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Summary

The complexity of biological systems is one of their most fascinating and, at
the same time, most cryptic aspects. Despite the progress of technology that has
enabled measuring biological parameters at deeper levels of detail in time and
space, the ability to decipher meaning from these large amounts of heterogeneous
data is limited. In order to address this challenge, both analysis and visualization
strategies need to be adapted to handle this complexity.

At system-wide level, we are still limited in our ability to infer genetic and
environmental causes of disease, or consistently compare and link phenotypes.
Moreover, despite the increasing availability of time-resolved experiments, the
temporal context is often lost. In my thesis, I explored a series of analysis and
visualization strategies to compare and connect dynamic phenotypic outcomes of
cellular perturbations in a genetic and network context.

More specifically, in the first part of my thesis, I focused on the cell cycle
as one of the best examples of a complex, highly dynamic process. 1 applied
analysis and data integration methods to investigate phenotypes derived from
cell division failure. I examined how such phenotypes may arise as a result of
perturbations in the underlying network. To this purpose, I investigated the role
of short structural elements at binding interfaces of proteins, called linear motifs,
in shaping the cell division network. I assessed their association to different
phenotypes, in the context of local perturbations and of disease.

This analysis enabled a more detailed understanding of the regulatory mech-
anisms beyond the malfunctioning of cell division processes, but the ability to
compare phenotypes and track their evolution was limited. Exploring large-scale,
time-resolved phenotypic screens is still a bottleneck, especially in the visualiza-
tion area. To help address this question, in the subsequent parts of the thesis
I proposed novel visualization approaches that would leverage pattern discov-
ery in such heterogeneous, dynamic datasets and enable the generation of new
hypotheses.

First, I extended an existing visualization tool, Arena3D, to enable the com-
parison of phenotypes in a genetic and network context. I used this tool to

continue the exploration of phenotype-wide differences between outcomes of gene



function suppression within mitosis. I also applied it to an investigation of sys-
temic changes in the network of embryonic stem cell fate determinants upon
downregulation of the pluripotency factor Nanog.

Second, time-resolved tracking of phenotypes opens up new possibilities in ex-
ploring how genetic and phenotypic connections evolve through time, an aspect
that is largely missing in the visualization area. I developed a novel visualiza-
tion approach that uses 2D/3D projections to enable the discovery of genetic
determinants linking phenotypes through time. I used the resulting tool, Phe-
noTimer, to investigate the patterns of transitions between phenotypes in cell
populations upon perturbation of cell division and the timing of cancer-relevant
transcriptional events. I showed the potential of discovering drug synergistic ef-
fects by visual mapping of similarities in their mechanisms of action. Overall,
these approaches help clarify aspects of the consequences of cell division failure
and provide general visualization frameworks that should be of interest to the
wider scientific community, for use in the analysis of multidimensional pheno-

typic screens.



Zusammenfassung

Die Komplexitat biologischer Systeme ist faszinierend und unverstanden zu-
gleich. Trotz steter Verbesserung der Technologien, die es erlauben biologis-
che Parameter in immer hoherer Auflosung sowohl zeitlich als auch raumlich zu
untersuchen, ist unsere Fahigkeit die groffen Mengen dieser heterogenen Daten
zu verstehen noch immer sehr begrenzt. Daher miissen sowohl die Analysew-
erkzeuge als auch die Visualisierungsinstrumente verbessert werden um diese
Komplexitat verarbeiten zu konnen. Auf systemischer Ebene sind wir immer
noch begrenzt was unsere Fahigkeit angeht, genetische oder umweltbedingte
Krankheitsursachen zu identifizieren und deren Phénotypen einheitlich zu ver-
gleichen. Trotz der Verflighbarkeit von immer detaillierter zeit-aufgelosten Ex-
perimenten geht der zeitliche Kontext bei der Analyse oft verloren. In meiner
Doktorarbeit untersuchte ich eine Reihe von Analyse- und Visualisierungsstrate-
gien um die dynamischen, phanotypischen Folgen zellularer Perturbationen im
genetischen sowie Netzwerkkontext abzubilden und zu vergleichen.

Im ersten Teil meiner Arbeit konzentrierte ich mich auf den Zellzyklus, da
dieser eines der am besten untersuchten Beispiele fiir komplexe hochdynamis-
che Prozesse darstellt. Ich wandte Analyse- und Datenintegrationsmethoden an,
um Phanotypen mit Zellteilungsfehlern zu untersuchen und analysierte durch
welche Perturbationen des zugrundeliegenden Netzwerkes derartige Phanotypen
auftreten konnen. Hierzu untersuchte ich kurze, Protein-Protein-Interaktionen
vermittelnde Strukturelemente, genannt ”short linear motifs” und deren Einfluss
auf das Zellteilungsnetzwerk. Ich ermittelte ihre Verbindung zu unterschiedlichen
Phanotypen im Kontext lokaler Pertubationen und von Krankheiten.

Die Analysen ermoglichen ein tieferes Verstandnis der regulatorischen Mech-
anismen, die Fehlfunktionen der Zellteilungsprozesse zu Grunde liegen, jedoch
gibt es nur beschrankte Moglichkeiten Phanotypen zu vergleichen sowie deren
Evolution nachzuverfolgen. Grofie Datenmengen zeitlich aufgeloster phanotypis-
cher Untersuchungen zu analysieren oder gar zu visualisieren ist noch immer ein
ungelostes Problem. Daher habe ich im zweiten Teil meiner Arbeit neue Visu-
alisierungsansitze entwickelt, die solch heterogene, dynamische Datensatzen fiir

die Mustererkennung zugéanglich machen.



Hierzu erweiterte ich zunéchst ein existierendes Visualisierungstool ” Arena3D”,
um Phanotypen in einem genetischen- und Netzwerk-kontext vergleichen zu konnen.
Ich benutzte dieses Tool um die phanotypischen Unterschiede zwischen verschiede-
nen Experimenten, in denen die Funktion spezifischer Gene wahrend der Mitose
unterdriickt wurde, zu untersuchen. Dartiber hinaus habe ich es zur systematis-
chen Analyse des Einflusses einer verminderten Expression des Pluripotenzfaktors
Nanog auf das Differenzierungs Netzwerk embryonaler Stammzellen verwendet.

Dartiber hinaus erlaubt diese Visualisierung der Zeit-aufgelosten Verfolgung
von Phéanotypen zu untersuchen wie genetische und phanotypische Verbindungen
iiber die Zeit evolvieren. Ich habe ein neuartiges Visualisierungstool entwickelt,
welches erlaubt mittels 2D /3D Projektionen genetische Determinanten zu finden,
welche Phanotypen zeitlich verbinden. Ich wandte dieses Tool ”PhenoTimer”
an, um die in Zellpopulationen auftretenden iibergange zwischen Phéanotypen
zu untersuchen, welche durch Perturbation der Zellteilung sowie krebs-relevanter
Transkriptionsereignisse hervorgerufen werden. Durch das visuelle Abbilden von
ahnlichkeiten der Wirkmechanismen von Medikamenten gelang es mir neuartige
synergistischer Effekte von Medikamenten nachzuweisen.

Die hier vorgestellten Ansatze helfen die Folgen von Zellteilungsfehlern besser
zu verstehen und stellen ein allgemeines Visualisierungsframework zur Verfiigung,
welches es der wissenschaftlichen Gemeinde erlaubt multidimensionale phanotyp-

ische Untersuchungen zu analysieren und zu visualisieren.



Contents

Contents xiii
List of Abbreviations XX

1 Introduction
1.1 Moving towards a dynamic view of phenotypes . . . . . . . . . ..
1.1.1 Thecellcycle . . . .. .. .. oo

1.1.2  The role of disordered regions and post-translational mod-

ifications in network dynamics . . . . . . . .. ... .. 9

1.2 The role of visualization in biology . . . . . . . ... .. ... .. 11
1.2.1 Visualizing time-related data in biology . . . . . . . . . .. 12

1.3 Aims of the PhD project . . . . . . . . ... ... ... ...... 16

2 Motif-mediated interactions and their role in cell cycle pheno-

typing 19

2.1 Description . . . . . . ... 19

2.2 Methods . . . . . ... 21

2.2.1 Phenotypic profiling of cell division defects . . . . . . . .. 21

2.2.2 Linear motifs . . . ... ... ... ... ... .. 21
2.2.3  Enrichment of linear motifs in cell division-essential pro-

teins by phenotype . . . . .. ... Lo 22

2.2.3.1 Background considerations . . . . . ... ... .. 22

2.2.3.2 Filtering enriched motifs . . . . . . ... ... .. 23

2.2.4  Linear motifs mediating protein-protein interactions . . . . 24

2.2.5 Post-translational modification sites around enriched SLiMs 25

x1il



CONTENTS

2.2.6 Linear motifs mutated in disease . . . . . ... ... ... 26
2.2.7 Other considerations . . . . . . ... ... ... ...... 26
23 Results. . . . . . . 26
2.3.1 SLiMs enriched in phenotypic groups . . . . . . . ... .. 26

2.3.1.1  Enrichment analysis reveals phenotype-specific mo-
tifs . .o 27
2.3.1.2 "Binuclear”, "polylobed” and ”"dynamic” motifs
are more prevalent in the dataset . . . . . . . .. 30
2.3.2 Linear motifs mediating protein-protein interactions . . . . 31
2.3.2.1  The motif-mediated protein network contains sev-
eral hubs with central roles in cell division . . . . 32

2.3.2.2 Agreement of link and node enrichment varies by

phenotype . . . . . ... 34
2.3.2.3  The reduced motif-mediated network is more uni-
form in phenotypic coverage . . . . . . . . . . .. 35
2.3.3 Post-translational modification sites around linear motifs . 36

2.3.3.1 Phosphoserine and phosphothreonine modifications

are frequent in all phenotypic groups . . . . . . . 37

2.3.3.2 PTM class enrichment reveals distinct patterns
for phenotypic groups . . . . . ... ... L. 39

2.3.3.3 SLiM-PTM associations suggest phenotype-specific

regulation . . . .. ..o 39
2.3.4 Linear motifs mutated in diseases . . . . . .. .. ... .. 41
2.3.4.1 Mapping SLiM-disease associations . . . . . . . . 41

2.3.4.2 Reconstructing networks of SLiM-mediated PPIs
relevant in cancer . . . . . ... ... ... 43
2.4 Discussion . . . . .. ... 47
24.1 Summary of results . . . . . ... 47
24.2 Challenges . . . . . . . . .. 49
2.4.3 Future directions and conclusions . . . . . ... ... ... 50

3 Temporal phenotypic profiling: visualizing system-level differ-
ences with Arena3D 53

Xiv



CONTENTS

3.1 Description . . . .. ...

3.2 Implementation . . . . . . .. ... oo

3.3

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

3.2.6

Results

3.3.1

3.3.2

Graphical methods . . . . . . ... ...
3.2.1.1 Dynamics captured using color . . . . . .. . ..
3212 Clustering . . . . . ... ... ... ...
3.2.1.3 Individual gene tracking . . . . . ... ... ...
Statistical methods . . . . . . .. ... oL
3.2.2.1 Correlations . . . . . .. ...
3.2.2.2  Similarity scores . . . . ... ..o
3.2.2.3  Principal Component Analysis (PCA) . . .. ..
File formats . . . . . . . ... ... ... ...
3231 Inmputfiles . . . . .. .. ...
3.2.3.2 Exportfiles . . .. ... .. ... ... ..
Summary: improvements compared to previous version . .
Extra features and future development . . . . . . .. . ..
3.2.5.1 SBML parsing and display . . . . . . .. ... ..
3.2.5.2 Pairwise vector derivative plots . . . . . .. . ..
3.2.5.3 Integration with the Garuda platform . . . . ..
Technical specifications and availability . . . . . . .. . ..
System-level differences in the epigenetic, transcriptional
and translational dynamics of embryonic stem cells
3.3.1.1  Clustering reveals dampening of perturbation from
the chromatin to the protein level and potential
fragility points . . . . . .. ..o
3.3.1.2  Correlation calculations indicate a high level of
heterogeneity, but also recurring patterns between
transcriptional and translational levels . . . . . .
Temporal profiles of phenotypic defects in cell division upon
single perturbations in the system . . . . . . . .. ... ..
3.3.2.1 Cluster dynamics unfold resistant and volatile phe-

notypes . . ... .o oo

XV

69

70

71

4

74



CONTENTS

3.3.2.2 Time course tracking of gene LSM14A suggests
potential novel roles in cell division . . . . . . . . 7

3.3.2.3  Global phenotypic patterning aids comparison and

pinpoints potential interesting targets . . . . . . 78
3.3.24 PCA analysis . . ... ... ... ... ... 80

3.3.2.5  Pairwise phenotypic changes upon knockdown il-
lustrate paths in phenotypic progression . . . . . 81
3.4 Discussion . . . . . . . ... 84
3.4.1 Summary of results . . . . .. ... 84
3.4.2 3D versus 2D visualization . . . . ... ... ... ... 84
3.4.3 Comparison to similar visualization tools . . . . . . . . .. 86
3.4.4 Future development and conclusions . . . ... ... ... 87

4 Connecting time-resolved phenotypic landscapes with Pheno-

Timer 91
4.1 Description . . . . . ..o 91
4.2 Software design and implementation. . . . . . . .. .. ... ... 92
4.2.1 Visual depictions . . . . . . . ... L 93
4.2.1.1 The arc representations . . . . . .. .. ... .. 94

4.2.1.2 The heat map representation . . . ... ... .. 95

4.2.1.3  The line plot representation . . . . . . . .. . .. 96

4214 Barcharts. . . ... ... ... L. 96

4215 Networks . . .. .. .. ... ... 96

4.2.2 Data integration . . . . . .. ... 000 98
4.2.2.1 Reconstructing networks from STRING . . . .. 98

4.2.2.2  Linking out to other databases . . . .. ... .. 99

4.2.2.3 Additional controls . . . . . ... ... 100

4224 Interactivity . . . . . .. ..o oL 101

4.2.3 Statistical methods . . . . . . .. ... 00000 102
4.2.3.1 Phenotypic ordering . . . .. . ... ... .. 102

4.2.3.2 Heat map clustering . . . . ... ... ... ... 102

4.2.3.3 Other considerations . . . . . . . ... ... ... 102

4.2.4 Stages of implementation and graphical user interface . . . 103

Xvi



CONTENTS

425 Workflow . . .. ... 103
4.2.6 Fileformats . . . .. ... 105
4.26.1 Inputfiles . . . . .. .. ... 105
4.2.6.2 Exportfiles . . . ... ... 107
4.2.7 Technical specifications and availability . . . . . . . . . .. 107
4.2.8 Limitations . . . . . . ... 108
4.3 Analysis methods . . . . . ... ... o 109
4.3.1 Progression dynamics of mitotic defects . . . . . . . . . .. 109
4.3.1.1 Data preparation . . . . . . ... ... ... ... 109
4.3.1.2 Networks . . .. .. ... ... 109
4.3.1.3 Evaluation of synchronized gene activities . . . . 110
4.3.1.4  Clustering of phenotypic profiles . . . . .. . .. 110

4.3.2 Conservation of transcriptional events throughout the cell
cycle . . . 111
4.3.2.1 Data preparation . . . . . . ... .. ... ... 111
4.3.3 'Transcriptional regulation linking cancer pathways . . . . 111
4.3.3.1 Data preparation . . . . .. ... ... ... ... 111
4.3.4 Linking drug abuse phenotypes . . . . . .. . ... . ... 112
4.3.4.1 Data preparation . . . . . . ... ... ... .. 112
4.4 Results. . . . . . 113
4.4.1 Discovering patterns in cell cycle regulation . . . . . . .. 113
4.4.1.1 Progression dynamics of mitotic defects . . . . . 113

4.4.1.2 Conservation of transcriptional events throughout
thecell cycle . . . . . ... ... ... ... .. 120

4.4.1.3 Transcriptional regulation linking cancer pathways 123

4.4.2 Linking drug abuse phenotypes . . . . . . . ... ... .. 125

4.5 Discussion . . . . ... 130
4.5.1 Summary of results . . . . . ... ... L. 130

4.5.2  Combining 3D and 2D visualization . . . . . . .. ... .. 134

4.5.3 Comparison to similar visualization tools . . . . . . . . .. 135

4.5.4 Future development and directions . . . .. ... ... .. 136

5 Conclusions 139

Xvil



CONTENTS

Appendix A 143
Appendix B 151
Appendix C 155
Publications 159

References 161

xXvili



List of Abbreviations

2D two-dimensional

3D three-dimensional

APC/C anaphase-promoting complex or cyclosome
cAMP cyclic adenosine monophosphate
CDK cyclin-dependent kinase

CLV cleavage site

CNV copy number variation

ESC embryonic stem cells

GO Gene Ontology

GUI graphical user interface

GWAS genome-wide association study
JOGL Java Binding for the OpenGL API
LIG ligand binding site

MOD post-translational modification site
NGS next-generation sequencing

ODE ordinary differential equation

Xix



CONTENTS

PCA

PDB

PMCC

PPI

SBML

SLiM

SNP

SNR

SOM

TRG

UPGMA

VRML

principal component analysis

Protein Data Bank

Pearson product-moment correlation coefficient
protein-protein interaction

Systems Biology Markup Language

short linear motif

single-nucleotide polymorphism

signal-to-noise ratio

self-organizing map

targeting site

unweighted pair group method with arithmetic mean

Virtual Reality Modeling Language

XX



Chapter 1
Introduction

One of the most fascinating aspects of biology is the complexity of structural
organization. This is seen in the details of molecular geometries, in the myriad
of interactions that shape regulatory processes, as well as in the higher levels of
organization: the cell, the organism, the population and the species (Novikoff,
1945). Complexity develops on a fractal scale, both spatially and temporally: it
emerges at all levels of spatial organization, from molecular structures to popula-
tion distributions throughout the globe, as well as in the dynamics of processes,
from atomic (e.g. molecular motions) to evolutionary level (e.g. species changes).
This has become more evident in the past years: technological advances have en-
abled us to scrutinize biological systems at an unparalleled level of detail, and
this has generated a real data deluge (Howe et al., 2008). The size and hetero-
geneity of the data impose challenges in processing, storage, visualization and
interpretation. It all stems from the inherent complexity of living organisms.
This complexity, however, builds on simple principles: emergence, modularity,
nonlinearity, synchronization (Koch, 2012; Mazzocchi, 2008). Emergence refers to
a hierarchical level of organization: local interactions between proteins/cells give
rise to higher level organization, global patterns and novel behavior (de Haan,
2006). This is strongly liked to modularity, which denotes a division of complex
processes into smaller units of execution and finds examples in periodic phenom-
ena like circadian rhythms or the cell cycle (Saez-Rodriguez et al., 2005). Non-
linearity highlights the dynamic, evolvable nature of biological systems and their

stochasticity (Mosconi et al., 2008). Synchrony is another key property that en-



1. Introduction

sures precise orchestration of transcriptional, translational and interaction events
in the cell (Ramakrishnan et al., 2010).

These principles of organization confer an inherent flexibility to the system,
such that it can adapt to new external or internal conditions (Adami et al.,
2000). Adaptability is based on a structured variability that lies at the core of the
genotype-phenotype relation and renders system robustness (Toussaint and von
Seelen, 2007). It was the Danish botanist, physiologist and geneticist Wilhelm Jo-
hannsen who first coined the distinction between genotype (an organism’s hered-
itary material) and phenotype (the observable outcomes) in 1911 (Johannsen,
1911). However, the concept is much older, dating back to the time of Aristotle,
who hypothesized a rather abstract inheritance path: the male would contribute
the "form” and the female the "matter” to the development of offspring (Mayr,
1963). While too simplistic, his hypothesis was the first one to bring the inheri-
tance idea into discussion. Charles Darwin’s theories of evolution developed the
idea further, suggesting that differences between organisms were a consequence
of modifications transmitted on a hereditary line (Atallah and Larsen, 2009).

Indeed, phenotypic variation stems from evolutionary principles. Natural se-
lection imposes pressure on the species to adapt and they do this by changing
their genetic structure. However, the evaluation of an organism’s fitness is done
through the phenotype: only organisms with successful phenotypes get to keep
and pass on the underlying genetic structure that confers this success. Therefore,
phenotypes constitute a variable of organism robustness (Wagner, 2012).

Gregor Mendel’s work put the basis to the field of genetics in the 19th cen-
tury in a systematic analysis of the laws that govern the inheritance of single-
gene traits (Mendel, 1965). Only later did the concept of ”phenotype” evolve
to encompass the results of combining genetic and environmental factors. In the
current view, the genotype-phenotype relationship is stratified on different layers:
pleiotropy (allelic variation), genetic interactions and gene-environment interac-
tions (Greenspan, 2001). They impact not only physical traits, but also the indi-
vidual susceptibility to infection and the responses to medical treatment (Sawyers,
2008). In order to understand developmental patterns and diagnose, treat or pre-
vent complex diseases we need to have a good understanding of how complex

phenotypes arise as a combination of diverse factors.



1. Introduction: A dynamic view of phenotypes

Over time, the classical understanding of the phenotype has changed, moving
from a qualitative to a more quantitative view. This has also triggered a shift
from macrophenotypes (denoting changes in morphology) to microphenotypes
(referring to physiological outcomes and transcriptional plasticity). Microarray
profiling technologies enabled this for the first time through the measurement of
gene expression changes under different conditions (Lander, 1999). Phenotypes
became measurable features at detailed molecular level (Nachtomy et al., 2007).
Moreover, the high-throughput sequencing revolution has enabled the description
of a wide array of genetic determinants for complex phenotypes, by identifying
single-nucleotide polymorphisms (SNP) and copy-number variations (CNV) and
performing genome-wide association studies (GWAS) (Bush and Moore, 2012;
Manolio, 2010; Stankiewicz and Lupski, 2010). Rare and common variant identi-
fication complements this strategy in an attempt to build a comprehensive genetic
architecture of phenotypes (Marian, 2012). Omics technologies supplement this
in a layered approach (Schneider and Orchard, 2011).

All this has brought about a diversification of possibilities in testing hypothe-
ses, but also challenges related to annotation, interpretation and error assess-
ment (Henry et al., 2011; Xuan et al., 2012). To address these challenges, we
need a better integration of phenotypic data in the genetic and network context.
To this purpose, analysis methods should be complemented by visualization ap-
proaches that can connect the sources of phenotypic emergence at different levels
of detail and in different biological contexts. In the following sections, I discuss
how phenotypic traits can be described on the basis of regulation at different levels
of biological organization in a dynamic context. I also examine how visualization

can be used as an aid to uncover such regulatory links.

1.1 Moving towards a dynamic view of pheno-

types

The evolvability of phenotypes emphasizes their strong dynamic component.
Variations in environmental conditions or genetic background impact the phe-

notypic landscape. The history of phenotypic changes can have relevance in
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organismal development or subsequently acquired diseases (Hidalgo et al., 2009).
Hence, the emergence of phenotypes is strongly time-dependent and should be
regarded in this context.

Time plays a major role in regulation at all scales, from molecular to popula-
tion levels, as shown in Figure 1.1. A relatively recent paradigm shift has imposed
a more time-aware, dynamic view on biological systems (Przytycka et al., 2010).
This new perspective enables us to study not only mechanisms of action of differ-
ent enzymes, process flows, but also the development of the organisms in healthy
and diseased states.

Epigenetic, transcriptional and translational processes are highly dynamic:
chromatin states, mRNA and protein levels fluctuate depending on different in-
ternal and external factors (Eden et al., 2011; Ernst et al., 2011; So et al., 2011).
Moreover, cellular network functions and fate decisions are governed by spa-
tiotemporal design principles. Modularity and synchronization, as discussed pre-
viously, play a crucial role in many processes: circadian rhythms, development,
metabolism etc. Networks are not hardwired, but respond dynamically depending
on the input and thus different reconfigurations of the pathways will lead to dif-
ferent temporal profiles. This is enabled through positive and negative feedback
loops (Kholodenko et al., 2010).

Transient protein interactions modulate temporal processes. The strict time
regulation is especially relevant for signalling and regulatory proteins, as a mech-
anism to achieve fast adaptation in cases of changes in environmental condi-
tions (Stein et al., 2009). Signal propagation is often performed through transient
protein binding, and these interactions can generate different signalling profiles
depending on the binding frequency or abundance. For instance, monophospho-
rylated kinases exhibit non-monotonous, rapidly decaying activity profiles, while
dually phosphorylated kinases display long, flat plateaus of activity (Kholodenko
et al., 2010). Time can act as a constraint on a system as well, like in the case of
the tight regulation of Drosophila embryo development (Sauer et al., 1996).

Ultimately, changes at all levels, from subcellular (e.g. molecular dynam-
ics (Durrant and McCammon, 2011)) to species-wide (e.g. mutations, genetic
drift (Lenormand, 2002; Rifkin et al., 2005)), arise as evolvable properties with

the goal of achieving robustness (Ciliberti et al., 2007). Deviations from such an
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Figure 1.1: The different time scales in biology: from dynamics at the level of molecules (shown:
dynamics simulations of kinesin motor protein, as obtained from the DSMM database (Finoc-
chiaro et al., 2003)), to transient protein-protein interactions (shown: a kinesin complexed to
microtubule, PDB code 2P4N), network rewiring, organelle dynamics (shown: mitotic spindle
formation), periodic processes at the cellular level(shown: the cell cycle and cell division), or-
gan and organismal development, up to population and evolutionary dynamics. Figure taken
from (Secrier and Schneider, 2013).

equilibrium state have deep implications in development and disease. One of the
best examples of processes where time regulation is essential is the cell cycle. I

discuss it in more detail in the next subsection.

1.1.1 The cell cycle

The cell cycle is a fundamental process that governs the development, growth and
heredity of living organisms, through cell reproduction (Wilson, 1987). Aberrant
cell division, especially when there are defects in checkpoints, leads to accumula-
tion of chromosomal and cellular abnormalities that translate into a wide array of

disorders: cancer, cardiovascular diseases, autoimmune and metabolic disorders,
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viral infections, atherosclerosis, premature aging, etc. (Bicknell and Brooks, 2008;
Foster, 2008; Zhivotovsky and Orrenius, 2010). Studying these defects, how and
why they arise can provide a platform for finding new therapeutic or preventive
targets, which is why the cell cycle has been a major subject of research for many
decades (Nurse, 2000).

Temporally organized by clock-like periodicities and switch-like decisions (Tyson
and Novak, 2008), the eukaryotic cell cycle is comprised of four main phases: G1
(cell growth), S (replication of the genetic material), G2 (gap phase preceding
mitosis) and M (chromosome separation and division into two daughter cells)
(Nurse, 2000). These events are orchestrated primarily by a family of proteins
called cyclins, first discovered by searching for proteins with fluctuating levels
through the cell cycle of marine invertebrates (Evans et al., 1983). They inter-
act with cyclin-dependent kinases (CDKs) and guide the precise spatiotemporal
coordination of events. CDKs are universal cell cycle regulators, conserved from
yeast to mammals, as was first shown by expressing a human homologue that
could rescue the function of a cdc2 mutant in fission yeast (Lee and Nurse, 1987).

Several checkpoints ensure the optimal progression of the cell cycle (Hartwell
and Weinert, 1989). The DNA damage and replication checkpoints trigger signal
transduction pathways that prevent the onset of mitosis if DNA repair mecha-
nisms are active or if the DNA has not been fully replicated (Niida and Nakanishi,
2006). Complexes like Rad9-Radl-Husl or Rad17RFC trigger downstream sig-
nalling of several kinases, among which Chkl and Chk2. These in turn activate
Cdc25, and tumor suppressors Weel and p53, that inactivate CDKs and block
progression through mitosis (Bulavin et al., 2003; Mir et al., 2010; Shaw, 1996).

The spindle assembly checkpoint (SAC) monitors the association of kineto-
chores to microtubules and arrests mitosis in cases of improper chromosome orien-
tation, attachment or spindle formation (May and Hardwick, 2006). This process
ensures that the genetic material is properly segregated between the daughter
cells. At the core of this checkpoint lie the Mad and Bub proteins, whose com-
bined action helps maintain cohesion between sister chromatids (see Figure 1.2).
At the beginning of anaphase, a caspase called securin will cleave the Sccl co-
hesin subunit after the latter has been phosphorylated by Polo kinase, thereby

triggering chromatid separation. The timing of this process is controlled by the
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Figure 1.2: Mitotic progression steps. In prometaphase, the Mad-Bub complex prevents Cdc20
from binding the APC/C and thus keeps the cohesion between sister chromatids. In metaphase,
cohesins get phoshphorylated. Cdc20 binds the APC/C and recruits securin, thus freeing
separase. In anaphase, separase then gets phosphorylated and cleaves cohesins, inducing the
separation of genomic material. Figure adapted after Figure 1 from (Musacchio and Hardwick,
2002).
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anaphase-promoting complex (APC/C) and its accessory proteins Cdc20 and
Cdhl. These target different cell cycle regulators for degradation. Cdc20 at-
taches to the APC/C and triggers the ubiquitylation of securin. This releases
separase and allows it to cleave cohesin and initiate anaphase (Musacchio and
Hardwick, 2002).

Failure of checkpoint execution in the cell cycle leads to genomic instability,
loss of tumor suppressor functions, oncogene activation and structural chromo-
some rearrangements. All these are steps in tumor development (Kastan and
Bartek, 2004; Vogelstein and Kinzler, 2004).

A lot of research, both experimental and computational, has been performed
to minutely dissect the details of the different events occurring within the cell
cycle. The knowledge derived from this is extremely complex, and perhaps one of

the best impressions of this complexity is given by the reconstruction of the cell



1. Introduction: The cell cycle

cycle network in the budding yeast, illustrated in Figure 1 of the paper (Kaizu
et al., 2010), comprising 880 molecular interactors (genes, proteins, RNA) and
772 interactions. In this paper the authors also discuss a large array of feed-
forward, inhibitory and feedback mechanisms that ensure cell cycle robustness.
However, despite all this available knowledge, bridging the gap between genes and
regulation, on the one hand, and disease phenotypes, on the other hand, remains
a difficult task.

Neumann et al. have shown that defective cell division can lead to a va-
riety of observable phenotypes, which they categorize according to their mor-
phology (Neumann et al., 2010), as shown in Figure 1.3. These phenotypes are
descriptive of errors in the regulation of mitotic subphases, from prophase to
anaphase. The malfunctioning of the cell division process underlies disruptions
in and potential rewiring of protein networks. The dynamics of these interactions
may give us preliminary clues about the genetic determinants of some disease phe-
notypes. However, the influence of these interaction mechanisms on phenotypic
outcomes is not clear.

In the following chapters I present different analysis and visualization ap-
proaches to leverage the understanding of how such phenotypes arise based on
the genetic background, how they succeed each other in cell populations and how
they relate to each other. I employ the dataset from (Neumann et al., 2010)
extensively to study different aspects of dynamic regulation and how they can
be captured by visualization and analysis. Besides identifying global patterns in
cell cycle regulation, I also investigate how transient protein-protein interactions
shape the array of cellular outcomes in the mitotic context. Since proteins and
their interactions are the building blocks of complex processes like the cell cycle,
exploring these interactions in more detail should give us clues into how robust-
ness is achieved. Globular and disordered domains at the interface of protein
binding enable a dynamic, yet stable, coordination of processes. I look at the role
of disordered regions, particularly short functional motifs, in mediating protein
interactions to render viable outcomes of cellular phenotypes. More details about

these regions are described in the next section.
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Figure 1.3: The seven main phenotypes obtained by knocking down genes essential to the
cell cycle, according to (Neumann et al., 2010). Examples of defective cell morphologies
are shown in every case. The images were taken from movies available in the database at
http://mitocheck.org/. Mitotic delay: cells are arrested in division because of prometaphase
or metaphase alignment problems. Binuclear: cytokinesis defects cause imperfect division, re-
sulting in cells with two nuclei. Polylobed: similar cytokinesis failure gives rise to cells with
multilobed nuclei. Grape: cells have multiple micronuclei. Large: division halt causes abnor-
mally big cells. Apoptosis: cells die. Dynamic: abnormall cell division phenotypes that do not
fit in any of the previous categories.

1.1.2 The role of disordered regions and post-translational

modifications in network dynamics

Synergies between structured and disordered regions of proteins greatly expand
the repertoire of functional flexibility and dynamics within the proteome. The
modular architecture of proteins enables a lot of diversity in the interaction land-
scape, where many surfaces, globular or disordered, act as molecular switches.
p53 is one of the best examples for this, being comprised of a single globular
module and several disordered modules that sometimes overlap (Gibson, 2009).
This gives it the ability to interact with many other proteins and accomplish key
roles in crucial biological processes.

Starting with the solving of the first protein structure, that of myoglobin, in
1959 (Kendrew et al., 1958), it was widely believed for a long time that the struc-
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tured, folded regions of proteins (e.g. alpha helices, beta sheets etc.) were nec-
essary to accomplish function (Wright and Dyson, 1999). The structure-function
paradigm has recently expanded, as it is becoming increasingly clear that intrinsic
disorder is widespread in the human proteome (at least 30%) and plays a key role
in shaping the interaction landscape (Mosca et al., 2012). These unstructured
protein regions have been shown to arise through convergent evolution and to be
more tolerant to mutations (Dunker et al., 2008). Therefore, besides enabling
system dynamics, they also confer robustness to cells: disordered regions have a
higher capacity of network rewiring and this confers an evolutionary advantage.

Among these disordered regions, short functional peptides termed ”linear mo-
tifs” are particularly frequent as mediators of transient interactions (Puntervoll
et al., 2003). These functional regions are universally present in eukaryotic pro-
teomes and have significant contributions in many cellular processes, due to their
flexibility and evolutionary plasticity (Neduva and Russell, 2005). For instance,
they contain key residues in the binding of proteins involved in signal transduc-
tion (e.g. SH3 domains bind the motif PxxP) or DNA replication (e.g. the DNA
polymerase delta cofactor PCNA binds the motif QxxxxxFF) (Neduva et al.,
2005). Transcriptional factors, alternative splicing and post-translational mod-
ifications regulate these regions to confer an increased versatility that is often
tissue-specific. However, the lack of structure and low specificity renders these
motifs highly promiscuous. They need to be tightly regulated in order to prevent
disease phenotypes (Davey et al., 2012b).

As mentioned before, many of these linear motifs at the interfaces of pro-
tein binding are regulated by post-translational modifications, a crucial process
through which diversity at the protein level is achieved. With more than 200
types of modification types already described and probably many still to be dis-
covered, the view of regulation has moved far beyond the classical kinase-enabled
phosphorylation that drives enzymatic activity (Deribe et al., 2010). It is now
widely understood that these dynamic and most of the times reversible modifi-
cations alter the physico-chemical properties of proteins in a variety of ways and
enable fast message propagation and heterogeneity of signalling.

However, the precise mechanisms by which linear motifs and post-translational

modifications couple to modulate protein binding and regulation are not yet
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clearly understood. In the context of a dynamic process like the cell cycle, better
assessment of the contribution of disorder, in general, and short binding inter-
faces, in particular, to maintaining organism fitness is required. I address the
question of how linear motifs and post-translational modifications are linked to

disease phenotypes that are cell cycle-related in the second chapter of the thesis.

1.2 The role of visualization in biology

To research complex processes like the ones previously described, both analysis
and visualization tools are necessary. Analysis and visualization are invariably
linked in the exploration of biological problems. While analysis gives us the
mathematical, statistical or informatics methodology on which to base and ver-
ify assumptions, visualization converts observations into patterns that are easily
processed by the human brain and aid interpretability. In the context of high vol-
ume and heterogeneity of data, visualization becomes essential for understanding
relationships and making conclusions through abstraction and simplification.
One of the earliest examples of visualization in biology was Robert Hooke’s
”Micrographia”, a 17th century book that presented drawings of microscopic or-
ganisms at an unprecedented level of detail. This was one of the first books to
draw the attention of scientists as well as of the general public to the world of
microbiology, and visualization played a key role in the process. The drawings
reproduced observations of life forms that were not visible to the naked eye and
helped disseminate the knowledge. Ever since, visualization methods have pro-
gressed from fully manual (hand-drawn) towards increased automation, with the
help of advances in technology both on the experimental side (better microscopes,
high-throughput techniques, sequencing etc.) and on the computational side (the
invention of the computer and subsequent revolutions in data processing and vi-
sualization). Especially in the sequencing and omics area, where huge amounts of
data are produced, visualization is essential to compress information and extract
patterns (Gehlenborg et al., 2010). One example is the human genome: no sense
could be made of the succession of "A”s, 7 T”s, ”G”s and ”C”s without visualiza-
tion. We expect that improvements in graphics devices and computer power will

take the visualization efforts a step further in the direction of data integration at
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different biological scales.

1.2.1 Visualizing time-related data in biology

With the move from a static towards a dynamic view of biological systems, visu-
alization also gradually shifted to incorporate a time-oriented perspective. The
visualization of time dates back to the classical era (Feeney, 2007) and was first
invented to depict historical events. Taking inspiration from the geographical
mappings of lands and territories, time visualization became a science by itself
under the name of ”chronography” (Rosenberg and Grafton, 2010). One of the
first recorded sources is the chronography effort of the doctor, botanist and philol-
ogist Jacques Barbeu-Dubourg, who in 1753 plotted a linear chronologic history
of events on a 16.5 meters-long chart (Ferguson, 1991). Later on, in 1765, Joseph
Priestley introduced the use of lines to represent life spans and of dots to indicate
uncertainty (Davis et al., 2010).

Using mechanical methods for both information handling and interpretation
of events was promoted as a huge success in data exploration, even though it
was highly controversial at the time. It may seem trivial now, but viewing time
as analogous to spatial measurements could not even be conceived before the
17th century. Mechanical uniformity, i.e. division of space/time into segments
of equal dimensions, was in fact one of the innovations of the 18th century and
paved the way to a better structured organization in many fields (Davis et al.,
2010). However, the inconsistencies in information availability for different time
periods (with less events known for earlier periods of mankind) introduced a
problem in accommodating a uniform representation in the cartographic space.
This led to the adoption of non-linear representations and grouping of events
through time (Strass, 1849).

More recently, perhaps the most famous graphical depiction of timed events is
Charles Joseph Minard’s flow map of Napoleon’s campaign in Russia, published
in 1869 (Friendly, 2002). The map is already much more complex compared to
its predecessors, embedding many variables to describe events visually.

Stemming from geospatial and historical precedents, the visualization of time

in biology gradually converted the historical view of events to an evolutionary

12



1. Introduction: Visualizing time-related data in biology

perspective of life on Earth and later moved on to dissect more detailed dynamics
at different scales. One of the first examples of visualizing time-related data
was the "tree of life”. First proposed by Charles Darwin in the famous book
”On the origin of species”, it depicted relationships between different biological
lineages (Doolittle, 1999). This representation has changed considerably over
time to incorporate new insights on the evolution of species and their taxonomic
classification, but it remains widely used in phylogenetic analysis (Pavlopoulos
et al., 2010). The fields of mathematics and physics have also inspired the analysis
and visualization of dynamics in a series of biological processes, ranging from
enzyme and substrate activities underlying biochemical reactions (Chen et al.,
2010) to quantitative physiological models of entire organs (Hester et al., 2011).

Most biological visualizations rely on the main graphical elements used for
depicting time series: lines, bar charts, heat maps, dendograms and layered views
(as shown in Figure 1.4). Splines, contour plots, bifurcation diagrams and other
more complex plots are also used depending on the case (Marwan et al., 2007).

Time-related visualization in biology is still rather limited compared to the
deluge of visualization tools used for other purposes. Nevertheless, the versatil-
ity in representing time-related data accommodates different analysis approaches
at different biological scales, from the molecular to the species level. Figure 1.5
depicts only a few examples of graphical methods used in visualizing timed data.
Molecular dynamics visualizers rely on animations or trajectory traces to depict
molecular motion. Gene expression or metabolic changes can be visualized using
a combination of line charts, clustering and network embedding. Dynamics at
the level of tissues, organs or populations are simulated and plotted using non-
linear dynamics methods (Strogatz, 1995). Evolutionary relationships are often
conveyed using multiple sequence alignment and phylogenetic tree depictions, but
also circular genomic views for conservation analysis, e.g. Circos plots (Krzywin-
ski et al., 2009).

Without going into detail about the advantages and pitfalls of these vari-
ous visualization approaches, I would like to point out a few of the gaps that
need to be filled in the visualization field. First, there are ongoing challenges
in representing large-scale heterogeneous data. The ability to integrate differ-

ent biological variables while reducing dimensionality and accounting for noise in
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Figure 1.4: The classical representations of time in biology: (a) Linear representations of time
course profiles of e.g. gene expression can be depicted individually or all together (in a parallel
coordinate plot); (b) Heat maps cluster genes/proteins by their similarities in the associated
time series profiles; (c¢) Circular views can describe divisions in recurring processes like the
cell cycle; (d) Dendograms are often used to depict phylogenetic relationships and can be
used to indicate the evolutionary distance between species; (e) Layered representations enable
comparison of gene, network or tissue states at different time points. Figure taken from (Secrier
and Schneider, 2013).

the data is limited. Related to the heterogeneity aspect, visualization tools that
are able to connect different layers of information are still scarce. Second, dy-
namic behavior needs to be better incorporated in visual representations. What
is largely missing is the ability to interpret phenotypes in a temporal context.
Furthermore, comparing or linking phenotypes based on genetic determinants is
not easily achievable and usually requires the use of several tools.

In the third and fourth chapters of the thesis I present different visualization
approaches developed to better address some of these challenges. In particular,

I focus on depicting relationships between genes and phenotypes and on the
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temporal context.

1.3 Aims of the PhD project

As discussed before, one of the biggest challenges in biology at the moment is the
ability to manage "big data” and extract informative patterns from it. Studying
gene-phenotype relationships can pave the way to better strategies for disease
prevention or treatment, but untangling the complexity behind these relationships
is not straightforward and is complicated by the size and heterogeneity of the data.
Visualization becomes a key aspect in the analysis process, as it can alleviate these
problems and bring out patterns that would otherwise be difficult to discover.
However, efficient visualizations for linking and comparing phenotypes and their
genetic determinants in a systematic manner are largely missing. Adding to this,

the temporal component is often ignored and not properly represented. In my

Figure 1.5 (preceding page): Depiction of time-related processes at different scales, along with
a selection of tools that can be used for this purpose. (a) At the molecular level, tools like
Amber (Case et al., 2005) or Jmol (Herraez, 2006) can be used to visualize the movements of
macromolecules, as they result from molecular dynamics simulations. In this example taken
from the MoDEL library (Meyer et al., 2010b), the molecular movements of the MAP kinase
P38 are visualized using animations with Amber or trajectory traces with Jmol. (b) At the gene
level, gene expression changes with time under different conditions can be visualized using linear
depictions and clustering (e.g. with STEM (Ernst and Bar-Joseph, 2006)) or grouping along a
hexagonal grid (e.g. with GATE (MacArthur et al., 2010)). The figure shows the gene expres-
sion profiles in the small intestine resulting from a high fat diet in mouse (dataset GDS3357
from Gene Expression Ominbus (Edgar et al., 2002)). (c) At the network level, changes in node
color are often used to depict changes in gene expression or other network parameters. These
changes can be either visualized in an animation using tools like VistaClara (Kincaid et al.,
2008), in chronological segments of a pie chart using MultiColored Nodes (Warsow et al., 2010)
or in bar charts embedded within the node using SpotXplore (Westenberg et al., 2010). All
three are Cytoscape plugins (Shannon et al., 2003). Metabolic fluxes through pathways can be
simulated and visualized using software like CellDesigner (Funahashi et al., 2008, 2003). Bio-
Layout Express 3D (Theocharidis et al., 2009) additionally uses node size expansion to depict
changes in the network in three dimensions. The data source is the same as in (b). (d) At
the species level, relationships between different genes/proteins/organisms can be investigated
using a variety of multiple sequence aligners (e.g. Jalview (Waterhouse et al., 2009)) and phy-
logenetic tree builders (e.g. iTOL (Letunic and Bork, 2007)). Shown: alignments and trees for
aurora kinase B orthologs in four species. iTOL can visualize additional discs, heat maps and
other charts adjacent to the dendogram (shown: phases of the cell cycle where aurora kinase
B has a periodic peak of transcription, taken from Cyclebase (Gauthier et al., 2008)). Figure
adapted after (Secrier and Schneider, 2013).
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Figure 1.6: Genes, environment and phenotypes are deeply linked. The projects presented in
the thesis describe approaches to investigate the connections between some of these factors,
in a network context and taking into account the time component (the dynamics of biological
processes).

thesis, I addressed these challenges of analyzing and visually representing complex
and dynamic gene-phenotype relationships.

More specifically, I have focused on elucidating time-course phenotypic re-
sponses derived from perturbations introduced in biological systems. The pur-
pose was to consistently link phenotypes and the underlying genetic background,
looking at how phenotypic traits can evolve successively from previous traits and
how networks come into play in this progression (see Figure 1.6). A major part
of the work builds on experimental data that correlates gene knockdown events
and phenotypes of defective cell division as described in (Neumann et al., 2010).

The initial biological question that drove the analysis efforts was the fol-
lowing: how can we systematically compare phenotypes of cell division defects,
understand the network context in which they occur and their evolution in the
cell populations? I used various strategies to answer these questions.

First, to gain a better understanding of the dynamics of regulation during

cell division, I investigated how phenotypes of cell cycle malfunction can arise as
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a result of perturbations in the underlying network. The physical interactions
between proteins essential to the cell cycle are often transient and mediated by
short linear motifs. I analyzed the contribution of these linear motifs to cell cycle
regulation and to the different phenotypic outcomes.

Second, to complement the analysis approach and gain further insights into
comparative aspects of phenotypic emergence, I explored different visualization
strategies to compare phenotypes in a network context or to link them based on
genetic factors. Furthermore, I focused on time-related visualization as a special
challenge in representing phenotypic outcomes. I introduce two visualization
tools, Arena3dD and PhenoTimer, which implement these strategies.

Hence, the aims of my PhD have been twofold: (1) to elucidate mechanistic
details of regulation throughout the cell division process and reverse engineer
phenotypes; and (2) to devise better visualization strategies for comparing and
linking phenotypes in a dynamic regulatory context. The details of these projects

are described in the following chapters.
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Chapter 2

Motif-mediated interactions and
their role in cell cycle

phenotyping

2.1 Description

Complex processes like the cell cycle organize events in a tightly time-regulated
manner to ensure the proper functioning of the organism (Silvia D. M. Santos,
2008). Failure in the regulation of these processes leads to severe developmental
defects, cancer or other diseases. Since such complex phenotypes are essentially
the result of disruptions in the network structure, examining the regulatory con-
nections between proteins allows us to understand where and how rewiring occurs
in cases of stress.

As illustrated in Figure 2.1, malfunctioning of a protein essential in the cell
division process will disrupt a whole array of interactions that are important for
cell cycle regulation and cause cell division defects. Since linear motifs are key
mediators of such interactions, I wanted to investigate to what extent they play
a role in this process. More specifically, I asked how disruptions of linear motif-
mediated interactions might determine different phenotypic outcomes depending
on the protein’s motif content.

In order to answer this, I used a series of statistical, data integration and

19



2. Motif-mediated interactions in the cell cycle: Description

N -\
<« .
G2

) v G1
a v
»vV‘

(@

- / S

Figure 2.1: The cell cycle (upper left) is regulated through a myriad of protein-protein inter-
actions. Some of these interactions, especially transient ones, are mediated by linear motifs.
An example is shown in the upper right box: the short linear motif mediating the binding of
MDM2 (purple, grey surface) to P53 (orange) undergoes an induced fit (PDB code [1YCQ),
represented using PyMOL). Single gene knockdown results in the disruption of the protein net-
work (center) and of the motif-mediated interactions, which leads to phenotypes of cell division
defects observed in the cell populations (bottom).

visual inspection methods. In collaboration with the Gibson group in EMBL, we
looked at differential enrichment of linear motifs in groups of proteins belonging to
different phenotypic categories, as classified in (Neumann et al., 2010). We found
linear motif patterns that occur significantly more often in proteins associated
with a particular cell division defective phenotype. We also investigated their
role as mediators of protein-protein interactions (PPIs), the post-translational
modification neighbourhood of the binding interfaces and their associations with
diseases, as described in the following sections.

Altogether, these findings help explain in further detail how short motifs
within proteins contribute to the dynamic regulation of the cell cycle and may

open paths to the discovery of new therapeutic targets.
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2.2 Methods

2.2.1 Phenotypic profiling of cell division defects

For this analysis, I employed a dataset coming from a study on cell division
defects obtained from single gene knockdowns, as described in (Neumann et al.,
2010). A whole-genome RNA interference screening was performed in HeLa cells
to discover genes essential for mitosis. Upon knockdown of such a gene, the cell
populations were imaged for several hours. The succession of defective morpholo-
gies that the cells underwent was recorded. These morphologies were classified

PR

into the following phenotypic classes: ”mitotic delay”, ”binuclear”, ”polylobed”,
"grape”, "large”, "dynamic”, "apoptosis”.

The time-course phenotypic data underlying the analysis performed in (Neu-
mann et al., 2010) was supplied by Jean-Karim Heriché. For every gene that
was knocked down, a vector of scores at every time point was specified for each
phenotype. The scores were formulated as described in the paper and assess the
penetrance of every knockdown event in the imaged cell population, taking into
account several morphological features of the cells. The total number of genes in
the dataset is 1067. The measurements were done every half an hour for approx-
imately two cell cycles (i.e. 48 hours), so the total number of time points is 96.
To filter phenotypes with significant scores, the following thresholds have been
applied, as specified in the paper: 0.04 - "mitotic delay”, 0.092 - ”binuclear”,
0.11 - "polylobed”, 0.03 - "grape”, 0.0676 - "large”, 0.06197 - "dynamic”, 0.072
- 7apoptosis”. For the analysis in this chapter, I take into account only the first

phenotype obtained in the cell population after a gene knockdown.

2.2.2 Linear motifs

Short linear motifs (SLiMs) are defined as short peptides, generally 3-10 residues
in length, that are related to a molecular function (Davey et al., 2012b). These mi-
crodomains have been found to mediate transient interactions and, as such, play
an important role in many biological processes. They reside in conserved and dis-
ordered regions of proteins. The Eukaryotic Linear Motif (ELM) database (Dinkel
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et al., 2012) categorizes SLiMs into four main class types, based on their function:
ligand binding sites (LIG), targeting sites (TRG), post-translational modification
sites (MOD) and cleavage sites (CLV).

2.2.3 Enrichment of linear motifs in cell division-essential

proteins by phenotype

Before performing any enrichment calculations, we needed to map Ensembl gene
identifiers as provided in the dataset from (Neumann et al., 2010) to protein
UniProt identifiers. This step was performed by Venkata Satagopam.

Subsequently, the enrichment was performed by Norman Davey using SLiM-
Finder (Davey et al., 2010) and it consisted of two steps: (1) proteins in different
phenotypic classes were scanned for SLiM occurrences based on SLiM-specific
regular expressions, and (2) for every SLiM class, enrichment in every phenotypic
group was calculated based on comparison of its frequency within the group versus
the background. The following subsections elaborate on the background choice,
as well as on the subsequent filtering that was applied to reduce the number of
false positives.

For motif discovery, the library of SLiM-associated regular expressions avail-
able at the ELM database was used. Motif scoring employed the methods de-
scribed in (Chica et al., 2008; Davey et al., 2012a, 2010, 2011).

Importantly, the linear motifs analyzed in this chapter are predicted, rather
than experimentally verified: all possible instances of SLiMs occurring in a protein
are taken into account based on the characteristic sequence pattern. Therefore,
all results should be regarded in the context that most SLiMs found enriched
have not been experimentally validated, so there is the chance of false positives
in the dataset.

2.2.3.1 Background considerations

Linear motif enrichment calculations were performed with two background datasets:
(1) the rest of the targetable HeLa proteome; (2) the rest of the proteins whose

disruption caused a phenotype in the experiment by (Neumann et al., 2010).
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In the former case, the targetable HeLa proteome refers to all protein-coding
genes and transcripts from Ensembl version 66 that were tested in the experiment,
i.e. all those that could be targeted using siRNAs (irrespective of the obtained
phenotype). The list comprised approximately 95% of the human protein-coding
genome when considering Ensembl v66 as reference, and was provided by Jean-
Karim Heriché.

In the latter case, for instance, if one wants to compute the enrichment of

linear motifs for the "mitotic delay” phenotype, the background would consist of

» ”
grape-,

all proteins in the other phenotypic groups: ”binuclear”, "polylobed”,
"large”, "dynamic” and ”apoptosis”.
I will term the two background categories ”background 1”7 and ”background

2”7 respectively, in the rest of the chapter.

2.2.3.2 Filtering enriched motifs

Initially, it was debated whether we should perform SLiM filtering based on ex-
pression levels to eliminate off-target effects. This alternative was discarded, in
order to avoid that important genes that have very low expression should be
eliminated.

After the enrichment analysis, I filtered out SLiMs found in extracellular re-
gions, endoplasmic reticulum and Golgi apparatus. The motifs of extracellular
proteins are less studied and many are false positives. We wanted to avoid that
such SLiMs should appear as hits in intracellular proteins, since most proteins
essential to the cell division process are localized in the nucleus and cytosol. This
filtering measure was therefore aimed at reducing the number of false positives in
the enriched SLiM dataset. The only SLiM that was eliminated from the list us-
ing this criterion was TRG_ER_KDEL_1. Since the enrichment analysis assessed
whether each linear motif was overrepresented in a phenotypic group individually,
the fact that I eliminated this motif after the enrichment calculations does not
affect the rest of the results.

True motifs are most often found in conserved and disordered regions of pro-
teins (Chica et al., 2008; Fuxreiter et al., 2007), so I also filtered the enriched

motifs for conservation and disorder. Conservation was calculated according to
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a tree-based scoring method that scores the local conservation of residues in the
context of constraints imposed by the adjacent regions in the protein, as described
in (Davey et al., 2012a). The score varies from 0 to 1 to indicate relative conser-
vation: 0 - conserved motif surrounded by non-conserved regions; 0.5 - the motif
has exactly the same conservation as the surrounding residues; 1 - non-conserved
motif surrounded by conserved regions. I selected for further analysis only motifs
with a conservation score of less than 0.5.

The disorder was calculated using the prediction algorithm employed by [UPred
(Dosztnyi et al., 2005). This algorithm estimates the degree of disorder in a re-
gion by calculating the interresidue interaction energy in an amino acid sequence.
This value is normalized on a range from 0 to 1, corresponding to increasing de-
grees of disorder. I selected only motifs with a score greater than 0.3, the same
threshold as described in (Davey et al., 2012a).

Only motifs that were enriched with a p-value < 0.05 were taken into account

in subsequent analysis steps.

2.2.4 Linear motifs mediating protein-protein interactions

A list of pairs of proteins that were shown to interact in human was compiled from
the following databases: IntAct (physical interaction or direct interaction) (Ker-
rien et al., 2012), MINT (yeast two-hybrid, Co-IP, pull down, affinity chromatog-
raphy or affinity purification) (Ceol et al., 2010), MIPS (yeast two-hybrid, Co-
IP or co-purification) (Pagel et al., 2005), STRING (experiments) (von Mering
et al., 2003, 2005), BioGRID (all sources) (Chatr-aryamontri et al., 2013), DIP
(all sources) (Salwinski et al., 2004), HPRD (all sources) (Keshava Prasad et al.,
2009) and Reactome (direct complexes) (D’Eustachio, 2011). The list was pro-
vided by Jean-Karim Heriché.

Interactions derived from orthologous relations rather than from experiments
in human cell lines were not taken into consideration because the cell cycle be-
comes considerably rewired in other organisms compared to the one in human,
the farther away the species is from human in the taxonomic classification.

The data were downloaded from the databases in February 2012 and the

following versions were used:
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e MINT downloaded 06/02/2012

e BioGRID version 3.1.85

e DIP version 20111027

e HPRD release 9 (13/04/2010)

e IntAct downloaded 24/02/2012

e MIPS downloaded 24/02/2012

e Reactome downloaded 24/02/2012

e STRING v9.0

I only searched for linear motifs that were predicted to mediate the interaction
between two protein partners. The list of all SLiMs predicted to mediate such
interactions was supplied by Holger Dinkel. Out of these, I filtered those corre-
sponding to the dataset of interest. The disorder filter (>0.3) was also applied.

2.2.5 Post-translational modification sites around enriched
SLiMs

The post-translational modification (PTM) sites around the linear motifs in pro-
teins associated to different phenotypes were mapped by Norman Davey from
the PhosphoSitePlus (Hornbeck et al., 2012) and Phospho.ELM (Dinkel et al.,
2011) databases. Regions of 10 residues before and after the motif were scanned.
Subsequent selection and analysis was performed by me.

To assess the enrichment of PTM sites in different phenotypic groups, as well
as of PTM-SLiM associations, I calculated the odds of a particular PTM or a
PTM-SLiM instance occurring in one phenotypic group compared to all the other
defined phenotypic groups. The higher the odds ratio, the more likely it is that
the specific instance is overrepresented in the respective group compared to the
other groups. The significance of the enrichment was calculated using the Fisher
exact test, on a 95% confidence interval. Only significantly enriched categories

were considered.
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2.2.6 Linear motifs mutated in disease

The list of linear motifs that are mutated in different diseases, as well as their
naturally occurring variants, was supplied by Bora Uyar. The mutations were
scanned from the OMIM (Hamosh et al., 2005), COSMIC (Forbes et al., 2011),
dbSNP (Sherry et al., 2001) and 1000 Genomes (The 1000 Genomes Project
Consortium, 2010) databases. We only considered mutations that overlapped
with the motifs of interest, depending on the SLiM localization in the proteins
associated to different phenotypes. The results from the OMIM and COSMIC
databases contained the following information: (1) protein identifier, (2) SLiM,
(3) start and end position of the motif within the respective protein, (4) the posi-
tion of the mutation, (5) the mutated residue and the new residue, (6) the disease
in which the mutation occurs. The results from the 1000 Genomes and dbSNP
databases specified naturally occurring, rather than disease-specific, mutations in

the SLiMs and were used to assess natural variation of the motifs of interest.

2.2.7 Other considerations

All statistics plots presented in the following section have been produced using

R. All networks were constructed using Cytoscape Shannon et al. (2003).

2.3 Results

2.3.1 SLiMs enriched in phenotypic groups

In order to investigate the existence of phenotype-specific linear motifs, we searched
for motifs enriched in groups of proteins that are associated to different pheno-
types. The most abundantly enriched motifs were ligand binding and PTM sites,
with an average of more than three SliMs/protein and more than 20% of the pro-
teins containing at least two classes of enriched SLiMs (see Table 2.1 for statistics

of linear motif content).
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Background 1 Background 2

Number of proteins 654 579
Number of SLiMs 48 54
Average enriched SLiMs/protein, by type
Total 4.465 3.206
LIG 1.950 1.522
TRG 0.783 0.622
MOD 1.644 1.026
CLV 0.089 0.047
Proteins with
2 types of SLiMs 38.53% 20.38%
3 types of SLiMs 6.57% 0%
Average proteins/enriched SLiM 60.83 34.37
Median proteins/enriched SLiM 33 17

Table 2.1: Enrichment calculations statistics for the two reference backgrounds.

2.3.1.1 Enrichment analysis reveals phenotype-specific motifs

After filtering according to the criteria detailed in section 2.2.3.2, background-
dependent enriched groups of SLiMs were obtained, as shown in Figure 2.2. The
heat maps show the odds ratio values for linear motifs enriched in different phe-
notypes, a higher odds ratio indicating a stronger specificity of that motif for
the respective phenotypic category compared to its distribution throughout the
whole proteome (Figure 2.2a) or within the other phenotypic groups of proteins
(Figure 2.2b). There were no linear motifs enriched for the ”grape” phenotype in
either category, so this morphology was excluded from subsequent analysis.

The linear motif content of the six phenotypic categories is more clearly de-
fined and with less overlap when we consider background 2 for enrichment. On
the one hand, this suggests that proteins whose disruption causes cell division
defects might have a higher degree of similarity in terms of their linear motif
composition compared to proteins not involved in cell cycle processes. On the
other hand, these proteins seem to present more subtle differences in motif load,
depending on the mitosis defect they associate with. It is these latter differences
[ am mostly interested in, since I want to be able to explain whether linear motifs

play a role in differentiating phenotypic outcomes when the cell cycle malfunc-
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tions. Thus, the results in the following sections are analyzed in the enrichment
framework where the background was the set of proteins forming the other phe-
notypic groups (background 2).

For the "mitotic delay” phenotype, the KENbox (LIG_APCC_KENbox_2) and
Dbox (LIG_APCC_Dbox_1) motifs appear enriched. These are degradation motifs
recognized by the APC/C (Glotzer et al., 1991; Pfleger and Kirschner, 2000). The
delay in mitosis occurs because degradation is not triggered and the cell division
process is halted at the point before anaphase. The Dbox and the KENbox are
consistently enriched for "mitotic delay” irrespective of the background used.
This gives us higher confidence in asserting that they are true motifs specific for
this phenotype. Several other SLiMs enriched for ”mitotic delay” function in
clathrin coat assembly, transcriptional repression and signalling pathways.

The ”binuclear” category features motifs involved in signalling and nuclear
localization, cAMP metabolism, responses to stress, telomere homeostasis, as
well as cell cycle-related processes like protein degradation (LIG-WW_1) and
exit from mitosis (LIG_PP1). Disruption of some of these motif interactions can
lead to severe diseases like ciliopathies, Huntington, Alzheimer, cancer, asthma,
cherubism (Berson, 1996; Guettler et al., 2011; Passani et al., 2000).

Proteins belonging to the "polylobed” phenotype are enriched in several motifs
with roles in the cell cycle, either in regulating the transition from G1 to S phase
(LIG_SCF_Skp2_Cks1_1), the mitotic spindle checkpoint (LIG-MAD2) or DNA
damage responses (LIG. BRCT_BRCA1_1, MOD_PIKK_1, LIG.TRFH_1). Many
of these motifs or their binding partners have been linked to cancer (Clapperton
et al., 2004), (Nakayama and Nakayama, 1998). Others have roles in protein
transport, signalling and cell growth.

The ”apoptosis” phenotype presents enrichment in cell cycle motifs like
LIG_CYCLIN_1, a cyclin recognition site, or LIG_.BIR_II_1, a caspase suppressor
that acts as an inhibitor of apoptosis. Given the central roles of different cyclins
in the cell cycle, as well as the other functions linked to motifs enriched for this

phenotype (G1 phase regulation, microtubule organization, cell growth, signal

Figure 2.2 (preceding page): Odds ratios of SLiM enrichment, by phenotype. The enrichments
were calculated with respect to: (a) Background 1; (b) Background 2.
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transduction), the destructive nature of the phenotype obtained upon malfunc-
tioning is expected.

The "dynamic” category is also enriched in the cyclin recognition motif
LIG_CYCLIN_1. Besides this, there are a series of motifs related to DNA repair
(LIG.LFHA_1/2, MOD_CK1_1), apoptosis (LIG_BIR_III_1/2, CLV_C14_Caspase3-
7), actin binding, transcription, translation and phosphorylation.

Finally, the "large” phenotype groups motifs with roles in cyclin destruction
inhibition in the G1 phase (LIG.SCF_FBWT7_1), checkpoints for the start of mi-
tosis and the metaphase-anaphase transition (LIG_-WW _Pinl _4), as well as signal
sorting, endocytosis and cell growth. The highly enriched motif LIG_.ULM_U2AF65_1
mediates interactions between splicing factors.

Frequently encountered motifs throughout the cell cycle are in the family of
14-3-3 domains. Interestingly, three such types of motifs appeared enriched, all
in different categories: ”binuclear”, ”polylobed” and ”apoptosis”.

Furthermore, Figure 2.2b shows quite distinct enriched motif groups for the
"binuclear” and "polylobed” categories. These are two phenotypes that most of
the times succeed each other in the experiment: if the cells undergo a ”binuclear”
morphology, they will keep dividing and eventually form an aggregate that is
termed "polylobed”. Considering this, one would expect similar enrichment of
motifs in the two phenotypes, but here we see the results are quite distinct. The
"polylobed” phenotype that is instantiated without a ”binuclear” phase in the
cells is therefore probably triggered by some different mechanisms of division
failure compared to "binuclear”. It is perhaps a different category altogether

from the ”polylobed” morphology observed after the ”binuclear” transition.

2.3.1.2 ”Binuclear”, ”polylobed” and ”dynamic” motifs are more preva-

lent in the dataset

The most frequent motifs in the entire protein dataset according to the enrichment
with background 2 are LIG_.SH3_3 (a motif involved in several PPIs mediated by
the SH3 domain), TRG_ER_diArg_1 (a membrane motif that drives localization

to ER), MOD_GSK3_1 and MOD_CK_1, two phosphorylation sites widespread
in vertebrates (Figure 2.3). Even though the order differs when taking the rest
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Figure 2.3: Relative protein counts with different enriched SLiMs, by phenotype, according to
calculations using: (a) background 1; (b) background 2.

of the proteome as background for the enrichment, these motifs rank high in
both cases. A more prevalent occurrence of motifs specific for the ”binuclear”,
"polylobed” and ”dynamic” phenotypes is observed in the case of background 2

as compared to ”binuclear” and "mitotic delay” for background 1.

2.3.2 Linear motifs mediating protein-protein interactions

Gene knockdown events trigger a cascade of disruptions in PPIs, which leads to
the malfunctioning of pathways and eventually to defects in cell division. The
observable outcomes are the six phenotypes discussed, but in order to gain a
better understanding of the causes of malfunction, we need to investigate which
protein interactions are disrupted and how. In the human PPI network compiled
from different databases, as described in subsection 2.2.4, I looked at those in-
teractions that were affected by the knockdowns performed in the experiment.
More specifically, I filtered those interactions where at least one partner’s func-
tion was suppressed by the RNA interference procedure. The resulting network

underwent a second filtering for interactions that are mediated by SLiMs. The
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outcome is shown in Figure 2.4. This network depicts the linear motifs that

mediate interactions where at least one partner is associated to a phenotype.

2.3.2.1 The motif-mediated protein network contains several hubs

with central roles in cell division

The linear motifs mediate a large landscape of interactions that are relevant for
the phenotypic outcomes of defective cell division. This suggests that several
of them might have an important role in the process. The network of motif-
mediated interactions is overall well connected and some structure is evident
from the distribution of the interactions and of the mediating SLiMs. Several
hubs stand out in the network, and the largest are central to proteins LCK,
CDC20, CDK1 , CCNB1, TRAF3 and NCF2. In most hubs, there is a single
SLiM that is mediating all interactions between the central protein and all the
others.

CDK1 is a key modulator of the cell cycle, promoting G1 progress, and
G1-S and G2-M transitions (Fourest-Lieuvin et al., 2006). It phosphorylates
the APC/C and keeps it deactivated. CCNBI also controls the G2-M transi-
tion (Jackman et al., 2003). CDC20 is required for the activation of APC/C (Ge
et al., 2009). The three hub proteins share many interaction partners, but their
interactions are mediated by different types of motifs, enriched either in ”bin-
uclear” (CDK1), "mitotic delay” (CDC20) or "apoptosis” (CCNBI1). All these
interactions affect normal progression through the M phase and the linear motif
enrichment reflects this.

PPP1CB (PP1B.HUMAN) and NEDD4L (NED4L_HUMAN) are other two
smaller protein hubs where ”binuclear” motif interactions converge. The former
is a subunit of PP1, an essential cell division regulator that controls chromatin
structure and progression in the later mitotic stages (Lee et al., 2010). NEDDA4L
is involved in protein degradation (Zhou and Snyder, 2005). In both cases, mal-
function in anaphase leads to ”binuclear” morphologies in the dividing cells.

In contrast to most other hubs, the interactions of the LCK hub are more
diverse, being mediated by several linear motifs, enriched in the ”large”, ”binu-

” N

clear”, "mitotic delay’

)

or "apoptotic” phenotypes, as well as by some other mo-
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Figure 2.4: SLiMs-mediated protein interactions where at least one partner is associated to a
phenotype. The nodes denote proteins and they are linked if there is evidence of an interaction
between them. The color of the nodes corresponds to the phenotype obtained upon knockdown
of the respective gene. The color of the links denotes the phenotype where the SLiM mediating
the interaction is enriched. The SLiM classes that mediate interactions are indicated using
different shape and color combinations for the links.
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tifs with no enrichment in any phenotypic group. Interestingly, LCK knockdown
leads to apoptosis, but the SLiMs mediating its interactions to other proteins
are predominantly specific to the ”large” phenotype. This suggests that while
LCK suppression is lethal for the cell, many of its interaction partners having
less central role will be associated to non-lethal, albeit severe, defects in cell divi-
sion. LCK is a T cell-specific protein tyrosine kinase, with roles in the maturation
of developing T-cells, their proliferation and function, especially in signal trans-
duction pathways (Palacios and Weiss, 2004). It also phosphorylates a series of
microtubule-associated proteins (Scales et al., 2011), which explains its central
role in the cell cycle.

Overall, the structure of the network reflects central elements in the regula-
tion of cell division. This highlights the importance of SLiMs as mediators of
interactions in essential cell cycle subpathways. Linear motifs enriched in the

bR A

"binuclear”, "large”, "mitotic delay” and ”apoptotic” phenotypes dominate.

2.3.2.2 Agreement of link and node enrichment varies by phenotype

Out of the interactions mediated by SLiMs that were found enriched in pheno-
types, the percentage of cases when the phenotype of the SLiM agrees with the
phenotype of at least one protein partner is as follows: 71.89% for ”binuclear”,
22.95% for "polylobed”, 16.6% for ”"mitotic delay”, 9.88% for dynamic and less
than 2% for ”apoptosis” and "large”. This distribution may be biased by the
different sizes of the datasets, but I found that the order is kept roughly the
same also after normalizing by the size of the phenotypic group. Hence, overall
agreement of node- and link-associated phenotypes (i.e. having the same link
and node color) is rather low in the network (22.76% of the links), with varying
distributions for different phenotypes. The ”binuclear” phenotype appears to be
largely consistent in proximal network participants, though.

Ostaszewski et al. have previously shown that there is a relationship between
protein proximity in the network and their phenotypic similarity in the mitotic
hits dataset (Ostaszewski et al., 2012). Proteins with lower network distance also
had a significantly closer phenotypic distance. From the previous calculations, I

could not conclude a similar relationship in the network of SLiM mediated inter-
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Figure 2.5: SLiMs mediating physical PPIs in proteins with a phenotypic profile. Nodes denote
proteins, links denote linear motifs mediating the interaction. The color of the nodes and of
the links indicates the phenotype associated to the protein or SLiM, respectively. The SLiM
classes that mediate interactions are indicated using different shapes for the links, as well as in
writing. The thickness of the link is proportional to the motif score. Experimentally validated
motif-domain interactions are circled. Confirmed phosphorylation events from Phospho.ELM
are also marked on the network.

actions. However, the observation might be confounded by the large number of
proteins and interactions with no phenotype associated. Indeed, when eliminat-
ing these proteins from the network, as shown in Figure 2.5, more agreement in

proximal phenotypes can be observed.

2.3.2.3 The reduced motif-mediated network is more uniform in phe-

notypic coverage

Focusing only on SLiM-mediated interactions where both partners are associated
to a phenotype reduces the network considerably (Figure 2.5). Many of the linear
motifs are enriched in the same or similar phenotypes as the proteins whose
interaction they are predicted to mediate.

The three main hubs essential for cell division, CCNB1, CDK1 and CDC20 are
kept. Interactions with CCNB1 are mediated by the cyclin motif LIG_.CYCLIN_1.
CDK1 interactions are carried out by LIG_IMAPK _1 motif phosphorylation, even
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though phosphorylation events have been experimentally confirmed only for pro-
tein partners KIF11, CEP55 and E2F2 (according to the Phospho.ELM database).
Since most of the interactions in Figure 2.5 are only predicted, and not ex-

perimentally tested, I propose them as good candidates for future validation.

2.3.3 Post-translational modification sites around linear

motifs

Protein modifications induced by post-translational regulation alter the physico-
chemical properties of proteins and influence their conformation and binding ac-
tivity (Deribe et al., 2010). They are thus important for protein function. PTM
sites around SLiMs influence the protein interaction landscape by promoting or
hindering protein contact sites. Moreover, several studies have shown that some
disruptions of PTM sites are linked to disease (Li et al., 2010). For instance, the
Wnt/$-Catenin pathway was found to be affected both by gain and loss of phos-
phorylation sites in cancer (Radivojac et al., 2008). Thus, investigating the types
of modifications found around SLiMs enriched in different phenotypes might give
us additional clues to phenotype-specific factors of protein regulation failure and
might prove relevant for therapeutic purposes.

I found that proteins belonging to the ”large” phenotype had the highest abun-
dance, on average, of modification sites around SLiMs (Figure 2.6a). The second
most abundantly present were PTMs in proteins belonging to the ”polylobed”
group, followed by ”binuclear” and "mitotic delay”. Proteins in the apoptotic
category contained less than two modifications around the linear motif sites.

Even though for classes like "polylobed”, ”binuclear” and ”mitotic delay” the
average number of modifications around a SLiM is similar, the types of modi-
fications and their order differ quite a lot, as shown in Figure 2.6b. Only 19
modification patterns are shared, while ”binuclear” has five fold more modifica-

tions specific only for this category.
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Figure 2.6: Modification site count distribution, by phenotype. (a) Average number of modifi-
cation sites around linear motifs enriched in different phenotypic groups. (b) Counts of common
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and specific modification patterns around SLiMs enriched in the ”binuclear”, "mitotic delay”
and ”polylobed” categories.

2.3.3.1 Phosphoserine and phosphothreonine modifications are fre-

quent in all phenotypic groups

Given these differences, I decided to further investigate the distribution of spe-
cific PTM patterns, by phenotype. The most common one in the entire dataset
is a phosphoserine modification site, followed by double phosphoserine site (Fig-
ure 2.7). These are rather uniformly distributed among phenotypes, even though
the former is less specific to "mitotic delay” proteins and the latter is completely
missing in ”large” ones. A phosphothreonine modification site is the third most
frequent, found most prominently in the ”large” group. Figure 2.7 highlights a se-
ries of modification site patterns that are found almost exclusively in the ”large”
morphology: (1) triple phosphothreonine; (2) phosphoserine followed by double
phosphothreonine; (3) double phosphothreonine; (4) quintuple phosphothreonine;
and a series of other patterns, mostly containing combinations of phosphoserine
and -threonine sites.

The PTM class distribution is dominated in all phenotypic groups by phospho-

serine and phosphothreonine sites, the latter being significantly more abundant

37



2. Motif-mediated interactions in the cell cycle: Results

pSer | | |
pSer,pSer | | | | |
pThr [ [ |
pThr,pThr,pThr

pSer,pThr,pThr | |

pSer,pSer,pSer | | | |

pThr,pThr

N-linked (GIcNAc)
pThr,pThr,pThr,pThr,pThr
pSer,pThr

pThr,pSer
pThr,pThr,pSer,pThr,pSer,pSer
pThr,pSer,pSer,pThr,pThr
pThr,pThr,pThr,pThr

pTyr

pSer,pSer,pSer,pSer

pSer,pThr,pThr,pSer,pThr,pSer

pThr,pThr,pSer,pThr,pThr,pSer

N6-acetyllysine

i

pSer,pThr,pSer
pSer,pSer,pThr
pSer,pThr,pSer,pSer
pSer,pSer,pThr,pSer O apoptOSiS
pThr,pSer,pSer O binuclear
pSer,N6-acetyllysine (] dynamic
pSer,pSer,pSer,pSer,pSer (] Iarge
pTyr; by autocatalysis O mitOtiCdeIay
pThr,pThr,pSer,pThr,pSer O pOlonbed
pThr,pSer,pThr,pSer,pSer,pThr,pThr
pThr,pSer,pThr,pSer,pSer,pThr
[ I I I I I I |
0 1 2 3 4 5 6 7

Relative occurence in phenotypes

Figure 2.7: Top most abundant PTM patterns around linear motifs appearing in different
phenotypic groups, relative to group size. Abbreviations: pSer = phosphoserine; pThr =
phosphothreonine; pTyr = phosphotyrosine.

in the ”large” phenotype, as shown in Figure 1 of Appendix A. Phosphoryla-
tion events are most abundant overall, followed by glycosylation and acetylation

events (see Figure 2 of Appendix A).
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2.3.3.2 PTM class enrichment reveals distinct patterns for phenotypic

groups

Calculating the enrichment of different PTM classes in phenotypic groups reveals
distinct categories that are phenotype-specific (Figures 4 and 3 of Appendix
A). N-linked glycosylation, appears enriched in the ”dynamic” and ”apoptosis”
groups, while O-linked glycosylation is overrepresented only in ”binuclear”. N-
acetylalanine, an acetylation site, appears only in "mitotic delay”. The "large”
phenotype maintains the phosphothreonine specificity, similarly to ”polylobed”.
Since the detailed patterns of PTM succession around SLiM sites are also rather
distinct (Figure 4), these results suggest different mechanisms of binding among

the different phenotypic groups of proteins.

2.3.3.3 SLiM-PTM associations suggest phenotype-specific regulation

Investigating SLiM-PTM coupling patterns can provide further indications about
the mechanism of action of different linear motifs. For this purpose, I looked at
the frequency of occurrence of these kinds of patterns for SLiMs enriched in dif-
ferent phenotypic groups. Figure 2.8 shows a high prevalence of phosphoserine
and phosphothreonine sites around many SLiMs. In general, phosphorylation
and glycosylation events are the most common, with the tightest cluster formed
by the SLiMs that were previously shown to be the most frequent in the entire
dataset (see also Figure 5 of Appendix A). There does not seem to be a clear
clustering of these coupled occurrences by phenotype. Nevertheless, some phe-
notypic clusters with similar PTM patterns could be observed when performing
enrichment analysis (as shown in Figure 6 of Appendix A.)

When scanning for enriched PTM classes around SLiMs, rather than spe-
cific patterns, the list becomes much shorter, as seen in Figure 2.9. Strong en-
richment of phosphotyrosine sites can be observed for LIG_PTB_Phospho_1 and
LIG_PTB_Apo_2, two motifs enriched in the binuclear group. This is expected, as
these SLiMs are ligand sites for phosphotyrosine binding domains. LIG_BIR_I1_1
stands out as the only SLiM with a strong and significant association to the N-
acetylalanine class. It would be interesting to validate these strong SLiM-PTM

associations by mutating the sites and observing the phenotypic outcomes in the
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cells, to check whether the same morphological defects are obtained.
All these results help construct a more detailed image of protein binding regu-

lation by SLiMs and PTMs and how this regulation drives phenotypic outcomes.

2.3.4 Linear motifs mutated in diseases

It is estimated that more than 20% of missense mutations in disease affect in-
trinsically disordered regions of proteins and interfere with their function, often
by inducing disorder to order transitions (Vacic et al., 2012). Moreover, several
SLiMs have been shown to be mutated in different diseases (Deretic et al., 1998;
Eikenboom et al., 1996; Weil et al., 2003), which emphasizes their role in mediat-
ing critical PPIs. Since the morphologies observed upon mitosis malfunction may
denote disease phenotypes, I investigated how these phenotypes might relate to

currently classified diseases and how SLiMs play a role in the process.

2.3.4.1 Mapping SLiM-disease associations

Figure 2.10 shows the network of SLiMs enriched for different phenotypes and the
diseases in which they are mutated, according to OMIM. One might expect that
SLiMs enriched in the same phenotype would be mutated in the same diseases, but
this does not seem to be necessarily the case. Some loose grouping by phenotype
can be observed, but the network is too small to allow for generalization. Several
polylobed and dynamic-related SLiMs are associated with disease.

One should also consider that the motifs shown in this network are predicted,
and not experimentally validated to have functional role in the respective pro-
teins. The fact that they are mutated in certain diseases may have relevance
for the disease, but this is not implied. In this network, the only motif that
has been annotated in the literature to have functional importance in disease
is MOD_GSK3_1. A serine mutation at the site S165F within this motif in

junctophilin-2 was shown to cause familial hypertrophic cardiomyopathy type

Figure 2.8 (preceding page): PTM patterns around the sites of SLiMs enriched in different
phenotypic groups. The heat map shows the logarithm of the frequency value for each PTM-
SIiM combination. Colored rectangles in front of the SLiM names indicate the phenotypes
where these SLiMs are enriched.
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17 (CMH17). The mutation diminishes the phosphorylation of this protein at
the respective site, which leads to perturbations of calcium signalling in skeletal
muscles and marked cardiomyocyte hyperplasia (Landstrom et al., 2007). The
downregulation of the junctophilin gene gives rise to a polylobed phenotype in
the cell populations. The associated motif, MOD_GSK3_1, is also enriched in the
polylobed phenotype.

Whether the mutations in the predicted motifs are functionally relevant in

the associated diseases should be tested experimentally.

2.3.4.2 Reconstructing networks of SLiM-mediated PPIs relevant in

cancer

Focusing on cancer, I investigated mutation events in the linear motif segments
found in proteins in different cancer types, as recorded in the COSMIC database.
The results are shown in Figure 2.11. The most frequently mutated linear mo-
tifs are MOD_GSK3_1, LIG_.SH3_3 and MOD _ProDKin_1, which are also some
of the most frequent motifs found overall in the proteins of the given dataset.
By phenotype, the "polylobed”, "large” and ”dynamic” categories contain most
often mutations in cancer. The least frequent cancer-related mutations occur
for ”apoptosis” in linear motifs LIG_.CYCLIN_1, LIG_.EVH1_1, LIG_14-3-3_2 and
LIG_BIR_II_1. This is not normalized by the overall frequency of these motifs in
the dataset, which would eliminate some promiscuous SLiMs and is planned for
the future.

The diseases most frequently associated with mutations in linear motifs from
the analyzed dataset were large intestine carcinoma, skin malignant melanoma
and ovary carcinoma. The high number of mutated sites in the entire dataset as-
sociated to some type of cancer (as shown in Figure 7 of Appendix A) emphasizes
the potential therapeutic relevance of this study.

The frequency of mutations in cancer is less than the frequency of polymor-

Figure 2.9 (preceding page): PTM classes enriched around linear motifs specific to different
phenotypic groups. The heat map shows the natural logarithm of the odds ratio (increasing
values on a gradient from yellow to dark blue), or 0 for no enrichment (grey tiles). Colored
rectangles in front of the SLiM names indicate the phenotypes where these SLiMs are enriched.
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Figure 2.10: Network of SLiMs and the diseases where they are mutated, according to OMIM.
Diseases are depicted with grey discs. The colored triangles are the different SLiMs, with color

indicating the phenotype where the linear motif is enriched. SLiMs and diseases are connected
if the disease is associated to a mutation in the respective SLiM

phisms at the SLiM sites for all motifs, according to evidence from the 1000
Genomes project and DBSNP (see Figure 2.12). The same observation is made
after normalizing by the number of occurrences of each motif in the entire dataset
(not shown). This normalization filters out SLiMs that occur frequently in pro-
teins and whose mutations don’t necessarily have a functional impact. How-
ever, after normalization the following SLiMs were found to have a higher rate

of mutation in cancer compared to the rate of natural variation with a func-

tional impact: LIG_APCC_KENbox_2, LIG_PP1, LIG_.SH2_STAT5, LIG_SH3_2
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Figure 2.11: Network of SLiMs that appear mutated in proteins in different types of cancer,
according to the COSMIC database. Circles in the networks denote proteins; triangles denote
SLiMs. Proteins and SLiMs are connected if the linear motif is mutated in that protein in a
specific disease. The color of the nodes indicates the phenotype to which the protein or the
SLiM belongs. The color of the links indicates the type of cancer in which the mutation occurs.
The bar chart in the lower left corner displays the distribution of the most frequently mutated
SLiMs in cancer, by phenotype.
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Figure 2.12: Frequency of SLiM mutations in cancer versus natural variations (polymorphisms),
by enriched phenotypic group. The grey dotted line indicates equal rates of cancer-related
mutations and natural variation. Anything above the line has higher rates of mutation in
cancer; anything below the line has higher frequency of polymorphisms.

TRG_NES_.CRM1_1, TRG_NLS_MonoCore_2. These motifs had between 1.1 and

1.6 fold higher rate of mutations in cancer. A higher rate of mutation in can-

cer compared to polymorphisms that occur randomly in proteins could suggest

potential functional consequences of disrupting that SLiM in disease. Therefore,

the highlighted motifs could be good candidates for a more detailed study into

SLiM mutations in cancer.
The SLiM with the highest comparative mutation rate is the KENbox. Con-
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sidering its crucial role during anaphase, the mutations identified might imply
a gain or loss of function within the degradation pathway, which could trigger
disease. All motifs with higher mutational rates in cancer belong either to the
"mitotic delay” or to the "binuclear” phenotype. This indicates that these two
defective cellular morphologies might be more relevant in a cancer context.
Further analysis is needed to understand the extent of mutation effects in
SLiM regions in the context of cell division and the potential relevance of these

factors to disease.

2.4 Discussion

2.4.1 Summary of results

Several genes essential for cell division identified in the phenotypic screen by (Neu-
mann et al., 2010) are relevant in disease, with some phenotypes, e.g. ”poly-
lobed”, being more prevalently associated to disorders than others (see Fig-
ure 2.13). Furthermore, the corresponding protein products are targets to a
wide variety of drugs. Figure 2.14 shows these proteins and associated drugs, as
extracted from the STITCH (Kuhn et al., 2010) database. The network is highly
connected and protein hubs for many drugs can be easily spotted. This suggests
the potential for identifying targets for drug repurposing or for elucidating side
effect sources. Thus, obtaining more details about the mechanism of action of
these proteins and their interactions can have medical and pharmaceutical appli-
cations.

From the analysis, I was able to distinguish linear motifs specific for different
phenotypic classes. Several motifs already known to be linked to cell cycle pro-
cesses appeared enriched in many phenotypic categories. This suggests that the
enrichment method used performs well at distinguishing motifs specific for cell
division compared to random motifs in the proteome.

Network reconstruction allowed me to infer putative novel motifs mediating
interactions between proteins involved in cell cycle regulation. These should
be tested experimentally. Analyzing PTM-SLiM associations for different phe-
notypes enabled the discovery of phenotype and SLiM-specific patterns, which
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Figure 2.13: Diseases associated to genes knocked down in the experiment, by phenotype. The
colored nodes depict the genes, the grey nodes the diseases linked to them as extracted from
OMIM. The color of the genes depicts the first phenotype obtained upon knockdown. The
size of the node is proportional to the average score associated to each gene for the respective
phenotype in the cell population.

indicates the possibility of a phenotype-specific protein binding regulation. This
is particularly evident for the "large” phenotype. Further investigation might
enable a better characterization of this morphological outcome.

The most common PTM classes found overall were phosphorylation and gly-
cosylation. These have been shown to be the most abundant modification types
in the proteome (Minguez et al., 2012). While the PTM-specific grouping sug-
gests some protein features that might help distinguish phenotypic outcomes,
it would be worthwhile to check how the PTM enrichment landscape in these
groups changes when comparing to the rest of the proteome. This would filter
out common PTM-SLiM associations and emphasize the ones that are specific
for mechanisms of cell division regulation.

Mutations of SLiMs in disease were found to be often rarer than natural varia-
tion at these sites, which lowers the confidence in functionally relevant mutations.
Nevertheless, the multitude of diseases these SLiMs are associated to motivates

further research into the topic, for finding potential novel candidates for drug
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Figure 2.14: Drugs targeting protein products in the dataset of genes essential for cell division.
The drugs were extracted from STITCH (Kuhn et al., 2010) and are depicted by gray nodes.
The red nodes correspond to proteins.

design. Besides the fact that they play crucial roles in many processes, the small
interaction surface provided by these motifs makes them better targets for inter-
vention by small molecule compounds (Petsalaki and Russell, 2008). The con-
nections between SLiM-mediated interaction regulation, post-translational mod-

ifications and mutations in different diseases should be further investigated.

2.4.2 Challenges

One of the main challenges of the project is the interpretability of the results.
Most inferences were made on predicted, rather than annotated linear motifs,
such that the functional relevance of these motifs is only assumed, but not proven.
Since most linear motifs are degenerate, i.e. they occur stochastically in proteins,
distinguishing the functional sites from random occurrences in the proteome is

far from trivial. We have less confidence in inferences made about promiscuous
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motifs, e.g. LIG.SH2_STATS5, which have a high likelihood of matching protein
sequences by chance. While filters like conservation or disorder score are designed
to alleviate this issue, experimental validation should eventually be performed to
confirm the most interesting hits.

Likewise, the disease-associated mutations are not always of functional im-
portance. Some of these are only passenger mutations that accumulate over time
throughout the disease progression, but do not effectively alter the phenotype of
the cell (Haber and Settleman, 2007). While the current knowledge about pas-
senger mutations in disease is not vast enough to allow us to confidently eliminate
these non-function altering hits, some estimations are planned for the future in

order to reduce these confounding factors.

2.4.3 Future directions and conclusions

Besides experimental validation of the proposed SLiM-mediated interactions, a
series of computational methods are planned for future analysis. Gene ontology
and pathway enrichment analysis of the linear motif clusters will be performed
to obtain indications about SLiM cooperativity in fulfilling particular functions.
Given that most linear motifs yield very weak phenotypes when mutated (Gibson,
2009), these complementary approaches can help us better define the biology of
linear motifs in the context of the cell cycle. This is also why investigating
cooperative effects of SLiMs or SLiM-PTM coupling is essential in making better
predictions on regulatory mechanisms that might affect this process.

Correlations between cancer-associated mutations, linear motif content and
modifications around the SLiM sites will be further investigated. For disease and
natural variant analysis, we also plan to integrate resources from other databases,
e.g. Protein Mutant Database (Kawabata et al., 1999) and Swiss-Prot (Bairoch
and Apweiler, 2000). Moreover, structural bioinformatics techniques may be em-
ployed to investigate the binding interfaces of certain SLiMs in more detail.

A more detailed investigation of the mechanisms of domain-motif binding
will enable us to understand how short peptides shape the transient interaction
landscape and how robustness is built within the cell cycle. This, in turn, will

allow for better inferences about the link between system disequilibrium and
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disease instantiation.

In the next chapters, I discuss visualization approaches that can complement
the type of analysis that tries to compare or link phenotypes like the ones pre-
sented in this chapter, in a dynamic manner and taking into account the genetic,

network and/or environmental context.
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Chapter 3

Temporal phenotypic profiling:
visualizing system-level

differences with Arena3D

3.1 Description

Projecting the dynamic genetic context on the phenome has lately become of
major interest in biomedicine, as gene-phenotype connections are essential to dis-
secting inheritance patterns, developmental outcomes, susceptibility to disease
and different reactions to treatment. The temporal aspect introduces additional
inferences about process evolution. However, the size and heterogeneity of the
data imposes severe limitations on its interpretability. In this context, visual-
ization tools become imperative as they leverage the understanding of complex
topologies. Pattern identification helps synthesize outcomes into comprehensi-
ble forms, make new observations and hypotheses. Despite the recent deluge of
time-resolved phenotypic studies, though, software that merges temporal factors
and phenotypic outcomes in a network context is scarce and usually focused on
a narrow range of biological data.

In the previous chapter, I have presented an analysis on regulatory differences
behind different phenotypic outcomes of cell division defects. Comparing these

outcomes in a systematic manner was, however, limited, and it did not take into
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account the temporal dimension of the process. To leverage this, the current
chapter presents novel 3D visualization approaches for handling time-resolved
phenotypic data as an outcome of systemic perturbations. I introduce Arena3D,
a tool for 3D multilayered visualization of biological networks, and the features
I have built into version 2.0 of the software. The new functionality allows the
tracking and analysis of temporal patterns for different phenotypes through ani-
mation, clustering, peak highlighting, individual gene tracing, correlation display
and similarity scoring. It enables users to examine genotype-phenotype relation-
ships at different levels of depth, from molecular to tissue or entire organisms.
It is therefore applicable to any perturbation analysis datasets with multiple
phenotypic outcomes. Furthermore, the novel features considerably enhance the
interpretation of small to medium-sized and even large datasets with a temporal
component. This tool allows easy integration of different levels of information
for a better understanding of how time-resolved genetic regulation reflects into
phenotypic changes.

In the following sections, I describe the visualization concepts employed for
time-driven phenotypic profiling. I also illustrate the effectiveness of this ap-
proach on data coming from two knockdown studies, on pluripotency factors in
embryonic stem cells and on human cell division essential regulators. I used
Arena3D to investigate how systemic perturbations propagate from epigenetic to
translational processes, as well as to compare phenotypic patterns of cell division
defects through time, as a continuation of the analysis in the previous chapter.

Further details can be obtained from the published paper (Secrier et al., 2012).

3.2 Implementation

Arena3D implementation is based on the concept of multilayered graphs that are
visualized in three-dimensional space. Networks of different biological entities are
displayed, each on a separate layer, and these layers are connected according to
the correspondence or relationships between genes, proteins, structures, diseases
etc.

Networks can be displayed using several layouts: grid, circular, spherical,

hierarchical, random. Moreover, different clustering algorithms are available:
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affinity propagation, Markov clustering, k-means, neighbor-joining, hierarchical,
UPGMA, force directed (Fruchterman-Reingold), distance geometry. Clustering
enables grouping of similar entities together, where ”similarity” is defined de-
pending on the context and the biological relevance is to be established by the
user. Clustering can also be performed between layers, and not only within a
single layer.

The initial implementation of Arena3dD, including all the features described
above, was done by a previous PhD student in the group, Georgios Pavlopou-
los (Pavlopoulos et al., 2008). I improved and added to the functionality of the
software for the purpose of visualizing and analyzing time-resolved phenotypic
responses to system perturbations. In order to manage time-resolved data, as
well as compare phenotypes, I have implemented several new features into the
application: time series and single gene tracking, layered clustering by gene ex-
pression, correlation calculations and statistical methods for scoring similarities
and comparing phenotypes. As a result, Arena3D now captures dynamic changes
in the system using several visuals: color, dynamic clustering, node enhancement,
dynamic linking, node-associated graphics. These are described in detail in the

following subsection.

3.2.1 Graphical methods

3.2.1.1 Dynamics captured using color

Changes in gene expression, protein concentration and other type of variations
in the network can be visualized time-wise through changes in node color, where
the color gradient maps to the gene/protein-associated value range for the entire
time-series. The color gradient extremities will map to the lowest, respectively
the highest value in the network at all time points. The minimal and maximal
value is determined for each layer separately, as there may be cases when the
values on different layers are not of the same magnitude or comparable (e.g. a
layer of genes, with expression values associated, versus a layer of diseases, with
disease severity scored on a scale). The default color gradient is yellow-to-blue,
but one can switch to different predefined gradients, including color-blind safe,

as well as define a custom gradient (as in Figure 3.1). Zero is denoted by gray.
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(NN s) Choose start gradient color [ e MNN Gradients
| Swatches | HsB | RGB | Gradient for time series display:
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Figure 3.1: Color gradient options in Arena3D. (a) The user can change the default yellow-to-
blue gradient by selecting other colors in the ”General” panel of the software. (b) Two default
color gradients are shown for time series and scoring similarity feature encoding. The user can
opt for one of these predefined color gradients in the ” Time-course data analysis” panel.

3.2.1.2 Clustering

Clustering on different layers according to the gene-associated values is possible,
and the clustering changes dynamically at every time point. This allows the user
to follow groups of genes/proteins that behave similarly through time, as well as
assess the overall phenotypic differences for different conditions, tissues, or any
other biological parameter that a layer represents.

The default algorithm used for clustering on a specific layer is based on dis-
tance geometry of the values associated to the genes/proteins on that layer, as
described in (Crippen and Havel, 1988). First, a distance matrix between all
points is calculated. Then, the distance geometry algorithm generates the coor-
dinates of each point in 3D space. The nodes with shorter scoring distance are
placed closer to each other. This algorithm does not require a predefined num-

ber of clusters into which to group the genes, but uses the distance matrix to
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position them in close proximity. This clustering is only performed to optimize
visualization and to suggest genes with related time course profiles. It has no ef-
fect on subsequent analysis. Furthermore, one is not limited to using the default
clustering, but can choose a different type of clustering among those available at
any point during the analysis.

Genes/proteins are linked among layers to emphasize that the specific in-
stance has the highest phenotypic impact at the particular time point. I.e., the
gene/protein with the highest associated value for the particular time point rel-
ative to others will be connected among all layers. The top three entities are

emphasized in this manner.

3.2.1.3 Individual gene tracking

If a user is interested in a specific gene/protein and wishes to follow its changes
through time in the context of the network of partners and in different conditions,
Arena3D enables this. Individual genes can be tracked by simple selection of the
specific gene. Upon this action, the node corresponding to the selected gene will
be emphasized through an increase in node size. This makes the gene easy to
track visually for all time points, because even when it changes its position it
can be quickly detected because of its higher volume. One can then follow the
changes in expression or other time-associated values, as well as how it clusters

with other genes and how this varies on different layers.

3.2.2 Statistical methods
3.2.2.1 Correlations

Similarities between gene/protein profiles can be inferred by calculating the cor-
relations of their time-resolved vectors. For visual display, I connect the nodes
on a particular layer if there is a positive (yellow links) or negative (red links)
correlation between the time course gene expression profiles.

For this purpose, two correlation algorithms are available: Pearson and Spear-
man. The former assumes that the data is normally distributed, while the latter

does not make this assumption. Arena3D does not check for this internally, so it
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is up to the user to decide which is the best measure to use according to the data
they want to analyze.

To assess the significance of the correlation calculated using the Pearson algo-
rithm, I use the Pearson product-moment correlation coefficient (PMCC) table
of critical values. This table lists the minimal values of the Pearson correlation
coefficient for a certain level of significance according to the number of degrees
of freedom.

Assessing the significance of the non-parametric alternative, Spearman rank

correlation, is done using the following formula:

n—2

t=r
1 —r2

(3.1)

where r is the correlation significance and n is the number of time points in the
series. This has an approximate Student’s t distribution with n — 2 degrees of
freedom under the null hypothesis.

One can set a threshold for the p-value of the calculated correlation such that
only correlations with a p-value less than the threshold are displayed graphically.
The choices are 0.1, 0.05, 0.02 and 0.01. The default setting is 0.05.

Importantly, when using this feature one should be aware of the limits of cor-
relation statistics for time course experiments. The different samples in the time
series data are not independent, an assumption generally made by this type of
statistics calculations, so one should interpret the results with care. The correla-
tion feature offered by Arena3D uses very simplified assumptions and it is only
meant to provide a first rough indication on how similar genes are based on their
time course profiles. In the future, we plan to extend these calculations to non-
parametric association measures that take into account the dependency between
columns (Kruglyak and Tang, 2001; Masry, 2011), as well as incorporate multiple
testing corrections (e.g. Benjamini-Hochberg false discovery rate (Benjamini and
Hochberg, 1995)).
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3.2.2.2 Similarity scores

For overall phenotypic comparisons from the data, nodes can also be colored
according to the similarity of their profiles throughout the entire time course.
Each of the associated gene vectors are assigned a score that is then normalized to
arange from 0 to 10. According to this the genes are placed into different bins that
map to a color gradient. Afterwards, the nodes will be colored correspondingly
on this scale. Identical or neighboring colors will indicate similarity in the overall
time-series profile. A color gradient from white to red is used for this purpose,
but other color-blind friendly gradients are also available.

Two schemes are available for scoring the genes: (a) vector value averages;
and (b) the lower bound of the Wilson score confidence interval for a Bernoulli

parameter, as in the following equation:

22
P(1—p)+ 542

S(gi,a) = — 2 Vv e{0.N) (3.2)

This is calculated for every gene g;, with i € {1..M}, where M is the total num-
ber of genes. n is the number of ratings, among which p denotes the fraction of
positive ones, and z,/» represents the 1 — ¢ quantile of the Gaussian distribu-
tion (Agresti and Coull, 1998; Wilson, 1927).

Scoring scheme (a) is straightforward and offers a very general assessment
of the similarity, not taking into account skewed distributions or the number of
observations in the experiment. In contrast, scoring scheme (b) should balance
the proportion of positive ratings with the uncertainty of a small number of

observations (time points).

3.2.2.3 Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique that confers a visual estimation of
the number of clusters a given set of observations can be grouped into. It is
based on an orthogonal transformation of potentially correlated variables that
results in a division into a set of linearly uncorrelated variables denoted principal

components. These principal components are ordered according to the amount

29



3. Arena3D: Implementation

of variance they explain. PCA reduces the effective dimensionality of the data
without significant loss of information through the described change of basis for
the vectors such that the signal-to-noise ratio (SNR) is maximized. Therefore,
complex datasets are projected onto a reduced space which captures the most
variable components, and thus the ones of highest interest (Jolliffe, 2002).

In Arena3D, PCA provides an additional method for the user to check for
structure in the data both timewise and for different phenotypes, as well as to
confirm whether the gene modules obtained by other methods reflect the real
divisions of the data (Quackenbush, 2001). Before performing the PCA, the
input vectors are centered by subtracting the average across all experiments from
each data point. Analysis was performed using R and the JFreeChart library
(http://www.jfree.org/jfreechart/) within Arena3D.

3.2.3 File formats
3.2.3.1 Input files

Arena3dD accepts files in a specific format for parsing: a tab-delimited file that
specifies how many layers the user wants to visualize and then goes on to describe
the contents of each layer. If connections are available for the data, they are also
described, specifying which layers the connection partners originate from. There
are also optional variables that can be specified, like URLs for nodes or edges,
connection strength etc. In the case of time course data, the user will load a
slightly different file, where a series of values is specified after each node on each
layer. These values correspond to the measurements for the particular entity at
every time point. The total number of time points also needs to be specified for
each layer. See Figure 8 in Appendix B for input file format specifications. More
examples are available on the website.

In the future, users will also be able to read SBML files (Hucka et al., 2003)
into the application. I have already experimented with this feature, but it is

disabled in the current version until the parsing procedure is optimized.
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3.2.3.2 Export files

Arena3D can export the results in the following formats: txt, jpg, Pajek, Medusa,
VRML. Deciding the export file formats was done with the consideration of

achieving tool cross-compatibility.

3.2.4 Summary: improvements compared to previous ver-
sion

The main improvements of Arena3D have been in the direction of visualizing
and analyzing time-resolved data and comparing different phenotypic outcomes.
To this purpose, new functionality implemented enables:(a) tracking changes in
gene/protein expression profiles throughout the time course; (b) emphasis of high-
impacting genes on the phenotype; (c¢) clustering of genes according to values at
each time point; (c) tracking of a particular gene/protein of interest; (d) compar-
ison among genes or phenotypes through correlation analysis and similarity scor-
ing. All these features combined enable thorough analysis of time-series datasets
both on the general as well as the detailed level. One can detect or zoom into
time points of interest, focus on genes of interest, as well as make comparisons
among phenotypes corresponding to different conditions, perturbations, tissues
etc. Table 3.1 lists in more detail the features that I have added in the new
version of the software. All these features can be accessed within the Arena3D
application as shown in Figure 3.2.

It is important to note that ArenadD functionality is not restricted to time
course gene expression data, but is applicable to a wide-range of time course
profiles coming from biological experiments, as will be demonstrated in the next

subsection.

3.2.5 Extra features and future development
3.2.5.1 SBML parsing and display

Another feature I experimented with was reading and displaying biological mod-
els in the SBML file format. SBML is a standard format for describing biological

processes that are summarized using ordinary differential equations (Hucka et al.,
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Functionality

Previous versions

Arena3D 2.0

Input
Network data
Time course data

v

NN

Layouts
Circular
Grid
Spherical
Hierarchical

SSNENENEN

SSENENEN

Clustering
Fruchterman - Reingold
Distance Geometry
Affinity Propagation
Markov Clustering
K-Means
Neighbor Joining
UPGMA

NN NN N

NN NN RN

Interaction
Move nodes
Move/scale/spin layers

SNEN

NN

Time course data analysis
Time slider
Cluster by gene expression
Highlight peaks

Cluster by top expression changes

Play animation

Individual gene tracking
Pearson/Spearman correlation
Similarity scoring

Time course line plot

PCA plot

Choose color scheme
Colorblind-safe color scheme

SN N N N N NN NENENEN

Network export
Medusa format
Pajek format
VRML format
JPEG format

SNENENEN

SSENENEN

Table 3.1: Arena3D functionality in 2.0 and previous versions.
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Figure 3.2: The ”Time-course data analysis” panel offers access to the newly implemented
features for analyzing temporal multiple-phenotype data: (A) Time slider used to move through
the data points. Every time it is moved the network visualization is updated; (B) Option that
enables clustering according to gene-associated values for every time point and every layer
separately; (C) Option that emphasizes genes/proteins with highest change in value between
consecutive time points by connecting the corresponding nodes throughout all layers; (D) This
highlights the most significant events (i.e. peaks, valleys in gene expression timeline), along
with the respective time point and gene (text is displayed along with the graph to indicate
these factors); (E) Individual gene tracking option (will track node by volume expansion); (F)
Correlation panel, with several options for calculation methods and display; (G) Threshold for
the correlation significance can be set here; (H) Similarity scoring panel, with several options for
layers, methods and display; (I) Option that switches to colorblind-safe gradients; (J) Displays
color gradient legend. Besides the main functionality, buttons are also available for: (a) reseting
the graph (brings all nodes to initial position); (b) restoring node color (recolors the nodes
according to initial color assigned by default in the application); (c) saving a series of images
for all time points, that can then be used to reconstruct a movie of the time-lapse changes. The
figure is reproduced from (Secrier et al., 2012).
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2003). It is commonly used by a variety of software for modelling. T wanted to
add this functionality to Arena3D such that biological models can be visualized in
three dimensions. Parsing was done with the help of the libSBML library (Born-
stein et al., 2008).

SBML files essentially describe biochemical processes of conversion of different
biological ”species” into "products”. The rates of the reaction, as well as how the
conversion takes place are specified using differential equations. Furthermore, for
each species or product we know the cellular compartment where it is located.
Using this information, I chose to divide the components on different layers when
displaying the model: a layer of species, a layer of products and a layer of reactions
that mediate the conversion. Optionally, a layer of cellular compartments can
be shown. Connections to this layer would indicate the localization of reaction
participants. Proper alignment of layers and rotation in 3D space enables an
easy and thorough investigation of the reactions describing a specific process.
Figure 3.3 shows how visualization in 3D can relieve overcrowding in 2D space
that many times impedes good visualization and interpretation of results. This
task will become more cumbersome in the future, with bigger and more complete
maps and pathways of biological processes being produced. For instance, the
comprehensive yeast cell cycle pathway described in (Kaizu et al., 2010) and
mentioned in the Introduction currently has no feasible solution for investigation
or even just display. Using tools like Arena3dD might help reduce the complexity
by structuring it into different layers that can then be more easily understood.

The next step would be to use the information given in the system of ordinary
differential equations (ODESs) to perform a simulation and correspondingly map
the changing concentrations of species and products through time, similar to
what is shown in Figure 9 of Appendix B. This step has not been implemented
yet, but is planned for the future. There are several limitations in simulating
the SBML files: some of them deviate from the standard format and cannot be
parsed properly, some are too big for simulating in a feasible time frame, some
would even be too big for feasible display or would exceed the memory capacity of
the application. These limitations, nevertheless, can be overcome by restricting

the simulation and display of results only to models of reasonable size.
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Figure 3.3: Simplified scheme of biochemical reactions occurring through the cell cycle, as
described in (Gardner et al.,, 1998). Left: reaction graph obtained from the BioModels
database (Le Novere et al., 2006). Right: layered depiction of reaction flow from reactants
to products as displayed by Arena3D. While this example is relatively small and just for illus-
tration purpose, the power of 3D will prove more useful when handling huge pathways.

3.2.5.2 Pairwise vector derivative plots

As an alternative to identifying patterns in time course data, I implemented an
experimental feature in ArenadD that consisted in plotting pairwise gene vector
paths. This feature was tested only on the dataset coming from (Neumann et al.,
2010), as described in section 3.3.2. More explicitly, I plotted the derivative of the
measurement vectors for every pair of genes, only for the cases when there is proof
of phenotypic impact changes upon knockdown of more than 50% of the previous
phenotypic value between two consecutive time points. Noise was introduced to
amplify changes greater than 80% so that they are more easily recognizable in
the plot. The resulting paths of phenotypic progression are indicative of how
strongly a pair of genes individually knocked down would affect the undertaking
of a particular phenotype. The phenotypic paths take one of the 8 directions
as shown in Figure 3.4 to indicate whether the coupled knockdown exhibits an

increase in prevalence of the respective phenotype in the cell populations at the
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respective time point compared to the previous one, a decrease, or no change.
Since the assumptions of this method might have easily misguided an uninformed
user to misinterpret the results and since for the studied dataset the observations
made were inconclusive, we decided to exclude this feature from the final version

of the software.

y

(-1,+1) (0,+1) (+1,+1)

g, (1) 0 (+1,0)

(_1r'1) (01_1) (+1I_1)
VS. (t)
Ex
Gene knockdown effect: -1 : decrease 0 : stationary 1 : increase

X

Figure 3.4: Basis for plotting the phenotypic paths derived from coupled gene-associated vec-
tors: increases, decreases and stationary effects of the knockdown at a specific time point
determine the direction of the plotted line. g,(t) and g,(t) indicate that the values evaluated
are the ones of genes g, and g,, where x,y € {1..n}, with n being the total number of genes in
the dataset, and ¢ is the current time point.

3.2.5.3 Integration with the Garuda platform

Garuda is an organized effort to develop a common platform that integrates
different biomedical software for the use of both the academic and the industrial

sector (Ghosh et al., 2011). The main idea behind the project is to have a platform
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into which different tools can be plugged, such that they communicate with each
other and can send results from one to the other. This creates the possibility
of having workflows for repetitive tasks, similarly to Galaxy (Blankenberg et al.,
2010; Giardine et al., 2005; Goecks et al., 2010) for NGS studies. For the moment,
the software suite focuses on applications meant for modelling and visualization
in Systems Biology, but it aims to go further than that with the participation
of other interested groups after it launches. Tools like CellDesigner (Funahashi
et al., 2003), Cytoscape (Shannon et al., 2003), PhysioDesigner (Asai et al., 2012)
and others have already been enabled to communicate through Garuda.

As part of this initiative, I have integrated Arena3dD into Garuda. Within the
platform, it can visualize results coming from any other tool, as long as they are
converted into the Arena3D specific file format, as well as visualize SBML files.
The integration into Garuda should enable Arena3D to gain access to a wider

audience of biologists and it will definitely help popularize the tool.

3.2.6 Technical specifications and availability

Arena3D was implemented using Java (JDK 1.6) and Java3D (1.6.1 API). The
JFreeChart library is used for the line plot view of time course values upon node
click events, as well as for the PCA plots. The software is freely available for
academic use as a standalone platform-independent application downloadable
from the website http://arena3d.org/ (see Figure 3.5). The initial website created
by Georgios Pavlopoulos has been completely redesigned by me, with some of the
contents kept and considerable content added.

The Java Runtime Environment (http://www.java.com/) and Java3D libraries
(http://java3d.java.net/) are required for running Arena3D on any operating sys-
tem and Macintosh users should also install the JOGL libraries from
http://opengl.j3d.org/. Simple APT implementation for plug-in development is
planned for the future. The source code is available for download for users that

wish to customize their analysis.
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reach a limit in terms of user friendliness and visualization when a large number of nodes and connections have to

Figure 3.5: Screenshot of the homepage of the Arena3D website, located at http://arena3d.org/.
The website was completely redesigned for presentation purposes.

3.3 Results

Arena3D has been used with several datasets in order to identify patterns in time
series outcomes of different biological experiments. Two of the applications are

described below.
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3.3.1 System-level differences in the epigenetic, transcrip-
tional and translational dynamics of embryonic stem

cells

In the first case study I looked at how downregulation of certain factors in the
cell propagates from the epigenetic to the organismal level and how phenotypic
differences arise as a result. The dataset employed comes from a knockdown ex-
periment of the pluripotency regulator Nanog in embryonic stem cells (ESC) (Lu
et al., 2009). Upon downregulation, dynamic changes are recorded at three dif-
ferent levels: epigenetic, transcriptional and translational. These are described
in measurements of histone acetylation, RNA polymerase II localization, mRNA
abundance and protein levels for a set of genes at three time points (days 1,
3 and 5). I used Arena3D to visualize dynamic changes within the core ESC
protein-protein interaction network, as defined in (Lu et al., 2009). The newly
implemented functionality for time course data handling enabled me to discover
patterns not found in the original paper, such as recurrent correlations in pertur-
bation dynamics and potential network rewiring, as discussed later.

First, I parsed and converted the data into the Arena3D specific format so that
it could be read by the application. The dynamic changes upon Nanog down-
regulation were represented on four different layers, corresponding to the four
biological levels of measurements: histone acetylation, chromatin-bound RNA
polymerase II, mRNA levels and nuclear protein abundance, as shown in Fig-
ure 3.6. Each layer depicts a network, the ESC core, where nodes correspond to
genes/proteins and links between them indicate interaction. The color gradient
used for the nodes maps to the gene or protein-associated values for each layer.
The color of the node changes at every time point according to how the histone
acetylation, polymerase occupancy, mRNA or protein levels increase or decrease.
The lowest values are coded in yellow, highest in blue and intermediate accord-
ing to the gradient. Grey stands for values of zero. The changes in these values
through time can then be easily tracked visually by using the time slider provided
in the application. Moving the slider will result in an update of the network with
the corresponding state at that specific time point, encoded in color and/or other

representations.
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3.3.1.1 Clustering reveals dampening of perturbation from the chro-

matin to the protein level and potential fragility points

Clustering the nodes on every layer for consecutive time points paints a dynamic
landscape in the ESC core network, that is highly variable at the chromatin
level, but rather constant at the protein level. Figure 3.6 shows how the network
structure changes considerably upon clustering from day 1 to day 5 from the point
of view of histone acetylation amounts and polymerase occupancy. In contrast,
the mRNA and protein abundance layers display more stable networks and less
change in the measured values as well. Thus, downregulation of Nanog seems
to have a prominent effect at the epigenetic level, with less perturbation of the

transcriptional and translational processes.

smarcad1

rnf2

P RO highest score

(¢ I

lowest score

-null

Figure 3.6: Dynamic clustering of layered effects upon system perturbation. Each layer depicts
the ESC core network, with the component genes/proteins colored to indicate changes in histone
acetylation levels (HIS), RNA polymerase II binding affinity (POL), mRNA production (RNA)
and protein levels (PRO) as a result of downregulation of the pluripotency factor Nanog. The
color of the nodes changes according to the values associated to each time point, on a scale
from yellow to blue. Clustering patterns are shown for each phenotypic outcome at three
time points: (a) day 1; (b) day 3; (c¢) day 5. The evolution of gene associations indicated by
clustering suggests a more dynamic landscape upon perturbation at the epigenetic rather than
translational level. Subfigure (b) highlights genes with the sharpest change in measurements
at the respective time points by connecting them with yellow links throughout all layers. The
close-up picture reveals the name of these genes: Prmtl, Smarcadl and Rnf2. The figure is
reproduced from (Secrier et al., 2012).
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Nanog downregulation has highest impact on genes Smarcadl [Ensembl:
ENSG00000163104], Prmt! [Ensembl:ENSG00000126457] and Rnf2 [Ensembl:
ENSG00000121481], as automatically highlighted in Arena3D by linking the nodes
on different levels at the second time point. Smarcadl is a matrix-associated reg-
ulator of chromatin that is actin-dependent, Prmt1 is an arginine methyltrans-
ferase and Rnf2 is a ring finger protein belonging to the Polycomb group. Their
roles in the cell, preceding mRNA synthesis, justify why the recorded signal is
higher at the epigenetic levels for these genes. Their strong impact change in the
context of the ESC core network (Figure 3.6), where they are peripherally situ-
ated, might suggest there is an alternative route from Nanog to these genes that
makes them highly susceptible to the downregulation of the former factor. The

reasons for this network fragility need to be investigated further experimentally.

3.3.1.2 Correlation calculations indicate a high level of heterogene-
ity, but also recurring patterns between transcriptional and

translational levels

I looked at correlations between gene-associated measurements in the ESC core
network at the four defined levels, from epigenetic to protein synthesis. I used
the Pearson correlation coefficient to determine the genes that are positively and
negatively correlated in this example, but the same procedure can be undertaken
using the Spearman rank correlations instead. After selecting the algorithm and
the threshold for the p-value (0.05 in this case), the results of the calculations
were displayed by linking significantly correlated genes in the network on each
layer (see Figure 3.7).

Importantly, the user should consider whether the number of data points
available from measurements justifies performing this calculation at all: three
time points would normally be considered insufficient for obtaining significant
correlations (degree of freedom is 1). In this example, however, there are several
cases with significant correlations with coefficients greater than 0.997 at a p-value
less than 0.05. For illustration purposes we consider this sufficient, but the user
should use this feature with careful consideration, on a case-by-case basis.

Figure 3.7 shows the correlations in acetylation patterns, chromosome occu-
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Figure 3.7: Correlations from the epigenetic to the translational level are calculated and dis-
played as links between nodes for genes in the ESC core network based on their 3-day mea-
surement profiles. Nodes are colored according to the gene-associated value on a yellow-to-blue
color gradient. Yellow links indicate positive correlations between the genes corresponding to
the respective node pair and red links are negative correlations. The left hand side of the figure
shows all significant correlations (p-value< 0.05 and correlation coefficient higher than 0.997)
as connections between nodes. The right hand side shows only recurrent correlations, i.e. any
correlation between the same pair of genes that holds on at least 2 layers. The layer of RNA
polymerase II occupancy is omitted because it contains no recurrent correlations. The figure is
reproduced from (Secrier et al., 2012).
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pancy, expression or protein amount between genes/proteins in the core ESC
network (left). More significant correlations are recorded at the mRNA synthesis
level than at the epigenetic level. Also, there seem to be more positive correla-
tions at the epigenetic level and more negative correlations at the protein level.
This shows that perturbations in the system affect chromatin processes in a way
that does not necessarily reflect subsequent alterations of protein fluxes.

The right hand side of Figure 3.7 focuses on recurrent correlations, i.e. cor-
relations that appear between the same partners on at least two different layers.
These recurrent correlations are indications of synergies between epigenetic, tran-
scriptional and translational processes. Genes Wdrl8 and Zfp19 are positively
correlated in terms of acetylation patterns and negatively correlated in mRNA
levels. Furthermore, no correlation exists between them for the other two layers.
Both Widri8 and Zfp19 are protein-coding genes with unclear function. The cor-
relation at epigenetic and transcriptional levels suggests that they might appear
in the same pathways, but with different stoichiometries. These patterns, along
with a general scarcity of significant correlations observed between genes in the
ESC core network, suggest a high level of heterogeneity from the chromatin level
down to protein outcomes.

However, some consistent correlations can also be observed. Gene Fwsrl neg-
atively correlates both with Yy! and Sallj at the level of mRNA and protein
abundance changes in time. All three genes are involved in transcription regu-
lation, according to GeneCards (Rebhan et al., 1997). YyI belongs to the class
of zinc finger transcription factors. Sall4 has also been stipulated to belong to
the same class. Since YyI can act either as a repressor or an activator of tran-
scription (Shi et al., 1991; Wu et al., 2007) and Ewsr! represses transcription by
the Polymerase 1T machinery (Li and Lee, 2000), it could be that YyI and Ewsr!
function in an exclusive manner to regulate the expression of certain genes. Sall4
is likely to be involved in similar processes as YylI. Moreover, this recurrence
at transcriptional and translational level is in accordance with evidence from
the literature that mRNA and protein copy numbers correlate even though their
half-lives do not (Schwanhéusser et al., 2011).
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3.3.2 Temporal profiles of phenotypic defects in cell divi-

sion upon single perturbations in the system

In the second case study, I continued the analysis of phenotypic profiles of cells
throughout the cell cycle upon single gene knockdown, as described in (Neumann
et al., 2010) and introduced in the previous chapter. Time-lapse imaging reveals
defective morphologies of cells as a result of deletion of essential genes for cell
division. In contrast to the work presented in the first chapter, here I employed
not only the first phenotype observed in the population, but the entire time course
phenotypic profiles in the analysis. The strategy in this case focused on capturing
dynamic global patterns in the dataset and comparing the phenotypes based on
these patterns.

I used Arena3dD to represent the seven main phenotypes on different layers.
The positions and colors of the nodes (genes) indicate how prominent the im-
pact of the respective gene knockdown is in the cell population at the particular
moment in time. The results spanned the first 90 time points, or 45 hours of
cell life. The application visualized simultaneously the effects of all individual
knockdowns in determining the cells to adopt a certain phenotype. Changes in
phenotypic penetrance for every gene knockdown were projected through propor-
tional changes in color on a gradient scale analogous to the one in the previous
subsection. In this case the values associated to the genes came from the pheno-
typic scoring scheme based on morphological features extracted from the images
of the affected cells, as described in section 2.2.1. Nevertheless, this type of visu-
alization is applicable to any datasets with gene expression, protein concentration

or other time course measurements.

3.3.2.1 Cluster dynamics unfold resistant and volatile phenotypes

The full dataset consists of 1067 essential mitotic genes. I selected a subset of
genes as discussed in the paper (Neumann et al., 2010) for more detailed anal-
ysis (see Table 3.2). Visualization of the impact of suppressing these genes on
different phenotypic outcomes reveals morphology-specific changes, as shown in
Figure 3.8. Dynamic clustering on each layer allows more effective comparison

between phenotypes. One can even distinguish between relatively more resistant
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Gene name Description

anln anillin, actin binding protein

aurkb aurora kinase B

bard1 BRCAT1 associated RING domain 1

cl13orf23 chromosome 13 open reading frame 23

cl4orfs family with sequence similarity 71, member D
cabp7 calcium binding protein 7

cenpe centromere protein E, 312kDa

ckapb cytoskeleton associated protein 5

ect? epithelial cell transforming sequence 2 oncogene
incenp inner centromere protein antigens 135/155kDa
kif11 kinesin family member 11

kif23 kinesin family member 23

Ism14a Sm-like protein, SCD6 homolog A (S. cerevisiae)
mfsd3 major facilitator superfamily domain containing 3
myh9 myosin, heavy chain 9, non-muscle

plk1 polo-like kinase 1

prel protein regulator of cytokinesis 1

ptger2 prostaglandin E receptor 2 (subtype EP2), 53kDa
rab2/ member RAS oncogene family

racqapl Rac GTPase activating protein 1

rgma RGM domain family, member A

torlaipl torsin A interacting protein 1

tpx2 microtubule-associated, homolog (Xenopus laevis)

Table 3.2: List of potentially interesting mitotic genes, as discussed in the paper (Neu-
mann et al., 2010). Information about the genes has been extracted from the GeneCards
database (Rebhan et al., 1997).

and more volatile phenotypes: "mitotic delay”, ”binuclear” and ”polylobed” dis-
play steady clustering patterns through time, whereas the other morphological
categories show greater variation in node positioning at different time points. The
more "dynamic” phenotypes may show this behavior because they are transient
and thus rapidly succeeded by a different, more stable morphology within the cell
population.

” Apoptosis” is included in the latter, more changeable category. This seems
counterintuitive at first sight, since it is a final phenotype. However, the mea-

surements reflect prevalence of a specific phenotype within a cell population, not

5



3. Arena3D: Results

MITOTIC DELAY .J‘&TOTIC DELAY

}  BINUCLEAR BINUCLEAR ) ..‘ BINUCLEAR
e = -\ L)
- ®

e ?
r ®s
L] -
LYLOBED POLYLOBED POLYLOBED
- . - ®e

~ - /Ism14a
‘r"

GRAPE

. Ism1da—
- ::'
* e
Q.
’.if e
»
N
&
-
.

highest score

L
DYNAMIC DYNAMIC

. P
-
L ]
APOPTOSIS ” APOPTOSIS , APOPTOSIS - null

lowest score

Figure 3.8: Dynamic clustering of phenotypic outcomes as a result of defective cell division.
The seven main mitotic phenotypes are represented as different layers, each one containing the
subset of essential mitotic genes described in Table 3.2 depicted as nodes. These nodes are
colored on a yellow-to-blue gradient depending on the score associated with the impact of the
respective gene knockdown on the cell population at every time point. The figure shows the
outcome for all phenotypes at three selected time points: (a) t = 2h; (b) t = 7h; (¢) t=33h.
Nodes are clustered to indicate similarities in the knockdown profiles of several genes along
the time course. Comparing clustering profiles reveals more variation in the ”grape”, ”large”
and ”dynamic” morphologies compared to the rest, indicating they are more dynamic, whereas
"mitotic delay” and ”polylobed” have more stable genetic effect patterns. Gene LSM14A is
tracked throughout the time course by node expansion (also highlighted by arrows here for
the ”"mitotic delay” and ”grape” phenotypes). Suppression of this gene leads to a mild, but
increasing effect with time on the former phenotype, and a latent but pronounced impact at
the last time point depicted on the latter phenotype. This seems to suggest that the ”grape”
morphology is adopted after a period of stagnation during mitosis. The figure is reproduced
from (Secrier et al., 2012).
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an individual cell. Thus, as consequence of cell turnover, at future time points
after apoptosis dominance other phenotypes will take over as new cells develop
and start dividing. This is why apoptosis signals can sparsely appear and dis-
appear in the imaged cells, making the phenotype more dynamic. In contrast,
"mitotic delay”, ”binuclear” and ”polylobed” phenotypes tend to linger longer in

the populations, as cells are arrested in these morphologies without dying.

3.3.2.2 Time course tracking of gene LSM1/A suggests potential novel

roles in cell division

Arena3D can be used to track individual genes of interest. Here I exemplify
this feature on gene LSM1/A, an Sm-like protein thought to be involved in pre-
mRNA splicing and P-body formation. It has also been suggested it becomes
associated with the mitotic spindle during cell division. Figure 3.8 shows this
gene tracked through time by node volume incrementation. The visualization
suggests that the knockdown of LSM14A determines the cells to latently adopt
the ”grape” morphology. Interestingly, ”grape” is a rare phenotype, because very
few cells have been observed throughout experiments to assume this phenotype.
Understanding what might cause such morphology is therefore a particularly dif-
ficult challenge. Comparative tracking of LSM14A on different phenotypic layers
uncovers more information: the impact of the gene is rather mild for "mitotic
delay” in the first studied time point (Figure 3.8a), becomes stronger in Fig-
ure 3.8b, after which it switches pronouncedly to ”grape” (Figure 3.8¢c). This
helps reconstruct an ordered phenotypic succession within the cell population for
the LSM14A knockdown. Given its studied functions in the literature and the
previous observation, we might infer novel hypotheses for this gene. Association
with the mitotic spindle and the resulting " mitotic delay” morphology upon sup-
pression suggest roles in karyokinesis. The subsequent ”grape” phenotype might
additionally imply a potential additional role in cytokinesis, since the multiple
micronuclei characteristic for this morphology can be the result of defects either
in nuclear or cytoplasmic separation. Further experiments should be conducted
to establish the subprocesses in which the protein product of LSM14A is involved.

Additional evidence would enable us to revise the knowledge about this gene’s
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versatility and adaptability.

3.3.2.3 Global phenotypic patterning aids comparison and pinpoints

potential interesting targets

Similarity scoring is a feature that can be used to identify genes with analogous
time-resolved profiles, as well as easily compare phenotypes and their progression,
especially in large-scale datasets. I illustrate the effectiveness of pattern compar-
ison in the full mitotic defects dataset comprising the 1067 genes essential for cell
division and the effects of their knockdown. Figure 3.9 shows these genes scored
on different phenotypic layers according to the two scoring schemes discussed in
subsection 3.2.2.2: (a) averages of knockdown score vectors; and (b) lower bounds
of Wilson score confidence intervals. The two scoring schemes allow for different
interpretations based on individual statistical assumptions and calculations.

Coloring the nodes according to the former scoring scheme emphasizes rela-
tively few highly scoring genes, whose suppression should have a strong impact on
the cell. ”Polylobed” appears as the phenotype with most highly scoring genes,
and is indeed a prevalent phenotype throughout many of the screens. The rela-
tively low number of strong signals allows preselection of these genes as potentially
interesting targets for future experiments.

The scoring scheme employed in Figure 3.9b, on the other hand, eliminates
noise caused by low signals in the data. Consequently, it enables better compari-
son between genes among single phenotypes. Caution is required when comparing
phenotypes or interpreting high signals. First, the signal for one gene cannot be
matched among different phenotypes because each morphology is uniquely scored,
so phenotypes are not comparable. Second, the normalization used in the scoring
method has the effect of bringing out many high signal points in pools of low
values (for instance, the ”grape” phenotype shows many highly scoring genes af-
ter normalization, but the phenotype overall is a rare one) and these high signals
should not be interpreted as prominent phenotypes. What this scoring scheme
does instead is enable true signal discovery within a particular phenotype.

The line plots of the time course scoring measurements for the genes IN-
CENP (an inner centromere protein antigen [Ensembl:ENSG00000149503]) and
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Figure 3.9: Similarity scoring of phenotypic profiles derived from cell division disruption. The
impact of single gene knockdown experiments in cell populations is scored for the entire time
course (spanning one cell cycle, approximately 50 time points) using (a) the averaging scoring
scheme; (b) the lower bound of Wilson score confidence interval method. The nodes are colored
according to these two schemes for every phenotypic layer on a white-to-red scale. In this case,
we show the full set of 1067 genes and each one is placed in the same position on all layers,
in a grid layout. The figure also displays pop-up windows containing the temporal profiles of
genes RANP3 and INCENP represented as line plots for all phenotypes (”polylobed” in green),
along with the genes’ position on the polylobed layer. These plots can be obtained by clicking
on the respective nodes. Both genes display increasing effect on the cell populations adopting
the ”polylobed” morphology with time. The figure is reproduced from (Secrier et al., 2012).

RANBP3 (a RAN binding protein [Ensembl:ENSG00000031823]) in Figure 3.9
show that the suppression of both genes results in a high prevalence of the "poly-
lobed” phenotype. However, the two scoring schemes show higher signal for
INCENP in (a) and lower in (b) compared to RANBP3. A closer look at the
time course curves depicting the measurements for the ”polylobed” morphology
yields a slower rising curve and a lower average for RANBPS3. This explains why
it scored less according to the averaging scheme in (a), but its higher peaking

signal at the end of the time course was recovered by the scoring scheme in (b)
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when some of the noise was balanced out. The two scoring schemes thus serve well
in identifying global patterns in time course datasets, bringing out even subtle

differences in measurements between genes, and are best used complementarily.

3.3.2.4 PCA analysis

To get further insight about the structure of the data, I used Arena3D to perform
PCA. The resulting populations are shown in Figure 3.10a for superimposed pop-
ulations corresponding to every time point of the experiment and in Figure 3.10b
for superimposed populations corresponding to all phenotypes. The populations
are plotted in the directions with the largest variance in the vector space, which
contain the dynamics of interest. For the populations of different time points,
the signal is strong with high variance, while at the same time containing some
noise. The populations depicting distinct phenotypes show very high signal-to-
noise ratio individually, but also high redundancy among themselves. There was
no distinct grouping in either case, indicating that global patterns in the dataset

of all knockdown events are rather uniform and difficult to separate into modules.

PC2 PC2
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Figure 3.10: The first two principal components computed for populations corresponding to (a)
all time points and (b) all phenotypes, superimposed. Populations are color-coded from black
to cyan from time 0 to 50 (a) or in the following phenotypic order: mitotic delay, binuclear,
polylobed, grape, large, dynamic, apoptosis (b).

If we look at the top 10 scoring genes according to the average knockdown

score for each phenotype and perform PCA on the corresponding vectors, we
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obtain in all cases that more than 90% of the variance is explained by the first
principal component, with the 10 genes having rather similar contributions to this
variation (not shown). For the rest of the principal components, however, the pro-
portion of gene contribution changes, such that we can pinpoint genes with higher
impact on a particular phenotype accounting for more of the variation within the
phenotype. Figure 3.11 shows the PCA results for the ”polylobed” phenotype.
Results are similar, alas with different genes, for the other morphologies. Gene
RANBPS3, discussed also earlier, stands out as contributing to a higher propor-
tion of the variance in the third principal component. Genes C19o0rf54, FAMI92B,
DCLRE1C recur as impacting several principal components. While the contri-
bution to the overall variation is very small, their recurrence indicates them as
potentially interesting targets to further investigate, especially since some of them
are of unknown function (e.g. C19071f54). Therefore, this method helps dissect

the sources of phenotypic dynamics obtained upon single gene perturbations.

3.3.2.5 Pairwise phenotypic changes upon knockdown illustrate paths

in phenotypic progression

Figure 3.12 depicts some of the obtained patterns when plotting coupled gene
impact trajectories. By analyzing them, one can pinpoint the moments through-
out the cell cycle when these phenotypes are more prevalent, as well as infer how
they compare in terms of overall appearance and duration in the cell populations.
"Large” appears as a rather variable phenotype, as the trajectories take all di-
rections throughout the time course: it appears sparsely in cells. For many of
the cases (upper right quadrant) it has constantly increasing values, indicating
persistence in the phenotype. There are, however, several cases when the trajec-
tory goes down for at least one of the gene knockdowns (all the other quadrants).
This suggests that the cells adopt the ”large” morphology in the beginning but
then another quickly succeeds it. In contrast, ”binuclear” and ”apoptosis” exhibit
clear tendencies for increase in the beginning of the time course, which indicates
that cell populations adopt these phenotypes early and are arrested in them for
a certain period. The upward direction is more consistent in the ”binuclear”

case, indicating a strong incipient signal: it is a phenotype that appears early in
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Figure 3.11: PCA of the top 10 scoring genes for the ”polylobed” phenotype. (a) The amount of
variance explained by each principal component. (b) Projections of the eigenvalues for the first
9 principal components. The overall variance of the knockdown score distribution is explained
by the magnitude of the projections in each principal component. The individual slices in the
pie charts correspond to contributions of individual genes to the variation explained by each
principal component. The genes with highest contributions are indicated in blue.
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cells. At later time points the trajectories diversify directions, but we still see a
more structured signal in ”binuclear” and ”apoptosis” compared to the ”large”
phenotype.

The perturbations in the trajectories introduced by artificial noise make the
time points with the highest impact changes promptly visible in Figures 3.12b,
d and f when compared to the unperturbed plots. The most sudden changes in
knockdown impact are in the beginning of the time course for the ”binuclear”
and "apoptosis” phenotypes, whereas ”large” displays stronger changes midway
through the cell cycle. The changes are also more abrupt in the last case.

Even though the feature was eventually excluded from the application, the
idea of visualizing trajectories of single or coupled outcomes in time offers an

effective and fast way to visually identify patterns. Furthermore, the introduction
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Figure 3.12: Left side: pairwise derivatives of knockdown vectors corresponding to pairs of
genes that exhibit impact changes greater than 50% at some point during the experiment.
Right side: the same representation, but with changes greater than 80% highlighted by 5-fold
perturbation. Each plot depicts the effects on one phenotype. For each phenotype all gene pair
trajectories are shown, where each gene knockdown leads most prominently to the respective

phenotype. A different color is randomly assigned to every trajectory. The paths represent
results of 100 gene pair combinations.
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of noise to perturb these trajectories in order to make sharp changes more visible

is an approach than should be further explored.

3.4 Discussion

3.4.1 Summary of results

The versatility of Arena3D visualization and analysis methods has allowed ex-
tensive analysis of different aspects of phenotypic emergence. We have gained
insight into the extent of Nanog perturbation effects from epigenetic down to
protein regulation level. The analysis has suggested rewiring routes in the back-
ground regulatory network. It also identified correlated effects of this perturba-
tion on genes in multiple regulation steps. Arena3D was also used to look into
similarities among several morphologies of defective cell division, a process whose
disruption has deep implications in development and disease. The impact of dif-
ferent knockdowns was investigated and effective targets identified. Rare and
prevalent phenotypes may have consequences in disease severity or symptome
instantiation. We also suggested a potential new role of gene LSM14A in cytoki-
nesis, which needs to be verified experimentally. While not without caveats, the
approach employed by this tool has proved there is a good potential in combining
a series of visualization principles for pattern identification in holistic as well as
more focused biological studies. I discuss these aspects in further detail in the

following paragraphs.

3.4.2 3D versus 2D visualization

The use of 3D for visualizing anything else besides protein structures has always
aroused debates in the visualization and biological communities (Tavanti and
Lind, 2001; Tory et al., 2006). The main aspects of concern are occlusion and
misinterpretation of size when comparing objects. These are details that the user
should always be aware of when using 3D representations, but one should also
note that proper design techniques can reduce and even eliminate them.

I believe that the visualization concept presented in Arena3D can be very
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useful in certain biological problems, if applied properly. First, 3D alleviates the
problem of cluttering encountered in large 2D pathway representations, as shown
previously in the SBML model visualization example. Moreover, there are cases
when a 3D visualization is clearly more optimal for categorizing the data, as well
as avoiding edge overlap and confusion that arises from that. I demonstrate one
such example in Figure 3.13. Here I show how the interpretation in visualizing a
kinase-substrate network as described in (Tan et al., 2009) improves with the use
of an additional dimension. The initial figure in the paper renders the identifica-
tion of several interaction partners difficult because the links often intersect. The
proteins are colored according to their impact in certain diseases, but they are
rather scattered than grouped into categories and this impedes interpretability.
Figure 3.13b already improves the view by showing a clear separation between
substrates and kinases, while Figure 3.13c creates a completely new perspective
using clustering. Proteins can be clustered according to different criteria, while
still separated into kinases (top, hidden layer) and substrates (grey layer). The

connections are well visible, also by rotation. This view simplifies considerably

the initial figure.

Figure 3.13: Kinase-substrate network represented in 2D as described in (Tan et al., 2009) (a),
3D without clustering (b), and 3D with clustering by kinase and substrate type (c). Part (a)
was adapted after Figure 5¢ of the paper (Tan et al., 2009). The (b) and (c) representations
were done in Arena3D. Orange nodes denote kinases; all other nodes denote substrates (for
these, different colors depict associations to diseases). In (a), many of the links overlap and
the connection partners are difficult to track. Also, there is no easy way to understand how
proteins belonging to different categories (depicted in different colors) relate. An improvement
in the clarity and interpretability of the figure can be seen from left to right. The authors might
have benefited from using 3D in this case. This situation illustrates the advantages of 3D over
2D in some visualization tasks.
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This brings us to the second observation: the layered approach is useful for
separating categories of biological information for a better structured display, such
that the connections between different classes of entities are easily visible. In the
case of multiple phenotypes this provides a neat separation into categories, and
following time course profiles in this manner is easier. The layered view also helps
with the interpretation and may lead to discovery of new indirect connections
between processes. Furthermore, while the 3D figures in the published papers
might occlude some details, this is solved in real life through interactivity: the
user can usually rotate and move things such that much more insight is gained
by using the application to answer a specific question than by looking at a static

picture.

3.4.3 Comparison to similar visualization tools

Arena3D combines several visualization concepts that confer it several points of
advantage compared to other visualization tools for time course, network and
gene expression data: data integration, multi-layered 3D layouts, clustering, gene
tracking, detailed analysis of time course profiles. Regarding network layout,
the use of several layers in 3D to both integrate and separate different levels of
biological information (different phenotypes, tissues etc.) and the availability of
different clustering algorithms renders a more flexible and intuitive experience
compared to software like BioLayout Express(3D) (Theocharidis et al., 2009) or
clusterMaker (Morris et al., 2011). While color is used to denote changes also in
tools like VistaClara (Kincaid et al., 2008), SpotXplore (Westenberg et al., 2010)
or GATE (MacArthur et al., 2010), Arena3D can additionally assign an overall
score for the temporal profile of each gene, which in turn enables comparison of
networks over time. Furthermore, Arena3D can handle both time series and non-
time series heterogeneous datasets. It does not require a hierarchy and can process
larger data compared to Pathline (Meyer et al., 2010a). However, heatmaps
cannot be plotted and it offers fewer clustering options than clusterMaker. It can
nevertheless deal with a wider variety of biological and non-biological data types.
The individual gene/protein tracing is another feature missing in many of the

similar tools. The key aspect is combining structured data integration, dynamic
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visualization approaches and interactivity for both a global as well as a focused

comparison of phenotypic outcomes at multiple time points.

3.4.4 Future development and conclusions

The type of analysis showcased in the previous section is applicable to any RNA
interference or microarray experiments, as well as any other types of studies with
multiple time points and phenotypes. I have shown how Arena3D can enhance in-
terpretation of medium and even high-throughput screen results by investigating
whether patterns of similar gene disruption effects in time reflect related phe-
notypes. Once such complementary genes are identified, subpopulation profiling
can provide more insight into genotype-phenotype linked differences. This is in-
teresting to study, because patterns of cellular heterogeneity may reflect deeper
divergence of the underlying regulatory networks. Also, similarity scoring tech-
niques can build up a collection of sensitive/resistant phenotypes in relation to
genes. This gives further intuition about the impact of stress, mutations or chang-
ing environmental conditions on the functioning of the cell.

The Arena3D framework can be easily extended to cover further aspects in
temporal data visualization and dynamic pattern extraction. For better grouping
of genes into modules of congruent time-resolved patterns, we could for instance
cluster them using an approach that combines PCA, scoring schemes and self-
organizing maps (SOMs) (Kohonen, 1982), similar to the one proposed in Fig-
ure 3.14. By performing PCA, the number of clusters that best represents the
data can be revealed. This number can be employed then in the SOM cluster-
ing algorithm, which requires specifying an initial number of clusters. The SOM
algorithm would be applied as in (Quackenbush, 2001), based on combining dis-
tances between vectors with scoring schemes for gene similarity and/or percentile
reduction of entropy scores (as described in (Sangurdekar et al., 2006)). Cluster-
ing maps obtained for each phenotype would then be visualized in Arena3D and
compared to discover gene-driven phenotypic differences.

The use of different geometric shapes or glyphs to represent the nodes in the
networks might also be investigated in the future. Replacing the current plain

spheres, these symbols could help the user immediately identify the enzymes de-

87



3. Arena3D: Discussion

PCA doery] + similarity score
o cluster2
cluster 3 . Z
3 e cluster4 +
JETRFS I o cluster5 S(g;a)=

G TR

:.c.'.{ \: -..

W .'.':.-':’:

. R +

entropy reduction score
-1 N
=— lo )
Tog )& g(p:)
o 0 o
| —
o o o0
o o ° ®
e oo O
° @
<

clustering map

Vi V2 oo Vn

input vector

Figure 3.14: Proposed method for identifying gene modules based on their time course associ-
ated values for every phenotype: combining PCA results and similarity scores into a classifi-
cation using SOMs, which would result in clustering maps of genes for every phenotype. The
similarity score formula is the one described in section 3.2.2.2. The entropy reduction score is
taken from (Sangurdekar et al., 2006).

picted, similar to the approach used in BioCarta pathway maps (http://biocarta.com/).
Thus, iconic depictions of different categories of enzymes, RNAs or transcription
factors would create a better user experience by moving a step away from abstract
models.

To better understand the context in which certain cellular events take place,
as well as identify similarities in mechanisms of action of genes, links with ex-
ternal databases will be provided. I particularly wish to highlight the Arraykx-
press (Parkinson et al., 2011), BioModels (Le Novere et al., 2006), Gene Ontology
(GO) (Ashburner, 2000), KEGG (Ogata et al., 1999), COSMIC (Forbes et al.,
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2011) and OMIM (Hamosh et al., 2005) databases as possible future integration
targets. ArrayExpress constitutes an excellent resource where many time course
and multiple-phenotype experiments are deposited. BioModels contains math-
ematical models that could be retrieved in the SBML format into Arena3D for
visualization and analysis. Gene ontology and pathway information would help
in annotating proteins in the loaded dataset, as well as identifying links between
them and involvement in biological processes. Also, linking to diseases from time
series data might allow the identification of crucial time points in disease onset
and development. Finally, the incorporation into Garuda should help further dis-
semination and integration with other biological tools. We envisage that following
these additions Arena3D will become an even more useful tool to complement the
ensemble of biological methods that study hotspots of biosystem robustness.
This also stems from the structured visualization approach that Arena3D
uses to represent dynamic patterns. It has become increasingly clearer in the
past years that the differential regulation of processes not only among different
organisms, but also within a single organism imposes a switch from a global to
a time-resolved, tissue specific view when analyzing biological systems (Lopes
et al., 2011). This stratification is well reflected in the principles of visualiza-
tion in Arena3D, with its ability to structure and compare tissue-level expression
in a temporal context. We believe this asset makes Arena3D particularly well
suited to study these regulatory aspects. Looking at differential phenotypic out-
comes based on tissue or organ specificity will provide insights into developmen-
tal patterns and functional complementarities of a system. This is a first step
in improving prediction of regulatory specificity, eventually leading to differential
diagnostics and treatment of disease. Before this, a consistent way of identifying
common factors in disease outcomes is also needed, such that linking phenotypes
temporally becomes an asset. In the following chapter I present a visualization
tool derived from the same principles, which takes the analysis one step further

in integrating and connecting phenotypic outcomes.
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Chapter 4

Connecting time-resolved
phenotypic landscapes with

PhenoTimer

4.1 Description

In the previous chapter, I have presented different visualization strategies for com-
paring phenotypic outcomes in a temporal context and dissecting some details of
their underlying genetics. An equally interesting topic is how these phenotypic
features evolve as a result of similar mechanisms of regulation at transcriptional,
translational or pathway level. The question I want to extend in this chapter
is the following: what common molecular determinants do two phenotypes have
and how are these two phenotypes related in a temporal context? Ultimately, an-
swering this could have implications in tracking developmental stages and finding
common strategies for disease prevention or treatment, in a temporally stratified
manner.

To address this subject, experimental results must be combined with suitable
visualization tools that can help make sense of the intricate relationships within
the data, especially in the context of heterogeneity and multiple dimensions:
space, time, tested conditions. Despite the affluence of incoming time-resolved

large scale data (Furusato et al., 2008; Hitchler and Rice, 2011; Lefrancois et al.,
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2010), linking and visualizing such complex processes continues to be a bottleneck
in systems biology.

In this chapter I introduce a novel 2D/3D visualization approach that links
phenotypic outcomes through time. The software, entitled PhenoTimer, enables
dynamic integration of time-course medium or high-throughput data coming from
gene expression or imaging screens with networks and functionality information.
The main novelty consists in visualizing relationships between phenotypes as arc
projections in two- or three-dimensional space, along with dynamical highlight-
ing of genetic regulation within networks. It is applicable to any dataset where
time-course measurements associated to genes or proteins for several biological
variables (phenotypes, pathways, diseases etc.) are available.

I illustrate the effectiveness of this visualization approach with different bi-
ological applications: phenotypic transitions of cell division defective-cells from
the genome-wide knockdown study on cell cycle essential regulators by (Neu-
mann et al., 2010), transcription events throughout the cell cycle linking cancer
pathways and similar mechanisms of gene regulation upon acute administration
of addictive drugs. The wide range of applications of this tool enables tackling
important questions in the area of cellular regulation. The results have been sum-

marized in a paper, which was under review at the moment of thesis submission.

4.2 Software design and implementation

PhenoTimer integrates a combination of 3D and 2D projections to track con-
nections between phenotypes through time. These connections delineate genetic
factors that have a shared influence for a certain phenotypic outcome. The tool
was developed with the purpose of looking at the phenotypic landscape as it
evolves with time and identifying patterns that might explain: (1) how two phe-
notypes relate to each other, (2) how the progression of a disease occurs and
(3) what the common mechanisms driving disease outcomes are. Additionally,
network integration helps regard these patterns in the context of systems-level

regulatory circuitry.
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4.2.1 Visual depictions

PhenoTimer uses a combination of graphical representations to explore time-

course phenotypic data, as described in the following subsections.
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Figure 4.1: The different visualization modes available within the PhenoTimer software. (a) 3D
arc view: links between phenotypes are represented as arcs connecting the respective phenotypic
lanes in three dimensions. Each phenotype has a color associated, indicated in a rectangular box
at the end of the respective phenotypic lane. These colors are used in the arc representations
to indicate the directionality of the connection, i.e. the end point phenotype. The height of
the arcs is proportional to the number of genes involved in the respective link. Connections are
shown through time and bar charts of time-course values can be displayed in parallel. (b) 2D
arc view: a similar view to the one described in (a), only displayed in 2D. In this case, the width
of the arc instead of its height is used to denote differences in the number of involved genes. (c)
Circular view: the phenotypes are arranged as segments of a circle and the connections between
them are rewired at every time point. (d) Heat map view: a color gradient from yellow (lowest)
to dark blue (highest) is used to depict the value associated to each gene at every phenotype.
Lines are genes; columns are phenotypes. A heat map is produced for every time point, and
the user can zoom into every single one by hovering the mouse over it. A click selects it for a
full screen view. (e) Line plot view: the timeline of gene-associated measurements is plotted for
every gene and phenotype. Hovering over a plot brings up a pop-up window with a zoomed-in
version of the plot.
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4.2.1.1 The arc representations

The main novelty of the tool consists in using different "arc” depictions to link
phenotypes or other variables based on some common genetic mechanism. The
meaning of these connections between phenotypes is defined based on the dataset
and the question that the user wants to answer. For instance, a link between two
disease phenotypes could mean that these two diseases share some misregulation
mechanism for specific genes. A link between two pathways could underline that
there are some proteins active at similar levels in the two pathways at that specific
time point. The connections can also represent transitions from one phenotypic
outcome to another, for instance in different stages of a disease.

There are three available arc views, as shown in Figure 4.1 : (a) 3D arc view,
with arcs joining phenotypic lanes in three dimensional projections through time;
(b) 2D arc view, a flattened representation of the previous view, where arcs
are drawn in two dimensions joining parallel vertical phenotypic lines; and (c)
circular view, with arcs joining phenotypic segments arranged in a circle, similar
to representations used by Circos (Krzywinski et al., 2009) or TVNViewer (Curtis
et al., 2011). Arcs have been modelled using Bezier curves (Chaudhuri and Dutta,
1986).

A series of arc attributes enriches the informational content that can be ob-
tained by observing the arcs. The height (in 3D) or width (in 2D) of the arc is
proportional to the number of genes/proteins involved in the respective connec-
tion. In a global view, this helps with comparative assessment of gene regulation
impact at different time points and for different pairs of phenotypes.

Color is used to indicate directionality of transitions between phenotypes, in
the cases where this is valid and known. The color of an arc will match the color
of the phenotype towards which the transition occurs (i.e. the end phenotype). A
monochrome option is available in the case when the directionality of the connec-
tion is irrelevant for the biological problem. Different color schemes are available
for the user, including color-blind safe. The schemes have been chosen to abide
by rules of good color combinations for visual balance and include the following:
”Standard”, ”Paired”, ”Pastel”, ”Strong”, ”Color blind”, ”Single color”, all ac-

cessible from the ”Change color scheme” submenu of the ”View” menu. These
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schemes have been taken from http://colorbrewer2.org/. Additionally, the user
can customize colors for every phenotype.

The arcs in 3D mode are interactive: by clicking on an arc, a pop-up is
displayed with the names of genes/proteins involved in the respective connection,
along with functionality information, if available (if the user has loaded GO files),
as shown in later in Figure 4.9 of the Results section.

In the circular view, the plot is generated dynamically and connections be-
tween phenotypes are rewired for each time point. This last option offers a global
view of all circular plots for all time points, as well as a zoomed-in view of a
single plot occupying the full canvas. Clicking on a plot in the global circular
view zooms into the respective plot, and they can also be visualized sequentially

for every time point.

4.2.1.2 The heat map representation

Heat maps are used to summarize the landscape of gene-associated values for
every phenotype. They are generated separately for every time point (see Fig-
ure 4.1d). In the heat map, rows correspond to genes/proteins, columns corre-
spond to phenotypes and the color maps to the value for the respective time point
on a scale from yellow (lowest) to dark blue (highest). The user can change the
color gradient. The rows and columns are grouped using hierarchical clustering
to reflect similarities among genes and/or phenotypes.

There are two display options: the user can visualize all heat maps for all
time points, or a specific one for the time point of interest, as well as go through
all of them one by one, with the display being updated at every time point. In
the global view, hovering over a plot with the mouse pops up a window with
a zoomed-in version of the heat map. Clicking on it will display it on the full
canvas. There is also a button available in the GUI to switch from global to single
heat map view.

In the single heat map view, hovering over a specific tile will highlight the

corresponding gene and phenotype.
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4.2.1.3 The line plot representation

Line plots of time series profiles for all genes and all phenotypes can be drawn
to visualize global trends (Figure 4.1e). All plots are merged on the canvas in
the same order as the tiles in the heat map, with rows corresponding to genes
and columns to phenotypes. Hovering over a specific plot with the mouse opens
a pop-up window with a zoomed in version of that plot, similar to the heat map
behavior.

To switch between view modes, the user must access the "Mode” submenu

7

from the ”View” menu.

4.2.1.4 Bar charts

A bar chart can be loaded by the user and will be displayed on the time axis in the
3D arc view in parallel to the phenotypic links, as shown in Figure 4.1. The bar
chart is user-defined and typically contains parametric values associated to each
time point. The number of values loaded must be equal to the number of time
points in the dataset and they must be listed one per line. These values can signify
anything, depending on the biological problem (for instance, the total number of
expressed genes at a particular time point). Thus, it is the user’s responsibility
to decide whether the data loaded has feasible meaning in the given biological

context. The bar chart can only be displayed in the 3D arc mode.

4.2.1.5 Networks

Different networks can be visualized dynamically along with the 3D and 2D plots:
GO, pathways, PPI, metabolic and other types of networks of the user’s choice,
as well as networks where connections between genes signify participation in the
same phenotypes. Networks can be generated and displayed in parallel with the
graphical views mentioned previously in three ways: (a) by loading a network
(GO files have a different format compared to other network files and thus must
be loaded using the ”Gene Ontology” option); (b) by retrieving a network from
the STRING database (Szklarczyk et al., 2011; von Mering et al., 2003), as de-

scribed below; or (c¢) by having the application automatically generate one at
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each time point.

Network generation

Currently, GO networks are not retrieved automatically by PhenoTimer, but
must be loaded by the user. Any program can be used for this purpose. The
necessary files to be loaded are: (1) an enrichment file that specifies the bio-
logical processes, molecular functions or cellular components in which genes in
the dataset of interest are enriched; and (2) an interaction file which details the
structure of the GO tree for the specific terms, i.e. how the GO terms are related
(an interaction meaning a hierarchical relationship). The latter is optional, but
if not loaded the GO terms will appear disconnected. To load the GO files, the
user must select the corresponding options in the ”Load gene ontology” submenu
of the "File” menu. After loading, the option to display the network must be
selected from the ”View” menu. Similarly, a PPI or other type of network file
loaded by the user would have to specify the interaction list of the network nodes.
Other networks are loaded using the ”Load network” option. More details on the
format of the files loaded by the user can be found in section 4.2.6.1.

Another option featured by the application is the automatic generation of
networks from the data. At every time point, a network of genes is calculated
and displayed, where nodes represent genes and they are linked if the respective
pair of genes is involved in the same phenotype. The thickness of the links is
proportional to the number of phenotypes shared by two genes. In this context,
"shared” refers to any similar regulation mechanism of the two genes that leads
to the same phenotype. For display feasibility and performance reasons, only
networks with less than 500 nodes will be generated and displayed.

It is important to emphasize here the dynamic nature of these networks: the
networks change at every time point to reflect the genetic regulation underlying
the phenotypic links at the particular time point. In the case of GO networks,
different GO terms will be highlighted in red at each time point to indicate the
functions of the genes that are involved in connections at the respective time
point. For the network retrieved from STRING, genes involved in connections at
a specific time point are highlighted in red. The dynamically generated network

is updated at every time point.
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Network layout

PhenoTimer uses a force directed layout (Fruchterman-Reingold) for network
display. This helps optimize the use of space and minimize overlap in the network.
For GO networks, this layout was kept instead of the hierarchical one usually
used for such representations because of display reasons (big trees are difficult to
constrain in a relatively small portion of the canvas) and because the focus in
this visualization is on the individual terms highlighted rather than on the way
they relate to each other. The nodes in the network can also be moved around

to correct any display suboptimality.

4.2.2 Data integration

PhenoTimer integrates data from different databases as described below.

4.2.2.1 Reconstructing networks from STRING

PhenoTimer is able to retrieve connections from the STRING database (Szk-
larczyk et al., 2011; von Mering et al., 2003) for a given list of proteins. To
access the option, the user must select ”Get network from STRING” from the
"Databases” menu. The interactions are retrieved on the fly, so this feature can
only be used if an internet connection is available. Several filters can be set before
making the query, including: species, number of neighbors and interaction score,
as described in the paper (Szklarczyk et al., 2011). The species selection menu
provides the additional option of retrieving networks of orthologous genes from
other organisms.

Figure 4.2 shows the query window that enables the user to get interactions
from the database. The retrieved connections will be displayed in the form of a
network where nodes represent the proteins in the loaded dataset and the links
their PPIs from STRING. To show the network, the user must select the ”Show

loaded network” option from the "Network” submenu of the ”View” menu.
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Figure 4.2: The window opened by the application for a query to the STRING database. The
user can set different filters (species, interaction score and number of neighbors). Clicking OK
will retrieve the interactions for the loaded dataset of proteins from the STRING database.

4.2.2.2 Linking out to other databases

Besides STRING, users can also obtain information from other databases for
selected genes/proteins of interest by right-clicking the respective node in the
network and choosing a database. This action will open up a window in the de-
fault browser of the user’s operating system with the query result for the specific
gene/protein. The following databases are available: UniProt (The UniProt Con-
sortium, 2012), Ensembl (Flicek et al., 2013), Entrez Gene (Maglott et al., 2007),
Entrez Protein (Coordinators, N. C. B. I. Resource, 2012) and KEGG (Ogata
et al., 1999). For instance, clicking on protein STATI in a network retrieved
from STRING, loaded by the user or generated automatically from the data and
choosing the option ”UniProt” will open the page with the UniProt result(s) after
searching for protein STATI in this database, as in Figure 4.3. Thus, the user
can obtain additional insight for the particular protein by further investigating

the available information in the different databases directly from the application.
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Figure 4.3: Linking out to different databases. The user can right-click on a gene/protein name
in the displayed network to query for it in the following databases: UniProt, Ensembl, Entrez
Gene, Entrez Protein, KEGG. Upon selection, a browser window will open with the query
results in the respective database.

4.2.2.3 Additional controls

Several other controls are available within the PhenoTimer GUI, to allow for flex-
ibility and optimization in the visualization and analysis process, as described be-
low. Their accessibility from within the application is shown in a later subsection

in Figure 4.5.

Temporal tracking A time slider is available for visualizing the flow of phe-
notypic connections through time. The view is updated at each time point. The
user can either visualize a single time point or trace all events up to the current

time point. Pressing the key "t” switches between these two options.

Thresholds Upper and lower thresholds can be set for the gene-associated
values for every phenotype separately using range sliders. The visualization will

be updated accordingly.

Time offset By default, the application visualizes connections between pairs of
phenotypes at a certain time point. However, connections can also be visualized
for a specific time interval, i.e. from time point ¢ to time point ¢ + x, where ¢
is the current time point and = € {0,7'}, with T" being the final time point. A

slider entitled ” Time offset” is available for modifying the interval x.
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Arc prominence The slider with this name allows the user to modify the

height (in 3D) or width (in 2D) of the arcs, for optimal visualization.

Transparency The arc transparency can be modified to optimize visualization,
especially in the case of arc overlap. A transparency slider is available for this

purpose.

Single phenotypes The user can switch between viewing all connections be-
tween phenotypes and only those connections belonging to a particular phenotype
of choice, as shown later in Figure 4.10. This is done by accessing the submenu

"Phenotype” from the ”View” menu.

Gene query Genes of interest can be queried and only links where those genes
are involved will be displayed. The option can be accessed as shown in Figure 4.4.
There is no limit to the number of genes that can be queried at the same time.
This means that the user can ask questions like: (1) on which phenotypes do
genes A, B and C have a shared influence? or (2) in which pathways are genes D

and E jointly activated?

m Statistics Databases Help A ™ ™ Select genes to show
Mode > |
Network >
Phenotype > ( cancel ) ([ OK )
Genes 2 Select genes

Change phenotype color
Change color scheme

All

ryrwT

Figure 4.4: Querying for specific genes in the dataset.

4.2.2.4 Interactivity

Besides interactions with the arcs in the 3D mode and the zoom-in capabilities
upon mouse hover or click events in the circular, heat map and line plot modes,
the tool supports other types of interactivity. In the 3D arc view, the plot can
be moved (by dragging the mouse while pressing key "m”), rotated (by dragging
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29 .97

the mouse while pressing key ”r”), zoomed in and out (using the scroll button
of the mouse). The network nodes can be dragged using the mouse to optimize
display and avoid overlap. Additionally, pressing on a particular node highlights
only the connections of that node to others in the network in red, as long as the

button is pressed. Upon release, all connections are displayed again.

4.2.3 Statistical methods
4.2.3.1 Phenotypic ordering

For the 3D and 2D arc modes, phenotypic lanes are ordered so as to minimize
cluttering and overlapping of connections between them. To achieve this, I have
used an agglomerative hierarchical clustering algorithm (Hastie et al., 2009) that
successively rearranges the phenotypes until the number of links between two

adjacent phenotypes is maximized.

4.2.3.2 Heat map clustering

The rows, representing genes/proteins, and columns, representing phenotypes, of
the heat map are clustered using the same algorithm as in the previous subsection,
agglomerative hierarchical clustering. This allows to group similar genes and
phenotypes. The clustering calculations can be performed using single, complete
or average linkage and either Euclidean or Manhattan distance (Hastie et al.,
2009). The default is complete linkage with Euclidean distance. The clustering
may be recalculated at any point by pressing the ”Recompute clustering” button

in the interface after having selected a method of choice.

4.2.3.3 Other considerations

It is important to note that for the loaded input data no normalization is per-
formed. This option is not available because of the heterogeneity of the possible
input data, which deems finding a suitable normalization method in each par-
ticular case impractical. If needed, the user should perform the normalization
beforehand.
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4.2.4 Stages of implementation and graphical user inter-

face

The tool has gone through different stages of implementation, as summarized in
Figure 4.5), and we believe it has considerably improved with time. Initially,
PhenoTimer featured only 3D implementations. I conceived the 3D arc view as
a starting point for pattern discovery in the dataset of phenotypic transitions be-
tween cell populations as described in (Neumann et al., 2010). I further enriched
this view with GO network information, the networks being displayed adjacently
in 2D (Figure 4.5a). At a later point, I added a 3D heat map for comparison of
cell cycle transcription events in different organisms. The two views were com-
bined into a fully functional software (Figure 4.5b). However, at the subsequent
stage of implementation, the 3D heat map view was discarded for reasons of oc-
clusion of perspective induced by three-dimensionality. This drawback is further
discussed in section 4.5 of this chapter.

It was decided that a complementary approach of different 3D and 2D views
would offer the best compromise for exploratory data analysis and visualization.
Consequently, the tool was extended to comprise, besides the 3D arc view, the
following other modes: 2D arcs, circular, heat maps and line plots, all in two
dimensions, and new GUI controls were added (Figure 4.5¢). The final stage
witnessed a redesign of the graphical user interface (GUI) to comply with fun-
damental principles for effective information visualization (Bertin, 1984; Tufte,
2001), as shown in Figure 4.5d. The GUI shown in this last figure is the one cur-
rently available in the software and is much simplified compared to the previous
version: the different sliders and buttons are grouped logically on the left side, to
allow for more space for the graphical visualization on the right side. Many of the

commands have been transferred into the menu of the application (not shown).

4.2.5 Workflow

PhenoTimer is suitable for visualizing medium or high-throughput datasets com-
ing from gene expression screens (microarray, RNA-Seq etc.) or imaging ex-
periments with multiple phenotypic outcomes and time points, provided some

filtering is performed beforehand and the data is formatted into a specific space-
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delimited text file, as described in subsection 4.2.6.1. Upon loading the data, the
application produces the visualization instantly. However, filtering is necessary
in order to observe patterns of connecting phenotypes. This is done by setting
upper and lower thresholds for the values that each gene can have for a particular
phenotype. For instance, one might wish to filter for only up- or downregulated
genes common to phenotypic outcomes. One should keep in mind that the user
makes the decision on the thresholds and thus they should either be calculated
separately or reasoned biologically. Integrating dynamic network visualizations in
parallel to different view modes and linking to databases as previously described
helps to link the observed patterns to biological functions and identify interest-
ing behavior or explain regulation of processes. The workflow is illustrated in

Figure 4.6.

4.2.6 File formats
4.2.6.1 Input files

The multiple time point and phenotype files that can be loaded into PhenoTimer
have a predefined space-delimited format. The first column must specify the
genes/proteins, the second column the phenotypes, and the following columns
contain time-course values for the specific gene and phenotype, all separated by

white space. There is no restriction on how many time points can be loaded. For

Figure 4.5 (preceding page): Stages of implementation of the PhenoTimer software: (a) 3D arc
view accompanied by GO network. The GUI allows only time tracking and switching between
GO term representations. An image can be loaded and visualized for each phenotypic lane, a
feature that was later removed. (b) A 3D heat map view was added to the 3D arc view, another
feature that was later removed. More functionality is available, like switching between views,
setting thresholds, displaying networks. (c) The application now supports a combination of 3D
and 2D arc views, accompanied by heat maps and line plots, and the more elaborate GUI gives
greater flexibility for analysis: A. the plots of the five view modes are depicted here; B. network
graphics space; C. controls to switch between view modes; D. time slider; E. switch between
different network representations; F. select GO representation; G. phenotypic threshold sliders;
H. time offset slider; I. arc prominence control; J. gene selection drop-down lists - up to three
genes can be selected; K. arc transparency control; L. pop-up with gene information for a
selected arc. (d) The same views as in (c), but with a GUI redesign: A. and B. like before;
C. phenotypic threshold sliders; D. time slider; E. time offset slider; F. arc prominence slider;
G. transparency control; H. indication pop-up. The rest of the functionality was moved to the
application menu. For more details on the functionality, see subsection 4.2.1.
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genel phenotypel 0.466 2278 2.355
genel phenotype2 0.255 -0.355 1.361
genel phenotype3 0.265 0.999 0.321
gene2 phenotypel 0.291 2.278 7.355
gene2 phenotype2 0.402 -0.355 1.361
gene2 phenotype3 0.265 0.909 4.321
CC———— gene3 phenotypel 1.361 2208 5.335
gene3 phenotype2 1.236 -0.355 1.361
gene3 phenotype3 0.265 0.271 0.441
gene4 phenotypel 2486 6.901 2.936
gened4 phenotype2 0.255 -0.355 1.472
gene4 phenotype3 8312 0.111 0.222

Phenotypic screen Data collection
—~———
PheneTimer
.

phenotypel |  Setting thresholds

—~ g
Uniprot
Linkout; Ensembl
|
‘ KEGf/ Gene Ontology
/ — Networks loaded by user:
PPI
metabolic
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N
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Visualization Network & database integration
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Figure 4.6: PhenoTimer workflow. The experimental data coming from medium to high-
throughput microarray, imaging screens or similar measurements must first be structured into
a specific input file format, similar to the one shown in the top panel. Loading this file into
PhenoTimer will produce a visualization where all phenotypes are connected. The user must
filter the connections according to some biological reasoning by setting thresholds to pheno-
types. This will result in a clearer, patterned visualization of the data (bottom panel, left).
One can afterwards enrich the informational content by integrating different types of networks,
as well as linking out to databases (bottom panel, right).
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each gene all phenotypes should be specified in the same order before moving on
to the next gene. Comments can be added to the file using the ”#” symbol. For
an example, see Table 2 in Appendix C.

For GO networks, two files need to be loaded: an enrichment file and an inter-
action file. The enrichment file has separate columns specifying GO identifiers,
GO term names, p-values for the respective GO terms and the enriched genes for
each GO term, separated by ”|” (see Table 3A of Appendix C). The interaction
file lists pairs of interacting GO terms (depicted by their identifiers), one pair
per line, as in Table 3B of Appendix C. These connections represent hierarchical
relationships in the GO tree. Both files are tab-delimited. These files are not
obtained by the software, but must be loaded by the user, who can employ any
tool he considers suitable for this purpose.

Other networks, like PPI, metabolic, pathways etc., are loaded using a single
file with format similar to the GO term interaction file: a list of protein interaction
partners, one pair per line.

More examples are available at http://phenotimer.org/.

4.2.6.2 Export files

PhenoTimer can export the plots and networks as image files. This option is
available from the "File” menu (”Save image as...”). The image will be saved
with the extension given by the user in a specified location (as PNG, JPEG or
TIFF file).

4.2.7 Technical specifications and availability

PhenoTimer was developed in Processing 1.5.1 (http://processing.org/), a Java-
based environment with OpenGL integration. The stand-alone application and
its source code are freely available for academic use under the GNU GPL v3.0
license at the website: http://phenotimer.org/. The website was also designed
by me. For a screenshot of the homepage, see Figure 4.7.

PhenoTimer runs on Mac OSX, Windows and some Linux environments (Ubuntu
9.04, limited testing). The users need to install the Java Runtime Environment

(http://www.java.com/) to run the tool. Macintosh users should also install the
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JOGL libraries (http://opengl.j3d.org/).
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Figure 4.7: The PhenoTimer website homepage, located at http://phenotimer.org/.

4.2.8 Limitations

One limitation of the software is inconsistent performance among various Linux
platforms. However, this stems from the lack of adequate support for the Pro-
cessing environment for Linux rather than from any weakness of the software it-
self. Some bugs may arise that are platform and environment version-dependent.
Besides this, PhenoTimer also exhibits performance limitations when loading
datasets larger than the following dimensions: a few thousand genes x 50 phe-
notypes x 100 time points. The reasons for this limitation are related to both

memory usage and physical visualization feasibility. The main memory perfor-
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mance limitation is the number of phenotypes. It is recommended not to exceed

these limits for optimal functioning of the software.

4.3 Analysis methods

I used PhenoTimer for the visualization and analysis of three datasets with differ-
ent biological setups, as follows: (1) the dataset of genome-wide knockdown effects
on cell division processes from (Neumann et al., 2010), (2) a dataset of transcrip-
tion events throughout the cell cycle and their conservation compiled from (Gau-
thier et al., 2008) and (Kasprzyk, 2011), and (3) a dataset of timed drug addiction
effects in mouse, extracted from (Piechota et al., 2010). All datasets are available
for loading into the application at http://phenotimer.org/samplefiles.html. The

following subsections detail specific analysis methods used for each dataset.

4.3.1 Progression dynamics of mitotic defects
4.3.1.1 Data preparation

The first application used the time-course phenotypic data underlying the analysis
performed in (Neumann et al., 2010). This data has already been described in
previous chapters. 1 applied thresholds to the phenotypic scores assigned to
every gene knockdown event according to the values mentioned in the paper, as
follows: 0.04 for "mitotic delay”, 0.092 for ”binuclear”, 0.11 for ”polylobed”, 0.03
for "grape”, 0.0676 for "large”, 0.06197 for "dynamic” and 0.072 for ”apoptosis”.
If the phenotypic event at the time point scored lower than the corresponding
threshold, it was marked with ”-17. After loading the data using PhenoTimer,
I then filtered only for those events that were greater than -1 and obtained the

phenotypic patterns presented in the Results section.

4.3.1.2 Networks

Two sources were used for network reconstruction in the cases where the net-
work was not directly provided by PhenoTimer. First, the GO term enrichments

and tree in Figure 4.9 were retrieved using BINGO (Maere et al., 2005) within
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Cytoscape (Shannon et al., 2003). Second, I used GeneMania (Montojo et al.,
2010; Mostafavi et al., 2008) for the validation of links in the network of poten-
tially synchronized genes. According to this database, 62.4% were found to have
some biological motivation. The following distribution characterized the types
of interactions extracted from the literature: co-expression 64.24%, physical in-
teractions 14.68%, genetic interactions 11.16%, co-localization 5.46%, predicted
4.37%, shared protein domains 0.09%.

4.3.1.3 Evaluation of synchronized gene activities

The network of hypothesized synchronous genes was determined by direct com-
parison of the vectors containing the time course gene knockdown scores for the
prevalent phenotypes. If the genes showed identical sequence of phenotypic events
(including transitions at exactly the same time point), then they were marked as
”synchronous” and linked in the network. The principle is further illustrated in
Figure 4.8.

“ \...

PP — P2 P, — P P. = P.q

p
o= ti ti tk.

G2

Figure 4.8: Two genes G1 and G2 are hypothesized to be ”synchronous” if their knockdowns
produce identical phenotypic succession events. The knockdown of genes G1 and G2 will each
cause a series of phenotypic observations in the cell population. For them to be synchronous,
all phenotypes P, ... P,41 should occur in the same order and the transitions P, — P ...
P, — P,y should take place at the same time points tx, ... tg,. Different colors denote
different phenotypes in the cell population.

4.3.1.4 Clustering of phenotypic profiles

To classify the genes in the network of hypothesized synchronous activities, I

performed a PCA using the princomp method in R, after which I used k-means
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clustering (Pavlopoulos et al., 2011) to divide the first two principal components
into groups. After several iterations with different values for &, I decided the best

distinguishable groups were obtained for the value of k = 4.

4.3.2 Conservation of transcriptional events throughout

the cell cycle
4.3.2.1 Data preparation

A series of data processing steps were necessary in the analysis of transcription
conservation throughout the cell cycle. First, I compiled a collection of 600 human
genes that have periodic peaks of transcription throughout the cell cycle from
Cyclebase (Gauthier et al., 2010, 2008). These genes have been experimentally
shown to have the highest expression at a fixed time point in the cell cycle.
Second, I mapped the transcription peaks of these genes against the landscape
of orthologs in other 51 species collected from BioMart (Kasprzyk, 2011). Next,
I used iTOL (Letunic and Bork, 2007) to reorder these species according to the
tree of life and attached a heat map of high transcription events to the obtained
diagram. Cell cycle phases and phenotypes corresponding to the genes with

transcription peaks at the same time point were afterwards mapped.

4.3.3 Transcriptional regulation linking cancer pathways
4.3.3.1 Data preparation

For every gene that exhibited periodic transcription peaks throughout the cell
cycle according to (Gauthier et al., 2008), I searched for disease pathways where
it was enriched using bioCompendium at http://biocompendium.org/. A thresh-
old of 0.05 was employed for the p-values of the enrichments. The background
considered was the whole human proteome. The list of enriched cancer pathways

and the corresponding genes was then loaded into PhenoTimer.
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Quantile

Drug treatment 0% 25% 50% 75% 100%

Control 6.376778 7.182875  7.746917  8.936444 12.368333
Saline 6.353444 7.358917  7.830667  9.148375 12.523333
Ethanol 6.487556 7.410542  8.135417  9.358958 12.667000
Nicotine 6.449667 7.326972  7.905417  9.147083 12.490333
Cocaine 6.286667 7.300000 7.972083  9.347958 12.610667
Heroin 6.392889 7.413083 8.165917 9.371813 12.531667
Morphine 6.504444 7.386278  8.114833  9.446313 12.745667

Methamphetamine 6.335889 7.466917  8.108417  9.417646 12.595000

Table 4.1: The calculated quantiles of the normalized and log2-transformed expression values,
as recorded for every drug treatment.

4.3.4 Linking drug abuse phenotypes
4.3.4.1 Data preparation

The dataset of time course gene expression changes following induction of six dif-
ferent drugs (ethanol, nicotine, cocaine, heroin, morphine and methamphetamine),
along with the controls, was extracted from NCBI’s Gene Expression Omnibus
database (Edgar et al., 2002) (GEO series accession number GSE15774).

To filter the drug effect measurements, quantiles have been calculated for the
values of gene expression upon induction of the six drugs using R, as indicated
in Table 4.1. The lower (25%) and upper (75%) quantile values have been used
as thresholds in the visualization and analysis of drug effects. Thus, out of the
42 genes termed drug-responsive in the paper (Piechota et al., 2010), i.e. already
identified as differentially expressed, I selected for further evaluation only those
genes with expression values in the lower and upper quantile. I termed these genes

"relatively lowly” and "relatively highly” expressed within the group, respectively.

112



4. PhenoTimer: Results

4.4 Results

4.4.1 Discovering patterns in cell cycle regulation

As pointed out in previous chapters, cell cycle regulation has been intensely stud-
ied for its implications in organismal development and disease (Malumbres and
Barbacid, 2009). However, the time dependence of this process still holds many
unanswered questions. I used PhenoTimer to analyze different regulatory aspects
and show how visualization can enhance the discovery of new informative patterns

in the timewise modulation of events.

4.4.1.1 Progression dynamics of mitotic defects

As a first application, I illustrate the timewise tracing of morphological outcomes
of cell division defects, as described by (Neumann et al., 2010). As mentioned in
previous chapters, the knockdown of genes essential to the cell cycle resulted in
cell division defective morphologies classified into seven main categories. It was
observed that the cells don’t adopt a single phenotype, but transition from one
phenotype to the other before becoming arrested into a particular morphology or
dying. Hence, there is a succession of phenotypes within the cell populations that
can be traced through time. Using a combination of visualization and analysis
strategies in PhenoTimer, I am able to show distinct patterns of morphological
transitions as a result of disrupting the cell cycle and dig deeper into the potential
causes and consequences.

I used PhenoTimer to visualize the transitions among phenotypes within the
cell populations globally for all knockdown events in a time interval spanning
approximately two cell cycles (see Figure 4.9). I only represented transitions to
the most prominent phenotypes at every time point, i.e. maximally scored for the
respective gene knockdown. Thus, the transitions visualized were the result of
filtering according to thresholds as detailed in the 4.3.1.1 subsection. The three
arc modes allowed for a global overview of knockdown effects, as well as a more

detailed analysis of events at individual time points.
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Figure 4.9: Phenotypic transition patterns observed in the imaged cell populations upon essen-
tial gene knockdown. (a) The 3D arc representation displays transitions at consecutive time
points among the seven defined phenotypes, each labeled with a different color, as indicated in
the legend. The color of the arc indicates the phenotype towards which the transition occurs.
A number of 96 time points, equaling approximately two cell cycles, are traced. The height
of the arcs is proportional to the number of gene knockdown events for which the transition
occurs at the respective time point. Selecting an arc reveals a pop-up with gene information
for the respective link. (b) The 2D arc view reproduces the previous plot in 2D. The width of
the arcs in this case has the same meaning as their height for the previous plot. (¢) Transitions
at three time points are visualized using the circular view. The box in the upper right corner
shows the transition events at a single time point (41-42) in 3D, along with the network of GO
terms related to the dataset. The GO terms highlighted in light red correspond to the genes
involved in the transitions at the given time point.
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Global transition traces delineate prevalent and rare phenotypes
We can easily observe patterns: frequent transitions to ”apoptosis” (caused

YRy

by severe cellular damage) and ”binuclear”-"polylobed” coupling (cytokinesis de-

fects that are likely to succeed each other), as well as rarer transitions among
"mitotic delay”, "grape” and "large” phenotypes. The latter are likely slow and
final transitions, as opposed to the former, which are more prevalent in the cell
population. Thus, these global patterns serve well in distinguishing prominent
("binuclear”, ”polylobed”, "apoptosis”) and rare ("grape”, "large”) phenotypes.
This is even more apparent when analyzing single phenotypic plots using the op-

tion provided in PhenoTimer (see Figure 4.10).

The timeline of gene functionality helps explain phenotypes

Coupling timing of gene events and their functional profiles, visualized dynam-
ically in networks, reveals the genetic background that explains the phenotypes.
Along with the morphological transitions throughout the cell cycle, 1 have vi-
sualized the GO network dynamically for each time point (shown in the box in
Figure 4.9 with highlighted terms for time point 41-42). Following the changes
in the network with time, one discovers a succession of molecular functions that
can help explain the observed cellular transitions. While the dynamic network
term highlighting cannot be shown here, Figure 10 in Appendix C summarizes
the enriched biological processes through time. Many cell cycle related processes
are enriched in the timeline, with periodic spikes for genes with roles in cell di-
vision, complex assembly and metabolic processes. The genes with relevance to
spindle assembly peak early on, while the ones related to ubiquitination appear
at later stages. The reconstruction of process activity reflects quite accurately
the chronology of events one would expect to observe during the cell cycle. This
suggests there is a link between the timing of the cell division event that is dis-

rupted through gene knockdown and the onset of the resulting phenotype.

Potential new function for gene MGC12053

Using the integrated transition tracking strategy of PhenoTimer, one might
infer new functions for unknown genes. Such an example is gene MGC13053 (Fig-
ure 4.9a), which is involved in the same type of transition as PLCB2, SPATC1 and
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(@)

Figure 4.10: Single phenotype transition plots. The figure shows only those transitions that
begin or end in a specific phenotype: (a) ”polylobed”, (b) ”apoptosis”, (¢) "grape”, and (d)
”large”. One can easily distinguish the more prevalent (a,b) and rarer phenotypes (c,d), even
when considering only the transitions ending in the respective phenotype (depicted in purple
for ”polylobed”, green for ”apoptosis”, blue for ”grape” and red for ”large”).

PKNS3. These are genes associated to ribonucleotide binding processes, namely
tubulin binding, centrosomal activity and phosphorylation events (according to
GeneCards (Rebhan et al., 1997)). Thus, a valid hypothesis to test is whether
MGC13053 affects microtubule dynamics. While this would need experimen-
tal validation, the cytokinesis arrest phenotype exhibited (”polylobed”) suggests
that it might be involved in defective spindle poll assembly or chromosome seg-

regation.
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Identical timing of phenotypic transitions suggests potentially syn-
chronous gene activities

Analyzing the global overview of phenotypic transition profiles for all gene
knockdowns led to the observation that some transitions are recapitulated for
several knockdown events. This gave rise to the question of whether there are
genes whose suppression causes similar phenotypic changes and whether this could
be functionally motivated. Further investigation allowed me to certify that a sub-
stantial number of genes did indeed have not only similar, but identical phenotypic
transition patterns. They were identified as described in subsection 4.3.1.3. Since
their malfunction affected the cell populations in similar ways, I reasoned that the
products of these genes should be involved in closely related activities, at least
temporally if not also spatially. Thus, I could build a network of hypothesized
synchronous gene processes, where connected genes have identical succession of
phenotypic outcomes, as shown in Figure 4.11. These genes might be transcribed
simultaneously or have products acting in the same pathways.

The network contains 482 genes that form clusters of interconnected nodes.
Bigger clusters correspond to genes whose suppression causes ”binuclear” and
"polylobed” phenotypes, which are also the more prevalent morphologies overall.
This suggests that many of these clusters could refer to proteins that participate
in the same complex. Such large biological machineries would be ubiquitous in
essential processes like the cell division and this could also explain why they act
together. If they are part of the same complex, then its disruption through one
knockdown or the other will affect the same cellular subprocesses. Nevertheless,
this is not the only way in which identical phenotypes could arise: we cannot
exclude co-expression, genetic interactions or pathway sharing. Therefore, these
hypotheses needed further validation, as explained below. Interestingly, no syn-
chronous events were observed for genes with first phenotype "mitotic delay”,
"grape” or "large”, suggesting that smaller pathways may be affected when these
morphologies occur.

62.4% of the hypothesized gene ”interactions” were found to be linked bi-
ologically either through co-expression, physical interactions, co-localization or

shared protein domains using GeneMania (Montojo et al., 2010; Mostafavi et al.,

117



4. PhenoTimer: Results

q04009206275

higagel i

5

ekhm1
‘. - @naﬂ_human
farn alepe
sz (Fies D oy 12 K n o pagen I s @
f* T o @D -G, . i = w T
W N R AT L Y
cryga limd np_997529.1 o q96r uman
teeal " ki 113-1 10 np_0( 9782.1 plxi 2 si sl 12 il cep; “'—v @ c c311
z a |a$ §§ sp§ 5 Eg z { ) zzw ;?as n & I
opi 3 3 1 e o 5 e tmy & @"‘& o -
s an ex % sc% ensg00006204194 a widathes
1 @.ﬁ Soie dpr3s 1 or q96c21_h{fman <2 9 tém)a scgbl 32 fiyho
w00 AL aangia] o o [ n n " a§yoa (vt
" é“xmﬁ %’@ sl ' . wp_zrrozde) ST Gl ’ “ " mmw
1 dgki q9cOkgghuman np_001004378.1 d2 P
Drdnv" ‘OY (rp? ‘t. P 1 "y H@oos 2 e ’ 9 cofiat ﬂ'?
" ? lor1&l @@ vamp1 4‘“ - fa g 51 1 Q @\0 o @‘ rkb o
9 = 177
a ad: u np_d07330.1 2 pini 2 YU 14met slampt ¥
.ﬁvwd”f;’@f@{@%b@\@.}.‘% S T T
agpat7 " np_00§093732.1
héipz  rgds@yman bahz (opaiz  AIK) dsz §ic)—@op "“@1—@5 a2y et cc @b p@hrs  aszuds. h,uma: P%,
% (. nf7fe) np_00§078993.1 .‘}.l .>.’ c19erfd3
;Z@ a "”'”Cg binuclear dynamic
G o @ @ mssn polylobed apoptosis

Figure 4.11: Networks of potentially synchronous gene activities. The nodes represent genes
from the tested knockdown dataset and they are connected if their suppression produces iden-
tical sequences of phenotypic transition events. The colors of the nodes correspond to the
first phenotype obtained in the cell populations upon knockdown of the respective gene. The
networks were visualized using Cytoscape.

2008), as detailed in subsection 4.3.1.2. Among these, co-expression and physical
interaction events were the most common and these are also the most likely ways
to explain potential synchronous roles in the same processes. Functionality en-
richment revealed frequent involvement of these genes in mRNA splicing events,
with their protein products likely constituting parts of the spliceosome. A list of
enriched molecular functions for the network of potentially synchronous genes is
available in Table 4.2.

A closer look at four of the largest gene network modules, as depicted in Fig-
ure 4.12, shows that many of the hypothesized connections lack validation. How-
ever, the common effects upon knockdown, especially for well-defined phenotypes
like ”binuclear”, imply the possibility of biologically-motivated links. Therefore,

the novel interactions should be tested experimentally.
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GO annotation Q-value Genes in networks Genes in genome
catalytic step 2 spliceosome 1.820605F — 3 12 80
spliceosomal complex 4.184084F — 3 13 109
nuclear mRNA splicing, via spliceosome 7.688298E — 2 15 196
RNA splicing, via transesterification reactions with bulged adenosine as nucleophile 7.688298F — 2 15 196
RNA splicing, via transesterification reactions 8.786896F — 2 15 202
mRNA processing 8.967626F — 2 17 256
spliceosome assembly 1.275452F — 1 6 32
nuclear body 1.291282F — 1 11 123
ribonucleoprotein complex assembly 1.491444F — 1 9 85
ribonucleoprotein complex subunit organization 1.927164F — 1 9 89

Table 4.2: The molecular function enrichment of the genes that have hypothesized synchronous
behavior, as obtained from GeneMania.
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Figure 4.12: Four of the largest modules of potential synchronous gene activities. The con-
nections between genes, retrieved from GeneMania, are colored differently to represent proof
of biological relationships from the literature. The knockdown of these genes causes a shift to
the ”binuclear” morphology in the cell population after: (a) 16.5 hours; (b) 15 hours; (¢) 15.5
hours; (d) 26 hours.
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Grouping of genes by time-course profiles recapitulates phenotypes

In order to discover whether this network of potential synchronous events
could be further subdivided into classes, I used a clustering algorithm to group
the genes according to their phenotypic succession profiles, as described in sub-
section 4.3.1.4. The resulting four groups are shown in Figure 4.13. This clas-
sification resembles the one according to the first phenotype in the population.
The respective genes are probably involved in critical points of later stages of
cell division, which require good coordination because of their complexity. Thus,
the novel interactions identified may be of significant interest. Since no further

substructure could be identified, they should be investigated individually.

4.4.1.2 Conservation of transcriptional events throughout the cell cy-

cle

After having looked at consequences of perturbing the cell cycle, I asked to what
extent the observed patterns might be explained by differences in conservation of
regulatory events. To obtain an answer to this, I looked at how regulation of the
cell cycle occurs across evolutionary scales and how these regulatory programs
differ. For this purpose, I combined the transcription profiles of 600 essential
genes that periodically fire throughout the progression of the cell cycle (Gauthier
et al., 2010, 2008) with orthology information obtained from BioMart (Kasprzyk,
2011) to trace conservation of transcription in the cell cycle. Finally, I mapped
phenotypic outcomes from suppressing these genes, as analyzed in the previous
subsection, to the conserved expression peaks. This allowed me to assess the
extent of phenotypic variability explained by time-resolved expression variation.

Figure 4.14 shows the conservation patterns of transcription peak events
throughout the cell cycle. The evolutionary perspective and the mapping of
cell cycle phases allow us to identify the most novel (less conserved) regulatory
events. These are found in the G1 and S phases. In contrast to this, the end of G1
and beginning of S phase are remarkably conserved. Therefore, it appears that
the G1 and S phases contain both the least and the most conserved periodic tran-
scription events. This visualization approach enables mapping of transcription

conservation throughout the cell cycle at time-point resolution. This fine-grained
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Figure 4.13: K-means clustering of synchronized genes according to their phenotypic succes-
sion profiles. The figure shows the grouping according to the first two principal components,
which explain 71.27% of the variability. The four categories are distinguished by color and are
numbered from 1 to 4.

view of cell cycle regulation offers the possibility to identify time points of interest
for further investigation.

Combining this dataset with the one described in the previous subsection, I
looked at how conservation of transcription may relate to effects of perturbing
the respective genes (Figure 4.14b). The intersection of the two datasets was
low: only 66 common genes out of 1067 in the first dataset and 600 in the second
dataset. This shows how different techniques capture different aspects of a process

and are best used complementarily. The discrepancies may also point out false
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Figure 4.14: Mapping the human orthologs landscape to cell cycle events. The figure shows a
heat map view of transcription peak points throughout the cell cycle in human and the degree
of conservation of the corresponding genes in other species. A color gradient from blue to yellow
is used to denote increase in percentage of conserved genes that have a transcription peak at a
particular time point. The species are arranged according to the tree of life (the farthest species
from human have been eliminated). The black vertical portions in the heat map correspond
to time points where there were no peaks of transcription recorded for periodic genes. The
cell cycle is timed from 0 (beginning of G1 phase) to 100% (end of M phase). The least
conserved subphases are highlighted in red blocks and the best conserved ones are indicated by
red triangles. Peak transcription count plots are displayed along the heat map: (a) the number
of genes with a periodic peak of transcription at a certain time point; (b) phenotypic profiling
after knockdown for genes that show a periodic peak of transcription throughout the cell cycle.
In (b), the colored bars denote the phenotypes that result from silencing periodic genes. One
bar unit corresponds to one gene. ”Apoptosis” appears only in the S phase for the available
data and occurs for genes that are highly expressed in the more novel time points. The G2 and
M phases are dominated by cytokinesis defects ("mitotic delay”, ”binuclear”, ”polylobed”).
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positives and false negatives in the data, but this is beyond the scope of my
analysis. I believe it is worth to further study the overlap between the two
datasets, as it may facilitate the discovery of interesting regulatory aspects of a
subset of cell cycle-essential genes.

The effects of perturbing genes that peak in the S-phase include some cytoki-
nesis defects but also apoptosis. The latter occurs upon silencing of genes KIFC2,
USP1 and CDCASJ, all essential for the cell cycle, and, notably, less conserved.
Knockdowns of genes with transcription peak in the G2 phase seem to mostly
cause cytokinesis defects ("mitotic delay”, ”binuclear”, ”polylobed”), indicating
that the cell’s survival after division may be connected to the transcription firing
rate of individual genes. Transcription events seem to be more conserved for the
latter group of genes, which suggests the existence of some novel regulators of the

human cell cycle with key roles in development.

4.4.1.3 Transcriptional regulation linking cancer pathways

Continuing the analysis of highly transcribed genes throughout the cell cycle, 1
investigated the impact of these differently conserved events on disease outcomes.
From this dataset, I selected only those genes that were enriched in cancer path-
ways, as obtained from http://biocompendium.org/.

I used PhenoTimer to visualize high transcription events common to pathways
affected in the following diseases: bladder, prostate, pancreatic, colorectal, small
cell and non-small cell lung cancer and chronic myeloid leukemia. Figure 4.15
shows the transcription peaks of periodic genes through the phases of the cell
cycle, along with the disease pathways where these genes are enriched. Two
pathways are connected if at least one gene firing at the respective time point
impacts both pathways.

From Figure 4.15b it is evident that high transcription activity of some genes,
especially in the beginning of S phase and middle of G2 phase, is common to
almost all types of cancers. In contrast, some other transcriptional events seem
to be more specific for particular cancers. Such is the case of VEGFC, a gene
highly expressed in M-phase and enriched in only two cancer types (bladder and
pancreatic cancer). VEGFC [ENSG00000150630] is an important growth factor,
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Figure 4.15: Common high transcription events in cancer pathways. (a) The 3D arc view

in PhenoTimer has been used to visualize cancer pathways that involve genes with peaks in
expression at periodic times throughout the cell cycle. The lanes correspond to different cancer
types and the bar chart depicts the number of genes that have a peak in transcription at the
respective time point in the cell cycle. The phases of the cell cycle are marked and time intervals
colored correspondingly: G1, S, G2, M. Two cancer pathways are connected at a specific time
point if at least one gene is commonly affected in these pathways and has the highest expression
at that time point in the cell cycle. The connection between bladder and pancreatic cancer in
the M phase reveals gene VEGFG to be involved in both pathways, as highlighted in the network
retrieved from STRING. (b) The 2D arc view enables an easier inspection of all connections
between cancer pathways, with the annotated genes for every connection.
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with roles in angiogenesis and endothelial cell growth. Figure 4.15a also places
this gene in the context of a PPI network derived from STRING, where it appears
highly connected.

I further investigated how this gene relates to the other periodic genes enriched
in at least one cancer pathway (not necessarily appearing in Figure 4.15). Fig-
ure 4.16 shows evidence from GeneMania that VEGFC interacts mainly through
genetic interactions and co-expression with its network partners. Two of its inter-
actors, F2F2 and NFKB1, are also commonly enriched in several cancer pathways
and they both have a peak of expression after the G1 phase. Hence, malfunc-
tioning of either E2F2 or NFKB1 might play a role as tumor-triggering factor
through the disruption of the interaction with VEGFC.

This analysis suggests that the regulation of different types of cancer seems to
involve similar mechanisms for DNA replication, but cell division errors leading
to disease may be cancer type-specific. Visualizing the modulation of transcrip-
tion in different cancer pathways has thus enabled us to make some interesting,
albeit naive (from lack of deeper investigation) preliminary observations. This
manner of mapping disease links would, in a more complex context, enhance
the interpretation of general and specific mechanisms of misregulation in related

diseases.

4.4.2 Linking drug abuse phenotypes

Prolonged drug intake impacts the brain’s reward system by generating addic-
tion, and this has severe physical and social consequences. Many of the drugs of
abuse have similar mechanisms of generating dependence, so studying the genes
or pathways that are jointly altered by such drugs is an important step in eluci-
dating their downstream effects. Furthermore, finding links between drug abuse
outcomes might also suggest side effects of combining different drugs.

I looked at the impact of six addictive drugs on the mouse transcriptome, par-
ticularly at the gene expression changes in the striatum, as described in (Piechota
et al., 2010). In this paper the authors measured alterations in transcription at
intervals of 1, 2, 4 and 8 hours after acute administration of the following drugs:

ethanol, nicotine, cocaine, heroin, morphine and methamphetamine. I used Phe-
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Figure 4.16: The network of periodically transcribed genes in the cell cycle that are also enriched
in at least one cancer pathway. Nodes represent the genes and the links between them highlight
evidence about their interactions, as obtained from GeneMania. If a gene is affected in more
than one cancer pathway, the corresponding node is colored to indicate all the respective cancer
types; otherwise it is depicted in grey. Most genes that are involved in the same types of cancer
display genetic or physical interactions.
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