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Abstract

The droplet size distribution and interaction of the liquid phase and the gas flow are

key features in the modeling of evaporating spray flows, which are important because

of their vast range of industrial and engineering applications. Two-phase effects and

poly-dispersity of droplet size distributions dominate the structure of any spray and

related applications such as spray flames, end products of spray drying processes, or

medical applications. The spray dynamics depends on various physical processes such

as droplet inertia, evaporation, and gas phase characteristics. Thus, it is important

to have reliable models and numerical techniques in order to be able to describe the

physics of two-phase flows, where the dispersed phase consists of droplets of various

sizes that may evaporate, coalesce, breakup as well as have their own inertia and size-

conditioned dynamics.

In the present thesis, an evaporating water/air spray is modeled using direct quadra-

ture method of moments (DQMOM) and discrete droplet model (DDM) in an axisym-

metric geometrical configuration. In DDM, the two-phase effects are captured by re-

solving the gas phase conservation equations considering the droplets as point sources.

The system of conservation equations is closed using an extended k − ǫ model. The

system of equations is solved using a hybrid finite volume - Lagrangian particle track-

ing method. DQMOM is not yet coupled to gas phase fully, rather the inlet gas flow

properties are used to compute the drag force exerted on droplet velocity. For both

DDM and DQMOM, appropriate initial and boundary conditions as well as the starting

values for simulations are generated from experimental data, which have been carried

out by the group of Prof. G. Brenn at TU Graz, Austria. The simulation results are

compared with experiment and found in good agreement.

Furthermore, a turbulent methanol air jet spray flame is investigated. A detailed

methanol/air combustion mechanism consisting of 23 species and 168 elementary re-

actions is implemented through a spray flamelet model. The process of molecular

mixing is treated following probability density function (PDF) modeling, where two

approaches are used i.e., presumed PDF and transported PDF. The standard β distri-

bution is used as the base case to describe the process of molecular mixing. Its shape

parameters and distribution characteristics are known and well established.

A bivariate joint PDF of the mixture fraction and enthalpy is applied for turbulent
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spray flames. The PDF transport equation is deduced. The mixture fraction and en-

thalpy are described using an extended Interaction-by-Exchange-with-the-Mean (IEM)

model and modified Curl’s model. The PDF transport equation is closed through

coupling with an extended k − ǫ model, and it is solved using a hybrid finite vol-

ume/Lagrangian Monte-Carlo particle method. The numerical results of the gas veloc-

ity, the gas temperature, and the Sauter mean radius are compared with experimental

data from the literature and good agreement with the experiment is observed. Further-

more, the shapes of the PDF of the mixture fraction and enthalpy at different positions,

which are computed by the transported PDF method, are presented and analyzed. For

the sake of comparison, the presumed PDF method is also applied, where statistical

behavior of mixture fraction is described using standard β function. A comparison

of the results of the transported PDF method using modified Curl’s and IEM models

with the standard β function shows that the standard β function fails to describe the

statistical behavior of mixture fraction accurately. Effect of a four parameter modified

β distribution instead of a standard β distribution are also discussed. A trivariate

joint PDF of enthalpy, gas velocity and mixture fraction is proposed for future simu-

lations, and its transport equation is derived, where the gas velocity is modeled using

an extended simplified Langevin model.



Zusammenfassung

Die Tröpfchengrößenverteilung und die Wechselwirkung der flüssigen und der Gasphase

sind wesentliche Merkmale bei der Modellierung von Spray Geladenen Strömungen, die

wichtig sind aufgrund ihrer Vielzahl von industriellen und technischen Anwendungen.

Zweiphasen-Effekte und Poly-Dispersität von Tröpfchengrößenverteilungen dominieren

die Struktur eines jeglichen Sprays und verwandter Anwendungen wie beispielsweise

Sprayflammen, Endprodukten von Sprühtrocknungsverfahren oder medizinische An-

wendungen. Die Spraydynamik hängt von verschiedenen physikalischen Prozessen

ab wie Tröpfchenträgheit, Verdampfung und Gasphasen-Characteristika. Somit ist es

wichtig, zuverlässige Modelle und numerische Verfahren zu haben, um die Physik von

Zweiphasenströmungen zu beschreiben, bei denen die dispergierte Phase aus Tröpfchen

unterschiedlicher Größe besteht, die verdampfen, koalieren und aufbrechen können,

wobei sie ihre eigene Dynamik besitzen.

In der vorliegenden Arbeit wird ein verdampfenes Wasser/Luft Spray modelliert

mittels direct quadrature method of moments (DQMOM) und einen discrete droplet

model (DDM) in einer axialsymmetrischen Konfiguration. Bei dem DDM werden die

Zweiphasen-Effekte durch Lösen der Gasphasen-Erhaltungsgleichungen unter Berück-

sichtigung der Tröpfchen als Punktquellen beschrieben. Das System der Erhaltungs-

gleichungen wird geschlossen durch ein erweitertes k − ǫ Modell. Die Gleichungen

werden mittels einer hybrid finite volume - Lagrangian particle tracking method gelöst.

DQMOM ist noch nicht vollständig an die Gasphase gekoppelt, stattdessen werden die

Eigenschaften des einströmenden Gases zur Berechnung der einwirkenden Trägheits-

kraft auf die Tröpfchengeschwindigkeit verwendet. Geeignete Anfangs- und Randbe-

dingungen sowie die Startwerte für die Simulationen werden aus experimentellen Daten

generiert, die von der Arbeitsgruppe von Prof. G. Brenn an der TU Graz, Österreich,

erarbeitet wurden. Die Simulationsergebnisse wurden mit den experimentellen Ergeb-

nissen verglichen und ergeben gute Übereinstimmung.

Weiterhin wird eine turbulente Methanol/Luft Freistrahlflamme untersucht. Ein

detaillierter Methanol/Luft-Verbrennungsmechanismus bestehend aus 23 Spezies und

168 Elementarreaktionen wird durch ein Spray-Flamelet-Modell implementiert. Der

Prozess des molekularen Mischens wird mittels probability density function (PDF)

Modellierung behandelt, wobei zwei Ansätze verwendet werden, die presumed PDF

und transported PDF. Die Standard β-Verteilung wird als Basisfall verwendet, um den

Prozess des molekularen Mischens zu beschreiben, da diese Funktion sehr gut bekannt

und etabliert ist.

Eine Zweidimensional gebundene PDF des Mischungsbruchs und der Enthalpie

wird auf turbulente Sprayflammen angewendet. Die PDF-Transportgleichung wird

III
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hergeleitet. Der Mischungsbruch und die Enthalpie werden beschrieben unter Ver-

wendung eines erweiterten Interaction-by-Exchange-with-the-mean (IEM)-Modells und

des modified Curl-Modells. Die PDF-Transportgleichung wird durch Kopplung mit

einem erweiterten k − ǫ Modell und mittels einer hybrid finite volume/Lagrangian

Monte-Carlo Methode gelöst. Die numerischen Ergebnisse der Gasgeschwindigkeit,

der Gastemperatur und des Sauter Radius werden mit experimentellen Daten aus

der Literatur verglichen und es wird gute Übereinstimmung gefunden. Ferner werden

die Formen der PDF des Mischungsbruchs und der Enthalpie, die durch die trans-

ported PDF-Methode berechnet werden an unterschiedlichen Positionen, dargestellt

und analysiert. Für Vergleichszwecke wird das presumed PDF Verfahren ebenfalls

angewendet, wobei das statistische Verhalten des Mischungsbruchs mittels der Stan-

dard β-Funktion beschrieben wird. Ein Vergleich der Ergebnisse der transported PDF

Methode unter Anwendung der modified Curl- und IEM-Modelle mit der Standard

β-Funktion zeigt, dass die Standard β-Funktion das statistische Verhalten des Mi-

schungsbruchs nicht genau beschreiben kann. Die Auswirkungen einer modifizierten

Vier-Parameter β-Verteilung anstelle einer Standard β-Verteilung werden ebenfalls

diskutiert. Weiterführende Arbeiten sollten eine trivariate joint PDF von Enthalpie,

Gasgeschwindigkeit und Mischungsbruch beinhalten, dazu wird deren Transportglei-

chung hergeleitet, indem die Gasgeschwindigkeit mit einem erweiterten vereinfachten

Langevin-Modell beschrieben wird.
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1. Introduction

Turbulent spray flows have been a topic of interest of researchers for decades due to

their wide range of applications in a diverse variety of fields. Limited possibilities of

precise study of turbulent spray flows in available experimental facilities have added

to the value of spray modeling. The physical processes that govern the dynamics and

size distribution of the spray such as application of drag by surrounding gas, droplet

collisions leading to breakup, coalescence or mass transfer and turbulence are important

to be considered to reach a feasible model.

The droplet size distribution and interaction of the liquid phase and the gas flow

are key features in the modeling of evaporating spray flows, which are important be-

cause of their vast range of industrial and engineering applications. Two-phase effects

and poly-dispersion of droplet size distributions dominate the structure of any spray

and related applications such as spray flames, spray drying processes, or in spray in-

halers of medical applications. An improved understanding of the physical processes

that influence the spray characteristics is essential because of the complexity of the

corresponding mathematical problem. The spray dynamics depend on various physical

processes such as droplet inertia, evaporation, and gas phase characteristics. Thus,

it is important to have reliable models and numerical techniques in order to be able

to describe the physics of two-phase flows where the dispersed phase is constituted of

droplets of various sizes that may evaporate, coalesce, breakup as well as have their

own inertia and size-conditioned dynamics.

In regards with physical assumptions, the spray models may be categorized in

locally homogeneous flow (LHF) models [1–3] and separated flow (SF) models [4, 5].

LHF models assume the two phases to be in dynamic and thermodynamic equilibrium

i.e., at each position in the flow field, droplet has the same velocity and temperature

as the surrounding gas. The slip effect between the liquid phase and gas phase is

neglected. The LHF condition is the limiting case with infinitely small droplets. This

makes the modeling and simulation relatively easy but most of the practical cases

cannot be accounted for.

The SF models are a suitable alternative, which take the effects of the finite rate

exchange of properties between the two phases into account. In general, there are

different approaches in the SF model namely continuous droplet model (CDM) [6–13]

and discrete droplet model (DDM) [14–21].
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CDM assumes that the droplets have a continuous behavior characterized by their

statistical properties with negligible deviation from spherical shape [22]. In this ap-

proach, the dispersed phase is treated as a continuous fluid. Therefore, in order to

represent droplets in continuous formulation, a number of scalar fields are introduced

such as weights [23]. The droplet properties are defined at grid nodes, which coincide

with those for the gas phase. The mean flow field equations are derived for both phases.

Thus, they result in more global or macroscopic description of the dispersed phase.

There are several Eulerian methods that have been developed based upon Williams’

spray equation [22] and applied extensively in recent years. For instance, in the multi-

fluid approach [6], the distribution function is discretized using a finite volume tech-

nique that yields conservation equations for mass and momentum of droplets in fixed

size intervals called sections or fluids [7]. This approach has recently been improved

to higher order of accuracy [8], but discretization of droplet size phase - space is still

a problem that needs to be addressed. The efficiency and the applicability of moment

based methods [9, 10] for poly-disperse systems have remained a question of interest

[11]. In order to address these issues, direct quadrature method of moments (DQMOM)

has turned out to be an attractive and suitable approach [12].

Even though DQMOM has been tested to model non-evaporating sprays [24–26],

few studies have been carried out on evaporating sprays [23, 27, 28]. However, these

studies consider a very simplified evaporation model to calculate the change in droplet

size with time i.e., either as a linear function of droplet volume or non-linear function

of droplet volume, which is similar to the well established but very simplified d2 law.

This has been improved [13] by implementing the advanced evaporation model.

On the contrary, DDM or Lagrangian approach focusses on rather microscopic level.

In the Lagrangian approach, the mean field equations are used only for the continuous

gas phase. The droplet properties are defined along the path lines followed by the

droplet. The trajectories of droplets are tracked for each droplet group by using a set

of equations that describe their physical transport in flow field. In case the gas phase is

also described using a Lagrangian formulation, the stochastic particles are introduced

and tracked to reproduce the same statistics as the real one. Their time evolution is

solved by using stochastic differential equations. In this case, the gas phase may be

solved by either Eulerian formulation or a Lagrangian formulation [15]. The effects of

the liquid phase are considered by including appropriate spray source terms into the

governing equations of the gas phase. The errors due to numerical diffusion in the

solution of liquid phase are minimized in DDM. Furthermore, it is rather convenient to

obtain a physical model and construct a numerical algorithm based on DDM [20, 30].

As far as droplet-turbulence interaction is considered, SF models can be further sub-

categorized as deterministic separated flow (DSF) and stochastic separated flow (SSF)
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models. In DSF models, the droplet-turbulence interaction is neglected, which may

not be a physically feasible assumption in most of the cases. The resulting profiles

predict only laminar behavior of the droplets. Therefore, SSF models turn out to be a

suitable choice [18, 20].

In either the classical Eulerian or Lagrangian approach, the continuous gas phase

is modeled using the Navier – Stokes equations. Considering the presence of turbu-

lence in the system, these equations can be solved following a number of ways such

as direct numerical simulation (DNS) [31–41], large eddy simulation (LES) [42–53] or

Reynolds-averaged Navier – Stokes (RANS) numerical simulation [54, 55]. In DNS,

the conservation equations are solved directly without any turbulence model, thus all

the spatial and temporal scales of turbulence must be resolved. In LES method, the

filtering implies that the scales below the filter width are not resolved and must be

modeled. However, in reactive flows, molecular mixing and kinetics occur at small

unresolved scales. Therefore, modeling these small scales and their coupling with LES

resolved scales imposes additional challenges [43]. Hencce in reactive flows, RANS with

density weighted averaged such as Favre-average is preferred.

An important aspect of the spray flows is the modeling of gas-liquid interactions

i.e., study of the processes at the interface of liquid and gas. There are several physical

processes dominating the droplet characteristics at the interface such as energy transfer,

mass transfer and drag force. The coupling between continuum gas phase and dispersed

droplet phase can be done in a number of ways, the simplest being one-way coupling.

In one-way coupling, the behavior of transported droplets is described within a given

turbulent gas flow. The effects of carrier phase on the dispersed particles are taken into

account explicitly. However, the effects of droplet characteristics on the gas phase are

not negligible in many cases. The turbulence influences the behavior of droplets, which

in return effect turbulence. This is because of the micro turbulence, which is produced

due to the presence of the droplets. In particular, boundary layers are formed at the

interface of the droplets and gas i.e., droplet surface, due to relative motion of the

droplet and the surrounding gas, which is commonly described as the drag force effect.

If there is heat and mass transfer between droplets and surrounding gas, which is quite

common in spray flows then the two-way coupling is the suitable choice. In two-way

coupling, the effects of droplet properties are considered in evolution of gas phase flow

and vice versa. It is well established that a two-way coupling is suitable for droplets

interacting with turbulent carrier phase, particularly at low Mach number [56, 57].

In turbulent spray flames, the detailed chemistry may be included by using flamelt

based model. In this approach, a turbulent flame is considered as an ensemble of lam-

inar flames [58]. Flamelet model was originally proposed for gas flames [58]. This

assumption is valid for high Damköhler numbers, which is fulfilled in many technical
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combustion applications. The success of flamelet based models in the simulation of

turbulent gas flames has motivated their application in the simulation of turbulent

spray flames [59]. However, the classical flamelet model includes very strict assump-

tions regarding the different combustion regimes that may occur in turbulent flames.

In general, either non-premixed or premixed combustion are considered, whereas the

partially premixed regime is discarded. Recently, several multi-regime flamelet models

have been developed in order to overcome the limitations related with classical flamelet

models [60–62]. In general, multi-regime flamelet models based on laminar gas struc-

tures are able to predict the flame characteristics in zones where no evaporation occurs,

since these regions are not considerably affected by spray processes [63], but they are

not suitable to properly describe the flame structure in zones where both evaporation

and combustion occur, since they are dominated by evaporation effects. Therefore,

a separation of the regimes with pure gas combustion, i.e. all droplets have vapor-

ized, and a regime where both evaporation and combustion occur simultaneously [63],

solve the question of the pure gas combustion regime, but not the region, where both

evaporation and chemical reactions occur simultaneously [65].

Hollmann and Gutheil [65] and Gutheil [63] proposed an extension of the classical

non-premixed flamelet model [58] for spray flames, which consistently uses a library

based on laminar spray structures. It is found that spray flamelets are not only de-

termined by the mixture fraction and its scalar dissipation rate (associated with the

strain rate) as in counterflowing laminar gas diffusion flames, but they also depend on

the initial droplet size and velocity and the equivalence ratio on the spray side of the

configuration [58].

In flamelet models, the chemistry and turbulence are coupled through the statisti-

cal discription of characteristic variables. This can be done by using the probability

density function (PDF) methods. These include presumed PDF method and trans-

ported PDF method. In presumed PDF method, the statistical distribution of mixture

fraction and scalar dissipation rate is calculated considering their mutual statistical

independence. The β distribution is applied to presume mixture fraction [66, 67]. Ge

and Gutheil [68] and Luo et al. [32] reported that a modified four parameter β distri-

bution is a better approximation than standard two parameter β distribution. But the

choice of additional parameters namely the minimum and maximum of PDF domain

is still an open question. The scalar dissipation rate is presumed to follow log-normal

distribution [69, 70].

In the transported PDF methods [64], the shape of PDF is calculated by solving its

transport equation. Earlier studies have favored PDF transport equation [71], which

was applied to gas flames. The advantage is that no additional modeling for chemical

reactions or turbulence is required. This approach was extended to account for spray
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flows as well [94]. In transported PDF method, the term for molecular mixing requires

to be closed through an additional model. Therefore, in order to analyze the effects of

molecular mixing and evaluate the existing mixing models, the PDF transport equation

serves as a suitable ground. For gas flames, the simplest model is interaction by

exchange with the mean (IEM) model [72], which is extended to account for spray

flames [68, 94]. In gas flames, there are other mixing models available in literature,

which include Curl’s particle interaction model [73], modified Curl’s model [74, 75]

and Eucleadian minimal spanning tree (EMST) [76]. But these models are not yet

formulated for spray flows.

In the present work, two different spray systems i.e., an evaporating water/air

spray and reactive methanol/air spray flame have been considered. The evaporat-

ing water/air spray is modeled using DQMOM and DDM in an axisymmetric, two-

dimensional configuration. In DDM, the effects of the two-phase flow are captured by

solving the gas phase conservation equations considering the droplets as point sources.

DQMOM considers the inlet gas flow properties to compute the drag force exerted on

droplet velocity. Droplet collisions are also included in DQMOM. The methanol/air

flame is modeled using presumed and transported PDF methods. The gas phase is

resolved using Favre averaged conservation equations with appropriate source terms

due to spray evaporation. The chemical reactions are included using laminar flamelet

library [65, 83]. In presumed PDF method, the standard β distribution is applied and

different choices for additional two parameters for four parameter modified β distribu-

tion are analyzed. In transported PDF method, modified Curl’s model is extended to

account for spray flows. The spray source terms in extended IEM are rederived. The

results from transported and presumed PDF methods are compared with experiment

at various positions.

In this dissertation, the governing equations of mathematical models are described

in chapter 2. The applied numerical schemes are discussed in chapter 3. The results

are presented and discussed in chapter 4. The conclusions and perspective work is

given chapter 5.



6 1. Introduction



2. Governing Equations

The mathematical model to treat two phase flows and their inter-coupling is explained

in this chapter. Taking the advantages of locally detailed information into account,

both reactive and non-reactive spray flows are treated using Euler-Lagrangian formu-

lation. The gas phase is treated as a continuum phase while the liquid phase flow is

modeled by applying discrete droplet model. The non-reactive (water) spray is mod-

eled using DQMOM as well. The governing equations for gas flow, DQMOM and DDM

are given in this chapter.

2.1 Gas phase flow

2.1.1 Conservation equations

Mathematical description of the considered spray system is achieved by resolving the

gas phase equations where the effect of dispersed phase is taken into account through

inclusion of source terms [77], where droplets are considered are point sources. un-

der the assumptions of dilute spray and low Mach number, the compressible form of

conservation equations of mass and momentum may be written as

∂ρ

∂t
+

∂(ρuj)

∂xj

= Sl,1, (2.1)

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂τij

∂xj
+ ρgi + Sl,ui

, (2.2)

where ρ,u and p are the density, velocity and pressure of the gas flow. gi is the

acceleration due to gravity and the quantities Sl,1 and Sl,ui
are the source terms due

to spray evaporation [67]. τij is the viscous stress tensor given by

τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)
, (2.3)

where δ is the tensorial Kronecker delta given by

δij =

{
1 : i = j

0 : i 6= j.
(2.4)
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Neglecting the processes of radiation, friction heating, Dufour effect and the viscous

heating, the conservation equation of total stagnant enthalpy can be written as

∂(ρh)

∂t
+

∂(ρujh)

∂xj
=

∂p

∂t
−

∂Jd
q,j

∂xj
−

∂Jc
q,j

∂xj
+ Sl,h, (2.5)

where h is the enthalpy of the gas flow and the terms on the right-hand side are the

change rate of the pressure, the heat diffusion term, the heat conduction term and the

source term due to spray evaporation, Sl,h, respectively. The heat conduction term is

expressed by the Fourier’s Law

Jc
q,j = −λ

∂T

∂xj
=

λ

C̄p

(
∂h

∂xj
−

Ns∑

α=1

hα
∂Yα

∂xj

)
, (2.6)

where λ, T , C̄p are thermal conductivity, gas temperature and specific heat capacity

respectively. Ns refers to the number of chemical species while hα and Yα are the

enthalpy and mass fraction of species α. The heat diffusion term Jd
q,j is written as

Jd
q,j =

Ns∑

α=1

hαJm
α = −

Ns∑

α=1

ρhs,αDα,M
Yα

∂xj
, (2.7)

where hs,α and Dα,M are the specific sensible enthalpy of species α and diffusion coef-

ficient of species α respectively. Assuming a unity Lewis number (Le = 1) and equal

diffusibility of all species, the total heat flux is

Jq = Jc
q,j + Jd

q,j = − λ

C̄p

(
∂h

∂xj

−
Ns∑

α=1

hα
∂Yα

∂xj

)
−

Ns∑

α=1

ρhs,αDα,M
Yα

∂xj

. (2.8)

As it will be discussed in the next section (c.f. Eq. (2.46) – (2.56)) that

λ

C̄p

Ns∑

α=1

hα
∂Yα

∂xj

=
Ns∑

α=1

ρhs,αDα,M
Yα

∂xj

,

therefore the Eq. (2.8) is reduced to

Jq = − λ

C̄p

∂h

∂xj
= −Γh

∂h

∂xj
. (2.9)

Using Eq. (2.9) in Eq. (2.5), the energy equation can be written as

∂(ρh)

∂t
+

∂(ρujh)

∂xj

=
∂p

∂t
+

∂

∂xj

(
Γh

∂h

∂xj

)
+ Sl,h. (2.10)

The conservation equation of species mass can be written as

∂(ρYα)

∂t
+

∂(ρujYα)

∂xj
− ∂

∂xj

(
ρDα

∂Yα

∂xj

)
= Sα + δL,αSl,Yα

, (2.11)
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where Dα is the diffusion coefficient of species α while Sα and Sl,α are the source terms

due to chemical reactions and spray evaporation respectively. The mass fraction may

be used to form mixture fraction. The advantage of an appropriately defined mixture

fraction is that the source term Sα will be zero. In the present work, two spray systems

are considered i.e. water spray in air and methanol spray in air. In case of methanol

spray in air, element mass fraction may be defined with reference to carbon because

oxygen appears in both liquid and gaseous stream and Lewis number of hydrogen is

very low. For the water spray, the only possibility is to define the mixture fraction

with reference to hydrogen as oxygen appears in both gas and liquid. A detailed study

of different reference elements may be referenced from [79]. Thus the mass fraction ZA

of element A, where A is either C or H is defined as

ZA =

n∑

i=1

aIAMA

MI
YI. (2.12)

where aIA is the mass of element A in molecule I and MA and MI are the molecular

weights of element A and element I, respectively. Using this definition, mixture fraction

can be defined as

ξ =
ZA − ZA,min

ZA,max − ZA,min
. (2.13)

Multiplying Eq. (2.11) by aIAMA

alAMI
and summing over total number of species under the

assumption of equal diffusivity, the following conservation equation for mixture fraction

is obtained

∂(ρξ)

∂t
+

∂(ρuiξ)

∂xi
=

∂

∂xi

(
ΓM

∂ξ

∂xi

)
+ Sl,ξ, (2.14)

where ΓM = ρDM is the mass diffusion coefficient of the mixture.

Equations (2.1), (2.2), (2.10) and (2.14) are the instantaneous conservation equa-

tions of mass, momentum, energy and mixture fraction. These need to be averaged for

application to turbulent flows. For turbulent compressible flows, a density weighted

average e.g. Favre average for Navier–Stokes equations is useful. Favre average of a

function Φ is defend as

Φ̃ =
ρΦ

ρ̄
. (2.15)

The fluctuating components are then defined as

Φ′′ = Φ − Φ̃ (2.16)

with

Φ̃′′ = 0. (2.17)
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Averaging the Eqs. (2.1) and (2.2) by using the Eq. (2.15), the following forms are

obtained
∂ρ̄

∂t
+

∂(ρ̄ũj)

∂xj
= S̄l,1, (2.18)

and

∂(ρ̄ũi)

∂t
+

∂(ρ̄ũiũj)

∂xj

+
∂(ρ̄ũ

′′

i u
′′

j )

∂xj

= − ∂p̄

∂xi

+
∂τ̄ij

∂xj

+ ρ̄gi + S̄l,ũi
. (2.19)

Averaging Eq. (2.10) using the Eq. (2.15) and applying gradient-diffusion hypothesis

∂(ρ̄h̃)

∂t
+

∂(ρ̄ũjh̃)

∂xj

=
∂p̄

∂t
+

∂

∂xj

(
Γh,eff

∂h̃

∂xj

)
+ S̄l,h̃, (2.20)

where the effective thermal diffusion coefficient is given by Γh,eff = Γh + Γh,t with

Γh,t
∂h̃

∂xj
= −ρ̄ũ

′′

j h
′′ . (2.21)

Averaging Eq. (2.14) using the definition in Eq. (2.15) and applying the gradient-

diffusion hypothesis, the Favre averaged conservation equation of mixture fraction is

deduced as following

∂(ρ̄ξ̃)

∂t
+

(ρ̄ũiξ̃)

∂xi

=
∂

∂xi

(
ΓM,eff

∂ξ̃

∂xi

)
+ S̄l,ξ̃, (2.22)

where the effective diffusion coefficient of the gas mixture is given by ΓM,eff = ΓM +ΓM,t

with

ΓM,t
∂ξ̃

∂xi
= −ρ̄ũ

′′

j ξ
′′

j . (2.23)

The source term S̄l,ξ̃ equals S̄l,1.

In Eqs. (2.20) and (2.22), the effective diffusion coefficients ΓΦ,eff for Φ ∈ h, M need

to be calculated. These are calculated using turbulent viscosity of the gas. For this

purpose, an extended k − ǫ model [77] is applied in the present case. This extended

k − ǫ model accounts for spray flows and it is a well established method for isotropic

turbulence. The transport equations for k and ǫ are written as following,

∂(ρ̄k̃)

∂t
+

∂(ρ̄ũjk̃)

∂xj
=

∂

∂xj

(
Γk,eff

∂k̃

∂xj

)
+ Gk − ρ̄ǫ̃ + S̄l,k̃, (2.24)

∂(ρ̄ǫ̃)

∂t
+

∂(ρ̄ũj ǫ̃)

∂xk
=

∂

∂xj

(
Γǫ,eff

∂ǫ̃

∂xj

)
+ cǫ,1

ǫ̃

k̃
Gk − cǫ,2ρ̄

ǫ̃

k̃
ǫ̃ + S̄l,ǫ̃, (2.25)

where cǫ,1, cǫ,2 are model constants whose values of these model constants are taken

from the literature [80]. The generation term for the turbulent kinetic energy is given

by

Gk = µt

[(
∂ũi

∂xj
+

∂ũj

∂xi

)
− 2

3

∂ũk

∂xk
δij

]
∂ũi

∂xj
. (2.26)
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S̄l,k̃ and S̄l,ǫ̃ are the mean spray source terms, which are determined by [77] as

S̄l,k̃ = Sl,uj
u

′′

j +
1

2
Sl,1u

′′2

j (2.27)

and

S̄l,ǫ̃ = CsS̄l,k̃, (2.28)

where the model constant Cs is set to 1.50 [81]. The turbulent viscosity µt is then

given by

µt = Cµρ̄
k̃2

ǫ̃
. (2.29)

The effective dynamic viscosity is defined as µeff = µ+µt. In Eqs. (2.20), (2.22), (2.24)

and (2.25), the effective exchange coefficients ΓΦ,eff for Φ ∈ {h, M, k, ǫ} are given by

ΓΦ,eff =
µeff

σΦ

, (2.30)

where σΦ are the Prandtl-Schmidt numbers.

The instantaneous conservation equation of mixture fraction given by Eq. (2.14)

can be used to derive the equation for the variance of mixture fraction, ξ̃′′2. Thus,

Multiplying Eq. (2.1) by ξ and subtracting from Eq. (2.14), the following equation is

yielded

ρ
∂ξ

∂t
+ ρui

∂ξ

∂xi
=

∂

∂xi

(
ΓM

∂ξ

∂xi

)
+ Sl,1 − ξSl,1. (2.31)

Multiplying the above equation with 2ξ′′, the following form is obtained

2ξ′′ρ
∂ξ

∂t
+ 2ξ′′ρui

∂ξ

∂xi

= 2ξ′′
∂

∂xi

(
ΓM

∂ξ

∂xi

)
+ 2ξ′′Sl,1 − 2ξ′′ξSl,1. (2.32)

Using the property of Favre-averaging, i.e. ξ̃ = ξ + ξ′′, the above equation can be

rewritten as

2ξ′′ρ
∂ξ̃

∂t
+ ρ

∂ξ′′2

∂t
+ 2ξ′′ρui

∂ξ̃

∂xi
+ ρui

∂ξ′′2

∂xi
= 2ξ′′

∂

∂xi

(
ΓM

∂ξ

∂xi

)
+ 2ξ′′Sl,1(1 − ξ). (2.33)

Multiplying Eq. (2.1) with ξ′′2 and adding to Eq. (2.33), the following can be obtained

2ξ′′ρ
∂ξ̃

∂t
+

∂(ρξ′′2)

∂t
+2ξ′′ρui

∂ξ̃

∂xi

+
∂(ρuiξ

′′2)

∂xi

= 2ξ′′
∂

∂xi

(
ΓM

∂ξ

∂xi

)
+2ξ′′Sl,1(1−ξ)+ξ′′2Sl,1.

(2.34)

Time averaging the above equation and subsequently applying the Favre-average, the

equation of variance of mixture fraction can be written as

∂(ρ̄ξ̃′′2)

∂t
+

∂(ρ̄ũiξ̃′′2)

∂xi
+

∂(ρuiξ′′2)

∂xi
+ 2ξ′′ρu′′

i

∂ξ̃

∂xi
+

∂

∂xi

(
ΓM

∂ξ̃′′2

∂xi

)

= −2ΓM

(
∂ξ′′

∂xi

)2

+ 2ξ′′Sl,1(1 − ξ) + ξ′′2Sl,1. (2.35)
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In Eq. (2.35), the third and fourth terms on the left hand side as well as the first term

on the right hand side are not closed and they must be modeled. The last two terms

on the right hand side arise due to spray evaporation. Using the turbulent exchange

coefficient Γξ′′2,t = µt/σξ′′2,t for the third and fourth term on the right hand side, the

following is obtained [77]

∂(ρuiξ′′2)

∂xi
= − ∂

∂xi

(
Γξ′′2,t

∂ξ̃′′2

∂xi

)
, (2.36)

2ξ′′ρu′′
i

∂ξ̃

∂xi
= −2Γξ′′2,t

(
∂ξ̃

∂xi

)2

. (2.37)

Using the gradient diffusion hypothesis, the first term on the right hand side of Eq. (2.35)

is written as [77]

2ΓM

(
∂ξ′′

∂xi

)2

= 2ρ̄DM

(
∂ξ̃

∂xi

)2

. (2.38)

The instantaneous scalar dissipation rate χ is defined at first as

χ = 2DM

(
∂ξ

∂xi

)2

, (2.39)

hence Eq. (2.38) becomes

2ΓM

(
∂ξ

∂xi

)2

= ρ̄χ̃. (2.40)

Using the dissipation hypothesis [82], the scalar dissipation rate is described as

χ̃ = Cχ
ǫ̃

k̃
ξ̃′′2, (2.41)

where value of the constant Cχ is set to 2 [82]. The last two terms on the right

hand side of Eq. (2.35), which arise due to spray evaporation are taken as defined by

Hollmann [77] and they can be written as

2ξ′′Sl,1(1 − ξ) + ξ′′2Sl,1 = ξ̃′′2

(
1 − 2ξ̃

ξ̃

)
S̄l,1. (2.42)

Defining the effective exchange coefficient Γξ′′2,eff = Γξ′′2,t+ΓM , the Eq. (2.35) is reduced

to

∂(ρ̄ξ̃′′2)

∂t
+

∂(ρ̄ũiξ̃′′2)

∂xi
− ∂

∂xi

(
Γξ′′2,t

∂ξ̃′′2

∂xi

)

= 2Γξ′′2,t

(
∂ξ̃

∂xi

)2

− 2ρ̄
ǫ̃

k̃
ξ̃′′2 + ξ̃′′2

(
1 − 2ξ̃

ξ̃

)
S̄l,1. (2.43)

The gas phase conservation equations are explained above. The thermo-chemical

properties for reactive case and their interlinking with turbulence is discussed in the

next sections.
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2.1.2 Chemical reactions modeling

An important goal in modeling of chemical reactions is to predict the thermal proper-

ties in the space. This requires the complete understanding of the chemical reaction

mechanism and its coupling with turbulent flow, which will be discussed in later sec-

tions.

The flamelet based models [58] for turbulent gas diffusion flames are well known,

where the composition of gas mixture and gas temperature are defined in terms of

mixture fraction and scalar dissipation rate. This is followed by the fact that a laminar

gas flamelet is characterized in terms of mixture fraction and scalar dissipation rate,

where scalar dissipation rate is associated to strain rate. As far as spray flames are

concerned, the effects of liquid fuel evaporation are important and need consideration.

Hollmann and Gutheil [65] suggested that the laminar spray flamelets are characterized

by initial droplet size, initial droplet velocity and equivalence ratio in addition to

mixture fraction and scalar dissipation rate.

In the present work, a turbulent methanol/air diffusion flame is considered. A

spray flamelet library [77] is used, where the chemical reaction mechanism consists of

23 chemical species and 168 elementary chemical reactions [83]. The spray flamelet

library consists of two droplet radii r = 10 µm and r = 25 µm with one equivalence

ratio Er = 3 for strain rates from a = 55 s−1 to extinction (a = 1330 s−1 for r = 10 µm

and a = 2000 s−1 for r = 25 µm). The characterization of turbulent properties would

be achieved through statistical description of mixture fraction and scalar dissipation

rate, which will be discussed in the next section. In this section, the thermo-chemistry

of gas mixture is described. Thermo-chemical state of the gas mixture is characterized

by the pressure, p, temperature, T , and the mass fraction, Y1, Y2, . . . , YNs
of the Ns

species. Assuming the ideal gas, the underlying equation of state is provided by the

ideal gas law as given below

p =
ρRT

M
, (2.44)

where R is the gas constant and M is the molecular mass. Specific total stagnant

enthalpy consists of the kinetic energy, sensible enthalpy, hs, and chemical enthalpy

(the enthalpy of formation), ∆h0
f [84],

h =
1

2
uiui + hs + ∆h0

f . (2.45)

The specific sensible enthalpy of species α is given by

hs,α(p, T ) = h0
s,α +

∫ T

298.15K

cpα(T ′)dT ′, (2.46)

where h0
s,α is the sensible enthalpy of species α at the reference temperature T0 =

298.15 K. The value of h0
s,α is taken from JANAF thermochemical data [85]. The
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specific heat capacity cp,α depends upon pressure and temperature. In case of constant-

pressure, the specific heat capacity cpα(p, T ) of species α is given by a polynomial

function of T

cpα(T ) =
4∑

i=0

ai,αT i (2.47)

The coefficients an,i are taken from the literature [86]. Having the specific sensible

enthalpy hs,αof species α calculated, the specific sensible enthalpy of a gas mixture is

computed as

hs =

Ns∑

α=1

hs,αYα. (2.48)

The chemical reaction energy source term Q̇ is

Q̇ = −
Ns∑

α=1

∆h0
f,αSα, (2.49)

where Sα is the net chemical reaction rate for species α and can be written as

Sα = Mαω̇α. (2.50)

Assumed as a Newtonian fluid, the viscosity coefficient µ is given as a function of

temperature. Effect of bulk viscosity is neglected. The dynamic viscosity of species α

is

ln µα =

3∑

i=0

ai,α(lnT )i. (2.51)

The coefficients an,i is taken from [87]. The dynamic viscosity of a gas mixture is given

as [87]

µ =
1

2

[
Ns∑

α=1

Xαµα + (
Ns∑

α=1

Xα

µα

)−1

]
, (2.52)

where Xα is the mole fraction of the species α. Similarly, thermal conductivity λα is

given as a function of temperature, too, and is determined from a polynomial form

with the coefficients di,α [87]

lnλα =

4∑

i=1

di,α(ln T )i−1. (2.53)

The coefficients di,α are taken from [87]. The thermal conductivity of a gas mixture is

determined using

λ =
1

2

[
Ns∑

α=1

Xαλα + (

Ns∑

α=1

Xα

λα
)−1

]
. (2.54)
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Binary diffusion coefficient Dαβ depends on the temperature and pressure, and at

constant pressure, it is evaluated using a polynomial form with the coefficients bi,αβ [87]

ln Dαβ =
4∑

i=1

bi,αβ(lnT )i−1. (2.55)

The coefficients bi,αβ is taken from the table in [87]. The diffusion coefficient of species α

in a mixture is estimated from Hirschfelder-Curtiss (or zeroth-order) approximation [88]

Dα,M =
1 − Yα∑
β 6=α

Xα

Dαβ

. (2.56)

The modeling of chemical reactions and thermo chemical properties is discussed

in this section above. An important aspect in inclusion of chemical reactions is their

coupling to turbulent flow. This is discussed in the next section.

2.2 Probability density function methods

The turbulence in combustion systems makes the application of stochastic techniques

inevitable, which rely on the statistical fluctuations of the characteristic variables. In

the realm of stochastic processes, the PDF methods are widely applied. These methods

provide mathematical tools to describe complex processes and therefore, facilitate the

description of a collection of data in a more lucid and convenient way, so that it may

be grasped rather easily. The PDF methods can be based upon either presumed or

transported PDF’s.

2.2.1 Presumed PDF methods

Usually, the procedure of the presumed PDF method is

• collecting the samples from experimental data, or simulations

• arranging the samples to form a distribution

• calculating sample statistics e.g., mean, variance

• choosing an appropriate PDF to represent the empirical data

• estimating the parameters of this PDF from the calculated sample statistics

• analyzing the predictive ability of PDF by conducting particular tests
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The shape and parameters of PDF will largely depend upon the sample and the

way it is chosen. To avoid any bias error, valid samples should be independent and

identically distributed.

In gas flames, turbulence and chemistry are interlinked by using a laminar flamelet

library, where each of the laminar flamelets is characterized by mixture fraction ξ and

scalar dissipation χ rate so that we may write

φ̃ =

∫ ∞

0

∫ 1

0

φP̃ (ξ, χ)dξdχ, (2.57)

where φ̃ is a Favre averaged scalar variable. In spray flames, the effect of evaporation

must also be taken into account. Hollmann and Gutheil [67] discussed the depen-

dency of spray flames on initial equivalence ratio, initial droplet size and initial droplet

velocity in addition to mixture fraction and scalar dissipation rate. Thus

φ̃ =

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ 1

0

φP̃ (ξ, χ, E, r0, v0)dξdχdEdr0dv0. (2.58)

The key question is to define P̃ (ξ, χ, E, r0, v0). The droplet size r0, droplet velocity v0

and equivalence ratio Er are treated through their inclusion in flamelet library [77],

therefore it is important to establish the statistical expressions of ξ and χ. Assuming

that ξ and χ are statistically independent, their joint PDF can be defined as a product

of marginal PDFs

P (ξ, χ) = Pξ(ξ)Pχ(χ). (2.59)

Thus the statistical distributions of ξ and χ in a turbulent flow field are needed. There

exist several distributions that are applied within the scope of fluid mechanics. While

keeping the discussion of this section limited to spray combustion only,the distributions

used in the present work are discussed here.

2.2.1.1 Log-normal distribution

The term log-normal arises from the definition that its the PDF of a random variable,

whose logarithm follows a normal distribution, i.e., if X(µ, σ2) is normally distributed

then exp(X) follows the log-normal distribution. Thus using the rule of change of

variable, the log-normal PDF of X can be written as

PX(x; µlog, σ) =
1

xσ
√

2π
exp

[
− 1

2σ2
(lnx − µlog)

2

]
; x > 0. (2.60)

The parameters µlog and σ are the mean and standard deviation of corresponding

normal distribution of ln(X) respectively. The mean E(X) and variance V ar(X) of
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the log-normal distribution are given by

E(X) = exp(µlog +
1

2σ2
), (2.61)

V ar(X) =
(
exp(σ2) − 1

)
exp(2µlog + σ2)

=
(
exp(σ2) − 1

)
(E(X))2 . (2.62)

Log-normality of diffusive scalars has been assumed extensively in order to assure the

consistency of random variation of local scalar dissipation in case of homogeneous

turbulence [70,89]. Kolmogorov [89] first proposed the hypothesis that the local scalar

dissipation χA averaged over the cell size A is log normally distributed. Thus

Pχ(χA) =
1

(χAσlog

√
2π)

exp

[
− 1

2σ2
(lnχA − µlog)

2

]
, (2.63)

where the A and χA are inter-related through the expression

d2(ln χA)

dA2
= A1 + σ2 ln

(
L

A

)
, (2.64)

where L is the largest scale of the flow, A1 depends upon the flow geometry and σ2 is

treated as constant. The value of σ2 can be taken as 2 [69,70]. Following this definition,

the mean scalar dissipation rate is given by

χ̃ = exp(µlog +
1

2σ2
). (2.65)

2.2.1.2 β distribution

In probability theory, β distribution (also called β distribution of first kind) refers

to a family of continuous probability distributions defined over the interval [0,1]. In

Bayesian analysis, it serves as conjugate prior of Binomial, Bernoulli and geometric

distributions. There are two parameters of β distribution namely a and b, which

appear as exponents of random variable and control the shape of PDF. The PDF of

random variable X is defined as

PX(x; a, b) =
xa−1(1 − x)b−1

B(a, b)
, (2.66)

where B(a, b) is the beta function of a and b given by

B(a, b) =

∫ 1

0

ta−1(1 − t)b−1dt =
Γ(a)Γ(b)

Γ(a + b)
. (2.67)

The mean E(X) and variance V ar(X) are given by
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E(X) =
a

a + b
, (2.68)

V ar(X) =
E(X)(1 − E(X))

1 + a + b
. (2.69)

Following the fact that β distribution domain lies between 0 and 1, and it can produce

a variety of PDF shapes including bell-shaped, U shaped, J shaped and reverse J

taped PDFs, a straight forward approach is to assume that the PDF of ξ follows β

distribution [66]. Thus

Pξ(ξ) =
Γ(a + b)

Γ(a)Γ(b)
ξa−1(1 − ξ)b−1. (2.70)

Using the local values of ξ̃ and ξ̃′′2 in Eqs. (2.68) and (2.69), the shape parameters a

and b are calculated as

a = ξ̃

[
ξ̃(1 − ξ̃)

ξ̃′′2
− 1

]
, (2.71)

b = (1 − ξ̃)

[
ξ̃(1 − ξ̃)

ξ̃′′2
− 1

]
. (2.72)

2.2.1.3 Modified β distribution

Ge and Gutheil [68] suggested that the standard β distribution is not a suitable choice

for evaporating sprays as well as reactive flows since the local value of ξ̃ is less than

unity in the flow field. Thus a four parameter β distribution defined over an interval

ξmin and ξmax may be a suitable choice. This can be done by replacing the mixture

fraction ξ with a rescaled mixture fraction ξ−ξmin

ξmax−ξmin
in the standard β distribution,

which leads to the following definition of PDF

Pξ(ξ) =
Γ(a + b)

Γ(a)Γ(b)
(ξmax − ξmin)

1−a−b(ξ − ξmin)
a−1(ξmax − ξ)b−1. (2.73)

The mean and variance of modified β distribution can be calculated by using the rule

of change of variables, which yields

ξ̃ = ξmin +
a

a + b
(ξmax − ξmin), (2.74)

ξ̃′′2 =
(ξ̃ − ξmin)(ξmax − ξ̃)

1 + a + b
. (2.75)
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The shape parameters are calculated using Eqs. (2.74) and (2.75) through the expres-

sions

a =
(ξ̃ − ξmin)

(ξmax − ξmin)

[
(ξ̃ − ξmin)(ξmax − ξ̃)

ξ̃′′2
− 1

]
, (2.76)

b =
(ξmax − ξ̃)

(ξmax − ξmin)

[
(ξ̃ − ξmin)(ξmax − ξ̃)

ξ̃′′2
− 1

]
. (2.77)

An obvious question that arises is how to choose ξmin and ξmax. A straight forward

intuition is to assume the PDF to lie in the domain which is symmetric about mean

and spreads about standard deviation in positive and negative directions i.e.,

ξmin = ξ̃ −
√

ξ̃′′2, (2.78)

ξmax = ξ̃ +

√
ξ̃′′2. (2.79)

This assumption may be generalized to assume

ξmin = ξ̃ − n

√
ξ̃′′2, (2.80)

ξmax = ξ̃ + n

√
ξ̃′′2, (2.81)

where n ∈ Z+. But it follows from Eqs. (2.76) and (2.77) that such an assumption

would eventually enforce a = b. Therefore, one may conclude that assuming ξmin

and ξmax to be symmetric about ξ̃ would always result in the symmetric shape of

PDF. Luo et al. [32] adapted the modified β distribution by assuming ξmin = 0 and

ξmax = ξ̃ + 2

√
ξ̃′′2C . This idea may be generalized to assuming

ξmin = 0, (2.82)

ξmax = ξ̃ + n

√
ξ̃′′2, ; n ∈ Z+. (2.83)

2.2.2 Transported PDF methods

In transported PDF methods, the PDF is determined by solving its transport equa-

tion [64, 68, 90, 91]. The PDF transport equation for scalar quantities of gas phase

may be derived by considering instantaneous conservation equations for the gas phase.

Basic idea of the transported PDF method is to describe the state of the flow at the

location x = (x1, x2, x3) at the time t in terms of a probability density function f . This

f can be a one-variable PDF or a joint multi-variable PDF. The variables are physical

quantities of the flow such as velocity, mixture fraction or turbulence frequency. The

transport equation of the PDF is deduced from the Navier-Stokes equations [71, 92].
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Appropriate physical models are adapted to model unclosed conditional expectations.

The PDF transport equation is solved using a Monte-Carlo approach [93]. The sam-

ple space consists of a large number of gas particles, which represent the PDF. The

development of the particles in sample space is described by a set of stochastic differ-

ential equations, which are obtained from the modeled PDF transport equation. Thus,

the gas particles exhibit the same PDF as the solution of the modeled PDF transport

equation. Statistics of the flow fields are obtained by integrating the particle properties

over the whole sample space. In the present work, gas phase conservation equations

with spray source terms are considered to derive the PDF transport equation [94]. A

joint PDF of enthalpy and mixture fraction [68] is used and its transport equation

is derived. For future work, a trivariate PDF of enthalpy, gas velocity and mixture

fraction is proposed and its transport equation is given in Appendix A.

2.2.2.1 Derivation of PDF transport equation

To deduce the joint PDF, a fine-grained, one-point one-time Eulerian, joint mixture

fraction and enthalpy PDF f ∗(ζ, η;x, t) is defined for the gas phase of turbulent spray

flames as

f ∗(ζ, η;x, t) = δ(ξ(x, t) − ζ)δ(h(x, t) − η). (2.84)

Here the ξ and h are mixture fraction and enthalpy in physical space, and ζ and η

the corresponding values in sample space. The ensemble averaging of this fine-grained

PDF can be written as

f(ζ, η;x, t) = 〈f ∗(ζ, η;x, t)〉 = 〈δ(ξ(x, t) − ζ)δ(h(x, t) − η)〉, (2.85)

where the conditional mean of any function Q = Q(x, t) could be related to PDF

f(ζ, η;x, t) by

〈Q(x, t)f ∗(ζ, η;x, t)〉 = 〈Q(x, t)|ζ, η〉f(ζ, η;x, t). (2.86)

In terms of the properties of the Dirac-delta function, the material derivative of the

fine-grained PDF has the relation as

0 =
Df ∗

Dt
=

∂f ∗

∂t
+

∂f ∗

∂x

dx

dt
+

∂f ∗

∂ζ

dζ

dt
+

∂f ∗

∂η

dη

dt
. (2.87)

With the shifting property of Dirac-delta function, Eq. (2.87) can be written as

ρ
∂f ∗

∂t
+ ρuj

∂f ∗

∂xj
= −ρ

∂f ∗

∂ζ

dζ

dt
− ρ

∂f ∗

∂η

dη

dt

= − ∂

∂ζ

(
ρ
dξ

dt
f ∗

)
− ∂

∂η

(
ρ
dh

dt
f ∗

)
. (2.88)
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The following can be obtained by using the Eqs. (2.85) and (2.86),

ρ
∂f

∂t
+ ρuj

∂f

∂xj

= − ∂

∂ζ

(
ρ

〈
dξ

dt
|ζ, η

〉
f

)
− ∂

∂η

(
ρ

〈
dh

dt
|ζ, η

〉
f

)
. (2.89)

Substitution of the instantaneous conservation of mass (c.f. Eq. (2.1)) into the above

equation and considering the joint mass density function F (ζ, η;x, t) = ρf(ζ, η;x, t),

the following expression is yielded

∂F

∂t
+

∂(ujF )

∂xj

−
〈

Sl,1

ρ
|ζ, η

〉
F = − ∂

∂ζ

(〈
dξ

dt
|ζ, η

〉
F

)
− ∂

∂η

(〈
dh

dt
|ζ, η

〉
F

)
. (2.90)

In the above transport equation of mass density function F , the terms on the right

hand side are unclosed, and based on the instantaneous conservation equations for

the enthalpy and mixture fraction (c.f. Eqs. (2.2) and (2.10)). These terms can be

expanded as following

− ∂

∂ζ

(〈
dξ

dt
|ζ, η

〉
F

)
= −1

ρ
〈(1 − ξ)Sl,1〉

∂F

∂ζ

− ∂

∂ζ

(
1

ρ

〈
∂

∂xj
(ρDM

∂ξ

∂xj
) + Sl,1

′

+ 〈ξSv〉 − ξSl,1|ζ, η

〉
F

)
, (2.91)

− ∂

∂η
(〈dh

dt
|ζ, η〉F ) = −1

ρ
〈Sl,h − hSl,1〉

∂F

∂η

− ∂

∂η

(
1

ρ

〈
∂

∂xj
(ρDh

∂h

∂xj
) + Sl,h

′

+ 〈hSl,1〉 − hSl,1|ζ, η

〉
F

)
, (2.92)

so the modeled joint PDF transport equation can be written as

∂F

∂t
+

∂(ujF )

∂xj
− 〈Sl,1〉

ρ
F +

1

ρ
〈(1 − ξ)Sl,1〉

∂F

∂ζ
+

1

ρ
〈Sl,h − hSl,1〉

∂F

∂η

= − ∂

∂ζ

(
1

ρ

〈
∂

∂xj
(ρDM

∂ξ

∂xj
) + S

′

ξ|ζ, η

〉
F

)

− ∂

∂η

(
1

ρ

〈
∂

∂xj
(ρDh

∂h

∂xj
) + S

′

h|ζ, η

〉
F

)
, (2.93)

and the effects of fluctuation of spray source terms

S
′

ξ = (1 − ξ
′

)Sl,1, (2.94)

S
′

h = (1 − h
′

)Sl,h. (2.95)

In equation (2.93) the terms on the right hand side appear in unclosed form. They

denote the effects of the molecular diffusion and the fluctuation in spray source terms,

respectively. To close these terms, additional models are needed. These are discussed

in the next subsection.
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2.2.2.2 Mixing models

Suitable mixing models are required to describe the effects of the molecular and thermal

diffusion. A precise and accurate study of molecular diffusivity is very important in

order to analyze the effects of molecular mixing on turbulent reactive and non reactive

spray flows. There are some models available in literature, including the interaction-by-

exchange-with-the-mean (IEM) [72], modified Curl’s model [74], Euclidean minimum

spanning tree (EMST) mixing model [76]. In the scope of spray flows, the simplest

model–the IEM model is used [95]. With the IEM model, the mixture fraction and

enthalpy of the particle evolve by

dξ∗(t)

dt
= −1

2

ǫ̃

k̃
Cφ[ξ

∗(t) − ξ̃] + [1 − ξ∗(t)]
〈Sl,1〉
〈ρ〉 , (2.96)

dh∗(t)

dt
= −1

2

ǫ̃

k̃
Cφ[h

∗(t) − h̃] +
〈Sl,h〉 − 〈hSl,1〉

〈ρ〉 . (2.97)

Here Cφ = 2.0 is the standard model constant [64]. The first term on the right hand

side represents the mixing process. The last term is for the source term due to the

spray evaporation.

Cao et al. [100] investigated the validity and efficiency of mixing models on gas

flames. They found that IEM should be replaced with Euclidean minimal spanning

tree (EMST) or modified Curl (MC) mixing model for jet flames. So an extended

modified Curl (MC) is also employed in order to evaluate the effects of micro-mixing.

MC [74] is based upon Curl’s particle interaction model [73]. The two equal-weight

stochastic particles, denoted by p1 and p2, are selected at random from the ensemble

and after mixing, their mixture fractions and enthalpies are given by

ξ(p1,new) = ξ(p1) +
1

2
a(ξ(p2) − ξ(p1)), (2.98)

ξ(p2,new) = ξ(p2) +
1

2
a(ξ(p1) − ξ(p2)), (2.99)

h(p1,new)
s = h(p1)

s +
1

2
a(h(p2)

s − h(p1)
s ), (2.100)

h(p2,new)
s = h(p2)

s +
1

2
a(h(p1)

s − h(p2)
s ), (2.101)

where the coefficient a is a random number, which lies between 0 and 1.

2.2.3 Boundary conditions

Accuracy and applicability of the numerical schemes are constrained to the imposed

boundary conditions. For distinguishing the directions, x1 is denoted by x and x2

is denoted by r. The computation domain for an axisymmetric 2D configuration is

bounded by the inlet plane x = 0, exit plane x = L, axis of symmetry r = 0 and
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the wall r = M . The inlet plane is characterized by the initial conditions, which are

generated from the experimental data and explained in the next chapter.

Due to axial symmetry, the radial velocity and the correlation ũ′′
xu

′′
r are taken to be

zero at the axis of symmetry i.e., ũr = 0 and ũ′′
xu

′′
r = 0 [64]. For all other variables φ̃,

the property of symmetry at the axis r = 0 leads to the Neumann boundary condition,
∂φ̃
∂r

= 0 [64,101].

For the exit plane x = L, the length of the wall i.e., L is so chosen the fluid

properties do not change anymore or equivalently, the system is in equilibrium. This

leads to the zero gradient boundary condition, ∂ eφ
∂x

= 0.

The wall r = M is the fixed boundary, where the boundary conditions are not

homogeneous. Logarithmic law of the wall is applied for the variables ũx, ũr, k̃, ǫ̃,

ũ′′
x and ũ′′

r . The temperature at the wall TM is a known and fixed quantity for the

simulations. Therefore the enthalpy at the wall can be calculated using the specific

heat i.e h̃ = CpTM . For the mixture fraction and its variance, the boundary conditions

at the wall are given by ∂eξ
∂r

= 0 and ∂gξ′′2

∂r
= 0 [77]. The correlations ũ′′

xu
′′
r , ũ′′

xξ
′′
j , ũ′′

rξ
′′
j ,

ũ′′
xh

′′ and ũ′′
rh

′′ are all set to zero.

2.3 Liquid phase flow

The transport of a liquid droplet in dry or a vapor stream is a very complex phenom-

ena from mathematical point of view due to strong influence of physical processes like

droplet collisions, breakup, evaporation and interaction with surrounding gas. The

properties of liquid droplets in spray flows may depend on various aspects, which

include the droplet atomization at nozzle exit, the dispersion of the droplets in sur-

rounding gas, droplet evaporation and heat exchange with surrounding gas as well as

the effects of turbulence. In the present work, the liquid phase of an evaporating wa-

ter/air spray is modeled using DQMOM [13] and DDM [67], while the liquid phase of

methanol/air spray flame is modeled using DDM only. In both models, the droplet

motion, droplet evaporation and droplet heating are included. In DDM, the droplet

collisions are neglected due to modeling limitations whereas DQMOM considers the

effects of droplet interactions by including the coalescence.

2.3.1 Direct quadrature method of moments (DQMOM)

Although studies have been performed by considering both liquid and gas phases to be

continuous, which leads to similar equations for liquid phase as those of gas phase [18]

but there have been shortcomings such as modeling of evaporation and effect of tur-

bulence on physical droplet sizes. A reasonable way to develop a mathematical formu-
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lation is to consider that individual droplets have a continuous behavior characterized

by statistical properties with negligible deviation from spherical shape [22]. Thus a

distribution function f(x, r,v, t)dxdrdv may be used to describe the spray change at

time t in a neighborhood dx of droplet position x, dr of droplet radius r, and dv of

droplet velocity v. For this distribution function, the well known spray equation [22]

is extensively discussed in literature and several techniques have been introduced to

solve this equation numerically [14–16, 23] as discussed in chapter 1. As a matter of

numerical limitation, the equation is a high-dimensional problem considering the vector

forms of x and v, which is quite difficult to solve unless some additional assumptions

are made. The DQMOM transport equations are derived from Williams’ spray equa-

tion [22], which is given by

∂f

∂t
+

∂(vf)

∂x
= −∂ (Rf)

∂r
− ∂(Ff)

∂v
+ Qf + Γ f . (2.102)

The equation describes the transport of the number density function f(r,v;x, t)

in terms of time, t, and Euclidean space, x. In Eq. (2.102), v and F denote droplet

velocity and drag force per unit mass whereas R is the change of the droplet radius

with time, i.e., R = dr/dt, where r is the droplet radius. The last two terms refer to the

droplet interactions. Qf represents the increase in f with time due to droplet formation

or destruction by processes such as nucleation or breakup whereas Γf denotes the rate

of change of f caused by collisions with other droplets.

For the present study, a joint radius-velocity number density function is consid-

ered [13], which is approximated by DQMOM as sum of the product of weighted

Dirac-delta functions [23] of radii and velocities [12]

f(r,v) =
N∑

n=1

wnδ(r − rn)δ(v − vn), (2.103)

where wn and rn are chosen as N representative quantities of weights and radii, and vn

are the corresponding velocities. Application of DQMOM results in closed transport

equations for droplet weights or number density, radii and velocities, respectively, which

are written as [13]

∂wn

∂t
+

∂(wnvn)

∂x
= an, (2.104)

∂(wnρlrn)

∂t
+

∂(wnρlrnvn)

∂x
= ρlbn, (2.105)

and
∂(wnρlrnvn)

∂t
+

∂(wnρlrnvnvn)

∂x
= ρlcn, (2.106)

where an, bn and cn are the source terms that may account for evaporation, drag force

and gravity.
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The steady form of Eqs. (2.104) – (2.106) is solved simultaneously by using ap-

propriate initial and boundary conditions to find wn(x, t), rn(x, t) and vn(x, t)., The

system of equations is closed by modeling the source terms i.e., an, bn and cn, using

the physical models to account for effects of droplet evaporation, drag force and grav-

ity. These source terms are calculated through moment transformation of phase-space

terms, which yields the following linear system [13,171]

Pk ,l =

∫ ∫
rkvl

[
−∂(Rf)

∂r
− ∂(Ff)

∂v
− Γf − Qf

]
drdv. (2.107)

The exact form of the DQMOM linear system relies on the choice of moments. To

obtain a solution, the moments are so chosen that the resulting coefficient matrix is

non-singular. In the present work, N is set to be 3 and the corresponding moment set

is chosen as [23] k ∈ {1, ..., 2N}; l ∈ {0, 1}. Though this approach has been tested to

model non-evaporating sprays [24–26], few studies have been carried out on evaporating

sprays [23,27,28]. However, these studies consider a very simplified evaporation model

to calculate the change in droplet size with time i.e., either as a linear function of

droplet volume or non-linear function of droplet volume, which is similar to the well

established but very simplified d2 law. This has been improved [13] by implementing

the advanced evaporation model. Droplet evaporation is accounted for by considering

the rate of change of droplet volume as [102] (see section 2.3.4).

2.3.2 Discrete droplet model (DDM)

DDM is a well established model for for dilute sprays where droplet - droplet interac-

tions may be neglected [18, 21, 29]. The droplet positions and velocities are captured

using Lagrangian particle tracking method, which are used to calculate the source terms

for extended Eulerian equations of the gas phase. The model captures the trajectories

and dynamics of individual droplets, which are injected in form of parcels [77]. A

parcel refers to a collection of droplets, which are described by a set of properties i.e.,

(xp,k, rp,k,vp,k, mp,k, Tp,k, ∆Vij), where xp,k is the position, rp,k is the radius, vp,k is the

velocity, mp,k is the liquid mass and Tp,k is the temperature of kth parcel in control vol-

ume ∆Vij . Having a system of parcels injected, the model captures the flow properties

i.e., droplet dynamics, evaporation and heating as explained in next paragraphs.

2.3.3 Droplet dynamics

The dynamics of liquid droplets in sprays is the foundation that needs to be computed

for the coupling of gas - liquid phases due to its strong dependance on the flow of
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surrounding gas. The droplet velocity v at position x can be explained as following

v =
dx

dt
(2.108)

The change in droplet velocity is then computed using the relation

dv

dt
=

3

8

1

r

ρ̄

ρl

(u− v)|u− v|CD + g (2.109)

where ρ̄ and v are the density and velocity of the surrounding gas while ρl, CD and

g are liquid density, drag coefficient and gravitational acceleration, respectively. A

decomposition of gas velocity as per Eq. (2.16) i.e. u = ũ+u′′ in mean and fluctuating

components of the velocity allows the influence of turbulence on droplet velocity. The

detailed mathematical description of this decomposition is given in the section of gas

phase equations. An important quantity in Eq. (2.109) is the drag coefficient, which is

computed as a function of droplet’s Reynolds number Red as follows [103]

CD =

{
24

Red
(1+ 1

6
Re0.687

d ) if Red<103

0.424 if Red≥103
(2.110)

The droplet Reynolds number is calculated using the definition

Red = 2ρ̄r
|u− v|

µf
(2.111)

where the mean dynamic viscosity in the film µf is depends upon the temperature in

the film Tf , which is calculated using 1/3 rule [104] as following

Tf =
T̃ + 2Td

3
. (2.112)

The quantities T̃ and Td refer to Favre averaged gas temperature and droplet temper-

ature respectively.

2.3.4 Droplet evaporation

The key change that droplet undergoes while moving in a gaseous environment is

the mass transfer from liquid to gas. Intuitively, change in droplet radius along the

droplet trajectory is an important phenomenon. In the present work, a two-film model

developed by Abramzon and Sirignano [102] is implemented to account for evaporation,

where the terminology ”film” describes the vapor layer between droplet surface and

surrounding gas. The radius of outer boundaries of film may be calculated as [77]

rf,T0
= r

Nu0

Nu0 − 2
; rf,M0

= rp
Sh0

Sh0 − 2
. (2.113)
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Here index ’0’ refers to quiescent droplets and subscript f refer to film properties. The

Nusselt number Nu0 and Sherwood number Sh0 are given by

Nu0 = 1 + (1 + RedPrf)
1/3f(Red), (2.114)

and

Sh0 = 1 + (1 + RedScf)
1/3f(Red), (2.115)

where Prf and Scf are Prandtl and Schmidt numbers given by

Prf = µf
cp,f

λf
and Scf =

µf

ρfDf
. (2.116)

The function f(Red) depends upon droplet Reynolds number and in case of low Reynolds

number, it may be calculated as defined in [102].

The quantities µf , cp,f , λf , ρf and Df refer to mean dynamic viscosity, specific

heat, thermal conductivity, density and thermal diffusivity of vapor in the film. The

evaporation rate of a droplet may be then computed as [102]

ṁ =
d
(

4
3
πρlr

3
p,k

)

dt
= 2πrρ̄fD̄f S̃h ln(1 + BM). (2.117)

The above equation implies

dr

dt
=

ρ̄fD̄f S̃h ln(1 + BM)

2ρlrp,k
. (2.118)

Here BM is the Spalding mass transfer number and S̃h is the modified Sherwood num-

ber, which is calculated as

S̃h = 2 +
Sh0 − 2

BM

(1 + BM ) ln(1 + BM). (2.119)

Spalding mass transfer number is calculated as following

BM =
YLs − YL∞

1 − YLs
, (2.120)

where YLs and YL∞ are mass fractions of the vapor at droplet surface and outer bound-

ary of film, respectively, and YLs is given by [105]

YLs =
ML

ML + M̄(p̄/pL − 1)
. (2.121)

The quantities ML and pL denote molar mass and pressure of water vapor while

M̄ and p̄ represent molar mass and mean pressure of the surrounding gas, respectively.

Vapor pressure for water is calculated using Antoine’s equation as [106]
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log10pL = 10.11564 − 1687.537

Td − 42.83
, (2.122)

whereas for methanol, the vapor pressure is given by [107]

pF = pcrit exp

(
f(Td,ref)

1 − Td,ref

)
, (2.123)

with

Td,ref = 1 − Td

Tcrit
; (2.124)

f(T ) = −8.54796T + 0.76982T 1.5 − 3.1085T 3 + 1.54481T 6. (2.125)

2.3.5 Droplet heating

Although the initial temperatures of gas and the droplet are equal in evaporating case,

the droplet temperature is subject to change due to evaporation, and its time evolution

is computed using the infinite conductivity model [102], which is a good approximation

for liquids with high volatility

mCpL
dTs

dt
= ṁ

[
CpL(Ts − Tg)

BT

− LV (Ts)

]
, (2.126)

where CpL is the specific heat capacity of the liquid, Ts is the temperature at droplet

surface, Tg is temperature of the surrounding gas and LV is the temperature depen-

dent latent heat of vaporization. BT is the Spalding heat transfer number, which is

calculated in terms of the mass transfer number using the relation [102]

BT = (1 + BM)φ − 1, (2.127)

where the exponent φ is given by [102]

φ =
CpL

Cpg

S̃h

Ñu

1

Le
. (2.128)

Here Cpg is the specific heat capacity of the gas and Ñu is the modified Nusselt number

and it is given by

Ñu = 2 +
Nu0

(1 + BT )−0.7
. (2.129)

2.3.6 Droplet collisions

As it is known as a major drawback of DDM, that implementation of droplet collisions

is not an easy task. In the present work, droplet coalescence is taken into account for

DQMOM in order to investigate the effect of droplet collisions on evaporating sprays
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while the process of breakup is currently neglected [13], since the liquid mass is quite

low in the present work. The coalescence is modeled as given in [7,108]. To emphasize

upon coalescence, standard assumptions [108] have been employed. These include each

binary collision leading to coalescence (Ec = 1) or rebound (Ec = 0), where Ec is

the coalescence efficiency. Furthermore, the mass and momentum of colliding droplets

are conserved before and after the collision. In addition, the mean collision time is

assumed to be smaller than the inter-collision time. Thus, for two colliding droplets

with radii r1 and r2, and velocities v1 and v2 respectively, the coalescence function can

be written as [7, 108]

Γf = Q+
c + Q−

c , (2.130)

where Q+
c and Q−

c are calculated as

Q−
c = −

∫ ∞

−∞

∫ ∞

0

f(t,x; r,v)f(t,x; r1,v1)B(|v − v1|)dr1dv1, (2.131)

Q+
c =

1

2

∫ ∞

−∞

∫ r

0

f(t,x; r1,v1)f(t,x; r2,v2)B(|v − v1|)dr1dv1, (2.132)

where B(|v − v1|) is given by

B(|v − v1|) = π(r1 + r2)
2|v2 − v1|Ec. (2.133)

In above equations, (r,v) refer to post-collision properties, which are related to pre-

collision properties (r1,v1) and (r2,v2) through the relations given as [7, 108]

v =
r3
1v1 + r3

2v2

r3
1 + r3

2

, (2.134)

r3 = r3
1 + r3

2. (2.135)

2.3.7 Source terms

To calculate the source terms due to spray evaporation for Eqs. (2.18), (2.19), (2.20),

(2.22), (2.24) and (2.25), the droplet number density needs to be calculated at first.

Since the gas phase equations are solved for DDM only, therefore the equation for

droplet number density n can be written as following while neglecting the droplet–

droplet interactions,
∂n

∂t
+

∂(uin)

∂xi
= 0. (2.136)

The source terms are then written as

• Source term for continuity equation

S̄l,1 = nṁ
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• Source term for momentum equation in i-direction

Sl,ũx
= nṁvi

• Source term for energy equation

S̄l,h̃ = nṁHd, where Hd =
(
h(Td) + v2

2
+ 1

2
(v − ũ)2 − v(ũ + u′′) − Lv(Td)

)

• Source term for transport equation of turbulent kinetic energy

S̄l,k̃ = u′′(nṁ(v + u′′))

• Source term for dissipation rate of turbulent kinetic energy

S̄l,ǫ̃ = Csǫ̃/k̃ S̄l,k

• Source term for conservation equation of mixture fraction

S̄l,eξ = nṁ

• Source term for variance of mixture fraction

S̄
l,gξ′′2

= S̄l,k ξ̃′′2
(
1 − 2ξ̃

)
/ ξ̃



3. Numerical Schemes

A suitable numerical scheme is necessary to solve the mathematical model so that

the underlying physics may be described appropriately. This requires discretization

of governing equations and then implementation of a solver by means of a computer

program. For any numerical method, it is very important to

• assure the physical conservation properties

• be consistent and stable for all physical configurations in question

• ensure non-negative property of quantities, where required e.g. mixture fraction

• be feasibly precise and convergent

• be computationally affordable

• independent of case specific properties

The properties of convergence, accuracy and non-negativity are all inter-related but

none implies or implied by the other. In fluid mechanics, several numerical methods

have been adapted, developed and improved. Naturally each method poses both ad-

vantages and disadvantages. Therefore, each application area has its own preference.

In the framework of two-phase flows, it is difficult for any standard method to pro-

duce physically feasible simulations all alone, so hybrid numerical methods are tested

and adapted widely. In hybrif methods, the major concerns are the consistency and

stability, therefore an analysis of stability and consistency is required.

The commonly applied methods include a variety of mathematical backgrounds,

which consist of particle methods, characteristic methods, Lagrangian finite differ-

ence/finite volume methods, Eulerian finite difference/finite volume methods, finite

element methods and spectral methods. The particle methods, such as smoothed par-

ticle hydrodynamics or vortex methods inherit the robustness of Lagrangian description

but uncontrolled particle distortion leads to degraded accuracy and the computation

of spatial differential operators on the particles is highly inefficient [151]. Method of

characteristics is the oldest and nearly exact method but it can be applied to hyper-

bolic equations only, therefore it deals with inviscid fluids [152]. In recent years, the

finite difference and finite element methods are applied extensivly. In finite difference
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methods, the diffusion coefficients are calculated at the mid points of the grid cell faces,

which is feasible as long as diffusion coefficients are sufficiently smooth. More precisely,

a second order accuracy is achieved if the diffusion coefficients are differentiable to order

3 [153]. In case the diffusion coefficients are not highly differentiable or discontinuous,

then integration based discretization schemes such as finite element and finite volume

methods are a better choice. The finite element method is applied extensively in fluid

mechanics. it is very stable method and it can capture complex geometries [154]. But

it needs special care to ensure the conservation properties. Furthermore, it has much

higher computational cost [154] as compared to contemporary finite volume method.

Alike finite difference method or finite element method, values are calculated at

discrete places on a meshed geometry in finite volume method (FVM). The term ”finite

volume” refers to the control volume surrounding each node point on a mesh. In FVM,

volume integrals that contain a divergence term are converted to surface integrals,

using the divergence theorem. These terms are then evaluated as fluxes at the surfaces

of each finite volume. Since the flux entering a given volume is the same as that leaving

the adjacent volume, therefore these methods are conservative. Another advantage of

the finite volume method is that it can be easily implemented to unstructured meshes.

Many computational fluid dynamics softwares use FVM. A major characteristic of

FVM is that it combines the advantages of both the finite difference method and finite

element method i.e., it is flexible geometrically as well as in defining the discrete flow

field. Generally, the solutions obtained by finite volume method are relatively smooth

and computationally efficient as compared to other numerical schemes. It can capture

complex geometries and construct high order discretized formulations. In the present

work, a finite volume method based on SIMPLER algorithm [155] is used to solve the

mean conservation equations of the gas phase flow while the discrete droplet model for

liquid phase is solved using stochastic parcel method.

3.1 Finite volume method for gas phase

conservation equations

Conservation equations are the fundamental laws of fluid mechanics, which state the

conservation of mass, momentum and energy in a control volume encapsulated by

a surface. These conservation equations can be represented in different ways. It is

important to note that the divergence condition for the velocity is satisfied by the

continuity equation for incompressible flows, whereas in case of compressible flows, the

energy equation satisfies the divergence condition. Since both reactive and non-reactive

cases are considered in the present work, the compressibility conditions are different

from incompressible limit. It has been shown [156] that standard numerical schemes
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φ̃ S̄g,φ S̄l,φ

1 0
Np∑
k=1

(nṁ)p,k

ũx − ∂p̄
∂x

− 2
3

∂
∂x

[
µeff

(
∂ũx

∂x
+ 1

r
∂(rũr)

∂r

)]
+ ρ̄g

Np∑
k=1

(nṁvx)p,k

ũr − ∂p̄
∂r

− 2
3

∂
∂r

[
µeff

(
∂ũx

∂x
+ 1

r
∂(rũr)

∂r

)]
− 2µeff ũr

r2

Np∑
k=1

(nṁvr)p,k

h̃ 0
Np∑
k=1

(nṁHd)p,k

k̃ Gk − ρ̄ǫ̃
Np∑
k=1

u′′(nṁ(v + u′′))p,k

ǫ̃ (C1Gk − C2ρ̄ǫ̃)ǫ̃ / k̃ Csǫ̃/k̃ S̄l,k

ξ̃ 0
Np∑
k=1

(nṁ)p,k

ξ̃′′2 2Γgξ′′2,eff
∂2 eξ
∂x2

j

− 2ρ̄ǫ̃ / k̃ ξ̃′′2 S̄l,k ξ̃′′2
(
1 − 2ξ̃

)
/ ξ̃

Tab. 3.1: Governing equations of the gas flow with a dilute spray [67].

for incompressible form of conservation equations may not yield physically accurate

results for weakly compressible flows. Therefore, the compressible form of conservation

equations is chosen.

In the present work, Favre-averaged steady axisymmetric compressible conservation

equations are solved by using the methodology suggested by Patanker [155], which can

be written in the following form as a generalized equation [67]

∂(ρ̄g ũxφ̃)

∂x
+

1

r

∂(rρ̄gũrφ̃)

∂r
− ∂

∂x

(
Γφ,eff

∂φ̃

∂x

)
− 1

r

∂

∂r

(
rΓφ,eff

∂φ̃

∂r

)
= S̄g,φ̃ + S̄l,φ̃, (3.1)

where φ̃ represents the flow field variables. The source terms S̄g,φ and S̄l,φ̃ are writ-

ten appropriate to the variable φ. These source terms are approximated using particle

source in cell (PSIC) method [67,78], where the droplets are considered as point sources.

Table 3.1 contains the source terms of corresponding variables for the system of equa-

tions described by Eq. (3.1), where Np denotes the number of parcels in control volume

V, n is the number of droplets in parcel, and ṁ refers to the evaporated liquid mass (see

Eq. (2.117)). Since the contribution of evaporated liquid mass ṁ is the defining quan-

tity in approximation of S̄l,φ̃, a reliable evaporation computation is necessary. The

method of computing droplet evaporation is explained in section 3.3.2.1.

To determine the droplet source in a control cell, the droplet position is determined

at first using the relation
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(i,j)

Fig. 3.1: Particle-Source-in-Cell (PSIC) model [95]

xn+1
p = xn

p + vn
p∆t. (3.2)

The spray source terms for one certain control volume V (see Fig. 3.1) can be written

as,

S̄l,φ =
ṁp,kφ

V

=
1

V

Np∑

k=1

[(mp,kφk)in − (mp,kφk)out]. (3.3)

In the present work, gas phase equations are resolved with DDM only. As it will

be explained in the later sections of this chapter, DDM is solved using a Lagrangian

stochastic parcel method [77].

A major concern about the present method is its applicability for non-reactive case,

which represents the weakly compressible flow. It is reported that the compressible

numerical schemes may be unstable at low Mach number. In the present case, Mach
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i,j( )

Fig. 3.2: Staggered grids in two dimensions: →= ũx; ↑= ũr; • = scalar variables [158].

number varies between 0.1 to 0.2. Since the value of Mach number are not very close

to the incompressible limit, so the compressible formulation of conservation equations

seems a suitable choice. The points to address are the pressure velocity coupling and

interpolation for approximation of convection terms.

It is established that decomposition of pressure over a staggered grid is suitable to

address the problem of pressure velocity coupling [157], which is used in the present

work. Concerning the interpolation for approximation of convection terms, an upwind

scheme is a better choice than linear interpolation because it assures the non-zero

diagonal of stiffness matrix, which is required for stability of the system. In the present

work, a first order upwind scheme is used. Staggered grids have been used in several

studies in literature. Fig. 3.2 [158] shows a staggered grid, where the control volume for

the node (i, j) is shown as a dashed line. All the quantities are calculated on the grid

nodes (i, j), (i+1, j), (i, j+1) and (i+1, j+1) except the gas velocity. The gas velocity

is calculated at the center of the grid cell faces to which they are normal. Pressure

difference between two adjacent cells is the driving force for the velocity component at

the interface of the two cells and implementation of staggered grid prevents oscillatory

solutions for the pressure p. It is well established that implementation of staggered grid

satisfies Poisson equation for pressure [159]. The decomposition of pressure may be

attained in different ways i.e., in two components following the equation of state and
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Poisson equation [157] or in three components following the asymptotic analysis [160,

161]. Since the compressible equations are used in the present work, a two component

decomposition of pressure is used. There are certain disadvantages associated to the

use of staggered grid too. Foremost of these disadvantages is the inconsistency of

boundary conditions since at least one of the variables i.e., ux and ur is not defined on

a particular boundary [159]. The structure of computer program is also relatively more

complicated as u cannot be defined on the same array as other variables. In case of

non rectangular grid or cartesian coordinates, the implementation is further difficult.

3.1.1 Discretized formulation

The discretized forms of conservation equations are similar except that of momentum

equation because of the usage of staggered grid technique. There are several ways and

techniques that can be used to discretize the governing equations. As a prerequisite

of convergence, the solution must be consistent at the control volume faces i.e., the

flux must be represented by the same discretization equations across the face, which is

common between two adjacent cells. In the present formulation, the energy equation

and the transport equations for the mixture fraction, variance of mixture fraction,

turbulent kinetic energy, and its dissipation rate are solved by applying a five node

formula [155] i.e., the value of an independent variable φP at a node P = P (i, j)

is connected with those of its two neighbors in x-direction, φE and φW , where E =

E(i + 1, j) and W = W (i − 1, j), and its two neighbors in y-direction, φS and φN ,

where N = N(i, j + 1) and S = S(i, j − 1). The points E, W , N and S refer to east,

west, north and south of the point P , respectively. Thus, any obtained equation from

Eq. (3.1) can be written as

aP φP =
∑

I=E,W,N,S

aIφI + b, (3.4)

where b denotes the source term. The index I ∈ {E, W, N, S} indicates the directions.

The coefficients aI represent the effects of convection and diffusion at four faces of the

control volume in terms of flow rate FI and conductivity DI . The expressions for aI

and b are derived by integrating the differential equation (3.1) over a control volume

surrounding the node p (see Fig. 3.3 [158]). The source term Sφ̃ = Sg,φ̃ + Sl,φ̃ must

be linearized, which is done by expressing it as a sum of a linear term SP φ̃P and a

constant term SC i.e.,

Sφ̃ = SP φ̃P + SC . (3.5)
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Fig. 3.3: Control volume of the grid nodes [158].

Thus,

aI = DIA(|PI |) +
1

2
(|EI | − EI) , I = E, N, (3.6)

aI = DIA(|PI |) +
1

2
(|EI | + EI) , I = W, S, (3.7)

aP =
∑

I

aI − SP ∆x∆y, (3.8)

b = SC∆x∆y, (3.9)

where PI is the Peclet number, which may be defined in terms of convection and the

diffusion length as

PI =
EI

DI
. (3.10)

As it is evident that the value at a grid point is influenced by its neighboring grid

points. Therefore, an increase in the value of any dependent variable at neighboring

grid points of point P must increase the value of that dependent variable at point P ,

while the other conditions are kept unchanged. This requires that all the coefficients

aI : I ∈ {P, E, W, N, S} must have the same sign, which is taken to be positive sign in

this work. It can be seen in Eq. (3.8)that even if aI are positive for I ∈ {E, W, N, S},
still aP will yield a negative value for large enough SP , which eventually will cause the
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numerical computation to diverge. Thus the source term must be linearized with a

negative slope i.e., SP < 0.

Function A(|P|) depends on discretization schemes. In the present work, an upwind

scheme is employed.The upwind scheme is the only approximation that unconditionally

satisfies the boundedness criterion. With upwind scheme, oscillations in the solutions

are avoided, i.e., the the computation is more stable. However, the upwind scheme

introduces numerical diffusion as a result of the first-order truncation. A is assumed

to be unity

A(|PI |) = 1. (3.11)

The convection terms EI are expressed as

EI = (ρ̄ũx)I∆y, I = E, W, (3.12)

EI = (ρ̄ũr)I∆x, I = N, S. (3.13)

The diffusion fluxes DI are calculated using a central-difference schme and can be

expressed as

DI = ΓI
∆y

(δx)I
, I = E, W ; (3.14)

DI = ΓI
∆x

(δy)I
, I = N, S. (3.15)

3.1.1.1 Solution for conserved scalars

The solution for the conserved scalars is obtained using Tri-Diagonal-Matrix-Algorithm

(TDMA) to solve the Eq. (3.4). Equation (3.4) can be rewritten as

φP =

∑
I=E,W,N,S aIφI + b

aP
. (3.16)

Thus setting the iterations, the following form is obtained.

φ̃P = φ̃∗
P +

(∑
I(aI φ̃I) + b

aP
− φ̃∗

P

)
. (3.17)

Since the large changes in values of variables in successive iterations may cause com-

putational instability, so the scalars φ̃n+1
P is restricted to change only by a fraction of

φ̃n
P by using the relaxation parameters αP i.e.,

φ̃P = φ̃∗
P + α

(∑
I(aI φ̃I) + b

aP
− φ̃∗

P

)
, (3.18)

where αP are constants and 0 < αP < 1.
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Fig. 3.4: Control volume of axial velocity (left) and radial velocity (right) [158].

3.1.1.2 Solution of momentum equation

The solution for the conserved scalars described in previous subsection is possible

when density, velocity and pressure field are known. So the contiuity and momentum

equations must be treated in order to obtain a solution. These equations are coupled

in the physical sense, as the conservation of momentum is possible in the flow field only

when the mass is conserved. The control volume for velocity u is shown in Fig. 3.4 [158],

which is staggered in relation to the normal control volume around the grid point P

and E. For the solution, pressure field must be known as the pressure difference pP −pe

is the driving force acting on the control volume for the velocity u. The pressure

gradient −∂p̄/∂xi is considered as a source term of the momentum equation and so it

is indirectly involved in continuity equation, too. The simplest way to discretize the

pressure term is to consider one dimensional control volume of unity length around the

point P and assume the staggered grid face at the middle of two successive grid nodes.

Then using the linear interpolation for the pressure,

p̄w =
p̄W + p̄P

2

and

p̄e =
p̄E + p̄P

2
.

So the pressure difference of velocity integration points can be described in terms of

pressure difference of grid nodes as

p̄w − p̄e =
p̄W + p̄P

2
− p̄E + p̄P

2
=

p̄W − p̄E

2
. (3.19)

The problem is that while using only two of the neighboring grid points for pressure

discretization, the pressure field may be constant. The same problem would arise
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in case of continuity equation. Thus a correction in pressure field is needed. The

calculation of the diffusion coefficient and the mass flow rate at the faces of the control

volume require a treatment similar to Eq. (3.4). The resulting discretization equation

is written as

aeũ
∗
x,e =

∑
albũ

∗
x,lb + b + (p̄∗P − p̄∗E)Ae, (3.20)

awũ∗
x,w =

∑
albũ

∗
x,lb + b + (p̄∗W − p̄∗P )Aw, (3.21)

anũ∗
r,n =

∑
albũ

∗
r,lb + b + (p̄∗P − p̄∗N)An, (3.22)

and

asũ
∗
x,s =

∑
albũ

∗
r,lb + b + (p̄∗S − p̄∗P )As. (3.23)

The algebraic coefficients alb account for the combined convection-diffusion influences

at the control volume faces. The source term b is defined in the same manner as in

Eq. (3.4). As the correction is needed in pressure calculation, the corrected pressure

p̄∗ differs from mean effective pressure p̄ i.e.

δp = p̄ − p̄∗, (3.24)

where δp is called pressure corrector. Using this correction, the velocity components

calculated using Eqs. (3.20) - (3.23) are also corrected as

ũx,e = ũ∗
x,e +

Ae

ae

(δp∗P − δp∗E), (3.25)

ũx,w = ũ∗
x,w +

Aw

aw

(δp∗P − δp∗E), (3.26)

ũr,n = ũ∗
r,n +

An

an
(δp∗P − δp∗E), (3.27)

ũr,s = ũ∗
r,s +

As

as
(δp∗P − δp∗E). (3.28)

The calculation of pressure corrector can be aided by using the discretized form of

continuity equation

[(ρ̄ũx)e − (ρ̄ũx)w]Ae + [(ρ̄ũr)n − (ρ̄ũr)s]An = S̄l,1. (3.29)

Using Eqs. (3.25) - (3.28) in Eq. (3.29), following expression for pressure corrector is

obtained

aP δpP =
∑

I∈{E,N,S,W}

aIδpI + b, (3.30)
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where the coefficients and source term are given by

aI = ρ̄IdIAI ,

ap =
∑

I

aI ,

b = [(ρ̄ũx)e − (ρ̄ũx)w] Ae + [(ρ̄ũr)n − (ρ̄ũr)s]An + (ρgi + S̄l,1)∆V,

dI = AI/aI .

3.1.2 Solution algorithm

The numerical algorithm applied to obtain a solution is abbreviated as ”SIMPLER”,

which stands for “Semi-Implicit Method for Pressure-Linked Equations - Revised” [155].

The semi implicit algorithms were extensively applied for numerical simulations of fluid

flows in the last decades. In the present work, SIMPLER algorithm is used to calculate

the pressure and to ensure the validity of the continuity equation. Some modifications

in the SIMPLER algorithm have been suggested in [162].

SIMPLER algorithm relies on the finite volume discretization using the staggered

grids, which are incorporated in the present work. The solutions of the discretized

equations are obtained through iterative procedures. The iterative procedure can be

interpreted as a pseudo-transient treatment of the unsteady momentum conservation

equations in discrete form to obtain the steady-state solution [155].

1. Estimation of a pressure field p∗;

2. Calculation of gas velocity ux
∗ and u∗

r using the Eqs. (3.20) - (3.23);

3. Calculation of δp using Eq. (3.30);

4. correction of calculated velocity using the Eqs. (3.25) - (3.28)

5. Obtaining pressure at next grid node i.e., pn+1 = pn + δp;

6. Calculating the scalar variables

7. checking whether the source term b in Eq. (3.30) is zero. If not, returning to the

step 2 and repeating until convergence is achieved.

3.1.3 Stability

The stability of applied numerical scheme is essential. In case of weakly compressible

flows, the stability of numerical schemes is a known question [156]. In particular, the

pressure velocity coupling needs to be treated properly. This is achieved by applying
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the staggered grid in the present work. For weakly compressible flows, the compressible

scheme without any modification would tend to fail due to large difference between the

flow and sound velocities. When Mach number is greater than 0.3, the compressible

scheme may be used without any modification. For smaller Mach numbers, explicit

compressible schemes are not suitable for spray flows [57]. To be precise, incorporating

small Mach numbers having high velocity of sound leads to very small time steps. This

can be treated through application of semi implicit or fully implicit numerical scheme.

The aspect that requires special attention is that the pressure velocity coupling in

incompressible limit must ensure the divergence free constraint.

To address the aforementioned, SIMPLE-type methods have often been used in

literature [160] and adapted in the present work as well. The pressure is decomposed

in constant and fluctuating components. The constant part is used to calculate the

equations of state. The much smaller part guarantees the divergence constraint for the

velocity. Besides, the linear interpolation is not suitable for high velocity of sound in

the flow. Therefore, an upwind scheme is used in the present work.

The round off error in nth iteration for conserved scalars and the velocity at point

P is defined by

en
P = φ̃exact

P − φ̃n
P . (3.31)

Thus there relative error of successive iterations can be defined as

en+1
P − en

P = φ̃exact
P − φ̃n+1

P − (φ̃exact
P − φ̃n

P )

= φ̃n
P − φ̃n+1

P . (3.32)

Using Eq. (3.18) in Eq. (3.32), the above relation can be derived as

en+1
P − en

P = φ̃n
P −

{
φ̃n

P + α

(∑
I(aI φ̃

n
I ) + b

aP
− φ̃n

P

)}
, (3.33)

where α is the relaxation parameter and its value lies between 0 and 1. Therefore the

absolute value of relative error can be written as

∣∣en+1
P − en

P

∣∣ = α

∣∣∣∣∣

∑
I(aI φ̃

n
I ) + b

aP
− φ̃n

P

∣∣∣∣∣ . (3.34)

Since 0 < α < 1, so the above equation may be transformed to the following inequality

∣∣en+1
P − en

P

∣∣ ≤
∣∣∣∣∣

∑
I(aI φ̃

n
I ) + b

aP
− φ̃n

P

∣∣∣∣∣ . (3.35)

In the above inequality, the spray source is represented by the quantity b. Since the

initial data i.e., at n = 0 is known and generated from experimental data, the relative

error is bounded by the known quantities.
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The SIMPLER based finite volume numerical scheme for the solution of gas phase

conservation equations is explained. In the present work, gas phase conservation equa-

tions are solved for both non reactive and reactive cases. The reactive case is modeled

using PDF method as well. In the next section, the numerical method for the solution

of PDF transport equation is described.

3.2 Monte-Carlo particle method for the PDF

transport equation

The PDF transport equation is a high dimensional problem and it can not be solved di-

rectly. Therefore, Monte-Carlo methods including Eulerian Monte-Carlo methods [163]

and Lagrangian Monte-Carlo methods [64] are applied for its solution. The PDF is rep-

resented using stochastic Eulerian fields in Eulerian Monte-Carlo methods [163] while

in Lagrangian Monte-Carlo methods, the stochastic particles are used to represent the

PDF [64]. In two phase flows, the particle methods are particularly useful as the dis-

persed phase is often solved by particle methods, where the particles may represent

droplets, bubbles or solid particles.

In the present work, a Lagrangian Monte-Carlo particle method is used for PDF

transport equation, where one point PDF is represented by a finite number of gas

particles. These Monte-Carlo/stochastic gas particles are created and activated ac-

cording to the local flow properties at the inlet plane. The total mass of the stochastic

gas particles in one control cell calculated from the mass flux during the current time

step [95]

m∗
tot = ρ0ux,0S0∆t, (3.36)

where S0 is the area of the control cell at inlet profile while the initial density ρ0

and initial axial velocity ux,0 are taken from experimental data. Each gas particle is

associated to a set of properties. The set of these properties is not unique as it may

vary depending upon the formulation of the PDF transport equation such as mass m∗,

position x∗, velocity u∗, mixture fraction ξ∗j and enthalpy h∗. The superscript ∗ refers

to sample properties. The position of gas particle i.e., x∗ evolves according to the

following equation:
∂x∗

∂t
= u∗(x∗), (3.37)

where u∗(x∗) is the instantaneous velocity of the particle. The instantaneous velocity

of the particle is written as

u∗(x∗) = ũ(x∗) + u
′′

(x∗, t), (3.38)
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where ũ is computed by the finite volume method and is interpolated into the particle’s

position x∗. A first-order interpolation is used in the present work i.e., if the particle

is located in the cell e with four vertices (i, j), (i + 1, j), (i, j + 1), and (i + 1, j + 1),

then the value of function φ at the particle position (x1, x2) is interpolated from the

values stored at the nodes

φ∗(x1, x2) = gi,j(x1, x2)φi,j + gi+1,j(x1, x2)φi+1,j

+ gi,j+1(x, y)φi,j+1 + gi+1,j+1(x1, x2)φi+1,j+1, (3.39)

where gi,j(x1, x2) is the linear basis function coefficient of node (i, j) to the particle

position (x1, x2) in the cell e. The linear basis function coefficient is defined as

gi,j(x1, x2) =
(x1,i+1 − x1)(x2,i+1 − x2)

(x1,i+1 − x1,i)(x2,i+1 − x2,i)
, (3.40)

gi+1,j(x, y) =
(x1 − x1,i)(x1,i+1 − x2)

(x1,i+1 − x1,i)(x2,i+1 − x2,i)
, (3.41)

gi,j+1(x, y) =
(x1,i+1 − x1)(x2 − x2,i)

(x1,i+1 − x1,i)(x2,i+1 − x2,i)
, (3.42)

gi+1,j+1(x, y) =
(x1 − x1,i)(x2 − x2,i)

(x1,i+1 − x1,i)(x2,i+1 − x2,i)
. (3.43)

The sum of these four coefficients equals to unity:

4∑

α=1

gα(x1, x2) = 1.

If the gas particle is not in the cell e, then the linear basis function coefficients equal

zero:

gα(x1, x2) = 0.

To determine the value of the fluctuating velocity is through a Monte-Carlo method,

it is assumed that the fluctuating velocity ~u
′′

follows a Gaussian distribution with the

mean zero and the variance of 2k/3:

f(u
′′

) =

(
4

3
πk̃

)− 1
2

exp

(
− 3

4k̃
u

′′2

)
. (3.44)

The turbulent kinetic energy is interpolated from grids into the gas particle’s position

using Eq. (3.39). A second-order algorithm is used to solve Eq. (3.37) [93]. The

mid-point x∗n+ 1
2 is computed by

x∗n+ 1
2 = x∗n

+
∆t

2

(
ũn(x∗n

) + un
)
. (3.45)
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The superscript n denotes the nth time step. Thus, the new mean velocity un(x∗n+ 1
2 )

and fluctuating velocity u
′′n+1 at position x∗n+ 1

2 are computed. The particle’s position

at (n + 1)th time step is calculated by

x∗n+1

= x∗n

+ ∆t

(
ũn(x∗n+ 1

2 ) +
1

2
(u

′′n + un+1)

)
. (3.46)

In particulate form, the IEM model for the kth particle can be written as

dξ∗k = −1

2

Cφ

tτ (x
∗
k)

(ξ∗k − ξ̃(x∗
k))dt + [1 − ξ∗k]

〈Sl,1〉
〈ρ〉 dt, (3.47)

dh∗
k = −1

2

Cφ

tτ (x∗
k)

(h∗
k − h̃(x∗

k))dt +
〈Sl,h〉 − 〈hS − l, 1〉

〈ρ〉 dt (3.48)

where the local turbulent fluctuating time scale tτ (x
∗
k) is interpolated from the grid

nodes. The exact increment in φ∗
k in terms of φ̃ over time ∆t is [95]

∆φ∗
k = −dk(φ

∗
k − φ̃(x∗

k)) (3.49)

with

dk = 1 − e−
1
2
Cφ∆t/tτ . (3.50)

The quantity φ̃(x∗
k) is interpolated from the grid node by

φ̃(x∗
k) =

∑

α

gα(x∗
k)φ̂α, (3.51)

where gα(x∗
k) is the linear basis function coefficient of node α to the particle position

x∗
k with ∑

α

gα(x∗
k) = 1. (3.52)

Thus

∆φ∗
k = −dk(φ

∗
k −

∑

α

gα(x∗
k)φ̂α). (3.53)

The global change in φ must be zero during the whole mixing process. However, if the

value of φ̂ is directly taken from φ̃ which is stored at the grid nodes, the global change

may not be zero [64]. Thus, the value of φ̂ must be estimated by setting the global

change to zero,

0 = ∆G ≡
∑

k

m∗
k∆φ∗

k = −
∑

k

m∗
kdk

(
φ∗

k −
∑

α

gα(x∗
k)φ̂α

)

= −
∑

k

m∗
kdk

(
∑

α

gα(x∗
k)φ

∗
k −

∑

α

gα(x∗
k)φ̂α

)

= −
∑

k

∑

α

(
gα(x∗

k)m
∗
kdk

(
φ∗

k − φ̂α

))

=
∑

α

(
−
(
∑

k

gα(x∗
k)m

∗
kdkφ

∗
k

)
+ φ̂α

(
∑

k

gα(x∗
k
)m∗

k
dk

))
. (3.54)
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Therefore, φ̂α can be determined by

φ̂α =

∑
k gα(x∗

k)m
∗
kdkφ

∗
k∑

k gα(x∗
k)m

∗
kdk

. (3.55)

The mean values are evaluated from the results of the transported PDF method at each

node. The computation is via the linear basis function coefficient. For an arbitrary

function Φ, its mean value at the node α is calculated from its value of the gas particles

Φ̃ =

∑
e

∑
k gα(x∗

k)Φ
∗
k∑

e

∑
k gα(x∗

k)m
∗
k

. (3.56)

The first sum is over the cells e enclosed by nodes α.

Time step is restricted by Courant – Friedrichs – Lewy (CFL) condition [164].

Physically, the CFL condition indicates that a fluid particle should not travel more

than one control volume in one time step. The global time step is computed by the

following formula:

∆t = CCFL · min

{
∆x1,i

|ũ1i|
,
∆x2,i

|ũ2i|
,
k̃i

ǫ̃i
, . . .

}
, i = 1, . . . , Ng, (3.57)

where Ng is the total number of the grid points, ∆x1,i and ∆x2,i are the lengths of

the control volume of node i in axial and radial directions respectively, and u1 and u2

are the axial and radial gas velocities. k and ǫ are the turbulent kinetic energy and

its dissipation rate. The constant CCFL should not be larger than 1 to satisfy the von

Neumann stability condition. Here, CCFL is set to 0.5. The resulting time step is serves

for both the finite volume method and the particle method.

In transported PDF method, the statistics of the flow field are evaluated at each cell.

It is reported [165] that the statistical error is proportional to N−1/2, where N is the

number of sample values. Thus the statistical error will be quite large if corresponding

total number of gas particles in one cell is too low. On the other hand, if the total

number of gas particles in one cell is too large, it would cause computational problems.

To avoid such cases, special strategy [64] is needed to keep the gas particle number

of every cell in a certain range, [Nmin, Nmax]. In the present work, a split/discard

algorithm is used [68] to ensure the number of stochastic particles to fall in the desired

range, which is set to Nmin = 60 and Nmax = 100.

3.3 Liquid phase

3.3.1 Stochastic parcel method for DDM

For the application of thefinite volume method discussed earlier, appropriate approx-

imation of spray source terms described in Table 3.1 is needed. These source terms
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describe the contribution of the evaporated liquid mass towards the gas flow proper-

ties. For this purpose, the liquid phase is modeled through DDM [18,21,29], where the

droplet properties are computed using stochastic parcel method [77]. A droplet parcel is

a set of droplets represented by identical properties and position i.e., (xp,k,vp,k, rp,k, mp,k)

represent the position, velocity, droplet radius and liquid mass of kth parcel. Droplet

radius, velocity, temperature and evaporated mass are calculated as described in sec-

tions 3.3.2.1 and 3.3.2.2. These calculations are used to compute the spray source

terms described in section 2.3.7 and table 3.1.

3.3.2 Finite difference scheme for DQMOM

In the present work, DQMOM is not coupled to gas phase rather inlet gas flow proper-

ties are used for computations. A generalized model for 3-dimensional physical space

has been discussed for application to evaporating sprays [13]. Here DQMOM is dis-

cussed in 2-dimensional physical space considering axisymmetric configuration. Thus

the DQMOM equations can written in component form by taking v = [vx, vr] and

x = [x, r]. Eqs. (2.104) – (2.106) can be represented in generalized form in each geo-

metrical direction given by,

∂Wx

∂t
+

∂Wxvx

∂x
= Sx, (3.58)

∂Wr

∂t
+

∂Wrvr

∂r
= Sr, (3.59)

where

(Wx, Sx) ∈ {(wn, an), (wnρlrn, ρlbn), (wnρlrnvxn, ρlcn,x)},
(Wr, Sr) ∈ {(wn, an), (wnρlrn, ρlbn), (wnρlrnvrn, ρlcn,r)}.

The choice of numerical scheme is important. It has been shown [13] that a two step

predictor-corrector numerical formula i.e., McCormac method [168] is accurately ap-

plicable and computationally efficient for DQMOM in one dimensional physical space.

For two-dimensional geometrical space, a better numerical scheme is needed. The pur-

pose is to solve the transport equations of DQMOM only, since the liquid properties

such as droplet temperature, evaporated mass, droplet velocities and droplet radii are

computed in the same way as discussed in earlier sections of this chapter. Furthermore,

DQMOM is not fully coupled to gas phase, since the gas phase equations are not solved

for DQMOM rather only inlet gas flow properties are used for computations. There-

fore, keeping the computational efficiency, ease of application and numerical accuracy,

a second order finite difference scheme is applied to solve the Eqs. (3.58) – (3.59) [169].

The scheme uses central difference approach, therefore the neighboring points of node
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P are denoted by S, N in x−direction and W, E in r− direction. Thus the solution

formulae may be written as

W j+1
x,i = W j

x,i (3.60)

− ∆t

∆xi

[
−W j

x,i+1(v
j
x,i+1)L + W j

x,i(v
j
x,i)L + W j

x,i(v
j
x,i)R − W j

x,i−1(v
j
x,i−1)R

]
,

W j+1
x,i vj+1

x,i = W j
x,iv

j
x,i (3.61)

− ∆t

∆xi

[
W j

x,i+1(v
j
x,i+1)

2
L + W j

x,i(v
j
x,i)

2
L − W j

x,i(v
j
x,i)

2
R − W j

x,i−1(v
j
x,i−1)

2
R

]
,

W j+1
r,i = W j

r,i (3.62)

− ∆t

∆ri

[
−W j

r,i+1(v
j
r,i+1)L + W j

r,i(v
j
r,i)L + W j

r,i(v
j
r,i)R − W j

r,i−1(v
j
r,i−1)R

]
,

W j+1
r,i vj+1

r,i = W j
r,iv

j
r,i (3.63)

− ∆t

∆ri

[
W j

r,i+1(v
j
r,i+1)

2
L + W j

r,i(v
j
r,i)

2
L − W j

r,i(v
j
r,i)

2
R − W j

r,i−1(v
j
r,i−1)

2
R

]
.

The above formulation is applied to an equidistant rectangular grid, where the size of

each grid cell is 1.5 10−3 m in radial direction and 1.0 10−4 in radial direction, resulting

in a maximum of 80 × 1000 grid nodes.

3.3.2.1 Evaporation

The detailed description of the model is already given (c.f. section 2.3.4). Droplet ra-

dius and temperature need to be computed to close the evaporation model in Eqs. (2.118)

and (2.117), which are calculated using a second order Runge – Kutta scheme given

below

rn+1 = rn+1 + ∆t
dr

dt

∣∣∣
n+ 1

2

, (3.64)

T n+1
d = T n+1

d + ∆t
dTd

dt

∣∣∣
n+ 1

2

. (3.65)

When the droplet radius is small enough i.e.,

r < max{0.1r, 1µm}, (3.66)

then the droplet is assumed to have evaporated completely becuase the liquid mass,

being the cube function of droplet radius becomes negligible.

3.3.2.2 Droplet velocity

Usually the droplet velocity is computed using an explicit numerical scheme [81]. In the

present work, an implicit scheme is adapted for the calculation of droplet velocity [167].

The direction of the acceleration of gravity is taken as the positive x-axis. The droplet
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velocity in the z-direction is assumed to be zero without the loss of generality, since

the geometrical configuration is axisymmetric. At time t = t0, the droplet velocities in

the axial and radial directions are

vx = vx0, vr = vr0. (3.67)

Two positive constants are introduced and defined as

C =
3

8

ρ̄

ρl

Cd

rd
,

a =

√
g

C
,

where rd is the droplet radius. Using these constants, Eq. (2.109) along the x-axis

(parallel to the direction of gravity) can be written as

dvx

dt
= −C|vx − ux|(vx − ux) + Ca2. (3.68)

There are two possible cases. First, the drag force is in the same direction as the

acceleration of gravity. In this case, the droplet velocity must be smaller than the gas

velocity i.e., vp,x < ux so Eq. (3.68) turns to be

dvx

dt
= C(vx − ux)

2 + Ca2. (3.69)

Integrating the above equation, the droplet velocity at the time t = t0 + ∆t can be

determined by the help of initial condition:

vx = ux + a · tan

(
arctan

(
vx0 − ux

a

)
+ aC∆t

)
. (3.70)

Equations (3.69) and (3.70) hold only when vx < ux. Therefore, ∆t should be smaller

than the time required by the droplet velocity come in equilibrium with gas velocity

i.e., tl

tl = − 1

aC
arctan

(
vp,x0 − ux

a

)
. (3.71)

When t = t0 + tl, the droplet velocity equals to the gas velocity i.e., vx = ux, and

therefore the drag force is zero. Because of gravitational force, the droplet velocity

would keep increasing, which leads to the second case. In this case, the drag force is

in the opposite direction of the acceleration of gravity (vx0 > ux). Eq. (3.68) takes the

form
dvx

dt
= −C(vx − ux)

2 + Ca2. (3.72)

Integrating the above equation, the droplet velocity at the time t = t0 + ∆t can be

evaluated from the initial condition:

vx = ux + a +
2a

vx0−ux+a
vx0−ux−a

exp(2aC∆t) − 1
. (3.73)
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When ∆t → ∞, the droplet velocity vx approaches to ux + a. When vx = ux + a, the

gravitational force is balanced by the drag force. The expression vx − ux − a would

keep the same sign during the whole procedure i.e.

(vx − ux − a)(vx0 − ux − a) ≥ 0. (3.74)

In the radial direction (perpendicular to the direction of gravity), the Eq. (2.109)

can be written as
dvr

dt
= −C|vr − ur|(vr − ur). (3.75)

Integrating the above equation, the droplet velocity at the time t = t0 + ∆t can be

determined from the initial condition:

vr =
vr0 + C∆t|vr0 − ur|ur

1 + C∆t|vr0 − ur|
. (3.76)

When ∆t → ∞, the droplet velocity vr approaches to the gas velocity ur. The direction

of the drag force will not change in this case, too. The expression vr−ur will be positive

during the whole procedure i.e.

(vr − ur)(vr0 − ur) ≥ 0. (3.77)

The scheme was tested for different cases in [167] and found to be accurate and

robust, where the errors induced by the time integration are minimized.
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Two different test cases have been investigated in the present work. At first, an evap-

orating water/air spray in steady axisymmetric configuration was simulated through

DDM and DQMOM. Secondly, a methanol/air turbulent diffusion flame was simulated

using presumed and transported PDF methods. In this chapter, the results from these

studies are presented and discussed.

4.1 Evaporating Water/Air Spray

Evaporating sprays are of special interest as those occur not only in many industrial

applications but also constitute the defining physical phenomena in spray combustion

and spray drying processes. Therefore, having models validated for evaporating sprays

motivate their application in simulations of spray drying and spray combustion pro-

cesses. A water spray injected through a hollow cone Delavan SDX-90 nozzle in a

vertical spray chamber and carried by air was modeled by DDM and DQMOM. The

starting data for the simulations were taken from experimental data, where the exper-

iments were conducted by the group of Prof. G. Brenn at TU Graz, Austria. The

experimental facility is explained in the next section. The generation of initial data

is discussed in the following section. The results are from DQMOM and DDM are

compared with experiment [13, 171] and discussed.

4.1.1 Experimental setup

A series of experiments had been carried out at TU Graz by the group of Prof. G. Brenn.

A water spray in air was studied for different liquid mass inflow rates with different

liquid densities. Various atomizers with different dimensions of swirl chambers and exit

diameters were used. The droplet sizes and velocities were recorded at various cross

sections for different liquid inflow rates using phase Doppler anemometry (PDA) [170].

The present simulations concern the experimental data generated using the Delavan

nozzle SDX-SD-90 with an internal diameter of 0.002 m and an outer diameter of 0.012

m at the nozzle throat and 0.016 m at the top for liquid inflow rates of 80 kg/h and

120 kg/h. A water spray was injected into a cylindrical spray chamber of diameter 1 m.

The carrier gas was air at room temperature and atmospheric pressure. Measurements



52 4. Results and Discussion

Fig. 4.1: Schematic of experimental setup

were recorded at cross sections of 0.08 m, 0.12 m and 0.16 m. Figure 4.1 illustrates the

schematic of the experimental setup. The data at 0.08 m were taken as starting point

for initial data generation for computations, and results were compared at later cross

sections.

4.1.2 Initial data generation

The experimental data at the closest position to the nozzle is used to generate initial

data for the numerical computations. The nearest experimental position is 0.08 m from
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Fig. 4.2: Profile of effective cross-section area of the probe volume for measured droplet

size.
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Fig. 4.3: Experimental and DQMOM approximation of droplet number density for a

water spray.

nozzle,where the measurements are available at radial positions separated by 1.5 10−3 m

distance. The PDA data at every radial position consists of droplet radius, velocities in

axial and radial directions and the time elapsed for each measurement, which gives the

total time carried out over a period. These data is grouped into 100 droplet size classes.

The effective cross-sectional area of the probe volume is computed. The result of the

calculation for a water flow rate of 80 kg/h, at a position of 0.066 m from the center

is shown in Fig. 4.2. The trajectory length exhibits strong fluctuations, which increase

with the droplet size. Furthermore, the number of droplets in the size classes for the

larger diameters is typically much lower than in the smaller size classes. Therefore, the

properties such as droplet trajectory lengths through the probe volume are statistically

unreliable for drops with sizes greater than a certain threshold value [173]. In particular,

the decrease of the effective probe volume size with increasing drop size such as from

200 µm as shown in Fig. 4.2 is unphysical. The effective cross-section area is therefore

calculated using a linear trend line from a threshold diameter. In the first step, the

linear trend line is calculated using a linear regression scheme based on the data in the

drop size classes up to 60% of the maximum droplet size.

In the second step, for all drop size classes from 40% of the maximum drop size

class for this experimental position on, the values of the effective cross section area are

obtained as values of the linear trend line. There is, therefore, an overlap of the size

class ranges used for computing the trend line and those whose probe volume cross-

section areas are calculated using the trend line. Once the effective cross-sectional area

probe volume is corrected, the number density is corrected correspondingly. Then, the
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moment sets of droplet size and velocities are computed, which in turn are used to

calculate the initial weights (number densities), radii and velocities using a product

- difference algorithm [172]. In the present study, DQMOM approximates the spray

distribution by three-node closure, which implies that the required number of moments

is 12 (3 each: weights, droplet radii, axial velocities, radial velocities). The same pro-

cedure is followed at every radial position for the cross-section of 0.08 m. Figure 4.3

shows the experimental distribution of droplets and DQMOM approximation at 0.066

m from the center of the spray for 80 kg/h water flow rate. The problem of negative

moments is handled by employing the adaptive Wheeler algorithm wherever neces-

sary [177]. The experimental data are also used to generate a system of parcels for

DDM, where the properties of kth parcel are denoted by (xk, rk, uk, mk). The liquid

mass of kth parcel is computed considering the spherical symmetry of the droplets, i.e.

mk =
∑

i

4

3
ρlπr3

i , (4.1)

where subscript i refers to the number of droplets in the parcel.

4.1.3 Results

Droplet properties including size and velocity are computed using both models and

compared with the experiment at the cross sections of 0.12 m and 0.16 m away from
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Fig. 4.4: Experimental and numerical profiles of the Sauter mean diameter at the cross

section of 0.12 m distance from the nozzle exit for 80 kg/h.
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Fig. 4.5: Experimental and numerical profiles of the Sauter mean diameter at the cross

section of 0.16 m distance from the nozzle exit for 80 kg/h.

nozzle exit. Figures 4.4 and 4.5 show the computed and experimental profiles of the

Sauter mean diameter at cross sections 0.12 m and 0.16 m away from nozzle exit for

80 kg/h. The DDM simulation result matches quite well the experiment at the center

of the spray at 0.12 m away from nozzle exit, but slightly under-predicts towards the

periphery of the spray. A good agreement is observed at 0.16 m cross section between

DDM and experiment. The DQMOM simulation results are in good agreement with

experiment at 0.12 m downstream the nozzle exit, and it is closer to the experimental

data at higher radial distance. Further downstream, at 0.16 m from the nozzle exit, the

DQMOM simulations reveal some scattering near the centerline, and at higher radial

distances, they under-predict the experimental results. This discrepancy may result

from the numerical scheme which employs an explicit finite difference method to solve

the transport equations of DQMOM; the results can be improved by implementing an

implicit method. The post processing of experimental data may be the reason of the

deviation, too.

For a liquid inflow rate of 120 kg/h, the computed and experimental profiles of

Sauter mean diameter at cross sections of 0.12 m and 0.16 m away from nozzle exit

are shown in Figs. 4.6 and 4.7. At the cross section of 0.12 m, it can be seen that

DQMOM improves the DDM results as DDM over predicts the experimental values.

The scattering behavior of simulation results near the centerline is observed in this case

too. As the droplets move to the next cross section, a decrease in large size droplets
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Fig. 4.6: Experimental and numerical profiles of the Sauter mean diameter at the cross

section of 0.12 m distance from the nozzle exit for 120 kg/h.

is evident, which is predicted by both DQMOM and DDM. The results show that

DQMOM shows better agreement with experiment, while DDM predicts a somewhat
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Fig. 4.7: Experimental and numerical profiles of the Sauter mean diameter at the cross

section of 0.16 m distance from the nozzle exit for 120 kg/h.
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higher values than experiment at corresponding radial positions.

The overall shape of a hollow cone spray is captured quite nicely by both meth-

ods, although some deviations are observed in particular in DQMOM as compared

to experimental profile, possibly due to the post-processing of the experimental data

in order to correct the number frequency at every measuring position to rule out the

fluctuations in the effective cross section area of the measuring volume for the larger

droplet sizes [173]. This correction of experimental data is position dependent, whereas

the DQMOM and DDM results account for these corrections for the initial condition

but not at positions further downstream. Another reason for the discrepancies in the

DQMOM results may be the fact that the spray equations are not yet fully coupled to

the gas phase.

Comparing the maximum values of the Sauter mean diameter at the two cross sec-

tions displayed in Figs. 4.4, 4.5, 4.6 and 4.7, a decrease in large size droplets is observed

as the droplets move away from nozzle. Even though the process of evaporation is con-

sidered in the present models, the major reason for the decrease in droplet size may

be attributed to the influence of drag force applied by the surrounding gas, because

significant evaporation may not occur at the present room temperature condition. This

decrease is more evident in the large droplet size region, where the dynamic interac-

tion of droplet with surrounding gas dominates as observed in profiles of mean droplet

velocity (see Figs. 4.12 and 4.13).
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Fig. 4.8: Experimental and numerical profiles of the mean droplet diameter at the cross

section of 0.12 m distance from the nozzle exit for 80 kg/h.
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Fig. 4.9: Experimental and numerical profiles of the mean droplet diameter at the cross

section of 0.16 m distance from the nozzle exit for 80 kg/h.

Besides the Sauter mean radius, in many technical applications such as particle size

analysis in powder sampling or pharmaceutical industries, the mean droplet diameter

is an important physical quantity. Radial profiles of the mean droplet diameter are

shown and compared with experiment in Figs. 4.8 and 4.9 for 80 kg/h. DDM results

are in very good agreement with the experiment. A slight decrease in the mean droplet

diameter is observed as the droplets move away from nozzle indicating some mass

transfer from liquid to gas, which is attributable to gas - liquid interactions. The

DQMOM results are in very good agreement with experiment at the cross section of

0.12 m near the centerline, and there, they improve the DDM results. At 75 mm radial

position, the DQMOM results are below experimental values, which may stem from the

explicit finite difference technique. At the cross section of 0.16 m, a good agreement is

observed between DQMOM and experiment near the axis of symmetry, even though

some scattering is obtained.

In Figs. 4.8 and 4.9 Deviations from experiment occur in the large droplet size

region, which is due to the fact that the numerical technique captures the distribution

function globally, and some local discrepancies may be observed. This may be improved

by solving the gas phase equations for DQMOM, which is not done in the present study,

where the inlet gas flow properties are used to calculate the source terms for transport

equations for DQMOM [13].

Figures 4.10 and 4.11 show the computed and experimental profiles of mean droplet
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Fig. 4.10: Experimental and numerical profiles of the mean droplet diameter at the

cross section of 0.12 m distance from the nozzle exit for 120 kg/h.

diameter at cross sections of 0.12 and 0.16 m away from nozzle exit for liquid inflow

rate of 120 kg/h. At 0.12 m away from nozzle exit, both DDM and DQMOM agree
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Fig. 4.11: Experimental and numerical profiles of the mean droplet diameter at the

cross section of 0.16 m distance from the nozzle exit for 120 kg/h.
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well with each other near the centerline, where they show somewhat higher values than

the experiment. At the radial positions away from the centerline, DQMOM is in good

agreement with experiment, and it improves the DDM results. As the droplets move

away from nozzle exit, a decrease in size can be observed at the cross section of 0.16

m away from nozzle exit, which is similar to the case of liquid flow rate of 80 kg/h.

Near the centerline at 0.16 m away from nozzle exit, both DQMOM and DDM show

the same behavior and predict slightly higher values than experiment. At higher radial

positions, DDM values are a little high as compared to DQMOM and experiment,

where DQMOM coincides with experimental data.

In Figs. 4.12 and 4.13, the radial profiles of mean droplet velocity are displayed.

It can be seen that the droplet velocity is higher for larger droplets as anticipated.

Interestingly, the small size droplets near to the axis of symmetry also move at a higher

velocity as observed in the experiment and thus making the velocity profile bimodal,

which is predicted quite nicely by both models. A closer look reveals that the width

of the jet is captured by the DQMOM, whereas the DDM predicts somewhat broader

profiles with a lower maximum value at the centerline. At the spray edge, a judgement

of the numerical methods is difficult, since the experimental data are somewhat spread

in the case of the smaller distance from the nozzle exit. At 0.16 m, the slopes of the

numerical results deviate from the experimental data, which show the highest error in

experimental data processing [173]. Comparing the velocity profiles at the two different
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Fig. 4.12: Experimental and numerical profiles of the mean droplet velocity at the cross

section of 0.12 m distance from the nozzle exit.
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Fig. 4.13: Experimental and numerical profiles of the mean droplet velocity at the cross

section of 0.16 m distance from the nozzle exit.

cross sections, it is seen that the velocity decreases as droplets move away from nozzle.

This is because the droplets are strongly decelerated by the dynamic interaction with

the surrounding gas. The gas around the spray stagnates and is driven into motion

only due to the spray entrainment. The gas motion driven by the spray arises at the

expense that the droplet loses momentum.

The droplet properties are predicted quite well by the present simulations, which

confirms their applicability for spray flows. There are some deviations between simu-

lation and experimental results, which are attributable to the post processing of the

experimental data as discussed before. In case of DDM, neglecting droplet interactions

may need reconsideration. For DQMOM, the improved numerical scheme and the si-

multaneous solution of the gas phase equations may improve the simulation results.

For DQMOM,

4.2 Methanol/Air Spray Flame

A turbulent methanol/air diffusion spray flame is modeled using transported PDF

method and the results are compared with presumed PDF approach and experiment.

In transported PDF method, a joint mixture fraction-enthalpy PDF [68] is used and

its transport equation is derived. An extended IEM and an extended modified Curl’s

model are proposed as described in section 2.2.2.2. A detailed methanol/air combustion
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mechanism is implemented through a spray flamelet model [65]. The mechanism [83]

consists of 23 species and 168 elementary reactions. The spray flamelet library is

pre-calculated from laminar counterflow spray flame. The library [65] consists of the

data with two different initial droplet radii of 25 µm and 10 µm, and one equivalence

ratio Er = 3, one initial spray velocity v0 = 0.44 m/s. The species concentrations

of a gas particle are determined from the spray flamelet library. The droplet size

is determined by interpolating the local Sauter mean radius at the nodes into the

gas particle’s position. The instantaneous dissipation rate of the gas particle, χ∗,

is described using a log-normal distribution. The parameter µlog in the log-normal

distribution (c.f. Eq. (2.63)) is calculated from the mean of the dissipation rate, which

is computed from the local variance of the mixture fraction. The properties of the gas

particle, ξ∗, χ∗, r∗, El0 and v0, are computed by interpolating the data from the spray

flamelet library. The temperature of the gas particle is computed from the composition

Fig. 4.14: Schematic of the methanol/air experimen-

tal setup.

Fig. 4.15: Sketch of the

fuel injector.
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properties and the enthalpy h∗
s.

4.2.1 Experimental Setup

The experiments were carried out by McDonell and Samuelsen [174,175], where a dilute

methanol spray is injected into a turbulent air flow. Figure 4.14 illustrates the overall

geometry of the methanol/air spray burner [175]. Inlet mass flow rate of the liquid

fuel is 1.32 g/s whereas the air flow results in a pressure drop of 3.73 kPa. Figure 4.15

shows the sketch of the fuel injector [175]. The gas and droplet velocities, droplet

size distribution, liquid flux, gas temperature and concentration of methanol vapor are

measured at the cross sections of 7.5 mm, 25 mm, 50 mm, 100 mm, and 150 mm away

from the nozzle exit. The gas velocity, droplet velocity and droplet size are measured

using phase Doppler interferometry (PDI). The concentration of the methanol vapor

is measured using infrared extinction/scattering (IRES). The experimental data at the

cross section of 7.5 mm away from the nozzle exit are taken as the inlet profiles for

numerical computations. The results are compared at the cross sections further down

stream.

4.2.2 Results

In the PDF simulation, the Dirac delta profile is prescribed for the particles’ mixture

fraction at the inlet. Liu’s [165] study of numerical accuracy in transported PDF

methods shows that the number of particle per cell, Npc, should not be smaller than

50 to keep the bias error below 5% . In the present transported PDF method, Npc is

set to 80, so that the bias error is kept below 4%. In the present work, the simulation

results of transported PDF method obtained using modified Curl’s mixing model are

compared with IEM model as well as presumed standard β function.

Calculations of the spray and gas flow are sensitive to the initial conditions. In the

present work, the inlet for computation locates near the nozzle (x = 0.0075 m), where

the flow structure is very complex. Little disturbance of the initial conditions in spray

or gas flow may result in a quite different field. The interaction between spray and gas

flow is very strong. The coarse measurements of the droplet size distribution at the

inlet profile cause uncertainties in the results of spray and consequently in the results

of gas flow.

To assure the precision of numerical scheme, the computed profiles of axial gas

velocity are compared with experiment. Figure 4.16 shows the computed and experi-

mental profiles of axial gas velocity at the cross section of 0.025 m. The modified Curl’s

result is shown in blue solid line, IEM result is shown using a dash dot red line and

standard β distribution result is shown using a black dashed line. The experimental
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Fig. 4.16: Experimental and numerical profiles of the axial gas velocity at the cross

section of 0.025 m distance from the nozzle exit.

values are shown using green symbols. It can be seen that the velocity is quite high at

the centerline whereas it monotonically decreases towards the farther radial positions.

This trend is captured quite well by the simulation results although deviations can be
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Fig. 4.17: Experimental and numerical profiles of the axial gas velocity at the cross

section of 0.05 m distance from the nozzle exit.
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Fig. 4.18: Experimental and numerical profiles of the axial gas velocity at the cross

section of 0.075 m distance from the nozzle exit.

observed between simulation and experimental results between the radial positions of

0.005 m and 002 m. This might have resulted from coarse experimental measurements

at the cross section of 0.0075 m, which is used to generate the starting data of the

simulations.

The gas velocity at the cross sections of 0.050 m, 0.075 m, 0.1 m and 0.15 m away

from nozzle exit is shown in the Figs. 4.17 – 4.20. The profiles exhibit the monotonically

decreasing behavior in increasing radial direction with their maximum at the centerline.

This trend is predicted quite well in the simulation results. In Figs. 4.17– 4.19, it can

be seen that the simulation results are somewhat higher at the centerline as compared

to experimental value. This might have resulted from the first order truncation error

caused by the applied upwind scheme.

Figure 4.20 shows the computed and experimental profiles of axial gas velocity at

the cross section of 0.15 m away from the nozzle exit. It can be seen that transported

PDF method improves the result of presumed PDF method at the centerline, where

presumed PDF result is somewhat higher than experimental value.

The deviations between simulation results and the experiment are attributed to the

first order truncation caused by the applied numerical scheme. The stability issues in

solution of the momentum equation have brought the staggered grid and the upwind in-

terpolation scheme into play. An alternative can be to use a trivariate joint transported

PDF of gas velocity, enthalpy and mixture fraction. This will imply the gas velocity

to be computed by applying a physical model. In this thesis, a trivariate joint PDF of
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Fig. 4.19: Experimental and numerical profiles of the axial gas velocity at the cross

section of 0.1 m distance from the nozzle exit.

gas velocity, enthalpy and mixture fraction is proposed and its transported equation is

derived (see Appendix), where the gas velocity is modeled using an extended simplified

Langevin model [95].
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Fig. 4.20: Experimental and numerical profiles of the axial gas velocity at the cross

section of 0.15 m distance from the nozzle exit.
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Fig. 4.21: Experimental and numerical profiles of the gas temperature at the cross sec-

tion of 0.025 m distance from the nozzle exit.

Figures 4.21 – 4.25 show the profiles of gas temperature at cross sections of 0.025,

0.05, 0.075, 0.1 and 0.15 m away from the nozzle exit. The results from modified Curl’s

model are shown using blue lines where as the results from IEM and standard β function
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Fig. 4.22: Experimental and numerical profiles of the gas temperature at the cross sec-

tion of 0.05 m distance from the nozzle exit.
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Fig. 4.23: Experimental and numerical profiles of the gas temperature at the cross sec-

tion of 0.075 m distance from the nozzle exit.

are shown using red lines and black dashed lines, respectively. The symbols denote the

experimental data. It can be seen in Fig. 4.21 that the experimental values are not

available near the center line, which makes the comparison of the models somewhat

difficult. Although standard β function seems to be slightly closer to experimental

data as compared to transported PDF’s at the radial positions of 0.015 and 0.02 m,

the uncertainty at the center line might be a reason of the deviation between simulation

and experimental results. The experimental uncertainty is observed at the cross section

of 0.05 m away from nozzle exit shown in Fig. 4.22, where the experimental data is not

available at the centerline.

Figure 4.23 shows the temperature profiles at the cross section of 75 mm away from

nozzle exit. It can be seen that standard β distribution over-predicts the temperature

at centerline, where transported PDF performs better. Modified Curl slightly improves

the results of IEM in the region between the radial positions of 0.01 and 0.03 m away

from centerline.

In Fig. 4.24 the results from IEM and standard β distribution over-predict the

experimental value at centerline while the result form modified Curl’s model is closer

to experimental value at the cross section of 0.1 m. At the cross sections of 0.1 and

0.15 m away from nozzle exit, the profiles obtained using the modified Curl’s model

improve the IEM and standard β distribution between about 0.02 and 0.05 m from the

centerline as shown in Figs. 4.24 and 4.25.

Although the simulation results are in the same data range as of experimental
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Fig. 4.24: Experimental and numerical profiles of the gas temperature at the cross sec-

tion of 0.1 m distance from the nozzle exit.

values, and they capture the trend of experimental profiles, the obvious discrepancies

are observed. These discrepancies may be due to the inappropriate initial distribution

of the liquid flux, which is caused by experimental uncertainties. Also, the experimental
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Fig. 4.25: Experimental and numerical profiles of the gas temperature at the cross sec-

tion of 0.15 m distance from the nozzle exit.
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Fig. 4.26: Experimental and numerical profiles of Sauter mean radius at the cross sec-

tion of 0.025 m distance from the nozzle exit.

measurements of temperature are not available near the center line at the cross sections

nearer to the nozzle exit. The improved experimental data would help. Furthermore,

the computed profiles of gas temperature are quite fluctuating. As described earlier,

laminar flamelet library is used in the present work, where two different initial droplet

radius, r0 = 25 µm and 10 µm are considered.

When the local Sauter mean radius is larger than 10 µm, the library with r0 = 25 µm

is used. When the local Sauter mean radius is smaller than 10 µm and larger than

1 µm, the library with r0 = 10 µm is used. Therefore, the droplet properties are

very important in describing the spray flames. Figure 4.26 shows the computed and

experimental values of Sauter mean radius at the cross section of 0.025 m away from

nozzle exit. The results from modified Curl’s model, IEM and standard β distribution

are shown using blue, red and black triangles pointing up while the experimental values

are shown using green downward pointing triangles. It can be seen that the modified

Curl’s model improves the results of IEM and standard β distribution. As it can be

seen in Figs. 4.21 – 4.25, the fluctuations in the results of both of transported PDF

methods and moment closure method occur in the region near the centerline, where

the Sauter mean radius is less than 25 µm. An improvement in spray flamelet library

with more initial droplet radii will help improving the results.

In the transported PDF and presumed PDF methods, the major difference is about

statistical description of fluctuations in mixture fraction space. In the present work,

a standard β distribution is applied as presumed PDF. In Fig. 4.27, the shapes of



4.2. Methanol/Air Spray Flame 71

Mixture fraction [-]

P
D

F
[-]

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

20

30

Transported PDF
Standard β
Modified β

Standard β
Modified β

Mixture fraction [-]

P
D

F
[-]

0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

70

80
Transported PDF

Fig. 4.27: Transported and presumed PDF shapes at axial location of 0.025 m and

radial location of 0.01 m (left) as well as at axial location of 0.05 m and

radial location of 0.01 m (right).

transported and presumed PDFs at axial location of 0.025 m and radial location of

0.01 m (left) as well as at axial location of 0.05 m and radial location of 0.01 m

(right) are shown. For modified β distribution, the additional parameters are chosen
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Fig. 4.28: Comparison of modified β with standard β and transported PDF methods

for gas temperature at the cross section of 0.05 m distance from the nozzle

exit.
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to be ξmax = ξ̃ +

√
ξ̃′′2 and ξmin = ξ̃ −

√
ξ̃′′2. The transported PDF profiles show the

bimodal shape, which is not reflected by standard β distribution whereas the modified β

distribution captures the bimodal behavior of the PDF. Thus, application of modified β

distribution may improve presumed PDF method. The choice of additional parameters,

namely ξmax and ξmin is still an open question, which needs further investigation.

Figures 4.28 shows a comparison of modified β distribution with standard β distri-

bution and transported PDF method, where the profiles of gas temperature at cross

section of 0.05 m are shown. The additional two parameters for modified β distribu-

tion are taken to be ξmax = ξ̃ +

√
ξ̃′′2 and ξmin = 0. It can be seen that the modified

β distribution improves the results of standard β distribution. Further investigation

about the choice of ξmax and ξmin may help to form better presumed PDF model.

The simulation results captured the overall trend and data range of experimental

profiles, where the results from modified Curl’s model improve the results from IEM

and presumed PDF method. The deviations are observed, too. For gas velocity, the

application of a joint trivariate transported PDF of gas velocity, enthalpy and mixture

fraction will bring an interesting comparison of results. The temperature profiles may

be smoothed by introducing a spray flamelet library with more droplet radii. The

experimental uncertainty near the centerline also need to be treated so that more

reliable starting data may be generated.



5. Conclusions and Outlook

In this dissertation, an evaporating water/air spray is modeled using DQMOM and

DDM while a methanol/air spray flame is modeled using transported PDF method.

In the case of water/air spray, the mathematical formulation of DQMOM, account-

ing for droplet size and velocity, is derived, and a numerical solution procedure is

developed. For DDM, the gas phase is described by Favre-averaged Navier – Stokes

equations considering the droplets as point sources, which are calculated using the PSIC

model. Convective droplet heating and evaporation as well as velocity are modeled,

and the droplet size and velocity distributions are analyzed with both DDM and DQ-

MOM. Droplet collisions are included in DQMOM by modeling the coalescence. The

DDM does not include droplet collisions due to modeling limitations, which include

redistribution of droplet classes.

Numerical and experimental results are compared at different cross sections, where

the experimental data of the cross section closest to the nozzle exit are used for the

generation of initial conditions for the simulations. The results from both DDM and

DQMOM are found in good agreement with experiment. Some deviations in case of

mean droplet diameter are observed between DQMOM and experiment that might

have resulted from the present DQMOM formulation, which is not yet fully coupled

with the gas phase equations. Moreover, the numerical technique employed an explicit

finite difference method to solve the DQMOM transport equations – an implicit scheme

may lead to considerable improvement. Concerning the experimental data, a post-

processing of the raw data was performed in order to correct the number frequency

of large droplets with respect to the effective cross section area, leading to different

correction factors for different droplet positions in experimental data away from the

centerline – these different corrections cannot be reflected in the numerical results.

A methanol/air spray flame was modeled using the PDF methods. A transported

joint PDF of mixture fraction and enthalpy for turbulent spray flows is adapted. The

PDF transport equation is derived. The unclosed term of molecular mixing is described

using an extended IEM model, where the standard IEM is extended to account for spray

flows. Also, modified Curl’s model is extended for spray flows and applied. Detailed

chemistry consisting of 23 species and 168 elementary reactions is implemented through

a spray flamelet model. The PDF transport equation is closed through coupling with

extended k − ǫ model to account for spray flows. The PDF transport equation is
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solved using a hybrid finite volume/Lagrangian Monte-Carlo particle method. The

numerical results of gas velocity, gas temperature and Sauter mean radius are compared

with experimental data and the results from the moment closure method, which used

standard β function as presumed PDF. The numerical results of the PDF method are

in good agreement with experimental data and improve the results from the moment

closure method.

The choice of optimum physical models to close the PDF transport equation for

spray flows is still an open topic of research. For gas flames, modified Curl’s model

is reported to be an efficient model, but it needs to be validated for spray flows in

benchmark cases. Advanced models such as EMST should also be extended for spray

flows and tested for application. In the future work, a trivariate joint velocity-enthalpy-

mixture fraction PDF coupled with the spray flamelet model will be employed to sim-

ulate the turbulent spray flames. The derivation of its transport equation is given in

Appendix A.



Appendix





A. Trivariate Transported PDF

A.1 Derivation of PDF transport equation

To describe the form of a PDF transport equation, a fine grained one-point one-time

joint gas velocity – enthalpy – mixture fraction PDF f ∗(V, ζ, η;x, t) is defined for the

gas phase of turbulent spray flames as

f ∗(V, ζ, η;x, t) = δ(u(x, t) − V)δ(ξ − ζ)δ(h(x, t) − η), (A.1)

where V, , ζ and η are the gas velocity, mixture fraction and enthalpy in sample space

and u, ξ and h are the gas velocity, mixture fraction and enthalpy in physical space. It

is important to note that the aim is to derive a transport equation for non-presumed

PDF f(V, ζ, η;x, t), which may be related to fine grained PDF f ′(V, ζ, η;x, t) by using

the definition of mean and properties of delta function (fine grained merely means a

function that is written as product of delta functions). More precisely, the mean of

any function Q(x, t) is given by

〈Q(x, t)〉 =

∫ ∫ ∫
Q(x, t)f(V, ζ, η;x, t)dVdζdη. (A.2)

It is known that delta functions satisfy shifting property i.e.

∫ ∫ ∫
g(x)δ(x − y)dx = g(y), (A.3)

where δ(x− y) = δ(x1 − y1)δ(x2 − y2)δ(x3 − y3). Replacing Q(u(x, t), ξC(x, t), h(x, t))

with δ(u(x, t) − V)δ(ξ − ζ)δ(h − η) in Eq. (A.2), the following equation is obtained

〈f ∗(V, ζ, η;x, t)〉 =

∫ ∫ ∫
δ(u(x, t)−V)δ(ξ−ζ)δ(h−η)f(V, ζ, η;x, t)dVdζdη. (A.4)

Transforming the integral variables V −→ V∗, ζ −→ ζ∗ and η −→ η∗, and replacing

Q(u(x, t), ξ(x, t), h(x), t) with Q(V∗, ζ∗, η∗) in above equation, the following is yielded

〈f ∗(V, ζ, η;x, t)〉 =

∫ ∫ ∫
δ(V∗ −V)δ(ζ∗ − ζ)δ(η∗ − ζ)f(V∗, ζ∗, η∗;x, t)dV∗dζ∗dη∗

= f(V, ζ, η;x, t). (A.5)
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The last step follows from Eq. (A.3). Therefore, the conditional mean may be related

to PDF f(V, ζ, η;x, t) as

〈Q(x, t)f ∗(V, ζ, η;x, t)〉 = 〈Q(x, t)|V, ζ, η〉f(V, ζ, η;x, t). (A.6)

In terms of the properties of the Dirac-delta function, the material derivative of the

fine-grained PDF can be written as

0 =
Df ∗

Dt
=

∂f ∗

∂t
+

∂f ∗

∂x

dx

dt
+

∂f ∗

∂ζ

dζ

dt
+

∂f ∗

∂η

dη

dt
+

∂f ∗

∂V

dV

dt
. (A.7)

Using the shifting property of Dirac-delta function, Eq. (A.8) can be written as

ρ
∂f ∗

∂t
+ ρuj

∂f ∗

∂xj

= −ρ
∂f ∗

∂ζ

dζ

dt
− ρ

∂f ∗

∂η

dη

dt
− ρ

∂f ∗

∂V

dV

dt

= − ∂

∂ζ
(ρ

dξ

dt
f ∗) − ∂

∂η
(ρ

dh

dt
f ∗) − ∂

∂V
(ρ

du

dt
f ∗). (A.8)

Using Eqs. (A.5) and (A.6), in Eq. (A.8), the following can be obtained

ρ
∂f

∂t
+ ρuj

∂f

∂xj
= − ∂

∂ζ
(ρ〈dξ

dt
|V, ζ, η〉f)− ∂

∂η
(ρ〈dh

dt
|V, ζ, η〉f)− ∂

∂V
(ρ〈du

dt
f |V, ζ, η〉).

(A.9)

Substitution of the instantaneous conservation of mass (c.f. Eq. (2.1)) into the above

equation and considering the joint mass density function F (V, ζ, η;x, t) = ρf(V, ζ, η;x, t),

the following expression is yielded

∂F

∂t
+

∂(ujF )

∂xj
− 〈Sl,1

ρ
|ζ, η〉F = − ∂

∂ζ
(〈dξ

dt
|V, ζ, η〉F )− ∂

∂η
(〈dh

dt
|V, ζ, η〉F )

− ∂

∂V
(〈du

dt
|V, ζ, η〉F ). (A.10)

In the above transport equation of mass density function F , the terms on the right

hand side are unclosed, and based on the instantaneous conservation equations for

the enthalpy and mixture fraction (c.f. Eqs. (2.2) and (2.10)). These terms can be

expanded as following

− ∂

∂ζ
(〈dξ

dt
|V, ζ, η〉F ) = −1

ρ
〈(1 − ξ)Sl,1〉

∂F

∂ζ

− ∂

∂ζ
(
1

ρ

〈
∂

∂xj

(
ρDM

∂ξ

∂xj

)
+ Sl,1

′

+ 〈ξSv〉 − ξSl,1|V, ζ, η

〉
F ), (A.11)

− ∂

∂η
(〈dh

dt
|/bfV , ζ, η〉F ) = −1

ρ
〈Sl,h − hSl,1〉

∂F

∂η

− ∂

∂η
(
1

ρ

〈
∂

∂xj

(
ρDh

∂h

∂xj

)
+ Sl,h

′

+ 〈hSl,1〉 − hSl,1|V, ζ, η

〉
F ), (A.12)
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and

− ∂

∂η
(〈du

dt
|V, ζ, η〉F ) = −1

ρ
〈Sl,uj

− uSl,1〉
∂F

∂V

− ∂

∂V
(
1

ρ

〈
∂

∂xj

(
ρDu

∂u

∂xj

)
+ Sl,uj

′

+ 〈uSl,1〉 − uSl,1|V, ζ, η

〉
F ). (A.13)

Neglecting the fluctuating parts of the source terms i.e. Sl,1
′

, Sl,h
′

and Sl,ui

′

, the the

modeled joint PDF transport equation is written as

∂F

∂t
+

∂(ujF )

∂xj
− 〈Sl,1〉

ρ
F +

1

ρ
〈(1 − ξ)Sl,1〉

∂F

∂ζ
+

1

ρ
〈Sl,h − hSl,1〉

∂F

∂η
+

1

ρ
〈Sl,uj

− uSl,1〉
∂F

∂V

= − ∂

∂ζ

(
1

ρ

〈
∂

∂xj
(ρDM

∂ξ

∂xj
) + S

′

ξ|ζ, η

〉
F

)

− ∂

∂η

(
1

ρ

〈
∂

∂xj
(ρDh

∂h

∂xj
) + S

′

h|ζ, η

〉
F

)

− ∂

∂V
(
1

ρ

〈
∂

∂xj

(
ρDu

∂u

∂xj

)
+ S

′

ui
|V, ζ, η

〉
F ). (A.14)

In Eq. (A.14), the terms on the right hand side appear in unclosed form. To close the

first two terms on the right hand side, the models are discussed in the section 2.2.2.2.

For the third term, a velocity model is needed, which is discussed in the next section.

A.2 Velocity model

PDF methods represent the gas flow using stochastic particles, so that it may be treated

as a particulate system. To model the velocity in Eq. (A.14), the fluid particle velocity

u(t) is represented by the stochastic particle velocity u∗(t). In literature, Various

models are available to model the evolution of the particles in the velocity sample

space [64,97,98,150]. A suitable model to generate the stochastic process of turbulent

dispersion is the Langevin equation [150]. The generalized Langevin model [150] can

be written as

du∗
i (t) =

1

ρ

∂〈p〉
∂xi

dt + Gij(u
∗
j(t) − 〈uj〉)dt + (C0ǫ)

1/2dWi(t). (A.15)

The first term on the right-hand side describes the acceleration due to the mean pressure

gradient. The effects of viscous stress tensor and Wiener process are represented in

second and third term respectively, where Wiener process represents the effects of

fluctuating pressure gradients. dWi(t) = Wi(t + dt) − Wi(t) is a normal distribution

with the mean 〈dWi(t)〉 = 0 and the variance 〈dWi(t)dWj(t)〉 = dtδij [150]. The

coefficient Gij(x, t) depends on the local spatial and temporal values and is given by

Gij = −
(

1

2
+

3

4
C0

)
ǫ

k
δij . (A.16)
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The above equation forms widely known simplified Langevin model (SLM) [64]. There

are other models as well such as isotropization-of-production model, which defines Gij

as

Gij = −1

2
CR

ǫ

k
δij + C2

∂〈ui〉
∂xj

, (A.17)

where CR and C2 are constants [150]. In simplified Langevin model, the effect of the

mean velocity gradient is neglected. The stochastic particle’s velocity is modeled by

du∗
i (t) =

1

ρ̄

(
ρ̄gi −

∂p̄

∂xi
+ S̄l,ui

)
dt

−
(

1

2
+

3

4
C0

)
ǫ̃

k̃
(u∗

i (t) − ũi) dt + (C0ǫ̃)
1/2 dWi(t), (A.18)

where C0 = 2.1 is the model constant [64]. The acceleration due to the body force

(gravitational force) is included in the first term on right hand side. The second term

is for the acceleration due to the mean pressure gradient while the third term is for the

spray source respectively. The fourth term is the viscous stress tensor. The last term

represents the diffusion process in which W(t) is a Wiener process.



B. Nomenclature

Symbol Unit Description

A m2 Surface area of control volume

BM - Spalding mass transfer number

BT - Spalding heat transfer number

C0 - Constant in Langevin model

CCFL - Constant in Courant–Friedrichs–Lewy condition

CD - Drag coefficient in spray model

Cpg J/(kg K) Specific heat capacity of gas

CpL J/(kg K) Specific heat capacity of liquid

Cpα J/(kg K) Constant-pressure specific heat of species α

Cs - Constant in extended k − ǫ model for spray flows

Cφ - Constant in IEM model

ctr - Constant in spray model

cǫ,1 - Constant in k − ǫ model

cǫ,2 - Constant in k − ǫ model

cµ - Constant in k − ǫ model

an, bn, cn Source terms for DQMOM

D m2/s Diffusion coefficient

D(x) Cumulative distribution function

DM m2/s Mean diffusion coefficient of mixture

Er - Equivalence ratio in counterflow spray flame

erfc(x) Error function

F m/s2 Drag force per unit mass

F Vector of convective terms

f Probability density function

f Droplet distribution function

Gij Coefficient in velocity model for trivariate PDF

Gk kg/(m s3) Generation term for turbulent kinetic energy

∆h0
f J/g Specific enthalpy of formation
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hs,α J/g Specific sensible enthalpy of species α

ht J/g Specific total non-chemical enthalpy

ht,c J/g Specific total enthalpy

Jc
q J/(m2 s) Heat flux due to thermal conductivity

Jd
q J/(m2 s) Heat flux due to molecular diffusion

k m2/s2 Turbulent kinetic energy

L m Turbulent length scalar

Lv J/g Latent heat of liquid

Ṁd,k kg/s Liquid mass flux represented by k-th droplet parcel

N - Particle number, sample number

N Vector of viscious terms

Nmax - Maximum particle number in one cell

Nmin - Minimum particle number in one cell

Ns - Species number

Ñu - Modified Nusselt number

Nu0 - Nusselt number

p Pa Pressure

P Presumed probability density function

pcrit Pa Critical pressure of liquid phase

pF Pa Vapor pressure

Pr - Prandtl number

r m Droplet radius

rp,k m Droplet radius in kth parcel

Rα J/(mol K) Gas constant of species α

Re - Reynolds number

Red - Droplet Reynolds number

r0 m Initial droplet radii in counterflow spray flame

S Vector of source terms

Sg Source term due to gas phase

Sl Source term due to liquid phase

Sα kg/s Chemical production rate of species α in mass

Sc - Schmit number

S̃h - Modified Sherwood number

Sh - Sherwood number

T K Temperature

Tcrit K Critical temperature of liquid phase

Td K Droplet temperature

t s Time
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u m/s Gas velocity in physical space

V m/s Gas velocity in sample space

v m/s Droplet velocity

ux m/s Axial component of gas velocity

ur m/s Radial component of gas velocity

vx m/s Axial component of droplet velocity

vr m/s Radial component of droplet velocity

V m/s Velocity in sample space

W Vector of conservation variables

Wα kg/mol molecular weight of species α

Xα - Mole fraction of species α

x m Geometrical coordinates

YLs - Mass fraction of liquid vapor at droplet surface

Yα - Mass fraction of species α

ZA - Mass fraction of element A

ǫ m2/s3 Dissipation rate of turbulent kinetic energy

ζ - Mixture fraction in sample space

λ J/(m s K) Thermal conductivity

µ kg/(m s) Viscosity coefficient

µt kg/(m s) Turbulent viscosity coefficient

µl kg/(m s) Laminar viscosity coefficient

µeff kg/(m s) Effective viscosity coefficient

ξ - Mixture fraction

ρ kg/m3 mass density

σk - Effective Schmidt number for k

σǫ - Effective Schmidt number for ǫ

χ s−1 Dissipation rate of mixture fraction

Γf Droplet coalescence function

Γ(x) - Gamma function

Γh kg/(m s) Thermal diffusion coefficient

Γh,eff kg/(m s) Effective thermal diffusion coefficient

Γh,t kg/(m s) Turbulent thermal diffusion coefficient

Γk,eff kg/(m s) Effective exchange coefficient for k

Γǫ,eff kg/(m s) Effective exchange coefficient for ǫ

ΓM kg/(m s) Mean mass diffusion coefficient of the mixture

ΓM,eff kg/(m s) Effective mean mass diffusion coefficient of the mixture

ΓM,t kg/(m s) Turbulent mean mass diffusion coefficient of the mixture

∆t s Time step

V m−3 Control volume
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Subscripts and Superscripts
Symbol Quantity

C Carbon

d Droplet

F Fuel

l Liquid

O Oxygen

p Parcel

s Species, sensible

˜ Favre average

Time average
′′ Fluctuating component in Favre average
′ Fluctuating component in time average

∗ Sample properties

〈 〉 Ensemble average

̂ Estimated property

Physical Constants
Symbol Quantity

R = 8.31451 J/(mol K) Universal gas constant

g = 9.81 m/s2 Gravitational acceleration
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