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Summary 
 

To date, it is unclear whether adverse effects by genotoxic anthropogenic pollutants in the aquatic 

environment are linked to the decline of fish populations observed in European and North American 

freshwaters. Therefore, there is a need for investigations into the relationship between genotoxic stress 

and detrimental effects on development and reproduction in fish. In order to contribute to this field, the 

present thesis investigates effects of the alkylating genotoxin methyl methanesulfonate (MMS) on 

genetic integrity, histological status and reproduction in zebrafish (Danio rerio). In addition, in their 

unexposed offspring (F1), larval development, histological status and reproduction as well as devel-

opment in the F2 generation were examined at the population level in order to identify potential inhe-

ritable effects of genotoxicity. 

First, methods for the use of primary gonad cells from zebrafish in the alkaline comet assay and histo-

logical sections of testis and ovary in the micronucleus test were developed. After in vivo exposure of 

adult zebrafish to MMS for up to two weeks, in the comet assay, concentrations-dependent genotoxic 

effects were detected in gonads, liver and gills. Likewise, the micronucleus frequency was elevated by 

MMS in all of these organs. Thus, the concentration range adequate for MMS exposure in the desig-

nated multi-generation experiment was identified. In the next step, zebrafish (F0) were exposed to 

MMS in vivo from fertilization until the age of one year. Mortality of F0 fish clearly depended on 

MMS concentrations. In exposed fish, times of first spawning were delayed and fertility was reduced. 

However, no unequivocal effects on growth were found. In F1 fish derived from MMS-exposed fish, 

teratogenic effects were increased, larval survival was reduced and sex ratio was shifted towards fe-

males. However, compared to the exposed F0 generation, fertility of the non-exposed F1 generation 

recovered. Development and survival rates recovered in the F2 generation. Significant genotoxic ef-

fects were found in the livers, gills and gonads of either sex of the F0 generation. Regarding histopa-

thological aberrations and external lesions, mainly malformations of eyes, gills and liver and a number 

of neoplasia were observed in both the F0 and F1 generation. According to indirect measurement of 

MMS concentrations using ion chromatography, real concentrations in the replicate tanks were simi-

lar. 

Taken together, chronic exposure of zebrafish to MMS led to DNA damage in somatic and generative 

tissues, induced the formation of a multitude of histopathological aberrations and affected survival, 

reproduction and development in exposed fish and their offspring. Regarding several endpoints, cessa-

tion of exposure allowed for recover over the generations. Combining these results with data of pre-

vious studies and transferring them to the environmental situation, there is considerable evidence that 

anthropogenic genotoxicants play a role in the decline of wild fish populations. 
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Zusammenfassung 
 

Es ist bis heute ungeklärt, ob schädliche Effekte gentoxischer anthropogener Schadstoffe in der aquati-
schen Umwelt zu den Ursachen des Rückgangs der Fischpopulationen in europäischen und nordame-
rikanischen Süßgewässern zählen. Deshalb ist es angezeigt, den Zusammenhang zwischen gentoxi-
scher Belastung und Beeinträchtigung von Entwicklung und Fortpflanzung bei Fischen weiter zu un-
tersuchen. Um einen Beitrag zu diesem Forschungsfeld zu leisten, betrachtet die vorliegende Arbeit 
die Auswirkungen des alkylierenden Gentoxins Methylmethansulfonat (MMS) auf die genetische In-
tegrität, das histologische Bild diverser Organe und die Fortpflanzung belasteter Zebrabärblinge (Da-
nio rerio). Darüber hinaus wurden die Larvenentwicklung, das histologische Bild und die Fortpflan-
zung ihrer nicht belasteten Nachfolgegeneration (F1), sowie die Entwicklung der F2-Generation, auf 
Populationsebene untersucht, um potentielle erbliche Effekte der Gentoxizität auszumachen. 
Zunächst wurden Methoden für die Verwendung primärer Gonadenzellen des Zebrabärblings im alka-
lischen Comet-Assay und histologischer Schnittpräparate von Hoden und Eierstöcken im Mikrokern-
test entwickelt. Nach zweiwöchiger Belastung adulter Zebrabärblinge mit MMS in vivo wurden kon-
zentrationsabhängige gentoxische Effekte im Comet-Assay mit Gonaden-, Leber- und Kiemenzellen 
gefunden. Somit wurde ein für den vorgesehenen Mehrgenerationen-Versuch geeigneter MMS- Kon-
zentrationsbereich abgeschätzt. Anschließend wurde eine Generation von Zebrabärblingen (F0) in vivo 
von der Befruchtung bis zum Alter von einem Jahr belastet. Die Mortalität der F0-Fische hing deutlich 
von den MMS-Konzentrationen ab. Bei belasteten Fischen war das erste Laichen verzögert und die 
Fertilität reduziert. Es wurden jedoch keine eindeutigen Effekte auf das Wachstum gefunden. Bei von 
belasteten Fischen abstammenden F1-Fischen war die Häufigkeit teratogener Effekte erhöht, das Lar-
venüberleben reduziert und das Geschlechterverhältnis auf die Seite der Weibchen verschoben. Den-
noch erholte sich die Fertilität der unbelasteten F1-Generation im Vergleich zur belasteten F0-
Generation. Die Entwicklung und die Überlebensraten näherten sich in der F2-Generation den Kont-
rollen an. In Leber, Kiemen und Gonaden beider Geschlechter der F0-Generation traten signifikante 
gentoxische Effekte auf. Bezüglich histopathologischer Veränderungen und äußerlicher Läsionen 
wurden in der F0- und der F1-Generation v.a. Fehlbildungen der Augen, Kiemen und Leber sowie 
Neoplasien beobachtet. Die indirekte Messung der MMS-Konzentrationen im Aquarienwasser mittels 
Ionenchromatographie zeigte ähnliche Realkonzentrationen in den Belastungs-Replikaten. 
Insgesamt führte die chronische Belastung von Zebrabärblingen mit MMS zu DNA-Schäden in soma-
tischen und generativen Geweben, erzeugte eine Vielzahl histopathologischer Veränderungen und 
beeinträchtigte die Überlebensrate, Fortpflanzung und Entwicklung der belasteten Fische bzw. ihrer 
Nachkommen. Das Ende der Belastung ließ bei den nachfolgenden Generationen eine Erholung be-
züglich mancher Endpunkte zu. Verbindet man diese Ergebnisse mit Daten vorhergehender Studien 
und überträgt sie auf die Umweltsituation, gibt es deutliche Anhaltspunkte, dass anthropogene Gento-
xine eine Rolle beim Rückgang der Fischpopulationen spielen.  
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I.1 Decline of fish populations 

Industrialization brought economic prosperity, scientific progress, medical care, education, 

social framework and individual wealth to Europe, North America, Australia, Japan and an 

increasing number of newly industrializing countries. However, human health and wildlife are 

confronted to a multitude of threats, such as pollution of air (Brunekreef and Holgate 2002, 

Stern 1984) and water (Carpenter et al. 1998, Cooper 1993, Metcalfe 1989, Notovny and 

Olem 1994, van Dijk et al. 1994), eutrophication of water (Smith et al. 1999, van Dijk et al. 

1994), soil acidification (Helyar and Porter 1989), forest dieback (Houston et al. 1992, 

Nihlgård 1985) and climate change (Forster et al. 2007). Regarding industrial pollution of 

forests, release of untreated wastewater and oxygen level in rivers, an amelioration of the sit-

uation can be observed over the last decades (de Witt et al. 1991, Fanta 1997, Hanley et al. 

2006, Kiss 1985, van der Veen 1981). In addition to these issues, in the limnic environment of 

Europe and North America, a decline in fish populations has been observed over several dec-

ades to date (Burkhardt-Holm et al. 2002, Cook et al. 2003, de Lafontaine et al. 2002, Faller et 

al. 2003, Moyle and Williams 1990, Richter et al. 2003). It has been estimated that worldwide 

20 % of the ca. 1.800 fish species are extinct or in serious decline (Moyle and Leidy 1992). 

The extinction of 4 % of the North American freshwater animals per decade resulted from a 

model calculation (Ricciardi and Rasmussen 1999). In the upper Danube River, fish popula-

tions, especially of chub (Leuciscus cephalus), barbel (Barbus barbus), pike (Esox lucius) and 

brown trout (Salmo trutta fario) were strongly reduced since the early 1990s despite stocking 

(Keiter et al. 2006, Wurm 2001). Similarly, the catch rates of brown trout (Salmo trutta) have 

been reduced to the half between 1987 and 2002 (Friedl 1999). A multitude of reasons has 

been suggested to play a role in this situation: reproductive failure, reduced recruitment of 

young stages, impaired health and fitness, e.g. caused by diseases such as proliferative kidney 

disease (PKD), reduced availability of food, increase of fine sediments, poor water and mor-

phological quality and warming of rivers, changes of community composition, in parts due to 

appearance of exotic species, as well as anthropogenic chemical pollution with nutrients and 

synthetic compounds (Burkhardt-Holm et al. 2002, Fischnetz 2004, Richter et al. 2003). 

Wastewaters and surface run-off from industry, agriculture, traffic and private households, 

although widely treated in sewage treatment plants, constantly and intermittently contribute to 

the pollution of streams, lakes and groundwater. Especially industrial effluents from pulp and 

paper mills, steel foundries and organic chemical manufacturing facilities contain genotoxic 

substances (Claxton et al. 1998). In addition, persistent pollutants released to the water in the 
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past have been trapped in the sediments. Thus, a considerable load of heavy metals, polycyc-

lic aromatic hydrocarbons (PAHs), halogenated organic compounds, pesticides, pharmaceuti-

cals and nanomaterials is present in limnic environments (Bätscher et al. 1999, Harmon and 

Wiley 2010). There are endocrine disruptors such as organochlorine pesticides, polychlori-

nated biphenyls, dioxins, alkylphenolic chemicals and phthalates influencing sexual develop-

ment and reproduction of aquatic organisms (Cooper and Kavlock 1997, Crisp et al. 1998, 

Tyler et al. 1998, Vandenberg et al. 2009). Another group of anthropogenic pollutants com-

prises genotoxic, mutagenic and carcinogenic compounds (Burkhardt-Holm et al. 2002, Fent 

2003, Helma et al. 1994, Houk 1992, Marquardt 1994). In the present thesis, the focus is on 

the characteristics of genotoxic substances and the consequences to genotoxicants at the indi-

vidual as well as at the population levels. In contrast to other endpoints such as endocrine dis-

ruption, genotoxicity is especially important for the investigation of the decline of fish popu-

lations because it may produce genetic damage that is inherited to future generations (Bick-

ham et al. 2000, Depledge 1998). Thus, fish may be affected by genetic damage generations 

after the cessation of genotoxic exposure. 

I.2 Genotoxic agents, mechanisms and repair 

Genotoxicity is the interaction of DNA with chemical or physical agents such as alkylating 

agents, oxidative stress, metals, UV light and radiation (Fent 2003). Genotoxicity of metals 

such as Cd(II), Ni(II), Co(II), Pb(II) and As(III) is based on oxidative DNA damage and the 

impairment of DNA repair processes, leading to strand breaks and chromosomal aberrations 

(Hartwig 1995). Oxidative stress can give rise to oxidation of DNA bases as well as proteins 

and lipids, whereas the latter produces genotoxic compounds leading to increased micronuc-

leus frequency, sister-chromatid exchange and chromosomal aberrations (Esterbauer 1993). 

Dependent on the wavelength, UV light produces either pyridine dimers leading to strand 

breaks and modification or deletion of bases or acts indirectly via production of radicals and 

reactive oxygen species (Griffiths et al. 1998). Low doses of gamma radiation cause strand 

breaks, oxidative base damage and chromosomal aberrations as well as decrease of expression 

of DNA repair genes (Sudprasert et al. 2006). Alkylating compounds bind covalently to nuc-

leophilic centers in the DNA and other macromolecules (Friedberg et al. 1995). For example, 

this is true for nitrosourea and alkyl esters of methanesulfonic acid (Ayllon and Garcia-

Vazquez 2001, Beckwith et al. 2000, Golding et al. 1997, Tates and den Engelse 1989, 

Wurdeman et al. 1989). Many organic compounds acquire genotoxic potential after bioactiva-
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tion, e.g. by cytochrome P450 enzymes. This group includes polyaromatic hydrocarbons 

(PAHs), vinyl chloride and nitrosamines (Fent 2003, Mollerup et al. 2006, Phillipson and 

Ioannides 1984, Raucy et al. 1993). Genotoxicity affects multiple cellular levels. At the level 

of genes, in general, bases can be lost, added, linked or modified. In detail, effects on the ge-

netic level are single or double strand breaks, apurinic and apyrimidinic (AP) sites, alkali-

labile sites leading to strand breaks under alkaline conditions and crosslinks between both 

strands. In case of DNA adducts, electrophilic molecules covalently bind to the DNA. Finally, 

incomplete excision repair can lead to strand breaks (Tice et al. 2000). At the level of chro-

mosomes, breaks, deletions, insertions, inversions, duplications and translocations can occur. 

In addition, at the level of genomes, chromosomes can get lost or be added. Moreover, defects 

in chromosomal distribution during mitosis or meiosis can arise. Generally, direct effects of 

genotoxicity are distinguished from indirect effects. In case of direct effects, genotoxic agents 

cause modifications of DNA integrity such as strand breaks or of base sequence. In contrast, 

indirect genotoxic effects refer to mechanisms at higher levels of cellular physiology such as 

reduction of DNA repair capacities (de Boeck et al. 1998). 

There is evidence that genotoxic agents give rise to neoplasia, gene mutations leading to dis-

ease and teratogenicity as well as latent genetic damage that can be passed on over many gen-

erations and have adverse effects on their survival (Depledge 1996). Mutagenesis refers to the 

induction of mutations in the DNA and thus the alteration of the genetic code of an affected 

cell and frequently is closely related to genotoxicity. On the one hand, mutations are an ele-

mentary factor of evolution. On the other hand, genotoxic substances impose unpredictable 

risks on natural populations that are not comparable to the consequences of natural mutation 

rates. 

In a wider perspective, tumorigenesis and carcinogenesis may arise from genotoxicity and 

mutagenesis. Approximately 90 % of the mutagens known are carcinogenic. Inversely, about 

90 % of the carcinogenic compounds are also mutagenic (Fent 2003). As carcinogenesis is a 

multistage process than can develop over many years, the consequences of genotoxic expo-

sure to organisms strongly depends on their life expectancy. Therefore, in contrast to long-

lived organisms such as most vertebrates, short-lived individuals are more resistant to chronic 

exposure to low concentrations of genotoxins. However, also short-lived organisms can be 

affected by mutagenesis in germ cells, leading to genomic alterations that can be transferred 

to successive generations. Otherwise, populations with reproductive surplus are less threat-

ened by extinction when somatic cells are more affected by genotoxicity than gametes (Fent 

2003). As a consequence, various endpoints have come in the focus of genetic ecotoxicology: 
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gamete loss due to cell death, embryo mortality due to lethal mutations, abnormal develop-

ment and teratogenesis, carcinogenesis as well as effects on genetic diversity as a conse-

quence of heritable mutations. Relating these factors to reproductive success of natural biota 

is of crucial importance for the understanding of the fate of animal populations that are ex-

posed to anthropogenic pollution (Anderson and Wild 1994). Since the ecological conse-

quences of genotoxicity are possibly far-reaching, the investigation of genotoxic pollution of 

the aquatic environment is especially important in order to assess risks to wildlife (Chen and 

White 2004, Mitchelmore and Chipman 1998, Sun et al. 2004). Therefore, efforts need to be 

made to understand the relationship between genetic damage in aquatic species and popula-

tion-relevant detrimental effects in the offspring (Attrill and Depledge 1997, Depledge 1996, 

White et al. 1999).  

In fact, correlations between genotoxic effects and reproductive impairment have been shown 

in many groups of animals, i.e. polychaetes, nematodes, sea urchins, amphibians and fish 

(Anderson and Wild 1994). Mortality, malformation, and abnormal chromosome division of 

embryos of the Atlantic mackerel (Scomber scombrus) were associated with marine pollution 

(Longwell et al. 1992). Furthermore, in trout embryos and larval Pacific herring (Clupea pal-

lasi), anaphase aberrations led to developmental aberrations (Hose 1998, Liguori and Landolt 

1985). Exposure of Japanese medaka (Oryzias latipes) to physical and chemical genotoxicity 

caused dominant lethal mutations (Egami et al. 1983, Shimada and Egami 1984). Moreover, 

mortality and teratogenicity were increased in the offspring of mosquito fish (Gambusia affi-

nis) that had been exposed to radionuclides (Theodorakis et al. 1997). In another study, multi-

generation exposure of polychlorinated biphenyls (PCBs) and dioxins to mummichog (Fundu-

lus heteroclitus) reduced population growth (Munns et al. 1997). It was also suggested that 

benzo[a]pyrene can reduce fertility and larval survival in fathead minnows (Pimephales pro-

melas) two generations away from exposure (White et al. 1999). In addition, Diekmann and 

co-workers (2004a) predicted extinction of a zebrafish population after exposure to the geno-

toxicant 4-nitroquinoline oxide. Recently, in brown trout (Salmo trutta) and Arctic charr (Sal-

velinus alpinus), parental exposure to MMS was shown to cause morphological abnormalities 

in development of embryos and larvae (Devaux et al. 2011). Taken together, since reproduc-

tion is a population relevant process that can be affected by genotoxicity, genotoxicity as-

sessment plays a major role in ecotoxicology. Moreover, with respect to the worldwide fish 

decline, genotoxicants might well be causative agents. 

As a reaction to genotoxicity, there are various mechanisms of DNA repair in biota. DNA 

demethylation is a widespread mechanism of DNA repair (Gehring et al. 2009) that is espe-
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crosslinking (Beranek 1990, Brookes and Lawley 1963). In detail, MMS almost exclusively 

alkylates the ring nitrogens of purine bases, i.e. N-7 of guanine (about 80 % of the total me-

thylation damage), N-3, N-1 and N-7 of adenine (Beranek et al. 1980, Lee-Chen et al. 1993). 

Alkylation is counteracted via base excision repair and alkyltransferases (Lindahl and Wood 

1999). From intermediates of base excision repair, single strand breaks can arise (Pascucci et 

al. 2005). Spontaneous hydrolyzation of alkylated bases as well as excision by glycosylases 

(Gates et al. 2004, Lindahl 1982, Paterson et al. 1984, Hanawalt and Sarasin 1986) lead to 

depurination and thus AP sites that are heat labile and can give rise to single strand breaks 

(Brookes and Lawley 1963, Lindahl and Anderson 1972). In this process, AP sites and adjoin-

ing nucleotides are excised by endo- and exonucleases and mended by polymerase-directed 

repair synthesis as well as ligase-mediated strand rejoining (Mirzayans et al. 1988). Alkyla-

tion of the opposite strand can produce double strand breaks (Rydberg 2000). However, heat-

labile DNA methylated by MMS was shown to be converted into double strand breaks during 

sample preparation in the comet assay (Lundin et al. 2005). Thus, MMS does not produce 

double strand breaks in vivo. In addition, methylated bases block the replication fork and can 

impair replication (Lundin et al. 2005). Using EPI suite 4.0 (EPA’s Office of Pollution Pre-

vention Toxics and Syracuse Research Corporation, Environmental Protection agency, USA), 

a log kow of -0.66 was calculated. Thus, MMS is highly water soluble and adequate for geno-

toxic exposure to fish in vivo. 

I.4 Genotoxicity testing 

At present, a multitude of tests for genotoxicity testing is available. Toxicology is a discipline 

connecting medicine and chemistry and focuses on human health effects by industrial chemi-

cals and pharmaceuticals. Therefore, methods for genotoxicity testing were initially devel-

oped for the investigation of human tissue and cells from animals serving as models for hu-

man toxicity, i.e. mainly rodents. Hereby, the following assays are commonly used: the comet 

assay (Anderson et al. 1998, Collins 2004, Oshida et al. 2008, Kumaravel et al. 2009, Singh et 

al. 1988, Speit et al. 2009), the micronucleus test (Fenech 2000, Tates et al. 1980, Tice et al. 

2002), the bacterial Ames assay (Ames et al. 1975, Heil and Reifferscheid 1992, Maron and 

Ames 1983, Yamaguchi 1989) and the umu-assay with enzymatic supplementation imitating 

mammalian metabolism (S9; Hatanaka et al. 2001, Takemoto et al. 2002, Yamaguchi 1989), 

the UDS (unscheduled DNA synthesis) assay (Burlinson 1989, Hasheminejad and Caldwell 

1994, Kennelly et al. 1994), the alkaline filter elution (Doerjer et al. 1988, Bradley and Kohn 
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1979, Kohn 1991), the alkaline unwinding assay (Daniel et al. 1985, Garberg et al. 1988), the 

dominant lethal test (Ehling et al. 1978, Epstein et al. 1972, Generoso et al. 1980, Generoso et 

al. 1986), the chromosome aberration test (Abbondandolo 1984, Hartmann et al. 2003, Mat-

suoka et al. 1979), the sister chromatid exchange assay (Roth et al. 1994, Wilcosky and Ry-

nard 1990, Wolff 1977) as well as DNA fingerprinting assays able to detect DNA adducts 

such as randomly amplified polymorphic DNA (RAPD) and amplified fragment length poly-

morphism (AFLP; Clerc et al. 1998, Vos et al. 1995). In contrast to medical toxicology, ge-

netic ecotoxicology assesses the impact of anthropogenic influence on the natural environ-

ment. With respect to the fish decline, investigations have been focused on health effects of 

pollution of the aquatic ecosystem on fish. Many test methods have been adapted to the con-

text of the natural aquatic environment and aquatic species: the comet assay (Bony et al. 2010, 

Diekmann et al. 2004b, Ferraro et al. 2004, Frenzilli et al. 2009, Keiter et al. 2006, Knopper 

and McNamee 2008, Kosmehl et al. 2004, Reifferscheid and Grummt 2000, Schnurstein and 

Braunbeck 2001, Suares Rocha et al. 2009), the micronucleus test (Diekmann et al. 2004b, 

Ferraro et al. 2004, Suares Rocha et al. 2009, Williams and Metcalfe 1992), Ames assay, umu 

assay and alkaline filter elution (Diekmann et al. 2004b, Dizer et al. 2002, Hamer et al. 2000, 

Reifferscheid and Grummt 2000), the alkaline unwinding assay (Shugart 1988), the dominant 

lethal test (Egami et al. 1983, Shimada and Egami 1984), the chromosome aberration test 

(Ferraro et al. 2004, Rishi and Grewal 1995) as well as the sister chromatid exchange assay 

(Alink et al. 1980, Kligerman 1979). RAPD and AFLP play a minor role in genetic ecotox-

icology and are mainly used in fish for elucidation of phylogeny (Bardakci and Skibinsi 1994, 

Kocher et al. 1998, Sullivan et al. 2004). 

As the comet assay and the micronucleus test are broadly used in medical toxicology as well 

as in genetic ecotoxicology and both assays are central to the present thesis, the backgrounds 

of these methods are regarded in detail in the following. The comet assay, also called single 

cell gel electrophoresis, was developed by Rydberg and Johanson (1978) and Östling and Jo-

hanson (1984). Singh et al. (1988) applied the method to mammalian cells. The most impor-

tant advantage of the comet assay is its potential to detect DNA damage at the level of single 

cells from virtually every eukaryotic organism (Fairbairn et al. 1995). Dependent on the pH 

level before and during electrophoresis, there are two basic methods of the comet assay. In the 

alkaline version (pH > 13), single and double strand breaks, AP sites, alkali labile sites and 

crosslinks can be detected (McKelvey-Martin et al. 1993). Otherwise, the comet assay can be 

performed under neutral conditions. This is often applied to sperm because in the DNA struc-

ture of sperm manifold special proteins such as transition proteins make up a highly organized 
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and compact chromatin structure different from somatic cells (Laberge and Boissonneault 

2005, Speit et al. 2009). This leads to a high background level of strand breaks under alkaline 

conditions, which is not the case under neutral conditions (Singh et al. 1989). Thus, it may 

seem likely that sperm cells have many alkali labile sites that turn into single strand breaks 

when the strands are separated under alkaline conditions. However, performing the comet 

assay under neutral conditions does not exclude single strand breaks from analysis. In con-

trast, the overall sensitivity of the assay is reduced (Speit et al. 2009). The comparison of stu-

dies using alkaline or neutral comet assay is further hampered by the use of different electro-

phoresis conditions. Therefore, as both methods are suggested to mainly measure single 

strand breaks, the alkaline as well as the neutral version of the comet assay can be applied to 

gametes (Speit et al. 2009). Bony et al. (2010) demonstrated that the alkaline comet assay is 

adequate for the detection of genotoxic effects in zebrafish spermatozoa. Hence, in the present 

thesis cells from liver, gills and gonads of both sexes of zebrafish were tested under alkaline 

conditions in the comet assay. 

Other than the comet assay, the micronucleus test detects persistent genetic damage on the 

level of chromosomes in eukaryotic cells. Chromosomal mutations are of special importance 

with respect to carcinogenesis (Fenech 2000). On the one hand, chromosomal mutations can 

be a consequence of clastogenic effects, e.g. chromosomal fragmentation due to unrepaired 

double strand breaks. Misrepair of strand breaks can give rise to pathological chromosome 

rearrangements (Fenech 2000, Savage 1993). On the other hand, the spindle apparatus can be 

affected, leading to malsegregation of chromosomes during mitosis. In cells that replicated 

after such an event, acentric chromosomal fragments or lost chromosomes, termed micronuc-

lei, can be located at a distance from the nucleus in metaphase (Fenech 2000). In the present 

thesis, micronuclei were observed in histological sections of liver, gills and gonads of both 

sexes of zebrafish. 

I.5 Tumorigenesis and carcinogenesis 

As mentioned above, tumorigenesis and carcinogenesis may result from genotoxicity as well 

as mutagenesis, and genetic damage such as mutations may be inherited. Therefore, the de-

velopment of benign and malign neoplasia is investigated in the present thesis in the exposed 

fish and their offspring. 

There are two groups of carcinogenic substances: genotoxins that directly react with DNA and 

compounds that have an epigenetic mode of action. The latter group comprises approximately 
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25 % of the known carcinogens (Fent 2003). Epigenetic carcinogens affect cell differentiation 

and mitosis. Some of these compounds act as hormones such as estradiol (Ahmad et al. 2000, 

Liehr 2000) or as tumor promoters such as polychlorinated biphenyls (PCBs; Laib et al. 1991, 

Uchiyama et al. 1974). In mammals, it has been shown that cancer is associated with diverse 

changes in epigenetics such as DNA methylation, histone modifications, nucleosome posi-

tioning and non-coding RNAs, specifically microRNA expression (Sharma et al. 2010). Many 

substances require metabolization in order to become carcinogenic, e.g. aromatic amines, 

PAHs and nitrosamines (Laib et al. 1991, Leischner 2007, Lijinsky and Epstein 1970, Turesky 

et al. 1991). 

Carcinogenesis is a process consisting of three steps (Fent 2003, Leischner 2007): First, the 

interaction of a carcinogenic with DNA is referred to as initiation. Unless genetic alteration is 

undone by DNA repair, this is an irreversible process. During initiation, mutations in protoon-

cogenes occur and transform them into oncogenes. Protooncogenes regulate cell proliferation, 

motility and differentiation. As a consequence, a gain of function of the oncogene or its gene 

product can be observed (Leischner 2007). For example, mutations of genes of the ras family, 

which code for guanosine triphosphate (GTP) binding membrane proteins, which are impor-

tant for cell proliferation, can cause uncontrolled cell division (Bailey et al. 1996, Bos et al. 

1987). Mutations can cause defects of DNA repair mechanisms and thus genetic instability, 

leading to increasing heterogeneity of the tumor cell population. Activation of protoonco-

genes often involves amplification of gene loci, chromosomal translocations and point muta-

tions. 

In contrast to protooncogenes, mutations in tumor suppressor genes, which regulate cell 

growth, mostly cause a loss of function (Leischner 2007). For example, the gene p53 is re-

sponsible for the initiation of apoptosis in cells affected by heavy DNA damage. A reduced 

function of p53 enables these cells to divide and proliferate (Bhaskaran et al. 1999, Hollstein 

et al. 1991). In a second step, during promotion, a promoter such as epigenetic carcinogenis 

influences the initiated cell and allows for autonomous development and division (Fent 2003). 

Third, the affected cell transforms into a tumor cell. This step is called progression or realiza-

tion. In general, a tumor or a neoplasia is an abnormal tissue formation that needs only initial-

ly to be influenced by a growth promoting factor (Leischner 2007). In these cells, control of 

growth, differentiation and apoptosis mechanisms can be affected. Benign tumors, characte-

rized by slow growth in a delimited area, are distinguished from malign tumors that grow fast, 

develop multifaceted cell morphology, infiltrate other tissues and are prone to the formation 

of metastases. Malign tumors are also referred to as cancer. The presence of a tumor in an 
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organism can be ascertained using tumor markers such as oncofetal antigens, hormones, 

isoenzymes, organ specific proteins and intermediate filaments (Leischner 2007). 

Dependent on their origin in a blastodermic layer, tumors are assigned to the epithelial (ecto-

dermal and entodermal) or mesodermal group of neoplasia. Benign epithelial tumors derived 

from glandular epithelium and parenchyma are termed adenoma. Papilloma are benign epi-

thelial tumors derived from squamous epithelium or urothelium. Approximately 90 % of all 

malign epithelium tumors are carcinoma. They emerge from squamous epithelium, glandular 

tissue in the case of adenocarcinoma or urothelium. Mesodermal tumors derive from muscula-

ture, connective tissue, vessel endothelia and blood cells. Examples for benign mesodermal 

tumors are fibroma, myoma, lipoma, chondroma and osteoma. Blastoma are benign meso-

dermal tumors derived from mesenchymal precursor cells. Malign mesodermal tumors are 

termed sarcoma. In addition to epithelial and mesodermal neoplasia, there are dysontogenetic 

tumors deriving from embryonic or fetal tissue. These comprise teratomes emerging from all 

three blastodermic layers, embryonic tumors such as hepatoblastoma that derive from precur-

sor cells of the liver parenchyma, as well as hamartomes consisting of normally differentiated, 

but disordered cells (Leischner 2007). The process or carcinogenesis in somatic cells is illu-

strated in Figure I.2. Many different organisms are subject to the risk of carcinogenesis. Sev-

eral studies have demonstrated carcinogenesis in a number of fish species (Bailey and Hen-

dricks 1988, Bailey et al. 1996, Black and Baumann 1991, Bunton 1996, Cormier 1986, Cor-

mier et al. 1989, Couch and Harshbarger 1985, Lee et al. 2000). 

Some studies focused on carcinogenesis in zebrafish (Beckwith et al. 2000, Spitsbergen et al. 

2000a, Spitsbergen et al. 2000b, Stern and Zon 2003). As zebrafish show tumor morphologies 

similar to mammals, the species is regarded as a model organism for vertebrate tumor biology 

(Amatruda et al. 2002, Feitsma and Cuppen 2008, Spitsbergen and Kent 2003, Tsai 1996). 

The zebrafish belongs to the Cyprinidae within the Cypriniformes and their natural habitat is 

the South East of Asia. In both sexes, sexual maturity is accomplished by 90 days of age 

(Driever et al. 1994, Heeb and Escher 2007). As they are tropical fish, spawning is possible 

over the whole year. Transparency of the chorion is advantageous for investigation of devel-

opment. As the zebrafish is widely used in ecotoxicology, there are several test guidelines 

using it as test organism: OECD 203, 210, 215, 229, 230 and 234. Because of these beneficial 

properties, the zebrafish was selected as the test organism for the present thesis. 
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Fig. I.2: Steps in the process of carcinogenesis in somatic cells (based on Leischner 2007). 

I.6 Histology of fish gonads 

In gametes, DNA repair capacity has been shown to be limited dependent on cell stage (An-

derson and Wild 1994, Hales et al. 2005). During spermatogenesis, enzymes required for 

DNA repair present in cytoplasm are released from the cells (Aitken and de Iuliis 2007, Vogel 

and Natarajan 1995). Thus, late spermatids and spermatozoa are deficient in DNA repair (De-

vaux et al. 2011). In contrast, oocytes are capable of DNA repair (Ashwood-Smith and Ed-

wards 1996, Dahms and Lee 2010). In addition to exposure during gametogenesis, gametes 

are easily exposed to genotoxic agents in the water. Both aspects are relevant for fish, since 

the majority of aquatic animals release their gametes directly into the water (Jha 2008).  

For the investigation of multi-generational effects of genotoxicity, gonads are of special im-

portance as a link between the generations. Herein, genetic damage can be assessed that is 

passed on to the next generation. 

Gonads consist of generative as well as somatic cells. Generative cells are gametes and their 

precursor stages. Somatic cells in the gonads support metabolism, activities and development 

of the generative cells. 

In teleost ovaries, during ovulation eggs are released into a lumen, the ovocoele. This ovary 

type is termed cystovarian (Hoar 1969). Ovarian follicles consist of an oocyte surrounded by 
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the chorion and somatic follicle cells. The latter form an inner layer of granulosa cells includ-

ing the micropylar cell and an outer layer of theca cells, including capillaries and fibroblasts. 

A basement membrane lies in between both layers. Through pore canals penetrating the cho-

rion, oocytes and granulose cells are in contact (Takashima and Hibiya 1995). During devel-

opment of teleost ovaries, oocytes undergo a series of growth phases. First, in the chromatin-

nucleolus phase, oogonia undergo leptotene, zygotene and pachytene of the first meiotic divi-

sion. Oogonia are the smallest oocytic cells and are located within the ovarian germinal epi-

thelium covering the female gonad (Johnson et al. 2009). Second, in the perinucleolar phase, 

diplotene is arrested and multiple nucleoli migrate to the nuclear periphery for the production 

of ribosomal RNA. Third, in the cortical alveoli phase, vesicles and oil droplets appear. In 

zebrafish, this stage begins concurrently with the vitellogenic phase (Takashima and Hibiya 

1995, Yamamoto 1977). During the latter, hepatic vitellogenin is taken up and yolk is accu-

mulated in the cytoplasm of the primary oocytes, leading to growth. Finally, in the maturation 

phase, the first meiotic division is completed. The second meiotic division is arrested in the 

metaphase. The secondary oocytes are released from the follicles during ovulation. After 

spawning and fertilization, the second meiotic division continues (Takashima and Hibiya 

1995). A histological overview of a section of a female zebrafish gonad is given in Figures I.3 

and I.4.  

 

Fig. I.3: Histological section of 
female zebrafish gonads: second-
ary oocyte with lipid and oil drop-
lets (1), chorion of a secondary 
oocyte (2), primary, perinucleolar 
oocyte (3) with germinal vesicle 
(= nucleus; 4) with small, dark 
nucleoli in verge and tissue consis-
tent of somatic theca and granulo-
sa cells as well as oogonia (5). 
Embedded in Spurr, stained with 
Weigert’s hematoxylin. Scale bar: 
50 µm. 
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According to Callard (1991), the teleost testis is lobular, i.e. it forms an open-ended compart-

ment. Lobules are surrounded by a basement membrane and a layer of myoid cells. Genera-

tive cells are located inside spherical units, so called spermatocysts, formed by somatic Sertoli 

cells. Sertoli cells are few in number and usually adjacent to lobular septa (Johnson et al. 

2009). Their functions are phagocytosis of degenerating germ cells and formation of the 

blood-testis barrier (Takashima and Hibiya 1995). Somatic Leydig cells are also present in 

low numbers. They can be found in the interlobular interstitium and have steroidogenic func-

tion (Billard 1986, Johnson et al. 2009, Takashima and Hibiya 1995). Development of teleost 

testis comprises meiosis, spermiogenesis and spermiation. Spermatogonia undergo complete 

meiosis without interruption and become primary spermatocytes. By the second meiotic divi-

sion, they become secondary spermatocytes. In the next step, the cells divide into haploid 

spermatids. During spermiogenesis, spermatids evolve into spermatozoa featuring head, mid-

piece and flagellum. Finally, spermatozoa are released from the spermatocyst during spermia-

tion (Takashima and Hibiya 1995). A histological overview of a section of a male zebrafish 

gonad is given in Figures I.5 and I.6. 

Zebrafish undergo juvenile hermaphroditism, i.e. up to the age of 15 to 20 days after hatching, 

both male and female zebrafish exhibit ovaries with developing oocytes (Maack and Segner 

2003, Takahashi 1977). However, during development of male zebrafish larvae, oocytes de-

generate and spermatogonia are activated, which leads to the histological appearance of inter-

sex gonads. Usually, transformation into testes is completed by 40 days after hatching (Taka-

hashi 1977). 

Fig. I.4: Histological section of 
female zebrafish gonads: secondary 
oocytes on the top and on the right 
as well as  primary, perinucleolar 
oocytes in the center surrounded by 
tissue consistent of somatic theca 
and granulosa cells as well as oo-
gonia. Embedded in paraffin, 
stained with hematoxylin and eosin. 
Original magnification: 20 x. Pic-
ture taken from Johnson et al. 
(2009). 
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I.7 Current regulatory efforts towards restriction of aquatic pollution 

Since anthropogenic pollution of aquatic ecosystems has been identified as the source of poor 

water status affecting wildlife as well as human health, political measures have been taken to 

protect aquatic ecosystems from excessive further pollution. In the European Union (EU), 

national water policies are harmonized with respect to a sustainable water use and good water 

quality. The Water Framework Directive (EU 2000) defines criteria for good biological, hy-

dromorphological, physical-chemical quality and stipulates that member states restrict the 

influent of pollutants into water bodies. However, in the EU, there is lack of data on the risks 

for human health and ecotoxicological potential of thousands of chemicals that are industrial-

ly produced or imported and widely used (Rovida et al. 2011). Therefore, a European Com-

Fig. I.5: Histological sec-
tion of male zebrafish go-
nads: spermatogonia (1), 
primary spermatocytes (2), 
secondary spermatocytes 
(3), spermatids (4) in sepa-
rate spermatocysts and 
spermatozoa (5) outside of 
the tissue. Embedded in 
Spurr, stained with Wei-
gert’s hematoxylin. Scale 
bar: 20 µm. 

 

Fig. I.6: Histological section of male zebrafish 
gonads: spermatogonia in the center and in the 
lower right corner, primary spermatocytes in 
upper right corner and secondary spermatocytes 
on the left side. Embedded in paraffin, stained 
with hematoxylin and eosin. Picture taken from 
Johnson et al. (2009). 
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munity regulation directing Regulation, Evaluation, Authorization and Restriction of Chemi-

cals (REACH; EC 1907/2006) was adopted by the European Commission and came into force 

on 1 June 2007. For substances that were available before 1981 applies the following: Until 

30 November 2010, testing of chemicals of more than 1000 t/a had to be accomplished. Until 

the same deadline, substances that are highly carcinogenic, mutagenic or toxic to reproduction 

(CMR) had to be tested if their tonnage exceeded 1 t/a as well as substances toxic to the envi-

ronment that exceeded 100 t/a. For chemical tonnages above 100 and 1 t/a, 30 May 2013 and 

30 May 2018 have been fixed as deadlines for registration. For chemicals introduced into the 

market after 1981 applies that they have to be tested as soon as possible (Rovida et al. 2011). 

In general, producers are in charge for the conduction of the tests. The test battery includes 

testing of carcinogenicity in rodents, bioaccumulation in fish as well as acute and long-term 

toxicity to fish (ECHA 2011). 

Compared to the EU, regulation of chemicals is less restrictive in the United States of Ameri-

ca. However, the U.S. Environmental Protection Agency (EPA) developed essential principles 

for a reform of the American legislation of chemicals management. Collaborating with the 

Congress, the public, environmental community and the chemical industry, it is the aim of the 

Agency to reauthorize the Toxic Substances Control Act (EPA 2012). 

 

I.8 Previous studies into the relationship between genotoxicity, re-
productive toxicity and carcinogenesis 

To date, there are several studies dealing with the relationship between genotoxicity and ef-

fects on fish populations. In an early approach, zebrafish embryos were exposed to ben-

zo[a]pyrene (BaP; Diekmann et al. 1999). However, no effect of reproduction could be found 

at the population level because high fertility of males compensated potential effects.  

In another study, zebrafish were investigated for genotoxic and reproductive effects after ex-

posure to 4-nitroquinoline oxide (4-NQO) in a full life-cycle test over two generations (Diek-

mann et al. 2004a, b). Hereby, activation of DNA repair and elevated rates of strand breaks 

and micronuclei were observed. At the population level, a reduction of fertility of females was 

found. Based on a model calculation, this would have led to extinction of the population. 

Hence, a correlation between genotoxicity and reduction of reproduction in zebrafish could be 

established. However, more evidence was deemed necessary to clarify if there is a causal rela-

tionship. It has to be considered that mutations and apoptosis of gametes as well as metabolic 

alterations in organs involved in reproduction could be a reason for reduction of reproductive 
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capacities. Thus, also synthesis of vitellogenin or choriogenin could be affected (Diekmann et 

al. 2004b). In addition, compensation of reproductive effects by an inappropriate sex ratio in 

the spawning groups should be avoided (Diekmann et al. 2004a). This aspect is accommo-

dated in the present thesis by composing spawning groups half-in-half of male and female 

fish. 

In another study, effects of exposure of mummichog (Fundulus heteroclitus) to polychlori-

nated biphenyls (PCBs) and polychlorinated dibenzodioxins (PCDDs) at the population level 

were predicted in a model calculation (Munns et al. 1997). Hereby, linear relationships be-

tween increasing exposure concentrations and decreasing population growth were shown. In 

one part of the study, dioxins were administrated to the fish via food. As a consequence, a 

reduction of survival and fertility of adults was observed. In the other part, fish were exposed 

to PCBs in natural habitats which led to a significant reduction in larval survival. In contrast 

to their parents, these larvae were not exposed themselves (Munns et al. 1997). 

White et al. (1999) exposed fathead minnow (Pimephales promelas) to BaP in a life-cycle 

experiment and raised the offspring without exposure. Thus, effects in the offspring could be 

due to inherited gene mutations. In fact, concentration-dependent effects on egg number, 

hatching frequency and larval survival were found. However, fish were mated with their sibl-

ings. Hence, effects of BaP were probably masked by inbreeding leading to detrimental genet-

ic homogeneity. As a consequence, a causal relationship between genotoxicity and population 

relevant effects could not be verified clearly. In the present thesis, this aspect is also addressed 

by mating the generation descendent from exposed fish irrespectively of their individual par-

ents. Furthermore, new aspects such as the focus on genotoxic effects on the gonads after 

chronic exposure play a central role herein. 

Regarding methodological aspects, the most important previously published literature are the 

protocol for isolation of primary cells from liver and gills of zebrafish by Schnurstein and 

Braunbeck (2001) as well as the comet assay with zebrafish sperm by Bony et al. (2010). 

 

I.9 Design of the present thesis 

The objective of the present study is to make a contribution to the clarification of the follow-

ing questions:  

1. How is anthropogenic pollution of the aquatic environment involved into the decline 

of fish populations?  



24 
 

2. Is there evidence for a causal relationship between genotoxic, reproductive and histo-

pathological effects on parental fish on the one hand and survival, reproduction and 

histological appearance of the offspring?  

3. Are these effects reversible in the next generation? 

To this end, an approach to the wildlife situation including a multi-generational experiment 

was performed: 

• On a laboratory scale, a generation of zebrafish (F0) was exposed to the model alkylat-

ing MMS in a flow-through aquaria system. Real concentrations of MMS were ana-

lyzed indirectly using high performance liquid chromatography (HPLC). 

• In F0 fish, genotoxic effects of MMS were investigated in liver, gills and gonads using 

the comet assay for acute DNA damage and the micronucleus test for chromosomal 

fragmentation. Being a link between generations, special emphasis was put on geno-

toxic effects in the gonads. 

• In the next step, parameters of reproduction such as egg number and fertilization fre-

quency as well as larval survival and development were observed in the F1 generation. 

The F1 generation was raised without exposure in order to allow recovery of potential 

inherited DNA damage. 

• Fish from the F0 and F1 generation were investigated for histopathological aberra-

tions, such as formation of neoplasia, due to MMS exposure and inherited mutations.  

• In the F2 generation, parameters of reproduction as well as larval survival and devel-

opment were investigated. F2 larvae were not exposed to MMS either. 

• Prior to the multi-generational study, a protocol for the comet assay with primary cells 

from zebrafish gonads was developed based on existing protocols for primary somatic 

cells from zebrafish. Analogously, a protocol for preparation and analysis of histologi-

cal sections from the zebrafish gonads was developed. In addition, appropriate test 

concentrations for chronic exposure of the fish to MMS were derived from pre-tests. 

In these experiments, zebrafish were exposed under semistatic conditions to MMS for 

two weeks. Comet assay and micronucleus test were also performed using these fish. 
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Assessment of genotoxicity in gonads, liver and gills of zebrafish (Danio re-

rio) by use of the comet assay and micronucleus test after in vivo exposure 

to methyl methanesulfonate 
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II.1 Abstract 

For the assessment of ecological risks of genotoxins in the aquatic environment, understand-

ing of the relationship between genetic damage found in experimental species and detrimental 

effects at the population level is indispensable. Although the detection of genetic damage in 

gonads and germ cells of fish is essential for risk assessment, only few such studies have been 

conducted. Therefore, adult zebrafish (Danio rerio) were exposed in vivo to 2 - 16 mg/L me-

thyl-methanesulfonate (MMS) for up to two weeks. Using the alkaline comet assay, genotoxic 

effects were investigated in primary cells derived from gonads and, for reference, in liver and 

gills. In addition, frequencies of micronuclei were examined in histological sections of the 

same organs. In the comet assay, concentrations-dependent genotoxic effects caused by MMS 

were detected for all organs tested, with liver and gills being more sensitive to genotoxicity 

than the gonads. Likewise, the micronucleus frequency was elevated by MMS in all of these 

organs. However, micronucleus formation was reduced at the highest test concentration, 

probably due to inhibition of DNA replication by MMS or the onset of acute toxicity. In con-

clusion, the alkaline comet assay and the micronucleus test proved appropriate for the detec-

tion of genotoxicity in primary male and female gonad cells and histological sections of the 

gonads from zebrafish. 

II.2 Introduction 

Over several decades, a decline in fish populations in European and Northern American 

freshwater ecosystems has been observed (Burkhardt-Holm et al. 2002, Cook et al. 2003, de 

Lafontaine et al. 2002, Faller et al. 2003, Keiter et al. 2006). In the Swiss midlands, e.g., be-

tween 1987 and 2002, the catch rates of brown trout and grayling was reduced by 50 % 

(Friedl 1999), and severe impairment of brown trout health has been identified (Burkhardt-

Holm et al. 2002). Poor water quality, the presence of endocrine disruptors, diseases such as 

PKD (Proliferative Kidney Disease), morphological quality and warming of rivers as well as 

lack of food caused by changed community composition have been considered as reasons for 

the fish decline. Apart from these factors, general anthropogenic chemical pollution has been 

suggested to play a major role (Burkhardt-Holm et al. 2002, Fischnetz 2004). Streams are 

constantly contaminated by sewage treatment plants, rainfall and surface run-off mainly from 

agriculture. Thus, heavy metals, polycyclic aromatic hydrocarbons (PAHs), pesticides and 

persistent halogenated organic pollutants are released into freshwater ecosystems (Bätscher et 
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al. 1999). Many of these compounds are endocrine disruptors, others have genotoxic, muta-

genic and carcinogenic potentials (Burkhardt-Holm et al. 2002, Fent 2003, Helma et al. 1994, 

Marquardt 1994). In aquatic systems, genotoxicity plays a major role because of its far-

reaching ecological consequences (Chen and White 2004, Mitchelmore and Chipman 1998, 

Sun et al. 2004). Especially for the assessment of ecological risks of genotoxins in the aquatic 

environment, it is crucial to understand the relationship between genetic damage in endan-

gered species and population-relevant detrimental effects in the offspring (Depledge 1996, 

White et al. 1999). It has been suggested that environmental pollution by genotoxins might 

affect the reproductive capacity of numerous species and that even a low level of pollution 

might lead to a destabilization of the ecosystem (Würgler and Kramers 1992). In addition to 

somatic mutations, heritable mutations and non-genetic modes of toxicity have been identified 

as the link between chemical contamination and population reduction (Bickham et al. 2000). 

In many groups of animals, a correlation has been shown between genotoxic effects and re-

productive impairment (Anderson and Wild 1994, Devaux et al. 2011, Diekmann et al. 2004a, 

b, Lacaze et al. 2011, Lewis and Galloway 2009). In this context, gamete loss by cell death, 

embryo mortality, congenital mutations and changing genetic diversity have been observed. 

Especially gametes are prone to genotoxicity because of their low DNA repair capacity (An-

derson and Wild 1994). This is of special importance for species releasing their gametes di-

rectly into the water, which holds true for the majority of aquatic animals (Jha 2008).  

Since the genetic integrity of the gonads is essential for reproductive success, it is necessary 

to be able to detect DNA alterations such as fragmentation and chromosomal aberrations not 

only in somatic cells, but also in generative tissues of fish exposed to genotoxins. In human 

and mammalian toxicology, the comet assay or single cell gel electrophoresis has repeatedly 

been used with germ cells (Brendler-Schwab et al. 2005, Chatterjee et al. 2000, Cordelli et al. 

2003, Speit et al. 2009). In contrast, in aquatic ecotoxicology, the comet assay has almost ex-

clusively been applied to cells from various somatic tissues (Della Torre et al. 2010, Guil-

herme et al. 2012, Jha 2008, Santos and Martinez 2012). Only very few studies used sperm 

from wild species (Cabrita et al. 2005, Gwo et al. 2003). However, both of these studies were 

focused on aquaculture and do not have any relevance for ecotoxicology. Another genotoxici-

ty assay, the micronucleus test, has not been adapted to the analysis of germ or gonad cells at 

all. In field fish, the micronucleus test has predominantly been performed using erythrocytes 

(Al-Sabti and Metcalfe 1995, Böttcher et al. 2010, Bony et al. 2010, Suares Rocha et al. 

2009). 
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With reference to the specific shortcomings of the comet assay, Jha (2008) emphasizes the 

importance of its application to gametes of aquatic species. In addition to recent investigations 

on genotoxicity in fish sperm (Bony et al. 2010, Devaux et al. 2011), the adaption of the com-

et assay and micronucleus test to gonadal cells of both sexes as described in the present study 

is a step in this direction. Thus, the present study was designed to demonstrate that genotox-

icity can be detected in primary cells and histological sections of testis and ovaries of zebra-

fish using the comet assay and the micronucleus test. In addition to gonads, liver and gills of 

exposed fish were investigated as a reference from somatic tissues. Hepatocytes are of special 

interest because of their central role in the metabolism of xenobiotics, and gill cells are of 

particular concern, because these organs are directly exposed to the environment. For primary 

cells from these organs, a protocol for genotoxicity assessment is already available (Braun-

beck and Storch 1992, Schnurstein and Braunbeck 2001). Data on genotoxic effects in these 

cells should then serve as a basis to rule out systemic toxic effects and to reveal whether ef-

fects in gonad cells are really caused by genotoxicity. 

As test substance, methyl methanesulfonate (MMS) was selected. This compound is known 

for its genotoxic potential (Bony et al. 2010, Clements et al. 1997, Lacaze et al. 2010) and has 

repeatedly served as a model substance for alkylating effects by environmental and occupa-

tional pollutants (Soloman and Faustman 1987). 

 

II.3 Materials and methods 

II.3.1 Chemicals 

Medium M 199 (Hanks modification: 20 mM HEPES), Dulbecco's phosphate-buffered saline 

without Ca2+ and Mg2+ (PBS), penicillin-streptomycin solution (stabilized, penicillin: 5000 

units/ml, streptomycin: 5 mg/ml), trypsin (trypsin-EDTA solution: 0.5 g/L porcine trypsin, 0.2 

g/L EDTA x 4 Na), Triton X-100, dimethylsulfoxide (DMSO), ethidium bromide, fluorescein 

diacetate, methyl methanesulfonate (99 %) and all other chemicals of analytical grade were 

supplied by Sigma-Aldrich (Deisenhofen, Germany). Normal (NMA) and low-melting-point 

agarose (LMA) were purchased from Biozym (Oldendorf, Germany). 
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II.3.2 Fish embryo pre-testing 

In order to estimate an upper limit for exposure of adult zebrafish (Danio rerio; West Aqua-

rium wild type strain) to MMS for two weeks, zebrafish embryos were exposed to MMS first. 

In doing so, mortality of adult fish should be avoided in the subsequent experiment. 

In the prolonged acute fish embryo test based on Nagel (2002), zebrafish  embryos were incu-

bated from four or eight cell stage in artificial water containing 1.9 to 50 mg/L MMS over 

144 h. For the controls and each test concentration, 20 embryos were kept in a 24-well plate 

(TTP, Renner, Darmstadt, Germany). In plates with test concentrations of MMS, 4 additional 

wells were used for internal negative controls. For preparation of artificial water, 20 ml of 

calciumchloride-2-hydrate (20 mM), magnesium-7-hydrate (5 mM), sodium hydrogen carbo-

nate (7.5 mM) and potassium chloride (0.37 mM) each were added to 1.92 L aqua bidest. Be-

fore use, artificial water was aerated, pH adjusted to 7.6 – 7.9 and kept at 27 °C. During the 

test, plates were incubated at the same temperature. As positive control, 3.7 mg/L 3,4-

dichloranilin was used. Every 24 h, the embryos were examined for sublethal and lethal ef-

fects. As sublethal effects were regarded: yolk sack edema, pericardial edema, deformation of 

somites, lack of blood circulation, malformation of tail and delay of development. The follow-

ing effects were considered lethal: tail not detached, lack of somites, lack of heartbeat and 

coagulation. 

Based on DIN 38415-6 (2001), a test was considered to be valid if 90 % of the embryos in the 

negative control did not show any effects. In the positive control, the rate of affected embryos 

in the positive control should range between 20 % and 80 %. In the following, results are only 

given if these requirements were fulfilled. 

II.3.3 Adult fish test conditions 

Sexually mature zebrafish were raised in the fish facilities of the Aquatic Ecology and Toxi-

cology Group Heidelberg. For each exposure group and the control, two adult groups of three 

male and three female fish were kept in 4L aquaria supplied with well-aerated tap water under 

semistatic conditions with a complete water renewal every 48 h (O2 saturation > 92 %, hard-

ness: 231 - 285 mg/L CaCO3, pH: 7.9 - 8.4, conductivity: 577 - 679 µS/cm, ammonium ≤ 0.5 

mg/L, nitrate ≤ 5 mg/L, nitrite ≤ 0.05 mg/L) at a constant temperature of 25 ± 1°C and a 12 h 

light / 12 h dark photoperiod. Temperature, pH, conductivity and O2 saturation were checked 

daily (Multi 350i, WTW, Weilheim, Germany); hardness, ammonium, nitrate and nitrite were 
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measured weekly (AquaMerck test kits, Merck, Darmstadt, Germany). Fish were fed ad libi-

tum with freshly bred Artemia nauplii (Great Salt Lake Artemia Cysts, Sanders Brine Shrimp 

Company, Morgan, Utah, USA) twice daily and commercial fish food (Tetramin fish food for 

ornamental fish, Tetra, Melle, Germany) once daily. Fish were exposed to 0, 2, 4, 8 and 

16 mg/L MMS for two weeks. Pre-tests using the same methods as in the present study 

showed that lower concentrations failed to produce clear effects. 

In other studies, zebrafish were exposed to MMS in vivo under similar conditions. However, 

water was renewed daily (Bony et al. 2010, Deventer 1996). Bony et al. (2010) argue that a 

daily water renewal can reasonably guarantee the quality of exposure. Analytical quantifica-

tion of hydrolysis rates of MMS using ion chromatography suggest that MMS has a half-life 

of 40 h at 25 °C in the aquarium water used (Faßbender et al., unpublished results). Therefore, 

it can be assumed that water renewal every 48 h leads to a regular peak exposure. Since under 

field conditions toxicant concentrations are subject to fluctuations, the semistatic MMS expo-

sure scenarios used in the present study mimics regular pulse exposure of alkylating agents in 

the aquatic environment. 

II.3.4 Preparation of primary cell cultures from liver, gills and gonads 

After two weeks of exposure, cells from liver, gills and gonads were isolated from three male 

and three female fish per exposure group and the control. Because of the onset of mortality at 

16 mg/L, fish exposed to the highest test concentration were already sacrificed after 11 days. 

The organs from three animals of each sex were pooled. In some cases, deviating numbers of 

fish were pooled due to the difficulty to clearly identify the sex of all fish prior to exposure 

and because of mortality. For cell isolation, a modified perfusion technique based on the pro-

tocols for the preparation of primary hepatocytes and gill cells in the comet assay by Braun-

beck and Storch (1992) as well as Schnurstein and Braunbeck (2001) was applied: After anes-

thesia in a saturated solution of benzocaine (ethyl-p-aminobenzoate), the body cavity was 

opened ventrally, and blood was removed by perfusion with PBS using a peristaltic pump 

(MS-4 Reglo 8-100, Ismatec, Zürich-Glattbrugg, Switzerland) and pointed glass capillaries 

(o.d. 0.2 mm; i.d. 0.08 - 0.1 mm). The equipment for dissection is depicted in Figure II.1. 

Liver, gills and gonads were dissected and rinsed in Ca2+- and Mg2+-free PBS. Liver and gills 

were incubated for 15 min in 0.05 % trypsin in PBS without Ca2+and Mg2+, but supplemented 

with 0.02 % EDTA. In contrast, gonads were incubated without enzymes in Ca2+ and Mg2+-

free PBS supplemented with 0.02 % EDTA. Using a glass rod, organs were passed through a 
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250 µm nylon gauze (Clear Edge, Geldern, Germany) into a stopping solution of PBS with 10 

% fetal calf serum. All organs except for the female gonads were additionally passed through 

a 71 µm nylon gauze. The second filtration step was omitted for female gonads in order to not 

destroy larger oocytes. After filtration, liver and gonad cells were centrifuged for 10 min at 

100 g and 20 °C. Gill cells were centrifuged at 200 g. The pellets were then resuspended in 

200 µl erythrocyte lysis buffer (Betti et al. 1993). After 5 min of incubation, lysis was stopped 

with 800 µl M199 medium supplemented with 350 mg/L NaHCO3, 10 % fetal calf serum and 

10 ml/L penicillin-streptomycin solution. Cells were again centrifuged to remove cell debris 

and resuspended in M199 medium supplemented with 350 mg/L NaHCO3, 10 % fetal calf 

serum and 10 ml/L penicillin-streptomycin solution at a density of 105 cells/ml. 

 

II.3.5 Viability testing 

For the measurement of the percentage of living cells, the fluorescein diacetate (FDA) assay 

was performed according to Strauss (1991) in the adaption of Schnurstein and Braunbeck 

(2001). For the staining solution, 40 µl of an ethidium bromide solution (200 µg/ml in aqua 

bidest) and 6 µl of an FDA solution (5 mg/ml in acetone, stored at 4 °C) were added to 960 µl 

unsterile PBS. In the next step, 30 µl staining solution were given to 30 µl cell suspension, 

incubated for 30 s, spread on a glass slide and covered with a cover slip. Using a fluorescence 

microscope (Aristoplan, Leitz, Wetzlar, Germany) with 340-fold magnification at a wave-

length of 435 nm, a total of 500 cells were examined in two replicates for each cell prepara-

tion. As FDA is dissociated by cytosolic esterases into fluorescein and acetate, vital cells were 

Fig. II.1: Equipment for 
zebrafish dissection and 
organ removal: binocular 
microscope equipped 
with illumination and 
foamed plastic for fish 
fixation with needles as 
well as pump and glass 
capillary for perfusion. 
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stained green under fluorescence. Dead cells appeared red due to ethidium bromide intercalat-

ing in the nuclear DNA. A comet assay was performed only if cell viability exceeded 90 % 

relative to the controls. 

II.3.6 Comet assay 

The comet assay was performed under alkaline conditions according to Singh et al. (1988) 

with modifications detailed by Schnurstein and Braunbeck (2001). Lysis conditions followed 

the protocol by Kosmehl et al. (2004). Fully frosted glass slides were degreased in 99 % etha-

nol. 1 % and 0.5 % NMA were dissolved at 300°C in PBS and kept liquid at 150 °C. The 

slides were covered with 1 % NMA, which was scraped off after hardening. The slides were 

dried for 5 min at 37 °C in order to enhance the adhesion of the following layers. 0.5 % NMA 

was dispersed on the slides before they were hardened for 3 min on ice and dried for 10 min at 

37 °C. For embedding of the cells, 0.7 % LMA was dissolved at 300°C in PBS and kept liquid 

at 37 °C. 90 µl of cell suspension were added to 90 µl LMA. In the next step, 90 µl of the 

mixture were spread on the prepared slides, solidified on ice for 3 min and incubated at 37 °C 

for 5 min. In the next step, 60 µl of a 0.7 % LMA solution were added as a covering layer, 

solidified and dried as described before. For lysis, the slides were incubated for 2 h in lysis 

solution. Hereby, cell membranes were disrupted and proteins extracted under alkaline condi-

tions. Autolysis and UV damage were minimized by keeping the slides in darkness at 4 °C. 

The following steps were carried out under red light. After lysis, the slides were incubated for 

20 min in ice-cold electrophoresis buffer, so that DNA could be unwound and single strands 

were separated. Electrophoresis was carried out for 20 min at 25 V and a maximum of 310 mA 

(Power Supply Model 200/2.0, Bio-Rad, Richmond, USA) in the same buffer. Afterwards, the 

slides were neutralized in tris buffer for 2 min to restore the helical structure of the the DNA 

(McKelvey-Martin et al. 1993). The slides could be stored in the dark for up to 2 weeks at 

4°C. For staining, 60 µl of an ethidium bromide solution (20 µg/ml in aqua bidest.) were 

spread on each slide. For each cell suspension prepared from the organs of three fish, 100 

cells on each of two slides were evaluated at 400 x magnification for DNA migration by using 

the comet image analysis software Komet 5.5 (Kinetic Imaging Ltd., Liverpool, UK). For 

statistical analysis with SigmaPlot 11.0 (Systat, Erkrath, Germany), the relative percentage of 

DNA in the tail was measured. Data were not normally distributed, and statistical differences 

were analyzed using ANOVA-on-ranks (Kruskal-Wallis) in combination with the post-hoc 
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test according to Dunn in order to identify statistical power of difference. Tab. II.1 shows the 

solutions used in the comet assay. 

Tab. II.1: Solutions used in the comet assay. 

Solution Composition 

Lysis stock solution 
146.5 g NaCl (99.5 %, p.A., Grüssing, Filsum, Germany), 

37.2 g EDTA (disodium salt dehydrate, p.A., AppliChem, 

8 g NaOH (p.A. Merck), 1.2 g tris (Carl Roth, Karlsruhe, 

Germany), in 750 ml aqua bidest; adjust pH with 1 M HCl 

to 10; fill up to 890 ml with aqua bidest. 

Lysis solution 178 ml lysis stock solution, 20 ml DMSO (99 %, 

Grüssing), 2 ml Triton X-100 (Sigma-Aldrich) 

Electrophoresis buffer 24 g NaOH (p.A., Merck), 0.74 g EDTA (disodium salt 

dihydrate, p.A., AppliChem) in 2 L aqua bidest. 

Tris buffer 
48.5 g tris (Carl Roth) in 1 L aqua bidest., adjust pH with 

25 % HCl to 7.5 

II.3.7 Micronucleus test on histological sections 

For the preparation of histological sections for the micronucleus test, three male and three 

female fish from each exposure group and the control were anaesthetized as described above. 

After perfusion with fixative (1.5 % glutardialdehyde, 1.5 % paraformaldehyde, 2.5 % poly-

vinylpyrrolidon (PVP) in 0.1 M phosphate buffer), liver, gills and gonads were dissected and 

further incubated in 2.5 % glutardialdehyde, 4 % PVP, 0.05 CaCl2 in 0.1 M cacodylate buffer 

for 1 h at 4 °C. All organs were washed twice in 0.1 M cacodylate buffer for 10 min, dehy-

drated in an ascending ethanol series and incubated in ascending concentrations of Spurr’s 

medium in ethanol. Spurr´s resin was prepared according to Spurr (1969). As a modification 

according to Ellis (2006), the toxic vinylcyclohexene dioxide was replaced by 3,4-

epoxycyclohexylmethyl-3,4-epoxycyclohexylcarboxylate (ERL-4221D; Serva, Heidelberg, 

Germany). Until polymerization, the preparations were incubated at 70 °C. Semithin sections 

of 1 µm thickness were cut using glass knifes on a Reichert OM-U 2 ultramicrotome (Vienna, 

Austria; Fig. II.2). Spurr was removed from the slides overnight by incubation in a NaOH-

ethanol solution (1 g in 200 ml) at 4 °C, followed by a descending ethanol series and distilled 
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water. In order to specifically visualize euchromatin, the slides were stained with Weigert’s 

iron hematoxylin according to Weigert (1904). The slides were then dehydrated as described 

above and coverslipped with DePeX (Serva). In order to determine micronucleus frequencies, 

micronuclei were counted in 2000 cells on each slide using an Aristoplan light microscope 

with 1,120-fold magnification (Leitz). Chromatin fragments were considered as micronuclei, 

if they had a diameter of not more than 30 % of that of a nucleus of the same cell type and 

were lying close to the nucleus and in the same focus plane. For normally distributed data, 

statistical differences in micronucleus frequency between groups were analyzed by One-Way-

ANOVA in combination with the post-hoc test according to Holm-Sidak in order to identify 

statistical power of difference. 

 

 

II.4 Results 

II.4.1 Fish embryo pre-testing 

From 16.4 mg/L MMS, a clear concentration-response relationship was found after 24 to 

144 hpf (Fig. II.3). Concentrations lethal for half of the embryos (LC50) were determined be-

tween 24 mg/L after 144 hpf and 41 mg/L after 24 hpf. Concentrations causing sublethal or 

lethal effects in half of the embryos (EC50) were lower than the latter and determined between 

16 mg/L after 144 hpf and 37 mg/L after 24 hpf. LC and EC values are given in Table II.2. 

Exemplarily, zebrafish embryos showing effects due to MMS exposure are shown in Fig-

ure II.4.  

Fig. II.2: Ultramicrotome used for prepa-
ration of semithin sections of liver, gill 
and gonad samples embedded in Spurr’s 
resin. 
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Based on these results, adult zebrafish were subsequently exposed to up to 16 mg/L MMS for 

two weeks. 

    

Fig. II.3: Lethal effects (A) and sublethal as well as lethal effects combined (B) on zebrafish 
embryos after exposure to MMS up to 144 hpf. Values of three tests using different concen-
trations are shown. 

 

Tab. II.2: Concentrations lethal for half of the embryos (LC50) and concentrations causing 
sublethal or lethal effects in half of the embryos (EC50) after exposure to MMS over 144 hpf 
(hours post fertilization). At 120 hpf, not enough data were collected to calculate LC and EC 
values. 

hpf LC50 [mg/L] EC50 [mg/L] 

24 41 37 

48 38 18 

72 36 17 

96 34 20 

144 24 16 
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Fig. II.4: Zebrafish embryos after exposure to MMS. A: Untreated control at 96 hpf. B: Emb-
ryo exposed to 16.4 mg/L at 96 hpf showing pericardial edema and tail malformation. C: 
Embryo exposed to 23.8 mg/L at 96 hpf featuring pericardial and yolk sack edemata and tail 
malformation. D: Embryo exposed to 30 mg/L at 144 hpf showing effects similar to C and eye 
malformation. E: Embryo exposed to 40 mg/L at 144 hpf featuring effects similar to C. Addi-
tionally, in fish B – E reduction of heartbeat and reduction or lack of blood circulation were 
observed (all effects sublethal). F: Embryo exposed to 50 mg/L at 24 hpf with yolk sack ede-
ma and tail not detached (lethal effect).  
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II.4.2 Cell viability and fish survival 

For all test concentrations, cell viability of primary cultures exceeded 90 % relative to the 

control. Hence, genotoxicity testing was performed in liver, gills and gonads at a concentra-

tion range from 2 to 8 mg/L. Appearance of primary cells in the FDA assay is shown in 

Fig. II.5. Since exposure to the highest test concentration of 16 mg/L unintentionally led to 

mortalities, genotoxicity was already analyzed after 11 days, and all individuals were used for 

the FDA and comet assays. 

 

  

Fig. II.5: Control primary cells 
from male liver (A), female gills 
(B), female gonads (C) and male 
gonads (D) of zebrafish in the 
FDA assay (magnification 630 x). 
Living cells are stained green with 
fluorescein and the nuclei of dead 
cells are stained red with ethidi-
umbromide.  
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II.4.3 Comet assay 

Over all tissues analyzed, the proportion of DNA in the tail of control cells ranged between 9 

and 14 %. The appearance of control nucleoids is shown in Fig. II.6. For all organs studied, 

effect levels did not show any sex specificity. Effects in gills and gonad cells were generally 

less pronounced than in liver cells. 

For all MMS concentrations tested, primary cells from liver and gills of both sexes of zebra-

fish showed a clear-cut dose-dependent increase in the percentage of DNA in the tail. In con-

trast, 2 mg/L MMS caused no significant effect in gonad cells of either sex. However, expo-

sure to ≥ 4 mg/L MMS led to a dose-dependent increase in the percentage of DNA in the tail 

in gonad cells (Fig. II.7). The strongest effects were found in male and female liver cells after 

exposure to 16 mg/L MMS with a maximum of 62 and 68 % DNA in the tail, respectively. 

However, it should be born in mind that at 16 mg/L MMS fish were close to mortality. 

 

Fig. II.6: Nucleoids of control primary cells from male liver (A), female gills (B), female go-
nads (C) and male gonads (D) of zebrafish in the FDA assay (magnification 800 x). 
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Fig. II.7: Percentage of tail DNA in the comet assay in primary cells from liver, gills and go-
nads of male and female zebrafish after two weeks of exposure to 2 - 8 mg/L methyl methane-
sulfonate (MMS) in vivo. In the case of 16 mg/L, fish were exposed for only 11 days. In each 
concentration and the controls, organs of 3 fish were pooled. For each box, data from two 
replicate slides with 100 nuclei each are unified. Data are given as means within box plots 
displaying the following percentiles: 25 and 75 (shaded box), 10 and 90 (whiskers) as well as 
5 and 95 (points). *** p< 0.001 for significant differences from controls (ANOVA-on-ranks 
followed by post-hoc test according to Dunn). 
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II.4.4 Micronucleus test 

In zebrafish hepatocytes, a significant increase in micronucleus frequency was found at 2 and 

4 mg/L MMS irrespective of sex (Fig. II.8). At 8 mg/L, however, the elevation was not signif-

icant. MMS caused significant effects in male and female gill and gonad cells from2 and 4 

mg/L, respectively. Whereas micronucleus frequency in gill cells increased in a concentra-

tion-dependent manner, liver and gonad cells showed a clear maximum at 4 mg/L followed by 

lower micronucleus frequencies at 8 mg/L. In Figures II.9 and II.10, the appearance of stained 

histological sections of zebrafish liver, gills and gonads is shown. 
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Fig. II.8: Micronucleus frequencies in his-
tological sections of liver, gills and gonads 
of male and female zebrafish after two 
weeks of exposure to 2 - 8 mg/L methyl 
methanesulfonate (MMS) in vivo (n = 2 -
10). Data are given as medians and stan-
dard deviation. * p < 0.05 for significant 
differences from controls (One-Way-
ANOVA followed by post-hoc test accord-
ing to Holm-Sidak). 
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Fig. II.9: Histological sections of female liver (A) and male gills (B) from control zebrafish 
stained with Weigert’s hematoxylin. In a hepatocyte and an interlamellar cell micronuclei are 
visible. 
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Fig.II.10: Histological sections of gonads from male (A) and female (B) zebrafish from con-
trols stained with Weigert’s hematoxylin. In spermatogonia and follicle cells micronuclei are 
visible. 
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II.5 Discussion 

Since gonadal cells, especially gametes, link generations, investigations into genotoxic effects 

in these cells are of major interest for the understanding of potential reasons for the reduction 

of wild fish populations. The model genotoxicant MMS is regarded as representative for a 

number of alkylating anthropogenic compounds in the aquatic environment. Alkylating agents 

range among the most potent and abundant DNA-damaging agents in the aquatic environ-

ment: known examples are allylic reagents (Kuehl et al. 1994) and mucohalic acids (Gómez-

Bombarelli et al. 2011a). Mucochloric acid, e.g., is a chlorination product of tap water 

(Gómez-Bombarelli et al. 2011b). Thus, knowledge on genotoxicity of MMS to fish at a la-

boratory scale can be useful to assess genotoxic hazards by environmental alkylating agents to 

aquatic animals. 

The concentration range used for exposure of adult zebrafish in the present study was based 

on the results of the embryo toxicity test. As anticipated, clear effects were found in the comet 

assay and micronucleus test in adult fish. However, mortality at the highest concentration re-

quired the use of all survived fish in the comet assay at 16 mg/L. Thus, no fish could be used 

for the micronucleus test at that concentration. If a larger distance had been kept between the 

concentration range of the fish embryo toxicity test and exposure of adult fish, mortality could 

have been avoided. Despite this, the concentration range used was appropriate for the purpose 

of the current study, i.e. the investigation of genotoxicity in primary gonad cells. 

Only gametes are able to transfer genotoxic effects to the next generation. However, in the 

present study, primary cells and histological sections from the gonads were analyzed without 

discriminating between gametes or their precursor stages and somatic cells such as Sertoli, 

interstitial and Leydig cells as well as granulosa and theca cells. Since genotoxicity in somatic 

gonad cells can lead to malfunction of these cells, tumor formation (Takashima and Hibiya 

1995) and cell death, it cannot be excluded that genotoxic effects on somatic cells specifically 

in the gonads can have a negative impact on generative cells. 

In contrast to organ-specific somatic cells, blood cells were excluded from analysis in the 

FDA and comet assays by perfusion with PBS and use of a cell-specific lysis buffer for eryt-

hrocytes. For the micronucleus assay with histological sections, this was done by perfusion of 

organs with fixative. Remaining erythrocytes could easily be identified in the sections and be 

excluded from analysis in the micronucleus assay. Thus, it could be made sure that the as-

sessment of genotoxicity was restricted to organ-specific cells. In the micronucleus test, in 
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male gonads mainly spermatogonia and in female gonads mainly theca and granulosa cells 

were analyzed. The former is due to the restriction problem that in histological sections of 

testis tails of spermatozoa can easily be mistaken for micronuclei; therefore, analyses in this 

organ focused on other cell types. In female gonads, theca and granulosa cells are much more 

abundant than oocytes and their precursors. Thus, it would almost be impossible to reach suf-

ficient statistical power, if only female gametes were analyzed. However, it was taken care to 

include as many gametes as possible into the investigation of micronucleus frequency. 

To date, several studies have reported genotoxic effects in fish after in vivo exposure to MMS. 

For example, elevated rates of sister chromatid exchanges were documented in gill cells from 

the central mudminnow (Umbra limi; Kligerman 1979). In another study, zebrafish exposed 

to 1 µM (110 µg/L) MMS for up to three weeks showed significant effects in the comet assay 

with liver cells and spermatozoa (Bony et al. 2010). After two weeks of exposure, the percen-

tage of DNA in the tail reached 16 and 26 % in spermatozoa and liver, respectively, and re-

mained on this level for the next week. Compared to data for liver and male gonad cells in the 

present study, these values are quite low (cf. Fig. II.7). On the other hand, this confirms the 

results of the present study, because at much higher concentrations of 2 to 16 mg/L, stronger 

effects are plausible. The study of Bony et al. (2010) is an important precursor of the present 

study, as it shows effects in gonadal cells from zebrafish using the comet assay. Furthermore, 

results are corroborated by Devaux and co-workers (2011): Using the comet assay, significant 

DNA damage in spermatozoa from brown trout (Salmo trutta) and Arctic charr (Salvelinus 

alpines) was found after exposure to MMS at the end of spermatogenesis. In another study, 

zebrafish were exposed to 0.8 - 80 µM (88 µg/L - 8.8 mg/L) MMS (Deventer 1996). At the 

highest concentration, the comet assay revealed a significant increase of tail length in liver 

and gill cells after 8 h of exposure. In both cell types, DNA damage increased up to 48 h of 

exposure, in liver cells more clearly than in gill cells. Exposure was stopped after 72 h, and 

subsequent 24 h of recovery in pure water led to a decrease of DNA damage. The highest 

concentration used by Deventer (1996) is only slightly higher than the second highest concen-

tration used in the present study. On the other hand, a much longer exposure time of two 

weeks was applied without the possibility to recover from alkylating stress, apparently leading 

to an accumulation of DNA damage. Overall, comet assay results of the present study for liver 

and gill cells are in line with data available in the literature. 

The micronucleus test has repeatedly been used for the assessment of the genotoxic potential 

of MMS or similar compounds in somatic cells: In vivo exposure of the African catfish (Cla-

rias lazera) to ethyl methanesulfonate (EMS) for two weeks significantly increased the mi-
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cronucleus frequency in erythrocytes (Odeigah and Osanyipeju 1995). Likewise, zebrafish 

erythrocytes exposed to 1 µM (110 µg/L) MMS for three weeks clearly showed induction of 

micronuclei (Bony et al., 2010). If compared to the comet assay, Deventer (1996) concluded a 

higher sensitivity for the micronucleus test in zebrafish. Apart from erythrocytes, only few 

studies have been carried out on the effect of genotoxic agents on micronucleus frequencies in 

fish gill and liver cells. In Nile tilapia (Oreochromis niloticus), in vivo exposure to a textile 

mill effluent for 9 days caused an increase of micronucleus frequency in gill cells to 12.83 ‰, 

compared to 1.93 ‰ in controls (Çavaş and Ergene-Gözükara 2003). In a similar experiment, 

Prussian carp (Carassius gibelio) exposed to CdCl2 for 21 d showed maximum effects of 

10 ‰ in gill cells, and micronucleus frequencies in liver cells of peppered cory (Corydoras 

spaleatus) reached 5 ‰ (Çavaş et al. 2005) indicating both species and organ specificity of 

genotoxic effects in primary cells from fish. This might also account for the fact that micro-

nucleus frequencies in the present study with a maximum between 3 and 4 % are clearly high-

er than those reported in literature on other fish species. 

The focus of previous micronucleus studies was on erythrocytes and other somatic tissues. In 

contrast, for no fish species studied so far, effects of exposure to genotoxicants on micronuc-

leus frequency in gonad cells are available. Therefore, the present study is the first to describe 

a significant increase of micronucleus frequency in gonad cells. The induction of micronuclei 

in liver and gonad cells was concentration-dependent except for the highest concentration. 

This is probably due to the capacity of MMS to inhibit DNA replication. It is assumed that 

MMS leads to an arrest of replication forks (Lundin et al. 2005). Since cell division is re-

quired for the formation of micronuclei, a reduction in the number of dividing cells might 

constrain the formation of a great number of micronuclei. However, the onset of acute mortal-

ity at 16 mg/L MMS might also have been a factor reducing mitotic rates in exposed zebra-

fish. 

Whereas exposure of somatic cells to genotoxicants may cause carcinogenesis, inheritable 

mutations and subsequent reproductive defects leading to impaired reproductive success and 

changes in population dynamics may arise from damage in germ cells (Belfiore and Anderson 

2001, Bony et al. 2010). After intraperitoneal MMS injection, dominant lethal mutations have 

been documented in medaka (Oryzias latipes) spermatids. After mating of exposed males with 

unexposed females, both fertility and hatchability were reduced (Shimada and Egami 1984). 

Likewise, male Mozambique tilapia (Tilapia mossambica) exposed to MMS injection during 

spermatogenesis produced less offspring than controls, and up to 50 % of the embryos showed 

defects (Hemsworth and Wardhaugh 1978). Thus, there seems to be a correlation between 
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reduction in fertility and embryopathy due to dominant lethal mutations in male germ cells; 

MMS obviously affects the transition between generations and is, therefore, of special relev-

ance in genotoxicity assessment in gonads. 

In conclusion, the present study clearly documents that the alkaline comet assay as well as the 

micronucleus test are appropriate methods for the detection of genotoxicity in primary gonad 

cells and histological sections of the gonads, respectively. Further studies into the correlation 

between DNA damage and population-relevant parameters such as fertility of fish exposed to 

chronic genotoxicity as well as embryo toxicity and larval survival in subsequent generations 

are subject of the following chapters. 
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Developmental and reproductive effects as well as recovery in zebrafish 

after chronic exposure to an alkylating agent in a multi-generation study 
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In chapter I, it was demonstrated that genotoxic effects of MMS on primary cells from zebra-

fish gonads can be examined using the comet assay. In addition, it was shown that micronuc-

lei can be detected in histological sections of the gonads. Based on this information, in chap-

ter II, a multi-generation experiment using zebrafish is described. In order to simulate geno-

toxic exposure of wild fish in the freshwater environment, a generation of zebrafish (F0) was 

exposed to MMS. In these fish, survival, growth, sex ratio, fertility and reproduction were 

investigated. In the following generation (F1), which was not exposed to MMS, the same pa-

rameters as well as development were recorded. Moreover, in the F2 generation, survival and 

development were examined. 

 

III.1 Abstract 

There is still controversy whether adverse effects by genotoxic anthropogenic pollutants are 

linked to the decline of fish populations. Since anthropogenic chemical pollution is likely to 

be a key to the problem, investigations into the relationship between genotoxic stress and de-

trimental effects on development and reproduction in fish are required. For this end, zebrafish 

(F0 generation) were exposed in vivo to the alkylating model genotoxin methyl methanesulfo-

nate (MMS) from fertilization to the age of one year in a continuous flow-through system. 

Survival of F0 fish was recorded, and F0 fish were mated over six months to check for repro-

ductive capacities. In contrast to the F0 generation, F1 fish grew up without exposure in order 

to allow for regeneration. Embryonic and larval development of the F1 generation was rec-

orded and F1 fish were mated. In both the F0 and F1 generation, sex ratios were determined, 

and weight and length were measured. In both the F1 and F2 generations, teratogenicity and 

survival were recorded. Mortality of F0 fish clearly depended on MMS concentrations. Times 

of first spawning in MMS-exposed F0 fish were delayed, and fertility of MMS-exposed F0 

fish was reduced. No unequivocal effects on growth were found. In F1 fish derived from 

MMS-exposed fish, teratogenic effects were increased, larval survival was reduced and sex 

ratio was shifted towards females. However, fertility of the non-exposed F1 generation had 

recovered. Development and survival rates further recovered in the F2 generation. Anthropo-

genic genotoxicants may thus play a considerable role in the decline of wild fish populations. 
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III.2 Introduction 

In European and Northern American freshwater ecosystems, a decline of fish populations has 

been observed over the last decades (Burkhardt-Holm et al. 2002, Fischnetz 2004, Friedl 

1999). In addition to other factors, anthropogenic chemical pollution, especially by genotoxic, 

mutagenic and carcinogenic compounds, may have contributed considerably to this problem 

(Bätscher et al. 1999, Burkhardt-Holm et al. 2002, Fischnetz 2004, Helma et al. 1994). Thus, 

the investigation of genotoxic and mutagenic hazards in the field requires special regard 

(Chen and White 2004, Mitchelmore and Chipman 1998, Sun et al. 2004). In the assessment 

of the effects of genotoxic pollutants on aquatic wildlife animals, there has been a focus on 

the development of neoplasia, on gene mutations leading to teratogenicity and other diseases, 

as well as on latent genetic damage. As the latter is inheritable, it may affect survival at the 

individual and the population level (Bickham et al. 2000, Depledge 1996). Genotoxicity can 

be correlated with gamete loss, embryonic mortality and heritable mutations in fish (Anderson 

and Wild 1994). 

The importance of reproductive impairment of fish due to aquatic pollution has been hig-

hlighted (Kime 1995). However, to date, only few studies available have addressed the rela-

tionship between genotoxicity and effects on fish populations. Theodorakis and co-workers 

(1997) found increased mortality and teratogenic effects in the offspring of mosquito fish 

(Gambusia affinis) after exposure to radionuclides in situ. In another study, the effects of mul-

ti-generation exposure of polychlorinated biphenyls (PCBs) and dioxines to mummichog 

(Fundulus heteroclitus) at the population level were modelled (Munns et al. 1997), and an 

inverse linear relationship between population growth rate and chemical concentrations was 

found. In one part of this study, adult fish were exposed to dioxins via food, leading to re-

duced survival of the adults and, hence, less offspring. In the same study, another fish popula-

tion was exposed to PCBs in situ in a natural habitat, and a significant decrease in larval sur-

vival was observed. However, in contrast to their parents, these larvae had not been exposed 

to PCBs themselves. The authors concluded that maternal transmission of PCBs or their me-

tabolites had occurred. However, a continuous multi-generation exposure only incidentally 

reflects the environmental situation, which is often characterized by fluctuating exposure due 

to discontinuous pollution, degradation and remobilization of pollutants from sediments. In a 

study by White and co-workers (1999), a generation of fathead minnow (Pimephales prome-

las) was exposed to benzo[a]pyrene (BaP), and the subsequent two generations were raised 

without exposure. Thus, effects in the offspring more than one generation away from the ex-
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posed population could be shown to be due to genetic mutations and their inheritance. In fact, 

concentration-dependent adverse effects on the fertility of F1 fish and survival of F2 larvae 

were found. However, it cannot be excluded that BaP effects were obscured by inbreeding so 

that a causal relationship between genotoxicity and population relevant effects could not 

clearly be shown. Likewise, ambiguous results were provided by Diekmann and co-workers 

(1999) who tested the effects of BaP on zebrafish (Danio rerio) populations in a full life-cycle 

study. No population-relevant effect was found, because it was impossible to prepare high 

BaP concentrations, and potential effects were confounded by high spawning frequencies. In 

another life-cycle test, zebrafish exposed to 4-nitroquinoline oxide (NQO; Diekmann et al. 

2004a) displayed a reduction of egg production that would have led to extinction of the fish at 

high NQO concentrations according to a mathematical simulation approach. In a parallel 

study on genotoxicity, an increase in DNA repair, DNA breaks and micronucleus frequency 

was evident in the same experiment (Diekmann et al. 2004b), thus providing evidence of a 

relationship between genotoxicity and impair of reproduction in zebrafish. However, it is still 

unclear to what extent genotoxic exposure may contribute to the decline of wild fish popula-

tions and if there is a causal relationship. Since in the study of Diekmann and co-workers 

(2004b) an inappropriate sex ratio of 4 females to 8 males (male surplus) in the mating groups 

might have concealed NQO effects on fertilization, the present study used an equalized sex 

ratio in the spawning groups. 

Methyl methanesulfonate (MMS) has frequently been used as a model genotoxicant (Bony et 

al. 2010, Deventer 1996, Solomon and Faustman 1987). Although MMS itself is not relevant 

in the aquatic environment, it can be considered as a representative of several groups of envi-

ronmental pollutants such as mucohalic acids (Gómez-Bombarelli et al. 2011a) and allylic 

reagents (Kuehl et al. 1994) due to its alkylating mode of action. 

While the present chapter focuses on developmental and reproductive effects on zebrafish 

exposed to MMS, chapter IV correlates histopathological lesions to genotoxic lesions in liver, 

gills and gonads using the comet and the micronucleus assays. 
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III.3 Materials and methods 

III.3.1 Chemicals 

Methyl methanesulfonate (MMS, CAS Nr. 66-27-3, 99 %) was supplied by Sigma-Aldrich 

(Deisenhofen, Germany). It is well water soluble, up to a ratio of 1:5 at 25 °C (Budavari 

1996). Although MMS tends to be hydrolyzed in water, MMS concentrations are stable, as 

long as the exposure medium is exchanged daily (Bony et al. 2010). Moreover, using ion 

chromatography, the half-life of MMS in water was determined to about 40 h at 25 °C (own 

data). Thus, regular water renewal every 48 h is expected to produce a regular peak exposure 

with limited degradation.  

III.3.2 Test conditions 

Water parameters were measured on a weekly basis by means of a Multi 350i electrode 

(WTW, Weilheim, Germany) and AquaMerck test kits (Merck, Darmstadt, Germany): tem-

perature: 25±2 °C, pH: 7.0 - 8.3, O2 saturation > 70 %, conductivity: 522 – 828 µS/cm, total 

hardness: 12 – 18 °dH, carbonate hardness: 6.5 – 9.5 °dH, ammonium ≤ 1.0 mg/L, nitrate ≤ 

30 mg/L, nitrite ≤ 1.0 mg/L.  

Zebrafish derived from West Aquarium wild type strain were bred in the laboratory. One to 

two hours after fertilization, 110 fertilized eggs (F0 generation) were exposed to 200 ml tap 

water containing 0, 2, 4 and 8 mg/L MMS in glass beakers at 26±1°C and a photoperiod of 

12h:12h, which was maintained throughout the whole experiment. Daily, half of the exposure 

medium was renewed. Each treatment was run in two replicates. After 96 h, embryos were 

transferred to 10-L flow-through aquaria equipped with a triplicate water renewal. The water 

flow into each tank was regulated via rotameters (Rota Yokogawa, Wehr, Germany), whereas 

the flow of stock solutions (52, 104, 208 mg/L MMS) was adjusted by means of peristaltic 

pumps (Minipuls 3, Gilson, Wiesbaden, Germany). MMS stock solutions were renewed every 

48 h. The flow through system is shown and depicted schematically in Fig. III.1. 

From 6 to 11 days post fertilization (dpf), larvae were given liquid Artemia (Nobil Fluid, JBL, 

Neuhofen, Germany) 3 times a day. In addition, from 8 to 11 dpf, powder food (NovoTom, 

JBL) was given three times a day. From 12 to 16 dpf, larvae were fed liquid Artemia once and 

powder food three times a day. From 17 to 19 dpf, freshly bred Artemia nauplii (Great Salt 
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Lake Artemia Cysts, Sanders, Morgan, Utah, USA) were fed once, powder food three times 

and flakes (Tetramin, Tetra, Melle, Germany) two times a day. From 20 to 22 dpf, nauplii 

were fed twice in addition to powder food and flakes once a day. Finally, from the age of 23 

dpf, larvae were fed nauplii two times and flakes once a day. The amount of food given was 

adjusted to the number of fish in the tanks. 

Mortality was recorded daily. Because of high mortalities, the exposure to 8 mg/L MMS was 

terminated after 50 days. All fish considered moribund were sacrificed. Considering moribund 

fish as dead may lead to an overestimation of mortality; however, moribund fish are not likely 

to reproduce and can thus be regarded a loss to the population. Since one replicate of the 2 

mg/L MMS treatment showed symptoms of fin rot at 169 dpf, all fish in this tank were sacri-

ficed in a saturated solution of benzocaine (ethyl-p-aminobenzoate, Sigma-Aldrich). 

Since all MMS-exposed spawning groups (cf. chpt. III.3.3) failed to spawn, and fish exposed 

to 4 mg/L MMS also showed mortalities, MMS concentrations were reduced from 2 and 4 to 

0.2 and 0.4 mg/L, respectively, at 220 dpf. In the following text, exposure of fish to 2 and 4 

mg/L from zygote and to 0.2 and 0.4 mg/L from 215 dpf is abbreviated as ‘2/0.2 mg/L’ and 

‘4/0.4 mg/L’. At 300 dpf, all remaining individuals exposed to 0.4 mg/L MMS were sacri-

ficed because of mortality, macroscopic pathology and consistent lack of spawn. F0 control 

fish as well as fish exposed to 2/0.2 mg/L MMS were sacrificed at 370 dpf. 

Since the reduction of exposure concentrations to 0.2 mg/L MMS allowed successful spawn-

ing, 120 F1 larvae could be transferred to 10-L aquaria after 96 h. In order to exclusively 

study the effects of potentially inherited DNA damage, F1 fish were not exposed to MMS. 

This scenario also allowed for studying potential recovery in the following F2 generation. F1 

fish were counted daily and fed as described for the F0 generation. In order to reduce mortali-

ties of young larvae in the overflow filters, water discharge was only started at 17 dpf, when 

triplicate renewal was initiated.  

In the F1 generation, fish derived from control and 2/0.2 mg/L MMS-exposed fish were sacri-

ficed at 230 dpf using benzocaine prior to determination of total length, weight and sex. Be-

fore weighing using accuracy scales (R 180 D-*D1, Sartorius, Göttingen, Germany), fish 

were wiped dry. Total length was recorded on millimeter paper. 
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Fig. III.1: Flow through system comprehending tap water storage tanks, particle depositors 
and rotameters for water flow as well as MMS stock solutions (green) and pumps. In addition, 
tanks are aerated and heated. Cylinders are used for daily calibration of water and stock solu-
tion flow. 

III.3.3 Reproduction and teratogenicity 

For spawning, groups of 3 female and 3 male fish from a given tank were formed and trans-

ferred overnight to spawning aquaria filled with tap water at 26 °C and artificial spawning 

stimulant (Fig. III.2). Thus, first time spawning per exposure group was determined. One to 

two hours after spawning, eggs per spawning group were counted using a dissection micro-

scope (Stemi 2000-C, Zeiss, Göttingen, Germany) or an Olympus CKX41 microscope 

(Olympus, Hamburg, Germany) and unfertilized eggs were discarded. In the next step, the 

fertilization rate was calculated. The development of the embryos and larvae was investigated 

for lethal and sublethal teratogenic effects 24, 48, 72 and 96 hours post fertilization (hpf). 

Based on Nagel (2002), the following effects were considered lethal: tail not detached, lack of 

somites, lack of heartbeat and coagulation. Sublethal effects recorded were: yolk sack edema, 

pericardial edema, deformation of somites, lack of blood circulation, deformation of tail and 

delay of development. 

Spawning of the F0 generation was evaluated for a total of 26 experiments between days 154 

and 341. When the F1 generation had reached an age of 3 months, F1 spawning was checked 
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for the first time analogously to the F0 generation. Overall, F1 spawning was analyzed in 16 

experiments over a total of 142 days. First time spawning, egg number, fertility rate and em-

bryonic development as well as teratogenicity were investigated in the F1 generation. 

 

 

III.3.4 Statistics 

Based on survival data in the F0 and F1 generation, Kaplan-Meier curves were generated ac-

cording to Kaplan and Meier (1958) as well as Rich et al. (2010). Statistically significant dif-

ferences between the groups were identified using log rank test and the post-hoc test accord-

ing to Holm-Sidak. Kaplan-Meier curves were used in the present study because this tool al-

lows for an exclusion of fish from statistical survival assessment that had obviously died be-

cause of reasons other than chemical exposure. In addition, Kaplan-Meier curves deal with the 

survival of fish at the endpoint of the experiment when the future point of death is unknown 

(Rich et al. 2012). The log rank test for independent data was used, since F0 fish were derived 

from diverse spawning groups consisting of several male and female fish. This was also true 

for F1 fish, because F0 spawning groups consisted of randomly assembled groups of three 

males and females.  

Body weight data of each sex from each tank was compared using One-Way-ANOVA on 

ranks and the post-hoc test according to Dunn. Weight of both sexes in the F1 generation was 

compared using Mann-Whitney rank-sum rest. Length data were processed using the same 

statistical test methods. Prevalence of sexes within and between the F0 and F1 generation was 

compared using binomial test with approximation to normal distribution. Frequency of lethal 

as well as sublethal teratogenic effects was compared using Mann-Whitney rank-sum test. 

Fig. III.2: Spawning tanks with 
circulating water flow and artifi-
cial spawning stimulant. In order 
to prevent fish from feeding on 
their own spawn, eggs fall 
through a metal grid in the bot-
tom of each container and are 
collected in a glass tray. 



59 
 

Graphics were generated using SigmaPlot 11.0 (Systat, Erkrath, Germany) and Photoshop 

CS5 Extended 12.0 x32 (Adobe, San Jose, CA, USA). 

III.4 Results 

III.4.1 Mortality 

Survival of the F0 fish in tanks 4 (2/0.2 mg/L) to 8 (8 mg/L) and the F1 fish descending from 

exposed parents was significantly reduced, if compared to controls (log-rank, Holm-Sidak, p 

< 0.05). Mortality in the F0 generation mainly occurred between the age of 96 hpf and 30 dpf, 

i.e. directly after transfer of the larvae to the 10-L aquaria (Fig. III.3 A). Already after 30 days 

of exposure, there was a clear concentration-dependent decrease of survival ranging from 50 

% in the controls to 11 % in zebrafish exposed to 8 mg/L MMS. However, it should be noted 

that there was considerable variability between replicates; e.g. the two replicates of the con-

trols showed significantly different mortality (log-rank test, Holm-Sidak test, p < 0.05).  Later 

on, overall mortality was much lower in all tanks. However, all fish exposed to 8 mg/L MMS 

died until day 50, and 50 % of the fish in one tank with 4 mg/L MMS died until day 120. In 

one tank exposed to 2 mg/L MMS, there was a breakout of fin rot, and the exposure was ter-

minated after 120 dpf.  

In the F1 generation, until the age of two weeks post fertilization, mortality reached 28 % in 

the controls and 50 % in descendants from F0 fish exposed to 2/0.2 mg/L MMS in tank 3. For 

the rest of the experiment, mortality in F1 fish was below 31 % for controls and 53 % for fish 

derived from exposed parents (Fig. III.3 B). Altogether, mortality in the offspring of F0 fish 

exposed to 2/0.2 mg/L MMS was 20 % lower than in descendants from F0 controls. In addi-

tion, survival in tanks with fish descending from controls was significantly lower than in tanks 

with offspring of 2/0.2 mg/L MMS-exposed parents (log-rank test, Holm-Sidak test, p < 

0.05). 
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Fig. III.3: Kaplan-Meier survival 
curves for the F0 generation of 
zebrafish exposed to MMS (A) as 
well as the non-exposed offspring 
(F1; B). Due to disease and per-
sisting mortality, fish in tanks 4 to 
6 were sacrificed prematurely and 
censored from the curve at 169 
dpf and 301 dpf, respectively. 
Survival data for the F1 genera-
tion are given as means from 4 
control tanks and 10 tanks with 
offspring from fish exposed to 
2/0.2 mg/L MMS (tank 3). For 
clarity, standard deviations are not 
shown (0.06 - 0.14 for controls 
and 0.14 – 0.29 for fish derived 
from exposed parents). 
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III.4.2 Growth 

Body weight of either sex in the F0 generation did not show any significant difference be-

tween treatments (One-Way-ANOVA on Ranks, Dunn’s test, p < 0.01; Fig. III.4 A). Weight 

of the F1 controls as well as the F1 fish with parental exposure was significantly reduced 

compared to the F0 controls (Mann-Whitney rank-sum test, p < 0.001). Weight of both sexes 

of zebrafish in the F1 generation descending from fish exposed to 2/0.2 mg/L MMS was in-

creased compared to the F1 controls (Mann-Whitney rank-sum test, p < 0.001; Fig. III.4 B). 

In the F0 generation, total length of fish exposed to 2/0.2 MMS was significantly reduced for 

females in one replicate tank (One-Way-ANOVA on ranks, Dunn’s test, p < 0.001). Regard-

ing the other groups, MMS exposure did not cause significant length reduction. Likewise, 

there were no significant differences between total length of the F1 controls and offspring of 

fish exposed to 2/0.2 mg/L MMS for both sexes (Mann-Whitney rank-sum test, p < 0.05). 

 

 

Fig. III.4: Average body weight of 
F0 zebrafish at 230 dpf combined 
from both replicate tanks of MMS 
treatments (2/0.2 and 4/0.4 mg/L) and 
control (A).  
B: Average body weight of F1 fish 
descending from MMS exposed fish 
and controls at 230 dpf. Data are giv-
en as means ± SD and the number n 
of fish per group.  
In the F0 generation, although statisti-
cally not significant (One-Way-
ANOVA on ranks, Dunn’s test, p < 
0.01), there is a trend towards smaller 
body weight by MMS exposure.  
In the F1 generation, weight of fish 
with parental exposure to 2/0.2 mg/L 
is increased compared to the controls 
(*** p < 0.001). 
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III.4.3 Fertility and fertilization 

F0 controls spawned for the first time at 154 dpf (Fig. III.5 A). At that time, premature gonads 

were found in dead female MMS-exposed F0 fish. For the rest of the experiment, the F0 con-

trols spawned in a regular and relatively homogenous pattern. Fertilization rates in F0 controls 

did not depend from time and almost exclusively ranged between 60 and 95 %. In F0 fish 

exposed to 2/0.2 mg/L MMS, the time point of the first spawning was delayed by 51 days 

relative to the controls. In addition, the number of eggs was clearly lower than in the controls. 

From 258 dpf, fish exposed to 2/0.2 mg/L MMS produced more eggs and spawned more fre-

quently (Fig. III.5 B). However, egg production of exposed fish never reached control levels. 

Except for the first two sporadic spawning events of the F0 fish exposed to 2/0.2 mg/L MMS, 

between 47 and 100 % of their eggs were fertilized, i.e. fertilization rate was similar to F0 

controls. 

In the F1 controls, the first spawn took place at 116 dpf. Egg production in F1 controls was 

very similar to that of F0 controls. Fertilization rates were generally comparable to F0 con-

trols. The offspring of fish exposed to 2/0.2 mg/L MMS spawned earlier than the F1 controls, 

i.e. at 92 dpf (Fig. III.5 C), however with a low fertilization rate of 12 %. Only at 104 dpf, 

fertilization rate in F1 fish derived from MMS-exposed fish reached 74 % and fluctuated be-

tween 20 and 80 % for the rest of the experiment. At 208 dpf, descendants from MMS-

exposed fish produced even more eggs than corresponding controls (Fig. III.5 C). 
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Fig. III.5 (this and the next page): Egg production of spawning groups from the F0 con-
trols (A), the F0 fish exposed to MMS (B) as well as offspring of the latter (C). A: Egg 
production of the two replicate F0 controls (black and grey). B: Egg production of up to 3 
spawning groups from one replicate tank with F0 zebrafish exposed to 2/0.2 mg/L MMS 
(up to 4 spawning groups at each spawning event; reduction of concentration at 216 dpf). 
C: Egg production of spawning groups from 7 replicate tanks with offspring from zebra-
fish exposed to 2/0.2 mg/L MMS (up to 4 spawning groups at each spawning event). Egg 
production refers to fertilized as well as non-fertilized eggs. 

N
um

be
r o

f e
gg

s 



64 
 

 

III.4.4 Sex distribution 

In the F0 generation as well as in F1 controls, male fish were significantly more prevalent 

than females (Fig. III.6 A, B). In contrast, female fish were more prevalent in the groups des-

cending from MMS exposed fish (binomial test with approximation to normal distribution, 

p < 0.05). 
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Fig. III.6: Sex distribution in the F0 generation of zebrafish exposed to 2/0.2 mg/L MMS at 
360 dpf (A, two replicate tanks each, control bars are hatched) as well as their offspring after 
265 dpf (B, whiskers indicate standard deviations for 5 control tanks and 8 tanks with 
offspring from exposed fish). For the total of all F0 groups and F1 controls, respectively, there 
is a significant prevalence of males over females (binomial test, p < 0.05). In contrast, F1 fish 
derived from MMS-exposed fish show a significant shift of the sex ration towards females 
(binomial test, p < 0.05). 

III.4.5 Teratogenicity in embryos and early larval stages 

Up to 96 hpf, there were significantly more lethal teratogenic effects in embryos and larvae 

descending from F0 fish exposed to 2/0.2 mg/L MMS than in the controls (Mann-Whitney 

rank-sum Test, p < 0.05). In the F0 controls, in 95 % of the spawn less than 10 % of the em-

bryos showed lethal effects (Tab. III.1). In contrast, in 27 % of the spawn of exposed fish, 
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lethal effects were observed at frequencies higher than 10 %. Also the frequency of sublethal 

teratogenic effects was significantly elevated in exposed fish compared to the controls (Mann-

Whitney rank-sum Test, p < 0.001). In no case, more than 6 % of the embryos in spawn from 

the F0 controls showed sublethal effects. In contrast, in 9 % of the cases, more than 10 % of 

the embryos two generations away from exposure were affected. Teratogenic effects in the F0 

generation are exemplarily shown in Figure III.7. 

In the F2 generation, there was no significant difference between the frequency of lethal tera-

togenic effects in the offspring of MMS-exposed fish and the controls (Mann-Whitney rank-

sum Test, p < 0.05). In the controls as well as in offspring of exposed fish, in less than 10 % 

of the spawn more than 10 % of the embryos showed lethal effects up to 96 hpf (Tab. III.2). 

In contrast, there were significantly more sublethal effects in F2 embryos and larvae descend-

ing from fish that were exposed to MMS two generations before than in the F2 controls 

(Mann-Whitney rank-sum Test, p < 0.05). Identically to the generation before, in no case 

more than 6 % of embryos in spawn from the F1 controls showed sublethal effects. In con-

trast, in 6 % of cases, more than 10 % of the embryos were affected (Tab. III.2). 

 

  

Fig. III.7: Examples for teratoge-
nicity in zebrafish embryos of the 
F1 generation derived from fish 
exposed to 2/0.2 mg/L MMS ap-
proximately 24 hpf (A - C) and 48 
hpf (D, E). A, D: Controls; B: tail 
not detached and head malformed; 
C: tail not detached; E: tail not de-
tached and pericardial edema. 
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Tab. III.1: Frequencies of lethal and sublethal teratogenic effects in the spawn of the F0 gen-
eration in percent. Effects observed between 24 and 96 hpf are grouped; n.d.: normal devel-
opment. Lethal effects are: tail not detached, lack of somites, lack of heartbeat and coagula-
tion. Sublethal effects are: yolk sack edema, pericard edema, deformation of somites, lack of 
blood circulation, deformation of tail and delay of development. 

 dpf F0 
Spawn 1st control Spawn 2nd control Spawn 2/0.2 mg/L MMS 
lethal sublethal lethal sublethal lethal sublethal 

154 n.d. n.d. no spawn no spawn no spawn no spawn 
157 n.d. n.d. n.d. n.d. no spawn no spawn 
162 n.d. n.d. n.d. n.d. no spawn no spawn 
175 n.d. n.d. n.d. n.d. n.d. n.d. 
189 n.d. n.d. n.d. n.d. no spawn no spawn 
197 n.d. n.d. no spawn no spawn no spawn no spawn 
203 n.d. n.d. n.d. n.d. no spawn no spawn 
205 n.d. n.d. n.d. n.d. n.d. n.d. 
209 n.d. n.d. n.d. n.d. no spawn no spawn 
216 n.d. n.d. n.d. n.d. n.d. 1 
219 n.d. n.d. n.d. n.d. no spawn no spawn 
223 n.d. n.d. n.d. n.d. no spawn no spawn 
230 n.d. n.d. n.d. n.d. no spawn no spawn 
244 n.d. n.d. n.d. n.d. no spawn no spawn 
258 no spawn no spawn 1 <1 2 2 
266 no spawn no spawn 8 n.d. 5 1 
272 1 <1 4 n.d. no spawn no spawn 
279 12 n.d. 9 n.d. 23 n.d. 
286 5 n.d. 8 n.d. 3 1 
293 3 n.d. n.d. n.d. no spawn no spawn 
309 n.d. 1 no spawn no spawn 2 1 
314 1 <1 <1 n.d. no spawn no spawn 
321 9 6 3 1 5 1 
328 no spawn no spawn no spawn no spawn 11 <1 
335 6 <1 2 <1 18 27 
341 no spawn no spawn 17 1 no spawn no spawn 

 

 



68 
 

Tab. III.2 (this and the next page): Frequencies of lethal and sublethal teratogenic effects in the spawn of the F1 generation in percent. Spawn 
groups are taken from 4 control tanks and 7 tanks containing fish with parental exposure; tank numbers are given in the headings. Effects observed 
between 24 and 96 hpf are grouped; n.d.: normal development; bar: not tested. Lethal effects are: tail not detached, lack of somites, lack of heartbeat 
and coagulation. Sublethal effects are: yolk sack edema, pericard edema, deformation of somites, lack of blood circulation, deformation of tail and 
delay of development. 

dpf F1 
Spawn control 4 Spawn control 8 Spawn control 9 Spawn control 13 

lethal sublethal lethal sublethal lethal sublethal lethal sublethal 
92 no spawn no spawn - - no spawn no spawn - - 
104 no spawn no spawn no spawn no spawn no spawn no spawn - - 
116 1 0 2 n.d. 1 <1 - - 
124 11 4 <1 <1 8 6 - - 
137 - - - - no spawn no spawn no spawn no spawn 
144 - - 3 1 - - no spawn no spawn 
151 2 1 - - - - no spawn no spawn 
158 - - - - 2 <1 no spawn no spawn 
164 - - 1 2 - - 7 3 
172 - - - - - - no spawn no spawn 
179 9 1 - - <1 <1 no spawn no spawn 
192 - - 1 n.d. - - no spawn no spawn 
208 - - - - 7 <1 2 1 
214 5 0 - - - - no spawn no spawn 
220 - - 2 1 - - n.d. 6 
234 - - - - 1 <1 no spawn no spawn 
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dpf F1 
Spawn 2/0.2 mg/L MMS 7 Spawn 2/0.2 mg/L MMS 10 Spawn 2/0.2 mg/L MMS 11 Spawn 2/0.2 mg/L MMS 12 

lethal sublethal lethal sublethal lethal sublethal lethal sublethal 
92 - - no spawn no spawn no spawn no spawn 5 n.d. 
104 - - no spawn no spawn no spawn no spawn 3 2 
116 no spawn no spawn <1 2 no spawn no spawn - - 
124 no spawn no spawn no spawn no spawn no spawn no spawn - - 
137 0 n.d. no spawn no spawn no spawn no spawn - - 
144 - - - - no spawn no spawn - - 
151 - - 3 3 no spawn no spawn - - 
158 14 3 - - 1 1 - - 
164 - - - - no spawn no spawn - - 
172 8 3 3 7 no spawn no spawn - - 
179 - - - - no spawn no spawn - - 
192 - - <1 1 n.d. 4 - - 
208 6 1 - - 4 1 - - 
214 - - 10 1 no spawn no spawn - - 
220 4 1 - - 1 2 - - 
234 - - 6 3 no spawn no spawn - - 

dpf F1 
Spawn 2/0.2 mg/L MMS 14 Spawn 2/0.2 mg/L MMS 15 Spawn 2/0.2 mg/L MMS 16 

lethal sublethal lethal sublethal lethal sublethal 
92 - - - - - - 
104 - - - - - - 
116 - - - - - - 
124 - - - - - - 
137 n.d. 3 - - - - 
144 no spawn no spawn 2 3 no spawn no spawn 
151 no spawn no spawn - - no spawn no spawn 
158 n.d. 9 - - no spawn no spawn 
164 no spawn no spawn 2 2 no spawn no spawn 
172 8 13 - - 1 3 
179 - - 15 n.d. no spawn no spawn 
192 16 27 - - no spawn no spawn 
208 1 1 6 1 - - 
214 n.d. 3 - - <1 2 
220 - - 5 2 1 2 
234 1 3 - - 1 1 
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III.5 Discussion 

MMS methylates DNA by nucleophilic substitution and leads to base mismatch and replica-

tion blockade (Beranek 1990, Lundin et al. 2005). Hydrolysis of methylated bases can pro-

duce AP-sites, which can give rise to single and double strand breaks (Lundin et al. 2005, 

Rydberg 2000). Chronic exposure using low concentrations may result in carcinogenesis, 

whereas acute exposure to high concentrations may lead to lethal mutations. In F0 zebrafish, 

MMS caused mortality in a concentration-dependent manner. In later stages of the experi-

ment, however, in the exposure groups concentration-dependent mortality was further ob-

served, whereas control fish numbers remained almost constant. Additional zebrafish embryo 

tests had shown that exposure to 16 mg/L MMS over 144 hpf did not induce any lethal effects 

(details not shown). Embryos of medaka (Oryzias latipes) were exposed to even higher con-

centrations (up to 82.6 mg/L MMS; Solomon and Faustman1987), and a concentration-

dependent decrease of viability and development of malformations were found. At the con-

centrations used in the present study, however, teratogenic effects were not to be expected in 

the F0 generation; even more so, since in another study with adult zebrafish, 8 mg/L MMS 

did not cause any mortality after exposure for two weeks, whereas mortality was high at 

16 mg/L (Faßbender and Braunbeck, under review). Thus, prolonged exposure to MMS start-

ing immediately after fertilization apparently induces higher lethality than does acute expo-

sure in later stages of embryonic development or adults. This might be caused by time-

dependent accumulation of minor DNA damages during chronic exposure and further corro-

borates the conclusion that acute toxicity tests cannot provide an adequate substitute for 

chronic toxicity assessment (Nagel and Isberner 1998). 

Since, however, there was also considerable lethality in F0 controls, mortality was not only 

due to MMS exposure. When zebrafish were exposed from fertilization to 4-nitroquinoline 

oxide (NQO) in a full life-cycle test, survival in the controls was higher than in the present 

study with at least 90 % after 42 days (Diekmann et al. 2004a). Only at the highest NQO con-

centration, survival was reduced to 12 %. Larvae were kept in 1-L vessels with 5-fold daily 

water renewal and were transferred to 5-L aquaria with double daily water renewal at 14 dpf. 

In the present study, mortality increased, when the larvae had been transferred to 10-L aquaria 

with triplicate daily water renewal after 96 hpf. Confrontation with continuous flow-through 

in combination with potential mechanical damage due to contact with the water outflow gauz-

es and difficulties in regular, uniform feeding might account for the increased mortality in the 
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experiment. Thus, quantification of the contribution of MMS to overall mortality is difficult. 

Therefore, larvae were not censored for the creation of Kaplan-Meier curves, in contrast to 

fish whose death was, e.g., due to fin rot. Nevertheless, MMS-induced mortality was clearly 

concentration-dependent in zebrafish. Since survival after exposure to 2/0.2 mg/L MMS was 

significantly different from controls in only one replicate, it remains unclear whether this con-

centration had an impact on survival or not. In contrast, higher concentrations of 4/0.4 and 8 

mg/L MMS had clear detrimental effects on survival. 

As a consequence of mortalities in F0 fish, water discharge in the F1 generation was only 

started at 17 dpf. Hence, larval mortality in F1 controls was considerably lower than in F0 

controls. In the offspring of MMS-exposed F0 fish, larval survival was reduced by 20 % rela-

tive to the controls. This might be explained by the production of dominant lethal mutations in 

germ cells of F0 fish. In this case, individuals developing from these gametes still bore these 

mutations after homologous recombination. In addition, residual MMS concentrations might 

have been present in the yolk of F1 embryos. Increased mortality in the offspring of fish ex-

posed to genotoxicity was found in mosquito fish exposed to radionuclides (Theodorakis et al. 

1997), in fathead minnows exposed to BaP (White et al. 1999) and in zebrafish exposed to 

NQO (Diekmann et al. 2004a). Moreover, male Tilapia mossambica exposed to MMS during 

spermatogenesis (Hemsworth and Wardhaugh 1978) produced increased rates of lethal em-

bryopathies. This is in line with the results of the present communication. 

In body weight, no significant differences were found between F0 controls and fish exposed 

to MMS, although fish densities in the F0 tanks differed due to concentration-dependent mor-

tality by MMS. Interestingly, body weight of F1 fish including the controls was lower than in 

F0 control fish. Potentially, this was due to higher fish densities in F1 tanks because of higher 

larval survival than in the F0 generation. In contrast, fish densities in F1 controls and F1 

groups derived from exposed fish were similar. Thus, neither in the F0 nor in the F1 genera-

tion an effect of MMS on body weight was found. Regarding total length, a significant reduc-

tion in the F0 generation was only found in the females of one group exposed to 2/0.2 mg/L 

MMS that was affected by fin rot. Thus, it is likely that this effect is equivocal. In the litera-

ture, exposure of a generation of zebrafish to NQO led to length reduction at the highest test 

concentration whereat also high mortality was observed (Diekmann et al. 2004a). In fact, 

these fish did not reach sexual maturity, which resembles the situation of the fish exposed to 

4/0.4 mg/L in the present study. In contrast, length and weight of the offspring of the zebra-

fish exposed to NQO did not differ significantly from the controls. In another study using 

brown trout, paternal exposure to MMS did not affect length and weight of the progeny at the 
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age of one year (Devaux et al. 2011). Hence, growth data in the present study is considered to 

be in line with literature data. 

MMS exposure also caused sublethal stress leading to a complete failure of reproduction in 

fish exposed to 2 and 4/0.4 mg/L. The finding of fish that had died untimely during exposure 

and had premature gonads at the age of more than 3 months suggests that MMS may have 

caused a delay of sexual maturation. Usually, zebrafish are expected to reach maturity by 90 

days (Heeb and Escher 2007). However, spawning was not checked before 154 dpf since ear-

lier sex determination of MMS-exposed fish was not deemed safe. Control zebrafish spawned 

for the first time at 154 dpf; MMS-exposed zebrafish showed a delay of first spawning by 51 

days. Spawning was obviously facilitated by the reduction of MMS concentrations at 215 dpf. 

Since only individual (moribund) fish could be examined for gonadal maturity, a spawning 

blockade of already mature fish might be an additional reason for spawning failure. Jobling et 

al. (2002) described a delay of spermatogenesis and high incidence of oocyte atresia in wild 

roach (Rutilus rutilus) from rivers polluted with treated sewage effluents in the context of 

endocrine disruption. The same conclusion has been drawn for delays in metamorphosis and 

sexual maturity of fish due to estrogenic pollutants in sewage treatment plant effluents (Keiter 

et al. 2006, van den Belt 2002, 2003). However, endocrine-disrupting effects by MMS have 

not been described so far. Therefore, the effects on sexual maturation in zebrafish in the 

present study are supposed to be a consequence of general chronic stress at repairing DNA 

and other macromolecules that were alkylated by MMS. It is also likely that general stress 

symptoms impaired the immune system of the fish so that a replicate exposed to 2 mg/L was 

affected by fin or tail rot. The outbreak of fin rot, which is caused by the myxobacterium Cy-

tophaga spp., has been documented, e.g., in fish exposed to dioxins or retene (Billiard et al. 

1999). 

As a consequence of the reduction of MMS concentrations at day 215, zebrafish exposed to 

2/0.2 mg/L eventually started reproduction in at least one replicate. Thus, the failure to spawn 

proved reversible, when the MMS-associated alkylating stress was reduced. However, repro-

duction in fish exposed to 2/0.2 mg/L MMS was not only delayed, but egg numbers as well as 

fertilization frequency were also reduced in comparison to the controls. Thus, although zebra-

fish is a pronounced r-strategist, there is a potential for extinction of populations with reduced 

fertility (Diekmann et al. 2004a, Schäfers and Nagel 1991). Over the subsequent months, egg 

production and fertilization frequency only gradually increased and reached levels compara-

ble to controls at day 321. The fact that impairment of fertilization was only transient suggests 
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that female fish reached sexual maturity before males or overcame their spawning blockade 

earlier. 

It has been documented in humans as well as in fish that significant DNA damage in sperm 

does not prevent from successful fertilization (Devaux et al. 2011, Donnelly et al. 2000). 

Thus, since in the current study both sexes were exposed to genotoxicity and fertilization fre-

quency was reduced in exposed fish, the inability of oocytes to fertilization may also play a 

role in this context. 

In the F1 generation, fish descending from MMS-exposed parents spawned 24 days earlier 

than F1 controls, even though the number of eggs and fertilization rate were low. Thus, in 

contrast to the parental generation there was no spawning delay in fish derived from MMS-

exposed fish. Over the following weeks, the offspring of exposed F0 fish reached egg num-

bers and fertilization rates comparable to controls. Hence, as early as one generation after 

exposure to MMS, considerable regeneration of the reproductive parameters could be record-

ed. In the literature, the fertility of fathead minnows derived from parents exposed to BaP 

(White et al. 1999) or zebrafish descending from parents exposed to NQO (Diekmann et al. 

2004a) was reduced. However, in these experiments, spawning was not delayed. Thus, both in 

the laboratory and in the environment, further studies are required to clarify if a delay of 

spawning can also be caused by other genotoxicants. 

In the entire F0 generation and the F1 controls, the sex ratio was skewed towards males. In 

contrast, significantly more females were present in the offspring of MMS-exposed fish. 

Since the F1 animals derived from MMS-exposed fish were kept under identical conditions 

(temperature, nutrition, oxygen saturation and pH), external parameters can be excluded as 

confounding factors for sexual development (Baroiller et al. 2009). Although there are hints 

that outcrossing of zebrafish might provoke a high prevalence of female fish (Lawrence et al. 

2008), such an effect can be ruled out, since F1 controls were bred under identical conditions 

and did not show a bias towards females. Feminization has frequently been reported as a con-

sequence of exposure to steroid hormones, alkylphenols, bisphenol A, phthalates, pesticides 

and herbicides (Gross-Sorokin et al. 2006, Sonnenschein and Soto 1998, Vos et al. 2000), but 

such properties have never been assumed for MMS. Potentially, a sex-dependent increase of 

mortality in male embryos and larvae due to mutations or inbreeding effects may have played 

a role.  Nonetheless, the feminizing effect observed in the F1 generation thus warrants further 

investigation. 
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In the offspring of MMS-exposed fish, frequencies of sublethal teratogenic effects until 

96 hpf were increased. It was stated above that the onset of major mortality of F1 animals was 

later than 96 hpf and that the frequencies of lethal effects in F1 embryos were not elevated. 

These facts give rise to the suggestion that mainly lethal and not phenotypically visible DNA 

damage may have contributed to the elevated larval mortality after 96 hpf. Otherwise, more 

teratogenic effects would have been found up to 96 hpf. In the next generation, F2 larvae two 

generations away from exposure also showed higher rates of sublethal teratogenic effects than 

the respective controls, but no elevated frequency of lethal teratogenic effects, i.e. larval mor-

tality. Parts of the mutations and other DNA damage formed in the gametes of F0 fish may 

have been passed on to the F2 generation via the F1 generation. Furthermore, higher fertility 

and fertilization frequencies were found in F1 fish than in the F0 generation. Overall, this in-

dicates partial recovery of development and reproductive capacities between the F1 and the 

F2 generations due to repair of DNA damage and mutations as well as compensation by less 

affected F1 individuals bearing no or less serious DNA damage. In brown trout and Arctic 

charr, Devaux et al. (2011) observed a large array of morphological abnormalities in devel-

opment of embryos and larvae after parental exposure to MMS. These effects comprehended 

jaw and spine deformation, yolk egg edemata and Siamese larvae. A positive correlation be-

tween the DNA damage level in sperm from parental fish and the incidence of skeletal ab-

normalities in the offspring led to the conclusion that DNA damage had been inherited. This 

confirms the teratogenic effects found in the F1 generation in the present study. 

In chapter IV, it is shown that chronic exposure of zebrafish to MMS exerted genotoxicity on 

somatic and generative tissues and caused histopathological alterations. The present chapter 

demonstrated that fish were impaired in their survival, growth and reproductive capacities. 

Taken together, there is further evidence for a causal relationship between genotoxicity and 

impairment of fish populations. Regarding the next generation, due to the transfer of muta-

tions and inherited DNA damage, the offspring was subject to elevated teratogenicity and 

mortality. Since the F1 generation was raised without exposure to MMS, their reproductive 

capacities recovered and development of the following generation was less impaired. On the 

one hand, these data confirm existing conclusions that genotoxic substances may well impair 

fish populations over several generations (Anderson and Wild 1994, Depledge 1996, Diek-

mann et al. 2004a, Munns et al. 1997, White et al. 1999). On the other hand, the results of the 

present study indicate the potential for recovery upon cessation of the contamination. 
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Genotoxicity and histological aberrations in zebrafish after chronic 
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In chapter II, effects of chronic exposure of a parental generation of zebrafish to MMS on 

survival, growth, sex ratio, fertility, reproduction and development in a multi-generation expe-

riment were analyzed. Chapter III focuses on genotoxic effects in the exposed parental gener-

ation and histological aberrations as well as external lesions in the F0 and the F1 generation. 

Taken together, a multitude of ecotoxicological endpoints regarded in the present thesis serves 

as a model for health and reproductive status of wild freshwater fish exposed to genotoxic 

pollution. 

IV.1 Abstract 

There is a significant lack of understanding the mechanisms linking adverse effects of geno-

toxic anthropogenic pollutants to the decline of fish populations in aquatic ecosystems. Anth-

ropogenic chemical pollution is probably a key aspect of the problem. For a better understand-

ing, investigations into the relationship between genotoxicity, especially in the gonads, and 

histopathology are required in fish over several generations. For this end, zebrafish (F0 gener-

ation) were exposed in vivo to the alkylating model genotoxin methyl methanesulfonate 

(MMS) from fertilization to the age of one year in a continuous flow-through system. Primary 

cells from the F0 gonads, liver and gills were analyzed in the alkaline comet assay, and mi-

cronucleus frequency was measured in histological sections of the same organs. In the F0 and 

F1 generations, histopathological lesions and external aberrations including symptoms of 

neoplasia were recorded. Significant genotoxic effects were found in the livers, gills and go-

nads of either sex the F0 generation. As predominant histopathological features, malforma-

tions of eyes, gills and liver, especially spongiosis and steatosis hepatis, and a number of 

neoplasia were observed. External lesions were found in both the F0 and the F1 generation. 

Taken together, chronic exposure of zebrafish to MMS leads to DNA fragmentation and 

chromosomal damage in somatic and generative tissues and induces the formation of a multi-

tude of histopathological aberrations, concertedly impairing health, survival and reproduction 

of exposed fish at the population level. 
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IV.2 Introduction 

A considerable deterioration of fish health and a decline of fish populations have been ob-

served in European and Northern American freshwater over the last decades (Burkhardt-Holm 

et al. 2002, Cook et al. 2003, de Lafontaine et al. 2002, Faller et al. 2003, Friedl 1999, Keiter 

et al. 2006), and anthropogenic pollution of the aquatic environment has been suggested to 

play a major role (Burkhardt-Holm et al. 2002, Fischnetz 2004). Numerous pollutants are 

known for their genotoxic, mutagenic and carcinogenic potentials (Black et al. 1992, Botalova 

and Schwarzbauer 2011, Gravato and Santos 2002, Helma et al. 1994). For example, Bony et 

al. (2010) found that vineyard pesticides (diuron and azoxystrobin) that are easily released to 

rivers caused genotoxic effects in zebrafish. This pollution is of special importance, since the 

ecological consequences of mutagenicity in the aquatic environment should not be underesti-

mated (Chen and White 2004). Furthermore, via affection of the reproductive capacities of 

aquatic animals, multi-generational effects of pollution on the population level may be as-

sumed (White et al. 1999, Würgler and Kramers 1992). Since such trans-generational 

processes may provide a link between pollution and population effects, the major focus of the 

present study has been put on genotoxicity in gonad cells and gametes. The latter may be par-

ticularly prone to genotoxicity because of their low DNA repair capacity and the fact that the 

gametes of aquatic organisms are usually released into the ambient water. Thus, they are di-

rectly exposed to pollutants (Anderson and Wild 1994, Jha 2008). 

There are only few studies dealing with the effects of genotoxicity on fish populations. Detri-

mental effects of exposure to polychlorinated biphenyls (PCBs) and dioxins on reproduction 

and population growth of mummichog (Fundulus heteroclitus) were investigated by Munns et 

al. (1997). Likewise, effects on DNA damage and reproduction impairment in multiple gener-

ations of zebrafish (Danio rerio) and fathead minnow (Pimephales promelas) after exposure 

to 4-nitroquinoline oxide and benzo[a]pyrene (BaP) have been documented by Diekmann et 

al. (2004 a, b) and White et al. (1999), respectively. In addition, exposure of male brown trout 

(Salmo trutta) and Arctic charr (Salvelinus alpines) to methyl methanesulfonate (MMS) has 

recently been shown to cause malformations during embryonic and larval development in 

their offspring (Devaux et al. 2011). Taken together, these studies provide evidence for the 

hypothesis that the development of fish populations is impaired by genotoxicants.  

However, only very limited information is available on genotoxic effects on DNA integrity in 

reproductive tissues of fish. Genotoxic effects of vineyard pesticides and MMS were shown in 

fish spermatozoa using the comet assay (Bony et al. 2010, Devaux et al. 2011), and Faßbender 
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and Braunbeck (under review) demonstrated that genotoxicity can be assessed in primary 

cells from the gonads of both sexes of zebrafish after in vivo exposure to MMS. Based on the 

latter study, the purpose of the present study is to relate DNA fragmentation and chromosomal 

damage in somatic and generative cells in zebrafish after live-long genotoxic exposure to ma-

cro- and microscopically detectable changes. 

Since genotoxicity, mutagenicity and carcinogenesis are closely interrelated, another aim of 

this study is the investigation of histopathological alterations, i.e. symptoms of neoplasia, 

(pre-)carcinogenesis and other structural aberrations in consequence of metabolic disturbances 

due to chronic genotoxic stress. In addition, especially with reference to DNA changes in re-

productive organs, the consequences and inheritability of such structural aberrations to the 

next generation (even when bred without genotoxic exposure) is an important question. 

Many environmental contaminants target the immune system, which results in an increasing 

number of infectious diseases and parasitoses (Brooks et al. 2012, Rice et al. 2001). There-

fore, a difference has to be made between non-specific tumors related to infections, inflamma-

tory processes, trauma and hyperplasia on the one hand and tumors that are directly due to 

neoplastic growth beyond the control of the host organism on the other hand (Mix 1986). 

Concerning the latter group of tumors, it is well known that environmental pollution can lead 

to genome mutations, which may cause neoplasia and carcinogenesis in fish (Mix 1986, Rus-

sell et al. 1957). E.g., buccal granulomatosis and external tumor-like disease were described 

in Elbe smelt (Osmerus eperlanus) and Northeast Atlantic fish, respectively (Möller 1988). 

Hepatic neoplasia and hepatocellular carcinoma in English sole (Parophrys vetulus) from Pu-

get Sound could be related to high concentrations of PCBs and chlorinated butadienes (CBDs) 

(Malins et al. 1988). Likewise, unique degenerative conditions, storage disorders, foci of he-

patocellular alteration (i.e. putative preneoplastic lesions), hepatocellular and biliary neop-

lasms as well as non-neoplastic proliferative conditions were found in the liver in English sole 

from Puget Sound (Myers et al. 1987). Hepatocellular carcinoma and fatty infiltration were 

described in Atlantic tomcod (Microgadus tomcod) from the Hudson and Pawcatuck Rivers 

(Cormier 1986, Cormier et al. 1989). Over the last years, different fish species, e.g. sheeps-

head minnow (Cyprinodon variegatus) and the limnic Japanese medaka (Oryzias latipes; 

Bunton et al. 1996), have been considered as model organisms for cancer research.  

In addition, zebrafish has become a very successful model organism for the investigation of 

carcinogenesis in aquatic ecosystems (Amatruda et al. 2002, Feitsma and Cuppen 2008). Ze-

brafish develop almost every tumor type known from humans with remarkable morphologic 



 

81 
   

resemblance (Goessling et al. 2007, Liu and Leach 2011). A comparison between human and 

zebrafish genome sequences shows a conservation of tumor suppressors and oncogenes as 

well as cell-cycle genes (Amatruda et al. 2002). Thus, zebrafish developed papilloma and skin 

tumors after exposure to ethylnitrosourea, a direct-acting alkylating agent (Beckwith et al. 

2000), and exposure of zebrafish to N-methyl-N’nitro-N-nitrosoguanidine led to both epitheli-

al, e.g. hepatocellular adenoma or carcinoma in the liver, and mesenchymal neoplasia or tu-

mors, e.g. osteoma or haemangioma in the gills (Spitsbergen et al. 2000a). Spitsbergen et al. 

(2000a, 2000b) demonstrated that zebrafish showed effects following exposure via different 

exposure routes including microinjection in embryos, dietary application or bathing. In sum, 

zebrafish has been documented to be a suitable model organism for carcinogenesis in ecotox-

icological as well as medical research, which makes it easy to correlate neoplasia found in 

zebrafish to such known in humans. 

In the current study, MMS was selected as the test substance because of its character as a 

model genotoxin (Bony et al. 2010, Deventer 1996, Solomon and Faustman 1987). Although 

MMS itself is not relevant in the aquatic environment, given its alkylating mode of action, it 

can be considered as a representative of several groups of environmental pollutants as muco-

halic acids (Gómez-Bombarelli et al. 2011a) and allylic reagents (Kuehl et al. 1994). 

 

IV.3 Materials and methods 

IV.3.1 Test compound 

Methyl methanesulfonate (MMS, CAS Nr. 66-27-3, 99 %) was supplied by Sigma-Aldrich 

(Deisenhofen, Germany). It is well water-soluble, up to a ratio of 1:5 at 25 °C (Budavari 

1996). Despite a certain potential for hydrolysis, MMS concentrations may be deemed con-

stant, provided that the exposure medium is exchanged once daily (Bony et al. 2010). In fact, 

in preliminary tests, the half-life of MMS in water (2, 4 and 8 mg/L) at 25 °C was determined 

by ion chromatography to be about 40 h (own data). Via constant flow-through, a total water 

renewal within 48 h was maintained, which was expected to produce a regular peak exposure 

with limited degradation. 
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IV.3.2 Test conditions 

Water parameters were measured on a weekly basis by means of a Multi 350i electrode 

(WTW, Weilheim, Germany), and or AquaMerck test kits (Merck, Darmstadt, Germany): 

temperature: 25 ± 2 °C, pH: 7.0 - 8.3, O2 saturation > 70 %, conductivity: 522 – 828 µS/cm, 

total hardness: 12 – 18 °dH, carbonate hardness: 6.5 – 9.5 °dH, ammonium ≤  1.0 mg/L, ni-

trate ≤ 30 mg/L, nitrite ≤ 1.0 mg/L.   

Zebrafish (Danio rerio) derived from the West Aquarium wild type strain were bred in the 

laboratory. One to two hours after fertilization, 110 fertilized eggs (F0 generation) were ex-

posed to 200 ml tap water containing 0, 2, 4 and 8 mg/L MMS in glass beakers at 26 ± 1°C 

and a photoperiod of 12 h: 12 h, which was maintained throughout the whole experiment. 

Daily, 50 % of the exposure medium were renewed. Each treatment was run in two replicates. 

After 96 h, embryos were transferred to 10-L flow-through aquaria with a triplicate water re-

newal. The water flow into each tank was regulated via rotameters (Rota Yokogawa, Wehr, 

Germany), whereas the flow of stock solutions (52, 104, 208 mg/L MMS) was adjusted by 

means of peristaltic pumps (Minipuls 3, Gilson, Wiesbaden, Germany). MMS stock solutions 

were renewed every 48 h. 

From 6 to 11 days post fertilization (dpf), larvae were given liquid Artemia (Nobil Fluid, JBL, 

Neuhofen, Germany) ad libitum 3 times a day. In addition, from 8 to 11 dpf, powder food 

(NovoTom, JBL) was given three times a day. From 12 to 16 dpf, larvae were fed liquid Ar-

temia once and powder food three times a day. From 17 to 19 dpf, freshly bred Artemia naup-

lii (Great Salt Lake Artemia Cysts, Sanders, Morgan, Utah, USA) were fed once, powder food 

three times and flakes (Tetramin, Tetra, Melle, Germany) two times a day. From 20 to 22 dpf, 

nauplii were fed twice in addition to powder food and flakes once a day. Finally, from the age 

of 23 dpf, larvae were fed nauplii two times and flakes once a day. 

Mortality was recorded daily. Because of high mortalities, the exposure to 8 mg/L MMS was 

discontinued after 50 days. All fish considered moribund were sacrificed. Considering mori-

bund fish as dead may lead to some overestimation of mortality; however, moribund fish 

would definitely not be able to reproduce and can thus be regarded a loss to the population. 

Since one replicate of the 2 mg/L MMS treatment showed symptoms of fin rot at 169 dpf, all 

fish in this tank were sacrificed in a saturated solution of benzocaine (ethyl-p-aminobenzoate, 

Sigma-Aldrich). 

Since all MMS-exposed spawning groups failed to spawn, and fish exposed to 4 mg/L MMS 

also showed mortalities, MMS concentrations were reduced from 2 and 4 to 0.2 and 0.4 mg/L, 
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respectively, at 220 dpf. At 300 dpf, all remaining individuals exposed to 4/0.4 mg/L MMS 

were sacrificed because of mortality, macroscopic pathology and consistent lack of spawn. F0 

control fish as well as fish exposed to 2/0.2 mg/L MMS were sacrificed at 370 dpf. 

Since the reduction of exposure concentrations to 0.2 mg/L MMS allowed successful spawn-

ing, 120 F1 larvae could be transferred to 10-L aquaria after 96 h. In order to exclusively 

study the effects of potentially inherited DNA damage, F1 fish were not exposed to MMS. 

This scenario also allowed studying potential recovery in the following F2 generation. F1 fish 

were counted daily and fed as described for the F0 generation. In order to reduce mortalities 

of young larvae in the overflow filters, water discharge was only started at 17 dpf, when trip-

licate renewal was initiated. 

Chemical analysis of MMS concentrations in tank water was performed using ion chromato-

graphy. MMS is hydrolyzed in water to methanesulfonic acid (MSA). The latter can be de-

tected via high performance liquid chromatography (HPLC), especially ion chromatography. 

Thus, information on MMS concentrations can be derived from MSA concentrations. There-

by, the negatively charged compound was transported by means of an eluent through a catio-

nic column and was detected by its conductivity. An AS9-HC carbonate eluent anion-

exchange column (4 x 250 mm; Dionex, Sunnyvale, CA, USA) with alkyl/alkanol quaternary 

ammonium ions was used in a DX-120 ion chromatograph (Dionex) equipped with a pump, a 

50 µl sample loop and a self-regenerating suppressor (ASRS-ULTRA II, 4 mm, 25 mA, Dio-

nex) for enhancement of analyte conductivity. Instruments were controlled with an EN308TC 

ethernet hub (Netgear, Santa Clara, CA, USA). In order to avoid particulate and chemical 

contamination of the analytical column, a guard column model AG9-HC (4 x 50 mm, Dionex) 

was connected upstream of the analytical column. Samples were conveyed to the injection 

valve using an autosampler AS 90 (PerkinElmer, Waltham, MA, USA). As eluent, an 11 mM 

Na2CO3 (99.5 %, Grüssing, Filsum, Germany) solution is pumped isocratically with a flow 

rate of 1 ml/min through the system. For detection, a DS4-1 conductivity cell (Dionex) was 

used at 35 °C, and data were analyzed with Chromeleon 6.8 (Dionex). In addition to the mea-

surement of MSA in tank water, MSA standards of 5, 10 and 20 mM were recorded. Hereby, 

the areas under the conductivity peaks of MSA in the standards were assigned to the known 

concentrations. Based on these data, MSA concentrations in the samples from the tanks were 

calculated from the respective areas under the MSA peaks. Since one molecule of MMS is 

hydrolyzed to one molecule of MSA and the half-life of MMS in water is about 40 h at 25 °C 

(own data), MMS concentrations at the time point of sampling can be estimated after 3 to 4 

days. Figure IV.1 shows the ion chromatography station used. 
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IV.3.3 Preparation of primary cell cultures from liver, gills and gonads  

For analysis in the fluorescein diacetate (FDA) assay and comet assay in the F0 generation, 6 

random fish of each sex were taken from both of the controls and from one replicate tank with 

2/0.2 mg/L MMS at 357 dpf. For production of primary cell cultures from liver, gills and go-

nads, the respective organs from three animals were pooled according to the sex of the fish. 

For cell isolation, a modified perfusion technique based on the protocols for the use of prima-

ry hepatocytes and gill cells in the comet assay by Braunbeck and Storch (1992) as well as 

Schnurstein and Braunbeck (2001) was applied. In detail, the methodology of cell isolation 

and genotoxicity tests follows the protocol by Faßbender and Braunbeck (under review) for 

the analysis of primary cells from zebrafish gonads in the FDA and comet assay. 

IV.3.4 Viability testing 

For the measurement of the percentage of living cells, the fluorescein diacetate (FDA) assay 

was performed according to Strauss (1991) in the adaption of Schnurstein and Braunbeck 

(2001). For each cell preparation, a total of 500 cells was examined in two replicates. A comet 

assay was performed only, if cell viability exceeded 90 % relative to the controls. 

Fig. IV.1: Ion chromatography station com-
prehending automatic sampler, ion chroma-
tograph and computer. The chromatograph 
consists of a pump, an injection valve with a 
sample loop (a), a self-regenerating suppres-
sor (b), a guard column (c), an anion-
exchange column (d) and a conductivity cell 
(e). 
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IV.3.5 Comet assay 

The comet assay was performed under alkaline conditions according to Singh et al. (1988) 

with modifications detailed by Schnurstein and Braunbeck (2001). Lysis conditions followed 

the protocol by Kosmehl et al. (2004). For each cell suspension prepared from the organs of 

three fish, 100 cells on each of two slides were evaluated for DNA migration by using the 

comet image analysis software Komet 5.5 (Kinetic Imaging Ltd., Liverpool, UK). For statis-

tical analysis with SigmaPlot 11.0 (Systat, Erkrath, Germany), the relative percentage of DNA 

in the tail was measured. Data were not normally distributed, and statistical differences were 

analyzed using ANOVA-on-ranks (Kruskal-Wallis) in combination with the post-hoc test 

according to Dunn in order to identify statistical power of difference. 

IV.3.6 Micronucleus test on histological sections  

For the micronucleus test in histological sections in the F0 generation, 3 fish of each sex were 

taken from both of the F0 controls and from the remaining replicate tank with 2/0.2 mg/L 

MMS, as described for the sampling for the FDA and comet assays. The preparation of histo-

logical sections from liver, gills and gonads from zebrafish and their use in the micronucleus 

test was performed according to the protocol by Faßbender and Braunbeck (under review). In 

order to determine micronucleus frequencies, micronuclei were counted in 2000 cells on each 

slide using an Aristoplan light microscope with 1,120-fold magnification (Leitz, Wetzlar, 

Germany). Chromatin fragments were considered as micronuclei, if they had a diameter of not 

more than 30 % of that of a nucleus of the same cell type and were lying close to the nucleus 

and in the same focus plane. For normally distributed data, statistical differences in micronuc-

leus frequency between groups were analyzed by One-Way ANOVA in combination with the 

post-hoc test according to Holm-Sidak in order to identify statistical power of difference. 
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IV.3.7 Histopathology 

All F0 fish that had not been used for genotoxicity assessment were processed for histological 

analysis. In the F1 generation, fish derived from control and 2/0.2 mg/L MMS-exposed fish 

were sacrificed for histological analysis at 230 dpf. For this end, 10 fish per sex from each 

tank were used. If a lower number of fish of the respective sex were present, all available fish 

of this sex were processed. For conservation and decalcification, fish trunks were at least 

overnight incubated in Davidsons’s fixative (Humason 1967). According to Humason (1967), 

1 L of the fixative consisted of 220 ml formalin (37 %), 330 ml ethanol (96 %), 335 ml aqua 

bidest. and 115 ml glacial acetic acid. After conservation, the samples were dehydrated and 

infiltrated with paraffin (Paraplast Plus, Leica Biosystems, Nussloch, Germany) in an auto-

matic Leica TP1020 tissue processor (Leica Biosystems) according to the following time 

schedule: 1 h in 80 % ethanol, 2 x 1 h in 90 % ethanol, 2 x 1 h in 96 % ethanol, and 2 x 1 h in 

100 % isopropanol, 1 h, 4 h and again 12 h in 100 % xylene and finally 2 x 12 h in paraffin. In 

the next step, the samples were embedded in paraffin and cured using a Leica EG 1140 H 

paraffin dispenser (Leica Biosystems). For light microscopy, sagittal sections of 4 - 5 µm 

thickness with intervals of 40 µm were prepared with an HN 40 microtome (Reichert-Jung, 

Heidelberg, Germany). For stretching the sections, these were transferred to a water bath at 43 

°C and subsequently to glass slides covered with glycerol albumen (Serva, Heidelberg Ger-

many) for improved adhesion. After drying overnight at 38 °C, paraffin was removed by in-

cubation in X-TRA Solv (Medite, Burgdorf, Germany) 3 x 10 min. Subsequently, a descend-

ing alcohol series with 2 x 5 min 100 % isopropanol and 3 min 96 %, 90 %, 80 % and 70 % 

ethanol each was applied. Slides were incubated for 1 min in aqua dest., stained with Mayer’s 

acid hemalaun (Roth, Karlsruhe, Germany) for hematoxylin and erythrosine (HE) stain and 

blued under floating tap water for 10 min. According to Mulisch and Welsch (2010), the stain 

consisted of 1 g hemalaun, 0.2 g sodium iodate, 50 g potash alum, 50 g chloral hydrate and 1 

g citric acid per litre aqua bidest. Stained slides were covered using X-TRA-Kitt (Medite). 

Aberrant morphological structures, e.g. preneoplastic lesions, were photographed with a Ni-

kon DS Ri1 camera (Nikon, Düsseldorf, Germany) connected to a Nikon ECLIPSE 90i mi-

croscope using NIS Elements AR 4.00.05 64-bit software (Nikon). Alternatively, tissues were 

photographed with an Olympus Camedia C 5060 camera (Olympus, Hamburg, Germany) 

connected to an Olympus CKX41 inverted microscope using Analysis 5.0 software (Soft Im-

aging System, Münster, Germany). Pictures were processed using Adobe Photoshop CS5 

(Adobe, Munich, Germany). 
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IV.4 Results 

IV.4.1 Chemical analysis of MMS concentrations  

Methanesulfonic acid (MSA) standards of 5 – 20 µM in fresh tap water were stable over 4 

days (Fig. IV.2 A). In samples taken from aquaria, MSA concentrations decreased after sam-

pling over a few days (Fig. IV.2 B). In replicate tanks, real concentrations were similar. 

  

 

IV.4.2 Genotoxicity 

For all test concentrations, cell viability of primary cells from liver, gills and gonads from fish 

exposed to 2/0.2 mg/L MMS exceeded 90 % compared to the controls in the FDA assay. 

Hence, genotoxicity testing could be performed in all of these organs. In the comet assay, the 

percentage of DNA in the tail was significantly elevated in liver cells from both sexes as well 
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Fig. IV.2: Quantitative measure-
ment of methanesulfonic acid 
standards (5, 10 and 20 µM MSA) 
in fresh tap water (A) using ion 
chromatography over 4 days and 
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mg/L (B) until day 4 after sam-
pling. Data are given as means ± 
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as female gills and male gonads (Fig. IV.3). In contrast, no significant effects were found in 

primary cells from male gills and female gonads. In histological sections from liver, gills and 

gonads of both sexes, micronucleus frequencies were significantly elevated compared to con-

trols after exposure to 2/0.2 mg/L MMS (Fig. IV.4). 

  

  

   

Fig. IV.3: Percentage of tail DNA in the comet assay in primary cells from liver, gills and 
gonads of male and female zebrafish after in vivo exposure to 2/0.2 mg/L MMS. For each 
concentration and the controls, organs of 3 fish were pooled. For the boxes, data from two 
replicate slides with 100 nucleoids each are pooled. Data are given as box plots, displaying 
the following percentiles: 25 and 75 (shaded box), 10 and 90 (whiskers) as well as 5 and 95 
(points). Central solid lines represent medians. Three asterisks indicate significant differences 
from combined controls (Mann-Whitney rank-sum test, *** p < 0.001). 
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IV.4.3 Histological aberrations in MMS-exposed fish and their offspring 

IV.4.3.1 Overview of histological aberrations 

In the F0 generation, the prevalence of histological lesions strongly increased with MMS con-

centrations (Fig. IV.5). However, the limited number of females available for histological 

analyses did not allow for a clear-cut decision with respect to relationships between aberra-

tions and sex. Therefore, in the following, percentages of investigated fish are given irrespec-

tive of the sex. 

In the F0 generation, the most prevalently affected organs were the eyes, followed by the gills 

and livers. Less frequently, aberrations were observed in the olfactory organs, kidneys, testes 

and ovaries. 

The liver showed the widest range of histological aberrations of all organs. In the 2/0.2 mg/L 

exposure group, effects on liver histology were found in 8.0 % of the zebrafish. In the 

4/0.4 mg/L exposure group, this was true for 29.4 % and for 40.7 % in the 2 mg/L exposure 

Control 2/0.2 mg/L MMS

M
ic

ro
nu

cl
eu

s 
fre

qu
en

cy
 [%

]

Female liver
Male liver

1.0

0.0

0.5

1.5

2.0

* *

Control 2/0.2 mg/L MMS

M
ic

ro
nu

cl
eu

s 
fre

qu
en

cy
 [%

]

Female gills
Male gills

0.0

0.5

1.0

1.5

2.0

*
*

Control 2/0.2 mg/L MMS

M
ic

ro
nu

cl
eu

s 
fre

qu
en

cy
 [%

]

Female gonads
Male gonads

0.0

0.5

1.0

1.5

2.0

* *

Fig. IV.4: Micronucleus frequencies in his-
tological sections of liver, gills and gonads 
of male and female zebrafish after in vivo 
exposure to 2/0.2 mg/L MMS. Data of 3 
slides with 2000 cells each are shown. 
Height of the columns represents medians; 
standard deviations are shown as whiskers. 
Asterisks indicate significant differences 
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group. Thus, there was a concentration-dependent increase of histological aberrations in the 

liver. 

Presumably (pre-)neoplastic or (pre-)carcinogenic lesions were found in all groups of zebra-

fish exposed to MMS, with an increase in a concentration-dependent manner, whereas none 

were found in the controls. In the 2/0.2 mg/L exposure group, 4 % of the fish showed neoplas-

tic structures in the liver. In 17.7 % of the fish exposed to 4/0.4 mg/L MMS, (pre-) neoplasia 

mainly in the liver (i.e. granuloma, spongiosis hepatis) were found. 22.2 % of the zebrafish 

constantly exposed to 2 mg/L exhibited tumors in the liver and musculature as well as neopla-

sia in liver and at the position usually taken by the swim bladder. 

In the F1 generation, 44.4 % of the female and 11.1 % of the male examined zebrafish des-

cending from parents exposed to 2/0.2 mg/L MMS showed histological alterations. The most 

affected organs in the F1 generation were ovaries, eyes and livers. Regarding (pre-)neoplastic 

lesions, eyes and livers, 6.5 % of the F1 fish examined were affected. 

 
Fig. IV.5: Percentage of zebrafish of the F0 generation showing histological aberrations in 

controls and MMS-exposed groups after 355 dpf in the controls, 370 dpf in the group exposed 

to 2/0.2 mg/L, 301 dpf in the group exposed to 4/0.4 mg/L and 170 dpf in the group exposed 

to 2 mg/L. 
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IV.4.3.2 Eye lesions after exposure to MMS 

Control fish were free of any eye lesions. In contrast, deformation of eyes was found in all 

exposure groups of the F0 generation in a concentration-dependent manner. Malformations of 

ocular bulbs and retinal layers were found in 5.9, 8 and 48.2 % of the individuals exposed to 

2/0.2 mg/L, 4/0.4 mg/L, and 2 mg/L, respectively. According to the histology of retina cell 

layers described by Grehn (2008), the inner nuclear, inner plexiform and pigmented layers 

were malformed. In the F1 generation, 16.1 % of the examined fish with parental MMS expo-

sure showed malformations of the eyes. Possible eye neoplasia were found in 3.2 % of the 

examined F1 individuals. Figures IV.6 and IV.7 exemplify malformations of ocular bulb and 

retinal layers in the F0 and F1 generation. 

 

 
  

Fig. IV.6: Deformation of the ocular bulb 
in F0 zebrafish after 170 days of exposure 
to 2 mg/L (B) as well as F1 fish derived 
from parents exposed to 2/0.2 mg/L MMS 
(C) relative to controls (A). 
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Fig. IV.7: Malformation of eyes in F0 zebrafish after 170 days of exposure to 2 mg/L (A – D) 
as well as F1 fish derived from parents exposed to 2/0.2 mg/L MMS (E, F). B, D (close-ups 
from A, C): proliferation of retinal layers: inner plexiform layer (a), inner nuclear layer (b) 
and pigmented layer (c). E, F: Extensive neoplasia of the sclera invading subcutaneous con-
nective tissue (a) and the cutis (b); c: epidermis. 
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IV.4.3.3 Gill lesions after exposure to MMS 

In the F0 generation, histological aberrations were exclusively found in the gills of 40.7 % of 

the zebrafish exposed to 2 mg/L MMS. Coalescence of adjacent secondary lamellae as well as 

secondary lamellae belonging to different primary lamellae and proliferation of gill epithe-

lium were observed (Fig. IV.8). In the F1 generation, 6.4 % of the examined fish with parental 

exposure to 2/0.2 mg/L showed gill aberrations. 

 

 
 

Fig. IV.8: Fusion of secondary gill lamellae in zebrafish after 170 days of exposure to 2 mg/L 
MMS (B) and proliferation of epithelium (C, D) in comparison to gills from controls (A). 
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IV.4.3.4 Liver alterations after exposure to MMS 

Manifold histological aberrations were found in all exposure groups in the liver, whereas the 

control groups did not show any alterations. Fatty liver in hepatocytes (steatosis hepatis), was 

found in a total of 5.8 % of fish exposed to MMS (Fig. IV.9 B). Hereby, macro- and microve-

sicular steatosis hepatis co-occurred in the tissue, i.e. signet ring formed cells with displaced 

nuclei due to accumulation of triglycerides were found as well as fat accumulation without 

displacement of the nucleus. Cystic degeneration due to structural alterations in perisinusoidal 

liver cells (spongiosis hepatis) was found in 4.3 % (Fig. IV.9 C, D). Moreover, the following 

aberrations were found in individual cases: granuloma, i.e. inflammation related tubercular 

neoplasia, (Fig. IV.9 E) presumably tumorigenic tissue containing melano-macrophage cen-

ters (Fig. IV.9 F) and structural aberrations apparently associated with degradation of liver 

structure (Fig. IV.10 A). In case of the latter, an intensity gradient of staining of hepatocytes 

and their nuclei from the enteral surface of the liver to the inside was found. Additionally, in 

this case, a gradient of decreasing cohesion of the cells from the inside to the surface was ob-

served. However, although a similar structure of liver tissue was not found in the controls, it 

can not be excluded that this is an artifact of incomplete fixation. Furthermore, abnormal 

staining of liver regions was observed (Fig. IV.10 B). In the liver of one fish exposed to 

2 mg/L MMS, a possible neoplasia was found (Fig. IV.10 C). It presumably consisted of 

smooth muscular tissue encompassing a blood vessel, and might thus be considered as a poss-

ible leiomyoma. 

In the F1 generation, histological aberrations in the liver similar to the effects in the F0 gener-

ation individuals were found at a frequency of 12.9 %. Spongiosis hepatis (Fig. IV.10 D) and 

different staining of liver regions were observed. 
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Fig. IV.9: Histological aberrations in the liver of zebrafish after exposure to 4/0.4 mg/L MMS 
at 301 dpf (C, E) and to 2 mg/L MMS at 170 dpf (B, D) in comparison to liver from controls 
(A). Fatty liver (steatosis hepatis; B), cystic degeneration (spongiosis hepatis) with a neoplas-
tic nodule (marked with white ring in C and shown in detail in D), granuloma (E) and melano-
macrophage center in a presumably benign tumor (E). 
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Fig. IV.10: Histological aberrations in the liver of zebrafish at 301 dpf after exposure to 
4/0.4 mg/L MMS associated with degradation of liver structure (A) and structural alterations 
with different staining properties (B). C: Possible leiomyoma in the liver of a zebrafish after 
170 days of exposure to 2 mg/L MMS. D: Liver cyst in a zebrafish of the F1 generation des-
cending from MMS exposed parents. 
 

IV.4.3.5 Histological aberrations in other organs after exposure to MMS 

In all groups exposed to MMS, additional histological lesions were found in the kidney (8 % 

at 2/0.2 mg/L, 5.8 % at 4/0.4 mg/L, 7.4 % at 2 mg/L). Figure IV.11 B shows the middle kid-

ney region of a zebrafish after exposure to 2 mg/L MMS. Compared to the control (Fig. 

IV.11 A), the interrenal parenchyma of the exposed fish was degenerated. In another fish, the 

volume of renal tracts was enlarged (Fig. IV.11 C). 

Possible neoplasia in the olfactory organ were observed in 7.4 % of the fish exposed to 

2 mg/L MMS (Fig. IV 12 B). 
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Effects on reproductive organs were only rarely found. In 3.7 % of the zebrafish exposed to 

2 mg/L, underdeveloped testes were observed. At the same concentration, 11.1 % of the ex-

amined females showed ovarian underdevelopment.  

Moreover, exposed individuals exhibited possible neoplasia consisting of not classifiable cell 

types in different body regions, e.g. at the position normally occupied by the swim bladder 

(Fig. IV.13 A) or dorsally to the gonads (Fig. IV.13 B). This was the case in 5.8 % of the ex-

amined fish at 4/0.4 mg/L and 7.4 % at 2 mg/L MMS. 

In the F1 generation, histological aberrations in the ovaries were found at clearly higher fre-

quencies than in the parental generation: 22.1 % of the examined female fish showed altera-

tions in ovary structure. Underdeveloped ovaries lacking tertiary follicles (11.1 %; Fig. 

IV.13 C) and exhibiting an amorphous mass, which is suggested to be egg debris (11.1 %; 

Fig. IV.13 D), were found. 

 

 

 

 

Fig. IV.11: Middle kidney region of a con-
trol individual (A) in comparison to a kid-
ney in the same position of a fish at 170 dpf 
exposed to 2 mg/L MMS with degenerated 
renal parenchyma (B) and kidney of a fish 
at 370 dpf exposed to 2/0.2 mg/L MMS 
with enlarged volume of renal tracts (C). 
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Fig. IV.12: Neoplasia of the olfactory epithelium in the olfactory organ of a zebrafish at 170 
days of exposure to 2 mg/L MMS (B) in comparison to a control (A). 

 

 

Fig. IV.13: Possible neoplasia originating from not assignable cell types in individual zebra-
fish after 203 days of exposure to 2 mg/L MMS in the position usually taken by the swim 
bladder (A) and after 301 days of exposure to 4/0.4 mg/L MMS dorsally to the testis (B). Ef-
fects on the ovary in the F1 generation: underdeveloped ovary (C) and egg debris (D). 
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IV.4.3.6 External lesions and coincidence of external and internal aberrations 

In fish of the F0 (Tab. IV.1) and F1 generation (Tab. IV.2), the following external histopatho-

logical aberrations were found: skin neoplasia, redness (inflammation of the skin), swelling, 

scoliosis, exophthalmus and erection of scales. Figures IV.14 - 17 exemplarily show external 

aberrations in fish after exposure to 2/0.2, 4/0.4 and 4 mg/L MMS and the corresponding 

offspring. 

Concurrent internal aberrations comprised spongiosis hepatis, neoplasia such as fibroma, gra-

nuloma and a further tumor with melano-macrophage centers, different staining of liver re-

gions, liver cysts, enlarged renal collecting ducts and underdeveloped ovaries. Referred to the 

number of larvae at the beginning of exposure in the tanks, 5.5 % of the fish exposed to 

2/0.2 mg/L MMS showed external aberrations. Moreover, 0.9 % of the fish showed external 

as well as internal aberrations. In one tank with 4/0.4 mg/L, 7.3 % of the fish featured external 

and 3.6 % internal aberrations. In the other replicate, 1.8 % of the fish showed external aber-

rations. 

In the F1 generation, 3.1 % of fish taken from 3 tanks showed external aberrations. In one of 

these tanks, 2.6 % of the fish featured external as well as internal aberrations. 

 

 

Fig. IV.14: F0 zebrafish showing external aberrations at 370 dpf after exposure to 2/0.2 mg/L 
MMS. A and B: Fish featuring scoliosis with tail bent up. C: Fish with skin neoplasia. D: 
Close-up view of the skin lesion in C.  
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Fig. IV.15: F0 zebrafish showing external aberrations at 310 dpf after exposure to 4/0.4 mg/L 
MMS. A, B: Fish featuring scoliosis and skin neoplasia. C: Fish with skin neoplasia. D: Fish 
with swelling and redness of heart region. E: Fish featuring a skin neoplasia on the flank well 
supplied with blood, swollen heart region and redness. F: Close-up view of the neoplasia in E. 

 

 

Fig. IV.16: F0 zebrafish showing external aberrations after exposure to 4 mg/L MMS at 187 
dpf with round, elevated skin neoplasia. 

  

Fig. IV.17: F1 zebrafish showing scale erection, red-
ness and skin neoplasia on its belly. 
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Tab. IV.1: Externally visible histopathological lesions in the F0 generation of individual ze-
brafish after in vivo exposure to MMS. Internal histological aberrations in the same fish are 
also given. 

Age 

(dpf) 

MMS 

(mg/L) 

Tank 

No. 

External aberrations Internal aberrations 

67 4 6 Neoplasia on head  

112 4 6 Bilateral exophthalmus  

187 4 5 Round, elevated neoplasia on 

flank 

Fibroma between liver 

and kidney 

200 4 5 Skin neoplasia on both flanks   

201 2 3 Neoplasia on flank  

215 4 5 Thickened flank, tail bent, red-

ness between pectoral fins 

 

240 2/0.2 3 Head bent up, redness between 

gills 

 

296 4/0.4 5 Redness on lateral trunk  

310 4/0.4 5 Neoplasia on flank well sup-

plied with blood, swollen heart 

region, redness 

 

310 4/0.4 5 Scoliosis, skin neoplasia Liver tumor with mela-

no-macrophage centers, 

different staining of 

liver regions 

310 4 /0.4 5 Scoliosis Spongiosis hepatis, liv-

er granuloma, neoplasia 

above ovary 

310 4/0.4 5 Scoliosis, skin neoplasia Spongiosis hepatis, liv-

er cysts 

310 4/0.4 5 Swollen heart region, redness  

370 2/0.2 3 Skin neoplasia  

370 2/0.2 3 Scoliosis, tail bent up Renal collecting ducts 

enlarged 

370 2/0.2 3 Scoliosis, tail bent up  

370 2/0.2 3 Scoliosis, tail bent up  
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Tab. IV.2: Externally visible histopathological lesions in the F1 generation descending from 
zebrafish exposed to 2/0.2 mg/L MMS. 

Age 

(dpf) 

Tank No. External aberrations Internal aberrations

52 16 2 Fish with bright swellings on heads  

52 16 2 Fish with bloodshot heads  

105 15 Scales erected, redness, skin neoplasia on belly  

230 10 Scoliosis  

230 15 Skin neoplasia on flank Spongiosis hepatis, 

underdeveloped  

ovary 

230 15 Unilateral exophthalmus Neoplasia in retina 

 

IV.5 Discussion 
IV.5.1 Analysis of MMS and its fate in the organism 

MSA concentrations did not increase after sampling. In fact, an increase of MSA concentra-

tions would have been expected based on the assumption of hydrolysis of MMS to MSA and 

the high stability of MSA shown in the standards, i.e. under sterile conditions. On the other 

hand, MSA has been reported to be readily biodegradable (Gernon et al. 1999) and the actual 

decrease of MSA concentrations in the tanks must be explained by microbial degradation of 

MSA in the tank water (Higgins et al. 1996, Higgins et al. 1997, Kelly and Murrell 1999). 

However, since MMS is partially hydrolyzed to MSA already in the tanks prior to sampling, 

the ratios between the different former MMS concentrations can be seen from MSA data at 

the time point of sampling (t = 0 d). Thus, since real concentrations in the replicate tanks with 

the same nominal concentration were similar, the flow-through system probably worked well 

and calibration was accurate (cf. Fig. IV.2). Apparently, concentration adjustment was less 

exact at the higher concentrations. 

The major advantage of ion chromatography is its low cost. If the budget of a study allows for 

it, it should be tested if higher precision can be achieved using recently developed techniques 

such as liquid chromatography tandem mass spectrometry (LC-MS/MS, Xu et al. 2007). Al-

together, ion chromatography provided useful results for a rough screening and comparison of 

exposure between tanks. 
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Regarding the fate of MMS in the organism, it can be assumed that it is rapidly distributed 

over the organs. Cumming and Walton (1970) showed that after intraperitoneal injection in 

male mice, in the liver MMS was found at high concentrations. The authors demonstrated that 

the genotoxin rapidly reached the testis at nearly the same dose as administered to the whole 

animal. A broad variety of enzymes is capable of metabolizing organic compounds and plays 

an important role in the detoxification of xenobiotics (Cormier et al. 1989). Regarding MMS, 

it is unknown if degradation is exclusively due to inorganic hydrolysis or if there is a process 

with enzymes being actively involved (Cumming and Walton 1970). By all means, the faster 

MMS is hydrolyzed under the specific conditions of the respective tissues, the more its poten-

tial to alkylate DNA is limited. The product methanesulfonic acid is rapidly excreted in the 

urine of rats without further metabolization (Trams et al. 1959). Since there are no data on 

metabolization and excretion of MSA in fish available in the literature, the compound is pos-

sibly excreted alike. 

IV.5.2 Genotoxicity 

There are only very few in vivo studies on genotoxicity in fish, which are comparable to the 

present approach. Bony et al. (2010) exposed zebrafish to 1 µM (110 µg/L) MMS for up to 

three weeks and analyzed genotoxicity in the comet assay. After two weeks, the percentage of 

tail DNA reached 26 % in liver cells and 16 % in spermatozoa. The MMS concentration stu-

died by Bony et al. (2010) is approximately half the concentration of 0.2 mg/L applied in the 

later course of the present study. In fact, the effects observed by Bony et al. (2010) are similar 

to those in liver and male gonad cells described in the present study and, thus, serve as con-

firmation.  

Medians of the percentage of tail DNA did not exceed 20 % after chronic exposure to 

2/0.2 mg/L MMS in the present experiment (cf. Fig. IV.3). In a short-term test, Faßbender and 

Braunbeck (under review) found more than 20 % of DNA in the tail for liver, gills and gonads 

after two weeks of exposure of adult zebrafish to 2 mg/L MMS. DNA fragmentation in liver 

cells from female fish reached up to 68 % at 16 mg/L. Compared to the present study, after 

two weeks of exposure, values were higher for all organs examined. Hence, obviously, during 

chronic exposure to MMS in the current experiment including a reduction of test concentra-

tions, DNA damage was widely repaired. 

Bony and co-workers (2010) found a significant elevation of micronucleus frequencies in 

erythrocytes at 110 µg/L MMS, which is in line with the findings of the present study on mi-
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cronucleus formation in liver, gill and gonad tissues. In another study, zebrafish were exposed 

to higher MMS concentrations than the fish examined for genotoxic effects in the present 

study: Deventer (1996) exposed zebrafish to 88 µg/L – 8.8 mg/L MMS for up to 72 h and 

found significant effects in the micronucleus test 6 – 12 days post exposure. Strong effects in 

the micronucleus test in the present study can be explained by the formation of micronuclei 

during the initial exposure to 2 mg/L. Although after the reduction to 0.2 mg/L few further 

micronuclei may have formed, the micronuclei already present have assumedly persisted until 

the end of the experiment. 

In the present experiment as well as in a similar study, some effects appeared to be sex-

specific. In the current study, no significant effects were found in the comet assay with male 

gill and female gonad cells. Faßbender and Braunbeck (under review) exposed zebrafish to 2 

– 16 mg/L MMS for two weeks and found significant effects in the comet assay in liver, gills 

and gonads for both sexes. These effects were stronger than DNA fragmentation found in the 

comet assay after long-term exposure in the present experiment. Regarding the micronucleus 

test, micronucleus frequencies were clearly elevated in all organs from both sexes tested after 

chronic exposure to 2/0.2 mg/L MMS in the present experiment. In contrast, after two weeks 

of exposure to 2 mg/L MMS, Faßbender and Braunbeck (under review) found significant ef-

fects in the micronucleus test in liver of both sexes as well as male gills and gonads of zebra-

fish, but not in female gills and gonads. However, it is suggested that different results for the 

sexes are not due to a mechanism of sex dependence behind genotoxic effects in the present 

study but to the low level of damage near the detection limit. This is supported by the finding 

of significant effects in all organs tested from both sexes in the micronucleus test in the cur-

rent experiment, bearing in mind that the micronucleus test is sensitive to chronic exposure to 

low-concentrated genotoxicants (Deventer 1996). 

A comparison of the results of the present study and Faßbender and Braunbeck (under review) 

illustrates that, on the one hand, strong effects were caused by high concentrations during a 

shorter exposure of two weeks and on the other hand by low concentrations during chronic 

exposure. The comet assay is especially capable of measuring acute effects on DNA integrity 

at high concentrations, whereas the micronucleus test gives information on the long-term ac-

cumulation of chromosomal fragments lost during cell division. Probably, repair of DNA 

fragmentation in the nucleus is faster than decomposition of micronuclei in the cytoplasm. At 

least in humans, there is evidence that cytosolic nucleases can cause degradation of plasmid 

DNA (Lechardeur et al. 1999). Possibly, in addition to phagocytosis of micronucleated cells, 

micronuclei can also be degraded by enzymes in the length of time. 
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Little is known about transgenerational mutagenic effects of alkylating agents. Exposure of 

mice to MMS during post-meiotic spermatogenesis led to increased sterility in their offspring 

due to inherited translocations (Lang and Adler 1977). In a similar study, heritable transloca-

tions and dominant-lethal mutations were documented in mice after exposure to ethylene dio-

xide (Generoso et al. 1980). Paternal exposure of brown trout (Salmo trutta) and Arctic charr 

(Salvelinus alpinus) to MMS caused DNA damage in spermatozoa leading to morphological 

abnormalities during embryonic and larval development (Devaux et al. 2011). Concerning the 

increased mortality of zebrafish descending from the exposed generation in the present multi-

generational experiment (chapter III, Faßbender and Braunbeck 2013), it can be assumed that 

heritable genetic damage played a considerable role in this case. In addition, gametes were 

exposed to MMS during their development inside the parental fish. Certainly, this also caused 

genetic damage in the F1 generation. 

IV.5.3 Histopathology 

Inherited mutations can result in a high risk of developing cancer, if they affect tumor sup-

pressor genes, oncogenes, genes encoding proteins involved in DNA repair and cell cycle 

control as well as genes involved in stimulating the angiogenic pathway (Hodgson 2008). 

This is a possible link between genotoxic exposure of the parental generation on the one hand 

and malformations and carcinogenesis in the offspring on the other hand. In the current study, 

in addition to genotoxic effects, chronic exposure of zebrafish to MMS caused numerous his-

topathological aberrations in the F0 as well as the F1 generation. Neoplasia in different organs 

as well as other anomalies were found in all exposure groups investigated. 

The occurrence of histological aberrations in eyes and gills of fish exposed to MMS can be 

explained by the fact that these organs were directly exposed to the surrounding medium. The 

most frequently observed effects in the F0 generation were structural alterations of the ocular 

bulb and malformation of the retina layers. Meira et al. (2009) observed photoreceptor apop-

tosis and severe retinal degradation in mice exposed to MMS. The authors state that alkyla-

tion-induced retinal degeneration is driven by the DNA repair protein alkyladenine DNA gly-

cosylase (Aag). The enzyme removes alkylated bases, leading to apurinic and apyrimidinic 

(AP) sites, which are processed by base excision repair to strand breaks. In zebrafish, alky-

lated DNA bases are repaired by a deaminase, a glycosylase and the factor Gadd45 (Rai et al. 

2008). Possibly, a mechanism involving a DNA glycosylase comparable to the case for mice 

is responsible for the histological aberrations in eyes of zebrafish observed in the present 
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study. Regarding effects in eyes of the F1 generation, in the literature, malformation of eye 

structures was observed by Rutledge et al. (1992) in mouse embryos after intraperitoneal in-

jection of MMS and other alkylating agents into female mice directly after mating. The au-

thors suggested that a nonconventional, epigenetic mechanism had linked mutagenic effects 

and malformations in the offspring. Similarly, the eye effects in the F1 generation found in the 

present study can in parts be explained by exposure of the gametes inside the parental fish. In 

addition, eye effects can be due to heredity transmission of genetic damage in gametes from 

MMS exposed fish to their offspring. 

Regarding histological aberrations in the gills, fusion of secondary lamellae obviously was 

due to hyperplasia. However, it remains unclear if the division of epithelial, interlamellar, 

chloride or pillar cells was affected (Karlsson 1983). In another study, diverse forms of neop-

lasia and carcinogenic effects were found in a variety of organs of zebrafish 6 to 12 months 

after exposure of embryos for 1 h and fry for 24 h to the carcinogenic N-methyl-N-nitro-N-

nitrosoguanidine (MNNG) via microinjection and bath exposure, respectively (Spitsbergen et 

al. 2000b). In the gills, branchioblastoma, chondroma, osteoma, osteochondroma and heman-

giosarcoma were found. As a consequence of bath exposure to MNNG, 80 % of the fish 

showed neoplasia at the highest test concentration. In the present study, a maximum of 22.2 % 

of the fish exposed to 2 mg/L MMS exhibited (pre-)neoplastic lesions. In general, the abun-

dance of (pre-)neoplastic lesions as well as histological lesions overall increased with MMS 

concentration, although the fish exposed to 2/0.2 mg/L were much longer in contact with 

MMS than the fish that were constantly exposed to 2 mg/L and sacrificed already at 169 dpf. 

This suggests that the frequency of histological aberrations may have decreased in the fish 

exposed to 0.2 mg/L after the reduction of MMS concentrations. 

Concerning the gills, it should especially be taken into account that fusion of secondary lamel-

lae reduces the surface of the respiratory epithelium, easily causing an oxygen deficit. It was 

shown that lack of oxygen can increase the ubisemiquinone free radical level in the catalytic 

mechanism of complex III in the respiratory chain (Fleury et al. 2002, Turrens et al. 1985). In 

water, these radicals lead to the formation of hydrogen peroxide, which can exert further ge-

notoxicity. Thus, histological aberrations in the gills could have increased the genotoxic stress 

towards the fish.   

In the F0 generation, next to eyes and gills, the liver was the most affected organ and showed 

diverse histological aberrations. The most frequent liver lesions were fatty infiltration (steato-

sis hepatis) and cystic degeneration (spongiosis hepatis). 
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Steatosis hepatis is a physiological response to many metabolic disorders and environmental 

contaminants and can be a pathological manifestation of detoxification (Cormier et al. 1989, 

Couch 1975, Longo et al. 1993). In general, a macrovesicular type of steatosis hepatis can be 

distinguished from a microvesicular type. In case of the first, a large triacylglycerol vacuole 

fills the cytoplasm and displaces the nucleus to the periphery, leading to the characteristic 

signet ring formation. This type is mostly due to abnormal nutrition (Reddy and Rao 2006). In 

contrast, microvesicular steatosis is characterized by numerous small lipid droplets in the cy-

toplasm (Reddy and Rao 2006) or in cisternae of the rough endoplasmic reticulum (Braun-

beck et al. 1990) and is mainly caused by genetic or toxin-induced abnormalities in mitochon-

drial and peroxisomal β-oxidation of fatty acids (Reddy and Rao 2006). Braunbeck and co-

workers (1990) described microvesicular steatosis after long-term exposure to lindane. At one 

test concentration, additionally, hepatic macrovesicular triglyceride droplets and glycogen 

depletion were observed. This resembles the situation in the present experiment, where ma-

cro- and microvesicular steatosis hepatis co-occurred in the same liver samples. Braunbeck et 

al. (1990) speculated that there is a functional connection between low glycogen contents and 

strong accumulation of microvesicular lipid. In order to investigate for glycogen depletion 

also in the present study, sections could have been stained using silver diamine (Singh 1964). 

Future research should focus on reasons for the co-occurrence of macro- and microvesicular 

steatosis. 

It was suggested that fatty accumulation in the liver could be related to tumorigenesis in pres-

ence of a carcinogenic (Cormier et al. 1989). Massive accumulation of lipid was found in he-

patocytes of Atlantic tomcod (Microgadus tomcod) from the Hudson and Pawcatuck Rivers, 

which were contaminated with chlorinated hydrocarbons such as DDT, Chlordane and PCBs 

(Cormier 1986, Cormier et al. 1989, Smith et al. 1979). Fatty accumulation makes available 

fatty acids and by-products of lipid synthesis. The role of unsaturated fatty acids in carcinoge-

nesis could inter alia be due to their susceptibility to oxidation, which gives rise to epoxides 

and peroxides (Fang et al. 1996, Welsch 1987). In rats, there is evidence that unsaturated fatty 

acids promote carcinogenesis in the presence of carcinogenic compounds (Carroll and Khor 

1971, Chan et al. 1983). Furthermore, it is known that carcinogenic alkylating chemotherapy 

agents can cause fatty liver in humans (King and Perry 2001, Zimmerman 1978). However, 

no correlation between a high dietary intake of polyunsaturated fats and an increased risk of 

breast, colon and prostate cancer has been found in long-time studies on humans (Holmes et 

al. 1999, Zock and Katan 1998). Altogether, it can be suspected that steatosis hepatis sup-

ported the tumorigenic effect of MMS in the present study. 
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Spongiosis hepatis is a structural alteration of the Ito or perisinusoidal liver cells (Bannasch et 

al. 1981, Couch 1991). These cells are located in the space of Disse between endothelial cells 

of the liver sinusoids and hepatocytes. Their main functions are lipid and vitamin A metabol-

ism as well as collagen production and, thus, structural stabilization of the liver. In case of 

spongiosis hepatis, multilocular cyst-like complexes lacking an epithelial or endothelial lining 

are present. The cysts are variable in size and arise due to an overproduction or impaired de-

gradation of acid mucopolysaccharides and extracellular proteins such as collagen (Bannasch 

et al. 1981). In addition, hepatocellular necrosis is suspected to enlarge the cysts (Couch 

1991). Most likely, this histological aberration is caused by metabolic disturbances due to 

hepatotoxic and carcinogenic agents. It is unclear if spongiosis hepatis is directly linked to the 

occurrence of neoplasia (Bannasch and Zerban 1986, Couch 1991). Couch (1991) observed 

the transformation of chronic spongiotic lesions to less phenotypically consistent structures 

with the potential to become metastatic. In rat liver, spongiosis hepatis in association with 

hepatocellular carcinoma and neoplastic nodules was induced by different nitrosamines 

(Bannsch et al. 1981, Zerban and Bannasch 1983). Small lesions and cysts containing granu-

lar acidophilic material are frequently associated with neoplastic nodules in liver tissue (Ban-

nasch et al. 1981). In fact, all spongiotic lesions in the present study were accompanied by 

granular material and neoplastic nodules as well (cf. Fig. IV.9 C). Hence, the hypothesis is 

corroborated that there is an association of spongiosis hepatis and the formation of neoplasia. 

In addition to rats, spongiosis hepatis has been induced in a number of fish species. For ex-

ample, Couch (1991) exposed sheepshead minnows (Cyprinodon variegatus) for 6 weeks to 

N-nitrosodiethylamine, kept the fish further 140 weeks and finally observed the formation of 

spongiosis hepatis. In the present study, fish were kept for approximately one year after the 

onset of exposure. Obviously, this time frame was sufficient to cause the formation of spongi-

otic lesions in zebrafish. Braunbeck et al. (1992) exposed medaka (Oryzias latipes) for 48 h to 

diethylnitrosamine and observed cases of spongiosis hepatis at least 8 days later. Thus, spon-

giotic lesions can occur even earlier in fish. As the material inside the cysts was not investi-

gated any further, future studies should make use of staining methods such as Alcian blue 

staining of mucopolysaccharides according to Gomori (1954), Masson-Goldner and the peri-

odic acid-Schiff reaction. 

In isolated cases, fish exposed to 4/0.4 mg/L exhibited liver granuloma in association with 

spongiosis hepatis and fibrosis (cf. Fig. IV.9 E). Granuloma are inflammatory responses with 

focal collections of macrophages, epithelioid cells and multinucleated giant cells and are often 

associated with necrosis (Adams 1976, Williams and Williams 1983). In the literature, granu-



 

109 
   

loma formation in the liver has been documented in zebrafish after chronic exposure to per-

fluoroctane sulfonate, proposedly in consequence of a reduction of the immune response (Kei-

ter et al. 2012) or after tuberculosis infection with Mycobacterium marinum (Swaim et al. 

2006). Since the fish bearing granuloma were not affected by infectious diseases, granuloma 

probably represented an immune reaction to tissue alterations due to alkylating stress. 

In one individual fish exposed to 2 mg/L MMS, a potential liver tumor in association with a 

melano-macrophage center was found (cf. Fig. IV.8 F). The altered tissue is clearly spatially 

differentiated from the adjacent liver tissue, which indicates that it could be a benign neopla-

sia. Melano-macrophage centers are normally found in hemopoietic tissues, i.e. spleen, kidney 

and liver. As part of the immune system in fish, occurrence of highly pigmented melano-

macrophages is increased under stress conditions, in case of bacterial infections and in regions 

with chronic inflammatory lesions (Agius 1985, Agius and Roberts 2003, Roberts 1975, Vig-

liano et al. 2006).  

In addition to several other functions, melano-macrophage centers play a role in antigen trap-

ping and presentation to lymphocytes as well as detoxification and deposition of cell debris 

(Agius and Roberts 2003). It was shown that the centers are suitable as bioindicators for ex-

posure of fish to hypoxia and chemical contamination (Fournie et al. 2001). As melano-

macrophages are inter alia located in the liver of healthy fish, their presence in the regarded 

case may be independent from MMS exposure. In order to clarify if fish exhibiting possible 

(pre-)neoplastic or (pre-)carcinogenic lesions were in fact subject to inflammation and stimu-

lation of their immune system, the concentration of the tumor necrosis factor should have 

been measured in cell suspensions (Goetz et al. 2004, Hogan and Vogel 2001). In the litera-

ture, hepatocellular carcinoma consisting of enlarged cells with low lipid contents and necro-

sis were found in Atlantic tomcods (Microgadus tomcod) from the Hudson River (Cormier et 

al. 1989). In liver of brown bullheads (Ictarulus nebulosus) from the Black River, Ohio, liver 

tumors were also observed (Fabacher and Baumann 1985). In other studies, zebrafish were 

exposed in vivo to the alkylating carcinogens N-methyl-N-nitro-N-nitrosoguanidine and 7,12-

diniethylbenz[a]anthracene (Spitsbergen et al. 2000a,b). Thereby, 9 % of the fish showed he-

patocellular adenoma after microinjection, and benign as well as malign hepatocellular tumors 

were found in 7 % of the fish after bath treatment. Since in the present study only individual 

fish exhibited comparable alterations, it can again be discussed that a higher incidence would 

probably have been reached if the fish had been exposed to higher MMS concentrations for a 

shorter time.  
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In general, the hematoxylin and erythrosine (HE) stain does only allow for speculations about 

the cell type of tumor cells. Hence, for all potential tumors in the present study it remains un-

clear from which cell type they derived (e.g. cf. Figs. IV.9 F and 10 C). This could be clari-

fied using antibodies specifically binding to intermediate filaments of the respective cell types 

(Miettinen et al. 1984). 

In addition to the histological aberrations discussed above, liver regions sporadically showed 

different staining properties (cf. Fig. IV.10 B), which were in a single case associated with 

degradation of tissue structure after exposure to 2 mg/L MMS (cf. Fig. IV.10 A). Using the 

HE stain, the staining color depends on the charge of molecules and the pH value present in 

cytoplasm and nucleus (Mulisch and Welsch 2010). Therefore, HE-stained paraffin wax sec-

tions are adequate for rapid identification of basophilia (Cormier et al. 1989). Liver of female 

fish is usually stained darker than liver of males due to high content of basophilic endoplas-

mic reticulum (ER) for vitellogenin production (Islinger et al. 1999). However, as the differ-

ences in staining in the present study were found within the livers of individual fish, a shift in 

the ratio of ER and acidophilic lysosomes and autophagosomes due to cell death could be 

reflected in the staining of the tissue and thus show MMS-induced tissue degeneration. This 

suggestion is in line with the potential of alkylating agents to cause a regulated form of ne-

crotic cell death (Zong et al. 2004). Furthermore, as the liver is the most important organ for 

storage of glycogen, staining with Best´s karmin could have elucidated if there were also gly-

cogen gradients as a sign of metabolic disturbance in the liver regions (Mulisch and Welsch 

2010). Moreover, the connective tissue-specific Masson-Goldner stain could have helped 

identifying present structures of the liver capsule. 

In the kidney, degeneration of parenchyma was found, possibly associated with necrosis. This 

suggestion is supported by the finding that mouse embryo fibroblasts undergo necrosis as a 

self-determined process when they are exposed to alkylating stress (Zong et al. 2004). In addi-

tion, enlargement of renal tracts may result either from a possible tumor-induced atresia of the 

ureter or from mutations in osmoregulatory genes, e.g. ion and water transport proteins (Ka-

lujnaia et al. 2007). The susceptibility of renal cells to genotoxicity caused by MMS was 

shown in mice (Oshida et al. 2008). 

Underdeveloped testis and lack of mature spermatozoa is in line with the fact that alkylating 

agents injected in rats reduced fertility and finally led to sterility (Jackson et al. 1959). Fur-

thermore, antifertility effects of MMS accumulating over time have been shown in rats. Here-

by, it was stated that these effects were due to inhibition of stem-cell or spermatogonial de-
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velopment as well as genetic damage in developing spermatids or spermatozoa (Jackson 

1964). Most probably, this is also true for the affected fish in the present study. Amorphous 

yolk and egg debris found in ovaries of F1 fish resulted from irregular depletion of tertiary 

follicles. In another study, egg debris was documented in adult zebrafish that had previously 

been exposed to the endocrine disruptor 2,3,7,8-tetrachlordiebenzo-p-dioxin (TCDD) during 

early life (King Heiden et al. 2009). TCDD exposure also led to fewer vitellogenic follicles, 

increased atretic follicles and the occupation of 20 % of ovarian tissue by macrophages. In the 

present study, these effects were not found except for reduction of mature follicles mainly in 

the F1 generation. In contrast to TCDD, MMS is not known to be an endocrine disruptor. In-

stead, it can be assumed that MMS exposure has led to mutations during gametogenesis in the 

F0 generation. Affected genes responsible for gonadal development during early life or for 

oogenesis may thus have been transferred to the F1 generation, leading to visible histological 

effects as well as mortality. 

In addition to internal histological aberrations, also external effects on tissue structure (cf. 

Tabs. IV.1 and IV.2) were found at relatively low frequencies when compared to the internal 

aberrations. External aberrations indicated inflammation or presence of tumors or skin disin-

tegration. In the literature, exposure of zebrafish to ethylnitrosourea was shown to cause the 

formation of papilloma and skin tumors (Beckwith et al. 2000). In mice, it was demonstrated 

that MMS plays a considerable role in skin carcinogenesis (Fürstenberger et al. 1989, Haesen 

et al. 1993). Based on the results of the present study, it can be assumed that this is also true 

for zebrafish. In addition, scoliosis was found in a number of fish. Scoliosis is supposed to be 

caused by impairment of the central nervous system, neuromuscular junctions or ionic meta-

bolism (Couch et al. 1977). In zebrafish, it was demonstrated that impairment of synthesis of 

fibrillar collagen causes scoliosis (Christiansen et al. 2009). It can be speculated that genes 

responsible for the physiologic function of these systems were affected by MMS in the re-

spective fish in the present experiment. 

IV.5.4 Conclusions 

The present study clearly documents that chronic exposure to MMS induces both transient 

and persistent DNA damage as well as a wide variety of histological aberrations including 

neoplasia in zebrafish. A transfer of DNA mutations to the offspring of exposed fish via the 

gametes is likely. Genotoxic exposure and the inheritability of histological aberrations with 

the potential to lead to carcinogenesis at the population level most probably have affected 
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health of the fish in the present study. This is of special concern as wild fish are exposed to 

genotoxic, mutagenic and carcinogenic pollutants in the aquatic environment. Bearing this in 

mind, especially eye and liver tumors affecting orientation, feeding and metabolism of fish 

have the potential to serve as biomarkers for ecological risks. 
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Against the background of the decline of fish populations in European and North American 

freshwater, it was the objective of the present thesis to contribute answers to the questions  

(1) if there is evidence for a causal relationship between genotoxicity and histopathology 

on the one hand and inheritability of detrimental effects on survival, reproduction and 

histology on the other hand, 

(2) if there is evidence for reversibility of these effects in the offspring, and 

(3) how anthropogenic pollutants in the aquatic environment are involved into the decline 

of fish populations. 

In fish exposed to chronic alkylating stress, comet assay and micronucleus test revealed DNA 

damage in liver, gills and gonads. Moreover, times of first spawning were delayed and fertili-

ty was reduced. In the F1 generation, teratogenic effects were increased and larval survival 

was reduced. In both the F0 and the F1 generation, histopathological aberrations and external 

lesions were found as a consequence of direct and parental MMS exposure, respectively. It is 

evident that genetic damage was transferred to the offspring and caused mortality, develop-

mental effects and histological aberrations. Thus, the present thesis documents that chronic 

alkylating stress can cause diverse detrimental effects on health and reproduction in zebrafish. 

Previously, it was shown that continuous multi-generational genotoxic exposure of fish can 

cause a decrease and even extinction of populations (Diekmann et al. 2004a). In contrast, in 

the present study, exclusively the F0 generation was exposed to genotoxic stress, which al-

lowed for recovery of fertility capacities in the F1 generation and larval survival and devel-

opment in the F2 generation. Hence, the present study opens up the perspective of recovery 

for fish at least two generations downstream exposure. Transferring this perspective to the 

field, a reduction of anthropogenic pollution may give surviving fish populations the possibili-

ty to improve their health status and reproduction capacities. 

The comparison of data from experiments using acute and chronic exposure reveals an impor-

tant finding: Whereas test concentrations of 2 – 8 mg/L MMS did not cause mortality in the 

acute test scenario with adult fish exposed for two weeks (chpt. II), the same concentrations 

caused mortality and inability of fish to spawn using chronic exposure (chpt. III). This de-

monstrates the difficulty to extrapolate toxicological hazards of chronic xenobiotic exposure 

from acute toxicity data (Nagel and Isberner 1998) as well as to transfer information on sus-

ceptibility to toxicity of adult fish to larval and juvenile stages. 

The finding of a shift of sex ratio towards females in the offspring of exposed fish gives rise 

to further questions. It is unclear how an alkylating agent can have this effect, which is know 
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for other groups of compounds (chpt. III, Gross-Sorokin et al. 2006, Sonnenschein and Soto 

1998, Vos et al. 2000). Therefore, effects of parental alkylating or in general genotoxic expo-

sure on sex ratio in the offspring deserve further investigation. 

In the present thesis, spawning groups comprehended 3 fish per sex in order to avoid masking 

of effects on fertility due to imbalanced numbers of fish per sex in a spawning group. Thus, a 

definite genealogy indicating which individual fish descended from which individual is not 

provided, and some population relevant effects in the F1 and F2 generation may be con-

founded by inbreeding. In order to avoid any possible inbreeding, future research should aim 

at obtaining spawn from definite parents. In addition, White and co-workers (1999) recom-

mended that F1 fish should be cross-bred within families as well as between families having 

the same exposure background. Future research should also aim at quantifying inbreeding 

effects. 

The current thesis correlates a considerable number of endpoints, namely genotoxicity, espe-

cially in the gonads, growth, fertility, survival, development and histopathology. However, 

there are even more links between the generations that should be taken into account by future 

research elucidating the reasons for the decline of fish populations, e.g. sperm motility, which 

can be examined via computer-assisted sperm analysis (Kime et al. 2001, Wilson-Leedy and 

Ingermann 2007). 

In general, it should be kept in mind that there is always a factor of uncertainty when data 

from laboratory experiments are transferred to the field situation. Thus, laboratory studies can 

only complement the investigation of health and reproductive potential of fish over the gener-

ations at known pollution hotspots or random sites in the aquatic environment. 

There is a number of field studies on genotoxic pollution of aquatic ecosystems and affected 

health of fish exposed in their natural habitat (Bätscher et al. 1999, Burkhardt-Holm et al. 

2002, Cormier 1986, Cormier et al.1989, Malins et al. 1988, Möller 1988, Munns et al. 1997, 

Myers et al. 1987). Taking into account the results of several laboratory studies (Anderson 

and Wild 1994, Diekmann et al. 2004a,b, Munns et al. 1997, White et al. 1999) including the 

present thesis and the field situation, weight-of-evidence suggests that a causal relationship 

between genotoxicity and inheritable impairment of fish populations is likely, which may well 

manifest  in the current fish decline. 

In the European Union, a reduction of chemical pollution can be anticipated as a consequence 

of the current EU regulation REACH  as well as the Water Framework Directive (cf. cpt. I.7). 

These regulations will considerably extent our knowledge on the (eco-)toxicological potential 

of chemicals and restrict the production, use and release of chemicals dangerous to human 
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health and wildlife (ECHA 2011, Rovida et al. 2011). However, genetic diversity is reduced 

in the first place as past and ongoing genotoxic pollution has a selective effect and reduces the 

overall genetic diversity of fish populations by extinguishing phenotypes sensitive to genotox-

ic stress (Castaño et al. 2003). 

Likewise, other biotic factors in aquatic ecosystems, e.g. food webs, require recovery. Abiotic 

factors need to be taken into account as well. Since many pollutants bind to sediments (Keiter 

et al. 2006) and have done so for many decades, a reduction of the discharge of pollutants into 

the aquatic environment will probably take time and will not immediately improve develop-

ment and reproduction of wild fish populations. 

Finally, the present thesis does not only increase our understanding of diverse detrimental 

effects of long-term genotoxic exposure to fish. It may also contribute to an increased aware-

ness of more sustainable ways of stewardship of natural resources and wildlife. 
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