than 0.05 are kept. Finally, the four resulting gene lists are compared pair-
wise.

3 IMPLEMENTATION
The CDF generation has been implemented in an R (R Development
Core Team, 2009) package: customCDF that generates not only the
CDFs but as well the probe and annotation packages, as exemplified
on the webpage: http://www.dkfz.de/en/genetics/pages/
projects/bioinformatics/Custom Chip Definition File.html. The
customCDF package is available from Bioconductor: http://
bioconductor.org/packages/devel/bioc/html/customCDF.html to
retrieve, use or generate these CDFs.

4 RESULTS AND DISCUSSION
For the last decade, array based expression profiling has generated
a huge amount of data that has often been only superficially
analyzed. There are several reasons for this: researchers focused
on a rather small set of genes, either by interest or because the
gene interaction knowledge was still too sparse; the technology
and analyses procedures were still being developed and optimized;
etc. Nowadays, this technique is mature, well understood and
analysis pipelines have been standardized, as has the format for
storing and retrieving results (MIAME: Brazma et al. (2001)).
Databases have been developed toward this purpose: i.e. GEO and

ArrayExpress that hold hundreds of thousands of microarray-based
experiments. In addition, new technologies have unraveled gene
networks (Genomic Regulatory Network (GRN), Davidson (2001))
and their dynamics (Cheong et al., 2008); de-novo sequencing has
corrected and/or completed many genome assemblies and extended
their gene annotations. These developments make it realistic to mine
the data stored in the array databases, aiming at networks of genes
rather than at a few genes only, as recently pioneered by Lukk
et al. (2010). A pre-requisite for this type of analysis is to have
up-to-date probes’ information: a moving target due to the frequent
genomic annotations’ variations and a situation to which Affymetrix
microarrays are more sensitive by design. Several groups are already
providing custom mapping of the Affymetrix probes into probe-sets;
however, their update frequency is quite low and their generation
process very stringent, leaving out on average a third of the probes
present on the arrays. To rescue these probes, we group probes
spanning intergenic loci and we allow probes to be part of different
probe-sets, creating multi-gene probe-sets. Most of these target two
genes only, and as a given tissue expresses only a minor part of its
genetic repertoire (Su et al., 2002), there is a high likelihood that
such a probe-set measures a single gene effect. Moreover, many of
these probe-sets’ targets are gene families or gene duplication, the
biological importance of which has been shown in numerous studies
(Bailey and Eichler, 2006; Marques-Bonet et al., 2009).

4.1 One to many probes to probe-sets mapping
Re-using probes to define new probe-sets extends the number of
features being monitored by 20%, 30% and 40% for the hgu95av2,
hgu133plus2 and hgu133a chips, respectively; at the cost of
measuring the expression of different genes as shown in Figure
1. It is evident that not all of these probe-sets are of interest,

Fig. 1. Number of genes per probe-sets for three common GeneChips

however it is worth noticing that an average of 8% of the features
identify two genes. Considering that a typical tissue expresses 30-
40% of its genetic repertoire, at a level detectable by microarray
(Su et al., 2002; Ramsköld et al., 2009) there is a 75% chance
that a signal coming from one of these features is the result of
the expression of a single gene. If such features turned up as
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Table 1. Pair-wise comparison of the CDF probe - gene mapping

Query Reference Query only Ref. only Intersection Union

Affymetrix Ebased 36,705 2,367 154,926 193,998
Affymetrix GA 35,850 2,536 155,781 194,167
Affymetrix MBNI 52,777 2,143 138,854 193,774
MBNI GA 6,953 24,273 134,044 165,270
MBNI Ebased 7,210 23,506 133,787 164,503
GA Ebased 15,737 14,713 142,580 173,030

potential candidates in a study, they can be validated by RQ-PCR.
Moreover, analyzing the features for the hgu95av2 chip in more
detail, shows that about 70% of them map to the same gene at
different level (e.g. one is mapped at the “transcript”, the other
one at the “gene” level), which increases the probability that such
features monitor only a single gene. For the remaining 30%, the
vast majority consists of “transcript” pairs. Among these pairs,
29% identify genes of the same family, as for example the probe-
set “ENSG00000047634 transcript dubious multiple transcript at”
that maps the SCML1 and SCML2 genes (Sex comb on midleg-
like protein 1 and 2, member of the SCM family that holds the
polycomb group (PcG) proteins). The rest mainly consists of pairs
of a known gene (having a HUGO symbol) with a gene the function
of which is most certainly not known (i.e. solely annotated with an
Open Reading Frame (ORF) description or a GENBANK accession
number). As a consequence, allowing a probe to be part of several
probe-sets extends reliably the information that can be recovered
from an Affymetrix GeneChip R©.

4.2 Generating probe-sets at gene empty loci
Depending on the GeneChip R©version, 15-30% of the probes on
the array cannot be mapped to genes (Figure 1). These probes
are clustered together, provided that the probe’s inter-distance is
smaller or equal to one kb. This offers the possibility to identify loci,
which are translated, without being described as such, e.g. unknown
ORFs. As shown in the following (see paragraph 4.8), three of these
loci are significantly differentially expressed in acute lymphoblastic
leukemia (ALL), between the BCR/ABL gene-fusion and the NEG
genotypes.

4.3 Comparison with existing CDFs
To validate and benchmark our Ebased CDF, we compared it to
the other aforementioned CDFs. First, to assess if the different
CDFs are comparable, the probes to probe-sets assignment was
investigated between all possible combinations of CDFs. The
CDF pair-wise comparison of their probe-gene mapping for the
Affymetrix GeneChip R©hgu95av2 (201,800 probes) is shown in
Table 1. To ensure fair comparisons, the Affymetrix and Ebased
CDFs were subset to keep their probe-sets mapping to single gene
only, in order to match the GA and MBNI CDFs’ content. Indeed,
the GA and MBNI CDFs use less probes; probes that are for
76% rescued by the Ebased CDF through multi-gene probe-sets
(Supplementary Table 1). For the probe-sets mapping to single gene
only, between 19 and 27% of the Affymetrix probes are rejected by

the custom CDFs. These all have 1% of their probes being assigned
to genes not represented in the Affymetrix CDF. These differences
are due to the custom probe-set reconstruction. The custom CDFs
are comparable as they overlap pair-wise by about 81%; their
differences most probably being due to the different alignment
procedures and to the different annotation databases used. Second,
as the CDFs showed a sufficient agreement, we compared the raw
intensity variability of probe-sets among the ALL dataset samples,
in order to measure the effect of using different CDFs on biological
data. For every informative probe-set (see paragraph 2.8), the
member probes are retrieved and the standard deviation calculated.
Their distribution is shown in Supplementary Figure S1. The Ebased
CDF shows an overall lower variability; the p-value of a One Way
Analysis of Variance (ANOVA) being highly significant (Pr(>F) =
8.47e-35). Furthermore, the variability for the Ebased CDF probe-
sets that are mapping no gene is close to the one of those mapping
one gene only, as shown in Supplementary Figure S2. Overall,
this demonstrates that the Ebased CDF probes aggregation results
in probe-sets that provide more robust measurement. Ultimately,
this result is not an artifact of the number of probes assigned per
probe-sets, i.e. the Ebased CDF probe-sets have a similar number
of probes as those of the other CDFs for the filtered (Figure 2a)
and the identical probe-sets (Figure 2b). In addition, as shown is

Fig. 2. Number of probes per probe-set per CDF

Supplementary Figure S3, the distribution of probes per probe-set
for the Ebased CDF is not affected by probe-sets mapping one or
two genes and confirm that the lower variability observed for the
Ebased CDF probe-sets is not an artifact of the probes’ aggregation
process. The different performance of the various custom CDFs
is most probably the outcome of the different gene-build process
being used: the MBNI being based on EntrezGene (Maglott et al.,
2005), GA being based on GeneCards (Rebhan et al., 1997) and the
Ebased CDF using the data generated by the Ensembl gene-build
process (Curwen et al., 2004). These processes are run regularly to
keep genome annotations up to date. Estimating the effect of these
updates on custom CDFs is important to assess how often they need
to be updated.
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4.4 Comparison of different Ebased CDF versions
All custom CDFs have a similar probe to probe-set assignment,
however, they differ much by their update frequency: from every
other month for the Ebased CDF, to up to one year for the
MBNI. To assess whether the frequent human genome updates
have a significant effect on the CDFs and their annotations, we
analyzed the sequential changes occurring for the hgu95av2 Ebased
packages, generated using Ensembl version 50, 51 and 52 (the
packages version 1.0.3, 1.0.4 and 1.0.5, respectively). The probe-
sets’ annotation variation is summarized in Table 2. The update

Table 2. Evolution of the Ebased CDF

From To Identical Re-annotated New Discarded

v.1.0.3 v.1.0.4 95.80% 1.20% 3% 2%
v.1.0.4 v.1.0.5 80.19% 0.81% 19% 1%

performed by Ensembl from version 50 to version 51 did not include
a new Gene Build in contrary to the update from version 51 to
version 52. An update encompassing a new Gene Build results
in four times more changes (a fifth of all genes are affected)
than a “maintenance” update does. However, as can be seen in
Supplementary Figure S4 and S5, the variations between versions
affect on average one gene or one probe per probe-set, suggesting
that the human genome assembly is becoming increasingly precise.
Interestingly, as can be seen in Supplementary Table S2 and S3, the
number of probes that can be mapped to the genome increases with
the Ensembl versions for 3 different Affymetrix Gene Chips (95av2,
133a and 133plus2), due to recent large-scale projects. In particular,
RNA-Seq experiments have shown that many UTR regions are
much longer than expected (Mortazavi et al., 2008). Extending
them increases the chance to map Affymetrix GeneChip R©probes,
designed to map the last exon and the 3’ end of transcripts. It is,
therefore, a clear advantage for a CDF to be updated as soon as new
annotations are available, to benefit from these refinements.

4.5 Gene Set residuals compared between CDFs
To test the impact of different CDFs on downstream analysis,
we first perform a Gene Set Enrichment Analysis (GSEA) using
linear models, as described in Oron et al. (2008), applied to the
same data set they used: 79 acute lymphoblastic leukemia samples
having either a BCR/ABL translocation (BCR/ABL) or not (NEG).
Gene-sets (GS) are created per chromosome band, their residuals
calculated per sample and summarized. This is performed iteratively
for every CDF and the results compared per genotype, as shown in
Figure 3 and Supplementary Figure S6, for the NEG and BCR/ABL
genotypes, respectively. As shown in Figure 3a, clustering the
GS residuals results in two groups: Affymetrix & Ebased and
GA & MBNI. This separation and the similarity between the
results obtained using the Ebased and Affymetrix CDFs, are due
to the Ebased CDF keeping all possible information; i.e. probe-sets
mapping several genes that are discarded by the other custom CDFs.
Nevertheless, as shown in b), where the samples are sorted by the
median of their GS residuals’ distribution and linked through by red

(changed order) or green (identical position) lines, all CDFs present
similar rankings (ANOVA Pr(>F) = 0.9948). The same is observed

Fig. 3. Relationship of the different CDF Gene Set Residuals

in Supplementary Figure S6 for the BCR/ABL genotype; all CDFs
perform comparably.

4.6 Chromosome Y GS residuals
When used for a GSEA analysis, every expression matrix generated
by the different CDFs performs similarly. In Oron et al. (2008)
the result of this analysis is used for a QC validation: since sex
is associated with chromosome-level expression differences, they
analyzed the ALL samples and identified those that were wrongly
annotated; i.e. a male sample identified as female and vice-versa.
After complementary verification, they showed that two male and
one female samples were wrongly annotated. Here, we apply the
same analysis to compare if any of the custom CDFs can render
this distinction clearer; i.e. the obtained distributions should be less
scattered and have fewer outliers. The chromosome Y residuals for
the different CDFs are extracted and classified using the original
sample annotations: male samples should show positive residuals
and female samples negative ones. Due to the afore-mentioned
wrong annotation, this is not the case, as shown in Figure 4.
The MBNI and the Ebased CDFs show the expected results: 3
outliers corresponding to the 3 misannotated samples, whereas the
Affymetrix and GA display more outliers. To find out which of the
CDFs separates the male from female samples best, we perform
an unsupervised classification using an expectation - maximization
(EM) iterative method on the chromosome Y GS residuals. The
Ebased CDF results in the most confident classification, as shown
in Supplementary Figure S7, with all uncertainty scores lower than
0.005. This indicates that the Ebased CDF is the least affected
by the technical measurement artifacts inherent to the micro-array
technology and therefore the less prone to identify false positives.
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Fig. 4. Distribution of the chromosome Y Gene Set Residuals per sex and
CDF

4.7 Differential Expression between the NEG and
BCR/ABL genotypes

The results obtained from the expression matrices generated using
the Ebased CDF are more accurate than those obtained using the
other CDFs. But does the Ebased probes rescue deliver additional
valuable information, i.e. do the multi-gene and intergenic probe-
sets reveal otherwise ignored loci? To investigate this, we
performed a differential gene expression analysis using linear
models between the NEG and the BCR/ABL samples for every
expression matrix. The differentially expressed genes identified
were then compared pair-wise between CDFs. Across all CDFs,
41 genes are differentially expressed (Figure 5). 35 are detected by
using the original Affymetrix CDF, but if updated gene annotations
(custom CDFs) are used, between 4-12 genes of this gene set
are considered as false positives, originating from a wrong probe
to probe-set assignment (Supplementary Table S4). All the genes
identified using the MBNI (n = 23) or GA (n = 25) CDF are present
in the Affymetrix CDF related results. Applying the Ebased CDF
recalls 90% of the genes found by using the MBNI or GA, with
the exception of 2 (paternally expressed 10, LYN) and 3 (paternally
expressed 10, LYN, ZEB1) genes, respectively, for a total of 31 genes
identified. The magnitude of the difference between the custom
CDFs is similar to the one observed for the probe to probe-set
assignment described in Table 1 and suggest that it could be the
consequence of the different gene/transcript build being used and of
translation errors between databases’ cross-references, a recurrent
issue in gene annotation, as described previously (Drăghici et al.,
2006). This hypothesis is supported by the example of the gene
paternally expressed 10 identified by the MBNI and GA CDFs,
which is actually found as well by the Ebased CDF through its
HUGO name PEG10 (Paternally expressed gene 10). As for the
other genes (LYN, ZEB1), both the MBNI and GA identify the LYN
gene that encodes a protein kinase, as being 60% more expressed

in BCR/ABL samples than in NEG samples. When using the Ebased

Fig. 5. Venn diagram of the differentially expressed genes identified by the
different CDFs

CDF, the corresponding probe-set does not present any significant
variation and is filtered out as being invariant. The log2 ratios
determined by the three custom CDFs are very similar and the fold
change is close to the microarray resolution limit, under which
the statistical confidence is impeded. Without using a different
technology (e.g. qRT-PCR, RNA-Seq) it is impossible to tell, which
probe-set is the most accurate and whether that gene is differentially
expressed or not.

4.8 Genes identified specifically by the Ebased CDF
Five probe-sets are uniquely identified when using the Ebased CDF,
among which, only one has probes that map multiple loci (Table
3). Two probe-sets map annotated genes (FSCN1 and CD99) and

Table 3. Genes identified by the Ebased CDF only

Probe-sets Chr Start End Strand Gene

1 5 82,912,772 82,912,987 + VCAN*
2 10 31,857,709 31,858,087 + ZEB1*
3 15 32,576,159 32,576,542 + FSCN1*
4 7 5,598,980 5,621,811 + FSCN1
5 X 2,619,228 2,669,348 + CD99

1: 5 82912772 82912987 plus genomic at
2: 10 31857509 31858087 plus genomic at
3: 15 32576159 32576542 plus genomic multiple at
4: ENSG00000075618 transcript at
5: ENST00000381192 transcript at
* probe-sets within 1kb downstream of the gene 3’ UTR
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three are located in intergenic regions, within 1kb downstream of the
3’ UTR of genes reported by Ensembl (FSCN1, VCAN and ZEB1;
marked by an asterisk in Table 3). The probe-set mapping multiple
loci (third row in Table 3) is originally annotated as mapping an
intergenic location on chromosome 15 and hence is a possible
artifact. However, all the probes (n = 8) of that probe-set map solely
to another locus on chromosome 7, located next to the 3’UTR region
of the already identified FSCN1 gene. This reinforces the evidence
that the FSCN1 gene is differentially expressed and displays the
potential of using such probe-sets. It is interesting to note that
the ZEB1 gene is the third gene specifically identified when using
the GA CDF. Therefore, with the exception of the LYN gene, the
Ebased CDF recalls all the genes identified by the two other custom
CDFs, as well as three additional ones: VCAN, FSCN1 and CD99.
These genes are 50% more expressed in the BCR/ABL genotype
than in the NEG one. VCAN (versican) is involved in cell adhesion,
migration, and proliferation and an increase of expression is often
observed in various tumors’ growth. It has been shown to strongly
enhance LLC (Lewis lung carcinoma) metastatic growth (Kim et al.,
2009). CD99, coding for the CD99 antigen, is involved in T-cell
adhesion processes. It is involved in spontaneous rosette formation
with erythrocytes, a process reported to occur in Burkitt Lymphoma
biopsies (Gross et al., 1975). Finally, FSCN1 is coding for the
Fascin protein, which organizes filamentous actin into actin/fascin
bundles. It has been shown (Minn et al., 2005) to mark and mediate
breast cancer metastasis to the lungs and is patented as a specific
marker for pancreatic cancer (Patent number WO2004055519-A2).
In conclusion, the five additional probe-sets identified by the Ebased
CDF identify genes or transcription products the deregulation of
which could have oncogenic consequences.

5 CONCLUSION
Even as the development of new technologies to measure RNA
expression, especially Next-Generation Sequencing, is expending,
many studies are still array-based and this trend will hold until
these new technologies have matured and become cost-competitive
for every lab. In addition, the last decade has generated a huge
amount of array-based expression profiling data that, until recently
(Lukk et al., 2010), have often been only superficially analyzed.
To analyze these data, whether published and available from the
GEO and ArrayExpress resources, or new requires up-to-date
probes’ annotation and in the case of Affymetrix microarray a CDF
describing the correct probes to probe-sets mapping. In comparison
to the other CDFs, our Ebased CDFs offers a higher sensitivity, is
more frequently updated and uses as many probes as possible to
benefit from all the possible information present on an array. In
addition, it contains additional probe quality information, such as
the number of genes mapped by a given probe-sets. Applied on the
frequently analyzed ALL dataset, it unravels three new potential
candidate genes, which implication in cancer has been shown in
other tumors. Our CDF is an enhanced tool to perform Affymetrix
microarray analyses on either new or published data and by this
mean extend our biological knowledge.
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Appendix D

Analyses supplements

This appendix contains additional results related to the section 4.4, page
103 and section 4.5, page 121.

D.1 arrayCGH - EP pairs correlation

The Table D.1 lists all the arrayCGH - EP pairs associated with an FDR
≤ 10%.

gene.symbol coef p.value fdr.local chromosome

KIFC1 5.42 0.00 0.00 6
RCAN2 -4.88 0.00 0.00 6
GMNN 4.78 0.00 0.00 6
HLA-DRA -4.43 0.00 0.00 6
E2F3 4.29 0.00 0.00 6
ELOVL2 4.18 0.00 0.00 6
HLA-DPA1 -4.01 0.00 0.00 6
MCM3 3.90 0.00 0.00 6
ATAT1 3.88 0.00 0.00 6
FOXF2 -3.87 0.00 0.00 6
HNRNPL 3.67 0.00 0.00 6
CDKAL1 3.58 0.00 0.00 6
PCSK2 3.55 0.00 0.00 6
DEK 3.41 0.00 0.00 6
NEDD9 -3.40 0.00 0.00 6
HIST1H4C 3.39 0.00 0.00 6
SOX4 3.27 0.00 0.00 6
DSP -3.26 0.00 0.00 6
ID4 -3.25 0.00 0.00 6

continued on next page
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continued from previous page

gene.symbol coef p.value fdr.local chromosome

BTN3A3 -3.18 0.00 0.00 6
DTL 3.15 0.01 0.00 1
HLA-C -3.13 0.00 0.00 6
LSM2 3.09 0.00 0.00 6
TMEM151B 3.05 0.00 0.00 6
PIM1 3.04 0.00 0.00 6
HMGA1 3.03 0.00 0.00 6
ASPM 2.98 0.01 0.00 1
JARID2 2.96 0.00 0.00 6
FOXC1 -2.96 0.00 0.00 6
TFAP2A -2.94 0.00 0.00 6
HLA-DPB1 -2.82 0.00 0.00 6
BTN3A2 -2.79 0.00 0.00 6
MAK 2.78 0.00 0.00 6
HLA-E -2.77 0.00 0.00 6
F13A1 -2.77 0.00 0.00 6
CUTA 2.75 0.00 0.00 6
CYP39A1 -2.75 0.00 0.00 6
MSH5 2.73 0.00 0.00 6
MICA -2.70 0.00 0.00 6
NEK2 2.69 0.01 0.00 1
NUP153 2.66 0.00 0.00 6
BRD2 2.65 0.00 0.00 6
ZNF193 2.64 0.00 0.00 6
SRPK1 2.64 0.00 0.00 6
ZSCAN16 2.62 0.00 0.00 6
FAM65B -2.57 0.00 0.00 6
CAP2 -2.54 0.00 0.00 6
CCHCR1 2.48 0.00 0.00 6
SALL1 -2.47 0.00 0.00 16
CENPF 2.44 0.01 0.00 1
BAT2 2.42 0.00 0.00 6
PRR3 2.40 0.00 0.00 6
GMPR -2.37 0.00 0.00 6
TUBB 2.37 0.00 0.00 6
IER3 -2.36 0.00 0.00 6
TRIM27 2.31 0.00 0.00 6
BMP5 -2.29 0.00 0.00 6
LYRM4 2.29 0.00 0.00 6
CLIC5 -2.28 0.00 0.00 6
BAT3 2.27 0.00 0.00 6

continued on next page
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continued from previous page

gene.symbol coef p.value fdr.local chromosome

TUBB2B 2.26 0.00 0.00 6
RNF8 2.25 0.00 0.00 6
COL21A1 -2.24 0.00 0.00 6
SLC39A7 2.21 0.00 0.00 6
TFAP2B -2.21 0.00 0.00 6
BTN3A1 -2.21 0.00 0.00 6
TAPBP -2.20 0.00 0.00 6
NFYA 2.15 0.00 0.00 6
EFHC1 2.14 0.00 0.00 6
ICK -2.12 0.00 0.00 6
MYLIP -2.12 0.00 0.00 6
AIF1 -2.11 0.00 0.00 6
SNRPC 2.11 0.00 0.00 6
PIP5K1P1 2.10 0.00 0.00 6
BAT1 2.10 0.00 0.00 6
RXRG 2.09 0.02 0.00 1
GNL1 2.08 0.00 0.00 6
USP49 2.07 0.00 0.00 6
EEF1E1 2.07 0.00 0.00 6
PTMAP1 2.06 0.00 0.00 6
FKBPL 2.06 0.00 0.00 6
CSNK2B 2.05 0.00 0.00 6
HLA-A -2.04 0.00 0.00 6
NUDT3 2.04 0.00 0.00 6
PSMB8 -2.02 0.00 0.01 6
STK38 2.02 0.00 0.00 6
ZSCAN12 2.01 0.00 0.00 6
OR2B6 1.99 0.00 0.00 6
RGL2 1.98 0.00 0.00 6
FTS 1.97 0.00 0.00 16
PTK7 1.96 0.00 0.00 6
RPP21 1.96 0.00 0.00 6
PBX2 1.92 0.00 0.00 6
PFDN6 1.91 0.00 0.00 6
RBL2 1.91 0.00 0.00 16
CDC5L 1.88 0.00 0.00 6
KLHDC3 1.88 0.00 0.00 6
KIF14 1.88 0.01 0.00 1
HIST1H2BD 1.88 0.00 0.00 6
NCR2 1.88 0.00 0.00 6
CD2AP 1.86 0.00 0.00 6

continued on next page
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continued from previous page

gene.symbol coef p.value fdr.local chromosome

GTF2H4 1.85 0.00 0.00 6
CUL7 1.85 0.00 0.00 6
FTSJD2 1.84 0.00 0.00 6
GNG4 1.84 0.01 0.00 1
PRIM2 1.84 0.00 0.00 6
AGPAT1 1.83 0.00 0.00 6
IQCB2P 1.81 0.00 0.00 6
EHMT2 1.81 0.00 0.00 6
COL11A2 1.81 0.00 0.00 6
CUL9 1.80 0.00 0.00 6
RANBP9 1.79 0.00 0.00 6
PPP1R10 1.78 0.00 0.00 6
ITPR3 1.78 0.00 0.00 6
DDAH2 1.78 0.00 0.00 6
ZNF184 1.77 0.00 0.00 6
NUP50P2 1.75 0.00 0.00 6
RRM2 1.75 0.06 0.00 2
VARS 1.75 0.00 0.00 6
TPR 1.74 0.01 0.00 1
RDBP 1.74 0.00 0.00 6
SLC29A1 1.69 0.00 0.00 6
DLK2 1.68 0.00 0.00 6
PPT2 1.66 0.00 0.00 6
MDC1 1.65 0.00 0.00 6
ATF6B 1.65 0.00 0.00 6
LBR 1.60 0.01 0.00 1
C6orf106 1.58 0.00 0.00 6
ZNF318 1.57 0.00 0.00 6
MEA1 1.56 0.00 0.00 6
PHF1 1.55 0.00 0.00 6
U6 (RFAM) 1.54 0.01 0.00 1
PBX1 1.54 0.01 0.00 1
GRM4 1.54 0.00 0.00 6
ABCF1 1.54 0.00 0.01 6
TBCC 1.54 0.00 0.01 6
MRPS18A 1.53 0.00 0.01 6
PRL 1.53 0.00 0.01 6
FLOT1 1.52 0.00 0.01 6
POLR1C 1.49 0.00 0.02 6
HCG26 1.49 0.00 0.02 6
DOM3Z 1.47 0.00 0.02 6

continued on next page
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continued from previous page

gene.symbol coef p.value fdr.local chromosome

PACSIN1 1.46 0.00 0.02 6
MRPL2 1.46 0.00 0.03 6
PRPF4B 1.44 0.00 0.03 6
GTPBP2 1.44 0.00 0.03 6
MAPK14 1.44 0.00 0.03 6
DST 1.42 0.00 0.03 6
STK19 1.36 0.00 0.05 6
VEGFA 1.36 0.00 0.05 6
SUCLA2P 1.34 0.00 0.05 6
ENAH 1.34 0.01 0.05 1
SOX11 1.33 0.05 0.05 2
ZNF76 1.32 0.00 0.06 6
ZNF451 1.32 0.00 0.06 6
HSD17B2 1.31 0.00 0.06 16
ZNF187 1.30 0.00 0.06 6
NCR3 1.30 0.00 0.06 6
C6orf130 1.27 0.00 0.07 6
C6orf62 1.26 0.00 0.07 6
MMP2 1.25 0.00 0.07 16
STK19P 1.21 0.00 0.08 6
PRIM1 1.20 0.01 0.09 1
RXRB 1.20 0.00 0.09 6
LRRC16A 1.20 0.00 0.09 6
RNF5 1.18 0.00 0.09 6
PIP5K1A 1.17 0.00 0.09 6
FTO 1.17 0.00 0.10 16
C1orf56 1.16 0.01 0.10 1
TBX1 1.16 0.00 0.10 6
FKBP5 -0.72 0.04 0.60 6

Table D.1 – Strongly associated arrayCGH - EP pairs, i.e. having an FDR
≤ 10%.
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Appendix E

Author publications

This appendix lists the publications, which I was involved in, related to this
thesis work.

1. In Kokocinski et al. (2005), I was involved in the software design and
implementation of the Flexible Annotation and Correlation Tool
(FACT)

2. In Stange et al. (2010), I was involved in the analyses, especially man-
ually curating annotation using FACT.

3. In Barbus et al. (2011), I was involved in redefining the probes’ map-
ping and annotation used for that study. The probes were provided
by Operon (http://www.eurofinsdna.com/home.html) and spotted in-
house on microarray.

4. In Haag et al. (2012), I performed the same probe’s curation as in
Barbus et al. (2011).

The publication abstracts are listed below in the same order:

1. FACT–a framework for the functional interpretation of high-
throughput experiments.
Felix Kokocinski, Nicolas Delhomme, Gunnar Wrobel, Lars Hum-
merich, Grischa Toedt, Peter Lichter.
FACT serves as a highly flexible framework for the explorative analysis
of large genomic and proteomic result sets. The program can be used
online; open source code and supplementary information are available
at http://www.factweb.de. - BMC Bioinformatics (2005) vol. 6 pp.
161
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2. Expression of an ASCL2 related stem cell signature and IGF2
in colorectal cancer liver metastases with 11p15.5 gain.
D E Stange, F Engel, T Longerich, B K Koo, M Koch, N Delhomme,
M Aigner, G Toedt, P Schirmacher, P Lichter, J Weitz, B Radlwim-
mer.

Background and aims Liver metastases are the leading cause of
death in colorectal cancer. To gain better insight into the biology of
metastasis and possibly identify new therapeutic targets we systemat-
ically investigated liver-metastasis-specific molecular aberrations.

Methods Primary colorectal cancer (pCRC) and matched liver metas-
tases (LMs) from the same patients were analysed by microarray-based
comparative genomic hybridisation in 21 pairs and gene expression
profiling in 18 pairs. Publicly available databases were used to con-
firm findings in independent datasets.

Results Chromosome aberration patterns and expression profiles of
pCRC and matched LMs were strikingly similar. Unsupervised clus-
ter analysis of genomic data showed that 20/21 pairs were more sim-
ilar to each other than to any other analysed tumour. A median of
only 11 aberrations per patient was found to be different between
pCRC and LM, and expression of only 16 genes was overall changed
upon metastasis. One region on chromosome band 11p15.5 showed a
characteristic gain in LMs in 6/21 patients. This gain could be con-
firmed in an independent dataset of LMs (n=50). Localised within
this region, the growth factor IGF2 (p=0.003) and the intestinal stem
cell specific transcription factor ASCL2 (p=0.029) were found to be
over-expressed in affected LM. Several ASCL2 target genes were up-
regulated in this subgroup of LM, including the intestinal stem cell
marker OLFM4 (p=0.013). The correlation between ASCL2 expres-
sion and four known direct transcriptional targets (LGR5, EPHB3,
ETS2 and SOX9) could be confirmed in an independent expression
dataset (n=50).

Conclusions With unprecedented resolution a striking conservation
of genomic alterations was demonstrated in liver metastases, suggest-
ing that metastasis typically occurs after the pCRC has fully ma-
tured. In addition, we characterised a subset of liver metastases with
an ASCL2-related stem-cell signature likely to affect metastatic be-
haviour of tumour cells. - Gut (2010) pp.
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3. Differential retinoic acid signaling in tumors of long- and
short-term glioblastoma survivors.
Sebastian Barbus, Bjrn Tews, Daniela Karra, Meinhard Hahn, Bern-
hard Radlwimmer, Nicolas Delhomme, Christian Hartmann, Jrg
Felsberg, Dietmar Krex, Gabriele Schackert, Ramon Martinez, Guido
Reifenberger, Peter Lichter.
Although the prognosis of most glioblastoma patients is poor, 3%-
5% patients show long-term survival of 36 months or longer after di-
agnosis. To study the differences in activation of biochemical path-
ways, we performed mRNA and protein expression analyses of pri-
mary glioblastoma tissues from 11 long-term survivors (LTS; overall
survival ≥ 36 months) and 12 short-term survivors (STS; overall sur-
vival ≤ 6 months). The mRNA expression ratio of the retinoic acid
transporters fatty acid-binding protein 5 (FABP5) and cellular retinoic
acid-binding protein 2 (CRABP2), which regulate the differential de-
livery of retinoic acid to either antioncogenic retinoic acid receptors or
prooncogenic nuclear receptor peroxisome proliferator-activated recep-
tor delta, was statistically significantly higher in the tumor tissues of
STS than those of LTS (median ratio in STS tumors = 3.64, 10th-90th
percentile = 1.43-4.54 vs median ratio in LTS tumors = 1.42, 10th-90th
percentile = -0.98 to 2.59; P < .001). High FABP5 protein expression
in STS tumors was associated with highly proliferating tumor cells
and activation of 3-phosphoinositide-dependent protein kinase-1 and
v-akt murine thymoma viral oncogene homolog. The data suggest that
retinoic acid signaling activates different targets in glioblastomas from
LTS and STS. All statistical tests were two-sided. - J Natl Cancer Inst
(2011) vol. 103 (7) pp. 598-606

4. Nos2 inactivation promotes the development of medulloblas-
toma in Ptch1(+/-) mice by deregulation of Gap43-dependent
granule cell precursor migration.
Daniel Haag, Petra Zipper, Viola Westrich, Daniela Karra, Karin
Pfleger, Grischa Toedt, Frederik Blond, Nicolas Delhomme, Mein-
hard Hahn, Julia Reifenberger, Guido Reifenberger, Peter Lichter.
Medulloblastoma is the most common malignant brain tumor in chil-
dren. A subset of medulloblastoma originates from granule cell precur-
sors (GCPs) of the developing cerebellum and demonstrates aberrant
hedgehog signaling, typically due to inactivating mutations in the re-
ceptor PTCH1, a pathomechanism recapitulated in Ptch1(+/-) mice.
As nitric oxide may regulate GCP proliferation and differentiation,
we crossed Ptch1(+/-) mice with mice lacking inducible nitric oxide
synthase (Nos2) to investigate a possible influence on tumorigenesis.
We observed a two-fold higher medulloblastoma rate in Ptch1(+/-)
Nos2(-/-) mice compared to Ptch1(+/-) Nos2(+/+) mice. To iden-
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tify the molecular mechanisms underlying this finding, we performed
gene expression profiling of medulloblastomas from both genotypes,
as well as normal cerebellar tissue samples of different developmental
stages and genotypes. Downregulation of hedgehog target genes was
observed in postnatal cerebellum from Ptch1(+/+) Nos2(-/-) mice
but not from Ptch1(+/-) Nos2(-/-) mice. The most consistent effect
of Nos2 deficiency was downregulation of growth-associated protein 43
(Gap43). Functional studies in neuronal progenitor cells demonstrated
nitric oxide dependence of Gap43 expression and impaired migration
upon Gap43 knock-down. Both effects were confirmed in situ by im-
munofluorescence analyses on tissue sections of the developing cerebel-
lum. Finally, the number of proliferating GCPs at the cerebellar pe-
riphery was decreased in Ptch1(+/+) Nos2(-/-) mice but increased in
Ptch1(+/-) Nos2(-/) (-) mice relative to Ptch1(+/-) Nos2(+/+) mice.
Taken together, these results indicate that Nos2 deficiency promotes
medulloblastoma development in Ptch1(+/-) mice through retention
of proliferating GCPs in the external granular layer due to reduced
Gap43 expression. This study illustrates a new role of nitric oxide
signaling in cerebellar development and demonstrates that the local-
ization of pre-neoplastic cells during morphogenesis is crucial for their
malignant progression. - PLoS Genet (2012) vol. 8 (3) pp. e1002572
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Glossary

acute lymphoblastic leukemia a form of leukemia - cancer of the white
blood cells - characterized by an excess of lymphoblasts. 3, 69, 138

analysis of variance a collection of statistical models for determining the
effects of different source of variation on the variance of a variable. 144

aneuploidy a type of chromosomal abnormality showing a non normal
number of chromosomes. 16

apoptosis programmed cell death, resulting in the destruction of the cell
and its phagocytosis. 6–10, 18

arrayCGH an high throughput array based CGH, synonym of matrixCGH.
25, 29–31, 33, 47, 48, 51–57, 59, 60, 86, 89, 92, 95–97, 99, 103, 105,
109–111, 113–115, 117, 118, 120, 140–142, 144, 145, 150, 153, 154, 158,
184, 206, 210, 218

bacterial artificial chromosome a DNA construct based on a plasmid,
used for transforming and cloning in bacteria. 44, 46, 56, 150

Bioconductor Bioconductor (Gentleman et al., 2004) is a software archive
written for the R langague (R Development Core Team, 2009) and
dedicated to the analyses of high throughput, high dimension datasets.
27, 28, 43, 45, 67

cancer of unknown primary cancer type which primary origin cannot
be determined. 11

cancerogenesis the conversion of normal cells to neoplastic cells and their
further development into a tumor. 3, 5, 6, 8, 10, 40, 80, 83, 86, 128,
137, 140, 147, 150–152, 156, 157, 159, 161–164, 172

chip a commonly used synonym for microarray. 24, 25

ChIP-on-chip a technique associating a chromatin immunoprecipitation
with an hybridization on a microarray. 26
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ChipYard a microarray analysis software, developed by Grischa Toedt, in
the division of Molecular Genetics, DKFZ. 43, 44, 47, 48, 87

chromosomal instability an increased tendency to acquire chromosomal
aberrations. 16

chromosome conformation capture technique used to analyze the or-
ganization of the chromosome in a cell. 26

chromothripsis Greek; chromo from chromosome; thripsis, for shattering
into pieces; process by which ten to hundreds of chromosomal rear-
rangements occur in a single step cellular crisis. 14, 152

comparative genomic hybridization technique developed to compare the
genomic content of 2 different samples. 22, 25, 215, 218

complementary deoxyribonucleotide acid a DNA strand complemen-
tary to its RNA template obtained by using a retro-transcriptase en-
zyme. 23, 220

contingency table In statistics, a matrix that displays the (multivariate)
frequency distribution of the variables. Used to record and analyze
the relation between two or more categorical variables. 56, 111

CpG Islands sequence rich in CG dinucleotides, where the cytosine is often
methylated, involved in gene regulation. 26

cyclin dependent kinase cell cycle Serine/Threonine kinases, which ac-
tivity depends on their association with cyclin. 7

deoxyribonucleotide acid (DNA) a long polymer of nucleotides that
contains the genetic information of an organism. 2, 5, 14, 21, 23,
26, 39, 46, 216, 219, 220

division of Molecular Genetics, DKFZ Division of Molecular Genet-
ics, at the German Cancer Research Center (DKFZ), lead by Prof.
Dr. Peter Lichter. 41, 43, 67, 216

dysplasia enlargment of an organ or tissue by the proliferation of abnormal
cells. 19

E-cadherin protein involved in the cells tight junctions, resulting in their
anchorage to the ECM and to neighboring cells. 12

Ensembl A database hosted at the European Bioinformatics Institute
(EBI) that contains gene information for every common model organ-
isms. 43
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epithelial mesenchymal transition process by which an epithelial cell
transforms into a mesenchymal one, acquiring motility among other
traits. 12, 13, 218

exon-exon junction adjacent position in a transcript sequence that orig-
inate from different exon, distantly located on the genome. 70

expressed sequence tag a sequence uniquely identifying a transcript, de-
termined from a cDNA library obtained by a retro-transcriptase reac-
tion. 71, 137, 138, 147, 159

expression profiling microarray application, which goal is to measure the
amount of mRNA, a proxy of the expression of genes. 25–27, 29–33,
39, 41–43, 45, 48, 51, 52, 54–61, 67, 69, 86, 87, 95–97, 103, 105, 109,
111, 113–115, 117, 118, 120, 121, 125, 126, 128, 137–141, 143–145, 147,
148, 150, 152–155, 158, 160, 175, 177, 184, 206, 210

extracellular matrix extracellular mesh of secreted proteins surronding
most tissue cells. 3, 13, 18, 78, 81, 130, 148, 162, 163, 216, 218, 221

extravasation process by which a cancer cell exit from a blood capillary.
12, 13

Gene Expression Omnibus a database maintained by the NCBI storing
microarray data and metadata. 41, 42, 45, 51, 67, 75, 81, 82, 85, 107,
109, 121, 122, 150, 158, 175, 178, 180–183

gene ontology a representation of a gene within a directed acyclic graph
consisting of three main branches: molecular function, cellular compo-
nent and biological process. 29, 60, 117–120, 126–128, 130, 140, 156,
157, 161, 162

GeneChip an Affymetrix microarray technology (Lockhart et al., 1996).
24–27, 41–43, 45, 55, 60, 61, 67–73, 76, 106, 107, 137, 138, 147, 154,
155, 159, 171, 184

genomic regulatory network a network description of a set of genes,
proteins, small molecules and their mutual regulatory interactions.
140

growth factor protein able to stimulate the growth or proliferation of the
cell upon binding a specific cell surface receptor of that cell. 3, 10

hallmark of cancer a trait shared by every cancer, see Hanahan and Wein-
berg (2000). 3, 8–11, 13, 14, 32, 118, 157, 161, 162, 172

heterotypic refers to interaction between two or more different cell types,
the contrary of homotypic. 9, 10, 13
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hierarchical clustering a statistical method that uses the data intrinsic
properties to identify groups. 48, 92, 94, 151

homeostatis the relatively stable equilibrium between interdependent cells
maintained by physiological processes. 8, 218

homoscedastic synonym of homogeneity of variance. Characteristic of a
distribution where all random variables have the same finite variance.
30, 75

hypoxia describes a state where cells are subjected to a lower than normal
oxygen tension. 10

indel small insertion and deletion. 25

integrative analysis A kind of data analyses that integrates results from
different methods as a mean to increase the discovery power by filtering
confounding factors. 29–32, 39, 48, 54, 56, 60, 61, 92, 95, 102, 103,
108–113, 115, 117–123, 125, 132, 137, 139, 141–143, 145, 151–153,
155–161, 171, 172

integrin transmembrane protein exposed by a cell that binds the extra-
cellular matrix and promotes cell quiescence and results in tissue .
3

intravasation process by which a cancer cell would enter the blood circu-
lation. 12, 13

laboratory information management system a software to support mod-
ern laboratory technics, such as controlling a robot. 44

leukocoria abnormal white reflection from the retina of the eye. 16

loss of heterozygosity the result of a process where only one copy of an
heterozygous allele is conserved. 7, 16, 18, 114, 156

macrometastasis thriving metastasis, which size is bigger than 0.2 mm in
diameter. 13

matrix metallo-proteinase proteins able to degrade the ECM. 13

matrixCGH an high throughput array based CGH, synonym of array-
CGH. 25–29, 39, 41–44, 46, 48, 67, 175, 177

mendelian relating to Mendel’s theory of heredity. 5

mesenchymal epithelial transition the converse of the EMT. 12, 13
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metastasis tumor forming at one site of the body from cell derived from a
primary tumor located at another site of the body. 11, 13, 14, 18, 32,
42, 45, 61, 76, 78, 80–86, 132, 138, 148–150, 162, 163, 182, 218, 219

micro-environment the local environment of a tissue or tumor, suceptible
to be influenced by that tumor or tissue. 11–14, 18, 149, 163, 164, 172

microarray a collection of feature spatially arranged in a grid. 21–29, 32,
33, 39, 42, 43, 46, 48, 50, 51, 53–56, 60, 67, 69, 82, 86, 87, 96, 103,
109, 110, 119, 132, 137, 139–144, 146, 147, 154, 155, 158, 171, 172,
211, 215–217

micrometastasis “dormant” metastasis, whose size is less than 0.2 mm in
diameter. 13, 14, 149

mitogenic commonly a signal that provokes cell proliferation. 5, 6, 8, 29

mixture model a probabilistic model for describing the presence of sub-
populations within an overall population. 50, 96

multidimensional scaling technique used in information visualization to
explore (dis)similarities in data. 48, 92, 93, 151

N-cadherin protein involved in the motility of the cells. 12

necrosis process of cell death through different steps distinct from those of
apoptosis. 10

neo-angiogenesis process by which novel blood vessels are formed. 11, 76,
85, 138, 148, 157, 161, 163

Next-Generation Sequencing The second generation of DNA sequencers,
generating millions of short read (25-200bp) sequences. 17, 21, 27, 141,
146, 158

non mediated decay mechanism of mRNA surveillance, where wrongly
spliced pre-mature RNA containing nonsense codon will be marked
for degradation. This mechanism has been shown to be a mean of
regulating certain transcripts expression.. 138

nucleolus nuclear structure largely devoted to manufacturing ribosomal
subunits. 7

oncogene originally a gene that can transform cells, commonly a gene
which has a tumorigenic potential. 2, 3, 6, 8

osteoblast cell type responsible for bone regeneration. 18
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osteoclast cell type responsible for bone degradation. 18

osteosarcoma a malignant tumor of the bone, as well known as osteogenic
sarcoma. 1, 13, 17–19, 32, 33, 39, 42, 60, 61, 67, 76, 78, 79, 121–126,
128–132, 137, 141, 143, 145, 146, 148, 150, 158–164, 171, 172

pathology the typical behavior of a disease. 18

pedigree a description of a family tree, with squares representing male and
circles female individuals, often used in human genetics and medicine
to visualize a disease penetrance. 5

polymerase chain reaction technique developed to amplify DNA frag-
ments in an exponential manner using a polymerase enzyme. 24, 26

proto-oncogene cellular gene that altered through DNA damage acquires
the capabilities of an oncogene. 2, 17

pseudohypopyon a purulent collection of fluid within the anterior cham-
ber of the eye. 16

quality assessment process of evaluating the quality of a data set. 26, 27,
43, 44, 67, 69, 75, 87, 184, 220

quality control synonym of QA. 27, 43, 61, 67, 87, 177, 178, 180–185, 194

receiver operating characteristics a graphical representation of the per-
formance of a binary classifier as its discrimination threshold is varied.
It is created by plotting the TPR vs. the FPR at various threshold
settings. 32, 59, 103, 104

receptor tyrosine kinase plasma membrane protein that possesses an extra-
cellular ligand binding side and an intra-cellular kinase activated upon
ligand binding. 3

reductionism a scientific research strategy that focuses on analyzing sim-
ple components of a complex system rather than the system as a whole.
9

retinoblastoma tumor of the oligopotential stem cells of the retina. 1, 3,
5, 8, 16–18, 32, 33, 39, 41, 42, 60, 61, 67, 76–78, 95, 107, 115, 120–126,
128–132, 137, 138, 141, 143, 146–150, 155–164, 171, 172, 220

retinoma spontaneous regression of a retinoblastoma or a benign manifes-
tation of retinoblastoma. 17

retro-transcriptase an enzyme capable of converting an RNA template
in a cDNA/RNA duplex. 23, 216, 217
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RZPD Deutsches Ressourcezentrum fuer Genomforschung GmbH, Berlin,
Germany; see http://www.rzpd-ia.de. 44

senescence a non-growing state of cell in which cells can remain viable
for a long time but display specific phenotypic trait, including the
incapacity to proliferate again. 9

stroma the mesemchymal components of epithelial and hematopoietic tis-
sues, constituted of, among others, fibroblasts, endothelial cells, etc.
and of the ECM. 10, 11

structural variant large insertion or deletion, inversion, tandem-repeat
occurence,etc. . 25

Systems Biology scientific approach aiming at modeling biological sys-
tems as a whole rather than studying their single components inde-
pendently. 15

telomere end of a chromosome arm, constituted of thousands of 6bp (in
human) repeats. 9

transcription factor DNA binding protein responsible for the transcrip-
tion of its target genes. 16, 26, 83, 153

tumor suppressor gene a gene whose partial or complete inactivation
leads to an increased likelihood of cancer development. 3, 5, 6, 83

tumorigenesis the process of a tumor formation. 1, 14, 16, 18, 115

untranslated region flanking regions of a mRNA that are not translated
into a protein. 137, 138, 147, 148, 155, 159
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Acronyms

3C Chromosome Conformation Capture. 26

4C Circularized 3C. 26

5C Carbon-Copy 3C. 26

AKT/PKB protein kinase B. 9

ALL Acute Lymphoblastic Leukemia. 3, 69

ANOVA ANalysis Of VAriance. 144

AUC Area Under the Curve. 59, 105

AWS Adaptive Weight Smoothing. 100

BAC Bacterial Artificial Chromosome. 44

Bax BCL2-associated X . 8

BP Biological Process. 119

CC Cellular Component. 119

CDF Custom Definition File. 27, 43–45, 56, 69, 70, 72, 73, 75, 76, 78,
106, 118, 137–139, 146, 147, 153, 154, 171

CDK Cyclin Dependent Kinase. 7

CGH Comparative Genomic Hybridization. 22

CHEK2 CHEckpoint Kinase 2. 18

CI Confidence Interval. 98

CIN Chromosomal INstability. 16

CML Chronic Myelogenous Leukemia. 3
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CNV Copy Number Variation. 26, 28–30, 39, 47, 55, 56, 58, 87, 88, 92,
109, 110, 115, 141, 143, 145, 146, 152, 154–156, 171, 195

CUP Cancer of Unknown Primary. 11

cytochrome C cytochrome C. 9

DE Differential Expression. 44, 45, 55, 80–82, 108, 143, 148

DKFZ German Cancer Research Center. 2, 41, 43, 184, 216

DNA deoxyribonucleotide acid. 2

DOCK5 Dedicator Of CytoKinesis 5. 18

EBI European Bioinformatics Institute. 216

ECM extracellular matrix. 3

EGF epidermal growth factor. 3

EMT Epithelial Mesenchymal Transition. 12

EP Expression Profiling. 25

FACT Flexible Annotation and Correlation Tool. 44, 211

FDR False Discovery Rate. 112, 113, 115, 157, 159, 206, 210

FPR False Positive Rate. 32, 59, 103, 104, 220

GEO Gene Expression Omnibus. 41

GO Gene Ontology. 29

GRN Genetic Regulatory Network. 140

HMM Hidden Markov Model. 28, 47

HPV Human papillomavirus. 2

ICD-10 International Classification of Diseases. 2

LIMS Laboratory Information Management System. 44

LINE Long INterspersed Elements. 150

LOA Limits of Agreement. 97, 98
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log2 FC log2 Fold Change. 55, 58, 75, 76, 82, 83, 106–110, 141–143, 147,
149, 155

LOH loss of heterozygosity. 7

LTR Long Terminal Repeats. 150

MAD Median Absolute Deviation. 52, 56, 142

MAQC MicroArray Quality Control. 42, 67, 158

MAS Maskless Array Synthesizer. 24

Mdm2 mouse double minute 2. 7

MDS Multidimensional Scaling. 48, 151

meRNA multiexonic poly(A)+ RNA. 14

MET Mesenchymal Epithelial Transition. 12

MF Molecular Function. 119

MMP Matrix Metallo-proteinases. 13

mRNA messenger RNA. 14, 23, 25, 28, 155, 217, 219, 221

NF-κB Nuclear Factor - Kappa B. 8, 80, 85, 148, 149

NGS Next-Generation Sequencing. 17, 21

NMD Nonsense-mediated Decay. 138

OMIM the Online Mendelian Inheritance in Man database. 16, 18

p14ARF Alternative Reading Frame. 7

p15INK4B p15INK4B. 7, 8

p16INK4A p16INK4A. 7

PCR Polymerase Chain Reaction. 24

PDGF platelet-derived growth factor. 10

PI(3)K phosphatidylinositol-3OH kinase. 3, 8, 9

pRb retinoblastoma protein. 6, 8, 18

PTEN phosphatase and tensin homolog deleted on chromosome
10. 9
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QA Quality Assessment. 26, 43, 67

RB1 retinoblastoma gene. 5, 6, 8, 9, 16–19

RNA ribonucleotide acid. 14, 114, 137, 154, 155, 158, 216, 220, 224, 225

ROC Receiver Operating Characteristic. 32

ROS Reactive Oxygen Species. 132

RSV Rous Sarcoma Virus. 2

RTK Receptor Tyrosine Kinase. 3

RUNX2 Runt-related transcription factor 2. 18

SD Standard Deviation. 46, 58, 98, 111, 142, 143, 145

SDF1 stroma-derived factor-1. 11

SINE Short INterspersed Elements. 150

SNP Single Nucleotide Polymorphism. 25

snRNA small nuclear RNA. 114, 155, 172

SYK Spleen Tyrosine Kinase. 17

TDI Total Deviation Index. 97, 98

TF transcription factor. 16

TGF-β Transforming Growth Factor Beta. 3, 8, 13

TNF-α Tumor Necrosis Factor alpha. 13

TNFRSF10A Tumor Necrosis Factor Receptor SuperFamily mem-
ber 10A. 18

TNFRSF10D Tumor Necrosis Factor Receptor SuperFamily mem-
ber 10D. 18

TP53 tumor protein p53 . 5–9, 18, 19

TPR True Positive Rate. 32, 59, 104, 220

UHRR Universal Human Reference RNA. 42, 121–123, 143, 158, 183

uPA urokinase Plasminogen Activator. 13

UTR UnTranslated Region. 137

WLOG Without Loss Of Generality. 50
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