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Abstract

We investigate several aspects of the non-equilibrium dynamics of non-abelian gauge the-

ories, relevant to the problem of thermalization in relativistic heavy-ion collision experiments.

We perform numerical simulations in the framework of classical-statistical lattice gauge the-

ory as a first principle approach to study the non-equilibrium dynamics of weakly coupled yet

strongly correlated non-abelian plasmas. The numerical studies are complemented by analytic

considerations in the framework of kinetic theory and two-particle irreducible effective action

techniques. Following a general introduction, the theoretical framework and the range of va-

lidity of the employed approximations is discussed.

The first main part of this thesis is concerned with the study of thermalization of non-abelian

plasmas in Minkowski space. We establish by numerical studies, that the thermalization pro-

cess is governed by a turbulent cascade towards the ultraviolet in the regime where quantum

corrections can safely be neglected. The dynamics of the universal turbulent attractor is char-

acterized by a self-similar evolution in time and we extract the universal scaling exponents and

scaling functions. It is shown that the scaling exponents observed in numerical simulations

agree with the ones extracted from a scaling analysis in the kinetic theory framework.

In the second main part of this thesis, we investigate the non-equilibrium dynamics of in-

stabilities. We investigate analytically the unstable dynamics of coherent non-abelian gauge

fields and compare our findings with the results from classical-statistical lattice simulations.

The simulations demonstrate the phenomenon of non-linear self-amplification of the instability

due to interactions of unstable modes. The non-linear dynamics of instabilities is discussed

both analytically and numerically for the example of an anisotropically expanding scalar field

theory, with a particular emphasis on the role of the anisotropic expansion of the system.

The third part of this work focuses on the non-equilibrium dynamics of anisotropically ex-

panding non-abelian plasmas as encountered in heavy-ion collisions at ultra-relativistic energies.

While our simulations indicate the importance of plasma instabilities and free streaming for the

early stages of the evolution, we discover that the subsequent dynamics is again governed by a

universal turbulent attractor. Most remarkably, the universal scaling exponents which charac-

terize the self-similar evolution in the turbulent regime can be explained by elastic scattering

processes.





Zusammenfassung

Diese Arbeit untersucht verschiedene Aspekte der Nichtgleichgewichtsdynamik nicht-abelscher

Eichtheorien im Hinblick auf die Fragestellung der Thermalisierung in relativistischen Schwe-

rionenkollisionen. Die Dynamik schwach gekoppelter jedoch stark korrelierter nicht-abelscher

Plasmen wird mittels numerischer Rechnungen im Rahmen der klassisch-statistischen Git-

tereichtheorie in einem fundamentalen Zugang untersucht. Die numerischen Studien werden

durch analytische Betrachtungen im Rahmen der kinetischen Theorie beziehungsweise der zwei-

Teilchen-irreduziblen effektiven Wirkung ergänzt. Die theoretischen Grundlagen sowie die An-

wendbarkeit der verwendeten Näherungen werden im Anschluss an eine allgemeine Einleitung

diskutiert.

Der erste Hauptteil dieser Arbeit beschäftigt sich mit der Thermalisierung von nicht-abelschen

Plasmen im Minkowski-Raum. Mit Hilfe numerischer Studien zeigen wir, dass der Thermalise-

rungsprozess im klassischen Bereich hoher Besetzungszahlen durch eine turbulente Kaskade ins

Ultraviolette beschrieben wird. Die Dynamik des universellen turbulenten Attraktors ist hierbei

durch eine selbstähnliche Zeitevolution charakterisiert, deren universelle Skalenexponenten und

Skalierungsfunktionen numerisch bestimmt werden. Der Vergleich numerischer Simulationen

mit Betrachtungen im Rahmen der kinetischen Theorie zeigt, dass die Skalenexponenten mit

der kinetischen Theorie übereinstimmen.

Der zweite Hauptteil dieser Arbeit untersucht die Nichtgleichgewichtsdynamik von Insta-

bilitäten. Wir analysieren zunächst die Dynamik kohärenter nicht-abelscher Eichfelder und

vergleichen unsere analytischen Ergebnisse mit numerischen Simulationen. Die Simulationen

demonstrieren das Phänomen der nicht-linearen Selbstverstärkung von Instabilitäten, welches

als Konsequenz von Wechselwirkungen zwischen instabilen Moden auftritt. Die Dynamik des

nicht-linearen Regimes wird am Beispiel einer anisotrop expandierenden Skalartheorie näher

untersucht. Ein besonderes Augenmerk liegt hierbei auf dem Einfluss der longitudinalen Ex-

pansion.

Der dritte Teil dieser Arbeit behandelt die Nichtgleichgewichtsdynamik von anisotrop expan-

dierenden Plasmen und ist daher von besonderer Relevanz im Hinblick auf ultra-relativistische

Schwerionenkollisionen. Während die Frühzeitdynamik durch Plasma-Instabilitäten und freie

Expansion dominiert ist, beobachten wir erneut das nachfolgende Auftreten eines universellen

turbulenten Attraktors. Die universellen Skalenexponenten, welche die selbstähnliche Dynamik

des turbulenten Plasmas charakterisieren, können hierbei bereits durch elastische Streuprozesse

erklärt werden.
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Chapter 1

Introduction

1.1 Motivation

The question “whatever holds the world together in its inmost folds”1 is one of the most fun-

damental questions in physics and the philosophy of natural sciences. The most satisfactory

answer today is given by the standard model of particle physics which provides a valid descrip-

tion of nature at energies at least up to the TeV scale. However, there is a variety of phenomena

within the standard model, whose understanding can not be considered satisfactory at present.

This concerns in particular many aspects of the theory of Quantum Chromo Dynamics (QCD).

Moreover, there is presently a lack of theoretical understanding of heavy-ion collision exper-

iments dedicated to study the properties of QCD under extreme conditions, which require a

better insight into the non-equilibrium dynamics of these systems. Hence, the central moti-

vation for this work is to contribute towards a better understanding of the out-of-equilibrium

dynamics of QCD as encountered in ultra-relativistic heavy-ion collisions and we will briefly

outline the most important aspects of this problem in the following.

In view of high energy processes in quantum chromodynamics, the property of asymptotic

freedom [1, 2] renders the theory amenable to the methods of perturbation theory and theo-

retical predictions have successfully been tested for various processes in collider experiments

[3]. In contrast, the properties of low energy QCD are such that the fundamental quark and

gluon degrees of freedom can not exist as free objects and the theory determines the structure

of hadronic bound states instead. While experimentally spectroscopic properties of hadrons are

nowadays accessible [3], understanding the properties of low energy QCD and the mechanism

underlying the confinement of quarks and gluons is a formidable task in theoretical physics.

Besides the non-trivial structure of the QCD vacuum, open questions also concern the thermo-

dynamic properties of QCD media. A popular version of the conjectured phase diagram of the

1J. W. Goethe (1749-1832) - “Faust”
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CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of a popular conjecture of the QCD phase diagram as a function of
temperature and baryon chemical potential. The determination of the precise phase structure
and the location of the phase boundaries is the subject of ongoing research. Figure taken from
the GSI website (www.gsi.de).

theory is depicted in Fig. 1.1 in the plane of temperature and net baryon density. Theoretical

progress from first principles in this field has mostly emerged from large scale numerical studies

in the framework of lattice QCD. In particular, it has been established that at vanishing net

baryon density, the theory exhibits a cross-over transition to a deconfined quark-gluon plasma

phase at temperatures around 150− 200 MeV [4–7]. However, even in thermal equilibrium the

range of applicability of first principle lattice methods is presently limited to vanishing or at

least small net baryon density [8]. Despite significant progress within different approaches [9,

10], which are able to study QCD thermodynamics also at finite baryon density, many aspects

of the phase diagram such as e.g. the existence and location of a critical point have remained

unsolved.

The experimental environment to study quantum chromodynamics under extreme condi-

tions, such as high temperatures, large baryon densities or strong magnetic fields, can be realized

in relativistic heavy-ion collision experiments presently carried out at the “Relativistic Heavy

Ion Collider” (RHIC) at Brookhaven National Lab as well as at the “Large Hadron Collider”

(LHC) at CERN. In the past, experiments have also been performed at the “Super Proton

Synchrotron” (SPS) at CERN and in the future, the present facilities will be complemented

by the “Facility for Antiproton and Ion Research” (FAIR) at GSI and the “Nuclotron-based

Ion Collider Facility” (NICA) at JINR. The experiments at RHIC and LHC have indeed been

able to provide striking evidence for the existence of a phase of deconfined QCD matter [11–

15] and the common physics goal of future investigations is to explore the properties of the

Quark Gluon Plasma (QGP) phase. However, the major challenge in the study of relativistic

2



1.1. MOTIVATION

Figure 1.2: Standard model of the space-time evolution of relativistic heavy-ion collisions. The
non-equilibrium plasma created immediately after the collision of heavy nuclei is conjectured to
thermalize on a time scale of ∼ 1fm/c. The subsequent evolution of the Quark Gluon Plasma is
characterized by cooling due to the longitudinal expansion until the temperature drops below
the confinement transition and the system re-enters the hadronic phase. This stage of the
evolution is expected to be described by viscous hydrodynamics. Finally the system becomes
a dilute gas of free streaming particles which can be observed in the detectors. Figure taken
from Ref. [16].

heavy-ion collisions stems from the fact that experimental measurements are to a large extent

only possible in the final state. Measured observables therefore contain information about the

entire space-time evolution of the system and the extraction of properties of deconfined QCD

matter from heavy-ion collision experiments inevitably requires a solid understanding of the

dynamical space-time evolution.

From this point of view relativistic heavy-ion collisions should be regarded as a realiza-

tion of an initial value problem in quantum chromodynamics rather than a probe of the QCD

phase-diagram. However, the tremendous success of thermal models in terms of describing a

vast amount of data at RHIC and LHC has led to the conjecture of a ’standard model of heavy-

ion collisions’, which generically features a local thermal equilibrium achieved shortly after the

collision of heavy nuclei [16–20]. This standard scenario for relativistic heavy-ion collisions is

portrayed in Fig. 1.2, which sketches the time evolution of the system in the transverse plane,

i.e. perpendicular to the beam axis. Based on this description, the past decades of heavy-ion

physics have indeed revealed remarkable properties of quark-gluon matter formed in collider

experiments at RHIC and the LHC. Besides the in-medium energy loss of jets and the sup-

pression and regeneration of quarkonia, one of the most striking observations is the apparent

behavior of the Quark Gluon Plasma as a nearly perfect fluid [21, 22]. However, the question of

3



CHAPTER 1. INTRODUCTION

how these features emerge ab initio in a heavy-ion collision, and to what extent a thermalized

Quark Gluon Plasma is achieved is an outstanding problem in theoretical physics [23].

In recent years there has been significant progress in a first principle understanding of this

question from two limiting cases. The first case is the study of strongly coupled super-symmetric

gauge theories via gauge-gravity duality. The results in this case qualitatively confirm the stan-

dard scenario, though the studies clearly show the importance of residual anisotropies at the

transition to the hydrodynamic regime [24–26]. The other case that is amenable to first prin-

ciple studies is the weak-coupling limit of quantum chromodynamics. In this case the colliding

nuclei are described in the ’Color Glass Condensate’ (CGC) framework [27, 28] and the non-

equilibrium state created immediately after the collision is characterized by large gluon occu-

pancies, such that the non-equilibrium plasma is strongly correlated even at weak coupling. In

this framework, different scenarios of how thermalization proceeds have been developed based

on kinetic descriptions of the non-equilibrium plasma [29–32]. While the original “bottom-up”

thermalization scenario [29] emphasizes the role of elastic and inelastic scattering processes,

recent works have identified plasma instabilities as a possible mechanism to speed up ther-

malization at weak coupling [31, 32]. However, no consensus has been reached concerning the

relevant processes as well as the thermalization time and further progress crucially relies on the

ability to identify the correct solution [23].

In this context, it is interesting to note that the non-equilibrium state created immediately

after the collision of heavy nuclei shares important features with strongly correlated many-body

systems at very different energy scales. These range from the reheating dynamics of the early

universe to table-top experiments with cold atoms. Most remarkably, the non-equilibrium dy-

namics of such systems exhibits universal features. This universality is based on the existence of

non-thermal fixed points which can be associated with the phenomenon of wave turbulence [33]

and manifests itself in terms of a self-similar scaling behavior [34]. While turbulent phenomena

have been subject to several studies at different energy scales [34–39], much less is known about

wave turbulence in non-abelian gauge theories and it is an open question to what extent turbu-

lent phenomena manifest themselves in the non-equilibrium dynamics of relativistic heavy-ion

collisions.

From these motivations, the objective of this work is to explore the non-equilibrium dy-

namics of weakly coupled but highly occupied non-abelian plasmas. Since the dynamics may

be governed by universal turbulent phenomena, we will focus on the theoretically clean case

of weak coupling, large nuclei and high collider energies and study the space time evolution

of non-abelian plasmas for a large range of different initial conditions, chosen to mimic the

4
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situation in relativistic heavy-ion collisions. The central question in this context is to identify

the mechanism underlying the thermalization process in this case.

1.2 Outline of this work

In this thesis we study several aspects of the non-equilibrium dynamics of non-abelian plas-

mas. Since the weak coupling dynamics of highly occupied plasmas can be accurately described

within the framework of classical-statistical field theory [40, 41], we employ classical-statistical

real-time lattice simulations as a first principle approach. The numerical studies are com-

plemented by analytic considerations using kinetic theory as well as two-particle irreducible

effective action techniques [42] to establish an understanding of the underlying non-equilibrium

phenomena. The theoretical background and numerical techniques employed in this work are

introduced in Chapter 2.

In the first part of this work we investigate the thermalization of non-abelian plasmas in

Minkowski space. Besides theoretical interest, these systems provide an ideal testground for

the concepts developed to understand the more complex dynamics of longitudinally expanding

plasmas, phenomenologically relevant to relativistic heavy-ion collisions. We consider a class of

systems, characterized by a large number of excitations up to a characteristic momentum scale,

which is chosen to mimic the situation in relativistic heavy-ion collisions [30]. Since the final

temperature of these systems is much larger than the typical momentum of hard excitations,

one problem of thermalization is how energy is transported to higher momentum scales. While

this process has been analyzed in the kinetic theory framework and different studies agree on

the level of parametric estimates [30, 31], a rigorous answer from first principles can be ob-

tained using classical-statistical lattice simulations. The central questions concern the role of

inelastic (number-changing) versus elastic (number-conserving) scattering processes as well as

the emergence of non-thermal fixed point solutions in the evolution of the system [23]. Since

the total number of excitations is initially large compared to the final thermal state of the sys-

tem, the initial over-occupation ultimately has to decrease due to inelastic processes. However,

a suppression of inelastic processes at early times may result in the formation of a transient

non-equilibrium condensate, which can absorb the surplus of hard excitations [30]. This obser-

vation has triggered related studies also in scalar field theories, where inelastic processes are

parametrically suppressed and a transient Bose-Einstein condensate emerges quite naturally as

a consequence of over-occupation [43]. However, this question becomes more involved in the

context of non-abelian gauge theories, where elastic and inelastic processes are parametrically

of the same order [30, 31]. In the context of scalar theories it is also well established that

the evolution at late times is characterized by a non-thermal fixed point, which describes the

5



CHAPTER 1. INTRODUCTION

transport of energy towards the ultraviolet and particle number towards the infrared [33, 35].

This quasi-stationary state is characterized by a dual power law spectrum, with characteristic

scaling exponents in the infrared and ultraviolet respectively [33, 35]. While the infrared fixed

point features strongly enhanced long range correlations reminiscent of critical phenomena in

thermal equilibrium, the spectral properties of the UV part are analogous to Kolmogorov wave

turbulence [33, 35]. The dynamics of the energy transport towards the ultraviolet in these

systems is characterized by a self-similar evolution in time, with universal scaling exponents

[34]. The thermalization process in non-abelian gauge theories is investigated in Chapter 3,

where we present results from classical-statistical lattice simulations in Minkowski space as

well as analytic considerations. We first extend the kinetic theory analysis of Refs. [30, 31]

to account for the presence of a non-thermal fixed point and establish an intuitive picture of

the thermalization process. We then investigate the possibility of the emergence of a transient

condensation phenomenon at early times, by considering the physical effects of a condensate

on the interactions of hard excitations. Subsequently, we extend our numerical studies to later

times, where the system exhibits the self-similar evolution characteristic of a non-thermal fixed

point. We determine the universal scaling exponents in the turbulent regime and compare

them to a scaling analysis based on a kinetic description. By studying a large range of different

initial conditions, we are also able to identify the parametric dependencies of the non-universal

amplitudes, which determine the thermalization time of the system.

The second part of this thesis is devoted to the non-equilibrium dynamics of instabilities,

which are expected to play an important role in the early stages of relativistic heavy-ion col-

lisions [44, 45]. It is well established that non-abelian gauge theories feature different types

of instabilities, the most prominent examples of which are the (chromo-) Weibel instability,

which occurs for momentum-space anisotropic plasmas [46], and the Nielsen-Olesen instability,

associated to the unstable decay of coherent chromo-magnetic fields [47, 48]. Since the state

created immediately after the collision of heavy nuclei is expected to be highly anisotropic,

the (chromo-) Weibel instability has frequently been suggested as a possible mechanism that

quickly drives the plasma towards an isotropic state [44, 45]. While the presence of Weibel-type

instabilities has indeed been confirmed in classical-statistical lattice simulations of non-abelian

gauge theories [49–52], the studies have also revealed the importance of non-linear correction

to the linear instability regime [52]. More specifically, it has been shown that “secondary

instabilities” arise as a consequence of the non-linear self-interaction of unstable modes, be-

fore ultimately the instability saturates and exponential growth can no longer be observed at

late times [52]. A detailed understanding of these non-linear phenomena is thus inevitable

to appraise the impact of plasma instabilities on the non-equilibrium dynamics of relativistic

heavy-ion collisions. In Chapter 4, we investigate the non-equilibrium dynamics of instabili-

6
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ties for two different systems. We first consider the out-of-equilibrium dynamics of coherent

non-abelian gauge fields in Minkowski space and discover that in addition to a generalization

of the Nielsen-Olesen instability these exhibit also a subleading parametric resonance instabil-

ity. This emerges from analytic results as well as numerical simulations. We then discuss the

non-linear stages of the evolution in more detail for the example of an expanding scalar theory.

Since the non-linear dynamics of non-equilibrium instabilities manifests itself in a very similar

way also in scalar field theories [52, 53], the discussion is directly relevant also to the study of

longitudinally expanding non-abelian plasmas in Chapter 5.

The third part of this work is dedicated to the study of longitudinally expanding non-abelian

plasmas and particularly relevant to the phenomenology of relativistic heavy-ion collisions. In

the weak-coupling picture, the colliding nuclei are described in the color-glass condensate (CGC)

framework, which provides the initial state immediately after the collision of heavy nuclei [27,

28]. The non-equilibrium initial state, referred to as the ’Glasma’ [28], is characterized by

strongly correlated gluon fields, which reflect the properties of the nuclear wave functions prior

to the collision. The ’Glasma’ is initially highly anisotropic and thus exhibits the (chromo-)

Weibel instability, which is able to partially isotropize the system [49, 50]. However, the com-

petition between interactions and the longitudinal expansion of the system renders the question

of isotropization non-trivial at all times of the evolution. The question of how the subsequent

thermalization proceeds in such a system has therefore been intensely debated in the literature

and no consensus has been reached [23]. In Chapter 5, we address this problem by use of first

principle lattice simulations. We first investigate the dynamics of plasma instabilities in the

initial ’Glasma’ stage and infer the associated time scales. We then study the dynamics at later

times relevant to the thermalization process at weak coupling. We discover that ultimately the

system exhibits the universal self-similar dynamics characteristic of wave turbulence and we

obtain the universal scaling exponents and scaling functions. Most remarkably, the universal

dynamics of the turbulent attractor can be described entirely in terms of elastic scattering as

incorporated in the “bottom-up” thermalization scenario [29]. Since the turbulent attractor

shows a significant anisotropy on large time scales, we finally speculate about the phenomeno-

logical consequences of our findings for heavy-ion collisions at RHIC and LHC energies.

7



CHAPTER 1. INTRODUCTION

Parts of this thesis have already been published in:

1. J. Berges, S. Scheffler, S. Schlichting and D. Sexty, “Out of equilibrium dynamics of

coherent non-abelian gauge fields”, Phys. Rev. D 85, 034507 (2012), arXiv:1111.2751

[hep-ph].

2. J. Berges, K. Boguslavski and S. Schlichting, “Non-linear amplification of instabilities

with longitudinal expansion”, Phys. Rev. D 85, 076005 (2012), arXiv:1201.3582 [hep-ph].

3. J. Berges, S. Schlichting and D. Sexty, “Over-populated gauge fields on the lattice”,

Phys. Rev. D 86, 074006 (2012), arXiv:1203.4646 [hep-ph].

4. S. Schlichting, “Turbulent thermalization of weakly coupled non-abelian plasmas’”,

Phys. Rev. D 86, 065008 (2012), arXiv:1207.1450 [hep-ph].

5. J. Berges and S. Schlichting, “The non-linear Glasma”,

Phys. Rev. D 87, 014026 (2013), arXiv:1209.0817 [hep-ph].

6. J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, “Turbulent thermalization

of the Quark Gluon Plasma”, arXiv:1303.5650 [hep-ph] (submitted to Phys. Rev. Lett.).

8



Chapter 2

Theoretical background

In this chapter, we introduce the theoretical concepts on which the subsequent discussion is

built upon. In Sec. 2.1, we summarize some basic facts about quantum chromodynamics and

pure Yang-Mills theory, as they can be found in standard textbooks [54–58]. In Sec. 2.2, we

give a short introduction to non-equilibrium dynamics of classical and quantum systems and

motivate the classical-statistical approximation employed throughout this work. In Sec. 2.3, we

introduce the coordinates used in Chapter 5 to study the non-equilibrium dynamics of ultra-

relativistic heavy-ion collisions and we discuss the framework to perform classical-statistical

real-time lattice simulations in Sec. 2.4.

2.1 Basics of quantum chromodynamics

Quantum Chromo Dynamics (QCD) is a non-abelian gauge theory coupled to fermions. The

fermion fields Ψf (x) and Ψ̄f (x) carry the ’color’ charge A = 1, ..., Nc, which transforms ac-

cording to the fundamental representation of the SU(Nc) gauge group and the number of

colors is Nc = 3 for QCD. The ’flavor’ index f = u, d, s, c, b, t distinguishes between different

’quark’ species and characterizes the different masses and electroweak charges of the quarks.

The quarks interact via the coupling to the bosonic ’gluon’ fields Aµ(x), which in contrast to

abelian gauge theories, such as Quantum Electro Dynamics (QED), carry an (adjoint) color

charge a = 1, ..., N2
c − 1 and are thus self-interacting.

The fermionic matter fields Ψ and Ψ̄ transform under local gauge transformations G(x) in

the fundamental representation of the SU(Nc) gauge group1 according to

ψ(G)(x) = G(x)ψ(x) , ψ̄(G)(x) = ψ̄(x)G†(x) , (2.1)

1This means G(x) is a unitary Nc ×Nc matrix with determinant equal to unity.

9



CHAPTER 2. THEORETICAL BACKGROUND

while the bosonic gauge fields Aµ transform under the adjoint representation of the SU(Nc)

gauge group according to

A(G)
µ (x) = G(x)Aµ(x)G†(x)− i

g

(
∂µG(x)

)
G†(x) , (2.2)

where g denotes the gauge coupling.2 The gauge field Aµ can be decomposed in the basis of

the su(Nc) Lie algebra according to

Aµ(x) = Aaµ(x)Γa , (2.3)

with real expansion coefficients Aaµ(x). The generators Γa of the su(Nc) Lie algebra in the

fundamental representation, are represented as traceless hermitian matrices and normalized

such that tr[ΓaΓb] = δab/2. For the gauge group SU(3) the generators Γa are related to the

Gell-Mann matrices λa by Γa = λa/2, whereas for the gauge group SU(2), which we will

consider in this work, the generators are related to the Pauli matrices by Γa = σa/2. The

generators Γa satisfy the commutation relations

[Γa,Γb] = ifabcΓc , (2.4)

where the structure constants fabc are real and anti-symmetric in all indices. For the gauge

group SU(2) they are given by the Levi-Civita symbol fabc = εabc.3

The gauge covariant derivative Dµ acting on a fermion field Ψ is defined as

DµΨ = ∂µΨ− igAµΨ , (2.5)

such that the covariant derivative transforms according to D
(G)
µ (x)Ψ(G)(x) = G(x)Dµ(x)Ψ(x)

under local gauge transformations. By use of the decomposition in Eq. (2.3), the covariant

derivative in the fundamental representation can be expressed as

DAB
µ (x)ΨB(x) = ∂µΨA(x)− igAaµ(x)(Γa)ABΨB(x) . (2.6)

Introducing the notation /DAB(x) = γµD
µ
AB(x), where γµ denote the Dirac matrices, the matter

part LMatter of the QCD Lagrangian then takes the form

LMatter[A, ψ̄, ψ](x) =
∑
f

ψ̄Af (x)(i /DAB(x)−mfδAB)ψBf (x) , (2.7)

2We will also use the notation αS = g2/4π for the coupling constant.
3We employ the convention ε123 = ε312 = ε231 = 1, ε213 = ε321 = ε132 = −1, whereas all other entries vanish.
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2.1. BASICS OF QUANTUM CHROMODYNAMICS

which is manifestly invariant under local gauge transformations.

In addition to the matter sector, there is of course the Yang-Mills sector, which contains the

dynamics of the non-abelian gauge fields. Since the gauge fields transform under the adjoint

representation of the gauge group, we first note that the covariant derivative in the adjoint

representation takes the form

Dab
µ (x) = ∂µδ

ab − igAcµ(x)(Γ̃c)
ab = ∂µδ

ab + gfacbAcµ(x) , (2.8)

where (Γ̃a)bc = −ifabc are the generators of the Lie algebra in the adjoint representation. The

field strength tensor Fµν is then defined as

Fµν =
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ] , (2.9)

and can be decomposed in the different components Fµν(x) = Faµν(x)Γa according to

Faµν(x) = ∂µA
a
ν(x)− ∂νAaµ(x) + gfabcAbµ(x)Acν(x) . (2.10)

We note that in contrast to QED, there is a non-linear term involved in Eq. (2.10), which is

a manifestation of the non-abelian structure of the SU(Nc) gauge group. By use of Eq. (2.2),

it is straightforward to show that the field strength tensor transforms covariantly under local

gauge transformations, i.e.

F (G)
µν (x) = G(x)Fµν(x)G†(x) . (2.11)

The Yang-Mills part of the Lagrangian density LYang-Mills then takes the form

LYang-Mills[A](x) = −1

2
tr[Fµν(x)Fµν(x)] , (2.12)

which is invariant under local gauge transformations. Combining the gauge and matter sectors,

the classical action of QCD is then given by

S[A, ψ̄, ψ] =

∫
d4x
(
LYang-Mills[A](x) + LMatter[A, ψ̄, ψ](x)

)
. (2.13)

In the remainder of this work, we will focus on the gluonic part and study the non-

equilibrium dynamics of pure Yang-Mills theory, defined by the classical action

SYM [A] = −1

4

∫
d4x Faµν(x)Fµνa (x) . (2.14)

11



CHAPTER 2. THEORETICAL BACKGROUND

Since the gluons are charged under the adjoint representation of the SU(Nc) gauge group, they

interact with each other and the classical action in Eq. (2.14) already contains cubic and quartic

interaction terms. The simplification of neglecting fermionic degrees of freedom is motivated by

several reasons of both physical and technical nature. First of all the non-equilibrium dynamics

of heavy-ion collisions at weak coupling, as described in the color-glass condensate framework

[27, 28], is characterized by large gluon occupations on the order of the inverse self-coupling. In

contrast, since fermions obey the Pauli principle, their characteristic occupancy can not exceed

unity, such that the gluonic contribution to bulk observables, as e.g. the energy density, is

parametrically enhanced at weak coupling. One therefore expects the non-equilibrium plasma

to be gluon dominated at sufficiently weak coupling and it is reasonable to neglect the quark

degrees of freedom. The second, more technical reason, is related to the lattice discretiza-

tion of fermionic degrees of freedom. First of all, since fermionic degrees of freedom can not

exhibit occupation numbers larger than unity the classical-statistical approximation does not

apply and one needs to consider a genuine quantum approach to study the non-equilibrium dy-

namics. While there has been significant progress concerning this problem [59–63], numerical

simulations involving fermions are technically more involved and require larger computational

resources. Hence it appears natural, to first study the non-equilibrium dynamics of pure Yang-

Mills theory and include fermions later to study their effect on the evolution.

In addition to neglecting the fermionic degrees of freedom, we will in the following consider

the gauge group SU(2) rather than the SU(3) gauge group of the QCD Yang-Mills sector.

While this greatly simplifies the numerical studies, it has explicitly been checked that there are

no qualitative differences in the non-equilibrium dynamics, for the different gauge groups SU(2)

and SU(3) in classical-statistical lattice simulations [64] as well as for SU(2), SU(3), SU(4)

and SU(5) in the discretized hard-loop approximation [65]. Hence, we expect no qualitative

differences for the results presented in this work.

We close this short introduction with a discussion of the classical equations of motion. As

we will argue shortly in Sec. 2.2, these capture the essence of the quantum field dynamics in

the regime of large occupancies and weak coupling. The classical field equations follow from

the principle of the stationary action

δS[A]

δAaµ(x)
= 0 , (2.15)

and form a set of 4× (N2
c − 1) coupled partial differential equations

Dab
µ (x)Fµνb (x) = −Jνa (x) , (2.16)

12



2.1. BASICS OF QUANTUM CHROMODYNAMICS

which reduce to a set of free equations in the case of g → 0, which correspond to the Maxwell

equations in electrodynamics. The current in Eq. (2.16) is covariantly conserved and satisfies

the continuity equation

Dab
µ (x)Jµb (x) = 0 . (2.17)

In the case of full QCD the current is given by Jνa (x) = gψ̄Γaγνψ, whereas for pure Yang-Mills

theory it vanishes in the absence of external sources.

We will frequently decompose the field strength tensor into the electric and magnetic com-

ponents according to

Ei
a(x) = F i0a (x) , Ba

i (x) =
1

2
εijkFajk(x) , (2.18)

such that the time-like component (ν = 0) of the Yang-Mills equations (2.16) can also be

rewritten as

Dab
i (x)Ei

b(x) = −J0
a(x) . (2.19)

This is the non-abelian version of the familiar Gauss law constraint. In the absence of sources

Jνa (x) = 0, which we will consider throughout this work, it can easily be shown that the left

hand side of Eq. (2.19) is conserved by the dynamical evolution equations (2.16) for ν = 1, 2, 3.

The Gauss law in Eq. (2.19) therefore corresponds to a non-dynamical constraint, which once

satisfied at initial time is conserved throughout the dynamical evolution.

Since the action in Eq. (2.14) is invariant under local gauge transformations, the stationary

point is of course not unique and Eq. (2.15) is satisfied by all gauge copies. When solving the

Yang-Mills equations (2.16), it is therefore more efficient to eliminate some of the redundancy

by implementing a suitable gauge fixing condition. Here we will mostly employ temporal

axial gauge (At = 0),4 which partially fixes the gauge freedom up to time independent gauge

transformations. The latter will be left open and only be specified a posteriori, whenever we

are interested in gauge dependent quantities.

4When simulating expanding systems, we will employ the Fock Schwinger gauge condition (Aτ = 0), which
is the co-moving analogue of temporal axial gauge.
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CHAPTER 2. THEORETICAL BACKGROUND

2.2 Non-equilibrium quantum field theory

We will now introduce some of the basic concepts of non-equilibrium statistical mechanics of

classical and quantum systems and subsequently outline a comparison between the two types

of systems. We refer to Refs. [40–42, 66–69] for a more detailed discussion of many aspects.

The central problem of non-equilibrium statistical mechanics is to determine the time evo-

lution of a given initial state. In a classical theory, defined by a (time-independent) Hamilton

function H(x, p) with canonical variables x and conjugate momenta p, such a state is determined

by a (positive semi-definite) phase space function W0[x0, p0], which describes the distribution

of initial conditions (x0, p0) at initial time t0 and contains all information about physical ob-

servables. In particular the expectation value of any observable O(t), which is a function of

the phase space variables x and p at any time t ≥ t0, can be calculated as an ensemble average

over different realizations according to

〈O(t)〉 =

∫
dx dp W [x, p; t] O[x, p; t] , (2.20)

such that the problem of non-equilibrium dynamics is to determine the time evolution of the

phase space distribution W [x, p; t]. In classical-statistical mechanics, this is governed by the

Liouville equation

∂tW [x, p; t] = {H,W}PoissonBracket , (2.21)

which describes the evolution of the phase space density in time. In view of systems with many

degrees of freedom, Eq. (2.21) is in practice difficult to solve, since it is a partial differential

equation of many variables. However, it is of course also possible to follow the individual phase

space trajectories (x0
cl(t), p

0
cl(t)), which solve the classical equations of motion

ẋ0
cl(t) =

∂H

∂p
(x0

cl(t), p
0
cl(t)) , ṗ0

cl(t) = −∂H
∂x

(x0
cl(t), p

0
cl(t)) , (2.22)

for the initial condition (x0
cl(t0), p0

cl(t0)) = (x0, p0), and subsequently average over all trajectories

according to the initial phase space distribution. The phase space density W [x, p; t] can then

equivalently be expressed as [68]

W [x, p; t] =

∫
dx0 dp0 W0[x0, p0] δ(x− x0

cl(t)) δ(p− p0
cl(t)) , (2.23)

which is more useful for practical purposes. Since the classical evolution maps every point

(x0, p0) in phase space at initial time t0, to exactly one point (x0
cl(t), p

0
cl(t)) at any time t > t0,

14



2.2. NON-EQUILIBRIUM QUANTUM FIELD THEORY

the corresponding transition amplitude is the point measure given by the delta functions in

Eq. (2.23) and it is straightforward to prove that Eq. (2.23) solves the Liouville equation.5 In

particular, the extension of Eq. (2.23) to systems with many degrees of freedom is straightfor-

ward, and we will use this formulation to calculate expectation values in classical-statistical field

theories by a standard Monte-Carlo procedure as discussed in Sec. 2.4. We will now discuss the

general properties of non-equilibrium quantum systems and motivate the classical-statistical

approximation.

In a general quantum theory in the Schrödinger picture, defined by a (time-independent)

Hamiltonian H, the properties of a state are determined by the density operator ρ, which

contains the information about all physical observables. The expectation value of observables

O can be calculated as the trace over the Hilbert space according to

〈O〉 = tr[Oρ] , (2.24)

and the time evolution of the density operator is governed by the quantum analogue of the

Liouville equation, the von-Neumann equation

i~ ∂tρ = [H, ρ] . (2.25)

Since solving the operator equation (2.25) is impractical to study the non-equilibrium dynam-

ics of quantum many-body systems, alternative functional techniques have been developed to

study initial value problems in quantum field theories (see e.g. Refs. [42, 66]). The general

strategy is to perform a path integral quantization and compute observables from correlation

functions. However, the functional quantization of non-abelian gauge theories is complicated

by the appearance of gauge equivalent copies, which need to be eliminated by a suitable gauge

fixing procedure in order to extract meaningful correlation functions. Since this is not of direct

relevance to this work, we will omit a further discussion and assume the existence of a gener-

5By exponentiating the delta functions and performing the partial derivative one immediately obtains

∂tW [x, p; t] = −
∫
dα

2π

dβ

2π

∫
dx0 dp0 W0[x0, p0] [iαẋ0cl(t) + iβṗ0cl(t)] e

iα(x−x0
cl(t))eiβ(p−p

0
cl(t))

= − ∂

∂x

∫
dx0 dp0 W0[x0, p0]

∂H

∂p
(x0cl, p

0
cl) δ(x− x0cl(t)) δ(p− p0cl(t))

+
∂

∂p

∫
dx0 dp0 W0[x0, p0]

∂H

∂x
(x0cl, p

0
cl) δ(x− x0cl(t)) δ(p− p0cl(t))

=

(
∂H

∂x

)(
∂W

∂p

)
−
(
∂W

∂x

)(
∂H

∂p

)
= {H,W}PoissonBracket ,

where we used Hamilton’s equations of motion (2.22) to express the time derivatives and in the last step we
evaluated the expressions at (x0cl(t), p

0
cl(t)) = (x, p) according to the delta functions. We also used that the

second derivatives cancel due to the relative minus sign.
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CHAPTER 2. THEORETICAL BACKGROUND

ating functional in the following. We refer the interested reader to the literature instead (see

e.g. [56, 57, 70, 71]).

2.2.1 Generating Functional and 2PI effective action

The central object in functional approaches is the non-equilibrium generating functional [42,

66, 72, 73]

Z[J,R] =

∫
[dA(1)][dA(2)] 〈A(1)|ρ0|A(2)〉︸ ︷︷ ︸

Initial conditions

∫ A(2)

A(1)

DA exp

[
i

(
SCeff[A] +

∫ C
x

Jµa (x)Aaµ(x)

+
1

2

∫ C
xy

Aaµ(x)Rµν
ab (x, y)Abν(y)

)]
︸ ︷︷ ︸

Non-equilibrium dynamics

,

(2.26)

from which correlation functions can be obtained by functional differentiation with respect to

the sources J and R. The functional integrals over the initial conditions [dA(1/2)] are taken at

initial time t0, whereas the integration over the dynamical gauge fields DA extends along the

Schwinger-Keldysh contour shown in Fig. 2.1.6 Similarly, the space-time integrals
∫ C
x

are to

be understood as integration along the closed time path, such that the time ordering on the

lower branch is reversed, while any time on the lower part of the contour is considered later

than any time on the upper part of the contour. Also, the contour action SCeff [A] in Eq. (2.26)

is taken along the closed time path and in general contains additional gauge fixing and ghost

contributions [72, 73]. However, we will only consider axial gauges, in particular temporal axial

gauge (At = 0), for which the contour action is given by7

SCeff [A] =

∫ C
x

[
1

2
(∂tA

a
i (x))2 − 1

4
Faij(x)F ija (x)

]
. (2.27)

In order to obtain connected correlation functions, it is more suitable to consider the

Schwinger functional W [J,R], which similar to vacuum or thermal equilibrium quantum field

theory is defined as

W [J,R] = −i logZ[J,R] . (2.28)

The field expectation value is then given by functional differentiation with respect to J according

6The super- and subscripts of the functional integral represent the fact that the fields match A(1) and A(2)

at the beginning and respectively the end of the closed time contour.
7Note that we did not fix the residual gauge freedom to perform time-independent gauge transformations.

However, this can be done at initial time t0, such that only the initial conditions are affected.
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Figure 2.1: Closed time contour.

to

Aaµ(x) = 〈Aaµ(x)〉 =
δW [J,R]

δJµa (x)

∣∣∣∣
J,R

(2.29)

and vanishes in the absence of sources.8 The propagator Gab
µν(x, y) is defined as the connected

two-point correlation function

Gab
µν(x, y) = 〈TCAaµ(x)Abν(y)〉 − Aaµ(x)Abν(y) = 2

δW [J,R]

δRµν
ab (x, y)

∣∣∣∣
J,R

−Aaµ(x)Abν(y) , (2.30)

where TC denotes time ordering along the closed time path as illustrated in Fig. 2.1. The time

ordered propagator can be decomposed in terms of the spectral and statistical components

according to

Gab
µν(x, y) = F ab

µν(x, y)− i

2
signC(x

0 − y0)ρabµν(x, y) , (2.31)

where signC denotes the sign function on the closed time contour. The statistical two-point

function is given by the anti-commutator

F ab
µν(x, y) =

1

2
〈{Aaµ(x), Abν(y)}〉 − Aaµ(x)Abν(y) =

1

2

[
Gab
µν(x, y) +Gba

νµ(y, x)
]
, (2.32)

while the spectral function is given by the commutator9

ρabµν(x, y) = i〈[Aaµ(x), Abν(y)]〉 . (2.33)

The spectral function ρ determines the structure of excitations of the system, while the sta-

tistical propagator F contains the information about how often these states are occupied. In

thermal equilibrium there is only one independent two point correlation function, since the two

8We will also consider non-vanishing background fields Aaµ(x), as an effective description of very soft excita-
tions of the system, for which a description in terms of two-point correlation functions is more involved.

9Note that these can also be obtained by functional derivatives with respect to the sources, when the
distinction between the upper branch C+ and lower branch C− of the contour is made explicit (see e.g. [41, 66]).
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are related by the Kubo-Martin-Schwinger (KMS) condition [74, 75], sometimes also referred

to as fluctuation-dissipation relation. Of course, this is no longer true out-of-equilibrium and

we will need to consider F and ρ as independent objects.

The quantum evolution equations, for the connected one and two-point correlation functions

can be derived from the two particle irreducible (2PI) effective action, which is defined as the

Legendre transform of the Schwinger functional according to

Γ2PI[A, G] = W [J,R]−
∫ C
x

Aaµ(x)Jµa (x)− 1

2

∫ C
xy

(
Gab
µν(x, y) +Aaµ(x)Abν(y)

)
Rµν
ab (x, y) , (2.34)

which is frequently expressed as [42, 72, 76, 77]

Γ2PI[A, G] = S[A] +
i

2
tr logG−1 +

i

2
tr G−1

0 [A]G+ Γ2[A, G] . (2.35)

In a diagrammatic language, the 2PI effective action contains all two-particle irreducible di-

agrams, with propagator lines associated to the self-consistently resummed propagators. The

vertices are the standard tree level ones in the presence of the background field A, which is

in contrast to different functional approaches such as the Functional Renormalization Group

[78, 79], Dyson-Schwinger equations [79, 80] or higher n-PI effective actions [72, 79], where the

vertices also receive corrections.

In analogy to the classical equations of motion, the quantum evolution equations follow

from the stationarity of the 2PI effective action

δΓ2PI[A, G]

δAaµ(x)

∣∣∣∣
J,R=0

= −Jµa (x) ,
δΓ2PI[A, G]

δGab
µν(x, y)

∣∣∣∣
J,R=0

= 0 , (2.36)

and form a closed set of coupled integro-differential equations for the connected one and two-

point correlation functions [42, 72]. These are analogous to the Dyson-Schwinger equations,

with the difference that the self-energies in this approach contain the tree-level vertices only and

the hierarchy of equations is closed at the propagator level. In turn, the Eqns. (2.36) contain

an infinite set of self-energy diagrams, which for any practical purpose requires a suitable

truncation. While for some purposes it is sufficient to employ an expansion up to a fixed

loop order [42], this typically fails in situations where the suppression of higher loops due to

the small coupling constant is compensated by large statistical fluctuations (see e.g. [53]).

However, as we will discuss now, the framework of classical-statistical field theory provides a

robust approximation for the quantum field dynamics in these situations [40, 41].
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2.2.2 Classical aspects of quantum dynamics

In order to highlight the classical aspects of the quantum dynamics, we follow a standard proce-

dure [40, 41, 68] and perform some manipulations of the generating functional in Eq. (2.26). In

the first step, we split the closed time contour C into the upper branch C+ and lower branch C−

as illustrated in Fig. 2.1 and introduce the field variables A+ and A−, which have support only

on the respective branches. This allows us to make the time ordering on the contour explicit,

and the contour action in Eq. (2.27) can then be expressed as

SCeff[A+, A−] = S[A+]− S[A−] , S[A±] =

∫
x

LYM [A±](x) , (2.37)

where the
∫
x

=
∫
d4x and the time integration now extends along the real time axis only. In

the next step, we introduce the field variables Acl and Ã, which correspond to the average and

the difference of the fields on the different branches of the contour according to

Aacl,µ(x) =
[
Aa,+µ (x) + Aa,−µ (x)

]
/2 , Ãaµ(x) = Aa,+µ (x)− Aa,−µ (x) . (2.38)

In terms of the new field variables, the contour action then takes the form

SCeff[Acl, Ã] = S[Acl + Ã/2]− S[Acl − Ã/2] , (2.39)

which can be evaluated explicitly according to

SCeff[Acl, Ã] =

∫
x

δS[A]

δAaµ(x)

∣∣∣∣
A=Acl

Ãaµ(x) +
1

24

∫
x,y,z

δ(3)S[A]

δAcγ(z)δAbν(y)δAaµ(x)

∣∣∣∣
A=Acl

Ãcγ(z)Ãbν(y)Ãaµ(x) .

(2.40)

The functional Taylor series on the right hand side of Eq. (2.40) contains only odd power of Ã

and terminates at fourth order, since the classical action S[A] contains only terms up to cubic

order in the fields. One immediately observes that if one drops the second term in Eq. (2.40),

the auxiliary field Ã can be integrated out, since it appears only linearly in the contour action.

The integration over the exponential exp[i δS/δA Ã] then enforces the action principle and one

recovers the classical equations of motion for the Acl field [68].10 The difference between the

quantum field dynamics and the classical field dynamics is therefore entirely contained in the

second term in Eq. (2.40). One also observes, that at the level of a Gaussian approximation,

i.e. keeping only terms quadratic in the fields, this term does not contribute, since it contains

already three powers of the Ã field. The difference between the classical and quantum field

10Note that one can also construct the corresponding path integral from the classical-statistical field theory
(see e.g. Refs. [40, 41, 68]).
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dynamics is therefore the appearance of additional quantum vertices, which are absent in the

dynamics of classical fields.

In order to work out the difference between the classical and quantum vertices, we follow

Refs. [40, 41] and consider the diagrammatic contributions of the different terms in Eq. (2.40).

We first note that, in terms of the field variables Acl and Ã, one finds that for physical sources

J+ = J− = J and R = 0, the one point functions are given by [41, 66]

〈Aacl,µ(x)〉 = Aaµ(x) , 〈Ãaµ(x)〉 = 0 , (2.41)

and the two-point correlation functions take the form [41, 66]

〈TCAacl,µ(x)Abcl,ν(y)〉 = F ab
µν(x, y) +Aaµ(x)Abν(y) , 〈TCÃaµ(x)Ãbν(y)〉 = 0 ,

〈TCÃaµ(x)Abcl,ν(y)〉 = −G(R),ab
µν (x, y) , 〈TCAacl,µ(x)Ãbν(y)〉 = −G(A),ab

µν (x, y) .

(2.42)

Here we introduced the retarded G(R) and advanced G(A) correlation functions, which are given

by11

G(R),ab
µν (x, y) = iθ(x0 − y0)〈[Aaµ(x), Abν(y)]〉 (2.43)

G(A),ab
µν (x, y) = −iθ(y0 − x0)〈[Aaµ(x), Abν(y)]〉 (2.44)

and are related to the spectral function by ρ = G(R) −G(A).

Since the classical and quantum vertices in Eq. (2.40) have the same general structure, it

is clear that they give rise to the same topology of self-energy diagrams. However, since the

quantum vertex contains powers of Ã instead of Acl, the additional quantum diagrams contain

retarded and advanced propagators G(R/A) instead of the statistical two-point function F . This

feature has been exploited in Refs. [40, 41] to formulate the ’classicality condition’

|F ab
µν(x, y)F cd

γδ (z, w)| � 3

4
|ρabµν(x, y)ρcdγδ(z, w)| , (2.45)

and states that the statistical fluctuations have to be large compared to the spectral function

for the system to exhibit classical-statistical dynamics. Neglecting the quantum vertices in

Eq. (2.40), then amounts to dropping terms proportional to the spectral function, whenever

they appear in combination with terms containing the statistical two-point function instead.

11Again, we refrain from giving the formal definition of the correlation functions via the introduction of
appropriate contour source terms (see e.g. Refs. [41, 66]).
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Of course, a one to one mapping of the generating functional in Eq. (2.26) on to a classical-

statistical theory also involves a mapping of the initial conditions [68]. The classical-statistical

theory will therefore contain characteristic properties of the quantum system, such as vacuum

fluctuations of the initial state. However, the subsequent dynamics is entirely classical and

described by the Yang-Mills field equations discussed in Sec. 2.1. Finally, we note that in situ-

ations where spectral and statistical two-point functions are related by an occupation number,

the classicality condition states that the characteristic occupation of modes has to be much

larger than unity. This condition will be met in all physical systems under consideration in this

work.

2.3 Co-moving coordinates

Before we discuss the implementation of the classical-statistical framework, we will introduce a

different set of coordinates, which are more suitable to describe the dynamics of longitudinally

expanding non-abelian plasmas as they appear in the context of relativistic heavy-ion collisions.

We will therefore introduce the longitudinal rapidity coordinate η and the longitudinal proper

time τ according to

τ =
√
t2 − z2 , η = atanh(z/t) , (2.46)

and we will also need the inverse transformation, given by

t = τ cosh(η) , z = τ sinh(η) . (2.47)

The covariant metric tensor gµν(x) in xµ = (τ, x1, x2, η) coordinates follows from its counterpart

ηµν = diag(1,−1,−1,−1) in Minkowski space, with coordinates x̃µ = (t, x1, x2, z) according to

[81]

gµν(x) =
∂x̃α

∂xµ
ηαβ

∂x̃β

∂xν
= diag(1,−1,−1,−τ 2) , (2.48)

and we will denote the metric determinant as g(x) = det[gµν(x)] = −τ 2, such that γ(x) =√
−g(x) = τ . In contrast the contravariant metric tensor gµν(x) is defined by the inverse of

the covariant metric tensor gµν(x), according to [81]

gµα(x)gαν(x) = δµν , (2.49)
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where δµν denotes the Kronecker symbol, such that

gµν(x) = diag(1,−1,−1,−1/τ 2) . (2.50)

Similarly, the classical gauge fields Aaµ(x) transform as Lorentz co-vectors under general coor-

dinate transformations [81]

Aaµ(x) =
∂x̃α

∂xµ
Ãaα(x) , (2.51)

such that the (τ, η) components of the gauge fields are given by

Aaτ (x) = cosh(η)Aat (x) + sinh(η)Aaz(x) , Aaη(x) = τ
[

sinh(η)Aat + cosh(η)Aaz(x)
]
. (2.52)

The classical Yang-Mills action in x = (τ, x1, x2, η) coordinates can then be expressed as (see

e.g. [50])

S[A] = −1

4

∫
d4x

√
−g(x) Faµν(x)gµα(x)gνβ(x)Faαβ(x) , (2.53)

where the Lorentz indices take the values µ, ν, α, β = τ, 1, 2, η and
∫
d4x
√
−g(x) =

∫
τdτ dη d2~xT

denotes the space-time integral in the new coordinate system. We note that the covariant field

strength tensor Faµν(x) is still given by Eq. (2.10), whereas the contravariant field strength

tensor Fµνa (x) follows as

Fµνa (x) = gµα(x)gνβ(x)Faαβ(x) . (2.54)

We will in the following denote the electric components of the field strength tensor as

Eη
a(x) = τFητa (x) , Ei

a(x) = τF iτa (x) , (2.55)

such that in Fock-Schwinger (Aτ = 0) gauge, which provides the co-moving analogue of the

temporal axial (At = 0) gauge, the electric fields are given by

Eη
a(x)

(Aτ=0)
= τ−1∂τA

a
η(x) , Ei

a(x)
(Aτ=0)

= τ∂τA
a
i (x) , (2.56)

and correspond to the conjugate momentum variables of the spatial gauge fields.

The classical Yang-Mills equations follow from the action principle in Eq. (2.15) and take
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the form

Dab
µ (x)

√
−g(x)gµα(x)gνβ(x)F bαβ(x) = 0 , (2.57)

where the (gauge) covariant derivative Dab
µ (x) is still given by Eq. (2.8). We emphasize that

this change of coordinates simply amounts to a re-parametrization, which does not affect the

physical properties of the theory, such that the above equations still describe the dynamics of

Yang-Mills theory in 3+1 space-time dimensions. However, since the typical initial conditions

employed to study the non-equilibrium dynamics of relativistic heavy-ion collisions are defined

at a fixed proper time τ = τ0 and exhibit a translation invariance in longitudinal rapidity η as

well as in the transverse coordinates ~xT = (x1, x2), a formulation in terms of (τ, η) coordinates

is indeed beneficial. Since the study of longitudinally expanding systems is a central topic of

this work, we will also discuss the lattice discretization in the co-moving (τ, η) coordinates. The

reduction to Minkowski space is straightforward and also discussed below.

2.4 Classical-statistical real-time lattice gauge theory

In the remainder of this chapter we will describe the framework to perform classical-statistical

real-time simulations of SU(2) Yang-Mills theory. Since the classical Yang-Mills equations can

in general not be solved analytically, this requires the use of a numerical method which is based

on the discretization of the theory on a space-time lattice. The lattice discretization proceeds

along similar lines as in standard vacuum or thermal equilibrium lattice QCD (see e.g. [82]),

where in general there are several ways to discretize the Yang-Mills action, which differ in the

level of accuracy in spatial and temporal lattice spacings [83–85]. Here we will employ a Wilso-

nian lattice formulation [84] in Fock-Schwinger (Aτ = 0) gauge, which is particularly well suited

to describe the dynamics of longitudinally expanding non-abelian plasmas. In this approach we

consider points (~x⊥, η) on a cubic lattice of spatial size NT ×NT ×Nη separated by the lattice

spacing a⊥ in the transverse and aη in the longitudinal directions respectively. The temporal

τ direction remains continuous in the first place and will be discretized in the second step. We

employ periodic boundary conditions in the spatial directions and we will collectively label the

spatial and temporal coordinates as x = (τ, ~x⊥, η).

In this framework, the continuum gauge fields Aaµ(x) are represented in terms of the gauge

link variables Uµ(x) which are given by

Ui(x) = exp[iga⊥A
a
i (x+ î/2)Γa] , Uη(x) = exp[igaηA

a
η(x+ η̂/2)Γa] , (2.58)

where Γa = σa/2 are the generators of the su(2) Lie algebra in the fundamental representation
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and the symbol µ̂ = x̂1, x̂2, η̂ denotes the neighboring lattice site in the µ direction. The gauge

link variables can be intuitively understood as an approximation of the path-ordered Wilson

line P exp[ig
∫ y
x
A], connecting adjacent lattice sites x and y along a straight line path. In

particular, the gauge link variables transform as the Wilson lines according to

U (G)
µ (x) = G(x)Uµ(x)G†(x+ µ̂) , U †(G)

µ (x) = G(x+ µ̂)Uµ(x)G†(x) , (2.59)

under time-independent local gauge transformations G(x) ∈ SU(2). The lattice action and

the classical evolution equations for the gauge link variables can be formulated in terms of the

spatial plaquette variables Vµν(x) and Wµν(x), which are defined as usual as

Vµν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x) ,

Wµν(x) = Uµ(x)U †ν(x+ µ̂− ν̂)U †µ(x− ν̂)Uν(x− ν̂) , (2.60)

such that Wµν(x) = U †ν(x− ν̂)V †µν(x− ν̂)Uν(x− ν̂). The plaquette variables can be related to

the continuum expression of the non-abelian field strength tensor Faµν(x) by virtue of

Vµν(x) = exp[ igaµaνFaµν(x+ µ̂/2 + ν̂/2)Γa +O(ga3)] (2.61)

Wµν(x) = exp[−igaµaνFaµν(x+ µ̂/2− ν̂/2)Γa +O(ga3)] (2.62)

for sufficiently small lattice spacings a⊥, aη. We note that the plaquette variables are defined

in the center of the respective Wilson loop as indicated in Fig. 2.2. In this sense the phase of

the plaquette Vµν(x) and Wµν(x) corresponds to the magnetic flux through the area spanned

by the Wilson loop to leading order in the lattice spacing.

In order to construct the lattice gauge action, we will now also discretize the time direction,

however keeping the temporal lattice spacing aτ � (a⊥, τ, τaη) sufficiently close to the contin-

uum limit. We can then also introduce the time-like plaquette variables Uτµ(x), which take the

general form

Uτµ(x) = Uτ (x)Uµ(x+ τ̂)U †τ (x+ µ̂)U †µ(x) , (2.63)

where τ̂ denotes the neighboring lattice site in the temporal direction. In Fock-Schwinger

(Aτ = 0) gauge, where the temporal links are trivial (Uτ = 1), the time-like plaquette variables

have a simpler structure

Uτµ(x) = Uµ(x+ τ̂)U †µ(x) . (2.64)

Similar to Eqns. (2.61) and (2.62), the temporal plaquette variables can be related to the
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Figure 2.2: Illustration of the lattice link and plaquette variables.
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(dimensionless) electric field variables Ẽµ
a (x) on the lattice according to

Ẽi
a(x) = −2

τ

aτ
tr [iΓaUτi(x))] , Ẽη

a(x) = −2
a2
⊥

τaτaη
tr [iΓaUτη(x))] , (2.65)

for the transverse components Uτi(x) and longitudinal components Uτη(x) respectively. In the

limit of small temporal lattice spacing (aτ → 0), they are then related to the corresponding

continuum fields Ei
a(x) by

Ẽi
a(x) = ga⊥E

i
a(x+ î/2 + τ̂ /2) , Ẽη

a(x) = ga2
⊥E

η
a(x+ η̂/2 + τ̂ /2) . (2.66)

In analogy to the spatial plaquette variables Vµν(x) and Wµν(x), the time-like plaquette vari-

ables Uτµ(x) are defined at half-integer time-steps x+ µ̂/2+ τ̂ /2, as indicated by blue arrows in

Fig. 2.2. We will see shortly that this choice corresponds to the so called leap-frog discretiza-

tion scheme employed in the discretized version of the evolution equations.

An important feature of the plaquette variables is the fact that these objects transform

covariantly under time-independent gauge transformations, i.e.

V (G)
µν (x) = G(x)Vµν(x)G†(x) , W (G)

µν (x) = G(x)Wµν(x)G†(x) , U (G)
τµ (x) = G(x)Uτµ(x)G†(x) .

(2.67)

In particular this implies that the trace of a plaquette variable or in general any closed Wilson

loop is gauge invariant. This property can be used to construct a gauge invariant lattice action

as well as gauge invariant observables as discussed below.

2.4.1 Equations of motion and Gauss law

The lattice evolution equations can be derived from the Wilsonian lattice action, which for the

SU(2) gauge group can be expressed as (see e.g. [52, 86, 87])

S[U ] =
2

g2

∑
x

{(
a2
⊥

aττaη

)
tr[1 − Uτη(x)]−

(
aττaη
a2
⊥

)
tr[1 − Vxy(x)] (2.68)

+

(
τaη
aτ

)∑
i

tr[1 − Uτi(x)]−
(
aτ
τaη

)∑
i

tr[1 − Viη(x)]

}
,

where the sum over x = τ, ~x⊥, η includes all sites of the space-time lattice. Since the lattice

action in Eq. (2.68) contains only traces of plaquette variables it is manifestly gauge-invariant.

The classical equations of motion can then be obtained as usual by variation of the action with
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respect to the gauge links

δS

δU
= 0 . (2.69)

Since the gauge link variables are group elements, the variation has to be performed within the

SU(2) gauge group according to Uµ(x)→ (1+ iαaµ(x)Γa)Uµ(x).12 Since according to Eq. (2.64)

the time-like plaquette variables connect two neighboring sites in the temporal direction, the

variation of the electric components of the action is given by

δ

δαaµ(y)

∣∣∣∣
α=0

∑
x

tr[Uτα(x)] = −δµα tr [iΓa(Uτα(y)− Uτα(y − τ̂))] . (2.70)

Similarly one finds that the variation of the magnetic components of the gauge action can be

expressed as

δ

δαaµ(y)

∣∣∣∣
α=0

∑
x

tr[Vαβ(x)] = δµαtr [iΓa(Vαβ(y) +Wαβ(y))] + δµβtr [iΓa(Vβα(y) +Wβα(y))] .

(2.71)

By use of Eq. (2.65) the expression on the right hand side of Eq. (2.70) can be rewritten in

terms of the electric field variables. The evolution equations for the electric field variables then

take the form

Ẽi
a(x)− Ẽi

a(x− τ̂) = 2
aτ
τa2

η

tr [iΓa(Viη(x) +Wiη(x))] + 2
aττ

a2
⊥

∑
j 6=i

tr [iΓa(Vij(x) +Wij(x))] ,

Ẽη
a(x)− Ẽη

a(x− τ̂) = 2
aτ
τaη

∑
i

tr [iΓa(Vηi(x) +Wηi(x))] . (2.72)

Similarly one can invert Eq. (2.65), such that, in the limit of small temporal lattice spacing

(aτ → 0), the time-like plaquette variables can equivalently be expressed in terms of the electric

field variables according to13

Uτi(x) = exp
[
i
aτ
τ
Ẽi
a(x)Γa

]
, Uτη(x) = exp

[
i
aττaη
a2
⊥

Ẽη
a(x)Γa

]
. (2.73)

Since the time plaquettes connect the gauge link variables on adjacent lattice sites in the time

direction, Eqns. (2.64) and (2.73) can be used to construct the evolution equation for the link

12Note that this automatically implies the variation of U†µ(x) → (1 − iαaµ(x)Γa)Uµ(x) for the adjoint gauge
links.

13We note that, while strictly speaking, the relation in Eq. (2.73) is only accurate to next-to-leading order in
the temporal lattice spacing O(a2τ ), the stability of the numerical solution typically requires very small values
of aτ � (a⊥, τ, τaη), such that in practice we observe no difference between Eq. (2.73) and the exact inversion
of Eq. (2.65).
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variables as

Ui(x+ τ̂) = exp
[
i
aτ
τ
Ẽi
a(x)Γa

]
Ui(x) , Uη(x+ τ̂) = exp

[
i
aττaη
a2
⊥

Ẽη
a(x)Γa

]
Uη(x) . (2.74)

We note that the electric field variables are defined at half-integer time steps according to Eq.

(2.66), such that the gauge force on the right hand side of Eq. (2.72) is effectively calculated

at the mid-point of the considered time interval. Similarly the time-like plaquettes Uτµ(x) on

the right hand side of Eq. (2.74) are defined at the mid-point x+ µ̂/2 + τ̂ /2 of the considered

time interval. This realization of the evolution equation corresponds to the so called leap-frog

discretization scheme.

In addition to the evolution equations (2.72) and (2.74), a further constraint can be derived

from the lattice action, by performing a variation with respect to the temporal links Uτ (x).14

This yields the discretized version of the Gauss law constraint(
a2
⊥

aττaη

)
tr[iΓa(Uτη(x)− U †η(x− η̂)Uτη(x− η̂)Uη(x− η̂))]

+

(
τaη
aτ

)∑
i

tr[iΓa(Uτi(x)− U †i (x− î)Uτi(x− î)Ui(x− î))] = 0 (2.75)

which needs to be satisfied separately for all color components a at each position x in space-

time. Since the current on the left hand side of Eq. (2.75) is conserved by the equations of

motion in the continuum limit, the Gauss law constraint is a non-dynamical constraint, which

physically meaningful initial conditions have to satisfy. However, during the course of numerical

lattice simulations, Eq. (2.75) will be violated due to rounding and discretization errors. In

practice, the Gauss law constraint is therefore implemented at initial time and the violation

of Eq. (2.75) is then monitored throughout the subsequent time evolution to ensure that dis-

cretization errors are sufficiently small.

Before we discuss the implementation of the above lattice setup, we briefly note that the

evolution equations in Minkowski space time (see e.g. [52, 86, 87]) can easily be recovered by the

replacement τ → a⊥, aη → 1 in the above evolution equations.15 This is particularly convenient

for testing the numerical implementation and will further enable us to perform simulations also

in the so called ’static box’ in Minkowski space time as discussed in Chapter 3.

14Note that the lattice action is invariant also under time dependent gauge transformations. We can therefore
consider also variations with respect to the temporal gauge links fix the Fock-Schwinger gauge (Uτ = 1) only
after taking derivatives.

15Of course a reinterpretation of the rapidity coordinate η as the longitudinal coordinate z and the proper
time coordinate τ as the Minkowski time t is implied. Similarly, the simulations in Minkowski space time are
performed in temporal axial gauge (At = 0) instead of Fock-Schwinger gauge (Aτ = 0).
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2.4.2 Classical-statistical averages and numerical implementation

In order to calculate the expectation value of an observable O(x) in the classical-statistical

approximation one needs to evaluate the expression

〈O(x)〉 =

∫
DA0 DE0 W0[A0, E0] O[A0

cl, E
0
cl; x] , (2.76)

where W0[A0, E0] is the initial phase-space density and the functional integral extends over all

possible field configurations at initial time τ0. Here the notation O[A0
cl, E

0
cl; x] implies that the

observable of interest is to be evaluated as a functional of the classical field solutions A0
cl and

E0
cl at the point x in space time. While the discretization on a space-time lattice renders the

integration in Eq. (2.76) finite dimensional, the remaining high dimensional integral is evalu-

ated by the following Monte Carlo procedure:

We first generate an ensemble of initial conditions according to the initial phase space den-

sity W0[A0, E0]. For each configuration, the evolution equations (2.72) and (2.74) can then be

solved numerically in a straightforward fashion. The electric field variables at the next time

step can be calculated from the initial ones by use of Eq. (2.72). In order to construct the

gauge links at the next step in time, one subsequently solves Eq. (2.74). The matrix valued

exponential involved in Eq. (2.74) can be calculated explicitly for the SU(2) gauge group by use

of the relations in Appendix A. By iterating the update procedure multiple times, one obtains

the solution of the classical field equations at any time of interest. The classical-statistical

expectation value of any observable can then be calculated by evaluating the observable sepa-

rately for each configuration and subsequently averaging over the ensemble of initial conditions.

In view of the numerical efficiency of the algorithm it is important to realize, that the

problem exhibits a high degree of parallelizability, since the time evolution of different initial

configurations can be computed independently. Moreover, since the individual updates in

Eqns. (2.72) and (2.74) only require the information from up to next-to-nearest neighbor sites,

the updates of electric field and gauge link variables can be computed in parallel, with a

subsequent exchange of information with nearest and next-to-nearest neighboring sites. In

practice, we exploit this feature by dividing the lattice into several slices in the longitudinal

direction, which are then all updated in parallel.

2.4.3 Observables

All physical information about the time evolution of the system is contained in gauge invariant

observables, which can be calculated in a straightforward way within the framework of classical-
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statistical lattice simulations. A central quantity in this context is the energy momentum tensor,

which in the continuum takes the form [50]

T µν(x) = −gνα(x)Fµδa (x)Faαδ(x) +
1

4
gµν(x)Fγδa (x)Faγδ(x) . (2.77)

In particular, we will be interested in the diagonal components of the energy momentum tensor,

which can be associated with the energy density ε and the longitudinal and transverse pressure

densities PL and PT according to [50]

ε(x) = 〈T ττ (x)〉 , PT (x) = −1

2
〈T xx(x) + T yy(x)〉 , PL(x) = −〈T ηη(x)〉 . (2.78)

The above definitions are normalized such that for locally isotropic systems one obtains the

relation PL = PT = ε/3, whereas for anisotropic systems, the ratio PL/PT can be used to

quantify the bulk anisotropy of the plasma. The corresponding lattice expressions can be

written compactly in terms of the electric and magnetic components as16

(g2a4
⊥) ε(x) =

1

2

[
〈B2

η(x)〉+ 〈E2
η (x)〉+ 〈B2

T (x)〉+ 〈E2
T (x)〉

]
,

(g2a4
⊥) PT (x) =

1

2

[
〈B2

η(x)〉+ 〈E2
η (x)〉

]
,

(g2a4
⊥) PL(x) =

1

2

[
〈B2

T (x)〉+ 〈E2
T (x)〉 − 〈B2

η(x)〉 − 〈E2
η (x)〉

]
, (2.79)

where the individual electric and magnetic components can be obtained as

B2
η(x) = 4 tr[1 − Vxy(x)] , B2

T (x) = 4

(
a2
⊥

τ 2a2
η

)∑
i

tr[1 − Viη(x)] ,

E2
η (x) =

N2
c−1∑
a=1

[Ẽη
a(x)]2 , E2

T (x) =

(
a2
⊥
τ 2

)∑
i

N2
c−1∑
a=1

[Ẽi
a(x)]2 . (2.80)

Since the different plaquette variables are formally defined at different half-integer positions

on the space time lattice, a higher order accurate expression can be obtained by interpolation

of the result with the neighboring plaquette variables. However, since we will primarily be

interested in volume averages of the energy density ε(t) according to

ε(τ) =
1

N2
TNη

∑
~x⊥, η

ε(x) , (2.81)

16Note that all expressions are given in lattice units. The conversion to physical units is discussed at the end
of this section.
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and similarly for the longitudinal and transverse pressures PT/L, there is no need to apply this

procedure in practice.

Besides the energy momentum tensor, additional gauge invariant observables can be con-

structed by considering higher dimensional operators such as e.g. the covariant derivatives of

the field strength tensor [88]

Hµ
µ(τ) =

1

V⊥Lη

∫
d2~x⊥ dη D

ab
α (x)Fαµb (x) Dβ

ac(x)F cβµ(x) , (2.82)

(no summation over µ) where summation over spatial Lorentz indices α, β = x, y, η and color

indices a, b, c = 1, ..., N2
c − 1 is implied.17 The corresponding expression on the lattice can be

obtained in a straightforward way according to

(g2a6
⊥) Hx

x(τ) =
4

N2
TNη

∑
~x⊥, η

N2
c−1∑
a=1

[
tr[iΓa(Vxy(x) +Wxy(x))] +

a2
⊥

τ 2a2
η

tr[iΓa(Vxη(x) +Wxη(x))]
]2

,

(g2a6
⊥) Hy

y(τ) =
4

N2
TNη

∑
~x⊥, η

N2
c−1∑
a=1

[
tr[iΓa(Vyx(x) +Wyx(x))] +

a2
⊥

τ 2a2
η

tr[iΓa(Vyη(x) +Wyη(x))]
]2

,

(g2a6
⊥) Hη

η(τ) =
4

N2
TNη

∑
~x⊥, η

a2
⊥

τ 2a2
η

N2
c−1∑
a=1

[
tr[iΓa(Vηx(x) +Wηx(x))] + tr[iΓa(Vηy(x) +Wηy(x))]

]2

.

(2.83)

In particular, we will be interested in the quantities Λ2
L and Λ2

T , which are defined as the

longitudinal and transverse projections of Hµ
µ according to

Λ2
T (τ) =

〈Hη
η(τ)〉
ε(τ)

, Λ2
L(τ) =

〈Hx
x(τ)〉+ 〈Hy

y(τ)〉 − 〈Hη
η(τ)〉

ε(τ)
. (2.84)

The observables ΛL and ΛT correspond to the characteristic longitudinal and transverse mo-

mentum scales of hard excitations and therefore contain additional information about the mi-

croscopic evolution. While this correspondence follows immediately from a dimensional analy-

sis, it is nevertheless insightful to evaluate also the perturbative expressions for Λ2
T and Λ2

L –

considering only the abelian part of the field strength tensor – as

Λ2
T (τ) '

∫
d2~pT dpz ~p

2
T /2 ωp f(~pT , pz, τ)∫

d2~pT dpz ωp f(~pT , pz, τ)
, Λ2

L(τ) '
∫
d2~pT dpz p

2
z ωp f(~pT , pz, τ)∫

d2~pT dpz ωp f(~pT , pz, τ)
,

(2.85)

17Note that by virtue of the equations of motion, we can equivalently express the left hand side of Eq. (2.82)
in terms of time derivatives of the electric fields.
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where f(~pT , pz, τ) denotes the gluon distribution function as a function of longitudinal and

transverse momenta, and ωp ' pT is the relativistic quasi-particle energy in the limit pT � ν/τ .

The details of this calculation are presented in Appendix E.

In addition to the gauge invariant observables outlined above, it will prove to be insightful

to consider also a specific set of gauge-dependent quantities. In this context it is important

to recall that by employing the Fock-Schwinger gauge condition (Aτ = 0), we have so far not

specified the residual gauge freedom to perform time independent gauge transformations. In

order to eliminate this residual gauge freedom, we fix the Coulomb type gauge condition

τ−2∂ηAη(x) +
∑
i

∂iAi(x) = 0 (2.86)

at any time τ when we extract gauge dependent observables. This can be achieved by use of

standard lattice gauge-fixing techniques (see e.g. [89]), as discussed in Appendix B.

In particular, we will be interested in the gluon distribution function f(~pT , pz, τ), which

describes the occupation number of gluons per momentum mode averaged over spin and color

degrees of freedom. Since this quantity has a direct analogue in the kinetic theory framework,

it is particularly useful to establish a direct comparison between the different methods. The

gluon distribution function f(p⊥, pz, τ) can be extracted from equal-time (two-point) correlation

functions in Coulomb gauge and different definitions have been employed in the literature [88,

90, 91]. Here we use a projection on Fock states according to

f(~pT , pz, τ) =
τ 2

NgV⊥Lη

N2
c−1∑
a=1

∑
λ=1,2

〈∣∣∣ gµν [(ξ(λ)~pT ν+
µ (τ)

)∗ ←→
∂τ A

a
ν(τ, ~pT , ν)

]∣∣∣2〉
Coul. Gauge

, (2.87)

where A
←→
∂τ B = A∂τB − B∂τA, the index λ = 1, 2 counts the two transverse polarizations

and Ng = 2(N2
c − 1) is the number of transversely polarized gluon degrees of freedom. Here we

identify the longitudinal momenta as pz = ν/τ , and ξ
(λ)~pT ν+
µ (τ) denotes the two time-dependent

transverse polarization vectors in the free theory, whose explicit form in Fock-Schwinger gauge

is derived in Appendix C. The gauge field Aaν(τ, ~pT , ν) in Eq. (2.87) is computed from the

plaquette variables by inversion of Eq. (2.58) and subsequently performing a fast Fourier

transformation to obtain the result in momentum space. Similarly, we obtain the time deriva-

tive of the gauge field from the fast Fourier transform of the electric field variables. We note

that the definition in Eq. (2.87) is such that in the absence of interactions f(~pT , pz, τ) is, up to

the red shift of longitudinal momenta, exactly conserved by the equations of motion.

32



2.4. CLASSICAL-STATISTICAL REAL-TIME LATTICE GAUGE THEORY

In view of the physical interpretation of our results it is important to realize that, since

classical Yang-Mills theory is a scale invariant theory, there is no natural scale a priori involved

in the problem. Similarly the coupling constant g can be scaled out of the classical evolution

equations and absorbed into a redefinition of the observables.18 However a characteristic mo-

mentum scale Q, as well as a measure of the gauge coupling g arise naturally when specifying

physically well motivated ’quantum’ initial conditions. It is therefore natural to express all di-

mensionful observables in appropriate units of the dimensionful scale Q and the gauge coupling

g. The conversion to physical units is then straightforward by specifying the appropriate values

of Q and g for the considered physical situation.19

18Note that this is not the case for the corresponding quantum theory, where the gauge coupling g explicitly
enters in the amplitude of the phase factor eiS[A] in the non-equilibrium generating functional.

19Of course, one needs to respect the range of validity of the classical-statistical approximation such that this
procedure only applies in situations where the characteristic occupancies are much larger than unity.
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Chapter 3

Thermalization of weakly-coupled

non-abelian plasmas in Minkowski

space

In view of the discussion of the non-equilibrium dynamics and thermalization process in rela-

tivistic heavy-ion collisions, it is useful to first address the problem of thermalization from a

more general point of view, by considering a class of simpler systems which share important

features with the one created in nucleus-nucleus collisions at ultra-relativistic energies. In this

chapter, we will study the thermalization of non-abelian plasmas in Minkowski space and de-

velop an intuitive understanding of the thermalization process at weak coupling. The major

simplification in this discussion is the fact that by neglecting the longitudinal expansion, we can

restrict our analysis to systems, which are isotropic at all times of the evolution. In contrast,

since the longitudinal expansion explicitly breaks the rotational symmetry of the system, we

will always have to consider the influence of anisotropies in the longitudinally expanding case.

Despite this important difference, we emphasize that the concepts developed in this chapter

apply in a very similar way also to the longitudinally expanding case.

We will consider a class of homogeneous, isotropic systems within the weak coupling scenario

(αS(Q)� 1), which initially have a parametrically large occupancy

f(p) ∼ α−cS for |p| < Q , f(|p| > Q)� 1, (3.1)

where 0 < c < 1, and are characterized by a single momentum scale Q. As discussed in Sec. 5.3,

this represents an idealized version of the situation encountered in heavy-ion collisions at times

τ ∼ Q−1 log2(α−1
S ) after the collision of heavy nuclei, where the characteristic momentum scale

Q can be related to the saturation scale Qs of nuclear wave functions in the framework of the
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color-glass condensate effective field theory [30–32].

Since the typical occupancies are large f(|p| ' Q) � 1, the plasma exhibits classical-

statistical dynamics as long as the occupation numbers of hard excitations remain much larger

than unity. In this regime, we can study the non-equilibrium dynamics from first principles

using the classical-statistical lattice gauge-theory techniques introduced in Sec. 2.4. In the

regime where the characteristic occupancies are f(|p| ' Q) � α−1
S , we will employ a kinetic

description and use resummed perturbation theory as a complementary approach. Since the

different methods have an overlap in the range of validity for 1� f(p ' Q)� α−1
S , our strat-

egy will be to combine the different approaches in order to provide an intuitive understanding

based on the perturbative description, while at the same time having full control over genuinely

non-perturbative and non-equilibrium effects.

The discussion in this chapter is largely based on Refs. [90, 91] and organized in the following

way: We start with a kinetic theory analysis in Sec. 3.1, where we review the previous discussion

in Refs. [30, 31] and extend it to account for the presence of a non-thermal fixed point. In

Sec. 3.2, we study the dynamics at early times using classical-statistical lattice simulations. We

investigate the possibility of the dynamical formation of a Bose-Einstein condensate and discuss

our findings using resummed perturbative techniques in Sec. 3.3. We then extend our lattice

studies to later times in Sec. 3.4, where we analyze the emergence of a turbulent cascade. The

numerical results are complemented by a turbulent scaling analysis in Sec. 3.5. We conclude

this chapter in Sec. 3.6 with a discussion of the turbulent thermalization mechanism, which is

found to drive the thermalization process.
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3.1 Evolution in kinetic theory

The kinetic evolution of systems characterized with an initial distribution as in Eq. (3.1) has

been studied in Refs. [30, 31] and we will adopt the notation of Ref. [30] to analyze the evolution

of the system. Since we will consider closed systems, the energy density ε ∼
∫
d3p ωp f(p) is

conserved and one can immediately infer the final state temperature as 1

TFinal ∼ α
−c/4
S Q . (3.2)

Since we will be interested in over-occupied systems (0 < c < 1) one immediately observes that

TFinal & Q, such that the characteristic momentum of hard excitations has to increase during

the thermalization process. This is illustrated in Fig. 3.1, where we sketch the different regimes

of the kinetic evolution. The left panel of Fig. 3.1 shows the initial state, characterized by

large occupancies up to the momentum scale Q, in comparison with the thermal final state,

indicated by the red dashed line. One also observes, that the typical occupancy of initially hard

excitations

nHard(t) = f(t, |p| ' Q) , (3.3)

decreases during the time evolution from the initial value nInitial
Hard ∼ α−cS to the final value

nFinal
Hard ∼ α

−c/4
S . Interestingly, the decrease in occupancy is accompanied by a change of the

overall particle number density n(t) ∼
∫
d3p f(t,p). Since the particle number density in the

final state is parametrically smaller than initially

nFinal ∼ T 3
Final ∼ α

−3c/4
S Q3 . ninitial ∼ α−cS Q

3 , (3.4)

this means that ultimately number-changing inelastic interactions, will reduce the total number

of excitations, which in contrast to the energy density is not a conserved quantity. However,

there are situations where inelastic processes are highly suppressed as compared to elastic

scattering, such that the total number of excitations is approximately conserved for a tran-

sient regime of the evolution. In this situation, the surplus of hard excitations due to initial

over-occupation may be absorbed in the soft sector and result in the formation of a transient

Bose-Einstein condensate [30]. This non-equilibrium condensation mechanism has previously

been observed in relativistic scalar field theories [43, 92, 93] and is well understood in the

context of non-relativistic scalar field theories, where evaporative cooling techniques are widely

used experimentally to trigger the formation of a Bose-Einstein condensate [94, 95].2 The ques-

1Note that, in this section, we only provide parametric estimates and the notation A ∼ B is to be understood
as ’A is parametrically equal to B’. Similarly, A & B denotes the fact that ’A is parametrically larger than B’.

2Note that, in contrast to relativistic systems, in the non-relativistic case the particle number is exactly
conserved by the equations of motion. The system may therefore develop a chemical potential associated to the
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Figure 3.1: Sketch of the thermalization process in the kinetic theory description. The different
graphs represent the different stages of the evolution. The red dashed line indicates the final
thermal state. After the time t ∼ tStart, when initially hard excitations start to be strongly
affected by elastic scattering a dynamical scale Λ develops. The time evolution of the hard
scale Λ then characterizes the transport of energy towards higher momentum scales.

tion whether such a transient behavior is realized also in non-abelian gauge theories, crucially

depends on the time scales under consideration: On the level of parametric estimates one can

already argue, that since both elastic and inelastic processes show the same parametric de-

pendencies, no condensation occurs on large time scales [31]. However, on shorter time scales,

elastic scattering may indeed be more efficient as compared to inelastic interactions and we will

investigate the possibility of such a transient regime in more detail in Sec. 3.2.

In order to describe the thermalization process in the kinetic theory framework, one has

to take into account the effects of elastic and inelastic scattering, as well as the interaction of

hard and soft excitations. We start with a discussion of elastic scattering, which in this case is

dominated by scattering of hard particles with small momentum transfer [30, 31]. In the small

angle approximation, where the average momentum of hard excitations is much bigger than the

average exchanged momentum, the process appears as a ’random walk’ in momentum space,

controlled by the momentum diffusion parameter (c.f. Ref. [30, 31])

q̂el ∼ α2
S

∫
d3p

(2π)3
f(p)[1 + f(p)] . (3.5)

Similarly one can estimate the effects of inelastic processes. The important observation is

that for over-occupied, isotropic systems all processes are parametrically as efficient as elastic

conserved particle number, which ultimately results in the formation of a Bose-Einstein condensate.
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3.1. EVOLUTION IN KINETIC THEORY

scattering [30, 31] such that

q̂ ∼ q̂el ∼ q̂inel . (3.6)

This greatly simplifies the discussion of the kinetic evolution of the system, since we do not have

to distinguish different regimes where either of the processes dominates. From Eq. (3.5) we

can also obtain the rate at which a particle with momentum p exhibits a momentum transfer

of the same order. This rate is parametrically given by

Γel(p) ∼ q̂el
p2

, (3.7)

such that soft particles experience large angle scatterings at a higher rate as compared to hard

particles. Given the enhanced scattering rates of soft excitations, we expect that the soft tail of

the distribution can always ’equilibrate’ to a distribution which is dictated by the dynamics of

the hard modes. We will assume in the following that this distribution is described by a power

law, where

f(p) ∼ α−cS

(
Λs

ωp

)κ
for p < Λ , (3.8)

up to a momentum cutoff Λ above which occupancies are negligible. Here the exponent c char-

acterizes parametrically the occupation number of the system, and we will only consider the

case 0 < c < 1 of initially over-occupied systems.3 The exponent κ characterizes the shape of

the distribution. While κ = 1 corresponds to a thermal-like shape, the values κ = 3/2 (c.f.

Ref. [90]) and κ = 4/3, 5/3 (c.f. Ref. [87]) are known to appear for systems which exhibit

Kolmogorov wave turbulence.4

The scales Λ and Λs in Eq. (3.8) both depend on time and determine the dynamical evolution

of the system. At initial time t = 0 the two scales coincide and one finds Λ ∼ Λs ∼ Q. In

order to extract the time evolution of the scales Λ and Λs, we first note that for κ < 3/2 the

momentum diffusion parameter is parametrically given by

q̂ ∼ α2−2c
S

(
Λs

Λ

)2κ

Λ3 . (3.9)

In contrast, if one considers κ > 3/2 the integral in Eq. (3.5) is dominated by infrared contribu-

3For a study of dilute systems with c < 0, we refer to Ref. [31].
4The appearance of the exponent κ = 3/2 can be explained with the existence of a classical background field

[33, 35, 66, 90, 96] as discussed in more detail in Sec. 3.3. We note that in this situation, one needs to consider
a different interaction to determine the time evolution of the scales Λ and Λs. This analysis is analogous to the
one in scalar theories and we refer to Ref. [34] for more details.
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tions indicating a breakdown of the kinetic description. We will therefore limit our discussion

to the case κ < 3/2, where we expect a kinetic description to apply. As we will see shortly

in Sec. 3.2, this situation will also be realized in our lattice simulations. From Eq. (3.7) we

can infer the time scale tstart on which the momentum of initially hard excitations changes

appreciably as

tstart ∼ Γ−1
el (Q) ∼ Q−1α2c−2

S . (3.10)

Before the time tstart the system will develop its soft tail, which then moves out towards higher

momenta until at times t ∼ tstart changes in the distribution of hard excitations start to take

place. This behavior is illustrated in the second and third panel of Fig. 3.1. In the regime

t & tstart one can find a self-consistent scaling solution by requiring the evolution of the hard

scale to be governed by momentum diffusion such that (c.f. Ref. [30, 31])

d

dt
Λ2 ∼ q̂ ∼ α2−2c

S

(
Λs

Λ

)2κ

Λ3 . (3.11)

We note that for closed systems the evolution of the ratio of soft and hard scale (Λs/Λ)κ is

fixed by energy conservation

ε ∼ α−cS

(
Λs

Λ

)κ
Λ4 ∼ α−cS Q

4 , (3.12)

such that the relation (
Λs

Λ

)κ
∼
(
Q

Λ

)4

, (3.13)

holds at all times of the evolution. Combining the above conditions then yields the evolution

of the scales Λ and Λs for times t & tstart to be

Λ ∼ Q

(
t

tstart

)1/7

, Λs ∼ Q

(
t

tstart

)(1−4/κ)/7

, (3.14)

which agrees with the results obtained in Refs. [30, 31] for the case κ = 1 of a (quasi-)thermal

distribution. We note that the evolution of the hard scale Λ as well as the evolution of the

occupancies of hard modes (Λs/Λ)κ turn out to be independent of the spectral exponent κ.

This behavior is a direct consequence of energy conservation.

The evolution of the scales Λ and Λs proceeds in this way until at some points the occu-

pancies of hard modes become O(1), where quantum effects become important. These will
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have the effect of driving the system towards its unique thermal fixed point, and hence com-

plete the thermalization process. We therefore expect thermalization of the system to occur as

a two-step process, where the first regime is characterized by the above scaling solutions. The

time scale tchange for entering the quantum regime, is then parametrically given by

tchange ∼ Q−1α
−2+c/4
S , (3.15)

and independent of the value of the spectral exponent κ. However, for κ 6= 1 the system still

deviates significantly from a thermal state even at times t ∼ tchange and one has to take into

account also the time for the approach to thermal equilibrium in the quantum regime. Only

if the latter is assumed to be parametrically faster than our previous estimate, one obtains

teq ∼ tchange as the final result. In this situation one recovers the estimate of Refs. [30, 31] for

the overall thermalization time.
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3.2 Early times and transient phenomena

Having established an intuitive picture of the thermalization process, we will now turn to the

results of classical-statistical lattice simulations. We will first focus on the early time dynamics

and investigate in particular the possibility that the initial over-occupation may result in large

infrared occupancies at a transient stage of the evolution. The evolution at later times and the

thermalization process are discussed in more detail in Sec. 3.4.

In order to make contact with the previous discussions, we first need to extract suitably

gauge-fixed distribution functions. These can be related to equal-time correlation functions, in

a gauge with a clear physical interpretation of the degrees of freedom. Since the dynamics is

solved in temporal axial gauge in Minkowski space, we choose to fix the residual gauge freedom

such that the Coulomb type gauge condition ∂iA
a
i (x) = 0 is satisfied at each read-out time.

In practice, this can be achieved by use of standard lattice gauge fixing techniques and we

employ the overrelaxation method described in Ref. [89] and with typically 105 overrelaxation

steps, which results in a very good convergence for the employed lattice sizes. The associated

distribution functions can then safely be extracted for momenta where perturbation theory is

useful, although it may be unclear how to interpret the most infrared modes in this context.

However, we will see that important lessons can already be learned for not too low momenta,

such that a characterization of the physics in terms of distribution functions is indeed useful.

In this section, we will compute the distribution function with the help of time-dependent

field momentum modes, which are obtained as the Fourier transform of the gauge fields ac-

cording to Aai (t,p) =
∫
d3xAai (t,x) exp(ip · x). By averaging over color and Lorentz indices

according to

|A(t,p)|2 =
1

(N2
c − 1)(d− 1)

∑
i

∑
a

|Aai (t,p)|2 , (3.16)

to improve the statistics, the occupation number can be defined as

f(t,p) =
1

V

√
〈|E(t,p)|2〉Coul. Gauge〈|A(t,p)|2〉Coul. Gauge , (3.17)

where Nc = 2 is the number of colors, d = 3 is the number of spatial dimensions and V =

(Na)3 denotes the lattice volume. We perform typically five to ten runs on N = 128 and

N = 256 lattices with Qa = 0.25, 0.5 and compute classical-statistical averages 〈. . .〉Coul. Gauge

of the correlation functions with the residual gauge freedom fixed by the Coulomb type gauge

condition. Similarly to the distribution function, we will also consider the effective “dispersion
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relation”

ωp(t) =

√
〈|E(t,p)|2〉Coul. Gauge

〈|A(t,p)|2〉Coul. Gauge

, (3.18)

which in this gauge should only deviate from a free, linear behavior in the regime of large

occupancies at low momenta.

Since we are interested in the time-evolution starting from initial over-population, we choose

the initial conditions such that the distribution function at early times has a non-perturbatively

large occupancy f(|p| ' Q) ∼ 1/g2 at the characteristic momentum scale Q. Here we employ

Gaussian initial conditions, with vanishing electric fields Ea
i = 0 at initial time t = 0 to fulfill

the Gauss law constraint exactly. In Fig. 3.2 we show the occupation number distribution as a

function of spatial momentum for different times in units of the characteristic momentum scale

Q. The (red) dashed-dotted line shows the approximate initial distribution as it is shortly after

the electric field components built up. Relatively quickly we observe the evolution towards a

distribution, which for an intermediate time range can be well described by a power-law for

momenta |p| . 2Q. The (blue) dashed curve at Qt = 315 and the (black) solid one at Qt = 730

indicate that the power-law behavior is rather well described by the dashed-dotted fit curve

f(p) ∼ |p|−3/2. Once this power-law behavior is established, the subsequent evolution becomes

rather slow or quasi-stationary. In this regime one observes from Fig. 3.2, that the UV part of

the spectrum is very slowly filled up, moving the breakdown of the power-law dependence in the

direction of higher momenta. As time proceeds, at some point deviations from a simple power

become visible. The (grey) dotted curve for Qt = 1575 shows already a somewhat steeper

behavior at lower momenta and a diminished slope at higher momenta. At times Qt = 4410

the curve is clearly not described by a simple power.

Before we analyze the power-law behavior in more detail below, we present in Fig. 3.3 the

dispersion relation. For sufficiently high momenta the considered quantity is always close to

the free expression ωp = |p| as expected. We find that discrepancies from the massless disper-

sion are present only below p2 . 0.1Q2, with decreasing amplitude as the time grows. In the

infrared the point where the dispersion starts to deviate from the free dispersion is roughly at

the same momenta, where the breakdown of the power-law dependence of the spectrum occurs.

In order to characterize the transition to and the evolution away from the f(p) ∼ |p|−3/2

behavior observed in Fig. 3.2, we extract the scaling exponent κ by fitting a power-law depen-

dence. The resulting scaling exponent as a function of time is shown in Fig. 3.4. The error

bars correspond to the change of the power as the fitting region is varied by choosing the lower
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Figure 3.2: Occupation number distribution as a function of momentum for different times
Qt of the evolution. Starting from a distribution characterized by initial over-occupation,
one observes the quick buildup of a power-law distribution, with f(p) ∼ |p|−3/2 up to times
Qt ' 1000.
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Figure 3.3: Dispersion relation as a function of momentum for different times Qt of the
evolution. The dispersion relation at large momenta is identical with the one for massless
relativistic particles.
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Figure 3.4: Scaling exponent κ as a function of time, extracted from a power-law fit of the
occupation number distribution displayed in Fig. 3.2. The error bars are extracted from a
variation of the range of momenta included in the fit. One observes that the exponent quickly
approaches the value 3/2 indicated by the black dashed line. The exponent remains approx-
imately κ = 3/2 until at times Qt ' 1000 a transition to κ = 4/3, as indicated by the blue
dashed line, occurs.

bound from (0.3 − 0.6)Q and the upper bound from (0.9 − 1.3)Q. The results indicate that

initially the system evolves rapidly to κ = 3/2 (long-dashed curve) and spends a relatively

long time around that value, before it slowly evolves to lower values. Of course, this evolu-

tion towards lower values is partly expected since the system will thermalize classically to a

distribution f(p) ∼ |p|−1 at sufficiently late times (which in general happens rather quickly

once the occupied high-momentum modes reach the lattice cut-off).5 However, a non-trivial

observation is the fact that this intermediate evolution of the exponent is very slow and stays

also a significant amount of time around the value κ = 4/3 at later times. Most remarkably,

this observation is consistent with earlier investigations starting from very different, anisotropic

initial conditions [87] and will be subject to further investigations in Sec. 3.4.

Before we turn to a more detailed discussion of the late time regime, where the scaling

exponent κ = 4/3 is realized, we will first perform a perturbative fixed-point analysis explaining

the occurrence of the scaling exponent κ = 3/2 at early times. Interestingly, this explanation

requires the presence of a parametrically large background field Aaµ(x) ∼ 1/g, such that the

5For a recent study of equal time correlation functions in classical thermal equilibrium we refer to Ref. [88].
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observation of the scaling exponent κ = 3/2 may also be interpreted as an indication of a

transient condensation phenomenon.

3.3 Non-thermal fixed points and perturbative scaling

exponents

In view of the interpretation of our lattice results presented in the previous section, we first

note that there is an interesting analogy to previous observations in scalar field theories in the

context of early universe dynamics [34, 35]. In these scenarios, the over-occupation is build up

dynamically by an instability of the inflaton field, which results in occupation numbers on the

order of the inverse self-coupling up to a characteristic momentum scale (e.g. associated to the

initial field amplitude) [53]. The subsequent quasi-stationary time evolution shows the scaling

exponent κ = 3/2 as the high momentum part of a dual turbulent cascade. This ultraviolet

cascade is associated to an energy flux towards the high momentum regime, which drives the

thermalization process [34, 35]. In contrast, the infrared counterpart of this cascade is described

by a f(p) ∼ |p|−4 power law, which can be associated to a particle flux towards the infrared,

catalyzing the formation of a non-equilibrium condensate [43].

The emergence of a dual cascade in scalar field theories is a consequence of the paramet-

ric suppression of inelastic processes at weak coupling, such that both the energy density and

the particle number are (approximately) conserved during the evolution. Since the ultraviolet

cascade can not account for two conservation laws, the surplus particle number is transported

towards the infrared, ultimately leading to the formation of a Bose-Einstein condensate [35,

43]. While the physics of the infrared regime is intrinsically non-perturbative and manifests

itself in a similar way as critical phenomena in thermal equilibrium [33, 35, 96] the evolution

of the ultraviolet cascade and the appearance of the scaling exponent κ = 3/2 is analogous to

Kolmogorov wave turbulence and can already be understood on the perturbative level [37–39].

In the context of scalar field theories, it is well understood, that the appearance of such a

non-thermal fixed point with the scaling exponent κ = 3/2 is due to an effective 2↔ (1 + soft)

interaction, which appears at leading order of (resummed) perturbation theory in the presence

of a soft ‘background field‘ [34, 35]. Despite the important differences between scalar theories

and gauge theories, which of course become evident at later times of the evolution, we will

see shortly that the emergence of a transient regime with a scaling exponent κ = 3/2 in our

simulations can be attributed to a similar phenomenon.

In order to analyze the possible values of the scaling exponent κ, our strategy will be to

investigate the non-thermal fixed point solutions, which correspond to stationary solutions of
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Figure 3.5: Gluon part of the one-loop contribution to the self-energy with (2PI) resummed
propagator lines. The grey circles indicate an effective three-vertex in the presence of a back-
ground gauge field potential.

the equations of motion characterized by a non-zero flux of conserved quantities [37–39]. We

follow here the approach of Ref. [87] and analyze the fixed point structure at leading order

O(g2) contribution, within (2PI) resummed perturbation theory.

We first recall from Sec. 2.2 that, for quantum fields Aaµ(x), one can define two independent

connected two-point correlation functions out of equilibrium, which may be associated to the

anti-commutator and the commutator respectively,

F ab
µν(x, y) =

1

2
〈 {Aaµ(x), Abν(y)} 〉 − Aaµ(x)Abν(y) ,

ρabµν(x, y) = i〈 [Aaµ(x), Abν(y)] 〉 . (3.19)

Here we also took into account a possible expectation value or ‘background field‘

Aaµ(x) = 〈Aaµ(x)〉 , (3.20)

which should be understood as an effective description of very soft excitations of the system,

for which a purely perturbative treatment is clearly inadequate [31, 97].

As discussed in Sec. 2.2, the spectral function ρ determines the structure of excitations

of the system, while the statistical propagator F contains the information about how often

these states are occupied. In thermal equilibrium, a tremendous simplification is that the spec-

tral and statistical functions are related by the fluctuation-dissipation relation, which is not

assumed here since we are considering a non-equilibrium situation [42]. We also recall, that

the spectral function is related to the retarded propagator G(R) and the advanced one G(A) as

ρ = G(R) −G(A), which we will use below to simplify the expressions.

The one-loop self-energy correction to two-point correlation functions in the presence of a

background gauge potential is shown diagrammatically in Fig. 3.5. To avoid problems of secu-
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larity in standard perturbation theory, here the lines are meant in the two-particle irreducible

(2PI) effective action scheme, where self-energies are expressed in terms of self-consistently

dressed propagators [42]. This includes also the background-field dependence of the propaga-

tors. The grey circles indicate an effective three-gluon vertex gV abc
µνγ, which is appearing at one

loop in the presence of the background gauge field potential [98]. This effective three-vertex

consists of the conventional tree-level vertex and an A-dependent term,

V abc
µνγ = V abc

0,µνγ + V abc
A,µνγ . (3.21)

The standard tree-level part reads in Fourier space

V abc
0,µνγ(p, q, k) = fabc

(
gµν(p− q)γ + gνγ(q − k)µ + gγµ(k − p)ν

)
, (3.22)

where fabc are the structure constants of the non-abelian gauge group. Finally, we will be

interested in a situation where the background field has a residual (space-) time dependence.

Then the corresponding part of the interaction in Eq. (3.21) reads in configuration space

V abc
A,µνγ(x, y, z) =

(
Cac,bd gµν Adγ(x) + Cab,dc gνγ Adµ(x) + Cab,cd gγµAdν(x)

)
g δd+1(x− y) δd+1(x− z) , (3.23)

with

Cab,cd = fabef cde + fadef cbe . (3.24)

In order to understand the importance of a non-constant background field, it is instructive

to consider first the case of a homogeneous field Aiµ(x) = Āiµ, with Āiµ ∼ O(1/g). Since we

are interested only in fixed-point solutions of the evolution equations, we will consider time

and space translation invariant correlators in Eq. (3.19) and express them in terms of their

Fourier transform F̃ (p) and ρ̃(p). We introduce a factor of (−i) in the Fourier transforms of

the spectral (ρ) and retarded/advanced components, such that

ρ̃(p) = −i
∫

d4x eipµx
µ

ρ(x) , (3.25)

while

F̃ (p) =

∫
d4x eipµx

µ

F (x) . (3.26)

Similar to the two-point correlation functions in Eq. (3.19) we introduce statistical, Π̃(F ), and
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spectral, Π̃(ρ), components of self-energies defined as [42]

Π̃µν
(F )ab(p) = G̃−1µγ

(R)ac (p) F̃
cd
γδ (p) G̃

−1 δν
(A)db(p) ,

Π̃µν
(ρ)ab(p) = G̃−1µν

(R)ab (p)− G̃
−1µν
(A)ab (p) , (3.27)

where summation over repeated Lorentz and color indices is implied. The translation invariant

propagators in Eq. (3.19) and self-energies in Eq. (3.27) then obey the identity [96]

Π̃µν
(F )ab(p) ρ̃

ba
νµ(p)− Π̃µν

(ρ)ab(p) F̃
ba
νµ(p) = 0 , (3.28)

which can be directly verified by plugging in the above definitions. Equation (3.28) is well-

known in non-equilibrium physics and will be the starting point of our calculation. In the

language of Boltzmann dynamics it states that ”gain terms” equal ”loss terms” for which sta-

tionarity is achieved [42]. Thermal equilibrium trivially solves Eq. (3.28), and we will not

consider this solution in the following. Instead, we will look for possible non-thermal scaling

solutions.

Decomposing the one-loop self-energy shown in Fig. 3.5 into its statistical (real) and spectral

(imaginary) part, one obtains

Π̃µν
(F )ef (p; Ā) =

g2

2

∫
qk

(2π)4 δ(4)(p+ q + k)V µαγ
eac (p, q, k; Ā)

×
[
F̃ ba
βα(q)F̃ dc

δγ (k) +
1

4
ρ̃baβα(q)ρ̃dcδγ(k)

]
V νβδ
fbd (−p,−q,−k; Ā) ,

Π̃µν
(ρ)ef (p; Ā) = −g

2

2

∫
qk

(2π)4 δ(4)(p+ q + k)V µαγ
eac (p, q, k; Ā)

×
[
F̃ ba
βα(q)ρ̃dcδγ(k) + ρ̃baβα(q)F̃ dc

δγ (k)
]
V νβδ
fbd (−p,−q,−k; Ā) , (3.29)

with the notation
∫
q
≡
∫
d4q/(2π)4 and the symmetry property of the anti-commutator and

commutator functions

F̃ ab
µν(−p) = F̃ ba

νµ(p) , ρ̃abµν(−p) = −ρ̃baνµ(p) . (3.30)

Following similar steps as in Refs. [33, 87], scaling solutions can be efficiently identified by

integrating Eq. (3.28) over external spatial momentum p and applying suitable scaling trans-

formations. In this way the problem can be reduced to simple algebraic conditions for scaling

exponents. Non-thermal scaling solutions may be obtained in the classical regime, where ex-

pectation values of anti-commutators are much larger than commutators, F 2 � ρ2. This is

analogous to what is done in the context of weak Kolmogorov wave turbulence using kinetic
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equations in the regime of sufficiently large occupation numbers [37–39]. In contrast, for lower

occupancies of order one, dissipative or quantum corrections will obstruct scaling.

Dropping the genuine quantum contributions in Eq. (3.29), the stationarity condition then

reads

0 =
g2

2

∫
pqk

(2π)4 δ(4)(p+ q + k)V µαγ
eac (p, q, k; Ā)V νβδ

fbd (−p,−q,−k; Ā)

×
[
F̃ ba
βα(q)F̃ dc

δγ (k)ρ̃feνµ(p)︸ ︷︷ ︸+ F̃ ba
βα(q)ρ̃dcδγ(k)F̃ fe

νµ(p)︸ ︷︷ ︸+ ρ̃baβα(q)F̃ dc
δγ (k)F̃ fe

νµ(p)︸ ︷︷ ︸
]
,

(I) (II) (III) (3.31)

where
∫
p
≡
∫
d3p/(2π)3. We are looking for scaling solutions which behave as

F̃ ab
µν(sp) = |s|−(2+κ)F̃ ab

µν(p) , ρ̃abµν(sp) = |s|−2 sgn(s) ρ̃abµν (p) , (3.32)

under rescaling with the real parameter s. This behavior reflects the scaling of the spectral

function with the canonical dimension and takes into account a possible occupation number

exponent κ for the statistical function. This is equivalent to what is obtained from using a

kinetic approach. We emphasize that no explicit gauge fixing has to be applied here and the

calculation goes through for all gauges which admit scaling solutions of the form in Eq. (3.32).

The scaling properties of the three-gluon vertex in Eq. (3.21) are different for the standard

tree-level part in Eq. (3.22) and the background-field part in Eq. (3.23). To parametrize this

behavior in a compact way, we write

V abc
µνγ(sp, sq, sk) = sv V abc

µνγ(p, q, k) , (3.33)

where v = 1 for the standard tree-level vertex and v = 0 for the background field part.

We now map the terms (II) and (III) in Eq. (3.31) using scaling transformations such that

they have the same form as (I) up to momentum dependent prefactors. First, we apply for (II)

the transformation

q → p0

k0
q , k → p0

k0
p , p → p0

k0
k . (3.34)

The absolute value of the Jacobian for the frequency part of this transformation is |p0/k0|3. The

same procedure applies to the term (III) where the roles of (k, γ, δ, c, d) and (q, α, β, a, b) are

interchanged. Taking also into account the symmetry of the three-gluon vertex under exchange
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of combined momentum, color and Lorentz index leads us to

0 =
g2

2

∫
pqk

(2π)4 δ(4)(p+ q + k)V µαγ
eac (p, q, k; Ā)V νβδ

fbd (−p,−q,−k; Ā)

×F̃ ba
βα(q)F̃ dc

δγ (k)ρ̃feνµ(p)

[
1 +

∣∣∣∣p0

k0

∣∣∣∣∆ sgn

(
p0

k0

)
+

∣∣∣∣p0

q0

∣∣∣∣∆ sgn

(
p0

q0

)]
. (3.35)

Here the exponent ∆ is given by

∆ = 3 · 3 + 3︸ ︷︷ ︸ −4︸︷︷︸−2(2 + κ)︸ ︷︷ ︸ −2︸︷︷︸+ v(1) + v(2)︸ ︷︷ ︸ , (3.36)

measure δ’s FF ρ V V

and v(1), v(2) are the scaling exponents of the respective parts of the two vertex functions ap-

pearing in the one-loop self-energy.

As is well known, the above analysis in the presence of a homogeneous background field is

complicated by the fact that to order g2 the individual terms in Eq. (3.31) vanish, since the

corresponding processes are kinematically suppressed on-shell, i.e. for p0 = ±|p|. Only if the

background field has a residual (space-) time dependence, A(t), the phase space is opened up

by the associated (momentum) frequency contribution of the field and it becomes kinematically

allowed. In this sense, the background field should be understood as an effective description for

soft excitations of the system, rather than an actual condensate. Since all contributions not in-

volving the background field are phase space suppressed, we need to consider only the situation

where both vertices are associated with the background field, which implies v(1) = v(2) = 0 for

the above scaling analysis. After taking this into account, the subsequent analysis is analogous

to the discussion in scalar field theories, where the corresponding dynamics has been analyzed

in great detail [33, 34, 43]. Therefore, it is also not surprising that the gauge theory in the

presence of a (space-) time background may exhibit the same scaling exponents as a scalar field

theory with quartic self-interaction in the presence of a time-dependent condensate [43].

Indeed, if we set ∆ = −1 in Eq. (3.35) then the energy conservation constraint δ(p0 +

q0 + k0) in the integrand of Eq. (3.35) ensures the vanishing of (1 + k0/p0 + q0/p0), using

|k0/p0| sgn(p0/k0) = k0/p0 with nonzero p0. One can then directly read off the scaling solution

by use of Eq. (3.36) as

∆ = −1 ⇒ κ =
3

2
. (3.37)

In analogy to the situation in scalar theories, this solution is associated to an energy cascade

towards higher momenta [33, 34, 37–39, 87].
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Since the above analysis requires the presence of a parametrically large background field

Aaµ(x) ∼ 1/g, it is important to consider also the situation where this background field is

absent. In this case, the leading order g2 contributions to the self-energies is phase space sup-

pressed for massless on-shell excitations and one needs to consider the next to leading order

g4 contributions. This analysis has been performed within the same framework in Ref. [87].

Since the elastic scattering processes, which appear at order g4 are both particle number and

energy conserving, there are two non-trivial fixed point solutions. The corresponding scaling

exponents are given by κ = 4/3 and κ = 5/3 for the particle and energy cascade respectively.

The above discussion suggests a clear interpretation of our lattice results presented in the

previous section. Since at early times we clearly observe the emergence of a |p|−3/2 power law,

this can be interpreted as the consequence of an effective 2 ↔ (1 + soft) interaction in the

presence of a parametrically large background field, associated to a large number of very soft

excitations of the system. This particular aspect is very similar to what is observed for scalar

theories, where an effective 2 ↔ (1 + soft) interaction arises due to the presence of a time-

dependent Bose condensate. However a clear difference between scalar and non-abelian gauge

theories emerges on longer time scales, since in the gauge theory these soft excitations decay

and one observes a transition to a |p|−4/3 power law regime, which is governed by elastic 2↔ 2

scattering processes. We note that, in this regime one should in principle also consider inelastic

processes which naively appear only at order g6. However, due to soft-collinear singularities of

the corresponding scattering matrix elements, these processes contribute already at order g4

[99]. Since the kinematics of these processes is rather involved [100], the corresponding fixed

point analysis has not yet been performed and it remains an open question to what extent these

are compatible with the scaling exponent κ = 4/3.
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3.4 Late times and self-similarity

We now turn to a detailed analysis of the dynamics of the late time regime. In particular,

we will investigate whether the system remains at the non-thermal fixed point and to what

extent the kinetic scaling behavior in time, as discussed in Sec. 3.1, is realized within classical-

statistical lattice simulations. We will see shortly, how the emergence of self-similarity in our

simulations suggests to extend the previous kinetic analysis in Sec. 3.1, leading to a unified

description in the theory of turbulent thermalization [34] discussed in Sec. 3.5.

We employ the same setup as in Sec. 3.2 and study the evolution of the electric and magnetic

two-point correlation functions6

〈BB〉(t,p) =

∫
x-y

〈Ba
i (t,x)Ba

i (t,y)〉Coul. Gauge

(N2
c − 1)(d− 1)

e−ip(x-y) , (3.38)

〈EE〉(t,p) =

∫
x-y

〈Ea
i (t,x)Ea

i (t,y)〉Coul. Gauge

(N2
c − 1)(d− 1)

e−ip(x-y) , (3.39)

here written in terms of continuum variables, where Nc = 2 is the number of colors, d = 3 is

the number of spatial dimensions and 〈.〉Coul. Gauge denotes classical-statistical averaging with

the residual gauge freedom fixed by the Coulomb type gauge condition as in Sec. 3.2.7

The initial conditions are chosen to mimic the quasi-particle picture in Eq. (3.1) as a super-

position of transversely polarized modes aλp,a(x) labeled by the color index a = 1, ..., N2
c − 1,

the polarization index λ = 1, 2 and spatial momentum p. The mode functions aλp,a(x) are

determined in the free theory, and satisfy the gauge-condition piaλp,ai (x) = 0 as well as the

abelian part of the Gauss law constraint pi∂ta
λp,a
i (x) = 0 individually for each mode. The

initial occupation of these modes is determined by the distribution function

f0(p) = α−cS θ(Q− |p|) , (3.40)

where the parameter 0 < c < 1 characterizes the initial over-occupation. Since we are interested

in the dynamics at late times, the simulations are performed on relatively small N = 64, 96, 128

lattices with three different values of the lattice spacing Qa = 0.33, 0.66, 1.0 to gain system-

atic control over lattice spacing and finite volume effects. If not stated otherwise the results

presented in this section are obtained from simulations with N = 96 and Qa = 0.66 lattices.

6The normalization factor (N2
c − 1)(d − 1) corresponds to the number of transversely polarized gluons.

This normalization implicitly assumes that the contributions from longitudinal (plasmon) excitations are small
compared to the transverse ones. This has also been studied in terms of the individual projections in Ref. [88].

7In this section, we use the so-called ’Los Alamos’ procedure to perform the gauge-fixing [89].
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Figure 3.6: Spectrum of excitations obtained from the correlation functions, 〈EE〉/|p| and
〈BB〉/|p| at different times Qt of the evolution. One observes a clear power-law dependence
for the correlation functions 〈EE〉 and 〈BB〉, which extends over approximately one decade. As
time proceeds the tail of the power law propagates towards the ultraviolet, while the amplitude
of the distribution decreases.

3.4.1 Highly over-occupied systems - f0(p) ∼ α−1
S

We first study the time evolution of the correlation functions defined in Eq. (3.38) and (3.39).

The results are presented in Fig. 3.6, where we show the spectrum of the correlation functions

〈EE〉(t,p)/|p| and 〈BB〉(t,p)/|p| at different times Qt of the evolution. The factor 1/|p| is

chosen to produce dimensionless quantities, which can be interpreted as an occupation number.

From Fig. 3.6 one clearly observes the emergence of a power law spectrum, which subsequently

decreases in amplitude while slowly moving out towards higher momenta. We observe that

towards later times the electric and magnetic correlation functions 〈EE〉/|p| and 〈BB〉/|p|
show a consistent scaling behavior over a wide range of momenta. In order to establish a more

direct comparison with the kinetic theory discussion we extract the effective occupation number

from the electric field correlation function as

f(t,p) =
〈EE〉(t,p)

|p|
, (3.41)

which we will use in the following to further analyze the evolution.
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Figure 3.7: Scaling exponent κ extracted from the spectrum of the correlation function
f(t,p) ∼ 〈EE〉/|p| at different times of the evolution. The different symbols correspond to
the two different extraction methods. The red filled squares correspond to a global fit in the
momentum range p = 0.3− 1.0 Q, whereas the black empty squares correspond to averages of
local fits as described in the text. Over a large time scale the exponent is consistent with the
Kolmogorov turbulence exponent κ = 4/3 [87].

While the power law dependence of the distribution function f(t,p) can already be observed

from Fig. 3.6 we are interested also in the exponent κ of the power law. This is important

to distinguish the cases where the observed spectrum corresponds to a quasi-thermal evolution

(κ = 1) or a turbulent Kolmogorov cascade (κ = 4/3, 5/3; 3/2). To extract the exponent from

the data we perform a series of least-square fits at each time slice, with a distribution function

of the form

f(t,p) = α−cS

(
Λs(t)

|p|

)κ(t)

. (3.42)

This procedure yields the two parameters κ(t) and nHard(t) = (Λs/Q)κ(t) which are shown in

Fig. 3.7 and 3.8 respectively. To estimate the error of this procedure we perform the analysis

in two different ways: In the first case we simply consider the result of a global fit along with

its error in the momentum range p/Q = 0.3 − 1.0, where scaling is observed. The results of

this procedure are shown as red squares in Fig. 3.7. In the second case we divide the data in

momentum bins and perform a separate fit for each bin. We then extract the average exponent

and its error in the scaling region. The results correspond to the black points in Fig. 3.7. One
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Figure 3.8: Time evolution of the soft scale (Λs/Q)κ extracted from fits of the spectra at differ-
ent times (red squares) and from the time evolution of the occupation number for modes with
p ' Q (black squares). The blue dashed line corresponds to a power-law behavior (Qt)(κ−4)/7

as expected from the kinetic theory analysis, where we assumed κ = 4/3 as a constant in time.

observes that the results for κ of the two procedures agree, while the second method provides a

more reliable estimate of the error. We find that at early times the spectrum features a power

law exponent of κ ' 3/2, in agreement with the result presented in Sec. 3.2. At later times one

observes a hardening of the spectrum where the data is in favor of κ ' 4/3 over a large time

scale. As discussed in Sec. 3.3, the appearance of the exponent κ = 3/2, can be attributed to a

transient condensation phenomenon, which does not persist on parametrically large time scales

[43, 90]. The thermal value κ = 1 is clearly ruled out by the data over the entire simulation time.

As discussed in Sec. 3.1 in the kinetic theory framework, the appearance of a non-thermal fixed

point characterized by the non-trivial scaling exponent κ 6= 1 has an immediate impact on the

evolution of the soft scale Λs, which is expected to display a slower evolution for larger values

of κ. To investigate whether this is supported by the lattice data, we extract the time evolution

of the soft scale (Λs/Q)κ(t) by two different procedures. The results are on display in Fig. 3.8.

In the first case we use the results of the previous fit procedure to directly obtain the quantity

(Λs/Q)κ as a function of time. This corresponds to red squares in Fig. 3.8. In the second case

we investigate the evolution of modes with |p| ' Q, where f(t, |p| ' Q) ∼ α−cS (Λs/Q)κ accord-

ing to Eq. (3.42). This is shown by black squares in Fig. 3.8. The results from both methods
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agree and one observes a clear power law dependence. The blue dashed line corresponds to the

kinetic theory estimate (c.f. Sec. 3.1)(
Λs(t)

Q

)κ
∼ (Qt)(κ−4)/7 , (3.43)

where we assumed κ = 4/3 to be independent of time. One observes good overall agreement

with the data. We also performed fits to extract the scaling exponent from the time evolution

of (Λs/Q)κ. Using the same methods as introduced previously and assuming the evolution in

Eq. (3.43) this yields κ ' 1.3± 0.1, which is consistent with the values shown in Fig. 3.7.

So far we have only analyzed the behavior of the spectrum in a momentum region where

it shows a clear power law dependence. However one of the key features of the evolution is the

propagation towards higher momenta, which ultimately leads to thermalization of the system.

As discussed in Sec. 3.1 the kinetic theory framework provides a strong prediction of how this

evolution proceeds, which is insensitive also to the scaling exponent κ.

To extract the evolution of the cut-off scale Λ(t) from the lattice data, we exploit the fact

that the spectrum shown in Fig. 3.6 exhibits a self-similar behavior. To illustrate this we first

note that we can parametrize the entire spectrum as

f(t,p) = α−cS

(
Λs(t)

|p|

)κ
C(t, |p|/Λ(t)) , (3.44)

where the first part corresponds to the infrared power-law and the second part regulates the

ultraviolet behavior such that C(t, |p|/Λ(t)) = 1 for |p| < Λ(t), whereas it drops off quickly

for |p| > Λ(t) as observed in Fig. 3.6. Here κ ' 4/3 is assumed to be constant in time. If we

assume further that the shape of the cut-off function is independent of time, i.e.

C(t, |p|/Λ(t)) ' C(|p|/Λ(t)) , (3.45)

and the scales Λ(t) and Λs(t) evolve according to a power law in time, i.e.

Λ(t) ∼ Q (t/tStart)
α , (3.46)

Λs(t) ∼ Q (t/tStart)
β , (3.47)

we find that the distribution function is self-similar in the sense that for s > 0 one finds

f(st, sαp) = s(β−α)κf(t,p) . (3.48)
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Figure 3.9: (left) Moments of the distribution function as a function of momentum. The
different colors and symbols correspond to different evolution times. (right) Rescaled moments
of the distribution function as a function of the rescaled momentum variable. The scale factor
is s = t/t0, where we chose Qt0 = 1000 as normalization. As a striking manifestation of
self-similarity, one observes that after the appropriate rescaling all data collapses onto a single
curve. The scaling exponents are sensitive to the evolution of the hard scale Λ(t) and we used
the values from the kinetic theory analysis in Sec. 3.1. The results were obtained on N = 96
lattices with Qa = 0.33.
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Here it is crucial to rescale momenta according to sα, whereas the evolution time scales with s

in order to reproduce the correct cut-off behavior. Therefore Eq. (3.48) is particularly sensitive

to the scaling of the hard scale Λ(t) and can be used to extract the scaling exponent α. We

note that the assumption (3.45) only concerns the behavior of p > Λ(t), while for p < Λ(t)

this property is satisfied by construction. Hence the condition (3.45) reflects the assumption

that the fall-off above the cut-off scale is universal and we will turn back to this point when

we contrast the above analysis with lattice data. We also note that the scaling behavior of

Λs(t) readily emerges from Fig. 3.8, where we confirmed βκ = (κ− 4)/7 in agreement with the

analysis in Sec. 3.1, where we obtained the exponents α = 1/7 and β = (1− 4/κ)/7.

In order to investigate to which degree this self-similarity is featured by the lattice data, we

invert Eq. (3.48) such that we expect the spectra at different times to collapse onto a single

curve. As we are particularly interested in the evolution of the hard scale Λ(t), we find it

convenient to consider moments of the distribution function

f (n)(t,p) = |p|nf(t,p) , (3.49)

which are more sensitive to hard modes than the distribution function itself. Setting s = t/t0

the scaling relation for the moments f (n)(t,p) then takes the form

f
(n)
0 (p) = (t/t0)(4−n)/7f (n)(t, (t/t0)1/7p) , (3.50)

where we used the values of α, β from Sec. 3.1 and abbreviated f
(n)
0 (p) = f (n)(t0,p) for an

arbitrary time t0 > tstart. The rescaled moments of the lattice data are shown in Fig. 3.9 for

n = 2, 3 and 4 and times Qt = 1000 − 8000, where we used Qt0 = 1000 as the normalization.

As the moments are more sensitive to the hard tail of the distribution, we used N = 96

and Qa = 0.33 in our simulations to achieve a larger momentum cut-off. One observes that

the rescaled data collapses onto a single curve to very good accuracy. This provides strong

evidence that the hard scale Λ(t) indeed follows a power law behavior with Λ(t) ∼ Q (Qt)1/7

as discussed in Sec. 3.1. In particular the position and amplitude of the peak, which are very

sensitive to α = 1/7, coincide for all curves. Above the peak we observe minor deviations from

the universal behavior. This can be attributed to a non-universal fall-off of the cutoff function

for p > Λ(t), however we can also not completely rule out the presence of lattice artifacts in

the high momentum region.
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Figure 3.10: Spectrum of excitations for initial occupancies n0 = 0.05 at different times of the
evolution. In addition to N = 96 and Qa = 0.66 data (open symbols) we also show results with
reduced statistics for N = 128 and Qa = 1 (filled symbols). One observes that the evolution of
modes with p ' Q is much slower as compared to the n0 = 1 case. As a consequence only the
soft sector is subject to changes due to interactions at early times, while at later times hard
modes are also affected. In the transition region the spectrum shows a thermal shape κ ' 1 at
some point of the evolution. Nevertheless the evolution at late times proceeds via a turbulent
cascade with κ ' 4/3. This behavior is indicated by the black dashed lines.

3.4.2 Over-occupied systems - f0(p) ∼ α−cS , 0 < c < 1

We now extent our previous analysis to systems with initial occupancies which are still para-

metrically large but now smaller than α−1
S . We will in the following denote the initial occupancy

by n0 = α1−c
S and we study systems with n0 = 0.05, 0.1, 0.2, 0.5 for a fixed value of the strong

coupling constant αS = 10−6 such that the classicality condition n0 � αS is always satisfied.

We will first discuss the case n0 = 0.05 as an example and then turn to a global analysis of all

data. We note that the qualitative behavior on large time scales is very similar for all values

of n0 considered here.

We proceed as previously and first study the evolution of the spectrum of the correlation

functions. In Fig. 3.10 we present snapshots of the spectrum of f(t,p) as defined in Eq.

(3.41) for different times Qt and initial occupation n0 = 0.05. At early times we observe an

increase of occupancies in the soft sector, whereas the occupation for modes with p ' Q remains

almost unaffected. This is in accordance with our expectations from the kinetic theory analysis
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Figure 3.11: Evolution of the soft scale (Λs/Q)κ normalized by the initial occupation n0 as a
function of the normalized time t/tStart for different initial occupations n0 = 0.05, 0.1, 0.2, 0.5
and 1 (bottom to top). The quantity (Λs/Q)κ is obtained from the occupation of modes with
p ' 0.9Q. The black dashed line portraits the result of the kinetic theory analysis (c.f. Sec.
3.1). At late times t � tStart one observes a power law dependence independent of the choice
of n0 in the considered range of parameters.

(c.f. Sec. 3.1), where at times t < tStart only soft modes are affected by small angle elastic

scattering. The evolution at late times proceeds, similarly to the case n0 = 1, as a turbulent

cascade (κ ' 4/3) towards the ultraviolet. The transition region between early and late times

is characterized by a softening of the spectrum, where the initially flat distribution changes its

shape to a power-law distribution with exponent κ ' 4/3. Even though the classical thermal

value κ ' 1 is featured at some time during this transition, the system subsequently continues

to evolve towards κ ' 4/3 at later times. This provides yet another strong piece of evidence

that a non-thermal exponent κ 6= 1 is indeed favored during the far from-equilibrium evolution.

Interestingly, we find that by lowering the initial occupancy n0, the transient regime dis-

cussed in Sec. 3.2 and characterized by the scaling exponent κ = 3/2 disappears for initial

occupancies n0 . 0.2 and one observes the direct buildup of a κ = 4/3 instead. In view of

the discussion in Sec. 3.3, this feature can be understood quite naturally: Since the initial

over-occupation is significantly reduced for smaller values of n0, a much smaller fraction of

excitations is absorbed into the very soft sector, such that a parametrically large ‘background

field‘ is no longer build up dynamically. The effective 2 ↔ (1 + soft) interaction is therefore
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less relevant and hard modes interact predominantly by ordinary elastic and inelastic scattering.

When comparing the results in Fig. 3.10 with the evolution in the case n0 = 1, one immedi-

ately observes that the evolution proceeds significantly slower in the case of reduced occupancy.

This is expected given the smaller interacting rates for lower occupancies. The kinetic theory

analysis presented in Sec. 3.1 makes a strong statement about the occupancy dependence, based

on the parametric dependence of the momentum diffusion parameter q̂ ∼ n2
0Q

3, which controls

the rate of interactions at the hard scale. Accordingly the natural time scale for the system to

evolve is therefore no longer set by Q−1 but rather by the initial ’scattering time’ tStart ∼ Q−1n−2
0

which initially controls the rate of interactions at the hard scale (see also Ref. [31]). In order

to analyze whether this behavior is displayed by the lattice data, we chose to investigate the

time evolution of the soft scale (Λs/Q)κ for different initial occupancies. This quantity can be

obtained from the occupation of modes with p ' 0.9 Q and is shown in Fig. 3.11 as a function

of time in units of the ’scattering time’. One observes that around t ' tStart the transition from

an approximately constant behavior to a power-law decay takes place. The time dependence

at late times t� tStart is well described by a power law, where (Λs/Q)κ ∼ (t/tstart)
(κ−4)/7 with

κ ' 4/3 as indicated by the black dashed line in Fig. 3.11. Concerning the dependence on

the initial occupancy n0, we find that the expected scaling holds approximately as the data

shown in Fig. 3.11 nearly collapses on a single curve. However one does observe a residual

dependence of the overall amplitude of (Λs/Q)κ on the initial occupancy, which we found to be

rather sensitive to the details of the initial conditions.
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3.5 Turbulent thermalization

In view of the results presented in the previous section, it appears intuitive to directly investigate

the possibility of self-similar scaling solutions in the kinetic theory framework. The analysis is

analogous to the discussion of turbulent thermalization in scalar field theories, investigated in

the context of early universe cosmology in Ref. [34]. Here we follow the same procedure and

search for self-similar fixed-point solutions for the gluon distribution function f(t,p) according

to

f(t,p) = tγfS(t−αp) , (3.51)

where fS(p) denotes a stationary distribution, which characterizes the shape of the attractor

and does not depend on time. The factor t−α in the argument describes the evolution of the

hard momentum scale Λ(t) ∝ tα as in Eq. (3.46), whereas the prefactor tγ characterizes the

overall decrease in amplitude, as previously parametrized by the soft scale Λs(t). The kinetic

evolution is described in terms of a Boltzmann equation of the generic form

∂tf(t,p) = C[f ](t,p) , (3.52)

where C[f ](t,p) denotes the collision integral including the relevant n↔ m scattering processes

and we will focus on elastic 2↔ 2 and inelastic 2↔ 3 scattering processes, which are expected

to drive the evolution in the self-similar regime [31]. The collision integral for elastic scattering

takes the form [101]

C[f ](t,p) =
1

2

∫
q,k,l

|M(p,q,k, l)|2

2ωp 2ωq 2ωk 2ωl
(2π)4 δ(ωq + ωk − ωl − ωp) δ(3)(q + k− l− p)

×
[
(1 + fp)(1 + fl)fqfk − fpfl(1 + fq)(1 + fk)

]
, (3.53)

where the scattering matrix element in the non-relativistic normalization is given by [101]

|M(p,q,k, l)|2 = 128π2α2
SN

2
c

(
3− tu

s2
− su

t2
− ts

u2

)
, (3.54)

for non-abelian SU(Nc) gauge theories. We then follow the standard turbulence analysis [34]

and insert the scaling ansatz in Eq. (3.51) into the Boltzmann equation (3.52). The left hand

side of the Boltzmann equation is then given by

∂tf(t,p) = tγ−1 [γfS(p̃)− α p̃ 5p̃ fS(p̃)]p̃=t−αp . (3.55)
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Similarly, one finds that in the classical regime (f(t,p)� 1), the collision integral in Eq. (3.53)

can be expressed as

C[f ](t,p) =
1

2

∫
dΩ2↔2(p,q,k, l) fpflfqfk

[
f−1
p + f−1

l − f
−1
q − f−1

k

]
,

( Use Eq. (3.51) to re-express f(t,p) in terms of fS(t−αp))

= t3γ
1

2

∫
dΩ2↔2(p,q,k, l) fS(t−αp)fS(t−αl)fS(t−αq)fS(t−αk)

×
[
f−1
S (t−αp) + f−1

S (t−αl)− f−1
S (t−αq)− f−1

S (t−αk)
]
,

( Use Eq. (3.57) to transform the differential cross-section)

= t3γ+α 1

2

∫
dΩ2↔2(t−αp, t−αq, t−αk, t−αl) fS(t−αp)fS(t−αl)fS(t−αq)fS(t−αk)

×
[
f−1
S (t−αp) + f−1

S (t−αl)− f−1
S (t−αq)− f−1

S (t−αk)
]
,

( Identify with the first line)

= t3γ+α C[fS](t−αp) , (3.56)

where we used the relation∫
dΩ2↔2(p,q,k, l) =

∫
q,k,l

|M(p,q,k, l)|2

2ωp 2ωq 2ωk 2ωl
(2π)4 δ(4)(q + k − l − p) ,

( Substitute: q̃ = t−αq, k̃ = t−αk, l̃ = t−αl | Express : p = tα(t−αp) | Use: ωsp = |s|ωp) ,

= t9α
∫
q̃,k̃,̃l

|M(tα(t−αp), tαq̃, tαk̃, tαl̃)|2

2ωp 2ωtαq̃ 2ωtαk̃ 2ωtα l̃
(2π)4 δ(4)(tα(q̃ + k̃ − l̃ − t−αp)) ,

( Use: ωsp = |s|ωp, δ(sx) = |s|−1δ(x), |M(sp, sq, sk, sl)|2 = |M(p, q, k, l)|2)

= tα
∫
q̃,k̃,̃l

|M(t−αp, q̃, k̃, l̃)|2

2ωt−αp 2ωq̃ 2ωk̃ 2ωl̃
(2π)4 δ(4)(q̃ + k̃ − l̃ − t−αp) ,

( Rename: q̃→ t−αq, k̃→ t−αk, l̃→ t−αl | Identify with the first line)

= tα
∫
dΩ2↔2(t−αp, t−αq, t−αk, t−αl) . (3.57)
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By use of Eqns. (3.55) and (3.56), the Boltzmann equation (3.52) can be decomposed into a

condition for the fixed point solution fS(p)

γfS(p)− α p5p fS(p) = C[fS](p) , (3.58)

and the scaling relation

γ − 1 = 3γ + α . (3.59)

The non-trivial solutions of Eq. (3.58) characterize the functional form of the fixed point

solutions fS(p), whereas the scaling relation (3.59) constraints the evolution of the system on

the fixed point trajectory. Since Eq. (3.59) does not uniquely determine the scaling exponents,

a further constraint can be derived from energy conservation. By use of

ε =

∫
p

ωp f(t,p) = tγ
∫
p

ωp fS(t−αp) = tγ+3α

∫
p̃

ωtαp̃ fS(p̃) = tγ+4αεS , (3.60)

one then obtains the scaling relation

γ + 4α = 0 . (3.61)

We note that if one considers only elastic scattering the overall particle number is also conserved.

However, this is no longer the case when inelastic (number-changing) interactions are also

taken into account. Since in non-abelian gauge theories, inelastic processes exhibit the same

parametric dependencies as elastic scattering,8 taking inelastic processes into account does not

affect the scaling properties of the collision integral in Eq. (3.56). Hence, the above scaling

analysis still applies while particle number conservation does not have to be considered due to

inelastic interactions [31, 88]. Combining the scaling relations obtained from the analysis of the

Boltzmann equation in Eq. (3.59) and the energy conservation constraint in Eq. (3.61), then

yields the set of scaling exponents

α = 1/7 , γ = −4/7 , (3.62)

which are in excellent agreement with the lattice results presented in Sec. 3.4. Of course, the

above scaling exponents also agree with the discussion in Sec. 3.1, where instead of searching for

self-consistent solutions of the Boltzmann equation, we considered the parametric dependencies

only.

8In this case the additional factor of αS as well as the additional momentum integration and the additional
factor of the gluon distribution function are canceled by the soft-collinear singularity of the 2 ↔ 3 matrix
element [101].

65



CHAPTER 3. THERMALIZATION IN MINKOWSKI SPACE

3.6 Discussion

We close this chapter with a brief summary of our findings and a comparison to similar obser-

vations at very different energy scales.

We established in Sec. 3.2 and 3.4 that thermalization of initially over-occupied systems

proceeds as a turbulent cascade towards the ultraviolet, which continues as long as the typical

occupancies are much larger than unity. Turbulent behavior emerges after a short period of

time, controlled by the initial occupation number, when the system exhibits a (non-thermal)

power-law spectrum and the dynamics becomes quasi-stationary, indicating the presence of a

non-thermal fixed point [87, 88, 90, 91].

In Sec. 3.2 we observed that highly over-occupied systems exhibit a transient regime, where

the spectral index of this power law is described by κ = 3/2 and we explained this behavior

in Sec. 3.3 by an effective 2 ↔ (1 + soft) interaction appearing in the presence of an excess

of very soft excitations [90]. However, at later times, these excitations decay due to inelastic

interactions and the scaling exponent becomes κ = 4/3, indicative of wave turbulence governed

by ordinary elastic scattering processes [87].

Strikingly, we discovered in Sec. 3.4 that the dynamics at late times is characterized by a

self-similar evolution, which describes the energy transport towards the ultraviolet and drives

the thermalization process. The scaling exponents characterizing the self-similar evolution in

time can be obtained from a kinetic theory analysis, when taking properly into account the

presence of a non-thermal fixed point as discussed in Sec. 3.5.

Most remarkably, these scaling exponents are universal in the sense that they are sensitive

only to the parametric dependencies of the underlying evolution equations. In particular, one

obtains the same result also for relativistic scalar field theories [34], such that the two theories

belong to the same universality class. This notion of universality far from equilibrium manifests

itself in the fact that similar phenomena can be observed across very different energy scales,

ranging from early universe cosmology [34] to the dynamics of ultra-cold quantum gases [36,

102, 103]. In this sense, our results may after all not appear very surprising, since they are

shared by a large variety of strongly correlated many-body systems out of equilibrium.
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Chapter 4

Non-equilibrium dynamics of

instabilities

In this chapter we explore the physics of plasma instabilities, which governs the early stages of

the non-equilibrium state formed in ultra-relativistic heavy-ion collisions [49–51]. While several

studies have focused on QCD plasma instabilities of momentum space anisotropic media [44–46,

49–51, 104–113], we explore here a class of models characterized by large homogeneous back-

ground fields, which can be studied analytically. These can be understood as an idealization of

the state created immediately after the collision of heavy nuclei, where an approximately boost

invariant plasma with a characteristic transverse correlation length ∼ Q−1 is expected to be

formed at high collider energies [27, 28].

We will first explore the physics of plasma instabilities in non-abelian gauge theories in

Minkowski space, by studying the out-of-equilibrium dynamics of coherent non-abelian gauge

fields. We employ homogeneous gauge field configurations, which can be studied analytically

and compare our findings with the results of classical-statistical lattice simulations. We dis-

cover that, in addition to a generalization of the Nielsen-Olesen instability [47, 48], the co-

herent gauge-field configurations also exhibit a (subleading) parametric resonance instability.

The characteristic non-equilibrium dynamics of instabilities ultimately leads to a decoherence

of the background field and creates an over-occupied state, similar to the ones discussed in the

previous chapter.

Since the dynamics of non-equilibrium instabilities manifests itself in a very similar way

in scalar quantum field theories as well as in non-abelian gauge theories [52, 53], we will also

consider the example of a parametric resonance instability in a scalar expanding field theory.

While the dynamics of the parametric resonance instability in non-expanding scalar theories

is comparatively well understood within previous studies [42, 53], we find that the dynamics
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of instabilities in the expanding case is qualitatively similar, though some interesting features

emerge due to the interplay of instabilities and the longitudinal expansion. The scalar model

therefore provides an ideal testground for the theoretical concepts and methods employed in

the study of the non-equilibrium dynamics of relativistic heavy-ion collisions. Most remark-

ably, we find that the techniques previously developed to study the dynamics of the parametric

resonance instability in Minkowski space [42, 53] apply in a similar fashion also to longitudi-

nally expanding systems, once the anisotropic expansion of the system is accounted for by the

introduction of a generalized conformal time. In particular, this renders the different effects

of the longitudinal expansion transparent and important lessons with regard to anisotropically

expanding non-abelian plasmas can be learned.

The discussion in this chapter is largely based on Refs. [114, 115] and organized in the

following way: In Sec. 4.1, we study the unstable dynamics of coherent field configurations

in SU(2) Yang-Mills theory in Minkowski space. We then turn to a detailed discussion of

the dynamics of the parametric resonance instability in longitudinally expanding scalar field

theories in Sec. 4.2. We conclude this chapter in Sec. 4.3 with a summary of our results and a

brief discussion of related studies.

4.1 Instabilities in SU(2) Yang-Mills theory in Minkowski

space

In this section, we investigate the classical dynamics of coherent non-abelian gauge fields. As

outlined above, this is motivated by the notion of ’color flux tubes’ that may form after the

collision of heavy nuclei at ultra-relativistic energies. These are characterized by intense color-

magnetic as well as color-electric field configurations in the longitudinal direction, which are

correlated over a transverse size associated to the inverse of the characteristic momentum scale

Q in the saturation scenario [27, 28]. To understand the time evolution of these configurations

in QCD is a formidable task, which is further complicated by the longitudinal expansion of the

system. In order to approach this complex question of non-linear gauge field dynamics, it is

very instructive to consider first an extreme simplification for which analytic insights can be

gained. We will therefore neglect the longitudinal expansion of the system for a moment and

employ a constant color-magnetic field configuration in the longitudinal direction. For the ease

of a later numerical treatment we study the SU(2) gauge theory, for which the homogeneous

background field can always be arranged to point in the a = 1 direction in color space, such

that

Ba
i (t0,x) = δ1aδzi B . (4.1)
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Such field configurations have been extensively discussed in the literature [116–118], where the

field in the infinite volume limit is taken to be generated from the time independent vector

potential Aaµ(x) as

A1
x(x) = −1

2
yB , A1

y(x) =
1

2
xB , (4.2)

with all other spatial components vanishing. Such a field configuration is known to exhibit a

Nielsen-Olesen instability [47, 48] characterized by an exponential growth of fluctuations with

maximum growth rate

γNO =
√
gB , (4.3)

where the effective amplitude
√
gB may be taken to be of order Q in the context of relativistic

heavy-ion collisions. This exponential growth leads to a production of gluons which is much

faster than any conventional production process and the consequences for the question of ther-

malization in a heavy-ion collision can be significant. Of course, in this context a single constant

color-magnetic background field is certainly not a realistic option and it is important to under-

stand the robustness of the underlying physical processes against suitable generalizations. In a

first step, we will therefore allow for temporal modulations of the color magnetic background

field by studying homogeneous gauge field configurations

A2
x(t0,x) = A3

y(t0,x) =

√
B

g
, (4.4)

with all other components equal to zero. It can be directly verified that this vector potential

configuration yields the same form of the longitudinal magnetic field in Eq. (4.1), however

generated entirely by the non-abelian part of the field strength tensor. Most remarkably, this

model can still be studied analytically and we will now discuss analytic solutions for the classical

time evolution of the configuration in Eq. (4.4) in temporal axial (At = 0) gauge and study

the behavior of linear perturbations on top of the oscillating background. The model can also

be extended to include spatial modulations in the transverse plane and we refer the interested

reader to Ref. [114] for a detailed numerical study.

4.1.1 Linear instability regime

To study the classical evolution of small perturbations δAaµ(x) in the presence of a homogeneous

gauge field configurations Aaµ(t), we decompose the classical gauge potentials Aaµ(x) according

to

Aaµ(x) = Aaµ(t) + δAaµ(x) . (4.5)
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We can then compute the time evolution in an expansion of the classical Yang-Mills equation

Dab
µ (x)Fµνb (x)

∣∣
Aaµ(x)=Aaµ(t)+δAaµ(x)

= 0 , (4.6)

in powers of the perturbation δAaµ(x). This can efficiently be achieved by decomposing the

covariant derivative and the field strength tensor into a δA independent and a δA dependent

part according to

Dab
µ (x) = Dab

µ [x;A] + δDab
µ (x) , Faµν(x) = Faµν [x;A] + δFaµν [x;A] . (4.7)

The individual parts of the covariant derivative are given by

Dab
µ [x;A] = ∂xµδ

ab + gfacbAcµ(x) , δDab
µ (x) = gfacbδAcµ(x) , (4.8)

and the individual contributions to the field strength tensor take the form

Faµν [x;A] = ∂µAaν(x)− ∂νAaµ(x) + gfabcAbµ(x)Acν(x) , (4.9)

δFaµν [x;A] = Dab
µ [x;A]δAbν(x)−Dab

ν [x;A]δAbµ(x) + gfabcδAbµ(x)δAcν(x) . (4.10)

At zeroth order in δA one obtains the classical Yang-Mills equations as the evolution equation

for the background field

Dab
µ [x;A]Fµνb [x;A] = 0 . (4.11)

The next order corresponds to the linearized equations of motions for the fluctuations δA and

takes the form [119]

Dab
µ [x;A]Dµ

bc[x;A] δAνc (x)−Dab
µ [x;A]Dν

bc[x;A] δAµc (x) + gfabc δAbµ(x) Fµνc [x;A] = 0 ,(4.12)

where we neglected all terms quadratic in the small perturbations δA. The initial conditions

for the non-vanishing components of the background field Aaµ(t) are given by Eq. (4.4) and we

chose the time derivative ∂tAaµ(t) to vanish at initial time t = t0 = 0. The structure of the

evolution equations (4.11) then ensures, that the background field can always be expressed as

Aai (t) = A(t)
(
δa2δix + δa3δiy

)
, (4.13)

and the equation of motion for the background field (4.11) then takes the form

∂2
tA(t) + g2A(t)3 = 0 . (4.14)
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Figure 4.1: Time evolution of the background field A(t) normalized to its initial value. The
functional form is described by the Jacobi elliptic function
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√
gB.

The solution to Eq. (4.14) is given in terms of a Jacobi elliptic function

A(t) =

√
B

g
cn

(√
gB t ,

1

2

)
. (4.15)

for the considered initial conditions. The Jacobi cosine cn(
√
gB t, 1/2) is an oscillatory function

in time such that A(t) = A(t+ ∆tB) with period

∆tB =
4K(1/2)√

gB
' 7.42√

gB
, (4.16)

where K(1/2) denotes the complete elliptic integral of the first kind [120]. Similar behavior has

been discussed e.g. in the context of classical chaos [121], or for parametric resonance in scalar

field theories [122]. The solution in Eq. (4.15) is plotted in Fig. 4.1. For later use we note that

the corresponding characteristic frequency is ωB = 2π/∆tB ' 0.847
√
gB.

We will now study the dynamics of the fluctuations by use of linearized evolution equations

in Eq. (4.12) and discuss the solutions for modes δAai in (spatial) Fourier space

δAai (t,p) =

∫
d3x e−ipjx

j

δAai (t,x) . (4.17)

We concentrate on momenta pz along the z-direction, i.e. we evaluate the modes of δAai (t,p)

at px = py = 0. The evolution equations (4.12) for the different components of δAai (t, pz) can
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then be written as the following independent sets of coupled differential equations(
δÄ1

x

δÄ3
z

)
= −

(
g2A2(t) + p2

z igA(t)pz

−igA(t)pz g2A2(t)

)(
δA1

x

δA3
z

)
, (4.18)

where we introduce the shorthand notation δȦai (t, pz) ≡ ∂tδA
a
i (t, pz) for the time derivative. The

complex conjugates of the components (δA1
y, δA

2
z) obey the same equation, which is obtained

from Eq. (4.18) with the replacement (δA1
x, δA

3
z) → (δA1∗

y , δA
2∗
z ). Similarly, one finds(

δÄ2
x

δÄ3
y

)
= −

(
g2A2(t) + p2

z 2g2A2(t)

2g2A2(t) g2A2(t) + p2
z

)(
δA2

x

δA3
y

)
, (4.19)

and  δÄ3
x

δÄ2
y

δÄ1
z

 = −

 p2
z −g2A2(t) −igA(t)pz

−g2A2(t) p2
z igA(t)pz

igA(t)pz −igA(t)pz 2g2A2(t)


 δA3

x

δA2
y

δA1
z

 . (4.20)

Each of the linear differential equations (4.18)-(4.20) with time dependent background fieldA(t)

may be further analyzed by diagonalization. The time-dependent eigenvalues of the matrices

read for Eq. (4.18)

ω2
1±(pz) = g2A2 +

p2
z

2
± 1

2

√
4g2A2p2

z + p4
z , (4.21)

for Eq. (4.19)

ω2
2(pz) = 3g2A2 + p2

z , ω2
3(pz) = −(g2A2 − p2

z) , (4.22)

and for Eq. (4.20)

ω2
4(pz) = −(g2A2 − p2

z) , ω2
5±(pz) =∞2

(
3g2A2 + p2

z ±
√
g4A4 + 6g2A2p2

z + p4
z

)
. (4.23)

The corresponding eigenvectors depend, in general, on A(t) and thus on time. However,

the eigenvectors associated to ω2
2(pz), ω

2
3(pz) and ω2

4(pz) are time-independent and given by

(1, 1)/
√

2, (−1, 1)/
√

2, and (1, 1, 0)/
√

2, respectively. These include, in particular, the only

negative eigenvalues ω2
3(pz) = ω2

4(pz) < 0 for momenta p2
z < g2A(t). These will play a particu-

larly important role in the following since they turn out to govern the fastest time scales. It is

very instructive to consider the example of Eq. (4.19) in diagonalized form

δÄ+ = −
(
3g2A2 + p2

z

)
δA+ , (4.24)

δÄ− =
(
g2A2 − p2

z

)
δA− , (4.25)
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where δA+ = δA2
x + δA3

y and δA− = δA3
y − δA2

x. The same equation for δA− would also be

obtained from Eq. (4.20) by associating δA− to δA3
x+δA2

y in this case. The equations (4.24) and

(4.25) are of the Lamé-type [123]: Since the squared background field appearing in Eqns. (4.24)

and (4.25) has periodicity ∆tB/2, each solution can be written as a linear combination of the

form

δA±(t+ ∆tB/2, pz) = eiC±(pz) δA±(t, pz) , (4.26)

such that

δA±(t, pz) = e2iC±(pz)t/∆tB Π±(t, pz) , (4.27)

with periodic functions Π±(t + ∆tB/2, pz) = Π±(t, pz). The Floquet indices C±(pz) are time-

independent and lead to oscillating behavior if C±(pz) is purely real or to exponentially growing

or decaying solutions if C±(pz) has a non-zero imaginary part. The dominant exponentially

growing solutions arise for δA− modes because of the appearance of the time-dependent nega-

tive eigenvalues ω2
3(pz) = ω2

4(pz) and we will concentrate on them in the following.

Before we discuss the approximate solution to the evolution equation (4.25), it is instructive

to consider first the situation, where we neglect the time dependence of the background field

by replacing A(t) →
√
B(t = 0)/g. In this case one recovers the well-known Nielsen-Olesen

result for the growth rate of modes with p2
z ≤ gB(t = 0):

γNO(pz) =
√
gB(t = 0)− p2

z . (4.28)

This is in accordance with the fact that the value for the maximum growth rate for constant

fields, as stated in Eq. (4.3), is obtained for vanishing momenta. In contrast, since the back-

ground field is oscillatory in our case there will be deviations from the Nielsen-Olesen result

in Eq. (4.28). However, it turns out that to rather good accuracy the growth rates follow the

Nielsen-Olesen estimate if the temporal average of the oscillating magnetic background field is

used in Eq. (4.28). The time average over one period ∆tB/2 of the square of the time-dependent

background field in Eq. (4.15), which enters the evolution equation (4.25) for the fluctuations

δA−(t, pz), is given by

gB ≡ gB(t = 0)

2K(1/2)

∫ 2K(1/2)

0

dx cn2

(
x,

1

2

)
=

Γ(3/4)2

Γ(5/4)Γ(1/4)︸ ︷︷ ︸
≈0.457

gB(t = 0) . (4.29)

Replacing gB(t = 0) in Eq. (4.28) by the average value in Eq. (4.29) indeed reproduces the full

numerical results in the linear instability regime to good accuracy.

Before we discuss our numerical results, we will now turn back to Eq. (4.25) and consider
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a different approximation, which maps the evolution equation onto the Jacobian form of the

Lamé equation. By use of the solution of the background field in Eq. (4.15), the evolution

equation for δA−(t, pz) takes the form[
∂2
t + p2

z − gB cn2

(√
gB t,

1

2

)]
δA−(t, pz) = 0, (4.30)

which closely resembles the Jacobian form of the Lamé equation. The crucial difference here

is the negative sign in front of the oscillating term, which gives rise to the Nielsen-Olesen type

instability discussed above. Our strategy for solving the above evolution equation consists of

approximating

cn2(x,m) = 1− cn2(x−K(m),m) +O(m2) , (4.31)

for m = 1/2 as in Eq. (4.30), in order to reduce it to the well-known Lamé equation. While

this approximation captures all qualitative features of Eq. (4.30), it has the shortcoming that

the average field strength gB according to Eq. (4.29) is overestimated by a factor of

gB

gBapp

=
c

1− c
≈ 0.841 , c =

Γ(3/4)2

Γ(5/4)Γ(1/4)
' 0.457 . (4.32)

Consequently, we expect the approximation to yield slightly enhanced growth rates which ex-

tend to somewhat higher momenta.1

In order to obtain the solutions for δA−(t, p) within the above approximation, we follow

similar steps as in Ref. [124] and recast the evolution equation to the Weierstrass form by use

of the identity [120, 123, 124]

cn2

(
x,

1

2

)
= −2℘

(
x+ iK

(
1

2

))
, (4.33)

where ℘(x) is the Weierstrass elliptic function with roots e1 = 1/2, e2 = 0 and e3 = −1/2. The

evolution equation in Weierstrass form then reads[
∂2
t + p2

z − gB − 2gB ℘
(√

gBt− τ)
)]
δA−(t, pz) = 0 , (4.34)

where τ = (1 − i)K(1/2). By introducing the dimensionless time variable θ =
√
gB t and

expressing the time independent contribution in Eq. (4.34) in terms of the Weierstrass elliptic

1Note that one can account for this shortcoming by simply rescaling the field amplitude by the factor in
Eq. (4.32).
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function according to

℘(z) = 1− p2
z

gB
, (4.35)

where z = z(pz) contains the momentum dependence, the two independent fundamental solu-

tions U1
pz(θ) and U2

pz(θ) to Eq. (4.34) read [123]

U1/2
pz (θ) = e∓(θ−τ)ζ(z) σ(θ − τ ± z)

σ(θ − τ)
, (4.36)

where the functions σ(x) and ζ(x) represent the corresponding Weierstrass functions and the

momentum dependence of the solutions is encoded in z defined by Eq. (4.35). In order to obtain

the growth rate γ(p) and the oscillation frequency ω(p) we perform a Floquet analysis of the

fundamental solutions according to

U1/2
pz (θ + 2K(1/2)) = ei C

1/2
− (pz) U1/2

pz (θ) , (4.37)

with the Floquet index C
1/2
− (pz) as introduced above. Using the quasi periodicity of the Weier-

strass σ-function [120, 124]

σ(x+ 2K(1/2)) = −σ(x) exp[2(x+K(1/2))ζ(K(1/2))] , (4.38)

one finds

C
1/2
− (pz) = ±2i [K(1/2)ζ(z)− z ζ(K(1/2))] . (4.39)

The growth rate γ(pz) and the oscillation frequency ω(pz) are then related to the real and

imaginary parts of the Floquet index by2

γ(pz) =
√
gB
|Im[C−(pz)]|

2K(1/2)
, ω(pz) =

√
gB
|Re[C−(pz)]|

2K(1/2)
. (4.40)

In order to evaluate the expressions in Eq. (4.40) we follow Ref. [124] to evaluate the mapping

2We note that in this way the oscillation frequency is only defined up to constants of 2ωB .
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Figure 4.2: (left) Growth rates and (right) oscillation frequencies in the linear instability
regime. The red lines correspond to the analytic result in Eq. (4.40). The growth-rates extracted
from classical-statistical lattice simulations are shown as blue crosses.

of z in Eq. (4.35). We find that there are four different regimes described by

z = β1(pz) for
p2
z

gB
<

1

2
, (4.41)

z = iβ2(pz) +K(1/2) for
1

2
<

p2
z

gB
< 1 , (4.42)

z = β3(pz) + iK(1/2) for 1 <
p2
z

gB
<

3

2
, (4.43)

z = iβ4(pz) for
p2
z

gB
>

3

2
, (4.44)

where βi ∈ [0, K(1/2)] for all four regimes. The different regimes correspond to two stable and

two unstable bands: The lowest band p2
z < gB/2 corresponds to the Nielsen-Olesen instability,

whereas the third band gB < p2
z < 3gB/2 corresponds to a parametric resonance instability

[124]. Outside these momentum regions all modes are stable.

The corresponding growth rates and oscillation frequencies for all bands are shown in

Fig. 4.2. The modes which are subject to the Nielsen-Olesen instability show no oscillatory

behavior, whereas modes which are amplified by the parametric resonance instability follow the

oscillation of the macroscopic field A(t). The stable band in between interpolates between the

two oscillation frequencies, while at higher momenta p2
z � gB the free field limit ω(pz) = pz

is approached. Concerning the growth rates one observes that the Nielsen-Olesen instability

exhibits the dominant growth rate when compared to the parametric resonance band. When

comparing the analytic results for the growth rate to lattice simulations discussed below, we find

that the analytic prediction is somewhat larger and extends to higher momenta. As mentioned

above, this is a consequence of the approximation in Eq. (4.31). However, the lattice data can
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be accurately described after a rescaling of the magnetic field amplitude B to reproduce the

correct average amplitude B in Eq. (4.32).

4.1.2 Classical-statistical lattice simulations

We now turn to the results of classical-statistical lattice simulations, which enable us to verify

the robustness of the above approximations and study the dynamics of the instability also be-

yond the linear instability regime. We employ the initial conditions in Eq. (4.4) supplemented

by a small noise to trigger the growth of non-equilibrium instabilities. In Fig. 4.3, we show the

time evolution of the different gauge field components |Aai (t, pz, ~pT = 0)|2 for different longitu-

dinal momenta pz = 0, pz = 0.48 (g2ε)1/4 and pz = 1.2 (g2ε)1/4 in each panel.3 Already at first

sight, one observes the emergence of different dynamical regimes, as a characteristic feature of

the non-equilibrium dynamics of instabilities in many different systems [42, 52, 53]:

Starting at very early times, the homogeneous background field is contained in the A2
x and

A3
y components, which initially have a large amplitude that oscillates in time. The growth of

primary instabilities is clearly seen in the components A2
x, A

3
x, A

2
y and A3

y, which show the fastest

growth of primary instabilities at early times. One also observes that for the A3
x and A2

y com-

ponents modes with vanishing longitudinal momentum pz = 0 exhibit the fastest growth rates

without showing any oscillatory behavior. This is a clear manifestation of the Nielsen-Olesen

type instability. The presence of the subleading parametric resonance instability can also be

observed from Fig. 4.3. For instance, the A2
y mode with momentum pz = 1.2 (g2ε)1/4 shows a

slow exponential growth with characteristic oscillations that match the behavior of the back-

ground field. This is precisely the signature of the second resonance band discussed in Sec. 4.1.1.

At later times one observes significant deviations from the linear instability regime and

a large range of modes becomes unstable throughout all gauge field components. Though

there is a delayed set-in of the instability for these modes, the modes are able to catch-up

due to the substantial speed-up encountered in this regime. This behavior can be attributed

to non-linear self-interactions of unstable gauge field modes and is a generic phenomenon of

the non-equilibrium dynamics of self-interacting systems undergoing an instability [42, 52, 53].

Since this feature manifests itself in a similar way in scalar quantum field theories, we will

discuss the dynamics of this non-linear regime in more detail in Sec. 4.2, by the example of a

parametric resonance instability in expanding scalar theories.

Finally, the growth of instabilities saturates and the system encounters a much slower dy-

3Note that at early times (g2ε)1/4 '
√
gB, since the contributions of the fluctuations to the energy density

are very small.
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Figure 4.3: Time evolution of the individual gauge field components Aai (t, pz). Each panel
shows the time evolution of three different Fourier coefficients whose momenta pz are parallel
to the z-axis.

namics. It is interesting to note, that in this regime also the amplitude of the background

fields A2
x and A3

y decreases and becomes of the same order as the zero modes of the other gauge

field components. The instability of the coherent gauge-field configurations therefore leads to

a decay into a large number of incoherent particle-like excitations which start to dominate the

energy density of the system. Accordingly, the ensuing state shares characteristic properties,

with the over-populated initial conditions discussed in Chapter 3 and one can identify plasma

instabilities as a mechanism to generate over-occupation.

78



4.2. PARAMETRIC RESONANCE IN EXPANDING SCALAR FIELD THEORIES

4.2 Parametric resonance in expanding scalar field the-

ories

In this section we leave the Yang-Mills sector and study the non-equilibrium dynamics of insta-

bilities in anisotropically expanding systems by the example of parametric resonance in a real

valued N -component scalar field theory. In addition to a transparent discussion of the effects of

the longitudinal expansion in Sec. 4.2.1, we will analyze the emergence of different dynamical

regimes due to the non-linear self-interaction of unstable modes in Sec. 4.2.2 and compare our

findings to classical-statistical lattice simulations in Sec. 4.2.3.

We consider a theory with quartic interaction defined by the classical action

S[ϕ] =

∫
d4x

√
−g(x)

[
gµν(x)

2
∂µϕa∂νϕa −

m2

2
ϕaϕa −

λ(ϕaϕa)
2

4!N

]
, (4.45)

with the self-coupling λ for a = 1, ..., N component fields ϕa(x). To implement the longitudinal

expansion, we consider boost invariant initial conditions along the longitudinal direction and

employ the co-moving space time variables xµ = (τ, x1, x2, η) to describe the evolution. In

accordance with the discussion in Sec. 2.3, the covariant metric tensor in (τ, η) coordinates

is given by gµν(x) = diag(1,−1,−1,−τ 2), whereas the contravariant metric tensor follows as

gµν(x) = diag(1,−1,−1,−1/τ 2) and the metric determinant is g(x) = det gµν(x) = −τ 2.

We are interested in the time evolution of the corresponding quantum field theory for a

given density matrix ρD(τ0) specified at initial (proper) time τ0. The expectation values of

Heisenberg field operators φ̂a(τ, xT , η) are then given by

〈φ̂(τ, xT , η)〉 ≡ tr[ρD(τ0)φ̂(τ, xT , η)] (4.46)

and equivalently for products of field operators, which determine the correlation functions.

We will consider the time-evolution in the forward light-cone (τ0 > 0) for spatially homoge-

neous expectation values. 4 We employ Gaussian initial conditions, which can be conveniently

formulated in terms of the macroscopic field

φa(τ) =
〈
φ̂a(τ, xT , η)

〉
(4.47)

4By spatially homogeneous we mean homogeneous in the transverse plane and homogeneous in longitudinal
rapidity at given proper time.
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as well as the statistical two-point correlation function

Fab(τ, τ
′, xT − x′T , η − η′) =

1

2

〈{
φ̂a(τ, xT , η), φ̂b(τ

′, x′T , η
′)
}〉
− φa(τ)φb(τ

′) (4.48)

and their derivatives at initial (proper) time τ0. By use of the O(N) symmetry in the field

components, we can always take the homogeneous background field to point in the a = 1

direction, and we will denote

φa(τ) = φ(τ)δa1 . (4.49)

We consider the statistical fluctuations to be diagonal in the field components, such that we can

always decompose Fab = diag(F‖, F⊥, . . . , F⊥), where the subscripts longitudinal and transverse

indicate the orientation with respect to the homogeneous background field.

To study the dynamics of the parametric resonance instability, we consider a weakly coupled

theory (λ� 1) with a parametrically large background field

φ(τ0) =

√
6N

λ
σ0 , ∂τφ(τ)|τ=τ0

= − 1

3τ0

φ(τ0) , (4.50)

and small statistical fluctuations

F (τ, τ ′, pT , ν)|τ=τ ′=τ0
=

σ0

2ω̃p
e−ω̃p/σ0 ,

∂τ F (τ, τ ′, pT , ν)|τ=τ ′=τ0
= −F (τ0, τ0, pT , ν)

3τ0

,

∂τ∂τ ′ F (θ, θ′, pT , ν)|τ=τ ′=τ0
=

F (τ0, τ0, pT , ν)

9τ 2
0

+
ω̃pσ0

2
e−ω̃p/σ0 , (4.51)

where we employ ω̃⊥p =
√
p2
T + ν2/τ 2

0 + σ2
0 for transverse modes and ω̃

‖
p =

√
p2
T + ν2/τ 2

0 + 3σ2
0

for longitudinal modes. The derivatives in Eqns. (4.50) and (4.51) are chosen to mimic an initial

free-streaming behavior and σ0 denotes the rescaled initial field amplitude. We will employ the

typical set of parameters m2 = 0, σ0τ0 = 5, N = 4 and λ = 10−4 for our estimates and

numerical simulations presented in this section, such that the spectral shape of the statistical

fluctuations in Eq. (4.51) will be of little relevance since the magnitude is very small compared

to the initial macroscopic field squared.

4.2.1 Linear instability regime and generalized conformal time

Since the initial background field φ is large and statistical fluctuations F are initially small, it is

sufficient to consider the linearized evolution equations for the small fluctuations at the initial

stage of the evolution. Since the classical theory and the quantum theory agree to this (mean-
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field) order [40, 41], the quantum evolution at sufficiently early times is accurately described

by the classical equations of motion for the background field and the linearized equations of

motion for small fluctuations around the field expectation value.5

Dynamics of the background field

In this linear instability regime the evolution equation for the macroscopic field follows directly

from the stationarity of the classical action in Eq. (4.45) and takes the form of the equation of

motion of a damped anharmonic oscillator[
∂2
τ +

1

τ
∂τ +m2 +

λ

6N
φ2(τ)

]
φ(τ) = 0 . (4.52)

The damping term characterized by a first-order time derivative arises due to the longitudinal

expansion and represents the dilution of the system. In order to solve Eq. (4.52) analytically,

we perform a change in the time variable as well as a rescaling of the fields by introducing the

variables

σ0dτ =

(
a(τ)

a(τ0)

)1/3

dθ , φ̃ =

(
a(τ)

a(τ0)

)1/3
φ

σ0

(4.53)

with the generalized scale factor a(τ) = τ in the case of a one-dimensional Bjorken expan-

sion. This can be seen as a generalization of the concept of conformal time to anisotropically

expanding systems. For the one-dimensional expansion the scale factor a(τ) enters the above

definition of conformal time with exponent 1/3, whereas in the isotropically expanding case

one would use d/3 for d spatial dimensions instead [125]. The new dimensionless time-variable

θ is explicitly given by

θ(τ)− θ0 =
3

2
σ0τ0

[(
τ

τ0

)2/3

− 1

]
, (4.54)

and we will refer to it as ’conformal time’ in analogy to the isotropic case. The evolution

equation of the macroscopic field in terms of the new variables reads[
∂2
θ + m̃2(θ) +

λ

6N
φ̃2(θ)

]
φ̃(θ) = 0 , (4.55)

where we introduced the time-dependent effective ’mass term’

m̃2(θ) =
m2

σ2
0

(
a(θ)

a(θ0)

)2/3

+
2

9

(
a′(θ)

a(θ)

)2

− 1

3

a′′(θ)

a(θ)
. (4.56)

5The direct verification of this statement will be provided in Sec. 4.2.2, where we discuss the non-linear
evolution and the impact of quantum fluctuations.
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Here primes denote derivatives with respect to θ, which are explicitly given by

a(θ)

a(θ0)
=

(
2θ

3σ0τ0

)3/2

,
a′(θ)

a(θ0)
=

1

σ0τ0

(
2θ

3σ0τ0

)1/2

,
a′′(θ)

a(θ0)
=

1

3(σ0τ0)2

(
2θ

3σ0τ0

)−1/2

,(4.57)

where we chose θ0 = 3σ0τ0/2 to cancel the term on the right hand side of Eq. (4.54).

For massless scalar fields (m2 = 0), the above evolution equation can be solved approxi-

mately in the limit of large initial field amplitudes σ0τ0 � 1. According to Eq. (4.56) one then

finds m̃2(θ) = 1/(4θ2), which is small compared to the macroscopic field such that m̃2(θ) ' 0

gives an accurate description of the dynamics in this case. The evolution equation (4.55) in

terms of the new variables then becomes that of an anharmonic oscillator[
∂2
θ +

λ

6N
φ̃2(θ)

]
φ̃(θ) = 0 , (4.58)

and the solution is given in terms of Jacobi elliptic functions

φ̃(θ) =

√
6N

λ
cn

(
θ − θ0 ;

1

2

)
, (4.59)

for the considered initial conditions specified in Eq. (4.50). The Jacobi cosine, cn(θ;α), is a

doubly periodic function in θ with periods 4K(α) and 4iK(1−α), where K(α) is the complete

elliptic integral of the first kind [120], and the macroscopic field φ̃ displays oscillations with

constant period in conformal time. For the physical interpretation of this result it is insightful

to express the approximate solution in Eq. (4.59) in terms of the original time and field variables

according to

φ(τ) = σ0

√
6N

λ

(τ0

τ

)1/3

cn

(
3σ0τ0

2

[(
τ

τ0

)2/3

− 1

]
;
1

2

)
, (4.60)

such that the macroscopic field φ(τ) decays as τ−1/3, while it displays oscillatory behavior with

a constant period in conformal time θ ∝ τ 2/3. This is a direct consequence of the dilution of the

system due to the longitudinal expansion. In Fig. 4.4 the analytic approximation in Eq. (4.60)

is compared to the full numerical solution of Eq. (4.52) without further approximations. The

excellent agreement verifies that the terms neglected in Eq. (4.58) are indeed irrelevant for this

choice of parameters.

Parametric resonance instability

Equipped with an analytic solution of the background field dynamics, we can now study the

dynamics of the statistical fluctuations around the macroscopic field. As outlined above, their

dynamics is initially described by the linearized classical evolution equations, as long as statisti-
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Figure 4.4: Solution to the linearized field equation (4.52) for σ0τ0 = 5. The approximate
analytic solution in Eq. (4.60) given by the dashed curve is practically on top of the full
numerical one (solid curve). As a consequence of the longitudinal expansion, the field shows
oscillations with constant period in τ 2/3 while the amplitude of the oscillations decreases as
τ−1/3.

cal fluctuations remain sufficiently small. The linearized equations of motion for the statistical

fluctuations can be obtained by expanding the classical field equations to first order in the de-

viations δφ(x) from the homogeneous background field φ(τ). The small fluctuations δφ(x) are

related to the statistical two-correlation function by F cl
ab(τ, τ

′, ~xT−~x′T , η−η′) = 〈δφa(x)δφb(x
′)〉cl

in the classical-statistical field theory. Since we consider spatially homogeneous systems, it is

convenient to work in Fourier space with respect to spatial coordinates, where we define the

dimensionless quantity

Fab(τ, τ
′, ~pT , ν) =

∫
d2~xTdη Fab(τ, τ

′, ~xT , η) e−i(~pT ~xT+νη) . (4.61)

The linearized equations of motion for the statistical fluctuations then take the form[
∂2
τ +

1

τ
∂τ + p2

T +
ν2

τ 2
+m2 +

λ

6N
φ2(τ)

]
F⊥(τ, τ ′, pT , ν) = 0 ,[

∂2
τ +

1

τ
∂τ + p2

T +
ν2

τ 2
+m2 +

λ

2N
φ2(τ)

]
F‖(τ, τ

′, pT , ν) = 0 , (4.62)

and we will verify explicitly in Sec. 4.2.2, that the linearized classical equations of motion corre-

spond to the quantum evolution equations in the limit where all non-linear or loop corrections

can be neglected.
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The dynamics of the linearized evolution equations (4.62) already exhibit a rich structure

due to the different scales involved in the problem. In addition to the damping term, which is

characterized by the first-order time derivative and appears due to the longitudinal expansion,

the other competing scales that depend differently on (proper) time τ are related to

• the macroscopic field squared φ2(τ) ∼ τ−2/3,

• the longitudinal momentum squared ν2/τ 2 and

• the transverse ’mass’ squared m2 + p2
T which is independent of proper-time.

Hence, the interplay between the dilution and the red-shift of longitudinal momenta due to the

anisotropic expansion alter the dynamics of the parametric resonance instability and induce a

variety of interesting phenomena, which we will now investigate in more detail.

In order to obtain an analytic description for the time evolution of the fluctuations, we

introduce conformal time variables for the statistical fluctuations according to

F̃ (θ, θ′, pT , ν) =

(
τ(θ)

τ0

)1/3(
τ ′(θ′)

τ0

)1/3

F (τ, τ ′, pT , ν). (4.63)

Inserting the solution for the background field in Eq. (4.59), the linearized evolution equations

using conformal time variables take the form[
∂2
θ + p̃2(θ) + m̃2(θ) + cn2

(
θ − θ0 ;

1

2

)]
F̃⊥(θ, θ′, pT , ν) = 0 ,[

∂2
θ + p̃2(θ) + m̃2(θ) + 3 cn2

(
θ − θ0 ;

1

2

)]
F̃‖(θ, θ

′, pT , ν) = 0 , (4.64)

and we will restrict ourselves again to the massless case, m2 = 0, and approximate m̃2(θ) ' 0

as in Eq. (4.58) in the following. With this approximation Eq. (4.64) resembles the Jacobian

form of the Lamé equation. However, a crucial difference is the explicit θ-time dependence of

the (dimensionless) momentum term

p̃2(θ) ≡ 2θ

3σ0τ0

p2
T

σ2
0

+
9

4

ν2

θ2
. (4.65)

It is thus instructive to consider first the case, where p̃2 was not depending on θ-time. In

this situation Eq. (4.64) corresponds to Lamé equations, whose analytic solutions have been

discussed in Sec. 4.1.1. The dynamics is then dominated by the transverse (F̃⊥) modes which
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Figure 4.5: Time-dependent (dimensionless) growth rate γ(pT , ν, θ) in the transverse momen-
tum pT and rapidity wave number ν plane for different times. The (left) panel corresponds to
τ/τ0 = 1, the (right) panel shows τ/τ0 = 5. The instability develops from the high pT small ν
region to the high ν small pT region.

exhibit exponential growth in time for a resonance band of momenta

0 ≤ p̃2 ≤ 1

2
. (4.66)

The (dimensionless) momentum-dependent growth rate γ(p̃) is to good approximation given by

γ(p̃) ' 4πe−π

K(1/2)

√
2p̃2 (1− 2p̃2) , (4.67)

which exhibits the maximum growth rate

γ0 '
2πe−π

K(1/2)
' 0.15 , for p̃2

0 '
1

4
. (4.68)

The exact analytic expressions involving Weierstrass elliptic functions are the same as in

Sec. 4.1.1 and the approximation entering Eq. (4.67) is discussed in detail in Refs. [115, 124].

In the case of an anisotropically expanding system as described by Eq. (4.64), the situa-

tion is somewhat more involved due to the explicit θ-time dependence of the momentum term

in Eq. (4.65). In order to extend the previous discussion to the expanding system described

by Eq. (4.64), it is therefore instructive to assume that the momentum term in Eq. (4.65)

varies only slowly on the characteristic time scale of one oscillation of the macroscopic field.

By expanding the time dependent momentum term as p̃2(θ + Tθ) ' p̃2(θ) + ∂θp̃
2(θ)Tθ, where

Tθ = 4K(1/2) corresponds to one period of oscillation of the macroscopic field, we find that

formally this ’quasi-static’ approximation corresponds to the limit 4K(1/2)|∂θp̃2(θ)| � p̃2(θ).

However, for resonant modes, where the characteristic momenta are parametrically given by
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pT ∼ σ0 and ν ∼ σ0τ0, it is straightforward to verify that the above condition is approximately

fulfilled whenever σ0τ0 & 4 K(1/2), which can easily be achieved by choice of parameters.

Within this approximation the resonance band and growth rates for the expanding system can

be obtained from Eqns. (4.66) and (4.67) by replacing p̃2 → p̃2(θ) as given in Eq. (4.65). The

time-dependence of the growth rate in this approximation then enters only through the explicit

time-dependence of p̃2(θ) and is a consequence of both the red-shift of longitudinal momenta

and the dilution of the system.

The growth rate in Eq. (4.67) with time-dependent momentum terms as in Eq. (4.65) is

shown in Fig. 4.5 as a function of transverse momentum pT and longitudinal wave number ν

for different times. One observes that the instability develops from the high pT and small ν

region at early times to the high ν and small pT region at later times. We will now discuss

the different phenomena that appear due to this shift of the resonance band within the ’quasi-

static’ approach and show that these analytic results compare well to full numerical solutions

of Eq. (4.64).

The explicit θ-time dependence of the approximate resonance band criterion leads to new

phenomena that are not present in the non-expanding case. In particular, a mode with fixed

transverse momentum pT and fixed ν may satisfy the resonance condition in Eq. (4.66) for a

certain time window τStart < τ < τEnd, while the condition may not be met outside this window.

This means that modes can shift inside the resonance band, exhibit exponential growth for a

certain time and then shift back out of the resonance band again so that the exponential growth

stops at later times of the evolution. In particular, if τStart > τ0 for a certain mode, this mode

will exhibit a delay in the onset-time of growth. For instance, if we restrict to the case of

vanishing transverse momentum, the condition in Eq. (4.66) yields the onset of exponential

growth at times (
τStart

τ0

)2/3

=

√
2ν2

σ0τ0

for pT = 0 , (4.69)

and the subsequent growth continues as long as the linearized description remains valid. How-

ever, by investigating the entire momentum space one finds that there are modes which behave

quite differently. For instance, modes with vanishing longitudinal momentum exhibit a resonant

amplification only until the time(
τEnd

τ0

)2/3

=
σ2

0

2p2
T

for ν = 0 . (4.70)

After the time τEnd these modes freeze out, such that the exponential growth stops and they
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Figure 4.6: (left) Time evolution of the equal-time transverse fluctuations F⊥(τ, τ, pT , ν) from
the linearized evolution equations for pT = 0 and different rapidity wave numbers ν. The modes
are averaged over one period of oscillation of the macroscopic field. The time axis is scaled as
(τ/τ0)2/3. The vertical dashed grey lines represent the set-in time of the instability according to
Eq. (4.69). The full grey line corresponds to the maximum growth rate 3σ0τ0γ0. (right) Same
for modes with ν = 0 and different transverse momenta pT . The vertical grey dashed lines
correspond to the estimates for the freeze-out times of the instability according to Eq. (4.70).

exhibit a stable oscillatory behavior until the time when non-linear interactions between unsta-

ble modes become important. The generic situation, where neither longitudinal nor transverse

momentum vanish, is discussed in detail in Appendix F and we will only present some char-

acteristic results. By searching for real positive solutions for θ of the resonance criterion in

Eq. (4.66), we find that these solutions exist for all modes satisfying the time-independent

condition

p4
Tν

2

σ6
0τ

2
0

≤ 1

54
. (4.71)

Accordingly, all transverse modes (F⊥) satisfying the condition (4.71) experience exponential

amplification for a certain period of time. The set-in and freeze-out times for these modes cor-

respond to times where the relation (4.66) is taken as an equality. Calling ξ ≡ (54 p4
Tν

2)/(σ6
0τ

2
0 )

these times are given by

(
τStart

τ0

)2/3

=
σ2

0

6p2
T

[
1 + 2 sin

(
2

3
arctan

√
ξ

1− ξ
− π

6

)]
,

(
τEnd

τ0

)2/3

=
σ2

0

6p2
T

[
1 + 2 cos

(
2

3
arctan

√
ξ

1− ξ

)]
, (4.72)

where ξ ≤ 1 and, of course, τStart ≤ τEnd for unstable modes, which satisfy Eq. (4.71).
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The phenomena of delayed set-in and freeze-out can clearly be observed in our numerical

studies of the linearized evolution equations. In Fig. 4.6 we present the numerical solution of

the linearized evolution equations for transverse modes F⊥(τ, τ, pT , ν) with different transverse

and longitudinal momenta. From the right panel of Fig. 4.6 one observes that modes which

are dominated by their transverse momentum exhibit an amplification at early times. How-

ever, this amplification stops once they shift out of the resonance band and we find that this

behavior is indeed very well described by our analytic estimate in Eq. (4.70), indicated by the

gray dashed lines. In contrast, modes which are dominated by their rapidity wave number ν,

as shown in the left panel of Fig. 4.6, exhibit an amplification at later times, when they have

shifted inside the resonance band. Here the set-in time of the instability is well described by

Eq. (4.69) indicated by the gray dashed lines. In both cases, the modes exhibit an exponential

growth in conformal time θ ∝ τ 2/3 with a time-dependent growth-rate γ(p̃(θ)) ≤ γ0 as discussed

above.

Since the fluctuations exhibit an exponential growth due to the parametric resonance insta-

bility, they become large and the linear approximation underlying Eq. (4.64) breaks down once

non-linear interactions of unstable modes become sizable. This gives rise to significant change

of the instability dynamics, which we will now analyze in more detail.

4.2.2 Non-linear corrections and dynamical power counting

How to take into account non-linear corrections in scalar quantum field theories is well known

and can be based efficiently on the two-particle irreducible (2PI) effective action [76, 77], which

circumvents problems of secular time evolutions encountered in non-resummed (1PI) approx-

imation schemes [42]. For the N -component scalar quantum field theory a non-perturbative

description can be based on the 1/N -expansion of the 2PI effective action to next-to-leading

order (NLO) [126, 127] and the evolution equations in general coordinates have been presented

in Refs. [125, 128]. Here we discuss those aspects of the time evolution, which are relevant

for an understanding of the non-linear amplification of instabilities. Non-linear corrections will

lead to strongly enhanced ’secondary’ growth rates, which are multiples of the initial ’primary’

growth rates observed from the linear regime. Remarkably, this turns out to be very similar to

the non-expanding case, which has been discussed extensively in the past for scalars [42, 53] as

well as for non-abelian gauge theories [52].

Evolution equations

While the linear regime discussed above is entirely described in terms of the background field

φ, defined in Eq. (4.47), and the statistical two-point function F as given by Eq. (4.48), an
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important new ingredient going beyond the linear regime will be the appearance of the time-

dependent spectral function

ρab(τ, τ
′, xT − x′T , η − η′) = i

〈[
φ̂a(τ, xT , η), φ̂b(τ

′, x′T , η
′)
]〉

. (4.73)

as an additional linearly independent correlation function in the evolution equations. Since the

spectral function ρ is determined by the commutator [., .], it also encodes the equal-time field

commutation relations of Heisenberg field operators, which in Fourier-space with respect to the

transverse spatial coordinates and rapidity take the form

ρab(τ, τ
′, pT , ν)|τ=τ ′ = 0 ,

∂τρab(τ, τ
′, pT , ν)|τ=τ ′ =

δab
τ
, (4.74)

∂τ∂τ ′ρab(τ, τ
′, pT , ν)|τ=τ ′ = 0 .

The τ -dependence of the commutator between the field and its conjugate momentum enters via

the metric determinant
√
−g(x) = τ [125, 128]. Since the commutation relations in Eq. (4.74)

are valid at all times, they also fix the initial conditions for the evolution of ρab(τ, τ
′, pT , ν) and

by use of the O(N) symmetry we can again write ρab = diag(ρ‖, ρ⊥, . . . , ρ⊥).

Going beyond the linear regime using, e.g., the 2PI 1/N -expansion to NLO the evolution

equations for the background field φ, the statistical fluctuations F⊥,‖ and the spectral func-

tions ρ⊥,‖ form a closed set of coupled integro-differential equations. The linearized evolution

equations in Eq. (4.62) are generalized to their non-linear form, which for the longitudinal

fluctuations take the form[
∂2
τ +

1

τ
∂τ + p2

T +
ν2

τ 2
+M2

‖ (τ) +
λ

2N
φ2(τ)

]
F‖(τ, τ

′, pT , ν)

= −
∫ τ

τ0

dτ ′′τ ′′Σρ
‖(τ, τ

′′, pT , ν)F‖(τ
′′, τ ′, pT , ν)

+

∫ τ ′

τ0

dτ ′′τ ′′ΣF
‖ (τ, τ ′′, pT , ν) ρ‖(τ

′′, τ ′, pT , ν) . (4.75)

Here the effective mass term M2
‖ = M2

‖ [F⊥,‖] and the non-zero spectral and statistical parts

of the self-energy Σρ,F
‖ = Σρ,F

‖ [ρ⊥,‖, F⊥,‖, φ] make the evolution equations non-linear in the

fluctuations.6 The explicit linear τ ′′-term in the integrand stems from the determinant of

the metric tensor for the co-moving coordinates [125, 128]. The spectral functions obey a

similar equation with the characteristic ’memory integrals’ over time, which for the longitudinal

6The spectral part, Σρ, can be related to the imaginary part and the statistical part, ΣF , to the real part of
the self-energy for the considered theory [42].
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Figure 4.7: Vertices in the presence of a macroscopic field. Dashed (red) lines denote ’longitudi-
nal’ field components and solid (black) lines are associated to either longitudinal or ’transverse’
components. The dot indicates a non-zero field expectation value.

components reads [
∂2
τ +

1

τ
∂τ + p2

T +
ν2

τ 2
+M2

‖ +
λ

2N
φ2(τ)

]
ρ‖(τ, τ

′, pT , ν)

= −
∫ τ

τ ′
dτ ′′τ ′′Σρ

‖(τ, τ
′′, pT , ν) ρ‖(τ

′′, τ ′, pT , ν) . (4.76)

The equivalent equations for the transverse components F⊥ and ρ⊥ can also be obtained from

the corresponding linearized equations (4.62) by replacing m2 with an effective mass term

M2
⊥(F⊥,‖) and taking into account a non-zero right hand side. The latter is of the same form

as in (4.75) and (4.76) with all longitudinal components replaced by transverse ones. At NLO

in the 2PI 1/N expansion the remaining equation for the field φ can be written in the form[
∂2
τ +

1

τ
∂τ +M2

‖ +
λ

6N
φ2(τ)

]
φ(τ)

= −
∫ τ

τ0

dτ ′τ ′Σρ
‖(τ, τ

′, pT = 0, ν = 0)|φ=0 φ(τ ′) , (4.77)

where the spectral part of the self-energy is evaluated for zero field, i.e. Σρ
‖(ρ⊥,‖, F⊥,‖, φ = 0) [42,

53]. Of course, at even higher order in the 1/N expansion also terms that are non-linear in the

field φ appear in Eq. (4.77) [126, 127].

Dynamical power counting

We will start by classifying the non-linear corrections to the evolution equations entering via

the effective mass or self-energy terms M2
⊥,‖, Σρ

⊥,‖ and ΣF
⊥,‖. In order to write down self-energies,

it is important to note that in addition to the four-vertex proportional to λ there is an effective

three-vertex due to the presence of the macroscopic field. This is visualized in the left panel

of Fig. 4.7, where dashed (red) lines denote ’longitudinal’ (a = 1) field components and solid

(black) lines are associated to either longitudinal or ’transverse’ (a = 2, . . . , N) components.

A dot indicates a non-zero field expectation value φ(τ) as in Eq. (4.49). A general non-linear
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contribution to the evolution equations will then contain powers of λ, of the ’propagators’

F⊥,‖ and ρ⊥,‖, and of the background field φ. Initially, the parametric dependence of the

field is φ2 ∼ 1/λ. Therefore, at not too late times a classification based on a small λ has to

take this into account. Most importantly, taking F⊥,‖ into account for the power counting is

crucial, since F grows exponentially in time as a consequence of an instability. In contrast,

the ’weight’ of the spectral function ρ⊥,‖ remains parametrically of order one at all times as

is encoded in the equal-time commutation relations in Eq. (4.74) [53]. It is also important

to note the fact that transverse fluctuations (F⊥) exhibit the dominant growth in the linear

regime. Consequently, contributions containing more transverse propagators (F⊥) can become

important earlier than those diagrams containing longitudinal propagators (F‖) instead. For

instance, an expression containing powers λnFm
⊥ φ

2l with integers n,m and l may be expected

at not too late times to give sizable corrections to the linearized evolution equations once

F⊥ ∼ 1/λ(n−l)/m for typical momenta. Here n yields the suppression factor from the coupling

constant, whereas m introduces the enhancement due to large fluctuations for typical momenta

and l due to a large macroscopic field. The power counting can become more involved as time

proceeds, and it is remarkable that one can indeed identify a sequence of characteristic time

scales with corresponding growth rates.

Characteristic time scales and growth rates

To start with a simple example, we consider first one-loop ’tadpole’ corrections, which are

obtained by ’closing’ two longitudinal or two transverse ’legs’ of the four-vertex in Fig. 4.7 on

the right. We emphasize already here that there are other corrections which will be of relevance

before tadpoles come into play for not too large N . However, it will be convenient to express

time scales in terms of the characteristic time when tadpoles become relevant, since this turns

out to coincide with the time when an infinite series of self-energy corrections become sizable

and all exponential growth of fluctuations stops. The tadpole corrections are mass-like and

their contribution takes the form

M2
⊥(τ) = m2 + T‖(τ) + (N + 1)T⊥(τ) ,

M2
‖ (τ) = m2 + 3T‖(τ) + (N − 1)T⊥(τ) (4.78)

for the non-linear evolution equation of the transverse (F⊥) and the longitudinal fluctuations

(F‖), respectively. The one-loop tadpole integrals read

T⊥,‖(τ) =
λ

6N

∫ Λ d2pTdν

(2π)3
F⊥,‖(τ, τ, pT , ν) , (4.79)
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where Λ denotes some suitable regularization that enters the renormalization procedure, which

has not to be specified for the current purpose. While initially the tadpole contributions in

Eq. (4.79) are suppressed by the coupling constant λ, they become sizable at later times once

the fluctuations grow parametrically to F⊥,‖(τ, τ, pT , ν) ∼ 1/λ for typical momenta pT and ν.

More precisely, for the massless case (m2 = 0) the size of a tadpole contribution in Eq. (4.78)

should be compared to that of the macroscopic field-squared term λφ2(τ)/6N in Eq. (4.77),

which on average is σ2
0/2 (τ/τ0)−2/3 at early times. We will denote the time when both become

of the same order of magnitude as τnonpert. Using that the tadpole will quickly be dominated by

unstable modes entering the integral with characteristic primary growth-rate γ(pT , ν, θ) ≤ γ0,

such that ∣∣∣∣ F (θ, θ′, pT , ν)

F (θ0, θ0, pT , ν)

∣∣∣∣ ≤ exp [γ0 (θ + θ′ − 2θ0)] , (4.80)

one obtains the estimate

τnonpert & τ0

[
1 +

1

3σ0τ0γ0

ln

(
σ2

0

2(N + 1)T⊥(τ0)

)]3/2

. (4.81)

Here we used the important fact that transverse fluctuations exhibit the dominant growth in the

linearized evolution equations. It is noteworthy that τnonpert is rather sensitive to the inverse of

the primary growth-rate, whereas the coupling constant and the size of the initial fluctuations

only enter logarithmically through T⊥(τ0) according to Eq. (4.79). In the weak coupling limit

Eq. (4.81) reduces to

τnonpert

(λ�1)

& τ0

[
1 +

1

3σ0τ0γ0

ln

(
1

λ

)]3/2

, (4.82)

at leading logarithmic accuracy. We emphasize again that when fluctuations have grown para-

metrically to O(1/λ) at τnonpert, it is not only a one-loop tadpole that becomes of order one.

Since there is an infinite series of self-energy contributions including arbitrarily high loop-orders

that become sizable, a non-perturbative approach such as the 2PI 1/N expansion or classical-

statistical simulation methods have to be applied. Before addressing the non-perturbative

regime within the classical-statistical framework in Sec. 4.2.3, we first consider earlier times

than τnonpert to discuss the non-linear amplification of instabilities. More precisely, we will

focus here on a subset of diagrams of the 2PI 1/N expansion to NLO [126, 127], which are

relevant for times τ . τnonpert.

In general, the smaller the above introduced parameter (n− l)/m for a specific self-energy

correction, the earlier it may be expected to play a sizable role during the non-equilibrium time
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Figure 4.8: One-loop contribution to the longitudinal component of the self-energy. Transverse
two-point functions are denoted by dotted (blue) lines.

evolution. For the tadpoles this parameter is one. However, there is another one-loop self-

energy correction shown in Fig. 4.8 for which this parameter is 1/2, which solely contributes

to the longitudinal components of the self-energy, as indicated by the red dashed (amputated)

legs. Here we denote transverse two-point functions by dotted (blue) lines. It is important to

note that in this power counting scheme all other diagrams are suppressed by at least a frac-

tional power of the coupling constant λ. Hence there exists a kinematic window where the only

relevant self-energy correction originates from the diagram shown in Fig. 4.8. In the following,

we will see that this leads already to a non-linear amplification of the primary instability for

longitudinal fluctuations. In particular, this correction has to be taken into account when con-

sidering further corrections that become relevant at later times.

The spectral and statistical self-energies associated to Fig. 4.8 read

Σρ
‖(τ, τ

′′, pT , ν)
(one-loop)

= −4λ(N − 1)

6N
σ(τ)σ(τ ′′)

×
∫
d2qTdνq
(2π)3

ρ⊥(τ, τ ′′, pT − qT , ν − νq)F⊥(τ, τ ′′, qT , νq) ,

ΣF
‖ (τ, τ ′′, pT , ν)

(one-loop)
= −2λ(N − 1)

6N
σ(τ)σ(τ ′′)

×
∫
d2qTdνq
(2π)3

[
F⊥(τ, τ ′′, pT − qT , ν − νq)F⊥(τ, τ ′′, qT , νq)

−1

4
ρ⊥(τ, τ ′′, pT − qT , ν − νq)ρ⊥(τ, τ ′′, qT , νq)

]
, (4.83)

which enter the memory integrals on the right-hand-side of the evolution equations (4.75),

(4.76) and (4.77). We note that the (ρ⊥ρ⊥)-term in the integrand for ΣF
‖ is a genuine quantum

correction, which would be absent in a classical-statistical description [40–42]. However, since

F⊥F⊥ � ρ⊥ρ⊥ once non-linear corrections become sizable, one can neglect the quantum part

to very good accuracy. In order to make analytic progress, one can exploit the fact that the

dominant contribution to the memory integrals originates from late times when fluctuations

have become exponentially large [53]. Instead of considering integrals from τ0 to τ and τ ′
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Figure 4.9: One- and two-loop contributions to the transverse components of the self-energies.

respectively, we consider the integrals only over some suitable, small interval ∆. This will be

sufficient to obtain characteristic time scales to leading logarithmic accuracy. It allows us to

expand the integrand around the times of interest, where at leading order one finds

F (τ, τ ′′, pT , ν) ' F (τ, τ, pT , ν) , (4.84)

ρ(τ, τ ′′, pT , ν) ' τ − τ ′′

τ
' τ − τ ′′

τ ′′
. (4.85)

Here we used the equal-time commutation relations in Eq. (4.74) to expand the spectral func-

tion. With these approximations one can explicitly evaluate the right-hand-side of the evolution

equation (4.75) as

RHS ' ∆2 λ(N − 1)

3N
σ2(τ) F‖(τ, τ

′, pT , ν)

∫
d2qTdνq
(2π)3

F⊥(τ, τ, qT , νq) (4.86)

+ ∆2 λ(N − 1)

6N
σ(τ)σ(τ ′)

∫
d2qTdνq
(2π)3

F⊥(τ, τ ′, pT − qT , ν − νq)F⊥(τ, τ ′, qT , νq) .

The first term in the above sum acts as a momentum-independent mass term similar to the

tadpole term on the LHS of the evolution equation (4.75). For it to be relevant it requires

F⊥ ∼ O(1/λ) as discussed before and hence, one expects a relevant contribution starting at

τnonpert. In contrast, the second term appearing in Eq. (4.86) acts as a source term for the

evolution of the longitudinal fluctuations F‖. The momentum dependence is given by the

convolution of the transverse fluctuations F⊥ with itself. For instance, if F⊥(τ, τ, qT , νq) is

peaked around some momenta p0 and ±ν0, the source term has its dominant contributions

around pT = {0, 2p0} and ν = {0,±2ν0}. In the presence of this strong source term, one

expects F‖ to follow the source ∼ λF 2
⊥. In this way the primary growth of the transverse

fluctuations F⊥ leads after some delay-time τsource to a secondary stage of growth, where the

longitudinal modes F‖ exhibit amplified growth-rates. In particular for the longitudinal zero-

mode, i.e. F‖(τ, τ
′, pT = 0, ν = 0), the secondary growth-rate can be twice as large as the

primary growth-rate observed for F⊥. It is important to note here that the amplification occurs

before tadpole corrections become important. This is due to the fact that the source term

is of order λF 2
⊥ which only requires F⊥ ∼ O(1/λ1/2) for typical momenta to yield relevant

contributions. With the same approximations entering the estimate for τnonpert in Eq. (4.81)
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one can estimate the associated time scale as

τsource & τ0

[
1 +

1

6(σ0τ0)γ0

ln

(
1

2(N − 1)T (τ0)∆2

)]3/2

. (4.87)

Again, in the weak coupling limit the dominant contribution arises from ln(λ−1) and Eq. (4.87)

reduces to

τsource

(λ�1)
' τnonpert

23/2
, (4.88)

which is smaller than the time scale on which screening effects due to effective mass terms

become relevant. Hence, there is a period of time when one expects growth of the longitudinal

modes due to a non-linear amplification of the primary instability. This happens for a bound

momentum region which is entirely determined by the spectral shape of the primary instability.

We emphasize that the larger couplings the earlier this non-linear amplification of the instabil-

ity happens.

We have seen that as a consequence of non-linear amplifications characteristic longitudinal

fluctuations can be expected to become O(λF 2
⊥) around the time τsource. This again modifies

the power counting for subsequent times, since in addition to parametrically large F⊥ also

parametrically large F‖ enter loop corrections. In particular, this will soon after lead to sizable

non-linear contributions to the evolution equation for transverse fluctuations F⊥. The relevant

diagrams contributing to the transverse components of the self-energies are displayed in Fig. 4.9.

Assuming F‖ ∼ O(λF 2
⊥) for typical momenta, both depicted diagrams are O(λ2F 3

⊥). Thus one

expects a relevant contribution as soon as F⊥ ∼ 1/λ2/3. The momentum-dependence of the

diagrammatic contribution leads to an extension of the amplified region to higher momenta,

where again multiples of the primary growth-rate appear. It is important to realize that this

amplification repeats itself, i.e. the newly amplified modes together with the primarily amplified

ones act as a source for other modes. In this way the instability propagates to higher and higher

momentum modes for both longitudinal and transverse fluctuations. Indeed, we find that this

behavior can be nicely observed from classical-statistical lattice simulations, which we will

discuss now.

4.2.3 Classical-statistical lattice simulations

We will now present results of classical-statistical lattice simulations for the longitudinally ex-

panding scalar field theory. In accordance with Sec. 2.4.2, these are obtained by numerically

solving the classical field equations of motion and Monte Carlo sampling of initial conditions

such that the classical-statistical ensemble averages agree with the quantum correlation func-
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Figure 4.10: (left) Time evolution of transverse fluctuations with pT = 0, 4, 8, 12, 16, 20 pmin

and ν = 0 averaged over one period of oscillation of the macroscopic field. (right) Same for
modes with pT = 4 pmin and ν = 0, 10, 20, 30, 40, 50 νmin (top to bottom).

tions at initial time. We discretize the evolution equation for the inhomogeneous classical field

on a three-dimensional lattice in transverse coordinates and rapidity with grid size N2
T ×Nη.

7

The lattice spacing is chosen such that the lattice ultraviolet cut-offs ∼ 1/a⊥ and ∼ 1/(τaη) are

above all physical scales. Of course, for the expanding system this condition is time-dependent

through the time-dependence of the lattice cut-off due to the red-shift of longitudinal mo-

menta as well as through the time-dependence of physical scales due to the dilution of the

system. Numerical simulations at late times are therefore computationally hard to perform

and we will focus our discussion on the physics at sufficiently early times, where the parametric

resonance instability is operative. The parameters are chosen as m2 = 0, σ0τ0 = 5, N = 4

and λ = 10−4 and we use NT = Nη = 128 lattices with spacings σ0a⊥ = 0.5 and aη = 0.1

in our simulations. For convenience, we will express the transverse and longitudinal momenta

in terms of the smallest lattice momenta pmin = 2
√

2/(NTa⊥) and νmin = 2/(Nηaη) respectively.

The time-evolution of transverse and longitudinal fluctuations is presented in Figs. 4.10

and 4.11 for different transverse momenta pT and rapidity wave number ν. The right panel

of Fig. 4.10 shows the transverse fluctuations for modes with different rapidity wave numbers

ν and transverse momentum pT = 4 pmin for which the leading primary instability occurs.

From the left panel of Fig. 4.10 one observes that the primary instability occurs for a bound

momentum region. The phenomenon of linear freeze-out is clearly visible. The modes with

pT = 8 pmin and 12 pmin, for instance, exhibit exponential growth at early times but decouple

from the instability shortly. The functional form of the primary instability is well described by

an exponential in (τ/τ0)2/3 with maximum growth-rate 3σ0τ0γ0.

7Note that in contrast to gauge theories, the lattice discretization for scalar field theories is straightforward,
since there is no additional symmetry which needs to be respected.
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Figure 4.11: Time evolution of longitudinal fluctuations with pT = 4, 8, 12, 16, 20 pmin and
ν = 0 averaged over one period of oscillation of the macroscopic field.

At later times, when the primary instability has been operative long enough to produce

large transverse fluctuations, secondary instabilities set in for the longitudinal modes, as can

be observed from Fig. 4.11. These secondary instabilities exhibit growth rates up to 6σ0τ0γ0

as discussed in Sec. 4.2.2. The onset of these secondary instabilities is limited to a momen-

tum region pT . 8 pmin as they originate from the one-loop diagram shown in Fig. 4.8. This

first non-linear amplification of the primary instability happens at times τ/τ0 ≈ 15. At later

times τ/τ0 ≈ 20 the system exhibits a collective amplification of the primary instability and

fluctuations begin to grow in a wide momentum range. Also modes that previously exhibited

freeze-out show a second period of growth while modes with smaller primary growth-rates ex-

hibit a significant speed-up. One can also observe from Figs. 4.10 and 4.11 how this sets off

an avalanche of instabilities propagating to higher momenta. At this point of the evolution,

modes with high rapidity wave number ν set in earlier as suggested by the linearized evolution

equations as can be observed in Fig. 4.10. This happens because high longitudinal momenta

no longer have to encounter a red-shift to become unstable, but are instead subject to the

non-linear amplification.

Ultimately the growth of the instability saturates when the fluctuations become of the or-

der of the inverse coupling O(1/λ) and the rapid dynamics of instabilities is then followed by

a regime characterized by a very slow evolution. While in non-expanding systems it is well-

established that the ensuing over-populated plasma exhibits a dual turbulent cascade, which

drives the thermalization process at this stage of the evolution [34, 35], the situation with regard

to expanding systems is further complicated by the anisotropy of the system which arises as a
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consequence of the anisotropic expansion. However, since the primary focus of this work is on

non-abelian gauge theories, we will not discuss the late time behavior of the expanding scalar

field theory and focus on the dynamics of longitudinally expanding non-abelian plasmas instead.

4.3 Discussion

We close this chapter with a brief summary of our results and a discussion of related studies

and possible future directions.

In Sec. 4.1, we analyzed the unstable dynamics of coherent non-abelian gauge fields. We ob-

tained an approximate solution for the linear instability regime and found that in addition to a

generalization of the Nielsen-Olesen instability, the system also exhibits a subleading paramet-

ric resonance instability. We also performed numerical simulations and observed that at later

times, non-linear interactions of unstable modes alter the dynamics and lead to an enhanced

growth of initially small fluctuations. This phenomenon is analogous to previous observations

in scalar and gauge theories [52, 53]. At even later times, we found that the growth of instabil-

ities saturates and the coherent field modes decay. The ensuing over-populated state exhibits

a much slower dynamics and resembles the ones previously discussed in Chapter 3.

In Sec. 4.2, we discussed the dynamics of non-equilibrium instabilities in anisotropically ex-

panding systems. We considered the example of the parametric resonance instability in scalar

theories and found that the longitudinal expansion gives rise to a rich dynamics already in the

linear instability regime. Based on analytic considerations in the framework of 2PI effective ac-

tion techniques, we also discussed the emergence of “secondary instabilities” due to non-linear

self-interactions. The dynamical power-counting scheme developed in this context applies in a

similar way also to the non-abelian gauge theories, as will be discussed in Chapter 5. While

we observed from numerical simulations that the behavior at later times is characterized by a

rather slow evolution, we did not discuss the possible approach to a turbulent scaling regime.

As a final remark, we note that the expanding scalar theory has recently also attracted

the interest of different authors, who extended the use of classical-statistical lattice methods

beyond the range of validity of the classical-statistical approximation, in a setup which mimics

more closely the situation encountered in heavy-ion collisions [129]. Most remarkably, the

authors were able to demonstrate rapid isotropization of the system, although it is not clear to

what extent this result is affected by the breakdown of the classical-statistical approximation

for the small occupancies considered in Ref. [129]. Since powerful resummation techniques
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have been developed for N -component scalar field theories [126, 127], the problem can also be

studied using 2PI effective action techniques to perform numerical simulations within a genuine

quantum approach. First efforts in this direction have been reported in the exploratory studies

of Ref. [130]. However, since the authors could not address the problems of isotropization or

wave turbulence, the late time dynamics of the expanding scalar theory remains an interesting

topic for future investigations.
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Chapter 5

Heavy-ion collisions at ultra-relativistic

energies

In this chapter, we study the non-equilibrium dynamics of relativistic heavy-ion collisions in an

idealized weak-coupling scenario. As stated in the introduction, the theoretical understanding

of the thermalization process in these systems is an outstanding problem in theoretical physics

and provides one of the central motivations for this work. We present an ab initio study

based on Color Glass Condensate initial conditions and classical-statistical lattice gauge-theory

simulations as a first principles approach to study the time evolution. We observe that the

non-equilibrium evolution, starting from early times immediately after the collision of heavy

nuclei, up to late times, where thermalization of the system begins to take place, is governed

by different dynamical regimes which, in brief, can be characterized as follows:

• I) Strong Fields ( 0 < Qτ . 1 ): The initial ’Glasma’ state, created immediately

after the collision of heavy nuclei consists of strong chromo-electric and chromo-magnetic

fields oriented in the beam direction [131–134]. The latter are characterized by large

field amplitudes Aaµ(x) ∼ α
−1/2
S and a characteristic momentum scale Q, which reflect

the properties of saturated nuclear wave functions prior to the collision [131–134]. On

the time scale 1/Q, the initially coherent field configurations are subject to a dephasing

dynamics and form a boost invariant state characterized by large occupancies in the

transverse plane [117, 135–143].

• II) Plasma Instabilities ( 1 . Qτ . log2(α−1
S ) ): The evolving ’Glasma’ state is highly

anisotropic, and thus exhibits the (chromo-) Weibel instability [44–46, 49–51, 104–113].

This leads to exponential growth of initial state vacuum fluctuations, which explicitly

break the boost invariance of the system [49–51]. Once the fluctuations have grown large,

non-linear amplification processes take place until saturation of the instability occurs when

statistical fluctuations become of the same size as the ’Glasma’ background fields. As a
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result of this process, both the original ’Glasma’ fields and the vacuum fluctuations of the

initial state are converted to particle-like excitations, which subsequently exhibit a much

slower dynamics. In this way, the Weibel instability is able to partially restore isotropy

of the system, however the ensuing state still exhibits a residual order one anisotropy.

• III) Turbulent thermalization ( log2(α−1
S ) . Qτ . α

−3/2
S ) : The competition

between interactions of strongly-correlated quasi particles and the longitudinal expansion

leads again to a slow increase of the anisotropy of the system. Ultimately, the dynamics

becomes independent of the details of the initial conditions and leads to the same universal

attractor solution. In this regime, the plasma exhibits self-similar behavior characteristic

of wave turbulence. While the physics of plasma instabilities and free streaming plays

an important role for the dynamics at early times, they do not govern the universal

turbulent regime. Instead, the attractor solution shows the same characteristic time-

dependence as the “bottom-up” thermalization scenario, where the dynamics is governed

by elastic scattering of hard excitations [29]. The dynamics proceeds in this way until at

times Qτ ∼ α
−3/2
S the characteristic occupancies become of order unity and the system

enters the quantum regime.

• IV) Quantum regime ( Qt & α
−3/2
S ): In the quantum regime, where the characteristic

occupancies become of order unity, the turbulent attractor solution breaks down, since

genuine quantum evolution effects can no longer be neglected. This regime has been

studied in the kinetic theory framework by different authors: In the “bottom-up” scenario,

inelastic processes begin to play a significant role in this regime and eventually lead to

thermalization [29]. However, it is also conceivable that e.g. plasma instabilities play

a role for the thermalization process at this stage of the evolution [31, 32]. Since the

classical-statistical framework can no longer be applied, the study of this regime is beyond

the scope of this work.

In this chapter, we present a detailed study of the non-equilibrium dynamics of the initial

stages and the turbulent regime. The discussion is largely based on Refs. [144, 145] and or-

ganized in the following way: In Sec. 5.1, we introduce the theoretical framework and discuss

the approximations involved to study the non-equilibrium dynamics of heavy-ion collisions at

ultra-relativistic energies. In Sec. 5.2, we study the dynamics at early times, where plasma

instabilities are dominant, and analyze our results within the framework of 2PI effective action

techniques [42]. The turbulent regime is discussed in Sec. 5.3, where we obtain the universal

scaling exponents and scaling functions and compare our findings with a kinetic theory analysis.

We conclude this chapter in Sec. 5.4 with a summary of our results and a discussion of possible

implications for heavy-ion collision experiments at present collider energies.
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5.1 Non-equilibrium dynamics and the CGC framework

An ab initio approach to the non-equilibrium dynamics of heavy-ion collisions requires to de-

termine the initial density matrix consisting of two incoming nuclei in the vacuum and subse-

quently solving the initial value problem in Quantum Chromo Dynamics. Though this is clearly

beyond the scope of all present theoretical methods, one may apply suitable approximations

in the combined limit of weak coupling and high collider energies, which make the problem

computationally feasible.

5.1.1 The color-glass condensate approach

The dynamics of nucleus-nucleus collisions is usually discussed in terms of the light-cone coor-

dinates x± = (t± z)/
√

2, where at sufficiently high collider energies the incoming nuclei travel

close to the light-cone, which is given by x± = 0. The collision takes place around the time

when x+ = x− = 0, where the center of mass of the nuclei coincide and an approximately boost

invariant plasma is formed at mid-rapidity after the collision has taken place. The plasma

dynamics in the forward light-cone (x± > 0) is usually discussed in terms of the co-moving

coordinates

τ =
√
t2 − z2 , η = atanh(z/t) , (5.1)

where τ is the proper time in the longitudinal direction and η is the longitudinal rapidity. As dis-

cussed in Sec. 2.3, the metric in these coordinates takes the form gµν(x) = diag(1,−1,−1,−τ 2)

and we denote the metric determinant as g(x) = det gµν(x). The space-time evolution of the

collision and the geometry of the coordinates are illustrated in Fig. 5.1. The different colors in

the forward light-cone represent the different stages of the evolution.

In the color-glass framework one considers the dynamics of the plasma at mid-rapidity

(η � ηBeam) and the nuclear partons at high rapidities (η ' ηBeam) separately. In practice, this

separation in high energy and low energy degrees of freedom is performed by a renormalization

group procedure prescribed by the JIMWLK equations [27, 28]. In the eikonal approximation,

where the trajectories of high energy degrees of freedom inside the nuclear wave functions are

unaffected by the collision, the dynamics of gluons at mid-rapidity is described by the classical

Yang-Mills action

S[A] = −1

4

∫
d4x
√
−g(x)Faµν(x) gµα(x)gνβ(x) Faαβ(x) , (5.2)
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Figure 5.1: Illustration of the space time evolution of a high energy heavy-ion collision.

where, in addition, the gauge field Aaµ(x) is coupled to an eikonal current Jµa (x), determined

by the properties of the nuclear wave function at high rapidities. In the high energy limit, the

eikonal current can be approximated as a collection of static color sources on the light-cone and

takes the generic form [27, 28]

Jµa (t, ~x⊥, z) = δµ+%(1)
a (~x⊥)δ(x−) + δµ−%(2)

a (~x⊥)δ(x+) , (5.3)

where δµ± is the Kronecker delta in light-cone coordinates. The color charge densities %
(1/2)
a (~x⊥),

where the superscript (1/2) labels the different nuclei, contain all further information about

the beam energy, nuclear species and impact parameter dependence of the collision. At high

collider energies, these have been conjectured to exhibit a universal behavior characterized by

non-perturbatively large color charge densities ∼ 1/
√
αS(Qs), up to the saturation scale Qs in

(transverse) momentum space [146–150]. Consequently, the currents in Eq. (5.3) are paramet-

rically large, i.e. formally O(1/g) in powers of the coupling constant, which makes the problem

inherently non-perturbative and amenable to the classical-statistical framework.

We note that, by specifying the eikonal current according to Eq. (5.3), the longitudinal

geometry of the collision has effectively been reduced to the collision of two-dimensional sheets.

Hence, there is no longer a longitudinal scale inherent to the problem and one obtains boost

invariant field solutions at the classical level. However, quantum fluctuations explicitly break

the longitudinal boost invariance of the system and are thus expected to play an important

role in the space-time evolution of the collision [151]. Before we turn to a detailed discussion
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of quantum fluctuations, we will briefly review the classical solution to the particle production

process. We will show later, in Sec. 5.1.3, how this solution emerges naturally in the weak-

coupling limit of the quantum field theory.

5.1.2 Classical solution

By neglecting quantum fluctuations for the moment, the absence of a longitudinal scale in

Eq. (5.3) leads to boost-invariant solutions of the classical Yang-Mills field equations

δS[A]

δAaµ(x)
= −Jµa (x) . (5.4)

In this classical color glass picture, the strong color-fields right after the collision are entirely

determined by the continuity conditions on the light-cone (x± = 0) [131–134]. Adapting the

Fock-Schwinger gauge condition (Aτ = 0), where the classical Yang-Mills action takes the form

S[A] =

∫
τdτ dη d2~x⊥

[
1

2τ 2
(∂τA

a
η)

2 +
1

2
(∂τA

a
i )

2 − 1

2τ 2
FaηiFaηi −

1

4
FaijFaij

]
, (5.5)

(i = 1, 2) the initial state right after the collision can be specified at τ = 0+, where the chromo

magnetic and electric fields are given by [131–134]

Ai(~x⊥) = α
(1)
i (~x⊥) + α

(2)
i (~x⊥) , Aη = 0 ,

Ei = 0 , Eη(~x⊥) = ig[α
(1)
i (~x⊥) , α

(2)
i (~x⊥)] . (5.6)

Here α
(1/2)
i (~x⊥) are pure gauge configurations which describe the Yang-Mills field outside the

light-cone. They are related to the nuclear color charge densities by [131–134]

α
(N)
i (~x⊥) =

−i
g
eigΛ

(N)(~x⊥)∂ie
−igΛ(N)(~x⊥) ,

∂i∂
iΛ(N)(~x⊥) = %(N)(~x⊥) , (5.7)

and depend on transverse coordinates ~x⊥ only. The relations (5.6) and (5.7) specify the ’Glasma’

initial state at τ = 0+ right after the collision. At the classical level, the subsequent time

evolution in the forward light-cone can be studied numerically by solving the lattice analogue

of the classical evolution equations in Eq. 5.4 and has been studied extensively in the literature

[135–143]. However, since the longitudinal boost invariance of the system is preserved in the

classical evolution, this leads to an effectively 2+1 dimensional Yang Mills theory coupled to

an adjoint scalar field [135–143]. In order to study the full glory of 3+1 dimensional Yang

Mills theory, it is therefore crucial to include quantum fluctuations, which explicitly break the

boost-invariance of the system.
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5.1.3 Quantum fluctuations

We recall from Sec. 2.2 that, for quantum fields Aaµ(x), the evolution equations can be formu-

lated in terms of the expectation values of the one point function

Aaµ(x) = 〈Aaµ(x)〉 , (5.8)

and the spectral and statistical two-point correlation functions, which are associated to the

commutator and anti-commutator respectively according to

ρabµν(x, y) = i
〈[
Aaµ(x), Abν(y)

]〉
, (5.9)

F ab
µν(x, y) =

1

2

〈{
Aaµ(x), Abν(y)

}〉
−Aaµ(x)Abν(y) . (5.10)

Here expectation values are given by the trace over the initial vacuum density matrix in the

presence of the eikonal currents in Eq. (5.3). The initial density matrix is specified in the remote

past (t0 → −∞), where the background field Aaµ(x) vanishes and the statistical fluctuations

F ab
µν(x, y) take the usual vacuum form (see e.g. Ref. [98]). In contrast, the initial values of the

spectral function are entirely determined by the equal time commutation relations, which in

temporal axial gauge (A0 = 0) read

ρabµν(x, y)
∣∣
x0=y0

= 0 ,

∂x0ρ
ab
µν(x, y)

∣∣
x0=y0

= −δab gµν√
−g(x)

δ(3)(~x− ~y) ,

∂x0∂y0ρ
ab
µν(x, y)

∣∣
x0=y0

= 0 , (5.11)

and are valid at all times.1 The gauge field expectation values in Eq. (5.8) correspond to the

’Glasma’ background fields, while the spectral and statistical two-point functions initially con-

tain only quantum fluctuations of the initial vacuum state.

The evolution equations for connected one and two-point correlation functions follow from

the stationarity of the two particle irreducible (2PI) effective action and form a closed set

of coupled integro-differential equations [42]. The set of equations is given by the evolution

equation of the macroscopic field

δS[A]

δAaµ(x)
= −Jµa (x)− i

2
tr

[
δG−1

0 [A]

δAaµ(x)
G

]
− δΓ2[A, G]

δAaµ(x)

(5.12)

1Note that Eq. (5.11) is valid also for (τ, η) coordinates, when replacing x0 → τ and x3 → η and imposing
the Fock-Schwinger (Aτ = 0) gauge condition.

106



5.1. NON-EQUILIBRIUM DYNAMICS AND THE CGC FRAMEWORK

= +

Figure 5.2: Vertices in non-abelian gauge theory in the presence of background gauge fields.
In addition to the tree-level vertices, the three-gluon-vertex receives an additional contribution.
The combined three-gluon-vertex is denoted by a gray dot and the insertion of the background
field is denoted a crossed circle.

and the evolution equations for spectral and statistical two point correlation functions, which

can be written as [42]

[
iG−1,µγ

0,ac [x;A] + Π(0),µγ
ac (x)

]
ρcbγν(x, y) = −

∫ x0

y0
dz Π(ρ),µγ

ac (x, z)ρcbγν(z, y) , (5.13)

[
iG−1,µγ

0,ac [x;A] + Π(0),µγ
ac (x)

]
F cb
γν(x, y) = −

∫ x0

−∞
dz Π(ρ),µγ

ac (x, z)F cb
γν(z, y)

+

∫ y0

−∞
dz Π(F ),µγ

ac (x, z)ρcbγν(z, y) . (5.14)

Here we denote
∫ b
a
dz =

∫ b
a
dz0
∫
ddz
√
−g(z) and iG−1,µν

0,ab [x;A] denotes the free inverse propa-

gator

iG−1,µν
0,ab [x;A] = γ−1(x) Dac

γ [x;A] γ(x) gγαgµν Dcb
α [x;A]

−γ−1(x) Dac
γ [x;A] γ(x) gγνgµα Dcb

α [x;A]

−g fabc Fµνc [x;A] , (5.15)

with γ(x) =
√
−g(x). We also introduced the (background) covariant derivative

Dab
µ [x;A] = ∂xµδ

ab + gfabcAcµ(x) , (5.16)

and the background field strength

Faµν [x;A] = ∂µAaµ(x)− ∂νAaµ(x) + gfabcAbµ(x)Acν(x) . (5.17)

The non-zero spectral and statistical parts of the self-energy Π(ρ/F )[A, G] on the right hand

side and the local part Π(0)[G] on the left hand side make the evolution equations non-linear in

the fluctuations. In general they contain contributions from the vertices depicted in Fig. 5.2,

where in addition to the classical three gluon vertex there is a three gluon vertex associated
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with the presence of the non-vanishing ’Glasma’ background fields.

The explicit expressions for the derivatives on the right hand side of Eq. (5.12) and the

self-energy contributions entering Eqns. (5.13) and (5.14) have been calculated to three loop

order O(g6) in Ref. [72] and the corresponding expressions in co-moving (τ, η) coordinates can

be found in Ref. [98].

Before we turn to a more detailed discussion of the contributions on the right hand side of

Eqns. (5.12), (5.13) and (5.14), it proves insightful to consider first only the leading part in a

weak coupling expansion. We will see shortly how this recovers the classical solution for the

’Glasma’ background fields (c.f. Sec. 5.1.2), while the leading order contributions of vacuum

fluctuations of the initial state are also taken into account in terms of the connected two-point

correlation functions.

In order to isolate the leading contributions in a coupling expansion, one has to take into

account the strong external currents Jµa (x) ∼ O(1/g), which induce non-perturbatively large

background fields Aaµ(x) ∼ O(1/g). In contrast, the statistical fluctuations F ab
µν(x, y) originate

from initial state vacuum and are therefore O(1) initially. The spectral function ρabµν(x, y) has to

comply with the equal time commutation relations in Eq. (5.11) and is therefore parametrically

O(1) at any time. Considering only the leading contributions in a weak coupling expansion,

the evolution equation (5.12) reduces to its classical form (c.f. Eq. (5.4))

δS[A]

δAaµ(x)
= −Jµa (x) , (5.18)

and the evolution equations for the spectral and statistical two-point correlation functions at

leading order read

iG−1,µγ
0,ac [x;A] ρcbγν(x, y) = 0 , (5.19)

iG−1,µγ
0,ac [x;A] F cb

γν(x, y) = 0 . (5.20)

The leading order part thus corresponds to an inhomogeneous mean-field approximation, where

sub-leading contributions are suppressed by at least a factor of g2 relative to the leading con-

tribution.

It is important to realize that at this order the evolution of the ’Glasma’ background fields

(A) decouples from that of the fluctuations (F/ρ), i.e. there is no back-reaction from the fluc-

tuations on the ’Glasma’ background fields. Therefore the dynamics of the background fields
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remains unchanged, with respect to the classical evolution equations and one recovers the so-

lutions discussed in Sec. 5.1.2. In addition, the evolution of vacuum fluctuations of the initial

state is taken into account by Eqns. (5.19) and (5.20) to linear order in the fluctuations. We

note that, to this order in the coupling constant, the quantum field theory is well known to

agree with the classical-statistical theory [40, 41] and Eqns. (5.19, 5.20) can equivalently be

obtained by considering the linearized classical evolution equations for small fluctuations (see

e.g. Ref. [151]).2 The same result has also been obtained using resummed perturbation theory

in Refs. [152–154].

The linear approximation in Eqns. (5.19) and (5.20) yields a major simplification to Eqns. (5.13)

and (5.14), as one can solve the linear equations (5.19) and (5.20) for a given evolution of the

’Glasma’ background field. This feature has been exploited in Ref. [151] to evolve the fluc-

tuations from the remote past to the forward light-cone and obtain analytic results for the

spectrum of initial fluctuations at time τ = 0+ right after the collision.

In turn, the range of validity of the approximation is limited to the domain where fluctu-

ations remain parametrically small. This is, however, not the case in the forward light-cone

(τ > 0), where Eqns. (5.19) and (5.20) exhibit plasma instabilities associated to exponential

growth of statistical fluctuations [49–51]. In this regime statistical fluctuations will become

parametrically large and thus strongly modify the naive power counting. Moreover, since the

approximation underlying Eqns. (5.19) and (5.20) is not energy conserving, one encounters

exponential divergences when stressing Eqns. (5.19) and (5.20) beyond their range of validity

[92, 155]. It is therefore crucial to include the self-energy corrections in Eqns. (5.13) and (5.14),

which naturally cure the divergences of the linearized evolution equations.

In practice, this can be efficiently achieved within the classical-statistical framework intro-

duced in Sec. 2.4, which, phrased in the language of expectation values, resums an infinite

subset of self-energy diagrams [40, 41]. More precisely, the strategy proposed in Ref. [151] is to

employ the linearized evolution equations (5.19) and (5.20) only outside the forward light-cone,

to obtain analytic expressions for the ’Glasma’ background field as well as for the spectrum of

statistical fluctuations at τ = 0+, while switching to a classical-statistical description in the for-

ward light-cone (τ > 0). Since the classical-statistical theory is well-defined by its own right,3

this cures the unphysical divergences of Eqns. (5.19) and (5.20) by the inclusion of non-linear

interactions. Most remarkably, the classical-statistical framework allows to calculate observ-

2This can be seen immediately by solving Eq. (5.20) in terms of mode functions F (x, y) = δA(x)δA(y), which
then individually satisfy the linearized classical evolution equations iG−10 [x;A] δA(x) = 0 .

3Strictly speaking, the classical-statistical theory requires and ultraviolet cutoff to regulate the Rayleigh-
Jeans divergence. In practice this cut-off is introduced by the lattice discretization.
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ables in a manifestly gauge invariant way, which is in general not guaranteed within a different

approximation scheme [72, 156, 157].

5.2 The unstable Glasma

We will now study the non-equilibrium dynamics of the ’Glasma’, created immediately after the

collision of heavy nuclei, using classical-statistical lattice gauge theory techniques introduced

in Sec. 2.4.

5.2.1 Initial conditions

The initial conditions are specified at time τ = 0+ right after the collision, according to the

CGC picture discussed in Sec. 5.1. In accordance with previous works [49–51], we adapt the

McLerran-Venugopalan (MV) saturation model as a simple parametrization of the saturated

nuclear wave functions [158–161]. In this model, the color charge densities of the colliding

nuclei are given by uncorrelated Gaussian configurations according to4

〈%(A)
a (~x⊥)%

(B)
b (~y⊥)〉 =

Q2

g2
δAB δab δ

(2)(~x⊥ − ~y⊥) , (5.21)

and we impose an additional color neutrality constraint on the color charge densities such that

the global color charge vanishes separately for each nucleus, i.e.∫
d2~x⊥ %

(1/2)
a (~x⊥) = 0 ∀ a . (5.22)

In addition to the parametrically large ’Glasma’ background fields Aaµ(x) ∼ 1/g, which

are determined by the color charge densities as discussed in Sec. 5.1, we also include vacuum

fluctuations of the initial state, which explicitly break boost invariance. Instead of including

the full spectrum of vacuum fluctuations (c.f. Ref. [151]), we follow earlier works and use

a somewhat simpler parametrization [49–51]. This is well justified at very weak coupling,

where the details of the initial spectrum of fluctuations quickly become irrelevant, since plasma

instabilities naturally select the modes which exhibit the fastest primary growth. In accordance

with previous works [49–51], the statistical fluctuations are then initialized as

F ab
µν(x, y)

∣∣
τ=τ ′=0

= 0 , (5.23)

∂τF
ab
µν(x, y)

∣∣
τ=τ ′=0

= 0 ,

∂τ∂τ ′F
ab
µν(x, y)

∣∣
τ=τ ′=0

= 〈δEa
µ(x⊥, ηx)δE

b
ν(y⊥, ηy)〉 ,

4Note that, in the literature on the MV model, this is usually stated in terms of the MV model parameter
g2µ, which is identical to the scale Q in our notation [158–161].
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with

δEa
i (~x⊥, η) = ∂ηh(η)eai (~x⊥) (5.24)

δEη(~x⊥, η) = −h(η)Di[x;A]eai (~x⊥) , (5.25)

such that δEa
µ(x) yields an additive contribution to the ’Glasma’ background field Ea

µ(x) at

initial time. The advantage of this construction is that the Gauss constraint is satisfied explicitly

for generic functions h(η) and eai (~x⊥). In the numerical simulations we choose

〈eai (~pT )ebj(~qT )〉 = δijδ
abδ(2)(~pT + ~qT ) , (5.26)

〈h(ν)h(ν ′)〉 = e−2b|ν|δ(ν + ν ′) , (5.27)

where pT and ν are the Fourier coefficients with respect to transverse coordinates and rapid-

ity. Here b is a (small) number, which regulates the ultraviolet divergence and we will employ

b = 0.01 in the following. The lattice implementation of the above initial conditions is straight-

forward and explained in detail in App. G. If not stated otherwise we perform simulations on

NT = 16, Nη = 1024 and NT = 32, Nη = 128 lattices and we employ the set of parameters

Q N⊥a⊥ = 22.6, Nηaη = 1.6 in accordance with Ref. [49, 50].

Since the statistical fluctuations are parametrically of order one at initial time τ = 0+, they

are initially suppressed by a factor of g2 relative to the (squared) ’Glasma’ background field.

Moreover, since the coupling constant can be scaled out of the classical equations of motion,

the entire coupling dependence of our results is therefore contained in the initial conditions.

5.2.2 Plasma instabilities and non-linear dynamics

We will now study the non-equilibrium dynamics of the ’Glasma’ in the presence of boost

non-invariant fluctuations. While the existence of a Weibel type instability in this setup has

been established in previous simulations [49–51], we will focus on the non-linear regime where

unstable modes have grown large enough to significantly alter the dynamics.

In contrast to the linear regime, where the initial size of boost non-invariant fluctuations

is irrelevant for the dynamics of unstable modes, it is clear that for the non-linear regime the

size of the initial fluctuations matters. As discussed above, the ratio of the initial amplitude of

fluctuations compared to the amplitude of the (squared) background field is parametrically of

the order of the coupling constant g2. We will study this dependence below, where we consider

different values of g2, which in the classical-statistical setup simply correspond to different ini-

tial conditions. We note however, that it is important to restrict the analysis to weak coupling
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(g2 � 1), where classical-statistical methods are expected to provide an accurate description

of the quantum dynamics on sufficiently large time scales.

In order to analyze the dynamics of QCD plasma instabilities, we follow Refs. [49–51]

and study the time evolution of the gauge-invariant, equal time pressure-pressure correlation

function

Π2
L(τ, ν) = (Nηaη)

−1

∫
dη dη′ 〈PL(τ, ~x⊥, η)PL(τ, ~y⊥, η

′)〉T e−iν(η−η′) . (5.28)

Here PL(x) denotes the longitudinal pressure as a function of space and time arguments

(τ, ~x⊥, η) as introduced in Sec. 2.4 and < . . . >T denotes average over transverse coordinates

and classical-statistical ensemble averages over typically ten to twenty different initial condi-

tions. Spectral information is contained in the dependence on the rapidity wave number ν,

which corresponds to the Fourier conjugate with respect to relative rapidity.

The time evolution of the correlation function ΠL(τ, ν) is shown in Fig. 5.3 for different

rapidity wave numbers ν. In order to achieve a clear separation of different time scales, we

chose a very small value of the coupling constant g = 10−10. From Fig. 5.3 one immediately

observes a sequence of different dynamical regimes which can be characterized as follows:

Dephasing: At very early times
√
Qτ . 2 one observes a period of rapid initial growth,

which is presumably caused by the dephasing dynamics of the ’Glasma’ background fields, that

takes place on the same time scale [51, 135–143].5 However at weak coupling, i.e. for suffi-

ciently small fluctuations relative to the ’Glasma’ background fields, this constitutes a rather

small effect as the unstable modes exhibit their dominant growth at later times.

Weibel instability: This rapid initial period is followed by a regime where the (chromo-)

Weibel instability is operative and modes with non-zero rapidity wave number exhibit expo-

nential amplification. The instability sets in with a delay for higher momentum modes and

the functional form is well described by an exponential of the form exp[Γ(ν)
√
Qτ ], with the

momentum dependent growth rate Γ(ν), as seen for ν = 4, 12 in Fig. 5.3. In order to obtain the

relevant growth rates and set-in times, we fit a set of continuous, piecewise linear functions to

the modes displayed in Fig. 5.3. The results of this analysis are shown in Fig. 5.4 as a function

of rapidity wave number ν. From the left panel of Fig. 5.4 one observes that the primary set-in

times follow a linear behavior, as reported in Ref. [49, 50]. The primary growth rates are shown

in the right panel of Fig. 5.4. One observes that modes with small rapidity wave number exhibit

5See also Ref. [117] for an analytic discussion.
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Figure 5.3: Time evolution of the pressure-pressure correlator ΠL(τ, ν) for different rapidity
wave numbers ν. Once the initial fluctuations have grown larger one observes the emergence of
secondary instabilities, associated with much larger growth rates. Subsequently the instability
propagates towards higher momenta until saturation occurs and the system exhibits a much
slower dynamics.

smaller growth rates as compared to modes with higher rapidity wave number. At large ν the

primary growth rates become approximately constant. The numerical values are compatible

with the results reported in Ref. [49, 50], where characteristic growth rates were obtained from

a convolution of the spectrum.

Non-linear amplification: While the primary instability continues to set-in for higher

momentum modes, one observes from Fig. 5.3 that at later times modes with intermediate

(ν = 43, 71) and small (ν = 4) rapidity wave numbers suddenly exhibit much higher growth

rates than previously observed. This change in the dynamics becomes evident when shortly

after modes with even higher rapidity wave numbers (ν = 94, 200) exhibit even stronger growth

rates, such that the spectrum of unstable modes extends quickly towards the ultraviolet and

the instability propagates towards higher momenta. This is precisely the signature of secondary

instabilities, where non-linear self-interactions among unstable modes give rise to an amplifica-

tion of the primary instability.

While the amplification occurs initially only in a small momentum region, it quickly prop-
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Figure 5.4: (left) Set in times of primary and secondary instabilities as a function of rapidity
wave number ν. Once secondary instabilities set in, the growth quickly extends to higher
rapidity wave numbers. (right) Growth rates Γ(ν) as a function of rapidity wave number ν for
primary and secondary instabilities.

agates out towards higher momenta. This can be seen in the left panel of Fig. 5.4, where we

show the set-in times of primary and secondary growth for two different values of the coupling

constant g. One also observes from Fig. 5.4 that for modes with large rapidity wave number

ν > νc secondary instabilities set-in before the primary instability, such that the growth of high

ν modes is solely due to non-linear effects. The numerical value of νc depends, of course, on the

coupling constant, which yields the size of the initial fluctuations relative to the ’Glasma’ back-

ground fields. While Fig. 5.4 shows that the set-in time for primary instabilities is independent

of the coupling constant, we find that secondary instabilities set in at later times for smaller

values of the coupling constant. We will confirm the non-linear origin of this phenomenon

below, where we present an analytic approach to the non-linear dynamics and investigate the

coupling dependence in our simulations.

Saturation: The growth of primary and secondary instabilities in Fig. 5.3 continues until

at some point saturation of the instability sets in and the system has reached non-perturbatively

large occupancies. In this regime, we observe that the process of non-linear amplification

continues for a short time, even after the growth of the leading primary modes has already

saturated. This has a significant impact also on bulk observables such as the ratio of longitudinal

pressure to energy density, which we investigate in more detail below.

5.2.3 Dynamical power counting and non-linear dynamics

In view of the striking similarity with the results presented in Chapter 4 in the context of

scalar quantum field theories, it appears intuitive to apply a similar analysis to the ’Glasma’

dynamics. We will thus turn back to the analytic discussion and analyze the structure of the
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� �

Table 5.1: Self energy diagrams to two loop order (g4). The value β corresponds to the
classification in the dynamical power-counting scheme. The one-loop diagram in the left panel
yields the first relevant correction, while diagrams with higher values of β become important
only at later times.

self-energy corrections in Eqns. (5.13) and (5.14) in the presence of plasma instabilities. Since

the associated power counting is similar to the one introduced in Sec. 4.2, in the context of

scalar field theories, we will not present all details of the calculation here and refer the inter-

ested reader to Ref. [144] instead.

In the dynamical power counting scheme, the self-energy corrections in Eqns. (5.13) and

(5.14) can be classified according to powers of the coupling constant g as well as powers of

the ’Glasma’ background fields Aaµ(x) and the statistical fluctuations F ab
µν(x, y). For a generic

self-energy contribution containing powers gnFmAlρk, the integers n,m and l yield the suppres-

sion factor from the coupling constant (n) as well as the enhancement due to parametrically

large ’Glasma’ background fields (l) and parametrically large fluctuations (m). The parametric

’weight’ of the spectral function (k) remains of order one at all times as encoded in the equal-

time commutation relations.

Since the ’Glasma’ fields are parametrically large Aaµ(x) ∼ 1/g, one expects a sizable

O(1) self-energy correction once fluctuations have grown as large as F ab
µν(x, y) ∼ 1/g(n−l)/m

for characteristic modes. The hierarchy emerging from a classification of diagrams in terms of

β = (n− l)/m is shown in Tab. 5.1. The one loop diagram shown in the left panel contains two

three gluon vertices, which give rise to a suppression factor g2 ((n− l) = 2). On the other hand

the diagram is enhanced by two statistical propagators in the loop (m = 2) and we can classify

the overall contribution as O(g2F 2). Similarly, one can analyze the two loop diagrams and the

tadpole diagram also depicted in Tab. 5.1. The tadpole diagram contains a suppression factor

g2 from the four gluon vertex (n = 2, l = 0) and one statistical propagator (m = 1), such that

the overall contribution can be classified as O(g2F ). The two loop diagrams are of order g4

(n− l = 4) in the coupling constant and contain at most three statistical propagators (m = 3).
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The overall contribution is thus O(g4F 3) in the dynamical power counting.

The classification in terms of β = (n− l)/m shows that the only diagram yielding a contri-

bution to β = 1 is the one-loop diagram in the left panel of Tab. 5.1. The leading contribution

of higher order loop diagrams can be classified as β = 2L/(L+1), where L ≥ 1 is the number of

loops. The tadpole diagram yields β = 2. Finally, there are self-energy contributions containing

powers of the spectral function instead of statistical propagators, which give rise to even higher

values of β ≥ 2. In view of the discussion on quantum versus classical-statistical dynamics,

we note that this class of diagrams correspond to the genuine quantum corrections, which are

not included in the classical-statistical field theory [40, 41]. Since these are highly suppressed

at weak coupling, we obtain a direct verification that the classical-statistical framework indeed

provides a reliable approximation in this regime.

In analogy to the discussion in Sec. 4.2, this hierarchy of self-energy diagrams determines

the on-set of non-linear corrections to the linear instability regime: Since the one-loop diagram

in the left panel of Tab. 5.1 is of leading order O(g2F 2) in the dynamical power counting, the

contribution of this diagram becomes of O(1) once statistical fluctuations have grown as large

as O(1/g), whereas all higher order self-energy corrections are still suppressed by at least a

fractional power of the coupling constant at this point of the evolution.

Similar to the discussion in Sec. 4.2, the one-loop correction induces a non-linear ampli-

fication of the primary instability. The analysis proceeds along similar lines as in Sec. 4.2

and suggests that these secondary instabilities emerge, with growth rates twice as large as the

primary ones [144]. If we compare the rates of primary and secondary growth, as shown in

the right panel of Fig. 5.4, we find that this is indeed the case for modes with intermediate ν,

which exhibit the earliest non-linear amplification. Subsequently, modes with larger values of

ν exhibit even higher growth rates, which can be attributed to multiple amplification processes

as well as higher order self-energy corrections, which become important at later times of the

evolution.

Since the growth of fluctuations in the linear instability regime can be parametrized accord-

ing to

F ab
µν(τ, τ

′, ~xT , ~yT , ν) ∝ exp[Γ(ν)(
√
Qτ +

√
Qτ ′)] ,

(5.29)

for characteristic modes, we can immediately determine the parametric dependence of the onset
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Figure 5.5: Set in times of secondary instabilities and time scale for the saturation of growth
as a function of the coupling constant g. Since the coupling constant reflects the size of initial
fluctuations relative to the ’Glasma’ background fields, one observes a logarithmic dependence
in accordance with the analytic discussion.

time of secondary instabilities according to

√
QτSecondary ∼

√
QτSetIn +

1

2Γ0

ln(g−2) , (5.30)

to leading logarithmic accuracy. Here τSetIn characterizes the set-in time of primary instabilities

and Γ0 is the characteristic growth rate of primary instabilities. The sub-leading corrections

are associated to the spectral distribution of growth rates and set-in times and the spectral

distribution of statistical fluctuations in the initial state. The logarithmic dependence on the

coupling constant stems from the fact that, the magnitude of non-linear contributions depends

exponentially on time according to Eq. (5.29), whereas the dependence on the coupling constant

just enters as a power. We also note that this is behavior is completely analogous to the

discussion in Sec. 4.2, in the context of an expanding scalar field theory.

5.2.4 Coupling dependence

We will now study the dependence of our simulation results on the value of the coupling con-

stant g. Since the range of validity of classical-statistical simulations is confined to the weak

coupling regime, we vary the coupling constant g in the range of 10−15 to 10−5, for which the

classical-statistical framework safely applies. The qualitative behavior is the same as discussed

above for all values of g under consideration, i.e. we observe primary instabilities followed by
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non-linear amplification and subsequent saturation of the growth. Due to the non-linear origin

of these phenomena, the time scales for the set in of secondary instabilities and the saturation

of growth depend, of course, on the coupling constant, since the latter characterizes the initial

amplitude of fluctuations relative to the ’Glasma’ background fields.

The results of our analysis are summarized in Fig. 5.5, where we show the characteristic

set-in times of secondary instabilities as well as the time scale when saturation of the instability

occurs as a function of the coupling constant g. The (weak) logarithmic dependence observed

in Fig. 5.5, can be attributed to the fact that, at early times, the magnitude of non-linear

contributions grows exponentially in time according to exp[2Γ0

√
Qτ ], whereas the dependence

on the coupling constant is just a power. This is in qualitative agreement with the estimate in

Eq. (5.30), obtained within the dynamical power counting scheme.

Similarly, one observes from Fig. 5.5, that the time scale for the saturation of exponential

growth to occur exhibits the same parametric dependence. Since the latter determines the

transition to a new dynamical regime, where the rapid dynamics of instabilities is followed by

a very slow evolution, this constitutes one of the central results of the present discussion.

5.2.5 Saturated regime

We will now turn to a more detailed discussion of the saturated regime, and first analyze the

evolution of bulk observables, such as the ratio of longitudinal pressure to transverse pressure

of the system. While initially the system is extremely anisotropic, one naturally expects plasma

instabilities to drive the system towards isotropy [44, 45]. However throughout the evolution,

there is a competition between interactions, which tend to isotropize the system, and the longi-

tudinal expansion, which drives the system away from isotropy, that makes the problem highly

non-trivial.

In order to analyze this behavior within our simulations, we study the ratio of longitudinal

pressure to transverse pressure of the system. The challenge in this analysis comes from the fact

that the relevant ultraviolet cutoff associated with longitudinal momentum π/(τaη) decreases

with (proper) time, such that at some point physical scales can no longer be resolved on the

lattice. Moreover, a large rapidity cutoff π/aη can cause severe problems at early times: Since

the associated modes initially correspond to large longitudinal momenta, they yield a significant

contribution to physical observables and a proper renormalization scheme might be needed to

ensure convergent results. We address this problem by choosing the coupling constant g very

small, such that the overall contribution of fluctuations to the energy density is less than a

percent even for the largest cutoffs under consideration. We then vary the lattice spacing aη
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� �

Figure 5.6: Ratio of longitudinal and transverse pressure as a function of time. The different
curves correspond to different values of the lattice spacing. One observes a remaining order one
anisotropy over a large time scale.

while keeping the size of the system Nηaη fixed to study the sensitivity to the lattice cutoff.6

The results are presented in Fig. 5.6, where we show the ratio of longitudinal and transverse

pressure as a function of time. The results are insensitive of the longitudinal discretization, as

long as the lattice spacing aη is sufficiently small. While at early times the longitudinal pressure

of the system is consistent with zero, we observe a clear rise of the longitudinal pressure towards

later times. In the saturated regime the trend towards isotropization slows down dramatically

and the system exhibits a remaining order one anisotropy over a large time scale. Since, in

contrast to earlier expectations [44, 45], plasma instabilities are clearly not able to isotropize

the system, we will now turn to a more detailed study of the evolution at later times.

6Note that, in response to our analysis, a new algorithm has recently been proposed in Ref. [162] to address
this problem.
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5.3 Turbulent thermalization

In this section, we will address the dynamics of the system at later times Qτ & log2(α−1
S ),

subsequent to the regime of plasma instabilities. This regime has been subject to several stud-

ies in the framework of kinetic theory, and different scenarios have been developed to describe

the thermalization process at weak coupling [29–32]. However, since the available paramet-

ric estimates allow for different types of solutions of the employed kinetic equations, further

progress relies on the ability to identify the correct attractor solution in this regime [23]. Since

classical-statistical lattice gauge theory and kinetic theory have an overlapping range of validity

[68, 163], real time lattice simulations can be used to unambiguously determine the solution

from first principles.

In view of the discussion in Chapter 3, this is also the regime, where one expects to observe

universal features of the evolution. However, since the longitudinal expansion leads to a dilu-

tion of the system and renders the plasma anisotropic on large time scales, it is by no means

obvious, how the concepts developed in Chapter 3 apply in this situation. Nevertheless, we will

discover shortly, that the dynamics at late times is indeed governed by a universal attractor,

which exhibits a self-similar evolution characteristic of wave turbulence [34].

5.3.1 Initial conditions

Since we will be interested in universal features of the evolution, it is clear that the details of

the initial conditions quickly become irrelevant for the evolution at late times. Nevertheless,

it is important to connect to the discussion in Sec. 5.2, where we studied the non-equilibrium

dynamics of the preceding ’Glasma’ stage: In accordance with the discussion in the literature

[30, 32], we expect that at later times of the evolution Qτ0 ∼ log2(α−1
S ), the plasma can be

described in terms of quasi-particle excitations, which result from the preceding decay of the

unstable ’Glasma’ fields. The ensuing over-populated plasma can then be characterized in terms

of the gluon distribution function f(~pT , pz, τ0), which describes the mode occupancy averaged

over spin and color degrees of freedom. Instead of simulating the entire evolution of the system,

starting from the early ’Glasma’ stages, we will employ a more general set of initial conditions

according to the distribution

f(~pT , pz, τ0) =
n0

2g2
Θ

(
Q−

√
~p 2
T + (ξ0pz)2

)
, (5.31)

which describes the overpopulation of gluon modes up to the momentum Q at times Qτ0 ∼
log2(α−1

S ) after the collision of heavy nuclei. The parameter n0 can be used to adjust the initial
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occupancy, while ξ0 parametrizes the residual anisotropy in momentum space.

In order to investigate a preferably large range of initial conditions, we will vary the param-

eters n0 and ξ0 and study their effect on the evolution. In a first step, the initial time is chosen

as Qτ0 = 100 to minimize discretization errors, while accessing sufficiently late times τ � τ0

in order to observe universal aspects of the evolution.7 We will verify later, that varying the

initial time in a range Qτ0 = 20 – 1000 only affects the transient evolution but does not change

the universal properties at later times.

The Gaussian initial conditions in Eq. (5.31) can be implemented in a straightforward way:

We impose the Coulomb type gauge condition ∂iAi+τ
−2∂ηAη = 0 at initial time τ0 and initialize

the fields as a superposition of transversely polarized gluon modes according to

Aaµ(τ0, η, ~xT ) =
∑
λ

∫
d2~kT
(2π)2

dν

2π

√
f(~kT , ν, τ0)

[
c
~kT ν
λ,a ξ

(λ)~kTµ+
µ,a (τ0) ei

~kT ~xT eiνη + c.c.
]
,

Eµ
a (τ0, η, ~xT ) = −τ0 g

µν
∑
λ

∫
d2~kT
(2π)2

dν

2π

√
f(~kT , ν, τ0)

[
c
~kT ν
λ,a ξ̇

(λ)~kT ν+
ν,a (τ0) ei

~kT ~xT eiνη + c.c.
]
.

(5.32)

Here ξ
(λ)~kTµ+
µ,a (τ) denote the (time dependent) transverse polarization vectors in the non-interacting

theory, given in Appendix C, c.c. denotes complex conjugation and the complex Gaussian ran-

dom numbers c
~kT ν
λ,a satisfy the relations

〈c~kT νλ,a c
∗~k′T ν

′

λ′,b 〉 = δλλ′δab (2π)3 δ(2)(~kT − ~k′T )δ(ν − ν ′) , (5.33)

whereas 〈c~kT νλ,a c
~k′T ν

′

λ′,b 〉 = 〈c∗~kT νλ,a c
∗~k′T ν

′

λ′,b 〉 = 0 as usual. We note that by use of the relations in

Sec. 2.4, this reproduces the occupation number in Eq. (5.31) at initial time τ = τ0. We also

verified explicitly, that the occupation number is conserved throughout the time evolution in

the non-interacting theory.8

5.3.2 Universal scaling

In order to connect to the discussion in Sec. 5.2, we first study the evolution of the bulk

anisotropy of the system. In Fig. 5.7 we show the ratio of longitudinal to transverse pressure of

7In view of the parametric estimate Qτ0 ∼ log2(α−1S ), this corresponds to gauge couplings on the order of
10−4.

8This can be achieved by initializing only a non-vanishing a = 1 component in our simulations, whereas all
other components vanish identically. In this case, one recovers a (compact) U(1) theory.
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Figure 5.7: Ratio of longitudinal to transverse pressure as a function of time for different
initial anisotropies ξ0 and fixed initial occupancy n0 = 1. The inset shows the same quantity
for initially isotropic systems (ξ0 = 1) and different initial occupancies n0 along with the free
streaming (dashed) curve.

the system PL/PT as a function of time. The curves in the main graph are for different initial

anisotropies ξ0 and fixed initial occupancy n0 = 1. The curve for ξ0 = 1 corresponds to an

initially isotropic system, whereas for higher initial anisotropies ξ0 = 4, 6 the observed behavior

at early times smoothly matches onto the ’Glasma’ evolution discussed in Sec. 5.2.

Starting from an isotropic initial distribution (ξ0 = 1), the system is seen to become more

and more anisotropic with time as a consequence of the longitudinal expansion. Indeed, the

early-time behavior is governed by free streaming, whereas at later times the anisotropy of the

system increases more slowly as a consequence of interactions. This feature is elaborated fur-

ther in the inset, where the free streaming (dashed) curve is shown for comparison, along with

results for different initial occupancies n0 and fixed ξ0 = 1. One observes that initially more

dilute systems (n0 < 1) exhibit a longer period of free-streaming behavior, while at late times

a similar scaling behavior can be observed. For strong initial anisotropy, such as for ξ0 = 4 and

6, there is a short transient regime where PL/PT increases due to plasma instabilities. Most

remarkably, this does not affect the evolution at later times: After the transient regime all

curves show very similar scaling with time, irrespective of the choice of initial conditions.
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Figure 5.8: Time evolution of the characteristic longitudinal momentum scale for different
initial anisotropies ξ0. The inset shows the scaling exponent extracted for different initial
conditions and lattice discretizations. The average 2γ = 0.67± 0.07 is indicated by gray lines.

In order to analyze this behavior in more detail, we study the time evolution of the transverse

and longitudinal hard momentum scales ΛT and ΛL, which characterize the typical transverse

and longitudinal momenta of hard excitations. These gauge-invariant observables can be com-

puted from longitudinal and transverse projections of the square of the covariant derivative of

field strengths divided by the energy density (c.f. Sec. 2.4). The perturbative expression for

Λ2
L - considering only the abelian parts of the field strength tensor and the covariant derivative

– is given by (c.f. Eq. (2.85))

Λ2
L(τ) '

∫
d2pT

∫
dpz p

2
z ωp f(pT , pz, τ)∫

d2pT
∫
dpz ωp f(pT , pz, τ)

. (5.34)

and similarly for Λ2
T , as discussed in Appendix E. An advantage of the hard scale observables,

compared to the components of the stress energy tensor, is that they generally probe harder

excitations of the system. This concerns in particular the longitudinal components: While the

longitudinal pressure PL is dominated by excitations with relatively small transverse momenta,

the longitudinal and transverse hard scales ΛL and ΛT probe the system at the same character-

istic momentum scale and thus allow for a straightforward interpretation in terms of a kinetic

description.
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The time evolution of the longitudinal hard scale Λ2
L is shown in Fig. 5.8, for different initial

anisotropies ξ0 and fixed initial occupancy n0 = 1, where we rescaled the vertical axis by a

factor of ξ
7/8
0 , to illustrate the universal character of the evolution. After the transient regime,

for Qτ & 650 one clearly observes the emergence of a universal power-law dependence. This

universal behavior of the hard scales can be characterized in terms of the scaling exponents γ

and β as

Λ2
L(τ) ∝ (Qτ)−2γ , Λ2

T (τ) ∝ (Qτ)−2β. (5.35)

Comparison to the dashed curve ∝ (Qτ)−2/3 in Fig. 5.8 indicates an approximate value of

γ ' 1/3. This has to be seen in contrast to a free-streaming system, where one obtains γ = 1

due to the red-shift of longitudinal momenta.9 Therefore, the observed value of γ ' 1/3 can

only be explained due to strong interactions of the system, which continuously increase the

longitudinal momenta of excitations relative to the free streaming behavior. Hence, the ob-

served behavior is a direct verification of the fact that the system remains strongly interacting

throughout the entire evolution.

In order to determine the scaling exponent γ more precisely, we first divide the data in

Fig. 5.8 in logarithmic equidistant time bins and then locally extract the scaling exponent from

the logarithmic derivative. The result is shown in the inset of Fig. 5.8, where we present the

extracted scaling exponent of Λ2
L as a function of time for a set of four different initial conditions

in the range ξ0 = 1 – 6 and n0 = 0.25 – 1. To check for a possible further dependence on lattice

discretizations, we also display results from the evolution for ξ0 = n0 = 1 using four different

lattices in the range NT = 256 – 512, Nη = 1024 – 4096 with Qa⊥ = 0.5 – 1 and aη = (0.625 –

2.5) ·10−3. After the transient regime, where the local exponents are quite different for different

initial conditions and subject to large error bars, one observes a clear convergence towards a

single value at later times. By averaging over all data points for Qτ & 650 we obtain the

estimate 2γ = 0.67± 0.07, as indicated by the gray band in Fig. 5.8.

In Fig. 5.9 we show the time evolution of the characteristic transverse momentum scale ΛT

for different initial occupancies n0 and fixed initial anisotropy ξ0 = 1. After an initial hardening,

one observes that in the scaling regime, for Qτ & 650 the characteristic transverse momentum

scale ΛT stays approximately constant in time. This corresponds to β ' 0, which we investigate

in the inset of Fig. 5.9, where the local scaling exponent 2β is plotted as a function of time.

Indeed, the local scaling exponent extracted from our data approaches zero monotonically with

|β| < 0.04 for Qτ & 650. In general, we observe that the errors are not dominated by the finite

lattice size but rather by the remaining dependence on the initial conditions for the available

9Note that in the free-streaming case, the scaling behavior arises not due to universality, but simply due to
the absence of interactions.
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Figure 5.9: Time evolution of the characteristic transverse momentum scale for different initial
occupancies n0. The curves show an approximately constant behavior in the scaling regime.
The inset shows the scaling exponent extracted for different initial conditions and lattice dis-
cretizations. The scaling exponent 2β approaches zero monotonically.

finite times. This is remarkable, given the fact, that one is dealing with a dynamical three scale

problem, characterized by the hard momentum scales ΛT and ΛL, as well as the soft Debye

scale, which is relevant also for the physics of plasma instabilities [31, 32]. We have checked

explicitly that in our simulations, all scales are properly resolved on the large lattices.

We will now also consider variations of the initial time and first study the dynamics for

a smaller value of Qτ0 = 20. This strengthens the role of the longitudinal expansion, since

the initial expansion rate ∼ 1/τ0 increases relative to the initial interaction rate ∼ Q−1. The

results are presented in Fig. (5.10), where we show the ratio of the longitudinal to transverse

hard scale Λ2
L/Λ

2
T as a function of time. The curves in the main graph correspond to differ-

ent values of the initial anisotropy ξ0 for fixed initial occupancy n0 = 2. The inset shows

the variation of the initial occupancy n0 for a fixed value of ξ0 = 1, corresponding to ini-

tially isotropic systems. At early times, one observes a faster decrease of the hard scale ratio,

which follows the free-streaming behavior for sufficiently small occupancies. Nevertheless, one

clearly observes the universal scaling behavior at later times. We also extracted the scaling

exponents 2γ and 2β using the same analysis technique introduced above. While we observe a

smaller residual dependence on the initial conditions, the lattice discretization becomes more
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Figure 5.10: Time evolution of the ratio of the longitudinal hard scale to the transverse hard
scale for different initial anisotropies ξ0 and initial occupancy n0 = 2. The inset shows the
same quantity for initially isotropic systems (ξ0 = 1) and different initial occupancies n0. Note
that, in contrast to Figs. 5.8 and 5.9, the initial time is chosen as Qτ0 = 20, which increases
the relative strength of the longitudinal expansion. However, after the transient regime, for
Qτ & 250 one still observes the same universal scaling behavior.

problematic in this case due to the stronger expansion. The scaling exponents in this case are

given by 2γ = 0.57±0.7 and |β| . 0.025, which agree with the previous estimates within errors.

It is also interesting to study the case Qτ0 � 1, where the interaction rate ∼ Q is initially

much larger than the expansion rate ∼ 1/τ0. In this situation one expects to recover the results

for non-expanding systems (c.f. Chapter 3) at early times ∼ Q−1, whereas at later times ∼ τ0,

the expansion starts to play an important role and one expects a transition to the universal

scaling solution for expanding systems. In order to investigate this behavior in more detail,

we chose a large value of Qτ0 = 1000, to achieve a clear separation between different time

scales. The results are presented in Fig. 5.11. In the top panel, we show the evolution of the

longitudinal and transverse hard scales as a function of time. At early times, (τ − τ0) . τ0 one

observes an approximate scaling of Λ2
T ∝ (τ − τ0)2/7 as previously observed for non-expanding

systems [88, 91]. This is indicated by the gray dashed line. At later times (τ − τ0) & τ0 the

transverse hard scale Λ2
T becomes approximately constant in time, whereas the longitudinal

hard scale Λ2
L exhibits an approximate (τ − τ0)−2/3 scaling, characteristic of the attractor solu-
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tion for longitudinally expanding systems.10 This transition between the different attractors is

elaborated in the lower panel of Fig. 5.11, where we show the scaling exponents 2β and 2γ as a

function of time. One observes a transient regime, where the ’static box’ exponent 2β ' −2/7

is realized. The behavior at late times is similar to the one observed in Figs. 5.8 and 5.9. One

observes the scaling exponent 2γ ' 2/3 for the longitudinal hard scale, whereas the exponent

2β for the transverse hard scale approaches zero monotonically from below.

5.3.3 Self-similarity

So far we have only considered gauge invariant observables to characterize the evolution of the

different scales of the problem. However, a striking property of turbulent phenomena is the fact

that these systems exhibit a self-similar evolution in time [34, 91]. To analyze this behavior,

we will now study the time evolution of the gluon distribution function f(pT , pz, τ), which we

extract from gauge fixed equal time correlation functions as discussed in Sec. 2.4. In terms of

the gluon distribution function f(pT , pz, τ), a self-similar evolution has to fulfill the condition

f(pT , pz, τ) = ταfS(τβpT , τ
γpz), (5.36)

where fS denotes a stationary distribution independent of time. The scaling exponents α, β

and γ are universal, as is the stationary scaling function up to amplitude normalizations. The

10Note that at late times τ � τ0 this corresponds also to scaling in Qτ−2/3 as observed in Fig. 5.8.
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scaling exponents β and γ agree with the previous definition in Eq. (5.35), as can be veri-

fied by evaluating the perturbative expression for the hard scales in Eq. (5.34). Hence, the

parametrization in Eq. (5.36) effectively amounts to measuring momenta in units of the char-

acteristic momentum scales ΛT and ΛL respectively, as can directly be observed from Eq. (5.35).

In order to investigate the emergence of a self-similar scaling solution in our simulations, we

study the time evolution of the gluon distribution function. Fig. 5.12 shows the rescaled zeroth

and second moment of the gluon distribution as a function of rescaled longitudinal momentum

τ γr pz for transverse momenta pT = Q. Here we used τr ≡ Qτ/103 as the reference time and

employed the scaling exponents α = −0.8 and γ = 0.28. The rescaled data for different times

in the range from Qτ = 750 to 4000 is seen to collapse onto a single curve. This is a striking

manifestation of self-similarity.

Fig. 5.13 displays the distribution, now as a function of transverse momentum pT for van-

ishing longitudinal momentum (pz = 0) at different times. The spectrum can be characterized

as a thermal-like 1/pT power-law over a large range of transverse momenta pT . ΛT with a

rapid fall-off for pT & ΛT . Indeed, the position of ΛT is seen to remain approximately constant
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in time and the spectrum exhibits a self-similar evolution with a decreasing amplitude

nHard(τ) = f(pT = Q, pz = 0, τ) . (5.37)

In the inset of Fig. 5.13, the rescaled second moment of the distribution, τ−αr p2
Tf(pT , pz = 0, τ),

is shown on a linear scale. Again, the results at different times nicely collapse onto a single

curve to good accuracy.

In order to determine the scaling exponent α, we have employed a simultaneous least squares

fit to self-similar behavior of the zeroth to fourth moment of the distribution function. Here it

is advantageous to estimate the combination α− γ, to reduce the covariance with the fit of γ,

which can be determined independently from the analysis of the hard scales. Our data shows

that α − γ = −1 − ∆ with a monotonically decreasing ∆ < 0.13 for Qτ & 650. Taking into

account our above estimate for γ, this leads to α = −0.67±0.04−∆. Comparing the statistical

uncertainty to the systematic error ∆, one observes that the dominant source of error is again

the fact that the scaling limit is only approximately realized for the available finite times.

5.3.4 Analytic approach to turbulence

We will now provide a simple explanation of the characteristic scaling behavior observed in our

simulations. In the framework of kinetic theory, the time evolution of the gluon distribution is

described by a Boltzmann equation of the form [29, 30, 32][
∂τ −

pz
τ
∂pz

]
f(pT , pz, τ) = C[pT , pz, τ ; f ] , (5.38)

with a generic collision term C[pT , pz, τ ; f ] for n↔ m scattering processes. Here the additional

term on the left hand side of Eq. (5.38) represents the red-shift of longitudinal momenta and

thus captures the effects of the longitudinal expansion of the system. We follow here the

standard turbulence analysis [34], for a self-similar evolution of the type given by Eq. (5.36).

In this analysis, the scaling behavior of the collision integral

C[pT , pz, τ ; f ] = τµC[τβpT , τ
γpz; fS] (5.39)

is described in terms of the exponent µ = µ(α, β, γ), whose precise form depends on the

underlying interaction. Substituting this form into the Boltzmann equation (5.38), one finds

that the fixed point solution fS(pT , pz) satisfies the relation

αfS(pT , pz) + βpT∂pT fS(pT , pz) + (γ − 1) pz∂pzfS(pT , pz) = C[pT , pz; fS] , (5.40)
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with the scaling condition,

α− 1 = µ(α, β, γ) . (5.41)

As previously argued by Baier, Mueller, Schiff and Son in the “bottom-up” scenario (hence-

forth labeled BMSS) [29], the interaction of hard excitations is dominated by elastic scattering

with small momentum transfer, as long as their occupancies are large (nHard � 1). The domi-

nant effect of these collisions on the particle distribution f(pT , pz, τ) is to broaden the longitu-

dinal momentum distribution by multiple incoherent small-angle scatterings. This broadening

of the gluon distribution in longitudinal momentum may be characterized by a collision integral

of the Fokker-Planck type,

C(elast)[pT , pz; f ] = q̂ ∂2
pzf(pT , pz, τ) , (5.42)

where the momentum diffusion parameter q̂ in this expression is parametrically given by [30,

31]

q̂ ∼ α2
S

∫
d2pT
(2π)2

∫
dpz
2π

f 2(pT , pz, τ) (5.43)

in the limit of high occupancies. This approximation is supposed to describe the dominant

physics relevant for the overall scaling with time, which enters the scaling relation (5.41) con-

sidered in the following. However, it does not have to be an accurate approximation for the

solution of the fixed-point equation (5.40), which in general requires more detailed information

about the momentum dependence of the collision integral.11

The scaling properties of the collision integral in Eq. (5.42) lead to µ(α, β, γ) = 3α− 2β+ γ

for the self-similar distribution as in Eq. (5.36). The scaling relation in Eq. (5.41) obtained

from the Boltzmann equation then takes the form

2α− 2β + γ + 1 = 0 . (Small angle scattering) (5.44)

Since the elastic scattering kernel in Eq. (5.42) is particle number conserving, a further scal-

ing relation is obtained from integrating the distribution function over pT and rapidity wave

numbers ν = τpz. By use of the scaling form in Eq. (5.36), this constraint leads to the scaling

11This can already be observed from the discussion in Chapter 3 in Minkowski space, where the small angle
approximation reproduces the correct scaling in time, while it fails to describe the spectral properties of the
fixed point correctly [87, 88, 91].
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relation

α− 2β − γ + 1 = 0 . (Particle Number conservation) (5.45)

A corresponding scaling relation can be extracted from energy conservation. Taking into ac-

count that the mode energy behaves as ωp ' pT in the anisotropic scaling limit, this yields the

condition

α− 3β − γ + 1 = 0 . (Energy conservation) (5.46)

The scaling exponents α, β, γ are then completely determined by the three scaling relations

for particle number conservation, energy conservation and small-angle elastic scattering as

incorporated in the BMSS kinetic approach. This yields the set of scaling exponents

α = −2/3 , β = 0 , γ = 1/3 , (5.47)

as the final result, which is in excellent agreement with our lattice simulation results.

The above fixed point solution has the remarkable property, that both energy and particle

number are conserved in a single turbulent cascade. In particular, this is in contrast to non-

expanding isotropic systems, where enforcing both particle number and energy conservation for

a single cascade, leads to the scaling relations

α− 3β = 0 , (Particle number conservation)

α− 4β = 0 , (Energy conservation) (5.48)

where we set β = γ for isotropic systems.12 Since the Eqns. (5.48) do not allow for non-trivial

solutions, there is no single turbulent cascade conserving both energy and particle number.

Instead, a dual cascade emerges in the situation, where both particle number and energy

conservation apply [35]. In contrast, in the longitudinally expanding case, the anisotropy of the

system allows for different scaling exponents β 6= γ, which lead to non-trivial solutions of the

corresponding scaling relations in Eqns. (5.45) and (5.46). In this context, it is also interesting

to observe that the exponent β = 0 is entirely fixed by enforcing both conservation laws, without

further knowledge about the underlying dynamics. We therefore expect the exponent β = 0

to appear also for a larger class of systems, which are dominated by elastic interactions and

undergo a longitudinal expansion.13

12Note that, the relations in Eq. (5.48) can then directly be obtained from Eqns. (5.45) and (5.46) by dropping
the additional summand 1, which appears solely due to the longitudinal expansion.

13This includes in particular O(N) symmetric scalar quantum field theories, where inelastic processes are
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5.3.5 The attractor

Besides the BMSS scenario, alternative thermalization scenarios at weak coupling with different

attractor solutions have been proposed in the literature. In the (KM) scenario [32], it is argued

that plasma instabilities play a key role for the entire evolution since they lead to a more

efficient process to increase the longitudinal momenta of hard excitations. The evolution in the

KM scenario can be characterized by the scaling exponents,

α = −7/8 , β = 0 , γ = 1/8 , (KM scenario) (5.49)

such that the characteristic longitudinal momenta decrease much slower as compared to the

BMSS evolution. In the (BGLMV) scenario [30] elastic scattering and transient Bose-Einstein

condensation is argued to generate an attractor with fixed anisotropy parameter δs. The evo-

lution in this case proceeds with the scaling exponents

α = −(3− δs)/7 , β = (1 + 2δs)/7 , γ = (1 + 2δs)/7 , (BGLMV scenario) (5.50)

such that the momentum space anisotropy of the system ΛL/ΛT remains constant in time.

In order to clearly distinguish between the different attractor scenarios, we investigate the

evolution of the plasma in the occupancy–anisotropy plane, originally introduced in Refs. [31,

32]. Our findings are compactly summarized in Fig. 5.14, where we compare the observed

time evolution to the different attractor scenarios. The horizontal axis shows the characteristic

occupancy nHard as defined in Eq. (5.37), in the classical regime of occupancies nHard & 1. The

vertical axis shows the momentum-space anisotropy, which can be characterized in terms of the

ratio of typical longitudinal momenta ΛL to the typical transverse momenta ΛT . The gray lines

in Fig. 5.14 indicate the different attractor scenarios, while the blue lines show a projection of

our simulation results to the anisotropy-occupancy plane for different initial conditions, indi-

cated by blue dots. One clearly observes the attractor property, such that ultimately all curves

exhibit a similar evolution along the diagonal. This is in very good agreement with the above

analytic discussion of the BMSS kinetic equation in the high-occupancy regime.

By extrapolating our results to later times, we can also estimate the time scale to enter

the quantum regime, where the characteristic occupancies nHard become of order unity. Since

initially the occupancy is parametrically given by nHard ∼ α−1
S , and subsequently decreases as

nHard ∝ (Qτ)−2/3, this leads to the estimate

τQuantum ∼ Q−1α
−3/2
S , (5.51)

highly suppressed compared to elastic scattering [43].
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Figure 5.14: Evolution in the occupancy–anisotropy plane. Indicated are the attractor solutions
proposed in (BMSS) [29], (KM) [32] and (BGLMV) [30]. The blue lines show the results of
classical-statistical lattice simulations for different initial conditions.

in accordance with the original “bottom-up” thermalization scenario [29]. In the quantum

regime Qτ & α
−3/2
S , the classical-statistical framework can no longer be applied and modi-

fications of the above kinetic equations need to be considered. While different scenarios of

how thermalization is completed in the quantum regime have been developed based on kinetic

descriptions [29, 32], it remains an open question how to address the quantum dynamics in

non-abelian gauge theories from a first principles approach.
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5.4 Discussion

We close this chapter with a brief summary of our results and a discussion of possible im-

plications for relativistic heavy-ion collisions at RHIC and LHC energies. As outlined in the

introduction, this has been a major motivation for this investigation.

We have studied the non-equilibrium dynamics of relativistic heavy-ion collisions, in an

idealized weak coupling setup, using classical-statistical real time lattice simulations as a first

principle approach. We have established the fact that the dynamics of the system is governed

by different time scales, which lead to different dynamical regimes.

While at very early times Qτ . log(α−1
S ), plasma instabilities trigger the exponential growth

of vacuum fluctuations and partially isotropize the system, we discovered that, at later times

log(α−1
S ) . Qτ . α

−3/2
S , the system exhibits the universal self-similar dynamics characteris-

tic of wave turbulence. We obtained the universal scaling exponents and scaling functions and

compared our results to different thermalization scenarios proposed in the literature [29, 30, 32].

We found that, while the physics of plasma instabilities and free-streaming characterize the

approach to the universal attractor, the self-similar dynamics of the turbulent regime can be

described entirely in terms of elastic scattering as incorporated in the “bottom-up” thermal-

ization scenario [29].

The competition between elastic scattering and the longitudinal expansion in this regime

leads to an increase of the anisotropy of the system up to a time scale Qτ ∼ α
−3/2
S , when the

system becomes dilute and quantum corrections can no longer be neglected. Since the classical-

statistical framework can no longer be applied in this ’quantum regime’, further progress at

weak coupling relies on the ability to include quantum corrections dynamically in the non-

equilibrium evolution. This is an outstanding problem in theoretical physics.

In view of relativistic heavy-ion collision experiments at RHIC and LHC energies, we note

that for realistic values of αS, the dynamics takes place on much shorter time scales where de-

tails of the initial conditions may be essential. Since the time for the approach to the universal

attractor is controlled by the initial conditions, it will be interesting to explore how and on

what time scales the results with more realistic initial conditions [151, 164–166] converge to

the universal dynamics discussed in Sec. 5.3. Nevertheless, the paradigm of fast thermalization

remains very puzzling from a weak coupling perspective, since no isotropization is observed in

the classical regime.
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However, in view of the enormous success of hydrodynamic models in terms of describing

a vast amount of data at RHIC and LHC, we note that there has recently been a great effort

in relaxing some of the underlying assumptions. In particular, in anisotropic hydrodynamic

descriptions [167–171], we observe that the essential ingredient is no longer isotropization or

thermalization but rather the existence of an anisotropic attractor solution. If the concepts de-

veloped here are applicable in heavy-ion collisions at RHIC and LHC energies, non-equilibrium

wave turbulence and attendant phenomena may be playing a larger role in the dynamics of the

Quark Gluon plasma than earlier conceived.

In addition to bulk observables, which have a limited sensitivity to the early time dynamics,

it might also be interesting to consider possible signatures of turbulent non-equilibrium phe-

nomena in different observables, such as e.g. electromagnetic probes. Some exploratory studies

in this direction have recently been reported in Ref. [172], however based on the BGLMV

thermalization scenario [30].
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Chapter 6

Conclusion

In this chapter we summarize our main results and provide a perspective on future research

directions for the study of non-abelian gauge theories out-of-equilibrium. We also refer to Sec-

tions 3.6, 4.3 and 5.4 at the end of the respective chapters for a more specific discussion of

several aspects.

The central motivation of this work has been to identify the mechanism underlying the

thermalization process of weakly coupled non-abelian plasmas and thus to contribute towards

a better understanding of the non-equilibrium dynamics of relativistic heavy-ion collisions.

To approach this question, we first investigated the thermalization process of non-abelian

plasmas in Minkowski space. We established by first principle simulations in the classical-

statistical framework, that the thermalization process at weak coupling is driven by a turbu-

lent cascade, which transports energy towards the ultraviolet. The dynamics in the turbulent

regime is described by a self-similar evolution in time characteristic of a non-thermal fixed point

and we obtained the universal scaling exponents associated to the spectral distribution and the

dynamical evolution at late times. The dynamical scaling exponents are found to agree with

a kinetic theory analysis of elastic and inelastic scattering processes and qualitatively confirm

the results of Refs. [30, 31]. However, the spectral exponent of the power-law is clearly non-

thermal and found to be consistent with the value 3/2 at early times. In analogy to previous

observations in scalar field theories [34, 35], we argued that this exponent can be attributed to

an effective 2↔ (1 + soft) interaction in the presence of a large number of very soft excitations

of the system. The spectral exponent observed at late times is found to be consistent with the

value 4/3 originally proposed in Ref. [87] and can be explained by ordinary elastic interactions.

While the dynamical evolution clearly shows that inelastic processes are as important as elas-

tic processes throughout the evolution, it would be interesting to explore to what extent the

spectral exponent 4/3 is also compatible with inelastic interactions.
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In Chapter 4 we studied the non-equilibrium dynamics of instabilities for the example of two

different systems. In addition to a generalization of the Nielsen-Olesen instability, we discovered

the phenomenon of parametric resonance in non-abelian gauge theories. As a generic feature of

non-equilibrium instabilities, we also discussed the emergence of “secondary instabilities” [52,

53] for the example of an anisotropically expanding scalar theory. We found that the dynamical

power counting developed in this context, applies in a similar way also to the dynamics of the

non-equilibrium ’Glasma’ state formed in heavy-ion collisions at ultra-relativistic energies.

The central result of this work concerns the dynamics of anisotropically expanding non-

abelian plasmas phenomenologically relevant to relativistic heavy-ion collisions. While the

physics of plasma instabilities and free streaming is found to govern the early stages of the

evolution, we observed that the dynamics at late times is again characterized by a universal

turbulent attractor. Most remarkably, the dynamical scaling exponents, which determine the

self-similar evolution in the turbulent regime, can already be explained in terms of ordinary

elastic scattering processes. We are thus able to confirm the onset of the “bottom-up” ther-

malization scenario [29] from first principle lattice simulations. Moreover, the discovery of

turbulence has interesting consequences for the interpretation of our results. Since turbulence

exhibits universal phenomena, characteristic features of the non-equilibrium evolution may also

be observed in systems at different energy scales. This perspective opens up the possibility for

several studies of both experimental and theoretical nature, which may help to clarify the sit-

uation in relativistic heavy-ion collisions in the future.

Since the classical-statistical framework can no longer be applied in the quantum regime, this

approach can not be used to follow the dynamics of the system up to complete thermalization.

Future progress in an ab initio understanding of the late-time thermalization process therefore

crucially relies on the ability to include quantum evolution effects. A possible way would be to

employ e.g. a kinetic description, which is of course valid also in the quantum regime. In this

context, the results obtained in this work should serve as a benchmark for the employed ki-

netic equations in the classical regime. A major breakthrough would be achieved by computing

the time evolution in the quantum regime in a non-perturbative way. The framework of real-

time stochastic quantization may provide a way to address this problem in the future [173, 174].

The ultimate goal will be to extend the range of validity of present weak-coupling techniques

to larger values of the coupling constant, to provide an ab initio description of heavy-ion

collisions at RHIC and the LHC. In this context, we expect quantum effects to become even

more important. Of course, studies at more realistic values of the coupling constant should also
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include quarks, since these are no longer parametrically suppressed as in the idealized weak

coupling limit. In the present setup, this could be achieved in a straightforward way by use

of low-cost dynamical fermions [59–63] and would allow to study also the chemical evolution

of the non-equilibrium plasma. Despite the present limitations, it is nevertheless interesting

to speculate about the phenomenological consequences of our results. In view of the paradigm

of fast thermalization, we carefully note that – at least within our idealized weak-coupling

setup – we observe no evidence for a fast isotropization of the system. However, since the

results obtained in the strong coupling limit also indicate the importance of anisotropies at

the transition to the hydrodynamic regime [24–26], a re-thinking of this paradigm may also be

considered. In this context, it will be extremely important to understand the actual sensitivity

of experimental observables to the anisotropy of the system. First studies in this direction have

already been reported [167–171].
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Daniil Gelfand, Thorsten Zöller, Kirill Boguslavski, Valentin Kasper, Jan Stockemer, Lutz

Goergen, Jean-Sebastien Gagnon, Florian Hebenstreit, Dénes Sexty and Lethicia Palhares for
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Appendix A

Identities for the SU(2) gauge group

In this appendix we provide selected identities for the SU(2) gauge group, useful for the numeri-

cal implementation. In our convention, the generators of the SU(2) gauge group are represented

as traceless hermitian matrices, which can then be related to the Pauli matrices by

Γa = σa/2 (A.1)

where a = 1, 2, 3. The Pauli matrices σa are explicitly given by

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.2)

The generators Γa satisfy the relations

ΓaΓb =
1

4
δab +

i

2
fabcΓc , [Γa,Γb] = ifabcΓc , {Γa,Γb} =

1

2
δab (A.3)

where δab denotes the Kronecker delta and fabc = εabc, with the Levi-Civita symbol εabc, are

the structure constants.

In view of the numerical implementation, the SU(2) matrices U and U † can then conve-

niently be expressed as

U = u01 + iuaσ
a , U † = u01 − iuaσa , (A.4)

with real coefficient u0, ua constrained by det(U) = 1 such that

u2
0 + uau

a = 1 . (A.5)

In particular, the group elements U ∈ SU(2) given by the exponential of the generators
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exp[iαaΓa] can be calculated according to

U = exp[iαaΓa] = cos(a/2)1 + 2i
sin(a/2)

a
αaΓa , (A.6)

where a =
√
αaαa, such that the corresponding coefficients u0 and ua are given by

u0 = cos(a/2) , ua =
sin(a/2)

a
αa . (A.7)

The relation (A.6) can also be inverted in order to obtain the coefficients αa as

αa = logSU(2)[U ] = 2
atan2(

√
ubub, u0)√
ubub

ua . (A.8)

We also note that traces of SU(2) matrices are in this notation given by

tr[U ] = 2u0 , tr[iΓa U ] = −ua . (A.9)
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Appendix B

Occupation numbers and generalized

Coulomb gauge on the lattice

In this appendix we discuss the procedure to compute gauge dependent quantities within the

framework of classical-statistical lattice simulations. Since for practical purposes the Fock-

Schwinger gauge (Aτ = 0) needs to be employed throughout the entire time evolution, we focus

here on fixing the residual gauge freedom to perform time independent gauge transformations.

In this context it is of great advantage to choose the residual gauge freedom such that there

is a clear interpretation of the physical degrees of freedom. Here we employ the generalized

Coulomb gauge condition, which in the continuum takes the form

τ−2∂ηAη(x) +
∑
i

∂iAi(x) = 0 . (B.1)

We emphasize that the gauge condition in Eq. (B.1) can only be fixed once at an arbitrary

time τ = τ0 and does in general not hold for times τ 6= τ0.1 This is different in actual Coulomb

gauge, where the gauge condition in Eq. (B.1) is employed at all times at the expense of a

non-vanishing temporal component Aτ of the gauge field. However, it can easily be shown that

equal-time correlation functions of the spatial components of the gauge fields are the same as

in actual Coulomb gauge. In particular, since this gauge provides a clear interpretation of the

physical degrees of freedom of the system (c.f. Appendix C), we can safely use this prescription

to develop a quasi-particle picture. The advantage of this procedure is that the gauge condition

in Eq. (B.1) can be employed at any time τ0, using only time independent gauge transforma-

tions. In practice, this implies that gauge dependent quantities at different times τ0, τ1, ... are

effectively calculated in different gauges; however the physical interpretation of the quantities

1Note that, due to the explicit time dependence of Eq. (B.1) this is already not the case for the free theory.
However, even in Minkowski space, where the corresponding Coulomb type gauge condition is time independent,
Eq. (B.1) will in general not be satisfied at times t 6= t0 due to the interactions of different momentum modes.
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manifestly remains the same.

After these preliminary remarks, we will now discuss how the gauge condition can be em-

ployed in classical-statistical lattice simulations. The general procedure turns out to be very

similar to Landau gauge fixing in standard vacuum or thermal equilibrium lattice QCD and

can be formulated as a minimization procedure of the gauge fixing potential [89]

EU [G] =
1

6N2
TNη

∑
~xT ,η

{
a2
⊥

τ 2a2
η

tr[1 −G(x)Uη(x)G†(x+ η̂)] +
∑
i

tr[1 −G(x)Ui(x)G†(x+ î)]

}
,

(B.2)

with respect to time independent gauge transformations G(x) ∈ SU(2). By variation of the

gauge fixing potential in Eq. (B.2) with respect to infinitesimal gauge transformations around

a local minimum G(x) according to G(x)→ [1 + iαa(x)Γa]G(x), it is straightforward to verify

that the local minima2

δEU [G]

δαa(x)

∣∣∣∣
α=0

= 0 , (B.3)

satisfy the relation

a2
⊥

τ 2a2
η

tr[iΓa(U (G)
η (x)− U (G)

η (x− η̂))] +
∑
i

tr[iΓa(U
(G)
i (x)− U (G)

i (x− î))] = 0 , (B.4)

where U
(G)
µ (x) denotes the gauge transformed link variables U

(G)
µ (x) = G(x)Uµ(x)G†(x+ µ̂) as

discussed in Sec. 2.4. Since the expressions of the form tr[iΓaUµ(x)] can be related to the gauge

fields to leading order in lattice spacing, Eq. (B.4) is the lattice analogue of the Coulomb gauge

condition in Eq. (B.1) in the continuum theory.

In practice, the minimization of the gauge fixing potential in Eq. (B.2), with respect to time

independent gauge transformations G(x) ∈ SU(2) can be achieved by a variety of different

algorithms (see e.g. Ref. [89] for a review). Here we use the Fourier acceleration technique,

where the gauge transformations G(x) are iteratively updated according to

GNew(x) = exp[iRa(x)Γa] GOld(x) , (B.5)

2Note that we will only consider local minima of the gauge fixing potential. The issue of identifying the
global minimum of the gauge fixing potential in Eq. (B.2), usually referred to as ’Minimal Coulomb gauge’, is
related to the presence of Gribov copies and primarily affects the infrared sector (see e.g. Ref. [175]). Since
we expect our interpretation in terms of quasi-particle excitations to break down in the infrared, this will not
affect the discussion.
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with

Ra(x) = α

[
F−1

(
p2

Max

p2

)
F
] {

a2
⊥

τ 2a2
η

tr[iΓa(U (G)
η (x)− U (G)

η (x− η̂))]

+
∑
i

tr[iΓa(U
(G)
i (x)− U (G)

i (x− î))]

}
(B.6)

until the gauge condition in Eq. (B.4) is globally satisfied to a given accuracy. Here F and

F−1 denote the fast Fourier transform and the inverse fast Fourier transform respectively and

the factor p2
Max/p

2 corresponds to the ratio of the maximal lattice momentum to the lattice

momentum. The parameter α can be tuned to optimize the convergence of the algorithm and

we typically use on the order of thousand iterations with α = 0.005 – 0.025 depending on the

spatial lattice size.

We then perform the gauge transformation of the link variables to extract the lattice gauge

fields by use of Eq. (A.8) according to

(ga⊥) Aai (x+ î/2) = logSU(2)

[
G(x)Ui(x)G†(x+ î)

]
,

(gaη) A
a
η(x+ η̂/2) = logSU(2)

[
G(x)Uη(x)G†(x+ η̂)

]
. (B.7)

Similarly, one can extract the electric fields from the time-like plaquette variables according to

(ga⊥) Ei
a(x+ î/2 + τ̂ /2) =

(
τ

aτ

)
logSU(2)

[
G(x)Uτi(x)G†(x)

]
,

(ga2
⊥) Eη

a(x+ η̂/2 + τ̂ /2) =

(
a2
⊥

aττaη

)
logSU(2)

[
G(x)Uτη(x)G†(x)

]
. (B.8)

Finally, we perform a fast Fourier transformation of the fields in Eqns. (B.7,B.8) and evalu-

ate the gluon distribution function f(~pT , pz, τ) according to Eq. (2.87), where we identify the

longitudinal momentum at mid-rapidity as pz = ν/τ in the final step.
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Appendix C

Free field solutions in co-moving

coordinates

In this appendix we determine the basis of free solutions to the Yang-Mills evolution equations

in τ, η coordinates. Since the solutions are labeled in terms of transverse momentum ~pT and

conjugate rapidity momentum ν we will denote the set of linearly independent solutions by

a(λ)~pT ν±
µ (x) = ξ(λ)~pT ν±

µ (τ) ei(~pT ~xT+νη) , (C.1)

where the index λ = 1, 2, 3 labels the different polarizations, the index ± denotes the posi-

tive and negative frequency solutions and ξ
(λ)~pT ν±
µ (τ) denote the time-dependent polarization

vectors. Here we suppressed the color indices, since the free solutions display a diagonal struc-

ture in color space. The starting point of our discussion are the evolution equations, which in

Fock-Schwinger (aτ = 0) gauge take the form [151]

∂ττ∂τai + τ(p2
⊥ + τ−2ν2)ai − τpipjaj − τ−1νpiaη = 0 ,

∂ττ
−1∂τaη + τ−1p2

⊥aη − τ−1piai = 0 , (C.2)

where p2
⊥ = p2

x + p2
y and summation over the transverse Lorenz index i = x, y is implied. In

addition to the above evolution equations, the solutions are required to satisfy the (abelian)

Gauss law constraint, which takes the form

piτ∂τai + ντ−1∂τaη = 0 . (C.3)

In general there are five linearly independent solutions to the set of equations (C.2), taking

into account the Gauss law constraint (C.3). However the remaining gauge freedom to perform

time independent gauge transformations allows us to eliminate one of the solutions, such that

we are left with four linearly independent solutions, which correspond to the negative and
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positive frequency solutions of the two transverse polarizations. We will exploit this fact and

fix the remaining gauge freedom by implementing the Coulomb type gauge condition

[
piai + τ−2νaη

]
τ=τ0

= 0 , (C.4)

at arbitrary time τ0. To see how this gauge fixing reduces the number of solutions, we first

consider a solution of the type

ξ(3)~pT ν
µ (τ) =

 px

py

ν

 ξ(3)~pT ν(τ) . (C.5)

The Gauss law constraint and the evolution equations then imply that ∂τξ
(3)~pT ν(τ) = 0, and

hence ξ(3)~pT ν(τ) = ξ(3)~pT ν is a constant in time. However the gauge fixing condition (C.4)

implies that ξ(3)~pT ν(τ0) = 0 vanishes such that this solution is eliminated by the choice of the

gauge. We are therefore left with four physical solutions, which correspond to the positive and

negative frequency solutions for the two transverse polarizations.

C.1 First set of physical solutions

In order to construct the first set of physical solutions, we chose the ansatz

ξ(1)~pT ν
µ (τ) =

 −pypx
0

 ξ(1)~pT ν(τ) , (C.6)

which complies with the Gauss law constraint by construction. The evolution equation for

a(1)~pT ν(τ) follows from Eq. (C.2) and reads[
τ−1∂ττ∂τ + p2

⊥ +
ν2

τ 2

]
ξ(1)~pT ν(τ) = 0 . (C.7)

This equation is known as the Bessel equation and the general solution can be expressed in

terms of Hankel functions as

ξ(1)~pT ν(τ) = c1H
(1)
iν (p⊥τ) + c2H

(2)
iν (p⊥τ) , (C.8)

such that there are two linearly independent solutions. For each solution, the constants c1 and

c2 can be fixed to yield the correct normalization and asymptotic behavior of the solution in

terms of positive and negative frequency components. This is discussed in more detail below,

where we obtain the final and correctly normalized result.
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C.2 Second set of physical solutions

The second set of solutions can be written in the general form

ξ(2)~pT ν
µ (τ) =

 νpx/(p
2
⊥τ

2
0 ) R~pT ν

⊥ (τ)

νpy/(p
2
⊥τ

2
0 ) R~pT ν

⊥ (τ)

−R~pT ν
η (τ)

 , (C.9)

where the gauge condition (C.4) implies R~pT ν
η (τ0) = R~pT ν

⊥ (τ0) at the time τ0, where the residual

gauge freedom is fixed. Moreover the Gauss law constraint yields the relation

ν
[
ττ−2

0 ∂τR
~pT ν
⊥ (τ)− τ−1∂τR

~pT ν
η (τ)

]
= 0 , (C.10)

such that

∂τR
~pT ν
η (τ) =

τ 2

τ 2
0

∂τR
~pT ν
⊥ (τ) , (C.11)

which can be used to eliminate R~pT ν
η (τ) in favor of R~pT ν

⊥ (τ). The dynamic equations for R~pT ν
η (τ)

and R~pT ν
⊥ (τ) follow from the evolution equations (C.2) and take the form

∂ττ∂τR
~pT ν
⊥ (τ) +

ν2

τ
R~pT ν
⊥ (τ) +

(p2
⊥τ

2
0 )

τ
R~pT ν
η (τ) = 0 , (C.12)

∂ττ
−1∂τR

~pT ν
η (τ) + τ−1p2

⊥R
~pT ν
η (τ) + τ−1ν

2

τ 2
0

R~pT ν
⊥ (τ) = 0 . (C.13)

In order to decouple the evolution equations, it is convenient to multiply the equations by

appropriate factors of τ and subsequently differentiate with respect to τ . By use of the relation

(C.11), this yields the set of equations[
τ−1∂ττ∂τ + p2

⊥ +
ν2

τ 2

]
τ∂τR

~pT ν
⊥ (τ) = 0 (C.14)[

τ−1∂ττ∂τ + p2
⊥ +

ν2

τ 2

]
τ−1∂τR

~pT ν
η (τ) = 0 , (C.15)

which are equivalent after the Gauss constraint (C.11) is taken into account. It is important

to note that by transforming the set of second order differential equations (C.12) into the

third order differential equation (C.14), we have introduced an additional free parameter to the

general solution. We will fix this parameter by requiring the solutions of (C.14) to satisfy the
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original evolution equations (C.12). The general solution of the above equations takes the form

R~pT ν
⊥ (τ) = R~pT ν

τ0
+

∫ τ

τ0

dτ ′ τ ′−1
[
c1H

(1)
iν (p⊥τ

′) + c2H
(2)
iν (p⊥τ

′)
]
, (C.16)

R~pT ν
η (τ) = R~pT ν

τ0
+

∫ τ

τ0

dτ ′
τ ′

τ 2
0

[
c1H

(1)
iν (p⊥τ

′) + c2H
(2)
iν (p⊥τ

′)
]
, (C.17)

where we have taken into account the Gauss law constraint to ensure that the constants c1

and c2 are the same for R~pT ν
⊥ (τ) and R~pT ν

η (τ) and the gauge condition which ensures that the

integration constant R~pT ν
τ0

takes the same value. The value of the constant R~pT ν
τ0

is fixed by

requiring the solution to satisfy the original coupled set of second order differential equations.

By inserting the solutions (C.16,C.17) in the evolution equations (C.12) we obtain the condition

∂τ

[
c1H

(1)
iν (p⊥τ) + c2H

(2)
iν (p⊥τ)

]
+ τ−1

[
ν2 + p2

⊥τ
2
0

]
R~pT ν
τ0

+ τ−1

∫ τ

τ0

dτ ′ τ ′
[
ν2

τ ′2
+ p2

⊥

] [
c1H

(1)
iν (p⊥τ

′) + c2H
(2)
iν (p⊥τ

′)
]

= 0 , (C.18)

and by use of the Bessel equation, we can rewrite the integrand as[
ν2

τ 2
+ p2

⊥

]
H

(1/2)
iν (p⊥τ) = − τ−1∂ττ∂τH

(1/2)
iν (p⊥τ) , (C.19)

such that the powers of time under the integral cancel and we are left with the integration of

a total derivative. We can then perform the time integration and find that the term from the

upper bound of the integral cancels the first derivative term in Eq. (C.18). In this way Eq.

(C.18) reduces to

[
ν2 + p2

⊥τ
2
0

]
R~pT ν
τ0

+ τ0 ∂τ

[
c1H

(1)
iν (p⊥τ) + c2H

(2)
iν (p⊥τ)

]∣∣∣
τ=τ0

= 0 , (C.20)

which fixes the constant to be

R~pT ν
τ0

= −
p⊥τ0

[
c1H

′(1)
iν (p⊥τ0) + c2H

′(2)
iν (p⊥τ0)

]
ν2 + p2

⊥τ
2
0

, (C.21)

where H ′
(1/2)
iν (x) = ∂xH

(1/2)
iν (x) denotes the first derivative of the function evaluated at the

respective argument. The first and second set of solutions are then both characterized by two

free parameters, which we will fix in the following to obtain the correctly normalized positive

and negative frequency solutions.
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C.3 Normalization and asymptotic behavior

In the previous section we have determined the orthogonal solutions to the free evolution

equations in τ, η coordinates. In order to determine the normalization of the solutions it is

important to realize that all solutions to the evolution equations (C.2) conserve the scalar

product [151]

(a|b) = −i
∫

d2~xT dη τ g
µν
[
a∗µ(x)∂τbν(x)− bν(x)∂τa

∗
µ(x)

]
. (C.22)

This can be checked explicitly by use of the equations of motion (C.2) and the relation can be

used to properly normalize the solutions [151].

Normalization of the first set of solutions

The first set of physical solutions takes the general form

ξ(1)~pT ν
µ (x) =

 −pypx
0

[c1H
(1)
iν (p⊥τ) + c2H

(2)
iν (p⊥τ)

]
, (C.23)

and according to Ref. [151] the positive and negative frequency solution corresponds to the

parts involving only the Hankel functions of the second and first kind respectively. If we focus

on the positive and negative frequency parts a(1)~pT ν±, with c+
1 = 0 and c−2 = 0, the scalar

products between the solutions take the form

(a(1)~pT ν+|a(1)~p′T ν
′+) = iτ (2π)3δ2(~pT − ~p′T )δ(ν − ν ′) p2

⊥ |c+
2 |2 H

(2)∗
iν (p⊥τ)

←→
∂τ H

(2)
iν (p⊥τ) , (C.24)

(a(1)~pT ν−|a(1)~p′T ν
′−) = iτ (2π)3δ2(~pT − ~p′T )δ(ν − ν ′) p2

⊥ |c−1 |2 H
(1)∗
iν (p⊥τ)

←→
∂τ H

(1)
iν (p⊥τ) , (C.25)

(a(1)~pT ν+|a(1)~p′T ν
′−) = iτ (2π)3δ2(~pT − ~p′T )δ(ν − ν ′) p2

⊥ (c+
2 )∗c−1 H

(2)∗
iν (p⊥τ)

←→
∂τ H

(1)
iν (p⊥τ) .

(C.26)

and by use of the identities (D.7, D.8) for the Hankel functions and their derivatives, we can

evaluate the above expressions explicitly. With the choice of parameters

c+
2 =

√
π e

πν
2

2p⊥
, c−1 =

√
πe−

πν
2

2p⊥
, (C.27)
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we obtain the usual normalization properties

(a(1)~pT ν+|a(1)~p′T ν
′+) = (2π)3δ2(~pT − ~p′T )δ(ν − ν ′) , (C.28)

(a(1)~pT ν−|a(1)~p′T ν
′−) = − (2π)3δ2(~pT − ~p′T )δ(ν − ν ′) , (C.29)

(a(1)~pT ν+|a(1)~p′T ν
′−) = 0 , (C.30)

and the first set of final solutions takes the final form

ξ(1)~pT ν±
µ (x) =

√
π e±πν/2

2p⊥

 −pypx
0

H
(2/1)
iν (p⊥τ) . (C.31)

Normalization of the second set of solutions

The second set of solutions can be normalized in a similar way, by considering again the scalar

product (C.22), between the different solutions. In Ref. [151] it is argued that the positive

and negative frequency solutions are again the ones which involve only Hankel functions of the

second and first kind respectively. The positive and negative frequency solutions then take the

form

ξ(2)~pT ν±
µ (x) =

 νpx/(p
2
⊥τ

2
0 ) R~pT ν±

⊥ (τ)

νpy/(p
2
⊥τ

2
0 ) R~pT ν±

⊥ (τ)

−R~pT ν±
η (τ)

 , (C.32)

where the time dependence is given by

R~pT ν±
⊥ (τ) = − p⊥τ0

ν2 + p2
⊥τ

2
0

c±2/1 H
′(2/1)
iν (p⊥τ0) +

∫ τ

τ0

dτ ′ τ
′−1c±2/1H

(2/1)
iν (p⊥τ

′) , (C.33)

R~pT ν±
η (τ) = − p⊥τ0

ν2 + p2
⊥τ

2
0

c±2/1 H
′(2/1)
iν (p⊥τ0) +

∫ τ

τ0

dτ ′
τ ′

τ 2
0

c±2/1H
(2/1)
iν (p⊥τ

′) . (C.34)

Since the scalar product is constant in time we can without loss of generality evaluate it at the

time τ = τ0, when the gauge condition (C.4) applies. The scalar products between the different
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solutions then take the form

(a(2)~pT ν+|a(2)~p′T ν
′+) = iτ0 (2π)3δ2(~pT − ~p′T )δ(ν − ν ′) |c+

2 |2

τ 3
0 (p⊥τ0)

[
H

(2)∗
iν (x)

←→
∂xH

(2)
iν (x)

]∣∣∣
x=p⊥τ0

,

(C.35)

(a(2)~pT ν−|a(2)~p′T ν
′−) = iτ0 (2π)3δ2(~pT − ~p′T )δ(ν − ν ′) |c−1 |2

τ 3
0 (p⊥τ0)

[
H

(1)∗
iν (x)

←→
∂xH

(1)
iν (x)

]∣∣∣
x=p⊥τ0

,

(C.36)

(a(2)~pT ν+|a(2)~p′T ν
′−) = iτ0 (2π)3δ2(~pT − ~p′T )δ(ν − ν ′) (c+

2 )∗c−1
τ 3

0 (p⊥τ0)

[
H

(2)∗
iν (x)

←→
∂xH

(1)
iν (x)

]∣∣∣
x=p⊥τ0

,

(C.37)

where again we can evaluate the terms involving Hankel functions and their derivatives by use

of the relations (D.7, D.8). With the choice of parameters

c+
2 = τ0

√
πe

πν
2

2
p⊥τ0 , (C.38)

c−2 = τ0

√
πe−

πν
2

2
p⊥τ0 , (C.39)

the solutions then satisfy the usual relations for the scalar product

(a(2)~pT ν+|a(2)~p′T ν
′+) = (2π)3δ2(~pT − ~p′T )δ(ν − ν ′) , (C.40)

(a(2)~pT ν−|a(2)~p′T ν
′−) = − (2π)3δ2(~pT − ~p′T )δ(ν − ν ′) , (C.41)

(a(2)~pT ν+|a(2)~p′T ν
′−) = 0 . (C.42)

The orthogonality of the solutions a(2)~pT ν± and a(1)~pT ν±, in the sense that the scalar product

of any combination of the two vanishes, follows directly from the structure of the polarization

vectors. To complete the construction of the orthonormal basis of free modes in generalized

Coulomb gauge, we have to consider also the cases where either ν or p⊥ vanishes. We find that

the previous set of solutions is well behaved in the limit ν → 0, whereas in the case p⊥ → 0 it

is more convenient to consider a different parametrization.
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C.4 Special case: Zero transverse momentum

In the case of vanishing transverse momentum, the Coulomb gauge condition (C.4) along with

the Gauss constraint (C.3) imply that the physical solutions are of the form

ξ(1)ν,~pT=0
µ (τ) =

 1

0

0

 ξν(τ) , ξ(2)ν,~pT=0
µ (τ) =

 0

1

0

 ξν(τ) . (C.43)

The time dependence of the function ξν(τ) is governed by the evolution equation (C.2), which

in this case takes the form [
τ−1∂ττ∂τ +

ν2

τ 2

]
ξν(τ) = 0 . (C.44)

This equation has the general solution

ξν(τ) = c1

(
τ

τ0

)iν
+ c2

(
τ

τ0

)−iν
, (C.45)

and the positive and negative frequency solutions are given by c+
1 = c−2 = 0. With the appro-

priate normalization the solutions take the final form

ξν+(τ) =
1√
2ν

(
τ

τ0

)−iν
, ξν−(τ) =

1√
2ν

(
τ

τ0

)iν
, (C.46)

and the scalar product between the solutions satisfies the usual relations

(a(1/2)ν,~pT=0+|a(1/2)ν,~p′T+) = (2π)3δ2(~p′T )δ(ν − ν ′) , (C.47)

(a(1/2)ν,~pT=0−|a(1/2)ν,~p′T−) = − (2π)3δ2(~p′T )δ(ν − ν ′) , (C.48)

(a(1/2)ν,~pT=0+|a(1/2)ν,~p′T−) = 0 , (C.49)

while the two sets of solutions a(1)ν,~pT=0± and a(2)ν,~pT=0± are orthogonal as can directly be

observed from the polarization structure.
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Appendix D

Hankel functions

The Hankel functions are two linearly independent solutions of the Bessel equation[
τ−1∂ττ∂τ +

ν2

τ 2
+ p2

⊥

]
H

(1/2)
iν (p⊥τ) = 0 , (D.1)

with the asymptotic behavior

lim
x→∞

H
(2)
iν (x) =

√
2

πx
e−i(x−π/4)e−πν/2 , (D.2)

lim
x→∞

H
(1)
iν (x) =

√
2

πx
ei(x−π/4)eπν/2 , (D.3)

such that the two solutions are related to each other by complex conjugation

H
(2)∗
iν (x) = e−πνH

(1)
iν (x) , H

(1)∗
iν (x) = eπνH

(2)
iν (x) . (D.4)

There is also an integral representation of the Hankel functions, which reads

H
(2)
iν (x) =

−ie−πν2
π

∫ ∞
−∞

dη e−ix cosh η−iνη ,

H
(1)
iν (x) =

ie
πν
2

π

∫ ∞
−∞

dη eix cosh η+iνη . (D.5)

D.1 Orthogonality relations

Introducing the shorthand notation

A
←→
∂xB = A∂xB −B∂xA (D.6)
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the Hankel functions of the first and second kind obey the following identities

H
(2)∗
iν (x)

←→
∂xH

(2)
iν (x) = −4i e−πν

πx
,

H
(1)∗
iν (x)

←→
∂xH

(1)
iν (x) =

4i e+πν

πx
, (D.7)

whereas the terms involving Hankel functions of both kinds vanish

H
(2)∗
iν (x)

←→
∂xH

(1)
iν (x) = 0 ,

H
(1)∗
iν (x)

←→
∂xH

(2)
iν (x) = 0 , (D.8)

since the two solutions are mutually orthogonal solutions of the Bessel equation. The identities

(D.8) can easily be verified by use of the identity (D.4). The identities (D.7) follow from the

fact that solutions of the Bessel equation conserve the expression

H
(1/2)∗
iν (x)∂xx∂xH

(1/2)
iν (x)−H(1/2)

iν (x)∂xx∂xH
(1/2)∗
iν (x) = 0 . (D.9)

Moreover, since the left hand side is a total derivative, this implies that the expression[
x H

(1/2)∗
iν (x)

←→
∂xH

(1/2)
iν (x)

]
x=x0

=
[
x H

(1/2)∗
iν (x)

←→
∂xH

(1/2)
iν (x)

]
x=x1

(D.10)

is constant in time. We can then use the asymptotic forms in order to evaluate the constants.

In this way one obtains [
x H

(2)∗
iν (x)

←→
∂xH

(2)
iν (x)

]
x→∞

= −4i
e−πν

π[
x H

(1)∗
iν (x)

←→
∂xH

(1)
iν (x)

]
x→∞

= 4i
eπν

π
. (D.11)

One then recovers the identity (D.7) by making use of the invariant (D.10) with the constant

on the right hand side fixed by the asymptotic expression.

D.2 Numerical computation

In order to compute the polarization vectors discussed in Appendix C one needs to evaluate

the Hankel functions H
1/2
iν (x) numerically, for real values of ν and x. Since this involves in

particular the calculation of Hankel functions of large imaginary order |ν| � 1, for which no

standard library exists, we discuss here how these can be computed numerically in an efficient

way. The starting point is to relate the Hankel functions and their derivatives to the Bessel
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function of the first kind by [176]

H(2)
α (x) =

i [J−α(x)− eiπαJα(x)]

sin(πα)
,

H ′(2)
α (x) =

1

2

[
H

(2)
α−1(x)−H(2)

α+1(x)
]
. (D.12)

The Bessel functions in Eq. (D.12) can be computed by use of the series expansion [176]

Jα(x) =
∞∑
k=0

(−1)k
(x/2)2k+α

k! Γ(α + k + 1)
(D.13)

which converges rapidly for sufficiently small x, such that one only needs to sum over the first

few terms to achieve the desired accuracy. Since we will be interested in Hankel functions of

complex order α = iν, it is useful to note the complex characteristics of the functions involved

in Eqns. (D.12,D.13). For complex numbers z = x + iy with real numbers x, y and a, b these

take the form [177]

sin(z) = cosh(y) sin(x) + i sinh(y) cos(x) , (D.14)

za+ib = exp[a log |z| − arg(z)b] exp[i(b log |z|+ arg(z)a)] . (D.15)

The Gamma function appearing in Eq. (D.13) can efficiently be evaluated in the Lanczos

approximation to high numerical accuracy [178, 179]. Since the definitions of Hankel functions

of imaginary order α = iν involve large/small exponentials exp[±πν], we find it convenient to

use a specialized number format, which separately keeps track of the exponent as well as the

order one prefactor. By use of Eqns. (D.12,D.13) we can then evaluate the Hankel functions

and their derivatives at small values of x. In practice, we use x = 1 independent of the order

α and keep only the first ten terms of the power series in Eq. (D.13). The values of H
(2)
iν (x)

for x 6= 1 can then be calculated in a straightforward way, by numerically solving the Bessel

equation (D.1) using a leap-frog discretization scheme with adaptive step width. This provides

an efficient method to calculate the values of the Hankel functions and their derivatives at

different arguments of x for the same set of orders α.
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Appendix E

Perturbative calculation of hard scales

In this appendix we compute the perturbative expressions for the gauge-invariant hard scale

observables Λ2
T and Λ2

L as introduced in Sec. 2.4. In this context, we will frequently encounter

the expectation values of equal-time correlation functions of the gauge fields. Since ultimately,

we are interested only in gauge invariant quantities, we can evaluate all expressions in Fock-

Schwinger gauge with the residual gauge freedom fixed by the generalized Coulomb gauge

condition (c.f. App. C). In order to evaluate equal-time correlation functions in this gauge, we

first expand the gauge fields in terms of creation and annihilation operators according to

〈Aaµ(τ, ~x1, η)Aaν(τ, ~x2, η
′)〉 =

∫
d2~pT
(2π)2

dν

2π

∫
d2~qT
(2π)2

dν ′

2π

∑
λ,λ′

〈[
ξ(λ)~pT ν+
µ a~pT νλ,a ei(~pT ~x1+νη) + h.c.

]
×
[
ξ(λ′)~qT ν

′+
ν a~qT νλ′,a e

i(~qT ~x2+ν′η′) + h.c.
]〉

, (E.1)

where h.c. denotes the hermitian conjugate. In order to evaluate the above expectation values,

we make use of the relations

〈a~pT νλ,a a† ~qT ν
′

λ′,b 〉 = δabδλλ′ (f(~pT , ν) + 1) (2π)3 δ(2)(~pT − ~qT ) δ(ν − ν ′) ,

〈a† ~pT νλ,a a~qT ν
′

λ′,b 〉 = δabδλλ′ f(~pT , ν) (2π)3 δ(2)(~pT − ~qT ) δ(ν − ν ′) ,

(E.2)

whereas all other terms appearing in Eq. (E.1) vanish identically. The expression in Eq. (E.1)

can then be expressed as

〈Aaµ(τ, ~x1, η)Aaν(τ, ~x2, η
′)〉 = (N2

c − 1)

∫
d2~pT
(2π)2

dν

2π

[
(f(~pT , ν) + 1) ei(~pT (~x1−~x2)+ν(η−η′))

+f(~pT , ν) e−i(~pT (~x1−~x2)+ν(η−η′))
]

Π~pT ν
µν (τ) , (E.3)
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where we defined the Lorentz tensor Π~pT ν
µν (τ) according to

Π~pT ν
µν (τ) =

∑
λ

ξ(λ)~pT ν±
µ (τ)ξ(λ)~pT ν∓

ν (τ) . (E.4)

In order to evaluate this tensor, we consider the Coulomb gauge condition to be fixed at the

time τ when the observables are calculated. We recall that the polarization vectors in this

gauge take the form (c.f. Appendix C)

ξ(1)~pT ν,±
µ (τ) =

√
πe±πν/2

2p⊥

 −pypx
0

H
(2/1)
iν (p⊥τ) ,

ξ(2)~pT ν,±
µ (τ) =

√
πe±πν/2

2τp2

 νpx

νpy

−(p⊥τ)2

H
′(2/1)
iν (p⊥τ) , (E.5)

and the Lorentz tensor Π~pT ν
µν (τ) can then be evaluated explicitly. In order to simplify the

resulting tensor structure, we will approximate the behavior of the Hankel functions and their

derivatives by the expansion for large time arguments[
1 +

ν2

x2

]−1

H
′(2)
iν (x)H

′(1)
iν (x) ' H

(2)
iν (x)H

(1)
iν (x) ' 2

πx
, (E.6)

which effectively amounts to considering highly anisotropic systems, where the characteristic

transverse momenta are much larger than the longitudinal momenta (p⊥ � ν/τ). Within this

approximation the Lorentz tensor can then be expressed as

Π~pT ν
µν (τ) =

1

2p⊥τ

[
−gµν −

pµpν
p2

]
, (E.7)

where gµν = diag(−1,−1,−τ 2) denotes the spatial components of the metric tensor, the spatial

momentum vector is denoted as pµ = (~pT , ν), the transverse momentum is p⊥ = |~pT | and

p2 = p2
⊥+ν2/τ 2 denotes the spatial momentum squared. In summary the equal-time correlation

functions in Eq. (E.1) can then be expressed as

〈Aaµ(τ, ~x1, η)Aaν(τ, ~x2, η
′)〉 = (N2

c − 1)

∫
d2~pT
(2π)2

dν

2π

(
1

2p⊥τ

)[
(f(~pT , ν) + 1) ei(~pT (~x1−~x2)+ν(η−η′))

+ f(~pT , ν) e−i(~pT (~x1−~x2)+ν(η−η′))
] [
−gµν −

pµpν
p2

]
, (E.8)

which we will use in the following in order to evaluate the perturbative expressions for gauge

invariant quantities. We will also need the expectation value of equal-time correlation functions
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of time derivatives of the gauge fields, which can be calculated in a similar fashion. Here we

will only present the result of this computation, which is given by

〈∂τAaµ(τ, ~x1, η) ∂τA
a
ν(τ, ~x2, η

′)〉 = (N2
c − 1)

∫
d2~pT
(2π)2

dν

2π

(
1

2p⊥τ

)[
(f(~pT , ν) + 1)

× ei(~pT (~x1−~x2)+ν(η−η′)) + f(~pT , ν) e−i(~pT (~x1−~x2)+ν(η−η′))
] [
−p2gµν − pµpν

]
. (E.9)

In order to evaluate the perturbative expressions for the hard scale observables, we will first

evaluate the perturbative expression for the energy density. Here we will consider separately

the electric and magnetic components of the energy density, which can be calculated from

Eqns. (E.8,E.9) in a straightforward way. The individual components of the magnetic energy

density are given by

〈B2
x(τ)〉 =

1

V⊥Lη

∫
d2x⊥dη 〈Fayη(x)Fyηa (x)〉 ,

〈B2
y(τ)〉 =

1

V⊥Lη

∫
d2x⊥dη 〈Faxη(x)Fxηa (x)〉 ,

〈B2
η(τ)〉 =

1

V⊥Lη

∫
d2x⊥dη 〈Faxy(x)Fxya (x)〉 , (E.10)

where in the following we will consider only the abelian part of the field strength tensor. The

expressions in Eq. (E.10) then reduce to

〈B2
x(τ)〉 =

1

VTLη

∫
d2x⊥dη ∆µν

yη (x1, x2) 〈Aaµ(x1)Aaν(x2)〉
∣∣
x1=x2=x

,

〈B2
y(τ)〉 =

1

VTLη

∫
d2x⊥dη ∆µν

xη(x1, x2) 〈Aaµ(x1)Aaν(x2)〉
∣∣
x1=x2=x

,

〈B2
η(τ)〉 =

1

VTLη

∫
d2x⊥dη ∆µν

xy(x1, x2) 〈Aaµ(x1)Aaν(x2)〉
∣∣
x1=x2=x

, (E.11)

where the differential operator ∆µν
αβ(x1, x2) is given by

∆µν
αβ(x1, x2) = ∂x1α ∂

α
x2
gµβδνβ + ∂x1β ∂

β
x2
gµαδνα − 2∂x1α ∂

x2
β g

µβgνα , (E.12)
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(no summation over α, β) where δαβ denote the Kronecker symbol. By use of Eq. (E.8) for the

equal time correlation functions in Coulomb gauge, one then obtains the final result

〈B2
x(τ)〉 = Ng

∫
d2~pT
(2π)2

dν

2π

p2
y + ν2/τ 2

2p⊥τ
[f(p) + 1/2] ,

〈B2
y(τ)〉 = Ng

∫
d2~pT
(2π)2

dν

2π

p2
x + ν2/τ 2

2p⊥τ
[f(p) + 1/2] ,

〈B2
η(τ)〉 = Ng

∫
d2~pT
(2π)2

dν

2π

p2
⊥

2p⊥τ
[f(p) + 1/2] ,

(E.13)

where Ng = 2(N2
c − 1) is the number of transverse gluons. Similarly, one can evaluate the

electric components of the energy density

〈E2
x(τ)〉 =

1

VTLη

∫
d2x⊥dη

[Ex
a (x)]2

τ 2
,

〈E2
y (τ)〉 =

1

VTLη

∫
d2x⊥dη

[Ey
a(x)]2

τ 2
,

〈E2
η (τ)〉 =

1

VTLη

∫
d2x⊥dη [Eη

a(x)]2 , (E.14)

according to

〈E2
x(τ)〉 = Ng

∫
d2~pT
(2π)2

dν

2π

p2
y + ν2/τ 2

2p⊥τ
[f(p) + 1/2] ,

〈E2
y (τ)〉 = Ng

∫
d2~pT
(2π)2

dν

2π

p2
x + ν2/τ 2

2p⊥τ
[f(p) + 1/2] ,

〈E2
η (τ)〉 = Ng

∫
d2~pT
(2π)2

dν

2π

p2
⊥

2p⊥τ
[f(p) + 1/2] , (E.15)

such that the overall energy density ε(τ) is given by (c.f. Eqns. (2.79,2.81))

ε(τ) = 2Ng

∫
d2~pT
(2π)2

dν

2π

p2

2p⊥τ
[f(p) + 1/2] . (E.16)

We note that the factor in the denominator has the interpretation of the mode energy

ωp ' p⊥ in the limit of highly anisotropic systems, where the characteristic transverse mo-

menta are much larger than the characteristic longitudinal momenta. Since this limit enters

the approximation in Eq. (E.6), we can also replace this factor to obtain the usual relativistic

normalization. By absorbing the additional factor of τ into the integration over the longitudinal

momentum pz = ν/τ , one then recovers the standard textbook relations.

164



In order to evaluate the perturbative expressions for the gauge invariant hard scale observ-

ables Λ2
T and Λ2

L, we also have to consider covariant derivatives of the field strength tensor

according to (c.f. Eq. (2.82))

〈Hµ
µ(τ)〉 =

1

V⊥Lη

∫
d2~x⊥ dη 〈Dab

α (x)Fαµb (x) Dβ
ac(x)F cβµ(x)〉 , (E.17)

(no summation over µ) where summation over spatial Lorentz indices α, β = x, y, η is implied.

We proceed as previously and consider only the abelian part of the covariant derivative and

the field strength tensor, such that the expression in Eq. (E.17) reduces to

〈Hµ
µ(τ)〉 =

1

V⊥Lη

∫
d2x⊥dη Γµ,γδµ (x1, x2) 〈Aaγ(x1)Aaδ(x2)〉

∣∣
x1=x2=x

(E.18)

where we introduced the derivative operator

Γµ,γδµ (x1, x2) = [∂α∂
αgµγ − ∂αgµν∂νgαγ]x1

[
∂β∂

βδδµ − gβδ∂β∂µ
]
x2
. (E.19)

Since the second parts of the derivatives are of the form ∂γAγ(x), they do not contribute in

the generalized Coulomb gauge. With this simplification, the above expression can then be

evaluated explicitly according to

〈Hx
x(τ)〉 = Ng

∫
d2~pT
(2π)2

dν

2π

p2
[
p2
y + ν2/τ 2

]
2p⊥τ

[f(p) + 1/2] ,

〈Hy
y(τ)〉 = Ng

∫
d2~pT
(2π)2

dν

2π

p2 [p2
x + ν2/τ 2]

2p⊥τ
[f(p) + 1/2] ,

〈Hη
η(τ)〉 = Ng

∫
d2~pT
(2π)2

dν

2π

p2 p2
⊥

2p⊥τ
[f(p) + 1/2] . (E.20)

Combining the results in Eqns. (E.16) and (E.20), we obtain the final result (c.f. Eqns. (2.84,2.85))

Λ2
T (τ) '

∫
d2~pT dpz p

2
⊥/2 ωp f(~pT , pz, τ)∫

d2~pT dpz ωp f(~pT , pz, τ)
, Λ2

L(τ) '
∫
d2~pT dpz p

2
z ωp f(~pT , pz, τ)∫

d2~pT dpz ωp f(~pT , pz, τ)
,

(E.21)

where in the last step, we explicitly used ωp ' pT as the relativistic quasi-particle energy in the

limit pT � ν/τ .
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Appendix F

Set-in and freeze-out times in the

parametric resonance instability

Here we investigate the instability criterion for the parametric resonance instability discussed

in Sec. 4.2 for generic modes with transverse momentum pT and rapidity wave number ν. In

accordance with Eqns. (4.65) and (4.66), the condition for modes to be contained in the unstable

resonance band takes the form

2θ

3(σ0τ0)

p2
T

σ2
0

+
9

4

ν2

θ2
≤ 1

2
, (F.1)

and we are only interested in the solutions θ > 0, which characterize the on-set and freeze-out

of instabilities relevant for the initial value problem. Before considering the generic case pT 6= 0

and ν 6= 0 we consider briefly the special cases where one of the two vanishes. For vanishing

transverse momentum the condition is satisfied if

θ ≥
√

18

2
ν , (F.2)

which suggests that exponential growth sets in with a delay. In contrast for vanishing ν unstable

growth is limited to the time when

θ ≤ (σ0τ0)
3

4

σ2
0

p2
T

, (F.3)

suggesting that exponential growth stops for later times. For the generic case, Eq. (F.1) can

be solved graphically. First we rescale θ′/θ = 2/(3σ0τ0) p2
T/σ

2
0 yielding

ν2p4
T

σ4
0(σ0τ0)2

1

θ′2
≤ 1

2
− θ′ . (F.4)
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This suggests that the existence of an unstable window only depends on the value of p4
Tν

2/(σ4
0(σ0τ0)2),

whereas the precise time also depends on p2
T/σ

2
0. The existence of real solutions is visualized

in Fig. F.1, where we show the left hand side and the right hand side of Eq. (F.4) for different

values of p4
Tν

2/(σ4
0(σ0τ0)2). One observes that one solution is always real and negative and

therefore not relevant for the study of the initial value problem. The other solutions are real

for ν2p4
T < σ4

0(σ0τ0)2/54. In this case the solutions are given by

θ′Start =
1

6

[
1− e−iπ/3/α− eiπ/3α

]
, (F.5)

θ′End =
1

6
[1 + 1/α + α] , (F.6)

α =
(

1− 2β +
√

4β (β − 1)
)1/3

, (F.7)

β = 54
p4
Tν

2

σ4
0(σ0τ0)2

. (F.8)

The solution is real if and only if |α| = 1. Indeed this is the case for resonant modes, i.e. modes

with β < 1. We can exploit this fact to rewrite the solution for the starting and ending times

as

θ′Start =
1

6
(1 + 2 sin(φ/3− π/6)) (F.9)

θ′End =
1

6
(1 + 2 cos(φ/3)) (F.10)

φ = 2 arctan

(√
1

β−1 − 1

)
(F.11)

which is manifestly real. We also note that φ ∈ (0, π) for modes satisfying Eq. (F.4) and

therefore θ′Start ≤ θ′End as suggested by the naming.
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Figure F.1: Visualization of Eq. (F.4) for different values of p4
Tν

2/(σ4
0(σ0τ0)2). There is always

one negative solution which is irrelevant for the initial value problem. If p4
Tν

2/(σ4
0(σ0τ0)2) is

smaller than the critical value of 1/54 there are two positive solutions corresponding to the
set-in and freeze-out times of the primary instability.
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Appendix G

CGC initial conditions on the lattice

In this appendix, we describe the lattice implementation of the color-glass initial conditions

discussed in Sec. 5.2. We first generate 2(N2
c −1) sets of uncorrelated Gaussian random numbers

associated to the color-charge densities of the two incoming nuclei. This is done in coordinate

space, where for every position in the transverse plane we initialize

ρ(A)
a (~x⊥) =

(
Q

g

)
ξ

(A)
a (~x⊥)−R(A)

a

NTa⊥
. (G.1)

Here a = 1, ..., N2
c − 1, labels the different color components, A = 1, 2 labels the different nu-

clei, ξ
(A)
a (~x⊥) denote Gaussian random numbers and the subtraction of the overall color charge

R
(A)
a = N−2

T

∑
~x⊥
ξ

(A)
a (~x⊥) ensures the overall color neutrality constraint.

In order to obtain the initial gauge links and electric fields in the forward light cone, the

result is then Fourier transformed to (transverse) momentum space, where we solve the Laplace

equation

Λ(A)
a (~pT ) = −ρ

(A)
a (~pT )

~p 2
T

. (G.2)

The result is Fourier transformed back to obtain the solution of the Laplace equation in coor-

dinate space. We then proceed by calculating the pure gauge solutions U (1/2)(~x⊥) according

to

U
(A)
i (~x⊥) = V (A)(~x⊥) V †(A)(~x⊥ + ı̂) , (G.3)

V (A)(~x⊥) = exp[ig Λ(A)
a (~x⊥) Γa] . (G.4)
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The link variables Uµ(~x⊥, η, τ = 0+) at initial time τ = 0+ can then be obtained as [50, 51]

Ui(~x⊥, η, τ = 0+) =
[
U

(1)
i (~x⊥) + U

(2)
i (~x⊥)

] [
U
†(1)
i (~x⊥) + U

†(2)
i (~x⊥)

]−1

, (G.5)

whereas Uη(~x⊥, η, τ = 0+) = 1 . Similarly, the (dimensionless) electric field variables Ẽa
µ(x⊥, η, τ =

0+) at initial time are given by Ẽa
i (x⊥, η, τ = 0+) = 0, while the longitudinal component is

given by [50]

Ẽa
η (~x⊥, η, τ = 0+) = 2Re tr

[
iΓa

∑
i=1,2

U
(2)
i (~x⊥)− U (2)

i (~x⊥ − ı̂) (G.6)

+U
(1)
i (~x⊥)U †i (~x⊥)− U †i (~x⊥ − ı̂)U (1)

i (~x⊥ − ı̂)
]
.

In order to generate the fluctuations, which explicitly break the boost invariance of the

system we first sample the functions h(ν) and eai (~p⊥) in momentum space according to

h(ν) = e−b|ν| ξ(ν)
√
Nηaη , eai (~p⊥) = ξai (~p⊥) (N⊥a⊥) (G.7)

where ξai (~p⊥) and ξ(ν) are uncorrelated Gaussian random numbers. After performing a Fourier

transform to coordinate space, the (dimensionless) electric field fluctuations δEa
µ(~x⊥, η, τ = 0+)

can then be calculated as

δẼa
i (~x⊥, η, τ = 0+) = (ga⊥) eai (~x⊥)

h(η)− h(η − η̂)

aη
, (G.8)

δẼa
η (~x⊥, η, τ = 0+) = −h(η) tr

[
iΓa

∑
j=1,2

Dj(x)
]
, (G.9)

where Dj(x) denotes the covariant derivative of the transverse electric fields according to

Dj(~x⊥, η, τ = 0+) = exp[iga⊥e
a
j (~x⊥)]− U †j (x− ĵ) exp[iga⊥e

a
j (~x⊥ − ĵ)] Uj(x− ĵ) . (G.10)

The electric field variables in our simulations are then initialized as the sum of the two contri-

butions Ẽa
µ(x⊥, η, τ = 0+) and δẼa

µ(x⊥, η, τ = 0+).
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