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Abstract

Cellulose, the most abundant biopolymer on earth (≈100 billion dry tons/year), holds
enormous potential as a renewable energy source. It is a complex carbohydrate that
forms the cell walls of plants and gives them rigidity. The cellulose sugar subunits
can be unlocked and fermented to produce bioethanol. Plants have developed over
time defense mechanism which locks up the sugars and makes the fermentation
process difficult. The cellulase enzyme Cel7A is capable to break up this sugar
chains, it consists of a carbohydrate-binding module (CBM) and a catalytic domain
(CD), joined by a linker peptide. I preformed extensive sets of all-atom Brownian
dynamics (BD) (> 54, 600 trajectories, > 76 ms) and all-atom molecular dynamics
(MD) (99 trajectories, > 6.16µs) simulations to study the role of the CBM domain
and the linker peptide in the interaction of Cel7A with the cellulose Iβ fiber model.
With present supercomputers it is still challenging to study the Cel7A-cellulose
interaction on the millisecond timescale at the atomic level. In this work, first an
enhanced multiscale framework is derived to combine BD and MD simulations for
the Cel7A-cellulose system. Second, it is applied to get new insights in the role of
the CBM and the linker peptide.
Cellulose hydrolysis is limited by the accessibility of Cel7A to crystalline substrates,
which is perceived to be primarily mediated by the CBM. Therefore, understanding
the molecular-level details of the CBM-cellulose fiber interactions are of particular
relevance. Here, the binding of CBM to the cellulose Iβ fiber is characterized by
combined BD and MD simulations. Coarse-grained BD simulations are used to
characterize the diffusional encounter of CBM with different cellulose fiber surfaces,
and the site-specific binding results from the BD simulations are then refined via MD
simulations to investigate the detailed molecular interactions. The results confirm
that CBM prefers to dock to the hydrophobic than to the hydrophilic fiber faces.
Both electrostatic (ES) and van der Waals (VDW) interactions are required for
achieving the observed binding preference to the hydrophobic fiber faces. At short
separation distances, the VDW interactions play a more important role in stabilizing
the CBM-fiber binding, whereas the ES interactions contribute through the formation
of a number of hydrogen bonds between the CBM and the fiber. At long distances,
an ES steering effect is also observed that tends to align the CBM in an antiparallel
manner relative to the fiber axis. Furthermore, the MD results reveal hindered
diffusion of the CBM on all fiber surfaces, with the diffusion being more restricted
on the hydrophobic than on the hydrophilic surfaces. The binding of the CBM to
the hydrophobic surfaces is found to involve partial dewetting at the CBM-fiber
interface coupled with local structural arrangements of the protein. The present
simulation results complement and rationalize a large body of previous work on the
CBM binding and provide detailed insights into the mechanism of the CBM-cellulose
fiber interactions.
Experiments indicate that the linker peptide might plays a critical role in the coop-
erative interaction of the CD and CBM with the cellulose fiber. Here, the role of the
linker in the Cel7A-fiber encounter process is studied using extensive multiple BD
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and MD simulations. The linker is represented in the BD simulations as a Hookean
spring, with varying length and stiffness. The MD simulations show that the linker
peptide properties, including the equilibrium length and spring stiffness, are not
intrinsic to the linker but depend strongly on whether explicit or implicit solvent is
used, if a fiber surface is present or not, on the hydrophobicity of the fiber surface
and whether the complete Cel7A or only the linker is studied. The results further
show that the linker has two different states: “extended” and “compact”. The BD
simulations show that the linker length and stiffness have significant effects on the
thermodynamic and kinetic preference of Cel7A for the hydrophobic fiber face of
cellulose Iβ, and the mobility of the CBM and the CD-fiber interaction. I further
propose a linker length and stiffness optimized for both the CBM-fiber and CD-fiber
interactions.
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Zusammenfassung

Zellulose ist ein auf der Erde im Überfluss vorhandenes Biopolymer (ca. 100 Mrd.
Tonnen Trockengewicht pro Jahr) und hat ein enormes Potenzial als eine erneuerbare
Energiequelle. Es ist ein Polysaccharid, welches am Aufbau der pflanzlichen Zellwand
beteiligt ist und somit dieser Zelle Stabilität verleiht. Die Zuckereinheiten, aus denen
Zellulose besteht, können herausgelöst werden, um zu Bioethanol fermentiert zu
werden. Pflanzen haben über die Zeit verschiedene Verteidigungsmechanismen entwi-
ckelt welches das herauslösen der Zuckermoleküle und den Fermentierungsprozess
erschwert. Das Cellulase Enzyme Cel7A ist in der Lage die Zuckerketten zu zerlegen.
Es besteht aus einem Kohlenhydratbindungsmodul (CBM) und einer katalytischen
Domain (CD), welche über ein Linkerpeptid verbunden sind. In dieser Arbeit wird
eine umfangreiche Reihe von Simulationen - beide in atomarer Genauigkeit - durch-
geführt: (I) Brownsche-Dynamik (BD) (> 54.600 Trajektorien, > 76 ms) und (II)
Molekular-Dynamik (MD) (99 Trajektorien, > 6, 16µs). Ziel ist es die Rolle der
CBM Domain und des Linkerpeptides bei der Wechselwirkung von Cel7A mit dem
Zellulose Iβ Fasermodell zu untersuchen. Mit heutigen Supercomputern ist es immer
noch eine Herausforderung, die Wechselwirkung von Cel7A mit der Zellulosefaser
auf der Millisekunden Zeitskala, in atomarer Auflösung, zu untersuchen. In dieser
Arbeit wurde ein verbesserter Multiskalenansatz für das Cel7A-Zellulose-System
entwickelt, um BD und MD-Simulationen miteinander zu kombinieren. Im nächsten
Schritt wurde er angewendet, um neue Einblicke in die Rolle des Cel7A CBM und
des Linkerpeptides zu erhalten.
Die enzymatische Zersetzungsrate von Zellulose ist limitiert durch die Zugänglichkeit
von Cel7A zum kristallinen Zellulosesubstrat, es wird vermutet, dass sie hauptsächlich
durch das CBM beeinflusst wird. Deswegen ist das detaillierte Verständnis der
CBM-Zellulosefaser Wechselwirkung auf der molekularen Ebene von entscheidender
Bedeutung. Hier wird die Bindung des CBM mit der Zellulosefaser durch kombi-
nierte BD und MD Simulationen charakterisiert. BD Simulationen werden benutzt
um den Diffusionscharakter des Zusammenstoßes des CBM mit den verschiedenen
Zellulosefaser Oberflächen zu untersuchen. Die Oberflächen abhängigen Bindungser-
gebnisse der BD-Simulationen werden dann mit MD Simulationen verfeinert, um die
detaillierte molekulare Wechselwirkung detailierter zu untersuchen. Die Ergebnisse
bestätigen, dass das CBM beim Dockingvorgang die hydrophobe Faseroberfläche über
die hydrophile bevorzugt. Die elektrostatische (ES) sowie die van der Waals Wech-
selwirkung (VDW) sind beide notwendig, um die beobachtete Bindungspräferenz
an die hydrophobe Zelluloseoberfläche zu erzielen. Bei kurzen Abständen spielt
die VDW Wechselwirkung die wichtigere Rolle beim Stabilisieren der CBM-Faser
Bindung. Aber auch die ES Wechselwirkung, trägt durch die Bildung von Wasserstoff-
brückenbindungen zwischen dem CBM und der Faser bei. Bei größeren Abständen
kann zusätzlich ein ES Ausrichtungseffekt beobachtet werden, der zu einer antipar-
allelen Ausrichtung des CBM relativ zur Faserachse führt. Zudem offenbaren die
MD Ergebnisse eine eingeschränkte Diffusion des CBM auf allen Faseroberflächen,
die Diffusion ist stärker eingeschränkt auf der hydrophoben als auf der hydrophilen
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Oberfläche. Bei der Bindung des CBM zur hydrophoben Oberfläche wird eine teilweise
Wasser-Entnetzung des CBM-Faser Grenzbereiches beobachtet, gekoppelt mit einer
lokalen strukturellen Umordnung des Proteins. Die präsentierten Simulationsergebnis-
se ergänzen und rationalisieren eine große Anzahl bisheriger CBM Bindungsstudien
und liefern detaillierte Erkenntnisse zum Mechanismus der CBM-Faser Wechselwir-
kung.
Experimente deuten darauf hin, dass das Linkerpeptide eine entscheidende Rolle bei
der kooperativen Wechselwirkung von CD und CBM mit der Zellulosefaser spielt.
Die Rolle des Linkerpeptides beim Dockingvorgang mit der Zellulosefaser wird mit-
hilfe einer umfangreichen Anzahl von BD und MD Simulationen untersucht. Der
Linker wird in den BD-Simulationen durch eine Hookesche Feder mit unterschied-
lichen Längen und Federkonstanten modelliert. Die MD Ergebnisse zeigen, dass
die physikalischen Eigenschaften des Linker (z.B. die Gleichgewichtslänge und die
Federkonstante) keine intrinsisch determinierten Eigenschaft des Linkerpeptides sind,
sondern dass sie davon abhängen, ob bei der Simulation ein explizites oder implizites
Wassermodell benutzt wird. Zustzlich sind die Linker Eigenschaften vom Hydropho-
bizitätsgrad der Zelluloseoberfläche und ob das gesamtes Cel7A Enzyme oder nur das
Linkerpeptid untersucht wird. Die Ergebnisse zeigen weiter, dass das Linkerpeptid
zwei verschiedene Zustände hat: “gestreckt” und “kompakt”. Die BD-Simulationen
zeigen, dass sowohl die Länge, als auch die Federkonstante des Linkerpeptides einen
signifikanten Einfluss auf die thermodynamische und kinetische Vorliebe von Cel7A
für die hydrophobe Faseroberfläche von Zellulose Iβ hat. Die Linkereigenschaften
beeinflussen ebenfalls die Mobilität des CBM und die CD-Faser Wechselwirkung. In
dieser Arbeit wird zusätzlich eine Länge und Federkonstante für das Linkerpeptid
vorgeschlagen, die optimiert ist sowohl für die CBM-Faser als auch die CD-Faser
Wechselwirkung.
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The Renewable Fuel Standard requires

transportation fuel to contain 36 billion

gallons of biofuels by 2022. In addition, at

least 16 of the 36 billion must be cellulosic

biofuels. But the U.S. produces only

one-third of that amount today.

U.S. Report GAO-11-513
Chapter 1

Introduction

1.1 Importance of Non-Food Cellulose Waste Derived

Fuels

Biomass was the primary energy source for most civilizations from the invention of

fire until the middle of the nineteenth century [1]. During the last two thousand years

its consumption increased by a factor of 20 [1]. With the development of the steam

engine at the end of the eighteenth century coal replaced biomass, which was then

crowded out in the twentieth century by oil and gas. Today biomass only accounts

for 10 % of the world’s primary energy consumption. In industrialized countries 22 %

and in developing countries 14 % of the total energy is consumed by road vehicles,

they consume half of the world’s fuel production [1]. They are responsible for 13 %

of the greenhouse gas emissions and 19 % of the world’s CO2 output [1]. The current

trend indicates that the amount of automobiles are doubling every 30 years [2]. It

is expected that by the year 2050 the world population will reach over nine billion

people. The current energy production cycle is essentially built on fossil fuels. This

heavy dependence on nonrenewable fossil fuels is not a sustainable solution. For the

further development of humanity, the production of food and energy has to become

more efficient and has to come out of sustainable sources (Figure 1.2). Non-food

biomass derived fuels, in particular from waste cellulose, can be a promising solution.

Using biomass derived liquid fuels to run engines is however not a modern idea.

In the nineteenth century Rudolf Diesel designed his eponymous engine to run on

peanut and vegetable oil [3].

Cellulose was discovered and isolated from green plants, by Anselme Payen, over

150 years ago [4]. It is the most abundant biopolymer in earth (≈1011 dry tons/

year) [4–9]. It is synthesized by a great diversity of living organisms like trees, plants,

bacteria, fungi, algae, and even some animals [9]. Even cyanobacteria, one of the

most ancient forms of life on earth, synthesizes cellulose [9]. The abundance of

cellulose makes it a potential renewable energy source. Cellulose consists of glucose

subunits which can be unlocked and fermented to produce bioethanol. The glucose

1



2 Introduction

C-H bonds of the cellulose fiber are where the useful energy is stored (Figure ??).

The aim of biofuels is to reach a fast turnover (< 1 year) of sunlight into fuel. The

main reasons in favor of non-food cellulose based biofuels are [1, 3, 10–17]:

1. Environmental importance: Cellulose is the most abundant biopolymer on

earth. CO2 produced by burning cellulose bioethanol is accumulated by plants

from the air. Compared to fossil fuels it does not generate a net unbalance

of greenhouse gas and can help to downplay the growing effect of the global

climatic changes.

2. Improved air quality: Compared to fossil fuels, biofuels have less impurities

like sulfur or oxides, which are the main cause of bad air quality in large cities

like Los Angeles, Beijing, Mexico City or São Paulo. For example in São Paulo

50 % of the fuel used by automobiles was replaced by biofuels, which improved

the air quality remarkably [18–20].

3. Lower impact on food production: Biofuels using cellulose waste rather

then food crops as a source of sugar can have a lower negative impact on the

food production. Each year alone 40 million tonnes of inedible plant material

like wood shavings from logging, corn stover (the stalks and leaves) and wheat

stems are produced, most of which is thrown away [12].

4. Exhaustion of fossil fuel resources: It is anticipated that the worldwide

fossil fuel consumption is increasing rapidly. The current fossil fuel resources

are estimated to last for approximately 40 years. The production of ethanol

from cellulosic biomass on commercial scales can help to reduce the dependence

of fossil fuels and satisfy the increasing energy demand [20,21].

5. Provides energy supply security: Current fossil fuel resources are limited

to unstable and uncertain politically regions of the world. Cellulose in contrast

is a domestic product in most countries and can be grown in most climate areas.

It might therefore reduce the political dependence from foreign countries.

6. Provides economic stability: Our modern society depends highly on mo-

bility, this strong dependence together with the unpredictable price changes of

fossil fuels can influence the economical and political action scope of govern-

ments.

7. Reusing todays infrastructure: The existing transportation technology and

infrastructure like engines and gas station are optimized during the last centuries
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for liquid fuels like gasoline and diesel. Biofuels are also liquid and do not

require major changes. Other renewable energy sources like fuel cells, electrical

vehicle engines or gas engines would require a completely different infrastructure

and technology. Liquid fuels seem to be in general more convenient for use in

current vehicles then other technologies.

The political decision makers have realized this and have set following ambitious

aims (Figure 1.1):

� To promote biofuels by 2011 governments in at least 17 countries have intro-

duced targets requiring the blending of 5 to 10 % of bioethanol to gasoline, a

mixture that most vehicles can run on with ease [1].

� The European Union (EU) subsidies for biofuels are nearly $5 billion a year [1].

Europe’s annual requirements for transport fuels are 370 billion liters [14]. The

EU aims to derive 10 % of its transportation fuels from biofuels by 2020 and

25 % by 2030 [1, 22].

� The U.S. government invested $800 million directly into its biomass program.

The total subsidies for biofuels are nearly $7 billion a year [1]. The long-term

goal is to use 136 billion liters (36 billion gallons) of biofuels for transport by

2020. The U.S. aim, is to supply 30 % of the 2004 motor gasoline demand with

biofuels by the year 2030, which translates roughly into 230 billion liters (60

billion gallons) per year [23].

� China, the world’s third largest bioethanol producer, provides around $2 billion

in direct subsidies for renewable energy and has an ethanol blending target of

10 % [1].

� India, the second most populated country in the world, has set an ambitious

target to meet 20 % of its fuel demand with biofuels by 2017 [1].

� “Bloomberg New Energy Finance” estimates that in 2009 governments provided

at least $43 billion subsidies to the renewable energy and biofuels industries [1].

The worldwide production of ethanol has reached 22 billion liters in 2007 and should

reach 47 billion liters in 2015 and should require approximately six million hectares of

land [10,20,24]. If the scientific and political problems are solved, the International

Energy Agency estimates that biofuels could meet 27 % of the global transportation

fuel demand by 2050 [1].
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One of the main problems to achieve these ambitious goals is that cellulose is a very

stable molecule. The cellulose glucose subunits are held together by a glycosidic bond,

which has a half life time of 5 to 8 million years. Cellulase enzymes, in particular

Cel7A, are in many ways “protein machines” they can be promising candidates in

the cellulose degradation. Using enzymes from domesticated yeast strains to convert

plant derived sugars into ethanol is nothing new, mankind is using this strategy for

brewing alcoholic drinks for thousands of years. Cel7A is a multi-domain enzyme

consisting of a carbohydrate-binding module (CBM) and a catalytic domain (CD),

joined by a linker peptide (Figure 1.3). The interaction of Cel7A with cellulose

fiber is not understood in detail at the atomic level. For the research presented in

this thesis parallel simulations on the some of the world most powerful supercom-

puters were performed to give new insights at this level. Methods from computer

science, mathematics, and biophysics were utilized for the analysis of this simulations.

1.2 Thesis Outline

Three major steps are required to reach the goal of cost-effective biofuel production

from non-food cellulose waste.

1. Better understanding of the interaction of the cellulose enzyme Cel7A with the

cellulose fiber.

2. Designing more efficient cellulase enzymes.

3. Developing next generation energy plants which serve as improved substrates

and are easier to hydrolyze with enzymes.

The aim of this thesis is to contribute in understanding the enzymatic cellulose

degradation to overcome the biomass recalcitrance problem (step 1). The new insights

obtained from this study, can in the long term assist in designing more efficient

cellulase enzymes and better cellulose substrates (step 2 and 3).

The thesis is organized as follows. First, Chapter 2 introduces the biochemistry

and -physics background, in particular the cellulose fiber and the Cel7A cellulase

enzyme. To understand the Cel7A-cellulose interaction computer simulations are

performed. Computer simulations additionally allow to derive, model, and investigate

optimized artificial cellulase enzyme which do not yet exist in nature and which first

have to be genetically engineered. The modeling and simulation framework, like the
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Brownian dynamic (BD) and Molecular dynamic (MD) methodology, are presented

in Chapter 3. Interesting dynamical process of the Cel7A-cellulose interaction occurs

on the time scale range from nano- to milliseconds. The Cel7A-cellulose system has

approximately 350.000 atoms. With present day supercomputers it is still challenging

to reach convergence on the millisecond time scale for such huge systems. To tackle

this problem multiscale and enhanced sampling strategies can be used (Chapter 4).

The simulations protocol consists of two steps. BD simulations are performed to get

insights for the encounter process on the millisecond time scale. Structures from the

BD simulations are then refined using MD simulations to get a better understanding

of the local interactions. The relevant Cel7A-cellulose configuration space can be

sampled with a single BD simulation which is several milliseconds long, even on

a supercomputer this would take too long and is therefore not practical. Instead

multiple short BD simulations were performed to sample the relevant space. The

statistical informations of this simulations are combined by using a Markov state

model (MSM).

The Cel7A enzyme consists of the CBM domain, the CD domain, and the linker

peptide. All three parts are thought to be important for the interaction of Cel7A

with the cellulose fiber. The Chapter 5 asks the question:

What is the role of the CBM?

To answer this, I look at the interaction hotspots of the CBM with the fiber and

determine the relevant forces at the different steps of the interaction.

Chapter 6 is dedicated to the next question addressed in this thesis.

What is the role of the linker peptide?

I derive coarse grain parameters for the linker, model the linker as a spring, and

perform simulations with different spring lengths and stiffness. I analyze how the

Cel7A interaction with the fiber is affected. Finally, I propose an optimal linker

length and stiffness. This optimized values might assist in designing optimized

cellulase enzymes.

Chapter 7 summarizes the presented results and proposes potential perspectives for

future follow-up studies.
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Figure 1.1: Biofuel targets by nation and overview of biofuels in
transport fuel in Europe (adapted from [1]).

Figure 1.2: Cereal crop yields development over the last 50 years
(adapted from [15]).
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Figure 1.3: The complete Cel7A enzyme consisting of the CBM and
the CD domain connected via a linker peptide.





You can plant a dream.

Anne Campbell 1992-2005

Chapter 2

Biochemistry and -physics of

Cellulose and Cellulase

In this chapter the biochemical and -physical methods of the thesis on hand are

described, in particular the cellulose fiber and the cellulase enzyme Cel7A.

2.1 Cellulose Fiber

2.1.1 Food Versus Fuel: 1st and 2nd Generation Biofuels

The current approach to produce biofuels, which is coined in the literature as first

generation biofuel technologies [25, 26], is to use mainly staple food like corn, wheat,

and other grains as glucose source (Figure 2.1). This approach can interfere with

the food production and can have a negative impact on primary food supplies and

prices [27]. Because of these concerns a better approach would be second generation

biofuels technologies, where biofuels are produced from nonfood material and plant

waste like cellulose. The main crops for first generation biofuels are corn and soya in

the U.S., sugarcane in Brazil, palm-oil in south Asia, and canola in Europe. First

generation biofuels do not provide a convincing solution, the arable farm land is not

sufficient to cover more then 10 % of the world fuel requirements of the industrialized

countries [28]. Biofuels have in general following disadvantages:

1. Reduction forest area: Increase use of biofuel has led to a reduction of the

total world forest area.

2. Interference with food production: The use of available agricultural area

for the biofuel production, can interfere with food production, and can lead to

rising food prices.

3. Ground and surface water polution: Biofuel production is already at a

scale that it reshapes the agriculture around the world. In the U.S. the use

of corn for bioethanol has already more then tripled from 2005 to 2010. More

than a third of the U.S. corn crop goes to ethanol facilities. Although corn

9
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only consumes 10 % of the U.S. farmland (including cropland and grassland) it

consumes 40 % of the fertilizer used in the U.S.. This results in an substantial

increase in the amounts of fertilizer infiltrating ground and surface waters [17].

4. Transport of biomass to biorefinery: Bioenergy plants, such as cellulose,

have a low energy density per volume and not all populated regions are suited

for biofuel crops. Production areas can be scattered over a large area, the crops

have to be transported over long distances to biofuel plants, which increases

the production and energy costs.

The problems 1 to 3 can occur more dominant in first generation biofuels, they

can be alleviated by using second generation biofuels, which use non-food cellulose

waste. The fourth problem can be tackled for first and second generation biofuels by

using small sized mobile production facilities near the biomass in question. Non-food

cellulose can come from multiple sources like [28] (Figure 2.2):

1. Forest waste: Cellulose waste from saw mills, furniture, and paper industry.

2. Forest reduction and lighting: Forests can be lighten and trimmed regularly

to reduce unproductive competition between old and new trees. Hereby cellulose

can be produced without any significant influence on the forest ecosystem.

3. Crop waste: Crop waste like stems, blades, and leafs make 50 % of the crop.

A part has to stay on the fields put the rest rotes unused.

4. Special energy plants: This energy plants can grow on soil which is not

suitable for crop production. Examples are switchgrass, Sudan grass, Chinese

silver grass, and Energy cane (a special sugarcane sort with an high cellulose

proportion). Using second instead of first generation cellulose crops, like

switchgrass, can even help to spare water [17].

Each year more then 100 billion dry tons of cellulose are produced. Alone in the U.S.

1.3 billion tons can be produced without reducing the crop, animal food, or other

agriculture export products. This corresponds to 400 billion liter of fuel, which is

half of the current gasoline and diesel consumption in the U.S. [28]. Using similar

estimates the worldwide producible biomass fuel is around 5,400 to 25,000 billion

barrels, which excides the world wide fuel consumption of 4,800 billion barrels [28].

The aim is to extract the energy from the cell walls, as they form up to 70 % of the

plant body. The cell walls are composed of linked sugar molecules. First generation

biofuels can be produced from several feedstocks, which differ in their cost and
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Source Energy ratio Agriculture area productivity

sugarcane 8:1 2105 gallons per acre
corn 1.3:1 459 gallons per acre

switchgrass 6.4:1 500 gallons per acre

Table 2.1: Ratio of energy contained in a liter bioethanol compared to
the energy used during the production process [10,29].

efficiency. The ratio of energy contained in a liter ethanol compared to the energy

used during the preparation process is shown in Table 2.1.

Figure 2.1: First generation biofuels use as major glucose source crop
products like corn, soya bean, sugarcane, and canola. The sugars can be
fermented to biofuels.

2.1.2 Molecular Structure of Cellulose

The woody material which gives plants their structure and rigidity consists of following

three carbon-based polymers, which are collectively called lignocellulosic biomass:

cellulose, hemicellulose, and lignin [12]. Cellulose consists of glucose bound to long

chains, which are organized in crystalline microfibrils, these glucose molecules are

largely insoluble. The exact chain length is unknown but single chains containing up

to 14,000 glucose residues have been observed, corresponding to a fibril length of 7

µm [30,31]. The cellulose chains are packed side by side to form microfibrils, which

are ≈ 30 Å thick in most plants [8] (Figure 2.3). In contrast to cellulose, hemicellulose

consists in addition to glucose of several other sugars like xylose, mannose, galactose,

rhamnose, and arabinose. Hemicellulose consists of shorter chains and are branched,

whereas cellulose are unbranched [32]. Lignin is a complex chemical compound, it

is relatively hydrophobic and aromatic in nature [33]. The cellulose microfibrils are

attached to hemicellulose, which is surrounded by lignin which protects the cellulose
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Figure 2.2: Non-food cellulose waste can come from multiple sources
like crop waste, forest waste, and special designed energy plants. Cellulose
consists of linked glucose sugars (adapted from [28]).

and hemicellulose [12]. The lignin builds a complex cross linked network, these strong

bonds make it very difficult to penetrate the lignin [12]. The best way to break down

the lignin network is to use heat and strong chemicals.

Cellulose is an unbranched chain β-D-glucose sugar units (C6H12O6). Two different

glucose isomers, α-glucose and β-glucose exist, in which the glycosydic hydroxyle

group is located either blow or above the ring plane, respectively (Figure 2.4). The

prefix “D” refers to the optical activity of the glucose, a property of rotating polarized

light either to the right or to the left when the glucose is put into the light path [34].

The β-D-glucose units are linked to a cellulose chain via (1→4) glycosidic bonds. The

glycosidic hydroxyl group on C1 of one unit undergoes a reaction with the hydroxyl

group on C4 of another unit. One of the units has to turn upside down, so that the

hydroxyl on C1 is in the same plane as the hydroxyle on C4 (Figure 2.5). During this

reaction a solvent molecule (H2O) is released. Glucose molecules have a reducing

end (aldehyde group on C1) and a non-reducing end (hydroxyl group on C6), which
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gives the cellulose microfibrils a directionality [5] (Figure 2.6).

Figure 2.3: Organization of cellulose chains inside the cell wall of wood
(adapted from [34]).

2.1.3 Miller Indices

A cellulose fiber consists of different fiber faces, which are better visible in the

end-on view of the cellulose Iβ microfibril (Figure 2.10). To label this fiber faces the

Miller index notation system is used [35]. The Miller indices are commonly used in

crystallography for planes and directions in crystal lattices. Let a1, a2, and a3 be the

three lattice vectors pointing in the three space directions of the coordinate system.

(l,m, n) defines a plane that intercepts the three vectors at points a1/l, a2/m, and

a3/n, or some integer multiple thereof. If one of the indices is zero, it means that

the planes do not intersect that axis (the intercept is “at infinity”). Examples of
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Figure 2.4: Two isomers of D-glucose. Thick lines in the plane of the
ring represent the bonds facing forwards, while the thin lines represent
those facing backwards. The groups attached to carbon-1 (left) are
situated either below (α−D− glucose ) or above (β −D− glucose ) the
plane of the ring (adapted from [34]).

determining indices for the plane (1, 1, 1) and (2, 2, 1) are shown in Figure 2.7.

2.1.4 Different Types of Cellulose

The cellulose chains are closely packed too bundles of 30 to 100 chains, lying more or

less parallel and form an elementary fibril. These cellulose chains are hold together

by a hydrogen bond network. Six different cellulose crystalline structures I, II, III1,

III11, and IV11 are known, depending on the location of the hydrogen bonds between

and within the chains. Cellulose I, is the native cellulose form found in nature.

Cellulose I can be converted to the other polymorphs [4]. A large number of intra-

and intermolecular hydrogen bonds between the hydroxyl groups leads to a close

packing. The smallest identical unit of the cellulose crystal is called the unit cell.

Based on the packing order of the unit cell two different cellulose I types, Iα (triclinic

unit cell containing one chain per unit cell) and Iβ (monoclinic unit cell containing

two parallel chains per unit cell) exist [36, 37] (Figure 2.8). Native cellulose from

almost every source is a mixture of Iα and Iβ, in variable proportions [8]. Cellulose

produced by bacteria and algae is enriched in Iα, while cellulose of higher plants

consist mainly of Iβ cellulose. Both forms Iα and Iβ are recalcitrant to hydrolysis

most likely because of the enhanced inter-chain hydrogen-bonding networks [38,39].

Microfibrils have been experimentally observed to twist, because of the small total
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Figure 2.5: Condensation reaction between two β −D− glucose units
yielding cellobiose (adapted from [34]).

length of the cellulose fiber used in this work the twist is ignored.
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Figure 2.6: (Top left) Chemical formula of D-glucose (C6H12O6). (Top
right) structural formula of a single D-glucose (C6H12O6) molecule. The
five carbons 2, 3, 4, 5 and 6 carry an hydroxyl groups (−OH). The carbon
1 has an aldehyde functional group (−CHO). (Bottom) The chemical
linkage of the oxygen (attached to C1) and the C4 attached to the next
glucose unit can open to generate an aldehyde (−CHO). Which makes
the cellulose microfibril asymmetric and allows to assign a directionality.
The potential aldehyde group (at C1) is labeled as “reducing end-group”.
The hydroxyl groups (−OH) on C6 determines the “non-reducing end-
group”. Cel7A is a processive exocellulase which prefers to hydrolyze
the cellulose chain starting from the reducing towards the non-reducing
end-group.

2.1.5 Hydrophobicity of Cellulose Fiber Faces

On the different faces of the cellulose fiber different molecules are pointing out

towards the cellulase enzyme, which can have an influence of the interaction of the

enzyme with the cellulose fiber (Figure 2.9). The equatorial position (horizontal axis

of a flat molecule) in cellulose are rich in hydroxyl groups (OH group on C1, C2, C3,

C4, and C6). The hydroxyl groups are polar and hydrogen bonding, which results

in a large hydrophilic surface at the sides of the cellulose chain. The axial position

(vertical axis of a flat molecule) are occupied by aliphatic hydrogens (H on C1 to C6 ).

The aliphatic hydrogens are nonpolor and non-hydrogen bonding, which means that

the top and bottom surface a cellulose chain is hydrophobic compared to the surface

at the sides of the cellulose chain (Figure 2.9). Work using electron microscopy [40],

single molecule fluorescence [41], and atomic force microscopy [42] have shown that

the Cel7A CBM binds preferentially to the hydrophobic fiber faces of cellulose Iα.
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Figure 2.7: Examples of determining indices for the plane (1, 1, 1) and
(2, 2, 1) (adapted from Wikipedia, Christophe Dang Ngoc Chan).

The fiber model used in this study has eight different fiber faces (Figure 2.10). The

fiber faces (1, 1, 0) and (-1, -1, 0), each consist of only two chains, which are too small

for a quantitative analysis, therefore they are excluded from the discussion below. Of

the remaining six fiber faces, (1, 0, 0) and (-1, 0, 0) are the most hydrophobic, (0, 1,

0) and (0, -1, 0) are the most hydrophilic, (1, 1, 0) and (-1, -1, 0) being intermediate

(referred to here as mixed).
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Figure 2.8: Cellulose Iα has a triclinic unit cell (a 6= b 6= c; α 6= β 6= γ).
Each unit cell contains one chain. Along the c axis the unit cells are
shifted by c/4 up. Cellulose Iβ has a monoclinic unit cell (a 6= b 6= c;
α = γ = 90° 6= β). Each unit cell contains two parallel chains. The
second chain is shifted by c/4.
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Figure 2.9: The equatorial positions in cellulose are rich in hydroxyl
groups (OH group on C1, C2, C3, C4, and C6). The hydroxyl groups
are polar and hydrogen bonding, which results in a large hydrophilic
surface (blue) at the sides of the cellulose chain. The axial positions are
occupied by aliphatic protons (H on C1 to C6 ). The aliphatic protons
are nonpolor and non-hydrogen bonding, which means that the top
and bottom surface of cellulose is hydrophobic (green) compared to the
surface at the sides of the cellulose chain.
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Figure 2.10: (Left top) The lattice vectors of the unit cells are shown.
In cellulose Iβ each unit cell contains two parallel chains. The second
chain is shifted by b/4. The view axis on the the cellulose microfibril
is visualized. (Left bottom) The hydrophobicity of the different surface
of the cellulose chain are shown. (Right) End-on view of the 36-chain
cellulose Iβ microfibril is shown.



I have respect for enzymes, but they can be

quite fragile and they are certainly expensive.

Prof. R. Raines, Uni.

Wisconsin-Madison [12]
2.2 Cellulase Enzyme Cel7A

2.2.1 Trichoderma Reesei

Cellulose represents a significant energy reserve in the form of the chemical potential

stored in its C-H and C-C bonds [?, 43]. This energy can be utilized by breaking

the cellulose chains up into the individual sugars to produce ethanol. This is a

challenging task, they are bound together via glycosidic bonds, which has a half

life time of 5 to 8 million years, which makes it a very stable bond. In contrast,

the half-life of amide bonds in a peptide is 125 years [44]. Plants have additionally

undergone a substantial amount of evolution which helped them to develop and

optimize over time complex structural and chemical defense mechanisms to prevent

their deconstruction into their structural sugars by animals and microbes [23,45]:

� The epidermal tissue of the plant body.

� The degree of lignification.

� Fermentation inhibitors which exist naturally in plant cell walls.

� The arrangement of the cellulose chains into bundles.

� The heterogeneity and complexity of cell wall constituents.

� The numerous hydrogen bonded hydroxyl groups in cellulose suggest that

it is readily soluble in polar solvents. However, due to the enhanced inter-

chain hydrogen-bonding networks [38,39] and the high degree of crystallinity

(≈ 60-80 %) cellulose is insoluble in polar solvents [5, 46], which is essential for

its structural role in plant cell walls.

On the other hand, in nature various animals like termite and wood-decomposing

fungi happily survive on a diet of wood, indicating that evolution has also developed

efficient strategies to digest wood. These organisms produce cellulose enzyme cocktails

which are involved in biomass deconstruction. It is not fully known, how many enzyme

types are involved and how they interact in detail [47]. Humans and animals which

do not produce cellulases enzymes are therefore unable to use most of the energy

contained in cellulose. In contrast, cows produce a cellulose cocktail and hence can

utilize most of this energy.

Cellulases can be divided into two categories, exocellulases which hydrolyze

cellulose chains from their termini and endocellulases that hydrolyze an entire

21
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glycoside linkage anywhere in the cellulose chain [48]. The cellulose fiber can have

defects at non termini positions (e.g. caused by collisions or other enzymes), which

then can be used by exocellulases to degrade the cellulose. The exocellulases can be

further divided into two types, those that processively hydrolyze a single cellulose

chain and those that remove a single chain from the chain terminus and then attack an

other chain [49]. Processive cellulase enzymes, are in many ways “protein machines”,

they have a huge potential to efficiently hydrolyze cellulose. A promising candidate is

the processive exocellulase enzyme Cel7A. It is secreted in high yields by the fungus

Trichoderma reesei [50, 51]. Trichoderma reesei was discovered on the South Pacific

islands during World War II, where it was eating away the garments and cotton

tents of the soldiers. This fungus is also commercially exploited by manufactures

of stone-washed blue jeans, laundry detergents, and paper. Cel7A is one of the

most studied cellulase enzymes, it consists of two domains, a Family 1 carbohydrate-

binding module (CBM) and a catalytic domain (CD), connected by a flexible linker

peptide (Lk) (Figure 2.14). Cel7A consists of 497 amino-acid residues, of which the

CD, the CBM, and the linker peptide consist of 434, 36, and 27 residues, respectively.

A key cost factor in the conversion process from biomass to biofuel is the high

cost of the cellulose enzymes [52]. 10 grams of purified Trichoderma reesei cost up

to $595 1. To make the conversion process economical more competitive and to

reduce the environmental footprint higher conversion yields are required. A better

understanding of the mechanism how the Cel7A interacts with cellulose is important

to achieve this goal.

2.2.2 CBM

The CBM structure was derived from NMR [53]. It is wedge-shaped and has two

predominant surfaces, called “bottom” and “wedge”, respectively (Figure 2.13). The

residues Y5, Y31, and Y32 are hydrophobic and form a hydrophobic patch on the

bottom surface [54–57], while the residue Y13 is slightly buried under the wedge

surface. The exact role of the CBM during the hydrolysis process of crystalline

cellulose remains a debated question. The main hypotheses are:

(H1) CBM increases local Cel7A concentration: CBM actively binds with its

hydrophobic patch to the cellulose fiber. As a consequence of this, the entire

Cel7A moves closer to the fiber surface [58–60].

1“Worthington Biochemical Corporation” product catalog 2013, http://www.

worthington-biochem.com/cel/pl.html.

http://www.worthington-biochem.com/cel/pl.html
http://www.worthington-biochem.com/cel/pl.html
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(H2) CBM is disruptive: The CBM looses up chains from the cellulose fiber

through competing with cellulose fiber intra-sheet hydrogen bonds [58,61].

(H3) CBM is active: The CBM targets free chain ends and assists via its wedge

face to feed the chain ends into the CD tunnel [55,62].

2.2.3 CD

The CD is responsible for the hydrolysis reaction, it contains an active site tunnel

into which a single cellulose chain can be threaded and cut into the individual sugar

units [63]. The CD has a radius of ≈ 30 Å. The distance between tunnel entrance

and exit is ≈ 50 Å. The residues N270 and N384 are located at the tunnel exit, and

N45 is located at the tunnel entrance. The directional preference in the processive

motion of Cel7A is primarily thought to arise from the structural arrangement of the

CD tunnel [64]. Three glycosylation sites have been identified experimentally at the

CD residues N45, N270, and N384 [50,65]. Glycosylation patterns vary considerable

depending on the growth conditions, thereby affecting enzyme activity [50,66–71].

In the present work the glycosylation pattern of Ref. [72] was used, in which N270

and N384 have the glycosylation pattern Man5GlcNAc2 attached, and N45 is not

glycosylated (Figure 2.15).

2.2.4 Linker Peptide

The linker peptide joins the CD and CBM, it has the sequence PGPSSGTT-

TAPRRTTTTGPPNGGPPNG [50, 66]. The linker modeled in the fully extended

form has a length of dLkSH ≈ 99 Å. The linker consists of two regions, referred to in

the literature as the hinge and stiff regions (Figure 2.14 and Figure 2.15). The linker is

heavily glycosylated at the residues S4-S5, T7-T9, and T14-T17 (Figure 2.15) [50,66].

It is based on the suggestions of Nevalainen and coworkers [73] (Figure 2.15), which

is assumed to be the most common pattern in nature. The interaction of the CBM

with the CD is important for the hydrolysis process, in particular the role of linker

which connects both domains is not fully understood. There are several reasons why

it is believed that linker is important for the Cel7A-cellulose interaction:

(H1) Hinge: The linker could act as a hinge between CBM and CD [74].

(H2) Torsional leash: The linker could act as a torsional leash between the CBM

and CD [50,74].



24 Biochemistry and -physics of Cellulose and Cellulase

(H3) Regulate CBM-CD twisting: Several steps are required to successful

hydrolyze a cellulose chain. It is speculated that the CBM actively binds to

the cellulose fiber and brings via the linker the CD closer to the fiber surface.

In the next step it might targets a free chain end and assists via its wedge

face to feed the chain end into the CD tunnel. The relative twisting between

the CBM and CD might be important herefore. The linker could regulate and

stabilize the relative orientation between both domains.

(H4) Regulate CBM-CD distance: The linker might help to maintain and

regulate the spatial distance between the CD and the CBM.

(H5) Prevent proteolysis: The extensive linker glycosylation might protect Cel7A

from proteolysis [75,76].

(H6) Interaction with other enzymes: The linker might be vital for the secretion

of other enzymes within T. reesei [74, 77].

(H7) Effects Cel7A activity: Mutational experiments confirmed that the short-

ening or the removal of the linker peptide results in the reduction or full loss

of activity in Cel7A [77].

(H8) Spring: The linker has the capacity to store energy in a manner similar to a

compressed or stretched spring [78].

(H9) Caterpillar like motion: Based on experimental studies of Cel45 from

Humicola insolens [79], it has been postulated that the linker works in a spring-

like motion to enable the enzyme to move in a caterpillar like fashion along

the the cellulose surface.

In summary, further work is needed to understand in detail which role the linker

plays in the Cel7A-cellulose interaction.
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Figure 2.11: Typical appearance of Trichoderma reesei fungus grow-
ing on wood (adapted from “Trichoderma, Sex, and Fuel“ Robert L.
Anderson, http://mycorant.com/trichoderma-sex-and-fuel/).

Figure 2.12: Cellulase enzymes can be divided into two categories,
exocellulases and endocellulases. The exocellulases can be further divided
into two types, those that possessively hydrolyze a single cellulose chain
and those that remove a single chain from the chain terminus and then
attack an other chain. Cel7A is a processive exocellulase which prefers to
hydrolyze cellulose chains starting from the reducing end, whereas Cel6A
is a processive exocellulase which prefers to start from the nonreducing
fiber end.

http://mycorant.com/trichoderma-sex-and-fuel/
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Different types of biofuels can be derived

form biomass. The best replacement for

petroleum is petroleum.

Prof. J. Regalbuto, University of Illinois [13]
2.3 Biofuels

The main components of plants are cellulose, hemicellulose, and lignin. Both, lignin

and hemicellulose make it difficult to access the cellulose. Using high pressure and

temperatures nature converted inside the earth’s interior cellulose from zooplankton

and algae into mineral oil fields. A similar approach can also used in refineries.

Currently high cellulase enzyme loadings are required for the direct transformation of

cellulose into the single glucose molecules. Current biomass conversion schemes consist

of several pretreatment steps, in which a combination of mechanically grounding,

heat, chemicals, and enzymatic treatments are applied. The main aim of the

pretreatment steps is to enhance the enzyme activity. In a first step, the woody

biomass is mechanically grounded up. In a second pretreatment step, the rigidity

of the biomass is decreased by using heat and acids which rip the lignin apart

and exposes the hemicellulose and cellulose. In a next step, the hemicelluloses are

converted to polymers of one to ten sugars (monsaccharides and oligoscaccharides).

The systematic removal of hemicelluloses during the pretreatment steps exposes

the crystalline cellulose core and reduces the required cellulase enzyme loadings.

Once the pretreatment steps have compromised the hemicellulose barrier an enzyme

cocktail can be used to hydrolyze the crystalline cellulose cores [47]. In nature at

least three different categories of enzymes are necessary to hydrolyze native cell-wall

materials, hemicelluloses, and lignin [23,80]. Another weapon in the pretreatment

arsenal are ionic liquids, they are salts which become liquid at room temperature or

just above [12]. They can penetrate lignin and liquefy biomass. The ionic liquid left

in the sugar mixture can hinder the enzymes from functioning. The critical step is

recovering the liberated biomass sugars from the ionic liquids.

The price is one of the main factors which will decide over the success of biofuels.

The main competitor for biofuels are fossil fuels, which profit from over one century

of research. The main investments of the refineries have been already amortized.

The enzyme cocktails so far discovered are not very efficient for large scale industrial

conversions. This process consumes at the moment more energy then which can be

released from the sugar molecules [12]. Key for higher yields, is to understand better

how the enzymatic process works. In the next step this can lead to improved enzyme

cocktails which lower the conversion costs.

29



It doesn’t matter how beautiful your theory

is, it doesn’t matter how smart you are. If it

doesn’t agree with experiment, it’s wrong.

Richard Feynman 1918-1988
2.4 Neutron Scattering

2.4.1 Why Neutron Scattering?

In the context of atomic simulations neutron scattering experiments [81–89] have

two main applications:

1. Structural properties of biomolecules: To perform atomic detailed sim-

ulations, the relative positions of the atoms of a biomolecule are required to

build a three dimensional structure. The neutron absorption and scattering

pattern gives insights about the atom distribution inside the biological sample.

2. Validation of simulation results: Most computer simulations require mod-

eling approximations to address with the given computational resources current

scientific questions (Chapter 3). One way to validate that this approxima-

tions do not significantly effect the simulation results is to compare them with

neutron scattering experiments.

2.4.2 Neutron Scattering 101

Neutrons have wavelengths in the Ångström (Å) and energies in the meV range,

which is of the same order as the inter atomic distance and energy of biomolecules.

This makes neutrons sensitive to the amplitudes and frequencies of the atom motions

in biomolecules [87]. Neutrons are characterized by their energy

E = ~ω (2.1)

and their momentum

p = mv = ~k , (2.2)

with the wave vector being

k =
2π

λ
ek . (2.3)

If the electromagnetic interactions are neglected the neutron has three possibilities

when it passes near a sample atom:

1. Neutron passes through the sample, without any significant changes of its

physical properties.

2. Neutron is absorbed in a nuclear process and its energy is absorbed by a sample

nucleus.

30
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3. Neutron is scattered by a sample nucleus, a energy and momentum exchange

takes place:

∆E ≡ E′ − E = ~(ω′ − ω) (2.4)

∆p ≡ p′ − p = ~(k′ − k) = ~q , (2.5)

with the momentum transfer q ≡ k′ − k. Primed and unprimed quantities are

after and before the scattering event, respectively. Based on the interaction

of the neutron and the sample nucleus two specific forms of scattering can be

distinguished. In inelastic scattering an exchange of momentum and energy

takes place (∆E 6= 0) and during elastic scattering (∆E = 0) energy is

conserved and only momentum is exchanged.

In experiments, two types of scattering can be observed, coherent and incoherent

scattering [85]. In coherent scattering an incident neutron wave interacts with all

sample nuclei in a coordinated fashion. The waves scattered from all the sample

nuclei will have a definite relative phase and can thus interfere with each other.

During incoherent scattering the scattered waves from different sample nuclei will

have random relative phases and thus cannot interfere with each other [89].

The experimental method of choice depends on the length scale of the sample to be

investigated. Small-angle neutron scattering (SANS) uses elastic neutron scattering

at small scattering angles to investigate the structure of biological macromolecules at

a scale of about 1 to 100 nm. It is often combined with small-angle X-ray scattering

(SAXS), which uses X-rays instead of neutrons. Main advantages of SANS over

SAXS are its sensitivity to light elements and the possibility of isotope labeling.

Biological samples are usually dissolved in water, and in scattering experiments it

is difficult to distinguish the water form the sample hydrogens. Hydrogen atoms

make up about half the total number of atoms in a biomolecule and are distributed

evenly throughout the biomolecule. The special behavior of hydrogen compared to

deuterium in SANS is helpful in this case. The exchange of sample hydrogens with

deuterium has minimal biological effect but has a significant effect on the scattering

and allows to distinguish the biological sample atoms from the surrounding solvent.

2.4.3 Intermediate and Dynamic Structure Factor

From a MD simulation trajectory the position of all the atoms at each time step are

known. A experimental accessible quantity in neutron scattering is the incoherent

dynamic structure factor Sinc(q, t). The result of a MD simulation can be verified
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by calculating the Sinc(q, t) from a MD trajectory and comparing it with Sinc(q, t)

from a neutron scattering experiment. The calculation of Sinc(q, t) from the MD

trajectory is explained as described in the text below.

The dynamics of a system of n isotropically pure scattering atoms can be described

by a space and time dependent correlation function g̃(r, t) which was introduced by

van Hove [88–90]:

g̃(r, t) ≡ 1

n
<

n∑
k=1

n∑
l=1

δ(r−∆Rkl(t, t0)) >t0 (2.6)

position of atom k at time t : rk(t) (2.7)

position of atom l at time t0 : rl(t0) (2.8)

distance between atom l and k : ∆Rkl(t, t0) ≡ rk(t)− rl(t0) (2.9)

Kronecker delta [91,92] : δ(a− a0) ≡

1 if (a− a0) = 0

0 else
(2.10)

The brackets < .. > donate an average over all possible starting times t0 for observing

the system. This is equivalent to an average over all the possible thermodynamic

states of the sample [85]. g̃(r, t) is proportional to the probability of finding an atom

k at a position r at time t, given that there was a particle l at the origin r at time

t0. The correlation function g̃(r, t) can be split into two terms, usually called the

“self” part g̃s(r, t) and the “distinct” part g̃d(r, t). The self-correlation part has the

following shape ( [82], p. 233):

g̃s(r, t) =
1

n

n∑
k=1

< δ(r−∆Rkk(t, t0)) >t0 (2.11)

The self-correlation part g̃s(r, t) can be rescaled by the scattering length bk of atom

k. The rescaled self-correlation function g(r, t) has the following shape:

g(r, t) ≡ 1

n

n∑
k=1

b2k < δ(r−∆Rkk(t, t0)) >t0 (2.12)

The Fourier transformation from r→ q of g(r, t) gives the so-called intermediate
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scattering function I(q, t):

I(q, t) ≡ FTr,t→q,t(g(r, t)) (2.13)

=
1

2π

∫ ∞
−∞

dre−iqrg(r, t) (2.14)

=
1

2π

∫ ∞
−∞

dre−iqr

(
1

n

n∑
k=1

b2k 〈δ (r−∆Rkk(t, t0))〉

)
(2.15)

=
1

n

n∑
k=1

b2k

〈
1

2π

∫ ∞
−∞

dre−iqrδ (r−∆Rkk(t, t0))︸ ︷︷ ︸
=FTr,t→q,t(δ(...))

〉
(2.16)

=
1

n

n∑
k=1

b2k

〈
e−iq∆Rkk(t,t0)

〉
(2.17)

=
1

n

n∑
k=1

b2k

〈
e−iqrk(t)eiqrk(t0)

〉
(2.18)

The following definition of the Fourier transformation [91] of the function f(a) from

space a to space b was used:

definition : F (b) = FTa→b (f(a)) ≡ 1

2π

∫ ∞
−∞

dae−ibaf(a) (2.19)

example [93] : f(a) = δ(a− a0)⇒ FTa→b (δ(a− a0)) = e−iba0 (2.20)

The Fourier transformation from t→ ω of I(q, t) gives the so-called dynamic structure

factor S(q, t):

S(q, t) ≡ FTq,t→q,ω(I(q, t)) (2.21)

=
1

2π

∫ ∞
−∞

dte−iωtI(q, t) (2.22)

(2.23)

The dynamic structure factor is just a double Fourier transform of a rescaled self

correlation function g(r, t):

S(q, t) ≡ FTq,t→q,ω(FTr,t→q,t(g(r, t))) (2.24)

The Fourier transformation is a global and information conserving transformation

[94,95]. Therefore S(q, t) and g(r, t) are equivalent descriptions of protein motion.

Due to the high incoherent scattering length of the hydrogen atoms in neutron
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scattering experiments one can neglect the contribution of coherent scattering. The

total structure factor can be simplified to S(q, t) ≈ Sinc(q, t). In this case, in the

above formulas the total scattering length bi has to be replaced by the incoherent

scattering length bi,inc.

2.5 Dipole-Dipole Interaction

Dipole-dipole interaction are a special type of interaction between molecules. An

illustrative example how vital the dipole-dipole interaction is to the human health, is

the formation of red blood cells. They consist of to alpha chains, two beta chains, and

a heme group. For the folding of the alpha and beta chains a series of dipole-dipole

interactions is required. Any mutation that destroys the dipole-dipole interaction

prevents them from forming properly and impairs their ability to transport oxygen

to the tissues, which can even lead to death.

Biomolecules contain positive and negative charges. Due to the permanent non-

uniform distribution of the charges on the various atoms some parts of the biomolecule

can be more positive and others more negatively charged. This charge separation

can be mathematically described by an electric dipole moment µ, which is a vector

quantity pointing from the negative charge δ− towards the positive charge δ+. The

magnitude is equal to each charge times the separation between the charges. The unit

of µ is the debye (symbol D). Biomolecules with an dipole are polar. This charge

separation inside the biomolecule generates an electric field around the biomolecule.

Different biomolecules with a permanent dipole (e.g. CBM domain and the cellulose

fiber) can interact with each other via their electric field. This type of interaction

is called dipole-dipole interaction. During the dipole-dipole interaction the two

dipoles orient such that the total energy of the complete system is minimized. The

dipole-dipole interaction of the CBM with the cellulose fiber would favor the CBM

orientation relative to the fiber, in which the front side of the CBM would be facing

towards the reducing fiber end (Figure 2.16).
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Figure 2.16: Biomolecules with a permanent dipole (shown as red
arrows) attract each other, due to their partial charges. The two relative
biomolecules orientations (a) and (b) would lead to a decrease of the
total energy. The dipole-dipole interaction of the CBM with the cellulose
fiber would favor the CBM orientation relative to the fiber, in which the
front side of the CBM would be facing towards the reducing fiber end
(c).





There’s no sense in being precise when you

don’t even know what you’re talking about.

John von Neumann 1903-1957

Chapter 3

Modeling of

Cellulase-Cellulose

Interaction

Full-atomic computer simulations allow to bridge the gap between experiments

and theory for the Ce7A-cellulose system. Here two different computer simulation

methods Brownian (BD) and molecular dynamic (MD) [96–101] simulations are

presented.

3.1 BD Simulations

The cellulose fiber, the CBM, the CD, and the Cel7A were each modeled as an

atomic-detailed rigid body Brownian particle, with each particle able to translate

and rotate during the simulation. The force field used in the BD simulation consists

of a combination of electrostatic (ES) and van der Waals (VDW) interaction terms.

For testing purposes additional electrostatic desolvation (ED) and hydrophobic

desolvation (HD) terms were also included. A detailed description of these two terms

is given in Ref. [102–105]. Neither the electrostatic nor hydrophobic desolvation term

significantly influences the CBM-fiber encounter process. Hence, the ES and VDW

terms are sufficient to model the relevant features of the CBM-fiber encounter process

while at a much lower computational cost. The BD interaction model presented here

provides a balance between accuracy and speed.

To speed up ES interactions between the BD particles with high accuracy, the

effective charge method (ECM) [105,106], was used to derive charges that represent

the external ES potential in a uniform dielectric medium. In the first step, the

solution of the Poisson-Boltzmann equation (PBE) [105,107–110], was obtained for

each BD particle, and test charges were then assigned to each BD particle. Based

on the test charges, effective charges were fitted to reproduce the ES potential of

the molecule computed by solving the PBE. The linearized PBE was solved using

37



38 Modeling of Cellulase-Cellulose Interaction

the Adaptive Poisson-Boltzmann Solver program (APBS) [111], with a single-point

multigrid method without focusing [111], with a mesh domain length of 270 Å x 270

Å x 270 Å and a grid spacing of 0.7 Å for the cellulose fiber and with a mesh domain

length of 100 Å x 100 Å x 100 Å and a grid spacing of 0.5 Å for the CBM. The ionic

strength was set to 150 mM and the temperature was set to 298.15 K. The relative

dielectric constant for the solvent was set to 78.54 [112,113], the dielectric constant

for the CBM set to 4 and that for the cellulose fiber set to 6 [114,115].

For solving the PBE the partial charges and atomic radii were assigned to the

CBM and fiber using the program PDB2PQR [116]. The partial charges for the

CBM and the cellulose atoms were taken from the CHARMM23 parameter set [117],

and the CSFF force field for carbohydrates [118, 119], respectively, leading to a total

charge of zero for the CBM and the 36-chain fiber. The boundary conditions were

set to “Multiple Debye-Hückel” as reported in Ref. [111]. For the CBM, on each

amino acid test charges of -0.5 e and 0.5 e were placed on the backbone oxygen and

nitrogen atoms, respectively.

The cellulose fiber consists of repeating glucose units and is therefore highly

symmetric. For the fiber models 2880 test charges were placed on the ring oxygen

atom (-0.5 e) and the third ring carbon atom (0.5 e) of the surface chains. The

effective charges were fitted to reproduce the ES potentials over distances 3-30 Å

from the van der Waals surface of the BD particle.

To model the VDW interactions between the BD particles a Lennard-Jones like

potential was used. For computational efficiency values were mapped for each BD

particle on a cubic grid

Evdw(k) =
n∑
i=1

4εij

{
σ12
ij

a12
i + |k− li|12 −

σ6
ij

a6
i + |k− li|6

}
, (3.1)

where k is a point on the grid, li the position of atom i, |k− li| the distance between

the center of the two atoms i and j (represented by the closest grid point k) in

different BD particles, εij the depth of the potential well, σij the distance at which

the inter-particle potential is zero. ai is the VDW radius of atom i, and the terms a6
i

and a12
i remove the singularity at |k − li| = 0. To further increase the computational

efficiency the Lorentz-Bertelot rules [120,121] were used:

εij =
√
εii · εjj ≈ εii , (3.2)

σij =
√
σii · σjj ≈ σii . (3.3)
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The values of σii and εii were obtained from the parameter set of the OPLS force

field . A mesh domain length of 220 Å x 110 Å x 110 Å with a grid spacing of 0.7 Å

was used for the cellulose fiber and a mesh domain length of 96 Å x 96 Å x 96 Å

with a grid spacing of 0.7 Å was used for the CBM.

The trajectories of the BD particles were propagated using the Ermak-McCammon

algorithm [122] with a time step of 1 ps. The free diffusion translational and rotational

coefficients Dfree
trans and Dfree

rot for the BD simulations of the cellulose fiber, the intact

Cel7A, the CD, and the CBM were determined from the MD sets (Table 5.7).



The underlying physical laws necessary for

the mathematical theory of a large part of

physics and the whole of chemistry are thus

completely known, and the difficulty is only

that the exact application of these laws leads

to equations much too complicated to be

soluble.

Paul Dirac 1902-1984

3.2 MD Simulations

3.2.1 Born-Oppenheimer Approximation

The dynamics of an atomic system can be described by the time dependent Schrödinger

equation

i
h

2π

∂ψ

∂t
= Ĥψ , (3.4)

where ψ is the wave function, i is the imaginary unit, h is the Planck constant, and

Ĥ is the Hamiltonian of the system (sum of potential and kinetic energy). ψ is a

function of the coordinates and momenta of all the nuclei and electrons in the system,

which makes the calculation of Equation 3.4 quite challenging. The calculation can

be alleviated by the Born-Oppenheimer approximation which is an assumption that

the electronic motion and the nuclear motion in molecules can be separated and that

the total wave function ψ can be split into a nuclear ψn and an electronic component

ψe:

ψ = ψn · ψe . (3.5)

It was proposed in 1927 by Born and Oppenheimer [123]. The approximation is

motivated by the observation that the electron motion is much faster then the nuclei

motion, therefore it is valid to assume that the electrons adjust instantly to any

motion of the nuclei [124]. Using this approximation, Equation 3.4 can be separated

into two less complicated parts.

3.2.2 Force Field

The large number of electrons in a biomolecule make the solution of the Schrödinger

equation computationally challenging. The force field description, which includes

the nuclear coordinated and incorporates the effect of the electrons via a potential

function, is a computationally less expensive approach. In the thesis the CHARMM27

force field [125] was used, the potential energy is separated into bonded and non-

40
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bonded terms [88,126]:

E = Ebonds + Eangles + Edihedrals + Eimproper dihedrals︸ ︷︷ ︸
bonded terms

+ Eel + EvdW︸ ︷︷ ︸
non-bonded terms

(3.6)

=
∑

bonds

αb(b− beq)2 +
∑

angles

αθ(θ − θeq)2 +
∑

dihedrals

αφ[1 + cos(nφ− φeq)]

+
∑

improper dihedral

αω(ω − ωeq)2 +
∑
i<j

qiqj
εrij︸ ︷︷ ︸

electrostatic

+
∑
i<j

4εij

[(
σij
rij

)12(
σij
rij

)6
]

︸ ︷︷ ︸
van der Waals

.(3.7)

The individual bonded terms describe stretching of the bond length b, bending of

the bond angle θ, torsion of the proper dihedral angle φ, with multiplicity n, and

bending of the improper dihedral angle ω, as depicted in Figure 3.1. αx and xeq

denote the force constants and equilibrium values, respectively. The last two sums in

3.7 describe the electrostatic and the van der Waals interaction, respectively. qi and

qj are the charges of atoms i and j, rij is the distance between atoms i and j, and ε

is the dielectric susceptibility. The Lenard-Jones 12-6 function is chosen to describe

the van der Waals interaction, the parameters being the depth of the potential εij

and the collision parameter σij .

Figure 3.1: Schematic illustration of the bonded terms in the CHARMM
force field (adapted from [126]).
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3.2.3 Time Evolution

In MD simulations, the motion of the atoms over time are described by Newton’s

equation of motion:

mi
∂2ri
∂t2

= −∂U
∂ri

, (3.8)

where mi is the mass and ri the position of atom i, and U is the potential energy

of the system. For an efficient numerical time integration of Newton’s equation of

motion the Verlet algorithm can be used [127].

3.2.4 Simulation Details

MD simulations were performed with NAMD [128] using the CHARMM27 force field

for proteins [125], the C35 force field for carbohydrates [129, 130], and the TIP3P

model for water [131]. Periodic boundary conditions were used. The long-range

electrostatic interactions were computed using the particle mesh Ewald method [132],

for which the reciprocal sum was computed with sixth-order interpolation and 1.5 Å

Fourier grid spacing. Van der Waals interactions were computed with a smooth

switching function between 8 Å and the cutoff value of 10 Å.

The MD systems were first energy-minimized for 5000 steps using the conjugate

gradient algorithm and then gradually heated up from 50 K to 300 K over 40 ps.

During the minimization and heating phases, harmonic restraints with a force constant

of 5 kcal/(mol · Å2) were applied to the CBM backbone atoms, linker backbone atoms,

CD backbone atoms, and the cellulose C1, C2, C3, C4, C5, and C6 atoms. The heated

systems then underwent four equilibration steps. In the first 200 ps equilibration run,

all solute atoms were fixed, to relax the solvent. In the remaining three equilibration

runs, each 200 ps long, all the harmonic restraints were gradually lifted from 5 to 1

kcal/(mol · Å2). Langevin dynamics was used to maintain constant temperature at

300 K and the Nosé-Hoover Langevin piston [133] with a decay period of 500 fs was

used for maintaining constant pressure at 1.01325 bar. After the equilibration, NPT

production runs were performed for 60 to 250 ns. A time step of 1 fs for numerical

integration of the equations of motion was used. Coordinates were saved every 1 ps.

3.3 Comparison of BD and MD

In this thesis the two different simulation techniques BD and MD are used which are

suited to understand the Cel7A-cellulose interaction occurring on different time and
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length scales (Section 4.3). Both have their advantages and disadvantages. In the

following, a short summary of the differences is presented:

� Solvent: Virtually all in nature existing biological systems require an aque-

ous milieu for living [134]. For biomolecules solvent is crucial, it stabilize

biological active conformations, and by actively participating in biological

processes. Hence, in computer simulations solvent effect have to be included.

Here explicit solvent MD simulations are performed, in which each solvent

molecule is explicitly modeled. Simulating each solvent molecule explicitly is

too computationally intensive for use in simulations covering long time scales.

Therefore, in the implicit solvent BD simulations, the Cel7A and cellulose fiber

diffuse in a continuum solvent, which reduces the total number of atoms of

the system. The implicit solvent model can represent most solvent effects in a

quick but nevertheless efficient way. Additionally, in implicit solvent models

there is an instantaneous dielectric response of the biomolecules to the solvent,

there is no need for lengthy equilibration as in the case of explicitly modeled

water molecules.

� Internal flexibility: The BD and the MD simulations are both simulated

in atomic detail, each single Cel7A and cellulose fiber atom can interact with

each other. In the BD simulations, in contrast to MD simulations, the Cel7A

and the cellulose fiber are modeled as rigid bodies without internal flexibility.

This elimination of nonessential degrees of freedom for the CBM-fiber and

Cel7A-fiber encounter process allows the increase of the integration time step

(Section 4.1).

� Bond breaking: The breaking up of cellulose chains into the individual

sugar units requires the breaking of chemical bonds. This process can not be

simulated using MD or BD simulations and require QM simulations [135–138]

(Section 4.1). Therefore, in this thesis bond breaking events are not studied.

In summary, which simulation method is more suited depends on the biological

question asked.





Go where the mess is, there is the action.

Here you can be creative!

Prof. J. Hüfner, Heidelberg University

Chapter 4

Multiscale and Enhanced

Sampling

Lets assume we would be living in a world with infinite fast computers and an

infinite amount of computational resources. Lets further assume that talented

experimentalist have determined with their sophisticated experimental setup a high-

resolution structure of a biomolecule [139]. With the first click of the mouse we would

get all the required trajectories simulated in the twinkling of an eye, without any

significant approximations. After the second click of the mouse, all the simulation

trajectories would be analyzed. If we would be living today in such a futuristic world

the work presented in this chapter would not be required.

The large number of atoms (approx. 350,000 atoms) and their interactions with

each other make atomically detailed simulations computationally quite expensive.

All current computational approaches introduce approximations in the simulational

setup to ease this problem (Chapter 3). Even if we assume Moore’s law [140] would

continue to hold, we will not even come in the next decades close to such an ideal

state for the Cel7A-cellulose system. In this chapter first, the time and length

scales of biomolecules is introduced and in the second part put in relationship to

Moore’s law. Third, the enhanced multiscale approach to combine BD and MD

simulations is described. Fourth, the approach to cover the configuration space

of Cel7A-cellulose fiber is presented. Fifth, the course of dimensionality and the

dimension reduction strategy is explained. Seventh, the Markov state model (MSM)

approach is introduced. Eight, the density map analysis is described. Which provides

a thermodynamic description of biomolecular interaction, in contrast to the MSM

analysis which rather gives a kinetic description. In the last section, some details on

the number crunching and big data, which was required to perform this research, is

presented.
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There is nothing insignificant in the world. It

all depends on the point of view.

Johann Wolfgang von Goethe 1749-1832

4.1 Time and Length Scales of Biomolecules

The biological functions inside and between different biomolecules are governed by

the interactions of individual atoms and groups of atoms. These interactions occur

at multiple time scales, spanning more then 15 orders of magnitudes between them.

The range starts from femto-seconds (10−15 s) and can go beyond the second time

range (Figure 4.1). Computer simulation methods have become a powerful tool to

study problems in biophysics [141]. The accessible time and length scale coverable

for each simulation method are different. The more detailed the simulation technique

operates, generally the smaller is the accessibility of long time and length scales [141].

The fastest motion of the modeled system determines the length of the integration

time step, which directly determines the amount of simulation steps required to reach

a certain simulation length [142].

Using quantum mechanics (QM) in principle a very high level of accuracy is obtainable.

In QM simulations the fast motion of electrons are taken into account, they are the

most restricted in terms of the maximal time and length scales. However the time to

compute processes on the long time and length scale of biomolecular interactions

using a fully QM description is not possible.

In classical MD the electronic distribution are approximated in a rather classical

coarse-grained fashion, for example by putting fixed partial charges on the interaction

sites of the biomolecules [141]. In MD the time step of integration is dominated by

events like rotational motions and intermolecular vibrations of side chain groups,

which are an order of magnitude slower then the electron motion.

In BD one is in general not interested in the detailed description of the solvent.

The effect of the solvent is modeled using an implicit solvent model. The second

approximation is, that the internal flexibility of the biomolecules is neglected, by

treating each biomolecule as a rigid full atomic body. The global translation and

rotation of the biomolecules are the fastest motions in the system, which are an order

of magnitude slower compared to classical MD.

QM has among the above three methods the least level of approximation and is

better suited to simulate fast electronic motions and bond making and breaking

events. MD on the other hand gives a local picture of the biomolecule interaction,

e.g. like side chain motion, and BD gives a global picture of the interaction, e.g. like

the encounter process of biomolecules. The integration time step together with the

fact, that the accessible computational resources are limited determines directly the

total simulation time of each simulation method and the typical range of observable
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biomolecular motion. Observing an event a single or even a few time is in general

not sufficient to derive a meaningful conclusion for a biomolecule. To determine if

the observation was a random event or a statistically relevant feature, even longer

simulation times are required, which make the situation even more problematic.

With a single simulation methodology, it is at the moment extremely difficult to

achieve the required precision and cover the relevant motion range of the Cel7A-

cellulose interaction. Therefore, with the available supercomputers multiple methods

together with a framework to combine the simulation results in a meaningful way

are indispensable for a continuous analysis of the Cel7A-cellulose interaction, over

the entire relevant time and length range.

Figure 4.1: Diagram of time and length scales for simulation methods
including quantum mechanics (QM), molecular dynamics (MD), and
Brownian dynamics (BD).
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4.2 Moore’s Law in Molecular Biology

At the moment it is extremely challenging, or even impossible, to simulate the

Cel7A-cellulose complex using classical MD on a ms time scale. Moore’s law applied

to molecular biology can give an indicator at which time in the future this will be

possible.

In classical MD simulation Newtons’s equation of motion are used to describe the

dynamics of biomolecules and to enhance our understanding of atomic processes in

living systems. The basic theoretical background was already set in the 17th and

the early 20th century. The application for relevant biological systems was hindered

by the required extensive numerical calculations. The possible applications strongly

depends on the computational resources at hand. The breakthrough was achieved

with the upcoming of the first supercomputers [142–145]:

� 1687: Newton published his laws of motion for classical physics.

� 1860: Pasteur and Hofmann introduced the ball and stick model to decribe the

molecular structure of chemical compounds.

� In the first half of the 20th century the concept of the force field originated to

decribe the forces acting between the atom pairs in biomolecules.

� 1953: Scientist from Los Alamos published their study “Equation of State

Calculation by fast Computing Machines” [146] which laid the groundwork for

Monte Carlo and MD simulations. The calculations were performed on the

MANIAC supercomputer in Los Alamos, which was the birth of computational

physics.

� 1957: First molecular dynamics simulations were carried out [147].

� 1964: Newton’s Mechanics was combined with the biomolecular force field

approach for argon. This combination would be later known as the molecular

mechanics method [148].

� 1971: First simulation of water by Rahman and Tillinger (216 molecules) [149].

� 1977: First simulation of the BPTI protein in the absence of solvent molecules

(in vacuum) (≈500 atoms, ≈10 ps) [150].

� 1982: First simulation of the BPTI protein in explicit water. The explicit

modeling of the the solvent molecules makes the simulations computational

more expensive (≈3,100 atoms, ≈25 ps) [151].
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� 1992: Simulation of the HIV-1 protease in explicit solvent using a CRAY YMP

computer (≈23,000 atoms, ≈40 ps) [152].

� 1998: First report of a 1 ms MD simulation of the villin headpiece subdomain

(≈3,100 atoms, ≈1 ms) [153].

� 2002: Explicit solvent simulation of FN-III (126,000 atoms, ≈12 ns) [154].

� 2004: Explicit solvent simulation of the DOPC lipid bilayer (420,000 atoms,

≈3.5 ns) [155].

� 2008: Explicit solvent simulation of the WW domain on an x86 cluster (≈10

µs) [156].

� 2008: The special-purpose MD parallel supercomputer Anton becomes oper-

ational. It can simulate over 17,000 ns per day for a protein-water system

consisting of 23,558 atoms1.

� 2010: The 8.8 PFlop/s distributed-computing project Folding@home achieves

the aggregate ensemble simulation time scale of 1.5 ms [157].

� 2010: Explicit solvent simulation of the folded BPTI and the WW domain on

Anton (≈1 ms) [158].

Over the last decades a dramatic progress in MD can be observed, the length of

the trajectories and the amount of atoms have significantly increased. The progress

amongst others can be described by Moore’s law [159], the observation that over

last 50 years the number of transitions on integrated circuits doubles approx. every

20 months [159–161]. From this follows a similar growth in computing power. The

number of atoms and the time scale accessibility of biomolecules simulation follow a

similar quasi Moore’s trend [143,144]. In the milestone MD simulation presented in

Figure 4.2, either very large biomolecules are simulated for very short time scales

or very small biomolecules are simulated for very long time scales. The application

of the concept of Moore’s law to biological systems indicate that every 10 years the

number of atoms increase by approx. one and a half order of magnitude (Figure 4.2,

top) and that the accessible time scale increase by approx. three orders of magnitude

(Figure 4.2, bottom).

The combination of both trends gives an indicator at which time in the future it will

be possible to perform MD simulations for the Cel7A-cellulose complex on the ms

1http://www.nrbsc.org/anton_rfp/

http://www.nrbsc.org/anton_rfp/
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time scale without an enhanced multiscale approach. The Cel7A-cellulose system

has ≈350,000 atoms. In 2004 a 3.5 ns MD simulation for a biomolecule consisting of

420,000 atoms was performed [155]. Using Moore’s law a decade later, in 2014, the µs

time scale will be accessible for the Cel7A-cellulose system. After another decade, in

2024, the ms time scale will become accessible. This shows clearly, that enhanced and

multiscale approaches are absolutely essential to study with todays supercomputers

molecular process on the ms time scale for the Cel7A-cellulose system.

Figure 4.2: (Top) Increase in MD simulation system size with respect
to year simulated. All simulations include explicit solvent, except ”BPTI
vac.“. Solid red curve, Moore’s law doubling every 28.2 months. Dashed
red curve, Moore’s law doubling every 39.6 months. Blue curve, MD
simulation with largest number of atoms used in this thesis. (Bottom)
Growth in time scale accessible to MD simulations of proteins. Red curve,
Moore’s law doubling every 12 months. Blue curve, sum of simulation
time of all MD trajectories is 6.2 µs (adapted from [143,144]).
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4.3 Enhanced Multiscale BD and MD Simulations

Previous simulation studies have provided vital clues at individual time and length

scales, however, the detailed understanding of the entire Cel7A-cellulose dynamics

requires informations over a broad range of the time and length scale. To access

the entire range a single simulation method is not sufficient (Section 4.1). Even

with todays powerful computers, extending the time scale of MD to µs or longer for

systems of a few hundred thousand atoms or more remains a significant challenge,

although µs-ms are time scales of particular biological relevance. For example, with

an estimated translational diffusion constant of 16 Å2/ns, it takes at least hundreds of

ns for the CBM to orbit once a cellulose fiber with a radius of 40 Å. A minimum total

simulation time of several µs would be required for obtaining statistically reliable

results (Figure 4.3). It is essential to use a multiscale modeling approach, to cover

the entire range on an atomic level. The use of multiple simulation methods, like this

MD-BD approach, brings the challenge how to transfer and combine the informations

obtained between the BD and MD level. The difficulty for the Cel7A-cellulose system

can be solved by looking at the different steps involved in the deconstruction of

cellulosic biomass by Cel7A (Figure 4.4):

(S1) initial encounter of the free floating Cel7a with cellulose,

(S2) diffusion of the CBM on the cellulose fiber surface,

(S3) binding of the CBM to cellulose,

(S4) initial threading of cellulose chain into the catalytic tunnel located in the CD,

(S5) hydrolysis of cellulose chain, and

(S6) processive threading of the next cellubiose unit.

To study the step (S1) primarily BD, and for (S2)-(S4) MD simulations are required.

The steps (S5)-(S6) involve making and breaking of chemical bonds, which require

QM simulations and which are outside the scope of this study.

The ansatz used here will be four-fold. Firstly, all-atom, explicit solvent MD simu-

lations will be used to derive and parameterize coarse grain models for Cel7A and

cellulose (Chapter 5 and Chapter 6). Secondly, to study the global aspects of the

Cel7A-cellulose interactions (S1) all-atomic rigid body implicit solvent BD simula-

tions will be used (Chapter 5). Thirdly, to extend BD to study local interactions

(S2 and S3) at the other end of the spectra, again all-atom explicit solvent MD
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simulations are performed (Chapter 5). Fourthly, with the information from the first

three steps it will be possible to parameterize spring-models for the Cel7A linker,

allowing a transformation from the all-atom linker to a more coarse-grained spring

representation, hereby permitting to derive and simulate optimized artificial cellulase

enzymes which currently do not exist in nature and first have to be genetically

engineered (Chapter 6).

The main goal of this work is to cover each step of the Cel7A-cellulose interaction

with the required accuracy on an atomic level. Finally, the described ansatz allows

us with the available computational resources to understand the role of the CBM

and the linker peptide in the interaction with the cellulose fiber.

Figure 4.3: With an estimated translational diffusion constant of 16
Å2/ns, it takes more then 500 ns for the CBM to orbit once a cellulose
fiber with a radius of 40 Å, and at least several µs o obtain statistically
reliable results.
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Figure 4.4: The deconstruction of cellulosic biomass by Cel7A can be
subdivided into the steps (S1) to (S6). Different computer simulation
techniques including quantum mechanics (QM), molecular dynamics
(MD), and Brownian dynamics (BD) are required for each step.



The wise man looks into space and he knows

there is no limit to dimensions.

Master Zhuang 369 BC-286 BC

4.4 Cover Configuration Space

To cover the relevant CBM-fiber interaction space, BD simulations were started

from 2,800 different configurations. To generate these configurations, the CBM was

rotated randomly and its center placed in a random position in one of three shells

around the fiber. As displayed in the yz plane (Figure 4.5, top left), the first shell

was defined by a ring with a radius of rR=60 Å from the fiber center; the second shell

was an octagon with a distance of rO=21 Å from the fiber surface C1 atoms; and the

third shell was a ring segment only above the hydrophobic fiber face (1, 0, 0) and

the hydrophilic fiber face (0, 1, 0) with a radius of rS=40 Å from the fiber center,

which was intended to examine the association/dissociation kinetics of the CBM

from these two fiber faces. 300 BD simulations were started from the first rR shell,

500 from the second rO shell, and 1,000 from the third rS shell (Figure 4.5, bottom).

With the constraint of available computational resources, the combination of these

three shells was expected to produce less biased results compared to a single shell.

The comparison of the binding probability results obtained from different shells also

provided a measure of convergence (i.e., statistical errors) of the BD simulations.

Experimental studies found that the hydrophobic fiber faces are the interaction

hotspots of Cel7A [40–42]. To study the effect of the linker on the Cel7A-fiber

interaction I focused on the hydrophobic fiber faces. In the BD starting structures

the center of Cel7A is placed on a 130 Å circle segment above the hydrophobic fiber

face (1, 0, 0) (Figure 4.6).
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Figure 4.5: (Top) To ensure the BD simulations to cover all relevant
CBM-cellulose configurations, the CBM was initially placed at either a
distance rR or rS from the center of the cellulose fiber or at a distance
rO from the fiber surface. Starting configurations of the BD simulations
of the CBM from different shells are shown in an yz plane view (bottom
left) and an xy plan view (bottom right).
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Figure 4.6: (Top) Sketch of the Cel7A-fiber complex. To ensure that
the BD simulation trajectories cover the relevant configuration space,
Cel7A is placed in a distance rC = 130 Å from the center of the cellulose
fiber on a 90° circle segment above the (1, 0, 0) hydrophobic fiber face.
This ensures that the starting configurations of the trajectories are all
statistically independent. The direction of the rotation axis of Cel7A and
the rotation angle α is chosen randomly. (Bottom) In order to visualize
the different starting structures of the BD simulation trajectories the
starting structures are super imposed. (Bottom left) yz plane view and
(bottom right) xy view.



Everything should be made as simple as

possible, but not simpler.

Albert Einstein 1879-1955

4.5 Dimension Reduction

Atomic detailed simulations represent inherently high dimensional big data sets. The

complex bimolecular interactions imply that only a small number of dimensions

may be relevant for the biological function. For an n atomic biomolecule data-sets

can be 3n dimensional. For the Cel7A-cellulose system with approx. n =350,000

atoms this gives over one million dimensions! Analyzing and organizing data in such

high-dimensional spaces various negative phenomena, often referred to as course of

dimensionality [162,163] can be observed which do not occur in low dimensional, e.g.

three dimensional physical space. One of the main problems is, that the increasing

dimensionality, the volume of the space increases so fast that the data distribution

inside the space appears sparse and dissimilar, which prevents some algorithms to

be numerically efficient (Figure 4.7). Dimension reduction methods map each 3n

dimensional bimolecular conformation to a data point on a lower dimensional manifold.

They reduce the degrees of freedom of the system and improve the numerical stability.

The complexity of biomolecules makes such a general mapping non trivial.

To reduce the number of degrees of freedom needed in the analysis of the BD

simulations, following dimension reduction strategy was applied for the CBM-cellulose

and Cel7A-cellulose complex (Figure 4.8). In an n atomic biomolecule, each atom can

move in all three space directions x, y, and z, which results in 3n degrees of freedom.

In the BD simulation, the internal flexibility of the biomolecules is neglected. The

CBM and the celluose fiber can only perform a translational and rotational motion,

this reduces the degrees of freedom from 3n to 12. Prior to analysis all trajectories

are transformed into a reference system where the cellulose fiber was fixed, it has no

translational or rotational motion. This corresponds to the coordinate system where

the physical observer is placed on the cellulose fiber and watches the motion of the

CBM or CD, respectively. This step reduces dimensionality of the system from 12 to

6 degrees of freedom (translation and rotation of the CBM or CD, respectively). The

center of the cellulose fiber was placed at the origin and following orientation of the

coordinate system was used. The chain direction of the fiber is oriented along the

x-axis of the coordinate system, with the reducing end of the fiber pointing to the

negative direction and the non-reducing end to the positive direction. The other two

shorter dimensions were oriented parallel to the y and z axis of the coordinate system

(Figure 4.9). The rotational angle around the x axis was denoted as ψ, around the

y axis as θ and around the z axis as φ. The fiber is translated such that its center

lies at the origin of the coordinate system. An infinite long fiber is homogeneous

57



58 Multiscale and Enhanced Sampling

along the x axis. For the CBM binding with the different fiber faces, the x dimension

degree of freedom was integrated out. For the BD simulations a fiber with an finite

length along the x axis is used. To avoid the potential artifact arising from the CBM

interacting with the fiber ends, only those simulation frames in which the center

of the CBM or CD, respectively, was located within 30 Å from the fiber ends were

excluded from the analysis (Figure 4.9). Only the three rotational orientations and

the y and z component of the CBM or CD position, respectively, are required to

describe the spatial relationship of the CBM with respect to the cellulose fiber. This

reduces the total degrees of freedom of the CBM-cellulose and CD-cellulose system

from over one million to five.

Figure 4.7: To visualize the curse of dimensionality, lets assume the
data is uniformly distributed in a unit hypercube with volume VTot =
1. Lets define a neighbor volume VNb = ep, with edge length e, and
number of dimensions p. The fraction of unit data volume is given
as r = VNb/VTot = ep. As the dimension p increases the distance to
neighbor, data points increase. For p=10 dimensions to capture r = 1 %
of the data, the neighbor volume must cover e = 63 % of the range of each
input variable (95 % for p=100) (adapted from lecture ”Introduction to
Machine Learning, Pattern Recognition and Statistical Data Modeling“
by Dr. Coryn Bailer-Jones).
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Figure 4.8: To facilitate the construction of the MSM the dimensionality
of the system has to be reduced. By ignoring the internal flexibility of
the atoms the degrees of freedom can be reduced from over one million
to 12. Using the protocol above it can be further reduced from 12 to 5.
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Figure 4.9: Based on the limited computational resources it is impossi-
ble to simulate an infinite long cellulose fiber. To still be able to model
an infinite long cellulose fiber, the dynamic spectra is analyzed on the
Markov lag time scale τ and only the dynamics around the fiber center
is included, ignoring the dynamics within ε =30 Å from the fiber ends.



Memory is deceptive because it is colored by

today’s events.

Albert Einstein 1879-1955

4.6 Markov State Models

Simulations in the range of ms are required to study the Cel7A-cellulose fiber

encounter process with statistical accuracy. Even, if BD instead of MD simulations

are performed, with the given computational resources it is very challenging to sample

the relevant configuration space with a single BD trajectories of this length. To

still tackle this problem with today’s supercomputers a large set of independent BD

simulations are computed in parallel, and the statistical information is combined

using a Markov state model (MSM) framework [164–172]. The MSM description

provides a mathematically rigorous way to combine the statistical information from

multiple independent simulations and describe the dynamics of this system. From

the simulation trajectories a transition matrix T can be calculated, which describes

the interaction between different biomolecules. The MSM approach allows to apply

a set of interesting properties from Markov theory to a given biological system

(Figure 4.10). The main assumption is, that the transition between bimolecular

conformations are Markovian (memoryless). This means the transition depends

only on the current conformation and not the previous conformations. Such an

assumption is not uncommon, e.g. Newton’s laws of motion, which describe classical

mechanics, makes a similar assumption. The future position and velocity of a particle

only depends on the current position and velocity (Figure 4.11). The lag time τ

denotes the time scale after which the transition between the two conformations

becomes Markovian. The implied timescale test was used to estimate τ [173, 174].

The cellulase enzyme can interact with the cellulose fiber. During the simulation

different parts of the configuration space of the biomolecule are visited. Defining a

MSM for a given biomolecule can be quite a challenge, following steps are required:

1. The configuration space of the biomolecule has to be discretized to find similar

conformations (microstates).

2. The smallest time scale τ , for which the transitions between the conformations

are Markovian has to be estimated.

3. The transition probabilities between this conformation has to be calculated on

the time scale τ .

The conformations of a biomolecule together with the transition probabilities between

conformations define a MSM. To demonstrate this, lets look at a simple toy example

with the three conformations 1, 2, and 3 (Figure 4.12). Lets assume the Markov time

scale τ is given and that the biomolecule is at time t in conformation 1, at time t+ τ
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it can either stay in conformation 1 with the probability p11 or jump to conformation

2 or 3, with probability p12 or p13, respectively. Similar transitions can proceed

from conformation 2 or 3. In total nine different probabilities p11, p12, . . . , p33 can

be conceived. A transition matrix T can be written for these probabilities, which

describes the interaction of the Cel7A with the cellulose fiber for time scales > τ .

To construct a MSM for the CBM-cellulose system following steps were performed.

Given a set of microstates, the transition count matrix was constructed as

C(τ) = (cij)1≤i,j≤n . (4.1)

where cij counts the number of times the CBM visits state i at time t and state j at

time t+ τ , for all times t. A reasonable (maximum likelihood) estimate for the true

transition probability tij between states i and j was then given by

∀1≤i,j≤n pij = cij/
∑
j

cij (4.2)

The transition probabilities form a transition matrix

T(τ) = (pij)1≤i,j≤n . (4.3)

The transition matrix, together with the discretized microstates, defines the

Markov state model, from which various properties of the CBM-fiber interaction

can be calculated (Figure 4.13). For an ergodic system, T(τ) has only a single left

eigenvector with eigenvalue 1:

π = π ·T(τ) . (4.4)

Normalizing this eigenvector leads to the stationary distribution π = (π1, π2, . . . , πn),

where each element πi gives the probability of microstate i (finding the CBM in the

fiber region i). The diagonal element pii of T(τ) gives the probability of the CBM

being trapped in the fiber region i once it reaches there, providing a measure of how

sticky the fiber region i is. The corresponding mean exit time associated with this

probability is

texit,i = −τ/ln(pii) , (4.5)

which provides the average time for which the CBM will stay bound to the fiber

region i before escaping. To estimate statistical uncertainties of the properties derived

from the MSM model, the Bayesian statistics approach [167,168] was used. To make

the MSM calculation tractable, a coarse discretization was used. Here, the yz space
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was partitioned into a total of n=100 fiber regions (microstates), each covering a

circular segment of 18◦and a radius of 10 Å. The yz space between the radii of 20

and 30 Å from the fiber center forms the innermost ring while that with the radius

of > 60Å from the fiber center constitutes the outermost. The data analysis was

performed using GNU R [175].

Figure 4.10: The MSM frame work allows it to combine the statistical
information from multiple independent simulations. The transition
matrix T contains the information on interaction of the CBM with the
cellulose fiber. Once a MSM is defined, various concepts from Markov
chain theory can be applied to the biological system.

Figure 4.11: In the MSM context it is assumed, that the transition
between biomolecule conformations are memoryless, which means the
future conformation only depends on the current conformation and not
the previous conformations. Such an assumption is not uncommon, e.g.
Newton’s laws of motion, which describe classical mechanics, makes a
similar assumption.
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Figure 4.12: Simple three conformation toy example of a MSM model.
A MSM is defined as a set of conformations, the smallest Markov time
scale τ , and the transition probabilities between the conformations, which
are summarized in a transition matrix T.

Figure 4.13: From a MSM description, various properties of the CBM-
fiber interaction can be calculated, like the stationary distribution π, the
mean exit time texit,i, and the transition probabilities pii.
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4.7 Density Map

To determine the probability of each fiber face being visited by the CBM a density

map was calculated from the BD trajectories. The y and z dimension that range

from -60 Å to 60 Å were each discretized into 120 bins, resulting in a total of 14400

bins covering the yz plane (Figure 4.5). The probability p(x, y) for each bin was

obtained by counting the number of times h(y, z) each bin was visited by the center

of the CBM, followed by normalizing by the total number of visits to all the bins htot.

p(y, z) was further converted to a relative free energy by computing the negative

natural logarithm as F (x, y) = −kB · T · ln [p(y, z)] + c0, where c0 is a reference

constant.

To determine how often a fiber face was visited, the observations of the 50 and 1600

most visited bins close to a specific fiber face are summed up to

h50 =
50∑
j=1

h(j) (4.6)

and

h1600 =

1600∑
j=1

h(j) . (4.7)

h(y, z) was sorted in decreasing order, the counting index in the sorted set h(j) is

denoted as j. The area around the fiber face (1, 0, 0) resp. (-1, 0, 0) hotspot for

the h50 calculation has 400 bins and is defined as a square with 3 Å < y ≤ 23 Å,

10 Å < z ≤ 30 Å resp. −23 Å < y ≤ −3 Å, −30 Å < z ≤ −10 Å (Figure 4.14). For the

calculation of h1600 a larger square around the hotspot with 1600 bins was chosen, for

the fiber face (1, 0, 0) resp. (-1, 0, 0) hotspot the square is defined as 0 Å < y ≤ 40 Å,

0 Å < z ≤ 40 Å resp. −40 Å < y ≤ 0 Å, −40 Å < z ≤ 0 Å . The choice of h50 and

h1600 allows zoomed in or a zoomed out view of the fiber face hotspot, respectively.

In the starting structure of the BD trajectories the Cel7A was placed above the fiber

face (1, 0, 0), the fiber face (-1, 0, 0) being the furthest away from this starting

position (Figure 4.6 top left). h50 and h1600 for the fiber face (-1, 0, 0) gives an

estimate for the CBM sampling speed of the cellulose fiber.
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Figure 4.14: BD simulation density map of the CBM (left) and the
CD (right). The relative free energy F(y,z) is plotted as a function of
y and z coordinates. The smaller and larger green squares around the
fiber face (1, 0, 0) and (-1, 0, 0) hotspots visualize the area for the h50

resp. h1600 calculation.



The way to think of a supercomputer is as a

special-purpose device. Only with these

devices can we perform this cutting-edge

research.

Jack Dongarra 19504.8 Number Crunching and Big Data

For this study and possible follow-up research (Section 7.2), simulations were per-

formed and analyzed on supercomputers on two different continents (Table 4.1).

The main systems were Kraken2, Franklin3, Hopper4, Jaguar5, and Titan6 in the

USA and bwGRiD7 in Germany. The simulated data is stored at the high perfor-

mance storage systems at the National Energy Research Scientific Computing Center

(NERSC), the Oak Ridge National Laboratory (ORNL), and the bwgrid-storage at

the Karlsruhe Insitute of Technology (KIT). To create, handle, and analyze the data

code was written in the programming languages C/C++, Java, Fortran, Perl, and

Bash. The computational chemistry packages CHARMM [176], GROMACS [177],

and NAMD [128] were used. For the statistical analysis code was written in Matlab/

Octave [178–180] and GNU R [175]. An overview of the research in numbers:

� Biological system has approx. 350,000 atoms, full atomic BD and MD simula-

tions were performed

� CBM study (Chapter 5):

BD: > 7,600 trajectories; > 29 ms

MD: 54 trajectories; > 1.2 µs

� Linker study (Chapter 6):

BD: > 47,000 trajectories; > 47 ms

MD: 47 trajectories; > 5.2 µs

� Consumed storage space: > 60 TB

� Total computation time (simulation and analysis): > 7 million CPU hours

If we assume that societies invest more resources on problems they perceive as

important and that the consumed CPU hours are a meaningful key indicator, then

a rough estimate on the importance of the research presented in this thesis can be

calculated. In total approx. 7 million CPU hours were used (Table 4.1) for this and

follow-up projects, with a cost of $0.10 per CPU hour [181], this results in a total

economical value of $700,000. To put this in perspective, this corresponds to 4.2 h

of the World Health Organization yearly spending to fight malaria [182].

2http://www.nics.tennessee.edu
3http://www.nersc.gov
4http://www.nersc.gov
5http://www.nccs.gov/computing-resources/jaguar/
6http://www.olcf.ornl.gov/titan/
7http://www.bw-grid.de
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The whole is greater than the sum of its

parts.

Aristotle 384 BC-322 BC

Chapter 5

Role of Cel7A CBM

The research presented in this Chapter is based on the paper entitled “Simulation

Analysis of the Cellulase Cel7A Carbohydrate Binding Module on the Surface of the

Cellulose Iβ.” and was submitted to the journal “Cellulose”.

The cellulase enzyme Cel7A is a multi-domain enzyme consisting of a carbohydrate-

binding module (CBM) and a catalytic domain (CD), joined by a linker peptide

(Chapter 2). Recent experiments have also suggested that the activity of Cel7A may

be limited by the accessibility to the cellulose substrate [183, 184], which is likely

mediated by the CBM. Several studies aimed to understand the interaction of the

CBM with the cellulose fiber [40–42,55,185–188]. Work using electron microscopy [40],

single molecule fluorescence [41], atomic force microscopy [42], and computational

docking [186] has shown that the Cel7A CBM binds preferentially to the hydrophobic

faces of cellulose Iα. However, the nature of the CBM-cellulose binding is still not

well understood. For example, while in Ref. [189] it was concluded that the binding

of the CBM of the exoglucanase Cex from Cellulomonas fimi, which is similar to the

CBM used in this thesis, to insoluble crystalline cellulose is entropically driven, in

Ref. [190], on the other hand, it was suggested that the interaction of the CBM with

non-crystalline cellulose is mainly enthalpically driven. To address this questions I

performed simulations to understand the molecular mechanisms by which the CBM

recognizes and interacts with specific fiber surfaces of cellulose Iβ. The simulation

system chosen comprises the CBM of Cel7A and a 36-chain cellulose Iβ fiber. Reasons

for studying only the CBM, and not the entire Cel7A, are to enable full convergence

of the simulations and because the initial binding of Cel7A to the substrate is mainly

mediated by the CBM [58–60]. Also, it has been shown experimentally that an

isolated CBM can bind to cellulose crystals [40–42].

To overcome this time scale problem (Section 4.1), I have adopted a two-step

simulation strategy. In the first step, an extensive set of coarse-grained all-atom BD

simulations (>7600 trajectories, each 4 s long) are first used to probe the CBM-fiber

diffusional encounter process from relatively large separation distances. The CBM

was initially placed in random orientations and positions around the cellulose fiber.

An aggregate of >29 ms of BD data was used to identify fiber faces (sites) and
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CBM binding orientations for the most favorable CBM-fiber interactions. Based on

the BD trajectories, a MSM was built to capture both thermodynamic and kinetic

properties of the CBM binding sites on different fiber faces. In a second step, to

study the detailed CBM-fiber interactions, the site-specific binding results from the

BD simulations are then refined via multiple all-atom MD simulations to characterize

the detailed CBM-fiber interactions. The MD simulations are started from the most

favorable CBM binding configurations identified from the BD simulations, and have

a combined simulation time of >1 µs. Using both simulation methods, my combined

results provide a molecular-level description of the full CBM-cellulose fiber binding

process, with important resulting implications for understanding the hydrolysis of

crystalline cellulose by cellulases. An implicit treatment of the solvent, together with

the rigid-body representation of the solutes, significantly reduces the computational

cost, thus enabling BD simulation to be extended to much longer time and length

scales than those accessible to MD.

In summary, the BD simulations probe the fiber faces to which the CBM binds, the

binding orientation, and the kinetic properties of the observed binding states. In the

MD simulations, properties influenced by explicit solvent or the internal flexibility

of the systems are investigated, such as the detailed interactions of the CBM with

the cellulose fiber, permitting the examination of conformational aspects of the

CBM (e.g., the side chains of conserved Tyr residues) and the cellulose fiber (e.g.,

hydroxymethyl groups), hydrogen-bond patterns and hydration at the CBM-fiber

interfaces, and the local diffusion of the CBM on the fiber surfaces.

5.1 Simulation and Analysis Details

5.1.1 BD and MD Simulations

As listed in Table 5.1, fourteen sets of BD simulations, referred to as BD1 to

BD14, were performed. While BD1 and BD2 contain only the CBM or the cellulose

fiber, respectively, BD3 to BD14 contain both the CBM and the cellulose fiber. In

computer simulations, individual interaction terms can be selectively turned on/off,

thus providing means of probing the roles of individual energy terms in influencing

the thermodynamics and kinetics of the CBM-fiber binding. No intermolecular

interaction was present in BD1 to BD3, BD8, and BD13, so these can be considered

as free diffusion simulations. BD5 to BD12, and BD14 varied in the use of not only

different interaction terms, but also different initial configurations. To cover the

relevant CBM-fiber interaction space, the CBM was rotated randomly and its center
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placed in a random position in one of three shells around the fiber (Figure 4.5). 300

BD simulations were started from the first rR shell (BD5 to BD8, and BD14), 500

from the second rO shell (BD5 to BD8, and BD14) and 1000 from the third rs shell

(BD9 to BD12) (Figure 4.5, bottom).

As listed in Table 5.2, twelve sets of MD simulations were performed. While MD1

and MD2 contain only the CBM or the cellulose fiber, respectively, MD3 to MD12

contain both the CBM and the cellulose fiber. MD3 to MD12 were all started from

the most favorable CBM-fiber binding orientations obtained from the BD simulations,

with the CBM placed in the middle of the fiber long axis and 3.5 Å above the fiber

surfaces. This CBM-fiber distance of 3.5 Å was the most probable binding distance

between the CBM bottom surface and the hydrophobic surfaces of the cellulose fiber

from the BD simulations (consistent with the Cα − C1 distance probability profile

shown in Figure 5.9), and was also used in a previous MD study [43]. For consistent

comparison, the same initial distance was chosen for the MD simulations of the CBM

on all fiber faces.

5.1.2 Orientation of Tyr Ring

The orientation of a tyrosine phenol ring relative to the cellulose fiber surface can be

described by the Cartesian components x, y, and z of the two normalized vectors

pTyr,1, pointing from Cγ to Cζ , and pTyr,2, pointing from Cε1 to Cε2 (Figure 5.7b).

In a spherical polar coordinate system, each of the two normalized vectors is defined

by an azimuth (−π < α ≤ π) and an inclination angle (0 ≤ β ≤ π) (Figure 5.7c).

α =



arctan (x/z) for z > 0

sgn (x) · π/2 for z = 0

arctan (x/z) + π for z < 0 and x ≥ 0

arctan (x/z)− π for z < 0 and x < 0 ,

(5.1)

β = arccos (y) . (5.2)

The orientation distribution of the Tyr ring is then visualized via an α− β map, the

total volume under which is normalized to 1. The α − β map can be subdivided

into different regions, each corresponding to a specific orientation of the Tyr ring

towards the cellulose fiber surface (Figure 5.7a). α = 0° or 180° and β = 90° denote a

orientation parallel to the cellulose fiber axis, while α = ±90° and β = 90° correspond

to a orientation perpendicular to the fiber axis.
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5.1.3 Hydrogen Bond Analysis

A hydrogen bond X − H . . . Y is deemed to exist if the distance between atoms

X and Y ≤ 3.5 Å and the angle between the three atoms X −H − Y ≤ 30°. The

hydrogen bond occupancy for a given CBM atom in trajectory j is defined as the

sum of the simulation times ti when the hydrogen bond exists divided by the total

simulation time tsim,j

õH(j) =
∑
k

∑
i ti

tsim,j
, (5.3)

where k sums over all the hydrogen bonds that a given CBM atom forms with

different cellulose atoms. The hydrogen bond lifetime t̃H(j) for a given CBM atom

in trajectory j is defined as

t̃H(j) =
1

nj

∑
i

ti , (5.4)

nj counts how many times the CBM-fiber hydrogen bond forms and breaks. The

average occupancy oH and lifetime tH of a hydrogen bond over all the trajectories

are given as the weighted means

oH =

∑
j λj · õH(j)∑

j λj
, (5.5)

tH =

∑
j λj · t̃H(j)∑

j λj
, (5.6)

where the weight factor λj is the length of each simulation trajectory j. λj is 12

for MD3 to MD6 and 40 for MD7 to MD12. The uncertainties of oH and tH are

given by the weighted standard deviations of both quantities obtained from different

simulation sets.
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Å

209587

T
a
b
le

5
.2
:

D
escrip

tio
n

o
f

th
e

d
iff

eren
t

M
D

sim
u
la

tio
n

sets
o
f

th
e

C
B

M
a
n
d

th
e

3
6
-ch

a
in

cellu
lo

se
fi
b

er.



5.2 BD Simulations of CBM and Cellulose Fiber Encounter Process 75

5.2 BD Simulations of CBM and Cellulose Fiber

Encounter Process

5.2.1 Identification of CBM Binding Faces

To chart how the CBM broadly encounters the cellulose fiber, I computed the density

maps of the CBM around the fiber for the simulation sets BD5 to BD8, and BD14.

These sets each covered all fiber faces and used identical simulation settings apart

from variation of the potential energy terms (Figure 4.5 and Table 5.1). It is evident

from the density map for BD5 (Figure 5.1a), which used the full potential, that

high-density regions are present near the two hydrophobic faces and one mixed face

of cellulose Iβ, indicating that the binding of the CBM favors the hydrophobic over

the hydrophilic fiber faces: the CBM binds three to seven times more often to the two

hydrophobic than to the two hydrophilic faces, consistent with previous experimental

findings on cellulose Iα.

As a control, I also computed the density map for the free diffusion simulation BD8,

which results, as expected, in a roughly uniform distribution over all fiber faces

(Figure 5.1d). In the limit of infinite sampling, the free diffusion simulation should

result in equal probability of CBM occupancy on all fiber positions, and thus the

sampling error in the BD simulations can be estimated to be ≈ 1.5 kBT. In the other

BD simulations presented, the interaction forces between the CBM and the cellulose

fiber were described by VDW and/or ES terms between individual atoms. The ES

interaction also included a solvent polarization effect described by an effective charge

model based on the classical Poisson-Boltzmann [191]. To assess the role of these

individual energy terms in the CBM-fiber encounter process, I computed the density

maps for BD6 and BD7 in which either the VDW or the ES interactions were turned

off, respectively. As shown in Figure 5.1b and c, both these corresponding density

maps show no preferential binding for any fiber face, indicating that both the VDW

and the ES interactions contribute to the observed preferential binding of the CBM

to the hydrophobic faces of the cellulose fiber.

To further understand the driving force underlying the observed preferential CBM-

hydrophobic face binding, I calculated the VDW and ES energy components during

the CBM-cellulose encounter process for the following four cases, in which the CBM is

(1) close to (≤ 15 Å) the hydrophobic fiber face, (2) far from (≤ 40 Å) the hydrophobic

fiber face, (3) close to (≤ 15 Å) the hydrophilic fiber face and (4) far from (≤ 40 Å)

the hydrophilic fiber face. As shown in Figure 5.2, both the VDW and ES interaction

energies become more favorable when the CBM moves closer to either fiber face.
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The ES distributions do not show a notable difference between the hydrophilic and

hydrophobic fiber faces, regardless of the CBM being close to or far away from the

cellulose fiber. The VDW interaction is short-ranged in nature. Therefore, at far

distances the VDW distributions for the hydrophilic and hydrophobic fiber faces

(dashed lines) overlap with each other and both are close to zero. However, when

the CBM comes closer to the fiber faces, the VDW interaction of CBM with the

hydrophobic fiber face (blue solid line in Figure 5.2) is ≈ 8 kcal/mol more favored

than that with the hydrophilic fiber face (red solid line in Figure 5.2). These results

suggest that both ES and VDW interactions contribute to the diffusional encounter

of CBM with the cellulose fiber, but that the VDW interactions dictate the observed

preferential binding of the CBM to the hydrophobic fiber faces.

The converged density map describes the binding probability of the CBM to the

cellulose fiber, which is related to an equilibrium binding constant, K. K can be

characterized by the ratio between an on-rate constant kon and an off-rate constant

koff , i.e., K = kon/koff . I consider below how the individual VDW and ES interac-

tions influence kon, koff , and thus K as a whole, on different fiber faces. I define

outer and inner surface boundaries, at (≤ 40 Å) and (≤ 15 Å), respectively, from

the fiber surface C1 atoms (Figure 5.9). These two surface boundaries were chosen

such that a sufficient number of CBM trajectories would cross them. I calculated

the fraction of the BD trajectories in which the CBM (the Cα atoms of Y5, Y31,

and Y32) started from the outer surface boundary and diffused to reach and bind

to the cellulose surface as a function of time. kon was then estimated by using the

first-passage time, τon - the earliest time when the CBM crossed the inner surface

boundary. Likewise, for the calculation of koff , only those trajectories in which the

CBM started from the inner surface boundary were included. I first calculated the

fraction of the trajectories that escaped from the inner surface boundary and reached

the outer surface boundary as a function of time. koff was then estimated by using

the first-passage time, τoff .

As listed in Table 5.3, kon is not very different between the hydrophobic and the hy-

drophilic faces, while koff increases from (0.14± 0.09) · 10−6 ps−1 to (0.58± 0.19) · 10−6 ps−1

when changing from the hydrophobic to the hydrophilic faces, leading to a reduction

of the CBM binding constant K by a factor of 5 on the hydrophilic face relative to the

hydrophobic face. This result is quite consistent with the above density map analysis.

On the hydrophobic faces, koff increases by two orders of magnitude when turning

off either the ES or the VDW interaction. In comparison, kon is only marginally

affected by turning off the VDW interaction, but is reduced by a factor of 9 when
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turning off the ES interaction. Taken together, the preferential binding of CBM to

the hydrophobic surfaces arises mainly from the different dissociation rates, koff .

For the binding of the CBM to the hydrophobic fiber face, koff is influenced by both

the VDW and ES interactions, while kon is more affected by the ES interaction than

the VDW interaction. The ES interaction accelerates the CBM binding from far

distances, while the VDW interaction becomes more dominant at short distances

and keeps the CBM more tightly bound to the hydrophobic faces (Figure 5.2).

5.2.2 Orientations of CBM on Hydrophobic Fiber Faces

To understand in more detail the CBM-cellulose fiber interaction, I analyzed the

orientations of the CBM relative to the fiber surfaces for those CBM configurations

located within the inner surface boundary of the hydrophobic faces. The analysis

shows that the CBM preferentially adopts a binding pose in which the hydrophobic

patch of the CBM stacks against the fiber face, with a probability of 57± 1%. The

stacked configurations were defined as those with the CBM hydrophobic patch (i.e.,

all the heavy atoms in the phenol rings of Y5, Y31, and Y32) located within 8 Å

of the fiber surface C1 atoms. The stacked configurations were further analyzed

by examining the alignment of the CBM with respect to the long fiber axis, which

was described by an angle αBD between the fiber axis and a line passing through

the three phenol ring centers of Y5, Y31, and Y32 (Figure 2.13). The probability

distribution of αBD for all the stacked CBM configurations is displayed in Figure 5.3,

and shows that the parallel (0°) and the anti-parallel (180°) orientations dominate.

Both parallel and anti-parallel orientations increase the CBM-fiber contacting surface

by ≈ 52 % compared to the perpendicular orientation, providing an explanation for

this preference.

Integration of the probability distribution of αBD in Figure 5.3, from 0°to 90°for

the parallel binding and from 90° to 180° for the anti-parallel binding, reveals that

the anti-parallel binding is slightly favored over the parallel one, with probabilities

of 56 ± 1 % vs. 44 ± 1 %. Both the CBM and the fiber have non-zero dipole mo-

ments: that of the CBM is 72 D, aligned roughly along the line connecting the three

Cα atoms of Y5, Y31, and Y32, while the cellulose fiber has a dipole moment of

489 D oriented along the fiber axis. Therefore, it is reasonable to speculate that the

dipole-dipole interaction may account for the observed preference for the anti-parallel

binding.

If the dipole-dipole interaction plays a role in the preferential anti-parallel binding, a

gradual anti-parallel alignment of the CBM relative to the fiber might be expected
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during the encounter process. To test this idea, I calculated the probability distri-

butions of the αBD angle during the BD simulations, and from that the fraction of

the parallel and anti-parallel orientations. As shown in Figure 5.3, the fraction of

the anti-parallel distribution AAP (t) indeed increases slowly over the time, reaching

a plateau at 56± 1 % after about 70 ns. Completely anti-parallel alignment of the

CBM was not observed in the BD simulations due in part to the CBM either escaping

from or coming too close to the fiber. In the latter case, the dipolar interaction

approximation broke down and local non-bonded (especially VDW) interactions

started to dominate, and these do not distinguish between the parallel and the

anti-parallel modes of binding.

Most exocellulase enzymes show remarkable directional specificity for their processive

activity. For instance, Cel7A hydrolyzes cellulose from the reducing end, while

Cel6A proceeds from the non-reducing end. This directional specificity has been

thought to arise from the structural arrangement of the enzyme active site allowing

the chemical reaction to proceed only along a specific direction [49,192–194]. The

present results suggest that the preferential anti-parallel CBM-fiber binding arising

from the dipole-dipole interaction may also potentially contribute to the directional

specificity of cellulase enzymes. The interplay between the CD and the CBM via the

linker at the molecular level is not fully characterized [62,195–198], and in particular

it is unclear whether the CD pushes the CBM [77, 197] or the CD pulls the CBM

during the processive hydrolysis of crystalline celluloses by harnessing the chemical

energy released from the cleavage of the glycosidic bond. The anti-parallel CBM-fiber

binding would support the second mechanism.

5.2.3 Characterization of CBM-Fiber Docking States

In order to provide a more quantitative description of the observed binding states

of the CBM on the fiber surfaces and their kinetic relationship, I built a MSM for

the CBM-fiber encounter process. For this, the cross-sectional area (the yz plane)

around the fiber was discretized into 100 states, which were then combined and

mapped onto individual fiber faces (Section 2.1 and Section 4.6). Figure 5.4 shows

the stationary distribution probability, πi, which gives the occupancy probability of

the CBM at a given fiber position i, and the mean exit time, texit,i which quantifies

the length of time the CBM stays bound to fiber position i before escaping. The

combined distribution probability and mean exit time together with the transition

probability, tii, for each fiber face are displayed in Figure 5.4. The hydrophobic fiber
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faces (1, 0, 0) and (-1, 0, 0) show averaged stationary distribution probabilities of

0.57 ± 0.2 % and 0.41 ± 0.1 %, respectively, as compared with that of 0.1 ± 0.1 %

for both hydrophilic faces (0, 1, 0) and (0, -1, 0), confirming that the hydrophobic

faces are more likely to be bound by the CBM than the hydrophilic faces. Moreover,

once reaching a given hydrophobic face, the CBM is more likely to stay bound, with

transition probabilities of 12± 1 % and 16± 1 % compared to the hydrophilic faces

which have probabilities of 10± 2 % and 9± 2 %. The corresponding mean exit times

are 1.4± 0.1 ns and 1.6± 0.1 ns for the hydrophobic faces, compared to 1.3± 0.1 ns

and 1.2± 0.1 ns for the hydrophilic faces. These MSM results broadly agree with

those from the above density map and kinetic analyses.

5.3 MD Simulations of Interaction of CBM with Fiber

Surfaces

Explicit water molecules and the internal flexibility of the CBM and the fiber are

not modeled in the BD simulation. This limitation of the BD approach is overcome

in the all-atom MD simulation, which provides a way to investigate the ultimate

details of how individual atoms move and which motions may be linked to biological

functions.

5.3.1 Contacts between CBM and Fiber Surfaces

To quantitatively examine the interaction of the CBM with the fiber surfaces, the

distance distributions p(d) between the heavy atoms in the phenol rings of Y5,

Y31, and Y32 and those on the fiber surfaces were calculated, which are plotted

in Figure 5.5. The mean distances between the CBM hydrophobic patch (con-

sisting of Y5, Y31, and Y32) and the hydrophobic faces are shorter than for the

hydrophilic fiber faces. Moreover, all the p(d) profiles for the hydrophobic fiber

faces show a single, prominent peak, while those for the hydrophilic fiber faces are

much more broadly distributed. Furthermore, the distance distributions for different

carbon atoms in the same Tyr ring peak at slightly shifted positions, indicating

the three Tyr rings being tilted relative to the fiber surface, which will be further

discussed below. The observed closer binding distances of Y5, Y31, and Y32 to

the hydrophobic fiber faces, together with their sharper distributions on these sur-

faces, indicate that the CBM interacts more strongly with the hydrophobic fiber faces.
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5.3.2 Hydroxymethyl Group Conformations

The hydroxymethyl groups on the fiber surfaces are directly involved in the interaction

of the cellulose fiber with the solvent and cellulolytic enzymes. It has been demon-

strated that the formation of the two intramolecular hydrogen bonds, O3H−O5 and

O2H−O6, critically depends on the particular conformation of the hydroxymethyl

group [38]. The hydroxymethyl conformation is defined by the dihedral angle χ

between O5, C5, C6, and O6 atoms of a pyranose residue. χ clusters around 180°, 60°,

and -60°, with the corresponding conformations named trans, gauche+, and gauche−,

respectively. Figure 5.6 shows a comparison between the χ probability distributions

for the different cellulose fiber surfaces that are in contact with the CBM and those

for a cellulose fiber only system (simulation MD2). Consistent with the cellulose

Iβ structure, all hydroxymethyl groups started from a trans conformation. As the

hydrophilic fiber faces interact relatively weakly with the CBM, the hydroxymethyl

groups were free to rotate to the more stable gauche+ conformation, as also observed

in the MD simulation containing only the cellulose fiber (MD2). In contrast, as the

hydrophobic fiber faces interact more strongly with the CBM, the hydroxymethyl

groups were rotationally hindered and did not rotate as freely away from the initial

trans conformation.

5.3.3 Tyrosine Side Chain Conformations

To characterize in further detail the interactions of the CBM with the fiber faces

of different hydrophobicity, I examined the binding conformations of the Tyr side

chains on the cellulose fiber surfaces by computing the two torsional angles χTyr,1 =

(C,Cα,Cβ,Cγ) and χTyr,2 = (Cα,Cβ,Cγ ,Cδ2). In the simulation of an isolated CBM

(MD1), the probability distributions of both χTyr,1 and χTyr,2 for Y5, Y31, and Y32

are all split into two peaks, except for χTyr,1 of Y32 that exhibits a single sharp peak

(Figure 5.6). When the CBM is bound to the hydrophobic fiber surfaces, nearly all

the Tyr torsional angle distributions show only one single peak, except for χTyr,2 of

Y5 that shows a small second peak. In contrast, on the hydrophilic fiber surfaces,

the χTyr,2 profiles of Y5, Y31, and Y32 all show two distinct peaks, very similar to

what is observed in the simulation of an isolated CBM. These results also show that

the probability distributions are generally more sharply peaked on the hydrophobic

faces than on the hydrophilic faces, suggesting the rotation of the three tyrosine side

chains is more restricted on the hydrophobic faces. These results are in agreement
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with the distribution profiles of χTyr,1 and χTyr,2 for Y5 reported previously [186],

although the present study has systematically shown the distribution profiles of the

three tyrosine side chains on all fiber faces.

The orientations of the three Tyr rings (Y5, Y31, and Y32) with respect to the fiber

surfaces are characterized by the α−β maps of the two vectors χTyr,1 and χTyr,2, and

these are displayed in Figure 5.7. Again, the α−β maps are more sharply peaked for

the hydrophobic than for the hydrophilic faces, indicating that the stack orientations

(β is centered at ≈ 90°) on the hydrophobic surfaces are more discriminating. The

tilting of a Tyr phenol ring towards the fiber face can be described by the inclination

angle β of the vector χTyr,1 or χTyr,2 (Figure 5.7c), with the tilt angle δ defined by

|β − 90°|. As shown in Figure 5.7d, on the hydrophobic faces the three Tyr rings

are all slightly tilted, by 6.0° to 10.3° (Table 5.9), such that the Oξ atom is closer

to the fiber surfaces than the Cγ atom. In particular, the tilting of Y31, which

borders the CBM bottom and wedge faces, substantiates its possible role in helping

load a detached cellulose chain over the CBM wedge face [55]. The alignment of

a Tyr phenol ring relative to the fiber long axis can be described by the azimuth

angle α of the vector pTyr,1 or pTyr,2. As shown in Figure 5.7d, on the hydrophobic

faces, the Y31 ring orients parallelly (pointing to the non-reducing end) while Y32

anti-parallelly (pointing to the reducing end) relative to the cellulose chain. Y5 is

located at the rear end of the CBM and therefore its orientation is less restricted,

consistent with the side chain torsional angle analysis provided in Figure 5.6. In the

course of the simulations (MD7 and MD8), the three Tyr rings orient in such a way

that the contact surface area is maximized to enhance the interaction between the

CBM and the hydrophobic fiber surfaces.

5.3.4 Hydration at CBM-Fiber Interfaces

To investigate possible roles of dewetting in the CBM-fiber binding, I examined the

hydration between the CBM and the fiber surfaces by counting the number of water

molecules within 4.5 Å of the ring carbon atoms of Y5, Y31, and Y32. A significantly

smaller number of solvent molecules were found for the hydrophobic than for the

hydrophilic fiber faces (Table 5.3). However, a complete dewetting between the

CBM and the hydrophobic fiber surfaces did not occur, possibly because the CBM

hydrophobic patch is relatively small and surrounded by many polar residues, such as

H4, Y5, Q7, N29, Y31, Y32, and Q34. The observed partial dewetting phenomenon

resembles what has been observed previously for peptide folding and protein-protein
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interactions in which where water molecules were removed from between the two

hydrophobic surfaces [199–203]. The partial dewetting brings the CBM and the fiber

surfaces closer, which in turn increases the probability of hydrogen bonding between

the two macromolecules.

5.3.5 CBM-Fiber Hydrogen Bonds

While mutagenesis studies suggested that N29, Y31, and Q34 form hydrogen bonds

with the cellulose fiber [55, 188,204], MD simulations have found that Y5, Q7, N29,

Y31, and Y32 form hydrogen bonds with the primary alcohol groups on the cellulose

surface [62, 205]. Moreover, the MD study has shown that Q2, S3, and H4 also form

hydrogen bonds with broken cellulose chain ends.

Here, to ensure a statistically meaningful comparison, only those hydrogen bonds

with an occupancy ≥ 5 % are considered. According to this criterion, H4, Y5, Q7, I11,

L28, N29, Y31, Y32, and Q34 are engaged in hydrogen bonding with the cellulose

fiber, although at no time all these hydrogen bonds are present simultaneously

(Table 5.4). Of these, N29 has the highest probability of intermolecular hydrogen

bonding (Figure 5.8). H4, which has been shown to hydrogen bond with a broken

chain [62], is found to also form hydrogen bonds with the intact cellulose fiber faces.

It is interesting to note that N29 is more likely to form a hydrogen bond with the

hydrophobic than with the hydrophilic fiber faces. Significantly higher hydrogen

bond occupancy is also found for Q34 on the hydrophobic face (-1,0,0) than on the

other faces. For all the other hydrogen bonds, no statistically significant difference

is found between the hydrophobic and hydrophilic fiber faces. Overall, the CBM

populates more hydrogen bonds with the hydrophobic than with the hydrophilic fiber

faces (the average occupancy is 39.5± 15.9 % larger). These results are consistent

with previous computational [62,205] and experimental studies [55,188,204].

5.3.6 CBM Diffusion on Fiber Surfaces

The motion of the CBM on the cellulose fiber surface can be approximately described

as a Brownian diffusion [206–208], which can then be quantified by the translational

diffusion coefficient DCBM,x
trans . Assuming a Brownian diffusion along the x axis of the

cellulose fiber, DCBM,x
trans was calculated from the mean square displacement of the
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CMB using the Einstein relation in the x dimension,

DCBM,x
trans = limx→∞

〈
[x(t+ t0)− x(t0)]2

〉
t0
, (5.7)

where x(t) is the position of the center of the CBM at time t. The thus calculated

diffusion coefficients of the CBM on the fiber surfaces are in the range of 0.25 to

2.63 Å2/ns (Table 5.5), consistent with previous studies [209–211]. These values are

of the same order of magnitude but smaller than that of the free CBM in solution

obtained from MD1 (Table 5.6), indicating that the CBM diffusion is hindered when

in close contact with the cellulose fiber. Also, I find that the diffusion constant is

≈ 90 % smaller on the hydrophobic faces than on the hydrophilic faces (Table 5.5).

5.4 Summary

The deconstruction of cellulosic biomass by Cel7A can be roughly subdivided into

the steps (S1) to (S6) (Section 4.3). This thesis provides atomic-detail insights into

steps (S1)-(S3), the BD concerning primarily (S1) and the MD (S2)-(S3), while steps

(S4)-(S6) require QM simulations and are outside the scope of this thesis.

(S1) Initial Encounter of CBM with Cellulose Fiber. The BD results show a

clear preference for the CBM to dock to the hydrophobic faces of the cellulose fiber,

with both the electrostatic and van der Waals interactions being required for the

observed preference. The most favorable docking orientation is a parallel stacking

of the CBM bottom surface formed by Y5, Y31, and Y32 against the hydrophobic

fiber faces, suggesting that the non-polar van der Waals interaction is a relevant

driving force for the initial CBM-fiber encounter (Figure 5.2). At wide separation

distances, the electrostatic interaction accelerates the diffusional encounter process,

as evidenced by the decrease of kon by one order of magnitude observed when turning

off the electrostatic interactions in the BD simulations. Moreover, the dipole-dipole

interaction between the CBM and the cellulose fiber also helps align the CBM

antiparallel to the fiber axis, which may contribute to the directional specificity of

the Cel7A enzyme [77,197] (Figure 5.3). Furthermore, the kinetic and MSM analyses

indicate that the thermodynamic preference for the hydrophobic fiber faces of the

CBM binding arises mainly from a slower koff rate. That is, the hydrophobic fiber

faces are stickier for CBM binding than are the hydrophilic ones.

(S2) Diffusion on Fiber Surface. Once docked to the cellulose fiber, the CBM

diffuses on the fiber surfaces to locate the regions for better binding, i.e., the molecule
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makes a transition from a 3-dimensional search to a 2-dimensional local search. As

listed in Table 5.5 and 5.6, the present MD results that the diffusion of the CBM

on all the fiber surfaces is hindered, with the diffusion on the hydrophobic surfaces

being more restricted than that on the hydrophilic ones. The calculated absolute

effective velocities for the CBM of 0.36± 0.20 Å/ns on the hydrophilic surfaces and

0.10± 0.08 Å/ns on the hydrophobic surfaces broadly agree with those of 0.44 to

1 Å/ns obtained in a previous MD study [62], but are several orders of magnitude

greater than the experimentally measured [212] sliding velocity of 3.5 · 10−8 Å/ns

of an intact Cel7A on crystalline cellulose. Possible reasons for this difference are

two fold: (1) different structures were used in these studies, i.e., a heavier, intact

Cel7A in the experiment vs. only an isolated CBM in the simulations and (2) the

experimentally measured velocity corresponds to that of a reaction-coupled diffusion,

in which other rate-limiting processes, such as chemical reaction, cellulose decrys-

tallization and processive threading of a detached single cellulose chain inside the

catalytic tunnel, may also be involved.

(S3) Binding of CBM to Fiber Surface. After having located a potential bind-

ing site on the hydrophobic fiber surfaces, the CBM moves closer to the fiber surfaces,

which is coupled with partial removal of the interfacial water molecules. Meanwhile,

the CBM adjusts its conformation to bind more strongly to the cellulose fiber, similar

to a induced fit mechanism. The contact surface area between the CBM and the fiber

is increased by stacking the Y31 and Y32 rings against the two cellulose pyranose

rings, and extending them (towards the non-reducing and reducing ends for Y31

and Y32, respectively) along the fiber axis direction. The total number of hydrogen

bonds between the CBM and the fiber surfaces is also increased to 14.1± 1.5. These

hydrogen bonds are expected to play an important role in stabilizing the CBM-fiber

complex and may also explain why the diffusion of the CBM is hindered on the fiber

surfaces. The MD simulation results indicate that the hydrogen bonding occupancy

is 39.5± 15.9 % greater for the hydrophobic than for the hydrophilic fiber faces,

indicating that local polar interactions also contribute to the preferential binding of

the CBM to the hydrophobic over the hydrophilic surfaces. Overall, the simulation

results presented support the conclusion that the nature of the CBM-cellulose bind-

ing is neither purely hydrophobic nor purely polar, instead involving both types of

interaction. The apparent contradiction in previous experiments [189,190] can be

reconciled by noting the fact that the hydrophobic interaction likely diminishes for

the binding of the CBM to non-crystalline cellulose.

Experimental studies have shown that mutation of Y31 to His, Asp, or Ala reduces
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the binding and activity of the Cel7A on crystalline cellulose to a level similar to an

isolated CD [55]. The presented α− β maps suggest in the CBM-fiber complex the

rotation of Y31 is less restricted than Y32, but more restricted than Y31 in the free

CBM simulation (Figure 5.7). Moreover, the simulations suggest a conformational

rearrangement of Y31, permitting it to stack against the hydrophobic fiber surfaces.

It is also interesting to note that the phenol ring of Y31 is slightly tilted towards the

fiber surface (Figure 5.7), and in this tilted position Y31 is more likely to hydrogen

bond with the cellulose fiber (Figure 5.8). The lack of either stacking or hydrogen

bonding interaction with the cellulose fiber might explain why the mutations of Y31

in the previous study [55] have reduced the binding activity of Cel7A on crystalline

cellulose.

Y13 has been suggested to undergo a conformational change induced by a broken

cellulose chain end, moving away from the protein interior to the wedge surface to

make VDW contact with the broken cellulose chain [62]. In all the present simulations

with an intact cellulose fiber (no broken chain), Y13 remains protruding out of the

wedge surface, with an average solvent accessible surface area (SASA) [213] of > 69 Å2

(Table 5.7). Y13 is even fully solvent exposed in 5 out of the 52 trajectories, with an

SASA of 145.3± 13.8 Å2, in comparison to an average SASA of 78.6 Å2 to 152.4 Å2

for the three surface-forming residues Y5, Y31, and Y32 (Table 5.7). Therefore, my

simulations suggest that the observed conformational change of Y13 reported in

Ref. [62] can also occur in the absence of a broken cellulose chain, although I cannot

exclude the possibility that the solvent-exposed Y13 may be further stabilized by

the broken chain end.

Overall, my simulation results provide atomic-level details of the encounter and

binding of the CBM to the cellulose fiber, which are broadly consistent with a large

body of experimental data on the CBM interaction with crystalline cellulose, and

can serve as a basis for engineering improved CBMs for enzymatic deconstruction of

insoluble celluloses.
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BD simulations kon [10−6ps−1] koff [10−6ps−1] kon/koff

ES+VDW (hydrophilic) 1.10±0.10 0.58±0.19 1.89
ES+VDW (hydrophobic) 1.30±0.30 0.14±0.09 9.20

ES (hydrophobic) 0.90±0.30 18.29±1.92 0.05
VDW (hydrophobic) 0.14±0.10 19.07±1.08 0.01

Table 5.3: Association and dissociation rates of the binding of the CBM
to different cellulose fiber surfaces calculated from the CBM-fiber BD
simulations.

Number of water molecules
CBM docking face Y5 Y31 Y32 Y5, Y31, Y32

CMB only 3.4± 2.3 3.2± 2.3 2.4± 1.7 8.8± 4.0
(1, 0, 0) hydrophobic 2.0± 1.3 2.6± 1.4 0.6± 0.7 5.1± 2.1
(-1, 0, 0) hydrophobic 2.1± 1.3 2.2± 1.4 0.8± 0.9 5.1± 2.1
(0, 1, 0) hydrophilic 3.7± 1.8 2.7± 1.7 1.9± 1.3 8.2± 2.7
(0, -1, 0) hydrophilic 3.3± 1.9 2.3± 2.0 2.1± 1.7 7.7± 3.7

(-1, 1, 0) mixed 3.9± 1.9 2.1± 1.3 1.5± 1.3 7.1± 2.4
(1, -1, 0) mixed 3.5± 1.9 2.9± 1.9 0.7± 0.9 7.5± 2.6

Table 5.4: Number of water molecules within a radius of 4.5 Å around
the residues Y5, 31, and 32 calculated for the MD simulations (MD1,
and MD3 to MD12).

Percentages of simultaneous hydrogen bonds (H4, Q7, N29, Q34)
CBM docking face 0 1 2 3 4

(1, 0, 0) hydrophobic 3.1 % 30.2 % 45.1 % 19.6 % 2.0 %
(-1, 0, 0) hydrophobic 0.3 % 17.9 % 65.2 % 14.5 % 2.1 %
(0, 1, 0) hydrophilic 15.5 % 32.6 % 29.1 % 16.7 % 6.2 %
(0, -1, 0) hydrophilic 41.0 % 27.0 % 22.4 % 9.0 % 0.7 %

(-1, 1, 0) mixed 14.2 % 18.3 % 50.4 % 14.1 % 2.9 %
(1, -1, 0) mixed 3.1 % 21.7 % 45.7 % 27.3 % 2.2 %

Table 5.5: Overview of the probabilites of hydrogen bonds formed
simultaneously between the cellulose fiber and the CBM residues H4,
Q7, N29, and Q34 [61,62].
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CBM docking face Set DCBM,xyz
trans [Å2/ns] DCBM,x

trans [Å2/ns]

(1, 0, 0) hydrophobic MD3, MD7 0.21±0.18 0.25±0.14
(-1, 0, 0) hydrophobic MD4, MD8 0.31±0.25 0.45±0.39
(0, 1, 0) hydrophilic MD5, MD9 1.79±1.18 1.99±1.12
(0, -1, 0) hydrophilic MD6, MD10 4.26±2.20 2.63±1.06

(-1, 1, 0) mixed MD11 0.31±0.12 0.39±0.16
(1, -1, 0) mixed MD12 0.80±0.21 0.48±0.26

Table 5.6: Translational diffusion coefficients of the CBM on different
cellulose fiber faces. DCBM,xyz

trans denotes the diffusion of the CBM in three
dimensions and DCBM,x

trans is the diffusion along the cellulose fiber x-axis.

Dtrans [Å2/ns] Drot [10−3rad2/ns]

free 36-chain 5.00 0.10
free Cel7A 5.50 2.39

free CD 7.01 5.14
free CBM 16.40 66.16

Table 5.7: Translational and rotational diffusion coefficients Dtrans and
Drot for the free 36-chain cellulose fiber model, the entire Cel7A, the CD,
and the CBM. The experimental estimated diffusion coefficient for the
Family 2 CBM bound on the cellulose surface is 0.0002 . . . 0.012 [210].

Average solvent accessible surface area [Å2]
CBM docking face Set Y5 Y13 Y31 Y32

CMB only MD1 147.7± 13.8 72.0± 8.9 144.9± 13.5 83.0± 11.7

(1, 0, 0) hydrophobic MD3, MD7 141.5± 13.6 69.0± 7.5 141.1± 10.0 78.6± 10.4
(-1, 0, 0) hydrophobic MD4, MD8 147.4± 13.9 71.6± 8.8 142.4± 11.1 83.8± 11.2
(0, 1, 0) hydrophilic MD5, MD9 141.8± 13.9 70.2± 8.3 143.4± 11.1 82.7± 10.6
(0, -1, 0) hydrophilic MD6, MD10 142.1± 13.9 70.6± 8.3 143.9± 11.7 84.4± 12.0

(-1, 1, 0) mixed MD11 146.6± 13.8 74.6± 10.5 145.1± 10.6 83.2± 10.3
(1, -1, 0) mixed MD12 152.4± 13.8 70.8± 8.8 148.9± 13.4 84.4± 10.4

Table 5.8: Average solvent accessible surface area of the CBM residues
Y5, Y13, Y31, and Y32.

CBM docking face Set Y5 Y31 Y32

(1, 0, 0) hydrophobic MD3, MD7 10.3°±3.1° 6.0°±2.2° 6.3°±2.1°
(-1, 0, 0) hydrophobic MD4, MD8 10.3°±3.1 10.0°±3.2° 6.3°±2.2°

Table 5.9: Tilt angle δ between the Tyr ring relative to the fiber surface
plane (δ = |β − 90°| Figure 5.1c).
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Figure 5.1: (Top) The CBM-fiber density maps for the BD sets BD5 to
BD8 are shown in (a) to (d), respectively. (Bottom) The BD trajectories
of the BD set BD5 were randomly split into two subsets, and the density
map for each subset is shown in figure (a1) or (a2). The density maps for
the BD set BD14 is shown in figure (e). The interaction terms include
electrostatic (ES), van der Waals (VDW), hydrophobic desolvation (HD)
and electrostatic desolvation (ED).
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Figure 5.2: Distributions of ES (top) and VDW (bottom) CBM-fiber
interaction energies for the hydrophobic (1, 0, 0) (blue lines) and the
hydrophilic (0, 1, 0) (red lines) cellulose fiber faces. The areas under the
distributions are normalized to 100 %. The distributions for the CBM
close to the fiber face (< 15 Å) are plotted as solid lines and those for
the CBM far from the fiber face (> 40 Å) as dashed lines. The cutoff
distances are defined as between the C1 atom of the fiber surface and
the Cα atoms of Y5, Y31, and Y32 of the CBM.
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Figure 5.3: (Top) Probability of the anti-parallel alignment of the
CBM with respect to the cellulose fiber as a function of time. (Bottom)
Probability distribution of the orientational angle αBD of the CBM
relative to the fiber axis is shown for those CBM states with the Tyr
rings stacked against the hydrophobic fiber faces. The area under the
histogram is normalized to 100 %. AP sums the histogram density from
0° to 90° (parallel alignment) and AAP from 90° to 180° (anti-parallel
alignment).
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Figure 5.4: (Top) Averaged stationary distribution πi (green), mean
exit time texit,i (red) and probability tii (violet) for all fiber faces. Bins at
the corners cannot be associated clearly with any specific fiber face, thus
are neglected in the analysis. Visualization of the stationary distribution
πi (bottom left) and mean exit time texit,i (bottom right) for the CBM-
fiber encounter process in BD dataset BD5.
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Figure 5.5: Probability distributions p(d) of the distances between the
non-hydrogen atoms of the fiber surfaces and those in the phenol rings
of the three Tyr residues Y5, Y31, and Y32.
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Figure 5.6: (Top) Density distributions of the dihedral angles χTyr,1
and χTyr,2 of Y5, Y31, and Y32. The dashed lines represent the system
containing only the CBM and the solid curves representing the CBM-fiber
systems. (Bottom left) Hydroxymethyl and Tyr residue dihedral angles.
(Bottom right) Density distributions of the hydroxymethyl dihedral angle
χFb36.
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Figure 5.7: (a) Sketch of different orientations of the Tyr ring in the
α− β map of either pTyr,1 or pTyr,2. The head of the vector is denoted
with a dot and the tail with a cross. (b) The two vectors pTyr,1 and
pTyr,2 that define the orientation of a Tyr ring; (c) the components of a
vector p in Cartesian (x, y, z) and spherical polar (r, α, β) coordinates,
with α being the azimuth and α the inclination angle; (d) α− β maps of
the vector pTyr,1 (columns 1 to 3) and pTyr,2 (columns 4 to 6) for Y5,
Y13, Y31, and Y32 rings on different fiber faces.
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Figure 5.8: Average lifetime, tH and average occupancy, oH of represen-
tative hydrogen bonds at the interfaces between the CBM and different
cellulose fiber faces.
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Figure 5.9: Probability distributions of the distances between the
CBM hydrophobic patch and the cellulose fiber. The minimal distances
between the Cα atoms of Y5, Y31, and Y32 to the fiber surface atoms C1

are histogrammed and plotted. On both hydrophilic and hydrophobic
fiber faces a distinct peak is visible. The CBM cannot approach the
hydrophilic fiber faces so close as the hydrophobic ones, likely due in
part to the fact that the hydrophilic faces are more “hilly” than the
hydrophobic ones (inlay figure).
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long made only a work of the brain and the

fancy. It is now high time that it should

return to observations.

Robert Hooke 1635-1703Chapter 6

Role of Cel7A Linker

The research presented in this Chapter is based on the paper entitled “Effect of the

Linker Length and Stiffness on the Interaction of Cellulase Cel7A with the Cellulose

Iβ Crystal Model” and which is to be submitted.

Prior experimental studies [74,214] suggest that the binding and enzymatic efficiency

of cellulases are affected when the linker is shortened or removed. The role of the

Cel7A linker on binding to bacterial microcrystalline cellulose was investigated [74].

Deletion of approximately one third of the linker peptide (residue 18 to 23 in the

hinge region, Figure 2.15) resulted in reduced binding capacity of Cel7A but the

enzymatic activity on crystalline cellulose was not affected. After deleting the entire

linker, Cel7A was found to still bind to cellulose but the degradation activity rate

of crystalline cellulose was dramatically reduced. Interaction of the cellulase CenA,

which is another cellulase similar to Cel7A, but with different cellulose substrates

was also studied in Ref. [214]. The deletion of the 23 amino acid Pro-Thr linker

altered the relative orientation of the CD and CBM domains of CenA. The binding

of the enzyme to cellulose was not affected but the catalytic efficiency of CenA

was reduced. In contrast, the deletion of the Ser-rich linker from xylanase A of P.

fluorescena sep. cellulosa, which has a structure similar to Cel7A, does not alter

the binding properties with avial crystalline cellulose [215]. In a stochastic model

in which the CD and CBM of a general cellulase enzyme were described as coupled

random walkers it was found that the linker stiffness is an important factor governing

the hydrolysis rates [21]. Also, several simulation studies have addressed the role of

the Cel7A linker [43,77,196]. Ref [196] reported the parameters for a coarse grain

forcefield for the isolated Cel7A linker in implicit solvent, using 360 ns of REMD

simulations. A 1.5 ns MD study was the first reported simulation on the Cel7A-fiber

complex [43]. A 23 ns MD study of the isolated Cel7A linker peptide found that the

linker exhibits two stable states [77].

The above experimental, theoretical, and simulation studies indicate that the linker

plays a role in the activity of Cel7A on cellulose. The question however remains,

what is the in detail role of the Cel7A linker length and stiffness is on the CBM-fiber

and CD-fiber interaction with cellulose Iβ. To answer this question I employed a

97
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simulation model in which I systematically altered length and stiffness of the linker

to investigate the interaction of Cel7A with cellulose Iβ.

In the first stage of the work linker coarse grain parameters are derived from explicit

solvent MD simulations with a combined simulation time of >5 µs. I found two

different Cel7A linker states, “extended” and “compact”, which I discussed in this

study. In the second stage these parameters are used in BD simulations (>45000

trajectories) performed with a combined simulation time of >45 ms. In the BD

simulations the linker is modeled as a Hookean spring [216], and I vary the linker

length and stiffness to examine their effect on the CBM-fiber and CD-fiber interaction.

Based on the BD simulations I propose a linker length and stiffness optimised for

both the CBM-fiber and the CD-fiber interactions.

6.1 Simulation and Analysis Details

6.1.1 BD and MD Simulations

The goal of the BD simulation is not to fill the model with undue details but rather

to capture the effect of the linker length and flexibility on the Cel7A-fiber interaction.

The linker was therefore modeled as a Hookean spring, this assumption being justified

by the high fraction of Pro and Thr residues and the linker glycosylation [79,217–219]

(Figure 2.15). A high Pro and Gly content are in general indicators for elasticity [217].

Gly, lacking any side chain, provides flexibility. The cyclic side chain of Pro makes

the linker peptide stiff and highly restricted in its secondary structure formation. The

study [79] showed, that the linker glycosylation can enable an extended conformation.

Each coarse grain linker spring model contains less information then a full atomic

linker model. To ensure that the results I observe are not a side effect of how the

linker is modeled, I study here three different spring models 1 to 3 (Figure 6.4). In

model 1 the linker is represented as a single spring, which is attached to the same

CBM and CD residues to which the linker was attached. In model 2 the linker is

represented also as a single spring, but extending from the center of the CBM to the

center of the CD. Therefore the model 2 compared to model 1 has a lower probability

that the CBM and CD surface atoms will touch each other (Figure 6.4). Model 3 is a

combination of model 1 and 2, the linker is represented by two springs. Linker model

1 is more similar to the full atomic model used in the MD simulations compared to

model 2 and 3. The different BD sets are summarized in Table 6.2 and Table 6.3.

The CD glycosylation residues were included in the BD simulation.

To obtain reliable linker coarse grain parameters for the BD simulation and analysis
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ten sets of MD simulations, labelled MD1 to MD3f, were performed (Table 6.1). The

sets MD1, MD2a, MD2b, and MD2c contain only the cellulose fiber, or the CBM,

or the CD, or the Cel7A, respectively. The sets MD3a to MD3f contain both the

Cel7A and the cellulose fiber. For MD3a to MD3f the starting structures, prior to

minimization, were created such that the CD and the CBM are at a distance of 3.5 Å

from the fiber surface, and this distance was also used in a previous MD study [43].

Each biomolecule was then solvated in a water box with 15 Å to 20 Å solvent padding

on all sides. Sodium and chloride counter ions were added to neutralize each system

and create an ionic concentration of 100 mM [43].

6.1.2 Spring Stiffness and Equilibrium Length

The linker was modeled as a Hookean spring with a spring stiffness kLk and a

equilibrium length dLk. Both parameters were calculated from the sets MD2c to

MD3f (Table 6.1), by using the potential of mean force (PMF) approach presented

in Ref. [196]. The histogram of the end-to-end distance of the linker length dLkO

(Figure 2.14) was converted into a relative free energy scale by computing the negative

natural logarithm (Figure 6.1). Hooke’s law was fitted to the resulting free energy

plot to derive kLk and dLk.
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Å

349975

M
D

3
b

C
el7

A
a
n
d

3
6-ch

ain
(-1,

0,
0)

h
y
d

rop
h

ob
ic

5
60

n
s

(300
n

s)
240
×

126
×

120
Å
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Å

B
D

3a
B

D
3b

B
D

3c
B

D
3d

B
D

3f
B

D
3h

B
D

3j

T
a
b
le

6
.2
:

In
th

e
B

D
si

m
u

la
ti

o
n

se
ts

d
iff

er
en

t
li

n
k
er

eq
u

il
ib

ri
u

m
le

n
g
th

s
a
n
d

st
iff

n
es

s
a
re

u
se

d
,

th
e

se
ts

a
re

ca
te

g
o
ri

ze
d

in
a

ta
b
le

fo
rm

.
T

h
e

to
p
,

m
id

d
le

,
a
n

d
b

o
tt

o
m

ta
b

le
su

m
m

a
ri

ze
s

th
e

B
D

si
m

u
la

ti
o
n

se
ts

fo
r

th
e

li
n
k
er

m
o
d
el

s
1
,

2
,

a
n
d

3
re

sp
ec

ti
v
el

y.



1
0
2

R
o
le

o
f

C
e
l7

A
L

in
k
e
r

Table 6.3: The BD simulation set can contain the 36-chain fiber, the
CD, and the CBM as Brownian particle (BP). The interaction between
the CBM, the CD, and the 36-chain cellulose fiber are modeled using
electrostatic (ES) and van der Waals interactions (VDW) terms. If both
interaction terms are switched off free diffusion (FD) is observed. Three
different models 1 to 3 (Figure 6.4) are used to approximate the linker.

Name Biomolecule Nr.

of tra-

jecto-

ries

Length of single

trajectory (total

simulation time)

Interaction terms Spring

model

BD0a 36-chain 1 1 µs FD (1 BP) -

BD0b CD 1 1 µs FD (1 BP) -

BD0c CBM 1 1 µs FD (1 BP) -

BD0d Cel7A (kLkO = 0.66 kBT/Å, dLkO = 44.53 Å) 1000 350 ns (350 µs) ES, VDW (2 BP) 1

BD1a3 Cel7A 36-chain (kLkO = 0.04 kBT/Å, dLkO = 44.53 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1a4 Cel7A 36-chain (kLkO = 0.04 kBT/Å, dLkO = 53 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1a5 Cel7A 36-chain (kLkO = 0.04 kBT/Å, dLkO = 60.74 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1a6 Cel7A 36-chain (kLkO = 0.04 kBT/Å, dLkO = 67 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1a7 Cel7A 36-chain (kLkO = 0.04 kBT/Å, dLkO = 74 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1b4 Cel7A 36-chain (kLkO = 0.35 kBT/Å, dLkO = 53 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1c1 Cel7A 36-chain (kLkO = 0.66 kBT/Å, dLkO = 20 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1c2 Cel7A 36-chain (kLkO = 0.66 kBT/Å, dLkO = 35 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1c3 Cel7A 36-chain (kLkO = 0.66 kBT/Å, dLkO = 44.53 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1c4 Cel7A 36-chain (kLkO = 0.66 kBT/Å, dLkO = 53 Å) 1000 1µs (1 ms) ES, VDW (3 BP) 1

BD1c5 Cel7A 36-chain (kLkO = 0.66 kBT/Å, dLkO = 60.74 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1
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BD1c6 Cel7A 36-chain (kLkO = 0.66 kBT/Å, dLkO = 67 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1c7 Cel7A 36-chain (kLkO = 0.66 kBT/Å, dLkO = 74 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1d3 Cel7A 36-chain (kLkO = 1.01 kBT/Å, dLkO = 44.53 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1d4 Cel7A 36-chain (kLkO = 1.01 kBT/Å, dLkO = 53 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1d5 Cel7A 36-chain (kLkO = 1.01 kBT/Å, dLkO = 60.74 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1d6 Cel7A 36-chain (kLkO = 1.01 kBT/Å, dLkO = 67 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1d7 Cel7A 36-chain (kLkO = 1.01 kBT/Å, dLkO = 74 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1e4 Cel7A 36-chain (kLkO = 1.5 kBT/Å, dLkO = 53 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1f3 Cel7A 36-chain (kLkO = 2 kBT/Å, dLkO = 44.53 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1f4 Cel7A 36-chain (kLkO = 2 kBT/Å, dLkO = 53 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1f5 Cel7A 36-chain (kLkO = 2 kBT/Å, dLkO = 60.74 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1f6 Cel7A 36-chain (kLkO = 2 kBT/Å, dLkO = 67 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1f7 Cel7A 36-chain (kLkO = 2 kBT/Å, dLkO = 74 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1g4 Cel7A 36-chain (kLkO = 2.5 kBT/Å, dLkO = 53 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1h4 Cel7A 36-chain (kLkO = 3 kBT/Å, dLkO = 53 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1i4 Cel7A 36-chain (kLkO = 3.5 kBT/Å, dLkO = 53 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1j3 Cel7A 36-chain (kLkO = 3.88 kBT/Å, dLkO = 44.53 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1j4 Cel7A 36-chain (kLkO = 3.88 kBT/Å, dLkO = 53 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1j5 Cel7A 36-chain (kLkO = 3.88 kBT/Å, dLkO = 60.74 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1j6 Cel7A 36-chain (kLkO = 3.88 kBT/Å, dLkO = 67 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD1j7 Cel7A 36-chain (kLkO = 3.88 kBT/Å, dLkO = 74 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 1

BD2a Cel7A 36-chain (kLkC = 0.017 kBT/Å, dLkO = 66.81 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 2

BD2b Cel7A 36-chain (kLkC = 0.15 kBT/Å, dLkO = 66.81 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 2

BD2c Cel7A 36-chain (kLkC = 0.28 kBT/Å, dLkO = 66.81 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 2
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BD2d Cel7A 36-chain (kLkC = 0.43 kBT/Å, dLkO = 66.81 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 2

BD2f Cel7A 36-chain (kLkC = 0.85 kBT/Å, dLkO = 66.81 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 2

BD2h Cel7A 36-chain (kLkC = 1.28 kBT/Å, dLkO = 66.81 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 2

BD2j Cel7A 36-chain (kLkC = 1.65 kBT/Å, dLkO = 66.81 Å) 1000 1 µs (1 ms) ES, VDW (3 BP) 2

BD3a Cel7A 36-chain (kLkO = 0.04 kBT/Å, dLkO = 44.53 Å, kLkC = 0.017 kBT/Å,

dLkC = 66.81 Å)

1000 1 µs (1 ms) ES, VDW (3 BP) 3

BD3b Cel7A 36-chain (kLkO = 0.35 kBT/Å, dLkO = 44.53 Å, kLkC = 0.15 kBT/Å,

dLkC = 66.81 Å)

1000 1 µs (1 ms) ES, VDW (3 BP) 3

BD3c Cel7A 36-chain (kLkO = 0.66 kBT/Å, dLkO = 44.53 Å, kLkC = 0.28 kBT/Å,

dLkC = 66.81 Å)

1000 1 µs (1 ms) ES, VDW (3 BP) 3

BD3d Cel7A 36-chain (kLkO = 1.01 kBT/Å, dLkO = 44.53 Å, kLkC = 0.43 kBT/Å,

dLkC = 66.81 Å)

1000 1 µs (1 ms) ES, VDW (3 BP) 3

BD3f Cel7A 36-chain (kLkO = 2 kBT/Å, dLkO = 44.53 Å, kLkC = 0.85 kBT/Å,

dLkC = 66.81 Å)

1000 1 µs (1 ms) ES, VDW (3 BP) 3

BD3h Cel7A 36-chain (kLkO = 3 kBT/Å, dLkO = 44.53 Å, kLkC = 1.28 kBT/Å,

dLkC = 66.81 Å)

1000 1 µs (1 ms) ES, VDW (3 BP) 3

BD3j Cel7A 36-chain (kLkO = 3.88 kBT/Å, dLkO = 44.53 Å, kLkC = 1.65 kBT/Å,

dLkC = 66.81 Å)

1000 1 µs (1 ms) ES, VDW (3 BP) 3
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6.2 Cel7A Extended and Compact State

Here I examine if the Cel7A has one or several different preferred states. First, I look

at the different states. Second, I compare the case of Cel7A docked to a cellulose

surface with the case of an isolated Cel7A. Third, I look at the driving force for the

transition from the extended into the compact state. Fourth, I examine the role of

the linker glycosylation. In the last step, I compare my findings with experimental

data.

To define different states I examined in the MD simulations (set MD2c) the histogram

of the distance dCD,CBM between the Cα atoms of the CBM and CD surface residues

(Figure 2.14). The histogram exhibits several minima (Figure 6.2 middle), the

position of the first minimum was used to define two states: if dCD,CBM is for the

surface side chain atoms < 7 Å (for the Cα atoms < 11 Å) I define Cel7A to be in

the compact state, and otherwise it is in the extended state (Figure 6.2 middle and

bottom). I have observed in four of the five MD trajectories of set MD2c and all BD

trajectories that the free floating Cel7A linker has two different states, here referred

to as “extended” and “compact” (Figure 6.3). The MD and BD trajectories were all

started in the extended state, the transition of the free floating Cel7A (MD2c and

BD0d) to the compact state starts at ≈ 40 ns (for MD see Figure 6.2 top). My MD

simulations indicate that the linker glycosylation (Figure 2.15) can not prevent the

transition of Cel7A from the extended to the compact state.

Now I examine the Cel7A states for two cases (a) when Cel7A is free floating and (b)

when it is docked to a cellulose fiber. The hydrophobic interaction is short range in

nature, if the CBM and CD surface Cα atoms in the BD simulations are closer then

< 7 Å to the hydrophobic fiber face (1, 0, 0) I define Cel7A to be docked to the fiber.

I define Cel7A as free floating if the CBM and CD surface Cα atoms have a distance

of > 100 Å to the fiber surface. The glycosylated linker in theoretical case of being

fully extended form has a length of ≈ 99 Å and the ES interaction is long range,

with this two distance cutoffs it is ensured that there is no significant interaction

between the enzyme and the fiber. In the Cel7A-fiber complex MD simulation (MD3a

to MD3f) the Cel7A surface atoms were in close contact to the fiber surface the

transition of Cel7A from the extended into the compact state was not observed in

MD3a to MD3f. In the BD simulations the free floating Cel7A prefers to go from

the compact into the extended state, when Cel7A docks to the hydrophobic fiber

face (1, 0, 0) (Table 6.4). In the BD simulations, once Cel7A escapes from the fiber

surface and is free floating, it prefers going back into the compact state (Table 6.4).
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Soft linker peptides favors the extended state, with increasing stiffness a larger force

is required to get the docked Cel7A back from the compact to the extended state

(Table 6.4).

The analysis of the MD simulations (set MD2c) suggests that the driving force for

the transition from the extended state into the compact state is hydrophobic as well

as polar in nature. The residues Y5, 31, and 32 constitute an hydrophobic patch at

the bottom of the CBM, Y13 is slightly buried at the wedge face of the CBM. The

solvent accessible solvent area (SASA) of Y5, 13, 31, 32, and the CBM are in the

compact state up to ≈ 20 % smaller compared to the extended state (Table 6.5 top).

The visual inspection of the trajectories showed that the hydrophobic area of Y5, 13,

31, and 32 is mainly covered by the CD surface atom and not the linker atoms. To

quantify this the Cα -Cα contact map between Y5, 13, 31, 32, and the CD resp. the

linker was calculated (Table 6.5 bottom). In the contact map the average distance

range for the CD is always < 9.9 Å and for the linker it is > 13.1 Å, which confirms

the visual observation. In the contact map for the compact state the polar residues

of the CBM are also in close contact with the CD surface. In the BD simulations

the internal flexibility of the residues are not modeled, therefore the exact CBM-CD

contact residues differ for linker model 1 to 3 (Figure 6.4). The Cel7A compact state

is build up of several different binding patterns, I looked at the amino acid patterns

in the CBM-CD contact map of the compact mode, for the MD simulations from the

set MD2c. Four major binding pattern were observed which have a probability of

approx. 27 %, 20 %, 22 %, and 12 % (Table 6.6). The RMSD analysis of the MD

simulations (set MD2c) indicates that the CD and CBM packing can change while

the Cel7A is in the compact state.

When Cel7A is in the compact mode, the glycosylation of the Cel7A linker peptide

(Figure 2.15) prevents the linker atoms from touching the CBM amd CD surface

atoms (Figure 6.5 top). The secondary structure of the Cel7A linker peptide was

analyzed using the DSPP algorithms [220,221]. A residue i is assigned a turn if there

is a hydrogen bond from the OC to the HN atom of two neighboring amino acids. It

is assigned a bend if the angle between {Cα(i),Cα(i− 2)} and {Cα(i + 2),Cα(i)} is

>70°. The analysis shows, that the steric constraint of the linker peptide glycosylation,

induces the formation of turns [220] around the linker peptide residue Ala 10-Pro 11,

Arg 13-Thr 14, Gly 18-Pro 19, and Gly 22-Pro 24 (Figure 6.5 and 2.15).

To validate the simulations the radius of gyration Rg of the intact Cel7A was

determined according to Guinier and Fournet [222] from the MD simulations (set

MD2c) and was compared with the value derived from small angle X-ray scattering



6.3 Linker Properties 107

(SAXS) and small angle neutron scattering (SANS). The Rg values of the compact

and extended state, calculated from the set Md2a, are 25.5±0.8 Å and 37.5±2.2 Å,

respectively (Figure 6.6). They are similar to the experimental values, derived using

SAXS [223–225] and SANS [226], which are in the range of 26.1 to 42.7 Å. Because

of following reasons, it is difficult with SAXS and SANS experiments to distinguish

the extended from the compact state. First, the CBM is too small compared to

the CD. Second, the difference between the compact and the extended state is only

visible at large q values in the I(q) curve and this region is quite noisy (Figure 6.6

middle). The third reason is, that the sampling in experiments can last several hours

to days, Cel7A will change several times between both states. The fourth reason

is, that the fitting of the I(q) curve to the experimental derived data is for large q

values ambiguous (Figure 6.6 middle). I speculate that the recurrence of a linker

peptide in celluloses, might indicate that it is perhaps of evolutionary advantage to

join two globular domains, like the CBM and CD, through a unfolded linker peptide.

In general the Cel7A encounter process with the fiber takes place in a crowded

environment. In the compact state Cel7A is more packed, during a collision of two

or more free floating Cel7A, it might be less likely that they get wedged together and

the compact Cel7A might have a better chance to reach the cellulose fiber surface.

The small angle x-ray study [78] of Cel6A and Cel6B, both have a linker similar to

that of Cel7A, concluded that linkers are flexible, and disordered, and can adopt both

extended and compact conformations. The study further found that the compact

linker were the most frequent and most stable, but that they are able to unwind into

longer linker with a relatively low energy cost. The theoretical study [21] suggest that

in their stochastic model the maximum hydrolysis rate corresponds to a transition of

the linker from a compact to an extended conformation.

6.3 Linker Properties

I explore the hypotheses: Is the linker length dLkO and stiffness kLkO intrinsic

properties of the linker. The linker of the free Cel7A (set MD2c) and Cel7A bound

to the hydrophilic fiber faces (set MD3c and MD3d) have a kLkO in the range of

≈ 0.66 to 1 kBT/Å. For the hydrophobic fiber faces kLkO is in the range ≈ 3.87

to 5.11 kBT/Å (Table 6.7). The implicit solvent REMD study [196] calculated a

kLkO of 0.04 kBT/Å for the glycosylated Cel7A linker (no fiber surface present).

As a comparison for the order of magnitude, in protein folding experiments spring

constants in the range of 0.02 to 0.24 kBT/Å are used [227].
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Our MD results show that the properties dLkO and kLkO are not intrinsic to the

linker but depend on whether explicit or implicit solvent is used, if Cel7A is docked

to fiber surface or not, on the hydrophobicity of the fiber surface and whether a

complete Cel7A or only an isolated linker is studied (column dLkO and kLkO in

Table 6.7, Figure 6.1). An isolated linker will behave differently from a linker in an

intact Cel7A, because the CD and CBM domains are comparably much bulky which

exert their influence on the linker dynamics, i.e., when the linker is is coupled to CD

and CBM the motion of the linker no longer resembled regular polymer motion but

is dominated by the protein domain motion [228–230]. When Cel7A was bound to a

cellulose fiber the hydrophobic compared to the hydrophilic fiber faces makes the

linker a very hard spring (Table 6.7). This can be explained by the fact that the

CBM hydrophobic patch makes Cel7A bound stronger to the hydrophobic then the

hydrophobic fiber faces.

6.4 Influence Linker Length and Stiffness on

CBM-Fiber Interaction

The linker couples the CD to the CBM, therefore the linker length and stiffness might

effect the CBM-fiber interaction. In order to account for their effect on the CBM-fiber

interaction, systematically changed both parameters in the BD simulations.

Effect of Linker Length. To study the effect of the linker length on the CBM-fiber

interaction I looked at the fraction of time, the enzyme is in the extended state. I

compared the case of the enzyme when it is docked to the cellulose fiber and with a

free floating enzyme. The linker length was gradually increased the enzyme stays

an increased fraction of time in the extended state (Table 6.4). This suggests that

the linker length regulates the transition probabilities between the compact and the

extended state. A short linker causes the enzyme to get trapped in the compact

state, an enzyme with a long linker on the other hand favors the enzyme being in

the extended state (Table 6.4). The density map analysis shows that in case of a

long compared to a short linker, the CBM can more often bind the enzyme to the

hydrophobic fiber face (Figure 6.7, Table 6.4). With increasing linker length the

CBM binds more often to the hydrophobic fiber face (1, 0, 0). The CBM can bind

with the hydrophobic residues Y5, 31, and 32 either to the fiber or to the CD. A long

linker might enable enough separation between the CD and the CBM (Table 6.4). In

summary, Figure 6.7 d indicates an increasing thermodynamic CBM-fiber binding

preference with increasing linker length.
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Effect of Linker Stiffness. Now I analyze the effect of the linker stiffness on the

CBM-fiber interaction. I look at the density map bins close to the hydrophobic

fiber face (1, 0, 0) and (-1, 0, 0), respectively. I calculated the sum of the 50 and

1600 bins which are most populated by the CBM (which I denote as h50 and h1600,

respectively, Figure 4.14). The BD trajectories are all started above the fiber face

(1, 0, 0) (Figure 4.6 top left, Figure 6.8 a and c), the fiber face (-1, 0, 0) has the

farthest distance from the starting position (Figure 6.8 b and d). If the linker gets

softer h50 and h160, respectively, are increasing (Figure 6.8 b and d). This suggests

that for a soft linker the CBM is more mobile and can visit more often the hotspot

at (-1, 0, 0) compared to a stiff linker (Figure 6.8 right two figures). The linker

stiffness influences the CBM-fiber interaction via the CBM mobility. The CD has a

higher mass compared to the CBM. In the theoretical case of a very loose linker the

CBM motion is completely independent of the CD motion, the CBM can then freely

sample the fiber and bind to it. In the other extreme case of a very stiff linker the

CBM and CD act as a single body and the CD slows down the motion of the CBM.

6.5 Influence of Linker Length and Stiffness on

CD-Fiber Interaction

After the CBM is docked to the cellulose fiber, the next step would be to thread a

lose cellulose chain into the CD tunnel. The exact role of the linker on the CD-fiber

interaction is not understood in detail [21]. In particular, does the CD bind to the

fiber? When the CBM is docked to a fiber face, does the CD stay on the same fiber

face like the CBM or does the CD prefer one of the two neighboring fiber faces?

During the CBM docking, does the CBM push the CD via the linker peptide or is

the CD pulled by the CBM?

Relative CD Position after CBM-Fiber Docking. There are different hypoth-

esis [55] which speculate that the CBM uses its bottom or wedge surface to thread

a lose cellulose chain into CD tunnel after the CBM is docked to the fiber. The

CD-CBM interaction, during the threading, process might be eased if the CD and

CBM stay on the same fiber face. When the CBM is docked to the hydrophobic

fiber face (1, 0, 0) I observed in the BD trajectories that the CD was located at the

same fiber face as the CBM as well as the two neighboring fiber faces (0, 1, 0) and (1,

-1, 0). To quantify this I calculated the probability psf that the CD and CBM stay

on the same fiber face (Table 6.8). All three fiber faces show a similar probability

(Table 6.8), this indicates that the CD has no significant preference to stay with the
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CBM on the (1, 0, 0) fiber face. The CD prefers the two neighboring fiber faces

similar to the CBM docking fiber face.

Does CD Bind to Fiber. The CBM can bind via its hydrophobic patch to the

hydrophobic fiber faces, it is unclear if the CD prefers to bind to any specific fiber face.

The comparison of the CBM and CD density maps show that the CBM hotspots are

located mainly at the hydrophobic fiber face (1, 0, 0), the CD density map hotspots

are less pronounced compared to the ones of the CBM (data for simulation set BD2c3

shown in Figure 4.14). This indicates that the CD compared to the CBM is less

restricted to a fiber position. The h50 and h1600 analysis for the different fiber faces

does not show any clear tendency for the effect of the linker length or stiffness of the

CD-fiber interaction.

6.6 Optimal Linker Length and Stiffness

The cellulase linker length and glycosylation pattern, which can effect the linker

stiffness, vary a lot [231]. A long and soft linker can be favorable for the CBM-fiber

interaction, allowing the CBM to sample the fiber independent of the CD, but is

unfavorable for the CD-fiber interaction because the CD is not kept close to the

hydrophobic fiber face. A short and stiff linker on the other hand keeps the CD and

CBM on the same fiber face which might improve the threading of the lose cellulose

chain into the CD tunnel, but this slows down the CBM mobility and can hinder the

CBM in scanning the fiber surface. With the BD results I determine the optimal

linker length dOptLkO and stiffness kOptLkO, for which both the CBM-fiber and CD-fiber

interactions are optimized. For the optimization I use as a first criteria that the

CBM has an high mobility, approximated by an high h50 for fiber face (-1, 0, 0)

(Figure 6.8), and as a second criteria that the CD stays close to the hydrophobic

fiber face, approximated by an high psf (Table 6.8). To compare h50 with psf both

are converted to a new scale sh and ssf by mapping them linear to the range of 0 to

1, with 0 being a not optimal and 1 an optimal value:

sh(h50) =
max(h50)− h50

max(h50)−min(h50)
, (6.1)

ssf (psf ) =
max(psf )− psf

max(psf )−min(psf )
. (6.2)

The discrete values dLkO and kLkO from the BD sets are interpolated with splines

[232,233] to get intermediate values. These optimal linker parameters dOptLkO and kOptLkO



6.7 Summary 111

will maximize sh as well as ssf . Following Occam’s razor principle [234,235], the model

with the fewest assumptions should be chosen, I weight sh and ssf with the factor ω

resp. 1-ω which gives the model s(kLkO, dLkO) = [ω · sh(kLkO, dLkO) + (1− ω) · ssf (kLkO, dLkO)]

, with ω being in the range 0 to 1. The weight ω=0.5 means that both criteria have

equal importance in the optimization. For this case, the maximum of s(kLkO, dLkO)

gives kOptLkO = 0.49 kBT/Å and dOptLkO = 69.1 Å (Figure 6.9), this is slightly larger then

the value for the isolated Cel7A which nature has chosen (set MD2c, Table 6.7).

For this value the CBM has a high mobility to fast sample the fiber surface and at

the same time the CD has a high probability to stay close to the hydrophobic fiber

face. Experimentalist might optimize the Cel7A by adjusting the linker length and

glycosylation pattern.

6.7 Summary

Previous studies [74, 212, 214] indicate that the linker might be essential for the

cellulase-fiber interaction. In this study I systematically investigated the role of the

Cel7A linker length and stiffness.

The new contributions which this study provides are, that the equilibration length

and stiffness are not intrinsic properties of the linker. They depend whether implicit

or explicit solvent is used, whether the complete Cel7A or only the isolated linker is

studied and the hydrophobicity of the fiber surface to which Cel7A is docked.

MD and BD simulations show that the linker of a free floating Cel7A can not

guarantee a spatial distance between the CD and CBM. I showed that the free

floating Cel7A linker has two different states which I call extended and compact.

The Cel7A packing in the compact state is hydrophobic as well as polar in nature.

The linker length regulates the transition between the extended and compact linker

states of the enzyme. The linker stiffness influences the CBM mobility, I furthermore

quantified the effect of the linker stiffness on the CBM mobility. The properties

and dynamic of the free Cel7A are compared with the one of the Cel7A-fiber

complex, in particular the influence of the fiber surface hydrophobicity on the Cel7A

dynamics. I extended the set of the available coarse grain parameters, in particular

the linker spring stiffness and equilibration length, of Cel7A. I also provide coarse

grain parameters in dependence of the fiber surface hydrophobicity and the effect of

explicit solvent. These parameters will provide more realistic models for the linker

in coarse grain simulations of the Cel7A-fiber complex. I determined the optimal

linker length dLkO and stiffness kLkO for the CBM-fiber and CD-fiber interaction.
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In summary my study shows that the linker is not an accessory part of Cel7A. The

linker length and stiffness are not random properties but that they have a significant

effect on the Cel7A-fiber interaction. The new insights obtained here can assist

in designing Cel7A with mutated linker that have improved hydrolysis properties,

without having to alter the CBM or CD domains.
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Spring model Set Fraction time enzyme is in “extended” state

enzyme docked < 7 Å enzyme free floating > 100 Å

1 BD1a3 44.2 %±0.1 % 1.0 %
1 BD1a4 45.5 %±0.2 % 1.1 %
1 BD1a5 dLkO ↓ 50.0 %±0.2 % 1.3 %
1 BD1a6 53.4 %±0.1 % 1.5 %
1 BD1a7 56.8 %±0.1 % 1.6 %

1 BD1c1 21.1 %±1.1 % 0.5 %
1 BD1c2 32.5 %±1.6 % 0.7 %
1 BD1c3 39.4 %±0.1 % 0.8 %
1 BD1c4 dLkO ↓ 42.8 %±1.6 % 1.0 %
1 BD1c5 46.3 %±2.8 % 1.1 %
1 BD1c6 48.1 %±1.8 % 1.2 %
1 BD1c7 52.3 %±1.4 % 1.3 %

1 BD1j3 39.9 %±0.9 % 0.9 %
1 BD1j4 43.8 %±1 % 1.0 %
1 BD1j5 dLkO ↓ 45.6 %±0.9 % 1.2 %
1 BD1j6 46.3 %±1 % 1.3 %
1 BD1j7 50.9 %±0.4 % 1.5 %

1 BD1a4 45.5 %±0.2 % 1.1 %
1 BD1c4 42.8 %±1.6 % 1.0 %
1 BD1d4 43.7 %±3.3 % 1.0 %
1 BD1e4 41.7 %±0.8 % 1.0 %
1 BD1f4 kLkO ↓ 41.5 %±1.5 % 1.0 %
1 BD1g4 42.9 %±2.3 % 1.0 %
1 BD1h4 42.1 %±0.7 % 1.0 %
1 BD1i4 43.4 %±0.5 % 1.0 %
1 BD1j4 43.8 %±1.0 % 1.0 %

2 BD2a 58.6 %±0.2 % 1.4 %
2 BD2b 54.5 %±1.4 % 1.2 %
2 BD2c 54.1 %±0.6 % 1.1 %
2 BD2d kLkC ↓ 53.3 %±2.2 % 1.1 %
2 BD2f 50.8 %±1.0 % 1.1 %
2 BD2h 53.8 %±1.3 % 1.1 %
2 BD2j 53.2 %±0.8 % 1.1 %

3 BD3a 42.4 %±0.8 % 1.0 %
3 BD3b 38.9 %±0.6 % 0.8 %
3 BD3c kLkO ↓ 40.5 %±0.5 % 0.8 %
3 BD3d kLkC ↓ 38.7 %±1.4 % 0.8 %
3 BD3f 37.6 %±0.6 % 0.8 %
3 BD3h 36.9 %±0.1 % 0.9 %
3 BD3j 37.9 %±0.6 % 0.8 %

Table 6.4: Cel7A has two states “extended” and “compact” (Figure 6.3).
The arrow in the second column indicates in which direction dLkO, kLkO,
and kLkC are increasing. The enzyme has higher probability to be in the
extended state when it is docked to the fiber compared to the case when
it is free floating. With increasing linker length dLkO the enzyme has an
higher probability to be in the extended state.
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Average solvent accessible surface area [Å2]
extended compact difference

Y5 147.71±10.76 123.39±36.88 19.7 %
Y13 70.15±9.34 67.83±13.38 3.4 %
Y31 141.05±13.94 117.62±35.75 19.9 %
Y32 81.87±10.22 55.63±31.31 20.8 %

Y5, 13, 31, and 32 440.19±24.34 364.48±79.18 20.8 %
entire CBM 2447.57±62.63 2258.3±105.42 8.4 %

CBM CD [Å] linker [Å]

Y5 ≤9.9 ≥14.2
Y13 ≤8.9 ≥12.1
Y31 ≤9.3 ≥13.2
Y32 ≤9.7 ≥13.2

Table 6.5: (Top) Average solvent accessible surface area of the CBM
hydrophobic residues (Y5, 13, 31, and 32) and the entire CBM in simula-
tion set MD2c. (Bottom) Average distance range between the CBM Y5,
13, 31, and 31 Cα and the CD resp. linker Cα atoms in simulation set
MD2c, distances larger then 15 Å are ignored. The table shows that the
hydrophobic area of Y5, 13, 31, and 32 are covered by the CD surface
atoms and not the linker surface atoms.
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Spring model Set psf

1 BD1a4 35.5 %
1 BD1b4 33.9 %
1 BD1c2 36.3 %
1 BD1d4 35.7 %
1 BD1e4 kLkO ↓ 33.5 %
1 BD1f4 37.5 %
1 BD1g4 32.1 %
1 BD1h4 32.6 %
1 BD1i4 37.1 %
1 BD1j4 37.5 %

1 BD1a3 30.9 %
1 BD1a4 35.5 %
1 BD1a5 dLkO ↓ 35.1 %
1 BD1a6 32.4 %
1 BD1a7 36.2 %

1 BD1c1 35.7 %
1 BD1c2 36.5 %
1 BD1c3 34.9 %
1 BD1c4 dLkO ↓ 36.3 %
1 BD1c5 35.7 %
1 BD1c6 37 %
1 BD1c7 31.3 %

1 BD1d3 36.7 %
1 BD1d4 35.7 %
1 BD1d5 dLkO ↓ 36.7 %
1 BD1d6 34.5 %
1 BD1d7 35.4 %

1 BD1f3 38.9 %
1 BD1f4 37.5 %
1 BD1f5 dLkO ↓ 33.1 %
1 BD1f6 33.6 %
1 BD1f7 33.7 %

1 BD1j3 38.3 %
1 BD1j4 37.48 %
1 BD1j5 dLkO ↓ 32.2 %
1 BD1j6 32.4 %
1 BD1j7 31.9 %

Spring Model Set psf

2 BD2a 27.9 %
2 BD2b 32.2 %
2 BD2c kLkC ↓ 33.7 %
2 BD2d 36.4 %
2 BD2f 31.5 %
2 BD2h 32.4 %
2 BD2j 30.3 %

3 BD3a 35.2 %
3 BD3b 36.2 %
3 BD3c kLkO ↓ 38.5 %
3 BD3d kLkC ↓ 36.6 %
3 BD3f 38.1 %
3 BD3h 36,7 %
3 BD3j 37.9 %

Table 6.8: When CBM is docked to the hydrophobic fiber face (1, 0, 0)
I calculated if the CD is closer to the (1, 0, 0) or the two neighboring
fiber faces (0, 1, 0) and (1, -1, 0) (Figure 4.6 top left). psf gives the
probability to find the CD on the same fiber face as the CBM. The
results show that the CD has no preference to stay on the same fiber
face as the CBM but rather diffuses away to the two neighboring fiber
faces.
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Figure 6.1: The relative free energy is plotted as a function of the linker
end-to-end length dLkO. (Top) All five, (middle) only the four “compact”
and (bottom) only the one “extended” simulation are presented. The
scattering for small dLkO in the top two figures occurs mainly because
of the Cel7A linker transition into the “compact” state, as comparison
in the bottom figure where Cel7A stays in the “extended” state the
scattering does not occur. Hooke’s law is fitted to this data to get
the linker equilibrium length and stiffness for the BD simulations. To
calculate the error bars the data set was randomly split in two parts, to
each data set Hooke’s law was fitted, the difference in the fit gives the
error bar.
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Figure 6.2: (Top) Time evolution of minimal distance dCD,CBM be-
tween the CD and the CBM surface atoms in the MD set MD2c. Each
of the five Cel7A trajectories is shown in a different color. (Middle and
Bottom) The histogram of dCD,CBM for the MD (MD2c) and BD (BD0d)
simulations shows that two distinct states “compact” and “extended”
exist. The first minima in the histogram of dCD,CBM for the Cα atoms
from the MD simulation is used for the formal definition of two Cel7A
linker states.
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Figure 6.3: Visualization of the two Cel7A linker states “extended”
and “compact”.

Figure 6.4: Schematic view of the different spring models for the Cel7A
linker. In the BD simulations the linker can be modeled in four different
ways. (1) The linker is modeled as a single Hookean spring which is
attached to the CBM and CD residue to which the linker was attached.
(2) Or as a single spring which goes from the center of the CBM to the
center of the CD. (3) Or via two springs, by combining model 2 and 3.
(4) The hinge and the stiff part of the linker can be modeled as two serial
springs.
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Figure 6.5: (Top left) Schematic view of the linker in the Cel7A
compact state without the linker glycosylation (top left) and with the
linker glycosylation (top right). (Bottom 5 rows) For each of the five
trajectories from set MD2c the secondary structure of the Cel7A linker
peptide is visualized. The linker glycosylation prevents the linker atoms
from touching the CBM and CD surface atoms.
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Figure 6.6: (Top) Radius of gyration Rg of the intact Cel7A calculated
from MD simulations (set MD2c). The simulations were started in the
extended state, four out of five MD trajectories went into the compact
state and one stayed in the extended state. The average Rg (first 100
ns neglected) of the compact and extended state are visualized via a
dashed line.(Middle) I(q) scattering curve, experimental SANS data
from Ref. [226] is used. (Bottom) Distance distribution function P (r)
calculated from MD simulations (set MD2c) and from SAXS data [223].



6.7 Summary 123

Figure 6.7: In the BD density maps (e.g. Figure 4.14) I analyzed how
often the center of the CBM visits the bins close to the hydrophobic fiber
face (1, 0, 0). The 50 most populated bins are sorted in decreasing order.
In the new sorted set h(j), the index j=1 refers to the most populated
bin and j=50 to the least populated bin. In sub figure a, b, and c the bin
j is plotted against h(j) for different linker lengths dLkO and stiffness
kLkO. For a fixed spring stiffness the curve h(j) for longer linker lengths
are always above the curves with a smaller linker length. In sub figure
d the sum of the 50 bins, denoted as h50 is plotted as a function of the
linker length dLkO. Sub figure (a) to (d) indicate that with increasing
linker length also the thermodynamic binding preference of the CBM to
the hydrophobic fiber face (1, 0, 0) also increases.
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Figure 6.8: In the density map (e.g., Figure 4.14) the value of the sum
of the 50 and 1600, respectively, most populated bins close to a given
fiber face is denoted as h50 and h1600, respectively. In sub figure a to d
h50 resp. h1600 is plotted as a function of the linker stiffness. The BD
trajectories are started above the hydrophobic fiber face (1, 0, 0) (left
two figures a and c), the hydrophobic fiber face (-1, 0, 0) has the farthest
distance from the starting position (right two figures c and d). In the
figures b and d h50 and h1600, respectively, decreases with increasing
linker stiffness. This indicates that for a soft spring the CBM is more
mobile and can visit more often the hotspot at (-1, 0, 0) (right two figures
c and d).
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Figure 6.9: Visualization of s(kLkO, dLkO) as function of linker length
dLkO and stiffness kLkO for the different BD simulation sets. The discrete
values for dLkO and kLkO are marked with a plus. The intermediate
values are interpolated with splines. s(kLkO, dLkO) is in the range of 0 to
1, where a value near 1 indicates an optimal value for the linker length
and stiffness and 0 indicates a not optimal value. For the optimal value
(marked in green) the CBM has an high mobility and the CD has an
high probability to stay with the CBM on the same fiber face.





I am turned into a sort of machine for

observing facts and grinding out conclusions.

Charles Darwin 1809-1882

Chapter 7

Conclusion and Outlook

7.1 Conclusions

Cellulosic biomass has the potential to be a plentiful feedstock for the production

of renewable biofuels. Cellulose fibers consist of linear chains of several hundred

to over ten thousand linked sugar units. The basic idea is to break down the

cellulose chain into the individual sugars using cellulase enzymes. This sugars can

be fermented in the next step to bioethanol. For a successful shift from fossil fuels

towards renewable biofuels from non-food cellulose waste, the productions costs

have to be reduced by improving the enzymatic digestion. One of the promising

enzymes for the enzymatic digestion of cellulose is Cel7A, due to its ability to bind

and to disrupt the surface of crystalline cellulose. Cel7A consists of two domains, the

carbohydrate-binding module (CBM) and a catalytic domain (CD), which are joined

together by a linker peptide. Current industrial approaches require high enzymatic

loads. Understanding the interaction of Cel7A with cellulose on an atomic level

might help in the long term to experimentally design improved cellulase enzymes.

Current experimental methods however do not have the required time and space

resolution range, making it difficult to address this problem at an atomic level.

Classical computer simulations on the other hand have the required time and space

resolution to track each single atom during the Cel7A-cellulose interaction. But even

on the most powerful supercomputers it is challenging to simulate trajectories which

span the required time range of milliseconds. Using enhanced sampling methods like

Markov state models and the combination of Brownian (BD) together with molecular

dynamic (MD) simulations can help to cover the relevant time scales and lengths.

In this thesis various aspects of the Cel7A enzyme interaction with the cellulose

fiber have been investigated using computer simulations, to address following central

questions:

� What is the role of the CBM? Which interactions forces are required to achieve

the binding preferences of Cel7A to the fiber faces?

� What is the role of the linker peptide? What is the effect of the linker length
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and stiffness on the interaction of with cellulose fiber? What are the favored

linker modes?

To answer these questions, with the current level of knowledge and the available

computational resources, an interdisciplinary combination of various methods from

computer science, mathematics, and biophysics is required. Both questions have been

discussed in detail in the Chapters 5 and 6. A summary of the major conclusions is

presented here along with an outlook of possible further promising research directions.

7.1.1 Bridging the Gap between Theory and Experiments

One of the main aims of this thesis was to bridge the gap between experiments and

theory for the Ce7A-cellulose system, by providing an atomic level a description of

their interaction with computer simulations. This was achieved by simulating in total

over 54,600 all-atom BD trajectories with a totaling > 74 ms of combined simulation

time. Additionally 101 all-atom MD trajectories with a total simulation time of >

6.4 µs were simulated. In total this is longer then the previously reported simulations

on this system, allowing me to give statistical more comprehensive analysis of the

interaction of Cel7A with the cellulose Iβ.

The extensive MD simulations data presented provides means to test the parameters of

the CHARMM27 force field for proteins [125], and the C35 force field for carbohydrates

[129,130]. The results presented in the thesis on hand show overall a good agreement

with experiments.

The BD force field was extended by including the van der Walls (VDW) interaction

between Cel7A and the cellulose fiber. The modification was verified, amongst others

by calculating the density map of the CBM-fiber interaction, which shows CBM

binding to similar fiber faces as previous experimental findings on cellulose Iα [40–42].

7.1.2 Overcoming the Time and Length Scale Problem for the

Cel7A-Cellulose System

Cel7A-cellulose interactions take place on large time and length scale range, which is

difficult to cover meaningful with only BD or only MD simulations. By combining in

a multiscale approach BD with MD simulations I could cover the complete range

from global (e.g. docking of the CBM to the fiber) to local interactions (e.g. side

chain motions or hydrogen bond interactions).

By successfully developing a MSM framework for the Cel7A-cellulose system I could

combine in a systematic fashion the statistical informations of independent simulation
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trajectories. This allowed me to simulate instead of a single long trajectory, the

required trajectories for the most part independently on a parallel supercomputer

with nearly perfect scaling. This trick allowed me to reduce the total effective

simulation time.

7.1.3 Extended Set of Coarse Grain Parameters

To use the limited computational resources more efficiently, instead of fine-grained but

computational expensive MD simulations, computational cheaper coarse grain simu-

lations can be performed. The approximations used in the coarse grain simulations

will not significantly effect the results of interest. Using my extensive MD simulation

data, I extended the set of available coarse grain parameters for the Cel7A-cellulose

system, in particular the translational and rotation diffusion coefficients for the Cel7A

and the fiber, and the linker length and stiffness. My parameters include the effect

of explicit solvent molecules and most parameters are provided in dependence of the

fiber surface hydrophobicity. This parameters will make more realistic coarse grain

models of the Cel7A-fiber complex possible.

7.1.4 Cellulose Iβ

Native cellulose exists primarily in two different isoforms Iα and Iβ, for which the

crystallographic unit cell differs. This might affect their interaction with the Cel7A

enzyme. While most previous experiments [40–42, 186] have studied cellulose Iα,

which is a predominant form in some algae and can be easily purified [39], the thesis

in hand focuses on cellulose Iβ , which is the major constituent of higher plants and

therefore the technologically more relevant cellulose isoform for the biofuel production.

The calculated density map of the CBM-fiber interaction, as well as the MSM showed

that the experimental results are transferable from Iα to Iβ. Moreover, I could

quantify the CBM-fiber binding for each Iβ fiber face position, in particular the

CBM accessibility to each fiber face, how “sticky” each fiber position is for the CBM,

and the relative CBM orientations towards the fiber.

7.1.5 Role of Cel7A CBM

The first central theme of the thesis has been the Cel7A CBM. On several levels

from the initial encounter of the free floating CBM with the cellulose fiber, diffusion

on the fiber surface, and the binding to cellulose, a large body of previous work could

be complemented and rationalized.
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For the binding preference of the CBM to the hydrophobic fiber face it has been

shown that both electrostatic (ES) and van der Waals (VDW) are required. At

long distance the ES interaction is more important and aligns via a dipole-dipole

interaction the CBM in an antiparallel manner relative to the fiber axis. In contrast,

on short distances the VDW interaction plays a more dominant role by stabilizing

the CBM-fiber binding, in addition the ES interaction contributes to the stabilization

of the bind by the formation of hydrogen bonds between the CBM and the fiber.

Moreover, an hindered diffusion of the CBM on all fiber faces was shown. The known

hydrogen bond network between the CBM and the fiber was extended. Additional

insights in the dynamic and role of the CBM residues Y5, Y13, Y31, and Y32 could

be provided.

7.1.6 Role of Cel7A Linker Peptide

The second central theme of the thesis has been the Cel7A linker peptide. It was

shown, that the linker equilibration length and stiffness are not intrinsic properties

of the linker. They depend whether implicit or explicit solvent is used, whether

the complete Cel7A or only the isolated linker is studied and the hydrophobicity

of the fiber surface to which Cel7A is attached. The Cel7A linker has different

states ranging from a compact to an extended conformation. The Cel7A packing

in the compact conformation is hydrophobic as well as polar in nature. The linker

length regulates the transition between the extended and compact linker states of the

enzyme. The linker stiffness influences the CBM mobility, I furthermore quantified

the effect of the linker stiffness on the CBM mobility. I determined the optimal

linker length dLkO and stiffness kLkO for the CBM-fiber and CD-fiber interaction.

In summary, the results show that the linker is not an accessory part of the Cel7A

enzyme. The linker length and stiffness are not random properties, they rather have

a significant effect on the Cel7A-fiber interaction. The new insights obtained here

can assist in designing Cel7A with mutated linker that have improved hydrolysis

properties, without having to alter the CBM or CD domain.



We can only see a short distance ahead, but

I can see plenty there that needs to be done.

Alan Turing 1912-1954

7.2 Outlook

To obtain the results presented in this study a large set of simulation trajectories and

a framework of analysis algorithms was developed. Together with the new insights

presented in this thesis a new direction of research opens up to better understand on

an atomic level the interaction of Cel7a with the cellulose fiber. A short summary of

these follow-up studies is presented below.

7.2.1 Cel7A Basis-Conformation Decomposition

The results presented here showed that the Cel7A enzyme can adapt a large set of

different states, ranging from compact to extended (Chapter 6). Biomolecules require

solvent for their function. The Cel7A enzyme activity and its three dimensional

structure depends on the pH level, which is effected by the surrounding solvent. The

pH level can be adjusted to achieve optimal enzyme activity. The Cel7A tertiary

structure can be studied using neutron scattering experiments. The direct output

of such experiments is the scattering intensity profile I(q) (Section 2.4). Such

experiments are performed on an ensemble of Cel7A structures and they can last

several hours, during which Cel7A can take on several different conformations from

extended to compact. This two effects make the I(q) data noisy and difficult to

derive a representative three dimensional structure. Computer science can assist the

experimentalist to interpret their intermediate scattering functions I(q).

In the Cel7A MD trajectories several transition from the extended to the compact

state have been observed. A set of n relevant Cel7A conformations can be extracted

from this trajectories. For this conformations the neutron scattering experiment

can be simulated on a supercomputer to get the corresponding I(q) profile for each

conformation. This simulated Isim,i(q) can serve as a basis set to decompose the

experimental Iexp(q) data (Figure 7.1). In linear algebra a vector can be represented

as a linear combination of the basis vectors, similar Iexp(q) can be described e.g. as

a linear combination of Isim,i(q):

Iexp(q) =
n∑
i=1

pi · Isim,i(q) , (7.1)

with
∑n

i=1 pi = 1 and 0 ≤ pi ≤ 1. An optimization algorithm like Levenberg-

Marquardt [236] can be used to find the optimal probabilities pi. This decomposition

relates the unknown structural details during the experiment with the known three

dimensional structure from the MD simulations. The obtained probabilities p1 to pn
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give the contribution of each conformation in the experimental data. The tertiary

structure of Cel7A bound to the cellulose fiber can be compared with the unbound

Cel7A. The comparison can give new insights on how the structure of Cel7A is related

to its function and how it effects the enzyme activity.

Figure 7.1: A three dimensional structure can be assigned to experi-
mental Iexp(q) data by using simulation data. In step (a) a basis set of
representative Cel7A conformations are defined. For each conformation
a simulated Isim(q) profile can be calculated. In step (b) and (c), this
profiles can be combined to interpret Iexp(q).

7.2.2 Error Minimization Sampling of Cel7A-Cellulose

Due to the limited computational resources, one of the major bottle necks in computer

simulations is to obtain convergence of the derived results. For this thesis a MSM

for the interaction of Cel7A enzyme with the cellulose fiber was developed utilizing

BD and MD simulations. For large bimolecular systems like the Cel7A-cellulose

complex this is a quite challenging task. In the MSM context observables can be

calculated which describe the Cel7A-cellulose system. The amount of simulation

data used is limited, therefore for each observable a statistical uncertainty can be

calculated [167,168]. The uncertainty can be reduced by increasing the simulation

time. The MSM methodology allows to reconstruct the statistical informations of a

single long trajectory from a large set of short trajectories, which can be simulated

for the most part independently on a parallel supercomputer. Instead of extending a

single trajectory which samples the Cel7A-cellulose conformations which cause the

high uncertainty, for a given observable, shorter simulations can be systematically

started from specific conformations (Figure 7.2). With such an iterative approach
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the statistical uncertainty for the values of interest can be reduced by using in total a

smaller total simulation time compared to the case of an undirected single simulation

trajectory.

Figure 7.2: Using a MSM framework new simulations of the Cel7A-
cellulose complex can be started iteratively to reduce the statistical
uncertainty V ar(X) on the observable of interest X. The iteration
process is terminated if the V ar(X) is smaller then a given threshold c.

7.2.3 Cel7A Motion on the Cellulose Fiber Surface

One of the essential steps during the enzymatic hydrolysis process is the motion of

Cel7A via the CBM on the cellulose fiber surface. In this step, the enzyme scans
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the fiber surface for broken chain ends, which are in the next step threaded into

the CD tunnel. The MD results reveal hindered diffusion of the CBM on all fiber

surfaces. The diffusion motion is more restricted on the hydrophobic than on the

hydrophilic fiber surface. To interpret the motion of the CBM a Brownian diffusion

model was used, which is an oversimplification. More sophisticated approaches such

as sub-diffusion and reaction-coupled diffusion models [206–208] can help to better

understand the diffusion process of the Cel7A on the crystalline cellulose and give

additional insights.

7.2.4 Nature of CBM-Cellulose Binding

Biomolecules require solvent to take on a three dimensional structure and to perform

their function. The residues Y5, Y31, and Y32 constitute an hydrophobic patch at

the bottom surface of the CBM. During the binding process of the CBM with the

hydrophobic fiber surface, this two surfaces build an hydrophobic sandwich. The role

of the solvent in the interface area is of special interest. Hydrogen bonding as well as

hydrophobic interaction was observed between the CBM and the cellulose surface.

The free energy of the binding

4G = 4H − T4S (7.2)

can be decomposed into an enthalpic 4H and an entropic part T4S. To solvate an

hydrophobic interface small water cavities have to be formed without interrupting

hydrogen bonds, the free energy cost is therefore entropy dominated [237,238]. The

hydrogen bond interaction is rather enthalpy dominated [199,239]. The questions

remain, however what is the nature of the CBM-cellulose binding, is the binding more

entropically or enthalpic driven? Further work is needed to answer this question.



It’s the little details that are vital. Little

things make big things happen.

John Wooden 1910-2010

Appendix A

Appendix

A.1 Abbreviations

- 36-chain: 36-chain cellulose fiber model

- BO: Born-Oppenheimer

- BD: Brownian dynamics

- CBM: carbohydrate binding module

- CD: catalytic domain

- CF: cellulose fiber

- ES: electrostatic interaction

- FT: Fourier transformation

- Lk: linker peptide

- MD: molecular dynamics

- MSM: Markov state model

- PDB: protein data bank

- PME: particle mesh Ewald

- PMF: potential of mean force

- SASA: solvent accessible surface area

- VDW: van der Waals interaction
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A.2 Amino Acids

Amino acids are biologically important structural units that can make up proteins.

The key chemical elements are carbon (C), hydrogen (H), oxygen (O), and nitrogen

(N). They are build up from an amine (−NH2), a carboxylic axid (−COOHN), and

a side-chain molecule “R”. The generic structure is shown in Figure A.1. About 500

amino acids are known [240], but only 20 are encoded in the genetic code, they are

called standard amino acids. The amino acids Y5, Y31, and Y31 of the Cel7A CBM

domain constitute an hydrophobic patch (Section 2.2). The hydrophobicity [241] of

the different amino acids is presented in Table A.1), Tyrosine (1-letter code “Y”) is

with a value -1.3 rather hydrophobic.

Amino acid 3-letter 1-letter Hydrophobicity [241] R-group

Alanine Ala A 1.8 −CH3

Arginine Arg R -4.5 CH2CH2CH2NH− C(NH)NH2

Asparagine Asn N -3.5 −CH2CONH2

Aspartic acid Asp D -3.5 −CH2COOH
Cysteine Cys C 2.5 −CH2SH

Glutamic acid Glu E -3.5 −CH2CH2CONH2

Glutamine Gln Q -3.5 −CH2CH2COOH
Glycine Gly G -0.4 −H

Histidine His H -3.2 −CH2(C3H3N2)
Isoleucine Ile I 4.5 −CH(CH3)CH2CH3

Leucine Leu L 3.8 −CH2CH(CH3)2

Lysine Lys K -3.9 −CH2CH2CH2CH2NH2

Methionine Met M 1.9 −CH2CH2SCH3

Phenylalanine Phe F 2.8 −CH2(C6H5)
Proline Pro P -1.6 −CH2CH2CH2−
Serine Ser S -0.8 −CH2OH

Threonine Thr T -0.7 −CH(OH)CH3

Tryptophan Trp W -0.9 −CH2(C8H6N)
Tyrosine Tyr Y -1.3 −CH2(C6H4)OH
Valine Val V 4.2 −CH(CH3)2

Table A.1: Overview of the standard amino acids.
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Figure A.1: Generic structure of an amino acid (adapted from [242]).

A.3 Glossary

This dissertation touches several different scientific fields. Each field, in particular

biology, has its own set of vocabulary. The reader should not be discouraged by this

fact. The focus of this glossary is to provide an understandable picture of a technical

term.

- Alkenes: chemical compound with the general chemical structure CnH2n.

- Alpha chains: subunits of a protein.

- Ångström (Å): unit of length equal to 1010 m. Its symbol is the Swedish letter

Å.

- Arabinose: special sugar molecule.

- Barrel (bbl): a oil barrel is 42 U.S. gallons or 158.9873 liter.

- Beta chains: subunits of a protein.

- Billion: the short scale naming system is used, a billion means 109.

- Biomass: raw plant material composed of glucose polymers (hemicellulose and

cellulose) and lignin.

- Biomass recalcitrance: resistance of plant cell walls to decomposition.

- Brownian dynamics: a computer simulation method to simulate molecular

interactions (Section 3.1).



138 Appendix

- Carbohydrate: are a chemical compound with the chemical structure Cm(H2O)n.

- Carbohydrate-binding module (CBM): domain of the cellulase enzyme Cel7A

(Section 2.2).

- Catalytic domain (CD): domain of the cellulase enzyme Cel7A (Section 2.2).

- Cel7A: special cellulase enzyme which is able to degrade cellulose efficiently

(Section 2.2).

- Cellobiose unit: a chemical compound consisting of two linked sugar molecules

(Section 2.1).

- Cellulase enzyme: enzymes that can degrade cellulose(Section 2.2).

- Cellulose fiber: special polymer of glucose molecules (Section 2.1).

- Deuterium: a heavy hydrogen, composed of a single neutron, a proton, and an

electron.

- Dipole: see Section 2.5.

- Enzymatic digestion: breakdown of biomolecules (e.g., cellulose fiber) into

simpler chemical compounds (Section 2.2).

- Enzyme: large biological molecules that are in many ways “protein machines”

(Section 2.2).

- Ethanol: an alcohol with the chemical structure C2H6O.

- Galactose: special sugar molecule.

- Glucose: simple sugar with chemical structure C6H12O6 (Section 2.1).

- Glycosidic bond: a chemical bond which joins a sugar molecules to another

group (Section ??).

- Glycosylation: enzymatic process that attaches sugars to proteins (Section 2.2).

- Heme group: chemical compound, Heme binds and carries oxygen in the red

blood cells.

- Hemicellulose: special polymer of glucose molecules (Section 2.1).
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- Hydrogen: chemical element with symbol H, consisting of a proton and an

electron.

- Hydrophile: a molecule that is attracted to water.

- Hydrophobe: a molecule that is repelled from a mass of water.

- Lignin: is composed of a mixture of hydrophobic and aromatic molecules.

- Lignocellulose: a mixture of lignin, hemicellulose and cellulose is collectively

called lignocellulose.

- Linker peptide: amino-acid chain of the cellulase enzyme Cel7A which is

connected to the CD and CBM domain (Section 2.2).

- Mannose: special sugar molecule.

- Molecular dynamics: a computer simulation method to simulate molecular

interactions (Section 3.2).

- Monosaccharides: simplest form of sugar, polymer containing only a single

sugar.

- MSM: see Section 4.6.

- Oligosaccharide: polymer containing typically two to ten simple sugars.

- Peptide: short chains of amino acid.

- pH: is a measure of the hydrogen ion concentration. Pure water has a pH of

approx. 7, acids have a pH less than 7, and basis have a pH greater than 7.

- Phenol ring: a chemical group with structure C6H5OH.

- Proteolysis: the breakdown of proteins into amino acids or smaller polypeptides.

- Rhamnose: special sugar molecule.

- Xylose: special sugar molecule.
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A.4 References Quotes

� List of Publications:

Anne Louise Germaine de Stal (22 April 1766 - 14 July 1817), commonly

known as Madame de Stal. Quoted in ”A Dictionary of Thoughts: Being a

Cyclopedia of Laconic Quotations from the Best Authors, Both Ancient and

Modern” (1891) edited by Tryon Edwards. p. 502.

� Start Pages:

Albert Einstein (14 March 1879 - 18 April 1955). Attributed to Einstein by

Frau Born. Paraphrased words as given in Ronald William Clark, ”Einstein”

(1984), p. 243.

Blaise Pascal (16 June 1623 - 19 August 1662). Commonly attributed to Pascal.

Provincial Letters: Letter XVI, 4 December, 1656 http://oregonstate.edu/

instruct/phl302/texts/pascal/letters-c.html#LETTER%20XVI. The French

”Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le loisir de la faire

plus courte.”. Literally: ”I made this [letter] very long, because I did not have

the leisure to make it shorter”.

� Chapter 1:

”Biofeuls: Challenges to the Transportation, Sale, and Use of Intermediate

Ethanol Blends”, United States Government Accountability Office, Report to

Congressional Requesters, GAO-11-513 (Washington, D.C.: June 3, 2011), p.

2, 7, 11, http://gao.gov/assets/320/319297.pdf

� Chapter 2:

Anne Campbell (9 April 1992 - 5 May 2005).

Prof. J. Regalbuto, University of Illinois [13]

Richard Feynman (11 May 1918 - 15 February 1988). Attributed to Feynman

in the PBS TV show NOVA.

� Chapter 3:

Richard Feynman (11 May 1918 - 15 February 1988). The Feynman Lectures

on Physics.

John von Neumann (28 December 1903 - 18 February 1957).

Paul A. M. Dirac (8 August 1902 - 20 October 1984).

http://oregonstate.edu/instruct/phl302/texts/pascal/letters-c.html#LETTER%20XVI
http://oregonstate.edu/instruct/phl302/texts/pascal/letters-c.html#LETTER%20XVI
http://gao.gov/assets/320/319297.pdf
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� Chapter 4:

Prof. Dr. Jörg Hüfner, University Heidelberg, Institute for Theoretical Physics.

He gave this advice during one of his theoretical physics lectures.

Master Zhuang (369 BC - 286 BC)

Albert Einstein (14 March 1879 - 18 April 1955). Attributed to Einstein by

Readers Digest in July 1977

Albert Einstein (14 March 1879 - 18 April 1955).

Johann Wolfgang von Goethe (28 August 1749 22 March 1832). Letter to

Johann Christian Lobe from July 1820.

Jack J. Dongarra (born 18 July 1950). Professor of Computer Science at

the University of Tennessee. Dongarra holds the Turing Fellowship at the

University of Manchester. He is one of the compilers of the ”TOP500” project,

which ranks the 500 most powerful computer systems in the world.

� Chapter 5:

Aristotle (384 BC - 322 BC). Short form of a quote from “Metaphysics VII”.

� Chapter 6:

Robert Hooke (28 July 1635 - 3 March 1703). Short form of a quote from

“Micrographia 1665”.

� Chapter 7:

Charles Robert Darwin (12 February 1809 - 19 April 1882). As quoted in

Adrian J. Desmond and James Richard Moore, ”Darwin” (1994), p. 644.

� Appendix:

John Robert Wooden (14 October 1910 - 4 June 2010).

Alan Turing (23 June 1912 - 7 June 1954). Published in the article ”Computing

machinery and intelligence” (Mind, vol. 59, 1950). This paper describes

what later was to be known as the ”Turing Test”, http://www.loebner.net/

Prizef/TuringArticle.html.

http://www.loebner.net/Prizef/TuringArticle.html
http://www.loebner.net/Prizef/TuringArticle.html
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