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Abstract

Computational methods to analyze image-based siRNA knockdown
screens

Neuroblastoma is the most common extra-cranial solid tumor of early childhood.
Standard therapies are not effective in case of poor prognosis and chemotherapy
resistance. To improve drug therapy, it is imperative to discover new targets that
play a substantial role in tumorigenesis of neuroblastoma. The mitotic machinery
is an attractive target for therapeutic interventions and inhibitors can be devel-
oped to target mitotic entry, spindle apparatus, spindle activation checkpoint,
and mitotic exit. Thus, we performed a study to find genes that cause mitosis-
linked cell death upon inhibition in neuroblastoma cells.

We investigated gene expression studies of neuroblastoma tumors and selected
240 genes relevant for tumorigenesis and cell cycle. With these genes we per-
formed image-based time-lapse screening of gene knockdowns in neuroblastoma
cells. We developed a classfier to classify images into cellular phenotypes, using
SVM, performing manual evaluation and automatic corrections. This classifier
yielded better predictions of cellular phenotypes than the standard classification
protocol. We further developed an elaborated analysis pipeline based on the phe-
notype kinetics from the gene knockdown screening to identify genes with vital
role in mitosis to identify therapeutic targets for neuroblastoma. We developed
two methods (1) to generate clusters of genes with similar phenotype profiles and
(2) to track the sequence of phenotype events, particularly mitosis-linked-cell-
death.

We identified six genes (DLGAP5, DSCC1, SMO, SNRPD1, SSBP1, and UBE2C)
that cause mitosis-linked-cell-death upon knockdown in both of the neuroblas-
toma cell lines tested (SH-EP and SK-N-BE(2)-C). Gene expression analysis of
neuroblastoma patients show that these genes are up-regulated in aggressive tu-
mors and they show good prediction performance for overall survival. Four of
these hits (DLGAP5, DSCC1, SSBP1, UBE2C) are directly involved in cell cycle
and one (SMO) indirectly which is involved in cell cycle regulation. Functional
association and gene-expression analysis of these hits indicated that monitoring
cell cycle dynamics enabled finding promising drug targets for neuroblastoma
cells.

In summary, we present a bioinformatics pipeline to determine cancer specific
therapeutic targets by first performing a focused gene expression analysis to se-
lect genes followed by a gene knockdown screening assay of live cells.






Abstract

Computergestiitzte Methoden fiir die Analyse von bild-basierten
siRNA-Knockdown-Screens.

Das Neuroblastom ist der héufigste solide extrakranielle Tumor in der frithen
Kindheit. Standard-Therapien sind hier unwirksam und gehen einher mit
einer schlechten Prognose und Chemotherapie-Resistenz. Zur Verbesserung der
medikamentosen Therapie ist es daher unerlisslich neue Ansatzpunkte zu ent-
decken, die eine wesentliche Rolle in der Tumorgenese von Neuroblastomen spie-
len. Der Prozess der Mitose bietet verschiedene Ansatzstellen fiir die Entwicklung
therapeutischer Interventionen, indem Hemmstoffe entwickelt werden, welche auf
die Einleitung der Mitose, den Spindelapparat, die Aktivierung des Spindel-
Kontrollpunkts und den Austritt aus der Mitoseabzielen. Aus diesem Grund
haben wir eine Studie durchgefiihrt um Gene zu finden, deren Hemmung zu
einem Mitose-assoziierten Zelltod von Neuroblastomzellen fiihrt.

Hierzu untersuchten wir Genexpressionsstudien von Neuroblastom-Tumoren und
wahlten 240 fiir Tumorgenese und Zellzyklus relevante Gene aus. Mit diesen
Genen fithrten wir bildbasierte Zeitverlaufsstudien von Gen-Knockdowns in
Neuroblastom-Zellen durch. Zur Einteilung der Bilder in zellulare Phanotypen
entwickelten wir einen Klassifizierungsalgorithmus, welcher auf Support-Vektor-
Maschinen sowie manuellen Auswertungen basiert und automatische Korrek-
turen durchfithrt. Unser Klassifikator erzielte bessere Vorhersagen der zelluldaren
Phéanotypen als das Standard-Klassifizierungsprotokoll. Weiterhin entwickelten
wir eine detaillierte Analysepipeline auf Basis der Kinetik der Phénotypen aus
dem Gen-Knockdown-Screen, um essentielle Gene der Mitose zu identifizieren
und um so therapeutische Ansatzpunkte gegen das Neuroblastom zu finden. Wir
haben zwei Verfahren entwickelt: (1) um Gruppen von Genen mit dhnlichen
Phénotyp Profile zu finden und (2) um die Abfolge der phénotypischen Ereignisse
zu verfolgen, insbesondere den Mitose-assoziierten Zelltod.

Mit Hilfe unserer Methoden konnten wir sechs Gene (DLGAP5, DSCC1, SMO,
SNRPD1, SSBP1 und UBE2C) identifizieren, die nach einem Knockdown den
Mitose-assoziierten Zelltod in beiden getesteten Neuroblastom Zelllinien (SH-EP
und SK-N-BE(2)-C) verursachten. Genexpressionsanalysen von Neuroblastom-
Patienten zeigen, dass diese Gene in aggressiven Tumoren hochreguliert sind. Zu-
dem erwiesen sich diese Gene als gute Indikatoren fiir die Gesamtiiberlebensdauer.
Vier dieser Treffer (DLGAP5, DSCC1, SSBP1, UBE2C) sind direkt im Zellzyk-
lus und einer (SMO) ist indirekt in dessen Regulation involviert. Funktionelle
Assoziations- und Genexpressions-Analysen dieser Treffer deuteten darauf hin,



dass die Verfolgung der Zellzyklus-Dynamik das Auffinden vielversprechender
Wirkstoftziele fiir Neuroblastomzellen ermoglicht hat.

Zusammenfassend stellen wir eine bioinformatische Pipeline zur Bestimmung
Krebs-spezifischer therapeutischer Wirkziele vor, indem zuerst eine gezielte Gen-
expressionsanalyse zur Auswahl von Kandidatengenen erfolgt und einem an-
schlieSenden in vitro Gen Knockdown Screen.
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CHAPTER 1

INTRODUCTION

Neuroblastoma is an embryonic tumor arising in the sympathetic nervous sys-
tem, mostly in adrenal glands. The genetic causes of neuroblastoma are still
unclear however mutations in ALK [Mosse et al., 2008] and PHOX2B [Mosse
et al., 2004] have been identified in most familial cases of neuroblastoma. While
somatic mutations in BARD1 [Capasso et al., 2009], chromosome band 6p22.3
[Maris et al., 2008], copy number variation at 1q21 [Diskin et al., 2009], are
frequently observed in sporadic neuroblastoma. The clinical courses of neurob-
lastoma are very heterogeneous. Some tumors undergo spontaneous regression
without therapy, whereas, high-risk neuroblastoma patients are often resistant
to available therapies and undergo a fatal clinical outcome [Deyell and Attiyeh,
2011]. These varied clinical courses depend on the age of the patient, stage of
the disease and genetic abnormalities like, MYCN amplification [Brodeur et al.,

1984] or aberrations of chromosome 11q [Gaudray et al., 1992].

MYCN serves as a prognostic marker for neuroblastoma [Brodeur, 2003, Wester-
mann et al., 2008]and is a central regulator of the cell cycle [Obaya et al., 1999].
Our group was involved in a study to predict genes regulated by MYCN. In this
study [Westermann et al., 2008] a genome-wide search was performed for genes
that were directly regulated by MYC/MYCN or indirectly involved in MYCN-
induced regulation. The gene expression profiles were clustered and enrichment

analysis of MYC targets was performed to predict new targets.



Neuroblastoma exhibits heterogeneous clinical courses. Stage 4 classified tu-
mors have a very poor prognosis (aggressive tumors), in contrast to stage 1 tu-
mors which have a very good prognosis and often show spontaneous regression
[Brodeur, 2003]. Risk-classifiers have been developed for distinguishing tumors
with varying clinical courses. These classifiers consider the features such as age
of the patient, stage of disease and other biological variables [Maris, 2010]. Our
group was involved in the development of such a classifier which was based on the
differential gene expression. In this study [Oberthuer et al., 2006], gene expres-
sion in 251 neuroblastoma patients was analyzed to find differential expression in
clinical subgroups. Using the maximally divergent clinical course in 77 patients
a 144-gene-based classifier was developed to assist risk estimation for neuroblas-

toma patients.

Aneuploidy is a common feature of cancers [Bharadwaj and Yu, 2004]. It is
the condition where a cell has an abnormal chromosome number. It is caused
by abnormal mitosis, where chromosome segregation during anaphase is defec-
tive. Such mitosis results in loss or duplication of chromosomes in the daughter
cells [Griffiths AJF, 2000]. Cells with such aberrations are usually non-viable.
There are many possible components of mitosis when defective which can cause
aneuploidy [Gordon et al., 2012]. Inefficient Metaphase-Anaphase (M-A) check-
point is one of the sources of aneuploidy and is considered an anticancer strategy.
M-A checkpoint is the surveillance system to ensure proper attachment of chro-
mosomes to the microtubules and the tension in microtubules. It can inhibit
chromosome segregation in anaphase if there are any defects [Bharadwaj and
Yu, 2004]. When this checkpoint is affected the miss-segregation rate increases
leading to aneuploidy. Inhibitors of the mitotic spindle have been extensively
used in chemotherapy [Li and Li, 2006]. However, susceptibility to these drugs is
dependent on the tumor type [Kavallaris, 2010]. Though, given the high degree
of heterogeneity in response to anti-mitotic drugs in different tumor cells [Gas-
coigne and Taylor, 2008], identification of target proteins that are substantial for
the etiology of neuroblastoma is a challenging task. Hence, the search for genes

with therapeutic potential requires a sophisticated approach.

Functional genomics and cancer genetics consistently exploit high-throughput
RNA interference knockdown screens to investigate consequences of eliminating
specific genes [Willingham et al., 2004, Cole et al., 2011, Holzel et al., 2010].



siRNA assays based on a single readout, such as cell viability, growth rate, or
reporter activity (luciferase) are easy to scale up in high throughput. However,
they contain limited information as they provide only an endpoint snapshot of a
cells reaction [Markowetz, 2010]. In turn, image-based knockdown screens pro-
vide multi-parametric readouts and enable tracking more complex phenotypes.
However, these assays are laborious on a high-throughput scale. We combined
the best of both to infer gene function in a time-dependent manner, as explained
in detail in the following. To gain functional information from images, image
processing methods were established to segment whole cells and cell nuclei (i.e.
to separate them from the image background) and to extract their morpholog-
ical features [Harder et al., 2009] [Harder et al., 2011]. Techniques have been
developed to distinguish and quantify different cell shapes [Bakal et al., 2007],
to determine sub cellular localizations [Conrad et al., 2004], to identify mitotic
phases [Harder et al., 2006], and to cluster genes based on phenotypic similar-
ity[Fuchs et al., 2010].

—> Mitotic arrest Mitotic cell death

Mitotic slippage

4
@
— Cell death Interphase Arrest

- 6

Figure 1.1: Consequences of a gene knockdown on the cell cycle and cell fate:
These effects can be observed (directly or indirectly) by imaging cells with silenced
genes following a time-lapse screening assay. Cells may directly be affected from
the loss-of-function of a gene and die (cell death); they may enter mitosis and
die before completion of mitosis (cell death in mitotic arrest), or may undergo
mitotic slippage followed by interphase arrest or cell death.
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1.1 Objective of the study

In this study, we used a set of genes relevant to neuroblastoma. We selected
genes from an established gene-expression-based classifier developed previously
in our group [Oberthuer et al., 2006]. Furthermore, we selected genes which are
regulated by the prognostic marker MYCN/MYC as found in our previous in
vitro study [Westermann et al., 2008]. With these genes we performed time-lapse
image-based loss-of-function assays to determine cell fate upon gene knockdown.
As an example, different outcomes of gene silencing are shown in Figure: 1.1(page:
5). For instance, perturbation of constitutively expressed anti-apoptotic genes
may lead to cell death. As such, targeting mitotic genes can lead to mitotic
arrest and this may lead to cell death depending on the mitotic component that
was targeted [Manchado et al., 2012, Vakifahmetoglu et al., 2008]. Targeting the
mitotic checkpoint can cause aneuploidy resulting in asymmetric segregation of
chromosomes during anaphase or tetraploidy. An abnormal division can result
in non-viable daughter cells. Some knockdowns can cause mitotic arrest and
after prolonged mitotic arrest, a cell can either die or exit mitosis without cell
division known as mitotic slippage. Knockdowns resulting in such abnormal
mitotic fate are attractive therapeutic candidates. Hence, we focused our analysis

on identifying such perturbations.

1.2 Outline of the thesis

This thesis contains 5 chapters.

Chapter 1: Introduction, it conveys the motivation and objective of the work.
It gives an overview of the neuroblastoma cancer and mentions how functional
genomics has contributed in cancer functional genomics. Chapter 2: Background,
details the main techniques and concepts used in this thesis. It describes the cell
cycle as our analysis tracked cell fate upon gene knockdown, RNA interference
which is the technique that has been used for gene knockdown, Support Vector
Machines which has been used for phenotype classification of cells, and the applied
statistics methods. Chapter 3: Methods, it describes the methods developed in

this study. It explains the gene selection scheme that we employed to select a
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set of 240 genes that were screened. It describes the phenotype classification
scheme and optimization process that we performed. It presents a method to
cluster phenotype profiles and a novel method to determine cell fate upon a gene
knockdown, based on the temporal tracking of phenotype emergence. Chapter 4:
Results and Discussion, it presents the results of the entire screening process and
its analysis. It shows that the gene selection process helped us in deriving a set
of cell cycle associated genes. It depicts the results of the improved classification
scheme. It discusses that cells in the screen have synchronized cell cycle, thus
the population-average response can be computed to represent the knockdown
effect. Cell fate upon knockdown of each gene is also tabulated. Validations of
the results as performed by our collaborators are also described in this chapter.

Chapter 5: Conclusion of the study and possible follow up.






CHAPTER 2

BACKGROUND

2.1 Biology

2.1.1 Cell cycle

The cell cycle describes the process of growth and division of a cell. There are
several stages of this process. Interphase and mitosis are two major stages of cell
division. A typical eukaryotic cell cycle has duration of approximately 24 hours.
Of the 24 hours mitosis is 1 hour and the rest of the time cell is in interphase

[Cooper, 2000].

Interphase

During interphase DNA of the cell replicates and the chromosomes duplicate,
the cell grows in size and prepares to divide into two cells. In interphase, the
chromosomes are de-condensed and distributed in the nucleus and so they appear
morphologically uniform [Cooper, 2000]. The interphase is further divided into
three phases, G1 (gap 1), S (synthesis), G2 (gap 2). Gl is the primary growth
phase and is the longest lasting phase. A cell spends most of its life in G1
phase. Most of the proteins are synthesized during this phase and are used in

the later part of the cell cycle. S is the synthesis phase where genetic material
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Figure 2.1: Cell cycle. The arrows mark the phases of the cell cycle. G1 phase is
the primary growth phase, genome replication occurs during S phase, G2 phase is
the preparatory phase for division, M phase is the division phase called mitosis.

of a cell is replicated such that each chromosome pair duplicates. The two pairs
of chromosomes stay attached to each other and are called sister chromatids.
G2 phase prepares the cell for the M phase. The chromosomes condense and
microtubules start assembling. Microtubules are proteins that help in separation

of chromosomes during the division of the cell [Raven, 2007].

Mitosis

Mitosis involves separation of the chromosomes and usually ends with cytoki-
nesis i.e. division of the cell [Cooper, 2000]. The chromosomes bind to the
microtubules during mitosis. As the mitosis proceeds, microtubules constrict in
opposite directions and separate the sister chromatids. Mitosis is followed by
cytokinesis. Mitosis also has several phases. During the prophase the nucleus
membrane disintegrates and the chromosomes condense, during metaphase the
chromosomes attach to the microtubules and align themselves along the equa-
tor of the cell, in anaphase microtubules start contracting towards each pole, in
telophase the chromosomes reach the poles, the chromosomes condense and the

nucleus membrane re-forms.
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Figure 2.2: Mitosis. The separation of the chromosomes duplicated during S
phase is separated into two daughter cells during M phase. It is followed by
cytokinesis.

2.2 Biotechnology

2.2.1 Gene expression profiling by microarrays

In a cell, genes are expressed at a specific time according to the function and
developmental stage of the cell. To study the circumstances at which a gene is
expressed a gene profiling assay called microarrays had been developed. DNA
microarrays allow rapid and simultaneous screening of thousands of genes [David
L. Nelson, 2005]. Alteration in gene expression owing to certain treatments,
diseases or developmental stages can be studied using DNA microarrays. In this
assay, segments of DNA called probes are placed on a chip and then probed with
mRNAs to identify the genes that are expressed in those cells. A microarray
chip is a solid surface of glass, plastic or silicon chip. It contains 1000s of probes
attached to it by a covalent bond. It is based on the principle of hybridization
of complementary DNA strands through hydrogen bonds formed between the
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complementary bases. For the experiment, mRNAs from cells are isolated at a
certain time point or after treatment of interest. The mRNAs are converted to
complementary DNAs (cDNA) using reverse transcriptase. The nucleotides used
in the construction of these cDNAs are fluorescently labeled. These cDNAs are
probed on to the microarray chip, such that the cDNAs bind to the spots which
have complementary sequences. Under the scanner the fluorescence allows the
recognition of those probes which have paired with a cDNA. The intensity of
the fluorescence is proportional to the amount of probe and ¢cDNA pairs formed,

more the intensity higher the expression of that gene and vice versa.

Like other experiments, microarray data is also subjected to systematic errors.
Several normalization or standardization methods have been proposed to analyze
microarray results. Quantile normalization is a common and robust microarray
normalization method. In this method, the intensities of each experiment are
sorted. The ranked intensities are then replaced by the mean of the values of
that rank of all experiments, for instance the highest signal is replaced by the
mean of all the highest signals and so on. This maintains the difference between
the values in different ranges, and the data is not skewed by outliers [Bolstad
et al., 2003].

2.2.2 RNA interference

RNA interference is the process of RNA mediated gene regulatory process. There
are two types of small RNA molecules involved in RNA interference -micro RNA
and small interfering RNA (siRNA). For high throughput gene silencing screens
siRNA is used.

Mechanism of RNA mediated gene silencing The siRNA knockdown tech-
nique has greatly improved functional genomics studies. The function of a
protein-coding gene is analyzed by perturbing its translation. Exogenous siRNA
specific to a target mRNA is introduced in the cell there by degrading its target
mRNA. Large scale high-throughput screens are commonly performed to study

loss-of-function phenotypes in various species.

Dicer, a dsRNA specific RNAase III, binds and cleaves any double stranded

siRNA (endogenous or exogenous) into small fragments (21-22 nucleotides) called
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No protein is produced.
Gene is silenced

mRNA is cleaved
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Dicer binds ds siRNA

RISC complex binds mRNA
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Figure 2.3: RNA interference. The mechanism of RNA mediated gene silencing.

small interfering RNAs (siRNAs). siRNAs can then bind to Slicer an argonaut
protein to form the ribonucleotide silencing complex (RISC). RISC enables the
unwinding of the siRNA, resulting in a guide strand and a passenger strand. The
passenger strand is quickly degraded. RISC uses the guide strand to recognize
target mRNA. mRNA-siRNA binding takes place in a sequence-specific manner,
finally leading to the degradation of the target mRNA [Echeverri and Perrimon,
2006].

2.3 Bioinformatics and Statistics

2.3.1 Survival analysis of tumor patients

Survival analysis deals with time and event. In cancer studies, survival analysis

is used to study the occurrence of a significant event after the prognosis or treat-
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ment. The event of consideration could be regression, relapse, or death. The
probability of the survival of an individual from the time of origin (e.g. diagnosis
of cancer) at a specific time ¢ is called survival probability S(¢). The probability

that an individual has an event at time ¢ is called hazard probability h(t).

Kaplan-Meier Survival estimates

The survival probability can be predicted using the Kaplan-Meier method which
is based on the observed survival times of patients [Clark, 2003]. The Kaplan-

Meier equation is given as

d.
S(t;) = S(t-1)(1 = =) (2.1)
"
where S(t;) is the probability of the survival of the patients at time j, S(¢;_1) is
the probability of survival at time j — 1, d; is the number of events at t;,n; is the

number of patients alive at t;.

As S(t) is computed based on a previous event the predicted probability is a step
function i.e. it changes from event to event i.e. S(t) is constant between events. A
plot of KM survival probability against time is called KM survival curve. The KM
survival curve shows a summary survival over time for all investigated patients
[Kishore, 2010].

Log-rank test

The log-rank test is a common non-parametric test to compare survival distribu-
tions of two or more groups. These groups can be prognostic groups or treatment
groups. In this method, the expected number of events at a given time is com-
puted at each event time, given the time of the previous event in each group.
The total expected number of events are then summed up for each group. The
log-rank test compares the expected and observed number of events [Clark, 2003].

The test statistic is given by

(01 — Ey)? n (0y — Eyp)?

I —
E, E,

(2.2)
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where E'1, E2 is the expected number of events in group 1, group 2, O1, O2 is

the observed number of events in groupl and group 2 respectively.

The calculated value can then be compared to a critical value as per the chi-square
table at degrees of freedom g —1 where ¢ is the number of groups compared. This
yields the significance level (p-value) of the difference between the two groups
[Kishore, 2010].

2.3.2 Classification

Classification is the supervised process of dividing a set of objects in groups based
on their properties. There are several algorithms used for classification. Super-
vised algorithms derive rules for classification based on the input training samples
with predefined classes. While unsupervised algorithms may derive classification
rules from the input data distribution in feature space with no prior knowledge
of expected classes. Supervised algorithms perform better when expected classes
are well defined [V. Kovalev and Rohr, 2006] as is in case of mitotic phase iden-

tification.

Support vector machines

SVM is the most suitable and popular choice for nuclei classification because
of higher prediction accuracy [Conrad et al., 2004][Neumann et al., 2006][Fuchs
et al., 2010][Walter et al., 2010]. It needs a training set i.e. a set of samples with
known classes. The basic task of SVMs is to derive the rules which separate the
classes in the training set. These rules can be then applied to the cases where the
class is not known. It is primarily a binary classifier, which aims at maximizing
the separation between margin of two classes. It can be applied to multi-class

problems using multiple binary classifiers.

Linear SVM

For a linearly separable case suppose w7 is a set of points and belonging to one
of the classes in yi : yi € —1,1. Using the training set the algorithm tries to
place a hyperplane between the points where yi = —1 and points where yi = 1.

A hyperplane is a generalization of a plane in any number of dimensions. The
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Hyperplane

Margin O

Figure 2.4: A linear classifier. The linear decision boundary divides the two
groups.

separating hyperplane separates the space into two half spaces. There can be
more than one hyperplane that can classify the data. The hyperplane which
maximizes the margin between the classes is chosen, as it reduces low certainty
decisions. Once a separation between the two classes is done, a new point can
be classified based on which side of the hyperplane it lays [Thomaz and Gillies,
2011].
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Figure 2.5: A non-linear classifier. A kernel trick is used to compute decision
boundry in high-dimensional space.

Non-linear SVM

SVMs can also be extended for non-linearly separable cases by transformation of
data points in a higher dimensional space. With this the data can be separated
by a linear hyperplane though the transformation is non-linear. Mapping a data
point in a higher dimensional space is computationally extensive and so a kernel
trick is used. Kernel computes the dot-product in the high dimensional space

without transformation of the data points[Hur and Weston, 2011].
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Process of classification using SVMs

The entire process of classification using support vector machines involves the

following steps.

1. Annotation of a training set: a set of data points are identified that belong

to each class.
2. Model generation: the hyperplane is generated using the training set.

3. Validation: a test set is used to evaluate the performance of the model. A

test set is a set of annotated samples apart from the training set [wei Hsu
et al., 2010, Hur and Weston, 2011, Thomaz and Gillies, 2011].

Cross validation

Cross validation is a method to evaluate the prediction accuracy of a classifier
when the annotated data is limited. The annotated samples are divided into
a training set, from which the classifier is generated and a test set, on which
the classifier is tested. This process is called holdout method and it helps in
identifying the performance of the classifier on the unseen data i.e. the data

which was not used in building the classifier.
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Figure 2.6: K-fold cross validation process.

K-fold cross validation is the most popular cross validation process (Figure: 2.7,

page: 18). In this process, the annotated set is divided into k sets. The holdout
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method is repeated k times and each time k — 1 sets are used as training and 1
set is used for testing. The advantage of this method is that each sample gets
to be in the test set at least once. As the number of k increases, the variance in
the estimate decreases. The average accuracy of the k rounds is the estimated

accuracy of the classifier.
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Figure 2.7: Nested cross validation. A three-fold inner loop for parameter opti-
mization with a three-fold outer loop for estimating classifier’s performance.

Parameter optimization

There are two parameters, C' (the cost of misclassification) and v (corresponding
to the flexibility of decision boundary) that need optimization. The optimization
aims to find the values of C' and v with low prediction errors. A grid search is
the most effective and popular way to perform parameter optimization. In this
process a series of values of both these parameters are used to build a classifier, one
pair at a time. The data is divided into k sets such that one set is validation set
and the rest are used for building the classifier with the given pair of parameters.
This process is repeated k times for a pair of parameters. The pair which gives
the lowest error is selected. The entire process is shown in the Figure 2.7 (page
18).
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2.3.3 Statistical tests

Normal distribution

The normal distribution is a family of curves with a typical bell shaped curve.
A population X is said to be normally distributed if for every pair of samples
a < b, the chance that

a<(Xm)/s<b (2.3)

is

P(a < (Xm)/s <b) = area (2.4)

where area is area under the curve a and b, m is the mean of the distribution
and s is the standard deviation. In special cases a normal curve has mean = 0
and o2 = 1, this curve is called standard normal curve [Le, 2003][Stark, 1997].

Students T-test

It is a parametric inferential statistical test used to compare the mean of two
groups. It assumes that the population is normally distributed and variances are

equal of the two groups.
Wilcoxon test

It is a non-parametric inferential test, used for comparing two samples drawn from
two independent populations. It differs from the T-test such that the distribution
of the population need not be normal, but the distributions of the populations
need to be same. It compares the median of the population, for normal distribu-

tion mean and median are same [Le, 2003].

For instance, if we want to compare the number of books girls own versus number
of books boys own in a class. For one sided test, suppose the null hypothesis is
that the median number of books girls own is smaller than the median number of
books boys own. Alternative hypothesis is the median number of books girls own
is greater than the median number of books boys own. Wilcox test is performed
by ranking such that the students who have least number of books rank 1 and

so on. Sum the ranks for the group (girls) which may have lower ranks as per
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null hypothesis. At 0.05 significance level, if sum of the ranks is greater than the

critical value, the null hypothesis is rejected.
Hypergeometric distribution

The hypergeometric distribution is the distribution of ”good” objects in a simple
random sample of size n from a population of N objects of which G are "good”.
In other words, it provides the probability of finding exactly ¢ good objects when
randomly drawn from a population of N objects of which G are good. Hyperge-
ometric distribution assumes sampling is without replacement [Stark, 1997]. The

probability of ¢ successful selections is given by

Pla = i) = L (2.5)

where 4’ is the number of ways of ni successes, n’ is the number of ways for n — i

failures, t’ is the total number of ways to select.
Fishers exact test

Fisher’s exact test is used when there are two categorical variables. It is used to
compare the proportion of these variables in their respective populations. The
hypergeometric distribution is used to calculate the probability of getting the
observed data [NIST, 2003].

Table 2.1: Contingency table.

bagl bag?2

marble ml m2 M
ball bl b2 B

nl n2 N

Consider there are two bags of marbles and balls. Let p; and py be the proportion
of marbles in the two bags. Let ny and ny be the size of sample from bag 1 and bag
2 respectively. Let N be the total number of marbles in both samples. The null
hypothesis to be tested is that p; = po, based on simple random sampling from
each bag. The two nominal variables are bags (bag 1 and bag 2) and objects
(marble and ball). If the two bags have same distribution of objects then the

number of marbles selected from both bags should be same. The observations
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can be written in the form of the matrix as Table: 2.1 (page: 20). Let M and B
be row sums, nl and n2 be column sums. The conditional probability of getting

the actual matrix given the row and column sums if given by

(M!B!)(n1!n2!)
N (m1!m2!b1!b2!)

Pcutoff = ( (26)






CHAPTER 3

METHODS

We selected genes involved in the malignant progression of neuroblastomas based
on gene expression analysis. Subsequently, these genes were subjected to time-
lapse image-based knockdown screens in the SH-EP cell line from neuroblastoma.
By automated image processing and machine learning through Support Vector
Machines (SVMs), a quantitative description of phenotypic classes and cell nuclei
were obtained from raw bitmaps. Thereafter, perturbation consequence was in-
ferred from the analysis of the phenotypic dynamics focusing on cell death, death
in mitosis and death after mitosis. The analysis was repeated using a second
neuroblastoma cell line (SK-N-BE(2)-C). This resulted in a small set of genes
which was verified using gene expression data from neuroblastoma patients and
literature. We predicted potential kinases regulating the candidate genes using a
repository on kinase-substrate interactions and verified in literature. One of the

genes was validated via cytometric and cytogenetic experiments.

3.1 Selecting genes for screening using gene ex-

pression analysis

In a previous study by Oberthuer et al. [Oberthuer et al., 2006], a neuroblastoma-

specific microarray chip was designed which covered a high percentage of tran-
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scripts that are differentially expressed in the major clinically distinct subgroups
of neuroblastoma tumors. Using this customized 11K oligonucleotide microarray,
251 neuroblastoma specimens were analyzed and a 144-gene predictor signature

was assembled to predict the course of the disease.

In a follow-up study by Westermann et al. [Westermann et al., 2008], the
same neuroblastoma-specific microarray was used to identify MYCN/MYC target
genes using a neuroblastoma cell line SH-EPMYCN  SH-EPMYCN i5 a neuroblas-
toma cell line that stably expresses an inducible MYCN transgene, thus allowing
conditional expression of MYCN. Gene expression profiles of a time series af-
ter MYCN induction were obtained with the customized 11K microarray. The
profiles were clustered using self-organizing maps (SOM) which resulted in 504
clusters (best matching units, BMUs) of genes with similar gene expression pro-
files. Clusters (BMU: 140, 168, 195, 280, 308, 336, defined as subgroups I and
IT in [Westermann et al., 2008]) were detected which were enriched in the E-
Box motif (binding motif of MYCN/MYC, p-value < 0.05 using a Fisher’s Exact
test, adjusted for multiple testing of all BMUs using the method of Benjamini-
Hochberg [Benjamini and Hochberg, 1995]), indicating potential targets of the
MYC transcription factor family [Westermann et al., 2008].

We selected 127 genes from these clusters. In addition, we selected 80 genes from
the BMUs which were enriched in genes from the 144-gene predictor signature.
For this, we computed the percentages of the predictive-signature-genes that
matched to the identified clusters. The top three clusters (BMU: 504, 476, 475)
with the highest odd ratios (0.49, 0.41, and 0.3) were selected. Further, 33 genes
which were associated to neuroblastoma tumor progression were selected from
literature. Finally a set of 240 genes was assembled and used for the knockdown

screen ( a list of all genes is given in Appendix A).

3.2 Preparation of cell arrays and imaging

Two neuroblastoma cell lines, SH-EP and SK-N-BE(2)-C, were used in the screen.
These cell lines were transfected with a construct of the gene coding for his-
tone H2B tagged with Green Fluorescent Protein (GFP) as described previously
[Kanda et al., 1998]. Briefly, a chimeric gene with a ¢cDNA construct of H2B
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gene tagged with GFP was sub-cloned into a mammalian expression vector. This
vector was used to transfect the cell lines. Thus, the product of this gene H2B-
GFP protein was incorporated into the nucleosomes which allowed imaging of
mitotic chromosomes and interphase chromosomes. Further, cover glass culture
chambers called LabTeks were automatically spotted and dried as previously de-
scribed [Erfle et al., 2007]. Sample preparation for spotting, mixing of transfection
reagents and siRNAs was done using an automated liquid handler. Automated
spotting of this transfection solution onto LabTeks was performed with a contact
printer. After drying the LabTeks for at least 12 hours, SH-EP/H2B-GFP and
SK-N-BE(2)-C/H2B-GFP (60, 000 cells/LabTek) were seeded on the LabTeks
and incubated in a stage top chamber by LCI, with 1.5 ml growth medium at
37 C, 95% humidity, and 5% CO2. Eight LabTeks with 275 spots were used
to cover several mock (no siRNA) spots, 2 siRNAs (Ambion) per gene and four
replicates per siRNA. Images were acquired (16 hour post seeding) for five days
at an acquisition rate of 35-40 minutes using an automated wide-field fluorescence

microscope (Olympus X81 ’inverted’ ScanR System) with 10x magnification.

3.3 Image Processing

This section describes the work done by our collaborators. Dr. Nathalie Harder
in the lab of PD. Dr. Karl Rohr.

Nuclei segmentation was performed using a region adaptive thresholding scheme,
which allowed detection of cells with varying contrast. Clusters of cells were re-
solved by Euclidean distance transformation of the segmentation output followed
by watershed transformation to split them into single cells. Dense clusters of cells
growing on top of each other could not be resolved using this approach and were

treated as cluster objects in the subsequent analysis.

To bring all images of different spots and cell arrays to a comparable gray value
range, gray value normalization was performed before feature extraction. To this
end, the average distribution (histogram) of the foreground pixels of the complete
data set was computed and three features of this histogram were extracted (i.e.
location of the maximum peak and its width to the left as well as to the right).

For gray value normalization each individual image histogram was mapped to this
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average histogram and the gray values of the respective images were transformed

and scaled accordingly.

A set of 349 image features was computed for each nucleus, describing the texture
and morphology as described previously [Harder et al., 2008]. Object-related
features include basic characteristics like the size of the object (number of pixels),
as well as the objects mean gray value and standard deviation of the gray values.
Haralick texture features are based on co-occurrence matrices. Co-occurrence
matrices are 2D histograms providing the frequency of pairs of co-occurring gray
values with a given spatial relation (i.e. angle and distance). For all co-occurrence
matrices (representing different angles and distances), 13 second order statistics
were computed such as, correlation and contrast describing the texture of the
object. Granularity features depend on the gray value differences of neighboring
pixels. Wavelet features are based on a decomposition of the image into different
frequency channels and provide information on image contrasts and texture. Gray
scale invariant features compute the variation in gray values around a pixel.
Zernike moments are used to describe the information content of an image by
considering an image as a two-dimensional density distribution function. Moment
sets of different orders and with different basis functions can be used to describe

the information contained in an image region.

Single cell tracking was done based on the approach described in [Harder et al.,
2011]. In essence, first cell-cell correspondences were determined using spatial
distance and feature similarity, and second, mitosis events (cell splitting) were
detected and the respective trajectories were merged [Harder et al., 2011, Harder
et al., 2009]. To determine cell-cell associations, a distance measure was used,
combining feature similarity and spatial distance after normalization of both
terms [Harder et al., 2011]. The distance measure was computed for objects with
a Euclidean distance d,;4,, of centroids in the 2D image space (i.e. maximum cell
velocity), followed by local optimization. The mitosis likelihood function is based
on the size and mean intensity of the mother and daughter nuclei [Harder et al.,
2009]. An additional constraint was added to this mitosis likelihood function,
disregarding objects with low mean intensities (compared to the mean intensity

of all cells in the particular image) to avoid false positive detections.
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Interphase Mitosis Cell death Artifact
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Figure 3.1: Sample images of the four phenotype classes. Interphase cells are
round or elliptical with smooth boundaries. The class of mitosis includes cells
in the sub-phases of the mitotic process, i.e. pro-metaphase, metaphase, and
anaphase. The class cell death represents dying cells observed by disintegrated
nuclei. The class artifact represents cell aggregations that could not be further
segmented and over-segmented cells.

3.4 Classification of nuclei into phenotypes

Using supervised machine learning each nucleus was classified into one of the
following phenotype classes: interphase, mitosis, cell death, and artifact (Figure:
3.1, page: 27). For training of the classifier a set of typical training samples from
each class was collected, where each sample was defined by a vector of descriptive
image features (e.g., Haralick texture, Zernike moments, Wavelet features, shape
descriptors) and a class label (interphase, mitosis, cell death, artifact). The class
label was provided by the annotation from an expert. A classification model
(classifier) was generated from the training data to distinguish the classes defined
in the training set. After training, the classifier was applied to assign class labels
to nucleus images for which the classes were not yet known. Each step in this

process is explained in the following.

3.4.1 Training set

The training set was manually annotated by an expert. For the SH-EP cell line,
a set of 174 interphase samples, 94 mitosis samples, 204 cell death samples, and
118 artifact samples, was manually annotated for training and validating the
classifier. For SK-N-BE(2)-C cells, we selected a set of 230 interphase samples,
80 mitosis samples, 120 cell death samples, 100 cluster samples, and 45 artifact
samples. Since SK-N-BE(2)-C showed a much higher tendency of clustering, we
separated the clustered objects from the artifact class and defined a new class
called cluster. These annotation samples were taken from the images of all of

the eight LabTeks to account for the variation among the cell arrays of the entire
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screen. The imbalanced training set was stratified for the classifier by weighting
each sample of class ¢ by
ny
W, = — 3.1
o (3.1)
where n; is the number of samples in the largest class and n. is the number of

samples in class c.

3.4.2 Feature normalization

Feature normalization was done to bring each feature to the same numerical
range. To determine the optimal feature scaling scheme, four classifiers were
used, a classifier with non-normalized features and three classifiers with nor-
malized features. The feature normalization strategies were based on z-score

normalization.

(3.2)

where Z is the normalized value of x, p and ¢ are mean and standard deviation
of the feature population, respectively. Transformation parameters p and o are
usually computed based on the training set [wei Hsu et al., 2010}, as it is assumed
that the training set represents the entire data. Our data is compiled from sev-
eral experiments. It may happen that the training set is not ideally representing
the entire data, in spite of the conscious efforts to cover the entire dataset in
the training set. Thus, we adapted two more strategies to compute the trans-
formation parameters. In all we had three normalization schemes where in the
transformation parameters were derived from (1) the training set, (2) a system-
atically sampled dataset from different time steps of all experiments simulating

the complete data set, and (3) each single image.

3.4.3 Classification model

For classification we used Support Vector Machines (SVMs) with a radial basis
function (RBF) kernel. We applied a one-against-one approach for multiclass
classification (i.e. binary classification between all pairs, followed by voting) as
implemented in the R-package e1071[Meyer, 2012]. The model parameters C' (cost
function) and v (kernel width) were optimized by a grid search C =222 210
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162715276 employing a 10-fold cross validation on the training data (inner

V=27
loop). To choose C and «y each pair of the parameters C' and  was tested and the
pair with the lowest validation error (the average number of misclassified samples)

was chosen and used for training an SVM on the complete training dataset.

To estimate the performance of the classifiers, the SVMs were trained and val-
idated by a 5-fold cross validation (outer loop). The annotated data was split
into five subsets; four subsets were selected as training data and the remaining
subset as test data. The whole process was repeated 5 times (outer loop) yield-
ing performance estimations of the classifiers. For classifying new samples, new

SVMs were trained with all samples from the training data.

3.4.4 Filter

Cells which could not be assigned to any phenotype with high confidence were
removed based on the likelihood for their respective class label as determined by
the classifier. The confidence values were obtained using the R-package e1071.
A probability model was used which computes a posteriori probabilities for the
multi-class problem by a quadratic optimization [T.-F. Wu, 2004]. This pro-
vides the likelihood of each class label for a sample. For ambiguous samples
the likelihood values for multiple classes were similar without a clear maximum,
and consequently, the classifier output was less reliable. Therefore we defined a

reliability score r; which was computed for each sample by
T = ll — lg (33)

where [; and [y are the two highest likelihood values (predicted by the SVMs).
All samples with a reliability score of » < 0.2 were discarded from the further

analysis.

3.4.5 Manual evaluation of classification

For evaluating the performance of the classifier on real data (including samples
which were hard to distinguish), a set s of 800 nuclei was randomly selected

which included samples from each class. Set s was classified using the above
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model and filter. Independently, this set was manually annotated. Single cell
tracking as described in [Harder et al., 2011] was used to extract the trajectory
tr of each of the selected nuclei of s. tr of a nucleus consisted of three snapshots
before and after the target snapshot (i.e. the snapshot which is a part of s) and
this time series was used for supporting the manual annotation of the nuclei into
phenotype classes. The two labels of the samples (manual annotation, classifier)
were compared. These errors were studied to formulate the correction rules as

described below.

3.4.6 Automatic error correction

Classification correction was performed based on a finite state model (FSM) as
described previously [Harder et al., 2009] which is described briefly in the fol-
lowing. Each cell was tracked over the whole time series as previously explained
[Harder et al., 2011, Harder et al., 2009]. Classification results were overlaid
on these trajectories resulting in a sequence comprising phenotype classes of a
nucleus over time. A correction scheme was developed for better separating the
class mitosis from interphase and cell death. This automatic correction scheme
was aimed at (1) avoiding false negative prediction of mitosis, (2) avoiding false
positive prediction of mitosis, and (3) avoiding false positive prediction of cell
death. For (1), all splitting events were identified, and then the mother nucleus
as well as the immediate daughter nuclei were labeled as mitosis. For (2), all nu-
clei classified by the classifier as mitosis were validated by inspecting any of the
four conditions: (a) if it was involved in a splitting event (mother or daughter),
(b) if there was a splitting event preceding or following the nucleus, (c) if the
succeeding object was a cluster (a mitotic splitting event would not be detectable
in a cluster), or (d) if it was followed by cell death. If none of the conditions were
true, the nucleus was corrected to interphase. For (3), all the successors of the
nucleus were scanned until the end of the trajectory. A nucleus was considered
to be in cell death if the immediate successor of the nucleus and at least 50% of
the following trajectory had the label cell death, if not, the sample was corrected

to interphase.
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3.5 Quantitative analysis of phenotype kinetics

After classifying each nucleus, we performed a quantitative analysis to obtain
time-lapse profiles for each phenotype class and knockdown. The pipeline in-

cluded the following steps:

3.5.1 Normalization

We used B-Score normalization for normalization within the LabTeks and be-
tween LabTeks, accounting for spatial error corrections of each cell array per
time-lapse and per phenotype class. B-Score normalization subtracts the row
mean and column mean to account for the row and column variability, followed
by correction for plate deviations by subtracting the plate mean and dividing by

the plate median absolute deviation [Brideau et al., 2003], i.e.

rrC — (fp + pr + pc)
MAD,,

Bscore = (34)
where, BScore is the normalized value, rgc is the raw value of plate pl at row R
and column C| p,, is mean of the plate pl, ur is mean of row R of plate pl, pc

is mean of column C of plate pl, M AD,; is median absolute deviation.
MAD = median(|z; — pm]) (3.5)

where z; is the vector of values, u, is the median of z;. Note that, the median
absolute deviation is more robust than the standard deviation as the median is
less sensitive to outliers [Birmingham et al., 2009]. B-score normalization also ac-
counted for edge effects which were evident in the cell arrays before normalization

(Figure: 3.2, page: 32).

3.5.2 Defining the phenotype signal

To smooth fluctuations, each phenotype class was quantified in time-frames with
24 hours of imaging data. Each time-frame had a shift of 8 hours from the

previous frame, yielding 13 time-frames for the five days of screening. The area
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Figure 3.2: Cell arrays before and after normalization. The color key shows the
distribution of the cell counts over the array. (a) A cell array before normalization,
showing the edge effects with high cell counts in the most upper row. (b) The
same cell array after B-score normalization. It shows a smoothing of the edge
effects. Blue boxes represent empty spots which were not a part of the screen.
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under the curve (AUC) (integral of the phenotype counts for each time-frame)
was computed for each of these time-frames. AUC of a time-frame was defined
as the phenotypic signal for that time-frame. AUCs were computed using the

R-package caTools [Tuszynski, 2012].

3.5.3 Estimating the phenotypic score

We assigned a significance score to the phenotype signal of each time-frame in the
form of p-values. We computed significance values (p-values) by a non-parametric
test (Wilcoxon rank test) instead of using Z-scores, as a significant p-value (<
0.05) indicates reproducibility of the siRNA effect and are less sensitive to out-
liers [Boutros et al., 2006]. The two populations subjected to the test were four
replicates of a gene per siRNA, and the overall population acting as the negative

control.

3.6 Analyzing phenotype profiles

3.6.1 Clustering of phenotype profiles

For each gene, a phenotype profile was defined by the time-frame with the most
significant phenotype signal and the first time-frame with a significant pheno-
type signal. For further analysis we considered three phenotypic scores, higher
cell death, higher mitotic index and lower interphase counts than the overall
population. Clusters based on phenotype profiles were generated using Euclidean
distance as dissimilarity measure. Multistep bootstrap sampling was used via the
R package pvclust [Suzuki and Shimodaira, 2006] to assign a confidence level to
each cluster. In this sampling process many sets of bootstrap replicates with vary-
ing sample size are generated. The approximate-unbiased p-values are calculated
from the change in frequency over changing sample size [Suzuki and Shimodaira,
2006]. The p-value calculated by multi-scale bootstrap sampling is less biased
than the bootstrap probability. For the clustering we used, 1000 replications of
bootstrap, with relative sample size varying from 0.33 to 1.33 and 95% confidence

level.
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Figure 3.3: Determination of hits that show cell death during or after mitosis.
The population response to a knockdown was computed to identify the sequence
of phenotype occurrence.

3.6.2 Tracking of phenotype events

Genes which showed a high mitosis count as well as a high count of cell deaths
were further investigated to determine the sequence of the occurrence of these
phenotypes. A phenotype profile of a gene consisted of the p-value (Wilcoxon
rank test, p-value < 0.05) of each time-frame for the two phenotypes under con-
sideration. Mitotic defects were indicated by the occurrence of phenotypes in
the same time-frame or occurrence of high cell death in the time-frame next to
the time-frame with high mitosis counts (Figure 5). We selected the genes with
significantly high occurrence of mitosis phenotypes in time-frame ¢, and signif-
icantly high occurrence of cell death phenotypes either at the same time-frame

(to) or at time-frame tq ;.
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3.7 Estimating the periodicity

To estimate the periodicity of the cell lines, we performed a non-linear fit to the
overall temporal distribution of all interphase counts (including all controls and
knockdowns), using the nlinfit function of Matlab (www.matlab.com). To smooth
the data, the entire time series was reduced to forty time-frames. Each frame
represented integration of three hours of imaging data. For the fit, a non-linear

function combining a sinus function and a linear function was used,
y = asin(fz + ¢) + mzx + ¢ (3.6)

where « is the amplitude, 3 the time period, x the interphase counts in a time
series, ¢ the phase, m the linear slope and ¢ a constant. Fitting values of the
parameters were o =0.03, 5=0.18, ¢=0.4, m=0.001 for SH-EP cells and o« =0.02,
£=0.2, c=0.3, m=0.05 for SK-N-BE(2)-C cells.

3.8 Expression analysis of the hits

Gene expression profiles for the hits were extracted from whole genome single-
color microarray profiles of 478 pre-treatment primary neuroblastoma tumors
analyzed as part of the MAQC-IT project [Oberthuer et al., 2010]. Data was
normalized using the quantile method using the R-package limma [Smyth, 2004].
Two tumors were removed from the survival analysis as the overall survival data
and cause of death were unknown. To split the tumors into high and low risk
groups we used the R-package maxstat [Hothorn and Lausen, 2003]. We used a
10-fold cross-validation, i.e. we divided the data set into 10 parts and used the
cutoff value from 9 parts to assign the group label to the tumors of the 10th part.
Overall survival analysis was performed using the R-package survival [Therneau,
2012]. Statistical significance of the curves was determined using the log-rank
test.
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3.9 Enrichment Analysis

Pathway Enrichment

Enrichment tests were done for each pathway in Reactome on the selected genes
compared with all genes from the 11K microarray as background (universe) using
the software DAVID [Huang da et al., 2009]. EASE Scores (from a modified
Fisher’s exact test) were used for obtaining the significance values [Hosack et al.,
2003].

Gene Ontology enrichment
Gene Ontology enrichment analysis was performed using the Bioconductor pack-
age topGO [Alexa et al., 2006] and the weight algorithm.

Kinase enrichment

Kinase enrichment analysis was done using the Kinase Enrichment Analysis
(KEA) tool. It employs a kinase-substrate database, compiled from several ex-
perimental resources (for details, see [Lachmann and Ma’ayan, 2009]). Given a
list of genes, KEA identifies kinases for which a significant enrichment of their
substrates can be found in the gene list (using Fisher’s exact tests). P-values from
all these enrichment tests were corrected for multiple testing using the method
of Benjamini-Hochberg [Benjamini and Hochberg, 1995]. After multiple testing

corrections, p-values < 0.05 were considered significant.

3.10 Validation experiments

The wvalidation experiments were performed by our collaborators, by Dr. Sina
Gogolin and Dr. Tobias Paffhausen in the Lab of PD. Dr. Frank Westermann,
at Tumor Genetics division of DKFZ. For detailed materials and methods please

see Gogolin, Batra et.al Cancer Letter, 2012.
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3.10.1 Ploidy and Cell cycle analysis

Ploidy analysis was done to assess the DNA index for each tumor sample. Clinical
data and tumor samples from 483 patients enrolled in the German Neuroblastoma
Trial and diagnosed between 1998 and 2010 were used in this study. Informed
consent was collected within the trial protocol. Native cryo-conserved tumor
samples were minced with scissors in 2.1% citric acid 0.5% Tween-20. Cells were
permeablised using phosphate buffer (7.2 g Na2HPO4 x 2H20 in 100 ml distilled
water, pH 8.0) and then treated with fluorescent dye, diamino-2-phenylindole
(DAPI), to stain the DNA. DNA content of each tumor was assessed using high
resolution flow cytometric analyses performed on the Galaxy pro flow cytometer
(Partec, Mnster, Germany) equipped with a mercury vapor lamp 100W and DAPI
filter [Ehemann et al., 1999][Ehemann et al., 2003].

Cell cycle analysis was performed to determine cells in different phases of cell
cycle. Cells were prepared in the same manner as above for ploidy analysis.
Cells were incubated in 75cm? flasks. After 24 hours of incubation cells were
induced using doxycycline and/or treated with vincristine or doxorubicin. Cell

cycle phases were identified using same cytometer as used for ploidy analysis.

3.10.2 Cytogenetic analysis

Four-color FISH analysis was performed to verify the polyploidy in the cells. Cen-
tromeric regions of chromosomes 3, 6, 8 and 18 were localized with fluorescently
labeled plasmids (chromosome 3: pAE0.68 - Cy3 (GE Healthcare), chromosome
6: pEDZ6 - Cy3.5, chromosome 8: pZ8.4 FITC (Molecular Probes, Eugene, Ore-
gon, USA), and chromosome 18: 2Xba - DEAC (Molecular Probes)) [Henegariu
et al., 2000][Savelyeva et al., 2006]. The cells were imaged and analyzed using a

Zeiss axiophot microscope and IPLap 10 software.

3.10.3 MAD2L1 knockdown

Two types of clones were created with pTER+ vector, one with shRNA targeting
MAD2L1 (AATACGGACTCACCTTGCTTG, Gen Bank TM accession number



3.10 Validation experiments 38

NM_002358) and other with control/scramble shRNA (AACAGTCGCGTTTGC-
GACTGG, Ambion)[van de Wetering et al., 2003]. Two SH-EP cell lines,
SH — EPMYCN and parental SH-EP cells were transfected with doxycycline-
inducible pcDNAG6TR repressor, using manufacturers (Invitrogen) protocol.
SH—EPMYCN heDNAGTR or SH-EPpcDNAGTR were transfected with pTER+
vector harboring the shRNAs using Effectene (QIAGEN, Hilden, Germany).
Thus four clones were created SH — EPMYCN shMAD2L1, SH — EPMYCN
scramble shRNA, SH-EP-shMAD2L1, SH-EP scramble shRNA. Western blotting
was used to determine effective down regulation of MAD2L1 in SH — EPMYCN
shMAD2L1 and SH-EP-shMAD2L1.



CHAPTER 4

RESULTS AND DISCUSSION

Time-lapse image based RNAi screens generate multiparametric readout. We
present a pipeline to analyze such a screen. We present (1) an elaborate protocol
to optimize classification of phenotypes using Support Vector Machines, (2) a
novel method to identify cell fate using knockdown screens, and (3) novel candi-
date genes whose inhibition cause mitosis-linked-cell-death. The major steps of

this study are depicted in Figure: 4.1 (page: 40).

4.1 Selecting relevant genes for knockdown

screening

In a previous study by Oberthuer et al.[Oberthuer et al., 2006], a predictive-
signature comprising of 144 genes was established to predict the course of the
disease for neuroblastoma patients. In a follow-up study by Westermann et
al.[Westermann et al., 2008] a genome-wide search of MYCN/MYC target genes
using a MYCN-inducible neuroblastoma cell line was performed recording time
series of gene expression after MYCN induction. The profiles were clustered yield-
ing gene sets with similar gene expression profiles. For our screen, we selected
two sets of genes from these clusters, one set from clusters enriched in genes that

belonged to the 144-gene predictor signature. The second set of genes was se-
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A. Selection of candidate genes

Figure 4.1: The workflow. (A) Neuroblastoma associated genes were selected
based on gene expression profiles of neuroblastoma tumors and cell lines, (B) se-
lected genes were subjected to image-based time-lapse siRNA knockdown screens,
(C) each cell in an image was classified into one of the phenotype classes: inter-
phase, mitosis, or cell death, and (D) time series of the phenotypes were assembled
into phenotype profiles to determine gene function of each gene knockdown.

lected from clusters enriched (p-value < 0.05, adjusted for multiple testing) in
the E-Box motif (binding motif of MYC family), indicating direct MYC family
targets [Westermann et al., 2008]. Details on the selection are given in section:

3.1(page: 23) and the gene list is provided in appendix A.

Using the selected 240 neuroblastoma associated genes, we performed enrichment
tests for the pathway definitions of the Reactome database [Croft et al., 2011] and
Gene Ontology (www.gene.ontology.org). We found four Reactome pathways to
be significantly enriched with the candidate genes comprising cell cycle associated
pathways (mitotic cell cycle, cell cycle checkpoints and APC-Cdc20 mediated
degradation of Nek2A) (Table: 4.1, page: 41 ). For Gene Ontology, four out of
the top five Gene Ontology terms were linked to cell cycle (mitosis, cell division,
mitotic spindle organization, and mitotic cell cycle checkpoint), demonstrating
that the gene selection procedure properly captured genes relevant to the cell

cycle of neuroblastoma.
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Table 4.1: Functional enrichment of screened genes. Pathways of Reactome and
gene groups from Gene Ontology which were enriched in the screened genes.

ID Term description Number of candi- P-value
date genes in path-
way /process
Reactome pathway
152 Cell Cyle 37 4.2E-14
1538 Cell cycle checkpoints 14 4.78E-05
8017 APC-CDC20 mediated 5 0.0070
degradation of NEK2A
1698 Metabolism  of nu- 8 0.030
cleotides
Gene Ontology
7067 Mitosis 47 7.61E-26
51301 Cell division 45 3.89E-22
7052 Mitotic spindle organi- 09 5.66E-08
zation
7093 Mitotic cell cycle check- 11 1.15E-06
points
6260 DNA replication 23 1.49-06

4.2 Data and Data processing

The screen was performed in two neuroblastoma cell lines, SH-EP and SK-N-
BE(2)-C (Figure: 4.2, page: 42 ). SH-EP has a single copy MYCN and functional
p53. SK-N-BE(2)-C has MYCN amplification and p53 mutation. The screen was
conducted for 120 hours with four LabTeks having 275 spots per cell line. Im-
ages were taken every 35-40 min, generating 180-220 images per spot, resulting in
55000 image sequence (total number of images: 440000). Both cell lines stably ex-
pressed GFP tagged histones, which enabled us to track the nuclei in the images.
Each single cell nucleus was segmented from images and characterized by tex-
ture descriptors, e.g. Haralick texture, Zernike moments, granularity, grayscale
invariants, wavelet features and by morphological descriptors, e.g. shape, size

and circularity.



4.3 Automated classification of cellular phenotypes 42

Figure 4.2: Sample images of cell lines. On the left is an image of SH-EP cells,
and on the right of SK-N-BE(2)-C cells.

4.3 Automated classification of cellular pheno-

types

To track mitotic events, each cell was classified into one out of four distinct phe-
notype classes (Figure: 3.1, page: 27): interphase (round or elliptical object with
smooth boundaries), mitosis (dividing cell comprising prometaphase, metaphase,
and anaphase), cell death (small and bright fragments of the nuclei), and arti-
fact (clusters of cells that could not be further subdivided, or small-dark objects;
these objects were not used for a further functional analysis). The classifier was
trained using Support Vector Machines (SVMs) to distinguish these four pheno-

type classes on a training set of manually annotated nuclei.

4.3.1 Classification performance based on training set

To assess the performance of the classifiers, a cross-validation procedure was
performed, yielding an overall accuracy of 95.3% for the SH-EP cell line and 87%
for SK-N-BE(2)-C. These results outperform previous investigations with HeLa
cells (accuracy for HeLa cells: 93.9% to 94.7% [Harder et al., 2008]) even though
imaging and image analysis of neuroblastoma cells was more challenging due to
the higher tendency to cluster and higher cell motility. Note that the stated
performance of our approach was determined using well separable objects of the

training set. The confusion matrices of the two neuroblastoma cell lines are given
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in Table: 4.2 (page: 43).

Table 4.2: Confusion matrix of the classification results after 5-fold cross valida-
tion and non-normalized features

(a) SH-EP cell line (b) SK-N-BE(2)-C cell line
True Predicted True Predicted
I M| A Ar I M| A | Ar
163 | 3 0 4 223 | 4 1 2

I

79 | 11 0 M 19 15219 | 0
211179 | O A 28 |14 |78 0
0 0 | 106 Ar 31 100 |69

I
M
A
Ar

O OO

4.3.2 Optimization of feature normalization

Feature normalization was performed to avoid dominance of features with larger
numerical range over features with smaller range [wei Hsu et al., 2010]. A clas-
sifiers performance can be significantly improved by scaling the features before
classification [Hur and Weston, 2011]. Normalization can further improve the
performance when the data is generated in several experiments and the given
training set may not contain samples from all the experiments. The normaliza-
tion was performed using Z-score normalization which shifts the distribution of
feature values to a mean value of 0 and standard deviation of 1. This normal-
ization brings the features in comparable numerical ranges. We generated four
classifiers three with three different normalization schemes and one without any
normalization. For details on the normalization schemes please refer to section:
3.4.2 (page: 28). The normalization of features improved the results over the
non-normalized features (Table: 4.3, page: 44). Figure: 4.3 (page: 45) shows
that normalization with transformation parameters derived from systematically
sampled objects showed best performance parameters in case of SH-EP cells. For

SK-N-BE(2)-C cells, normalization of each image independently gave best results.
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Table 4.3: Confusion matrix of the classification results after 5-fold cross vali-
dation and normalized features. (a, b) with features normalized by training set,
(¢, d) with features normalized by each image, (e, f) with features normalized by
systematically selected samles.

(a) SH-EP cell line (b) SK-N-BE(2)-C cell line
True Predicted True Predicted
I M| A | Ar 1 M| A | Ar
I 155 | 5 0 10 I 226 | 1 | 0 | 3
M 78 | 10 0 M 4 163|113] 0
A 1 |11 (186 | 2 A 3 18199 0
Ar 1310 0 | 102 Ar 8 0] 0|92
(¢) SH-EP cell line (d) SK-N-BE(2)-C cell line
True Predicted True Predicted
I M| A | Ar I M| A | Ar
I 159 | 1 2 I 2211 0 | 1 | 8
M T 1 M 2 [67|11] 0
A 1 1121186 | 1 A 5 [ 14199 2
Ar 16 | 0 0 |99 Ar 6 00194
(e) SH-EP cell line (f) SK-N-BE(2)-C cell line
True Predicted True Predicted
I |M| A | Ar I M| A|C|Ar
I 155 | 6 0 9 I 220 3 | 3 | 2 | 2
M 1 |8 | 4 0 M 3 64113 01| 0
A 1 9 | 189 | 1 A 9 1268 |0 ]| 0
Ar 17 | 0 0 | 98 C 5 0] 01]95| 0
Ar 1 0| 0| 0|44
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Figure 4.3: Classification performance after 5-fold cross validation with normalized and
non-normalized features. Norm* - normalized by training set, Norm** - normalized by
each image independently, Norm*** - normalized by systematically sampled objects.

4.3.3 Manual evaluation of classification performance

To determine performance on all objects including hardly distinguishable sam-
ples, we randomly selected a test set comprising of any segmented objects from
our data. Manual verification of the classified phenotypes showed that our clas-
sifiers well distinguished the phenotypes. Nevertheless, separation of mitosis and
interphase and of mitosis and cell death was comparably low. The performance of
these four classifiers were compared and the best performing one was used (Table:
4.4, page: 46). For the SH-EP cell line none of the normalization schemes proved
better than non-normalized features (Figure: 4.4, page: 45). For SK-N-BE(2)-C
the normalization scheme based on systematically sampled set was marginally
better (Figure: 4.4, page: 45).

SH-EP SK-N-BE(2)-C
0.92 0.9
0.9 0.8
0.88 0.7 m Non-
0.86 0.6 ;
084 05 Normalized
0.82 0.4 mNorm*
0.8 0.3
0.78 0.2 *k
0.76 01 = Norm
0.74 0
m Norm***
N
9 o
Y N

Figure 4.4: Manually evaluated performance of the classifiers. Norm* - normalized by
training set, Norm** - normalized by each image independently, Norm*** - normalized
by systematically sampled objects.
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Table 4.4: Confusion matrix of the classification results after manual evaluation.
(a, b) with features normalized by training set, (¢, d) with features normalized
by each image, (e, f) with features normalized by systematically selected samles,

(g, h) non-normalized.

(a) SH-EP cell line

(b) SK-N-BE(2)-C cell line

True Predicted True Predicted
I | M| A | Ar | D I |[M|A| Ar | D
I 193 |64 | 15 | 42 | 17 I 142 | 38 | 18 | 30 | 6
M 3 | 25| 10 0 3 M 0 | 23] 6 0 1
A 3 | 25119 7 4 A 20 (41168 | 4 |7
Ar 39 |52 ] 36 | 137 | 5 Ar 32 |10 |16 | 115 ] 9
(c¢) SH-EP cell line (d) SK-N-BE(2)-C cell line
True Predicted True Predicted
I | M| A | Ar | D I |[M|A| Ar | D
I 214 | 56 | 19 | 31 | 11 I 122 19|51 35 | 7
M 5 122 11 0 3 M 2 12111 3 | 2
A 3 120(124| 9 2 A 19 |26 |77 10 | 8
Ar 49 | 29| 38 | 127 | 26 Ar 45 | 10 | 15| 107 | 5
(e) SH-EP cell line (f) SK-N-BE(2)-C cell line
True Predicted True Predicted
I M| A | Ar | D I  M|A| C |Ar| D
1 194 | 68 | 14 | 44 | 11 1 124 {24 | 10| 31 | 29 | 16
M 3 |25 11 1 1 M 1 17| 1 0 71 4
A 3 |25 |121] 7 2 A 19 |31 57| 4 |21 8
Ar 42 | 47| 38 | 132 | 10 C 38 | 6 [10]106| 9 |13
Ar 57 121129 8 |88 |10
(g) SH-EP cell line (h) SK-N-BE(2)-C cell line
True Predicted True Predicted
I |M| A | Ar | D I |TM|A| Ar | D
I 217 | 60 | 10 | 27 | 17 I 13713224 | 33 | 8
M 28 | 6 0 4 M 0 |19] 9 0 |2
A 0 |27]121| © 4 A 21 |40 | 67| 5 7
Ar 55 140 | 31 | 120 | 23 Ar 31 | 6 |16 ]120 ] 9
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4.3.4 Automatic error correction

In order to improve the separation of the challenging cases such as Mitosis < — >
Interphase and Mitosis < — > Cell death, we designed an automated correction
scheme employing tracking information (section: 3.4.6, page: 30). In addition,
we applied a filter to discard objects for which the predicted phenotypes were
ambiguous. As a result, the filter discarded 8% of the objects. For SH-EP
cells, these automatic corrections improved overall accuracy from 84% to 89%.
Precision and sensitivity increased from 91% to 94%. These corrections did not
improve the results for SK-N-BE(2)-C cells (Figure: 4.5).

Table 4.5: Confusion matrix of the classification results after automatic correc-
tions. These corrections were performed with the normalization which performed
the best for the cells lines.

(a) SH-EP cell line (b) SK-N-BE(2)-C cell line
True Predicted True Predicted
1 M| A | Ar 1 M|A|Ar| C | D

1 241 | 5 28 25 I 124 1 24 1 10| 29 | 31 | 16
M 11 | 16 5 0 M 1 17| 1 7 0 4
A 10 |12 1119 | 6 A 19 |31 |57 |21 | 4 8
Ar Ar

C

63 | 10 | 33 | 104 57 (211298 | 8 |10
38 6 |10 9 |106 |13

SH-EP SK-N-BE(2)-C
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Figure 4.5: Classification performance after automatic correction.
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4.3.5 Summary

In summary, we obtained reliable results by improving automated classification
of phenotypes from image data of neuroblastoma cell lines. We have modified the
protocol for nuclei classification. As shown in Figure: 4.6 (page: 48), the usual
procedure to assess the performance of a classifier is shown in light green, where
as we added the steps shown in dark green. We have added a validation step
in which the classifiers performance was verified on realistic data distributions
and correction rules were formulated to rectify the errors observed in the manual

verification process.

Unannotated
Sample

u = 3-fold SVM
Cross validation

Manual
Validation
Automatic
Corrections

Predictions

Accuracy

Accuracy

Figure 4.6: Protocol for nuclei classification. The light green portion indicates the
common steps taken in phenotype classification. The dark green part represents
the additional steps that we followed for optimization and improvement.

4.4 Quality control of the experimental set-up

As a quality control, we compared proliferation dynamics of positive and negative
controls over the entire period of the screening (Figure: 4.7, page: 50). We
selected positive controls with a distinct apoptotic phenotype [Neumann et al.,
2006]in pilot screen (KIF11, PLK1, INCENP, data not shown). We used these
as positive controls and two scramble siRNA constructs as negative controls. To
obtain a measure of proliferation dynamics, we counted the number of interphase
cells in each image over the investigated time-frames. For the SH-EP cell line, we
found a significantly reduced proliferation of the positive controls in comparison

to the negative controls in all time-frames (p-value < 0.05). For the other cell
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line (SK-N-BE(2)-C), we found a significantly reduced proliferation in the later
time-frames (56-120 hours, Figure: 4.7, page: 50) indicating a delayed effect of
the perturbation.

4.5 Estimating cell cycle kinetics

Cell cycle kinetics has been used as a parameter for optimization of cancer treat-
ment schedules. Interestingly, treatment schedules matching the integer multiple
of the cell cycle duration reduces damage to normal cells [Bernard et al., 2010].
We were interested if our time series analysis allowed us to estimate the cell cycle
duration of our cell lines. We examined the cell cycle behavior of the cell culture,
assuming that siRNA transfection causes synchronization of the cells. The cell
cycle duration of a cell line can be computed either by the mitotic index or by
S-phase dynamics [Baguley and Marshall, 2004]. In our approach, interphase
phases G1, G2, and S were not differentiated therefore we studied the interphase
dynamics as a whole. The interphase population was averaged over all replicates
and knockdowns. In accordance with our expectation we observed periodicity.
We identified a cell cycle duration of 35 hours for SH-EP cells (Figure: 4.8, page:
51) and of 31 hours for SK-N-BE(2)-C (Figure: 4.8, page: 51). Note that in ear-
lier studies using HelLa cells, shorter cell cycle duration of 17 hours was reported
[Zhang et al., 2011]. Our finding that neuroblastoma cells synchronize as well
opens the possibility to study population response dynamics for each knockdown

(next sections).
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Figure 4.7: Experimental quality control. Top: cell counts of positive (coral red)
and negative (coral blue) controls are plotted by boxplots for all time-frames.
Bottom: Significance values of the differences of positive and negative controls
are given for each time-frame by negative logl0 p-values. A significance threshold
(p-value =0.05) is indicated by a red dashed line. SH-EP cell line: The positive
controls show significant lower counts for all time-frames. SK-N-BE(2)-C cell
line: The positive controls show significant lower counts for time frames post 56
hrs.
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Figure 4.8: Time series of interphase cells during five days of screening. The SH-
EP population shows a periodicity of ~ 35 hours and SK-N-BE(2)-C population
show periodicity of ~ 31 hours representing the cell cycle duration (blue bars:
interphase counts (normalized by B-Score normalization) of all screened cells for
each time-frame, red curve: fitting curve)
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4.6 Clustering phenotype profiles

Clusters of genes with similar phenotype profile will be denoted as phenoclusters
in the following. We generated phenoclusters for both cell lines using the phe-
notypes of interest i.e. low cell proliferation, high cytotoxicity and high mitosis.
Note that the phenotype was observed in the context of the population response
with each time-frame. The phenotypes observed in each gene and each cell line
is give in Appendix B and C. The clustering resulted in seven clusters with the
following phenotypes. Each cluster was hypothetically associated with a possible
phenotype as shown in the Figure: 1.1 (page: 5).

1. Interphase arrest: As the interphase count is low but high cell death is not
observed we defined this knockdown effect with low interphase count as the

interphase arrest phenotype.

2. Mitotic arrest: Mitosis is a 20 min process in a cell cycle of 24 hrs. We
have a time-lapse of 35-40 min, which indicates the mitotic cells captured
in the images are likely to be prolonged or in arrest. Thus we defined the

knockdown effect with high mitotic index as the mitotic arrest phenotype.

3. Cytotoxic: The knockdown with high cell death was defined as the cytotoxic
phenotype.

4. Mitosis-linked-cell-death: The knockdown that causes both high mitosis
and high cell death phenotypes was called mitosis-linked-cell-death pheno-

type.

5. Secondary apoptosis: The knockdown with low interphase count and high

cell death was defined as the secondary apoptosis phenotype.

6. Mixed*: The knockdown with low interphase count and high mitotic count
was labeled mixed*. It may happen that the cells in interphase arrest escape

into mitosis and arrest or vice versa.

7. Mixed*®*: Also the knockdown with low interphase count, high mitotic

count and high cell death was labeled mixed**.
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Figure 4.9: Phenoclusters. Clusters based on phenotypes of interest. The rectangular
boxes marked 1 and 2 represent the two sources of selection of genes as explained in
section: 3.1 (page: 23). The black box marked in the SK-N-BE(2)-C cluster represents
the genes of interest, phenotypes of these genes are also marked in the SH-EP cluster

by red boxes.
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4.6.1 Phenocluster: Knockdowns dependent on MYCN
and p53

Two cell lines were used in this screen, SH-EP with single copy MYCN and wild
type p53 and SK-N-BE(2)-C with MYCN amplification and mutated p53. From
the phenotype cluster of SK-N-BE(2)-C (while focusing on mitosis-linked-cell-
death phenocluster) we identified a sub cluster of seven genes that show mitosis-
linked-cell-death phenotype in SK-N-BE(2)-C (black box in Figure: 4.9, page:
53). The sub cluster consists of MAD2L1, ANLN, NCD80, RAD51, DPH5, EC-
SIT and SLC1A5. DPH5, ECSIT and SLC1A5 are not associated with mitosis or
related functions. MAD2L1, ANLN, NCD80, RADA51 are functionally associated
with Metaphase-Anaphase (M-A) checkpoint regulation, component of anaphase
promoting complex, mitotic spindle checkpoint signaling, and DNA repair, re-
spectively [Shah and Cleveland, 2000, Zhao and Fang, 2005, Martin-Lluesma
et al., 2002, Thacker, 2005]. Phenotype profile tracking shows that out of the
seven genes RAD51 does not exhibit mitosis-linked-cell-death, instead these are
two independent events happening at distant time-frames. Thus, we skipped it
in further analysis. We compared the phenotypes these genes exhibit in SH-EP
cells. All the six genes show mitotic arrest or interphase arrest (red boxes in

Figure: 4.9, page: 53).

Next, we wanted to determine if the MYCN amplification or the dysfunctional
pH3-p21 signaling plays a role in the knockdown phenotype. We started with
MAD2L1, an M-A checkpoint gene, which when knockdown leads to mitosis-
linked-cell-death in neuroblastoma cells with amplified MYCN and defective p53-
p21 signaling system, i.e. SK-N-BE(2)C cells. To this end, we used two cell
lines SH-EP with single copy of MYCN and SH-EPMY YN which stably expresses
MYCN transgene. Note that both these cell lines have functional p53-p21 sig-
naling. To test the effect of deregulated M-A checkpoint in these cell lines we
used doxycycline inducible shRNA targeting MAD2L1. With this we tested the
effect of deregulation of M-A checkpoint in a functional p53-p21 scenario. The
proportion of cells in different phases of cell cycle, in both these scenarios SH-
EP-shMAD2L1 and SH-EPMYYN _shMAD2L1, were same. These results show
that MYCN amplification alone does not induce M-A checkpoint failure.
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Further, to test the effect of weakened p53-p21 signaling, we treated the cells
with vincristine. Vincristine disrupts microtubule formation and nuclear accu-
mulation of p53, thus mimics weak p53-p21 signaling. Flow cytometric analysis
reveals the presence of 8N cells in SH-EPMYN _shMAD2L1, which is indica-
tive of cycling tetraploidy. 5% of the cells in SH-EP-shMAD2L1 were also in
8N stage. Tetraploidy may arise due to cytokinesis failure or mitotic slippage.
The tetraploidy was further confirmed by cytogenetic analysis. This shows that
MYCN amplification and nonfunctional p53 signaling together support aneu-
ploidy.

MAD2L1 protein is involved in mitotic spindle assembly checkpoint. It pre-
vents the onset of anaphase until all the chromosomes are properly aligned on
the metaphase plate, i.e. it induces an anaphase stop signal if even a single
kinetochore is unattached. On one hand, partial loss of MAD2L1 also induces
aneuploidy and results in tumorigenesis [Michel et al., 2004]. On the other hand,
MAD2L1 up regulation mediates chromosome instability, such as tetraploidy, in
absence of p53 [Schvartzman et al., 2011]. Michel et. al [Michel et al., 2004], show
that complete elimination of MAD2L1 in certain cancer cells leads to p53 inde-
pendent cell death. Thus, above experiments show that inhibition of MAD2L1
induces tetraploidy in neuroblastoma cells in presence of MYCN amplification

and dysfunctional p53-p21 signaling, i.e. p53 inactivating mutation.

4.7 Temporal tracking of phenotype events

Death in mitosis, i.e. cell death before completion of the mitotic process, has
been reported as the most promising component in cell cycle for drug design
[Manchado et al., 2012]. This can be explained by the concept that inhibitors
affecting the initial phase of the cell cycle lead to cells in quiescence. Inhibitors
leading to high cell death on the other hand also affect normal cells causing severe
side effects during therapy. Therefore, we tracked the sequence of phenotypes in
the population to select genes either with a high number of cells in mitosis and
cell death at the same time-frame or a high number of cells in mitosis followed
by cell death (Figure: 3.3, page: 34). Accordingly, these genes either showed
mitotic cell death or mitotic slippage preceding cell death. Table: 4.6 (page: 56)
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lists the genes which cause mitosis-linked-cell-death upon knockdown.

Table 4.6: Genes which cause mitosis-linked-cell-death phenotype.

SH-EP SK-N-BE(2)-C
Gene Symbol Entrez Id Gene Symbol Entrez Id
AEN 64782 ANLN 54443
ATAD2 29028 CDC2 983
AURKA 6790 CYC1 1537
C190rf48 84798 CYCS 54205
CCNB1 891 DCTPP1 79077
CENPJ 55835 DDX21 9188
CIT 11113 DLGAP5 9787
CTSD 1509 DPH5 51611
DLGAP5 9787 DSCC1 79075
DSCC1 79075 ECSIT 51295
GNL3 26354 EEF1E1 9521
GOT1 2805 ENO1 2023
KARS 3735 ERCC6L 54821
LMNBI1 4001 FAMG64A 54478
MKI67IP 84365 FASN 2194
MRPL3 11222 GOT2 2806
MTHFD2 10797 HK2 3099
NCL 4691 INCENP 3619
NEK2 4751 KIF22 3835
NT5DC2 64943 MAD2L1 4085
NUSAP1 51203 MND1 84057
RACGAP1 29127 MRPS17 51373
RFT1 91869 NDC80 10403
SMARCC1 6599 NME2 4831
SMO 6608 OIP5 11339
SNRPD1 6632 PLK1 5347
SRM 6723 PNPT1 87178
SSBP1 6742 PPRC1 23082
TP53 7157 RAN 5901
UBE2C 11065 RRS1 23212
SLC1A5 6510
SMO 6608
SNRPD1 6632
SSBP1 6742
TOMMA40 10452

UBE2C 11065
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4.7.1 Predicting upstream kinase regulators

Protein phosphorylation by kinases is a common regulatory mechanism in signal-
ing of cell cycle progression and mitotic processes. The fact that most tumors
show alterations makes kinases attractive therapeutic targets [Harrison et al.,
2009]. We performed statistical enrichment analysis (using KEA [Lachmann and
Ma’ayan, 2009]) for the proteins encoded by candidate genes for being substrates
of the regulatory kinase (Table: 4.7, page: 57). We focused this prediction on
genes that cause mitosis-linked-cell-death phenotype upon knockdown. In both
cell lines the Aurora kinase family showed a significant enrichment of substrates
among our candidate genes. For the SH-EP cell line, the top three kinase fam-
ilies identified were AUR, GSK and CDK (p-value: 0.0003, 0.005 and 0.006,
respectively). AUR and CDK kinase families have been well associated with neu-
roblastoma. GSK has been found recently to be associated with neuroblastoma.
In the following sections we discuss these three kinase families and targets of GSK

family in detail.

Table 4.7: Upstream kinase enrichment of candidate genes

Kinase family Target genes in candidate list P-value
SH-EP

AUR AURKA, TP53, RACGAP1 3.00E-04

GSK MKI67IP, TP53, LMNB1, NCL, 0.005
SMARCC1

CDK CCNB1, LMNB1, MYB, NCL, RAC- 0.006
GAP1, SMARCC1, TP53

RCK SMARCC1, TP53, LMNB1, CIT 0.015

RSK CCNBI1, TP53 0.013

PKA TP53, LMNB1, AURKA 0.03

CAMLK TP53, LMNB1 0.044

MAPK NEK2, TP53, LMNB1,NCL, SMARCC1 0.044

SK-N-BE(2)C

WEE CDC2,PLK1 0.0045

NEK NDC80,RAN 0.021

AUR2 NDCR80,INCENP 0.02

AUR family

The aurora kinase family includes Aurora kinases A, B and C. These are known to
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regulate cellular division, chromosome segregation, spindle integrity and centro-
some regulation [Carmena and Earnshaw, 2003]. Aurora kinase inhibitors have
a strong therapeutic potential. Inhibitors of these kinases have been designed
and clinical trials are undergoing [Kitzen et al., 2010]. MLN8054 is a selective
inhibitor of AURKA which is in preclinical trials for neuroblastoma. AURKB can
be inhibited by AZD1152 which is selectively cytotoxic to neuroblastoma tumor-
initiating cells. This inhibitor currently is in a clinical trial for acute myelogenous

leukemia [Morozova et al., 2010].

CDK family

Cyclin-dependent kinases (CDKs) require cyclin subunits for their kinase activity.
CDKs include CDK 1-14, 16, 20 and they are involved in each phase of the cell
cycle. CDKs are often deregulated in cancer and have been extensively studied
as therapeutic targets. Their inhibitors are in clinical trials [Fu, 2010, Malumbres
and Barbacid, 2007, Shapiro, 2006]. Roscovitine is a selective CDK inhibitor. It
is in late phase-II trials against non-small cell lung cancer and nasopharyngeal
cancer. Roscovitine and its analog CRS8 induce cell death in neuroblastoma cells
by down-regulating the CDK dependent survival factor Mcl-1 [Bettayeb et al.,
2010].

GSK family

Interestingly, we also found the GSK family, which has not been associated with
neuroblastoma therapy, as prominently as the CDKs and AURs. The family of
GSKs consists of multifunctional serine-threonine kinases GSK3a and GSK34
[Doble and Woodgett, 2003]. Their role in cancer and chromosome assembly
on the metaphase plate has been recently discovered [Korur et al., 2009, Wake-
field et al., 2003, Wang et al., 2008]. It has been shown that GSK3/ inhibition
leads to G2/M accumulation and increased apoptosis in the neuroblastoma cell
line SK-N-SH [Dickey et al., 2011]. In glioma cells, inhibition of GSK3 induces
pro-apoptotic effects, inhibits pro-survival signals, and induces mitochondrial per-
meability [Kotliarova et al., 2008].

GSK target genes among our candidate genes are NIFK, LMNB1, NCL,
SMARCCI1 and TP53. NIFK interacts with the forkhead-associated domain of
the Ki-67 antigen in a mitosis-specific manner. It is a putative RNA-binding pro-

tein and may play a role in mitosis and cell cycle progression [Takagi et al., 2001].
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LMNBT1 belongs to the lamin protein family that forms the nuclear membrane.
Lamins are essential for various nuclear functions, like the assembly of the nuclear
envelope, and DNA replication, and they provide structural integrity and support
[Gruenbaum et al., 2005]. Depletion of lamin B results in a disorganized spin-
dle and spindle poles, chromosome mis-segregation and prolonged prometaphase
[Tsai et al., 2006]. NCL (nucleolin) is a phosphoprotein abundantly found in the
nucleolus. It is involved in ribosome biogenesis, cell proliferation and growth, em-
bryogenesis, cytokinesis and nucleogenesis [Ginisty et al., 1999, Morimoto et al.,
2007, Srivastava and Pollard, 1999]. SMARCCI is a member of the SWI/SNF
family of proteins, with helicase and ATPase activities. Its transitional inacti-
vation and reactivation is required for the formation of a repressed chromatin
structure during mitosis [Sif et al., 1998]. It has been associated with colorectal
cancer and outcome of the disease. High levels of SMARCCI1 proteins are asso-
ciated with better overall survival [Anderson et al., 2009]. TP53 is well known
to regulate cell cycle arrest, apoptosis, senescence, DNA repair, and changes in
tumor metabolism [Kohn, 1999].

In summary, the three families of kinases are substantially involved in regulation
of the cell cycle and have therapeutic potential. The substrates of these kinases

need to be explored further for their role in neuroblastoma and its therapy.

4.7.2 Comparing the two neuroblastoma cell lines

We compared the candidate genes which exhibit mitosis-linked-cell-death in SH-
EP and SK-N-BE(2)-C to find common genes (Table: 4.6, page: 56). We found
6 such genes common in the two cell lines: DSCC1, DLGAP5, UBE2C, SSBP1,
SNRPD1, and SMO. These genes showed similar phenotype in both neurob-
lastoma cell lines, therefore it can be said that these phenotypes are indepen-
dent of MYCN copy number and pb3 functional state. We did not find a cor-
responding phenotype in a genome-wide HeLa cell screen (Mitocheck database,
http://www.mitocheck.org/cgi-bin/mtc). It indicates that the phenotype may be
specific to neuroblastoma cells or the difference in screening and analysis played
a major role. In the following sections, we discuss the literature summary and

the gene expression analysis of these hits.
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Literature report

A functional interpretation of the six identified genes is given in the following:

1. DLGAP5 (Discs, Large homolog-Associated Protein 5) is a known mitotic
regulator. It stabilizes microtubules and ensures bipolar spindle formation.
AURKA regulates its activity by phosphorylation [Wong et al., 2008]. DL-
GAP5 depleted HeLa cells have shown a delay in mitotic progression and
their mitotic exit resulted in an unequal segregation of chromosomes [Wong
and Fang, 2006].

2. SSBP1 (Single-Stranded DNA Binding Protein 1) is a housekeeping gene as-
sociated with mitochondrial biogenesis. It interacts with tumor-suppressor
TP53 to enable DNA repair in mitochondria during oxidative stress [Wong
et al., 2009]. Its inhibition causes genomic instability and negatively affects

cell cycle checkpoint activation [Richard et al., 2008].

3. SNRPD1 encodes a small nuclear ribonucleoprotein that belongs to the
SNRNP core protein family. It acts as a charged protein scaffold to pro-
mote SNRNP assembly and it strengthens SNRNP-SNRNP interactions
through non-specific electrostatic contacts with RNA [Yamanaka et al.,

2000]. snRNPs are major components of the spliceosome [Nilsen, 2003].

4. UBE2C is an E2 ubiquitin-conjugating enzyme. It is required for degra-
dation of mitotic cyclins and for cell cycle progression [Yamanaka et al.,
2000]. Its knockdown in U251 glioma cells results in arrest at G2/M phase
and apoptosis through induction of Bax and p53 [Jiang et al., 2010].

5. DSCC1 (Defective in Sister Chromatid Cohesion 1 homolog) is one of the
components of the replication factor C (RFC) complex with an important
role during S phase of the cell cycle. DSCC1 double mutants terminated
proliferation and showed premature senescence (increased size, flattened
morphology) [Terret et al., 2009].

6. SMO (Smoothened) is a G protein-coupled receptor that interacts with
PTCH, a receptor for hedgehog proteins. The hedgehog signaling path-

way regulates cell proliferation, differentiation and tissue patterning during
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embryonic development [Pasca di Magliano and Hebrok, 2003]. SMO has
been identified as a potential drug target in osteosarcoma, as its inhibitor
cyclopamine promotes G1 arrests and represses expression of cyclin D1, cy-
clin E1, SKP2, and pRb [Hirotsu et al., 2010]. Deregulation of the hedge-
hog signaling pathway has been discovered in brain, lung and skin cancers
[Pasca di Magliano and Hebrok, 2003]. Inhibitors targeting SMO for curing

medulloblastoma tumors are in clinical trials [Yauch et al., 2009].

SNRPD1

DLGAPS

SMO

Figure 4.10: Selection of time-lapse images illustrating cell fate observed in the SH-
EP cell line for the six hits. The image sequence of knockdown of DSCC1 shows a
cell in interphase, mitosis (metaphase), interphase (daughter nuclei), deformation of
the nucleus (cell death), and cell death. The sequence of knockdown of SSBP1 shows
a cell in interphase, mitosis (prometaphase), mitosis (metaphase), mitosis (anaphase),
and finally daughter nuclei sticking together in arrest. The sequence of knockdown
of SNRPD1 shows a cell in interphase, mitosis (prometaphase), mitosis (metaphase),
daughter nuclei and cell death. The sequence of knockdown of UBE2C shows a cell in
interphase, mitosis (prometaphase), mitosis (anaphase), and cell death. The sequence
of knockdown of DLGAP5 shows a cell in interphase, mitosis (metaphase), daughter
nuclei, deformation, and cell death. The sequence of SMO knockdown shows a cell in
interphase, mitosis (prometaphase), mitosis (metaphase) and cell death.

Figure: 4.10 (page: 61) depicts a selection of typical time-lapses of cells with
these gene knockdowns. In summary, four (DLGAP5, DSCC1, SSBP1, UBE2C)
of these six proteins are directly involved in cell cycle and one indirectly (SMO)

which is involved in cell cycle regulation. As such, the functional interpretation
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of the six candidate genes provide indications that monitoring cell cycle dynamics

enables identification of drug targets for neuroblastoma cells.

Gene expression analysis

Interestingly, all these six genes were highly up-regulated (p-value < 0.01 ) in
aggressive neuroblastoma tumors (stage 4, with MYCN amplification) in com-
parison to non-aggressive tumors (stage 1 without MYCN amplification) (Table:
4.8, page: 62). Furthermore, all six genes showed a good prediction performance

for overall survival as shown in the Figure: 4.11 (page: 63).

Table 4.8: Gene expression analysis of the six hits.

Entrez ID Gene symbol Up-regulated in P-value
MYCN AMP tu-
mors
79075 DSCC1 6.2E.18 3.7TE-20
9787 DLGAPP5 1.1E-17 5.4E-24
11065 UBEC2 3.5E-18 4.1E-26
6742 SSBP1 1.1E-15 7.3E-18
6632 SNPRD1 2.3E-21 3.4E-30
6608 SMO 2.2E-15 7.3E-18

4.8 Data access via data repository iCHIP

All original data from this study is publicly available in the web-based database
iCHIP. It can be accessed at https://ichip.bioquant.uni-heidelberg.de (User:
guest; Password: sHeY82Nu). Each movie and each image can be observed and
downloaded. Access to the images is achieved by selection of a gene in the query
page. Associated gene and siRNA information is also available as well as the

calculated phenotype scoring and related quality measures.
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Figure 4.11: Kaplan Meier plots of the six hits. The log-rank p-values are shown
on the top right of the plots.






CHAPTER 5

CONCLURSION

We have developed a processing pipeline for time-lapse microscopy screens from
raw bitmaps to detailed perturbation analysis and identification of drug targets
for tumors. The methodological contributions are threefold. First, integration
of gene expression and gene knockdown analysis enables overcoming challenges
posed by large genome-wide time-lapse studies. Second, optimization of the clas-
sification of cellular phenotypes improves prediction. Third, a novel analysis

technique to track knockdown phenotype kinetics to monitor cellular dynamics.

Genome-wide siRNA screens are costly, need large data storage capacities, are
very time consuming, and may still lead to ambiguous results ([Brass et al.,
2008, Bushman et al., 2009, Konig et al., 2008, Zhou et al., 2008]). In contrast,
kinome screens are less resource intensive and focus on a subset of genes (kinases)
of the human genome [Duan et al., 2012, Cole et al., 2011]. In line with kinome
screens, we focused our screen on a set of genes which are involved in cell cycle
progression and tumorigenesis of neuroblastoma cells. We identified a list of
candidates by analyzing large sets of publicly available gene expression data.
From this list, we selected a set of 240 genes for knockdown studies, which have

a potential role in neuroblastoma tumor progression.

With the selected set of 240 genes, we performed time-lapse image-based knock-

down screens. These screens were performed in two neuroblastoma cell lines, i.e.
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SH-EP and SK-N-BE(2)-C. The methods from screening, image processing and
further analysis to identify knockdown phenotypes were optimized and developed
specifically for these neuroblastoma cell lines. In a collaborative venture, existing
image segmentation methods were optimized and new tracking method has been

successfully developed [Harder et al., 2011].

To track mitotic aberrations after gene knockdown, we monitored well defined
phenotypic classes (interphase, mitosis, cell death) of cell nuclei. In the proposed
pipeline, classification of the cells into distinct phenotypes using image-based
screens is crucial, as any follow-up interpretation is based upon this. We applied
a filter which removed ambiguous samples from the data. We also normalized the
features using various scaling schemes to gain better results. We did not solely
rely on the cross-validation accuracy values to assess classification performance.
The classified phenotypes were manually evaluated on a randomly selected inde-
pendent test set. In addition, assignment of the mitosis and interphase classes
was improved by an automated correction scheme employing tracking informa-
tion. We found that filtering improved the classifiers performance, feature scaling
was beneficial for SK-N-B-E(2)C cell line, and manual evaluation reveals the er-
rors which could not be traced with cross validation and automatic corrections

help improve the classifiers performance.

Subsequently, these phenotypes were analyzed in a time dependent manner.
Tracking mitosis with a time-lapse of 40 min at a single cell level is challenging
given the fact that the mitosis takes approximately 20 min in human cells. Our
finding that neuroblastoma cells synchronize their cell cycle opens the possibility
to monitor phenotype kinetics of the whole population. We tracked population
response and observed the consequence of gene perturbation considering inte-
gration of overlapping time-frames. We identified six genes (DLGAP5, DSCCI1,
SSBP1, UBE2C, SNRPD1, and SMO) with an important role in prevention of
aberrant cell cycle progression in both cell lines and hence six potential drug tar-
gets for silencing in cancer therapy. These genes were significantly up-regulated

in aggressive neuroblastoma tumors and are good predictors for clinical outcome.

In addition, phenotype profiles of genes were clustered using unsupervised clus-
tering to identify genes with same knockdown phenotype profile. We identified a
sub cluster of 6 genes that show mitosis-linked-cell-death phenotype only in SK-
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N-BE(2)-C cell lines. Of these six genes we validated the knockdown phenotype
of MAD2L1, which is an M-A checkpoint gene. MAD2L1 knockdown in SK-
N-BE(2)-C cells causes mitosis-linked-cell-death. We performed cytometric and
cytogenetic analyses to confirm the presence of aneuploid cells upon MAD2L1
inhibition in presence of amplified MYCN and dysfunctional p53-p21 signaling.
Aneuploid cells are supported by MAD2L1 in absence of p53 signaling [Schvartz-
man et al., 2011] and thus its inhibition may be a therapeutic option in neurob-
lastomas with overactive M-A checkpoint and dysfunctional p53-p21 signaling
[Gogolin et al., 2012]. Similar analysis of other genes can contribute more to our

understanding of the dynamics of neuroblastoma cells.

In summary, we developed a general method to characterize cell fate upon knock-
down using high-throughput time-lapse imaging data, and applied the pipeline
to neuroblastoma cells. The analysis identified six novel candidates which were
not previously associated with cell cycle of neuroblastoma cells. In this study, we
employed the neuroblastoma cell lines SH-EP and SK-N-BE(2)-C. As a future
aspect, our findings need validations using a larger set of different neuroblastoma

cell lines and cells from primary tumor material.
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APPENDIX A

APPENDIX: SCREENED GENES

Table A.1: Screened gene list

Entrez ID Official Gene Symbol Gene Name

132 ADK adenosine kinase

191 AHCY adenosylhomocysteinase

641 BLM Bloom syndrome, RecQ helicase-like

661 POLR3D polymerase (RNA) III (DNA directed)
polypeptide D, 44kDa

699 BUB1 budding uninhibited by benzimidazoles 1
homolog (yeast)

701 BUB1B budding uninhibited by benzimidazoles 1
homolog beta (yeast)

705 BYSL bystin-like

790 CAD carbamoyl-phosphate synthetase 2, aspar-
tate transcarbamylase, and dihydroorotase

890 CCNA2 cyclin A2

891 CCNB1 cyclin B1

983 CDK1 cell division cycle 2, G1 to S and G2 to M

990 CDC6 cell division cycle 6 homolog (S. cerevisiae)

Continued on next page
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Table A.1 — continued from previous page

Entrez ID Official Gene Symbol Gene Name

991 CDC20 cell division cycle 20 homolog (S. cerevisiae)

995 CD(C25C cell division cycle 25 homolog C (S. pombe)

1019 CDK4 cyclin-dependent kinase 4

1033 CDKN3 cyclin-dependent kinase inhibitor 3

1058 CENPA centromere protein A

1062 CENPE centromere protein E, 312kDa

1063 CENPF centromere protein F, 350/400ka (mitosin)

1373 CPS1 carbamoyl-phosphate synthetase 1, mito-
chondrial

1499 CTNNB1 catenin (cadherin-associated protein), beta
1, 88kDa

1509 CTSD cathepsin D

1537 CYC1 cytochrome c-1

1736 DKC1 dyskeratosis congenita 1, dyskerin

1802 DPH2 DPH2 homolog (S. cerevisiae)

1973 EIF4A1 similar to eukaryotic translation initiation
factor 4A; small nucleolar RNA, H/ACA
box 67; eukaryotic translation initiation fac-
tor 4A, isoform 1

2023 ENO1 enolase 1, (alpha)

2091 FBL fibrillarin

2194 FASN fatty acid synthase

2305 FOXM1 forkhead box M1

2521 FUS fusion (involved in t(12;16) in malignant li-
posarcoma)

2746 GLUD1 glutamate dehydrogenase 1

2805 GOT1 glutamic-oxaloacetic transaminase 1, solu-
ble (aspartate aminotransferase 1)

2806 GOT2 glutamic-oxaloacetic transaminase 2, mito-

chondrial (aspartate aminotransferase 2)
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2875 GPT glutamic-pyruvate transaminase (alanine
aminotransferase)

3068 HDGF hepatoma-derived growth factor (high-
mobility group protein 1-like)

3099 HK2 hexokinase 2 pseudogene; hexokinase 2

3148 HMGB2 high-mobility group box 2

3161 HMMR hyaluronan-mediated — motility = receptor
(RHAMM)

3326 HSP90AB1 heat shock protein 90kDa alpha (cytosolic),
class B member 1

3329 HSPD1 heat shock 60kDa protein 1 (chaperonin)
pseudogene 5; heat shock 60kDa protein
1 (chaperonin) pseudogene 6; heat shock
60kDa protein 1 (chaperonin) pseudogene
1; heat shock 60kDa protein 1 (chaperonin)
pseudogene 4; heat shock 60kDa protein 1
(chaperonin)

3336 HSPE1 heat shock 10kDa protein 1 (chaperonin 10)

3619 INCENP inner centromere protein antigens
135/155kDa

3735 KARS lysyl-tRNA synthetase

3832 KIF11 kinesin family member 11

3833 KIFC1 kinesin family member C1

3835 KIF22 kinesin family member 22

3945 LDHB lactate dehydrogenase B

3992 FADS1 fatty acid desaturase 1

4001 LMNB1 lamin B1

4061 LY6E lymphocyte antigen 6 complex, locus E

4085 MAD2L1 MAD?2 mitotic arrest deficient-like 1 (yeast)
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4175 MCMG6 minichromosome maintenance complex
component 6

4193 MDM2 Mdm2 pb3 binding protein homolog
(mouse)

4234 METTL1 methyltransferase like 1

4284 MIP major intrinsic protein of lens fiber

4524 MTHFR 5,10-methylenetetrahydrofolate  reductase
(NADPH)

4548 MTR 5-methyltetrahydrofolate-homocysteine
methyltransferase

4602 MYB v-myb myeloblastosis viral oncogene ho-
molog (avian)

4609 MYC v-myc myelocytomatosis viral oncogene ho-
molog (avian)

4613 MYCN v-myc myelocytomatosis viral related onco-
gene, neuroblastoma derived (avian)

4691 NCL nucleolin

4751 NEK?2 NIMA (never in mitosis gene a)-related ki-
nase 2

4830 NME1 non-metastatic cells 1, protein (NM23A)

4831 NME2 non-metastatic cells 2, protein (NM23B)

4860 PNP nucleoside phosphorylase

4869 NPM1 nucleophosmin 1 (nucleolar phosphoprotein
B23, numatrin) pseudogene 21; hypotheti-
cal LOC100131044; similar to nucleophos-
min 1; nucleophosmin (nucleolar phospho-
protein B23, numatrin)

5036 PA2G4 proliferation-associated 2G4, 38kDa;

proliferation-associated 2G4 pseudogene 4
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5198 PFAS phosphoribosylformylglycinamidine  syn-
thase

5245 PHB prohibitin

5347 PLK1 polo-like kinase 1 (Drosophila)

5425 POLD2 polymerase (DNA directed), delta 2, regu-
latory subunit 50kDa

5427 POLE2 polymerase (DNA directed), epsilon 2 (p59
subunit)

5471 PPAT phosphoribosyl pyrophosphate amidotrans-
ferase

5496 PPM1G protein phosphatase 1G (formerly 2C),
magnesium-dependent, gamma isoform

5591 PRKDC similar to protein kinase, DNA-activated,
catalytic polypeptide; protein kinase, DNA-
activated, catalytic polypeptide

5616 PRKY protein kinase, Y-linked

YGY PTMA hypothetical LOC728026; prothymosin, al-
pha; hypothetical gene supported by
BC013859; prothymosin, alpha pseudogene
4 (gene sequence 112)

5831 PYCRI1 pyrroline-5-carboxylate reductase 1

5888 RAD51 RADb51 homolog (RecA homolog, E. coli)
(S. cerevisiae)

5901 RAN RAN, member RAS oncogene family

5984 RFC4 replication factor C (activator 1) 4, 37kDa

6241 RRM2 ribonucleotide reductase M2 polypeptide

6469 SHH sonic hedgehog homolog (Drosophila)

6472 SHMT?2 serine hydroxymethyltransferase 2 (mito-
chondrial)

6478 SIAH2 seven in absentia homolog 2 (Drosophila)
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6510 SLC1A5 solute carrier family 1 (neutral amino acid
transporter), member 5

6566 SLC16A1 solute carrier family 16, member 1 (mono-
carboxylic acid transporter 1)

6599 SMARCC1 SWI/SNF related, matrix associated, actin
dependent regulator of chromatin, subfam-
ily ¢, member 1

6608 SMO smoothened homolog (Drosophila)

6626 SNRPA small nuclear ribonucleoprotein polypeptide
A

6628 SNRPB small nuclear ribonucleoprotein polypep-
tides B and B1

6632 SNRPD1 small  nuclear  ribonucleoprotein D1
polypeptide 16kDa;  hypothetical pro-
tein LOC100129492

6635 SNRPE small nuclear ribonucleoprotein polypeptide
E-like 1; small nuclear ribonucleoprotein
polypeptide E; similar to hCG23490

6636 SNRPF small nuclear ribonucleoprotein polypeptide
F

6723 SRM spermidine synthase

6742 SSBP1 single-stranded DNA binding protein 1

6790 AURKA aurora kinase A; aurora kinase A pseudo-
gene 1

7083 TK1 thymidine kinase 1, soluble

7153 TOP2A topoisomerase (DNA) II alpha 170kDa

7157 TP53 tumor protein p53

7272 TTK TTK protein kinase

7298 TYMS thymidylate synthetase

7371 UCK2 uridine-cytidine kinase 2
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7866 [FRD2 interferon-related developmental regulator 2

8140 SLCTAb solute carrier family 7 (cationic amino acid
transporter, y+ system), member 5

8260 NAA10 ARD1 homolog A, N-acetyltransferase (S.
cerevisiae)

8318 CDC45 CDC45 cell division cycle 45-like (S. cere-
visiae)

8438 RAD54L RADb54-like (S. cerevisiae)

8449 DHX16 DEAH (Asp-Glu-Ala-His) box polypeptide
16

8508 NIPSNAP1 nipsnap homolog 1 (C. elegans)

8568 RRP1 ribosomal RNA processing 1 homolog (S.
cerevisiae)

8607 RUVBLI1 RuvB-like 1 (E. coli)

8893 EIF2B5 eukaryotic translation initiation factor 2B,
subunit 5 epsilon, 82kDa

9055 PRC1 protein regulator of cytokinesis 1

9133 CCNB2 cyclin B2

9136 RRP9 ribosomal RNA processing 9, small sub-
unit (SSU) processome component, homolog
(yeast)

9156 EXO1 exonuclease 1

9188 DDX21 DEAD (Asp-Glu-Ala-Asp) box polypeptide
21

9212 AURKB aurora kinase B

9391 CIAO1 cytosolic iron-sulfur protein assembly 1 ho-
molog (S. cerevisiae)

9493 KIF23 kinesin family member 23

9521 EEF1E1 eukaryotic translation elongation factor 1

epsilon 1
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9625 AATK apoptosis-associated tyrosine kinase

9718 ECE2 endothelin converting enzyme 2

9787 DLGAP5 discs, large  (Drosophila)  homolog-
associated protein 5

9816 URB2 URB2 ribosome biogenesis 2 homolog (S.
cerevisiae)

9833 MELK maternal embryonic leucine zipper kinase

9928 KIF14 kinesin family member 14

10056 FARSB phenylalanyl-tRNA synthetase, beta sub-
unit

10105 PPIF peptidylprolyl isomerase F

10131 TRAP1 TNF receptor-associated protein 1

10244 RABEPK Rab9 effector protein with kelch motifs

10257 ABCC4 ATP-binding  cassette,  sub-family C
(CFTR/MRP), member 4

10300 KATNBI1 katanin p80 (WD repeat containing) sub-
unit B 1

10403 NDCS80 NDC80 homolog, kinetochore complex com-
ponent (S. cerevisiae)

10419 PRMT5 protein arginine methyltransferase 5

10452 TOMMA40 translocase of outer mitochondrial mem-
brane 40 homolog (yeast)

10469 TIMM44 translocase of inner mitochondrial mem-
brane 44 homolog (yeast)

10471 PFDNG6 prefoldin subunit 6

10575 CCT4 chaperonin containing TCP1, subunit 4
(delta)

10721 POLQ polymerase (DNA directed), theta
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10797 MTHFD2 methylenetetrahydrofolate ~ dehydrogenase
(NADP+ dependent) 2, methenyltetrahy-
drofolate cyclohydrolase

10807 SDCCAG3 serologically defined colon cancer antigen 3;
similar to Serologically defined colon cancer
antigen 3

10856 RUVBL2 RuvB-like 2 (E. coli)

10884 MRPS30 mitochondrial ribosomal protein S30

10885 WDR3 WD repeat domain 3

11004 KIF2C kinesin family member 2C

11065 UBE2C ubiquitin-conjugating enzyme E2C

11113 CIT citron (rho-interacting, serine/threonine ki-
nase 21)

11130 ZWINT ZW10 interactor

11169 WDHDI1 WD repeat and HMG-box DNA binding
protein 1

11222 MRPL3 mitochondrial ribosomal protein L3

11339 OIP5 Opa interacting protein 5

22974 TPX2 TPX2, microtubule-associated, homolog
(Xenopus laevis)

23016 EXOSC7 exosome component 7

23082 PPRC1 peroxisome proliferator-activated receptor
gamma, coactivator-related 1

23107 MRPS27 mitochondrial ribosomal protein S27

23160 WDRA43 WD repeat domain 43

23170 TTLL12 tubulin tyrosine ligase-like family, member
12

23212 RRS1 RRS1 ribosome biogenesis regulator ho-
molog (S. cerevisiae)

23397 NCAPH non-SMC condensin I complex, subunit H
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23404 EXOSC2 exosome component 2

24147 FJX1 four jointed box 1 (Drosophila)

25813 SAMMS50 sorting and assembly machinery component
50 homolog (S. cerevisiae)

26094 DCAF4 WD repeat domain 21A

26156 RSL1D1 ribosomal L1 domain containing 1

26354 GNL3 guanine nucleotide binding protein-like 3
(nucleolar)

26519 TIMM10 translocase of inner mitochondrial mem-
brane 10 homolog (yeast)

26577 PCOLCE2 procollagen C-endopeptidase enhancer 2

27131 SNX5 sorting nexin 5

27166 PRELID1 PRELI domain containing 1; similar to
Px19-like protein (25 kDa protein of rel-
evant evolutionary and lymphoid interest)
(PRELI)

27346 TMEM97 transmembrane protein 97

27440 CECRA cat eye syndrome chromosome region, can-
didate 5

29028 ATAD2 ATPase family, AAA domain containing 2

29127 RACGAP1 Rac GTPase activating protein 1 pseudo-
gene; Rac GTPase activating protein 1

29923 HILPDA chromosome 7 open reading frame 68

50814 NSDHL NAD(P) dependent steroid dehydrogenase-
like

51187 RSL24D1 ribosomal .24 domain containing 1; similar
to ribosomal protein L24-like

51203 NUSAP1 nucleolar and spindle associated protein 1

51295 ECSIT ECSIT homolog (Drosophila)

51373 MRPS17 mitochondrial ribosomal protein S17
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51388 NIP7 nuclear import 7 homolog (S. cerevisiae)

51514 DTL denticleless homolog (Drosophila)

51611 DPH5 DPH5 homolog (S. cerevisiae)

54205 CYCS cytochrome ¢, somatic

54443 ANLN anillin, actin binding protein

54478 FAMG64A family with sequence similarity 64, member
A

54821 ERCC6L excision repair cross-complementing rodent
repair deficiency, complementation group 6-
like

54865 GPATCH4 G patch domain containing 4

55038 CDCA4 cell division cycle associated 4

55143 CDCAS cell division cycle associated 8

55165 CEP55 centrosomal protein 55kDa

55646 LYAR Ly1 antibody reactive homolog (mouse)

55732 Clorf112 chromosome 1 open reading frame 112

55759 WDRI12 WD repeat domain 12

55789 DEPDC1B DEP domain containing 1B

55835 CENPJ centromere protein J

55872 PBK PDZ binding kinase

56342 PPAN peter pan homolog (Drosophila)

56905 C150rf39 chromosome 15 open reading frame 39

56992 KIF15 kinesin family member 15

57405 SPC25 SPC25, NDCS80 kinetochore complex com-
ponent, homolog (S. cerevisiae)

64782 AEN apoptosis enhancing nuclease

64943 NT5DC2 5’-nucleotidase domain containing 2

79075 DSCC1 defective in sister chromatid cohesion 1 ho-
molog (S. cerevisiae)

79077 DCTPP1 dCTP pyrophosphatase 1
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79084 WDRT7 WD repeat domain 77

79682 MLF1IP MLF'1 interacting protein

79723 SUV39H2 suppressor of variegation 3-9 homolog 2
(Drosophila)

80097 MZT2B family with sequence similarity 128, mem-
ber B

80273 GRPELL1 GrpE-like 1, mitochondrial (E. coli)

80324 PUS1 pseudouridylate synthase 1

80746 TSEN2 tRNA splicing endonuclease 2 homolog (8.
cerevisiae)

81610 FAMS3D family with sequence similarity 83, member
D

81887 LASIL LASI-like (S. cerevisiae)

83540 NUF2 NUF2, NDC80 kinetochore complex compo-
nent, homolog (S. cerevisiae)

84057 MND1 meiotic nuclear divisions 1 homolog (S. cere-
visiae)

84319 C3orf26 chromosome 3 open reading frame 26

84365 MKI67IP MKI67 (FHA domain) interacting nucleolar
phosphoprotein

84798 C190rf48 chromosome 19 open reading frame 48

84881 RPUSD4 RNA pseudouridylate synthase domain con-
taining 4

87178 PNPT1 polyribonucleotide nucleotidyltransferase 1

90417 C150rf23 chromosome 15 open reading frame 23

91869 RFT1 RFT1 homolog (S. cerevisiae)

91942 NDUFAF2 NADH dehydrogenase (ubiquinone) 1 alpha
subcomplex, assembly factor 2

113130 CDCA5 cell division cycle associated 5

115286 SLC25A26 solute carrier family 25, member 26
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116028 RMI2 chromosome 16 open reading frame 75

118980 SFXN2 sideroflexin 2

133015 PACRGL PARK2 co-regulated-like

151246 SGOL2 shugoshin-like 2 (S. pombe)

157570 ESCO2 establishment of cohesion 1 homolog 2 (S.
cerevisiae)

201164 PLD6 phospholipase D family, member 6

442578 STAG3L3 aminoacyl tRNA synthetase complex-
interacting multifunctional protein = 2;
stromal antigen 3-like 3

552900 BOLA2 bolA homolog 2 (E. coli); bolA homolog 2B
(E. coli)

728833 FAMT72D family with sequence similarity 72, member
D

729533 FAMT72A family with sequence similarity 72, member
A

751071 METTLI12 methyltransferase like 12

100008586 GAGE12F G antigen 2A; G antigen 2B; G antigen 121,

G antigen 12F; G antigen 2E; G antigen
12G; G antigen 12D; G antigen 1; G anti-
gen 2C; G antigen 12E; G antigen 2D; G
antigen 12B; G antigen 3; G antigen 4; G
antigen 12C; G antigen 5; G antigen 6; G
antigen 7; G antigen 8







APPENDIX B

\_APPENDIX: PHENOTYPES IN SHEP CELL LINE

Table B.1: Phenotypes in SH-EP cell lines.

GeneName Cytotoxic Antiproliferative Mitotic  Arrest
/Mitosis Induc-
tion

AATK - - -

ABCC4 - - 0.00348

ADK - 0.01505 -

AEN 0.01276 - 0.04341

AHCY - - -

ANLN - 0.01152 -

ARD1A - - 0.00968

AURKB - 0.02552 -

BLM - - 0.03472

BOLA2 - - -

BUB1 - - 0.02797

BUBI1B - 0.00219 -

BYSL 0.03405 - -
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C1borflb - - -
Cl150rf23 - 0.00967 -
C150rf39 - - -
C160rf75 - - -
Clorf112 - - 0.00821
C3orf26 - 0.02414 -
CAD - 0.03594 0.01115
CCNA2 - - -
CCNB2 0.00318 - -
CCT4 0.00237 - 0.01265
CDC2 0.0372 - -
CDC20 0.00182 - 0.03566
CDC25C 0.04038 0.04052 -
CDC45L - 0.04556 -
CDC6 0.01458 0.00367 -
CDCA4 - 0.01176 -
CDCA5 - 0.00741 -
CDCAS - 0.00903 -
CDK4 - - -
CDK4 - - -
CDK4 - - -
CDKN3 - - -
CECR5 0.04018 - -
CENPA - - -
CENPE - - -
CENPF - - 0.01265
CEP55 - 0.01603 -
CIAO1 - - -
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CPS1 - - -
CTNNB1 0.02785 - -
CYC1 - 0.04107 -
CYCS - - 0.01788
DCTPP1 - 0.01004 -
DDX21 - - -
DEPDC1B
DHX16 - - -
DKC1 - 0.00638 -
DPH2 - 0.03329 -
DPH5 - - -
DTL - 0.00142 -
ECE2 - 0.02695 -
ECSIT - - -
EEF1E1 0.01852 - -
EIF2B5 0.01655 - -
EIF4A1 - 0.0493 -
ENO1 - - -
ERCC6L 0.00995 - 0.00802
ESCO2 0.02361 - -
EXO1 - - -
EXOSC2 - - -
EXOSC7 - - -
FADS1 - - 0.02892
FAM128B
FAM64A - - 0.01634
FAMT2A - - -
FAMS3D - - -
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FARSB - - 0.03518
FASN - - -
FBL - 0.01977 -
FJX1 - - -
FOXM1 0.01056 0.00741 -
FUS - - 0.00426
GAGE12F - - -
GCSH - - -
GLUD1 - - 0.03281
GOT2 - - 0.03031
GPATCH4 - - -
GPT - - -
GRPEL1 - - 0.01203
HDGF 0.02566 - -
HIG2 0.04018 - 0.01751
HK2 - - -
HMGB2 - 0.00119 -
HMMR - 0.01603 -
HSP90AB1 0.01888 - -
HSPD1 - - -
HSPE1 - - 0.02713
IFRD2 - 0.00983 -
INCENP - 0.00641 -
INCENP - 0.00641 -
INCENP - 0.00641 -
KATNB1 - - 0.01347
KIF11 - - -
KIF11 - - -
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KIF11 - - -
KIF14 - 0.01329 -
KIF15 - - -
KIF22 - - -
KIF23 0.04511 0.01896 -
KIF2C - 0.02266 -
KIFC1 - - -
LASIL 0.04571 - 0.01654
LDHB - 0.02908 -
LOCT751071 - - 0.01859
LY6E 0.03435 0.04066 -
LYAR - - -
MAD2L1 - - -
MCM6 - 0.00092 -
MDM2 - - 0.03006
MELK - - -
METTL1 - - 0.01689
MIP 0.00886 - -
MLF1IP 0.01867 - -
MND1 0.00838 - -
MRPS17 - - 0.03115
MRPS27 0.03831 - 0.04208
MRPS30 - - 0.04476
MTHFR - 0.03644 -
MTR - - -
MYB 0.01137 - -
MYC - 0.00345 -
MYCN - - -
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NCAPH
NDC80 - 0.00166 -
NDUFAF2 - - -
NIP7 - - 0.03316
NIPSNAP1 - - -
NME1 - - -
NME2 - 0.00591 -
NP - 0.02961 0.04198
NPM1 - - -
NSDHL - - -
NUF2 - - -
OIP5 - - 0.03751
PA2G4 - - -
PACRGL - - -
PBK - 0.02745 -
PCOLCE2 0.04851 0.03582 -
PFAS - - -
PFDNG6 - - -
PHB - 0.03411 -
PLD6 - - 0.02479
PLK1 - 0.00397 -
PLK1 - 0.00397 -
PLK1 - 0.00397 -
PNPT1 - - -
POLD2 - - 0.04408
POLE2 - - 0.03167
POLQ - - -
POLR3D - - 0.03023
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PPAN 0.01511 - -

PPAT 0.03545 - 0.01394
PPIF - - -
PPM1G - - -
PPRC1 - - 0.01442
PRC1 - - -
PRELID1 - - -
PRKDC - 0.04648 -
PRKY 0.02296 - 0.01599
PRMT5 0.03695 - -
PTMA - - 0.00889
PUS1 - - -
PYCRI1 - - 0.04375
RABEPK - 0.01817 -
RAD51 0.01258 - -
RADbS4L 0.01446 0.02094 -

RAN - - -
RFC4 - - -
RPUSD4 - - 0.01273
RRM?2 - 0.00895 -
RRP1 - - 0.0114
RRP9 0.02146 - 0.01442
RRS1 - - 0.01837
RSL1D1 - - -
RUVBLI1 0.01796 - -
RUVBL2 - - -
SAMMS50 - - -
SDCCAGS3 0.04291 - 0.02465
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SFXN2
SGOL2
SHH - - -
SHMT?2 0.0215 - -
SIAH2 - - 0.04144
SLC16A1 - 0.01661 -
SLC1A5 - - 0.01815
SLC25A26 0.0211 0.02637 -
SLCTAD 0.00689 - 0.029
SNRPA - - -
SNRPB - 0.00591 -
SNRPE - 0.04163 -
SNRPF - 0.04496 -

SNX5 - - 0.01892
SPC25 - 0.03236 -
STAG3L3 - 0.04452 -
SUV39H2 - - -
TIMM10 0.04819 - 0.03984
TIMM44 0.03471 - -

TK1 - 0.00503 -
TMEM97 0.03276 - -
TOP2A - - 0.02382
TPX2 - - -
TRAP1 - - -
TSEN2 0.03323 - -

TTK - - -
TTLL12 - 0.01993 0.02185
TYMS - 0.02971 -

Continued on next page




93

Table B.1 — continued from previous page

GeneName Cytotoxic Antiproliferative Mitotic  Arrest
/Mitosis Induc-
tion

UCK2 - - 0.0458

URB2 - 0.02961 -

WDHD1 - 0.01069 -

WDR12 0.01566 0.00706 -

WDR21A - - -

WDRS3 - - -

WDR43 0.02795 - -

WDRT77 0.01212 0.01152 -

ZWINT 0.03411 - 0.00805

ATAD2 - - -

AURKA 0.00942 - 0.00776

C190rf48 0.00498 - -

CCNB1 0.00808 - 0.00669

CENPJ 0.00196 - -

CIT - - -

CTSD 0.01741 - 0.02423

DLGAP5 0.0118 - 0.01151

DSCC1 0.0095 - 0.00649

GNL3 0.01687 - 0.01533

GOT1 0.01903 - 0.0091

KARS 0.0152 - 0.00598

LMNB1 - - 0.00511

MKI67IP 0.02831 - -

MRPL3 0.04248 - 0.01155

MTHFD2 0.03545 - -

NCL 0.03857 - -

NEK2 0.00084 - 0.00258

NT5DC2 0.00157 - 0.00841
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NUSAP1 0.01171 - 0.00528

RACGAP1 0.00147 - 0.02382

RFT1 0.01171 - 0.03307

SMARCC1 0.01505 - 0.01122

SMO 0.00459 - 0.00726

SNRPD1 0.00658 - 0.01949

SRM 0.00618 - 0.00473

SSBP1 - - 0.0026

TOMM40 0.03435 - 0.02837

TP53 0.02666 - 0.00546

UBE2C 0.00717 - 0.00349
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\_APPENDIX: PHENOTYPES IN BE2C CELL LINE

Table C.1: Phenotypes in SK-N-BE(2)-C cell lines.

GeneName

Cytotoxic

Antiproliferative

Mitotic  Arrest
/Mitosis Induc-

tion

AATK
ABCC4
ADK
AEN
AHCY
ARDI1A
ATAD2
AURKA
AURKB
BLM
BOLA2
BUBI1
BUBI1B

0.02207

0.04093

0.02232

0.01133

0.00983

0.04602
0.02815

0.04334

0.014
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BYSL - - 0.02971
C15o0rfl5 - - -
C150rf23 - - 0.04378
C150rf39 - 0.04107 -
C16orf75 - - 0.01268
C190rf48 - 0.01147 -
Clorfl12 - - -
C3orf26 - 0.02735 -
CAD - - 0.04234
CCNA2 - 0.0186 -
CCNBI1 - - 0.04393
CCNB2 - - 0.00385
CCT4 - - 0.01642
CDC20 - - -
CD(C25C - - -
CDC45L - - ;
CDC6 - 0.00899 -
CDCA4 - 0.04556 -
CDCAb - 0.01292 -
CDCAS - 0.03746 -
CDK4 - - -
CDK4 - - -
CDK4 - - -
CDKN3 - - -
CECRb - 0.01017 -
CENPA 0.00416 - -
CENPE - 0.04526 -
CENPF - - 0.01863

Continued on next page
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GeneName

Cytotoxic

Antiproliferative

Mitotic  Arrest
/Mitosis Induc-

tion

CENPJ
CEP55
CIAO1
CIT
CPS1
CTNNB1
CTSD
DEPDCI1B
DHX16
DKC1
DPH2
DTL
ECE2
EIF2B5
EIF4A1
ESCO2
EXO1
EXOSC2
EXOSC7
FADS1
FAM128B
FAMT72A
FAMS3D
FARSB
FBL
FJX1
FOXM1
FUS

0.03435

0.00565

0.01824

0.03545

0.01867
0.0045
0.0045
0.01166

0.00589
0.01051

0.01463

0.04556

0.01364

0.04087
0.04995

0.01321

Continued on next page
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GeneName Cytotoxic Antiproliferative Mitotic  Arrest
/Mitosis Induc-

tion

GAGE12F - - -
GCSH - - -
GLUD1 - - -
GNL3 - - -
GOT1 - - -
GPATCHA4 0.01161 - -
GPT - - -
GRPEL1 - - -
HDGF - - 0.02552
HIG2 - - 0.00431
HMGB2 - - -
HMMR - 0.00209 -
HSP90AB1 0.02642 0.02352 -
HSPD1 - - -
HSPE1 0.0417 - 0.00152
IFRD2 - - -
KARS 0.02496 - 0.03991
KATNB1 - - -
KIF11 - 0.00031 -
KIF11 - 0.00031 -
KIF11 - 0.00031 -
KIF14 - 0.01114 0.04906
KIF15 - - -
KIF23 0.00395 - -
KIF2C - 0.00446 -
KIFC1 0.03208 - 0.01572
LASIL 0.01087 - -
LDHB - - -

Continued on next page
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GeneName

Cytotoxic

Antiproliferative

Mitotic  Arrest
/Mitosis Induc-

tion

LMNBI1
LOCT751071
LY6E
LYAR
MCM6
MDM2
MELK
METTL1
MIP
MKI67IP
MLF1IP
MRPL3
MRPS27
MRPS30
MTHEFD?2
MTHFR
MTR
MYB
MYC
MYCN
NCAPH
NCL
NDUFAF2
NEK?2
NIP7
NIPSNAP1
NME1

NP

0.04291

0.03943
0.02216
0.01903

0.0194

0.00911

0.03576
0.04298

0.02608

Continued on next page
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GeneName

Cytotoxic

Antiproliferative

Mitotic  Arrest
/Mitosis Induc-

tion

NPM1
NSDHL
NT5DC2
NUF2
NUSAP1
PA2G4
PACRGL
PBK
PCOLCE2
PFAS
PFDNG
PHB
PLD6
POLD2
POLE2
POLQ
POLR3D
PPAN
PPAT
PPIF
PPMI1G
PRC1
PRELIDI
PRKDC
PRKY
PRMT5
PTMA
PUS1

0.00886

0.02705
0.00266
0.02343
0.00524
0.03124

0.04205

0.00725
0.01381

0.00269
0.00843

0.01704

Continued on next page
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GeneName

Cytotoxic

Antiproliferative

Mitotic  Arrest
/Mitosis Induc-

tion

PYCRI1
RABEPK
RACGAP1
RAD51
RADb54L
RFC4
RFT1
RPUSD4
RRM?2
RRP1
RRP9
RSL1D1
RUVBL1
RUVBL2
SAMMS50
SDCCAG3
SFXN2
SGOL2
SHH
SHMT?2
SIAH2
SLC16A1
SLC25A26
SLCTA5
SMARCC1
SNRPA
SNRPB
SNRPE

0.00869
0.03818

0.03772
0.00762
0.04686

0.01642
0.01114

0.0308

0.02552

0.03047

0.02971
0.01323

0.01446

0.02805
0.01929

0.02066
0.01412
0.01575
0.01004

0.03844

Continued on next page
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GeneName

Cytotoxic

Antiproliferative

Mitotic  Arrest
/Mitosis Induc-

tion

SNRPF
SNX5
SPC25
SRM
STAG3L3
SUV39H2
TIMM10
TIMM44
TK1
TMEM97
TOP2A
TP53
TPX2
TRAP1
TSEN2
TTK
TTLL12
TYMS
UCK2
URB2
WDHD1
WDR12
WDR21A
WDR3
WDRA43
WDRT77
ZWINT
ANLN

0.00446

0.00225

0.03346

0.00211

0.03271

0.04163
0.00975

0.02505
0.01082
0.00731

0.02166
0.00224

0.02249

0.0427
0.03271

0.04946

0.00288

Continued on next page
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GeneName Cytotoxic Antiproliferative Mitotic  Arrest
/Mitosis Induc-
tion

CDC2 0.01395 - 0.00555

CYC1 0.00147 0.0036 -

CYCS 0.00738 - -

DCTPP1 0.00765 0.01888 0.01645

DDX21 0.00649 - 0.00573

DLGAP5 - - -

DPH5 - - 0.00376

DSCC1 0.01012 - 0.00108

ECSIT 0.00349 - 0.00305

EEF1E1 - - -

ENO1 0.01629 - -

ERCC6L - - 0.00969

FAMG64A 0.03923 - 0.00954

FASN - - -

GOT2 0.03984 - 0.04803

HK?2 - - 0.01867

INCENP 0.02287 - 0.02361

INCENP 0.02287 - 0.02361

INCENP 0.02287 - 0.02361

KIF22 0.02477 - 0.00336

MAD2L1 - - 0.00088

MND1 0.04979 - 0.007

MRPS17 0.02387 - 0.02352

NDC80 0.00667 - 0.00289

NME2 - 0.01499 -

OIP5 0.02423 - -

PLK1 - 0.01161 -

PLK1 - 0.01161 -

Continued on next page
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GeneName Cytotoxic Antiproliferative Mitotic  Arrest
/Mitosis Induc-
tion

PLK1 - 0.01161 -

PNPT1 - 0.03213 0.02496

PPRC1 0.02552 - 0.00565

RAN 0.01372 - 0.00772

RRS1 - 0.02326 -

SLC1A5 0.02477 - 0.00628

SMO 0.00892 - 0.00105

SNRPD1 0.00658 - 0.00649

SSBP1 0.02361 - 0.02094

TOMM40 0.00164 - 0.00275

UBE2C - - 0.02086
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Aneuploid

A set of chromosomes which does not contain an exact multiple of haploid

sets of chromosomes..

Central dogma

All living cells have a common basic phenomenon of transfer of information
between these sequential-information-carrying biopolymers, referred to as
Central Dogma. It states that information can be copied from DNA to DNA
(DNA replication). It can be transferred from DNA to RNA (transcription)
and RNA can be read to synthesize proteins (translation). In certain viruses
an enzyme called reverse transcriptase allows the information transfer from
RNA to DNA as well. The relationship between a sequence of DNA and
the sequence of the corresponding protein is called the genetic code. The
genetic code is read in triplet nucleotides called codons.[Lewin, 2004]. Each
codon has a defined meaning, there are 64 known codons. ATG is a called
start codon, as it marks the beginning of a gene. TAA, TAG or TGA are

called termination codons, it marks the end of a gene..

Decision boundary

Decision boudary is the hypersurface that separates the underlying vector

space into two sets..
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DNA

Deoxyribonucleic acid (DNA) is a polymer of nucleotides. It is a double
helix molecule held together by hydrogen bonds. The hydrogen bonds are
formed between bases in the opposite strands such that following bonds are
formed: A-T, G-C, A-U. Thus, A and T are called complementary bases, G
and C are also complementary. DNA is very long, unbroken fiber along the
chromosome, which would be 2 inches long if laid out straight.It is highly
coiled such that 2em long DNA fits in a cell 10um. The packing of DNA
is such that 200 nucleotides are coiled around eight histone proteins.The
histone proteins are positively charged and thus balance the negative charge

on the nucleotides owing to the phosphate groups..

Feature space

In pattern recognition a feature space is an abstract space where each pat-

tern sample is represented as a point in n-dimensional space..

Gene and Gene expression

The fundamental unit of information in living systems is the gene. Gene is
a segment of Deoxyribonucleic acid (DNA), marked by a transcription start
site in the beginning and termination site at the end. There are 20,000
genes in human DNA. Most of these genes are recipes to form functional
product called protein, some also lead to the formation of RNAs. Genes
guide a cells function and traits. The information in a gene is processed
in two steps (a) a RNA molecule whose nucleotide sequence is complemen-
tary to the DNA sequence is assembled via RNA polymerase enzyme (b)
a polypeptide is synthesized whose amino acid sequence is based on the

nucleotide sequence in RNA..

Hyperplane

Hyperplane is a geometrical concept. It is a generalization of plane in

different number of dimensions. It separates space into two half spaces..

Nucleotide

Each nucleotide is composed of nitrogenous base, a pentose and a phos-

phate. The ribose in DNA is deoxyzised therefore the name deoxyribonu-
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cliec acid. There are five nitrogenous bases Adenine(A), Tyrosine(T), Cy-
tosine(C), Guananie(G) and Uracil(U). RNA has A U,C,G and DNA has
ATCG..

RNA

RNA differs from DNA in three ways (a) the pentose sugar which is deoxy
in DNA (b) the nitrogenous base Thymine(T) is replaced by Uracil (U) in
RNA (c) it is single stranded. It is not packed as DNA, since its a smaller

molecule..

Support vectors

The data points that lie on hyperplane are called suport vectors. The

solution changes if these points are removed..

Transcription

Transcription is the first step of the central dogma. It is initiated by binding
of an enzyme RNA polymerase on a specific region called promoter, located
at the beginning of a gene. DNA is a double helix molecule and it is unwind
during the transcription process. The strand on which RNA polymerase
binds is called template or anti-sense strand, and the other strand is called
sense or coding strand. RNA polymerase reads each nucleotide on DNA
template strand and adds a complementary nucleotide to nascent RNA
molecule. At the end of the gene there is a stop signal which disengages
RNA polymerase from the DNA strand. The RNA so produced is called
messenger RNA (mRNA). mRNA carried the information from nucleus to

cytoplasm and translates it to produce a protein[Raven, 2007]. .

Translation

Translation is the second step of the central dogma. It is initiated by the
transport of mRNA molecule from nucleus to cytoplasm. In this process,
mRNA strand bind ribosomes molecules and is read by the transfer RNA
(tRNA). The ribosome then moves along the mRNA reading a codon (three
nucleotides) at once. Ribosome induces tRNAs with anti-codon i.e. com-
plementary sequence to that of the codon to bind the mRNA. tRNA carries

a specific amino acid and thus the neighboring amino acids are chained to
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form a polypeptide. This polypeptide chain is further processed in the cell

to form a functional protein[Raven, 2007]. .
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