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Diffusionsgewichtete Magnetresonanztomographie: Flusskompensierte Bildge-
bung der Inkohärenten Blutbewegung zur Untersuchung der Mikrogefäße. Um
die charakteristische Zeitskala der inkohärenten Blutbewegung zu bestimmen, welche ei-
ne biexponentielle Abnahme des diffusionsgewichteten Signals verursacht, werden fluss-
kompensierte und monopolare Diffusionsgradienten unterschiedlicher Dauer eingesetzt. Zu
diesem Zweck wird eine Pulssequenz für die diffusionsgewichtete Magnetresonanztomogra-
phie entwickelt, welche es erlaubt, die Flusswichtung der Bildgebungsgradienten zu unter-
drücken. Außerdem reduziert das Design der Sequenz den Einfluss zusätzlicher nichtlinea-
rer Maxwellfelder. Die Sequenz wird am Phantom und am gesunden Probanden eingesetzt,
wobei in Leber und Bauchspeicheldrüse unterschiedliche Signalverläufe für flusskompen-
sierte und monopolare Diffusionswichtung gemessen werden, sowie eine Abhängigkeit von
der Gesamtzeit des Diffusionsexperimentes festgestellt wird. Um die experimentell beob-
achteten Signalabschwächungen zu beschreiben, wird ein Modell entwickelt, welches es
erlaubt, die durch die inkohärente Blutbewegung bedingte Signalabnahme für beliebi-
ge Diffusionsgradienten zu beschreiben. Basierend auf normalisierten Phasenverteilungen
kann eine Anpassung der Modellparameter an die experimentellen Daten durchgeführt
werden. Für die gemittelten Signalkurven der Probanden wird die charakteristische Zeit-
skala der inkohärenten Blutbewegung zu τ = 184 ± 64 ms für die Bauchspeicheldrüse
und zu τ = 156 ± 22 ms für die Leber bestimmt. Um eine pixelweise Auswertung und
die Erstellung von Karten der Modellparameter zu ermöglichen, wird eine auf der Haupt-
achsentransformation basierende Methode zur Rauschunterdrückung implementiert. Diese
ermöglicht die Reduzierung des Einflusses von pseudo-zufälligen Signalstörungen, so dass
höherwertige Parameterkarten basierend auf nur 33% der ursprünglich aufgenommenen
Daten erstellt werden können.

Magnetic Resonance Diffusion Weighted Imaging: Flow Compensated In-
travoxel Incoherent Motion Imaging as a Tool to Probe Microvasculature. Flow
compensated and monopolar diffusion weighting gradients are employed to determine the
characteristic time scale of the incoherent blood motion causing the biexponential signal
decay. A pulse sequence for diffusion weighted magnetic resonance imaging is developed,
which allows one to suppress velocity encoding of imaging gradients and which is designed
such that the influence of concomitant fields is reduced. It is tested with phantoms and
healthy volunteers, revealing different signal attenuation curves for flow compensated and
monopolar diffusion gradients in liver and pancreas. Furthermore, a dependence on the
total duration of the applied diffusion gradient profile is measured. To describe the ex-
perimentally observed signal attenuation curves, a model is developed, which allows one
to calculate the signal attenuation due to incoherent blood motion for arbitrary diffusion
gradient profiles. Precalculated normalized phase distributions allow one to fit the model
to the experimental data. For the signal attenuation curves averaged over test subjects,
the characteristic timescale of the blood motion is found to be τ = 184±64 ms in pancreas
and τ = 156 ± 22 ms in liver. To facilitate a pixel-wise evaluation and the creation of
parameter maps, a denoising algorithm based on principal component analysis is imple-
mented. The denoising reduces the effect of pseudo-random signal contributions allowing
one to obtain parameter maps from only 33% of the originally acquired data, which are
less affected by noise than the original ones.



Contents

1 Introduction 1

2 Methods: Fundamentals of Diffusion Weighted MRI 3
2.1 Nuclear Magnetic Resonance . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Total Angular Momentum and Magnetic Moment . . . . . . . . . . 3
2.1.2 Influence of External Magnetic Fields . . . . . . . . . . . . . . . . 4
2.1.3 Bloch Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Gradient and Receive Coils . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Frequency and phase encoding to sample k-space . . . . . . . . . . 11
2.2.3 Selective Slice Excitation . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Concomitant Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Diffusion Weighted MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 The Free Diffusion Process . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Bloch-Torrey equations . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Methods: Development of pulse sequences for diffusion weighted MRI 21
3.1 Concepts in pulse sequence programming . . . . . . . . . . . . . . . . . . 21

3.1.1 Echo planar imaging . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Gradient moment nulling . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Temporal diffusion spectroscopy . . . . . . . . . . . . . . . . . . . 25

3.2 Implementation of oscillating gradients in product sequence . . . . . . . . 27
3.3 Development of a flow compensated diffusion sequence . . . . . . . . . . . 31

3.3.1 Basic flow compensation problem . . . . . . . . . . . . . . . . . . . 32
3.3.2 Validation of pulse sequence . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Compensation for concomitant fields . . . . . . . . . . . . . . . . . . . . . 33

vi



Contents vii

4 Methods: Signal attenuation in the intravoxel incoherent motion model 37
4.1 Intravoxel incoherent motion model . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Obtaining the IVIM signal from normalized phase distributions . . . . . . 40
4.3 Equations for generating normalized phase distributions . . . . . . . . . . 42
4.4 Normalized phase distributions for different gradient profiles . . . . . . . . 45

4.4.1 Bipolar and flow compensated gradients . . . . . . . . . . . . . . . 46
4.4.2 Oscillating gradients . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Modeling the diffusion coefficient of blood . . . . . . . . . . . . . . . . . . 52

5 Results: Bipolar vs. flow compensated gradients 57
5.1 Data acquisition protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 ROI-wise evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Measured signal for different abdominal organs . . . . . . . . . . . 60
5.2.2 Basic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 Arterial / venous model . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.4 Logarithmic velocity distribution . . . . . . . . . . . . . . . . . . . 64
5.2.5 Parabolic velocity distribution . . . . . . . . . . . . . . . . . . . . 66
5.2.6 Comparison of the velocity distributions . . . . . . . . . . . . . . . 68

5.3 Parameter maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Results: Denoising using principal component analysis 73
6.1 Principal component analysis . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Denoising procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Comparison of original and denoised data sets . . . . . . . . . . . . . . . . 76

6.3.1 Qualitative evaluation based on parameter maps . . . . . . . . . . 77
6.3.2 Quantitative evaluation based on ROI data . . . . . . . . . . . . . 80

7 Discussion 83
7.1 Developed pulse sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 Flow compensated IVIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography 89





1 Introduction

Magnetic resonance imaging (MRI) is a well established tool in medical diagnostics. Its
high soft-tissue contrast and the benefits arising from the avoidance of the use of ionizing
radiation have classically been the main supporting arguments. Nowadays it however
becomes clear that its full potential can be unleashed by combining it with other imaging
modalities, such as X-ray computed tomography (CT), position emission tomography
(PET) and ultrasound. The field of MRI applications is very large, due to the fact
that the precession of the nuclear spins is subject to a lot of different effects. By the
use of accordingly tailored pulse sequences, it is not only possible to image morphology,
but also functionality. While the use of contrast agents can reveal active tumors, it
also enables investigation of perfusion by dynamic contrast-enhanced MRI. Exchange
rates can be assessed with chemical exchange saturation transfer (CEST) imaging and
the distribution of sodium can be imaged. At the time of writing, the most recently
developed method is magnetic resonance fingerprinting [1], which simultaneously assesses
a multitude of different properties to create a tissue fingerprint with many potential
applications. Early indication of diseases is only one among them.

A parameter that is non-invasively only accessible by MRI is the diffusion of water
molecules. Its main application area is the detection of ischemic regions caused by
strokes, which was demonstrated first in 1990 [2]. While most research in the area
of diffusion imaging targets the human brain, aiming to reconstruct orientation and
connectivity of different bundles of nerve fibers from diffusion weighted MRI data, other
application areas emerge as well. Whole-body diffusion weighted MRI has been found
well suited to assess tumor infiltration in bone marrow for diagnose and therapy response
[3] and can potentially supplement or even substitute an expensive whole-body PET/CT.

The work at hand was driven by recent findings, implying that intravoxel incoherent
motion (IVIM) imaging [4,5] can be used for disease characterization in strongly perfused
organs. By fitting a biexponential model to the diffusion weighted MRI data, it is possible
to differentiate normal and cirrhotic liver tissue [6] and even distinguish pancreatitis from
pancreatic carcinoma [7]. One of the parameters, namely the pseudo-diffusion coefficient
D∗, which contains basically all the information on the incoherent motion, is however
very delicate to measure.

The goal of this work is to develop methods to characterize the incoherent motion using
diffusion weighted MRI. It particularly aims at measuring characteristic timescale and
velocity of the incoherent blood motion. To this extent, development of pulse sequences
for diffusion weighted MRI and of a microscopic model of the incoherent motion is
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2 1 Introduction

necessary. A secondary aim is to improve the reproducibility of IVIM measurements,
in particular of measures similar to the D∗ used in the biexponential model, which is a
current research topic [8].

After a discussion of the fundamental principles of diffusion weighted MRI (chapter
2), details on the development of the used flow compensated pulse sequence are provided
(chapter 3). Chapter 4 is devoted to describe the developed framework, which allows
one to calculate the signal attenuation in the presence of incoherent motion for arbi-
trary diffusion gradient profiles. The experimental MRI data acquired using the flow
compensated pulse sequence and the results from applying the developed framework
are discussed in chapter 5. The results from applying a denoising algorithm based on
principal component analysis to the MRI data to reduce the effects of pseudo-random
signal contributions are shown in chapter 6, before the work is completed by a discussion
(chapter 7).



2 Methods: Fundamentals of Diffusion
Weighted MRI

After a short review of the fundamental physics (section 2.1) associated with the phe-
nomenon of nuclear magnetic resonance (NMR), the basic techniques which enable mag-
netic resonance imaging (MRI) are presented (section 2.2). Subsequently the effects of
diffusion on the MRI signal and how they enable measurement of the diffusion coefficient
are discussed (section 2.3). While most of the content presented in this chapter is well
known to the experienced researcher in the field of MRI, concomitant fields, which are
discussed in section 2.2.4, can be neglected for most applications in MRI and a brushing-
up of knowledge might prove helpful to follow the choice of discussed gradient profiles
and their respective implementation into a MRI pulse sequence in chapters 3 and 4.

2.1 Nuclear Magnetic Resonance

This section starts with a discussion of properties of the total angular momentum of an
atomic nucleus and its relation to the magnetic moment of the nucleus (section 2.1.1).
It is shown how interaction between the latter and an external magnetic fields drives
formation of a macroscopic magnetization (section 2.1.2). While being based on the
quantum interactions of individual spins, basically all physics relevant for proton MRI
can be treated in the thermodynamic limit by discussing classical magnetization vectors.
The time evolution of those is governed by the Bloch equations, which are introduced in
section 2.1.3 concluding the short overview on NMR.

2.1.1 Total Angular Momentum and Magnetic Moment

The total angular momentum I of an atomic nucleus is the sum of orbital and spin
angular momentum of its fermionic components. Its relation to the magnetic moment
µ of the nucleus (eq. (2.1)) defines the gyromagnetic ratio γ, which is characteristic for
each isotope.

µ = γI (2.1)

While a variety of different isotopes found use in nuclear magnetic resonance imaging or
spectroscopy, clinical MRI uses almost exclusively protons as nuclei for imaging, which
is mainly due to their uncontestedly large natural abundance in biological tissue. The
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4 2 Methods: Fundamentals of Diffusion Weighted MRI

gyromagnetic ratio of hydrogen 1H is typically stated as γ
2π = 42.576 MHz

T , values for
other nuclei can be found in [9], p. 960.

In quantum mechanics the total angular momentum is described by the operator
Î =

(
Îx, Îy, Îz

)
. It obeys the laws for angular momentum operators, in particular the

commutation relation regarding its components given by eq. (2.2a), where [Â, B̂] =
ÂB̂ − B̂Â defines the commutator of two quantum mechanic operators, ~ denotes the
Planck constant divided by 2π, εijk is the Levi-Civita symbol and i, j, k ∈ {x, y, z}. Eq.
(2.2b) follows from the commutator’s definition and eq. (2.2a).[

Îi, Îj
]

= i~εijkÎk (2.2a)[
Î

2
, Îi
]

= 0 (2.2b)

As a consequence of eq. (2.2b) the operators Î2 and Îz share a complete set of com-
mon eigenfunctions, the spherical harmonics. The eigenvalues for this common set of
eigenfunction are given by eq. (2.3a) and (2.3b) and can be expressed with the quantum
numbers I and m.

Î
2 | I,m〉 = ~2I(I + 1) | I,m〉 (2.3a)
Îz | I,m〉 = ~m | I,m〉 (2.3b)

The nuclear spin I is characteristic for an isotope1. It is an integer for nuclei with even
atomic mass number and a half-integer for odd mass numbers. In the ground state of
a nucleus with both even number of proton and even number of neutrons, the nuclear
spin vanishes (I = 0). Therefore the carbon and oxygen isotopes 12C and 16O cannot
be used for MRI. As will be shown in the next section, a nuclear spin in an external
magnetic field can occupy 2I + 1 different energy states characterized by the magnetic
quantum number m, which can take the values −I,−I + 1, . . . , I.

2.1.2 Influence of External Magnetic Fields
The interaction between an external magnetic field B and a magnetic moment µ is
described by the Hamiltonian Ĥ given by eq. (2.4).

Ĥ = −µ ·B (2.4)

For a nucleus in a stationary magnetic field of strength B0, the orientation of which can
without loss of generality be chosen to be the z-axis (B = (0, 0, B0)), the Hamiltonian
simplifies with the help of eq. (2.1) to Ĥ = −γÎzB0. The common eigenfunctions of
Î

2 and Îz, given by eq. (2.3a) and (2.3b), are thus simultaneous eigenfunctions of Ĥ.
1It can however differ for nuclear isomers in metastable states as a result of nuclear reactions
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This allows one to calculate the energy levels Em of the system, which are given by the
solutions of the time-independent Schrödinger equation (2.5a) and are found to be linear
in m (eq. (2.5b)).

Ĥ | I,m〉 = Em | I,m〉 (2.5a)
Em = −γ~mB0 (2.5b)

The energy difference between the states is given by ∆E = ~ω0, where the Larmor
frequency ω0 was introduced. ω0 is directly proportional to the strength B0 of the
applied magnetic field (eq. (2.6)).

ω0 = γB0 (2.6)

The existence of different energy states in the presence of an external magnetic field
accounts for different occupation probabilities pm, which are in thermal equilibrium
determined by the Boltzmann distribution. The fraction of spins occupying a state with
quantum number m is given by eq. (2.7), where Z(T ) denotes the partition function
and T the temperature. For |B0| > 0 the states are not degenerated, thus Z(T ) =∑I
m=−I e

~mω0
kT .

Nm

N
= e

~mω0
kT

Z(T ) (2.7)

The relative difference in occupation of the two energy levels in case of hydrogen 1H (I =
1
2) evaluates at T = 310 K (body temperature) for B0 = 1.5 T to ∆N

N = tanh(γ~B0
2kT ) =

4.94 · 10−6. This value appears to be small, but due to the large number of atoms, a
measurable macroscopic magnetization M builds up according to eq. (2.8).

M = 1
V

N∑
k=1
〈µ̂k〉 = γ

V

N∑
k=1

〈
Îk
〉

(2.8)

The magnetization in the equilibrium state is aligned with the external magnetic field
(B = (0, 0, B0)), since the eigenstates of Îx and Îy are degenerated and thus occupied
equally. Its magnitude is given by eq. (2.9), where in the last step the high-temperature
approximation e

~mω0
kT ≈ 1 + ~mω0

kT was used (~ω0 � kT ).

M0 = γ

V

N∑
k=1

〈
Îz
〉

= γ~N
V Z(T )

I∑
m=−I

me
~mω0

kT ≈ N

V

γ2~2I(I + 1)B0
3kT (2.9)

While in the following section the time-evolution of M is derived in the formalism of
quantum mechanics, it should be noted that in proton (1H) MRI, most applications
only need to take into account the macroscopic picture, which is described by the Bloch
equations.
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2.1.3 Bloch Equations
According to the Ehrenfest theorem, the time-evolution of the magnetization µ̂ is given
by eq. (2.10), since µ̂ is not an explicit function of t (∂µ̂∂t = 0).

dµ̂
dt =

〈
i

~

[
Ĥ, µ̂

]〉
= iγ2

~

〈
Î(Î ·B)− (Î ·B)Î

〉
(2.10)

Using Einstein notation, the expression in brackets can be evaluated component-wise,
yielding a cross product (eq. 2.11).

ÎkÎlBl − ÎlBlÎk = Bl(ÎkÎl − ÎlÎk) = Bl
[
Îk, Îl

]
= i~BlÎmεklm = i~

(
B × Î

)
k

(2.11)

The time-evolution of the macroscopic magnetization can thus be obtained by summation
(eq. (2.12)).

dM
dt = 1

V

N∑
k=1

〈dµ̂k
dt

〉
= γ

V

N∑
k=1
〈µ̂k〉 ×B = γM ×B (2.12)

Empirically, Bloch found similar equations [10] for a magnetic field along the z-axis,
which are given in eq. (2.13a) - (2.13c).

dMx(t)
dt = γ (M(t)×B(t))x −

Mx(t)
T2

(2.13a)

dMy(t)
dt = γ (M(t)×B(t))y −

My(t)
T2

(2.13b)

dMz(t)
dt = γ (M(t)×B(t))x −

Mz(t)−M0
T1

(2.13c)

In the following the solutions of the Bloch equations for two relevant cases are discussed.

Free induction decay (FID) If the magnetic field B = (0, 0, B0) is static, the solution
of the Bloch equations are given by eq. (2.14a) and (2.14b), where the transversal
magnetization Mxy = Mx + iMy was introduced. Since the measured MRI signal is
found proportional to Mxy, the time evolution of the magnetization in case of a static
magnetic field bears the name free induction decay referring to eq. (2.14b).

Mz(t) = M0 − (M0 −Mz(0)) e−
t

T1 (2.14a)

Mxy(t) = Mxy(0) eiω0te−
t

T2 (2.14b)

The return of the longitudinal magnetization Mz to its equilibrium value is determined
by the spin-lattice-relaxation time T1. Movements due to thermal energy of the molecules
cause fluctuating magnetic fields with spectral components at the frequency ω0. This
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induces transitions between the energy levels, allowing the magnetization to return to
its equilibrium state.

The time evolution of the transversal magnetization is governed by the spin-spin-
relaxation time T2. Fluctuating magnetic fields (causing fluctuations in ω0) originating
from dipole-dipole interactions lead to an irreversible dephasing of the magnetization.
Further dephasing, leading to an increased signal decay, which is described by the time
constant T ′2, is caused by inhomogeneities of the magnetic field and local variations in
susceptibility resulting in pertubating magnetic fields BP . Those additional dephasing
can however be compensated for in MRI using refocusing pulses (introduced in section
2.2.3) exploiting that the additional fields BP are time-independent. The overall decay
of the transversal magnetization can thus be described by the time constant T ∗2 , given
by eq. (2.15).

1
T ∗2

= 1
T2

+ 1
T ′2

(2.15)

Magnetic Resonance Now the following case is considered: In addition to the static
magnetic field a circular polarized radio-frequency field B1(t) of frequency ω1, given by
eq. (2.16) is applied.

B1(t) = (B1(t) cos(ω1t),−B1(t) sin(ω1t), 0) (2.16)

It is further assumed that the time during which B1(t) is active is short such that
magnetization decay can be neglected (T1, T2 →∞). To solve the Bloch equations, the
system is viewed in the rotating coordinate frame, x′ = RTz (ω1t)x, where Rz(θ) is the
matrix performing a counter-clockwise rotation by an angle θ around the z-axis and is
given by eq. (2.17).

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (2.17)

The time evolution of the magnetization M ′ in the rotating reference frame is thus given
by eq. (2.18).

dM ′(t)
dt = RTz (ω1t)

dM(t)
dt + dRTz (ω1t)

dt M(t)

= γ

(
RTz (ω1t)B(t)Rz(ω1t) + 1

γ

dRTz (ω1t)
dt Rz(ω1t)

)
M ′(t)

(2.18)

The symbol B denotes the matrix representation of the cross product with B and is
given in eq. (2.19a). Similarly the expression in parenthesis in eq. (2.18) describes
the cross product with the magnetic field effective in the rotating reference frame Beff ,
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which evaluates to eq. (2.19b).

B(t) =

 0 B0 B1(t) sin(ω1t)
−B0 0 B1(t) cos(ω1t)

−B1(t) sin(ω1t) −B1(t) cos(ω1t) 0

 (2.19a)

Beff (t) =

 0 B0 − ω1
γ 0

−B0 + ω1
γ 0 B1(t)

0 −B1(t) 0

 (2.19b)

The time evolution of the magnetization in the rotating frame of reference can thus be
expressed by a cross product with an effective magnetic field Beff (t) = (B1(t), 0, B0 −
ω1
γ ). If the difference between the Larmor frequency and the frequency of the applied

radio frequency field is denoted by ∆ω = γB0 − ω1, the time evolution of the different
components of M ′ is given by eq. (2.20a) - eq.(2.20c).

dM ′x(t)
dt = M ′y(t)∆ω (2.20a)

dM ′y(t)
dt = γM ′z(t)B1(t)−M ′x(t)∆ω (2.20b)

dM ′z(t)
dt = −γM ′x(t)B1(t) (2.20c)

If the resonance condition ω0 = ω1 is met, the magnetization starts precessing around
the x′-axis. Assuming that the magnetization was initially in the equilibrium state, when
the radio frequency field was switched on, the time-dependence of the so called flip angle
α between M ′ and the z′-axis is given by eq. (2.21).

α(t) = γ

∫ t

0
B1(t′)dt′ (2.21)

This effect is used in magnetic resonance imaging to create a transversal magnetization
component. For off-resonance spins, the time-evolution of the transversal magnetization
is described by (2.22a), which has (assuming M ′z(t) is known and M ′xy(0) = 0) the
solution given by eq. (2.22b) [11].

dM ′xy(t)
dt = iγM ′z(t)B1(t)− i∆ωM ′xy(t) (2.22a)

M ′xy(t) = iγe−i∆ωt
∫ t

0
M ′z(t′)B1(t′)ei∆ωt′dt′ (2.22b)

(2.22c)

In case of small flip angles the longitudinal magnetization remains approximately in its
equilibrium state and the off-resonance flip angle α(∆ω) can be approximated by the



2.2 Magnetic Resonance Imaging 9

Fourier transform of the envelope function B1(t) of the radio frequency field (eq. (2.23)).

|α(∆ω)| ≈ |sin(α(∆ω))| =
|M ′xy(t,∆ω)|

M0
≈ γ

∣∣∣∣∫ t

0
B1(t′)ei∆ωt′dt′

∣∣∣∣ (2.23)

With the fundamental principles behind the phenomenon of nuclear magnetic resonance
being discussed, the following section will focus on how those can be put to use to
spatially resolve the distribution of nuclear spins and create a magnetic resonance image.

2.2 Magnetic Resonance Imaging
This section is structured as follows. First it is shown how the magnetization is related
to the signal picked up by receive coils and how magnetic field gradients can be used to
encode locations via spectral wave vectors (section 2.2.1). Then the concept of k-space
and techniques to acquire the required data for reconstructing an MRI image are dis-
cussed (section 2.2.2). After explaining how the magnetization can be selectively excited
and refocused (section 2.2.3), a short comment on the existence of concomitant fields,
which inevitably accompany linear magnetic field gradients, is made (section 2.2.4).

2.2.1 Gradient and Receive Coils

Gradient coils are an essential hardware component in a MRI system, that allow one
to overlay the static magnetic field B = (0, 0, B0) with a spatially dependent magnetic
field. Typically a set of several coils is used, which allows one to create a linear gradient
field2 along the z-axis, which is characterized by the magnetic field gradient g specified
in eq. (2.24).

g = ∇Bz =
(
∂Bz
∂x

,
∂Bz
∂y

,
∂Bz
∂z

)
(2.24)

The change in the total magnetic field strength, which is caused by the gradient field,
leads to a spatial dependence of the Larmor frequency given by eq. (2.25).

ω(x) = γBz(x) = γB0 + γx · g (2.25)

Since the relative change in the total magnetic field strength due to an applied gradient
field is rather small (typically < 1%), the equilibrium magnetization can be assumed
constant and thus the time-evolution of the longitudinal component of the magnetization
is unaffected by the gradient field. The transversal magnetization M ′xy measured in the
rotating reference frame does however accumulate a spatially dependent phase φ′(x, t)
due to the difference in Larmor frequency in the presence of a magnetic field gradient

2The existence of such gradient fields does however not comply with Maxwell’s equations, which leads
to the formation of concomitant fields (for details see section 2.2.4).
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(eq. (2.26a) and (2.26b)). Magnetization decay due to T2-relaxation is neglected in eq.
(2.26a).

M ′xy(x, t) = M ′xy(x, 0)e−iφ′(x,t) (2.26a)

φ′(x, t) = γx ·
∫ t

0
g(t′)dt′ (2.26b)

Note that the spatial coordinates x used in the remainder of this chapter always refers
to the location in the laboratory frame even if complex properties measured at those
locations are given in the frame of reference rotating with ω0 (denoted by the prime ′).

Receive Coils are another important component of an MRI system picking up the
signal which is induced by the precessing magnetization. According to Haacke et al.
[12], p. 101, the signal S(t) which is induced in the coil is given by eq. (2.27), where
φ(x, t) denotes the phase of the transversal magnetization in the laboratory frame and
φB(x) is the phase of the transverse component Bxy of the receive coil B1 field, both
phases measured with respect to the x-axis.

S(t) ∝
∫
V
|Mxy(x, t)| |Bxy(x, t)| sin (φ(x, t)− φB(x)) d3x (2.27)

Following [9], p. 370ff., the frequency offset caused by Lamor precession is removed by the
MRI receiver resulting in a demodulated signal S′(t), which is the signal that would be
measured in the rotating reference frame. A quadrature detection is further performed,
allowing to obtain the complex signal S′xy(t) from the real valued signal S′(t). S′xy(t)
can be expressed by the transversal magnetization M ′xy and the transversal component
B′xy of the B1 field in the rotating reference frame. Assuming the receive coil is tuned
to the Larmor frequency, B′xy(x) doesn’t change with time and S′xy(t) is given by eq.
(2.28).

S′xy(t) ∝
∫
V
M ′xy(x, t)B′xy(x)d3x (2.28)

Recalling the time evolution of the transversal magnetization in the presence of a mag-
netic field gradient (eq. (2.26a)) and using the definition of the wave vector k(t) given
by eq. (2.29a), eq. (2.29b) is obtained.

k(t) = 1
2π∇φ

′(x, t) = γ

2π

∫ t

0
g(t′)dt′ (2.29a)

S′xy(k(t)) ∝
∫
V
M ′xy(x, 0)B′xy(x)e−2πik(t)·xd3x (2.29b)

The signal obtained after demodulation and quadrature detection is thus equivalent to
the Fourier transform of the weighted magnetization M ′B(x) = M ′xy(x, 0)B′xy(x). Also
note that S′xy is a function of the spatial wave vector k and only implicitly dependent on
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time, if a magnetic field gradient is active while the signal is measured. The sensitivity
profile B′xy(x) of the receive coil (magnitude and phase) is typically known or can be
measured. The spatially resolved transverse magnetization without applied magnetic
field gradients M ′xy(x) = M ′xy(x, 0) can thus be directly obtained from M ′B(x) after an
inverse Fourier transform of S′xy(t) along the domain of spatial frequencies is performed
(eq. 2.30).

M ′xy(x) ∝ 1
B′xy(x)

∫
Vk

S′xy(k)e2πik·xd3k (2.30)

Having derived this equation, the following section will be devoted to techniques that
allow sampling of S′xy(k) such that an image of the desired property M ′xy(x) can be
obtained.

2.2.2 Frequency and phase encoding to sample k-space

Since digital signal processing only allows for discrete sampling, S′xy(k) can only be mea-
sured at a finite number of distinct k. While in principle all three spatial dimensions
could be encoded with the help of spatial frequencies k, the MRI sequences used in this
work apply selective slice excitation (see section 2.2.3) to achieve spatial resolution along
the z-axis. Since the discrete Fourier transform can be readily performed for equidis-
tantly sampled signals, a typical fully sampled two-dimensional k-space would consist of
S′xy(kx, ky) measured for the distinct points in k-space depicted in Fig. 2.1. If we as-
sume a two-dimensional field of view with dimensions FoVx and FoVy the application of
a magnetic field gradient of magnitude g along the respective axis would cause a spread
in Larmor frequency by ±∆ω with respect to the Larmor frequency at the center of the
field of view, where ∆ω is given by eq. (2.31).

∆ω = γg
FoV

2 (2.31)

The change of the spatial frequency ∆k inherent to the application of a gradient g is
linked to the application time ∆t of the gradient via eq. (2.32), which is a special case
of eq. (2.29a).

∆k = γ

2πg∆t (2.32)

This allows us to use the Shannon-Nyquist sampling theorem [13], which is given by
eq. (2.33a) to derive the k-space sampling theorems given by eq. (2.33b) and (2.33c).
∆x = FoV

N is the spatial resolution, if the size of the image matrix is N points along the
respective axis. The highest sampled spatial frequency kmax is given for a symmetric
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Figure 2.1: Typical sampling of k-space in 2D. While ky is encoded into the phase
of the magnetization, frequency encoding is used to encode kx. By using
symmetry of S(k) the necessary sampling points can be reduced. The
partial Fourier factor specifies the acquired fraction which is for PF = 0.75
depicted by the green rectangle.

sampling of k-space by kmax = N∆k
2 .

∆t ≤ 1
2∆ν = π

∆ω (2.33a)

∆k ≤ 1
FoV (2.33b)

kmax ≥
1

2∆x (2.33c)

The structure of k-space, respectively the points at which S′xy needs to be measured, is
thus determined by the field of view and the desired spatial resolution ∆x. Two generally
remarks are made before sampling of k-space using frequency and phase encoding is
discussed.

Partial Fourier From eq. (2.29b) the symmetry property of k-space given by eq. (2.34)
becomes apparent, where the star ∗ denotes the complex conjugate.

S′xy(−k) = S′∗xy(k) (2.34)

Due to the fact that S′xy(−k) is a complex quantity, sampling of full k-space yields
redundant information and using the symmetry stated in eq. (2.34), only half of the k-
space data points need to be acquired. Due to constraints inflicted by signal-to-noise ratio
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and phase stability, it however is often desired to acquire some redundant information.
The partial Fourier factor gives the sampled fraction of k-space, which is depicted for
the value 0.75 in Fig. 2.1 by the green rectangle.

Sampling of k-space center For phase correction and since the signal energy is highest
in the k-space center, it is desirable to acquire S′xy at the point kx = ky = 0, resulting
in an asymmetric sampling scheme similar to the one shown in Fig. (2.1) for even N .

Phase encoding One of the strategies to encode k into the magnetization is to apply
a magnetic field gradient before the signal acquisition. This way the location of a spin
packet is encoded into the phase difference to the rotating reference frame due to the
different precession frequency during the magnetic field gradient. This technique however
entails the problem of aliasing. If objects lie outside the field of view along the direction in
which phase encoding gradients are applied, they are associated with higher frequencies,
that cannot be resolved due to the Nyquist criterion and fold over artifacts are the result.
Therefore phase encoding is typically chosen along the shortest dimension of the imaged
subject, to be able to include the entire subject into the field of view.

Frequency encoding Another possibility is the application of a magnetic field gradient
during the measurement of the signal. The location of the spin packets is thus encoded
into the precession frequency during the acquisition process. If the signal is sampled
while a gradient is active, the k value accumulates with time and a line in k-space
is sampled as depicted in Fig. 2.1. The discretization of the signal is achieved by
measuring the signal integrated over the dwell time tdwell. Typically, oversampling is
performed along the acquired line, where the dwell time is specified by the oversampling
factor β and the so called bandwidth per pixel BW

px via eq. (2.35a). BW
px is related to the

full bandwidth 2∆ν by eq. (2.35b), which also determines the necessary amplitude of
the readout gradient.

tdwell = 1
βN BW

px
(2.35a)

BW
px = 2∆ν

βN
= g

γFoV
2πβN (2.35b)

According to [9], p. 370, frequency encoding allows the use of an anti-aliasing filter prior
to sampling, such that wide-band noise or higher frequency components from outside
the specified field of view do not cause image artifacts. Frequency encoding can thus be
used along a direction in which not the whole subject can be included into the field of
view.
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2.2.3 Selective Slice Excitation

Another possibility to spatially resolve the MRI signal is the selective excitation of e.g.
only a slice of thickness ∆z. This can be achieved by applying a slice selection gradient
of amplitude gs while the radio frequency pulse is active. This causes a dispersion
∆ω of the precession frequencies along the axis of the applied gradient given by eq.
(2.36a). Recalling the derived frequency dependence of the flip angle (eq. (2.23)), which
is restated below (eq. (2.36b)), it becomes apparent that if B1(t) could be chosen such
that its Fourier transform would correspond to a rectangular profile of width ∆ω, only
the magnetization in the slice of thickness ∆z would be excited.

∆ω = γgs∆z (2.36a)

|α(∆ω)| ≈ |sin(α(∆ω))| =
|M ′xy(t,∆ω)|

M0
≈ γ

∣∣∣∣∫ t

0
B1(t′)ei∆ωt′dt′

∣∣∣∣ (2.36b)

According to [9], p. 39ff., an envelope function B1(t), the Fourier transform of which
would yield the desired profile, is given by eq. (2.37a), where A is the amplitude, which
can be varied independently of the temporal profile. Since the radio frequency pulse can
however only be applied for a finite duration, Hamming (α = 0.46) and Hanning (α =
0.5) apodization windows are used to suppress ringing effects in the flip angle profile.
The resulting pulse shapes are described by eq. (2.37b), where N = max(NL, NR) is the
larger number of zero-crossings left NL and right NR to the central peak.

B1(t) = A
sin
(
t∆ω

2

)
t∆ω

2
(2.37a)

B1(t) = A
sin
(
t∆ω

2

)
t∆ω

2

[
(1− α) + α cos

(
t
∆ω
2N

)]
(2.37b)

The number of zero-crossings for a sinc-pulse is determined by the total duration T of
the pulse and a property called time-bandwidth product (TBP), which corresponds to
the number of zero-crossings (eq. (2.38)).

TBP = T∆ω
2π = NL +NR (2.38)

Due to the application of a magnetic field gradient, a phase dispersion is encoded into the
magnetization, corresponding to the spatial wave vector ks. The exact amount of ks that
needs to be compensated for using a rephasing gradient subsequently to the refocusing
pulse, is dependent on the timing of the slice selection gradient and the isodelay tI of
the excitation pulse by eq. (2.39), where r is the time after the application of the pulse
in which the gradient is still active (ramp down time).
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ks = γ

2π

∫ T+r

T−tI
gs(t)dt (2.39)

While for the pulses used in this work, the isodelay point is well approximated by the
center of the pulse, thus tI = T

2 , this is not true in general [9], p. 76f.

Refocusing pulses Sinc pulses are typically used to excite the magnetization out of
the equilibrium state by a flip angle α ≤ 90◦. The approximation made to derive eq.
(2.36b), namely M ′z(t′) ≈ M0, is only valid for small flip angles and the effects arising
from the non-linearity of the Bloch equations become too large for flip angles > 90◦
. While sinc pulses with some adjustments can be used for flip angles of α = 180◦ [9],
p. 42, those are typically realized by Shinnar-Le Roux (SLR) pulses [14,15]. In this work
180◦ pulses are used for refocusing and eliminating the T2′-decay due to magnetic field
inhomogeneities. A 180◦-pulse applied at time TE

2 to flip the magnetization along an
axis in the x′y′-plane causes an inversion of the relative phase differences caused by the
perturbation field BP . Assuming that those inhomogeneities are not time-dependent,
between TE

2 and the echo time TE, the same relative phase differences are acquired and
are canceling out the ones acquired before the 180◦ pulse. Formation of a spin echo is
the result [16].

2.2.4 Concomitant Fields

In this section it will be shown following [9], p. 293ff., that a linear magnetic field gradient
of Bz, as desired for MRI, cannot exist alone, but is accompanied by additional gradients
of Bx and By, which are not always negligible. According to Maxwell’s equations [17],
a magnetic field B must satisfy Gauß’s law for magnetism (2.40a) and Ampère’s law
(2.40b), where µ0 and ε0 denote vacuum permeability and permittivity.

∇ ·B = 0 (2.40a)

∇×B = µ0J + µ0ε0
∂E

∂t
(2.40b)

If the current densities in eq. (2.40b) are negligible and we keep the notation of g = ∇Bz
from section 2.2.1 we get the dependencies of the partial derivatives of the components
of the magnetic field B given by eq. (2.41a) - (2.41e), where the transverse gradient
term g⊥, defined by eq. (2.41a) and the symmetry parameter αs, defined by eq. (2.41d)
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are introduced.

g⊥ = ∂Bx
∂y

= ∂By
∂x

(2.41a)

gx = ∂Bz
∂x

= ∂Bx
∂z

(2.41b)

gy = ∂Bz
∂y

= ∂By
∂z

(2.41c)

αsgz = αs

(
∂Bz
∂z

)
= −∂Bx

∂x
(2.41d)

(1− αs)gz = (1− αs)
(
∂Bz
∂z

)
= −∂By

∂y
(2.41e)

Neglecting higher order terms, the components of the magnetic field are thus given by
eq. (2.42).  Bx

By
Bz −B0

 =

−αsgz g⊥ gx
g⊥ (αs − 1)gz gy
gx gy gz


xy
z

 (2.42)

This equation implies that even if g and B0 are applied along the z-axis, there are still
non-zero components Bx and By possible. The total amplitude of the magnetic field,
which determines the Larmor frequency, is thus given by eq. (2.43a). The additional
concomitant field Bc can be identified by a Taylor expansion of eq. (2.43a) to the second
order as performed in [18]. For typically used cylindrical gradient coils g⊥ ≈ 0 and
αs ≈ 0.5 hold and a relatively simple expression for Bc can be derived (eq. 2.43b).

B(x, y, z) =
√
B2
x +B2

y +B2
z = B0 + xgx + ygy + zgz +Bc(x, y, z) (2.43a)

Bc(x, y, z) ≈
1

2B0

[(
zgx −

xgz
2

)2
+
(
zgy −

ygz
2

)2
]

(2.43b)

Note that Bc always has the same sign as B0 such that the concomitant fields caused by
gradients of opposite polarity will not cancel out. While the concomitant field associated
with applied magnetic field gradients can often be neglected, gradients of very long
duration and amplitude, such as diffusion gradients, can accumulate sufficient phase
dispersion to cause signal voids.

2.3 Diffusion Weighted MRI

After the properties of the free diffusion process are discussed in 2.3.1, the dependence
of the MRI signal on the diffusion parameters is discussed in 2.3.2.
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2.3.1 The Free Diffusion Process
Adolf Fick was the first one to give a quantitative description of the diffusion process
[19]. His first law, as stated in eq. (2.44) defines the diffusion coefficient by the relation
between a concentration gradient ∇n and the diffusion flux j it causes.

j = −D∇n (2.44)

Together with the continuity equation (eq. (2.45a)) Fick’s second law, which is also
known as diffusion equation (eq. (2.45b)) arises.

∂n(x, t)
∂t

+∇j(x, t) = 0 (2.45a)

∂n(x, t)
∂t

= D∆n(x, t) (2.45b)

If particles would initially be located at a position x′, thus distributed as n(x, 0) =
δ(x−x′) as shown in Fig. 2.2(a), the solution to eq. (2.45b) in three-dimensional space
is given by eq. (2.46).

n(x, t) = 1
(4πDt)−3/2 e−

−(x−x′)2
4Dt (2.46)

If only the distribution along one coordinate axis x is considered, one yields a Gaussian
distribution of the projections PS(x) with standard deviation σx, as depicted in Fig.
2.2(b).

x

y

(a)

x

y

(b)

x

y

(c)

Figure 2.2: Particles initially located at a common location (a) undergo diffusive mo-
tion as depicted in (b). The displacement of the particles after a time t
projected on one of the coordinates follows a Gaussian distribution PS(x)
with standard deviation σx (after [20]).

The mean square displacement of the particle locations after a time t, which have
spread out according to the diffusion equation (Fig. 2.2(c)), is thus given by the Einstein
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equation (eq. 2.47) [21].
〈x2〉 = 2Dt (2.47)

In the following section it will be derived, how a magnetic field gradient applied during
the diffusive motion can be used to encode the displacement into the MRI signal.

2.3.2 Bloch-Torrey equations
The influence of diffusive motion on the signal measured in magnetic resonance ex-
periments can be described by adding a diffusion term to the Bloch equations (eq.
(2.13a)-(2.13c)), yielding the Bloch-Torrey equations [22], which for an isotropic diffu-
sion coefficient D are given by (eq. 2.48).

dM
dt = γM ×B −

1/T2 0 0
0 1/T2 0
0 0 1/T1

 (M −M0) +D∆M (2.48)

To derive the time-evolution of the transverse magnetization in the presence of both
diffusion and a magnetic field gradient Bz = B0 + x · g, we follow [23] and substitute
the transversal magnetization to eliminate Larmor precession and T2 signal decay by
Mxy(x, t) = mxy(x, t) e−iγB0t− t

T2 , which yields eq. (2.49).

∂mxy(x, t)
∂t

= −iγmxy(x, t)x · g +D∆mxy(x, t) (2.49)

Recalling the definition of k (eq. 2.29a), we can separate magnitude and phase of mxy

using the substitution mxy(x, t) = M(t) e−2πix·k(t), yielding eq. (2.50a). The solution
for M(t) is thus given by eq. (2.50b).

∂M(t)
∂t

= M(t)De2πix·k(t)∆e−2πix·k(t) = −4π2DM(t)k(t) · k(t) (2.50a)

M(t)
M(0) = exp

(
−4π2D

∫ t

0
k(t′) · k(t′)dt′

)
(2.50b)

Since the expression on the right hand side is equivalent to the ratio of the signal am-
plitudes with and without (k = 0) applied gradients, the diffusion sensitivity of an MRI
pulse sequence is typically described by the b-value, given by eq. (2.51a). For free
isotropic diffusion, the attenuation of the diffusion weighted signal S(b) is thus given by
a simple exponential (eq. (2.51b)), where S0 denotes the unweighted signal.

b = γ2
∫ T

0

(∫ t

0
g(t′)dt′

)2
dt (2.51a)

S(b)
S0

= e−bD (2.51b)
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In biological tissues, however, diffusion can seldom be considered free. Hindering cell
membranes reduce the displacement and thus the measured apparent diffusion coefficient.
Brain tissue, where properties of diffusion are often anisotropic [24], has been studied
thoroughly after the initial discovery by Moseley et al. that ischemic regions can be
detected in diffusion weighted MRI less than one hour after the onset of ischemia [2].

The focus of this work however is to investigate the biexponential signal decay, which
is observed in strongly perfused organs. As will be shown in the following chapter, the
presence of blood motion can cause the measured apparent diffusion coefficients to be
larger than the free diffusion coefficient.





3 Methods: Development of pulse
sequences for diffusion weighted MRI

After a short overview of selected pulse sequence techniques that are particularly relevant
for diffusion sequences (section 3.1), the steps leading to the development of the diffu-
sion weighted MRI sequence, which was used for the experiments presented in chapters
5and 6, are presented. The results of the first attempts, which consisted of integrating
oscillating gradients into a manufacturer pulse sequence (section 3.2), indicated, that
it would be necessary to flow compensate the imaging gradients. To be able to have
full control over the applied pulses and gradients, a flow compensated diffusion sequence
was programmed (section 3.3). To achieve higher b-values and higher effective diffusion
times, bipolar and flow compensated gradients were chosen instead of sine and cosine
gradients. However signal voids due to the presence of concomitant fields were observed
for flow compensated gradients, when very high amplitudes for the diffusion gradients
were used. Only by choosing a symmetric diffusion weighting scheme and thus compen-
sating for Maxwell-currents (section 3.4), it was possible to overcome the signal voids
and increase the diffusion time to 100 ms and more.

3.1 Concepts in pulse sequence programming
Most diffusion MRI experiments are performed using echo planar imaging. After in-
troducing this pulse sequence type and motivating its use for diffusion imaging (section
3.1.1), the concept of gradient moment nulling is explained and discussed for both diffu-
sion weighting and imaging gradients (section 3.1.2). A formalism which allows one to
discuss the diffusion weighted signal in terms of characteristic frequencies of the diffusion
process is afterwards discussed (section 3.1.3).

3.1.1 Echo planar imaging

In the field of MRI, a large spectrum of different pulse sequences is used. A sequence
which is widely used and which combines the basic pulse sequence elements that were
introduced in section 2.2, is the fast low-angle shot (FLASH) sequence [25, 26]. Its basic
sequence timing is depicted in Fig. 3.1. It should be noted that slice rephasing gradient,
phase encoding (PE) and the dephasing gradient for the readout (to start measuring
at one end of the k-space line to acquire) are applied simultaneously and are separated

21
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Figure 3.1: Two repetitions of the basic FLASH sequence. After excitation by the flip
angle α, phase encoding (PE) gradients are applied and the signal for a line
in k-space is acquired. The echo time TE is the time between excitation
and center of the readout (RO), the repetition time TR is the time between
two subsequent excitation pulses.

in Fig. 3.1 for illustration purposes. The use of small flip angles has the advantage,
that the time necessary for the Mz magnetization to recover, and thus the repetition
time TR, can be kept very short. If, for example, 128 lines in k-space are acquired for
TR = 15 ms, the acquisition time for the total image is ≈ 2 s. However, if additional
diffusion gradients shall be applied between excitation and readout, the echo time needs
to be increased such that the T ∗2 -decay gets more pronounced and larger flip angles would
be appreciated. For large flip angles, TR needs to be chosen in the order of ≈ 1 s, which
leads to acquisition times in the order of minutes. While efforts are made to accumulate
b-value over several repetitions and keeping low flip angles and short repetition times [27],
the typical approach used in diffusion weighted MRI is to acquire several k-space lines for
one diffusion preparation. Fig. 3.2(a) shows the timing of the echo planar imaging (EPI)
readout, while the acquisition order of k-space is illustrated in Fig. 3.2(b). Originally
proposed by Mansfield [28], the k-space is either acquired as a whole (singleshot) or
separated over several repetitions (segmented). To reduce the effect of T ∗2 -decay during
the echo train and to increase the available signal at the readout, refocusing pulses are
employed which typically are timed such that the spin echo forms when the k-space
center is acquired.

Parallel imaging is an umbrella term for techniques which uses simultaneously acquired
signals from several coils to accelerate acquisition in k-space by undersampling the data
and reconstructing the missing information. In this work the algorithm called generalized
autocalibrating partially parallel acquisitions (GRAPPA) [30] is used. Undersampling
is performed along the phase encoding direction such that except for reference lines
around the k-space center, only every second line is acquired. The number of k-space
lines, which need to be acquired (and thus the length of the echo train and possible
geometric distortions due to field inhomogeneities) can further be reduced by exploiting
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(a)

(b)

Figure 3.2: (a) Timing of an echo planar imaging (EPI) readout. The prephasing (red)
and dephasing (first blue lobe) gradients select one of the corner points of k-
space. After one line is acquired, a short phase encoding blip is played out,
before the subsequent line is acquire in opposite direction (sign inversion of
the frequency encoding gradient). (b) shows the order in which the signal
in k-space is acquired. Modified after [29].



24 3 Methods: Development of pulse sequences for diffusion weighted MRI

the k-space symmetry (eq. (2.34)) with partial Fourier (see section 2.2.2).

Residual eddy currents can be caused by switching the diffusion gradients on or off.
If eddy currents are assumed to decay exponentially with a time constant that is of the
order of several 10 ms, the eddy currents caused by switching a much shorter gradient
on and off approximately cancel out. For longer gradients, such as diffusion gradients,
the eddy currents caused by the onset of the gradient are already decayed and eddy
currents from the ramp down of the gradient continue to exist as residual eddy currents.
By using a twice-refocused spin echo sequence, such as the one used as a starting point
in section 3.2, it is however possible to reduce the residual eddy currents active during
the readout and thus the distortions caused [31, 32].

3.1.2 Gradient moment nulling
The phase that a particle acquires due to applied magnetic field gradients can be dis-
cussed with the help of gradient moments. Following [9], p. 336ff., the time-evolution
of the location x(t) of a particle can be written as a Taylor series (eq. 3.1, where x0
denotes the initial location, v0 the initial velocity and a0 the initial acceleration.

x(t) = x0 + tv0 + t2

2 a0 + · · · (3.1)

The phase of the magnetization (recalling eq. (2.26b)) can then be expanded into gra-
dient moments (eq. (3.2a)), where the nth gradient moment mn is given by eq. (3.2b).

φ(t) = γ

∫ t

0
x(t′) · g(t′)dt′ = γ

(
x0 ·m0(t) + v0 ·m1(t) + 1

2a0 ·m2(t) + · · ·
)

(3.2a)

mn(t) =
∫ t

0
(t′)ng(t′)dt′ (3.2b)

For many imaging gradients, such as rephasing, dephasing or phase encoding gradients,
the 0th gradient moment is determined by the imaging parameters, the exact shape of
the gradient however can be chosen as desired. Similarly, a diffusion gradient profile
typically has the constraints that the total 0th gradient moment must be zero (rephasing
condition), such that imaging is not disturbed and that the diffusion gradients must
cause the signal attenuation specified by the b-value. The term flow compensated refers
to the condition when the st gradient moment equals zero. For a detailed discussion of
different gradient schemes, it shall be referred to section 4.4. Here it shall be only noted,
that a cosine gradient profile and the flow compensated profiles used in the remainder
of this chapter yield a total m1 = 0, whereas the sine and bipolar profile are not flow
compensated, thus |m1| > 0. Generally spoken, a gradient waveform with zero net area
(m0(t) = 0), which is symmetric with respect to time, thus g

(
t
2 − t

′) = g
(
t
2 + t′

)
yields
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m1(t) = 0. Also, it can be desirable to calculate the first moment m̃1(∆t), that a
gradient waveform applied during t1 and t2 causes at time t = t1 + ∆t. Its relation to
the the zeroth and first moment of the gradient waveform is given by eq. (3.3).

m̃1(∆t) =
∫ t2

t1
−(t1 + ∆t− t′)g(t′)dt′ =

∫ t2−t1

0
−(∆t− t′)g(t′ + t1)dt′ = −∆tm0 +m1

(3.3)
For the sequence developed in section 3.3, eq. (3.3) is used to calculate the gradient
waveforms that need to be used such that imaging gradients yield zero net first moment.

3.1.3 Temporal diffusion spectroscopy

The term temporal diffusion spectroscopy was introduced by the group around Does [33].
They showed that using oscillating gradient profiles of varying oscillation frequency for
diffusion weighting can potentially yield information on intra-cellular structures as the
size of cell nucleus [34, 35]. The idea of using oscillating gradients was first brought up
by Stepǐsnic [36], who related the signal attenuation of the diffusion weighted signal to
the Fourier transform D̃xx(ω) of the velocity autocorrelation function along the axis x of
the applied diffusion gradients. The relation between velocity autocorrelation function
and spectrum D̃xx(ω) is given by eq. (3.4), whereas the symmetry of the velocity auto-
correlation function 〈vx(0)vx(−t)〉 = 〈vx(0)vx(t)〉 is used. The brackets 〈· · · 〉 denote the
average over all particles in the ensemble.

D̃xx(ω) = 1
2

∫ ∞
−∞
〈vx(0)vx(t)〉eiωtdt =

∫ ∞
0
〈vx(0)vx(t)〉 cos(ωt)dt (3.4)

The exponent α(t) of the attenuation of the diffusion weighted signal, which is in case of
free diffusion given by α(t) = −bD (compare with eq. (2.51b)), can be rewritten using
D̃xx(ω) [36] as shown in eq. (3.5a). The weighting function Sx(ω, t) can be calculated
from the Fourier transform of the gradient profile as given by eq. (3.5b).

α(t) = γ2

2π

∫ ∞
−∞

D̃xx(ω)Sx(ω, t)dω (3.5a)

Sx(ω, t) =

∣∣∣∫ t0 gx(t′)e−iωt′dt′
∣∣∣2

ω2 (3.5b)

The weighting functions for sine and cosine profiles with typical parameters are shown
in Fig. 3.3. In the top row, the effective magnetic field gradients (sign inversion upon a
refocusing pulse) for 5 oscillations and an oscillation period of 5 ms are depicted. The
corresponding weightings S(ω, t) are shown in the bottom row. While the sine profile is
most sensitive to low frequency components and has additional lobes at ±ω0 (here ω0 =
2π
T ≈ 1.26 kHz) as can be inferred from Fig. 3.3(c), the cosine profile misses the central
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Figure 3.3: Sine and cosine gradient profiles (top row) and their respective spectral
weightings S(ω, t) (bottom row), where t = 25 ms. Both spectral weight-
ings show peaks at the oscillation frequency ±ω0. The cosine profile misses
the central lobe at ω = 0, which can be explained by its temporal symmetry
and thus its flow compensation.
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lobe (Fig. 3.3(d)), which is a property inherent to all flow compensated gradient profiles.
The fact that the net area under the S(ω, t) curve for cosine gradients is much less than
for sine gradients, also reflects in the b-value. For free diffusion (uncorrelated particle
movements) the velocity autocorrelation function is given by 〈vx(0)vx(t)〉 = 2Dδ(t)
yielding D̃(ω) = D. Thus the b-value is given by eq. (3.6a), yielding the formulas for
sine (eq. 3.6b) and cosine (eq. 3.6c) gradients, where N is the number of oscillations, T
the total time the diffusion gradient profile is applied and g is the maximum amplitude
of the magnetic field gradient.

b(t) = γ2

2π

∫ ∞
−∞

S(ω, t)dω (3.6a)

bsin = 3γ2g2T 3

8π2N2 (3.6b)

bcos =
γ2g2T 3(1 + 1

4N )
8π2N2 (3.6c)

IVIM model A brief derivation of the diffusion spectrum in the IVIM model is given
here to motivate the use of oscillating gradients. The model is in detail discussed in
chapter 4. Particles are assumed to travel with a characteristic velocity v and change
their direction after a characteristic time τ . If movement before and after a direc-
tional change is assumed uncorrelated, the velocity autocorrelation function is given by
〈vz(0)vz(t)〉 = 〈vz(0)2〉

(
1− |t|τ

)
Θ(τ−|t|), where Θ(t) denotes the heaviside function [37].

Using that for isotropically distributed velocity directions 〈vz(0)2〉 = v2

3 and introducing
the pseudo-diffusion coefficient D∗ = v2τ

6 , D̃(ω) is given by eq. (3.7).

D̃(ω) = v2

3

∫ τ

0

(
1− t

τ

)
cos(ωt)dt = 2D∗ 1− cos(τω)

τ2ω2 (3.7)

Fig. 3.4 shows that D̃(ω) normalized on D∗ has a characteristic dependence on the
product τω. This implies, that if D̃(ω) could be probed at different frequencies using
oscillating gradients of known ω, it would be possible to obtain information on the
characteristic timescale τ of the incoherent motion.

3.2 Implementation of oscillating gradients in product
sequence

The sequence into which the oscillating gradients were inserted, was a twice-refocusing
diffusion EPI sequence. The timing of the refocusing pulses was such that eddy current
elimination for a time constant τ = 70 ms was achieved [31]. The original diffusion
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Figure 3.4: Normalized spectrum of the velocity autocorrelation function for the IVIM
model discussed in chapter 4. Probing the spectrum using oscillating gradi-
ents would allow one to obtain information on the characteristic timescale
τ of the incoherent motion.

gradients were replaced by oscillating gradients between the two refocusing pulses as
shown in Fig. 3.5. The sequence was tested using a homogeneous spherical water
phantom and a flow phantom, which was developed in the course of a bachelor thesis
[29]. The flow phantom consisted of a tube of inner diameter 4 mm, which was wound
around a paper roll such that the water would flow circularly around the paper roll. Two
striking findings based on the data measured in those experiments, however, leaded to
a discontinuation of the work with this pulse sequence.

Signal increase for flow and cosine gradients Fig. 3.6 shows the diffusion coefficients
obtained by a two-point exponential fit from measurements using a flow-phantom as
described in [29]. Signal attenuation and thus diffusion coefficients obtained by an
exponential fit are larger for sine than for cosine gradients, which is expected, since
cosine gradients are flow compensated. In case of cosine gradients, however, for some of
the oscillation frequencies an increase of the diffusion weighted signal compared to the
unweighted signal is found. The most likely explanation of this phenomenon was that
the supposedly unweighted signal is in fact strongly attenuated by flow, since the pulse
sequence itself is not flow-compensated. While the addition of cosine gradients, which
are flow-compensated by themselves and should thus not change the overall m1 of the
sequence, cannot explain the increase in signal, it was found that the directions of the
crusher gradients, which need to be applied in combination with refocusing pulses (for
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Figure 3.5: Sequence timing of modified diffusion EPI manufacturer sequence. Instead
of the original diffusion gradients the user can choose between sine (top) or
cosine gradients (bottom), which were inserted between the two refocusing
pulses.

Figure 3.6: Diffusion coefficients measured using the phantom described in [29]. Gra-
dients were applied simultaneously in slice selection and readout direction,
where flow was directed in readout direction with v ≈ 35 cm/s. Signal
attenuation for sine gradients is larger than for cosine gradients, as ex-
pected. For cosine gradients, however, signal also increases compared to
the unweighted reference image (negative D).
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details, see [9], p. 305) are applied by the manufacturer sequence with different signs
for weighted and unweighted acquisition, which could explain changes in the the first
moment and thus the velocity encoding of the sequence. To have full control over the
imaging gradients, it was decided to build a diffusion EPI sequence from scratch.

Signal attenuation increases with oscillation frequency Fig. 3.7 shows the diffusion
coefficients, which were measured in a spherical phantom, which in other experiments
showed to contain a solution in which water molecules exhibit free diffusion with D ≈
2.15 µm2/ms. While this is approximately the value that was measured for low oscillation

Figure 3.7: Measured diffusion coefficients for the modified EPI manufacturer sequence
with inserted cosine gradients. Due to gradient system limitations, the
maximum achievable b-value is proportional to ω−2. However, this alone
cannot explain the increase in the measured diffusion D.

frequencies, the cosine signal decays much stronger with increasing frequency. The reason
for this behavior could not be clarified with ultimate certainty. One problem is, that the
maximum achievable b-value, which is also shown in Fig. 3.7, is basically limited by the
maximum achievable gradient amplitude of the scanner, which nominally was 40 mT/m
per axis. According to eq. (3.6c), the b-value for cosine is proportional to N−2 and thus
to ω−2. This leads to the fact, that for large ω and thus the small achievable b-values the
diffusion coefficient can only be determined with small accuracy. However the absolute
value should not be affected as much as in the experiments. Apart from the gradient
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system operating at its limits in terms of amplitude and slew rate for large oscillation
frequencies and thus the really applied gradients might differ from the intended ones, it
is also possible that concomitant fields caused by the oscillating gradients contributed
to the increased signal decay.

3.3 Development of a flow compensated diffusion sequence

The basic sequence design of the flow compensated diffusion sequence was inspired by
the manufacturer sequence used in the previous section. To be able to achieve higher
b-values while having the possibility to use two different diffusion gradient profiles, one of
which being flow compensated and the other not, it was chosen to move from oscillating
gradients back to bipolar and flow compensated gradients as shown in Fig. 3.8. Bipolar

Figure 3.8: Basic sequence timing of the self-written diffusion EPI sequence. Diffusion
gradients were inserted between the two refocussing pulses. The timescale
τ of the incoherent motion could be probed by varying the total duration
T of the diffusion weighting gradients.

and flow compensated gradient schemes could be considered as rectangularized versions
of just 1 oscillation of sine, respectively cosine gradients, where the frequency could be
varied by changing the total time T of the diffusion experiment. The b-values for bipolar
and flow compensated gradients are given by eq. (3.8a) and (3.8b), where ramp times
(which were of course considered in sequence programming) are neglected.

bbip = γ2g2T 3

12 (3.8a)

bfc = γ2g2T 3

48 (3.8b)
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As can be inferred from those equations, twice the gradient amplitude of the bipolar
profile is needed to obtain the same b-value using the flow compensated profile at the
same diffusion time T .

Apart from the low b-values that can be obtained on a clinical MRI scanner for oscillat-
ing gradients, the other main reason to move away form the manufacturer sequence used
in section 3.2 was to be able to control and flow-compensate the imaging gradients. A
basic search algorithm was implemented to solve the flow-compensation problem, which
is described in section 3.3.1. It is then used to calculate the necessary gradients for slice
selection, phase encoding and readout.

3.3.1 Basic flow compensation problem

The basic flow compensation problem is illustrated in Fig. 3.9. The typically used

Figure 3.9: Illustration of the basic flow compensation problem. Two gradients labeled
1 and 2 need to be tuned regarding their amplitude gi, duration di and
ramp time ri such that at a time ∆ after the last gradient the moments
m0 and m̃1 are created.

gradients in MRI have a trapezoidal profile, which can be characterized by the amplitude
g, the ramp time r and the duration d, which is the sum of ramp time and flat top time
f . With a pair of such gradients it is basically possible to create any combination of
m0 and m1 at a time ∆ after the second gradient is applied. Recalling eq. (3.3) the
temporal shift can be included into m̃1. However, since the gradient durations are not
known a priori, eq. (3.3) cannot be applied directly. Since the desired m0 is unaffected
by ∆, the moment created at a time m̃1(t−∆) is given by m̃1(t) +m0∆. The equations
that need to be fulfilled can thus be stated as follows (eq. (3.9a) and (3.9b)).

m0 = g1d1 + g2d2 (3.9a)

m̃1 +m0∆ = −
(
r1 + d1 + r2 + d2

2

)
g2d2 −

r1 + d1
2 g1d1 (3.9b)
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The parameter range is thus limited by the gradient system. Typically a maximum
gradient amplitude gmax is possible and a maximum slew rate respectively minimum
gradient rise time rmin can be realized, thus girmin < ri. For the used MRI scanner
(Siemens Magnetom Avanto), the specified limits were gmax = 40 mT/m and rmin =
5.88 us/(mT/m), where each gradient timing must be on a time raster of width 10 µs.
While a gradient pair fulfilling eq. (3.9a) and (3.9b) is not unique, it is desired to achieve
the compensation in the shortest possible time. The basic version of the algorithm thus
varies di and ri to find the solution with the shortest total gradient time d1 +d2 +r1 +r2.
The algorithm is used in the sequence to solve the arising flow compensation problems
for slice selection gradients, phase encoding gradients and readout gradients. Details
on the exact implementations can be found in [9], p. 331ff. While it is possible to
achieve flow compensation along the slice encoding direction, for the readout axis it is
strictly possible only for a single point in each line. The gradient reversal of the readout
train however ensures that the first gradient moments, which were built up during the
acquisition of the previous line are canceled out again by the acquisition of the current
line. For the phase encoding direction, it is strictly speaking only possible to achieve
flow compensation for the k-space center, since the hardware limitations do not allow to
include full compensation gradients in the time the small time frame available for phase
encoding between the acquisition of two succeeding lines. The gradient shape that was
used for the phase blips was designed such that the build up of a first moment (which
is inevitable due to the existence of non-zero first moments in every line except for the
center line) is counteracted best.

3.3.2 Validation of pulse sequence
The sequence was tested using a straight flow phantom consisting of a tube of diame-
ter 1.0 cm. Measurements were performed with resting and flowing water, where the
measured flow velocity was v = 0.8 cm/s. While the signal attenuation curves for flow
compensated diffusion gradients in Fig. 3.10 were essentially identical for flowing and
resting water, the bipolar signal was already decayed at b-values less than 5 s/mm2. The
flow compensated pulse sequence was applied in vivo and different signal attenuations for
flow compensated and bipolar diffusion gradients were reported [38]. Since the study is
similar to the one presented in full detail in chapter 5, only the impact of the measurem

3.4 Compensation for concomitant fields
An algorithm to reduce the influence of concomitant fields was described by Zwanger
et al. [39]. Since the concomitant fields cause an additional gradient field of parabolic
spatial dependence, the best possible correction that can be performed using linear
magnetic fields is to apply an offset to the diffusion gradients, which compensates the
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Figure 3.10: Signal attenuation measured in a straight water flow phantom. While in
case of flow and bipolar diffusion gradients, the signal already decays at
very small b-values, the signal attenuation curves for flow compensated
gradients are unaffected.

Figure 3.11: Experimental pancreas data. While different signal attenuation for flow
compensated and bipolar diffusion gradients was shown, the flow compen-
sated data at higher b-values suffered from dephasing effects that caused
signal voids (*) and deviations from a monoexponential signal behavior.
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parabolic concomitant field for the center of the slice. This algorithm was implemented
into the diffusion sequence and the influence of signal voids reduced. Another design
problem however led to a change in the diffusion gradient timing. Due to the fact that
the diffusion gradients were inserted between two refocussing pulses only half of the
echo time was available for the diffusion experiment. With the sequence shown in Fig.
3.8 diffusion times larger than 60 ms needed an increased echo time and caused loss of
SNR. To be able to use the same echo time for all diffusion times, the sequence scheme
shown in Fig. 3.12 was employed. The sequence design shown in Fig. 3.12 has a second

Figure 3.12: New diffusion sequence design. Except for a small time needed for the
imaging gradients, the whole echo time can be used for diffusion gradients.
Temporally symmetric gradient schemes are intrinsically compensated for
dephasing caused by concomitant fields.

advantage. If a symmetric diffusion gradient scheme, such as the monopolar or the
flow comp+ scheme, the dephasing caused by concomitant fields before and after the
refocusing pulse cancels out. The sequence design shown in Fig. 3.12 is used for the
experiments presented in chapter 5.





4 Methods: Signal attenuation in the
intravoxel incoherent motion model

In this chapter, the intravoxel incoherent motion (IVIM) model, which was originally
suggested by Denis Le Bihan [4], will be introduced. According to his follow-up pub-
lication [5], the signal attenuation in case of IVIM depends on the timescale of the
incoherent motion. If the timescale is much shorter than the time in which diffusion
sensitizing gradients are applied, the resulting signal can be described by a biexponen-
tial decay. While current IVIM research applications [40–42] exclusively assume this
limit, our experimental results (see chapter 5) indicate that use of this limit might not
be appropriate to describe the signal attenuation in strongly perfused organs. As will
be worked out in the course of this chapter, the signal attenuation in the biexponential
limit would only depend on the b-value (defined by eq. (2.51a)), but not on the exact
timing of the applied gradients. However, we observed a strong dependence on both
duration and temporal profile of the diffusion sensitizing gradients [43].

After a short presentation of the IVIM model and its underlying assumptions in section
4.1, an approach to calculate the signal attenuation of the perfusion fraction is described
in section 4.2. This allows one to examine the influence of different gradient profiles
and variable timescales. The necessary equations that allow to generate those phase
distributions and the results for the typically used gradient schemes will be described in
section 4.3, while the phase distributions for different gradient profiles are compared in
4.4. This not only bridges the gap between the corner cases already described in [5], but
also allows to describe the experimentally observed signal attenuation curves and derive
microscopic IVIM parameters from fitting the model to acquired diffusion MRI data in
chapters 5and 6.

While in the case of the biexponential model the diffusion coefficient of blood is typ-
ically neglected, it becomes apparent that it needs to be taken into account for flow
compensated gradient schemes. In section 4.5 the work of Henkelman et al. [44, 45] will
be followed, revealing that the apparent diffusion coefficient of blood must be described
by a heavily exchanging multi-compartment system and not only changes with b-value,
but also depends on the diffusion gradient profile and sequence parameters such as echo
time.

37
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4.1 Intravoxel incoherent motion model

The term ”Intravoxel Incoherent Motion” (IVIM) introduced by Le Bihan [4] refers to a
two-compartment model which takes into account the contributions of both diffusion and
perfusion to the signal decay observed in diffusion weighted MRI. While the perfusion
compartment contributes the perfusion fraction f to the unweighted MRI signal S0, the
tissue compartment yields the remaining fraction 1-f. Signals from both compartments
are attenuated according to their respective apparent diffusion coefficients, which are D
for the tissue fraction and Db for the perfusion fraction, where the latter experiences
additional dephasing and thus a resulting signal decay F due to perfusive motion during
the applied magnetic field gradients [5]. In the pancreas, which is one of the abdominal
organs which show an attenuation curve that is very different from a monoexponential
decay, the perfusion fraction in the pancreas was identified as blood [46], which is denoted
by the index of its apparent diffusion coefficient Db (only accounting for the diffusive
part of motion of water molecules in blood). The basic IVIM signal equation (4.1) can
thus be stated as follows:

S(b) = S0
(
(1− f)e−bD + fe−bDb · F

)
, (4.1)

where the signal attenuation caused by dephasing is given by the expectation value
F = |

〈
eiφ
〉
| =

∣∣∣∫ ρ(φ)eiφdφ
∣∣∣, where ρ(φ) denotes the distribution of phases that water

molecules in blood obtained due to diffusive motion during the diffusion sensitizing
gradients. Note that the only difference between eq. (4.1) and the version stated in the
original work [5] is, that the diffusion of the perfusion fraction is described by a separate
diffusion coefficient Db, which will in detail be discussed in section 4.5. To derive the
exact dependencies of F , the underlying assumptions of the IVIM model regarding blood
motion need to be formulated.

Assumptions in the IVIM model

• Blood particles move with velocity v during the total duration T of the diffusion
gradients. The movement speed v = |v| is either the same for all particles – which
will be assumed in the remainder of this chapter – or follows a distribution, which
will be examined in section 5.2.

• After a characteristic time τ passed, a particle changes its movement direction
(keeping constant speed v).

• The first directional change occurs after a time t1 = rτ , where r is a random real
number between 0 and 1. r is homogeneously distributed and different for each
particle.
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• Velocity directions are randomly distributed. The distribution of velocities is
isotropic and the velocity directions before and after a change are uncorrelated.

We will now examine the two corner cases regarding the characteristic time τ , which
are illustrated in Fig. 4.1.

(a) first model (b) second model

Figure 4.1: According to Le Bihan [5], attenuation of the blood signal is a function
of blood velocity v̄ and characteristic lengthscale l̄ of the network. (a)
When blood flow changes its direction several times during the diffusion
experiment, F = e−bD∗ can be described by a pseudo-diffusion coefficient
D∗. (b) In the other extreme case, velocity doesn’t change during the
diffusion gradients with velocity encoding c and F = |sinc(c · v)|.1

Pseudo-diffusion limit The case, which was named first model by Le Bihan [5] is de-
picted in Fig. 4.1(a). If τ is several times smaller (Le Bihan states T

τ & 7) than the
diffusion time T , phase distributions become approximately Gaussian, as it is the case for
free diffusion. The signal attenuation can in this case be described by a pseudo-diffusion
coefficient D∗ = v2τ

6 , namely F = e−bD∗ .

Straight flow limit When on the other hand τ becomes much larger than T , only a
very small fraction of the particles changes its movement during the applications of the
diffusion gradients, which is depicted in Fig. 4.1(b). Each particle acquires a phase,
which is proportional to the cosine of the angle α between its movement direction and
the axis of the diffusion gradients. Those angles are distributed between 0 and π with

1Reprinted from [5] with permission, Copyright 1988 by the Radiological Society of North America.
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ρ(α) = 1
2 sinα. Signal attenuation is then given by F =

∣∣∣12 ∫ π0 sinαeicv cosαdα
∣∣∣, which

evaluates to F = |sinc(c · v)|, where the velocity encoding c of the diffusion gradients is
given by the first moment of the temporal diffusion gradient profile c = γ

∫ T
0 tg∗(t)dt.

A few remarks can already be made from the two limits that have just been discussed.
If the experimentally observed IVIM would be in the pseudo-diffusion limit, we would
expect not to see a dependence of the attenuation F on the diffusion gradient scheme,
if the b-value is kept constant. However, signal attenuation in the straight flow limit
would strongly depend on the gradient scheme, in case of flow compensation (c = 0),
no additional signal attenuation due to the blood flow would be expected. To be able
to calculate the signal attenuation for the parameter range between those limits, it is
necessary to have access to the distributions of particle phases, which will be the topic
of the next section.

4.2 Obtaining the IVIM signal from normalized phase
distributions

The basic equation to calculate the signal attenuation F of the perfusion fraction has
been stated before, but is stated again to motivate this section:

F =
∣∣∣〈eiφ

〉∣∣∣ =
∣∣∣∣∫ ∞
−∞

ρ(φ)eiφdφ
∣∣∣∣ (4.2)

The phase φ which is acquired by a spin packet traveling along the path, which is given by
x(t) = x0 +

∫ t
0 v(t′)dt′ in an effective magnetic field gradient g∗(t) during diffusion time

T is given by eq. (4.3), where γ denotes the gyromagnetic ratio. Due to the rephasing
condition

∫ T
0 g∗(t)dt = 0, which needs to be fulfilled by every diffusion weighting scheme

to allow image formation (see chap. 2.2) the acquired phase is independent of the starting
location x0 and partial integration leads to:

φ = γ

∫ T

0
x(t) · g∗(t)dt = γ

∫ T

0
v(t) ·

∫ t

0
g∗(t′)dt′dt. (4.3)

In a typical diffusion experiment the diffusion sensitizing gradients are applied along a
fixed direction eg and have a normalized temporal profile h(s) such that g∗(t) = gh( tT )eg,
where g is the maximum gradient amplitude. It is directly related to b via eq. (4.4),
where the accumulated 0th gradient moment m0(s) =

∫ s
0 h(s′)ds′ was introduced:

b =
∫ T

0

[
γ

∫ t

0
g∗(t′)dt′

]2
dt = γ2g2T 3

∫ 1

0
m2

0(s)ds = a2
hγ

2g2T 3 (4.4)

Using the abbreviation ah :=
√∫ 1

0 m
2
0(s)ds, which summarizes the contributions of the

particular shape of the temporal gradient profile h(s) and relates b to the parameters γ,
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T and g, which can be chosen independently of h(s), we can now substitute the gradient
amplitude in eq. (4.3) by b:

φ = γ g eg ·
∫ T

0
v(t)

∫ t

0
h

(
t′

T

)
dt′dt =

√
b

ah
√
T

eg ·
∫ T

0
v(t) m0

(
t

T

)
dt. (4.5)

We now apply the described model for particle movement, namely that the particle
travels with constant speed v = |v(t)| and changes its direction ev(t) each time the
characteristic time τ passed, where the first change occurs at t1 = rτ with r ∈ (0, 1).
We can thus split the integration in eq. (4.5) into the M = dTτ + 1− re time intervals of
constant movement, where d· · · e denotes the ceiling function, which returns the smallest
integer greater or equal to the value between the brackets. The times at which the kth

directional change occurs are thus given by tk = (r+ k− 1)τ for 0 < k < M , we further
define t0 = 0 and tM = T . The velocity in this model is given by v(t) = v ek(t) where
ek is the movement direction after the kth change, thus k(t) = b| tτ − r|c, where b· · · c
denotes the floor function, which returns the largest integer smaller or equal to the value
in brackets. Eq.(4.5) transforms into:

φ = v
√
b

ah
√
T

M−1∑
k=0

eg · ek

∫ tk+1

tk

m0

(
t

T

)
dt = v

√
bT

ah

M−1∑
k=0

eg · ek

∫ sk+1

sk

m0(s)ds. (4.6)

In the last step of eq. (4.6) the normalized times sk = tk
T were introduced. The de-

pendence of φ on the parameters can now be anticipated. It is possible to introduce a
normalized phase ϑ which is only dependent on the temporal profile h of the diffusion
gradients (denoted by the index), r and the ratio N = T

τ :

φh(b, v, T, τ, r) = v
√
bTϑh(T

τ
, r). (4.7)

Based on this equation the following chapter is motivated. If the distribution ρϑh
(ϑ,N)

of normalized phases ϑ is known for a certain gradient scheme h(s) and average number
of directional changes N , the distribution ρφh

(φ,N) of particle phases φ is given by

ρφh
(φ,N) = ρϑh

(
φ

v
√
bT
,N

)
· 1
v
√
bT
, (4.8)

where the last factor can be omitted again, if the integration variable is changed. The
signal attenuation of the perfusion fraction can thus be calculated using normalized
phase distributions:

Fh(b, v, T, τ) =
∣∣∣∣∫ ∞
−∞

ρφh

(
φ,
T

τ

)
eiφdφ

∣∣∣∣ =
∣∣∣∣∫ ∞
−∞

ρϑh

(
ϑ,
T

τ

)
eiv
√
bTϑdϑ

∣∣∣∣ (4.9)

The use of normalized phase distributions has the advantage that they have to be created
only once for a certain diffusion gradient scheme and can then be scaled according to
the sequence parameters to calculate the signal attenuation F .
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4.3 Equations for generating normalized phase distributions
Motivated by eq. (4.6), we define the weighting ch(r + k,N) of the kth part of particle
movement. It can be shown that ch(r + k,N) does only depend on the sum of r and k:

ch(r + k,N) := 1
ah

∫ sk+1

sk

m0(s)ds = 1
ah

∫ min(1, k+r
N

)

min(1,max(0, k+r−1
N

))
m0(s)ds. (4.10)

The minimum and maximum operators in the integration limits in eq. (4.10) serve the
purpose of obtaining a closed expression for ch, which can be used also for the first and
last segment of the movement. Our aim is now to derive an expression for ϑh, which
allows one to obtain the distribution ρϑh

(ϑ,N) for different N and temporal profiles
h(s). For isotropic distribution of velocity directions, the diffusion gradient direction can
without loss of generality set to be the z-direction, thus eg · ek = zk, where zk = cos θ is
the z-component of the kth velocity direction. Since the distribution of angles θ ∈ (0, π)
is proportional to sin θ, the normalized distribution ρθ(θ) is given by ρθ(θ) = 1

2 sin θ.
We show now, that zk is homogeneously distributed by calculating the transformation
equation, which allows one to generate a random variable θ following the distribution
ρθ(θ) from a homogeneously distributed random variable w ∈ (−1, 1). To accomplish
this goal, eq.(4.11), which allows to relate the two probability distributions, needs to be
solved for θ:

P (θ′ < θ) =
∫ θ

0
ρ(θ′)dθ′ =

∫ w

−1
ρw(w′)dw′ = P (w′ < w). (4.11)

Since ρw(w) = 1
2 for w ∈ (−1, 1), eq. (4.11) yields w = − cos θ = −zk, leading to the

conclusion that zk ∈ (−1, 1) is homogeneously distributed for isotropically distributed
directions ek. ϑh(N, r) can thus be identified as a weighted sum of homogeneously
distributed random variables zk:

ϑh(N, r) =
dNe∑
k=0

zkch(r + k,N). (4.12)

Eq. (4.12) was used to create the normalized phase distributions. For 1024 values of
N , 64 · 106 tuples of random variables (r, z0, . . . , zdNe) were generated and the phase
distributions obtained as a histogram of the phases ϑh resulting from the tuples. From
eq. (4.12) it becomes also clear, that the maximum phase a particle could acquire with a
particular r is given by ϑmax =

∑dNe
k=0 |ch(r+k,N)| and that the distribution of normalized

phases is symmetric: ρϑh
(ϑ,N) = ρϑh

(−ϑ,N). We can further deduce the distribution
of normalized phases for large N . Since ρϑh

(ϑ,N) can be considered a weighted sum of
many random variables zk, each of which is distributed homogeneously with zero mean
and standard deviation σk =

√
1
3 , the central limit theorem can be applied and the
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distribution ρϑh
(ϑ,N) can for large N be approximated by a Gaussian distribution with

zero mean and σ = σk√
N

:

lim
N→∞

ρϑh
(ϑ,N) =

√
3N
2π · e

− 3N
2 ϑ2 (4.13)

In the following it is shown that only phase distributions for N ≥ 1 need to be
generated, since those for N < 1 can be calculated as a linear combination of ρϑh

(ϑ, 0)
and ρϑh

(ϑ, 1), for which analytic formulas can be derived. Since the random variables
zk (corresponding to the z-component of the kth velocity direction) are independent of
each other, an analytical expression could eventually be obtained by integration over all
random variables and their respective distributions (where δ denotes the δ-distribution):

ρϑh
(ϑ,N) =

∫ 1

0

∫ 1

−1
· · ·
∫ 1

−1
ρr(r)ρz0(z0) · · · ρzdNe(zdNe)

δ(ϑ−
dNe∑
k=0

zkch(r + k,N)) dzdNe · · · dz0 dr. (4.14)

In the above equation the distributions of the random variables are given by ρr(r) = 1
and ρz0(z0) = · · · ρzdNe = 1

2 . While the efforts required to obtain analytic expressions
from eq. (4.14) strongly increase with N , the just described process of generating nor-
malized phase distributions from simulations facilitates with increasing N . Therefore in
the remainder of this section, only the case of N ≤ 1 is discussed.

The case N ≤ 1: Eq. (4.14) simplifies to:

ρϑh
(ϑ,N) = 1

4

∫ 1

0

∫ 1

−1

∫ 1

−1
δ [ϑ− z0ch(r,N)− z1ch(r + 1, N)] dz1dz0 dr. (4.15)

For N ≤ 1 a particle changes its direction at most once during the diffusion experiment.
The parameter r indicates whether this is the case (r < N) or not. If there is no
directional change (r ≥ N), eq. (4.10) yields ch(r+1, N) = 0 and ch(r,N) =: d becomes
independent of r and N . This is used to evaluate eq. (4.15). The integration over r is
splitted into two parts, where the first term in eq. (4.16) corresponds to r ≥ N . For
the second term integration over z1 is performed, where the δ-distribution is eliminated
with the help of the heaviside function Θ(x):

ρϑh
(ϑ,N) = 1−N

2

∫ 1

−1
δ(ϑ− z0d) dz0

+ 1
4

∫ N

0

1
|ch(r + 1, N)|

∫ 1

−1
Θ
(

1−
∣∣∣∣ϑ− z0ch(r,N)
ch(r + 1, N)

∣∣∣∣) dz0 dr. (4.16)
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For flow compensated gradients the 1st moment of the temporal gradient profile is zero,
which is equivalent to d = 0:∫ 1

0
sh(s)ds = −

∫ 1

0

∫ s

0
h(s′)ds′ds = −d (4.17)

In this case the first integral in eq. (4.16) evaluates to 2δ(ϑ), whereas for a not flow com-
pensated gradient profile (|d| > 0) we obtain a constant offset to the phase distribution:
1
|d|Θ

(
1−

∣∣∣ϑd ∣∣∣). The second part in eq. (4.16) can be rewritten by replacing the integral
over the heaviside function with the help of minimum operators:

ρϑh
(ϑ,N) = 1−N

2

∫ 1

−1
δ(ϑ− z0d) dz0 +

∫ N

0
Θ(|ch(r,N)|+ |ch(r + 1, N)| − |ϑ|)

· min(|ch(r,N)|, |ch(r + 1, N)|+ |ϑ|) + min(|ch(r,N)|, |ch(r + 1, N)| − |ϑ|)
4|ch(r,N)ch(r + 1, N)| dr. (4.18)

The weights ch(r+k,N) for the second term (where r ≤ N) can be shown to depend only
on the ratio r

N and we rewrite c0( rN ) := ch(r,N) = 1
ah

∫ r/N
0 m0(s)ds and ch(r + 1, N) =

1
ah

∫ 1
r/N m0(s)ds = d− c0( rN ). Substitution of r = r

N leads to eq. (4.19):

ρϑh
(ϑ,N) = 1−N

2

∫ 1

−1
δ(ϑ− z0d) dz0 + N

4

∫ 1

0
Θ(|c0(r)|+ |d− c0(r)| − |ϑ|)

· min(|c0(r)|, |d− c0(r)|+ |ϑ|) + min(|c0(r)|, |d− c0(r)| − |ϑ|)
|c0(r)(d− c0(r))| dr. (4.19)

The fact that the second integral in eq. (4.19) doesn’t depend on N anymore, allow us
to rewrite any phase distribution for N ≤ 1 as follows:

ρϑh
(ϑ,N) = (1−N)ρϑh

(ϑ, 0) +Nρϑh
(ϑ, 1). (4.20)

Depending on whether (FC) or not (NFC) the gradient profile h is flow compensated,
ρϑh

(ϑ, 0) is given by:

FCρϑh
(ϑ, 0) = δ(ϑ) (4.21a)

NFCρϑh
(ϑ, 0) = 1

2|d|Θ
(

1−
∣∣∣∣ϑd
∣∣∣∣) (4.21b)

From eq. (4.21) it becomes apparent, that in the straight flow limit without directional
changes ρϑh

(ϑ, 0) is given by a δ-distribution for flow compensated gradients and by
a constant distribution for non-flow compensated gradients, where the minimum and
maximum attainable phases are given by −|d| and |d| respectively. The equations for
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ρϑh
(ϑ, 1) are more complicated, since they depend on the exact timing of the diffusion

gradient scheme:

FCρϑh
(ϑ, 1) =

∫ 1

0
Θ(2|c0(r)| − |ϑ|)2|c0(r)| − |ϑ|

4c2
0(r)

dr (4.22a)

NFCρϑh
(ϑ, 1) =

∫ 1

0
Θ(|c0(r)|+ |d− c0(r)| − |ϑ|) (4.22b)

· min(|c0(r)|, |d− c0(r)|+ |ϑ|) + min(|c0(r)|, |d− c0(r)| − |ϑ|)
4|c0(r)(d− c0(r))| dr

4.4 Normalized phase distributions for different gradient
profiles

In this section phase distributions ρϑh
(ϑ,N) for different diffusion weighting profiles are

compared and some analytic results presented. While the focus will be on bipolar and
flow compensated profiles first (4.4.1), findings for oscillating gradients are presented at
the end of the section (4.4.2).

To achieve a diffusion weighting, a variety of different gradient profiles can be inserted
into the MRI sequence. The most commonly used profile is the ’bipolar’ scheme, which
has already been employed by Stejskal and Tanner in 1965 [47]. It has the advantage,
that it achieves the highest b-values for a given diffusion time T and maximum gra-
dient amplitude gmax. There are two typical implementations of this gradient profile:
The monopolar profile, where the two gradient lobes are placed before and after a refo-
cussing pulse, where they must have the same sign to fulfill the rephasing condition and
the bipolar profile, where typically two refocussing pulses are employed. The latter one
has the advantage, that it is possible to adjust the sequence timing to strongly suppress
eddy currents [31] and is therefore the most widely employed one. For the application
studied in the work at hand it was however found, that concomitant fields had a much
larger impact on image quality (see 3.4). Since the concomitant field effect of a diffu-
sion weighting scheme, which is symmetrically placed around a refocussing pulse, cancel
out [9], p. 292ff., all experimental results shown in chapters 5 - 6 were obtained using
symmetric diffusion profiles, such as the monopolar one. The use of flow compensated
diffusion gradients was first suggested by Maki [48] to separate diffusion and microcir-
culatory flow. The most simple gradient waveform which achieves nulling of the first
gradient moment is the one shown in Fig. 4.2 labeled ’flow compensated’. It is sometimes
referenced as field even echo refocussing (FEER) waveform [49]. While it allows one to
achieve the highest b-value for given T and gmax while keeping the first gradient moment
nulled, it is prone to concomitant field artifacts (see 3.4). This can be account for by
using the ’flowcomp+’ profile, shown in Fig. 4.2.

Another group of diffusion weighting profiles, which is widely used, is the group of
oscillating gradient profiles. These have first been suggested by Stepǐsnik [36] and allow
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one to probe the spectrum of the diffusion tensor. For that reason, measuring diffusion
using oscillating gradients is sometimes referred to as Temporal diffusion spectroscopy.
Since the coils used for applying magnetic field gradients are affected by the electromag-
netic law of induction, ramping from 0 to gmax can not be done arbitrary fast. Therefore
the first and last halves of the cosine lobes are usually replaced by a sine lobe of twice
the frequency, yielding the ’cosine+’ gradient scheme shown in Fig. 4.2.

The equations defining the normalized gradient profiles used in this work are stated
below (eq. (4.23a) - (4.23f), where the letter Q specifies the number of oscillations for
sine and cosine gradients:

bipolar : h(s) =
{
−1 s < 1

2
1 else

(4.23a)

flowcomp : h(s) =


1 s < 1

4
−1 1

4 ≤ s <
3
4

1 else
(4.23b)

flowcomp+ : h(s) =


−1 s < 1

2 −
√

2
4

1 1
2 −

√
2

4 ≤ s <
1
2

−1 1
2 ≤ s <

1
2 +

√
2

4
1 else

(4.23c)

sine : h(s,Q) = − sin(2πQs) (4.23d)
cosine : h(s,Q) = cos(2πQs) (4.23e)

cosine+ : h(s,Q) =



− sin(4πQs) x < 1
4Q

− cos(2πQs) 1
4Q ≤ x <

1
2 −

1
4Q

sin(4πQs) 1
2 −

1
4Q ≤ x <

1
2 + 1

4Q
cos(2πQs) 1

2 + 1
4Q ≤ x < 1− 1

4Q
− sin(4πQs) else

(4.23f)

4.4.1 Bipolar and flow compensated gradients

Normalized phase distributions for bipolar and flowcomp+ gradient profiles are shown
in Fig. 4.3. While for large N , phase distributions become similar and approach the
diffusion limit (eq. (4.13)), the distributions differ clearly for small N . Note that the
maximum phase that a particle can accumulate for N = 0 in the bipolar case is given by
|d| =

√
3

2 . A normalized apparent diffusion coefficient ADC
Tv2 can be defined for normal-

ized phase distributions as the limit for small b-values, where we recall how the signal
attenuation of the perfusion fraction can be calculated from the phase distributions (eq.
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Figure 4.2: Gradient profiles for which normalized phase distributions were generated.
While the bipolar and sine profile are not flow compensated, the flowcomp
and cosine profile are. The symmetry of the ’+’-profiles allows implemen-
tation into a MRI sequence with full compensation for concomitant fields
(see 3.4).

(4.9)):
ADC := lim

b→0

−1
b

ln(F (b, v, T, τ)) = lim
b→0

−1
b

ln
∣∣∣〈eiv√bTϑh〉

∣∣∣ (4.24)

Using the symmetry of the phase distributions we can replace the exponential by a
cosine function. The absolute value function can also be omitted in the limit of small b.
Applying l’Hôpital’s rule yields:

ADC = 〈− lim
b→0

ln(cos(v
√
bTϑh))

b
〉 = v

√
T

2 〈lim
b→0

sin(v
√
bTϑh)√
b

ϑh〉 = Tv2〈ϑ
2
h

2 〉 (4.25)

The normalized ADC for monopolar and flow compensated profiles is shown as a function
of N in Fig. 4.4. As one could already expect from the normalized phase distributions
shown in Fig. 4.3, two regimes can be distinguished: For N � 1, the signal attenua-
tion and thus the apparent diffusion coefficients become similar as phase distributions
approach the Gaussian distribution. For N . 1 signal attenuation for flow compensated
and bipolar gradients can be expected to be different. Also a dependence on N , which
can be changed by varying the diffusion time T should be observable, especially for the
flow compensated gradient profiles.
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Figure 4.3: Normalized phase distributions for bipolar and flowcomp+ gradient pro-
files. While for large N , phase distributions approach the Gaussian limit
for both gradient profiles, phase distributions differ strongly for small N .

4.4.2 Oscillating gradients

Analogous to the bipolar / flow compensated gradients, phase distributions can also be
obtained for oscillating gradient profiles. Normalized phase distributions are shown for
both sine and cosine profiles in Fig. 4.5 (4 oscillations) and Fig. 4.6 (16 oscillations).
The phase distributions for sine gradients appear very similar to the bipolar distributions
except for the maximum phase being |d| =

√
2
3 <

√
3

2 , also the change in oscillation
number does not reflect in the shape of the phase distributions. In contrast, the phase
distributions for cosine gradients become narrower with increasing number of oscillations
Q. Also for larger Q, the sine and cosine distributions for larger N are less similar, which
can e.g. be anticipated, if the distributions for N = 10 are compared in Fig. 4.5 and 4.6.
The difference in phase distributions for N = 10 is not as pronounced for bipolar and
flow compensated gradients in Fig. 4.3, which can be explained as follows: While the 1st

moment is nulled for flow compensated gradients on timescale T , this timescale reduces
for cosine gradients to T

Q , yielding an effective ratio Neff = N
Q . Therefore the phase

distributions for N = 100 have still not fully reached the Gaussian limit for the cosine
gradients with 16 oscillations in Fig. 4.6. Based on the obtained phase distributions,
normalized apparent diffusion coefficients can also be calculated for oscillating gradients.
The results are shown in Fig. 4.7. For large N , normalized sine and cosine ADCs are
similar, although no dependence on the number of oscillations is visible. While sine ADCs
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Figure 4.4: Normalized ADC for monopolar and flow compensated gradient profiles as
a function of N . If the timescale of the incoherent motion is much smaller
than the duration of the diffusion experiment (N � 1), the attenuation
becomes independent of the profile, whereas differences are to be expected
for N . 1.
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Figure 4.5: Normalized phase distributions for sine and cosine gradient profiles with
4 oscillations. The horizontal axis is stretched for cosine gradients, since
distributions are much narrower. Cosine distributions appear similar to
flow compensated ones, while sine distributions appear similar to bipolar
ones.

Figure 4.6: Normalized phase distributions for sine and cosine gradient profiles with 16
oscillations. While the sine distributions do not show large changes with
oscillation number, the cosine distributions are much narrower than those
for 4 oscillations shown in Fig. 4.5. Both cosine axis are stretched.
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Figure 4.7: Normalized ADC for sine and cosine gradient profiles with varying number
of oscillations. While the ADC for sine gradients is largely independent
of oscillation number, the cosine ADC decreases with oscillation number.
Also oscillations in N are visible for the cosine ADC.

do not differ very much with oscillation number and resemble the behaviour which was
found for the bipolar profile in Fig. 4.4, cosine ADCs differ substantially. For Q = 1 and
Q = 2, curves resemble the flowcomp, respectively flowcomp+ profiles, whereas the ADC
curves also show oscillations in N where the number of minima is given by Q− 1, which
are located at Nk = Q

k where k = 1, 2, ..., Q−1. Those oscillations can be explained from
the spectrum of the velocity autocorrelation function for intra-voxel incoherent motion
(Fig. 3.4). The cosine profile probes the spectrum essentially at ω = 2πQ

T [33] and from
Fig. 3.4, minima of the normalized ADC would be expected if τω

2π is an integer k. This
yields Q

T = k
τ , from which the relation of the minima at Nk = Q

k becomes apparent.
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4.5 Modeling the diffusion coefficient of blood

With the phase distributions for different gradient profiles at our disposal, the only
missing ingredient to calculate the signal attenuation in the IVIM model according to eq.
(4.1) is the diffusion coefficient of blood Db. Here we follow the approach of Henkelman
et.al. [44,45] to describe the water dynamics of blood by a three compartment model. As
depicted in Fig. 4.8, water molecules can be diffusing inside red blood cells (pool B), in
plasma (P) or part of macromolecules (M). Each pool is associated with a characteristic

Figure 4.8: Blood as a three-compartment model. While exchange and diffusion in the
macromolecular pool (M) can be neglected, water in red blood cells (B)
heavily exchanges with plasma (P). Magnetization is distributed according
to the fractions Mi (after [44]).

diffusion coefficient Di and relaxation rate Ri, whereas Mi denotes the total fraction
of the equilibrium magnetization. The exchange between the pools is governed by the
exchange rates kB and kP For the initial state of the system, the equilibrium condition
(eq. (4.26a)) and the normalization (eq. (4.26b)) hold.

kBMB(0) = kPMP (0) (4.26a)
MB(0) +MP (0) +MM (0) = 1 (4.26b)
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The time-evolution of the magnetization is described by eq. (4.27a) - (4.27c) [44].

dMB

dt = −db
dtD

APP
B MB −RBMB − kBMB + kPMP (4.27a)

dMP

dt = −db
dtD

APP
P MP −RPMP − kPMP + kBMB (4.27b)

dMM

dt = −RMMM (4.27c)

(4.27d)

According to [44], exchange with the macromolecular pool can be neglected. The typical
diffusion coefficients of macromolecules, such as fat, are due to the larger molecular
size several orders of magnitude smaller [50] than those for protons in water, such that
diffusion can also be omitted for the macromolecules. For calculating the apparent
diffusion coefficient of blood, we use the values specified in [45] for body temperature
(37◦C): RB = 7.1 s−1, RP = 1.3 s−1, RM = 286 s−1, kB = 82 s−1, MB = 0.34,
MM = 0.14 and DAPP

P = 2.3 µm2/s−1. Those values were a result of the model fit to
experimental CPMG data acquired from heparinized human blood [45].The remaining
necessary parameter, the apparent diffusion coefficient for red blood cells DAPP

B , however,
is more intricate to determine.

Using the multiple correlation function (MCF) tool, which was developed in the dif-
fusion group at the German Cancer Research center, the apparent diffusion coefficient
in red blood cells was calculated for several gradient schemes. The multiple correlation
functions approach was worked out in great detail by Grebenkov [51–53]. It allows to
compute the diffusion weighted signal in the presence of a restricting boundary, if the
eigenfunctions of the Laplace operator are known for the confining geometry. Its huge
advantage is, that it can achieve a given precision much faster than other algorithms,
e.g. Monte-Carlo simulations.

To calculate DAPP
B , free diffusion coefficient Db = 0.76 µm2/ms and dimension a =

7.6µm of the confining geometry were used from [44]. The confining geometry ’slab’ was
chosen and number of data points and eigenvalues in the MCF tool was set to 1000.
Setting the diffusion time T = 0.12 s yields the results shown in Fig. 4.9.

To obtain a value for Db, the time-evolution of the magnetization in the different
pools (eq. (4.27a) - (4.27c)) was evaluated stepwise using MATLAB. For each of the
Ns = 1000 steps during the diffusion experiment, a particle would either change the pool
with the respective probabilities given by eq. (4.28a) and (4.28b) or stay.

wB = 1− e−
kBT

Ns (4.28a)

wP = 1− e−
kP T

Ns (4.28b)

In this calculation, the time where no diffusion gradients were active was also considered.
Between time t = 0 and t = TE−T

2 no diffusion gradients are active and the system



54 4 Methods: Signal attenuation in the intravoxel incoherent motion model

Figure 4.9: Apparent diffusion coefficient of water in red blood cells as a function of
gradient profile and diffusion time T . Results were obtained using the MCF
tool, where Db = 0.76 µm2/ms, T = 0.12 s and the parameters data points
and eigenvalues set to 1000.
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undergoes only relaxation and exchange. The same is the case for the time between
t = TE+T

2 and t = TE. In case a particle would change its pool, the signal attenuation
by both diffusion and T2-relaxation, that it would have accumulated during the residence
time in that pool, is noted. The attenuation due to diffusion is calculated using db

dt = b rs
Ns

,
where rs is the number of steps the particle resided in the pool before leaving it. For
DAPP
B the values obtained from the MCF tool (Fig. 4.9) are used. The resulting apparent

diffusion coefficients of blood, which are dependent on both gradient profile and b-value
are shown in Fig. 4.10. Db is slightly higher for the flowcomp+ profile than for the

Figure 4.10: Apparent diffusion coefficient of water in blood as a function of gradient
profile and b-value for the combinations used in the experiments. Diffusion
time T for the oscillating schemes was 120 ms. Echo time was TE =
120 ms of bipolar and flowcomp+ schemes and 140 ms for oscillating
gradients

bipolar gradients. Also a T -dependence is visible, which is for the flow compensated
gradients presumably suppressed by the additional time without diffusion gradients in
case of smaller T . The simulated apparent diffusion coefficient of blood is higher for
cosine gradients than for sine gradients, while a small dependence on the oscillation
number Q is visible.





5 Results: Bipolar vs. flow compensated
gradients

In this chapter experimental data is presented, which was acquired using the Maxwell-
compensated diffusion sequence introduced in section 3.4. After a description of the
data acquisition protocol, a region-of-interest (ROI) based evaluation of the diffusion
weighted signal in strongly perfused abdominal organs is performed (section 5.2.1). The
IVIM model, which was in detail explained in chapter 4 is used to describe the measured
data and extract information on microscopic parameters. It is found that assuming a
single microscopic velocity v (basic model) leads to oscillations in the model attenuation
curves for bipolar gradients. Since these oscillations are not found in vivo, suggestions
for velocity distributions are discussed (section 5.2.3 - 5.2.5) and tested based on the
obtained liver and pancreas data. A parabolic velocity distribution such as the laminar
flow profile is found most suited (section 5.2.6) and used in the remainder of the presented
work. Parameter maps of the IVIM model parameters are obtained by pixel-wise fitting
and shown in section 5.3.

5.1 Data acquisition protocol
Abdominal diffusion weighted MRI of 6 healthy volunteers (age 19-31) at a magnetic
field strength of B0 = 1.5 T (Siemens Magnetom Avanto) using body and spine matrix.
Acquisition parameters were TR = 2.1 s, TE = 120 ms, in plane resolution 3.5×3.5 mm2

with a matrix size of 100 × 78. All images were acquired using the diffusion weighting
sequence described in 3.4, where the EPI readout bandwidth was 2000 Hz/px. During
each TR, images for 9 non-overlapping slices were obtained in interleaved order, where
slice thickness was 5 mm and spacing between slices was 1 mm. Images were acquired
in expirational breath hold such that after an initial dummy scan, which was performed
to allow the magnetization reach equilibrium state, a prescan to adjust the GRAPPA
[30] factors for reconstruction was performed. Acquisition was accelerated by a factor
of 2 in phase encoding direction and a partial Fourier factor of 6/8 was used. During
each breath hold, 3 unweighted (b0) images and 12 diffusion weighted images (2 different
b-values and 6 different diffusion gradient directions) were acquired, yielding a total
breath hold duration of (2 + 3 + 12) · 2.1 s = 35.7 s. For each volunteer, one slice was
selected, for which the obtained images showed intersections of the abdominal organs
pancreas, liver, kidney and spleen. Fig. 5.1 shows typical unweighted (Fig. 5.1(a))
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and diffusion weighted (Fig. 5.1(b)) images. In Fig. 5.1(a) the evaluated ROIs for liver
(yellow), pancreas (red), renal cortex (blue) and spleen (green) are displayed. In addition
to the b-values, both diffusion time T and gradient profile were varied. Monopolar and
flowcomp+ profiles were used at diffusion times T = 40 ms, 70 ms and 100 ms. Measured
b-values for each profile / time combination were 10, 25, 50 and 100 s/mm2. For the two
larger diffusion times, images at b = 200, 300, 400 and 500 s/mm2 could additionally be
obtained.

(a) b = 0 s/mm2 (b) b = 300 s/mm2

Figure 5.1: Example images for 2 different b-values. Rois for liver (yellow), pancreas
(red), renal cortex (blue ring) and spleen (green) are shown. The in-plane
resolution is 3.5×3.5 mm2 at a matrix size of 100×78. Gradient profile was
flowcomp+ at T = 70 ms. Images were acquired using TE = 120 ms and
TR = 2.1 s in expirational breath hold and are using the same intensity
scaling.

5.2 ROI-wise evaluation
In this section, the results based on ROI-wise evaluation for the different abdominal
organs are presented. After a short description of the averaging process and display
of the experimentally obtained data (section 5.2.1), the IVIM model as described in
chapter 4 (basic model) is then fitted to the data to obtain estimates for the microscopic
parameters v and τ . To eliminate the oscillations in the bipolar model attenuation
curves, which were found to be a consequence of assuming only one velocity for the
incoherent motion, different velocity distributions are discussed, which are motivated by
literature [54].
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Figure 5.2: Flow compensated (FC) and monopolar (MP) signal attenuation for different abdominal organs. FC
and MP curves show huge differences for liver and pancreas (top), also a dependence on the diffusion
time T is observable. For kidney and spleen (bottom), effects are much less pronounced, but can still
be noticed.
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5.2.1 Measured signal for different abdominal organs
As a first step, trace-weighted images were obtained by taking the geometric mean of the
signal intensities for different diffusion directions for each pixel. Then averaging of the
signal intensities within a region of interest was performed. Figure 5.2 shows the obtained
data for different abdominal organs, where the error bars denote the standard deviation
of the values of the different subjects. The signal is normalized to the ROI intensity
of the mean b0 image. For liver and pancreas (top row in Fig. 5.2), signal attenuation
is much larger for monopolar gradients than for flow compensated gradients. Moreover
an increase in signal attenuation with diffusion time T can be observed for the flow
compensated profile at low b-values. Those two effects are to some extent also present
in kidney and spleen (bottom row in 5.2), but are obscured by signal variance and thus
cannot be as readily perceived as for liver and pancreas. In the following sections, the
attempt will be made to extract information on the microscopic parameters τ and v
by fitting the model described in chapter 4 to the experimentally obtained liver and
pancreas data.

5.2.2 Basic model
The normalized phase distributions, which were generated as described in 4.3 allow to
calculate the signal attenuation F of the perfusion compartment for flow compensated
and monopolar gradients for a given set of parameters T , b, τ and v using eq. (4.9).
Together with the precalculated apparent diffusion coefficient of blood Dblood (see Fig.
4.10 and section 4.5 for details), the diffusion coefficient D of the tissue fraction and the
perfusion fraction f , this allows to calculate the signal attenuation in the IVIM model
according to eq. (5.1) where S0 denotes the unweighted signal and Dblood and F are
dependent on the gradient profile:

S(b, T, f,D, τ, v)
S0

= (1− f)e−bD + fe−bDblood(b,T )F (b, T, τ, v), (5.1)

Using MATLAB’s lsqnonlin, a least-squares fitting of eq. (5.1) to the experimentally
obtained signal intensities was performed. For the 40 different measured combinations
of b, T and gradient profile, the 4 free fit parameters are D, f , τ and D∗, which is
related to v by D∗ = v2τ

6 . Fig. 5.3 shows the results for liver and pancreas. The fit
errors stated for the free parameters correspond to the 95% confidence intervals that
were obtained from the Jacobian matrix of the residual function for the best fit using
MATLAB’s built-in function nlsparci. Several important aspects can be identified from
the fitting results shown in Fig. 5.3

• The model can well describe the different signal attenuation for flow compensated
and monopolar gradients and also resolve the dependence of the flow compensated
signal attenuation on T (see liver data, bottom left).
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Figure 5.3: Results from fitting the basic IVIM model to pancreas (top) and liver
data (bottom). While the model can well describe the observed signal
attenuation in the liver, it partly fails for low b-values and flow compensated
gradients for the pancreas. The oscillations observed for a single velocity fit
in the monopolar model lead to a non-convex residual function with local
minima (shown on right side). As a consequence the result of the fitting
was found to depend on the chosen initial values.
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• The fit works better for the liver data set (bottom) than for the pancreas data
(top). This is not only reflected in the uncertainties of the fit parameters, but
can also be perceived from the accordance of the fit with flow compensated data
acquired at low b-values.

• The monopolar model curves show oscillations, which have never been reported in
vivo. Due to those oscillations, the fit function becomes non-convex (see contour
plots for residuals) and the result is likely to correspond to a local minimum. In
addition the fit result becomes dependent on the initial parameters.

While the model can reproduce the experimentally obtained results, the initial version,
which was described in chapter 4 seems unsuited to obtain information on the micro-
scopic parameters τ and v (D∗), due to the oscillations of the monopolar model signal.
Therefore instead of calculating the signal attenuation assuming only a single velocity,
different velocity distribution will be examined in the following sections. The arterial /
venous model presented in 5.2.3 and the logarithmic velocity distribution (section 5.2.4)
are inspired by the work of Henkelman et al. [54]. The parabolic velocity distribution
corresponds to the laminar flow profile (section 5.2.5).

5.2.3 Arterial / venous model
The arterial / venous model account for the fact that approximately 80% [54] of the
blood circulates in the venous system, where it travels with a velocity vv, which is ap-
proximately given by vv ≈ 0.35 va [55], where va is the velocity of blood in corresponding
vessels in the arterial system. The average velocity v is then given by v = 0.2 va+0.8 vv,
yielding va = 25

12 v and vv = 35
48 v. Assuming that the vessel dimensions do not differ in

arterial and venous branch, the characteristic time τ and thus N have to be scaled by
the respective factor. The described model can simply be included into the normalized
phase distributions. For calculation of the new phase distributions ρ′h(ϑ,N) the influ-
ence of the velocity on the accumulated phase has to be taken into account, leading to a
broader distribution for arterial blood and a more narrow distribution for venous blood:

ρ′h(ϑ,N) = 0.2 · 12
25ρh

(12
25ϑ,

25
12N

)
+ 0.8 · 48

35ρh
(48

35ϑ,
35
48N

)
. (5.2)

The results from fitting the phase distributions are shown in Fig. 5.4. The oscillations
are still present in the model signal attenuation curves, which are found to be very
similar to those shown in Fig. 5.3. If the velocities vsingle and the average velocity in
the arterial / venous model v are calculated from fit parameters, the ratio is found to be
vsingle/v ≈ 0.743, which is close to the factor between the velocity in the venous vessels
and the average velocity vv/v = 35

48 = 0.729. This finding implies that the impact of
the properties of arterial fraction on the diffusion weighted signal is very small and the
arterial / venous model is basically identical to the basic model, which assumes only a
single velocity.



5.2 ROI-wise evaluation 63

Figure 5.4: Results from fitting the arterial / venous IVIM model. The oscillations are
still present in the monopolar model. The attenuation curves are very sim-
ilar to those of the basic model, shown in Fig. 5.3. The fit parameters D∗
and τ are larger than those obtained with the basic model, indicating that
the arterial fraction only has a very small impact on the signal attenuation
curves in the arterial / venous IVIM model.
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5.2.4 Logarithmic velocity distribution
The logarithmic velocity distribution introduced in this section originates is the result if
a self similar vascular structure is assumed. According to Henkelman [54] self similarity
implies not only that the average length of a vessel segment is proportional to its diam-
eter, but also that a cubic relationship for the parent and daughter vessel diameters at
bifurcations (eq. (5.3)) can be derived.

d3 = d3
1 + d3

2 (5.3)

From this relation follows that the volumetric distribution of blood in vessels of diameter
d between minimum dmin and maximum diameter dmax is uniform on a logarithmic scale,
further implying that the number of vessels N with a certain diameter d is proportional
to d−3 as was it was confirmed for the canine vascular system [56]. Conservation of
blood flow leads to the relation given in eq. (5.4) from which the proportionality of flow
velocity to vessel diameter v ∝ d can be deduced.

π

4 d
2Nv = const (5.4)

The distribution ρv of velocities v between vmin and vmax is because of the proportionality
to d given by eq. (5.5), where the ratio of minimum and maximum diameter rd = dmax

dmin
=

vmax
vmin

was introduced.

ρv(v, rd) = ρv(ln(v), rd) ·
d(ln(v))

dv = 1
v ln(rd)

(5.5)

The mean velocity is thus given by v̄ = vmax−vmin
ln(rd) , so that minimum and maximum

velocity are related to the mean velocity by eq. (5.6a) and (5.6b).

vmin = v̄ · ln(rd)
rd − 1 (5.6a)

vmax = v̄ · rd ln(rd)
rd − 1 (5.6b)

As stated above, the length of vessel segments is proportional to the diameter, such
that the characteristic time τ and thus the ration N = T

τ is the same for all vessel
diameters, which allows us to formulate the equation for calculating the normalized
phase distributions in the logarithmic model (eq. (5.7)) from the phase distributions of
the basic model, which were created as described in chapter 4.

ρ′h(ϑ,N) =
∫ vmax

vmin

1
v ln(rd)

· v̄
v
ρh

(
v̄

v
ϑ,N

)
dv = rd − 1

ln(rd)2

∫ rd

1

1
r′2
ρh

(
rd − 1
r′ ln(rd)

· ϑ,N
)

dr′

(5.7)
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Figure 5.5: Results from fitting the logarithmic IVIM model with rd = 100. The
oscillations in the bipolar model attenuation curves are not visible anymore.
T -dependence in the low b-value region for flow compensated pancreas (top
left) is well resolved. The contour maps of the residual function do not show
local minima anymore. The error in the fitted value of D∗ and its absolute
value for the liver are very large.
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While the normalized phase distributions in the logarithmic model do not depend on
the exact value of minimum and maximum vessel diameter, they however are different for
each ratio rd. The influence on rd will be discussed in section 5.2.6, where the different
velocity distributions are compared. The result for fitting the logarithmic model with
rd = 100 are shown in Fig. 5.5. The assumption of a logarithmic velocity distribution
eliminates the oscillations in the monopolar attenuation curves. As a result of this, the
existence of local minima is greatly reduced and the fitting process was found to converge
independently on the initial values. The T -dependence in the flow compensated pancreas
data is well reproduced by the logarithmic IVIM model. The necessity to specify the
ratiord of smallest and largest vessel diameter introduces however a new parameter,
the choice of which also influences the meaning of the fitted D∗ values. For the chosen
rd = 100 the relative fit error of D∗ for the pancreas data is very large, while for the liver
data the absolute value is almost two orders of magnitude higher than for the pancreas.
This discrepancy is most likely due to the fact that the monopolar data dies show a small
dependence on T for the pancreas, but not for the liver. Since the model apparently
predicts a small T -dependence, as can be inferred from the fitted curves for the pancreas,
the effect gets less pronounced for larger flow velocities. To reduce the least squares
error, the value of D∗ is adjusted during the fitting process to a value corresponding
to an average blood flow velocity of v ≈ 23.2 mm/s. This value is out of the range of
physiological findings [57]. Another anomaly is the high value of the perfusion fraction
f in the pancreas, which can be explained by the fact that the large ratio rd corresponds
to a large fraction of the blood which travels with very small velocities and thus does
not exhibit a very pronounced bi-exponential signal decay.

5.2.5 Parabolic velocity distribution

Another possible velocity distribution is the laminar flow profile, in which the blood flow
velocity in a vessel of circular cross section with diameter d is given as a function of the
radial coordinate r by eq. (5.8a), where v̄ denotes the average velocity. The distribution
of radial positions is given by eq. (5.8b).

v(r) = 2v̄
(

1− 2r
d

)
(5.8a)

ρr(r, d) = 8r
d2 (5.8b)

While in the self similar model presented in the last section τ was the same for each
velocity, in the laminar flow model τ becomes larger for particles with smaller velocities,
such that for the ration N = T

τ we get N(v) = N(v̄) · vv̄ . Putting it all together we can
calculate the normalized phase distributions for a laminar flow profile as given by eq.
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Figure 5.6: Results from fitting the parabolic IVIM model to pancreas (top) and liver
data (bottom). Monopolar oscillations are suppressed. The model can
well resolve all features of the experimentally obtained liver data set. The
pancreas signal attenuation is reproduced for small b-values better than in
the basic IVIM model, but not as good as in the logarithmic model. For
high b-values the pancreas data shows more inter-subject variance and is
less good approximated than the liver data.
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(5.9), where in the last step the substitution r′ = 1− 2r
d was used.

ρ′h(ϑ,N) =
∫ d/2

0

8r
d2 ·

v̄

v(r)ρh
(

v̄

v(r)ϑ,
v(r)
v̄
N

)
dr =

∫ 1

0

1− r′

r′
ρh

(
ϑ

2r′ , 2r
′N

)
dr′ (5.9)

The normalized phase distributions for the parabolic IVIM model are thus independent
of the vessel diameter. The results from fitting the parabolic model to the experimentally
obtained data is shown in Fig. (5.6). The oscillations in the monopolar signal attenuation
curves are not present anymore int the parabolic IVIM model. As a result, local minima
are largely suppressed as well. While the liver data is very well described by the parabolic
model, the pancreas data, especially the data at high b-values, does not always match
the experimental data. However the larger inter-subject variance in the pancreas high
b-value data might explain this.

5.2.6 Comparison of the velocity distributions
After the different models have been introduced, the obtained fit parameters are com-
pared in this section. Tab. 5.1 shows the parameter estimates resulting from fitting the
IVIM models with different velocity distributions to the experimentally obtained data.
The basic IVIM model and the arterial/venous model yield very similar parameter esti-

Pancreas basic arterial/venous logarithmic parabolic

D (µm2/ms) 1.80 ± 0.18 1.81 ± 0.15 1.47 ± 0.25 1.74 ± 0.17
f 0.294 ± 0.027 0.287 ± 0.024 0.47 ± 0.12 0.316 ± 0.33
τ (ms) 176 ± 76 203 ± 73 117 ± 35 184 ± 63
D∗ (µm2/ms) 330 ± 150 689 ± 297 216 ± 299 365 ± 237
residual 0.0296 0.0239 0.0135 0.0225

Liver basic arterial/venous logarithmic parabolic

D (µm2/ms) 1.200 ± 0.078 1.257 ± 0.082 1.25 ± 0.12 1.127 ± 0.095
f 0.343 ± 0.011 0.338 ± 0.012 0.34 ± 0.024 0.374 ± 0.018
τ (ms) 148 ± 17 183 ± 26 185 ± 35 156 ± 22
D∗ (µm2/ms) 700 ± 104 1560 ± 300 16600 ± 1400 561 ± 240
residual 0.0296 0.0113 0.0130 0.0085

Table 5.1: Parameter estimates obtained by fitting variations of the IVIM model to the
experimentally obtained pancreas (top) and liver data (bottom).

mates for f and D. They both suffer from local minima of the residual function and thus
are susceptible to variations in the initial fit values. The microscopic parameters τ and
D∗ are increased in the arterial/venous model, which is due to the stronger weighting
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of the venous fraction. The ratio of flow velocities obtained from the fit parameters is
vbasic
va/v

= 0.743 for the pancreas data and 0.745 for the liver data, which is very close to
the ratio 35

48 ≈ 0.729 between the assumed venous and the average velocity in the arte-
rial/venous model. The oscillations in the monopolar signal attenuation curves are not
present in the logarithmic and parabolic model which causes the fit result to be indepen-
dent of the initial values. The logarithmic model predicts a stronger T -dependence of
the monopolar data at low b-values, which is found in the pancreas data. Due to the fact
that this dependence is not visible in the liver data, a very large D∗ is fitted, resulting
in an unphysiologicly high flow velocity of 23.2 mm/s. While the pancreas data can be
well described by the logarithmic model, the perfusion fraction found for the pancreas
data is very large and the diffusion coefficient D also differs from the one found using
the other models. This is due to the fact that a large fraction of the blood fraction in
the logarithmic model travels with very slow velocities thus not contributing to the biex-
ponential decay. The perfusion fraction f furthermore becomes dependent on the ratio
between largest and smallest vessel diameters, which is another independent parameter.
For those reasons the parabolic IVIM model was chosen to work with. Its macroscopic
parameters f and D are in accordance with the basic and arterial/venous model, but it
has the advantage that its estimates for τ and D∗ are not dependent on the initial guess.
It also best reproduces the liver signal attenuation curves. The uncertainties of the fit
parameters are in general higher than in the basic model because no trapping in local
minimas is present, since monopolar oscillations are suppressed.
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5.3 Parameter maps
Using the parabolic model the parameter maps shown in Fig. 5.7 where obtained by
pixel-wise fitting of the parabolic IVIM model. In addition to the estimates obtained
for the fit parameters D, f , τ and D∗, the averaged unweighted (b0) image, the velocity
obtained via v =

√
6D∗
τ and the fit residual are displayed for the 6 different test subjects.

The organ structure shown in the b0 images can easily be identified in the D and
f maps again. The maps for τ and D∗ however appear for some of the test subjects
(1, 2 and 5 counted from top) very noisy. Since this is to be expected for D∗ due
to the large dynamic range that can be anticipated from its definition the information
might be better represented using v-maps. In certain regions of the image it cannot be
expected to obtain meaningful information on the microscopic parameters. Examples
for those regions are very low SNR (around the spine), motion (stomach), large arteries
and low f - regions such as the spleen. A possibility to quantify the quality of the
pixel-wise fitting (fitting before averaging) is to compare the ROI-averaged parameter
estimates to those obtained from ROI-wise fitting (averaging before fitting), which is
done in Tab. 5.2. The stated values are averaged over test subjects and the stated
error corresponds to the standard deviation of the mean. While the values for the

Liver ROI-wise pixel-wise

D (µm2/ms) 1.211 ± 0.026 1.179 ± 0.037
f 0.352 ± 0.026 0.349 ± 0.025
τ (ms) 162 ± 15 339 ± 66
D∗ (µm2/ms) 619 ± 91 3640 ± 990

Table 5.2: Comparison of parameter estimates obtained from fitting the parabolic IVIM
model to liver data. For the ROI-wise column fitting was performed after
averaging of the signal in a ROI, while for the pixel-wise column the IVIM
model was fitted for each pixel and the resulting parameter estimates aver-
aged over the ROI. Values given are averaged over test subjects, the error
corresponds to the standard deviation of the mean.

macroscopic parameters f and D are in accordance for ROI-wise and pixel-wise fitting,
the microscopic parameters τ and D∗ are much larger for pixel-wise fitting. A possible
explanation for this is that the diffusion weighted signal is overlaid by pseudo-random
contributions due to noise and pulsation which make it delicate task to resolve the T -
dependence of the flow compensated attenuation curves. If no such T -dependence is
apparent in the data, the consequence would be that the timescale τ of the incoherent
motion is much different from T . It can however not be much smaller, because then no
difference in signal attenuation between monopolar and flow compensated gradients
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Figure 5.7: Parameter maps obtained from a pixel-wise fit of the parabolic IVIM model. Abdominal organs can be
easily identified in the maps for unweighted (b0) signal, D and f . The maps for τ and D∗ appear very
noisy and for a large percentage of pixels the fitting fails, yielding very high τ -values. Since the large
dynamic range for D∗ values can be expected, the data can be more conveniently presented using maps
of the velocity v.
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would be found. Therefore the characteristic time τ is overestimated in the pixel-wise
fitting. Similar arguments can be made for the velocity v. Since larger velocities re-
duce the amount of remaining signal and thus the absolute T -dependence, the values
of D∗ are also overestimated by pixel-wise fitting. To overcome these issues in order to
obtain parameter maps which are less affected by noise and pseudo-random signal con-
tributions, it would be desirable to increase the number of averages. The total duration
of the measurement protocol used in this chapter, however, was already too long (20
breath holds of 37 seconds duration) to be easily incorporated into a clinical study. The
results from implementing a denoising algorithm based on principal component analysis
to overcome those difficulties are presented in the following chapter.
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component analysis

In this chapter a denoising algorithm based on principal component analysis (PCA) is
applied to the data acquired as described in section (5.1), to address two competing is-
sues. On the one hand it would be desirable to increase the number of signal averages to
reduce the influence of pseudo-random contributions from pulsation and noise, while on
the other hand the number of 300 images acquired per slice to perform a fit with 4 free
parameters appears already very large. For liver and pancreas, where diffusion properties
are isotropic, the acquisition of 6 different diffusion directions only contributes to increas-
ing the SNR such that only 40 different diffusion weightings remain, if the unweighted
images (of which 3 were acquired during each breath hold) are subtracted. The idea
behind the algorithm described in this chapter is that if the signal for different diffusion
weightings could be described by a model that has less free parameters (such as e.g. the
IVIM model introduced in chapter 4), it is compressible and there is a way to transform
it into a domain in which it is sparse (only having very few non-zero coefficients). In this
chapter, principal component analysis is used to estimate a sparse transform for each
pixel based on the pixel values in its local environment and those measured for different
diffusion gradient directions (section 6.1). The obtained transformation is then used to
reduce the amount of pseudo-random signal contributions by performing a minimization
of the L1-norm in the supposedly sparse domain, while maintaining data consistency in
k-space (section 6.2). The parabolic IVIM model is then fitted to the fully sampled data
set and to one with reduced SNR (only 2 diffusion directions) and results are compared
to those obtained after application of PCA-denoising and to those where a simple median
filter was used (section 6.3).

6.1 Principal component analysis
Principal component analysis was first described by Karl Pearson [58] and is often named
Karhunen-Loève transform (KLT) when applied in the field of image processing. From a
mathematical point of view, it is an orthogonal linear transformation which transforms
the data such that the projection of greatest variance corresponds to the first (principal)
component of the data’s representation in the new domain. If the data set consists of n
variables, the first principal component is defined as the direction in n-dimensional space
that minimizes the distance to the mean-corrected data points. The second principal

73
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component can be defined the same way after the correlations with the first principal
component are subtracted from the mean-corrected data. The principal components can
be obtained from the eigenvectors of the covariance matrix of the data.

In the following the application of PCA tailored to the acquired diffusion data set is
formulated. The data set consists of 300 images per slice of which 60 are unweighted. The
other 240 images correspond to diffusion weighted signals for 40 different combinations of
diffusion time T , b-value and gradient profile, which were acquired for 6 different diffusion
directions. Since isotropy is assumed, the signal of interest consist of 40 variables, for
which the acquired diffusion directions represent different observations. To be able to
apply the denoising algorithm to the whole data set, the unweighted images are also
included, yielding a total of n = 50 variables, which are combined into the signal vector
σ, defined via eq. (6.1a). The observation matrix σ consists of the signal vectors σk
measured for a given diffusion direction, respectively observation k as specified by eq.
(6.1b).

σ =

 d1
...
dn

 (6.1a)

σ =
(
σ1 · · · σm

)
=

(d1)1 · · · (d1)m
...

...
(dn)1 · · · (dn)m

 (6.1b)

Each row of the matrix σ thus corresponds to a different signal variable, respectively
diffusion contrast, while each column addresses an observation, respectively diffusion
gradient direction. The entries of the covariance matrix of the observation matrix are
defined by eq. (6.2), where the brackets 〈· · · 〉 denote the expectation value, respectively
the average over observations.(

cov(σ)
)
ij

= 〈(di − 〈di〉)(dj − 〈dj〉)〉 = 〈didj〉 − 〈di〉〈dj〉 (6.2)

The principal components are given by the eigenvectors Ψl of the covariance matrix
of the observations. The covariance matrix of σ can thus be expressed by eq. (6.3),
where λl denotes the corresponding eigenvalues.

cov(σ) =
n∑
l=1

λlΨlΨT
l (6.3)

We define the matrix of the eigenvalues of the covariance matrix as denoted in eq. (6.4).

Ψ =
(
Ψ1 · · ·Ψn

)
(6.4)
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The relation between an observed signal vector σ and its representation x in the sparse
domain is thus given by eq. (6.5).

σ − 〈σ〉 = Ψ x (6.5)

A Karhunen-Loève transform is thus defined by the eigenvalue matrix Ψ and the mean
signal vector 〈σ〉, which can both be estimated based on a given set of m observations.
cov(σ) however has at most rank n− 1, due to the intrinsic subtraction of the variable
mean in the calculation process of the covariance matrix. If m < n − 1 the rank of
the covariance matrix further reduces to m − 1. While the information, respectively
the signal variance is concentrated in the principal components (corresponding to the
largest eigenvalues) of x it is thus however necessary to have a sufficiently large number
m of observations to be able to identify the principal components. Since the number of
different diffusion directions which were acquired is only 6 (respectively 2 for the data set
with reduced acquisition time / SNR), the 8 surrounding pixels are additionally used as
observations, yielding a total of 54 observations for the full data set and 18 observations
for the reduced one.

In the ideal case, all information on the actual signal is contained in the eigenvectors,
respectively the matrix Ψ, while the pseudo-random contributions get absorbed into x.
Therefore an L1-norm minimization of the signal x in the transformed domain should
reduce the amount of noise and pseudo-random signal contributions caused by pulsation.

6.2 Denoising procedure
To be able to perform denoising, a data consistency criterion needs to be applied si-
multaneously while minimizing the L1-norm of x. Since the distribution of noise in the
image is non-homogeneous and generally described by an asymmetric Rician distribution
[59], it is difficult to formulate such a data consistency criterion in image space. The
Rician distribution of noise is based on the assumption that noise in k-space is homoge-
neously distributed, uncorrelated in time and can be modeled Gaussian-distributed for
each point in k-space. Using the noise parameter ε, which is estimated from the mean
absolute signal in a small region in a corner of k-space averaged over all images, the
denoising problem can thus be formulated as given by eq. (6.6), where W−1 denotes the
two-dimensional inverse Fourier transform from image space to k-space.

min
x
|x| s.t. ‖W−1Ψ x−W−1 (σ − 〈σ〉) ‖2 < ε (6.6)

This equation must however be read slightly different from eq. (6.5), which is defined
point-wise. To be able to formulate the data consistency criterion in k-space, however,
whole images must be used. The signal vector σ in eq. (6.6) is basically a three-
dimensional data set consisting of two-dimensional images for each diffusion weighting,
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where 〈σ〉 denotes the signal for each combination of pixel position and diffusion weight-
ing averaged over observations. Accordingly Ψ cannot be thought of as a mere matrix,
but denotes a pixel-wise multiplication with the pixel-wise defined eigenvalue matrix.
The noise parameter in eq. (6.6) corresponds to the noise parameter obtained for a
single k-space point multiplied by the square root of the total number of elements in
σ. Fig. 6.1 tries to explain the effects of the different operators. The operators were

Figure 6.1: Schematic view of the effect of the operators used in eq. (6.6). The data
set consists of images belonging to different diffusion contrasts d1, . . . , dn.
While the two dimensional Fourier transform connects image space and
k-space, the pixel-wise KLT connects image space and sparse domain. In
particular, the matrix Ψ, which is determined separately for each pixel,
defines the transformation back from the sparse domain into image space.

implemented into MATLAB using the TFOCS package [60]. The problem stated in eq.
(6.6) is of the form of a basic pursuit denoising problem, which can be solved by a variety
of different methods. In this work the SPGL1 solver, which is based on the algorithm
described in [61, 62] was used to find the solution to eq. (6.6).

6.3 Comparison of original and denoised data sets

In this section the results obtained by fitting the parabolic IVIM model (as described
in chapter 4 and section 5.2.5) to various data sets are compared. The labels and
differences of the six data sets are explained in the following. The aim of this study
was, to investigate whether it is possible to reduce the amount of diffusion directions,
respectively averages and to characterize the impact of denoising prior to fitting on the
resulting parameter maps. The following labels are used to distinguish between the data
sets:
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full The full data set corresponds to the acquisition protocol described in section 5.1.
It consists of 300 images per slice, which are splitted into 60 unweighted images and
40 different diffusion contrasts, which were obtained for 6 different diffusion gradient
directions.

denoised The denoised data set is obtained by applying the denoising procedure as
described in section 6.2 to the full data set. The necessary KLT is estimated as described
in section 6.1, where the 6 diffusion directions and 8 surrounding pixel give a total of 54
observations.

median The median data set is obtained by simply applying a 3 × 3 median filter in
image space to the full data set.

undersampled (us) The undersampled data is obtained from the full data set by ran-
domly choosing only one of the three unweighted images for each breath hold and only
two out of six diffusion directions for each diffusion contrast.

denoised+us The denoised and undersampled data set is obtained by applying the
KLT-denoising procedure to the undersampled dataset. The necessary KLT however is
only based on the two diffusion directions remaining in the undersampled data set and
not on the full six directions of the full data set. Taking the surrounding pixels into
account, this gives a total of 18 observations per diffusion contrast.

median+us This data set is obtained by applying a 3× 3 median filter in image space
to the undersampled data set.

After a qualitative evaluation of the parameter maps obtained for the six different
data sets for two of the test subjects (section 6.3.1), an evaluation of a ROI placed in
the liver is performed to quantitatively assess the effect of denoising on the parameter
estimates obtained from fitting the IVIM model.

6.3.1 Qualitative evaluation based on parameter maps
The parameter maps obtained by fitting the parabolic IVIM model to the different data
sets are shown in Fig. 6.2 and 6.3. The results shown in Fig. 6.2 are very promising.
The grizzly structure of the parameter maps, which is especially perceivable for the
microscopic parameters τ , D∗ and the corresponding v is largely reduced by applying
either KLT-denoising or the median filter. This effect is visible for both the fully sampled
data sets (top rows) and the undersampled (lesser SNR) data sets (bottom rows). The
noise reduction however comes at a the price of resolution. While smoothing is hardly
visible in the KLT-denoised average b0 images, it is very prominent in the median filtered
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Figure 6.2: Exemplary parameter maps for one of the test subjects from a pixel-wise fit of the parabolic IVIM model
to differently prepared data sets. While the amount of pseudo-random contributions, which is especially
visible in the τ -, D∗- and v-maps in the unprocessed data (full and undersampled), is largely reduced by
all post-processing methods, the denoising parameter maps appear to be less washed out than the median
maps, which can be best perceived for b0, D and f . Also the amount of pixels for which the fitted IVIM
model cannot describe the experimental data well is reduced by post-processing, which can be inferred
from the residual maps.
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Figure 6.3: Similar conclusions to those made for Fig. 6.2 can be made for a second test subject. The red borders
in the D∗-maps however indicate, that the test subject might have moved slightly during the duration
of the MRI experiment. This might be the reason why the denoised (pixel-wise KLT) τ and D∗-maps in
this case appear less affected, than the smoothed median maps.
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maps, which makes the pixel-wise KLT the preferable denoising algorithm for the data
shown in Fig. 6.2. The elimination of pseudo-random signal contributions also reduces
the number of pixels, where the fit cannot describe the data well, which results in less
regions with a high fit residual (last column). While for the data set shown in Fig. 6.2
the reduction in SNR resulting from reducing the number of diffusion directions by a
factor of 3 is hardly visible, circumstances are less favorable for the data set shown in Fig.
6.3. In addition to the perceivable noise in the parameter maps, the subject might have
moved slightly during the time of the diffusion experiment, which can be inferred from
the high D∗ and v values at the edges of the abdominal section. Based on the τ -maps,
the parameter maps obtained from the fully sampled median filtered data set appear to
resolve the liver structure in the bottom left corner of the abdominal section best. It is
possible that the pixel-wise KLT denoising cannot overcome the small movements and
the resulting parameter maps are in the case depicted in 6.3 inferior to those obtained
by median-filtering.

6.3.2 Quantitative evaluation based on ROI data
To quantify the effects of denoising on the parameters in the IVIM model, evaluation
of a ROI placed in the liver is performed similar to section 5.3. Fig. 6.4 shows the
parameter estimates averaged over test subjects, where error bars correspond to the
standard deviation of the mean value for different subjects. For each data set values
obtained by pixel-wise fitting of the model (and subsequent averaging over ROI) and
by ROI-wise fitting (averaging over ROI before fitting) are compared. The macroscopic
parameters f and D are found to be largely independent of the applied preprocessing
algorithm and also do not differ very much for pixel-wise and ROI-wise fitting, when
compared to the microscopic parameters τ and D∗. While these results indicate that
the parameter estimates for τ and D∗ obtained ROI-wise are relatively unaffected by
the tested preprocessing algorithms, they are smaller than the pixel-wise obtained pa-
rameter estimates. The absolute value and thus the difference between to the ROI-wise
parameter estimates is reduced for τ and D∗, if a preprocessing algorithm is applied.
This supports the theory, that pseudo-random contributions due to pulsation and noise,
which are filtered by the preprocessing algorithms, overlay the T -dependence of the flow
compensated signal at low b-values, resulting in large values of the fitted τ and D∗.
While denoising can improve the quality of the obtained fit parameters by reducing
pseudo-random contributions to the diffusion weighted signal, the pixel-wise estimates
of the microscopic parameters are still by a factor 2 larger than the ROI-wise obtained
ones. This could in theory be a remnant of tissue inhomogeneity in the ROI, but is more
likely to be caused by the fact that not all contributions from noise and pulsation can be
removed by the tested preprocessing algorithms. Movements of the test subject could
also have an impact on the signal, which cannot be corrected for. This however is an
inherent problem of long total acquisition time and the use of breath holds.
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Figure 6.4: Comparison of pixel-wise and ROI-wise obtained parameter estimates for
a ROI placed in the liver. Parameter estimates are averaged over test
subjects, where error bars correspond to the standard deviation of the
mean. While the pixel- and ROI-wise macroscopic parameters D and f
(top row) are very similar and appear relatively unaffected by the applied
preprocessing, the parameter estimates for τ and D∗ (bottom row) show a
different behavior. Not only differ pixel- and ROI-wise values (as in section
5.3), but also is this difference reduced, if a denoising algorithm is applied.
However only the pixel-wise parameter estimates for τ and D∗ are affected
by preprocessing, whereas changes in the ROI-wise obtained parameter
estimates are hardly noticeable.





7 Discussion
The aim of the work at hand was to investigate the biexponential signal attenuation,
which is found in strongly perfused organs, by means of diffusion weighted magnetic
resonance imaging (MRI). The biexponential signal decay originates from the additional
presence of incoherent blood motion in the tissue. To achieve this goal, a pulse sequence
was developed, that enables the use of flow compensated and monopolar diffusion gradi-
ents, while also allowing for flow compensation of the imaging gradients. While in section
7.1, the developed pulse sequence is compared to existing ones, the experimental results
that were obtained using the pulse sequence are discussed in section 7.2. Abdominal
diffusion weighted MRI data from both monopolar and flow compensated diffusion gra-
dients of varying total duration was acquired. An experimentally observed dependence
of the diffusion weighted signal on the gradient profile was reported [38]. To explain the
observed signal attenuation curves, a method was developed, which allowed to calculate
the signal attenuation for incoherent blood motion using precalculated phase distribu-
tions. Using this model the observed signal attenuation curves could be explained and
the characteristic timescale of the incoherent motion determined, as was presented in
[43]. Developing a denoising algorithm allowed to reduce the amount of pseudo-random
signal contributions, such that maps of the model parameters could be obtained [63].

7.1 Developed pulse sequence
Pulse sequences for diffusion imaging, which are delivered by the manufacturers of MRI
scanners, are optimized in terms of eddy currents [32] and off-isocenter correction for
concomitant fields [39, 64], but offer only very limited possibility for the user to adjust
the diffusion experiment except for diffusion gradient directions and applied b-value.
Typically the whole available echo time is used for the diffusion gradients, which does
reduce the necessary gradient amplitude and thus possible artifacts, but also prevents
the user from changing echo time and diffusion time independently. This is however
critical, if a dependence on the diffusion time is investigated, since it is well known
that the different relaxation times of blood and tissue cause IVIM model parameters to
correlate with the echo time [46].

The sequence developed in this work was thus designed modular such that the diffusion
experiment can be configured almost completely independent of the imaging part of
the sequence. Not only is it possible to choose diffusion time and b-value within the
hardware limits of the gradient coils, but it is also possible to select different diffusion
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gradient profiles. While the use of different gradient profiles to characterize restricted
diffusion is well studied [33, 51], its possibility to investigate the effects of incoherent
blood motion in abdominal organs was first investigated in this work [38]. Since our
initial experiments (section 3.2) showed an increase in the diffusion weighted signal due
to destructive interference of velocity encoding of diffusion and imaging gradients, flow
compensation for each axis can be switched on or off. The developed diffusion EPI
sequence has the additional advantage, that each imaging gradient object is directly
accessible and can be modified, while in manufacturer sequences those are often hidden
in building blocks with no available source code. The diffusion sequence serves as a
template based on which diffusion sequences for other applications, such as fat diffusion
imaging [65] or the measurement of exchange rates in yeast diffusion phantoms [66].

Ahn et al. [67] first reported the successful acquisition of both flow compensated and
non-flow compensated in vivo images. The sequence design used in their work allowed to
obtain a measure of the capillary density, which could possibly be related to f . They did
however not provide quantitative information on the in vivo data, which was critically
acclaimed [68], and did not vary the diffusion time.

The use of flow compensated diffusion gradients to separate diffusion and micro-
circulatory flow was suggested by Maki et. al. [48, 69], who presented the first study
comparing flow compensated and non-flow compensated diffusion gradients. His se-
quence design also allowed to change the diffusion gradient timing independently of the
echo time. The aim of the study [69] was however different from the work at hand. Maki
et. al. were imaging the rat brain, where the perfusion fraction is very small. Their aim
was to maximize the contrast to noise ratio, more specifically increase the sensitivity to
microcirculatory flow, while decreasing the sensitivity to diffusion. The gradient profile,
which does fulfill this characterization is the monopolar profile of maximum duration.
If the b-value is adjusted to the changed duration, our abdominal results do however
not show an impact on the diffusion time T on the monopolar signal attenuation, since
already for very small b-values most of the monopolar signal has decayed.

Recently Cho et al. applied a flow compensated turbo spin echo sequence as an
additional tool to characterize a flow phantom [70]. In this study the comparison between
flow compensated and bipolar diffusion gradients reveals that for slow flow velocities the
signal attenuation for bipolar gradients at high b-values is still affected by the flow.
However their bipolar gradient scheme was twice refocused, while the flow compensated
profile was only refocused once before the turbo spin echo readout. In the work at hand a
monopolar gradient profile is chosen, such that timing for the different diffusion profiles
can be chosen identically. The additional flow compensation of imaging gradients is
however mentioned in neither of the mentioned publications.
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7.2 Flow compensated IVIM

The question on the timescale of the incoherent motion was already raised in one of the
first publications by Le Bihan [5]. While Le Bihan derives the substantially different
signal attenuation curves for the limiting cases of very short and very long characteristic
times, studies that use the IVIM model almost exclusively use the biexponential model,
which is the limit of very short characteristic times.

Yamada et al. where the first to apply the biexponential model to abdominal diffusion
weighted data. They did however not state any values for the obtained pseudo-diffusion
coefficient D∗ and state several values for D and f that differ from both out values, but
also from other literature. For example the small diffusion coefficient of D = 0.76± 0.33
for the pancreas is not in accordance with [46] and our value of 1.74± 0.17.

Luciani et al. found a decrease in D∗ and in the apparent diffusion coefficient obtained
by a monoexponential fit in cirrhotic liver. When comparing the stated values to our
results for the healthy liver, we find our obtained value for D = 1.211 ± 0.064 µm2/ms
in relative accordance with the stated D = 1.10± 0.7. Our value for f = 0.352± 0.064
is slightly higher, which might be explained by the flow-compensation of the imaging
gradients, but might also be due to the longer echo times and the associated relaxation
time effects [71]. The value of the pseudo-diffusion coefficient of D∗ = 79.1±18.1 µm2/ms
stated in [6] is however, as expected much smaller than our value of 619± 91 µm2/ms.

In another study by Lemke et al. [71] it was found that the perfusion fraction f could
be used to distinguish healthy tissue from pancreatic cancer, furthermore Klauß et al.
showed that the perfusion fraction could be used to distinguish between pancreatitis
and pancreatic carcinoma [7]. Despite using the IVIM model, those two studies do not
state any values for D∗. The stated values for D for healthy pancreas in [71] is given by
D = 1.13 ± 0.15 µm2/ms, which is much smaller than the value obtained in this work
by fitting the parabolic IVIM model, which yields D = 1.74± 0.17 µm2/ms. While the
difference could be due to the different echo times, which were 60 ms in [71] and 120 ms
in this work, it is possible that it also is a remnant of the use of the biexponential model
in [71] .

A recent study by Andreou et al. [8] found poor measurement reproducibility of f and
D∗ in normal liver and metastases and comes to the conclusion that efforts should be
made to improve the measurement reproducibility of perfusion-sensitive IVIM parame-
ters. While there have been suggestions to use a fixed value for D∗ [72], another approach
is a bootstrapping algorithm to improve the quality of incoherent motion parameter maps
[73].

Our findings that signal attenuation curves are different for flow compensated and
monopolar gradients [38] is very important in this context, since it highlights, that the
pseudo-diffusion limit of a very short characteristic timescale of the incoherent motion
is not reached in typical diffusion experiments. The signal attenuation of the perfusion
compartment can therefore not be described solely by D∗, but also needs to take into
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account the characteristic timescale τ of the incoherent motion. While the D∗ used in
this work is defined identical to the original D∗ = τv2

6 [5], it is substantially different to
the D∗-values, which are obtained from a biexponential fit. The finding that the pseudo-
diffusion limit is not reached can explain the large variation of D∗ values reported in
literature [8], since the measured value depends on the chosen b-values and the exact
sequence timing. Using the definition of D∗ presented in this work has the advantage
that the influence of the imaging parameters can be taken into account and that it is
directly related to physiological parameters. The presented method allows furthermore
to estimate the characteristic timescale of the incoherent motion.

For the meandering flow through packet spheres, Callaghan et al. investigated the
timescale using a repetitive train of radio frequency pulses and interspersed gradient
pulses of variable spacing [74]. Their approach to analyze flow and dispersion in porous
media [75] can however not be translated to the IVIM problem. Based on our theoretical
findings (section 4.4), the expected signal attenuation for a repetitive scheme, such as
e.g. cosine gradients, would not only allow for lesser b-values than the flow compen-
sated gradient scheme, but the signal attenuation due to incoherent flow would also be
reduced. While the use of oscillating gradients to measure the incoherent motion was
also considered in this work, it was found less suitable than flow compensated gradients,
since the timescale of the incoherent motion found to be 184 ± 63 ms in pancreas and
156± 22 ms in liver is larger than the typical time of a diffusion experiment.

The oscillations predicted by our IVIM model for bipolar gradients and were reported
in phantom experiments [76, 77], have however to the extent of our knowledge never
been reported in vivo. The use of a parabolic velocity distribution as described in
section 5.2.5 is necessary to reduce the existence of local minima in the residual of the
used fit function and thus is an important step towards the creation of the parameter
maps shown in [63]. The therein displayed maps for the microscopic IVIM parameters
τ and D∗ and the resulting velocity of the incoherent blood motion are the first maps of
directly physiology-related IVIM parameters.

7.3 Denoising

The parameter maps obtained from pixel-wise fitting of the developed IVIM model
appeared polluted by pseudo-random contributions. The influence on noise is a topic
present in many areas of diffusion imaging, it is e.g. known to shift eigenvectors and
increase eigenvalues in diffusion tensor imaging [78]. In the work at hand in particular
the T -dependence of the flow compensated signal at very small b-values was found to be
susceptible to noise and pulsation. The T -dependence of the flow compensated signal
is however at the very core of the presented method and D∗ and τ values cannot be
determined meaningfully, if it cannot be resolved.

Therefore it was important to find a method to reduce those signal contributions.
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Similar difficulties to estimate parameters in the biexponential IVIM model lead to the
investigation of the effects of gradient polarity and breathing acquisition [42]. Also the
reliability was assessed using fusion bootstrap moves [73]. To increase the SNR a joint
reconstruction, estimating diffusion properties directly from the acquired k-space data
was proposed [79].

The research related to signal recovery was boosted by the compressed sensing theory
[80, 81] and in particular its applicability to MRI [82]. In the area of diffusion weighted
MRI the use of a compressed sensing reconstruction allowed for accelerated diffusion
spectrum imaging [83] and for a reliable reconstruction of high angular resolution diffu-
sion imaging (HARDI) from only 16 diffusion-encoded scans using the sparsity of HARDI
signals in the domain of spherical ridgelets [84].

To apply a compressed sensing reconstruction it is however necessary to find a sparse
domain. Since no such domain was known a priori for the flow compensated and bipo-
lar diffusion weighted signals, principal component analysis was performed. The IVIM
parameter maps that were obtained from a data set to which a compressed sensing recon-
struction was applied, were lesser impacted by noise (section 6.3.1). While the denoising
properties of the applied algorithm is comparable to that of a 3 × 3 median filter, the
smoothing effects are much less pronounced, since the used Karhunen-Loève transform
is a pixel-wise operation. The obtained results could possibly be improved by choosing
a more robust method to estimate the principal components [85]. Another possibility is
the use of a dictionary based approach for magnetic resonance parameter mapping, as
suggested by [86] which might not only allow one to tailor a sparsity transform to the
model of incoherent motion, but also adjust the measurement protocol accordingly.
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7.4 Summary
In the work at hand flow compensated intravoxel incoherent motion (IVIM) imaging is
identified as a well-suited tool to probe the timescale of the microvasculature. A flow-
compensated pulse sequence was developed, which has basically the same functionality as
any diffusion sequence in clinical use, but allows to customize the diffusion gradients. The
IVIM signal was found to depend on both the applied diffusion gradient profile and the
total time T of the diffusion experiment. By developing a model to calculate the signal
attenuation in case of incoherent motion it was possible to describe the experimental
data and obtain parameter estimates for the characteristic timescale and velocity of the
incoherent blood flow. A denoising algorithm based on principal component analysis was
developed to reduce the amount of noise in the signal and obtain IVIM parameter maps
from only 33% of the originally acquired data. This devopement makes the use of the
flow compensated IVIM method in clinical trials feasible. By measuring the timescale
of the incoherent motion, it is possible to reveal changes in microvasculature. Since the
blood vessel supply of a tumor is critical to the admission of chemotherapeutics, flow
compensated IVIM imaging is a new promising tool for oncologic imaging.
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