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Abstract

The author presents an unfitted discontinuous Galerkin method for incompressible
two-phase flow applicable to dynamic regimes with significant surface tension. The
method is suitable for simulations in complex geometries and a recursive algorithm
is proposed, which allows the generation of piecewise linear sub-triangulations re-
solving both the domain boundaries and the interface between the two immiscible
phases. Hence, discontinuous finite element spaces can be employed to capture the
irregularities in the solution along the interface, i.e. the jump in the pressure field
and in the velocity derivatives.

While the sub-triangulation is based on a linear Cartesian cut-cell approach, its
resolution is decoupled from the resolution of the finite element mesh thus enabling
the application of higher-order finite element spaces. The time development of the
two subdomains is realized by level set methods and an unfitted discretization for
the solution of the corresponding equations is described. Multiple approaches for
the numerical treatment of surface tension in the context of unfitted discretizations
are discussed and compared. Furthermore, these methods are extended to allow
simulations with contact lines taking into account the occurrence of microscopic
deformations of the contact angle. All proposed methods are verified by numerical
test simulations in two and three dimensions.






Zusammenfassung

Diese Arbeit présentiert eine neue Methode zur Berechnung von inkompressibler
Zweiphasenstromung in komplex berandeten Gebieten unter Einfluss hoher Ober-
flichenspannung. Das Verfahren basiert auf einem rekursiven Algorithmus zur Kon-
struktion einer Sub-Triangulierung, welche sowohl die Gebietsgrenze als auch die
Phasengrenze zwischen den nicht mischbaren Fluiden stiickweise linear approximiert.
Ausgehend von dieser Approximation, konnen Finite-Element-Rdume definiert wer-
den, in welchen sich die physikalischen Randbedingungen an der Phasengrenze un-
stetig darstellen lassen. Letztere erlauben einen Sprung sowohl im Druck als auch in
den Ableitungen des Geschwindigkeitsfeldes.

Die verwendeten Finite-Element-Réume werden auf einem Gitter dargestellt, des-
sen Auflésung weitgehend unabhéngig von der Auflésung der Sub-Triangulierung
gewahlt werden kann. Dieser Ansatz erlaubt es den geometrischen Fehler in der
Darstellung des Gebietsrandes von der Anzahl der Freiheitsgrade des resultierenden
algebraischen Problems zu entkoppeln und ermoglicht dadurch den nutzbringenden
Einsatz von Ansatzraumen hoher polynomialer Ordnung.

Die zeitliche Entwicklung der beiden durch die Phasengrenze definierten Teilgebiete
wird durch die Level-Set-Gleichung beschrieben. Da die Standardverfahren zur Lo-
sung dieser Gleichung mit dem Ansatz dieser Arbeit nicht direkt kombinierbar sind,
werden verschiedene Erweiterungen diskutiert und in numerischen Experimenten
verglichen.

Ebenso werden Methoden zur Diskretisierung der Oberflachenspannung vorgestellt,
welche insbesondere mit den algorithmischen Anforderungen einer effizienten Im-
plementierung der Sub-Triangulierung kompatibel sind. Zusétzlich werden Erweite-
rungen diskutiert, die es erlauben bewegliche Kontaktlinien der Phasengrenze mit
dem Gebietsrand in diese Methoden zu integrieren. Im Vordergrund steht hierbei
die numerische Behandlung des mikroskopischen Kontaktwinkels, welcher in realen
physikalischen Systemen von grofler Bedeutung ist.

Die Leistungsfahigkeit des vorgestellten Verfahrens wird in zwei- und dreidimensio-
nalen numerischen Experimenten demonstriert.
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Symbols and Acronyms

Symbols

Symbol | Description Page

d | The dimension of the computational domain 2. 31

€p | A regularizing partition operator is required to construct cell-parts with a minimum | 50
edge length not below ¢,,.

En | In two dimensions (three dimensions) it denotes the set of all edges (faces) of the | 31
fundamental mesh 7. With the superscript I, £ denotes only the interior, i.e. non-
boundary edges (faces). Similarly, the superscript B restricts the set to the boundary
edges.

& | In two dimensions (three dimensions) it denotes the set of all edges (faces) of the | 31
geometry mesh 7T,.. With the superscript I, £L denotes only the interior, i.e. non-
boundary edges (faces). Similarly, the superscript B restricts the set to the boundary
edges.

e,f | Small variables in fractur script indicate cell-parts 32

h | Maximum edge length of a cell in the fundamental mesh 7j,. 32

he | A geometric scaling factor depending on the volumes of the adjacent cells of a face e. | 64

2 | Maximum edge length of a cell in the geometry mesh 7... 32

HT’k Broken Sobolev space of order m which allows for discontinuities across the discrete | 59
two-phase interface.
M™T, M~ | Partition operators which provide a sub-triangulation of a single cell-part relative to | 34
the values of a level-set function in its corner nodes.
M5, M3, | Partition operators corresponding to the extended Marching Cubes 16 algorithm. 44
M, M3, | Partition operators corresponding to the extended Marching Cubes 33 algorithm. 45

Q, | The rectangular domain in which all sub-domains €2; must be embedded and which | 53
is spanned by the fundamental mesh 7j,.

Q) | The open Lipschitz-domain in d-dimensional space. Within this thesis, it always | 31
indicates the classical computational domain for which a PDE, i.e. flow problems
shall be solved. Together with a subscript it indicates a sub domain of the global
domain €.

Q| An operator which maps a mesh to the open domain in R¢ which is spanned by the | 31
given mesh.

P* | Polynomial space of order k. 59

P* | Cell-wise polynomial space of order k which allows for jumps across the cell faces. 59

Q" | Polynomial space of maximum order k. 59

QF | Cell-wise polynomial space of maximum order k which allows for jumps across the | 59
cell faces.

S | The sub-triangulation is a cut-cell mesh which consists only of cells with simple ge- | 35
ometries including simplices, cubes and triangular prisms. The restriction of the fun-
damental mesh 7, with regard to S defines the cut-cell mesh 7. The sub-triangulation
S is only employed for the numerical integration of the multi-linear forms resulting
from the DG formulation. It does not constitute a classical refinement of 7 and the
finite elements are never defined relative to the cell-parts in S, i.e. the number of
cell-parts in S is in general not correlated to the number of degrees of freedom.

Tr | The fundamental mesh, a Cartesian mesh which must overlap the computational | 31
domain. The piecewise linear approximation of the (sub-) domain boundaries is
eventually employed to restrict (cut) this mesh to the cut-cell mesh 7. It is formally
described as a set of rectangular open neighborhoods with maximum edge length H.

T.. | The geometry mesh, a Cartesian mesh resulting from a uniform refinement of the | 32

fundamental mesh. It is employed to construct the sub-triangulation S of the domain
Q. It is formally described as a set of rectangular open neighborhoods with maximum
edge length h.
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Acronyms

Acronym | Expansion
DG | Discontinuous Galerkin
QGM | Quasi geometric method (section 4.3 on page 92)
MC16 | Standard marching cubes algorithm with 16 topological cases
MC33 | Extended marching cubes algorithm with 33 topological cases
MDMP | Multi-domain multi-physics
NBP | Narrow band projection method (section 4.2.2 on page 89)
PDE | Partial differential equation(s)
SLS | Standard level set method
CLS | Conservative level set method
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Introduction

The simulation of multi-phase flow is applied in various fields of science and engineering.
Based on the encountered fluid mechanical regimes, very different numerical methods and
model equations (e.g. turbulence models) may be required to obtain robust results with
high predictive capability.

However, even when focusing on two-phase flow in laminar and low turbulence regimes,
there remains a diversity of practical applications ranging from microfluidic system tech-
nologies to the analysis of flow properties in both natural and industrial porous media.
Research in these fields is naturally focused on flow in complex domains with extents
much larger then the fluid mechanical scales. The domain itself is thereby the object of
interest itself.

Sophisticated finite difference discretizations have long since been able to produce both
theoretically and experimentally verified results and handle arbitrary topological changes
(e.g. coalescence of bubbles) with local mass conservation [1, 2, 3]. Although promising
approaches to applications in complex domains were presented in [4, 5], these employed
first order approximations at the boundary nodes while not supporting any adaptive mesh
refinement.

Lattice Boltzmann methods are regularly shown to have a robust behavior for almost
arbitrarily complicated domain geometries and scale very well in parallel application.
Their ability to handle density jumps corresponding to realistic fluid-gas setups has been
improved significantly over the recent years [6, 7, 8] though such jumps still entail prob-
lems with regard to mass conservation. In principle these methods lack an analogue of
the hp-refinement technique for finite elements.

Due to their ability to adjust the degrees of freedom optimally to the local features
of the solution via hp-refinement, the finite element methods have traditionally been the
first choice for the solution of problems with highly localized force terms and complicated
boundaries. However, the coupling of the interface movement with the Navier-Stokes
equations is not straightforward. The various attempts to solve this issue may be roughly
sorted into interface tracking and interface capturing methods.

Interface tracking methods which transport the mesh in each time step according to the
flow velocity field are usually based on the arbitrary Lagrangian-Eulerian (ALE) technique
and may be coupled with a Riemann solver at the interface [9, 10, 11, 12, 13, 14]. They
align the mesh cells to the interface and thus allow its treatment as an internal boundary.

Interface capturing methods implicitly describe the moving interface by a scalar func-
tion. In this context, the level set method proposed in [15] has become extremely popular.
When combined with a continuum surface force model, smearing out the sharp interface
over a finite width, it may be efficiently applied using standard finite element methods for
the solution of the instationary Navier-Stokes equations. Other authors proposed and an-
alyzed techniques which explicitly reconstruct some approximation of the interface from
a level set function without aligning the mesh cells themselves [16, 17]. However, they
still enforced a smooth transition of the fluids’ viscosity and density across the interface.

For a sharp interface, the surface tension and viscous forces will in general induce dis-
continuities of the velocity derivatives and the pressure. In order to represent such dis-
continuities, most discretization methods require a mesh with edges aligned to the sharp
interface. Even if such a mesh can be constructed for the initial setup of a multi-phase
flow simulation, deformation and topological changes of the fluid phases will eventually
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necessitate a remeshing of the domains. For sufficiently difficult domains, this is a very
challenging problem as common finite element discretizations entail multiple requirements
on the mesh cells such as convexity and angle conditions.

The authors of [18, 19, 20] presented an unfitted DG (UDG) method for elliptic,
parabolic and stationary Stokes problems in complex domains. There, the interior penalty
discontinuous Galerkin method [21, 22, 23] was applied on a Cartesian cut-cell mesh,
which results from cutting a complex domain out of a Cartesian structured mesh based
on a level set function. As the resolution of the resulting discrete domain approximation
was decoupled from the resolution of the finite element mesh, the accuracy of the former
could be adapted to the polynomial order of the finite elements employed for a specific
application. More detailed elaborations on the involved principles are given in chapter 1.

This thesis describes an extension of the UDG approach to incompressible two-phase
flow with surface tension. While the original method allowed only a single domain bound-
ary, the simulation of two-phase flow benefits from meshes which actually resolve the
two-phase interface. In this case, discontinuous finite element spaces may be employed
to capture the interface conditions including the jump of the pressure and of the velocity
derivatives across the interface. However, the efficient construction of a consistent tri-
angulation for such multi-domain setups entails various difficulties. Chapter 2 describes
how the Marching Cubes Algorithm, which was employed in the original approach, can
be utilized as part of a recursive algorithm allowing the construction of sub-triangulations
for an, in principle, arbitrary number of level set functions and subdomains. This algo-
rithm was implemented according to the generic unfitted software interface presented in
[24].

The system equations as well as the corresponding time and space discretizations are
presented in chapter 3. The time-dependency of the subdomains is resolved by an oper-
ator splitting which effectively decouples the Navier-Stokes equations from the level set
equation. It will be shown how the high algorithmic flexibility in the construction of the
sub-triangulations can be exploited to employ standard methods (i.e. method of lines)
for both equations in spite of the underlying time dependent finite element spaces. In
[25], a similar approach to discretization of two-phase model problems on time dependent
meshes was analyzed for the one-dimensional case in combination with extended finite
elements and compared quite favorably relative to space-time finite element methods.

Other finite element approaches which achieve an accurate representation of the dis-
continuous interface conditions include the extended finite element method [26, 27] and
the discontinuous Galerkin method. The latter was applied in combination with a local
remeshing in [12] and for an immersed boundary cut-cell method in [28]. However, both
methods rely on more complicated schemes for the time discretization.

The highly local nature in which the cut-cell mesh is constructed entails difficulties
for the discretization of surface tension forces. For a discrete representation of the in-
terface that is only cell-wise smooth, curvature is not anymore a cell-local property as
kinks (or even jumps) in the interface across the cell faces have to be accounted for.
Essentially geometric methods for the discretization of surface tension, introduced in [9],
are generally suited to the sharp interface reconstructions as implicitly provided by the
sub-triangulation. While it was shown in [29] that such schemes can be adapted to the
needs of the UDG approach, the required modifications entail additional demands on
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the construction algorithm for the sub-triangulation. More suitable approaches for the
discretization of surface tension are presented in chapter 4.

The ability of these discretization methods to handle contact lines, i.e. points where
the interface meets the domain boundary, are discussed and appropriate extensions are
proposed. Alas, the very principals of the microscopic contact line dynamics and the
verification of possible macroscopic models with numerical simulations are still a subject
of current research [30, 31, 32, 33]. Hence, the conceptual verification of the proposed
discretizations was based on the assumption of a constant microscopic contact angle equal
to zero. It is noteworthy that this actually comprises the practically relevant case of a
perfectly wetting domain boundary.

All proposed models are verified by numerical simulations in two and three dimensions.
The results are presented in chapter 5. Whenever feasible, the author tried to establish
meaningful comparisons between concurring methods and estimate the sensitivity of the
results to the non-physical discretization parameters. However, the reader should be
aware that time and especially run-time set severe limits to such efforts.

Among the computed test setups, the two-dimensional benchmark presented in [34]
deserves special attention due to its quantitative nature and the numerous participating
research groups, e.g. [10, 16, 17].

This work is based on the discretization presented in [29] which constitutes the first
application of the UDG method to two-phase flow. Furthermore, part of the research
which was conducted for this thesis has already been published in [35]. The reader should
be aware that parts of that publication are reproduced and cited within this thesis and
explicit references are only given to point the reader to additional materials or alternative
descriptions.
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1 The Concept of Unfitted DG for
Multi-Domain Problems

This chapter is intended to introduce the principle idea behind the original unfitted dis-
continuous Galerkin method (UDG) as well as its extension to multi-domain multi-physics
problems. The terms and concepts introduced in this chapter will be used throughout
the thesis.

1.1 It Does Not Fit

What is an unfitted method? In its most general interpretation, any numerical method
in which the discrete mesh overlaps but does not fit the boundary of the computational
domain, may be considered an unfitted method. While this definition encompasses a
wide variety of numerical methods, some concepts are shared by all of them (even if the
corresponding terminology does not, see section 1.2 for details):

The fundamental mesh T, which overlaps the computational domain € is typically a
structured mesh or a related structure with similar inherent regularity. In order to ac-
count for the discrepancy between the mesh and the domain, unfitted methods typically
need to modify the local numerical approximation operator at (or even near) those cells
which are intersected by the domain boundary. Independent of whether these modifica-
tions for a specific method are of algebraic or geometric nature, they always require a
cell-wise approximation of at least some local geometric properties of the domain bound-
ary. The requirements range from a few properties (like normal vectors and intersection
points with the mesh edges) to a piecewise reconstruction of the domain boundary using
low order approximations of the boundary, i.e. linear edges (planar faces in 3D) or splines.
For the latter, it is useful to define the cut-cell mesh T which incorporates the geometric
approximations of the domain boundary, although there are methods for which this mesh
is never explicitly constructed and algebraic constraints are employed to enforce appro-
priate approximation at the boundary. Figure 1.1 shows the simplest approach, where
the domain boundary is approximated by connecting the intersection points with linear
edges.

It is obvious, that depending on the utilized modification at the domain boundary,
unfitted methods may have quite different requirements with regard to how the domain
boundary may be described. While some may benefit from smooth geometric CAD
representations of the domain boundary, cell-wise linear approximations of the boundary
are very comimon.

1.2 One, Two, Many Unfitted Methods

In the past, numerical methods incorporating Cartesian meshes (or simple simplex meshes)
overlapping but not fitting the boundaries of the computational domain have been used
in various ways to solve a multitude of different flow problems. The first publications
in this direction include [36, 37, 38, 39] and were mainly concerned with potential and
inviscid flows. Due to the generality of the underlying idea, the further development
of these methods proceeded with little coherence with regard to methodology of even
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1 The Concept of Unfitted DG for Multi-Domain Problems
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Figure 1.1: A shared concept of all unfitted methods: The computational domain
) is overlapped by a simple mesh (the fundamental mesh Ty. The edges of the
latter are not in any way fitted to the domain boundary. An unfitted method
may utilize a cell-wise geometric approximation of the domain boundary to
modify its local algebraic approximation operators. In the simplest approach
which is shown here - a typical cut cell method - the domain boundary is ap-
proximated with cell-wise linear edges implicitly defining the cut-cell mesh T.

nomenclature. Labels like immersed boundary method, fictitious domain method, adap-
tive Cartesian mesh method, unfitted Galerkin method or extended finite element method
correspond to intersecting sets of methods containing many hybrid specimen which allow
only a vague categorization. The authors of [40, 41] give an overview of the different
approaches without attempting to setup any real taxonomy.

In the following, we will exclusively use the term unfitted method for any numerical
approach in which the discrete mesh merely overlaps the computational domain. If
the discrepancy between the mesh and the domain is resolved by simply cutting away
part of the mesh and thereby introducing (at least conceptually) a sub-triangulation
of the discrete mesh, we will sometimes refer to it as a cut-cell method.

With few exceptions, unfitted methods are based on low order geometric approxima-
tions near the boundary. This is at least partly motivated by the demand for methods
which can reliably handle geometries determined by a measurement (e.g. any kind of
tomography) that provides a binary in/out field on a Cartesian mesh. Especially when
complex topological structures are involved, meshing algorithms may fail or generate
triangulations that require manual post-processing.

Furthermore, dealing with the low order approximations still holds challenges. Cut-cell
meshes resulting from the naive geometric approach illustrated in figure 1.1 are strikingly
unsuited for many of the most popular mesh-based numerical methods. Intersected cells
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1.3 Unfitted Galerkin and Weakly Enforced Boundary Conditions

may become arbitrarily small compared to their neighbors and their inner angles may
come arbitrarily close to zero. These properties may escalate the time step condition in
explicit time stepping schemes or corrupt the convergence properties of Galerkin methods.

Unfitted methods which enforce boundary conditions strongly encounter additional
problems known as boundary locking[42]. This term is used when the degrees of freedom
of the numerical approximation are insufficient or chosen inappropriately to match the
discrete boundary conditions. While various methods which solve this problem have
been proposed, they usually rely on the specifics of the considered numerical scheme and
appear to defy any attempts to their generalization as would be required in the context
of multi-domain and multi-physics problems.

The standard finite element method as presented in countless textbooks comes with
the capital ability to employ piecewise high-order polynomial function spaces such that
the approximate solution achieves a correspondingly high-order of convergence with re-
gard to the mesh refinement. However, it is a well known fact that poor (i.e. piecewise
linear) approximations of the domain boundary may corrupt the order of convergence.
This may be especially severe in flow problems with high Reynolds number where the
resolution of the boundary can be crucial. Hence, it is not surprising that there are (to
our knowledge) no publications on unfitted methods from the Galerkin family combining
linear approximations of the domain boundary with high-order shape functions.

1.3 Unfitted Galerkin and the Idea of Weakly Enforced
Boundary Conditions

Focusing on Galerkin methods, the generation of a discrete mesh fitting the computational
domain may be seen as a preparation step for the representation of a basis of a discrete
function space which may conveniently be restricted to the essential boundary conditions
of a given problem. For a finite elements basis with its degrees of freedom given by values
in some Lagrange interpolation points, this may be achieved by simply restricting the
function space to those elements which have appropriate values in interpolation points
on the domain boundary.

Hence, an unfitted Galerkin method has to solve the problem of either restricting the
function space in some other way or finding the correct solution in the unrestricted space.
The first ideas in this direction were formulated by Nitsche in [43]. In this approach,
the space restrictions at the boundary were completely dropped, the trial space including
functions with arbitrary values at the domain boundary. Instead, the boundary conditions
were enforced via integral penalty terms on the domain boundary. The resulting discrete
solutions meet the boundary conditions only in an integral sense, i.e. they are weakly
enforced by the discretization. Some essential extensions of this idea to elliptic problems
with interior interfaces or discontinuous coefficients may be found in [44, 45].

The domain decomposition methods which use essential boundary conditions to ensure
continuity on the interior subdomain boundaries may be combined with discretizations
that weakly enforce these conditions to give rise to the class of interior penalty discon-
tinuous Galerkin (IPDG) methods initially developed for elliptic problems [46, 47, 48].
These methods employ penalty terms not only at the domain boundary but at all interior
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1 The Concept of Unfitted DG for Multi-Domain Problems

faces (or edges in 2D) of the mesh, dropping all inter-element continuity restrictions to
the trial and test spaces. This method was extended to various other applications in-
cluding incompressible flow problems [22, 23, 49]. It was shown in [50] that at least for
elliptic problems, the interior penalty method is just a variant of a much wider range of
discontinuous Galerkin methods which differ only in the choice of some numerical fluxes.

The application of the IPDG method in the context of unfitted methods is quite
straight-forward. As the penalty terms at the domain boundary are the same as the
penalty terms at the interior edges (or faces in 3D) of the mesh, there is no need for any
special treatment for essential boundary conditions and the resulting numerical method
is equivalent to the application of the IPDG method to a mesh where those parts of each
cell that overlap the domain are simply cut away.

However, due to the unfortunate properties of the mesh cells in the final cut-cell mesh,
it is not a priori clear whether the established theoretical boundaries for the penalty
parameter [51, 52] have any relevance in this case. This topic will be discussed in this
thesis in the context of the given numerical examples.

All numerical experiments as presented in this work were done using the IPDG method.
However, there seems to be no distinct reason to assume, that any of the methods (i.e.
the diffusive numerical fluxes) as categorized in [50] should be distinguished with regard
to their performance on cut-cell meshes. Whether there is a way to successfully apply the
recently proposed hybridization methods [53, 54] for discontinuous Galerkin discretiza-
tions to hierarchical cut-cell meshes is a quite different question and can not be answered
without further research.

1.4 Unfitted Galerkin and Adaptive Integration - Opening the
Door to High-Order Approximations

The application of high-order discontinuous Galerkin methods to flow problems in do-
mains with curved boundaries can be a futile waste of resources if these boundaries are
approximated with coarse piecewise linear geometries. The authors of [56] gave a mem-
orable example for the tremendous importance of the accurate approximation of curved
boundaries for high-order methods in the case of a purely convective flow problem. While
this may be considered a worst case scenario, it has been well established, that for many
problems the boundary approximation can become a severe bottleneck in the application
of high-order finite elements. This problem drives the development of meshes which can
represent curved boundaries [57, 58, 59].

The construction of such meshes is difficult even if a smooth representation of the do-
main geometry is provided. The UDG method avoids this difficulty by decoupling the
resolution of the domain geometry from the resolution of the finite element mesh. There-
fore, a uniform refinement of the fundamental mesh, the geometry mesh T,,, is utilized
to construct a piecewise linear approximation of the smooth domain. The preliminary
cut-cell mesh 7™ is then defined as the restriction of the fundamental mesh with regard
to this approximation of the domain. This concept is illustrated in figure 1.2. Obviously,
the cells resulting from this restriction may have a very complicated form. In general,
the remnant of a given cell of the fundamental mesh will be neither convex nor connected
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1.4 Unfitted Galerkin and Adaptive Integration

Figure 1.2: The UDG method, as introduced by Christian Engwer and Peter
Bastian [55], employs an additional geometry mesh T,, which is constructed
as an uniform refinement of the fundamental mesh T,. The geometry mesh is
used to construct a piecewise linear approximation of the domain boundary
and a corresponding cut-cell triangulation S which is only used for the numeri-
cal integration. The fundamental mesh is then restricted to the interior of this
boundary approximation to define the cut-cell mesh T*. Small cells are then
merged to their neighbors to define the final cut-cell mesh 7*. Notice that the
effective mesh resolution and therefore the dimension of the finite element ba-
sis is still determined by the resolution of the fundamental mesh.

23



1 The Concept of Unfitted DG for Multi-Domain Problems

with arbitrarily small volume and extent. Especially the latter property results in a num-
ber of issues when such a mesh is employed for numerical simulations. Most prominent
among them are the stability issues arising in explicit time stepping schemes and bad
convergence properties of iterative linear solvers applied to the linear systems resulting
from implicit time stepping schemes and stationary problems.

To avoid these problems, small cells may be merged to their neighbors, thereby con-
structing the more benign cut-cell mesh 7. This merging procedure is also illustrated in
figure 1.2 for a very simple domain setup. In general, it might be necessary to merge much
more than two cut-cells in 7 into a single cell in 7 in order to construct a sufficiently
good mesh for the numerical simulation. In extreme cases of narrow channels, such cells
may span vast parts of the domain.

While it may be applied to solve the aforementioned issues, the merging procedure
severely increases the algorithmic complexity of any implementation as it effectively dis-
ables many advantages of structured Cartesian meshes: After merging, cells in the cut-cell
mesh 7 may have an arbitrary number of neighbors, the exact number depending on the
domain boundary and the merging algorithm. Furthermore, the index of a cell can not
be computed from its coordinates any more. Therefore, additional data-structures are
required to associate mesh cells with their neighbor cells and with the degrees of freedom
of their respective finite element basis.

Naturally, distinguishing a geometry mesh from the fundamental mesh is reasonable
only if either an exact representation of the domain or a representation with a higher
resolution than the fundamental mesh is available. With regard to the nature of this
representation, the UDG approach is rather flexible as its construction of the piecewise
linear approximation is based on a distance function. The value of this function at a
given point is defined by the signed distance of this point to the domain boundary (signed
indicates that the value would be positive inside of the domain and negative otherwise).
As the zero level set of this function describes the domain boundary, it is also referred to
as a level set function.

The provision of such a distance function may appear to be a demanding requirement
as in practice domains are typically described either by an explicit boundary representa-
tion obtained from some CAD file or as a phase field resulting from, e.g. a tomographic
measurement. However, based on an overlapping structured mesh, continuous approx-
imations of distance functions for both cases can be computed efficiently by the fast
marching method [60], a sophisticate algorithm for the solution of the Eikonal equation
with a O(nlogn) complexity in the number of nodes in the geometry mesh.

The construction and management of the domain approximation on the geometry mesh
T.. is of course the core engine of the UDG method. Although different ways to construct
this approximation are conceivable, in this thesis we consider only piecewise linear ap-
proximations of the domain boundary. Even this simple approach, especially in three
dimensions, involves many peculiarities as described in chapter 2. To avoid any confu-
sion, it should be emphasized that the sub-triangulation S of the geometry grid 7., which
consists of simple geometries (simplices, cubes, etc.) is used only for the numerical in-
tegration of the multi-linear forms resulting from the DG discretizations. Therefore, the
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1.5 Unfitted Galerkin in Multi-Domain Problems

UDG scheme does in no way resemble an adaptive h-refinement scheme as the resolution
of the final cut-cell mesh 7T is essentially given by the resolution of the fundamental mesh
Th.

It is important to point out, that the relative resolution s of the geometry mesh 7,
can - in principle - be chosen independent of the resolution h of the fundamental mesh
Tr. As the numerical integration of the multi-linear forms describing the PDE problem
has to be performed on the cells and cell remnants of the geometry mesh 7, it is obvious
that the cost for the numerical quadrature in d dimensions will grow with O(3c=¢) even
if A is kept constant.

Therefore, in practice, the ratio 7 will have a lower bound and no numerical examples
with # < % are presented in this thesis. Nevertheless, in three dimensions, such a value
already implies that on a single given cell, the boundary approximation is constructed on
a sub-grid with 512 cells (64 cells in two dimensions).

Especially for some hyperbolic problems (e.g. in [56]), where the reflection of waves
on the boundary becomes the crucial bottleneck for the solution’s accuracy, one might
suspect that such a value for ¥ might still be too high to allow a beneficial application
of a higher-order finite element basis.

On the other hand, for problems of a more diffusive nature, the situation might be very
different. These were the setups for which the UDG method was originally developed and
they were analyzed in [19, 20, 55]. Especially in laminar flow simulations with no-flow
boundary conditions, decoupling of the boundary approximation from the finite element
basis seems to be a very promising approach. Notice that even if, for a given problem, the
UDG scheme applied in combination with a higher-order finite element basis does not,
for s — 0 result in a higher-order convergence rates, on coarse grids the approximation
may yet be more accurate and/or more robust. This is a very favorable property with
regard to numerical upscaling and the authors of [55] gave a memorable illustration of
the approximation properties of the UDG methods on coarse grids.

1.5 Unfitted Galerkin in Multi-Domain Problems

A huge number of systems analyzed in industrial engineering are classified as multi-
domain multi-physics (MDMP) problems. Generally speaking, this includes all problems,
for which the computational domain consists of a number of adjacent or even overlapping
subdomains, for each of which the system dynamics is described by individual sets of
equations which are coupled at the boundaries or on some overlap of the respective
domains.

The extension of unfitted methods to such MDMP problems is in general not trivial and
yet there are many applications which may benefit from the flexibility of unfitted methods
with regard to moving domains and topological changes. The principal difficulty arises
from the fact, that algorithms for the construction of the cut-cell grid have to account for
the way a (sub-)domain boundary intersects with a given cell. This defines a number of
topological cases for a given cell type, each determined by the two disjoint sets of vertices of
the cell which are inside and outside of the subdomain boundary. For a three-dimensional
cube, the 28 topological cases can be reduced via symmetry considerations to merely
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1 The Concept of Unfitted DG for Multi-Domain Problems

16 residual cases. However, if an unfitted method’s cut-cell algorithm has to provide
specialized behavior in each of these cases, e.g. to avoid boundary locking problems, then
even such a number may pose a severe effort with regard to the implementation of the
complete scheme.

Sadly, this dilemma is multiplied by the fact that the number of topological cases
of a given cell grows exponentially with the number of interfaces intersecting that cell.
Therefore, it is obvious that a robust unfitted method for MDMP problems can not involve
any implementation details specific to the topological cases defined by the intersection of
more than one interface.

The two big challenges of the extension of UDG to MDMP problems are the construc-
tion of the multi-domain sub-triangulation and the subsequent merging of the cut-cells.
The details of the responsible algorithm and a discussion of all its intricacies will be given
in chapter 2. At this point only the core ideas are presented:

The construction of the discrete domain approximation which is computed on the
geometry mesh 7, is a completely local operation which, for a given cell in 7T,, depends
only on the values of the level set function in the cell’s vertices. Its result is a partition
of that cell consisting of elementary geometries like simplicies, cubes or prisms. Hence, if
the algorithm can be extended to work not only for cubes but for all of these elementary
geometries, it may be applied recursively for an, in principle, arbitrary number of different
level set functions.

For the definition of the multi-domain setup in the context of UDG methods, it is
assumed that the subdomains can be described by a number of I level set functions,
each describing an interface. One may consider the space spanned by the fundamental
mesh 7;, as a kind of mazimum domain. Since every level set function partitions this
maximum domain into an inside and outside region, I level set functions define at most
2! subdomains.

The principle idea of the recursive application of the cut-cell algorithm for the construc-
tion of the multi-domain mesh is illustrated in figure 1.3. Its indiscriminate application
results again in the intermediate cut cell grid 7* which may contain extremely small and
anisotropic cells and requires some post-processing, i.e. merging of cells.

The merging itself is not as straightforward as in the case with only a single domain:
The result must depend on the actual set of subdomains which constitute the support of
the employed finite element spaces. This is illustrated for the case of two interfaces in
figure 1.4. These examples show that optimally merged cut-cell grids for finite-element
spaces on overlapping subdomains will in general be incompatible with each other, mean-
ing that each of them may contain edges (or faces in three dimensions) not contained in
the other. However, for two overlapping finite element spaces X and Y a typical MPMD
problem will most likely require the computation and integration of a function product
f-gwith f € X and g € Y. Hence, for applications that require such overlapping
spaces, multiple cut-cell grids have to be constructed (i.e. managed) such that integrals
of this kind can be computed efficiently. A detailed description of how these issues can
be naturally resolved in the context of the UDG method is given in chapter 2.
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Figure 1.3: The UDG method can be applied to multi-domain problems. For
two interfaces I'g and I'y, the sub-triangulation procedure can be applied re-
cursively to the geometry mesh 7., first for I'g and then for I'; to produce
the intermediate cut cell mesh 7*. If the boundary of the underlying funda-
mental mesh 7 is considered as an additional ultimate domain boundary, the
two interfaces Ty and T’y do in principle allow to distinguish four domains (in-
side/outside 'y and inside/outside I'y and inside d7;). The final step of merg-
ing the cut-cells has to be done with regard to the sub-set of domains which
support the chosen finite-element basis. The sub-triangulation S is used only
for the purpose of numerical integration.
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Figure 1.4: The illustration above depicts the four subdomains implicitly defined
by two interfaces corresponding to two level set functions. The actual subdo-
mains which constitute the support of a desired finite element space may how-
ever be a union of any or all of them. The merging procedure must account for
this fact. The final cut-cell meshes as described above show realizations for dif-
ferent finite element spaces. In the first example (left hand side), we consider a
- quasi single domain - problem involving a single finite element space defined
on the cut-cell mesh T (Q; UQ2UQ3) which approximates 1 UQoUQ3 and thus
resolves only the subdomain boundary of £2y. In this case, all other subdomain
boundaries were consumed during the merging process. Comparing this mesh
to the second and third example reveals the variety of meshes that may result
from the same two level set functions.

1.6 Limits of Unfitted Methods

Naturally, unfitted methods do not require a grid that is tailored to the boundaries of
the computational domain. In many typical engineering problems where the domain is
defined via a CAD geometry containing a vast number of details with specific proper-
ties, this advantage may be nullified if the representation of these details becomes too
demanding with regard to the resolution of the fundamental grid. This is unfortunate
as the construction of a suitable finite element mesh is especially complicated for those
setups as well. However, this dilemma was recently diminished by the vast advances of
the isogeometric analysis [61]. While these methods are in principle designed for sur-
face problems, coupled approaches of isogeometric analysis with unfitted finite element
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methods have been successfully attempted [62].

Furthermore, many solutions for CFD applications in the range of high Reynolds num-
bers are characterized by so-called boundary layers. These are thin layers along those
parts of the boundary which are subjected to high viscous stress. The spatial grid res-
olution in these regions strongly influences the accuracy (and possibly the stability) of
the simulation. Therefore, grid cells in the boundary layer are usually aligned to the
boundary in thin sheets with high aspect ratios and their extents differ by orders of mag-
nitude from the cells in the bulk area of the domain. As typical unfitted methods can
hardly accommodate such requirements, they are rarely applied in such setups. However,
in a recent publication [63], a specially adapted sub-grid suitable for the representation
of boundary layers was incorporated into an unfitted Cartesian grid via extended finite
elements. Such approaches that are based on a more modularized representation of the
domain boundaries promise to extent the applicability of unfitted methods into new and
unexpected fields.

1.7 Further Potential of Unfitted Methods

The problems involved in the construction of finite element meshes become most promi-
nent when the process of mesh construction has to be automatized. This can become
necessary if the mesh is moving or if the simulation is part of an automated process which
involves the actual determination of the domain geometry as one of its sub-steps, e.g. in
the evaluation of data obtained by a tomography scan of a large number of objects. In
such cases, human post-processing of the finite element grid is not possible and heuristics
are required in order to create robust simulation environments.

Furthermore, the class of applications which requires a transient representation of the
domain geometry also includes inverse problems in the area of shape and topology opti-
mization. Many shape optimization problems which occur in industrial engineering are
focused on the determination of small grid deformations which can be captured by either
arbitrary Lagrangian-Eulerian mappings of the domain or even direct manipulation of
the grid vertices. However, topology optimization problems are completely incompatible
with the conforming finite element paradigm of grids fitted to the computational domain
[64]. The potential of higher-order unfitted methods in this area has been examined only
recently [65].
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2 On Hierarchic Cartesian Cut-Cell
Triangulations for Multi-Domain Problems

The actual construction of a sub-triangulation for both the cells and the faces in the cut-
cell grid is somewhat tailored to the needs of discontinuous Galerkin methods. For low
order Cartesian cut-cell methods, knowledge of the geometries of all the cut-cell faces (in-
cluding corner coordinates and normal vector) is usually sufficient for their definition and
evaluation. However, in the context of high-order discontinuous Galerkin methods, the
piecewise polynomial representation of the trial and test function spaces inevitably intro-
duces non-trivial volume integrals into the weak problem formulation. The latter have to
be approximated with quadrature rules that are sufficiently accurate to not compromise
the overall approximation error of the numerical method.

In the approach presented in this thesis, this quadrature is realized by creating a
partition consisting of simple geometric objects (cubes, triangular prisms, and simplices)
of each grid cell of the geometry grid which is intersected by an interface. As Gaussian
quadrature rules of arbitrary order are known for each of these geometric objects, the
overall integration can be constructed by simply summing up the contributions of all
quadrature points for all elements in the partition.

Hence, the main difficulty consists in constructing a partition for each cell in the ge-
ometry mesh 7,, such that it allows the definition of the multi-domain cut-cell meshes
according to the principle ideas presented in the previous section.

2.1 Principal Definitions

2.1.1 Domains

Throughout this thesis, it is assumed that the problems are formulated on a d-dimensional
Lipschitz domain Q C R? consisting of Ng subdomains ; with i € {1, ..., Nq} such
that

a= U @ (2.1)

iE{l, ey NQ}

All of these domains are contained within a finite rectangular domain which is spanned
by a Cartesian mesh, the fundamental mesh Ty, with cells of maximal edge length h.

Wherever this mesh will be referred to in a formal context, it is assumed to be a set
of open neighborhoods in R? - the mesh cells. The set of all cell faces contained in the
mesh 7T, are denoted by &, and are also understood as open neighborhoods. The sets E}IL
and £ denote the interior faces and the boundary faces respectively. To allow a flexible
notation, the operators Q and Q are introduced to describe a mapping of a mesh to the
(open) domain spanned by its cells according to:

QT = J E and QTh) :=Q(Ts) \ 99(Th). (2:2)

All definitions in this paragraph are correspondingly extended to all meshes and sub-
triangulations described in this thesis.

31
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Notice that in the following, the term partition will appear frequently and for an open

domain U C R? the set of open disjoint subdomains {u1,...,u,} with u; C R? and
U= {J w (2.3)
1<i<n

will be called a partition of U (without qualifier).

2.1.2 Level Set Functions

The boundaries of all subdomains are described by the zero level sets of a number of IV

level set functions ¢; with j € {1, ..., Nys}. Each of the level set functions ¢; defines a
partition {QF(¢;), Q= (¢;)} of the rectangular domain Q(7Tj,) according to
QF(g;) = {x€QTh)|8;(x) >0}, (2.4)
07 (¢5) = {xe€Q(Th)|¢;(x) <0}, (2.5)
QT = Q) U (4y). (2.6)
For each subdomain €; there must exist sub-sets P;, M; C {1, ..., Ny} such that

Q; = (ﬂ Q+(¢j)) A ( N Q(¢j)) : (2.7)
JEP; JEM;

This restriction implies that the maximum number of non-overlapping subdomains is

2Ne . Furthermore, for every point x located on the common boundary of two adjacent

subdomains there must be a level set function ¢; for which ¢;(x) = 0. Obviously, for

the definitions in this section to be meaningful, the level set function ¢; must be at least

continuous on (7).

2.2 Sub-Triangulations

The main idea, as described in chapter 1 and illustrated in figure 1.3 on page 27, is
to construct fine sub-triangulations S which approximate the subdomains €; nicely but
utilize a higher spatial resolution than the fundamental mesh. The resolution of the latter
is chosen to allow an optimal application of the higher order DG basis. Then the cells of
the fundamental mesh 7}, are simply restricted with regard to the sub-triangulations to
define a final cut-cell mesh 7. The sub-triangulation itself will thereafter be employed
for purposes of numerical integration only.

The following discussion is restricted to the three-dimensional case. References to the
two-dimensional case are made in some isolated contexts where these are instructive or
where the generalization to the two-dimensional case might be ambiguous.

2.2.1 Properties and Requirements

These sub-triangulations S¢ of the subdomains €; are constructed based on the geometry
mesh 7T,,, a Cartesian mesh corresponding to a uniform refinement of the fundamental
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mesh T, with the correspondingly smaller resolution s¢. This implies that each vertex in
Tr is also contained in 7,, and that each cell in 7, is included in one and only one cell of
Th.

Each such sub-triangulation is essentially a mesh of its own. For the implementation
used in this thesis, this mesh, in the two-dimensional case, consists of triangles and
quadrilaterals and, in the three-dimensional case, consists of simplices, hexahedra and
triangular prisms. In the following, these objects will be referred to as cell-parts (always
with hyphen) to not confuse them with the actual mesh cells of the cut-cell mesh 7.
Accordingly, the sub-triangulations themselves will never be referred to as meshes.

At this point, some emphasis should be put on the fact that we require cell-parts
to have straight edges. This property will simplify the construction of consistent sub-
triangulation without gaps or overlapping cells. It is also the reason for some of the more
peculiar definitions and terms introduced in this chapter. As will be revealed to the reader,
the recursive approach for the generation of the multi-domain sub-triangulation entails
enough complexity even if this geometric constraint is enforced. Notice that the faces of
the cell-parts, however, may be curved as both hexahedra and triangular prisms contain
quadrilateral faces for which the mapping of lowest polynomial order which maintains
straight edges is yet bi-linear.

All cell-parts of the same geometric type, i.e. all simplices, all cubes, or all triangular
prisms, can be associated with a reference geometry of the same type, which is assumed
to have planar faces and a diameter of approximately 1, e.g. the unit cube, the unit
simplex, and an appropriate cut-off of the unit cube along an arbitrary Cartesian axes.
While the exact choice of the reference geometries is not important, in the following it
is assumed that all cell-parts of the same geometry type are associated with the same
reference geometry and for a given cell-part ¢ (cell-parts will always be denoted by letters
in fraktur script) there is a bijection ®, mapping it to its respective reference element ¢
such that

D,(e) =¢. (2.8)

In the following, it is assumed that ®, is the mapping with the lowest possible polynomial
order which maintains straight edges and maps the corners of ¢ to the corners of ¢. This
implies that for a given e, @, is linear for simplices, and at most tri-linear for cubes and
triangular prisms.

Notice that the mapping ®, maintains only the straightness of the edges of ¢ itself.
Other straight lines, arbitrarily positioned in ¢, may be mapped into curves. For the
definition of the recursive algorithm, which will be employed for the construction of the
multi-domain sub-triangulation, it will be useful to consider the additional operator ®,
which maps a given cell-part f with the corner nodes xy,...,xy;, all contained within @
to the cell-part § which corresponds to the corner nodes ®¢(x1), ..., ®.(xn;) (again using
the polynomial mapping of lowest order which maintains straight edges). This implies
that

P.(e) = De(e)=¢ but in general ®.(f) # D.(f) (2.9)

unless e is a simplex or @, is linear.

Before discussing the actual construction of the sub-triangulations S¢, it is insightful
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to consider the following list of desirable properties which these sub-triangulations should
fulfill:

1. Naturally, it should be a good geometric approximation of €2;, hence the approxi-
mation error

/ Ixe: = Xasyll (2.10)
Q(Th)
should fall quickly as h — 0.

2. As a DG scheme involves integrals over cell faces, the sub-triangulation should be
conforming wherever the faces of the cell-parts coincide with faces of the final cut-
cell grid. Otherwise, the actual intersections of the faces of adjacent cell-parts would
have to be determined and constructed in order to allow a consistent numerical
integration. While this is feasible, it adds another layer of geometric operations.

3. The sub-triangulation of a given cell in the geometry mesh 7, should depend only
on the restriction of the level set function to the closure of this cell. This property
allows for a completely parallel computation of the sub-triangulation in the context
of domain-decomposition methods. This provides the individual nodes with the
footing required to efficiently communicate the non-local aspects of the cut-cell
mesh construction, i.e. the merging of small cells in the intermediary cut-cell mesh.

2.2.2 Local Partition Operator

As soon as a construction algorithm fulfills the last of the aforementioned properties,
it may be uniquely defined by its application to a single cell in the geometry mesh.
To describe such an algorithm more generally, it is useful to define the local partition
operators M™ and M. For a given cell-part ¢ (i.e. a cube, simplex or triangular prism)
and a level set function ¢, the application of each operator is assumed to provide a finite
approximation of the volume fraction of the cell-part ¢ on the positive (M™) or the
negative (M™) side of the zero level set of the level set function. This approximations
should themselves consist of cell-parts and be such that their union is a partition of
the original cell-part ¢. The number of cell-parts created by these operators should be
bounded by a finite positive number Ny, independent of the given cell-part or the level
set function values. This corresponds to

M+/_(e7¢’3) = {f17"'7fN} (211)

for a set of cell-parts f; with ¢ =1,..., N and N < N, with the additional property

U{®® | feMie)uM (o) f =) =¢ (2.12)

that holds independent of the level set function values. Furthermore, the cell-parts f; (i =
1,...,N) are required to be conforming in the traditional sense, Hence, two such cell-
parts will intersect either in a (full) common face, a (full) common edge, a vertex or not
at all.
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Notice that the definition so far does not imply that M1/~ provides a real partition
of e, since

MH(e, )| JM(e,) =7¢ (2.13)

is true only if ¢ is a simplex or ®, is linear. However, in general (2.13) is not fulfilled as
(2.12) only guarantees that the created cell-parts can be mapped via ®, to a partition,
i.e. a local sub-triangulation, of the reference element €. As this local sub-triangulation
is not required to be conforming, its image via @;1 may contain gaps and overlaps of
cell-parts. Full conformity, however, constitutes a severe restriction with regard to the
actual implementation of the partition operators. More subtle additional requirements
that allow a convenient implementation and yet result in consistent sub-triangulations
will be discussed in section 2.3.

2.2.3 Recursive Construction of Local Sub-Triangulations

Notice that the nature of this local partition operator is inherently suited for its recursive
application. Given a cell-part ¢ and its local restriction of the level set function (Z)]E,
it provides a new list of cell-parts for each of which the corners are located within the
original cell-part e. Hence, given a cell E of the geometry mesh 7, and the cell-local
restrictions of the level set functions ¢;] 5 (j = 1,...,Ng), the partition operators can
be applied recursively to this cell, i.e. to the cell-parts resulting from each application.
Notice that in the first step of this application we implicitly interpret the cell E as a
cell-part.

To formalize this approach it is necessary to introduce the special partition operator
M which equals M if the subdomain €; is located on the positive side of the zero level
set of ¢;, i.e. j € P; and it equals M~ if j € M;. Depending on the actual choice of the
partition operators M ¥/~ the additional operators Z7 might be required to provide some
pre-processing of the local level set function, i.e. some local interpolation or projection
on e. In the simplest case, it is a pure restriction: Z7(e, bj) = ¢j‘?

The final sub-triangulation of a given cell E of the geometry mesh 7,, may then be
recursively defined as

So(B) = {B} (2.14)

SiE) = U Mi(e, ) (2.15)
QGS]',l

o = T (e0i]y), o e (2.16)

The sub-triangulation S¢ corresponding to the subdomain (; is given by
s =U{sn,(B)|EcT.} (2.17)
and the complete sub-triangulation corresponding to the global domain 2 results from
s=U{s'lieqr,....No}} (2.18)

This definition assumes that Mi is well defined for any j € {1,..., Ny} and therefore it
must hold that M;UP; = {1,..., N} and M;NP; = (. Notice that this is more restrictive
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Figure 2.1: The pictures show ex-
emplary partitions of a funda-
mental mesh 7, with 4 x 2 cells.
The mesh is divided into subdo-
mains ; (red) and Qo (green).
The first picture (top) shows the
union of the intermediate meshes
T, T5". The final cut-cell meshes TUTS
are defined by 7; = M .(T;*) for
i € {1,2}. The merging oper-
ator M. will merge a cell that
does not fulfill the necessary
size/extent criterion, by merg-
ing it to the neighbor cell with
which it shares the largest com-
mon face area. On the contrary,
M, will merge such a cell to the M (T)UM(T5)
neighbor cell of biggest volume.
The results are shown in the sec-
ond picture (middle) for M, and
in the third picture (bottom) for
M ,. This example illustrates the
tendency of M, to create cells
with cusps and spikes along the
common boundary of both subdo-

mains. M,(T7) UM, (T5)

than the original definition of the subdomains €; in section 2.1.2. However, the 2Ve
subdomains which conform to this assumption form a partition of 2. Furthermore, any
subdomain conforming to the original definition can be constructed as a union of a sub set
of this partition. An algorithm realizing a sub-triangulation according to the definition
(2.14) is therefore suitable to realize a sub-triangulation for any of the subdomains which
conform to the original definition in section 2.1.2.

Notice that, without any further and non-trivial requirement on the partition operator
M/~ in (2.11), the exact sub-triangulation defined via the recurrence in (2.14) will
depend on the enumeration order of the level set functions ¢; with (j = 1,..., Ny).

2.2.4 Construction of the Cut-Cell Mesh

Intermediate cut-cell meshes for each of the subdomains §2; with i € {1,..., No} may be
defined as '
T ={EnQS) | BT (2.19)
and their union is denoted by
T = {7 |ie{l,...,Na}} (2.20)

Hence, T* results directly from the restriction of the fundamental mesh 75, with regard
to the sub-triangulation S.
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The intermediate meshes 7.* and 7* may contain arbitrarily small cells which may
appear in various problems as discussed in section 1.4 on page 22. These problems can be
resolved by merging such cells to their neighbors until a specific size criterion is fulfilled.
Efficient choices for this criterion may involve a minimum value for the cell volume or a
minimum extent of its convex hull in the directions of the Cartesian coordinates.

There is no obvious optimal choice for such a criterion. To avoid a deteriorated conver-
gence behavior of iterative linear solvers, it may be sufficient to merge only cells whose
size is many orders of magnitude below the size of its neighbors. When explicit time-
stepping schemes are employed it might be beneficial to merge any cut-cell independent
of its size.

As soon as there is more than one subdomain, i.e. No > 1, the construction of the final
cut-cell mesh 7 has to be done with regard to the needs of the specific MDMP problem
to be simulated. For a given subset Pr C {1,..., No} a cut-cell mesh is given by

T =M ({7 |i € Pr}), (2.21)

where M defines an operator which performs the merging procedure. While the details
of this operator may be specific to the simulation problem, for two general meshes A and
B with edges €4 and & such that B = M (A) it must hold that

E CEx and thus VE€A:3FeB:ECF. (2.22)

Notice that, as illustrated in figure 1.4 on page 28, not only the extent but also the
internal structure of the cut-cell mesh depends on the choice of Py.

Primitive but effective implementations of the merging operator M can be realized by
simple procedures which operate individually on each cell of the given mesh. For such a
cell, it reduces to the question whether this cell fails to meet the minimal size criterion
and if so, then to which of its neighbor cell should it be merged. This process might be
repeated if the merged cell does still not satisfy the size criterion.

The selection of the partner cell for merging is guided by the principal that the resulting
merged cell should be neither too anisotropic nor contain any sharp spikes or cusps. An
obvious choice would be to take the neighbor with the biggest cell volume. Alternatively
one might decide to choose the neighbor with which the maximal face area is shared.
The performance of both approaches for a very simple example geometry is illustrated in
figure 2.1 on the facing page.

For all examples computations as given in this thesis, the merging was performed in a
cell-wise approach until each cell in the final cut-cell mesh fulfilled a minimum volume
criterion defined relative to the cell volumes in the fundamental mesh 7;. Cells which
failed this criterion were always merged with the neighbor with whom they shared the
largest face area.

Although this simple method worked well for all the computations performed for this
thesis, especially the three-dimensional examples were restricted to rather benign ge-
ometries. Therefore, the importance of a further development of appropriate merging
procedures which are suited to the geometry and to the needs of the numerical method
should not be underestimated.
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2.3 Conformity Conditions for Partition Operators

The rather abstract definition of the multi-domain sub-triangulation as given in sec-
tion 2.2 is not yet complete since it relies on the local partition operators M*/~. Its
principal properties, given in section 2.2.2, can not guarantee the suitability of a sub-
triangulation constructed according to the recursive scheme in (2.14), mostly due to the
violation of (2.13). This chapter presents a classification of partition operators accord-
ing to geometric conformity conditions and their influence on the suitability of the final
sub-triangulation.

2.3.1 Consistency and Adjacency of Sub-Triangulations

In addition to the mere computation of the geometries of the sub-triangulation, an imple-
mentation must also provide an interface suitable for the assembling process involved in
setting up the linear (sub-)problems resulting from DG discretizations of a general PDE.

This implies, that each element, i.e. cell-part, of the sub-triangulation must be iden-
tifiable. Hence, for each cell-part there must be a corresponding key which identifies it
uniquely and can be used to associate it with a cell in the final cut-cell mesh 7. Further-
more, it must be possible to associate with each cell-part a list of those cell-parts with
which it (at least partially) shares a common face.

While, of the two requirements, the former is usually easy to realize as long as the
partition operators are deterministic, the adjacency information of the cell-parts is more
difficult to obtain. The partition operators could, in principle, provide an adjacency list
for the local partition of a given cell-part but their inherently local character (i.e. them
depending only on the level set function values in the corner nodes of the considered
cell-part) entails the need for an external mechanism establishing adjacency information.

Naturally, adjacency is only well defined as long as the sub-triangulation is consistent,
i.e. as long as it does not contain any gaps or overlaps of the constituent cell-parts. The
condition (2.13), while sufficient, is too restrictive with regard to an actual implementa-
tion as it inherently requires the handling of curved edges and faces.

Hence, more suitable and instructive properties of the partition operators which allow
a concise classification of the consistency and adjacency of the resulting sub-triangulation
are mandatory.

2.3.2 k-Conformity

The partition provided by the operators M1/~ for a given three-dimensional cell-part,
does, in addition, effectively declare a partition for both its faces (co-dimension 1 sub-
entities) and its edges (co-dimension 2 sub-entities). These partitions are canonically
determined by the intersections of the elements (i.e. the cell-parts) in the partition with
each of these sub-entities. The same holds correspondingly for two-dimensional cell-parts.
For a more formal approach, consider a co-dimension k sub-entity f of a cell-part ¢ and
the level set function ¢. Then there exists a unique set F* := {f", ..., JJ\%} with N;

elements and a unique set F'~ :={f;,..., f ];,} with N elements of open environments
f
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1IN

Level set function corner values Co-dim 0 partition Co-dim 1 partition Co-dim 2 partition

positive (black) / negative (white) Whole cube Front face Edges in front face

Figure 2.2: The pictures above illustrate the functionality of the partition oper-
ators M*/~ with regard to a cell-part and its sub-entities. The first picture
from the left shows a cubical cell-part. The level set values in its corners are
indicated by either black dots for a positive value of white dots for a negative
value. The actual partition will of course depend not only on the sign but the
actual magnitude of these values. The second picture shows a possible parti-
tion of the cube (which, of course, is its own co-dim 0 sub-entity), where the
red cell-parts would be provided by M™ and the green cell-parts would be
provided by M™. All cell parts in this partition are either cubes, simplices,
or prisms and together fill the whole cube. The third picture shows the parti-
tion of the front face, i.e. a co-dim 1 sub-entity, which is implicitly determined
by the volume partition from the second picture. Similarly, the fourth picture
shows the partitions of the edges (co-dim 2 sub-entities) contained in the front
face as implicitly determined by the volume partition in the second picture.

in f, such that
(U F+> U (U F—) =f (2.23)
and for every f;r/ " there is exactly one cell-part f in M+/~ (e, qﬁ‘z) such that

.(7) N B(F) = (/7). (2.24)

7
As the sets F/~ describe a kind of restriction of M1/~ to the sub-entity f, the following
notation is employed:

M/ (e, %)(f = Pt/ (2.25)
This is illustrated by an example in figure 2.2.

If a partition operator M™ or M~ guarantees that the partition of this sub-entity f,
as determined by the total partition of the whole cell-part, does only depend on the
restriction ¢| ¢ of the level set function to f, then it is considered to be k-sub-conforming
in that sub-entity. This implies that, independent of the level set function ¢(-), there

exists an operator M;r /= such that

M (e, 0],) = MT/ 7 (e,0]) - (2.26)
If this is not the case but a /\/l;r /= which fulfills at least
UM (e 0l = UMH (9] )] (2.27)
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Level set function corner values
positive (black) / negative (white)

1-conforming Weakly 1-conforming

2-conforming 2-conforming

Not 1-conforming Not 1-conforming

2-conforming Not 2-conforming

Figure 2.3: The pictures above illustrate the k-conformity property of the par-
tition operators M*/~. The first picture on the top describes the input data
for the operators consisting of two adjacent cubes and their level set function
corner values. Only the sign of the values is given and indicated by either a
black (positive value) or a white (negative value) circle. Notice that already in
the second case, which shows the application of partition operators that is only
weakly 1-conforming, the resulting sub-triangulation may already contain cells
with non-matching faces. None of the presented examples indicates a violation
of 3-conformity.

does exist, then the partition operator is considered to be weakly k-sub-conforming in the
sub-entity f.

If a partition operator is (weakly) k-sub-conforming in every sub-entity, then it is
considered (weakly) k-conforming, see figure 2.3.

According to the dependencies defined in (2.11), any local partition operator MF/~ s
0-conforming, meaning that the partition of a cell part does not depend on anything but
the restriction qS]e of the level set function to the operand cell-part e.

Notice that, although the partition of a node essentially reduces to a binary property,
d-conformity is non-trivial as even a non-pathological partition operator might very well
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decide to place a node in a subdomain that does not correspond to the level set values in
this node. This appears especially reasonable if the magnitude of such a value is relatively
small and all the other nodes in the cell-part correspond to level set values of opposite
sign. Such an approach would effectively prevent the construction of minuscule cell-parts.

2.3.3 Fully k-Conforming Partition Operators

The properties of the final sub-triangulation as defined by (2.14) in section 2.2.3 depend
heavily on the local partition operators M*/~. If those are assumed to be k-conforming
in all co-dimensions, then the recursion in (2.14) leads to a conforming sub-triangulation
(here, conforming is meant in the traditional sense, i.e. perfectly matching faces and
edges).

To see this, consider the first step of (2.14). By definition, the cell-parts resulting from
a single application of M*/~ to the geometry grid cell E are conforming. Furthermore,
two cell-parts e and § that share a full sub-entity f of co-dimension k also share the level
set function values in f (as we assumed ¢ to be continuous) and the application of the
partition operators to ¢ and f will, due to the definition of k-conformity, again result in
only perfectly matching, i.e. conforming, cell-parts.

Full k-conformity of the partition operators does also simplify the computation of the
adjacency information. In this case, in each step of the recurrence relationship as given
in (2.14), the partition operators provide perfectly matching cell parts. Furthermore, the
face-partitions of the co-dimension 1 sub-entities of each cell-part only depend on the level
set function values in that face (1-conformity). Hence, the full adjacency information
can be deduced - in each step of the recursive construction - from an ordering of the
elements of this face-partition as long as it depends only on these level set function values
itself. As the construction of such an ordering is a trivial task compared to the actual
implementation of a full k-conforming operator, it is valid to say that such operators do
inherently provide adjacency information.

2.3.4 Weakly 1-Conforming Linear Regularizing Partition Operators

Relaxing only the requirement of 1-conformity, changes the situation already tremen-
dously. Even for a weakly 1-conforming set of partition operators M*/~ that is (strongly)
k-conforming in all other co-dimensions, the recursion (2.14) may result in a sub-triangulation
with rather undesirable properties.

Even if only one level set function ¢; is used, i.e. Ny = 1, then the resulting sub-
triangulation § will not be conforming as can easily be seen in the example case 2 in
figure 2.3. However, as the geometry mesh is a structured Cartesian mesh, the cell F has
a linear reference mapping ® and thus the partition property (2.13) is actually fulfilled,
which implies that the resulting sub-triangulation will not have any gaps or overlaps of
cell-parts. Furthermore, while the local sub-triangulations of two adjacent cells £ and
F' in the geometry mesh 7,, need not be conforming with each other, the restriction of
their local domain approximations to their common face f will (by definition of weak
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Figure 2.4: The pictures above show two 2D manifolds in 3D space, both with
the same corner nodes. In one case (left-hand side), the manifold is con-
structed from two planar triangles, each connecting three of the nodes. In the
other case (right-hand side), the manifold is given by a smooth surface de-
fined by the bi-linear mapping, that is uniquely determined by the coordinates
of the four corner nodes. Notice that while the border edges of both surfaces
are identical, the discrepancy of the surfaces themselves is significant. If those
surfaces would correspond to faces of adjacent cells, the resulting mesh would
include a gap and could not be suitable for DG discretizations.

1-conformity) be equal, i.e.

U/\/H/*(E,-)’f = M/~ (F, .)\f. (2.28)

Hence, as long as all cell-parts within a given geometry mesh cell € T,, that belong to

the same subdomain are located in the same mesh cell of the final cut-cell mesh 7, this
cut-cell mesh will be conforming.

If the subdomain €); is defined with regard to more than one level set function ¢;, i.e. a
true MDMP setup, then the situation deteriorates significantly. As soon as S1 = M?(E, )
in equation (2.14) contains two cell-parts e, f which have a common quadrilateral face f
that is not planar (i.e. bi-linear), the lack of 1-conformity implies the possibility that its
partitions as determined by M} (e, )‘f and M} (f, )‘f may not match and consist of an

arbitrary mixture of linear and bi-linear sub-faces. Hence, for Ny level set functions, the
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resulting sub-triangulation Sy, of £ may contain overlapping cell-parts as well as gaps in
between them. As illustrated in figure 2.6, the approximation of a bi-linear surface with
linear surfaces may be quite poor and therefore the integrity of the sub-triangulation can
be severely compromised.

As such sub-triangulations are not desirable, it is obvious that in absence of 1-conformity
additional requirements on the partition operators have to be made in order to ensure a
consistent sub-triangulation. While there may be many ways to achieve this, it follows
from the description above, that a partition operator which does not produce curved
interior faces would be sufficient to prevent the appearance of internal gaps or overlaps.
To this end, the pre-processing operators Z’ can be employed ensuring a local lineariza-
tion of the level set function ¢;. A partition operator which guarantees that for a linear
level set function the resulting partition contains only cell-parts with linear faces is, in
the following, called a linear partition operator. Details on the implementation of such
operators will follow in section 2.4.

Assuming that the weakly 1-conform partition operators M*/~ is at least linear and
the pre-processing operators Z7 provide a suitable linearization of ¢;, then, although the
resulting sub-triangulation will be benign, any algorithm destined to establish adjacency
information of the cell-parts produced in the recursive approach of (2.14) still has to
handle the problem of associating non-matching faces. Therefore, the aforementioned
method based on a consistent ordering of each cell-partition is no more applicable and
a geometric mapping approach based on the numerical coordinates of the cell-part faces
can not be avoided.

While such an approach is far more awkward to implement correctly, the impact on
computational efficiency is tolerable. For typical MDMP applications, only a few cells in
the geometry mesh T, will be actually intersected by two or more subdomain interfaces.
Hence, the average number of cell-parts created per geometry grid cell is small. Brute-
force attempts to match the cell-part faces are thus eligible and may be further improved
by choosing a cheap intermediary test (e.g. comparing the normal vectors of two faces)
in order to sort out most non-matching pairs quickly.

However, as any such matching algorithm has to make decisions based on coordinate
values that have been compromised by errors from numerical floating point computa-
tions, it must rely on a minimum face size or edge length. Otherwise, the faces of very
small adjacent cells might not be matched correctly and thus become subject to system
dependent and possible non-deterministic numerical round-off errors. This translates into
another requirement on the partition operators. In the following, any partition operator
which guarantees, that all constructed cell-parts have an edge length greater than a given
minimum value will be called regularizing operators.

As long as the operator is regularizing, this geometric approach can be implemented
such that it provides reliable matching information for rather general sub-triangulations
including non-matching faces. Therefore, it is more general than the method presented
for the fully k-conforming operators. The example computations presented in this thesis
utilize a geometric matching approach to set up the sub-triangulation S.
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2.4 Marching Cubes Partition Operators

The multi-domain sub-triangulation defined in section 2.2 depended strongly on the local
partition operators M*/~. Their principal properties, as given in section 2.2.2, leave
many freedoms with regard to the actual definition of such operators. The corresponding
choices will not only determine the final sub-triangulation but also influence the complex-
ity of its actual implementation. In section 2.3, very specific requirements on the partition
operators were formulated ensuring the integrity of the resulting sub-triangulation as well
as the reliability of the corresponding implementation for arbitrary input data.

The discussion in section 2.3 revealed, that any eligible partition operator should be
regularizing. Furthermore it should be either fully k-conforming or at least k-conforming
in all co-dimensions greater than one, weakly 1-conforming and linear.

In this section, the actual implementation of local partition operators is discussed with
regard to the aforementioned requirements and other desirable properties, e.g. efficiency,
topological accuracy and metric accuracy.

2.4.1 The Standard Marching Cubes Algorithm (MC16)

The problem of defining and implementing a local partition operator according to the
requirements in section 2.2.2 is similar to the problem solved by the standard marching
cubes method (MC16) [66]. This algorithm, which was developed for computer visualiza-
tion, creates a piecewise linear approximation of the surface defined by the zero level set of
a level set function. The main idea is to simply determine the zero level set’s intersection
point on each edge of a cell via linear interpolation of the two level set function values
in the two nodes adjacent to this edge. Then these intersection points are connected
according to a predefined pattern which assures that the result is a number of consistent
polygons giving a reasonable approximation of the isosurface. This can be achieved by
utilizing a predefined look-up map for each of the topological cases of the considered cell.
As the MC16 partition of a cell depends only on the level set function value in its corners,
such a topological case is determined by the sign of the level set function’s corner val-
ues. Hence, for a three-dimensional cube, the number of topological cases is equal to 28.
However, taking into account all relevant symmetries, there remain only 16 topological
cases for which the connection pattern has to be actually implemented.

Although originally designed for the reconstruction of the iso-surface only, the MC16
can naturally be extended to fulfill the requirements of the UDG method by associating
the 16 topological cases not only to a connection pattern of the intersection points, but
to a full set of 16 reference partitions of the reference geometry of the considered cell
into cell-parts. This principal approach has already been utilized and discussed in earlier
publications on the UDG method [20, 55, 67]. In the following, all references to the MC16
method refer to this extended approach.

According to this extension, the MC16 may be interpreted as a partition operator.
For a cell-part ¢ with IV, corner nodes x1,...,xy, it provides a mapping to N < N,
cell-parts according to

M (e 08(x1), - 85 (k) = {1, - v (2.29)
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It is noteworthy that the MC16 method when utilized for the definition of a partition
operator automatically entails 3-conformity and 2-conformity. Furthermore, it is easily
possible to choose the 16 reference partitions such that the resulting operator is linear
according to the definition in section 2.3.4. Sadly, for three-dimensional cubes (or any
other geometry containing a face with more than three corners), even weak 1-conformity
is not given, see case 3 in figure 2.3 on page 40. The problem results from the fact that a
face with more than three nodes may contain more than two intersected edges. Hence, a
decision on how to connect the respective intersection points within the face can not be
uniquely derived from the binary information in each of the face’s corners. For the MC16,
this decision is implicitly derived from the choice of one of the 16 reference partitions and
the location of the considered face within the reference geometry. Therefore, the result
depends on the enumeration order of the corners of the face within the respective cube
and is therefore effectively random. Two adjacent cubes are thus likely to produce non-
matching partitions for their common face, thereby violating the requirement of even
weak 1-conformity.

The concept of the MC16 is easily extended to other geometric objects. Especially for a
simplex, the look-up table of a Marching Simplex algorithm becomes trivial and the lack
of faces with more than three corners allows a simple implementation of a corresponding
operator ./\/l;f/ ~ with weak 1-conformity. Utilizing triangular prisms, fully k-conforming
partition operators for simplices can be easily defined. In the context of the recursive
construction method given in (2.14), this entails the need to also define a partition oper-
ator for such triangular prisms. While this is possible, the contained quadrilateral faces
introduce the same problems with regard to 1-conformity as described for the MC16.

2.4.2 Marching Cubes Algorithms with Topological Guarantees

To obtain weak 1-conformity, the standard marching cubes method has to be modified
such that the constructed iso-surfaces are necessarily continuous across the common face
of two adjacent cubes. This corresponds to a decision about which corners of the face
are connected within this face. As a Marching Cubes based partition operator has no
information about the level set function within a face apart from the corner values, the
optimal result would correspond to the connectivity defined by the corresponding inter-
polation polynomial, e.g. a bi-linear polynomial for a quadrilateral face. In the context
of such iso-surface reconstruction methods, this property is referred to as a topological
guarantee or topological correctness.

An extended version of the marching cubes method which utilizes 33 instead of only 16
cases and provides some degree of topological correctness was presented in [68] and is in
the following called MC33. It utilizes the fact that the connectivity of the face’s corners
with regard to the interpolation functions can be expressed as a (very cheap arithmetic)
test, the results of which can be used to simply extend the key for the look-up map.

As those tests utilize only the level set function values in the corners of the cell-parts, a
set of partition operators /\/l3+3/ ~ can be defined with the same dependencies as the MC16
operator 2.29.

However, as shown in figure 2.6, due to the finite number of intersection points, there
are cases for which the connectivity of the corners within the volume of the cube and
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Level set function values Zero level set

Figure 2.5: The pictures above show the subdomains (red-blue) as well as the in-
terface between them corresponding to a tri-linear level set function with the
corner values [0.05, -0.4, 0.5, 0.9, -0.005, 0.05, -0.9, -0.005]. The two corners
indicated by the green dots lie within the same subdomain and a path con-
necting them can easily be found as long as it may penetrate the cube volume.
However, when considering only the cube’s surface, those corners are not con-
nected. Therefore, a partition operator like the M33, which utilizes only the
vertices that coincide with either the cube corners or the intersection points of
the cube’s edges and the zero level set, can not connect the two green corners
if the topological cases of all six faces are to be respected.

their connectivity within all faces can not be both fulfilled by any set of piecewise linear
polygons connecting those intersection points. The table presented in [68] gives preference
to the volume connectivity (e.g. case 12.1.2, table 1) and would thus result in a local
partition operator that violates weak 1-conformity.

There are multiple ways to fix this problem: The simplest approach would be to change
the look-up map such that the implicit priority of volume connectivity is discarded. If
this neglect of topological guarantees is not acceptable, additional corner nodes for the
constructed iso-surface (and thus also the partition into cell-parts) must be introduced
and positioned appropriately within the considered cell-part.

Using the latter modification, it is possible to define the reference partitions such that
the resulting operator is fully k-conforming.

/

Look-up tables and partitions for a fully k-conforming partition operator MJIQ ~ oper-

ating on triangular prisms can be defined in the same way.

2.4.3 Linearization and the Marching Cubes

The implementation of a M(C33 partition operator including the actual volume partition
which is crucial for any UDG application is an extremely time consuming effort even
without considering the additional requirements resulting from full k-conformity or curved
iso-surfaces as outlined in section 2.4.2. A swift glance at the popular libraries utilized by
the wider community of scientific computing reveals that the simplicity of implementation
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Initial cell Partitioning, first step Partitioning, second step

Figure 2.6: To ensure a sound sub-triangulation suitable for DG discretizations,
the initial cell may be pre-partitioned into simplices. On each simplex, the
values of the level set functions in its corners may be utilized to define pla-
nar interfaces. This pre-partitioning avoids the difficulties resulting from non-
matching triangulations of adjacent entity parts as well as awkward topological
cases (see figure 2.6 and figure 2.3 respectively). The pictures above show ex-
emplary how such a sub-triangulation is created in two steps by recursively
applying the partitioning algorithm to an initially cubic cell of the geometry
mesh 7.

may very well influence the popularity of an algorithm just as strongly as its performance.

Therefore it is worth mentioning that any implementation of a partition operator based
on the standard MC33 look-up table may be utilized to define a partition operator suitable
to the applied in the recursive scheme (2.14) to define a MDMP setup. This is achieved
by local linearization of the level set function. As the problematic cases of the MC33,
which result in a conflict of the volume and the face corner connectivity, only occur for
curved isosurfaces (see figure 2.6), it is straight-forward to modify the level set function
such that the tri-linear function corresponding to the eight values in the cube’s corners
do actually correspond to a linear function. A simple modification of this sort, which
guarantees that the overall isosurface is still continuous consists of a single pre-processing
step which pre-partitions each cubical cell F of the geometry mesh 7T, into 6 simplices.

The restriction of the level set functions (bj‘E may then be replaced by the continuous

piecewise linear interpolation functions gbfl(E)’ implicitly defined by the corner values

of each simplex. This mapping can be incorporated into the recursive scheme (2.14) by
setting the pre-processing operator to Z7(e, ¢;) 1= qﬁfl(E)‘ :
4

The first step S7 of the recursive sub-triangulation in (2.14) then corresponds to this
pre-partition of the cubical cell, followed by an application of the Marching Simplex algo-

rithm to each of the constructed simplices. If in each of the following steps S; with 7 > 1

the corner values of the considered cell-parts are evaluated for the function ¢51(E) 5 the

corresponding isosurface is guaranteed to be linear within that part. Therefore, the topo-
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logical guarantees provided by the linear MC33 operator will suffice to ensure an at least
weakly 1-conforming partition operator in spite of the issues described in section 2.4.2.
A more formal description of this scheme is given in section 2.4.7.

2.4.4 Implementation

The numerical examples presented in this thesis rely on an implementation based on the
look-up table in [68]. It resulted from a yet unpublished effort of Andreas Nuf$ing and
Christian Engwer from the Westfalische Wilhelms- Universitdt Miinster. In addition to
the look-up table as given in [68], they implemented reference partitions for each of the
topological cases. While it is in principle possible to realize the partition in a way that
ensures strong 1-conformity of the corresponding partition operator, the requirements for
an implementation that is only weakly 1-conforming were already so demanding, that
the additional effort required for full k-conformity could not be completed in time to be
considered in this thesis.

In its outlines, the implementation is similar to the one employed for the previous
publications on the UDG method [20, 55]. In addition to the MC33, Nifing and Eng-
wer devised and implemented look-up tables with topological guarantees similar to the
MC33 and the corresponding reference partitions (also without enforcing 1-conformity)
for triangular prisms and pyramids (although this thesis relies on a version which does
not utilize pyramids).

2.4.5 Regularization

The implementation of Nifing and Engwer was extended to ensure a regularizing par-
tition operator as defined in section 2.3.4. In each application of the partition operator,
the constructed cell-parts are searched for edges that do not satisfy the requirement of
a minimum length, in the following denoted by ¢,. If such an edge is found, the corre-
sponding intersection point is relocated, i.e. moved along its edge until the requirement is
satisfied. To ensure that this is possible and the final triangulation has sufficiently large
edges even in a worst case scenario, the parameter for the minimum length has to be
chosen individually for each step S; in (2.14) as 2N¢o~Jg,,.

Sadly, this approach in principle corrupts the weak 1-conformity of the resulting parti-
tion operator. This problem is illustrated in figure 2.7 for a vastly exaggerated minimum
length parameter. It is obvious that the geometric extent of the infringement is of the
order of magnitude of the parameter ¢, itself. Hence, the error introduced in the numer-
ical integration of the face is of the order of magnitude of the error introduced by the
relocation of the intersection point. Therefore, in disregard of this issue, throughout the
following chapters the utilized partition operator is referred to as weakly 1-conforming.

2.4.6 Unique Evaluation of the Level Set Functions

To this point, no consideration was given to the fact that numerical errors in the eval-
uation of the level set function might complicate the unique association of a cell-part
corner node x to the corresponding level set function value in that node. This asso-
ciation was implicitly assumed in the definition of the local partition operators M*/—
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2.4 Marching Cubes Partition Operators

>
-
»” Figure 2.7: The pictures to the left illustrate
3 5 ® 5 two possible partitions of a common face

of two adjacent cubes, assuming a linear
weakly 1-conforming partition operator
which was implemented based on the MC33
look-up table. The first three pictures de-
pict the three stages Sy, S1, and Sy of the
recursive sub-triangulation process defined
in (2.14) assuming two level set functions
the corner values of which are depicted by
black and white dots for positive and neg-
ative values (interior dot corresponds to
¢1, exterior dot corresponds to ¢s). For
purposes of illustration, the minimum edge
length parameter is exaggerated to amount
to about Al;h~ Although the linear operator
ensures straight isosurfaces in principle, the
resulting cell-parts in Sy would violate the
minimum length requirement of the edge
separating the two blue cell-parts in the
third picture to the right. Relocating the
intersection point according to yellow arrow
in the zoom in the last picture to the right,
introduces a discontinuity of the iso-surface
and a violation of weak 1-conformity

|
ol
4

in section 2.2.2 and in the subsequent analysis of the sub-triangulations constructed via
recursive application of these operators. Evidently, the influence of such errors will me
most prominent in corners in which a level set function evaluates to a value so close to
zero that the numerical error may flip its sign. Especially in cases were both corners of
an edge correspond to such small values, numerical errors have the potential to severely
corrupt any kind of k-conformity nominally fulfilled by the employed partition operators,
see figure 2.8.

For many practical applications, this issue may be negligible as the probability of such
incidents may be quite low. However, benchmark problems and example setups chosen
for teaching purposes are often based on simple geometries with nicely aligned borders
or moving shock waves. Implementations based on ambiguous evaluations of the level set
functions may thus thrive in the complex and yet fail in the simple.

A robust implementation of the sub-triangulation must therefore guarantee a unique
evaluation of the level set functions at the corners of the cell-parts. For such corners that
coincide with corners of the Cartesian geometry mesh 7,,, there may be many different
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2 On Hierarchic Cartesian Cut-Cell Triangulations for Multi-Domain Problems

Figure 2.8: The evaluation of the level set
function values is subject to numerical er-
rors. The upper picture indicates the de-
termined subdomain boundaries for the
given level set function values, assuming
that within each cube the numerical error
modifies the original values within the range
of 1075, Here it is assumed that the parti-
tion operator simply connects the zero level
set position on each edge computed by linear -5e- T e T
interpolation to determine the subdomain
boundary. Since in this example the values
themselves are in the range of numerical er-
ror, the resulting partition of the common
face, computed for each cube respectively,
does not match at all (lower picture). Al-
though this is an extreme example, it illus-
trates that small numerical errors may result
in large geometric deformations. Mismatching subdomains at common face

Adjacent cubes with mismatched subdomain boundaries

evaluation schemes that guarantee a deterministic program path. However, as soon as
there is more than one level set function and thus (2.14) involves more than one level of re-
cursion, the corner coordinates of the processed cell-parts will eventually entail numerical
errors that will inevitably break such a deterministic evaluation.

Given a set of regularizing partition operators M*/~, the minimum distance between
two given corners can be utilized as a key ingredient for an algorithm that is able to
recognize identical coordinates in spite of their numerical errors. Hence, this property is
obviously desirable, even for fully k-conforming partition operators. For the numerical
examples presented in this thesis, this was realized by a hash map for the level set function
values. The keys for this map were constructed from the one-dimensional projection of the
coordinate values onto a Cartesian sub-grid with a grid length equal to the regularization
parameter €.

2.4.7 Definition of Partition Operators

Summing up the results presented in this section, suitable definitions of partition opera-
tors may be presented:

The following two definitions are based on the partition operators M{g o, /\/l;/ ~,and

MJIS/ ~ for cubes, simplices and triangular prisms as introduces in section 2.4.1 and sec-
tion 2.4.2. However, extended implementations which guarantees full k-conformity are
denoted by M;?)/k_, M;«r,é_, and M}té_ while /\/l;,rg/ o, qur/ ~, and MJIS/ " are assumed
to refer to implementations which simply realize some kind of volume partition corre-
sponding to the topological guarantees as given in [68]. All operators are assumed to be
linear and regularizing as defined in section 2.4.3 and section 2.4.7. Furthermore, it is
assumed that the problem of unique level set function values, described in section 2.4.6,
is somehow resolved.
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2.5 A Note on Memory Consumption

When utilizing the fully k-conforming operators, no modifications are necessary and
setting

M;3/k7(ev ¢5(x1), ..., 95(xs)) if eisa cube,

J
M= (e, ¢5) = M;,i_(e, P5(x1), -, #5(x4)) if ¢ is a simplex, (2.30)
M;é_(e, ¢5(x1), ..., 95(x6)) if e is a triangular prism
and ‘
(e, ) = ¢|, (2.31)

ensures a consistent sub-triangulation for any number of level set functions.

If fully k-conforming implementations are not available, a consistent sub-triangulation
can be achieved by setting

M (e,65) =
M},S/_(e, ¢5(x1), ..., ¢5(xs)) if e cubic and ¢ is linear
M}t/_(ea o5 (x1),..., o5 (x¢)) if e is a triangular prism and % is linear (2.32)
ME (e, ¢4 (x1), ..., ¢ (x4)) if ¢ is a simplex,
UM () [TeL©)  otherwise.

Here L describes the linearization operator described in section 2.4.3, which provides a
uniform and regular partition of a given cube into simplices. In order to enforce cell-parts
with only planar faces, the pre-processing operator must be set to

L (e, ¢p) = o), (2.33)

as defined in section 2.4.3. Naturally, the uniform partition of a cube into simplices as
implied by both the definition of ¢*’1(¥) and £ must match. Furthermore, it must be
such that the full linearization of all cells in the fundamental mesh, i.e. the simplex mesh
resulting from the application of £ to all cells in 7, is conforming.

Notice that in (2.32), the linearization will only be performed in the initial step and
thus £ needs to be defined for cubes only. However, £ can be naturally extended to
triangular prisms, since such geometries can of course be partitioned into simplices. This
procedure will be relevant for the modification of (2.32) as proposed in section 3.7.

2.5 A Note on Memory Consumption

All considerations so far were restricted to purely local partition operators MT/= which
suggests the potential to reduce the memory consumption required by the sub-triangulation
to O(1) (assuming that the memory required for the representation of the level set function
is also O(1)). However, while this would be feasible for a data structure that provides
nothing but an interface to the cell-parts in the sub-triangulation S, maintaining this
restriction on the memory consumption for a data structure which associates this sub-
triangulation with the final cut-cell mesh 7 will result in some impractical limitations.
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2 On Hierarchic Cartesian Cut-Cell Triangulations for Multi-Domain Problems

This is a direct consequence of the non-locality of the cut-cell mesh T which contains
merged cells overlapping multiple cells in the fundamental mesh 7. A full on-the-fly
operation to determine the association of a cell-part to a cell in T appears undesirable
as it would necessarily imply an on-the-fly determination of the merging pattern. Not
only does the non-locality of the merging operation indicate a disappointing performance
of such an approach, furthermore, the algorithm determining the merging pattern would
have to provide consistent results independent of the cell it is applied to and the ordering
of this cell’s neighbors - a tricky problem in itself.

Therefore, the pre-computation of a map associating the cell-parts with the cells in the
cut-cell mesh 7 is unavoidable. As the number of cell-parts which can be constructed
for a given cell in the geometry grid 7, is bounded by a constant (depending only on
the number of level set function Ny), the memory requirement scales with the number of
cells in the geometry mesh, i.e. O(3%).

However, in many practical applications involving connected subdomains with smooth
boundaries, the number of cells in the fundamental grid that are actually intersected by
the boundary of a subdomain will be small. For a cell Ey of the fundamental mesh 7y,
not intersected by any subdomain boundary, the storage of the relation of its interior
cell-parts to their respective cut-cell grid cell E can be neglected as necessarily Eyg C E.

Furthermore, the faces of cell-parts which coincide with (or are located on) faces in
the cut-cell mesh T are distinguished in the sense that typical DG discretizations require
the computation of surface integrals on such a face. Whether it is beneficial to store
this adjacency information, which has to be pre-computed for the merging of the cut-cell
mesh anyway, or whether it should be recomputed on-the-fly during assembling is not
obvious and might depend on the chosen order of the finite element basis. While the
latter approach is doubtless feasible, for all numerical experiments as presented in this
thesis the adjacency information was pre-computed and stored in memory.

With regard to the initial assumption, that the memory consumption of the data-
structures representing the level set functions would correspond to O(1), it is important
to point out, that this can only be true for functions given by an analytical expression
and thus not very likely to be encountered in practical applications. With regard to the
memory consumption, the UDG scheme develops its full potential in applications that
do inherently require the representation of a level set or phase field function. Alternative
approaches with unstructured grids will in such situations inevitably create a redundant
representation of the geometry in memory.
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3 Two-Phase Flow

The principal laws governing the dynamics of two-phase flow are presented in this chapter
and some variants of suitable UDG discretizations are proposed. These methods consti-
tute a generalization of the approach in [35] which was restricted to the fitted case of
rectangular domain, did not allow for any contact line with microscopic contact angle,
and was exclusively based on the standard level set method in combination with a finite-
difference discretization of the surface tension. Details on the principals and suitable
discretizations of surface tension are deferred to chapter 4.

3.1 Geometric Setup

The continuous formulation of two-phase flow owes a significant part of its complexity
to the time evolution of the problem domains. Generally, the two immiscible fluids are
assumed to be contained within the subdomains ©;(t) and Q2(¢) of a global domain
and separated by the common interface I" such that

Q1(t) UQa(t) UT () = Q = const. (3.1)

The evolution of the interface is determined by the velocity field as given by the sys-
tem equations (presented in section 3.2) describing essentially the conservation of mass
and momentum. Due to the particularities of the UDG method, the two domains are
assumed to be embedded in a rectangular domain €2, and the boundaries I'p which coin-
cide with the boundaries of €2, are distinguished from the interior boundaries I'; in order
to prescribe appropriate boundary conditions, see figure 3.1.

Each of the disconnected parts of the boundaries I'; is assumed to be smooth (in order
to simplify the upcoming considerations of the microscopic contact angle). The contact
lines v are defined as the intersection of the two fluids’ interface I' with the interior
boundaries I'; according to

v:=TnNTy. (3.2)

Figure 3.1: The two-phase flow problem con-
sists of two time-dependent domains €2; and
Q9 separated by a smooth interface I". Due
to the requirements of the UDG method, the
problem setups are assumed to be embedded
in a rectangular domain €2, and distinguish
domain boundaries I'; located within €2,
from boundaries I'o which coincide with its
own boundaries.

The interface I' may intersect the interior
boundary I'p in what is called the contact
line (in two dimensions the contact line re-
duces to a point).
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3 Two-Phase Flow

For two-dimensional setups, the contact lines reduce to a number of separate points.
Assuming that T' is smooth, the subdomains 4 () and Q2(¢) may be associated with
level set functions ¢p € C2(€2,.) and ¢ € CO([ty, T]; C?(f2,.)) according to

Ty = {XGQT | ¢B(X) :0}, Q = {XEQ,« | ¢B(X) >0},
L) = {xeQ|ot,x)=0}, NEt) = {xeQ|otx)>0}, (3.3)
QD(t) =  {xeQ]e¢t,x)<0}.

Notice that these definition of the subdomains are consistent with those given in sec-
tion 2.1.1 and section 2.1.2 and thus suitable for the construction of a sub-triangulation
that can be employed for a UDG method.

3.2 Governing Equations

The time development of
the velocity fields u; € C° ([to, TY; CQ(Qi(t))>d and (3.4)
the pressure fields p; € C° ([to, T);C* (Q,(t)))

within the domains Q; for ¢ € {1,2} filled by the two immiscible fluids is given by the

incompressible Navier-Stokes equations together with the transport equation for the level
set function:

pidiu; + pju-Vu = —Vp; + V- D;(u) Vx € Q;(t), (3.5)
D;(u) = p; (Vu+ (Vu)?) Vx € Q(t),
V-u=0 Vx € Q,
op+u-Vo=0 Vx € Q. (3.6)

The parameters p; € RT and p; € RT describe the density and the dynamic viscosity
of the two fluids which are assumed to be constant both in time and within each of the
domains €;(¢). These equations describe the conservative transport of momentum within
(and by) immiscible and incompressible Newtonian fluids accounting for the inertia of
the fluids, the conservation of angular momentum and the viscous stress represented by
the stress tensors D;(u). No thermodynamical effects are considered.

In order to form a well-posed problem, boundary conditions which prescribe either a
velocity field

d
u? e Y ([to, T}, C’Z(Ff)(t))) on the Dirichlet boundaries I'P (3.7)
or a momentum flux

d
N ¢ Y ([to, T7; CI(I‘ZD(t))) on the Neumann boundaries T'YY (3.8)
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have to be imposed on the system equations according to

w,(t,x) = ul (t,x) vx € TP (1), (3.9)
(—pI + Di(u)) -n = £V (t,x) vx € TN (1), (3.10)
and
U rPur)y =rour;. (3.11)
1€{0,1}

The interface conditions imposed on I' ensure the continuity of the velocity field and
the normal momentum across the interface. Denoting the jump of a quantity across the
interface I'(¢) by [-Jr, it thus holds that

[ulp =0 and [—pI+D(u)]; - nr = fr, Vx € T'(t). (3.12)

These conditions can be motivated from fluid mechanical principles [69] but essentially
describe the natural coupling of the two subdomain problems defined in (3.5) using the
boundary conditions in (3.9).

The temporal boundary conditions reduce to the prescription of initial velocity fields
llg € CQ(QZ(tQ)) with u?(X) = ui(to,X).

When conforming to some (severe) restrictions on the driving forces, the existence of so-
lutions to the continuous Navier-Stokes equations for single phase flow is well established
[70]. However, to the present day, non-trivial solutions to the two-phase flow problem
as described by (3.5) are not known and no definite results on the solvability for gen-
eral input data are available. Solution spaces for the primary unknowns were chosen in
analogy with the classical analysis for the single phase flow problem and have no further
relevance.

The two-phase flow model presented in this chapter is a widely used standard approach
and well documented in textbooks, e.g. [69].

3.3 Contact Line Dynamics

At the contact lines v, the fluids are subjected to molecular forces which may modify the
contact angle of the fluid interface I with the domain boundary 0€2. As illustrated in
figure 3.2 on the following page, the angle ajs at which the surface apparently intersects
with the domain boundary may thereby be modified on a scale which is typically orders
of magnitudes below the characteristic scale of the underlying two-phase flow problem.
The resulting contact angle o, may deviate significantly from the angle aj; observed
on the macro-scale. However, while the geometric error involved may be negligible, the
resulting dynamics caused by the surface tension can very well dominate the global system
dynamics.

Incorporating the contact line dynamics into the two-phase flow model as defined by
(3.5) and (3.6), requires the introduction of additional sources of momentum defined on
the contact line v only. Different possibilities of how to define such terms with regard to
the proposed discretizations of the two-phase flow problem will be given in chapter 4 on
page 85.
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3 Two-Phase Flow

Figure 3.2: Due to molecular dynamics, the interface is distorted in the vicinity
of the three-phase contact line modifying the macroscopic contact angle a;y;.
The resulting contact angle a. is not uniquely determined by the two-phase
flow equations (3.5), (3.6) and requires additional modeling. Experimental
observations suggest, that it may in general depend on additional material
parameters as well as the dynamics of all involved fluids and might show phe-
nomena of hysteresis.

To the present day, there is ongoing research not only on accurate and efficient methods
for the numerical treatment of contact line dynamics [31, 71, 72] but also the physical
model on both the macro and the micro scale is not yet developed to a satisfying degree.
This is due to the fact that the formation of the contact angle is subject to molecular
dynamics. Finding a physical model which effectively describes the resulting dynamics
on the characteristic scale of the flow problem constitutes a classical upscaling problem.
While stationary equilibrium conditions can easily be derived from the relative surface
tensions of the three materials defining the contact line 7, the mathematical modeling of
the contact angle under dynamic conditions is still subject of current research. Models
which describe the dynamic contact angle based on the fluid’s properties, their relative
surface tensions, and the velocity of the contact line have been proposed in [33, 69] and
compared to both real and numerical experiments [31, 72].

Even if the concept of a dynamic contact angle is neglected, a moving contact line does
invariably introduce a modeling problem for the boundary condition of the Navier-Stokes
equations (3.5) in the vicinity of the contact line. The no-slip (u = 0) condition which
is traditionally imposed at all stationary rigid domain boundaries does in general not
allow any movement of the contact line v. On the other hand, there is comprehensive
experimental evidence that the no-slip condition is the best modeling choice for many
relevant flow systems. An extensive discussion of this kinematic paradox can be found in
[69]. Slip conditions which resolve this inconsistency were already proposed and theoret-
ically analyzed in [73, 74]. The simplest approach which has been widely adapted is the
Navier-slip condition which scales the momentum transfer across the domain boundary
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proportionally to the fluids’ tangential velocity, according to
Vx € 00 : un=0 and (I-nn)(yu—(—pI+D)-n)=0. (3.13)

The parameter Sy scales the momentum transfer across the boundary. The choice 8y = 0
results in pure slip boundary condition while the classical no-slip boundary condition can
be realized only in the limit Sy — oo. By varying Sn in the vicinity of the contact line +,
the Navier-slip condition may also be employed to realize local slip conditions which allow
tangential velocities only in the vicinity of the contact line. However, effectively Sy is
also a model parameter incorporating molecular dynamics and experimental predictions
vary in orders of magnitude depending on the actual setup. A comprehensive overview
of the existing models including their numerical comparison is given in [10].

In this thesis, discretization methods based on the UDG approach which allow a stable
and efficient simulation of dynamic contact lines are presented. However, the scope is
limited to the numerical difficulties and thus the utilized models were restricted to a
constant contact angle o, = 0 and momentum transfer parameters Sy.

3.4 Time Discretization

The complexity of any time discretization for the two-phase flow problem originates from
the instationary domains and the strong coupling between the domain geometry and
the governing equations due to the surface tension. In this thesis, an operator splitting
scheme is employed to decouple the equations (3.5) and (3.6). In each time step, this
corresponds to the solution of (at least) two separate sub-problems on a constant mesh
followed by the generation of a new cut-cell mesh for the next time step.

While some of the involved discrete function spaces are defined on constant meshes
(e.g. for the level set function), other field variables (like the pressure which jumps
across the interface) are represented on a sequence of meshes which track the moving
interface between both fluids. This following section is focused on a formal definition of
the meshes and function spaces involved in the solution of the Navier-Stokes and level
set sub-problems.

3.4.1 Domains and Function Spaces

Assuming a constant domain geometry € given by the level set function ¢p € (),
a discrete approximation of the domains at a given time t; requires another function
qfsﬁ € 0°€Q,) which corresponds to a discrete approximation of the level set function
o(tx) in (3.6), describing the position of the two-phase interface within €.

Let S*, SF, and S§ denote the sub-triangulations for Q, Qy(t), and Qa(z) constructed
according to the algorithm described in chapter 2 based on a fundamental mesh 7, and
a geometry mesh 7, with

QT) = UT) =9,

and level set functions for the subdomains €27 and 9

¢1:= 0B and bo = P
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3 Two-Phase Flow

[
[

N/ N[/

Domain setup at time ¢ Cut-cell mesh T Cut-cell mesh 71{:

Figure 3.3: The pictures above illustrate a set of possible cut-cell meshes cor-

responding to the definition in 3.14 on the facing page. In general, T_f nec-
essarily resolves the discrete interface I'™* at time ¢; which is in general not
true for the constant mesh 7. As the pressure field may involve jumps across
the interface, it is beneficial to choose a finite element space with regard to
T.. However, the level set function is smooth across the interface and as I'"**
changes in every time step its finite element basis should be chosen with re-
gard to T . For the velocity field, both choices have advantages as discussed in
section 3.5.3 on page 66.
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Figure 3.4: The pictures above illustrate the relations between the cut-cells,

the bounding box and the sub-triangulation. At discrete time ¢t = t, a cell
E e ’7;’“ may span multiple cells in the geometry mesh 7, and the funda-
mental mesh 7, but it may not overlap the discrete interface I"*** (though
cells in 7 might). The shape functions of the finite element basis (e.g. mono-
mials 1, 2, y, z, 22 ...) are defined on the reference element B(E) of the
bounding box B(FE) of cell E. This is always a unit square (or unit cube if

d = 3) and the mapping ®p(g) is always linear. Integrals of these shape func-
tions (or products of them) are always computed on the cell-parts of the sub-
triangulation. As a given cell-part e is always a simple geometric object, i.e. a
simplex, a cube or a triangular prism, Gaussian quadrature rules for exact in-
tegration of polynomials may be applied and the shape functions can be evalu-
ated after mapping the quadrature points via ®;! on B(E)



3.4 Time Discretization

. . . . Rk yhk .
To ensure a more suggestive notation, the discrete domains Q" Q7", Q" are introduced
according to

o = Q(Sh), Ik = Q(Sh), bk = Q(sh).
The discretization is based on the cut-cell meshes 7F, T, T and T
T =M(TY), T ={o"NE|EeT}, (3.14)
=M (T, TP={MnE[EeT), {12},

and TF=TFUuTs,

with the corresponding edges F,£5, X, € and EF = EF N &L

Although the exact partition defined by the meshes 'Tf and 7 will be significantly
influenced by the choice of the merging algorithm, these meshes differ fundamentally in
that 7 is constant in time while the edges of Tf always resolve the interface, i.e. Slfi cé& _’f_
in every time step, see figure 3.3 on the facing page.

These cut-cell meshes are employed for the definition of the broken Sobolev spaces

HI* = {ve L@ | Vie{1,2}: ol € H™@Q")}, (3.15)

Notice that H™ denotes the standard Sobolev spaces of order m and that HT’k is only
broken along the discrete interface I'*. In contrast, the definition of the broken polynomial
spaces

Pt ={ve L) | VEETE: of;ePn(B) }, (3.16)
P i={vely() | VEET: o], eP"(E)},

and

QI i={ve L) | YE€TE: v|,cQm(E) |, (3.17)
Q™ ::{UELQ(Qh) | VE€T: U|E€Qm(E)}

which will be utilized for the final discretization allows for discontinuities across every
edge of the respective mesh. Using the multi-index notation o = (i1, ..., 74) one may give
compact definitions of the polynomial space of order m

P™ = {an it .xild

(03
and the polynomial space of maximum component order m
Qm = {Z Co ..

(63

The principal idea of the UDG method as described in chapter 1 requires the definition
of finite element function spaces on meshes containing non-convex cells of almost arbitrary

Co €R, |af; < m} (3.18)

Co €R, |o]eo < m} . (3.19)
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3 Two-Phase Flow

Figure 3.5: The picture shows an exem-
plary cross-section through the space-
time mesh implicitly defined by the
sequence of cut-cell meshes Tf:. On
each interval [tg, tx41], the mesh ’71“
is employed for the solution of the
Navier-Stokes equations. The local time-
integration is performed via method of
lines.

shape. While there are many ways to define a DG basis on such cells, here the basis is
formulated according to the ideas in [55] and the basis functions on a given cell E € T
(or E € TY) are scaled with the bounding box

B(E) := {x e R?

ViE{l,...,d}:HieE:ii:xi} (3.20)

such that the actual finite element basis of PT’k is given by

WP = | {6 € La(@) | 6lqu = 0. 0l = mo @iy, mewWP™}, (3.21)
EeT}

where WU(P") defines the monomial basis of P™, see figure 3.4 on page 58. Analogous
definitions shall be assumed for W(P™), ¥( T’k),\IJ(Qm) (compare with notes on the
implementation in section 5.1.4 on page 100).

3.4.2 Space-Time Propagation

This section is intended to give an overview of the time propagation scheme before the
details of the discretizations employed for the individual equations of the two-phase flow
system are discussed. The occurring variables uﬁ, pﬁ and qbﬁ refer to discrete solutions
computed with discontinuous Galerkin methods. It holds that at all times ¥ either

uf € (P oruf e PM) phePPE gF e PMo, (3.22)

or
vk ) Mp,k
uf € (QY"H ) oruf € (QM)d,  pfe Q" ¢f e QMo (3.23)

The impact of the respective choices will be discussed in the course of this chapter.

Given a fundamental mesh 7y, a geometry mesh 7, and the level set function ¢p €
CY(€2,.) as well as the corresponding cut-cell mesh 7, all constant in time, then based on
the definitions in section 3.4.1 on page 57, the principal propagation scheme to solve the
system equations (3.5) and (3.6) may be given as follows:
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1. At time ¢z, based on given approximations qbfl and qu of the level set function

and velocity field (and the mesh 77F if uf € (P]f“’k)d or uf € (Q+“’k)d), an
approximation qbﬁ“ of the level set function at time tj11 is computed by solving
the level set equation (3.6) on the time interval [ty, tx+1]. This approximation
is computed with the spatial DG discretization described in section 3.6 which

is based on the stationary mesh 7.

2. Compute a continuous approximation (and extension if Q" #Q,)
éﬁ“ € C%(Q,) of the discrete discontinuous level set function qS]fLH as
the latter is not suited for the generation of the new meshes (compare
section 2.1.2 on page 32 and section 2.4.6 on page 48).

3. For the continuous approximation of the level set function (;Nﬁzﬂ e CY(Q,),
generate the cut-cell mesh Tf“ according to the general procedure described
in chapter 2.

4. For the given approximation of the velocity field ui at time t;, integrate the
Navier-Stokes equations (3.5) on the time interval [t, tx11] based on the spatial
DG discretization described in section 3.5. The latter is based on the meshes
T, TF (and TF if uff € (Pi/[”’k)d or uf € (Q+”’k)d). The result is uf ™ and
prJrl, approximations of the velocity and pressure fields at time ¢ ;. Increment

k and go to step 1.

Notice that the computation of the continuous extension quﬂ in step 2 is problematic

if Q" # Q, and may be avoided, see section 3.7 on page 82. However, in the simplest
case it may be realized by a standard Q' finite element basis on the geometry mesh
T... The discontinuous function gb’,ffl represented in a DG basis is then interpolated (or
extrapolated) at the corner points of 7T,, and arithmetic averages are computed at such
nodes which coincide with corners, edges of faces in the cut-cell mesh 7T .

Notice that for some of the numerical examples presented in chapter 5, the consecutive
solving of the Navier-Stokes Equations and the Level Set Equation was substituted by
a more costly Strang-Operator-Splitting [75]. However, due to the generally small time
step sizes required by the explicit evaluation of the surface-tension in all examples, this
difference is assumed to be negligible and is not discussed any further.

The sequences of meshes Tf and T effectively describe a space-time grid, an exem-
plary cross-section of which is shown in figure 3.5 on the preceding page. The illustration
reveals the simplicity of the utilized time-propagation scheme. More sophisticated meth-
ods based on arbitrary Lagrangian-Eulerian mappings (e.g. [12]) should be applicable in
combination with the UDG method but have not been analyzed within the scope of this
thesis. However, it should be mentioned that unless they are employed to realize a time-
stepping scheme which allows for an implicit evaluation of the surface tension, thereby
alleviating the time-step size restriction At o< h3/2, the additional degrees of freedom for
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3 Two-Phase Flow

the mapping function (a vector field) may very well deteriorate the ratio of run-time to
accuracy.

The numerical methods to solve the sub-problems formulated in steps 4 and 1 are
described in section 3.5 and section 3.6 on page 70 respectively. As these sub-problems
are defined on constant meshes, standard discontinuous Galerkin methods can be applied
but must be adapted to the needs of the UDG cut-cell meshes.

3.5 Spatial Discretization of Flow Problem

The discretization of the two-phase flow problems as presented in this thesis is based
on an operator-splitting approach described in section 3.4. It results in Navier-Stokes
sub-problems on stationary meshes the solution of which is discussed in this section. The
presented discussion is focused on issues of the discretization’s consistency and no formal
proof of its stability or convergence is provided.

3.5.1 Weak Formulation of Flow Problem

The operator-splitting presented in section 3.4.2 on page 60 requires the solution of a
Navier-Stokes sub-problem. According to step 4 in the listing on page 61, this requires
the discrete solution equation (3.5) on the constant domains Q]f’h and Q’;’h for the time
interval [tg,tx4+1]. A suitable weak formulation of this sub-problem can be derived as:

Vv e (HYA)?: (3.24)

( Z pi O (0, V) onk + pi (- Vu,v) e — (Di(u) — Ip, Vv)qnk
16{172} i i i

+ <Dz(u) —1Ip, nv>3g?’k\ph,k )
+ ([PW], nfv})par + {P@F 0V pnw — ([Pl 0 {viipns — {0 [V pnw =0,

Vq € Lg(Qh) :
Z (q,V - U)Qh,k =0.

1€{1,2}

In this context, the double braces {{-}} and [-] denote the average and the jump of the
traces of a given H'" function across the respective face. To ensure a well-posed problem,
the function space for the pressure field enforces the usual normalization property:

L(Q") = {/th:o

To allow a convenient notation, the function

D(u) = {D(u)1 x € Qi

q€ LQ(Qh)} . (3.25)

3.26
D(u)y x¢€ ng (3.26)
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3.5 Spatial Discretization of Flow Problem

was introduced. The forms (-,-)g and (-, -), denote the standard scalar products in Ly on
a cell £ and a face e in the respective mesh (different braces were used to help the reader
distinguishing volume and face integrals). The weak formulation (3.24) can be derived
using integration by parts and the algebraic identity

[a- 6] = [al{b}} + [b]{{a}- (3.27)

Notice that (3.24) essentially describes two separate Navier-Stokes problems on the do-
mains Q}fk and ng coupled via the interface terms on I"*. Comparing these interface
terms to (3.12) reveals

(P n{{vipns = (Il 0 - {v) pnse = (Frs n{{vE) pa (3.28)

and
(e}, [u])pnr =0. (3.29)

Therefore, the weak form (3.24) is equivalent to
vv e (HF)?: (3.30)

( Z pi O (0, V)i + pi (0 Vu,v)one — (Di(u) — Ip, Vv)orr + (Di(u) — Ip, nv>69@,k\rh7k)
ie{1,2} ' ' ’ '

+ (o, n v pae + {PW G, 0[V)par = ({plhn- [V])pre =0,

Vg € LY(Q) :
>0 (@Y wgne — g} [ul)ps =0.

1€{1,2}

3.5.2 Interior Penalty Discretization of Flow Problem

When ignoring all the coupling terms on I'**, (3.30) describes two uncoupled incompress-
ible Navier-Stokes problems with homogeneous Neumann boundaries on I'*. Each of
these problems may thus individually be discretized by a standard discontinuous Galerkin
method for incompressible flow on Q}fk and ng respectively. In this thesis, the interior
penalty discontinuous Galerkin (IPDG) method for incompressible flow [23, 46, 49] is
utilized as a representative of robust discontinuous Galerkin methods with purely local
couplings which is suitable for non-mixed formulations. Notice however that both the
UDG method and its application to two-phase flow is not restricted to this particular
choice among the various available schemes. Different discontinuous Galerkin approaches
with the capability of handling a sharp interface at the two-phase boundary have been
published by other authors, see e.g. [12] for an ALE approach and [28] for a space-time
DG approach.

The term ({D(u)}}, n[v])pnr in (3.30) describes the viscous flux across the two-phase
interface I'™*. In the standard terminology of discontinuous Galerkin methods for diffu-
sion problems, this corresponds to an unstable numerical flux function with central fluzes,
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3 Two-Phase Flow

see [50, 76] 1. In order to stabilize the flux of momentum due to viscous stress across the
interface, this term is replaced by the standard numerical flux of the IPDG method

WP} nb s — e (DY nful) e+ 55 ([l WD pe (331

as applied at the interior faces of 7{* and 7. All examples presented in this thesis
generally employ the non-symmetric scheme of the IPDG method with e = 1 in (3.36).
The penalty term was always scaled with a geometric factor based on the volumes of the
adjacent cells ¥ and F' according to

h ( L1 >(1_d)/d (3.32)
==+ — :
‘ [El - |F|
and with the maximum viscosity
orp = amax(p, (2) (3.33)

where o was varied in the range 1 — 100 depending on the given problem setup.

According to (3.12) it holds that the velocity is continous across the interface T'F
and thus the two additional terms in (3.31) do not compromise the consistency of the
resulting discretization as both are proportional to the jump [u] of the velocity across
the interface. Hence, utilizing the multi-linear forms

m(u,v) = (pu,v)aon , (3.34)
Fu,v,w) = Z (pw-Vu,v)y, (3.35)
EeT}
a*(u,v)= - Z (D(u),Vv)g, (3.36)
EeTf
+ 3 D@}, nlvD), — ¢ (DM Ynful), + 57 ([l VD). .
eegﬁ ¢
b (v.p) = Y. 0 V-v)p =Y -V, (3.37)
EGT_{Y eeg_’ﬁ
Hv) = > (feonf{vih), (3.38)
eESI}f’k

and choosing appropriate inf-sup stable finite element spaces [23, 49|

d
Xk = (PF) and  YF.= PP (3.39)

with M, = M, — 1, a consistent interior penalty DG discretization of the two-phase flow
problem as given in (3.30) may be written as:

1 Notice that this is not equivalent to the numerical flux function in the method of Bassi and Rebay
[66, 77] which is often referred to as the central flur and describes a stable flux, though entailing a
sub-optimal convergence order
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Find velocity field up and pressure field py such that

Vvy, € XF om(uay, vy) + ck(uh, up, vp) (3.40)
+a"(up, vi) + V5 (vi, pn) + 5 (va) =0,
Vg €YYo b (un, qn) = 0.

To allow for a compact notation, in the definitions (3.34) the function p was introduced in
analogy to (3.26). In this notation, the problem (3.40) reduces to a quasi-inhomogeneous
Navier-Stokes problem with a standard interior penalty DG discretitzation and a source
term on the interface I'™F,

For each face e € Ef_ which is situated on the domain boundary 9Q", the jumps []
and averages {{-}} occurring in (3.40) are not well defined and must be explicitly chosen
to realize appropriate boundary conditions. Generally, for a cell F € ’71‘“' adjacent to the
boundary face e, the jumps and averages of the test functions are defined equal to the
traces of these functions on F, i.e.

[vil := fvalt = valp  and  [au] == f{an} = anp- (3.41)

For Dirichlet boundaries with boundary function u” € (C°(9Q"))9, the natural choice
for the remaining terms is given by

[u,] = uh‘E —u?  and {D(up) —Ip}} -n=(D(uy) — Ip)|E - n. (3.42)

In case of a Neumann boundary with a flux function f¥ € (C%(9Q"))¢, the terms were
chosen according to

[un] =0 and {D(up) —Ip} -n=f" (3.43)

For the Navier-slip boundary condition (3.13), only the velocity component normal to
the boundary is known and the interior penalty term

U}ZD ([unl, [va]).,  was replaced by U}ZD (n-[up],n-[vp]), . (3.44)

The remaining terms were chosen as
[uy] = uh|6 and  {D(uy)—Ip}} - n=T—nn)(D(u,) —Ip+ BNuhn)}E -n. (3.45)

Notice that full-slip boundary conditions can be achieved by setting Sy = 0. For the
computational examples presented in chapter 5, these choices provided stable results.

The time integration required for a full discretization of (3.40) can be realized with
standard methods, e.g. the method of lines. The one-step schemes utilized for this thesis
include the Implicit Euler and the Crank-Nicholson method. After time integration, a
choice of (up, pp)| it € (X*,Y*) defines a Galerkin-type sub-problem for each stage of
the one-step methods

However, the actual choice of (Xk ,Y*) may introduce further complications with regard
to the stability and the implementation of the method. In the following sections 3.5.3
and 3.5.4, the implications resulting from the respective choices of the finite element
spaces (X®,Y*) as ((Py“’k)d,pr’k) or ((PM”)d,PT”’k) will be discussed.
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3 Two-Phase Flow

3.5.3 Discretization of Flow Problem with Hybrid Meshes

The choice of the discrete finite element space X* := (P_Af”’k)d for the velocity which gen-

erally allows the representation of jumps across the interface I'"* (unlike X* := (PMv)4)
may seem rather restrictive considering that the velocity is required by the interface con-
ditions (3.12) to be continuous across the interface. However, while the velocity field
itself is globally continuous, its derivatives will in general involve jumps across I'(¢).

Nevertheless, the majority of publications on two-phase flow are based on discretiza-
tions which employ either a fully continuous finite element basis [10, 16, 34, 78] or utilize a
finite-differences approach assuming additional global regularity [1, 2, 79, 80]. The rather
recent attempts to apply extended finite elements and special enrichment-spaces were also
restricted to the representation of the pressure jump across the interface [26, 27, 81]. The
presented results suggest that these approaches, which implicitly or explicitly regularize
the viscosity of the two immiscible fluids across the interface, can be applied to a wide
range of two-phase flow regimes.

The popularity of such schemes which impose additional regularity on the velocity field
is likely a result of the simplicity of their derivation and implementation. The discretiza-
tion of the time-derivative of the velocity field is severely more complex if its finite element
basis is time-dependent. However, this is mandatory if the discrete velocity solution is
supposed to capture the interface conditions accurately. Arbitrary-Lagrangian-FEulerian
methods have been successfully applied in flow simulations with moving meshes tracking
the interface [12] and space-time discontinuous Galerkin methods were shown to work in
geometries defined by time-dependent cut-cell meshes [28]. The latter publication is es-
pecially interesting due to its methodological proximity to the UDG approach. The com-
plexity of the time discretization of both methods is severe and shared by other numerical
schemes that depend on accurate tracking of interfaces which entail local irregularities of
the solution variable, among them the whole range of methods for fluid-structure inter-
action problems [82].

The multi-domain UDG approach entails an unusually high flexibility with regard to
numerical integration of complex domains enabling an unusually direct and simplistic
approach for the time discretization, as was described in section 3.4 on page 57. However,
even this approach involves additional complexity that may not be justified for a given
simulation setup. Hence, the choice (X*,Y*) := ((PM)d,nyl’k) is interesting as it
allows a representation of the jump in the discrete pressure field but still maintains a
time-independent finite element basis for the discrete velocity field. Hence, standard time-
stepping schemes for the time discretization of equation (3.40) can be directly applied
- in contrast to the more complicated scenario presented in section 3.5.4 on the facing
page.

The implementation of this choice, however, is complicated by circumstances of initially
mundane appearance: The merging process as described in section 2.2.4 on page 36 will
in general not produce matching cut-cell meshes Tf and T, i.e.

gk, ghge (3.46)

as can be readily seen in figure 3.3 on page 58. Nonetheless, since the merging process
is fundamental for stability and/or efficiency of the numerical simulation, so must this
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problem be considered fundamental in its nature. The key ingredient to the solution of
this problem resides in the common sub-triangulation S utilized for the construction of
both Tf and 7. Hence, for every cell E in either Tf or T, there is a set of cell-parts
{e1,...,en} in S such that

E=U{er,. .. en} (3.47)

Therefore, a hybrid mesh 7/ may be defined according to
Th={EnF|EeT! FeT} (3.48)

and utilized for the definition of the multi-linear forms mg(-,-), cu (-, -, ), am (-, ), bu(-,-)
equivalent to (3.34) but with sums over 7} instead of 7. As the numerical integration
is anyway performed on the sub-triangulation S, the additional computational cost of an
integration on such a hybrid grid is limited to the additional computations resulting from
the possibly different shape functions utilized by the test and the trial space basis on a
given cell in TI_’} and is thus restricted to the computation of by (v, p).

A more subtle shortcoming of the hybrid grid approach is entailed in the unproven
inf-sub stability of the function space pair (X*, Y*) := (PM)d, Pf\f—l’k). In the context
of this thesis, no attempt is made to prove this condition or to establish an alternative
stability estimate. However, it should be pointed out that the typical methods utilized
in the proofs of inf-sub stability [83] do not appear promising with regard to the almost
arbitrary cell geometries as may occur in the merged UDG cut-cell meshes. Nevertheless,
the numerical experiments as described in chapter 5 on page 99 show that the hybrid
grid method may be applied to a vast range of applications for which it provides stable
and accurate results.

As the finite element space (P™)? for the velocity field is unable to resolve the jump in
the velocity derivatives, there is no obvious benefit in maintaining the piecewise constant
approximation of the viscosity. Therefore, for this hybrid mesh approach, the viscosity
field was chosen as

p(x) = p1 O (p(x)) + p2 [1 = 0% ((x))] (3.49)

with the regularized Heaviside function

0, r < —€,
O (z) ;= 3+ £ + £sin(TE), —e<z<e (3.50)
1, e<z.

While no systematic tests were performed, the general sensitivity of the flow simulation
on the parameter ¢, was low as long as it was chosen significantly smaller than the mesh
resolution h. For all simulations presented in this thesis, the value ¢, = 0.05h was
employed.

3.5.4 Discretization of Flow Problem with Aligned Meshes

Considering both the practical difficulties and the theoretical uncertainties of the choice
(Xk,Yk) = ((PM)d,P]f_l’k), it might appear both simpler and safer to base a dis-
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T T e

Figure 3.6: This figure illustrates the ertended sub-triangulation S¥** which
needs to be constructed to allow a proper numerical integration of the mized
terms in 3.51, i.e. scalar products of functions in PM**! with functions in
PMkE_ An exact integration of these terms is only possible if the extended sub-
triangulation S¥*! resolves the interface of the previous time step I'*%.

cretization on the finite element spaces ((Pﬂf’k)d, PT_UC). Sadly, this approach entails

difficulties with regard to the time integration.

The problem can be understood by taking a look at the full discretization resulting
from the application of a simple One-Step-6 scheme to (3.40):

Find velocity field uZH e X! and pressure field pﬁ“ € Y**L at time ty41 such that
for a given initial velocity field ufb at time t with Aty = ti11 — tx it holds that

1
Vv, € XFHL . Al (m(uffl,vh) — m(uﬁ,vh)) + U (v, pf Y 4 AN (vy) (3.51)

+0 (CkJrl(u;cl—&-l’ui-i-l’Vh) + CLkH(uiH,Vh))
+(1-0) (ck+1(ulfL, uf,vy) 4 af i (uf, vh)) =0,
Vg, € Y. ka(uiH,qh) =0.

Notice that even in the case # = 1, which corresponds to an implicit Euler method, the
computation of the term m(ufl, v},) is non-trivial as it involves the mized scalar product
of a function in Pf’kﬂ with a function in Py’k over Q. This would require a set of

cell-parts {e1,...,ex} such that for any given cells E € T*+! and F' € T* it holds that
EnF=J{a,....tn} (3.52)

In general however, such a set is not available, neither in the sub-triangulation S**! nor
in S* (not even in S*¥*! U S¥) due to the fact that the sub-triangulations at different
time-steps are constructed completely independent of each other.

It is seductive to argue that this problem may just be ignored as long as the time step
size is small enough, i.e. the interface T**1 is always close enough to T'* such that
the integral over the small band in between is negligible. Revisiting equation (3.51) and
considering the additional mized scalar products (the coefficients of (1 —#)) which would
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be relevant in case of # < 1, it becomes apparent that this would introduce an error into
the momentum balance close to the most important source of the system’s dynamics.
It is also not obvious how such an approach could be implemented in a robust way, as
there is no clear association of cells in 71‘7 to those in Tf“, i.e. cells may be created or
disappear and there is no efficient way to determine for a point x in a cell E in ’Tf“ the
cell F in 71“ which contains it.

With regard to simplicity of implementation, the next best approach would be to
project the solution uf € (Pf\f’k)d onto a temporary solution 4} € (Pf’kﬂ)d and then
utilize @f for the evaluations of the solution at t = t,,; in (3.51). However, it is not
clear how to realize such a projection in a way that preserves the scheme’s advantage of
accurately representing the jump in the gradients of the velocity field.

Another very intuitive, if somewhat brute-force, way to compute the mized scalar prod-
ucts accurately was implemented for the numerical computations presented in this thesis
and published in [35]. It is realized by the introduction of an additional level set function
representing the old interface I'*. While S¥*! was constructed with regard to the level
set functions

¢1:=dp and ¢ = op,

the extended sub-triangulation SF*! is constructed with regard to the three level set
functions

b1 := op and po 1= i and b3 := oF. (3.53)

When redefining 7;’““ and ’Tff with regard to SF*!, a set of cell-parts resolving any
intersections of the cells in both meshes according to (3.52) can always be found thus
enabling a convenient numerical integration of all terms in (3.51), see figure 3.6 on the
facing page.

This, however, is preconditioned on the ability of S¥*! to actually resolve the interface
% of the last time step, i.e. it is not overlapped by some cell-part in S¥+1 such that

Ve € SH1. eN Q}fk =0 or en ng = 0. (3.54)

This is a non-trivial requirement, as the recursive construction of the sub-triangulations
according to (2.14) does in general depend on their order. Therefore, a sub-triangulation

3Xk+1 created for
b1 = dp and b2 = PF. and g3 = PF, (3.55)

will in general not be identical to S¥*!, as was already mentioned in section 2.2.3 on
page 35. This will introduce an integration error with a magnitude in the order of the
total domain approximation error caused by the piecewise linear approximation of the
domain boundary. While this may seem benign, it would entail the problem of efficiently
finding a cell in 7% that almost matches a cell in T#+1,

Notice that the recursive sub-triangulation construction scheme (2.32) presented in
section 2.4.7 on page 50 would due to the utilized linearization guarantee (3.54) as long
as no regularization (according to section 2.4.7) is required. However, the numerical

examples based on the space-pair ((Pf’k)d, P{‘f_l’k) which are presented in this thesis

69



3 Two-Phase Flow

are restricted to the two-dimensional case where such geometric guarantees can be realized
much more easily.

This approach increases the computational effort for the numerical integration close to
the interface where more cell-parts have to be created. However, many of the additional
parts are bound to be small as part of them resolves the domain in between I'™* and
I'mk+1 and a local reduction of the quadrature rules might be a viable way to improve
efficiency. However, the benefit of such optimizations was not analyzed systematically
and the examples presented in this thesis do not utilizes such optimizations.

3.6 Discretization of the Level Set Problem
The classical level set equation
Op+u-Vop=0, ¥Vxe (3.56)

describes a hyperbolic problem which is linear as long as u does not depend on ¢. How-
ever, the governing equations (3.5) and (3.6) of two-phase flow imply a coupling between
the velocity field and the level set function mediated by the domain geometries of 2y
and 2. In all setups for which the surface tension or any transmission effects due to the
jumps in the density and viscosity fields dominate the system dynamics, this coupling
will be of a very strong nature which has to be accounted for by the numerical method.
However, the scope of this thesis is restricted to such systems for which the coupling
is moderate enough to allow an operator splitting of the Navier-Stokes equations (3.5)
and the level set equation (3.6). In this case, for the purposes of integrating (3.56) over
[tk,tk+1], i.e. solving sub-problem in step 1 of the operator-splitting presented in sec-
tion 3.4.2 on page 60, the velocity field u may be considered independent of ¢ and the
equation itself may thus be treated as a linear hyperbolic equation.

3.6.1 Standard Level Set Method (SLS)

As the subdomain geometries are determined by the zero level set of the level set function
only, its non-zero initial values at time ¢ = ty may be chosen to suit the needs of the
numerical scheme. The classic approach as presented in [60] is based on ¢ being initialized
as the distance function of the initial interface I'(t = ty). As both high and low gradients
in the level set function may result in severe numerical instabilities, a distance function
is quite desirable as it guarantees that |V¢| = 1.

Sadly, the propagation of the level set function as described by (3.56) does in general
not conserve the distance function property. However, this property can be enforced by
reconstructing or modifying the level set function in the course of its propagation such
that the distance function property is regained without modifying the zero level set. For a
given interface I'(t), this reinitialization can be achieved by solving the Eikonal Equation:

Vol =1, Vx € I'(t) : ¢(x) = 0. (3.57)

Efficient numerical schemes for this equation have been the subject of intensive research.
Although (3.57) can be expressed as an equivalent pseudo-time-dependent hyperbolic
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problem
9r¢ = sign(¢) (IVe| - 1) (3.58)

for which stable numerical schemes have be devised, comprehensive comparative studies
as given in [84, 85] seem to favor the so-called direct approaches, e.g. the Fast Marching
Algorithm, which utilize the particular properties of the Eikonal equation to construct
its solution in an incremental fashion, following the characteristics originating from the
interface. Alas, all these methods entail erroneous shifts of the zero level set resulting in
an unintended displacement of the interface, thus introducing errors in the fluid’s volume
balance. However, due to the continuous interest in this subject, more complex schemes
have been developed to reduce these undesirable if unavoidable erroneous shifts or at
least enforce local volume conservation, see e.g [1, 86, 87, 88] and the papers cited there.

Even if an optimal numerical scheme for the reinitialization of the level set function is
employed, a discretization for (3.56) which realizes true volume conservation is not easily
devised. Although, for a solenoidal velocity field u, this equation is equivalent to the
conservative transport equation

Op+Vi(u-¢)=0, VYxeQ, (3.59)

the classical conservative discretization schemes resulting from finite-volume or higher-
order discontinuous Galerkin approaches will only conserve the integral of the transported
field variable ¢ such that

/(ﬁ(x) dx  is conserved, while the phase volume /@(qﬁ(x)) dx (3.60)
Q Q

will in general be subject to numerical errors (here © denotes the Heaviside function).
Relevant ideas on how to best solve such non-conservative linear hyperbolic equations
like (3.56) were recently given in [89, 90]. However, to the author’s knowledge, a method
which obtains ¢rue volume-conservation without applying any kind of post-processing to
the solution field (typically introduced during the aforementioned reinitialization step) is
yet to be discovered.

The volume-of-fluid method (VOF), a low-order scheme realizing a volume conserving
front tracking method has already been proposed in [91]. It is based on a phase-field, a
scalar indicator function with a range of [0, 1]. For the VOF method, this value is chosen
piecewise constant within each cell and describes the ratio of the two fluid’s volume
fractions which fill the cell’s interior. For this low-order approximation, it is possible to
devise numerical schemes which enforce volume conservation even for non-conservative
fluxes utilizing local redistribution algorithms. In [1], such a VOF method was coupled
to a finite-difference level set approach thereby improving volume conservation by many
orders of magnitude. This improvement, on the other hand, requires strong modifications
performed by the post-processing steps which may compromise the order of convergence
and, due to the nature of the redistribution schemes, typically impede a comprehensive
numerical analysis of the full scheme.
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3.6.2 Conservative Level Set Method (CLS)

A generalization of this approach was proposed in [92, 93]. Instead of coupling the level
set function to a piecewise constant phase-field ¢, the latter is directly represented by a
higher-order finite element basis and the level set function is simply set to ¢ := ¢ —0.5, i.e.
the ¢ = 0.5 level set of the phase-field function is interpreted as the two fluid’s interface.
Therefore, at time ¢, the phase-field must be initialized appropriately with a regularized
Heaviside function ¢(t = tg) := o which represents the phase distribution and includes
a smooth transition band of width A, chosen as a multiple of the mesh size h.

When considering the conservative form of the level set equation (3.59) formulated for
the hybrid phase-field / level set function ¢ as

Op+V(u-p)=0, Vxe, (3.61)

it is evident that this approach corresponds simply to the standard level set method with
a rather inappropriate initial solution whose gradients are zero everywhere but in the
direct vicinity of the interface. In order to ensure volume conservation, the introduction
of phase-field values outside of the range [0, 1] must be prohibited and the transition area
A, must be kept constant. The authors of [92, 93] proposed the conservative level set
method (CLS) which meets these requirements by introducing recompression terms into
the equation, effectively modifying (3.61) such that

I+ V(u-@)+a(V-(p(l-pn,) —e,V- (Vo -n,)n,) =0, vxe, (3.62)
with

n, = Ve

Vel

The generic coefficient « has to be chosen problem-dependent and must ensure, that the

recompression is sufficient to maintain an approximately constant transition width A,

and suppress any spurious values ¢ > 1 and ¢ < 0. In the absence of robust heuristics

for the choice of «, the equation (3.62) may be solved in an operator splitting approach
by separately solving (3.61) and the pure recompression equation

(3.63)

O+ V- (p(1—¢ny,) —e,V-(Veo-n,)n, =0, Vxe (3.64)

As both the convective and diffusive fluxes are directed along the streamlines of the vector
field n, it is noteworthy that a stationary solution for the one-dimensional case is given
by

e/
Pe(x) == 11+ et/ep (3.65)
which adheres to
xggloo Ye(r) =0 and Jim we(x) = 1. (3.66)
This provides the useful estimate
Ay, =6 ey, (3.67)

which relates the artificial diffusion parameter €, to the transition width A,. Theoret-
ically, this approximation is only valid if the streamlines in the vicinity of the interface
are not too distorted.
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3.6 Discretization of the Level Set Problem

3.6.3 Discontinuous Galerkin for the Standard Level Set Method

Most of the numerical examples presented in this thesis utilize the CLS method given in
section 3.6.2 on the facing page. Some few examples which were computed with a legacy
code utilize the standard level set approach based on a repeatedly reinitialized distance
function. In both cases, the simulations were based on the standard DG discretizations
for hyperbolic problems described in [94]. Therefore the discretizations are just stated
shortly and the relevant practical issues concerning their extensions to the UDG approach
are discussed.

Notice that the analytical results on stability and error estimates for these methods,
as presented in the original works [94, 95] and their textbook re-digestions [76], can not
be trivially extended to the UDG approach. The relevant theorems involve local cell-wise
estimates which are available for simplices and hexahedra but may not be easily extended
to the almost arbitrary geometric shapes of the merged cut-cell meshes underlying the
UDG approach. These shapes may defy even efforts like [96], where stability and error
estimates for star-shaped cell geometries are provided. The scope of this thesis does not
include any theoretical attempts to close this gap and the stability and accuracy of the
presented approach is motivated by the numerical results in chapter 5 on page 99 only.

In order to apply a standard DG discretization to equation (3.56), one may follow the
ideas in [89] and reformulate the level set equation as

o +V-(up)=V-ugp, VxeQ. (3.68)

If the term on the right-hand side is treated as a source term, then, using the multi linear
forms

m¢(¢> U) = Z (¢7 U)E ) (369)
EeT
co(,v) = > (oup™ Vo) L+ 3 (fupt R otinlel)
EeT ec&
f¢(¢,1}): Z (V'Uhqb,U)E,
EecT

a corresponding DG discretization with a standard upwind flux approximation for the
sub-problem in step 1 of the operator splitting is given by:

Find a level set function ¢y, such that for t € [ty ty.1] and u ™ € (Pi/[”’kJrl)d:
Yop € Z - atm¢(¢h, vp) + C¢(¢h, vp) = f¢(¢h,vh). (3.70)

In the definition of c¢y(¢,v), the quantity ¢* denotes the trace of ¢ on the upwind cell
with regard to f{uf™'}}. This discretization is stable if the time integrator is chosen
appropriately. The well-known Heun-method, a second order explicit Runge-Kutta type
integrator was employed for all numerical examples presented in this thesis.
However, explicit time integrators always entail a time step restrictions typically asso-
ciated with an upper boundary for the Courant-Number
uAt
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3 Two-Phase Flow

Here, the variables u, At and Az provide some measure for the maximum transport
velocity, the time step size and the spatial resolution. Useful values for Ax are difficult
to estimate for the UDG approach. Cautious choices like the minimal edge length of the
sub-triangulation are bound to result in unreasonably small time steps as in this case Ax
might not exceed the magnitude of the regularization parameter €, (see section 2.4.7).
For the computations presented in this thesis, a Courant-Number was estimated by the
resolution of the fundamental mesh Az := h and u := ||u}||~ and in each step At was
chosen such that a value of C < 0.1 was ensured. While this choice allowed a stable
transport for all simulations presented in this thesis, it should not be mistaken for a
general statement on the stability of this approach for arbitrary cut-cell meshes.

The coupling of the phase-field transport (3.61) with the recompression equation (3.64)
ensures that the phase-field is smooth at all times and thus the projection i.e. limiting
methods [76, 94, 95] typically employed for the stabilization (or reduction of total varia-
tion) of this DG scheme are not required.

3.6.4 A Discrete Reinitialization Method for UDG

The authors of [85] compared the most common direct methods for the reinitialization
of the level set function, i.e. for solving the Eikonal equation. They observed that the
standard fast marching method proposed in [60] provided the best ratio of accuracy to
computation time. The method itself is based on node values as provided by finite-
difference schemes and for n nodes its run-time complexity is equal to O(nlogn).

As an alternative to direct methods, the hyperbolic problem (3.58) may be solved to
determine a solution to the Eikonal equation. The extra effort involved in solving a full
time-dependent PDE is only justified if it provides an otherwise unreachable measure
of precision, i.e. smaller erroneous displacements of the zero level set. It was shown in
[86] that this can be achieved by coupling the solution of the PDE with a constrained
optimization procedure.

The implementation of such sophisticated schemes, however, was beyond the scope of
this thesis. The fast marching method, on the other hand, is especially suited to the
Cartesian structured grids underlying the sub-triangulations of the UDG method. A
reinitialization of a given discrete DG level set function gb’fL € PMs can be realized as
follows:

1. To obtain node values of a given discrete DG level set function (;Sﬁ, it may be inter-
polated in the vertices of the geometry mesh 7, (and averaged if gbZ is discontinuous
at the node coordinate).

2. The fast marching method can then be applied to these node values. This results in
new node values which may be interpreted as a standard Q! finite element function
¢le on T,.

3. A reinitialized discrete DG level set function d;]fL can then be obtained via Lo-
projection of qbkgl into PMe.

Notice that step 1 implicitly assumes that gf)ﬁ is defined in each node of the geometry
mesh 7, which is obviously not the case as Q" may in general be a real sub-set of .
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3.6 Discretization of the Level Set Problem

While the Fast Marching algorithm itself works well on a sub-set of the nodes (connected
by edges) in T, the Lo projection in step 3 requires qﬁ"él to be well defined on all cells

which are overlapped, if only partially, by Q".

Hence, on all cells in 7, where at least one node is inside of Q" and may thus be
associated with a well defined level set function value, the values in all other nodes which
are outside of Q" would have to be constructed by an appropriate extension method. For
a given cell E € T, which contains part of the interface, this construction should result
in a local Q! function on E with a zero level set which is as close as possible to the zero
level set defined by cb’,i on Q"N E.

This problem is equivalent to the one described in section 3.7 on page 82 where the
intricacies of such extension methods are discussed in more detail. However, within the
scope of this thesis, no solution to this problem is proposed and the presented examples
which depend on a reinitialization of the level set function are restricted to the fitted case
Q" = Q = Q, and the conservative level set method is used in all other cases.

3.6.5 Discontinuous Galerkin for the Conservative Level Set Method

A complete realization of the conservative level set method as described in section 3.6.2 on
page 72 requires the separate solution of the phase-field transport equation (3.61) and of
the recompression equation (3.64) in an operator-splitting approach. Additionally, a stop-
ping criterion for the recompression must be defined which robustly determines whether
the phase-field is already recompressed enough, i.e. whether the stationary equilibrium
solution of (3.64) has been reached up to a desired accuracy.

It is obvious that the solution of the phase-field transport equation can be achieved
analogously to the case of the standard level set method by solving (3.70) as described
in section 3.6.3, except that the source term f(-,-) must be set to zero.

The recompression equation (3.64) may be approached in a similar manner. The dis-
cretization employed for this thesis follows the ideas in [97] for the discretization of the
diffusive terms with the interior penalty method. This results in a discretization based
on the multi-linear forms

mkp(907v) = Z (QO,’U)E, (3'72)

by(ip,v,mp) = zzei(w(l - sﬂ)nwW)Eﬂrz; (F,n[]).
ag(p,v,ny) = — EiT&p (ny - Vo, ny, - Vo) g )
+ g;% {{ingny - Vel nv]), — ey (npng - Vot nfgl),
+ %2 (o], o],
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3 Two-Phase Flow

given by
Yo, € Z Ormip(©n, Vi) + by (@h, vhy Dy) + ag(p,v,0p) = 0, (3.73)
. Von
with n, == ——, 3.74
= Vol 70

where 7 indicates the virtual (non-physical) time of the recompression process in contrast
to the physical time ¢. Here, F must be chosen as an appropriate numerical flux function
for the convective fluxes and the parameters €, he and o}, have the same meaning as in
the IPDG flow discretization in (3.34). Whenever a face in £ coincides with the domain
boundary 90", the jumps and averages in (3.72) are chosen to enforce homogeneous
Neumann boundary conditions in order to preserve the global conservation property of
the scheme (3.73).

Alas, the equation (3.73) is of rather malign character as it couples the phase-field ¢
with its normalized gradient field. Hence, time integration of (3.73) is difficult for both
explicit and implicit methods as the former require minuscule step sizes and the latter
lead to extremely ill-conditioned algebraic systems. To avoid these issues, the authors of
[93] propose to keep n,, constant within each time step, i.e. decouple it from ¢ and thus
simplify both the hyperbolic term and the diffusion term.

Notice that the bandwidth controlling parameter €, can not be chosen arbitrarily small
as the bandwidth must at all times remain big enough to define a sane and accurate
normal field n, which can be employed for both the recompression and the computation
of the interface’s curvature required for the surface tension, see chapter 4 on page 85.
Too large values however, will amplify the erroneous diffusive fluxes of the recompression
and thus reduce accuracy. Furthermore, the larger the bandwidth the stronger will be its
distortion entailed by the propagation with the velocity field u resulting in an increased
virtual time interval that has to be simulated in order to achieve a satisfying recompression
of the phase-field. The actual value for e, should thus be as small as possible without
corrupting the stability of the scheme. Whether this is the case depends also on the
polynomial approximation order of the finite element space used for the representation
of ¢. For ¢, € Q3 a choice of e, = 0.3h was found to be stable under all encountered
circumstances while the same simulations would become unstable for ¢, € Q? unless the
higher value of e, = 0.5 h was employed.

For all examples presented in this thesis, the penalty parameter ofp on a face e in €
with neighboring cells E and F was chosen as ojp = 1 Utilizing the one-step- method
(which will be used exclusively for all computational examples with the Crank-Nicholson
choice 6 = 0.5) one may thus formulate the complete discretization as:

For a given 902_1 e PMs and nf;_l’* € (PMs)d at time T = T4_1, find a phase-field
of € PMo such that

Yo, € Z (3.75)
mo (0, o) — mo (e, o, 1 _
Y (boof o, 5 71) + a2, o 1))
K k—1
+(1=0) (bo(ep ™" om0 ) + al (e o, m )
=0.

76



3.6 Discretization of the Level Set Problem

Again, the variable 7 is used to distinguish the virtual time of the recompression from the
physical time t of the two-phase flow process. Also, the superscript x is used to indicate
the discrete solutions of ¢ at time 7,2

In the original publication of the CLS method [93], the authors represent the phase-field
by a standard continuous piecewise linear basis and propose to compute its normal field
via a Lo-projection of |§“p| into the same (vector) space of piecewise linear polynomials.
While for continuous piecewise polynomial spaces the Lo-projection is a global operation,
for the DG spaces PMs this is a cell-wise local operation and as PM¢~1 ¢ PMs this local

Lo-projection would be identical to

v K
ng’* = 4,02 .
|V<Ph’

(3.76)

However, this choice results in a quite undesirable behavior of the recompression process
as it introduces discontinuities and wiggles in the interface even at rather high mesh
resolutions, see section 3.6.6 on the next page. This can be improved by utilizing a
diffusive Lo-projection which couples neighboring cells with the diffusive fluxes of the
IPDG method:

Vv, € (2)%: (3.77)
K% v h K%
EZE:T(HSD’ — Wi%,vh)E —€n (an’ ,Vvh)E
+> e ((VnE Bonlvi]) —eca (§Vvahnlng]) + ﬁ (gL vi), =
ecé

Notice that, according to the aforementioned argument, this choice is equivalent to (3.76)
if e, = 0. Whenever the faces in £ coincide with the domain boundary of Q" the
jump terms and averages in the formulation above must be adapted to weakly enforce
suitable boundary conditions for this elliptic problem according to the theory of the IPDG
method. Whenever such a face is not in the vicinity of the discrete interface, homogeneous
Neumann boundary conditions could be considered an appropriate choice. However, if
the face is near to the interface or actually touches the contact line, the recompression
process may influence the contact angle of the interface with the boundary and the
boundary conditions of the normal field projection must thus be chosen carefully. As this
matter is deeply entwined with the discretization of the surface tension, its discussion is
deferred to section 4.4 on page 94.

The CLS method as formulated in (3.62) is an advancement on the original publication
[92] which proposed a recompression scheme in which the diffusive fluxes were not directed
along the streamlines of the normal vector field:

Oro+Vu-9)+a(V-(p(1—p)n,) —e, Ap) =0, VxeQ. (3.78)

2 This notation introduces an ambiguity in the superscript of j, which is suffered to allow a convenient
notation. However, to keep confusion to a minimum, for actual number values of k, e.g. K = 3 the
corresponding phase-field will always be denoted as ¢~ and never as 3. The latter notation uniquely
indicates the phase-field solution at time ¢t = t3.
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3 Two-Phase Flow

Mesh Level en =0, ay en =0, aj, en = 0.1h2%, en = 0.1h2, ay,
0 [ 203652 (13) | 385602 (12) | 131463 (1 ) 1.182E-2 (11)
1 | 6.987E-3 (19) | L.048E-2 (200) | 6.005E-3 (20) | 5.841E-3 (20)
2 | 7.006E-3 (131) | 1.070E-2 (200) | 1.776E-3 (46) | L.210E-3 (70)
3| 1.561E-2 (51) | 6.777E-3 (200) | 6.145E-4 (81) | 1.231E-3 (65)

Table 3.1: The table lists the interface length errors errp as given by (3.85) for
the test case in section 3.6.6. In paranthesis behind each error value follows
the number of virtual time steps needed to reach the stopping criterion (3.80).
Each column corresponds to a simulation run on all four grid levels and e, in-
dicates the utilized diffusivity for the Lo projection of the normal field ng*
of ¢, while a, or ay indicate whether the simulations were run using the

isotropic multi-linear form in (3.79) or the anisotropic one in (3.72). When

the stopping criterion was not reached after 200 steps, then the propagation
was aborted and the errp value simply corresponds to (=200,

For the DG discretization, this corresponds to a modification of the multi-linear form
az(p,v,ny) according to

ay(p,v) = — Z gp (Vo, Vo) p (3.79)
EecT
o
+ > e ({Vel,nul), —ecy (EVuln[e]), + ffp (Tl TvDe. -
eef €

A comparison of the relative performance of both approaches for a benign test case is
given in section 3.6.6.

The stopping criterion of the propagation scheme (3.75) was chosen as

Cer—enl) _g 380
C R (3:30)

with
C(on) = 110.25 — (o1, — 0.5)%[| gy (3.81)

In comparison with the criterion

Ik — o llgn
Tk — Tr—1

< 0y (3.82)

as proposed in [93], (3.80) is less dependent on the ratio of the interface length to the
domain size but essentially equivalent as long as the time step of the propagation is scaled
with the mesh resolution h.

3.6.6 Discontinuous Galerkin Recompression of Circular Interface

To obtain a quantitative estimate of its accuracy, the DG discretization of the CLS method
as described above was applied to a benign test problem simulating the recompression of
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3.6 Discretization of the Level Set Problem

Grid Level 3 (24 x 24 cells)

Grid Level 0 (3 x 3 cells)

Figure 3.7: The two pictures give an impression of the distortions introduced

into the interface approximation due to the recompression of the phase-field
for the test case described in section 3.6.6. The pictures show the 0.5-level sets
of the discrete phase-fields after recompression as well as the reference level set
for =Y = 0.5 (pink) on the finest and the coarsest mesh level.

For simulations based on the discretization with the anisotropic diffusion term
ag, (3.79), the resulting interface approximation is shown in blue for ey := 0.0
and in green for e, := 0.1 h%. Analogously, for simulations with the isotropic
diffusion term a, defined in (3.72), the black interface corresponds to e, := 0.0
and the red interface to e, := 0.1 h2.

The magnifications of the solution with high resolution reveal that the inter-
face computed with the isotropic term a,, and the diffusive Lo-projection is
smoother than the interfaces computed in the other simulations.
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3 Two-Phase Flow

a circular interface. Foregoing the peculiarities of unfitted domains, this example utilizes
a square domain of size (1 x 1) and is simulated for the Cartesian fundamental meshes
TP, ..., T2, starting with a mesh 7,2 with 3 x 3 cells and ending with 7, with 24 x 24 cells.
The circular interface is centered in the domain and has a radius of 0.25. A corresponding
initial choice for gozzo is given by

#(x) = 0% (]x = (0.5,0.5)") (3.83)

with the regularized Heaviside function

0, T < —€p
O%(z) =141+ % + o sin(%), —€, <<€y (3.84)
1, €p <X

and the starting solution ¢F=C of the Crank-Nicholson scheme in (3.75) is obtained via
a standard (non-diffusive) Lo-projection into the finite element space Q3 (which is here
respectively defined with regard to the cells in T2, ... ,’7;L3). All simulations were run for
£, = 0.3 h corresponding to a bandwidth of approximately A, = 1.8 h and the parameter
€, in the initial solution (3.83) was set to €, := A, i.e. the initial solution was already
setup with the correct bandwidth such that all resulting changes in the course of the
propagation must be due to numerical errors and the slight difference between the two
Heaviside functions (3.84) and (3.65).

For each of the mesh levels, four simulations were performed comparing the choices for
the diffusivity of the normal field projection e, := 0.0 and e, := 0.1 h? as well as the
influence of the suppression of diffusive fluxes tangential to the normal field in ag(-, )
relative to a,(-,-). In all cases, the time step size 7, — 7,,—1 was chosen as 0.1 h and the
stopping criterion was given by (3.80) with d, = 0.001.

The results of the simulation are shown in figure 3.7 on the preceding page. Due to
the high polynomial order of the employed finite element space Q?, the initial interface
approximation realized by go?l even on mesh level 0 is already quite good considering that
the radius of the circle is 0.75 h in this case. On the highest mesh level, the simulation
run utilizing the isotropic diffusivity term a, and the diffusive Ly-projection is noticeably
smoother

A more quantitative measure of the relative performance is given in table 3.1 on page 78
which lists the number of steps K, needed to reach the stopping criterion and the error
of the final interface length

Dhr=Fe | — TR0, (3.85)

errp ZZ’
with
e = {x € Q, | pf(x) = 0.5}. (3.86)

It is noticeable that in the simulations with €, = 0.0 and the anisotropic diffusion
term the stopping criterion could not be reached on almost all grid levels. The isotropic
case is more robust but the numbers of required step sizes appear erratic considering the
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3.7 Continuous Extensions of the Level Set Function

Figure 3.8: The picture illustrates the prob-
lem of extending ¢% on Q, by defining
a continuous Q! solution. For the given
example showing the intersection area of
two cut-cell mesh cells £, F € T, such
an extension would require the deter-
mination of suitable function values in
the red, blue, and yellow nodes. As they
are outside of Q”, function values of gbfl
can not be directly obtained by interpo-
lation (and possibly averaging). In the
blue node, simply using the canonical ex-
tension of the polynomial defining ¢ on
E is surely suitable. Assuming that the
jump of gbfb across the edge between E

<

> o

I

o
I N

and F' is small, it is also valid to do the
ok =0 same for the red node with regard to the
00" o polynomials in both F and F and obtain
the final unique value by averaging. The
@ -4 same does not hold for the yellow node

~§
S

as the extension from E may produce a
vastly different value than the extension
from F, hence averaging would poten-

tially corrupt the interface in both cells.

high value for mesh level 2. The interface errors for the choice £, = 0.1 h? are in general
smaller but only the isotropic variant shows robust convergence over all mesh levels.

Notice that the errors errp are always computed with regard to the interface length
corresponding to @2:0 on the same mesh level.

The test case presented in this section is by its nature extremely benign and was
chosen merely to illustrate that the ideas on the plain Lo-projection of the normal field
n;* as proposed for the standard finite element implementation with first order linear
basis functions presented in [92] and [93], can not be applied in combination with a DG
discretization without further modifications. Furthermore, while the improved anisotropic
diffusion term af was shown in [93] to improve convergence relative to the choice of the
isotropic term a,, the results obtained for the test case in this section show that it results
in a less smooth interface approximation. This suggests that the improved convergence
results, at least for the proposed discontinuous Galerkin discretization, may reduce the

stability of this method in the context of two-phase flow systems with high surface tension.

A more intelligent and possibly adaptive choice of the diffusion parameter e, for the
projection of the normal field might help to alleviate this problem but a systematic anal-
ysis of this option is beyond the scope of this thesis. For all further numerical examples
presented in this thesis, the isotropic diffusion term a, was employed to eliminate a
possible source of stability issues.
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3.7 Continuous Extensions of the Level Set Function

This section is intended to discuss the step 2 of the operator splitting described in sec-
tion 3.4.2 on page 60 consisting of the computation of a continuous extension qgﬁ € C%Q,)
of a level set function qbi e PMs,

In case Q" = Q = Q,, i.e. the case of a fitting Cartesian mesh, this corresponds to a
projection, or more generally, a mapping of (bfb into a continuous space where its image
qglfl € 0°€Q,) should provide a good approximation of its zero level set. A canonical
approach would be the definition of a standard Q'-finite element basis by a simple in-
terpolation of gbfl in all nodes of the geometry mesh 7,,. For such nodes that coincide
with nodes, edges or faces in 7T, this interpolation is not unique as dj will in general
entail jumps across the faces in 7. However, in order to allow a stable propagation of the
advancing interface, especially in the case of dominant surface tension, these jumps are
required to be very small. This is typically achieved as a byproduct of the repeated reini-
tialization or recompression of the level set or phase-field function. Hence, the canonical
approach of combining the trace values of gbﬁ in such points via an arithmetic average is
justified and often effectively equivalent to arbitrarily choosing one of the trace values.

However, for a node x, in the geometry mesh 7, which is positioned outside of Q" a
good value is not easily found. Assume x. is a node in the cell £ € T, in the geometry
mesh which is intersected by the level set function ¢ € C°(€,) (otherwise the exact
value in the node is of no interest). Furthermore, F is intersected by the zero level set of
the level set function qbfl. Although d)ﬁ is only locally defined on E N Q" its polynomial
representation allows a natural smooth extension of gbﬁ to the whole cell E. However, as
illustrated in figure 3.8 on the previous page, the definition of a unique value in x. may
be problematic if significant distortions of the interface in its vicinity are to be avoided.
Especially in the case of a contact line with a microscopic contact-angle, the influence of
such distortions on the system dynamics may be especially severe.

The problem of a global continuous extension of (;Sﬁ can actually be avoided. The
assumption that all level set functions are elements of C°(€2,) was convenient for the
definition of the subdomains and the sub-triangulation but is not truly necessary. Due to
the nature of the recursive construction of the sub-triangulation in (2.14), with regard to
the geometries involved in the two-phase flow problem defined in section 3.1 on page 53,
it is actually sufficient for ¢a(tx) = ¢¥ to be an element of C°(Q") as long as the operator
7?2 (e, ba| E) for a given cell F and a cell-part ¢ does only depend on the restriction ¢2|e

instead of ¢s p- This is obviously true for the fully k-conforming partition operator
proposed in (2.30) in section 2.4.7 on page 50 as according to (2.31):

I*(e, ¢E) := |- (3.87)

However, for the other, only weakly 1-conforming linear partition operator given in (2.32),
this is not the case as the employed pre-processing operator was chosen as

(e, ¢r) := "1 P)|..

[4

(3.88)
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3.7 Continuous Extensions of the Level Set Function

To the author’s knowledge, there is no clean way to solve this problem. However, since an
implementation of a fully k-conforming partition operator was not available, a working
solution was obtained as follows:

Instead of using (3.88), the pre-processing operator Z2 was modified according to

T (e, ¢p) == ¢"') . (3.89)

As the result of this operation is in general not a linear function on ¢ (but a piece-wise
linear one), the scheme in (2.32) defaults to the fourth option in both recursion steps.
This effectively means, that both the initial cell of the geometry mesh and all cell-parts
of the first recursion step will be linearized, i.e. pre-partitioned into simplices before
the actual sub-triangulation takes place (which will thus employ the Marching-Simplex
algorithm only).

Alas, here finally even weak 1-conformity is lost. Consider two adjacent cells E, F' € T,
intersected by the zero level sets of both level set functions. After the first recursion step in
(2.14), the resulting cell-parts S (E) and S%(F) may contain adjacent cell-parts ¢ € Si(E)
and f € Si(F) (though not necessarily in a full face). The modification (3.89) will result
in non-linear level set functions on both cell-parts and even the surfaces defined by their
exact zero level sets on each cell-part need not be continuously connected.

For the two-phase flow problem, the breakdown of weak 1-conformity occurs in the last
step of the two-step recursive construction scheme. Therefore, considering the remarks
in section 2.3.4 on page 41, it becomes clear that the impact of this short-coming is
rather benign. The resulting sub-triangulation will under no circumstances contain gaps
or overlaps. Nevertheless, the reconstructed interface will in general not be continuous,
a fact which must be considered especially for the discretization of the surface tension.
Also, unless the exact intersection areas of two adjacent cell-parts with non-matching
faces are reconstructed for the numerical integration (which our implementation does
not realize), the numerical fluxes will involve errors wherever the weak 1-conformity was
actually violated. Though as long as the fluxes from Q% to Q} are always exclusively
computed for the cell-part faces in Sy (or exclusively for the cell-parts faces in Sz) mass
conservation properties of the corresponding DG scheme will be maintained.
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4 Surface Tension

In spite of the many references in the previous chapters, all details of the discretization of
surface tension were deferred to this chapter and hidden inside the interface momentum
source term fr defined on the discrete interface I'M*.

For discontinuous Galerkin methods and especially for the UDG approach, discretiza-
tion of the surface tension holds many challenges which are not encountered in conforming
finite element discretizations on either matching or non-matching grids. Many standard
approaches implicitly rely on the natural volume coupling realized by the overlapping
supports of the finite element basis functions. Independent on whether those methods
rely on the geometric discretization realized by the integration by parts of the Laplace-
Beltrami Operator (as proposed by [9]) or on a direct computation of the curvature. In
both cases, this natural coupling is used to evade the problem resulting from the curva-
ture being actually not a cell-local property. Within the context of DG methods, this
natural coupling, realized by the continuity property of standard finite element spaces, is
not available and a surrogate coupling must be introduced.

Four different approaches to the discretization of the surface tension are presented
within this chapter. One of them is restricted to the fitted case Q" = Q, and was already
described in [29]. However, as some of the simulations given in chapter 5 are based on this
method it is shortly recapitulated. The other three methods are suitable for applications
in the full unfitted case. A comparison of their performance is realized for a simple test
case in 5.3 on page 104.

4.1 On Terminology

When devising a numerical scheme for the simulation of moving interfaces with surface
tension, a decision on two decisive aspects of the numerical model has to be made:

I. How is the interface represented by a finite number of degrees of freedom and
according to which algorithm are they to be modified such that the movement of the
interface along the streamlines of a given velocity field is approximated accurately?

II. How can the surface tension be discretized in a way that is both suitable for the
chosen representation of the interface and the chosen physical flow model as well as
its discretization.

The questions I. and II. effectively define two dimensions along which a given numerical
scheme may be categorized and a new numerical scheme may be positioned.

The first dimension, i.e. question I., spans a terminological range from surface tracking
(or often front tracking) to surface capturing methods. The former represent the position
of a simulated interface via some kind of geometric markers which may in the most
canonical way be realized by the vertices of a surface mesh that may or may not be
embedded in the volume mesh utilized for the flow simulation. Such schemes, which
effectively move the whole mesh along, are easy to realize even with standard finite
element software but are typically restricted to very small deformations of the interface
unless elaborate remeshing algorithms are applied. However, more sophisticated schemes
with marker points or the control points of splines have been proposed and successfully
realized [9, 12, 98, 99].
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As an alternative to the direct representation and manipulation of geometric entities,
the surface capturing or implicit interface methods define the current position of the
interface implicitly by referring to scalar valued functions whose time propagation is
supposed to capture the geometric evolution of the simulated interface. The most popular
realizations of such scalar functions include the level set function and phase-field function
methods as introduced in section 3.6 on page 70.

The surface capturing methods generally entail high computational effort typically in-
volving the solution of (at least) one partial differential equation which has to be solved
(at least) in the vicinity of the interface. The requirements of reinitializing (section 3.6.1)
or recompressing (section 3.6.5) the involved scalar functions add to this natural over-
head of such implicit interface methods. However, the direct manipulation of complex
geometric entities may, especially in three-dimensions, lead surprisingly fast to methods
of tremendous algorithmic complexity. The popularity of surface capturing methods may
thus, at least partly, be explained by the tremendous effort involved in creating, maintain-
ing, and extending the software-frameworks required for stable and accurate simulations
based on elaborate surface tracking methods.

The second dimension, i.e. question II., distinguishes the possible discretization schemes
for the actual surface tension force emitted by fr along the explicit or implicit geometric
representation of the discrete interface. In the classical continuum surface force (CSF)
model [100], the contribution of fr is smeared along a discrete interval across the interface.
As this interval must be resolved by the mesh resolution although its width effectively
defines a lower bound of geometric accuracy, such methods typically rely on local adap-
tive refinement of the computational mesh and low order approximations at least in the
vicinity of the interface. On the other hand, they have been shown to be robust and entail
good convergence properties for many two-phase flow setups [3, 16, 100, 101, 102, 103].
It was long argued that this approach would be inherently unsuited for interfaces with
high surface energy, as it involves steep gradients of the pressure field across the interface
which amplify any approximation error of the discrete solution. However, it was shown
in [104] that the resulting spurious velocities can be controlled if the approximation of
the (directed) curvature and the pressure fields are balanced, i.e. they are represented in
the same finite element basis.

Whenever a discrete representation of the interface geometry is available, a sharp in-
terface method can be applied as an alternative to the continuum surface force model.
This approach, in principle, eliminates the numerical error resulting from the smearing
of the interface in the CSF method. Furthermore, while the CSF method relies on the
explicit computation of the interface curvature based on higher derivatives of the level
set or phase-field function, a geometric representation of the interface allows to assess the
surface tension in a geometric approach which can be formulated with minimal regular-
ity requirements on the level set or phase-field function. Realizations of such essentially
geometric discretization methods for surface tension were already applied for two-phase
flow problems in [9] and have been adapted in [10, 26, 27, 98|.

However, sharp interface methods are flexible and can also be combined with methods
that directly compute the interface curvature from the scalar function implicitly repre-
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Figure 4.1: The pictures above illustrate some possible results which may be ob-
tained by approximating the level set function which represents the interface I'
with cell-wise polynomials. Using first order approximations results in a piece-
wise linear zero level set (picture in the middle). Obviously, when restricted
to a single cell, the curvature of the local interface approximation is zero. The
picture to the right illustrates how higher-order approximations need not nec-
essarily improve the approximation of the local curvature as long as the dis-
crete approximation is only locally smooth.

senting the interface [17]. In principle, sharp interface methods can be applied for both
surface tracking and surface capturing methods although the latter require an additional
reconstruction of the interface geometry. Such reconstructions have been successfully
applied to improve existing schemes even in the context of finite difference methods [79].

An exclusive advantage of sharp interface methods is the ability to combine the surface
tension discretization with a discretization of the velocity and pressure fields which allow
for an exact representation of the interface conditions (3.12) including the jump in the
pressure field and the velocity derivatives using discontinuous Galerkin or extended finite
element methods [12, 27, 35]. Only such methods which eliminate all geometric regu-
larizations commonly applied to the viscosity field, the pressure field and the interface
thickness may exploit the full potential of higher-order finite element spaces.

Locating the methods which are suitable for the UDG approach within the presented
terminology is rather straight-forward. As a discrete geometric representation of the in-
terface IT* is available and fitted to the cells of the final cut-cell mesh, a sharp interface
method is suitable and allows the discontinuous representation of the full interface condi-
tions (3.12) (for the aligned mesh approach, section 3.5.4) or at least the pressure jump
(for the hybrid mesh approach, section 3.5.3). The surface capturing methods utilized
for the propagation and reconstruction of the discrete interface were already described
in 3.6 on page 70.

4.2 Direct Methods

Direct methods for the discretization of the surface tension rely on an explicit computation
of the curvature based on the derivatives of the level set function according to

_y. YO
k=V Vol (4.1)
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Notice that this formulation implies the existence of second derivatives of the level set
function. It is thus not surprising that such direct methods were first employed in finite
difference schemes [60, 105].

Utilizing the relation (4.1) directly in a finite element method is problematic. When
the level set function is represented in a piecewise linear finite element basis - which
is sufficient for solving the level set equation - the cell-local curvature approximation
reduces everywhere to £ = 0. But even when higher-order basis functions are employed,
the direct evaluation of expression (4.1) may not result in good approximations of the
local interface curvature. This is a direct consequence of the fact that curvature of a
non-smooth approximation of the interface I' is simply not a cell-local property as kinks
coinciding with cell edges or faces are not accounted for, see figure 4.1 on the preceding

page.

4.2.1 Finite Difference Method

In [29], a direct method for the approximation of the curvature and thus the surface
tension was presented which was found suitable for the special requirements of UDG two-
phase flow discretizations. Here, at a given time ¢, the continuous discrete approximation
of the level set function ¢f € C°(€,.) (the same which is utilized in step 2 of the operator
splitting in section 3.4.2 on page 60 to construct the sub-triangulation S*) is interpolated
in all nodes of the geometry mesh 7,,. Approximations of the local curvature are then
computed in each node x,, according to standard methods [60] by:

(08 & + O19) (919)? + (9, + . 8) (91 d)? + (9l + O, 5) (9 )?
—20000Ld Ok, —20000Ld .0 — 20000 0L 0
((01)2 + (9hd)2 + (914)2)%.

“z (xn) =

(4.2)
Here, qgﬁ was abbreviated by ¢ and 8" denotes second order central finite-difference
approximations of the partial derivatives based on the values of qgﬁ in the nodes of 7,.
Interpreting the node values computed by (4.2) as a continuous cell-wise Q! function
(according to the standard Lagrangian Q' basis employed for conforming finite elements)
i € COQ(T,,)) on the geometry mesh 7, and setting

fr =0 ir I (4.3)
allows a direct integration of the term
vy =3 (fronf{v}h), (4.4)
eeé’#’k

as defined in (3.34). It was shown in [29] for a simple test case that this approach pro-
vides a better approximation of the local curvature than the application of the geometric
method via integration by parts of the Laplace-Beltrami operator on I"fb.

Notice that the assumed existence of a global continuous level set function qi;’fL is prob-
lematic as qﬁz is in general only defined on Q" and a continuous extension on €, may entail
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Figure 4.2: The pictures above give an idea of the curvature field resulting from
the projection methods (4.8) (including the regularization in (4.9)) (left) and
(4.11) (right) when applied to a phase-field representing a circular interface
(white line). Both pictures were computed for €, = (0.1h)? and the DG space
Q3 was employed for the appoximation of the phase-field, the normal field pro-
jection and the curvature projection. Notice that the narrow band utilized for
the projection in the right picture hardly spans three grid cells which is possi-
ble due to the high polynomial order of the basis functions.

unexpected complications, as described in section 3.7 on page 82. Correspondingly, the
examples presented in [29, 35] and chapter 5 were restricted to the fitted case 2, = Q"

4.2.2 Projection Methods

The issues of the finite difference approach with regard to unfitted domains suggest that
a coherent discretization in the context of the UDG method should be formulated by
exclusive reference to the natural UDG spaces P™, PT’k and Q™, QT’k. Consider the
standard Lo-projection of the normal field divergence

k
V-nf with nf = V¢Z
[Vy,]

(4.5)

to obtain the discrete curvature mﬁ € PMo. After integration by parts and using the
identity (3.27) such a projection may be written as:

Yo, € Z - (4.6)
whon) o, — (08 Vor) o+ > (o] sofon}) + ({nkBnlen]) =o.
Q Q e e

ec&

Obviously, the term [[nﬂ] will in general not be zero but revisiting figure 4.1 on page 87
reveals that this jump of the discrete normal field mediates exactly the geometric coupling
required to capture kinks which coincide with cell faces. Based on this geometric argument
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4 Surface Tension

a non-local projection of the curvature field can be formulated as:
Yo, € Z - (4.7)
</<c’fb, Uh)ﬂh — (n’fl, Vvh)m + Z ({{nﬁ}}, n [[vh]])e =0.

el

However, very high curvature values have the potential of destabilizing the interface
propagation and may naturally appear in two-phase flow setups, e.g. when separated
phase regions touch and coalesce. But also numerical approximation errors may introduce
additional spurious surface tension which may deteriorate the time step size limit required
for a stable simulation. These issues may be alleviated by adding artificial diffusion to
the projection (4.7) thus reducing the impact of erroneous peak values:

V’Uh S (4-8)
(/@Z,vh) - (nﬁ, Vvh) .t Z ({{n’fl}}, n [[vh]]) — &k (Vmﬁ, Vvh)
Q Q e Q

ecl h

+ > e (Vi nlonl) - ecn ({0 B, nlsT) + "hP (I<51, Tnl)_=o0.

ec&

The additional terms in the second row of (4.8) correspond to diffusive fluxes based on the
interior-penalty method, similar to the Lo-projection in (3.77). For a robust convergence
behavior, ¢, should be scaled o« h~2. Notice that these diffusive fluxes serve only to
smooth the curvature field but do not enforce a coupling of the cell-local curvatures, thus
adding the same diffusive fluxes to (4.6) would still result in /@ﬁ = 0 as long as the level
set function is linear, i.e. qb;j € PLE,

The choice of nf given in (4.5) is not suited to be employed in the projection scheme
(4.8). If the conservative level set method is employed, |V¢¥| must be expected to be
arbitrarily small in a vast part of the domain and thus (4.5) can not provide meaningful
values for the normal field. Also, for the classical level set method, sharp transitions may
occur in the gradient field Vqﬁz thereby introducing spurious vortices into the normal
field which will inevitably introduce large values for the local curvature n’;;. As soon as
a non-zero diffusion coefficient ¢, is employed in (4.8), such local numerical singularities,
even if located in supposedly sufficient distance to the interface may - depending on their
magnitude - result in a global deterioration of the curvature approximation due to the in
principal non-local character of the diffusion process. Hence, within the implementation
realized for this thesis, (4.5) was replaced by

ke . V¢;€l
l’lh = %
Vyl

o7 (IVef| - <) (4.9)

Here ©° denotes the regularized Heaviside function as defined in (3.84). For the standard
level set method where the expected gradient magnitude is |V¢Z| ~ 1, the generic regular-
ization parameter £ should be chosen as a constant sufficiently smaller than 1. However,
when applying the conservative level set method, ¢ should be scaled with A%o which
describes the average magnitude of the gradient field in this case. All computational
examples in this thesis which utilize this projection approach employ the conservative
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—2
level set method and € was chosen as %.
@

The curvature field ¥ projected according to (4.8) using the regularized normal field
(4.9) may yet be subjected to significant erroneous artifacts. These may be a result of
approximation errors of the level set function or may be due to modeling errors, i.e. the
interpretation of V¢ﬁ as a normal field at points where this interpretation is not justified
and not yet suppressed by the regularization enforced in (4.9). Even the regularization
itself introduces erroneous curvature values as the employed Heaviside function reduces
the absolute value of the normal field from 1 to 0 over a distance € and thereby produces
an apparent divergence. While the latter problem can be thoroughly controlled by the
regularization parameter, figure 4.2 on page 89 shows that within the projected curvature
field the spurious distortions hardly allow even its qualitative visual assessment. To
account for this insufficiency, another projection method is presented:

As illustrated in figure 4.1 on page 87 the cell-local curvature can not be directly
employed but must be coupled to account for possible kinks in the discrete interface
approximation, i.e. the jumps in the discrete approximation of the normal field of the
level set function. While the projection in (4.8) utilizes exactly this jump to enforce
the required coupling, the obvious alternative is to employ a projection of the normal
field which does not contain any jumps, either by projecting ni into a continuous finite
element space or by utilizing the diffusive DG Lo-projection

Vv, € (Z2)*: (4.10)
Z (nz* —nf v —en (Vnz’*, Vvh)E
EeT
+> e (A Bonlval) —een ({Vvilnln,"T) + "hfP ([0f"], [val)_=o.
ecf e

This scheme allows to control the jumps of the projection nlfb’* with the penalty parameter
ol and the artificial diffusivity e,. This scheme is equivalent to (4.10) presented in
section 3.6.5 on page 75 for the computation of a normal field n™* suitable for the
recompression of the phase-field employed in the conservative level set method. Hence,
in this case (4.10) does not have to be computed at all, but n"* of the last recompression
step may be utilized instead.

As already mentioned in the context of (3.77), the artificial diffusive fluxes in (4.10)
were discretized with the interior penalty method and appropriate boundary conditions
for this essentially elliptic problem have to be set, i.e. incorporated into the jump and
average terms on domain boundary faces. If such a face is sufficiently far away from the
interface, simple homogeneous Neumann boundary conditions may be appropriate but
close to the interface the boundary conditions have to account for the influence of the
contact angle. The detailed discussion is thus deferred to section 4.4.

As discontinuities in nlfl’* are suppressed by the penalty terms, V - nz’* may be directly
evaluated to obtain a local curvature approximation. If stability requires additional
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Figure 4.3: This figure qualitatively illustrates the quasi-geometric method as
proposed in section 4.3. The picture to the left shows the interface I'(¢) at
time t = t; and depicts exemplarily the projection nZ’* which approximates
its normal vector field. The picture in the middle shows a possible discrete ap-
proximation I'""* (red lines) of the interface together with its normal vector
field (red arrows) which is cell-wise constant within each cell in the geometry
mesh 7. The outer normal vectors (v in (4.15)) of each of the edge bound-
aries (which are points in two dimensions) are indicated by green arrows. The
picture to the right illustrates the effect of the quasi-geometric method accord-
ing to (4.17). The projected normal field n’;;’* (blue arrows) is integrated along
the discrete interface I'* (red lines) and the edge boundary terms are evalu-
ated with regard to VZ’* (green arrows).

regularization of the curvature, another projection may be applied to obtain a smooth
localized curvature field:
Yoy € Z : (4.11)
k ky k k
(/@h,vh)m — ((V -ny) d(97), vh>Qh —€x (Vﬁh, Vvh>Qh

+ 3 e ((nk Y nlonl), — cox ({0 nlnk]) + 72 (k1. T, =0,

ecl

Here d(¢}) denotes some narrow band function. For the computations with the conser-
vative level set method (which was exclusively used for this curvature approximation),
the narrow band was defined by

6p(x) = O°2(x — B) - ©°/2(1 — B — ). (4.12)

The values for the parameter 8 employed for the computations employed in chapter 5
varied in the range of § = 0.08 — 0.25. For boundary faces, the jumps and averages in
(4.11) may be adapted to enforce homogeneous Neumann boundary conditions.

Notice that in the course of this section, the DG space Z which is used for the spatial
discretization of (ﬁfb was also chosen as the range of all the proposed projection schemes.
While this choice may be debatable, the relative performance of alternative configurations
is beyond the scope of this thesis and was not analyzed systematically.

4.3 Quasi-Geometric Method

A class of geometric methods for the approximation of surface tension in two-phase flow
problems is based on the surface-divergence theorem applied to the surface integral over
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fr = 05 k. For a vector valued function v € (H 1((2))d and a constant surface energy oy,
it holds that

/osnnvds:—/asy‘vds—i— / o,V -vds. (4.13)
r(t) T(t) ar'(t)

Here, V denotes the surface-divergence and v indicates the outer normal of the contact
line y(t) := 0I'(t). The latter is a geometry of co-dimension 2 and v is defined as the
unit vector which is normal to both I'(¢) and ~(¢). When interpreting v as a conforming
test function (i.e. v € (Hl(Q))d), it becomes clear that (4.13) can be directly employed
for a discretization based only on a (necessarily continuous) approximation of I'(¢) but
not explicitly dependent on the level set function. The method is - in this sense - purely
geometric and thus generally suited for surface tracking methods. Naturally, for any
method based on the surface-capturing paradigm, the discrete interface approximation
will directly depend on the level set function and the distinction between geometric and
direct methods is then of a rather taxonomical nature.

However, for the non-conforming DG discretization proposed in section 3.5 on page 62,
the surface-divergence theorem has to be applied locally on the intersection of the discrete
interface I'* with the support of each DG shape function, i.e. on each intersected cell
in 7F (for the aligned mesh discretization in section 3.5.4) or 7 (for the hybrid mesh
discretization in section 3.5.3). Hence, choosing

fp|e = 0 Ke (4.14)

for any given face e € EF with k. denoting its local curvature, the linear-form f*(v) in
(3.38) at time tj is equivalent to

Fw)= Y Enfvho= X~ [0V P v+ [ov vy (@15)
e Oe

ecgf” ecgl®

with
P(n) :=1— nn. (4.16)

However, as the faces Eff’k in I'"* are planar! it holds that x., = 0 for all faces e € Eff’k
and thus for the choice (4.14) the form f*(v) would evaluate to zero independent of the
actual interface I'™*. This is again a consequence of the simple fact that the restriction
of the discrete level set function d)fl (or the resulting discrete interface) to a single cell
in the geometry mesh 7,, does not contain enough information for a sufficiently accurate
approximation of the interface curvature, as was illustrated in figure 4.1 on page 87.
Hence, in analogy to the direct methods, an additional coupling is required to account
for kinks in the discrete interface which coincide with cell-faces.

A coupling, suitable for the UDG method, was described by the author of this thesis
in [29]. However, it heavily relied on averaged normal vectors v of the faces in Ellf’k,

1 This is true only if the sub-triangulation is based on the partition operator and pre-processing in (2.32).
The variant described in (2.30) may in general also entail bi-linear faces with a local curvature greater
than zero. However, this does not influence the principal argument as such a local curvature would
still be based on a purely local evaluation of the level set function and would not account for kinks in
the discrete interface.
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Figure 4.4: The figure illustrates the mod-
ification of the interface normal vec-
tor v at the contact line according to
the geometric identity in (4.21). The
modified interface normal V’f/* cap-
tures the microscopic modification of
the interface contact angle. Notice that
cosap = |P(ngan)v|.

i.e. for a face e € 51@7k all its neighbor faces in Sllf’k must be determined. Due to the local
nature of the sub-triangulation construction of the UDG approach, this information can
not be accessed efficiently. Furthermore, for such partition operators which produce sub-
triangulations that (may) involve (small) jumps in the discrete interface (see section 3.7
on page 82), the robustness of this approach is dubious.

Alternatively, one may follow the principal idea of the direct projection method (4.11)
in section 4.2.2 on page 89 and utilize a projection of the normal field to account for the
non-local properties of the discrete interface. Therefore, at time ¢ = ¢, a normal field
n’,fb’* € (Z)% is obtained via the diffusive Lo-projection defined in (4.10) and the linear

form in (4.15) is reformulated with regard to this normal field as

Fw = % = [a Pt )+ ot ) (.17)
Oe

with .
P(n™*)v
b, PV (4.18)
[P(n**)v|
A simple illustration describing the geometric effect of this modification is shown in
figure 4.3 on page 92.
As P(n**) depends directly on the discrete level set function, the proposed method is
referred to as a quasi-geometric method. Notice that it does not involve any projections
except for n** which is identical to the normal field required for the recompression in the

conservative level set method.

4.4 Surface Tension at the Contact Line

An optimal discretization of the surface tension at the contact line has to account for
the peculiarities of its microscopic nature as delineated in section 3.3 on page 55. First
among these is the local change of curvature induced by the microscopic bending of the
interface enforced by the microscopic contact angle o.?. Revisiting the quasi-geometric

2 The reader is reminded of the fact that for this physical model the interface forces are always supposed
to be in equilibrium, i.e. the microscopic phase-distribution in the vicinity of the contact line adjusts
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realization of the surface tension in (4.17), it is evident that this microscopic distortion
of the interface, which on a macro-scale constitutes an effective discontinuity, may be in-
corporated into the co-dimension 2 integral by an additional modification of the interface
normal v** in (4.18). Assuming that part of the boundary de of a face e € £ coincides
with the discrete contact line

Mk = orh# (4.19)

and using
|P(ngqn) v| = cos ayy, (4.20)

the normal vector on this part of the face boundary may be redefined as

v =P = P(nggn) v o8 de

denyh:k 7

05 np + nyor sin ae. (4.21)
Here, nyqr denotes the normal vector on the touching face of the discrete domain bound-
ary Q" pointing outward of Q". This is nothing but a geometric statement defining v/**
as the vector which is normal to the contact line deN+y* and subtends the angle a.. to the
domain boundary 99". Therefore, a seamless extension of (4.21) to accommodate more
complicated models for dynamic contact angles, e.g. [31] should be possible but exceeds
the scope of this thesis.

Although this extension of the quasi-geometric discretization of surface tension appears
suitable, it was neither analyzed nor implemented for this thesis. The reason for this
omission is twofold: First, it is important to realize that in the sub-triangulation algorithm
described in chapter 2 does not inherently provide neighborhood information for the faces
of the resulting cut-cell meshes, e.g. for a face e € 5{3 it provides neither its neighbors
within £ nor a possibly touching face in Q" or its normal vector. Naturally, such
topological information could be determined in additional geometric computations but
the implementation of such extensions to the UDG sub-triangulation have not yet been
attempted.

Furthermore, while similar numerical schemes based on such essentially discontinuous
curvature approximations at the contact line [31, 71] have been shown to provide stable
results, for the proof of concept attempted in this thesis, this additional possible source
of numerical instability was gladly avoided.

The following alternative numerical approach is based on the modification of the normal
field n** which has been employed for the computation of the curvature in both the
quasi-geometric method in section 4.3 and the narrow band projection in (4.11). It was
mentioned that the projection of n** in (4.11) is actually an elliptic problem and requires
suitable boundary conditions. The principle idea is to use Dirichlet boundary conditions
in order to enforce the contact angle «. at the contact line. For the exclusively considered
case of wet boundaries, i.e. o, = 0, the required boundary condition reduces to

Vx € 90" : 0P = —nggn. (4.22)

on a time scale significantly below the characteristic time scale of the macroscopic system.
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This implies that the modification (4.21) of the interface normal vector v at the contact
line is thus equivalent to

o hoey,, O8O

= P(n"
denyh:k Ccos a s

v + n** sin a. (4.23)

which, in the case of a, = 0, reduces to (4.18). Hence, in this case, all special treatment
of the contact angle is incorporated by the boundary conditions (4.22) and no further
modification is required, neither for the quasi-geometric method nor for the narrow band
projection approach.

In spite of its elegant implementation, the aforementioned method is essentially a reg-
ularization approach. As n®* varies (almost) continuously within Q" the microscopic
contact angle a. is thus not prescribed only at the contact line but varies continuously
within a boundary layer the width of which is determined by the artificial diffusivity e,
of the normal field projection.

4.5 Interface Recompression at the Contact Line

As mentioned in section 3.6.5 on page 75, the projection of the normal vector field n**,
which is the key component of the proposed handling of surface tension at the contact
line, is constructed by the same projection as the normal vector field nf;™ in (3.77) which
was used for the recompression (3.75) of the phase-field required for the conservative level
set method. However, it is not obvious how to choose the boundary conditions for the
diffusive projection of nf;*.

One aim of the recompression (3.75) of the phase-field is to keep the interface - and
thus its (macroscopic) contact angle - unchanged. The most natural boundary condition

for the projection of ni™* is thus

vx € 00" : nh* = Vil (4.24)

which corresponds to the trace values of the source function of the projection. However,
as shown in [106], the convective and diffusive fluxes in the vicinity of the domain bound-
ary may corrupt the original contact angle in the course of the recompression even if
appropriate boundary conditions have been enforced. Their analysis and proposed solu-
tion indicates that the deformation of the (macroscopic) contact angle is due to spurious
fluxes tangential to the interface (which can possibly be alleviated, though not avoided,
when af; (3.75) is used in the recompression instead of a,, (3.79)). However, their derived
numerical scheme is restricted to Cartesian meshes and not easily generalized to unfitted
domain setups.

At this point, no general solution for the UDG approach in unfitted geometries is
proposed. However, for the special case of a, = 0, an interesting result can be achieved
by utilizing the boundary condition (4.22) instead of (4.24) for the projection of nf*. In

this case, all the recompression fluxes in the vicinity of the domain boundary 9Q" are
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distorted in normal direction to the boundary. Hence, all distortions of the contact angle
are such that they will bring the macroscopic contact angle of the discrete interface closer
to the microscopic contact angle a, = 0.

While this in itself is rather a relocation than a reduction of the numerical error, for
setups with high surface tension and generally slow laminar flows in which the macroscopic
contact angle will hardly deviate from the microscopic contact angle, this choice may
result in a significant reduction of the global error introduced in the course of a long
simulation.

As the chosen boundary conditions for the projection of nf;* and n™* are in this case
identical, the (last) normal vector field utilized for the recompression of the phase-field
may thus be recycled for the computation of the surface tension, effectively reducing
the numerical effort involved in the solution of the elliptic problem constituted by the
diffusive projection of the normal vector field.

k,x
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5.1 On the Implementation

5.1.1 Contributors and Contributions

The software which was employed for the computations presented in this chapter was
devised and implemented by the author in the course of his employment at Heidelberg
University in the course of the project Zweiphasenstromung in komplex berandeten Gebi-
eten funded by the Deutsche Forschungsgemeinschaft (BA 1498/8-1). However, Galerkin
type methods do in general entail a high degree of algorithmic complexity and the UDG
approach with its excessive references to multiple hierarchies of geometric objects is un-
usually challenging. Simulation software which is both robust and flexible enough to
fulfill the requirements of academic research can not be written by individual scientists
but must be the result of a collective effort. Hence, the simulation software created by
the author was based on the following external software libraries and contributions by
co-developers:

e The implementation is based on the C++ libraries of the Distributed and Unified
Numerics Environment (DUNE) which provides diverse elementary algorithms and
data structures taylored to the needs of solving partial differential equations. Apart
from the DUNE core-modules which provide low-level functionality, the author co-
developed the high-level discretization module dune-pdelab (stable 1.0) [107] and
realized an interface which allowed him to utilize its high-level functionality in the
context of the UDG approach.

o Together with Christian Engwer, the author developed the software module dune-udg
which realizes the construction of the UDG sub-triangulation and its association
with the final cut-cell meshes. The module enforces a highly flexible and consistent
interface based on a given implementation of the partition operator [24].

¢ The implementation of the partition operator was based on the software module
dune-mc of a volumetric marching-cubes method written by Andreas Nif$ing and
Christian Engwer.

5.1.2 Disconnected Cells

The simulations based on the hybrid mesh approach (section 3.5.3 on page 66, e.g.
(XF, vk = (PM, Pi/[_l’k)) utilized an implementation based on the dune-pdelab dis-
cretization module while the simulations with the aligned mesh method (section 3.5.4 on
page 67, e.g. (XF YF) .= (Pf’k,Py_l’k)) utilized a different (legacy) module for the
discretization, i.e. the assembling of the algebraic sub-problems. While both implemen-
tations are essentially equivalent, they differ with regard to the employed cell-merging
algorithm.

Although both adhere to the description of the merging process as given in section 2.2.4
on page 36, the legacy variant is restricted in the sense that cell-parts which are situated
within the same cell of the fundamental mesh 7; must also belong to the same cell in
the final cut-cell mesh. This implies that for a cell E € 7T; in the fundamental mesh
which is intersected by the interface I (or the domain boundary 99") such that the
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restriction of the interface (or boundary) to the cell does not form a connected manifold
the resulting cut-cell mesh 7F (or 7)) will contain a disconnected cell. Here, the term
disconnected cell indicates that one bounding box B(E) with one corresponding set of
finite element basis functions (i.e. degrees of freedom) will be defined with regard to a
number of disconnected cell snippets simply because these were cut out of the same cell
E in the fundamental mesh.

The dune-pdelab based variant is more flexible but entails a restriction which requires
the number of cells in the final cut-cell mesh 71“ (or T) to be equal to or smaller than
the number of cells in the fundamental mesh 7}, times the number of subdomains Nq. If
this is not the case, the algorithm tries to merge more cells in a greedy approach which
may also produce the aforementioned disconnected cells.

The construction of disconnected cells was tracked in log files and for the legacy variant
the occurrence was restricted to a number of time steps in the test case 2 of the 2D
benchmark problem in section 5.4 where it did not result in any visible or measurable
instabilities. For the dune-pdelab variant the occurrences were restricted to the random
sub-triangulation tests which were exclusively simulated with this variant. The possible
influence of these disconnected cells is discussed in the corresponding section 5.2.

5.1.3 Solving the Algebraic Problems

The non-linear algebraic sub-problems resulting from the discretizations as described in
the previous chapters were solved with Newton’s method including a line search utiliz-
ing the implementation in the dune-pdelab library. All linear algebraic problems were
solved with the stabilized bi-conjugate gradient method with an inexact LU precondi-
tioner independent of whether they resulted directly from the discretization or from the
steps of Newton’s method. For the simulations based on the aligned mesh discretization
(section 3.5.4 on page 67), the special block structure (cell-wise blocking of velocity and
pressure degrees of freedom) of the matrix was used to improve the computational per-
formance of the linear solver by direct inversion of these block matrices. The same was
not realized for the hybrid mesh approach (section 3.5.3 on page 66) where the degrees
of freedom of the velocity and pressure field can not be blocked together as they are
associated with different meshes.

5.1.4 Finite Element Spaces

Although the definition in (3.21) in section 3.4.1 on page 57 indicates that the local finite
element basis was realized by a monomial basis on the reference cube (square) of the
bounding boxes, the evaluation of the associated shape functions may be heavily corrupted
by numerical errors for polynomial orders beyond m < 3. Therefore, the local monomial
shape functions were employed only for polynomial orders of m < 2 (and only for the

m,k

spaces U(P"") and W(P™) which were never used for higher polynomial orders). For the

spaces \II(QT’k) and ¥(Q™), the local shape functions required for W(P™) in (3.21) were
instead defined by the Q™ standard finite element basis for hexahedral (quadrilateral)
meshes (e.g. [83]) on the geometry of the reference cube (square) of the bounding boxes.
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5.2 Random-Domain Sub-Triangulation Tests

Two Subdomain Setup with Random Level Set Function ¢

m=2,L=50p=1 m=2,L=6,0rp=1 m=3,L=6,0rp=1
Errg rate DOF DC/C Erry rate DOF DC/C Errg rate DOF DC/C
Level 1 2.53e-02 0.0 90 0.50 2.44e-02 0.0 130 0.56 9.06e-03 0.0 260 0.56
Level 2 1.68e-02 0.7 560 0.18 9.73e-03 1.5 780 0.48 1.72e-03 2.8 1560 0.48
Level 3 6.17e-03 2.1 2400 0.00 7.69e-03 0.4 3960 0.14 1.41e-03 0.4 7920 0.14
Level 4 1.45e-04 5.8 16550 0.00 8.20e-04 4.6 16940 0.00 8.98e-05 5.7 33880 0.00
Level 5 1.32e-05 3.5 129920 0.00 2.41e-05 5.2 128290 0.00 1.18e-06 6.4 256580 0.00
Level 6 2.38e-06 3.3 1033510 0.00 1.31e-06 -0.2 2067020 0.00
Four Subdomain Setup with Random Level Set Functions ¢F, ¢&
m=2,L=5,0;p=1 m=2,L=6,0;p=1 ‘
Erro rate DOF DC/C Erro rate DOF DC/C
Level 1 2.61e-02 0.0 320 1.00 2.54e-02 0.0 320 1.00
Level 2 2.13e-02 0.3 2560 0.97 2.45e-02 0.1 2560 1.00
Level 3 6.58e-03 2.1 13720 0.21 2.10e-02 0.2 20480 0.98
Level 4 2.93e-04 11.0 32000 0.01 4.57e-03 2.9 99530 0.16
Level 5 2.56e-05 5.1 135270 0.00 4.74e-05 16.4 229360 0.01
Level 6 1.45e-05 2.3 1051990 0.00
Two Subdomain Setup with Periodic Level Set Function ¢
D =2,Sin m=2,L=50p=1 m=2,L=6,0;p=1 m=3,L=6,0;p=1
Errg rate DOF DC/C Errg rate DOF DC/C Erry rate DOF DC/C
Level 1 2.63e-02 0.0 120 0.62 2.39e-02 0.0 160 0.94 1.00e-02 0.0 320 0.94
Level 2 8.34e-03 2.4 500 0.10 1.57e-02 0.9 680 0.27 4.69e-03 1.6 1360 0.27
Level 3 6.54e-03 0.6 1700 0.00 9.67e-03 1.8 1560 0.04 2.16e-03 2.8 3120 0.04
Level 4 3.28e-04 4.2 14050 0.00 3.15e-03 2.1 8050 0.01 5.07e-04 2.6 16100 0.01
Level 5 1.94e-05 3.9 122640 0.00 5.11e-04 2.4 80260 0.00 4.33e-05 3.2 160520 0.00
Level 6 4.70e-05 2.7 1089370 0.00 4.04e-06 2.7 2178740 0.00

Four Subdomain Setup with Periodic Level Set Function ¢!, ¢f

D =4,Sin m=2,L=50p=1 m=2,L=6,o;p=1 ‘
Errg rate DOF DC/C Errg rate DOF DC/C
Level 1 2.63e-02 0.0 320 1.00 2.27e-02 0.0 320 1.00
Level 2 1.97e-02 0.4 2560 0.96 2.11e-02 0.1 2560 1.00
Level 3 3.88e-03 2.7 15710 0.48 2.04e-02 0.0 20430 0.99
Level 4 1.29e-03 2.9 49780 0.05 1.02e-02 1.1 127710 0.59
Level 5 3.77e-04 3.4 146170 0.00 6.80e-03 1.0 437050 0.10
Level 6 4.58e-04 8.1 1184510 0.00

Table 5.1: The tables above show the convergence behavior of the discrete solu-

tions u € P}* of the Laplace problem computed by the interior penalty method
(5.3) on the sequence of cut-cell meshes 7. The cut-cell mesh on level [ is con-
structed for the fundamental meshes 7;! with h = 27! for I € {1,...,L} and
the subdomain geometries described in section 5.2 and illustrated in figure 5.2.
The tables list the Lo-error Errs of the solution, the number of degrees of free-
dom (DOF) and the ratio of disconnected cells to the total number of cells
(DC/C) for different combinations of the polynomial order m and the resolu-
tion 2 = 27F of the geometry mesh 7,,. In general, convergence can only be
achieved on the last few mesh levels and is correlated to the number of discon-
nected cells. Notice that the solutions on the coarsest mesh do already consti-
tute good approximations, compare figure 5.1.

5.2 Random-Domain Sub-Triangulation Tests

In the early development stage of the multi-domain sub-triangulations, test simulations
were performed in order to validate the robustness of the underlying algorithms and
their implementation. Therefore, some worst-case domains were realized based on level
set functions returning (pseudo-)random values. In addition to the validation routine
which checked various consistency conditions for the cell-parts and face-parts of the
sub-triangulation, the resulting cut-cell meshes were employed for solving the Laplace
equation with Dirichlet boundaries corresponding to some well known non-polynomial
analytic solution. This section documents the errors of the obtained approximations and
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Figure 5.1: The pictures show
the discrete solution to the
test problem (5.3) computed
on the coarsest and the finest
mesh level for the periodic do-
main with m = 2, L = 5 and
Nq = 4. Although the dif-

,1 ‘
ference is visible, the coarse
solution provides a good ap-
proximation considering that
it is based on a cut-cell mesh

with five cells, each consisting
of thousands of disconnected Mesh Level 1 Mesh Level 5
patches.

thus delineates both the possibilities and the limitations of numerical upscaling in the
limit of simplistic model equations with extremely complex domain geometries.

Two different choices for the level set functions are considered. In both cases, the
functions are represented by a standard Q! conforming finite element basis defined by
the scalar values in the nodes of the geometry mesh 7, such that for a given node x,,:

¢Z(Xn) =

{o if | fi(xn)| < er, (5.1)

fi(xn) otherwise.

For the first candidate d)f” (random domain), the scalar functions f; are given by a random
number generator which provides unique random numbers in the range [—1, +1] for each
node in 7. For the second candidate (periodic domain) ¢ZP , a periodic function

filxn) = sin( [%n| +i) (5.2)

is used to provide an alternative domain setup. In both cases, large values of the thresh-
old parameter c¢r € [0, 1] increase the likelihood for zero values and thus provoke the
construction of very thin anisotropic cells. The computational domain Q" is chosen as
the three-dimensional unit cube and cut-cell meshes. The candidate level set functions
¢F and ¢ were applied both in a two-domain setup (i € {1}) and a four-domain setup
(1 € {1,2}). For the two-domain setup, the threshold parameter was chosen as eg = 0.3
while for the four-domain setups it was reduced to eg = 0.01 to account for the higher
probability of the occurrence of disconnected cells in the four domain setup. The resulting
domains are shown in figure 5.2 on the facing page.

The merging procedure (see section 2.2.4 on page 36) was applied to each cell E in
the preliminary cut-cell mesh 7* until a minimum size of h? is achieved which corre-
sponds to the cell size in the fundamental mesh. This rather high value is intended to
reduce the number of disconnected cells (section 5.1.2) which are bound to appear in such
pathological geometries.
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Random domains

o ,Z;,
mh

T
A

Periodic domains

L=5 Ng=2 L=6, Ng="2

Level 5

Figure 5.2: The upper pictures show the subdomains on the surface of the do-
main for which the convergence of the Laplace problem according to sec-
tion 5.2 is analyzed. Notice that the subdomains are employed only to provide
a sufficiently ugly mesh while the Laplace problem itself is homogeneous. The
geometries are defined on the geometry mesh 7, with » = 2L,
In the lower pictures, the white lines indicate the edges of the cut-cell meshes
T' on mesh level [ constructed for the fundamental meshes 7;! with h = 27 for
le{l,...,L}.
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Computations were performed for geometry meshes with sz = 27 for L = 5 and L = 6.
In each case, approximate solutions were computed for cut-cell meshes 7* constructed for
fundamental meshes 7;! with h = 27! for [ € {1,...,L}.

With regard to the resulting cut-cell mesh 7%, the broken polynomial space P are
defined in analogy to the definition (3.17) for the two-phase flow problem. The Laplace
model problem is then discretized by the interior penalty method according to:

Yo, € P (5.3)

Z — (Vu, Vup) p +
EeT

> {vull,nlonl), — e ({Vor} nul), + ofp ([ul, [vn]). = 0.

ec&

The jump terms are supposed to incorporate the Dirichlet boundary conditions of the
analytical solution

N

up(x) = (|x[) 2. (5-4)

Notice that this corresponds to a homogeneous diffusion problem on the unit cube with
an extremely ugly mesh as defined by the level set function(s). The convergence behavior
of the Lg-error

Erry = ||lu —upll2 (5.5)

is shown in table 5.1 on page 101. It is evident, that convergence is generally observed only
if 5¢/h < 23 which gives an idea of the limits of numerical upscaling on such pathological
domains. It is noteworthy that there is an apparent correlation between the number of
disconnected cells (see section 5.1.2) and the convergence behavior, i.e. convergence can
be observed not before the ratio of disconnected cells to total cells has fallen sufficiently.
However, as the number of disconnected cells does itself depend on the ratio sc/h, there
is no way to determine whether this is not just a mere correlation. In any case, both
the high rates of convergence always obtained on the last few mesh levels and the total
Lo-errors indicate the consistency of the sub-triangulation.

5.3 Surface Tension

Among the discretization methods for surface tension as described in chapter 4, only the
quasi-geometric method described in section 4.3 on page 92 and the projection methods in
section 4.2.2 on page 89 are directly applicable to the UDG two-phase flow discretization
in unfitted domains. For these methods, a numerical comparison was performed and the
results are presented in the current section.

The definition of a suitable benchmark problem for the comparison of the relative
performance of different methods for the discretization of surface tension is not straight-
forward. A good choice would optimally allow to separate the errors in the approxi-
mation of the surface tension force from other spurious influences of the two-phase flow
discretization. However, while the projection methods provide curvature fields which can
be evaluated at any point of the discrete interface and thus be compared to each other, the
quasi-geometric method is embedded in the discretization of the Navier-Stokes equations.
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Quasi-Geometric Method (g, = 0.01 h2, en = 0.1h2, ¢, = 0.3 h):
APpPerT A=3 A=2 A=1

avg
Level 2 | 2.172e+00 2.179e+00 1.803e4-00
Level 3 2.982e-01 2.9 5.061e-01 2.1 | 1.254e4-00 | 0.5
Level 4 1.111e-01 1.4 1.754e-01 1.5 4.391e-01 1.5

Level 5 2.912e-02 1.9 | 4.996e-03 5.1 1.765e-01 1.3

perr A=3 A=2 A=1
Level 2 | 8.885¢+00 5.892¢+00 1.752e401
Level 3 | 1.102e+01 9.467e+00 1.403e+01 | 0.3
Level 4 | 3.026e+01 2.3250+01 2.176e+01

Level 5 | 3.347e+01 3.143¢+01 4543¢+01

Ivll2 A=3 A=2 A=1
Level 2 | 1.784¢-02 1.758¢-02 2.719e-02
Level 3 | 5.261e-03 | 1.8 | 4.665c-03 | 1.9 | 7.124e-03 | 1.9
Level 4 | 5.699¢-03 5.155¢-03 5.541-03 | 0.4
Level 5 | 5.5200-03 4.896¢-03 | 0.1 | 5.586e-03

Narrow Band Projection Method (e, = 0.04h?, en = 0.4h2, ¢, = 0.6 h, B = 0.08):
APperr =3 =2 A=1

avg
Level 2 | 3.94e+401 4.10e+4-01 4.67e+01
Level 3 | 1.95e+01 | 1.0 | 1.97e+01 | 1.1 | 2.09e4+01 | 1.2
Level 4 | 4.56e4+00 | 2.1 | 4.60e+00 | 2.1 | 4.89e+400 | 2.1

Level 5 3.06e-01 3.9 3.27e-01 3.8 2.49e-01 4.3

perr A=3 A=2 A=1
Level 2 | 9.85¢+00 9.33¢+00 8.14¢+00
Lovel 3 | 3.83¢-01 | 4.7 | 9.43¢-01 | 3.3 | 1.24e+00 | 2.7
Level 4 | 2.91¢+00 3.00e+00 6.80¢+00
Level 5 | 2.62¢+00 | 0.2 | 2.79¢+00 | 0.1 | 8.56e-01 | 3.0
Ivll2 | A=3 A=2 A=1
Level 2 | 2.75¢-03 2.73¢-03 3.60-03

Level 3 | 7.75e-04 | 1.8 | 8.19e-04 | 1.7 | 1.16e-03 | 1.6
Level 4 | 3.33e-04 | 1.2 | 3.18¢-04 | 1.4 | 8.12e-04 | 0.5
Level 5 | 2.09e-04 | 0.7 | 1.06e-04 | 1.6 | 9.10e-05 | 3.2

Global Projection Method (e, = 0.04 h2, e, = 0.4h2, £, = 0.6 h):

AP;;;(t =T) A=3 A=2 A=1
Level 2 | 2.53e+01 2.46e+01 2.15e+01
Level 3 4.46e-01 5.8 7.03e-01 5.1 | 1.18e+00 | 4.2
Level 4 | 1.98e+00 2.02e4-00 2.23e+00
Level 5 6.98e-01 1.5 6.92e-01 1.5 6.17e-01 1.9
pPerr A=3 A=2 A=1
Level 2 4.18e-01 5.97e-01 2.85e+00
Level 3 | 1.05e+00 1.39e+00 6.60e+-00
Level 4 8.25e-01 0.4 9.44e-01 0.6 9.17e-01 2.8
Level 5 8.54e-01 1.05e+00 1.38e+00
[[v]l2 A=3 A=2 A=1
Level 2 | 3.83e-04 4.86e-04 2.61e-03
Level 3 | 1.15e-03 1.17e-03 1.33e-03 | 1.0

Level 4 | 1.68e-04 | 2.8 | 2.11e-04 | 2.5 | 2.30e-04 | 2.5
Level 5 | 1.23e-04 | 0.4 | 1.24e-04 | 0.8 | 8.98¢-05 | 1.4

Table 5.2: Benchmark quantities for the two-dimensional surface tension test
case: Errors of the jump in the average pressure APg7 (5.7), maximum devia-
tion of the average pressure P (5.8) and Lo-norm of the velocity field ||v]|2.
Each value is followed by the rate of convergence in h relative to the previous
mesh level (omitted where it would be negative). For each method, the regu-
larization parameters where chosen to optimize the approximation of the aver-
age pressure jump. Notice that some methods are very sensitive with regard to

the parameter choices, compare tables A.1, A.2, and A.3 in the appendix.
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Quasi-Geometric Method (g = 0.01 h?, e, = 0.1 h2, e, =0.5h):
AP;{;g(t =T) A=2 A=1

Level 2 | 3.93e+00 2.85e+00

Level 3 | 1.65e+00 | 1.3 3.82¢-01 2.9

Level 4 6.28e-01 1.4 5.24e-02 2.9

Perr(t=T) A=2 A=1
Level 2 | 8.800+00 1.40e+01
Level 3 | 3.90e400 | 1.2 | 6.70e400 | 1.1
Level 4 | 5.05¢+00 3.88¢+00 | 0.8
Ivll2(t=T) | =2 A=1
Level 2 | 7.33¢-04 1.60-03
Level 3 | 3.56e-04 | 1.0 | 6.37e-04 | 1.3
Level 4 | 5.23¢-04 5.85¢-04 | 0.1

Narrow Band Projection Method (e, = 0.04 h2, en = 0.4 h?, o, =0.6h, 8 =0.08):
AP (t =T) A=2 A=1

Level 2 | 6.45e+00 2.50e4-00

Level 3 2.27e4-00 1.5 4.67e+400

Level 4 5.28e-01 2.1 1.10e+4-00 2.1

Pt (t=1T) A=2 A=1
Level 2 | 1.65e+01 1.73e+401
Level 3 | 1.37e+00 | 3.6 | 1.58e+00 | 3.4
Level 4 | 1.40e+00 1.88e+00
[[v]2(t =T) A=2 A=1
Level 2 | 2.89¢-03 2.90e-03
Level 3 | 1.66e-04 | 4.1 | 2.13e-04 | 3.8
Level 4 | 6.13e-05 | 1.4 | 7.51e-05 | 1.5

Global Projection Method (g, = 0.04h2, e = 0.4h%, £, = 0.6 h):
APt =T) A=2 A=1

Level 2 | 4.13e+01 6.25e4-01

Level 3 | 8.47e4+00 | 2.3 | 6.43e+00 | 3.3

Level 4 | 2.37e4+00 | 1.8 | 1.78e+00 | 1.9

Pert(t=1T) A=2 A=1
Level 2 | 1.88e+00 1.96e+00
Level 3 9.14e-01 1.0 | 1.15e400 | 0.8
Level 4 | 1.35e+400 2.00e4-00
[[v]l2(t =T) A=2 A=1
Level 2 | 2.15e-04 1.52e-04

Level 3 | 9.75e-05 | 1.1 1.67e-04
Level 4 | 6.03e-05 | 0.7 | 7.42e-05 1.2

Table 5.3: Benchmark quantities for the three-dimensional surface tension test
case: Errors of the jump in the average pressure AP;) " (5.7), maximum devia-
tion of the average pressure P"" (5.8) and Lo-norm of the velocity field ||v]|2.
Each value is followed by the rate of convergence in h relative to the previ-
ous mesh level (omitted where it would be negative). For each method, the
regularization parameters where chosen to optimize the approximation of the
average pressure jump.
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Figure 5.3: The pictures depict the pressure field for each of the three different
surface tension discretization methods on a fundamental mesh with (32 x 32)
cells in the two-dimensional case and (16 x 16 x 16) in the three-dimensional
case with the respective finite element spaces (Z,X,Y) = (Q%, (Q?)2, QL")
in 2D and (Z,X,Y) = (Q? (Q")? Q%) in 3D. In both cases the pressure
fluctuations for the quasi-geometric method are significantly higher than for
the projection methods. In three dimensions, the fluctuations are smaller and
the color range delineates a 2.5% fluctuation in the pressure. On the other
hand, the color range used for the 2D case spans the whole range of pressure
values.

On the other hand, as was shown in [104], the actual quality of the surface force
approximation and thus the magnitude of the resulting spurious velocities (fluxes resulting
from local errors in the surface force) may depend more on the balanced approximation
quality of e.g. the pressure field relative to the curvature field than on the approximation
quality of the curvatures itself.

Therefore, the comparison presented in this section is essentially a full two-phase flow
simulation of a quasi-stationary setup given by an initially spherical (circular) distribution
of phase 1 with radius R = 0.25 (corresponding to subdomain 2;) included in phase 2
(corresponding to Q9), the latter filling the rest of the rectangular domain €2, given by
the unit square (unit cube). The physical parameters of the two fluids were chosen as

QO
p | 100 1000
A (5.6)
o, | 245

which corresponds to the physical parameters of test case 1 of the 2D benchmark setup
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in section 5.4.2.

In order to assess the quality of the discretization of surface tension, the complete two-
phase flow problem is solved for the time interval [0,7]. For the last five time steps of
each propagation, average values of the benchmark quantities are computed. The latter
include the error in the jump of the average pressures in each phase, i.e.

‘(d—l

APET .= R) Is _ ‘Pl - pg‘

avg

— 1
with P; := 4] /pd:l:, (5.7)
“an

the maximum deviation from the pressure average value

P = max
i€{1,2},xeQh

Pi—p| (5.8)

and the standard Lo-norm of the global velocity field. As the setup essentially describes
a stationary equilibrium of the two-phase flow problem, all velocities are considered er-
roneous. Notice that although the deformation of the initial interface in the course of
the propagation is not explicitly tracked, it is expected that such a deformation should
inevitably deteriorate the accuracy of the jump in the average errors.

The test cases are restricted to the conservative level set method. Even so, the three
discretizations depend on a number of regularization parameters the optimal choice of
which is not obvious and difficult to derive from theoretical considerations. In all cases,
these parameters include the diffusivity e, (3.77) for the projection of the normal field
and the bandwidth parameter e, for the recompression of the phase-field (3.72). For
the projection method there is an additional parameter €, determining the diffusivity
of the curvature projection in (4.11). For each of the discretization methods, values for
each of these parameters were hand-picked in order to provide nearly optimal conditions.
Furthermore, the sensitivity in all of these parameters was estimated in additional runs.

For each of the parameter configurations, simulations were performed on a number of
consecutive mesh levels corresponding to the cut-cell meshes 7* determined by the funda-
mental mesh ’7;5 with & = 27" and the geometry mesh 7,, with 2 = 27/=*. The parameters
of the time discretization were chosen to allow a stable simulation with reasonable run-
times (maximum of a few days). The time step size was chosen as At = 1.25-1072 - h
with a total time of T' = 0.375 for the two-dimensional case and At =4 -1072 - h with a
total time 7" = 0.01 for the three-dimensional case.

The virtual time step size for the recompression was chosen as A7 = 0.1h and the
recompression limit in (3.80) was chosen as d, = 0.05 h. The sensitivity of the results on
these two parameters was not analyzed systematically as sample computations indicated
it to be generally insignificant as long as d,, is reasonably small.

The results for the two-dimensional case are presented in table 5.2 on page 105. In each
case, the default parameters were chosen as to optimally reduce the error of the average
pressure jump APZT even if higher values for a respective diffusivity parameter would
have resulted in reduced spurious velocities. Notice that especially the projection methods
are highly sensitive to the choice of the regularization parameters. The sensitivity of each
of the methods was analyzed in additional simulations, see tables A.1, A.2, and A.3 on
page 151 in the appendix.
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The data reveals that the approximation of the average pressure jumps is best for the
quasi-geometric method but seems to deteriorate for A < 2.

Both the quasi-geometric and the global projection method do not show any conver-
gence with regard to the maximum pressure deviation and the spurious velocity norms.
This is not completely unexpected considering that the geometric time step restriction
based on the magnitude of capillary pressure waves [100] requires At o h3/2 while in this
test case the time step was chosen proportional to A. The more remarkable is the fact
that the projection methods appears to result in spurious velocity fields which are gen-
erally small and appear to converge with h — 0. Also the maximum pressure deviations
are significantly smaller for the narrow band projection method than for any of the other
methods. This behavior is shown in figure 5.3.

5.4 Rising Bubble Simulations

A comprehensive quantitative benchmark problem for two-dimensional incompressible
two-phase flow was published in [34] including the computational results of three different
numerical discretizations implemented by three independent groups of scientists. The
simulated flow setup was given by the rise of an initially circular bubble due to buoyancy
in two distinct parameter configurations corresponding to a high and a low capillarity
setup. Other researchers have followed the example and published (at least partially)
the corresponding benchmark results computed with their numerical schemes, e.g. [108,
109, 110, 111]. In the course of this thesis, the aligned mesh discretization (section 3.5.3)
method has been employed to compute the benchmark problem and the corresponding
benchmark results were published in [35]. In sections 5.4.2 and 5.4.3, these computations
are analyzed and compared to computations based on the hybrid mesh discretization
(section 3.5.4).

In section 5.4.4, results for three-dimensional simulations of rising bubbles are pre-
sented. While comprehensive quantitative 3D benchmark problems similar to [34] are
not available for the three-dimensional case, some exemplary computations have been
performed in [102, 112] for setups defined by the dynamic regime according to [113], i.e.
the Morton and E6tvés numbers, and some agreement was found, at least for the general
bubble shapes and the resulting Reynolds numbers.

Unless explicitly defined, the non-physical discretization parameters for all of the fol-
lowing examples were chosen as:

AT =0.1h, §, <0.05, en = 0.1h% &, = 0.01h%, £, = 0.5h, 5 = 0.25. (5.9)

Also, as soon as the finite element space was chosen with a polynomial order equal
or higher than in Q32, the diffusivity parameter for the phase field recompression was
decreased to e, = 0.3 h which reduces the number of required recompression steps. Notice
that this choice turned out to be unstable for finite element spaces of lower polynomial
order. As the simulation in this section were performed before the simulations in the
previous section which were used to manually tune the regularization parameters, the
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Test case Pl P2 Pl M2 g O Re E, pi/p2  pi/pe
1 1000 100 10 1 098 245 35 10 10 10
2 1000 1 10 0.1 098 196 35 125 1000 100

Table 5.4: Physical parameters and dimensionless numbers defining the two test
cases. The E6tvos numbers of both cases differ by an order of magnitude indi-
cating that, in the first test case, the surface tension is more significant com-
pared to the buoyancy forces.

| 1/ | Ny, | N | DOF((P%)?2,PY) | DOF((P?)?,PLY) | DOF((PY)2,P°) | DOF((P')?,PLF)

Level 1 10 200 480 3000 2973 1400 1391
Level 2 20 800 960 12000 11940 5600 5580
Level 3 40 3200 1920 48000 47868 22400 22356
Level 4 80 12800 | 3840 192000 191760 89600 89520
Level 5 | 160 | 51200 | 7680 768000 - 358400 -

Table 5.5: The table above defines the mesh levels, i.e. the sequence of funda-
mental meshes, defined by the mesh resolution h and the number of cells N,
with corresponding time steps size At = T/Nj, (with T' = 3) for which the
2D rising bubble benchmark problem was solved. Furthermore, the number
of degrees of freedom (DOF) for some finite element function spaces (X,Y)

for the velocity and pressure fields are given on all levels. For the time depen-
dent function spaces ((P™)2, P]_t[_l’k)7 these values have been taken from the

simulation of the test case 1 and averaged over [0,T]. Notice that the spaces
(PM)2 PM~1) are actually never used for the computations presented in this
thesis but just give an idea of how many DOF would be required by a standard
discontinuous Galerkin method on the same fundamental mesh 7. It is evi-
dent that a UDG method that employs a reasonable merging procedure will in
average require less DOF and is thus conceptually different and should not be
mistaken for any kind of adaptive refinement method.

choices in (5.9) are close but not equal to the optimal settings presented in section 5.3
and may rather favor the quasi-geometric discretization method for the surface tension.

5.4.1 2D Benchmark

The two test cases considered in the two-dimensional benchmark [34] differ only in the
physical parameters given in table 5.4. The general setup in both cases is given by a
rectangular domain ©Q = (0, 1) x (0, 2) filled by two fluids within the respective subdomains
Q1(t) and Qo(t). At time ¢ = 0, the latter is given by a circle with radius R = 0.25 and
barycenter at (0.5,0.5). In both cases, Qg is filled with the lighter fluid and this two-
dimensional bubble is thus rising from its initial position. No-slip boundary conditions
are applied at the upper and lower boundary while full-slip conditions are applied at the
sides. The simulated time interval ¢ € [0,7] with 7' = 3 of the benchmark examples is
chosen such that the bubble does not reach the domain boundary and thus the numerical
implications of three-phase contact lines need not be considered.

In its original publication, the time development of three benchmark quantities are
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evaluated. These comprise the bubble’s center of mass, its rise velocity

Y _L u X)-€e X
WY (1) = |Q2‘Q/ (t,%) - e, d (5.10)

as well as the bubble’s circularity ¢ which describes the inverse ratio of the bubble’s
surface area (i.e. surface length) to the surface area of a spherical (circular) bubble of the

same volume: o R
T
ci= ——. 5.11
900 (511

In order to estimate the convergence properties of the respective discretization, the
benchmark problems were solved on a series of fundamental meshes 7;11 with (I =1,...,4)
and simulations were performed with a respectively refined time step size At. In the
following, a simulation based on such a fundamental mesh ’7}5 with 52! x 10- 2! cells and
corresponding time step size will be referred to as a simulation on (mesh) level . The
relative refinement of the geometry mesh 7, with 5-2/7 x 10- 242 cells is determined by
the parameter A. The temporal and spatial resolutions on each level are given in table 5.5
on the preceding page together with some reference values for the corresponding degrees
of freedom.

The quantitative nature of the benchmark allows for a meaningful comparison of dif-
ferent numerical methods. A comparison between the standard level set method (SLS)
and the conservative level set method (CLS) is presented in the following section for both
test cases. For the latter, additional simulations were performed in order to estimate the
potential of p-refinement and the impact of different methods for the discretization of the
surface tension.

Naturally, a comparison of the aligned mesh discretization method (section 3.5.4) and
the hybrid mesh discretization method (section 3.5.3) for the Navier-Stokes equations
independent of the discretization methods for the level set equation would have been
highly desirable. Sadly, this was not possible!. Instead, for the presented simulations,
the SLS method was always combined with the aligned mesh approach while the CLS
method was always combined with the hybrid mesh approach.

Although this does not allow a clean evaluation of the respective performance of each
of these discretizations individually, there are factors which indicate that the ability of
the aligned mesh method to represent jumps in the velocity derivatives does not provide
a significant advantage - at least with regard to the chosen benchmark quantities: The
groups which provided the results for the original publication [34] employed, without
exception, methods which regularized both the kink in the velocity field and the jump
of the pressure field at the interface but yet achieved higher-order convergence in the
benchmark quantities.

As the amount of data presented in this section is extensive by any standards, the least
sensitive of the three benchmark quantities, the center of mass, has been dropped and is

1 The implementation of the aligned mesh method was created to realize but a proof of concept for
the fitted case (Q" = Q = Q,) with a structured mesh in which the standard level set method can
be directly applied. For the final implementation which was tailored for the application on unfitted
domains, only the Conservative Level Set Method and the hybrid mesh approach were implemented.
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not considered in the further analysis in order to simplify the extraction of the meaningful
results. However, for some of the simulations presented in the following sections, these
values may be found in [35].

5.4.2 2D Benchmark - High Surface Tension - Case 1

The movement of the rising bubble in test case 1 is illustrated in figure 5.4. Evidently,
the deformations are rather benign and after the initial formation of a dimple on its
down-wind side the bubble eventually takes on a convex shape. It is noteworthy that
these pictures would look almost identical for all mesh levels > 1. This gives already a
crude idea of the principal performance of the presented methods.

The graphs of the benchmark quantities in figure 5.5 on the next page and their
corresponding error norms (over [0,77]) in table 5.7 on page 118 allow a more quanti-
tative assessment of the relative performance of the standard level set method (SLS,
with aligned meshes) and the conservative level set method (CLS, with hybrid meshes)
for two sets of finite element spaces, i.e. (P, (Pf’k)z, Pffl’k) for aligned meshes and

t=0.6 t=12 t=24 t=3.0

[ -
0 lak ] 0.5

Figure 5.4: The graphs in this figure correspond to case 1 of the 2D benchmark
[34]. It shows snapshots of the velocity field and the bubble shape at some
selected times.

The shown solution was computed based on a fundamental mesh 7;, with

80 x 160 mesh cells and the hybrid mesh discretization method based on the
function spaces (Q?, (Q?)?, ik) The relative refinement of the geometry
mesh 7, was chosen as A\ = 3.

It is noteworthy that this case is rather benign and even for the solution on
the 20 x 40 fundamental mesh these pictures would appear almost identical.
Furthermore, the aligned mesh approach and the hybrid mesh approach pro-
duce optically identical results, unlike in the low capillarity case presented in
section 5.4.3.
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Figure 5.5: The graphs in this figure correspond to the data documented in ta-
ble 5.7 on page 118 computed for the 2D benchmark [34]. It shows the average
rising velocity of the bubble and its circularity as functions of the simulation
time for both the aligned mesh discretization and the hybrid mesh discretiza-
tion on mesh levels [ = {1,...,4} - in each case for two sets of finite element
spaces (Z,X,Y") (except for the aligned method of first order for which compu-
tations were performed on mesh levels [ = {2,...,5}). The graphs to the right
show the development of the bubble’s normalized volume (notice the varying
scale of the y-axes).

The aligned method was used in combination with the standard level set
method (including a post-processing for global volume conservation) while the
hybrid method was combined with the conservative level set method.

The solutions were computed on a sequence of meshes based on a fundamental
mesh 7y, with (5-2) x (10x2!) mesh cells. In all cases, the relative refinement of
the geometry mesh 7,, was chosen as A\ = 3 and the time-step size was chosen
as At=27".1.25.10"2.
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Level 3: 40 x 80 cells in 7;, At = 1.5625 - 103

Figure 5.6: The graphs show the time development of the benchmark quantities,

i.e. the bubble’s rise velocity uj and its circularity ¢; together with the normal-
ized bubble volume for different levels of p-refinement. This data corresponds
to the numeric values in table 5.9 on page 120.

All values were computed with the hybrid mesh discretization combined with
the conservative level set method on mesh levels [ = {1,...,3} based on the
fundamental meshes with (2! - 5) x (2! - 10) cells. The surface tension was
discretized with the quasi-geometric method based on a geometry mesh with
(242 . 5) x (212 . 10) and A = 3.

Each graphs shows results for different finite element spaces. The following
table shows the function spaces (Z,X,Y’) corresponding to each label:

P1P1 | (P!, (P1)2, P%")
Q1Q2 | (Q%(QYHY%PYP)
Q2Q2 | (Q%,(Q%%Q}Y)
Q2Q3 | (Q,(@%)%Q}Y)
Q3Q4 | (Q%,(Q%)% Q%)

Especially the results on mesh level 1 give the impression that the step from
Q2Q3 to Q3Q4 does not provide any additional accuracy. This is consistent
with the data in table 5.9.
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uYacc iy azx Cmin [ in
CLS SLS CLS SLS CLS SLS CLS SLS
Level 1 | 0.2619 | 0.2411 | 1.0781 | 0.9406 | 0.9217 | 0.9211 | 2.141 | 1.709
Level 2 | 0.2467 | 0.2421 | 0.9422 | 0.9094 | 0.9029 | 0.9004 | 1.892 | 1.903
Level 3 | 0.2431 | 0.2415 | 0.9227 | 0.9219 | 0.8982 | 0.9009 | 1.924 | 1.900
Level 4 | 0.2421 | 0.2415 | 0.9168 | 0.9211 | 0.8997 | 0.9010 | 1.894 | 1.900
Others 0.2417-0.2421 0.9213-0.9313 0.9011-0.9013 1.875-1.904

Table 5.6: This table documents the obtained results for some reference values
as required by the 2D benchmark in [34]. These include the maximum rise
velocity Viqz of the bubble with corresponding time ¢Y, . of occurrence and

max
the minimum circularity ¢, with corresponding time ¢ ;.. The columns

with title SLS contain values computed with the standard level set method
and the aligned mesh discretization with finite element spaces (Z,X,Y) :=
(P2, (Pi’k)z, Pi_’k). The columns with title CLS contain values computed with
the conservative level set method and the hybrid mesh discretization based on
finite element spaces (Z, X,Y) := (P2, (P?)%, P1").

For each of the reference values, the last rows give the range of values obtained
by the participating groups in [34]. None of the values obtained on the highest
level deviates from this range by more than 0.5%.

(PM_ (PM)2 PY1F) for hybrid meshes with M =2 and M = 1.

The SLS method is generally not volume conservative. As errors in the volume balance
may quickly develop into a bottle-neck for the total accuracy of the computed benchmark
quantities, especially for systems driven by buoyancy, some of the solutions presented in
the original benchmark publication utilized a global post-processing which shifts in each
time step the whole level set function by a constant factor in order to avoid global mass
loss (e.g. [114]). To allow for a fair comparison, a similar procedure was implemented for
the computations with SLS method presented in this thesis. Here, the shift was simply
computed as the ratio of the current volume error to the current surface area of the
bubble which is only an approximation of the correct factor unless the current bubble is
a sphere (i.e. circle). As this process is not iterated, it does not provide exact volume
conservation but works sufficiently well for the benchmark examples.

Here, it must be pointed out that this global post-processing may be quite problematic
if the source of the volume error is strongly localized. The authors of [72] show its
tendency to rescale the solution without improving it.

Notice that the error norms are generally computed with regard to the finest solution
(i.e. the solution computed on the finest mesh level) that was computed with the same
method (with the same finite element basis) as the discrete solution itself (except for
table 5.9 analyzing p-refinement, for which all errors are computed relative to the method
with the highest polynomial order on the finest mesh). This is necessary as the low order
components of the error can not be identified reliably due to the lack of an analytical
solution.

The operator splitting employed to decouple the solution of the Navier-Stokes Equa-
tions from the Level Set Equation limits the convergence of the time discretization to be
of first order (the Strang Operator-Splitting employed for the aligned mesh discretization
could improve this behavior but this has not been verified). However, the results pre-
sented in table 5.10 on page 121 show that the time step sizes were chosen sufficiently
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small to disregard its influence on the accuracy of the computed benchmark quantities.

While this at least simplifies the interpretation of the results, the availability of four
mesh levels allows the estimation of only two numbers for the asymptotic order of con-
vergence in each of the benchmark quantities. Furthermore, as may be recognized by
the time development of the benchmark quantities, the computations on the lowest level
are hardly stable and their estimated convergence from level 1 to level 2 is thus rather
dubious.

Keeping in mind the aforementioned restrictions, some interesting observations can be

made with regard to the data in figure 5.5 on page 113 and table 5.7 on page 118:
First, for mesh levels [ > 1 the solution graphs of the benchmark quantities are generally
indistinguishable from the reference solution for all methods with polynomial order M = 2
(the reference solution corresponds to the finest solution computed with the TP2D code
in [34]). This is not true for the solutions computed with M = 1. In this case, the CLS
method shows a significant deviation from the reference solution even on the finest mesh
level while converging robustly in the same quantities.

The first order (M = 1) SLS simulation became unstable for mesh level 1 and thus no
results have been plotted. However, in this case a simulation on the higher mesh level 5
was still feasible. This was not the case for the CLS method. The recompression of the
phase-field required by the CLS approach takes approximately the same run-time as the
solution of the Navier-Stokes Equations. In contrast, the run-time of the reinitialization
of the distance functions via the Fast-Marching Method as required by the SLS approach
is almost negligible compared to the total run time of typical simulations even when the
projection and interpolation of the UDG basis to and from the geometry mesh are taken
into account.

In [34], the authors tried to establish some reference benchmark values including the
maximum rise velocity uY,, and the minimum circularity ¢y, as well as the time of
their occurrence. Table 5.6 on the preceding page shows the corresponding values for
both the SLS and the CLS method on all mesh levels and compares them with the values
published in the original publication of the benchmark problem. On the finest mesh level
the deviation of the computed benchmark values from the range of values obtained in
[34] is at most 0.5%.

Of the two benchmark cases, this case is more strongly dominated by the surface tension
relative to the driving force of buoyancy as is recognizable by the lower E6tvos number

2
B, .= 2Pl (5.12)

Os

Hence, the results of this case should be more sensitive to the choice of the surface
tension discretization then those of case 2. To estimate the relative performance of the
quasi-geometric method (QGM) (section 4.3 on page 92) and the narrow band projection
method (NBP) ((4.11) on page 92), both methods were applied in combination with
the CLS method and the hybrid mesh discretization based on the finite element spaces
(Z,X,Y) := (Q3,(Q?)?, erk) Furthermore, the impact of the uniform refinement A of
the geometry mesh 7, relative to the fundamental mesh 7, was evaluated. The results
are presented in table 5.8 on page 119.

116



5.4 Rising Bubble Simulations

In spite of the low E&6tvos number, the sensitivity of the benchmark values to the
discretization method for the surface tension is rather low. On the lower levels it is
actually negligible. While on the finest level that was employed for the comparison (level
3) the QGM method is generally superior, the difference between the benchmark values
does not exceed a factor of 3 for any setup. Therefore, considering the generally high
sensitivity of the surface tension discretizations, it is quite possible that a tuning of the
parameters might bring a turn in favor of the projection method. When taking into
account the results of the surface tension comparison in section 5.3, it is less surprising
but still noteworthy that the sensitivity of the benchmark quantities on A is rather low
especially when considering the step from A =3 to A = 2.

The author is not aware of any publication in which p-refinement was applied to and
analyzed for incompressible two-phase flow with surface tension. There are good reasons
to support a decision for low order finite elements for these problems as neither the velocity
field nor the pressure field have high regularity at the interface and some schemes for the
recompression / reinitialization might introduce low order errors into the solution of the
Level Set Equation independent of the employed finite elements. Also, as soon as a phase-
field is involved, the transition bandwidth A, in which the function fades between 0 and
1 introduces a natural bottle-neck for p-refinement beyond a certain order.

However, as long as the velocity field and the pressure are smooth enough within the
two phases individually, a scheme like the aligned mesh discretization which allows to
accurately represent the corresponding interface jumps may yet benefit from the usage of
higher-order finite elements. The same is in principal true for the hybrid mesh approach
although the kink in the velocity field will eventually become a limiting factor. For the
benchmark case 1, these conditions are rather well met and an application of p-refinement
is thus more promising than in case 2 (see figure 5.8) where the bubble is subjected to more
severe deformations. Hence, for mesh levels | € {1,2, 3}, the simulation was performed
for a number of different finite element spaces ranging up to fourth order approximations
for the phase-field function. All simulations were based on the CLS method with the
hybrid mesh discretization.

The corresponding results for the benchmark quantities are presented in figure 5.6
on page 114 and table 5.9 on page 120. With regard to the latter, it is noteworthy
that the transition from the space triplet (Q3, (Q?)?, Q}rk) to (Q*, (Q?)?, Qik) does not
provide any additional accuracy with regard to the rise velocity values while the same
is not true for the circularity. Furthermore, the graphs in figure 5.6 show that the same
transition does not improve the volume error any further. As it involves the increase
of the approximation order for all three field variables, it marks the apparent limit for
p-refinement - at least for the given problem setup.
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1,k 0,k 2,k 1,k 1,k 0,k
luf = uthaello | (P2, (P P07) | (PL(PHEPYY) | (P2 (PYYAPYY) | (PL P PLY

Level 1 | 3.75e-02 6.40e-02 3.53e-02

Level 2 | 6.66e-03 2.5 2.27e-02 1.5 1.26e-03 4.8 7.10e-03

Level 3 | 1.30e-03 2.4 4.91e-03 2.2 4.18e-04 1.6 1.25e-03 2.5

Level 4 4.18e-04 1.6

k 0,k 2,k 1,k 1,k 0,k
luf — upaallz | (P2,(P2)2,PLF) | (L, @), PR | (P2, (@352, PN | (P, (@)% PYY)

Level 1 | 1.61e-02 2.51e-02 1.95e-02

Level 2 | 2.92e-03 2.5 8.82e-03 1.5 7.53e-04 4.7 3.10e-03

Level 3 | 4.79e-04 2.6 1.76e-03 2.3 1.49e-04 2.3 6.20e-04 2.3

”Cl - Cmaz”oo

Level 4 2.17e-04 1.5

Wk N N N N Jk
(P2, (P22, PLN) | (P ()2, PR | (P2 (Y2 PLY) | (P P2 PYR)

Level 1 | 3.20e-02 9.34e-02 4.14e-02

Level 2 | 4.52e-03 2.8 3.77e-02 1.3 1.92e-03 4.4 1.06e-02

Level 3 | 1.53e-03 1.6 8.74e-03 2.1 3.02e-04 2.7 8.91e-04 3.6
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Level 4 5.54e-04 0.7

1,k 0,k 2,k 1,k 1,k 0,k
Hcl_cmaa:HQ (P27(P2)27P+ ) (Plv(P1)27P+ ) (sz(P+ )27P+ ) (Plv(P+ )27P+ )

Level 1 | 1.07e-02 3.37e-02 2.07e-02

Level 2 | 1.62e-03 2.7 1.14e-02 1.6 7.34e-04 4.8 5.71e-03

Level 3 | 4.18e-04 2.0 2.45e-03 2.2 8.72e-05 3.1 3.61e-04 4.0

Level 4 2.45e-04 0.6

Table 5.7: This table documents the asymptotic convergence of the bench-

mark quantities u; and ¢ in [34] computed for mesh levels | = {1,...,4}
for both the aligned discretization methods with finite element spaces

(PM, (P]\f’k)Q, Py_l’k) and the hybrid discretization method with finite el-

ement spaces (PM (PM)M | Pf_l’k) (except for the aligned method of first
order for which computations were performed on mesh levels [ = {2,...,5}).
Notice that the aligned discretization of the Navier-Stokes equations was com-
bined with the standard level set method including a post-processing which
enforced (almost) perfect volume conservation while the hybrid mesh method
was combined with the conservative level set method. The values in these ta-
bles corresponds to the graphs in figure 5.5.

For each combination of method and function space, all errors were computed
with regard to the finest solution obtained by the same method and function
space. The column titles indicate the choice for finite element spaces (Z,X,Y).
The solutions were computed on a sequence of meshes based on a fundamental
mesh 7, with (5-2')x (10x2!) mesh cells. In all cases, the relative refinement of
the geometry mesh 7,, was chosen as A\ = 3 and the time-step size was chosen
as At =271.1.25.1072.
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lluy — ufflloo A=3 A=2 A=1
QGM NBP QGM NBP QGM NBP
Level 1 2.09e-2 2.05e-2 2.16e-2 2.08e-2 2.47e-2 2.37e-2
Level 2 3.46e-3 2.6 3.96e-3 2.4 3.68e-3 2.6 4.01e-3 2.4 4.28e-3 2.5 4.12e-3 2.5
Level 3 5.14e-4 2.8 9.99%e-4 2.0 5.25e-4 2.8 9.86e-4 2.0 4.88e-4 3.1 1.09e-3 1.9
ller — ealloo A=3 A=2 =1
QGM NBP QGM NBP QGM NBP
Level 1 2.39%e-2 2.72e-2 2.45e-2 2.66e-2 3.04e-2 3.10e-2
Level 2 | 3.90e-3 | 2.6 | 3.92e-3 | 2.8 | 3.79e-3 | 2.7 | 3.86e-3 | 2.8 | 4.83e-3 | 2.7 | 3.93e-3 | 3.0
Level 3 6.39e-4 2.6 1.51e-3 1.4 7.16e-4 2.4 1.54e-3 1.3 1.66e-3 1.5 2.29e-3 0.8
lluf —ufll2 =3 A=2 A=1
QGM NBP QGM NBP QGM NBP
Level 1 8.66e-3 8.54e-3 8.92e-3 8.66e-3 1.01e-2 9.82e-3
Level 2 1.37e-3 | 2.7 | 1.66e-3 | 2.4 1.45e-3 | 2.6 1.70e-3 | 2.3 1.55e-3 | 2.7 | 1.82¢-3 | 2.4
Level 3 1.18e-4 | 3.5 | 2.83e-4 | 2.5 1.23e-4 | 3.6 | 2.81e-4 | 2.6 1.08e-4 | 3.8 | 3.12¢-4 | 2.5
lle; — call2 A=3 A=2 A=1
QGM NBP QGM NBP QGM NBP
Level 1 8.84e-3 8.91e-3 8.85e-3 8.81e-3 9.71e-3 9.30e-3
Level 2 1.18e-3 2.9 1.22e-3 2.9 1.14e-3 3.0 1.22e-3 2.9 1.38e-3 2.8 1.36e-3 2.8
Level 3 1.50e-4 3.0 2.81e-4 2.1 1.48e-4 2.9 2.79e-4 2.1 6.10e-4 1.2 6.82e-4 1.0

Table 5.8: The tables above document the sensitivity of the benchmark quanti-
ties in [34] (i.e. the rise velocity uj of the bubble and its circularity ¢;) on the
relative geometry resolution A for both the quasi-geometric method (QGM)
and the narrow band projection method (NBP) for the discretization of sur-
face tension. All values were computed with the hybrid mesh discretization
combined with the conservative level set method on mesh levels I = {1,...,4}

based on the fundamental meshes with (2! -5) x (2! - 10) cells and finite element
spaces (Z,X,Y) := (Q3, (Q?%)?, i_k) The sub-triangulation which determines
the accuracy of the discrete interface I'™* was constructed based on the geom-
etry mesh with (2!72 . 5) x (242 . 10) cells.

All errors were computed with regard to the solution on Level 4 with highest
geometry resolution A = 3. It is noteworthy that the sensitivity of the circular-
ity values is rather higher than for the velocities. Reducing the resolution from
A =3 to A = 2 is quite safe for both discretization methods.
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V= Viefllo | (P, (P1)?) (Q%(QY)?%) (Q%(Q*)?) (Q%,(Q%)?) Q% (Q%)?)
Level 1 | 6.75e-02 1.11e-01 3.77e-02 2.00e-02 2.03e-02
Level 2 | 2.28¢-02 | 1.6 | 1.84e-02 | 2.6 | 6.40e-03 | 2.6 | 2.71e-03 | 2.9 | 2.86e-03 | 2.8

le—creflle | (PLPH%) | (Q%(QH%) | (Q%(Q%?) | (Q%(Q*)%) | (Q%(Q%?)
Level 1 [ 8.74e-02 | | 8.65e-02 | | 2.84e-02 ] | 2.37e-02 ] | 2.41e-02 ]

Level 2 | 3.75e-02 | 1.2 | 2.20e-02 | 2.0 | 3.91e-03 | 2.9 | 3.67e-03 | 2.7 | 1.67e-03 | 3.9
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[V —=vresllz | (P (P")?) (Q%(QY?) (Q%(Q%)?) (Q%(Q%?) (Q*(Q%)?)
Level 1 | 2.42¢-02 121602 | -35.3 | 1.62¢-02 8.14e-03 8.16e-03
Level 2 | 7.78¢-03 | 1.6 | 6.98¢-03 | 2.6 | 2.61e-03 | 2.6 | 8.60e-04 | 3.2 | 1.18¢-03 | 2.8
lle = cresll | (P, (P1)?) (Q%,(QY?) (Q%(Q%)?) Q% (Q%?) (Q*(Q%)?)
Level 1 | 3.20e-02 3.326-02 9.84¢-03 8.79¢-03 7.89¢-03
Level 2 | 1.08¢-02 | 1.6 | 7.63e-03 | 2.1 | 1.22¢.03 | 3.0 | 1.12¢-03 | 3.0 | 5.31e-04 | 3.9

Table 5.9: The tables above list the errors in the benchmark quantities, i.e. the
bubble’s rise velocity uj and its circularity ¢; together with the normalized
bubble volume for different levels of p-refinement for the benchmark problem
in [34]. This data corresponds to the graphs in figure 5.6.
The column titles indicate the employed finite element spaces (Z,X) for the
phase-field and the velocity field. The pressure space Y is always chosen iden-
tical to X but with its polynomial order reduced by one.
All values were computed with the hybrid mesh discretization combined with
the conservative level set method on mesh levels [ = {1,...,3} based on the
fundamental meshes with (2! - 5) x (2! - 10) cells. The surface tension was
discretized with the quasi-geometric method based on a geometry mesh with
(212 . 5) x (2172 . 10) and )\ = 3.
All errors were computed with regard to the solution computed with the high-
est polynomial order, i.e. (Z,X,Y) = (Q%, (Q?)?, ik) on mesh level [ = 3.
Notice that the errors in the circularity improve monotonously with the poly-
nomial order while this is not true for the velocities. In the last step of p-
refinement, the velocity error actually increases.
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v =vrerlloo =2 =3 llc = creflloo =2 =3
At | 2.34e-02 | 4.11e-03 At | 2.98e-02 | 4.15e-03
At/2 | 2.80e-02 | 4.52e-03 At/2 | 3.73e-02 | 5.31e-03
At/4 | 2.84e-02 | 4.25e-03 At/4 | 3.76e-02 | 6.09e-03
At/8 | 2.84e-02 | 4.70e-03 At/8 | 3.66e-02 | 6.27e-03

Table 5.10: All the simulations of the benchmark problem [34] presented in this
section have been simulated for time step sizes small enough to keep the nu-
merical error introduced by the time discretization negligible. For the simula-
tions based on the fundamental mesh of level [ with (2! - 5) x (2! - 10) cells, the
time step size was chosen as At = 27!-1.25-1072.

The table above shows the errors in some benchmark quantities for constant
mesh levels [ = 2 and [ = 3 and decreasing time step sizes.

All values were computed with the hybrid mesh discretization combined with
the conservative level set method and finite element spaces (Z,X,Y) :=
(Q3,(Q%)?, ik) The sub-triangulation which determines the accuracy of
the discrete interface I'"* was constructed based on the geometry mesh with
(2142 . 5) x (212 . 10) cells and A = 2.

Obviously, reducing the time step size does not improve the errors. The fluc-
tuations are likely caused by the varying number of virtual time steps of the
phase-fields recompression.
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5.4.3 2D Benchmark - Low Surface Tension - Case 2

The benchmark test case 2 is remarkable for the fact that among the software frameworks
which were employed for its solution in [34] no clear agreement about the final shape of
the bubble could be established. Generally, in this case the bubble is subjected to stronger
deformations than in test case 1 and the viscous drag at its sides eventually causes the
development of bulges which - depending on the employed solver - either break off or
remain connected and form skirt like extensions.

As may be seen in figure 5.8 on page 125, the application of the SLS and CLS method
respectively does provide the two opposite extremes. While the computations with the
SLS method result in a connected bubble with skirts the length of which exceeds the height
of the bubble’s main body, the CLS method does not develop similar structures. The
pictures show results for two different sets of finite element spaces used in combination
with the CLS method, i.e. (Q? (Q%)?2, QL") and (Q2,(QY)%, Q%"). While for the lower
order approximation, two small satellites break off the bubble’s main body and remain in
its wake for the remaining time of the simulation, the higher-order approximation results
in a permanently connected bubble - though without significant skirt extensions.

Although the large variety of solutions presented in [34] does not allow the determi-
nation of a correct solution, they do agree on the fact that the bubble’s sides do either
develop into skirts or at least keep a pointy profile at the attachment points of the skirt
extensions to the main body. The latter option is also supported by fluid mechanical
considerations, see [113]. The fact that the (potential) break-off points of the bubbles for
the CLS method remain in a rather smoothly bulged shape does at least suggest that the
diffusion introduced by the recompression of the phase-field severely reduces the effective
spatial resolution.

The graphs in figure 5.7 on page 124 show the time development of the benchmark
quantities for both methods on all mesh levels and additionally provide a comparison of

Vmazx t;’naz Cmin e in
CLS SLS CLS SLS CLS SLS CLS SLS
Level 1 0.2622 0.3895 0.7563 0.2997 0.8119 0.4552 2.0188 2.9969
Level 2 | 0.2535 | 0.2503 | 0.7594 | 0.7281 | 0.7514 | 0.4401 | 1.8813 | 2.9906
Level 3 | 0.2520 | 0.2499 | 0.7391 | 0.7266 | 0.7234 | 0.5125 | 1.9031 | 2.7422
Level 4 | 0.2507 | 0.2500 | 0.7391 | 0.7281 | 0.7041 | 0.4903 | 2.0195 | 2.9992
Others 0.2502-0.2524 0.7281-0.7332 0.4647-0.5869 2.4004-3.0000

Table 5.11: This table documents the obtained results for some reference val-
ues as required by the low capillarity 2D benchmark in [34]. These include
the maximum rise velocity v,,q, of the bubble with corresponding time
tyae and the minimum circularity c,;, with corresponding time t¢, ... The
columns with title SLS contain values computed with the standard level set
method combined with the aligned mesh discretization for finite element spaces
(Z,X,Y) := (P2, (Pi’k’)Q,Pi_’k). The columns with title CLS contain values
computed with the conservative level set method combined with the hybrid
mesh discretization for finite element spaces (Z,X,Y) := (Q?, (Q?)?, Qik)
While the agreement for the rise velocity values is quite good for both meth-
ods, the CLS method does not reach similarly low circularity values as the
other groups including the TP2D variant for which a satellite break-off occurs.
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both methods on the highest mesh level with the results obtained by the different groups
in the original benchmark publication [34]. The bubbles computed with the SLS method
develop ever increasing values of their circularity on all mesh levels which corresponds to
the development of skirt like extension. This is in stark contrast to the results for the
CLS method which entails a clear minimum of circularity around ¢t = 2.

The comparison with the results of the other groups reveals a surprisingly good agree-
ment on the rise velocity which shows how much more sensitive the circularity reacts to
changes of the bubble’s shape. These visual conclusions are backed by the quantitative
comparison of the benchmark reference values in table 5.11 on the preceding page.

Less striking but yet noteworthy is the fact that the SLS method develops instabilities
on the lowest mesh level resulting in oscillations of the velocity field. The latter is not
true for the CLS approach which actually provides a surprisingly good approximation of
the bubble’s final rise velocity.

For this benchmark case, the global volume post-processing scheme of the SLS method
is not working well on the finest mesh level and results in an eventual volume error of
2.5%. This may possibly be the result of a rather unfortunate positioning of the bubble’s
thin skirt relative to the edges of the geometry mesh though this is only a guess and has
not been analyzed systematically.
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Figure 5.7: The graphs in this figure correspond to the test case 2 of the 2D

benchmark [34]. They shows the average rising velocity of the bubble and its
circularity as functions of the simulation time for both the SLS and the CLS
method on mesh levels I = {1,...,4}. The employed finite element spaces
(Z,X,Y) are given below the respective figures. The graphs to the right show
the development of the bubble’s normalized volume (notice the varying scale
of the y-axes). The reference solution was chosen as the TP2D solution on the
finest mesh level as given in [34]. In this solution, the bubble experiences a
topological change and emits two small satellites. This behavior is recognizable
in the kink in the development of the circularity value.
The graphs in the third row give a comparison of the results for both the SLS
and CLS method with the results of different groups presented in the original
benchmark publication, each on the finest available mesh level. From the cir-
cularity values it is quite obvious that all methods except the CLS and TP2D
method result in bubble shapes with skirt like extensions.
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Conservative Level Set Method, (Q?, (Q')?, Q:ij)

Figure 5.8: The pictures in this figure correspond to the case 2 of the 2D bench-
mark [34]. They show snapshots of the velocity field and the bubble shape at
some selected times for both the SLS and the CLS method. The employed
function spaces (Z,X,Y") are given in the sub-title of each sequence. The color
indicates the velocity magnitude within the outer fluid and its range goes from
[uf| = 0.0 (blue) to [uf| = 0.5 (red). The shown solutions were computed
based on a fundamental mesh 7;, with 80 x 160 mesh cells. In all cases, the
relative refinement of the geometry mesh 7, was chosen as A = 3. Notice that
these pictures were clipped and do not show the whole domain.
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5.4.4 3D Rising Bubble

While there is no similarly comprehensive two-phase flow benchmark as [34] for the three-
dimensional case, rising bubble simulations in three-dimensional domains were presented
in [102, 112] for comparable fluid-dynamical regimes defined by the E6tvos number

Apgdr?
E, = 2P9=TR (5'13)
Os
and the Morton number in
M, =2, (5.14)
P05

However, neither publication reveals the exact choice of all physical parameters required
by the two-phase model such that any agreement is preconditioned on the validity of the
fluid mechanical model in [113] describing a relationship between the Morton, the E6tvos
and the Reynolds number
~ prdpu®™
wmo

as obtained for the bubble’s final rise velocity u* and diameter dp.

In both publications, the domain diameter was chosen as large as possible to avoid
any influence of the domain boundaries on the simulation results. The results in [102]
suggest that, for the dynamic regimes considered here, the distance between the bubble’s
center and the domain boundary should not be smaller than approximately five times
the bubble radius in order to estimate the final rise velocity with an accuracy of a few
percent relative to the velocity obtained for an unconstrained domain.

As the UDG method was originally developed for simulations in complex geometries,
e.g. porous media, the current implementation is restricted to truly structured meshes

Re (5.15)

D-Q2 | DQ3 | EQ2 | EQ3 | S-Q2 | S-Q3
Domain Q" 0.02 x 0.04 x 0.02
Bubble Radius rp 0.005
Fund. Mesh Tj, 16 x 32 x 16
Geom. Mesh 7. 2TF A o 95 FA  24FA
Geom. Mesh Res. A\ 1 2 1 2 1 2
Phase Field Space Z Q2 Q3 Q2 Q3 Q? Q3
N.S-Space (X, V) | (QL,QY) | (@@ [ (@1,Q}" [ (@ a1 | @.Q%" [ (@%Qlh
Liquid Density p; 1000
Gas Densitypy 10
Liquid Viscosity p; 0.566466 [ 0.318547 [ 0.1
Gas Viscosity (g 0.001
Surface Energy o5 0.01 0.1 0.01
Morton Number Mo 103 0.1 0.97119
Eo6tvos Number Eo 97.119 9.7119 97.119
Dynamic Regime Dimpled Bubble Ellipsoid Bubble Skirted Bubble

Table 5.12: The table above describes the setups for the six 3D simulations pre-
sented in section 5.4.4. All are based on the same fundamental mesh although
the relative refinements of the geometry mesh are adapted to the employed
finite element spaces. The setups describe three different dynamic regimes ac-
cording to [113], see figure 5.9.
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Figure 5.9: In [113], bubble shapes are associated to dynamic regimes given by
the Reynolds number Re, the Morton number M, and the E6tvos number E,
as indicated by the left diagram (copied from [115]). The pictures to the right
show the results of simulations performed in [102] and correspond well to the
results presented in figure 5.11.

without hanging nodes and does therefore not support any kind of A-refinement. Sadly,
the run-times encountered for the structured meshes entailed a severe limit for the domain
size relative to the bubble radius and for the simulations presented in this section the
width of the rectangular domain could not be chosen to be more than twice the size of
the initial bubble diameter.

In order to verify the applicability of the presented UDG scheme to three-dimensional
problems, six simulations were performed, two for each of the three dynamical regimes
in [112]. The latter are defined via the Morton, and E6tvos numbers according to [113],
see figure 5.9. The three setups simulated and analyzed in [112] describe a sub-set of
the simulations performed in [102] but at least allow a comparison of our results to two
independently obtained reference values. For each dynamic regime two simulations were
performed on the same fundamental mesh realizing one level of p-refinement. In all
cases, the conservative level set method was used in combination with the hybrid mesh
discretization and the surface tension was discretized with the narrow band projection
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Figure 5.10: The graphs show the time development of the rise velocity of the
bubble’s center of mass as well as its circularity and its normalized volume for
all simulation setups given in table 5.12 on page 126.

scheme. Comprehensive information about the domain, the finite element spaces and the
physical parameters for all setups is given in table 5.12 on page 126.

Notice that the time step sizes for all simulations were chosen based on a heuristic
criterion which adapts the time step size with regard to a CFL-like condition on the
Navier-Stokes velocity field and the temporal resolution of capillary pressure waves ac-
cording to

(po + p1)h3

At <
- Aoy

(5.16)
as presented in [100]. The term CFL-like condition was chosen to indicate that the
employed Navier-Stokes discretization does not require a CFL condition due to its implicit
time stepping method. This condition is only required for the explicit solution of the
level set / phase-field transport equation. However, the time step size of the latter was
generally adapted whenever the time step size of the Navier-Stokes equation exceeded
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Figure 5.11: The pictures to the left show the final bubble shapes for the simula-

tions S-Q3, D-Q3 and E-Q3 corresponding to the highest approximation order

for each of the three dynamic regimes. The pictures to the right show the pro-
file of the bubbles including the pressure field. They illustrate how accurately
the UDG approach captures the sharp jump in the pressure field across the

interface.
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t=0.09 t=0.14

0 [uf| 0.25

Figure 5.12: The pictures above show snapshots of the velocity field and the
bubble surface for the simulation S-Q3. It is quite obvious that the interaction
of the velocity field with the domain boundary is significant.

D-Q2 D-Q3 E-Q2 E-Q3 S-Q2 S-Q3
wY)-1072 | 6.874+0.05 | 7.024+0.03 | 11.094+0.08 | 11.16 £0.04 | 16.14+0.18 | 15.79 £ 0.25
(At) 1.4895e-03 1.7532e-03 9.7085e-04 1.1090e-03 7.4297e-04 8.8260e-04
max At | 2.8682e-03 3.2497e-03 1.2530e-03 1.2530e-03 2.4576e-03 2.7300e-03
Ng 89 70 125 109 175 147
Ny /Ny 3.21 4.46 3.32 5.22 3.77 4.89
Tr 8.7 days 17.1 days 12.6 days 31.8 days 18.4 days 49.6 days
dp 0.0099 0.0100 0.0102 0.0104 0.0115 0.0123
Re(<uy>) 1.204+0.01 | 1.24+0.01 3.55 +£0.02 3.64 £ 0.01 18.56 £0.20 | 19.42 4+0.30
Reg [102] 1.7+ 0.1 4.3+£0.1 18.0+0.1
Rer [112] 2.03 4+ 0.01 5.60 +0.01 18.0 £ 0.1
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Table 5.13: To allow a quantitative comparison the rise velocity u¥ of the bub-
ble’s center of mass was averaged over the interval [0.8,1.2] to compute <uy>
Reynolds numbers Re(<uy>) were computed based on this averaged velocity.
For comparison, the corresponding values presented in [102, 112] are given for
each dynamic regime. However, notice that these numbers were obtained for
different domains.

In addition to the Reynold numbers, the table above shows the average time
step size (At), the maximum time step size max At, the number of time steps
Ny, and the average number of recompression steps per time step N,./Ny.

The given run-times Tg indicate the computation wall-time required for the re-
spective simulation for the time interval [0,0.14] based on an Intel(R) Xeon(R)
CPU E7- 4870 @ 2.40GHz processor. Notice that for the X-Q3 setups eight
threads and for the X-Q2 setups four threads were employed for the assem-
bling of the linear systems. Otherwise, the computations were performed se-
quentially. As the workload of the compute servers was not monitored and not
all parts of the code were optimized, these numbers can only give a coarse idea
of the principal performance.
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the CFL limit of the transport. In such a case, multiple time steps were performed such
that their sum is equal to the step size of the Navier-Stokes time step while individually
conforming to the CFL condition (with some safety factor).

Although there is no data for comparison, the benchmark quantities which proved
useful for the 2D setups in sections 5.4.2 and 5.4.3, i.e. the bubble’s rise velocity uY,
its circularity ¢ and the volume error, were computed also for the three-dimensional
simulations and are presented in figure 5.10 on page 128.

While the graphs hold no principal surprised, they reveal that the rise velocity is
rather robust with regard to volume errors. This observation is most striking in the
S-Q2 simulation in which the bubble, at the end of its rise, has endured a 20% mass
loss while its rise velocity is still the same (even a bit higher) as in the S-Q3 simulation
with a mass loss of approximately 5%. The relatively higher volume errors of the S-QX
simulations are supposedly caused by the close proximity of the interface to the domain
boundary. This configuration causes a distortion of the normal field whose diffusive
projection is subject to boundary conditions which in this case were chosen such that the
(high density) liquid phase was the wetting fluid. Notice that this volume loss suffered
by the CLS method is substantially different from the volume loss typically encountered
in level set methods. The phase-field itself being transported in a perfectly conservative
way (up to floating point precision) implies that the lost phase volume may reappear
as soon as the circumstances allow it, e.g. the bubble distances itself from the domain
boundary again. Obviously, this principle advantage is not quite so helpful under the
given circumstances.

The final bubble shapes for each dynamic regime are given in figure 5.11 on page 129
and correspond well to the principal forms predicted in [113]. For comparison, the shapes
obtained by the simulations in [102] are given in figure 5.9 on page 127. While the visual
agreement is not bad, the pictures do not allow and quantitative statement.

In order to obtain some quantitative measure of agreement, the bubble’s rise velocity uY
was averaged over the interval [0.08,0.12] to obtain <uy> The corresponding Reynolds

Re — prdp <uy>
1

are given in table 5.13 on the facing page together with some additional statistics and
compared to the results obtained in [102, 112]. Generally, these numbers do not agree
too well. Especially in the dimpled regime, the Reynold numbers obtained by the D-
QX simulations deviate about 50% from the corresponding numbers of the other groups,
though this observation is somewhat alleviated by the fact that those values deviate
approximately 20% from each other. On the other hand, for the ellipsoid bubbles, the
values computed in the E-QX simulations and in [102] are rather similar compared to the
one obtained in [112]. For the skirted bubble, the results of the other groups agree within
their accuracy of 0.5% while values corresponding to the simulations S-QX deviate up
to 7%. Notice that in this last case the bubble diameters dpg reach more than half the
column width of the domain 2 used in S-QX. In these circumstance, on may pose the
question of how meaningful the definition (5.17) can still be in this situation.

numbers

(5.17)

When considering the pictures in figures 5.11 on page 129 and 5.12 on the facing page
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it becomes obvious that the velocity field in all cases is still significantly influenced by
the domain boundary for which full slip boundary conditions were applied. These bound-
ary interactions may very well account for a big part of the observed deviations in the
Reynolds numbers. However, considering that the simulations in [102, 112] were per-
formed on different domains with (possibly) different physical parameters, the obtained
agreement is rather satisfying.

5.5 Capillary Tube

The examples given in the following two sections are intended to illustrate the ability
of the UDG approach to handle a moving contact line and enforce a microscopic con-
tact angle. As discussed in section 3.3, the simulation of multi-phase contact lines is
yet impeded by multiple modeling issues. Numerical simulations appear to be the key
technology for the development of new modeling approaches and the calibration of any
entailed parameter values. However, due to the generally high numerical effort involved
in any two-phase flow problem, these simulations must be performed by robust and op-
timized implementations.

The following examples are intended to give a proof of concept which show the principal
applicability of the UDG method for the simulation of contact line dynamics. Therefore,
each of the modeling issues described in section 3.3 is handled in the simplest way possible:

The modeling of dynamic contact angles, as realized in e.g. [31, 71, 72], is avoided and
instead a constant microscopic contact angle of a. = 0 is enforced. This choice corre-
sponds to the case of an initially wet domain boundary that is covered by a microscopic
layer of the wetting fluid. This case is not only of tremendous practical relevance but
generally poses a challenge for any particle based discretization method.

The kinematic paradox (the local suspension of the no-slip Navier-Stokes boundary
condition) is here resolved via global Navier-Slip conditions, i.e. a tangential drag pro-
portional to the tangential velocity. The corresponding Navier-Drag coeflicient is chosen
as Oy = 1000 which exceeds the viscosity values by at least two orders of magnitude.
The physical parameters and the regularization parameters employed for the following
examples are set equal to those in case 1 of the 2D benchmark, i.e. p; = 1000, ps = 100,
w1 =10, po =1, and o5 = 24.5 (see 5.9 for regularization parameters). Here, the denser
fluid is chosen as the wetting fluid and no gravity force is applied in any of the following
tube examples.

The tube is supposed to be closed and impenetrable at all boundaries which is realized
via global Navier-Slip conditions. As no gravity force is applied, the surface tension forces
are the only driving forces and the interface is expected to be rapidly deformed into a
semispherical (semicircular) shape which touches the domain boundary tangentially and
thus realizes the microscopic contact angle on the macro-scale. In this final stationary
configuration (after some relaxation time), all remaining velocities must be considered as
spurious velocities resulting from errors in the discretization of the surface tension or the
force caused by the microscopic contact angle.

In both the two-dimensional and the three-dimensional example, the interface will be
initially plane and enclose an angle of 90° with the domain boundary on the macro-scale.

132



5.5 Capillary Tube

Quasi-Geometric Method (QGM) Narrow Band Projection Method (NBP)

| .
0 ) 1

Figure 5.13: The pictures above show the final phase-field for the two-
dimensional capillary tube example as obtained by both methods at time
t = 10 on the highest mesh level 4. They illustrate how the phase-field reaches
into the non-wetting phase in order to realize a macroscopic contact angle
close to the microscopic contact angle o, = 0. This is a possible source of
errors in the volume balance especially if amplified by spurious velocities along
the contact line as it happened for the QGM method.

QGM NBP

Th Ny, (At) max At Np. (At) max At
Level 1 4 x 16 1400 7.143e-3 | 7.472e-3 1400 7.143e-3 | 7.472e-3
Level 2 8 x 32 3800 2.632e-3 | 2.642e-3 3800 2.632e-3 | 2.642e-3
Level 3 16 x 64 10800 | 9.259e-4 | 9.340e-4 | 10800 | 9.359e-4 | 9.340e-4
Level 4 | 32 x 128 | 30333 | 3.298e-4 | 3.302e-4 | 30318 | 3.229e-4 | 3.302e-4

Table 5.14: The table above provides definitions of all four mesh levels employed
for the simulation of the two-dimensional capillary tube example. For each
simulation performed with the quasi-geometric method (QGM) and the narrow
band projection method (NBP) the average time step size and the maximum
time step size are given respectively. In all cases the geometry mesh 7,, was
chosen according to 2* » = h with A\ = 3.

While a phase-field may easily represent this state, the final configuration in which the
interface intersects (almost touches) the domain boundary at a very small angle (which
due to the piecewise-linear nature of the edges in the sub-triangulation is always bigger
than zero) requires the phase-field to extent a bit into the non-wetting phase in order
to realize a possibly small contact angle. This effect may result in volume errors, see
figure 5.13.

These decisions result in a physical model which will be employed to compare dif-
ferent methods for the discretization of surface tension, namely, the quasi-geometric
method (QGM) from section 4.3 and the narrow band projection method (NBP) from
section 4.2.2. All simulations presented in this section are based on the conservative level
set method used in combination with the Hybrid Mesh approach.
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Quasi-Geometric Method (QGM)

|
0

Narrow Band Projection Method (NBP)

|
250

pressure

Figure 5.14: The pictures above show the warped pressure field obtained for the
two-dimensional capillary tube example for both methods at ¢ = 0.5. The
oscillations are more pronounced for the QGM approach and largest at the
contact points of all three phases (notice that the warp exceeds the picture

height).
Err(A(P)) Err(A) lluplloo
QGM NBP QGM NBP QGM NBP
Level 1 29.86 (24.38%) 1.63 (1.33%) 0.140 (22.26%) 0.109 (17.37%) 0.603 0.058
Level 2 19.08 (15.57%) 2.24 (1.83%) 0.109 (17.35%) 0.123 (19.49%) 1.004 0.034
Level 3 | 5.65 (4.62%) | 1.61 (1.32%) | 0.046 (7.20%) | 0.033 (5.20%) | 0.826 | 0.021
Level 4 0.48 (0.39%) 5.00 (4.08%) 0.017 (2.70%) 0.007 (1.15%) 0.714 0.012

Table 5.15: To allow a quantitative assessment of the two-dimensional capillary
tube example, the values for the jump of the averaged pressures in each phase,
the interface area (length), and the infinity norms of the velocity field as
shown in figure 5.16 were averaged over the time interval ¢ € [4,10] and their
deviation from the reference values is listed in the table above for all mesh
levels (the relative deviation is always appended in parenthesis). The simu-
lations were performed for both the quasi-geometric method (QGM) and the
narrow band projection method (NBP) for the surface tension discretization.
Reference values were computed according to the expected final state of the
interface given by a semicircular shape with a pressure jump according to the
Young-Laplace law. For the given setup, this corresponds to an interface area
(length) of A = 0.27 ~ 0.628 and a pressure jump of AP = 0,/0.2 = 122.5.

5.5.1 Capillary Tube 2D

The simulations presented in this section are based on a two-dimensional computational
domain 0.4 x 1.6. Initially at time ¢ = 0, the interface is horizontal and positioned such
that it intersects the domain boundaries at (0,0.4) and (0.4, 0.4).

In order to observe a convergence behavior, the simulations were performed for a se-
quence of fundamental meshes corresponding to mesh levels defined in table 5.14 on the
previous page which also gives a listing of the employed time step sizes. The latter were
chosen according to the heuristic described in section 5.4.4. For this two-dimensional
case, the finite element spaces (Z,X,Y) := (Q?, (Q?)?, }rk) were used exclusively in all
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Quasi-Geometric Method (QGM) Narrow Band Projection Method (NBP)
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Figure 5.15: The pictures above show snapshots of the pressure and the y-
velocity field for the two-dimensional capillary tube example. This corresponds
to the simulation performed on mesh level 4 according to table 5.14. The ve-
locity arrows were scaled with a factor of 0.2. The pictures are clipped from
above and below and show only a part of the total computational domain. No-
tice that both the pressure and the y-velocity field can exceed the color ranges.
See figure 5.16 and table 5.15 for a more quantitative assessment.
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Quasi-Geometric Method (QGM)

Narrow Band Projection Method (NBP)
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Figure 5.16: The graphs show the time development of some reference quantities
including the normalized volume of the non-wetting phase Q4, the interface
area (length) of the discrete interface ', the jump of the average pressure in
each phase and the infinity norm of the velocity field. The reference value is
assumed to be given by the expected final state of the interface, i.e. a semicir-
cular interface with a pressure jump as determined by the Young-Laplace Law.
Compare also with the results in table 5.15.
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simulations.

The low positioning of the interface relative to the domain height serves to not arti-
ficially reduce the possible impact of the aforementioned source of volume error at the
contact line, see figure 5.13.

The principal time evolution of the fluid phases may be observed in figure 5.15 which
shows snapshots of the interface position including the corresponding velocity and pres-
sure fields. Most prominent are the significantly higher spurious velocities observed for
the quasi-geometric surface tension discretization which are by an order of magnitude
higher than for the simulations utilizing the narrow band projection method. While
the tests in section 5.3 revealed that the quasi-geometric discretization approach does in
general produce more spurious velocities, one should point out that the piecewise-linear
discrete interface I'"* can in principle not realize the microscopic contact angle o, = 0
on the macro-scale. This deficit could be more problematic for the quasi-geometric ap-
proach than for the projection method. However, this can not be said with certainty
without considering simulations with finite contact angles «. although the localization of
the velocities and the oscillations in the pressure field as given in figure 5.14 are quite
suggestive.

The graphs in figure 5.16 on the facing page show the time development of the volume
(of the non-wetting phase), the jump of the average pressures, the surface area (length)
of the discrete interface and the infinity norm of the velocity field for all four mesh levels.

They reveal that, in spite of the visual impression given by figure 5.13, the error in the
volume balance is just about a factor of two and its time development does not indicate
any dramatic changes.

While the jumps of the average pressures shows a rather robust convergence behavior
for the QGM method, this is not the case for the NBP method, though it provides better
approximations on the lower mesh levels (notice that this effect may yet be the result of
poorly tuned regularization parameters).

These visual impressions are supported by the data in table 5.15 on page 134 which
lists the errors in the pressure jump and the interface area relative to the analytically
expected values (Young-Laplace law) for all four mesh levels.

QGM NBP
Th Ny, At max At N, At max At
Level 1 8x4x4 81 1.235e-2 1.494e-2 81 1.235e-2 1.494e-2
Level 2 16 x 8 x 8 208 | 4.808e-3 | 5.284e-3 | 200 | 5.000e-3 | 5.284e-3
Level 3 | 32 x 16 x 16 | 518 | 1.695e-3 | 1.868e-3 | 540 | 1.852e-3 | 1.868e-3

Table 5.16: The table above provides definitions for all three mesh levels em-
ployed for the simulation of the three-dimensional capillary tube example. For
each simulation performed with the quasi-geometric method (QGM) and the
narrow band projection method (NBP) for the discretization of surface tension,
the average time step size and the maximum time step size are given respec-
tively. In all cases the geometry mesh 7,. was chosen according to 2 sr = h.
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Quasi-Geometric Method (QGM) Narrow Band Projection Method (NBP)
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Figure 5.17: The snapshots above show the pressure field on a cross-section
through the cylindrical tube together with the discrete interface T"* (gray)
and the arrows for the velocity field. The latter are scaled by a factor of 0.1
and colored red if the z-component is positive and blue otherwise.
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Quasi-Geometric Method (QGM) Narrow Band Projection Method (NBP)

t =0.05
t=0.15
t=20.3
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Figure 5.18: The pictures above show three of the four cylinder quadrants filled
by the wetting fluid. The colors correspond to the z-velocity component (no-
tice that the actual values may exceed the color range). Notice that, although
for the QGM method the wetting fluid reaches further into the domain of the 139
non-wetting fluid, this extension is actually a very thin film hardly contribut-
ing to the volume balance.
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Figure 5.19: The graphs show the time development of some reference quantities
including the volume of the non-wetting phase Q%, the interface area (length)
of the discrete interface I, the jump of the average pressure in each phase
and the infinity norm of the velocity field. The reference value is assumed to
be given by the analytical values as would result from the expected final state
of the interface, i.e. a semicircular interface with a pressure jump given by the
Young-Laplace law. Compare also with the results in table 5.17.
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5.5.2 Capillary Tube 3D

The two-dimensional capillary tube example in the previous section was applied on a fit-
ted rectangular domain, i.e. Q = Q", spanned by the fundamental mesh. However, for the
three-dimensional case, a cylindrical tube 2 of radius 0.2 was cut out of a rectangular do-
main with extent Q, = (0,0.4) x (0,0.4) x (0,0.8). This ensures that the sub-triangulation
at the contact line is actually constructed with the recursive sub-triangulation scheme
described in chapter 2. Unlike the two-dimensional case, for which this construction
holds little challenges, the three-dimensional reconstruction may even entail small dis-
continuities in the interface as described in section 3.7 on page 82. The discretization of
surface tension should react rather sensitively to such disturbances and thus the following
examples also serve as a validation of the quality of the sub-triangulation.

The initial interface T at ¢ = 0 is the planar set of all points (z,y,0.2) located within
the approximation Q" of the cylindrical domain.

The definition of the mesh levels for the underlying fundamental meshes and the listing
of the average and maximum time step sizes are given in table 5.16 on page 137 anal-
ogous to the two-dimensional case. In all cases, the finite element basis (Z,X,Y) :=
(Q?,(QY)?, Qg;k) was used exclusively. The geometry mesh 7,, was generally chosen ac-
cording to 2 s = h.

The system dynamics is visualized by the snapshots of the pressure field in figure 5.17
on page 138 and the z-velocity field in figure 5.18 on page 139. In analogy to the two-
dimensional case, the spurious velocities occurring for the quasi-geometric method dis-
cretization (QGM) of surface tension are up to two orders of magnitude higher than for
the narrow band projection method (NBP). However, while in the two-dimensional case
these disturbances did not appear to have any significant influence on the position and
form of the discrete interface, here they apparently introduce a slip of the interface into
the non-wetting fluid.

However, these deformations of the interface result only in a thin layer situated slightly

Err(AP) Err(A) [lup || oo
QGM NBP QGM NBP QGM | NBP
Lovel 1 | 41.94 (17.12%) | 2.68 (1.09%) | 3.750-2 (14.93%) | 2.250-2 (3.94%) | 1.137 | 0.245
Level 2 | 2.30 (0.94%) | 2.97 (1.21%) | 4.620-2 (18.41%) | 2.400-2 (9.55%) | 1.218 | 0.095
Lovel 3 | 7.41 ( 3.02%) | 7.20 (2.94%) | 13.76e-2 (54.75%) | 0.470-2 (1.86%) | 1.045 | 0.042

Table 5.17: To allow a quantitative assessment of the three-dimensional capil-
lary tube example, the values for the jump of the averaged pressures in each
phase, the interface area (length), and the infinity norms of the velocity field
as shown in figure 5.16 were averaged over the time interval ¢ € [0.6,1.0] and
their deviation from the reference value is listed in the table above for all mesh
levels (the relative deviation is always appended in parenthesis). All simula-
tions were performed for both the quasi-geometric (QGM) and the narrow
band projection method (NBP) for the discretization of surface tension. Ref-
erence values were computed according to the expected final state of the in-
terface given by a semicircular shape with a pressure jump according to the
Young-Laplace law. For the given setup, this corresponds to an interface area
(length) of A = 270.2% ~ 0.251 and a pressure jump of AP = 20,/0.2 = 245.
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above the domain boundary. As the microscopic contact angle of a. = 0 corresponds to
a perfectly wetting boundary, this rather awkward and unexpected shape of the interface
does not truly correspond to an error in the approximation of the underlying model: If
the boundary is assumed to be covered by a microscopic layer of the wetting phase, it does
not matter whether the discrete interface of the computed approximation is positioned
slightly above the domain boundary (i.e. inside of the domain) or slightly below it (i.e.
outside of the domain). However, the numerical implications of these sticky interfaces for
the volume balance and the resulting spurious velocities appear to be quite problematic.

The graphs in figure 5.19 reveal that the vast error in the surface area of the discrete
interface (eventually over 50%) does not correspond to similarly high error in the ap-
proximation of the jump of average pressures which is similarly good for both methods
(at least on the finest two mesh levels). It should be pointed out that according to the
aforementioned argument, the actual computation of the error in the surface area is not
very robust (i.e. fair to the QGM method) as it does not distinguish those sticky parts of
the interface which are effectively positioned on the domain boundary.

The assessed errors of the time averaged interface area and pressure jumps are given
in table 5.17 on the preceding page. Leaving aside the errors in the interface area, the
data is different from the two-dimensional case in that the QGM method does not show
a similarly robust convergence behavior in the jump of the average pressures. Here,
the NBP method again provides good (< 3%) approximations on all mesh levels but no
observable convergence. Whether the apparent offset is due to sub-optimal regularization
parameters or an unavoidable result of the regularization (possibly in the projection of
the normal vector field nf:;*) can not be determined based on the available data.

5.6 2D Experiments on Pore-Geometries

The UDG method, as originally presented in [18, 67], was designed for the application
in complex geometries encountered in both natural and industrial porous media. In [20],
an application of laminar and stationary Stokes flow to a pore-geometry obtained via

Description UDG Sim. | Sim. [116] | Exp. [116]

Model length 400 400 30 mm

Model width 400 400 30 mm

Obstacle diam. 27 27 2 mm

Contact angle a. 0° 33° < 70°

Wetting fluid viscosity u1 30 0.3 3.6-1073Pa-s
Non-wetting fluid viscosity p2 | 30 0.3 1.9-107°% Pa-s
Wetting fluid density pi 3.0 3.0 1.10-10% kg - m~3
Non-wetting fluid density p2 3.0 3.0 1.2kg -m~3
Surface energy o, 0.7 0.7 6.2-107?N-m™*

Table 5.18: The parameters listed above describe the hydraulic models employed
for the simulation on a 2D pore-geometry in section 5.6. For the implemented
UDG approach, the fluid viscosity values had to be further increased in order
to allow a stable time stepping. The employed implementation was restricted
to a microscopic contact angle a,. = 0.
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Figure 5.20: The snapshots above show the velocity field (only in wetting phase),

the pressure field and the phase-field distribution of the pore-geometry simu-

lation described in section 5.6. The pictures to the very right show the phase
distribution as observed during the experiment conducted in [116] which was
performed in combination with a lattice Boltzmann simulation (the phase dis- 143
tribution obtained by their simulation is optically identical for the presented

time interval). Notice that the UDG simulation was based on a different hy-

draulic model, given in table 5.18.
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X-ray tomography was presented. The results indicated that the considered geometry,
despite its size being at the limit set by the hardware resources, was yet not large enough
to comprise a representative elementary volume (REV) for the sampled porous media.
Furthermore, the linear Krylov-space solver employed for these examples appeared sen-
sitive to the domain geometry and did not show a robust convergence behavior. These
factors taken together reveal that the UDG approach still requires further development
before it may be applied in productive simulations in the context of numerical upscaling
of pore-geometries - even for linear and well defined models.

The simulation of two-phase flow problems is further complicated by the heterogeneity
of the viscosity and density fields and entails the additional effort of propagating the
level set or phase-field function. In case of the presented UDG approach, additional
costs are also produced by the construction of new sub-triangulations in every time step.
While the run-time required for the construction of the actual geometries is negligible
for typical simulation setups, it severely reduces the performance of classical caching
strategies for the assembling of the linear systems and also increases the complexity of
their implementation. All these problems are amplified by the increased number of time
steps required for two-phase flow simulations. Due to the typically applied operator
splitting of the flow and transport problems which is also utilized in this thesis, the time
step sizes do not only have to be much smaller than in the case of single-phase flow, but
are subjected to a stability condition which scales oc At < h3/2,

While none of the problems above is so fundamental that a resourceful mind may not
conceive a path towards a possible solution, it is undebatable that current publications
on two-phase flow simulations in pore-geometries which refer to any kind of relevant ex-
perimental setup are exclusively based on lattice Boltzmann methods or low order finite
volume schemes based on volume-of-fluid approximations, e.g. [117, 118, 119]. While fair
and comprehensive comparisons of Lattice-Boltzmann methods with Galerkin approaches
as given in [120] are sparse, their continuous application in industry suggests a predictive
capability at least for some fluid mechanical regimes [121]. Furthermore, it is quite sur-
prising that the actual accuracy required for the approximation of the hydraulic dynamics
is often very low as long as one is satisfied with only determining principal flow paths
or final phase distributions (this is also the likely cause for the unbroken popularity of
quasi-stationary methods [122]).

The authors of [116] fabricated an effectively two-dimensional porous medium from
plexi-glass with dimensions of 30 mm x 30 mm and approximately 10 x 10 randomly dis-
tributed pores. For this Hele-Shaw cell with a channel height of 1.75 mm they performed
drainage experiments. The medium was initially saturated with a glycerol-water solution
which was subsequently invaded by air due to a constant drainage flux applied to one
side of the cell.

Utilizing a Lattice-Boltzmann code, they were able to accurately reproduce the time
development of the phase-distribution up to visual accuracy with small localized excep-
tions. Surprisingly, this simulation was based on a severely modified hydraulic model
with fluid parameters changed by orders of magnitude and a resulting Capillary number
of Ca = 7.6 - 10~3 which differed significantly from the value for the experimental setup
Ca~2.6-107°.
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5.6 2D Experiments on Pore-Geometries

Setting aside the insights which this experiment reveals with regard to the peculiar
properties of flow in porous media, it is also interesting for its rather well defined two-
dimensional geometry which is small enough to allow the application of the UDG two-
phase flow implementation in its current state. Sadly, the employed viscosity values
relative to the surface tension forces were yet too small to allow a stable simulation
at reasonable time step sizes. Hence, the physical parameters were further adapted by
increasing the viscosity as described in table 5.18 on page 142.

For the UDG simulation, the geometry was realized based on a gray-scale photograph
with 845 x 847 pixels which was generously made available to us by Olav Aursjo. After
a simple post-processing of this picture including a smoothing downscale to 513 x 513
pixels and a contrast manipulation, both performed with standard image manipulation
software, the picture could be directly employed in our software as a description of the
computational domain. This illustrates a key performance factor of the UDG approach
considering that the application of a standard finite element method would have at least
required a meshing and - keeping in mind the gray-scale reference picture - possibly an
additional hand operated manipulation of the resulting mesh geometry.

While the lattice Boltzmann simulation required a rather complicated mechanism in
order to enforce a constant flux rate on the outflow boundary, within the Galerkin frame-
work the outflow condition was simply realized by a constant velocity Dirichlet condition
on the right side of the domain with u, = 1.3379 - 10~%.

The UDG simulation were performed based on the conservative level set method and
the hybrid mesh discretization with (Z,X,Y) := (Q?, (Q')?, ik) finite element spaces
and a fundamental mesh 7T, with 256 x 256 cells. The geometry mesh 7,, was adapted to
the reference picture and thus spanned 512 x 512 cells. Regularization parameters were
chosen according to (5.9).

The authors of [116] do not document according to which procedure or criteria the
physical parameters employed for their Lattice-Boltzmann simulation were chosen. While
it is futile to speculate on the influence of the individual parameters based on the single
presented simulation, their choice for the microscopic contact angle of o, = 33° is bound
to be of significant influence. As the implementation of the UDG method allowed only
for a contact angle of a, = 0°, a real comparison of the two methods was not possible.

The results of the simulations were visualized in figure 5.20 on page 143 together with
photographs of the phase distribution as observed during the experiment. The presented
results encompass 200 time steps with an average time step size (At) = 1.4676e+02 and a
maximum time step size of max At = 1.9453e + 02 (time step sizes were chosen according
to the heuristic described in section 5.4.4). The wall-time required for the simulation to
this point was 33 days (sequential run on an Intel(R) Xeon(R) CPU E7- 4870 @ 2.40GHz
processor).

In this context it should be mentioned that the Krylov space methods applied for the
solution of the linear systems were not always convergent for this simulation. However,
due to the small domain size, the application of the direct linear solver SuperLU was
possible and exclusively used for the presented simulation results.

The simulation in [116] was able to predict the time development of the phase distri-
bution quite well (although on an arbitrary time scale which had to be matched to the
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5 Numerical Experiments

experimental observations) and identified the eventually invaded pores almost without
error. As the UDG simulation employed different parameter choices for both the con-
tact angle and the viscosity, the two simulations of this high capillarity setup can not
be expected to provide matching predictions of the interface evolution. However, the
pictures in figure 5.20 indicate some agreement with the experimental results during its
early phase (on an arbitrary time-scale).

While the presented results of the UDG simulation may not be verified based on the
data presented in [116], it illustrates that the proposed UDG method for two-phase flow
with contact lines may be applied to geometries obtained from experimental data without
the need for direct meshing or any additional hand-operated manipulations of the cut-cell
mesh.
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6 Conclusions & Outlook

The method for two-phase flow simulations as presented in this thesis combines a sophis-
ticated algorithm for the spatial discretization of the domain geometry with standard
discontinuous Galerkin methods for the discretization of the system equations. The lat-
ter were adapted only where they conflicted with the peculiar needs and restrictions of
the multi-domain UDG approach. It was shown that the recursive construction of multi-
domain geometries based on an arbitrary number of level set functions is no algorithmic
dead end. While the geometric complexity of this procedure entails many pitfalls, the
formalization provided in this thesis delineates multiple paths to its implementation.

Many publications in this field propose a single method and show its application to
a handpicked set of test cases. However, within the framework of the UDG approach,
multiple different discretization methods for the Navier-Stokes equations, the level set
transport and the surface tension were proposed and compared, not only to each other
but also to reference values from benchmarks and data obtained by independent research
groups.

The robustness and accuracy of the proposed schemes was verified by numerous numer-
ical examples realizing the two-phase flow simulations in two and three dimensions. The
presented examples include setups equivalent or similar to those presented in recent pub-
lications of other scientists which utilized state-of-the-art Galerkin discretizations based
on software frameworks that resulted from decades of continuous development.

It is noteworthy that the overall complexity of such setups which are accessible to
Galerkin methods has not increased significantly within the last ten years. To the present
day, there exist not a single implementation of a higher-order method for multi-phase flow
simulations in non-trivial pore geometries. Due to the lack of a scalable parallel imple-
mentation, the results presented in this thesis, can not ultimately answer the question
whether higher-order unfitted methods, particularly the UDG method, constitute a viable
path to extent their applicability to more complex domains and more challenging param-
eter regimes. For the UDG method to develop its full potential, it must necessarily be
extended to include parallel domain decomposition methods. Any interesting two-phase
flow setup with a complex three-dimensional domain geometry is bound to exceed the
computational resources provided by a single computing core of any architecture.

Furthermore, when higher-order methods are applied to systems with localized dynam-
ics (e.g. around an interface), h-adaptivity may become mandatory to avoid efficiency
bottle-necks. Alas, the implementation of such features is quite time consuming, even
for standard Galerkin methods. The nested mesh geometries and recursive cell-local con-
struction mechanisms which constitute the heart of the multi-domain UDG approach
provide a significant flexibility which entails a correspondingly complex code base. The
latter is a product of serious software-engineering which has reached a scale at which its
advance requires laborious efforts and scales poorly with the invested human resources.

However, considering the flexibility and robustness of the presented approach, its fur-
ther development is rather promising. Among the high priority topics of such efforts
must be the derivation of scalable parallel solvers for the resulting linear systems. There
is also a noticeable imbalance between the sophisticated spatial discretization and the
rather simplistic method of lines approach employed for the discretization of time. While
this would possibly turn into an advantage for some model problems, in the case of two-
phase flow, the involved operator splitting results in a burdening restriction on the time
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step size. From the authors perspective, a fully coupled arbitrary Lagrangian-Eulerian
approach appears to be the only promising path to resolve this issue but implies a signifi-
cantly increased size of the algebraic systems and is thus preconditioned on the existence
of an efficient and scalable linear solver.

Nevertheless, the overall maturity of the numerical scheme as presented in this thesis is
already quite evolved. The proposed discontinuous Galerkin variant of the conservative
level set method could be shown to provide control over the phase volume errors and to
harmonize with the discretization schemes realizing the surface tension force. Extensions
of the latter that allowed the introduction of a microscopic contact angle were incorpo-
rated and verified in numerical test cases. The amount of available software frameworks
which provide a comparable flexibility are sparse. The author is not aware of any other
implementation of a sharp interface method with contact line which can be applied for
non-trivial three-dimensional domains and realizes accurate interface conditions as well
as a robust handle on volume conservation.
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A Appendix

This appendix provides some additional results computed for the two-dimensional surface
tension test setup presented in section 5.3. Tables A.1, A.2, and A.3 provide some
additional information on the sensitivity of the regularization parameters which were
employed for the discretization of surface tension. All computations were performed for
the same setups and with the same finite element spaces as described in section 5.3.

These results are given as an indication for researchers developing similar methods and
no specific interpretation is provided. As a general observation it should be pointed out
that the response of the error quantities on changes of a given parameter ranges from
small fluctuations too erratic jumps by multiple orders of magnitude.

Optimal Parameters - Varying Interface Resolution:
APETT A=3 A=2 A=1

avg
Level 2 | 2.17e+400 2.17e4-00 1.80e4-00
Level 3 2.98e-01 2.9 5.06e-01 2.1 | 1.25e400 | 0.5
Level 4 1.11e-01 1.4 1.75e-01 1.5 4.39e-01 1.5

Level 5 2.91e-02 1.9 4.99¢-03 5.1 1.76e-01 1.3

perr A=3 A=2 A=1
Level 2 | 8.88e+00 5.89e+00 1.75e+01
Level 3 | 1.10e401 9.46e+00 1.40e+01 | 0.3
Level 4 | 3.02e+01 2.32e+01 2.17e+01
Level 5 | 3.34e+01 3.14e+01 4.54e+01
Iv]l2 A=3 A=2 A=1
Level 2 | 1.78¢-02 1.75e-02 2.71e-02
Level 3 | 5.26e-03 | 1.8 | 4.66e-03 | 1.9 | 7.12e-03 | 1.9
Level 4 | 5.69e-03 5.15e-03 5.54e-03 | 0.4
Level 5 | 5.52e-03 4.89¢-03 | 0.1 | 5.58e-03
Parameter Sensitivity Runs:
AP | en=0.4 h? en=1.6 h? cp=0.6 h cp=12h
Level 2 2.52e+00 1.76e4-00 1.00e+01 6.54e+01
Level 3 | 5.62e-01 | 22 | 6.7le-01 | 1.4 | 4.15e-01 | 4.6 | 5.22e+01 | 0.3
Level 4 | 293e-01 | 0.9 | 4.66e-01 | 0.5 | 8.32e-02 | 2.3 | 1.73e+00 | 4.9
Level 5 | 2.50e-02 | 3.6 | 1.32e-01 | 1.8 | 1.29e-01 2.43e+00
P | en=0.4 h? en=1.6 h? €=0.6 h gp=1.2h
Level 2 | 1.96e+01 2.52e+01 9.04e+01 5.03e+03
Level 3 | 9.27e+00 | 1.1 | 3.95e+01 6.67e+01 | 0.4 | 4.89e+04
Level 4 | 1.67e+01 2.08¢+01 | 0.9 | 5.15e+01 | 0.4 | 1.11e+03 | 5.5
Level 5 | 3.55e+01 2.94e+01 4.65e+01 | 0.1 | 7.44e+02 | 0.6
[vll2 | en=0.4 h? en=1.6 h2 £0,=0.6 h £p=1.2 h
Level 2 | 2.57e-02 1.84e-02 2.26e-02 8.18e-02
Level 3 | 7.68¢-03 | 1.7 | 2.53e-02 7.71e-03 | 1.6 | 1.07e-01
Level 4 | 4.67e-03 | 0.7 | 9.06e-03 | 1.5 | 2.34e-03 | 1.7 | 4.87e-02 | 1.1
Level 5 | 5.21e-03 3.90e-03 | 1.2 | 1.27e-03 | 0.9 | 1.58¢-02 | 1.6

Table A.1: Quasi-Geometric Method: Errors of the jump in the average pres-
sure AP/ (5.7), maximum deviation of average pressure P" (5.8) and
Lo-norm of velocity field ||v||2. Each value is followed by the rate of conver-
gence in h relative to the previous mesh level (omitted where it would be neg-
ative). Unless explicitly defined in the column header, parameters were set to

£r =0.01h% ey = 0.1h% e, = 0.3h, =025, A = 2.
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Optimal Parameters - Varying Interface Resolution:

APt =T) =3 A=2 A=1
Level 2 | 3.94e+01 4.10e+01 4.67e+01
Level 3 | 1.95e+01 | 1.0 | 1.97e+01 | 1.1 | 2.09e+01 | 1.2
Level 4 | 4.56e+00 | 2.1 | 4.60e+00 | 2.1 | 4.89e+00 | 2.1
Level 5 | 3.06e-01 | 3.9 | 3.27e-01 | 3.8 | 2.49e-01 | 4.3
PeT(t =1T) A=3 A=2 A=1
Level 2 | 9.85e+00 9.33e+00 8.14e+00
Level 3 | 3.83e-01 | 4.7 | 9.43e-01 | 3.3 | 1.24e4+00 | 2.7
Level 4 | 2.91e+00 3.00e+00 6.80e+00
Level 5 | 2.62e+00 | 0.2 | 2.79e+00 | 0.1 | 8.56e-01 | 3.0
Ivilz(t = T) A=3 A=2 A=1
Level 2 | 2.75e-03 2.73e-03 3.60e-03
Level 3 | 7.75e-04 | 1.8 | 8.19e-04 | 1.7 | 1.16e-03 | 1.6
Level 4 | 3.33e-04 | 1.2 | 3.18e-04 | 1.4 | 8.12e-04 | 0.5
Level 5 | 2.09e-04 | 0.7 | 1.06e-04 | 1.6 | 9.10e-05 | 3.2
Parameter Sensitivity Runs:

APR(t=T) | ep=12h ep,=2.4h £,=0.16 h? £, =0.64 h?
Level 2 | 6.66e+01 1.30e+02 2.62e+01 8.51e+00
Level 3 | 3.69e+01 | 0.9 | 1.23e+02 | 0.1 | 2.06e+01 | 0.3 | 1.33e+01
Level 4 | 1.43e+01 | 1.4 | 4.35e+01 | 1.5 | 2.57e+00 | 3.0 | 9.69e+00 | 0.5
Level 5 | 3.73e+00 | 1.9 | 4.49e+01 2.86e+00 1.60e+01

Perrt=T) | e,=12h cp=24h €x=0.16 h? ex=0.64 h?
Level 2 | 2.59¢+01 2.22e+02 1.11e+01 8.17e+00
Level 3 | 1.45¢+00 | 4.2 | 1.39e+02 | 0.7 4.01e-01 4.8 | 1.19e+00 [ 2.8
Level 4 | 3.17e+01 7.62e+01 | 0.9 | 2.72e+00 6.35e-01 0.9
Level 5 | 1.23e+01 | 1.4 | 1.04e+02 1.93e+00 | 0.5 9.52e-01

Ivilo(t =T) | ep=1.2 h £,=2.4 h €,=0.16 h2 €,=0.64 h2
Level 2 | 4.91e-03 7.82e-03 3.05e-03 3.30e-03
Level 3 | 4.07e-04 | 3.6 | 1.67e-02 7.51e-04 2.0 3.60e-04 3.2
Level 4 | 1.96e-03 5.09¢-03 | 1.7 1.56e-04 2.3 1.99e-04 0.9
Level 5 | 5.55¢-04 | 1.8 | 1.55e-02 8.71e-05 0.8 6.55e-05 1.6

Table A.2: Narrow Band Projection Method: Errors of the jump in the aver-

age pressure APg0 (5.7), maximum deviation of average pressure P¢"" (5.8)
and Lo-norm of velocity field ||v]|2. Each value is followed by the rate of con-
vergence in h relative to the previous mesh level (omitted where it would be
negative). Unless explicitly defined in the column header, parameters were set

to, €, = 0.04 h?, e, = 0.4 h2, €, =0.6h, 3=0.08 A=2



Optimal Parameters - Varying Interface Resolution:

APZT(t=T) A=3 A=2 A=1
Level 2 | 2.53e401 2.46e+-01 2.15e+4-01
Level 3 | 4.46e-01 5.8 7.03e-01 5.1 | 1.18e+00 | 4.2
Level 4 | 1.98e+00 2.02e4-00 2.23e+4-00
Level 5 | 6.98e-01 1.5 | 6.92e-01 1.5 | 6.17e-01 1.9
perr A=3 A=2 A=1

Level 2 | 4.18e-01 5.97e-01 2.85e+00

Level 3 | 1.05e+400 1.39e+-00 6.60e+00

Level 4 | 8.25e-01 0.4 | 9.44e-01 0.6 | 9.17e-01 2.8

Level 5 8.54e-01 1.05e+00 1.38e+-00

[[v]2(t =T) A=3 A=2 A=1
Level 2 | 3.83e-04 4.86e-04 2.61e-03
Level 3 | 1.15e-03 1.17e-03 1.33e-03 | 1.0
Level 4 | 1.68e-04 | 2.8 | 2.11e-04 | 2.5 | 2.30e-04 | 2.5
Level 5 | 1.23e-04 | 0.4 | 1.24e-04 | 0.8 | 8.98¢-05 | 1.4

Parameter Sensitivity Runs:

AP (t=T) | en =1.6h2 en = 6.4h2 cp = 1.2h
Level 2 5.99e+401 2.46e+-01 3.65e+01
Level 3 2.24e+01 1.4 7.03e-01 5.1 | 5.30e4-01
Level 4 5.21e+00 2.1 2.02e+00 1.55e4+01 | 1.8
Level 5 9.21e+00 6.92¢e-01 1.5 | 4.30e4+00 | 1.9

AP (t=T) | €x=0.16 h? €,=0.64 h?
Level 2 4.11e4-01 6.91e4-01
Level 3 2.74e400 3.9 2.12e+01 1.7
Level 4 1.92e4-00 0.5 1.82e4-00 3.5
Level 5 1.28e+4-00 0.6 6.06e+00
P | en = 1.6 h? en = 6.4h% g, =1.2h
Level 2 3.94e-01 5.97e-01 3.22e+00
Level 3 9.80e-01 1.39e+00 1.02e+01
Level 4 9.66e-01 9.44e-01 0.6 2.30e-+01
Level 5 6.54e-01 0.6 1.05e+00 2.78e+01
Pert | g, = 0.16h2 er = 0.64h>
Level 2 3.89¢-01 6.22e-02
Level 3 1.30e4-00 1.32e4-00
Level 4 1.02e4-00 0.4 1.33e+-00
Level 5 9.10e-01 0.2 1.07e+00 0.3
IVi2(t =T) | en = 1.612 en= 6.4 h? o =12h
Level 2 3.58e-04 4.86e-04 1.16e-03
Level 3 8.83e-04 1.17e-03 3.16e-03
Level 4 6.05e-04 0.5 2.11e-04 2.5 1.84e-03 0.8
Level 5 5.57e-05 3.4 1.24e-04 0.8 8.84e-04 1.1
[vil2(t =T) | €x=0.16 h? €,=0.64 h?
Level 2 3.59e-04 8.67e-05
Level 3 1.45e-03 1.25e-03
Level 4 1.83e-04 3.0 3.98e-04 1.7
Level 5 8.07e-05 1.2 7.79e-05 2.4

Table A.3: Global Projection Method: Errors of the jump in the average pres-
sure AP0 (5.7), maximum deviation of average pressure P" (5.8) and
Lo-norm of velocity field ||v]|s. Each value is followed by the rate of conver-
gence in h relative to the previous mesh level (omitted where it would be neg-
ative). Unless explicitly defined in the column header, parameters were set to
gr =0.04h% e, =0.4h% e, =0.6h, A\ =2.
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