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Abstract

Understanding molecular cloud formation is a major challenge in modern as-
trophysics. Although the improvements on computational power and novel
astronomical instrumentation have allowed us to reach unprecedented accu-
racy, there are still many open questions. One key issue which helps us to un-
derstand the physics behind this problem is the correct comparison between
numerical models and observations. Usually, the 12CO(J=1-0) emission is
considered to be a good tracer of the temperatures and structure of molecu-
lar clouds. However, it has been found that it may provide a biased picture
of clouds, at best. In this thesis, we analyze a large set of numerical simu-
lations with the aim of making direct comparison with observations. Using
a 3D magneto-hydrodynamical simulation including time-dependent chem-
istry, we find that most of the CO is located at number densities greater than
100 cm−3 and kinetic temperatures (TK) below 40 K, regardless of the mean
number density (n0), metallicity (Z) and UV radiation field strength (UV).
Radiative transfer calculations are performed to analyze the 12CO(J=1-0)
rotational transition line intensity that comes out of the cloud. We then
calculate the excitation temperature (Tex) considering theoretical and obser-
vational approaches and find that the gas is mostly sub-thermally excited,
indicating that Tex represents a lower limit of TK. Tex is used for estimating
the CO column density (NCO). Considering the full position-position-velocity
spectrum for inferring Tex, instead of the usual way of using the maximum
of the intensity along the line of sight, improves the estimates of NCO by
∼30%. Besides, when a single Milky-Way like CO-to-H2 conversion factor is
assumed, the total inferred mass of H2 is underestimated by a factor which
typically increases from ∼0.1 to 1, as the product n0 × Z decreases, and/or
UV becomes stronger. Moreover, we propose density variance–Mach number
relations for supersonic, magnetized, turbulent gas, including an isothermal
and non-isothermal equation of state. These analytical relations reproduce
satisfactorily the measurements made on numerical simulations. We find that
the magnetic field strength scales with density in a relationship of the kind
B ∝ ρα with 0 ≤ α < 1/2.



Zusammenfassung

Die theoretische Beschreibung der Entstehung von Molekülwolken ist eine
große Herausforderung der modernen Astrophysik. Obwohl mit verbeßerter
Computerleistung und neuartiger astronomischer Instrumentierung beispiel-
lose Genauigkeit erreicht wird, bleiben dennoch viele Fragen offen. Der Ver-
gleich von numerischen Modellen mit Beobachtungen fördert das Verständnis
der physikalische Prozeße dieses Problems. Gewöhnlich wird die 12CO(J=1-
0) Emißion als guter Indikator der Temperaturen und der Struktur von
Molekülwolken betrachtet. Jedoch wurde festgestellt, daß diese im besten
Fall nur ein verzerrtes Bild der Wolken ergeben. In dieser Arbeit analysieren
wir eine große Anzahl numerischer Simulationen mit dem Ziel direkte Ver-
gleiche mit Beobachtungen zu ziehen. In 3D magnetohydrodynamischen
Simulationen mit zeitabhäniger Chemie finden wir, daß sich der größte Teil
des COs bei Teilchendichten über 100 cm−3 und kinetischen Temperaturen
(TK) unter 40 K befindet. Dieses Ergebnis ist unabhängig von der mittleren
Teilchendichte (n0), der Metallizität (Z) und der Stärke des UV Strahlungs-
feldes (UV). Strahlungstransport-Rechnungen werden durchgeführt, um die
aus der Molekülwolke entweichende Intensität der 12CO(J=1-0) Rotations-
übergangs-Linie zu analysieren. Anschließend berechnen wir mit theoreti-
schen und beobachtungsbasierten Ansätzen die Anregungstemperatur (Tex)
und finden, daß das Gas meistens subthermisch angeregt ist, was anzeigt,
daß Tex eine untere Grenze von TK darstellt. Tex wird verwendet um die CO-
Säulendichte (NCO) abzuschätzen. Berücksichtigung des gesamten Position-
Position-Geschwindigkeits- Spektrums bei der Ableitung von Tex anstelle der
üblichen Methode, in der das Maximum der Intensität entlang der Sichtlinie
verwendet wird, verbeßert die Abschätzung von NCO um ∼ 30%. Bei An-
nahme des CO-zu-H2 Konvertierungsfaktors der Milchstraße, wird die abgelei-
tete Maße des H2 um einen Faktor unterschätzt, der typischerweise von ∼0.1
bis 1 anwächst, wenn das Produkt n0 ×Z abnimmt und/oder die Stärke der
UV Strahlung zunimmt. Andererseits leiten wir Dichtevarianz-Machzahl Re-
lationen für supersonisches, magnetisiertes, turbulentes Gas her, wobei wir
eine isotherme sowie eine nicht-isotherme Zustandsgleichung berücksichtigen.
Diese analytischen Relationen reproduzieren die Meßungen aus den numer-
ischen Simulationen. Wir zeigen, daß die Magnetfeldstärke und die Dichte
einer Relation B ∝ ρα folgen, wobei 0 ≤ α < 1/2 gilt.
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Chapter 1

Introduction

Our perception of most of the astronomical objects changes dramatically de-
pending on the instrument used for the observation. Starting from the basic,
far from the light pollution in a clear night, looking to the sky with our naked
eyes is always a fascinating experience. This picture improves significantly
with the help of telescopes. It is not only matter of sensitivity, but having a
panchromatic view of an astronomical source is the best way of studying it.
For instance, Fig. 1.1 shows an ensemble of images of the Antennae galaxy1

(other designations. Ringtail Galaxy, NGC 4038 / 4039, PGC 37967 / 37969,
Arp 244, among others2) in different wavelengths, although the apparent col-
ors in this figure are false. At the top, the images are from the center of the
interacting galaxies, from left to right: X-rays (10−2 . λ/[nm] . 10, Ry-
bicki and Lightman, 1979), Optical (390 . λ/[nm] . 700)3, Near Infrared
(800 . λ/[nm] . 2500)4, Far Infrared (25 . λ/[µm] . 350)5, and Radio-
continuum (λ = 20 cm + CO (J=1-0) emission line at λ =2.6 mm in white
contours). Those images are beautifully complemented by the large scale
images at the bottom, which correspond to (from left to right): Ultraviolet
(10 . λ/[nm] . 390) (Rybicki and Lightman, 1979), Optical, and the neutral
hydrogen (HI) transition at λ =21 cm. The many different features shown
in each part of the electromagnetic spectrum are obvious from the separated
images in Fig. 1.1. The features in one band may be “obscure” in another.
From left to right at the top, the sequence of images show the hottest gas
emission (X-rays) to the coldest (radiocontinuum+carbon monoxide). The
physics dominating the radiation in each image may be treated differently,

1http://angelrls.blogalia.com/historias/55310
2http://simbad.u-strasbg.fr/simbad/
3http://en.wikipedia.org/wiki/Visible spectrum
4http://en.wikipedia.org/wiki/Near-infrared spectroscopy
5https://en.wikipedia.org/wiki/Far infrared

1



2 CHAPTER 1. INTRODUCTION

but it has to converge to a plausible explanation of the phenomenon.

Figure 1.1: Composite images of the Antennae galaxy in different wave-
lengths (Arp 244) taken from http://angelrls.blogalia.com/historias/55310
(false colors). At the top, from left to right, images in: X-rays, Optical,
near-infrared, far-infrared, radio 20 cm (image) + CO (J=1-0) emission line
at λ =2.6 mm in white contours. At the bottom, from left to right, images
in a wider field of view: UV, Optical, HI (21 cm).

The interstellar medium (ISM) is the gas and dust between the stars. It
is the reservoir of material for the formation of the stars, covering a very
wide range of densities and temperatures. It may be conveniently classified
following the gas phases6 which can be observed in different wavelengths. The
main characteristic of the phases of the ISM are shown in Table 1.1 (Tielens,
2005). It is noticeable that the coldest high density medium (molecular
clouds) is located the closest to the Galactic mid-plane (H), and as the
temperature of the gas increases, the gas locates at higher altitude above the
Galactic mid-plane.

Star formation takes place in the mid-plane, with dense molecular clouds
as the main site for this process (e.g. Reddish, 1975; Shu et al., 1987; Ward-
Thompson et al., 2007). However, molecular clouds are intrinsically obscure
in many wavelengths because of their high densities (n & 200 cm−3) and

6The interstellar gas is composed by ions, atoms and molecules in the gas-phase. The
interstellar dust are small solid particles with diameters typically less than ∼ 1µm, mixed
with the interstellar gas (Draine, 2011).
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Table 1.1: Main characteristics of the phases of the interstellar medium (Tie-
lens, 2005)

Phase na
0 (cm−3) T b (K) Hc (pc) Σd (M⊙pc

−2)
Hot
intercloud 0.003 106 3000 0.3
Warm
neutral medium 0.5 8000 220e 1.5
Warm
ionized medium 0.1 8000 900f 1.1
Cold
neutral mediumg 50 80 94 2.3
Molecular
clouds >200 10 75 1.0
HII regions 1-105 104 70h 0.05

a Typical mean gas density for each phase. b Typical gas temperature
for each phase. c Gaussian scale height above the Galactic mid-plane
∼ exp[−(z/H)2/2], unless otherwise indicated. d Surface density in the so-
lar neighborhood. e Best represented by a Gaussian and an exponential. f

Warm ionized medium represented by an exponential. g Diffuse clouds. h

HII regions represented by an exponential.
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low temperatures (typically of the order of few tens K). Part of the back-
ground starlight, for instance, cannot pass through this dense and cold gas.
In addition, dust is well mixed with the gas and is an effective barrier to
short wavelength radiation. It is caused because dust grains absorb short
wavelengths (e.g. below optical wavelengths) and emit the excess of energy
the infrared. Therefore, one has to choose another wavelengths which are
suitable for their study. Given the low temperatures of molecular clouds, the
most suitable and observed molecule in the ISM is carbon monoxide (CO)
due to its excitation properties. For example, Fig. 1.2 shows a composite
image of optical + mm wavelengths of the edge-on oriented Centaurus A
galaxy. The image of the bright halo and obscure disk are was taken in the
optical part of the spectrum. It is evident that this galactic disk rich in dust
and dense gas is totally opaque in the visible light. On the contrary, for the
CO emission at λ = 1.3 mm (represented by the false colored cyan, violet,
and dark blue features over-imposed to the optical image) part of the molec-
ular gas structure is accessible. The violet-blue and cyan colored areas show
the rotation of the disk of this galaxy. The violet-dark blue colored areas are
moving towards us, while the cyan colored areas are moving away.

Figure 1.2: Composite image of the Centaurus A galaxy (false colors). The
bright halo and the obscure disk is an optical image taken with the Wide Field
Imager (WFI) of the MPG/ESO 2.2 mts. telescope locate at the ESO’s La
Silla Observatory. The violet, blue, cyan features shows the signal around
CO(J=2-1) - 1.3 mm from ALMA.
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Since the first detection of CO in the ISM in mid-1970, it has been widely
used to trace the molecular gas (e.g. Wilson et al., 2009; Bolatto et al., 2013).
Although, molecular hydrogen (H2) is the principal component of molecular
gas, it cannot be observed at the typical temperatures of molecular clouds.
With two identical atoms, H2 is a highly symmetric molecule with a small
reduced mass mr = mH/2 and hence a small moment of inertia. Because its
low mass and small moment of inertia, it has large separations between its
rotational and vibrational levels (Draine, 2011). In addition, because of its
symmetry, it has no a permanent dipole moment, and so its pure rotational
transitions are electric quadrupole transitions. Together, these factor mean
that H2 emission becomes negligible once the gas temperature drops below
T ∼ 200 K (Tielens, 2005; Draine, 2011). Other indirect methods are needed
for tracing the molecular material of the ISM.

CO is the second most abundant molecule in the ISM. It is a diatomic
molecule relatively easy to observe in millimeter wavelengths because it has a
permanent dipole moment and a simple ladder of rotational levels. Its lowest
transitions are very close to each other and within the same wavelength region
(Wilson et al., 2009). The fundamental rotational level of 12CO is excited at
relatively low temperatures (≈ 5.5 K), compared to the typical temperatures
of molecular clouds (∼10-30 K)7. CO (J=1-0) is therefore the most frequent
observed line in molecular cloud studies (Draine, 2011). However, the amount
of CO depends on the environmental conditions as is going to be shown in
the course of this thesis manuscript.

Molecular clouds, taxonomy

The formation and structure of molecular clouds are mostly set by turbulence.
In §1.2, we will expose about the role of turbulence in molecular clouds. In
this thesis, we cover a wide range of physical parameters which are intended to
simulate different environments. We are not intending to explain particular
types of cloud, but rather compare statistically. To give an idea of different
environments, table 1.2 (taken from Mac Low and Klessen, 2004) indicates
the main physical properties of interstellar dense clouds.

Table 1.3 (taken from Draine, 2011) shows the cloud observable categories.
The range in AV in the table may change by few magnitudes from author
to author, especially for Diffuse and Translucent molecular clouds. In the
course of this text, we frequently refer to this classification.

7From now on, we will refer to 12CO as CO for simplicity.
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Table 1.2: Physical properties of interstellar dense clouds (Mac Low and
Klessen, 2004)

Giant molecular Molecular Star- Protostellar
Cloud Cloud Forming Corea

Complex Clump
Size (pc) 10-60 2-20 0.1-2 .0.1
Density [nH2/cm

−3] 100-500 102-104 103-105 >105

Mass (M⊙) 104-106 102-104 10-103 0.1-10
Linewidth (km s−1) 5-15 1-10 0.3-3 0.1-0.7
Temperature (K) 7-15 10-30 10-30 7-15
Examples W51, L1641,L1630, -

W3, M17, Orion- W33, W3A,
Monoceros, B227, L1495
Taurus-Auriga- L1529
Perseus complex

aProtostellar cores in the “prestellar” phase, i.e., before the formation of the
protostar in its interior.

Table 1.3: Cloud categories (Draine, 2011)

Category AV mag Examples
Diffuse molecular cloud .1 ζOph cloud, AV = 0.84a

Translucent cloud 1 to 5 HD 24534 cloud, AV = 1.56b

Dark cloud 5 to 20 B68c, B335d

Infrared dark cloud (IRDC) 20 to &100 IRDC G0028.53-00.25e

avan Dishoeck and Black (1986). bRachford et al. (2002). cLai et al. (2003).
dDoty et al. (2010). eRathborne et al. (2010).
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Structure
8

The classification in Table. 1.3 is closely related to the interaction between
matter and the incident radiation field. Fig. 1.3 (taken from Draine (2011))
shows a schematic view of a photodissociation region (PDR). It is defined
as the interphase between the HII region9 (left) and the dense molecular
cloud (right). Considering a frame at which the PDR is at rest, the UV
radiation comes from strong stellar sources located at the left of the figure
passing through the ionization front (where at least 50% of the hydrogen is
ionized) entering into the PDR. As the molecular gas enters into the PDR,
it is dissociated depending on the species. Molecules with weaker bonds are
located towards higher density material (to the right of the figure). From
this schematic view, one can infer that O2 is poorly bond compared to CO,
which in turn its bond is weaker than the one of H2. The atomic gas resulting
from the photodissociation process then flows towards the ionization front
where it is ionized.

Part of the formation and dissociation processes of H2 and CO are ex-
plained in §1.3.

8This subsection is based on the book of Draine (2011)
9A HII region is composed by ionized material surrounding new-born massive stars.
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Figure 1.3: Figure 31.2 from Draine (2011). Structure of a Photo-
Dissociation Region at the interface between an HII region and a dense
molecular cloud.
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1.1 Motivation of this thesis

The understanding of astronomical phenomena mainly depends on the ac-
curate interpretation of observational data. Theoretical models may help
us to explain the physics behind the phenomena. However, the comparison
between observations and theory is not always straightforward because of
several reasons:

• Most of the information one has from astronomical objects comes from
radiation. The relation between radiation and the underlying physics
is not always well understood. The interpretation of many physical pa-
rameters, like masses and temperatures, are subject to approximations
which sometimes provides a biased picture of the actual conditions.

• Models are limited. In one hand, computational power strongly con-
strains the physical processes that can be implemented in numerical
models. This limitation force us to make many approximations that
may compromise the physical interpretation of the outputs. On the
other hand, good models have to be constrained by observational mea-
surements, which frequently results on a bunch of parameters. In turn,
the set of parameters have to be “tuned” in order to provide the result
that better matches the observation.

• Projection effects. Observations are usually performed on a 2-dimensional
basis. De-projections are very challenging, and particularly in sub-
mm/mm/radio astronomy, the 3rd coordinate (given by the sight line)
is frequently expressed in terms of velocities (e.g. Goodman et al.,
2009b). Random velocity variations may create coherent features along
the sight line in velocity space, which in real space may correspond to
multiple, physically disconnected regions. Conversely, physically con-
nected zones in real space, may be interpreted as different, separated
features in velocity space (Adler and Roberts, 1992; Ballesteros-Paredes
and Mac Low, 2002; Glover et al., 2010; Shetty et al., 2010). On the
other hand, simulations can be performed in 3D. However, translat-
ing 3-dimensional physical quantities into 2D counterparts may also
introduce large uncertainties.

The comparison between simulations and observations of the ISM is par-
ticularly complicated. The objects in the ISM are extended and does not
have a well defined and simple geometry. Many different complicated pro-
cesses interplay within the ISM (details are given in the next subsections)
making its structure vey dynamical (e.g. turbulence).
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As molecular clouds are the site for star formation, here we present a rig-
orous analysis of a large set of numerical simulations which are intended to
model the statistical properties of molecular clouds formation. This is done
with the aim of understanding the physics of molecular clouds as well as
doing direct comparisons with observations. We perform radiative transfer
calculations in order to produce carbon monoxide (CO) synthetic “observa-
tions”. In the chapters 3, 4, and 5, we focus on the emission of the rotational
transition J=1-0 (the most common observed line). The CO (J=1-0) spectra
is then used for comparisons between physical quantities inferred from this
emission and the “true” quantities10. Later, in chapter 6, we use analyze the
density distribution and its relation with the Mach number.

10Since we are testing observational methods with our simulations, we define that the
physical quantities directly calculated with the code as the “true” quantities.
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1.2 Turbulence

11

Turbulence is observed in most of the flows in our everyday life. It is
present in the water of a river, the smoke of a chimney, stirring a cup for
coffee, or in the clouds. It is clear that the fluid looks irregular, unsteady,
chaotic (Pope, 2011). The fluid velocity field varies irregularly and greatly
with respect of the positions of the referential frame and time. A very impor-
tant and useful feature of turbulence is that it is very efficient on transporting
and mixing fluids elements (Pope, 2011). In the ISM for instance, the ele-
ments released by dying stars or supernova explosions are efficiently mixed
by turbulence.

Molecular clouds are dynamical objects with relatively short lifetimes
. 107 Myrs (e.g. Ballesteros-Paredes et al., 1999; Klessen, 2001; Glover et al.,
2010, ESI, ESII). This indicates that the clouds disperse quickly because of
supersonic turbulence may be the main mechanism which dominates the
motion and the structure of them. At every scale, turbulence affects every
physical process occurring in the ISM, like the density, temperatures, chem-
istry, etc. (ESI). On large scales, highly supersonic motions stir the gas by
several possible mechanism like differential galactic rotation and Supernovae
explosions (§1.2.7). It is dissipated on small scales by atomic viscosity (von
Weizsäcker, 1951).

Turbulence is deterministic and unpredictable. It is a fluid nonlinear
motion with too many degrees of freedom. Hydrodynamic turbulence arises
because the nonlinear advection operator (~v ·∇)~v, (in the Navier-Stokes Equa-
tion, 1.2)generates severe distortions of the velocity field by stretching, fold-
ing, and dilating fluid elements (ESI). It is a very complicated process. How-
ever, we summarize some of the basic characteristics in this chapter.

1.2.1 Basic Equations of fluid dynamics

We often speak of number densities of particles of the different species which
compose the clouds. The time scales and length of molecular motions ( ∼
10−10 s) are very small compared to the typical dynamical times used to char-
acterize molecular clouds. Moreover, the spacing between molecular species
(ions or atoms) and the mean free path is of the order of 10−6−7 cm (Pope,
2011). In contrast, grid based numerical simulations ranges for times and
spatial resolutions which are several orders of magnitude higher than the

11Most of the information in this section is based on the reviews of Elmegreen and Scalo
(2004) (ESI) on Interstellar turbulence I, the book “Turbulent Flows” by Pope (2011), as
well as in the lecture notes of R. S. Klessen on Theoretical Astrophysics.
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molecular scales. In our particular case, spatial resolution is about 1017 cm
and time steps run by ∆t ≈ 1013 s. Due that molecular scales are negligible
compared to the simulated scale, the collective dynamics of the particles can
be treated as continuous media, where the fluid velocity v is the average
velocity of the molecules at a given simulated volume V (Pope, 2011).

The basic equations for fluid dynamics can be summarized as follow:
The mass transport-continuity equation

∂ρ

∂t
+ ~∇ · (ρ~v) = 0, (1.1)

where ρ is the density, ~v the velocity, and t is the time. This equation
indicates the conservation of mass.

The Navier-Stokes Equation

∂~v

∂t
+ (~∇ · ~v)~v = −~∇P

ρ
+ ~F , (1.2)

where ~F is a stochastic forcing term in turbulence is driven. We have ne-
glected terms involving viscosity for simplicity12. P is the pressure, which
involves the thermal, magnetic and ram pressure

P = Pth + Pmag + Pram = ρ

(

c2s
Γ

+
v2A
2

+ v2

)

, (1.3)

where Γ is the power of the equation of state, described by a polytrope:

Pth = KρΓ, (1.4)

the speed of sound is c2s = ∂Pth/∂ρ = ΓPth/ρ, and the Alfénic velocity

v2A = ~B2/4πρ ( ~B is the magnetic density). Eq. 1.2 indicates the transport
momentum.

The transport equation of internal energy

∂ǫ

∂t
= T

∂s

∂t
− P

ρ
~∇ · ~v − Λ, (1.5)

where the internal energy density ǫ = ρ〈~v〉/2, s is the entropy, and T is the
temperature. Λ denotes the net rate at which the gas gain or loses internal
energy due to radiative and chemical heating and cooling. The gravitational
energy has to be also included in this equation. As we are not considering

12Usually, the viscosity is assumed to be constant for ISM turbulence (ESI). In our
present work however, we assume that the fluid is inviscid.
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the effects of self-gravity in this thesis, we leave the term regarding Gravity
out of this equations. This equation indicates the conservation of energy.

For fluids in which magnetic and gravitational processes are considered,
Eqs. 1.2 and 1.5 may include terms accounting for this processes.

For gravitation, the force is expressed as

~fgrav = − ~∇φ, (1.6)

and the Poisson equation
~∇2φ = 4πGρ, (1.7)

where φ is the gravitational potential13.
For magnetism, the force is

~fmag = −~∇
~B2

8π
+

1

4π
( ~B · ~∇) ~B, (1.8)

and the Induction equation

∂ ~B

∂t
= ~∇× (~v × ~B). (1.9)

1.2.2 Solenoidal and compressive modes

Large scale motions are strongly influenced by the geometry of the flow (i.e.,
by the boundary conditions), and they control the transport and mixing.

(Pope, 2011). They are governed by the forcing field ~F in Eq. 1.2, which

changes slowly in space and time. ~F is derived from a stochastic Ornstein-
Uhlenbeck process (Schmidt et al., 2009; Konstandin et al., 2012a). This
process is generated by solving a differential equation14 which involves the
projection tensor (in Fourier space)

Pζ
ij(
~k) = ζP⊥

ij(
~k) + (1− ~k)P

‖
ij(
~k), (1.10)

where P⊥ = δij −kikj/k
2 and P‖ = kikj/k

2 are the fully solenoidal and com-
pressive projection operators respectively (Konstandin et al., 2012a). The

wavenumber vector is given by ~k = 2π/λk̂.

Setting ζ = 1, the forcing field ~F is purely solenoidal, i.e. ~∇ · ~F = 0. On
the other hand, if ζ = 1, ~F is purely compressive, i.e. ~∇× ~F = 0 (Federrath

13In this thesis gravitation is neglected.
14We do not go further on explaining the Ornstein-Uhlenbeck process because it is very

complex. Including it here would add unnecessary complications to the point we want to
explain.
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et al., 2008b, 2010). We do not perform a Helmholtz decomposition15 of the
force field, and thus the turbulent forcing consists of a natural mixture of
solenoidal and compressive modes, i.e., |~Fsol|/(|~Fsol|+ |~Fcomp|) ≈ 2/3. Notice
that even purely solenoidal forcing also generates compressions (Konstandin
et al., 2012a,b).

1.2.3 The density probability distribution PDF

Since the pioneer work of Vázquez-Semadeni (1994), many authors have
agreed that the PDF of the logarithm of the dimensionless density (s =
ln(ρ/ρ0), where ρ0 is the average density) is log-normal for purely hydro-
dynamical, supersonic isothermal, turbulent gas (e.g. Padoan et al., 1997;
Passot and Vázquez-Semadeni, 1998; Nordlund and Padoan, 1999; Klessen,
2000; Ostriker et al., 2001; Li et al., 2003; Kritsuk et al., 2007; Federrath
et al., 2008b; Lemaster and Stone, 2008; Schmidt et al., 2009; Glover et al.,
2010; Federrath et al., 2010; Padoan and Nordlund, 2011; Collins et al., 2011;
Price et al., 2011),

ps ds =
1

√

2πσ2
s

exp

[

−(s− s0)
2

2σ2
s

]

ds, (1.11)

where the mean s0 is related to the density variance by s0 = −σ2
s/2, due to

the constraint of mass conservation. This shape is the result of the central
limit theorem16 applied to a multiplicative random perturbations driven in a
stationary system (Pope and Ching, 1993; Vázquez-Semadeni, 1994; Padoan
et al., 1997; Federrath et al., 2010). In turbulent physical context, it applies to
a hierarchical density field (ESI), which is characterized by the local density
contrast

ρ

ρ0
= bM , (1.12)

where the rms sonic Mach number is given by M = vrms/cs. b is a geometrical
parameter of the order unity, which accounts for the turbulence driving modes
of the forcing ~F (Eq. 1.2). For a purely solenoidal forcing mode (divergence

15The Helmholtz decomposition theorem states that every smooth vector field, defined

everywhere in space and vanishing at infinity together with its first derivatives can be

decomposed into a rotational part and an irrotational part. (Joseph, 2006)
16The central limit theorem says that for a random variable U , the PDF of Û = [〈U〉N −

〈U〉]N1/2/σU (where N denotes the number of elements in the ensemble) tends to the
normal distribution. But the only restriction it places on U that it has finite variance.
(Pope, 2011)
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free, ~∇ · ~F = 0), b = 1/3, while for a purely compressive forcing mode

(curl-free, ~∇× ~F = 0) b = 1.

When the gas is subject to a non-isothermal equation of state and/or to
magnetic fields, the s-PDF does not deviate much from the log-normal shape
(chapter 6, Glover and Mac Low, 2007a,b; Molina et al., 2012). However if
gravitation is included, the s-PDF deviates from log-normal showing a power-
law tail at high densities (Klessen, 2000; Federrath et al., 2008b; Kainulainen
et al., 2009; Kainulainen and Tan, 2013).

1.2.4 Intermittency

Instant “observations” of shear flows suggest that there is a sharp and highly
irregular interface towards the edge between turbulent and not turbulent
regions. In these locations, the flow motion is sometimes turbulent and
sometimes non-turbulent. The flow is there intermittent (Pope, 2011). This
phenomena may affect the wings of the s-PDF. It is more evident at the low
density end of the distribution.

Other evidence for intermittency is the 103 K collisionally excited gas
required to explain CH+, HCO+, OH and excited H2 rotational lines (ESI,
Falgarone et al., 2005)

1.2.5 Effect of magnetic fields on interstellar turbu-
lence

Magnetic fields are considered dynamically important in molecular clouds
(Draine, 2011). Most of magneto-hydrodynamical simulations indicate that
magnetic fields are relatively weak in molecular clouds, causing that the
motions of the flow are mostly super-Alfvénic (Padoan and Nordlund, 1999),
e.g. the rms velocity exceeds the Alfvénic rms velocity.

There is evidence that magnetic fields strengths increase by dynamo am-
plification during turbulent motions, if the flux is not conserved (Schleicher
et al., 2010; Sur et al., 2010; Federrath et al., 2011; Schober et al., 2012b,b).
Besides this point, the question of how magnetic fields interact with density
is matter of debate. A relation of the kind B ∝ ρα, based on observations
and simulations, has been proposed by several authors as well as several an-
swers (Crutcher, 1999; Padoan and Nordlund, 1999; Hennebelle and Pérault,
2000; Kim et al., 2001; Crutcher et al., 2003; Banerjee et al., 2009). α may
range between 0 and 1 (see chapter 6). In any case, magnetic fields seem to
be incapable of quenching star formation, at least they are strong (ESI).
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1.2.6 Turbulence & star formation

Together with gravity, turbulence plays a key role on regulating star for-
mation. Even if turbulent movements are strong enough to suppress star
formation at large scales, turbulence can trigger gravitational collapse at
small scales (Mac Low and Klessen, 2004). Elmegreen (1993) suggest that
dense cores of cloud cores could form in colliding turbulent gas streams and
that gravitational instabilities in the shocked regions would lead to collapse
and star formation (ESI). Mass accretion and core-core collisions are very
likely, causing that more mass enter into the gravitational well (ESI).

Gravitational instabilities

Jeans criteria
The simplest case of gravitational instability is proposed for a non-rotating,

unmagnetized, isothermal gas sphere in stationary steady state. From the
equations of mass and momentum conservation and the Poisson Equation
(Eqs. 1.1, 1.2, and 1.7, respectively), it can be determined the conditions for
which the gas sphere will suffer gravitational collapse.

Following the book of Draine (2011), let us assume that the equilibrium
steady state solution exists at a radius r, ρ0(~r), ~v0(~r), p0(~r), and φ0(~r) (with
rc = 0 at the center of the sphere), which satisfy Eqs. 1.1, 1.2, and 1.7. Now,
considering a small perturbation (denoted by the index “1”) that can induce
the gravitational collapse, Eqs. 1.1, 1.2, and 1.7 can be written in terms of
the small perturbations ρ = ρ0+ρ1, ~v = ~v0+~v1, p = p0+p1, and φ = φ0+φ1.
From them, it is possible to define a equation like

∂~v1
∂t

+ (~v0 · ~∇)~v1 + (~v1 · ~∇)~v0 = −c2s
~∇
(

ρ

ρ0

)

ρ1 − ~∇φ1. (1.13)

For an initially uniform stationary gas, ∇ρ0 = 0, ∇φ0 = 0, and ~v0 = 0,
Eq. 1.13 can be simplified. Then, taking the divergence of this equation (and
considering Eqs. 1.1, 1.2, and 1.7 including the small perturbations), it is
possible to obtain

∂2~v1
∂t2

= c2s
~∇2ρ1 + 4πGρ0ρ1. (1.14)

If the perturbations are assumed to be plane-waves:

ρ1 ∝ ei(
~k·~r−ωt),

a dispersion relation is obtained
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ω2 = k2c2s − 4πGρ0 = (k2 − k2
J)c

2
s, (1.15)

where kJ is the wavenumber of the “Jeans instability” defined as k2
J ≡

4πGρ0/c
2
s. ω is real for k ≥ kJ. Therefore, the “Jeans instability” occurs

for wavelengths

λ > λJ ≡
√

(

πc2s
Gρ0

)

. (1.16)

For the “Jeans instability”, the “Jeans mass” is defined as

MJ ≡
4π

3
ρ0

(

λJ

2

)3

=
1

8

(

πkT

Gµ

)3/2
1

ρ
1/2
0

. (1.17)

Even though the assumption: ∇φ0 = 0 is unphysical, considering Eq. 1.17
it is possible to predict reasonable stellar masses.

The Bonnor-Ebert mass
In addition to the “Jeans criteria”, there are other approaches to the

gravitational instability for cloud collapse. The virial theorem including gra-
vitation and magnetism, can be derived from Eq. 1.2 (see Draine, 2011, in
the Appendix J, he shows this derivation)17. For a region in equilibrium,

with uniform pressure p0 and magnetic field ~B = 0 at the surface, the virial
equation states

0 = 2EKE + 3(Π− Πo) + (Emag − Emag,0) + Egrav, (1.18)

where the kinetic energy is defined as

EKE ≡
∫

ρ
v2

2
dV, (1.19)

the thermal energy
Π ≡

∫

p dV, Π0 = p0V, (1.20)

the magnetic energy

Emag ≡
∫

B2

8π
dV, Emag,0 ≡

∮

d~S ·
[

~rB2

8π
− ~B(~r· ~B)

4π

]

, (1.21)

and finally, the gravitational energy

Egrav = −1

2

∫

dV1

∫

dV2
ρ(~r1)ρ(~r2)

|~r1 − ~r2|
. (1.22)

17We follow Draine (2011)s book in this subsection
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V is the volume that encloses the region. ~r1 & ~r2 and V1 & V2 are the radius
at two different points 1 & 2, and the volume enclosing the subregions at
those points, respectively. ~S is the surface vector.

Simplifying Eq. 1.18 into a non-rotating, unmagnetized, isothermal spher-
ical core, with mass M and radius R, Eq. 1.18 results

0 = 3Mc2s − 4πp0R
3 − 3

5
a
GM2

R
, (1.23)

where the gas is considered in equilibrium with v = 0, and

Egrav = −3

5
a
GM2

R
, (1.24)

&
Π = Mc2s, with cs = const. (1.25)

Going around with the terms in Eq. 1.23, it is possible to establish limits
to the external pressure p0 and find its maximum possible values. With this
constrains, a criteria for the maximum mass that can be in equilibrium is set
to

MBE(p0) =
225

32
√
5π

c4s
(aG)3/2

1√
p0
. (1.26)

This is known as the Bonnor-Ebert mass. Cores with M > MBE are unstable
to collapse.

1.2.7 Power sources for interstellar turbulence

The small scale motions are determined by the viscosity and the energy rate,
which they receive from the large scales (Pope, 2011). It seems that turbu-
lence is mostly driven at large scales, at which correlated velocity fluctuations
observed (Brunt, 2003).

For molecular clouds, it seems that the dominant driver of turbulence is
the development of HII regions around massive stars (Matzner, 2002). Al-
though it is more accepted that supernovae and HII regions dominates the
large scale turbulence (Brunt, 2003). In some numerical simulations, super-
novae explosions are included (e.g. Avillez et al., 2000). For instance, Avillez
et al. (2000) model the 3D vertical structure of the interstellar gas in a galaxy
disk. They find an array of structures over 400 Myrs including a thin cold
disk expelling vertical “worms” as well as a thick foamy disk of warm neutral
gas. Moreover, this authors report the formation of smaller structures formed
from the interaction of “worms” and sheets, and superbubles connected by
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tunnel-like structures, hot gas and “chimneys” which rise above of the plane
(ESI).
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1.3 Chemistry

Astro-chemistry describes the very important process through which the
species constituent the ISM are formed. The most abundant and widespread
molecule of molecular clouds is H2, other molecules are present only in smaller
amounts. CO (the second most abundant molecule) has a ratio – compared
to H2 – of the order of 10−4 (Glover and Mac Low, 2007a). Even though this
ratio is very low, CO is useful for molecular gas observations. We therefore
focus this section mostly on the study of the CO formation network, as well
as H2.

First, lets start this section by looking to the tight connection between
turbulence and chemistry.

1.3.1 Effects of turbulence on interstellar chemistry

Turbulence may affect the chemistry of the ISM in the following ways (Scalo
and Elmegreen, 2004):

(a) Continuous transport of material between regions in different environ-
ments, like density, temperature, and/or incident UV radiation field
strength.

(b) Creation of localized heating which will trigger temperature-sensitive
reactions.

(c) Magnetically forcing ions to move faster than thermal movement, which
can enhance the ion-neutral reactions sensitive to the temperature.

(d) Turbulent heating. Creation of shock waves may affect the chemistry as
well as vortices, ambipolar diffusion, and magnetic reconnection.

Particularly, (d) is very important. Temperature gradients enhance many
different reaction which are sensitive to the temperature. In dense shielded
clouds, the warm/diffuse regions drive reactions like

O + H2 → OH+H, and
OH + H2 → H2O+H,

(1.27)

enhancing the H2O abundance and preventing the formation of SO2, for
instance (Scalo and Elmegreen, 2004). Moreover, other molecules like CO are
also photodissociated in warm/diffuse gas. We will explain the CO chemistry
later in this chapter.
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1.3.2 Gas-phase and grain-surface chemical reactions

18

There is a variety of processes which lead to chemical reactions in the
ISM. Typically, these reactions are classified in two major groups: the ones
that can occur in the gas (like most of the CO chemistry), and those which
occur in the surface surface of dust grains (like H2 formation, although it can
also happen in the gas-phase but with lower probability).

Gas-phase chemistry

These kind of reactions are in turn split into three categories of processes.
The bond-formation reactions which link atoms into simple or complex species,
like radiative association, collisional association and associative detachment
reactions. Other processes break species into smaller ones, which are bond-
destruction reactions and involve photodissociation, dissociative electron re-
combination, collisional dissociation, and cosmic rays reactions. The last
group is conformed by the charge-transfer reactions: ion-molecule exchange,
charge transfer, and neutral-neutral reactions. In table 1.4 (from Tielens
(2005) + cosmic rays reactions), we summarize them for generic species de-
noted as A, B, C, D and M. Photons are specified by their energy hν and
cosmic rays as “cr”. The photons induced by the cosmic rays are included
as cosmic rays reaction. Table 1.4 includes equilibrium reaction rates.

It is assumed that the degrees of freedom are in thermodynamical equi-
librium, which in turn are described by a single temperature. The ISM is in
general far from equilibrium. Therefore, more accurate reaction rates may
take into account environmental conditions in which the reaction takes place
(see Appendix B of Glover et al., 2010).

Grain-surfase reactions

Grains provide a surface on which accreted species meet and eventually re-
act19. The energy released during the reaction is transferred to the surface
helping to the ejection of the new species to the gas-phase. Fig. 1.4, taken
from Tielens (2005), illustrates the grain-surface interaction process. First,
the species are accreted to the surface which depends on the gas and dust tem-
perature. The accression also depends on the “stickiness” coefficient which
is particular of the species involved, the thermal velocity of the gas and the

18most of this subsection is based on the book of Tielens (2005).
19Reactions can take place on dust or H2O ices.
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Table 1.4: Table 4.1 from Tielens (2005): Generic gas phase reactions and
their rates

reaction rate unit note
Photodissociation AB + hν → A + B 10−9 s−1 (a)
Neutral-neutral A + B → C+ D 4× 10−11 cm3s−1 (b)
Ion-molecule A+ + B → C+ +D 2× 10−9 cm3s−1 (c)
Charge-transfer A+ + B → A+ B+ 10−9 cm3s−1 (c)
Radiative association A + B → AB+ hν - - (d)
Dissociative recombination A+e → C + D 10−7 cm3s−1

Collisional association A + B +M → AB+M 10−32 cm6s−1 (c)
Collisional dissociation AB +M → A+ B+M - - (e)
Associative detachment A− + B → AB+ e 10−9 cm3s−1 (c)
Cosmic rays AB + cr(hνcr) → A+ B 2× 10−10 s−1 (f)

(a) Rate in the unshielded radiation field.
(b) Rate in the exothermic direction and assuming no activation barrier (i.e.,
radical-radical reaction).
(c) Rate in the exothermic direction.
(d) Rate highly reaction specific.
(e) Line added by us, for clarification of the collisional reaction. This reac-
tion and the preceding are very unlikely to take place in the ISM (3 bodies
reaction), except for very dense gas (≃ 1011 cm−3) typical of the gas near
stellar photospheres or dense circumstellar disks.
(f) Rate only for the reaction CO + hνcr → C + O. (hνcr) states for cosmic-
ray induced UV emission.
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excitation of the phonon spectrum of the grain, as well as the interaction
energy of the gas phase species and the surface (Tielens, 2005).

The gas-phase species that approaches to the surface feel an attraction
due to van der Waals forces20. At short distances, the forces associated to
the overlap of the wave functions of the approaching species and the surface
lead to a strong binding (Tielens, 2005). The surface migration (diffusion in
Fig. 1.4) scale is very important for the reaction network, which also depends
on the species. In the case of hydrogen (and deuterium) at low temperatures,
the migration occurs through quantum mechanical tunneling.

Once the species meet and mate (reaction in Fig. 1.4), the residence
time on the surface depends on the vibrational frequency of the adsorbed
species on the grain surface, the phonon energy of the surface and the dust
temperature. This time is characteristic of each species, and it is essentially
set by how long takes the species to acquire sufficient energy through thermal
fluctuations to evaporate (ejection in Fig. 1.4).

Figure 1.4: Figure 4.1 from Tielens (2005). A schematic of the formation of
molecules on grain surfaces. Gas phase species accrete, diffuse, and react on
an interstellar grain surface.

20van der Waals force is the sum of the attractive or repulsive forces between molecules,
or between part of those (wikipedia.com).
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The extended residence time of the interacting species on the grain sur-
face allows for reactions which are generally inhibited in the gas-phase due
to strong activation barriers. This is one of the distinguishing characteris-
tics of grain surface chemistry. The probability for reaction is given by the
competition between migration and the penetration of the activation barrier.
The particular case of H2 formation is explained in the next subsection.

1.3.3 H2 formation

21

H2 formation is dominated by dust grain surface reactions. A H atom
arrives and stick to the grain surface. In this first contact, the binding
energy may be weak enough to let the atom perform a random walk through
some distance on the surface (diffusion). During this walk, it may arrive to a
location where the binding becomes strong enough to “trap” the atom. The
low temperature of the grain surface (∼20 K) are unable of free the H atom
for further exploration of the surface. Other H atoms arrive to the surface
and perform their own random walks until they get trapped. In the course
of the time, one of the newly arrived H atoms – which is undergoing its own
random walk – meets a trapped H and react to form H2. The energy released
in this reaction (for H2 in the ground state) is ∆E = 4.5 eV, which is large
enough to overcome the binding force with the surface. The H2 molecule can
be then released to the gas-phase.

The formation of H2 may occur in the gas-phase as well. The domi-
nant channel in this case starts by the formation of the ion H− by radiative
association

H + e− → H− + hν, (1.28)

which is followed by the H2 formation through associative detachment

H− +H → H2(v, J) + e− +KE, (1.29)

where KE is the energy released from the reaction and H2 is in its ground
state. The abundance of H− decreases towards high density/optically thick
regions (through recombination H− +H+ → H + H). In diffuse regions on
the other hand, one would expect higher H− abundances. However, its for-
mation is slow and the destruction is rapid. Other channels are less likely to
happen. For instance, two free H atoms in the ground state approach one an-
other, however by symmetry there is no electric dipole moment. Hence, there

21This subsection is based on the book of Draine (2011).
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is no electric dipole radiation that could remove energy from the system and
leave the two atoms in a bound state (Draine, 2011). The possible radiation
can be emitted from electric quadrupole transitions, but the rates are very
low. The rate coefficient for the reaction: H + H → H2+hν is very small and
it is usually ignored. A three bodies reaction like H + H + H → H2 +H +KE
is possible, but it is also ignored because its rate is too small for densities
typical of molecular clouds.

1.3.4 Photodissociation of H2

22

H2 photodissociation is the main mechanism for H2 destruction in the
ISM. The reaction

H2+hν→ H+ H+KE (1.30)

occurs, but first the H2 molecule has to be raised to an excited level. H2

is initially in a level X(v, J) of the ground electronic state X1Σ+
g to a level

B(v, J) or C(v, J) of the first and second excited states B1Σ+
u and C1Σu.

85% of the time, the excited H2 may decay vibrationally to an excited bound
level X(v′′, J ′′) of the ground state. However, it may happen that spontaneous
decays from the excited level B(v′, J ′) will be to the vibrational continuum
of the ground state and the H2 molecule splits apart in ∼ 10−14 s.

Photodissociation has low probability to take place at the typical tem-
peratures of molecular clouds (T ≈ 20-50 K), because this process requires
temperatures higher than 500 K.

1.3.5 H2 self-shielding

23

Self-shielding corresponds to the phenomenon where the photoexcitation
transitions becomes optically thick, i.e. τ > 1 (see §1.4.8). In this sense, one
molecule is “shielded” from the incident starlight by other molecules. The
H2 molecule is the most important example of self-shielding (Draine, 2011).
H2 absorbs UV photons λ & 1100-912Å in the neutral zone (Fig. 1.3). At
this point, H2 can be dissociated. This corresponds to diffuse/translucent
clouds. Deeper in the cloud (to the right of Fig. 1.3), where the location
of the HI/H2 transition is dominated by dust absorption (visual extinction
AV & 2 mag, see §1.4.8), H2 photodissociation is sufficiently reduced, and

22This subsection is based on the book of Draine (2011).
23This subsection is based on the books of Draine (2011) and Tielens (2005).
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an appreciable H2 column density can be built. Then, H2 self-shielding takes
over and the H2 abundance relative to the total number of hydrogen nuclei
increases towards the right of Fig. 1.3, until all hydrogen atoms are locked
up into H2 molecules (Tielens, 2005).

1.3.6 CO network
24

The CO abundance is a complex function of the environmental conditions
of molecular clouds. It depends on the local density and temperature as well
as the local UV radiation field (Glover and Clark, 2012a). In this subsection,
we will present part of the CO chemical network.

In diffuse molecular clouds, most of the carbon is ionized C+ and a sig-
nificant amount of H is locked up into H2 molecules. In this case, CO is
primarily formed by the sequence of reactions (taken from Draine, 2011):

C+ +H2 → CH+
2 +hν, (1.31)

CH+
2 + e− →











CH+ H (25%)
C + H2 (12%)
C + H+ H (63%),

(1.32)

where the percentage indicates the probability for this reaction to occur.

CH + O → CO+ H, (1.33)

CO+hν → C+O, (1.34)

C+hν → C+ + e−, (1.35)

The first reaction (through radiative association) is slow but continuously
produces CH+

2 , which rapidly reacts with e− to produce CH ∼25% of the
time. CH+

2 can also be photodissociated or it may react with H2 to produce:

CH+
2 + hν →











CH+ H+ (1/3)
CH+ +H (1/3)
C+ +H2 (1/3),

(1.36)

CH+
2 +H2 → CH+

3 +H. (1.37)

24Most of the subsection is base on the books of Draine (2011) and Tielens (2005).
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In diffuse molecular clouds, the dissociative recombination of CH+
2 (or the re-

action with H2) dominates over the photodestruction of CH+
2 . In both cases,

the radical is destroyed. The CH molecule produced by dissociative recom-
bination (Eq. 1.32) can react with O to produce CO through the reaction
indicated in Eq. 1.33. Although CH is very sensitive to photodissociation
and photoionization

CH + hν →
{

CH+ + e− (47%)
C + H (53%).

(1.38)

CO is frequently assumed to primarily form in the gas phase in diffuse
molecular clouds. The formation of CO on grain surface is uncertain. Atoms
of C and O may stick into dust grains and eventually react to form CO. The
energy released in the formation may help the molecule to released itself into
the gas-phase, or by photodesorption.

1.3.7 Photodissociation of CO

25

CO is strongly photodissociated in diffuse molecular clouds through the
reaction represented in Eq. 1.34. CO self-shielding is very weak and the CO
abundance increases where the gas shielding (dust and H2 shielding) becomes
important. This is equivalent to visual extinctions & 3 mag. At this point in
the cloud, photodissociation from UV photons are unimportant compared to
cosmic-rays ionization. CO is dissociated by UV photons induced by cosmic
rays

CO+hνcr → C +O. (1.39)

CO photodissociation rate from the chain in Eq. 1.39 depends on the abun-
dance of H2 relative the CO. In this thesis, this process seems to be unim-
portant at visual extinctions & 3 mag. Moreover at high AV , cosmic-rays
ionization of H2 leads to the formation of H+

3 which is the cornerstone of
ion-molecule gas-phase chemistry. That is where reactions with H2 will stop
and dissociative electron recombination takes over, forming H2O and OH in
about 1 to 2 ratio. These O-bearing species are lost through reaction with
hydrocarbon radicals, which burn them to (eventually) CO (Tielens, 2005).

There are other reactions which leads to CO formation, like through
HCO+ or He+ radicals. Explaining all the possible reactions of the network
is very complicated. We prefer to finish this section summarizing that CO is

25This subsection is based on the book of Draine (2011).
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inefficient on preventing itself from photodissociation (weak self-shielding).
The CO abundance increases towards regions where dust and H2 shielding is
strong enough to prevent the photodissociation of CO (Glover et al., 2010).
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1.4 Radiative Transfer

26

Most of the information that can be obtained from astronomical sources
is based on electromagnetic radiation. Therefore, the physical interpretation
of the physics of these objects depends mainly on radiative transfer calcu-
lations. In some cases, the analytical derivation of the radiative transfer
equations may be very complex, and so it is necessary to asses the results
numerically. In observations neither the analytical o numerical solutions are
not possible to be obtained, and it is therefore convenient to implement a
bunch of approximations.

1.4.1 The radiative transfer equation

Lets assume that a source emits with a specific intensity Iν at a given fre-
quency ν which remains unchanged independently of the distance along a
ray. This intensity changes only if it is absorbed or emitted by an “obstacle”
interposed in the ray path between the source and the observer, as shown in
Fig. 1.5. The incident Iν at the right varies by dIν depending on the charac-
teristics of the slab of material represented by the gray area with thickness
s. This change is described by the equation of transfer.

Iν may gain or lose intensity (by dIν+ or dIν− respectively) in its inter-
action with the media. In this sense, the radiative transfer equation is built
from two components

dIν
ds

=
dIν−
ds

+
dIν+
ds

= −κνIν + εν , (1.40)

where κν is the absorption coefficient and εν is the emissivity. Both pa-
rameters may depend on the microscopic properties of the media. However,
Eq. 1.40 is related to a macroscopic theory for which κν and εν are repre-
sented as the average properties of the collective of particles.

εν may also depend strongly on Iν . However to deal with this kind of
issues, there are several limiting cases for which the solution of Eq. 1.40 is
simple.

1. Emission only: κ = 0

dIν
ds

= εν , Iν(s) = Iν(s0) +
∫ s

s0
εν(s) ds. (1.41)

26The content of this section is based on the book of Wilson et al. (2009), Rybicki and
Lightman (1979) and Draine (2011).
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Figure 1.5: Figure 7.1 from Draine (2011). Radiative transfer geometry.
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2. Absorption only: ε = 0

dIν
ds

= −κνIν , Iν(s) = Iν(s0) exp
{

−
∫ s

s0
κν(s) ds

}

. (1.42)

3. Thermodynamic equilibrium (TE): In the case in which there is com-
plete equilibrium of the radiation with the medium. There is no loss
or gain of intensity. Both have a constant thermodynamic temperature
T , and the brightness is described by the Planck function

Bν(T ) =
2hν3

c2
1

exp hν/kT − 1
(1.43)

dIν
ds

= 0, Iν(s) = Bν(T ) =
εν
κν
. (1.44)

4. Local thermodynamic equilibrium (LTE): Thermodynamic equilibrium
occurs in scales for which ds . ℓν , where ℓν is the mean free path.

εν
κν

= Bν(T ). (1.45)

This relation is known as the Kirchhoff’s law.

1.4.2 The mean free path

The mean free path ℓν describes absorption of radiation (or photons) in an
equivalent way. It is the average distance that a photon can travel through
a medium without being absorbed. So then, the physical distance traveled
by a photon in an homogeneous absorbing medium is

ℓν = 1/κν , (1.46)

κν can be written as κν = ραν . αν represents the average absorbing
characteristic of the particles (the mass absorption coefficient, sometimes
called the opacity coefficient) which compose the medium, and the density
ρ determines the amount of material. ℓν is essentially, the probability of a
photon traveling at least an optical depth e−τν . The optical depth is defined
as

dτν = κν ds, or τν(s) =
∫ s

s0
κν(s

′) ds′. (1.47)

ℓν and τν are related by

κνℓν = 〈τν〉 ≡
∫ ∞

0

τνe
−τ dτν = 1. (1.48)
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1.4.3 The source function

The equation of transfer (Eq. 1.40) can be then written in terms of τν

dIν
dτ

= −Iν + Sν , (1.49)

where Sν is defined as the source function, which is the ratio of the emission
to the absorption coefficient:

Sν ≡ εν
κν

. (1.50)

The formal solution of the radiative transfer equation in terms of Iν and
Sν is

Iν(τν) = Iν(0)e
−τν(s) +

∫ τν(s)

0

e−(τν(s)−τ ′ν (s))Sν(τ
′
ν) dτ

′
ν(s). (1.51)

This equation is interpreted as the sum of two terms: the initial intensity
is diminished by absorption (by a factor e−τν ) plus the integrated source
diminished by absorption.

1.4.4 Brightness temperature

In practice, Eq. 1.51 cannot be easily solved analytically. It can be ap-
proximately solved numerically through iterative methods. Therefore, it is
frequent to assume several approximations for interpretation of astronomical
data.

In the case that a source is in thermodynamical equilibrium, Sν = Bν(T (τ)).
Moreover, if the medium is assumed to be isothermal, i.e. T (τ) = T (s) = T ,
Eq. 1.51 simplifies to

Iν(s) = Iν(0)e
−τν(s) +Bν(T )(1− e−τν(s)). (1.52)

When τ → ∞, Iν = Bν(T ).
Now assuming that the intensity, Iν can be characterized by a blackbody

having the same brightness at that frequency ν. The temperature associated
to this blackbody is the brightness temperature Tb, which is defined as

Iν = Bν(Tb), (1.53)

Given the low frequencies in radio astronomy, the limit hν ≪ kTb is appli-
cable and the Rayleigh-Jeans approximation is commonly used. Therefore,
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the intensity at a given ν can be written as

Tb =
c2

2ν2k
Iν . (1.54)

Using Eq. 1.54, the radiative transfer equation can be expressed in terms
of Tb

Tb(s) = Tb(0)e
−τν(s) + T (1− e−τν(s)). (1.55)

From Eq. 1.55, two important assumptions are made:

1. For optically thin gas (τ ≪ 1), Tb ≈ τνT , and

2. if the gas is optically thick (τ ≫ 1), Tb ≈ T .

However, in the ISM the gas is not expected to be in LTE. In a more
realistic scenario, different processes may take place and make the emission
of the source be very different from the black body radiation. In such case, Tb

will depend on the frequency (Wilson et al., 2009). Therefore Eq. 1.54 is not
necessarily the most accurate way of calculating T. Moreover, if the radiation
is not thermalized, Eq. 1.53 does not describe the physical conditions of the
source.

On the other hand, even though the source may be a black body, it is usu-
ally assumed that the Rayleigh-Jeans approximation is accurate for any fre-
quency in the mm/sub-mm range of its spectrum. For instance, at ν0 = 115.3
GHz which is the frequency for the CO (J=1-0) transition, Eq. 1.54 is applied
regardless the intrinsic T of the source. If T = Tb . 1 K, Eqs. 1.53 and 1.54
arise to very different results. To illustrate this point, Fig. 1.6 shows Iν ,
calculated from Eq. 1.53 (solid lines) considering different brightness tem-
peratures Tb = 10−3 K (purple), 10−2 K (light-green), 0.147 K (red), 1 K
(yellow), 5K (green), and 10 K (blue), as a function of ν. Colored dotted
lines show Iν as well but calculated from Eq. 1.54 for the same set of temper-
atures. The dashed line indicates ν0 = 115.3 GHz. For T = Tb & 1 K, The
intensities calculated from Eq. 1.53 or Eq. 1.54 are approximately equivalent
(the Rayleigh-Jeans approximation holds). However, for T = Tb . 1 K, the
intensities calculated from Eqs. 1.53 and Eqs. 1.54 are very different, and the
discrepancies increases towards lower Tb. However, in astronomy we measure
intensities which at given intensity, the brightness temperature inferred from
Eq. 1.54 is always smaller than the brightness temperature calculated from
Eq. 1.53.

In any case, Eq. 1.54 is the most used equation for calculating brightness
temperatures, although the Rayleigh-Jeans approximation may not apply in
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Figure 1.6: Black-body spectra Bν(Tb) for different brightness temperatures
Tb = 10−3 K, 10−2 K, 0.147 K, 1 K, 5K, and 10 K, as a function of ν.
The solid black lines show Iν = Bν(Tb), Eq. 1.53 (higher fluxes correspond
to higher temperatures). The colored dotted lines show the Rayleigh-Jeans
approximation given by Eq. 1.54 for the same set of temperatures.
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many cases. It is still a useful and practical quantity because Iν and Tb are
proportional. In observational works it is commonly called the “Antenna
Temperature” (Wilson et al., 2009).

1.4.5 The Einstein coefficients

The Kirchhoff’s law, εν = κνBν , relates the emission to absorption of a
thermal emitter. This relation implies a relationship between emission and
absorption at a microscopic level. Einstein was the first who discover this
relationship. He made an analysis of the interaction of radiation with an
atomic system. Considering the simple case of two discrete energy levels, the
first of energy Ei = E and statistical weight gi, and the second of energy
Ej = E + hν0 with statistical weight gj, the system makes a transition
i → j and a photon with energy hν0 is absorbed. For a transition j → i, a
photon with energy hν0 is emitted. For this phenomenon, three processes are
identified:

• Spontaneous emission: The system in a level j suddenly drops to
level i emitting a photon. The transition probability per unit time for
this emission is Aji.

• Absorption: This process occurs in two possible scenarios:

1. In the presence of photons of energy hν0, the system makes a
transition from level i to level j by absorbing a photon. The
probability of this transition per unit time is BijJ̄ij , where J̄ij =
1/4π

∫∞

0
Iijφij dνij (Iij is the intensity of the transition at νij and

φij is the line profile).

2. The atom is immersed in a medium filled with particles that may
collide with it. From a collision, the atom may absorb enough
energy to make a transition i → j. The probability per unit time
of an absorption due to collisions is Cij = nKij, where n is the
number density of collisional partners and Kij is the collision rate
coefficient27.

• Stimulated emission: Again, this process occurs in two possible sce-
narios:

27The collision rate coefficient are derived from Kij =
∫

v σij(v )f(v ) dv [cm
3 s−1], where

v is the velocity of the particles, f(v ) is the distribution of velocities, and σij(v ) is the
corresponding collision cross section.
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1. In the presence of a radiation field, the system makes a transi-
tion from level j → i emitting a photon. The probability of this
transition per unit time is BjiJ̄ij (For convenience, we assume a
symmetrical line profile for which J̄ij = J̄ji).

2. A collision may stimulate the atom to make a transition j → i
emitting a photon. The probability per unit time of an absorption
due to collisions is Cji = nKji.

The coefficients Ax, Bx and Cx (with x = ij or x = ji) are known as the
Einstein coefficients.

Generalizing, in statistical equilibrium the number of transitions per unit
time per unit volume out of level i = the number of transitions per unit
time per unit volume into level j. If ni and nj are the number densities os
atoms at level i and j respectively, the population of levels is governed by
the equation of detailed balance:

∑

j>i[njAji + (njBji − niBij)J̄ji]−
∑

j<i[niAij + (niBij − njBji)J̄ij]

+
∑

j[njCji − niCij] = 0.

(1.56)

1.4.6 Radiative transfer with Einstein coefficients

Lets remember that the dependence of J̄ on I is given by

J̄ν =
1

4π

∫ ∞

0

Iνφν dν. (1.57)

The radiative transfer equation (Eq. 1.40) can be then couple to the
Einstein coefficients, considering it as the contribution of the spontaneous
and stimulated emission as well as the absorption. Eq. 1.40 is written as

dIν
ds

= −hν0
c

(niBij − njBji)Iνφν +
hν0
4π

njAjiφν, (1.58)

where

κν =
hν0
c

(

niBij − njBji

)

φν , (1.59)

and

ε =
hν0
4π

njAjiφν . (1.60)

The source function (Sν) can be written as
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Sν =
εν
κν

=
niAij

njBji − niBij

. (1.61)

As Eq. 1.61 has to be equivalent to Sν = Bν(T ), the Einstein Ax and Bx

coefficients are related as follow

giBij = gjBji, (1.62)

and

Aji =
8φν3

0

c3
Bji. (1.63)

The relation between the collisional coefficients Cij and Cji depends on
the number density of particles and the velocity distribution of the gas. In
the particular case of a thermal distribution of velocities, these coefficients
relate as

ni

nj
=

Cji

Cij
. (1.64)

Their relation with the Ax and Bx is not simple. Although some approxima-
tions can be made and find the relation between them. As this coefficients
do not explicitly appear in the source function Eq. 1.61, we do not refer here
to those approximations.

1.4.7 Excitation temperature

The excitation temperature Tex is defined by the relative number of atoms
or molecules in the energy levels i and j accordingly to the Boltzmann dis-
tribution

ni

nj
=

gi
gj

exp

(

hν0
kTex

)

. (1.65)

ν0 is the peak frequency of the transition. For a system LTE, the number
of transitions per unit time per unit volume out of state i is equal to the
number of transitions per unit time per unit volume into state j, in which
case Tex = T .

1.4.8 Extinction

Astronomers are interested on tracing the structure of clouds. The most
fundamental measure of the amount of material in molecular clouds is the
number of particles along the line of sight (z). However, measuring directly
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the total number density of the gas is an extremely challenging task. Even
by approximating the cloud to be constituted by only the most abundant
molecule H2, direct observations of H2 cannot be performed under most cir-
cumstances.

It is necessary to use indirect methods, like measuring the extinction Aλ,
which provides estimates of the total amount of dust along the line of sight.
Aλ is measured in “magnitudes” and is defined by

Aλ

mag
= 2.5 log10

[

F 0
λ

Fλ

]

, (1.66)

where Fλ is the observed flux from the source, and F 0
λ is the flux of the

source as it only suffers for attenuation due to the inverse square law of
radiation. The extinction is proportional to the optical depth:

Aλ

mag
= 2.5 log10[e

τν ] = 1.086τν . (1.67)

Reddening law

The observed extinction lines may change their shape from one line of sight
to another. The slope of the extinction is characterized by comparing the
extinction at the blue photometric band B (peak at λ = 4405Å) and the
“visual” photometric band V (peak at λ = 5470Å)

RV ≡ AV

AB − AV
≡ AV

E(B − V )
. (1.68)

E(B − V ) ≡ AB −AV is called as the “reddening”. As E(B − V ) increases,
the emitter is considered “redder”. Conversely, as E(B − V ) decreases, the
emitter is considered “bluer”.

The sources of extinction are different depending on the wavelength at
which the astronomical object is observed. In the case of the Visual pho-
tometric band, the extinction is mostly caused by dust and dense gas. The
reddening is caused by dust grains. The dust to gas distribution is not neces-
sarily uniform along different sight lines (or even not uniform along one sight
line). However, it is assumed to be constant for the Milky Way. There are
observational works which provides measurements showing that it is the case
(e.g. Bohlin et al., 1978). Although more recent studies search for variations
of this ratio (e.g. Sandstrom et al., 2012).
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Visual extinction

Many observational works assume a constant dust to gas ratio. For consis-
tency and comparisons, we also hold this idea. Through the assumption of
a reddening law and a constant dust to gas ratio (RV ≈ 3.1 for the Milky
Way, Bohlin et al., 1978; Draine and Bertoldi, 1996), it is possible to make
a simple conversion between AV and the total number density of particles
along the line of sight (or total column density N):

AV =
N

1.87× 1021[cm−2]
[mag].
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Chapter 2

Numerical method

2.1 Description of the simulation

For our 3D simulation of ISM turbulence, we use a modified version of zeus-
mp (Norman, 2000; Hayes et al., 2006), which includes a state-of-the-art
atomic and molecular cooling function (described in Glover et al., 2010) and
a simplified treatment of the non-equilibrium chemistry of the gas. Most of
the simulations are performed following a chemical network of hydrogen (H),
carbon (C), and oxygen (O). Each run traces the abundance of 32 species. 13
of them are assumed to be instantaneously in chemical equilibrium (H−, H+

2 ,
CH+, CH+

2 , OH+, H2O
+, CO+, HOC+, O−, C−, and O2

+). For the remaining
19 species (e−, H+, H, H2, He, He

+, C, C+, O, O+, OH, H2O,CO, C2, O2,
HCO+, CH, CH2, and CH+

3 ) the full non-equilibrium evolution is followed
(Glover et al., 2010).

Each simulation begins with an initially uniform gas distribution, with a
mean hydrogen nuclei number density ranging from n0 = 30 cm−3 to 1000
cm−3. Initially, the gas has a uniform solar abundances of hydrogen and
helium, and uniform metallicity1 Z. Z ranges from 0.1× the solar metal-
licity (Z⊙) to Z⊙ in our runs. All the elements scales from the solar abun-
dances. We assume all carbon is initially in its ionized form C+ and all
oxygen is atomic O. The fractional abundances by number of carbon and
oxygen relative to hydrogen are given by xC+ = xC,tot = 1.41 × 10−4 and
xO = xO,tot = 3.16× 10−4 (Sembach et al., 2000), where xC,tot and xO,tot re-
fer to carbon and oxygen in all forms (ionized, neutral, or incorporated into
molecules). We consider a background interstellar ultraviolet (UV) radia-
tion field, with the spectral shape of the Draine (1978) field, and a strength

1Metallicity is defined as the proportion of matter made up of elements other than
hydrogen and helium

41
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parametrized by G0, where G0=1.7 in (Habing, 1968) units2. The incident
UV radiation field strength for each of the runs ranges from UV=0 G0 to
1000 G0. To treat the effects of radiation, we use the six-ray approximation
(Nelson and Langer, 1997; Glover and Mac Low, 2007a; Glover et al., 2010),
which consists of averaging the photochemical rates over six lines of sight
along the principal coordinate axes. We also assume a fixed cosmic ray ion-
ization rate, ζH = 10−17 s−1 (Goldsmith and Langer, 1978). We expect the
results presented here to be largely insensitive to ζH.

The simulations domain is a cube with length L = 20 pc, and a resolution
of N3

L cells, where NL is the number of zones along each side of the cube.
We assume different values of NL along this thesis. Our clouds model are
complex, and so requires long computational time (see Glover and Clark,
2012a). For the simulations with the full chemical network, NL=128 (used in
chapter 5 and the second part of chapter 6). For the first part of chapter 6 in
which we turn off the chemistry in order to treat isothermal simulations and
use NL=256. In chapters 3 and 4, we use a single “fiducial” cloud simulation
with the aim of modeling a typical Milky Way molecular cloud, for which
NL=512.

We consider periodic boundary conditions for most of the parameters.
However, we use non-periodic boundary conditions to treat radiation. The
radiation enters the cube from the edges to the center. These two assump-
tions are not consistent, but we adopt this arrangement purely for the com-
putational convenience that it offers (Glover et al., 2010). This structure of
the grid + the boundary conditions do not allow us to model the morphology
of particular clouds. It is however very useful for studying statistically the
physical conditions of the clouds.

The initial velocity field is turbulent, with power concentrated on large
scales, between wave numbers k = 1 and 2 and with an initial rms velocity
of v0 = 5 kms−1. Moreover, we drive the turbulence so as to maintain
approximately the same rms velocity throughout the simulations, following
the method described in Mac Low et al. (1998) and Mac Low (1999). We
do not perform a Helmholtz decomposition of the force field, and thus the
turbulent forcing consists of a natural mixture of solenoidal and compressive
modes, i.e., Fsol/(Fsol+Fcomp) ≈ 2/3 (Federrath et al., 2010). We evolved all
our runs until t ≈ 5.7 Myr, corresponding to roughly three turbulent crossing
times, tcross = L/(2v0) ≈ 2 Myr. This period of time is long enough that we
expect the turbulence to have reached a statistical steady state (Federrath
et al., 2009; Federrath et al., 2010; Glover et al., 2010; Price and Federrath,

2This corresponds to an integrated flux 2.7× 10−3 erg cm−2s−1, which is considered as
standard UV radiation field strength for the solar neighborhood.
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2010). We do not include the effects of self-gravity in this study.

Most of our runs begins with gas threaded by a uniform magnetic field
with an initial field strength Bi = 5.85µG oriented parallel to the z-axis of
the box. This particular selection was motivated by the 21 cm observations
presented by Heiles and Troland (2005) who find a median magnetic field
strength of about 6µG for the cold neutral medium.

The initial temperature of the gas is T0 = 60K. Moreover, it quickly
adjusts itself to thermal equilibrium (Glover and Mac Low, 2011). The tem-
perature of the dust is constant and fixed during the whole simulation at 10K.
We assume a standard gas-to-dust ratio, and take the dust to follow an ex-
tinction law characterized by the total-to-selective extinction ratio RV = 3.1
– which is the typical accepted value for representing the Milky Way.

With the exception of H2, we include no grain surface chemistry in our
model. In particular, we do not account for the effects of freeze-out of CO
molecules onto dust grains in dense, cold regions of the cloud. The regions
in which the process is effective will typically have very high optical depths
in lines of CO (see e.g. Goldsmith, 2001) and so we do not expect this sim-
plification to significantly alter our results.

In some chapters, we use modifications on some of the basic setup. In
chapters 3 and 4, the simulation is run with a simpler chemical network for
modeling the formation of CO introduced by Nelson and Langer (1999). In
the first part of chapter 6, the chemical reactions are neglected in order to
study the role of magnetic fields on the density distribution. When it is the
case, we state the implemented changes on the initial conditions.

2.2 Radiative transfer model

We post-process the results of our simulations at t ≈ 5.7 Myrs to produce
a synthetic emission map of the CO(J=1 → 0) lines. We use the radiative
transfer code radmc-3d3 (Dullemond, 2012) to calculate the emergent CO
line intensity. radmc-3d is a code that performs dust and/or line radiative
transfer on Cartesian or spherical grids (including adaptive mesh refinement).
Since we are only interested in CO molecular line emission along each line
of sight (LoS), we use the ray-tracing capability of radmc-3d, including
the Doppler catching method for dealing with models with large velocity
gradients (Shetty et al., 2011a,b).

The level populations in each zone are calculated through the Sobolev
(1957) approximation, also known as the large velocity gradient (LVG) method.

3http://www.ita.uni-heidelberg.de/∼dullemond/software/radmc-3d/
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This method takes the advantages of large spatial variations in velocity, as are
present in molecular clouds, to define line espace probabilities (Shetty et al.,
2011a). It provides a solution to the equation of detailed balance from local
quantities (Eq. 1.56). A photon emitted in a 2 level transitions (j → i) of a
given species will have a Doppler-shifter frequency during its travel through
the medium. This is due to the large velocity gradients present in clouds.
When the frequency of the photon is sufficiently different form the one at
its emission, it cannot interact with the medium at the new position or any
other subsequent position. The escape probability of the photon is given by

ξ =
1

τ

∫ τ

0

e−τ ′ dτ ′ =
1− e−τ

τ
, (2.1)

where τ is the optical depth §1.4.8 (e.g. Goldreich and Kwan, 1974; Goldsmith
and Langer, 1978; Shetty et al., 2011a). The optical depth is calculated from
Eq. 1.59 and can be written as

τ =
c3

8πν3
ij

Aijni

1.065〈| dv / dr|〉

(

ni

ni

gi
gj

− 1

)

, (2.2)

where Aij is the Einstein coefficient for spontaneous emission, ni & nj are
the level populations, and gi & gj their statistical weights, respectively. The
velocity gradients are given by dv / dr (van der Tak et al., 2007; Shetty et al.,
2011a). This gradient multiplied by the distance traveled by the photon l,
provides an approximate measurement of the microturbulent velocity-width
(Goldsmith and Langer, 1978)

vMTRB =
dv

dr
l. (2.3)

We perform the calculations using a micro-turbulent velocity vMTRB=0.5
km s−1. Shetty et al. (2011b) demonstrate that the CO line profiles do not
strongly depend on this choice for this turbulent model. Our model has the
same rms velocity (v0 = 5 kms−1) as the fiducial model presented by Shetty
et al. (2011b) and is also driven in the same fashion. We therefore expect
that our choice for vMTRB will not strongly affect the line intensity.

The local radiation field is then calculated from the Source function Sij

Eq. 1.61 and the photon escape probability ξ (Eq. 2.1)

J̄ij = Sij(1− ξ). (2.4)

Given Eqs. 2.2, 2.1, 2.4 and the velocity gradient, the detailed balance
equation (1.56) can be solve numerically (Shetty et al., 2011a). We use val-
ues for the radiative transition rates and collisional rate coefficients taken
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from the lamda database (Schöier et al., 2005). The particular set of colli-
sional rate coefficients that we use are those compiled by Yang et al. (2010).
The detailed implementation of the LVG method into radmc-3d is fully
described in Shetty et al. (2011a)
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Chapter 3

Tracing the temperatures of
molecular clouds

1

The emission of CO and its isotopomers has been used to study not only
the structure but also the temperature of molecular clouds. It is usually
assumed that the lowest levels of CO are optically thick and close to local
thermodynamical equilibrium (LTE), especially the CO (J=1-0) transition
(e.g. Dickman, 1978; Martin et al., 1982; Pineda et al., 2008; Goldsmith
et al., 2008; Wilson et al., 2009; Pineda et al., 2010). Given this premise,
it is expected that the intensity of the CO (J=1-0) line (often expressed
in terms of a brightness temperature) will indicate the kinetic temperature
of the cloud. Hence, this line is often considered as a robust probe of the
temperature of the diffuse molecular gas (Martin et al., 1982; Walmsley and
Ungerechts, 1983). Unfortunately, this may not be the case. For one thing,
CO is not necessarily thermalized (Liszt and Lucas, 1998; Goldsmith et al.,
2008; Pineda et al., 2010), making any direct conversion from emission to
temperature difficult (White, 1997). In addition, CO does not reliably trace
the molecular structure of clouds. It has been found that the CO column
density (NCO) and the H2 column density (NH2) are not linearly correlated
(Langer et al., 1989; Goodman et al., 2009a; Pineda et al., 2010; Shetty et al.,
2011a). The reason is that CO requires high column densities (corresponding
to visual extinction AV & 3 mag) to prevent its photodissociation because it
is weakly self-shielded, while the corresponding process for H2 becomes effec-
tive at much lower column densities (equivalent to AV & 0.1 mag) (Glover
and Mac Low, 2011). Moreover, simulations show that CO is mostly located

1The content of this chapter is part of a publication by F. Z. Molina, S. C. O Glover,
R. Shetty & R. S. Klessen, which is in preparation. We expect to submit this paper within
a couple of weeks.
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at densities n & 100 cm−3, regardless of the metallicity of the cloud and the
incident UV radiation field strength (Molina et al., 2011). Therefore, the
temperature estimates from CO emission are frequently biased, because it is
expected to only trace the well-shielded cold regions of molecular clouds.

The temperature distribution in molecular clouds is in general very com-
plex. Small and large scale processes, like collisions, radiation, cooling and
heating from dust and the formation and destruction of the constituent
species, magnetic fields, turbulent and gravitational heating, among many
others; are important on shaping this distribution (e.g. Goldsmith, 1988;
Tielens, 2005). Therefore, it is not straightforward to assume that molecular
clouds are in LTE. However, obtaining a reliable picture of the temperature
from CO (J=1-0) observations alone is not possible. In this sense, many au-
thors assume that, at first order, the CO (J=1-0) transition occurs in LTE
and calculate the excitation from the brightness temperature (e.g. Dickman,
1978; Garden et al., 1991; Liszt and Lucas, 1998; Pineda et al., 2008; Gold-
smith et al., 2008; Roman-Duval et al., 2010; Pineda et al., 2010).

It is common to use the excitation temperature Tex of CO (J=1-0) emis-
sion alone for estimating NCO when observations of the other transitions are
not available. This is because in local molecular clouds, most of the CO
molecules are in the ground state or the first two or three lowest excited
rotational states (Liszt and Lucas, 1998). However, there are some issues
which prevent us from inferring correctly the CO column density. On one
hand, Shetty et al. (2011a) find that CO (J=1-0) emission does not provide
direct information about the CO mass. They argue that this line is optically
thick, and as a consequence, the distribution of the integrated CO (J=1-0)
intensity does not directly follow the distribution of NCO. Therefore, the CO
column density inferred from Tex may be different from the true NCO, even
if one does not consider any approximation for calculating Tex, or the CO
column density. On the other hand, considering an excitation temperature
calculated under LTE conditions might also affect the estimates of NCO.

In this chapter, we rigorously assess the common assumptions employed
when estimating temperatures from CO (J=1-0) observations. Our aim is
to understand and quantify the impact of the CO (J=1-0) excitation tem-
perature as a tool for inferring CO column densities. We use a numerical
simulation with mean number density, metallicity and UV radiation field
strength typical of a Milky Way molecular cloud. The setup is described in
§2.1. The chemical network used for this particular simulation is based on an
approximation for modeling the formation of CO introduced by Nelson and
Langer (1999), and is described in detail in Glover et al. (2010), see (Glover
and Clark, 2012a). Together with a Monte Carlo radiative transfer code, the
12CO (J=1-0) emission is calculated (see §2.2). We start this chapter with
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an overview of the CO distribution in our cloud example. Then, we per-
form a detailed analysis of the temperatures, testing LTE assumptions with
a comparison between the kinetic, brightness temperatures, as well as the
excitation temperature Tex. We then compare two different methods for cal-
culating the excitation temperature: 1) a theoretical approach, in which we
use the population levels of the transition into the Boltzmann Equation, and
2) an “observational” approach that considers the brightness temperature in
the commonly-used Dickman (1978) formula. Finally, we use Tex (calculated
from the previous approaches) to estimate the CO column densities, and
quantify the differences regarding the true NCO.

In the course of the text, we will refer to a large number of different
physical quantities. In an effort to reduce confusions, we produce a brief
guide to these different quantities in Table 3.1.

Physical quantity Acronym
number density of hydrogen nuclei n

logarithm of the dimensionless density ln(n/n0) s

CO abundance nCO/n xCO

Optical depth τ

critical number density ncr

Statistical weight gi

Intensity Iν

3D Brightness temperature Tb

CO intensity integrated along the line of sight WCO

3D kinetic temperature TK

Column kinetic temperature – T col
K

total mass weighted average†

Column kinetic temperature – T co−col
K

3D excitation temperature – Tex

calculated from Boltzmann Equation
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Column excitation temperature – T col
ex

CO mass weighted average†

3D excitation temperature – Tex,obs

calculated from Dickman (1978) Equation
Column excitation temperature – T col

ex,obs

CO mass weighted average
Total column number density of hydrogen N

nuclei
Visual extinction AV

H2 column density NH2

CO column density NCO

critical column density Ncr

CO(J=0) column density NCO,J=0

Estimated CO(J=0) column density∗ using Tex N th,3D
CO,J=0

Estimated CO(J=0) column density∗ using Tex,obs Nobs,3D
CO,J=0

Estimated CO(J=0) column density∗ using T col
ex N th,2D

CO,J=0

Estimated CO(J=0) column density∗ using T col
ex,obs Nobs,2D

CO,J=0

Estimated CO column density‡ using Tex N th,3D
CO

Estimated CO column density‡ using Tex,obs Nobs,3D
CO

Estimated CO column density‡ using T col
ex N th,2D

CO

Estimated CO column density‡ using T col
ex,obs Nobs,2D

CO
†projection made by considering the mass-weighted average
along the line of sight
∗ calculated from Eq. 3.11
‡ calculated from Eq. 3.16
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3.1 Overview of the simulation

The particular chemical network implemented for this chapter and chapter 4
is based on an approximation for modeling the formation of CO introduced
by Nelson and Langer (1999), and is described in detail in Glover et al.
(2010), see (Glover and Clark, 2012a). This chemical network is much simpler
that the one described in §2.1. Although it also includes a small number of
reactions which involves magnesium Mg, iron Fe, calcium Ca, and sodium Na.
Even though the chemistry is simplified, the temperature, number density,
and CO, C, & C+ number density distributions are very similar to the ones
of the full chemical network.

Fig. 3.1a shows the column density of molecular hydrogen, NH2, pro-
jected along the z-axis of the simulation volume at time t = tend ≈ 5.7
Myr. Fig. 3.1b illustrates a similar plot but for the column density of car-
bon monoxide, NCO. Both images show similar morphology: the gas has a
filamentary structure, and there are large spatial variations in the column
densities. The gas appears to have a prominent over-dense region visible
towards the top-right of the figure, and an under-dense region visible near
the center-left of the image. Several authors have particularly shown that
NCO is not linearly correlated to NH2, particularly in regions with low visual
extinction AV where CO can be easily photodissociated (e.g. van Dishoeck
and Black, 1988; Visser et al., 2009; Glover and Mac Low, 2011). In a de-
tailed analysis at different densities, Shetty et al. (2011a) showed that the
Probability Density Function (PDF) of NH2 and the total column density
N are well described by a log-normal function (Eq. 6.2), but that this is
not the case for the PDFs of CO column density and integrated intensity.
Therefore, we do not expect the ratio NCO/NH2 to be uniform. Fig. 3.1c
indicates that the cloud is not chemically homogeneous by showing the ratio
of NCO to NH2. Although the average ratio of CO to H2 column densities is
〈NCO/NH2〉 = 4.1×10−5, the ratio of NCO/NH2 shows significant spatial vari-
ation. In regions with a high density of H2, the gas is well-shielded leading to
higher CO abundances. In low density regions, however, the CO abundance
is very low, because the gas is poorly shielded.

Fig. 3.1d illustrates the CO(J=1→0) velocity integrated intensity, again
for the same LoS (equivalent to the z-axis of the simulation volume). In this
image, the filamentary structure is again evident, particularly in the high
density regions, although comparison of Figures 1b and 1d shows that there
is not a one-to-one correlation between structures in the column density map
and in the integrated intensity map. A similar result was previously noted
by Shetty et al. (2011a). In diffuse regions, the integrated intensity is so low
that little of the structure of the gas is visible. This fact is in agreement
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with the analysis of CO distribution performed in Molina et al. (2011). In
that work, we showed that the majority of CO is located in zones where
the gas is well shielded, typically at number density >100 cm−3 regardless
of the environmental conditions of our cloud models (such as mean density,
metallicity and UV radiation field strength). Fig. 3.2 shows the cumulative
total mass of the cloud (solid line) and the cumulative H2 (dashed line) and
CO (dotted line) masses as a function of the number density for the particular
simulation in this study. Although 96% of the mass of the cloud is in regions
with densities & 20 cm−3, the majority (95%) of the CO mass is in zones
with n & 400 cm−3. The H2 mass follows the total mass fraction very closely.

3.2 Number density and CO abundance dis-

tribution in 3D

For a given species i, the column density ratio Ni/N roughly corresponds its
volume abundance xi = ni/n. In this section, we analyze the number density
distribution and the volume CO abundance xCO = nCO/n in detail. This will
help us understand the range in which CO is distributed and the associated
emission.

3.2.1 Number density Probability Density Function

It is widely accepted that the PDF of the logarithm of the density of an
isothermal, unmagnetized, supersonic turbulent flow has a log-normal shape
around the peak (e.g. Vázquez-Semadeni, 1994; Padoan et al., 1997; Klessen,
2000; Ostriker et al., 2001; Li et al., 2003; Federrath et al., 2008b; Kainulainen
et al., 2009; Glover et al., 2010; Federrath et al., 2010; Padoan and Nordlund,
2011; Molina et al., 2012; Kainulainen and Tan, 2013),

ps ds =
1

√

2πσ2
s

exp

[

−(s− s0)
2

2σ2
s

]

ds, (3.1)

where s = ln(n/n0) (n0 is the mean density of the simulation), and σs is
the density variance. The mean s0 is related to the density variance by
s0 = −σ2

s/2.
When the gas is subject to other processes like heat exchange, magnetic

fields and/or gravitation, the density PDF may or may not deviate from a
log-normal shape. In the present work, we include a non-isothermal equation
of state and magnetic fields. The resulting PDF (Fig. 3.3) nevertheless still
closely follows a log-normal distribution (solid line). The dashed line shows



3.2. NUMBER DENSITY AND CO ABUNDANCE DISTRIBUTION IN 3D53

Figure 3.1: Images of: (a) the column density of molecular hydrogen, NH2,
viewed along a LoS parallel to the z-axis of the simulation volume. (b) As
(a), but for the CO column density, NCO. (c) As (a), but for the ratio of
NCO to NH2. (d) Integrated CO (J=1-0) intensity WCO along the same LoS.
(e) and (f) Projected kinetic temperature along the z-axis of the simulation
volume: in (e) we show a mass-weighted average along the LoS, while in (f)
we show a CO mass-weighted average.
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Figure 3.2: Cumulative total mass (solid line), H2 mass (dashed line), and
CO mass (dotted line) below a given number density n versus total number
density. The masses are normalized by the total mass of the cloud and the
total mass of H2 and CO, respectively.
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Figure 3.3: Mass-weighted PDF of the dimensionless logarithmic density
s. The dashed line indicates n = 20 cm−3, and dotted line corresponds to
n = 400 cm−3. The fraction of the cloud mass to the right of the dashed line
(96%) is approximately equal to the fraction of the CO mass to the right of
the dotted line.

n = 20 cm−3, and the dotted line denotes n = 400 cm−3, the density above
which 95% of the CO mass exists, but which corresponds to only 47% of the
total mass of the cloud (Fig. 3.2). As the remaining 5% of the CO fraction is
distributed throughout 53% of the total mass, we expect the mean abundance
of CO below n = 400 cm−3 to be very low.

3.2.2 CO abundance

Fig. 3.4 shows the mass-weighted 2D PDF of the CO abundance as a func-
tion of the number density. The white line indicates the average 〈xCO〉 in
every number density bin. As expected, the abundance of CO increases
with increasing number density until it reaches the maximum value xCO =
xC,tot = 1.41× 10−4, where all the carbon is locked into CO molecules. Most
of the mass of the cloud is above n = 20 cm−3 (black dashed line) with
log10 xCO & −10. At n = 20 cm−3, the dispersion of xCO is the largest
of the distribution, ranging from log10 xCO ≈ −11.8 (xCO ≈ 2 × 10−12) to
log10 xCO ≈ −4.2 (xCO ≈ 6 × 10−5). The distribution becomes narrower
towards higher number densities. At n ≥ 400 cm−3, 47% of the mass is
concentrated into regions where the abundance ranges from log10 xCO ≈ −9
to the maximum at log10 xCO = −3.85. The average at n = 400 cm−3 is
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Figure 3.4: Mass-weighted 2D PDF of the CO abundance xCO = nCO/n vs.
volume density. The white line shows the average 〈xCO〉 in every n bin. The
black dashed line is located at n = 20 cm−3, showing that 96% of the total
mass of the cloud is located at densities above this line. The black dotted
line indicates n = 400 cm−3. 95% of the CO mass is located at densities
above this line.

〈log10 xCO〉 ≈ −6.6 (〈xCO〉 ≈ 3 × 10−7). It increases steeply with number
density up to log10 n/cm

−3 ≈ 3.4 (n ≈ 2500 cm−3), the density at which the
average of xCO flattens and smoothly approaches the maximum value.

CO is often assumed to provide a reliable guide to the temperature of
gas within molecular clouds (Martin et al., 1982; Walmsley and Ungerechts,
1983; Wienen et al., 2012). However, as we shall see in the next section, the
assumption that CO provides accurate estimates of the temperature of the
cloud is incomplete at best.

3.3 Tracing the temperature of the cloud

3.3.1 Kinetic temperature

The kinetic temperature of the gas in molecular clouds is often assumed to
be between 10 and 20 K. However the range in temperatures is actually much
broader (Fig. 5.1). In this simulation, 96% of the mass exhibits temperatures
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ranging from roughly log10 TK/K≈ 1 (TK ≈ 10 K) to log10 TK/K≈ 1.95 (TK ≈
90 K ). The gas with temperatures below 10 K and above 100 K represents
only 7% of the mass (although this fraction of the mass occupies around
28% of the total volume). Further, the kinetic temperature decreases with
increasing density, scaling approximately as TK ∝ n−1/4 at n < 3×103 cm−3,
but with significant scatter around this relationship (see also Glover and
Clark, 2012b). Although the temperature of the gas at n & 400 cm−3 (white
dotted line) ranges from log10 TK/K≈ 0.8 (TK ≈ 6.5 K) to log10 TK/K≈ 1.6
(TK ≈ 40 K), ∼97% of the CO mass lies between TK = 7 and K TK = 20 K
(interval within the solid white lines).

The temperature distribution in the cloud is not an observable quantity.
This is because our observations typically are of projected quantities, and
hence produce some degree of averaging along the LoS. Particularly in the
case of temperatures, the mean is dominated by the densest zones. We
therefore consider the mass-weighted average of the temperature over the
cells along each LoS. We refer to this quantity as the “column temperature”2.
We prefer to use CO mass in order to calculate the column temperatures,
because it gives a better view of the temperature of the gas where most of
the CO is located.

Fig. 3.1e illustrates the column kinetic temperature T col
K ; and Fig. 3.1f

shows a similar map, but weighting the average by CO mass, T co−col
K . One of

the most notable characteristics is the low temperature region visible towards
the top-right of the figure, in the same location as the apparent over-dense
regions in Figures 3.1a and 3.1b. Another notable aspect is the hot region
located near the center-left of the figure, matching the low density region
in Figs. 3.1a and 3.1b. This behavior is not surprising, because we expect
low temperature at higher densities. In the case of T co−col

K (Figure 3.1f), the
trend is similar. Although the map in Fig. 3.1f in general exhibits lower
temperatures than Fig. 3.1e, the feature visible towards the center-left of
Fig. 3.1e with T col

K > 65 K is still notable in Fig. 3.1f. The low temperature
feature towards the top-right is still present, but the material that surrounds
it shows a similar T co−col

K , rendering it less pronounced.

Figs. 3.6a and 3.6b show the mass-weighted 2D PDFs of both estimates
of T col

K and T co−col
K (corresponding to the maps in Figs. 3.1e and 3.1f) respec-

tively, as a function of the column density. The equivalent AV is indicated
at the top of the figure for reference. Given that the regions with the high-
est density dominate the mass along the LoS, the cold, high density regions
dominate the mass-weighted average of the temperature, so the projected

2“Column temperatures” are an accurate measure for optically thin emission, as de-
scribed by Shetty et al. (2009).
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Figure 3.5: Mass-weighted 2D PDF of the kinetic temperature TK vs. number
density. The black line shows the average 〈TK〉 in every n bin. The white
dashed and dotted lines shown here indicate the same densities as the black
dashed and dotted lines in Fig. 3.4. Approximately 97% of the CO mass has
TK ranging from 7 K to 20 K. This interval is indicated by the solid white
lines.
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temperatures (T col
K and T co−col

K ) are always lower than the actual 3D temper-
ature distribution TK (Fig. 5.1). For a better visualization, the black line
indicates the average of the column temperatures in every N bin. In Fig-
ure 3.6a, 76% of the cloud mass has a value of T col

K ranging from ∼20 K to
50 K, although the whole range of temperatures extends from 15 K to 115
K. In Figure 3.6b, T co−col

K is distributed along a lower and narrower range
than T col

K . 93% of the CO mass has T co−col
K ranging from 10 K to only 30

K (matching the standard values accepted for molecular clouds). This is a
direct consequence of the fact that CO mostly traces cold, dense gas (Molina
et al., 2011).

3.3.2 Brightness temperature

For a cloud in thermodynamical equilibrium, its specific intensity Iν can
be accurately characterized by a Planck blackbody spectrum with the same
brightness. The temperature associated with this blackbody is the brightness
temperature Tb, defined as

Iν = Bν(Tb), (3.2)

where Bν is the Planck function. Given the low frequencies in radio as-
tronomy, the limit hν ≪ kTb is often applicable and the Rayleigh-Jeans
approximation is commonly used. In this limit, the intensity at a given ν
can be written as

Tb =
c2

2ν2k
Iν . (3.3)

In reality, the condition hν ≪ kTb is only fulfilled for the CO (J=1-0)
line when Tb ≫ 6 K. This brightness temperature can be translated to in-
tensity (using either Eq. 3.2 or Eq. 3.3), allowing us to write this criteria as
Iν ≫ 10−14 erg s−1 cm−2Hz−1 ster−1 = Iν,0. In our cloud model, the maxi-
mum intensity is only 9×Iν,0. At this value, our estimate of the brightness
temperature is Tb = 22.3 K when we use the Rayleigh-Jeans approximation
or 25 K if we use the Planck function (Eq. 3.2). Using the Rayleigh-Jeans ap-
proximation for Iν . Iν,0 always underestimates the brightness temperature
and this discrepancy grows with decreasing intensity.

The radiation from our cloud model is mostly not thermalized. Therefore,
the physical properties of the gas in our simulation cannot be interpreted as
a blackbody. Consequently, we then cannot discern with physical arguments
if Eq. 3.2 is better than the approximation in Eq. 3.3. However, because
most observational reports in the literature often make use of the Rayleigh-
Jeans approximation (F. Bigiel, private communication), we will likewise do
so throughout the rest of this study.
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Figure 3.6: (a) Mass-weighted 2D PDF of T col
K , the column kinetic temper-

ature of the gas (i.e. the mass-weighted average along the LoS) versus the
column density. The black line shows the average 〈T col

K 〉 in every N bin. (b)
Same as (a), but considering the CO mass-weighted average along the LoS,
T co−col
K . The black line shows the average 〈T co−col

K 〉 in every N bin. In both
figures, the visual extinction AV is indicated at the top for reference.
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If the gas is optically thick (τ ≫ 1), Tb ≈ TK. This relation is based
on the assumption of LTE, and that the temperature of the gas is constant.
We test if a relation like Tb ≈ TK holds for our cloud model (for τ ≫ 1).
Fig. 3.7 shows the mass-weighted 2D PDF of the brightness temperature
as a function of TK. In order to visualize how the brightness temperature
varies with with the kinetic temperature, we need to transform TK from the
position-position-position (PPP) space into position-position-velocity (PPV)
space, in which Tb is arranged. The method we use to do this is explained
in the Appendix. The data is selected for Tb ≥ 0.1K, because above this the
emission tends to be optically thick. This limit is also in agreement with the
sensitivity limit of recent observational analyses, such as the COMPLETE
survey in the Perseus cloud (Ridge et al., 2006). In this figure, the majority
of the emission comes from regions with Tb > 1 K, and is associated with
optically thick gas. Fig. 3.8 (solid line) shows the CO (J=1-0) emission-
weighted PDF of the optical depth, which indicates that 81% of the emission
comes from regions with τ ≥ 1. On the kinetic temperature side, 65% of the
emission comes from zones with log10 TK/K< 1.54 (TK < 35 K, indicated by
the yellow dotted line). About 36% of the emission is emitted from zones
with kinetic temperatures 1.54 ≤ log10 TK/K≤ 1.78 (35 K ≤ TK ≤ 60 K), and
only ∼ 13% from regions which have log10 TK/K> 1.78 (TK > 60 K). The CO
(J=1-0) emission from “warm” gas (50 − 100 K) has been observationally
detected for more than one decade (e.g. Liszt and Lucas, 1998; Goldsmith
et al., 2008; Liszt et al., 2010; Pety et al., 2011).

In general, in Fig. 3.7 the gas shows no clear relationship between Tb

and TK suggesting that for the majority of the gas Tb 6= TK. In a more
detailed analysis, we find that the fraction of cells with TK ≈ Tb ± σTb

(with
σTb

= 0.25 K) is only 5 × 10−5 of the total number of zones3. We can
therefore conclude that 99.995% of the radiation is not thermalized. The
PDF of the brightness temperature also shows a wide dispersion around the
peak. For better visualization, the average brightness temperature; 〈Tb〉, in
every kinetic temperature bin is shown by the solid yellow line. Between
1 < log10 TK/K< 2 (10 K< TK < 100 K), the 〈Tb〉 decreases as the kinetic
temperature increases, clearly contradicting Tb = TK. This is not surprising
because in Fig. 5.1, TK decreases with increasing density. We then would
expect intuitively that the abundance of CO (and therefore the emission)
will grow as the kinetic temperature decreases. At log10 TK/K& 1.7, there
is only 5% of the CO mass but almost 50% of the total gas mass. Because

3We chose 0.25 K as this is comparable to the typical noise level in the COMPLETE
survey (Pineda et al., 2008). However, if we consider σTb

= 0.05 K, the fraction of cells
satisfying the condition is still ∼ 10−5.
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Figure 3.7: Mass-weighted 2D PDF of the brightness temperature Tb vs. TK.
The yellow solid line shows the average brightness temperature 〈Tb〉 in every
TK bin. The yellow dotted line shows TK = 35 K, 95% of the CO mass is
found in regions with kinetic temperatures lower than this value of TK.

the mean CO abundance is so small, the CO emission is very weak and
〈Tb〉 approaches zero. On the other hand, at log10 TK/K< 1.2 (TK < 16 K),
the average is almost constant with TK with a value 〈Tb〉 ≈ 6 K. At this
regime the emission is mostly optically thick with Tb from 2 K up to ∼12 K
independent of the variations of the optical depth.

3.3.3 Excitation temperature

The excitation temperature Tex is calculated from the relative number of
atoms or molecules in two energy levels. Tex is defined from the Boltzmann
equation

nl

nu
=

gl
gu

exp

(

hν0
kTex

)

, (3.4)

where nl is the number density of molecules in the lower energy level l and
nu is the number density of molecules in an excited level u, with statistical
weights gl and gu respectively. ν0 is the frequency of the transition. For a
system in LTE, the number of transitions per unit time per unit volume out
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Figure 3.8: PDF of the optical depth in the CO (J=1-0) line. The solid line
shows the emission-weighted PDF. The dotted line shows the mass-weighted
PDF. The dashed line indicates τ = 1. 81% of the emission comes from
regions with τ ≥ 1, which represent 49% of the mass.

of state l is equal to the number of transitions per unit time per unit volume
into state u, in which case Tex = TK.

Fig. 3.9a shows the mass-weighted 2D PDF of Tex as a function of the
number density. We use the level populations obtained from radmc-3d for
each cell in the simulation in order to calculate the excitation temperature for
the J=1-0 transition4; for this transition ν0 = 115.3 GHz. 67% of the mass
of the cloud has Tex ≤ 5 K, while 23% is in regions with 5 K ≤ Tex ≤ 12, and
10% has Tex > 12 K. Tex increases with increasing density. This behavior is
simple to understand. At low densities, radiative de-excitations of the J > 0
levels of CO dominates over collisional de-excitations, and most of the CO
molecules sit in the J = 0 ground state, meaning that Tex is small. As the
density increases, however, collisional effects become increasingly important,
leading to an increase in nu/nl and hence an increase in Tex. The average
Tex approaches its maximum value (≈ 12 K) at n & 2× 103 cm−3, where the
mass fraction of H2 approaches its own maximum. Approximately half of the
CO mass is located above this number density. Comparing Figures 3.9a and
5.1, it is evident that Tex has the opposite behavior to TK. In Fig. 3.9a, the
cyan line indicates 〈Tex〉 and the white line shows 〈TK〉 in every n bin. The

4We will hereafter refer to the excitation temperature calculated from Boltzmann Equa-
tion as Tex.
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Figure 3.9: (a) Mass-weighted 2D PDF of the excitation temperature calcu-
lated considering the Boltzmann equation (Eq. 3.4) vs. number density. The
cyan line indicates the average 〈Tex〉 and the white line 〈TK〉, in every n bin.
(b) Mass-weighted 2D PDF of only the zones with Tex ≈ TK ± 0.05 K. The
arrangement of lines is the same as in (a) for all but the black line, which
shows the average 〈Tex〉TK

in every n. Note that the color scales in (b) varies
in comparison to (a) for a better visualization.



3.3. TRACING THE TEMPERATURE OF THE CLOUD 65

condition of LTE (Tex = TK) is most likely to be satisfied in regions where the
gas density is above a characteristic critical density of the species of interest5.
In the case of the CO (J=1-0) transition, ncr ≈ 2200 cm−3 (calculated using
data from the lamda database, Schöier et al., 2005), and varies only weakly
with TK. On average, the excitation temperature is always lower than the
kinetic temperature, meaning that CO is sub-thermally excited at n . 4×103

cm−3, although 〈Tex〉 approaches 〈TK〉 within 1 K at n & 3 × 103 cm−3

(Tex ≈ 13 K). For Fig. 3.9b, we select the zones where TK ≈ Tex±σTex
in order

to test the LTE conditions (with σTex
= 0.05 K 6). The density in the cells

matching the criteria varies from n ≈ 1.4×103 cm−3 (which is slightly smaller
than ncr) to n > 5×103 cm−3. Most of the cells satisfying the condition have
n & ncr. Only 0.3% of the total number of cells have n ≥ ncr, but on the
other hand only 0.05% of the total data matches the criteria Tex ≈ TK±0.05
K, meaning that only a sixth of the cells with n ≥ ncr are actually in LTE.
The black line shows the average of the excitation temperature as a function
of density but only for the regions fulfilling the criteria. The relation between
this average and the number density is subtle, it only changes by a few K.

Observationally, we cannot measure Tex in the way we can in the simu-
lations, since the values of the CO level populations and how they vary in
three-dimensional space are not known. Instead, we have to rely on approx-
imate methods for determining Tex from the observed emission. One widely
used approach was first proposed by Dickman (1978). He gives the expression

Tb =
hν0
k

[

1

exp(hν0/kTex,obs)− 1
− 1

exp(hν0/kTbg)− 1

]

[1− exp(−τ)],

(3.5)
where Tbg is the temperature of the background radiation, and τ is the optical
depth associated with the CO (J=1-0) emission line. This relationship can be
derived from the radiative transfer equation if we assume that the excitation
temperature does not vary along the line of sight. If we also assume that the
CO emission is optically thick (τ → ∞), then Eq. 3.5 can be simplified to:

Tex,obs =
5.5 [K]

ln{1 + 5.5 [K]/(Tb + 0.82 [K])} , (3.6)

where 5.5 K ≡ hν0/k, for ν0 = 115.3 GHz – the line center of the CO (J=1-

5The critical density is defined as the ratio of the Einstein coefficient for spontaneous
emission to the coefficient for collisional de-excitation ncr ≡ Aul/Cul

6We assume σTex
± 0.05 K given the uncertainty of the observational estimates of Tex

reported by Roman-Duval et al. (2010). If we choose a different value, the number of cells
fulfilling the criteria changes, although the shape of Fig. 3.9b remains the same.
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0) emission. Note that this expression asses that Tbg = TCMB, i.e. that the
only significant background radiation field at the frequency of interest is the
CMB. The term 0.82 K is equivalent to hν0/k[exp(hν0/kTbg)− 1].

So far, we have assumed that Tex is constant along the line of sight. In
reality, this is unlikely to be the case. In addition, we have not yet specified
which value must be used for Tb in Eq. 3.6. One way to proceed at this point
is to follow the approach originally used by (Dickman, 1978) and subsequently
adopted by many other studies (e.g. Garden et al., 1991; Liszt and Lucas,
1998; Pineda et al., 2008; Goldsmith et al., 2008; Pineda et al., 2010). In this
case, we assume that Tex actually is constant along the line of sight (justified
in Dickman’s case by his assumption that the cloud was in TE), and use
the maximum value observed for the brightness temperature, Tb,max, at each
position (x, y). We then end up with a “column” excitation temperature

T col
ex,obs =

5.5 [K]

ln{1 + 5.5 [K]/(Tb,max + 0.82 [K])} . (3.7)

Alternatively, we can attempt to preserve as much of the information
in the observed emission as we can by computing Tex for each velocity bin
and each line of sight in our 3D channel map of emission. To do this, we
continue to use Eq. 3.6, but now take Tb to be the brightness temperature
of the emission in the particular velocity bin of interest. The result of this
procedure is a map of Tex in PPV space, which we hereafter refer to simply
as Tex,obs.

In order to visualize how this estimate of Tex varies with physical condi-
tions in the gas, we need to transform these quantities (e.g. density) from
PPP space into PPV space.

Fig. 3.10 shows the mass-weighted 2D PDF of Tex,obs as a function of n.
Comparing Figs. 3.10 and 3.9a, we see that the two PDFs are very different.
A significant fraction of the mass in both plots has excitation temperatures
close to Tbg – in the case of Fig. 3.10, 37% of the mass is at the peak of the
PDF (Tex,obs . 3.5 K), while in Fig. 3.9a, 67% of the mass is at the peak
(Tex . 5 K). The blue line indicates the average, 〈Tex,obs, 〉 and the cyan line
shows 〈Tex〉 (from Eq. 3.4) in every number density bin. These two lines
increase towards high n. At n . 1500 cm−3, 〈Tex〉 < 〈Tex,obs〉. This situation
reverses at higher n, 〈Tex〉 > 〈Tex,obs〉 and their difference increases towards
high n. At n ≈ 5000 cm−3, 〈Tex〉 is a few K higher than 〈Tex,obs〉. Notice that
the cyan line represents 〈Tex〉 in every n bin, as shown in Fig. 3.9a, although
both lines do not look exactly the same. The reason is that in Fig. 3.9a,
we are using the densities in PPP space, while in Fig. 3.10 the values are in
PPV space. In supersonic turbulent clouds, the random velocity variations
create physically connected regions along the LoS in real space that can be
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Figure 3.10: Mass-weighted 2D PDF of the “observational” excitation tem-
perature Tex,obs. We overplot the average 〈Tex,obs〉 calculated in every number
density bin (blue line), also the average 〈Tex〉 in every n bin as in Fig. 3.9a
(cyan line). Although the cyan lines in this figure and in Fig. 3.9a look dif-
ferent, they are equivalent. n in Fig. 3.9 is in a position-position-position
(PPP) space, while here it is in position-position-velocity (PPV) space.

broken up into multiple distinct features in PPV space. Conversely, they
can create coherent features in PPV space which in reality correspond to
multiple, physically disconnected zones in PPP space (Adler and Roberts,
1992; Ballesteros-Paredes and Mac Low, 2002; Glover et al., 2010; Shetty
et al., 2010; Beaumont and et al., 2013).

Fig. 3.12a illustrates the map of the column excitation temperature T col
ex,obs

computed using the original Dickman (1978) approach (3.7). In this case,
we have only a single value for each line of sight, and hence cannot explore
how T col

ex,obs varies with the volume density. Instead, we show in Fig. 3.12b

shows the corresponding 2D mass-weighted PDF of T col
ex,obs as a function of

the column density N . 74% of the mass lies at low T col
ex,obs (2.7 K to 5 K),

and the remaining mass is in sight lines distributed up to T col
ex,obs ≈ 18 K.

The blue line represents the average 〈T col
ex,obs〉 in every N . The white and

red lines indicates the averages of the column kinetic temperatures 〈T co−col
K 〉

and 〈T col
K 〉 calculated in every N bin, respectively. 〈T col

ex,obs〉 and 〈T co−col
K 〉 do

not agree at N . 1.5 × 1022 cm−2, although they match and cross towards
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high column densities. On the other hand, 〈T col
K 〉 at every N exceeds the

entire range of values in the T col
ex,obs PDF. 〈T col

K 〉 approaches the PDF only at

N & 2× 1022 cm−2, corresponding to AV ≈ 10 mag. Since 〈T co−col
K 〉 provides

more adequate estimates of the column kinetic temperature (where CO is
abundant) than 〈T col

K 〉, it will be hereafter be the reference column kinetic
temperature temperature.

In order to compare the estimate of the “column” excitation temperature,
T col
ex,obs, that we get from Eq. 3.7 with the real excitation temperature of the

gas, we need to average the latter along each line of sight. To do this, we
compute a column excitation temperature, T col

ex in the same fashion as we
computed T co−col

K in §3.3.1, i.e. we compute a CO mass-weighted average of
Tex for each line of sight. Fig. 3.12c illustrates the map of T col

ex . The most
obvious difference between Figs. 3.12a and 3.12c is that T col

ex,obs (Figs. 3.12a)

exhibits higher values than T col
ex (Fig. 3.12c). The reason is that in Eq. 3.7,

only the peak of the emission along the LoS is used to calculate T col
ex,obs, which

is supposed to come from optically thick regions. However, the emission along
the LoS is not necessarily well represented by the maximum. The PDF of
τ in Fig. 3.8 shows that in the cloud, 51% of the mass has τ < 1 (dotted
line), but this contributes with only 19% of the total emission (solid line).
Therefore, Tex has variations along the LoS.

Fig. 3.12d shows the 2D mass-weighted PDF of T col
ex as a function of

N . 79% of the mass lies along lines of sight with T col
ex . 5 K. The rest of

the mass is distributed up to T col
ex ≈17 K. At N & 1022 cm−2, the PDF

of T col
ex becomes narrower than that of T col

ex,obs (Fig. 3.12b). The cyan and

blue lines show the average 〈T col
ex 〉 and 〈T co−col

K 〉 respectively, in every column
density bin. 〈T col

ex,obs〉 exceeds 〈T col
ex 〉 by about 2 K at N & 7 × 1021 cm−2.

This difference naturally comes from the fact that for calculating T col
ex,obs we

consider that the emission is optically thick and use only the maximum.
However at N . 6×1021 cm−2 the situation reverts, 〈T col

ex,obs〉 < 〈T col
ex 〉 by less

than 1 K. Lines of sight with these column densities are perhaps optically
thin and have little CO, therefore T col

ex,obs is small. In Fig. 3.12d, the white

and red lines show the averages 〈T co−col
K 〉 and 〈T col

K 〉 respectively, calculated
for every N bin. 〈T col

ex 〉 approaches 〈T co−col
K 〉 at N & 1022 cm−2 (T col

ex ≈ 12 K),
but remains ∼1 K below from it. This is consistent with the results shown
in Fig. 3.9, which shows that 〈Tex〉 < 〈TK〉 at all but the highest volume
densities.

In order to check for consistency of our calculations with a real observa-
tion, Fig. 3.11 shows the column excitation temperature as a function of AV

for the Perseus molecular complex from Pineda et al. (2008) (their Fig. 10).
They measure the excitation temperature using the Dickman’s approxima-
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Figure 3.11: (a) Image of the column excitation temperature calculated us-
ing the Dickman (1978) formula T col

ex,obs (Eq.3.7) for the Perseus molecular
complex taken from Pineda et al. (2008). (b) same as (a) but separated by
regions.

tion (Eq. 3.7). The visual extinction is measured using infrared data from
2MASS. Fig. 3.11a shows T col

ex,obs for all the whole Perseus cloud. Our results

in Fig. 3.12b are in very good agreement with Pineda et al. (2008). T col
ex,obs

is distributed very similarly in both figures with values ranging up to ∼17
K and up to AV ≈ 10 mag. Even all the individual regions7 in Fig. 3.11b
exhibit similar distributions, with the exception of the region “WestEnd”.

In Fig. 3.12d, there is a fraction of lines of sight where T col
ex may overlap

T co−col
K (Fig. 3.6b), which can apparently fulfill the LTE condition. Locally, it

is more probable to find zones with Tex ≈ TK if n & ncr = Aul/Cul. However
for projected quantities, a critical column density Ncr cannot be inferred
analytically because the coefficient Cul depends on the local number density,
not on the column density. In consequence, we select the sight lines where
T co−col
K ≈ T col

ex ± σTex,col
with σTex,col

= 0.58 with the aim of determining Ncr

qualitatively. Fig. 3.14a illustrates the 3% of the total lines of sight that
match the criteria. Fig. 3.14b shows the corresponding mass-weighted 2D
PDF of T col

ex for the lines of sight fulfilling the criteria. In this case, the
critical column density is about N & Ncr ≈ 5 × 1021 cm−2 (corresponding

7In §4.2, we present a Perseus map as well as a brief description of the selection criteria
chosen by Pineda et al. (2008)s for the regions separation.

8The choice of σTex,col
= 0.5 corresponds to about half of the difference between 〈T col

ex 〉
and 〈T co−col

K
〉 at N & 1.5×1022 cm−2. We did not use the same σTex

as in the 3D analysis
(Fig. 3.9b), because we obtained only 2 lines of sight fulfilling the criteria. We cannot
have a good statistical analysis with such a small number.
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to AV ≈ 3 mag), where 〈T col
ex 〉 is good guide to 〈T co−col

K 〉. The peak of the
PDF is around N ≈ 9×1021 cm−2. The averages 〈T col

ex 〉 (cyan line), 〈T co−col
K 〉

(white line), and 〈T co−col
K 〉 (red line) are plotted for comparison. These results

clearly suggest that even for the projected temperatures, 97% of the lines of
sight do not fulfill the LTE criteria.

Finally, we notice that the line of sight average of Tex depends to some
extend on the method used to compute it. For instance, rather than averaging
the excitation temperatures, we could instead compute an estimate T̃ col

ex that
uses the column densities in each level. i.e.

Nl

Nu

=
gl
gu

exp

(

hν0

kT̃ col
ex

)

. (3.8)

The values of T̃ col
ex calculated in this way are typically lower than T col

ex (Eq. 3.4)
by approximately 1 K. This issue raises the question of which method is the
most accurate for computing the projected temperature? Also, how does
projection affect other quantities requiring temperature estimates? In the
next section, we will use the excitation temperatures estimated in this section
in order to calculate the CO column density in the level J=0 and the total
CO column density with the aim of quantifying the differences between the
estimates from Eqs. 3.4 and 3.6. We will also test how the projection of the
excitation temperatures affects those CO column density estimates.

3.4 CO column density

In this section, we compare estimates of the CO column density obtained
using the results of the previous section with the “true” CO column density
(i.e. that output by the MHD simulation). We obtain this output value
by first converting the data from a position-position-position (PPP) to a
position-position-velocity (PPV) cube (see Appendix). We then sum up the
individual column densities – NCO(x, y, v ) – in every velocity channel along
the LoS in order to obtain the CO column density at every (x, y) position
(NCO).

Fig. 3.15 shows the 2D mass-weighted PDF of the CO column density NCO

as a function of N . As in previous plots, AV is indicated as a reference at the
top. The black line indicates the average 〈NCO〉 in every N bin which closely
follows the peak of the PDF. NCO grows with increasing column density as
expected from Fig. 3.4. Moreover, the dispersion in column density N around
the average increases towards high NCO, with a maximum at NCO ∼ 1017

cm−2 (top purple line in Fig. 3.15). For future reference in §3.4 and 3.4.1,
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Figure 3.12: (a) Image of the column excitation temperature calculated using
the Dickman (1978) formula T col

ex,obs (Eq.3.7). (b) Mass-weighted 2D PDF of

T col
ex,obs vs. column density. The visual extinction AV corresponding to N

is indicated at the top of the figure for reference. The solid lines show the
averages 〈T col

ex,obs〉 (blue line), 〈T co−col
K 〉 (white line), and 〈T col

K 〉 (red line) in
every N bin.
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Figure 3.13: (a) Image of the column excitation temperature calculated con-
sidering the Boltzmann equation (Eq. 3.4) T col

ex , which is projected as the CO
mass-weighted average of Tex along the LoS .(b) Mass-weighted 2D PDF of
T col
ex,obs vs. column density. As in Fig. 3.12b, the visual extinction is indi-

cated at the top of the figure. The cyan line shows the average 〈T col
ex 〉. The

arrangement of lines is the same as in Fig. 3.12b.
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Figure 3.14: (a) Map of T col
ex (calculated from the Boltzmann equation and

projected along the LoS) for the lines of sight fulfilling the condition T col
ex ≈

T co−col
K ± 0.5 K. (b) Mass-weighted 2D PDF of only the zones with T col

ex ≈
T co−col
K ±0.25 K. AV is at the top of the figure for reference. The cyan, white

and red lines are the same as in Fig. 3.12d.
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Figure 3.15: Mass-weighted 2D PDF of the total CO number density. The
black line shows the average 〈NCO〉 in every column density bin. The purple
lines indicate the values NCO = 1014, 1015, 1016 and 1017 cm−2 as a reference
and are drawn up to a column density where the PDF is ∼ 0.01. The red lines
intersect those purple lines to indicate column densities and visual extinction
values at each of these values of NCO. The green solid line shows the average
of CO(J=0) column density 〈NCO,J=0〉 in every N bin for reference. The
dotted green lines shows 〈NCO,J=0〉 ± 2.5σ, enclosing ∼ 96% of the data.

the purple lines indicate constant NCO = 1014, 1015, 1016 and 1017 cm−2.
Those lines are draw from N = 0 cm−2 up to the column density at which
the PDF has dropped to 0.01 of the peak value. The red lines indicate those
column densities (N = 5×1021, 7.5×1021, 1022 and 1.4×1022 cm−2) and the
correspondent visual extinction (AV ≈ 2.7, 4, 5.3and7.5 mag).

Additionally, Fig. 3.15 shows the average of the “true” CO(J=0) column
density 〈NCO,J=0〉 in every N bin (green solid line). This green line follows
a similar behavior to the black line (the total 〈NCO〉 vs. N). By definition,
the mass of CO in the level J=0 has to be less than or equal to the total
mass of CO in all levels. In this particular example, the mass of CO in the
J=0 level is 24% of the total mass of CO. The largest differences between
NCO and NCO,J=0 increase with N . Fig. 3.15 also shows the dispersion of
NCO,J=0 around the average 〈NCO,J=0〉 ± 2.5σ (green dotted lines). These
lies ∼ 96% of the NCO,J=0 values. These references will be useful in the next
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subsection, where we will estimate the CO(J=0) column density from the
excitation temperature.

CO(J=0) column density estimated from the excitation tempera-
ture

Line intensities of a given species can be used to infer its column densities.
The calculation is not straightforward, although it can be achieved by taking
into account some approximations. For an emission line, the column density
of the lowest rotational level of the transition Nl can be inferred from the
column excitation temperature, the optical depth of the rotational transitions
u → l integrated along the LoS, and the Boltzmann equation (Eq. 3.4),

Nl = 93.28
glν

3
0

guAul

∫

τ
v
dv

1− exp
[

−hν0/kTex(v )
] [cm−2], (3.9)

where Aul is the Einstein coefficient for spontaneous emission. The units for
the frequency of the line center ν0 is GHz and linewidths dv are in km s−1

(Wilson et al., 2009).
For the transition between two rotational levels of a linear molecule J ⇄

J+1, the coefficient Aul = AJ depends on the frequency and a dipole moment
|µJ |2 = µ2(J +1)/(2J+3), where µ is the permanent electric dipole moment
of the molecule for the transition J + 1 → J . For emission, the Einstein
coefficient in Eq. 3.9 can be written as

AJ = 1.165× 10−11µ2ν3
0

J + 1

2J + 3
s−1 For J + 1 → J, (3.10)

where µ is in Debye. For the CO molecule µ = 0.112D, and since gJ = 2J+1,
Eq. (3.9) can be written as

NCO,l = 6.38× 1014[cm−2]
(2J + 1)

(J + 1)

∫

τ
v
dv

1− exp
[

−hν0/kTex(v )
] . (3.11)

In general, along any line of sight, there will be a mixture of optically thin
and optically thick zones. In our cloud model, τ may range from ∼ 10−6 to
∼600 for every velocity channel in Eq. 3.11. Low NCO,J=0 regions are more
likely to be optically thin, although the optically thick zones contribute sig-
nificantly to the total mass along the LoS. In any case, optically thin regions
account for 51% of the total mass of the cloud (see Fig. 3.8). Therefore, there
should be significant contributions from τ ≤ 1 zones to the total NCO,J=0 (es-
timated from Eq. 3.11). On the other hand at high NCO,J=0, lines of sight
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primarily have τ & 10. However, there are only few such LoS (see Fig. 3.8).
This low contribution of τ at high NCO,J=0 may be compensated by the ex-
citation temperature in Eq. 3.11. Although Tex only changes by some units,
the term in Eq. 3.11 {1 − exp

[

−hν0/kTex(v )
]

}−1 has a significant role in
shaping the NCO,J=0 distribution. The average 〈Tex〉 grows with increasing
density, however Tex and Tex,obs have different distributions (see Figs. 3.9a
and 3.10). It is therefore difficult to really differentiate qualitatively the role
of the excitation temperature alone at a givenNCO,J=0 in Eq. 3.11. Figs. 3.16a
and 3.16b quantify the effects of using Tex (Eq. 3.4) or Tex,obs (Eq. 3.6) in
order to estimate NCO,J=0 (Eq. 3.11). Later, we also evaluate the effect of
considering Tex(v ) or simply a uniform excitation temperature along the lines
of sight T col

ex .

Fig. 3.16a shows the 2D mass-weighted PDF of the ratio of the esti-
mated CO(J=0) column density N th,3D

CO,J=0 to the “true” CO(J=0) column

density NCO,J=0 as a function of the “true” NCO,J=0. N th,3D
CO,J=0 is calcu-

lated by introducing the excitation temperature from the Boltzmann Equa-
tion Tex (Eq. 3.4) into Eq. 3.11 and therefore accounts for variations in Tex

along each line of sight. The black line in Fig. 3.16a shows the one-to-
one relation between N th,3D

CO,J=0 and the “true” NCO,J=0. On average, the ra-

tio N th,3D
CO,J=0/NCO,J=0 is close to one. This is not surprising because both

Eq. 3.11 and Tex were derived from the Boltzmann equation. However,
the PDF shows high dispersion around the average, with the highest de-
viation from the one-to-one line at the peak NCO,J=0 ≈ 5 × 1016 cm−2 (47%
of the mass is located above this value). Due to this dispersion, we pre-
fer to focus on the average 〈N th,3D

CO,J=0/NCO,J=0〉 in every NCO,J=0 bin (blue
line) rather than the whole distribution. At NCO,J=0 . 1015 cm−2, the

average 〈N th,3D
CO,J=0/NCO,J=0〉 is very close to one (black line). However, at

NCO,J=0 & 1015 cm−2, 〈N th,3D
CO,J=0/NCO,J=0〉 decreases as NCO,J=0 grows. There

are two important reasons for this behavior. At these densities, the CO (J=1-
0) emission line tends to be optically thick. Its distribution therefore does
not follow the “true” CO column density distribution. Moreover, the number
of regions with τ & 10 diminishes towards NCO,J=0 & 1016 cm−2 (see the drop

of the τ PDF at τ & 10, Fig. 3.8). These cause N th,3D
CO,J=0 to be lower than

the “true” NCO,J=0. Averaged over all lines-of-sight, we find N th,3D
CO,J=0 = 0.7

NCO,J=0.

Fig. 3.16b shows the “observationally” derived 2D mass-weighted PDF
of the ratio of CO(J=0) column density Nobs,3D

CO,J=0 to the “true” NCO,J=0 as a

function of the “true” NCO,J=0. N
obs,3D
CO,J=0 is calculated using Tex,obs (Eq. 3.6)

in Eq. 3.11. The ratio Nobs,3D
CO,J=0/NCO,J=0 shows high dispersion and looks
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Figure 3.16: (a) Mass-weighted 2D PDF of the ratio of N th,3D
CO,J=0–to–the true

NCO,J=0, as function of NCO,J=0. The blue line shows the average of this ratio

in every true NCO,J=0 bin, and the black line represents N th,3D
CO,J=0 = NCO,J=0.

In total, N th,3D
CO,J=0 = 0.7 NCO,J=0. The blue line is set artificially to 1 at

NCO,J=0 > 1018 cm−2 in order to avoid numerical noise. (b) Same as (a),

but considering T obs
ex (Dickman, 1978). In this case, Nobs,3D

CO,J=0 = 0.98 NCO,J=0.
The arrangement of lines is the same as in (a).
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very close to the one-to-one relation (black line), similar to Fig. 3.16a. Given
the high dispersion in the PDF, it is again easier to analyze the behavior of
the average 〈Nobs,3D

CO,J=0/NCO,J=0〉 in every NCO,J=0 bin (blue line). In Eq. 3.6,
Tex,obs is determined assuming that the CO (J=1-0) emission line is opti-
cally thick. Therefore for lines of sight with NCO,J=0 . 1013 cm−2 (which
span many optically thin zones). Tex,obs is higher than expected (compared

to Tex from the Boltzmann equation). Hence, Nobs,3D
CO,J=0 overestimates the

“true” NCO,J=0. At NCO,J=0 & 1014 cm−2, the average 〈Nobs,3D
CO,J=0/NCO,J=0〉

approaches the one-to-one line as the fraction of sight lines which are opti-
cally thick increases. In Fig. 3.16b, the average 〈N th,3D

CO,J=0/NCO,J=0〉 increases
towards high NCO,J=0, contrary to Fig. 3.16a. The reason is that zones with
τ & 1 and Tex,obs & 5 K are more abundant in the observational calcula-

tion of Nobs,3D
CO,J=0 than for N th,3D

CO,J=0. In this approach, Nobs,3D
CO,J=0 is higher than

N th,3D
CO,J=0 (Fig. 3.16a) by almost 30%. Even though the approximations of

LTE, and the assumptions of the gas being isothermal and optically thick
in Eq. 3.6 are not accurate, overall we find that Nobs,3D

CO,J=0 = 0.98 NCO,J=0

when we average over all lines of sight. The reason is that most of the mass
lies along lines of sight with NCO,J=0 & 1016 cm−2, which mostly correspond
to N & 5 × 1021 cm−2 (see Fig. 3.15). At those column densities, a large
fraction of each sight-line has n & 2000 cm−3, for which 〈Tex〉 is close to
〈TK〉. Therefore, the Dickman approximation is very accurate for estimating
NCO,J=0 at NCO,J=0 & 1013 (N & few × 1021 cm−2 in Fig. 3.15).

In several works, the excitation temperature is considered uniform along
the LoS (Garden et al., 1991; Liszt and Lucas, 1998; Pineda et al., 2008;
Goldsmith et al., 2008; Pineda et al., 2010). With the aim of studying how
projections change the “view” of the excitation temperature, which in turn
may affect the CO(J=0) column density calculations, we insert the column
excitation temperature T col

ex in Eq. 3.11 instead of Tex(v ). Fig. 3.17a shows
the 2D mass-weighted PDF of the ratio of the estimated CO(J=0) column
density (employing T col

ex in Eq. 3.11) N th,2D
CO,J=0 to the “true” NCO,J=0 as a

function of the “true” NCO,J=0. The excitation temperature is calculated
from Boltzmann equation (Eq. 3.4), and is then projected in order to obtain
T col
ex (see §3.3.3 for details). In Fig. 3.17a, most of the PDF lies above the

equality line. From the average of 〈N th,2D
CO,J=0/NCO,J=0〉 in every NCO,J=0 bin

(blue line), it is clear that the 〈N th,2D
CO,J=0〉 is higher than 〈NCO,J=0〉 and that

their difference increases towards low NCO,J=0. The average of the ratio is

very close to one at NCO,J=0 & 1016 cm−2. In total, N th,2D
CO,J=0 is 1.05 times

higher than NCO,J=0. Adopting T col
ex in Eq. 3.11, produces N th,2D

CO,J=0 which is

∼ 30% higher than N th,3D
CO,J=0 (from using Tex in Eq. 3.11). The reason is that
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Figure 3.17: (a) Mass-weighted 2D PDF of the ratio of N th,2D
CO,J=0 (calculated

by using the uniform T col
ex (Boltzmann equation) in Eq. 3.11) – to the true

NCO,J=0, as function of the true NCO,J=0. In total, N th,2D
CO,J=0 = 1.05 NCO,J=0.

(b) Similar to (a), but for the “observational” estimated Nobs,2D
CO,J=0 considering

T col
ex,obs (Dickman, 1978). In total Nobs,2D

CO,J=0 = 1.17 NCO,J=0. The lines are
arranged in the same fashion as in previous Figures.
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the difference between T col
ex and Tex is large. For T col

ex , 77% of the mass is ≥ 5
K (Fig. 3.12d), but Tex (Fig. 3.9a) on the other hand has only 33% of the
mass at Tex ≥ 5 K.

The effect of projecting the observational estimate of the excitation tem-
perature T col

ex,obs (Eq. 3.7) into the calculations of the CO(J=0) column den-

sity Nobs,2D
CO,J=0 (Eq. 3.11) is also quite different from the calculation of Nobs,3D

CO,J=0.

Fig. 3.17b shows the ratio of Nobs,2D
CO,J=0 to the “true” NCO,J=0 as a function

of the “true” NCO,J=0. Nobs,2D
CO,J=0 overestimates NCO,J=0 for most of the dis-

tribution (compare to the black line as reference). In total, Nobs,2D
CO,J=0=1.17

NCO,J=0. As in the three previous plots, the blue line represents the average

〈Nobs,2D
CO,J=0/NCO,J=0〉 as a function of NCO,J=0. For this average, there is no

clear trend of the ratio with NCO,J=0. There are only small discrepancies be-

tween Nobs,2D
CO,J=0 and Nobs,3D

CO,J=0 which are more notable towards NCO,J=0 & 1014

cm−2 (Figs. 3.17b and 3.16b). For T col
ex,obs, 75% of the mass is at ≥ 12 K,

while T col
ex,obs has 52% of its mass above that value.

The most accurate method for estimating NCO,J=0 from Eq. 3.11 is us-
ing the excitation temperature in every spectral channel Tex,obs(v ), for which

Nobs,3D
CO,J=0 ≈ NCO,J=0. Whether we consider Tex or T col

ex , the difference between

N th,3D
CO,J=0 or N

th,2D
CO,J=0 and the“true” NCO,J=0 is roughly 30%. On the “observa-

tional” counterpart, considering Nobs,2D
CO,J=0 (considering T col

ex,obs) overestimates
the“true” NCO,J=0 by only ∼ 15%.

3.4.1 Total CO column density estimated from the ex-
citation temperature

Ideally, the total column density of a species can be calculated as the sum-
mation of the individual column densities at every excitation level. For CO,
the two or three lowest rotational levels are the most populated because its
excitation is relatively weak (Liszt and Lucas, 1998). The energy level J=2
corresponds to a temperature ∼17 K above the J=0 level. In our cloud
model, less than 9% of the mass of CO has TK above 17 K (see Fig. 5.1),
and so there is a high probability that most of the CO mass lies in the three
lowest populations. Indeed we know that in practice, much of the CO is sub-
thermally excited (§3.3.3). 24% of the CO molecules are found in the J=0
level and 42% in J=1 (this level corresponds to T ∼ 5.53 K). Most of the
remaining 25% may be located at the J=2 level, although a small fraction
(of the order of a few percent) may be found in higher excitation levels (see
also Pon et al. (2012)). In this work, we focus on the1 → 0 transition of the
CO molecule. Therefore, to calculate the total CO column density given the
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summation of different rotational levels is beyond the scope of this paper.
However, we can estimate it from the CO column density in the level J=0
or J=1.

Following the derivation made by Wilson et al. (2009), CO can be con-
sidered as a completely rigid molecule with rotational energy:

Erot = hBeJ(J + 1), (3.12)

where Be is the rotational constant (for CO, Be = 57.66 GHz)9. For a slightly
elastic molecule, the rotational energy will increase by a term hD[J(J + 1)]2

(to first order) due to centrifugal stretching (D is the constant for centrifugal
stretching). Typically, D ≈ 10−5Be for most molecules (Wilson et al., 2009).
For CO at the levels J ≤ 2, the correction to Erot for such stretching is only
. 6× 10−5. Therefore, Eq. 3.12 is accurate enough for calculations based on
the CO (J=1-0) transition.

If vibrationally excited states are not populated, the ratio of a population
in a given level J to the total population is:

NJ

Ntotal
=

(2J + 1)

Ω
exp

[

−hBeJ(J + 1)

kTex

]

, (3.13)

where Ω is the partition function (Wilson et al., 2009), which is expressed as

Ω =
∞
∑

J=0

(2J + 1) exp

[

−hBeJ(J + 1)

kTex

]

. (3.14)

For simplicity, we assume that all the levels have the same Tex (Dickman,
1978). Therefore, using Eq. 3.11 to calculate the column density of the
lowest level of the transition J + 1 → J , the total CO column density is:

NCO,total =
6.38× 1014[cm−2]

(J + 1)

∫ τ
v
Ωexp

[

2.78J(J+1)
Tex(v )

]

dv

1− exp
[

−hν0/kTex(v )
] . (3.15)

In observational studies, the information required to calculate the exci-
tation temperature at every rotational level J is not always accessible. It is
frequently assumed that kTex is large compared to the separation of energy
levels (kTex ≫ hBe). Therefore, the summation in Eq. 3.14 is Ω ≈ kTex/hBe.
In this case, we can express the total column CO density as

NCO,total ≈
2.31× 1014[cm−2]/[K]

(J + 1)

∫ τ
v
Tex(v ) exp

[

2.78J(J+1)
Tex(v )

]

dv

1− exp
[

−hν0/kTex(v )
] . (3.16)

9http://cccbdb.nist.gov/
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There are some caveats for applying the condition kTex ≫ hBe at Eq. 3.16.
For the minimum excitation temperature, Tex ≈ Tbg = 2.7K, kTex is very
similar to hBe, while for Tex = 12 K, kTex ≈ 4× hBe. The condition kTex ≫
hBe is not fulfilled by the lowest values of the excitation temperature and the
highest values barely satisfy it. In all calculations, Eq. 3.15 estimates ∼10%
more mass than Eq. 3.16 with J=0 in the worst case scenario. Eq. 3.15
results in higher CO column density estimates than the “true” CO column
density particularly at NCO . 1014 cm−2, where kTex ≈ hBe. However, we
will consider hereafter Eq. 3.16 instead of Eq. 3.15 because of the limitations
usually faced in observational studies to estimate the partition function Ω
(e.g. Pineda et al., 2008, Pineda et al., 2010; Roman-Duval et al., 2010).

In the two following Figures, the analysis is based on the CO column
densities inferred from Eq. 3.16 by using the CO column density in the level
J=0 and two different approaches for calculating the excitation temperature:
Tex (Eq. 3.4) and Tex,obs (Eq. 3.6). It is important to note that a major the
difference between Eqs. 3.16 and 3.11 – besides the coefficients of both inte-
grals – is Tex(v ) in the integrand of Eq. 3.16. Therefore, the physics behind
Eq. 3.11 holds for Eq. 3.16 with Tex playing a stronger role in determining the
total CO column density. In Fig. 3.18a we plot the 2D mass-weighted PDF
of the ratio of N th,3D

CO to NCO as a function of NCO. Most of the mass of the
cloud presents a ratio N th,3D

CO /NCO that lies below the one-to-one relation at
every NCO. The average 〈N th,3D

CO /NCO〉 (blue line) shows that at NCO & 1017

cm−2, the ratio N th,3D
CO /NCO has the highest deviation from the black line.

This results also hold if the full partition function Ω (Eq. 3.14) is considered
instead of the approximation Ω ≈ kTex/hBe. The deviation is due to the low
number of zones with τ & 1 at NCO & 1016 cm−2. Averaged over all sight
lines, N th,3D

CO = 0.52 NCO.

Fig. 3.18b shows the 2D mass-weighted PDF of the ratio of the ra-
tio of the estimated CO column density considering Tex,obs (Eq. 3.6) into

Eq. 3.16 Nobs,3D
CO to the “true” NCO as a function of NCO. The average ratio

〈Nobs,3D
CO /NCO〉 in every NCO bin is represented by the blue line. Similar to

Fig. 3.18a, on average the ratio Nobs,3D
CO /NCO stays below the equality line

showing that Nobs,3D
CO underestimates the CO column density in every NCO

bin. At NCO & 1015 cm−2, the average 〈Nobs,3D
CO /NCO〉 approaches the black

line. Given that most of the mass is located at NCO & 1015 cm−2, these sight
lines dominate the entire CO mass. In total, Nobs,3D

CO = 0.93 NCO.

We now consider a uniform excitation temperature along the LoS in
Eq. 3.16. Fig. 3.19a shows the 2D mass-weighted PDF of the ratio of the es-
timated total CO column density considering T col

ex (from Boltzmann equation
and then projected along the LoS), N th,2D

CO to the total NCO as function of
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Figure 3.18: (a) Mass-weighted 2D PDF of the ratio of the estimated total
CO column density using Tex – Boltzmann equation, Eq. 3.4, N th,3D

CO – to the
true total CO column density NCO, as function of the true NCO. In total,
N th,3D

CO = 0.52 NCO. (b) Same as (a), but considering Tex from Dickman
(1978) Eq. 3.6 – Nobs,3D

CO . In total Nobs,3D
CO = 0.93 NCO. The blue lines are set

artificially to 1 at NCO > 1018 cm−2 in order to avoid numerical noise. The
rest of the lines are arranged in the same fashion as previous Figs.
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NCO. The average 〈N th,2D
CO /NCO〉 in every NCO bin (blue line) lies very close

to the one-to-one relation. There is no clear dependence of the average ratio
on CO column density. In total, N th,2D

CO is 1.05 times NCO. In comparison
with Fig. 3.18a, N th,2D

CO is ≈ 2 times N th,3D
CO . This is due to the distribution

of T col
ex (Fig. 3.12d) which at N . 1022 cm−2 (NCO . 1016 cm−2, Fig. 3.15) is

very wide. 19% of the mass has T col
ex ≥ 12 K, which contributes significantly

to N th,2D
CO . On the other hand, only 10% of the mass lies at Tex (see Fig. 3.9a),

resulting in lower N th,3D
CO .

Similar to Fig. 3.19a, Fig. 3.19b shows the 2D mass-weighted PDF of the
ratio of the estimated total CO column density considering T col

ex,obs (Eq. 3.7),

Nobs,2D
CO , to the total NCO as function of NCO. The average 〈Nobs,2D

CO /NCO〉 in
every NCO bin (blue line) exhibits the highest deviation from the one-to-one
relation (black line). AtNCO . 1015 cm−2, the “true”NCO is underestimated.
At higher CO column densities, the average increases sharply, which results
in Nobs,2D

CO overestimating NCO. In total, Nobs,2D
CO is 1.35 times higher than

NCO. If we now compare Figs. 3.19b and 3.18b, the difference is again due
to the projection of the excitation temperature. The distribution of Tex,obs is

evidently different from T col
ex,obs, which results in Nobs,3D

CO =0.69 Nobs,2D
CO .

In our particular cloud model, the discrepancies between “true” and esti-
mated (Eq. 3.16) CO column densities are . 50%. In the case of considering
a distribution of the excitation temperature in every velocity channel for es-
timating N th,3D

CO (Fig. 3.18a), the true CO column density is underestimated
by ∼ 48%. On the other hand, if Tex,obs (the Dickman approximation) is used

in Eq. 3.16 (Fig. 3.18b), Nobs,3D
CO is overestimated by only ∼4%. In contrast,

if a column excitation temperature is assumed to calculate N th,2D
CO or Nobs,2D

CO

(Figs. 3.19a and 3.19b, respectively) the CO column density is overestimated
by values of up to 25%.

There are also differences among CO column density estimates if the
Boltzmann Equation (Eq. 3.4) or the Dickman (1978) approximation is used
for calculating the excitation temperature. Wheter we choose the 3D exci-
tation temperature distributions (Tex, Tex,obs), or use the projections (T col

ex ,
T col
ex,obs), the discrepancy is about 50%. In general, using the Dickman (1978)

formulation produce higher estimates of the CO column density than con-
sidering Boltzmann Equation in all the cases.

Calculations of CO column densities using Eq. 3.16 provide a reasonable
estimate of the true total CO column density. However, this approximation
should not be taken as a proxy of the true total CO column density at NCO .

1015 cm−2, where the gas is less likely to satisfy the condition kTex ≫ hBe.
Considering Eq. 3.15 with the full partition function Ω, all the estimates
of the CO column density increase by ∼ 10% in comparison to Eq. 3.16.
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Figure 3.19: (a) Mass-weighted 2D PDF of the ratio of the estimated total
CO column density using the column Tex – Boltzmann equation, Eq. 3.4,
projected as mass weighted average along the LoS N th,2D

CO – to the true total
CO column density NCO , as function of the true NCO. In total, N th,2D

CO =
1.05 NCO. (b) Same as (a), but considering the column Tex from Dickman
(1978) Eq. 3.7 – Nobs,2D

CO . In total Nobs,2D
CO = 1.35 NCO. The arrangement of

lines is the same as previous Figs.
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In particular, N th,3D
CO and Nobs,3D

CO improves by 3%. This provides the best
estimate, Nobs,3D

CO =1.02 NCO.

3.5 Summary and conclusions

Using a high-resolution numerical model of a turbulent molecular cloud, we
performed a detailed analysis of the kinetic temperature of the gas, as well
as the brightness and excitation temperatures inferred from the CO (J=1-
0) emission. We considered the standard LTE approximation of Dickman
(1978) (Eqs. 3.6 and 3.7) in order to estimate the excitation temperature.
We then compared these results with the excitation temperature calculated
from Boltzmann’s Equation (3.4). Finally with the aim of inferring the col-
umn density of CO in the J=0 level (Eq. 3.11) and the total CO column
density (Eq. 3.16), we compared different methods for estimating the excita-
tion temperature. We summarize our results as follow:

• In our cloud model, the abundance of CO increases towards high num-
ber densities, reaching the maximum xCO ≈ 1.4× 10−4 in regions with
n & 1000 cm−3. As a result, we find that 95% of the CO mass is located
at n & 400 cm−3.

• The kinetic temperature decreases with increasing number density as
TK ∝ n−1/4 at n < 105 cm−3, with significant scatter around this
relationship as described by Glover and Clark (2012b). 96% of the
total mass has TK ranging from 10 K to 90 K, and 95% of the mass of
CO is located in regions with TK . 50 K.

• The column kinetic temperatures T col
K and T co−col

K decrease towards high
column densities, in a similar fashion to their 3D counterpart (TK). T

col
K

largely traces the temperature of regions along the LoS with n & 20
cm−3, while T co−col

K traces only regions with n & 400 cm−3. Therefore,
〈T col

K 〉 > 〈T co−col
K 〉. For T co−col

K , 93% of the gas mass lies along sight lines
with 10 K< T co−col

K <30 K, matching the standard values for molecular
clouds.

• The commonly assumed relation Tb ≈ TK for optically thick radiation
is generally not valid in our cloud model. Emission with Tb ≥ 0.1 K
tends to come from optically thick gas. For τ > 1, there is not a clear
trend between Tb and TK. On average, 〈Tb〉 ≈ constant for TK . 16 K.
At higher kinetic temperatures, 〈Tb〉 decreases towards high TK. We
therefore conclude that the gas is not in LTE and the radiation is not
thermalized.
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• The excitation temperature follows the CO abundance. Tex increases
with the number density, contrary to the behavior of TK. On average,
〈Tex〉 . 〈TK〉, indicating that the gas is mostly sub-thermally excited,
although the scatter around those averages is significant. There are
regions where Tex and TK overlap and may be in LTE. Establishing a
criteria for testing the LTE condition in our simulation Tex = TK±0.05,
we found that only 0.05% of the cells fulfill it, which shows that the
gas is mostly out of LTE. These cells are distributed along n & 1000
cm−3, with a peak at n ≈ ncr = 2200 cm−3.

• The excitation temperature (Tex) inferred from Boltzmanns Equation
(3.4) have a different distribution than the “observational” estimate
(Tex,obs) calculated from the Dickman (1978) approximation (Eq. 3.6).
On average at n . 1500 cm−3, 〈Tex,obs〉 & 〈Tex〉. Although in higher n,
〈Tex,obs〉 < 〈Tex〉. Their difference increases towards high n, being ∼ 2
K at n = 5000 cm−3.

• In some works, the excitation temperature is considered to be uniform
along the LoS, and frequently calculated assuming the Dickman (1978)
approximation given by Eq. 3.7. Comparing the results obtained from
Eq. 3.7 (T col

ex,obs) with those calculated with the Boltzmann equation

(3.4, projected along the LoS: T col
ex ), we found that the averages 〈T col

ex,obs〉
and 〈T col

ex 〉 increase towards high column densities. At N & 6 × 1021

cm−2, 〈T col
ex,obs〉 is greater than 〈T col

ex 〉. The slope of 〈T col
ex,obs〉 is steeper

than the one for 〈T col
ex 〉, for 3 × 1021 . N/[cm−2] . 7 × 1021. We con-

clude that Dickman (1978) formulation overestimates the excitation
temperature at high column densities, because it is calculated by as-
suming only the peak of the emission. Although this situation changes
for N . 5 × 1021 cm−2, the emission is usually optically thin and the
peak does not represent the total emission along the LoS, leading to
〈T col

ex,obs〉 < 〈T col
ex 〉.

• The critical column density is Ncr ≈ 5 × 1021 cm−2. So then 〈T col
ex 〉 is

interpreted as a good guide to 〈T co−col
K 〉 for lines of sight with N & Ncr.

• The estimates of NCO,J=0 (Eq. 3.11) and NCO are different depending
on the approach chosen to calculate the excitation temperature. In
particular for NCO,J=0, N

obs,3D
CO,J=0 (using Tex,obs, from Dickman, 1978) es-

timates NCO,J=0 the best, which predicts 98% of the total CO mass at

J=0. If Tex (Boltzmann Eq. 3.4) is considered, N th,3D
CO,J=0 underestimates

the “true” NCO,J=0 by 30%. This changes if the excitation temperature

is assumed to be constant along the LoS in Eq. 3.11. Either N th,2D
CO,J=0
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(using T col
ex ) or Nobs,2D

CO,J=0 (assuming T col
ex,obs), the inferred NCO,J=0 is over-

estimated by .15%.

• The uncertainties of the excitation temperature predictions affect NCO

(from Eq. 3.16) and NCO,J=0 (Eq. 3.11) similarly. In particular, the best

results are given by Nobs,3D
CO (considering Tex,obs), which estimates 93%

of the true NCO. N
obs,3D
CO is close to NCO in every column density. If the

full partition function Ω (Eq. 3.14) is inserted in Eq. 3.15, the estimates
Nobs,3D

CO improves by ∼ 3% in total, although with some deviation from
the correspondence at NCO . 1016 cm−2. If Tex is assumed, N th,3D

CO only
predicts 52% of the total NCO. On the other hand, assuming a constant
excitation temperature along the LoS in Eq. 3.16, provides CO column
density estimates which are .25% higher than the “true” NCO.

• Using the full PPV Tb spectrum for calculating Tex,obs(v ) from Eq. 3.6
rather than assuming Tb,max to infer T col

ex,obs (Eq. 3.7), improves the NCO

estimates by almost 30%.

It is noticeable that using Tex,obs or T
col
ex,obs (Dickman, 1978) to estimate

the CO(J=0) and CO column densities produces values that are ∼ 30%
(using Eq. 3.11) and ∼40% (with Eqs. 3.15 and 3.16) higher than con-
sidering the Boltzmann Equation. On the other hand, the full partition
function Ω (Eq. 3.14) is considered in Eq. 3.15, the NCO estimates are
∼ 10% higher than their counterpart given by Eq. 3.16, regardless of
the chosen excitation temperature approach.

The commonly used Eqs. 3.2, 3.3, 3.6 and 3.7 provide a misleading view
of the temperatures in molecular clouds, because they assume that the radi-
ation is thermalized and the gas in LTE. This results in differences among
the excitation temperature estimates which are ∼2 K on average. These dif-
ferences affect the predictions of the CO column density in the level J=0 and
the total CO column densities by up to ∼40%. In general, the CO (J=1-
0) line is optically thick and the integrated emission distribution does not
necessarily follow the true NCO (Shetty et al., 2011a). Therefore, using the
excitation temperature from this line in order to infer the true distribution
of NCO,J=0, and NCO, may be misleading in most molecular clouds.
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The H2 mass

The molecular cloud structure is defined by the amount of H2 that it contains.
However, the lowest H2 rotational transition at λ = 28µm corresponds to
a temperature T ≃ 512 K, which is well above the typical temperatures of
molecular clouds (T ≃ 10−30 K) (Tielens, 2005; Wolfire et al., 2010; Draine,
2011). Therefore, the mass and distribution of H2 has to be inferred from
indirect methods, such as, measuring the amount of dust along the line of
sight. In the ISM, the dust and gas are assumed to be well mixed (Bohlin
et al., 1978). Therefore, one expects the gas mass to be proportional to
the dust mass. It can be inferred by observing dust emission at infrared
wavelengths (Leroy et al., 2011). Then, in order to deduce the molecular
component, we assume that the gas is made up only from H2, HI and He
(the mass fraction of metals is ∼1%; Wilson et al., 2009), also assume a
Galactic He abundance (∼ 10% by number, Carroll and Ostlie, 2006), and
use HI observations in order to measure the amount of atomic gas along the
line of sight (Bohlin et al., 1978).

Other methods implement the rotational emission lines of CO for infer-
ring the amount of H2, since the observed CO integrated intensity (WCO) is
believed to be proportional to the column density of H2, NH2. In this sense,
NH2 can be easily estimated by multiplying WCO by a CO-to-H2 conversion
factor X (e.g. Dickman, 1978)

NH2
= XWCO. (4.1)

The X factor has been widely studied from observations of the CO (J=1-
0) emission line and H2 mass (estimated from dust) (e.g. Dickman, 1978;
Pineda et al., 2008; Liszt et al., 2010; Draine, 2011; Pety et al., 2011; se also
Bolatto et al., 2013 for a review). Another way of inferring this conversion
factor is through the dynamics of molecular clouds. In a study based on ∼ 50
molecular clouds in our Galaxy, Larson (1981) found that most of them are
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gravitationally bound and in approximate virial equilibrium, and established
that their velocity dispersion, size and luminosity are correlated. Later,
Solomon et al. (1987) found a tight correlation between the CO luminosity
LCO and the virial mass of a cloud Mvir in a sample of a couple of hundred
molecular clouds

Mvir ≈ 39L0.81
CO M⊙, (4.2)

where LCO is expressed in units of K km s−1 pc2. Eq. 4.2 allows the definition
of the X factor Eq. 4.1 (Bolatto et al., 2008, 2013). However, the determi-
nation of the X–factor by Solomon et al. (1987) assumed that there was no
CO-free molecular gas, sometimes referred as “dark” molecular gas (see e.g.
Wolfire et al., 2010), and that the molecular cloud consists mostly of H2.

The X conversion factor seems to be constant for the Milky-Way, XMW ≈
2×1020 cm−2 K km s−1 (e.g. Solomon et al., 1987; McKee and Ostriker, 2007;
Strong et al., 2007). Although, there is evidence for an increase of this value
with Galactocentric radius, which is related to galactic metallicity gradient
(Strong et al., 2007) and can be explained from γ rays observations. γ rays are
produced by the interaction between cosmic rays with the ISM, therefore, any
variation in the relation between CO and H2 may change the interpretation
of their observations (Strong et al., 2007). Setting supernova remnants as the
primary source of cosmic rays (Ackermann et al., 2013) in numerical models,
the variations on the X factor can be explained independently together with
the observations of γ rays (Strong et al., 2004).

Theorists and observers agree on a constant X factor in dense molecular
gas, but this is not the case for the low density-diffuse/translucent medium
(Liszt et al., 2010; Pety et al., 2011; Shetty et al., 2011a,b). There is also
observational support for the idea that the X–factor changes depending on en-
vironmental conditions, e.g. in nearby galaxies (Sandstrom et al., 2012) and
in ultralumionus infrared galaxies (ULIRGS) (Solomon and Vanden Bout,
2005).

In general, the physics behind the X factor is still not clear. Finding
a relationship with environment is very important for understanding the
role of the different mechanisms shaping the X–factor. It is specially useful
for measurements of H2 in external galaxies where CO observations are the
only viable way of determining the amount of H2 present. Here, we make an
analysis of the CO column density NCO (§4.1) and the CO (J=1-0) integrated
emission WCO (§4.2). We then study the role of NCO andWCO on shaping the
X factor (§4.3). Finally, we estimate the mass of H2 assuming a constant X–
factor in order to to compare them with the true H2 mass. This simulation is
the same used on the analysis in chapter 3. In summary, it has a resolution of
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5123 cells, with typical Milky-Way cloud parameters: length size L = 20 pc,
mean number density n0 = 100 cm−3, Z = Z⊙, and standard UV radiation
field strength UV=1 G0.

4.1 CO column density

The CO column density is sometimes considered to grow linearly with AV

(Pineda et al., 2010). Assuming that all the hydrogen is in molecular form
that can be traced by the extinction, NH2/AV = 9.4 × 1020 cm−2 mag−1

(Bohlin et al., 1978) and a constant CO-to-H2 abundance ratio (Pineda et al.,
2010), NCO is

NCO ≈ 1017AV [cm
−2][mag−1], (4.3)

or equivalently,

NCO ≈ 5.3× 10−5N, (4.4)

where N is the total column density.
Fig. 4.1 shows the mass-weighted 2D PDF of NCO as a function of the

column density N . The black line indicates the average of NCO in every N
bin. 42% of the mass lies along lines of sight with NCO ≥ 1017 cm−2, the
value above which NCO seems to increase towards high N in a linear fashion.
However, the relation in Eq. 4.3 (blue line, with CO-to-H2 abundance ratio
of 1.1×10−4, Pineda et al., 2010) does not predict the behavior of the PDF
at any column density. The average (black line) shows that 〈NCO〉 is not
linear. The main reason is that our CO-to-H2 abundance ratio is far from
being constant. Rather, it changes by ∼ 4 orders of magnitude (Fig. 4.3).
At N & 1022 cm−2 (AV & 6 mag), the gas is well shielded and the CO
abundance is approximately constant (CO-to-H2 ratio ≈ 5×10−5), therefore
〈NCO〉 seems to increase linearly with N .

In our calculation, we are not considering freeze-out of CO. Therefore
we follow an approximation for CO depletion for gas with high extinction
(AV ≥ 10 mag) (Pineda et al., 2010)

NCO,gas+ice

NCO,gas
= 0.05AV + 0.88. (4.5)

Fig. 4.2a shows the mass-weighted 2D PDF of NCO,gas+ice as a function of
N . The black line depicts the average 〈NCO,gas+ice〉 in every N bin. The
correction on CO ices (Eq. 4.5) affects only a very small fraction of our data,
although we apply it anyway in order to make consistent comparison with
the study of Pineda et al. (2010) of the Taurus molecular cloud. In Fig. 4.2b
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Figure 4.1: Mass-weighted 2D PDF of the CO column density NCO as a
function of N (bottom), and AV as reference (top). The black line shows the
average of NCO as a function of N .



4.1. CO COLUMN DENSITY 93

we show the Figure 6 of Pineda et al. (2010), in which they plot NCO,gas+ice

as a function of AV . The blue line represents Eq. 4.3 which is a good fit to
their data. We obtain values of NCO,gas+ice that are consistent with Pineda
et al. (2010)’s measurements. However our PDF seems quite different, which
may be because we estimate the column of CO differently. To be consistent,
in Fig. 4.2a, we show the average of the estimated CO column density from
the CO (J=1-0) emission (N2D,obs

CO,gas+ice, magenta line) calculated for every
N bin (chapter 3) and corrected to account for CO freeze-out (Eq. 4.5).
This is the method used by Pineda et al. (2010) and it is the most common
in observational studies1. We see that 〈N2D,obs

CO,gas+ice〉 overestimates the true
〈NCO,gas+ice〉 at all column densities, also the CO column density estimates

of Pineda et al. (2010) (Fig. 4.2b). Our averages 〈NCO,gas+ice〉 and N2D,obs
CO,gas+ice

are much steeper than the blue line (Eq. 4.3).

Eq. 4.3 fits well Pineda et al. (2010) Figure. However to derive this
equation, it was considered a constant CO-to-H2 ratio. This is not consistent
with observations of many molecular clouds, where it is known that CO
and H2 do not have the same distribution (e.g. Langer et al., 1989; Liszt
et al., 2010; Wolfire et al., 2010). Besides, our simulations are not subject
to self gravity, we therefore are not accounting for any dense cold cores with
AV ≫ 10 mag, where CO may be frozen out. Including gravity would may
be make Fig. 4.2b consistent with Pineda et al. (2010)’s result.

In Fig. 4.3, we plot the mass-weighted 2D PDF of the NH2-to-NCO ratio2

as a function of N . The black line shows the average 〈NH2/NCO〉 in every N
bin. At N . 7 × 1021 cm−2, the NH2-to-NCO ratio decreases as one looks
to high N , the slope of the average is ∼ 10−4. In this regime, the molecular
gas is translucent and therefore the CO molecules are easily photodissotiated.
For N & 7×1021 cm−2 (AV & 4 mag), the gas becomes optically thick and is
well shielded, most of the carbon is locked up into CO molecules. Hence, the
NH2-to-NCO ratio reaches an approximately constant value ∼ 〈NH2/NCO〉 ≈
1.4× 104.

1In this method one assumes that the gas is in LTE and the excitation temperature
T col

ex,obs is uniform along the line of sight and can be calculated with Equation 3.7 from
Dickman (1978) (e.g. Liszt and Lucas, 1998; Pineda et al., 2008; Goldsmith et al., 2008;
Pineda et al., 2010). One then uses Eq. 3.16 in order to estimate NCO.

2We prefer to express the NH2-to-NCO ratio in this form, because it will be useful later
for explaining the dependence of the X–factor on AV .
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Figure 4.2: (a) Mass-weighted 2D PDF of the CO column density NCO as
a function of N (bottom), and AV as reference (top). The black line shows
the average of NCO in every N bin. The red line shows the linear regression
〈NCO〉 ≈ 10−4N − 9.5× 1017 made for N ≥ 1022 cm−2. The blue line shows
the average of N2D,obs

CO (Eq. 3.16) in every N bin (calculated considering that
the excitation temperature is uniform along the line of sight, which in turn is
estimated using Dickman (1978) formula T col

ex,obs). (b) Figure 6 from Pineda
et al. (2010): NCO,gas+ice derived from 13CO and 12CO observations in Taurus.
The dark blue line represents NCO,gas+ice derived from AV assuming Eq. 4.3
(Bohlin et al. 1978) and a CO-to-H2 abundance ratio of 1.1×10−4. The gray
scale represents the number of pixels of a given value in the parameter space
and is logarithmic in the number of pixels. The red contours are 2, 10, 100,
and 1000 pixels. Each pixel has a size of 100” or 0.07 pc at a distance of 140
pc.
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Figure 4.3: Mass-weighted 2D PDF of the NH2-to-NCO ratio as a function of
N (bottom), and AV as reference (top). The black line shows the average of
NCO in every N bin.

4.2 CO (J=1-0) integrated intensity

CO (J=1-0) line emission is one of the most observed and useful tools for
inferring molecular abundances, masses of galaxies, star formation histories,
molecular masses, etc (White, 1997). Here, we focus on studying the inte-
grated CO (J=1-0) along the line of sight WCO as a H2 mass estimator. It
is defined (e.g. Wilson et al., 2009)

WCO =

∫

Tb(v ) dv [K km s−1], (4.6)

where Tb is the brightness temperature which is related to the CO (J=1-0)
intensity through the Rayleigh Jeans approximation (§1.4.4). v is the velocity
along the line of sight (it is related to the frequency ν by v = (1 − ν/ν0)c,
where ν0 is the peak of the line 115.3 GHz) and it is expressed in km s−1.
WCO is calculated along all positions (x, y), yielding a 2D map.

Fig. 4.4 shows the mass-weighted 2D PDF of WCO as a function of N .
The white line shows the average of WCO for every column density bin. WCO

increases towards high N which is not surprising given the NCO distribution
seen in Fig. 4.1. In Fig. 4.4 the peak of the PDF (WCO ≤ 2 K km s−1)
contains only 25% of the mass. Looking to the average, the cyan line shallows
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at N & 8× 1021 cm−2 in comparison with the average 〈NCO〉 (Fig. 4.1, black
line). This occurs because CO (J=1-0) is an optically thick line and the PDF
of WCO does not follow the PDF of NCO (Shetty et al., 2011a). In Fig. 4.5
we show the mass-weighted 2D PDF of the WCO-to-NCO ratio as a function
of N . The cyan line is the average of this ratio in every N bin. Here, it is
clear that WCO/NCO is approximately constant ≈ 1015 K km s−1 cm−2 at
N . 7 × 1021 cm−2 (this value is also found in observational and numerical
studies, Liszt et al., 2010; Shetty et al., 2011b). At 7 × 1021 . N/[cm−2] .
8×1021, WCO/NCO grows sharply by approximately one order of magnitude,
and at higher column densities, the average shows that this ratio grows with
a shallower slope towards high N . The average 〈WCO/NCO〉3 in every N bin
(or equivalently, in AV

4 bin) can be then approximated by

〈

NCO

WCO

〉

[cm−2 K−1 km−1 s] ≈
{

1015 AV < 4.25 mag
1.85× 1014〈AV /[mag]〉2.15 AV > 4.25 mag.

(4.7)
In Fig. 4.4, we also make a numerical fit to the average 〈WCO〉 (white

line) as a function of AV . The cyan line shows the function found to best fit
〈WCO〉

〈WCO〉 ≈ 12.14
√

ln(1 + 8× 10−5〈AV 〉7.9) [K km s−1]. (4.8)

The choice of the function is arbitrary, because we guess it by eye. More
standard fitting techniques, like polynomial, least squares, or exponential
fits were not successful. On the other hand, we choose the approach of
(Pineda et al., 2008) to fit WCO in the Perseus molecular cloud complex.
They assumed that WCO and Tb behave in the same fashion, and therefore
approximate the radiative transfer equation Tb = T0(1− e−τ ) (Eq. 1.55) as

〈WCO〉 = W0[1− e−k(〈AV 〉−AV,0)] [K km s−1], (4.9)

where W0 is the integrated intensity at saturation, AV,0 is the minimum ex-
tinction needed to get CO (J=1-0) emission, and k is the conversion factor
between the amount of extinction and the optical depth. This curve is rep-
resented by the grey line in Fig. 4.4, with the fitting parameters: W0 = 56.7
K km s−1, k = 0.11 mag−1, AV,0 = 1.01 mag. In Fig. 4.4b, we show the WCO

vs. AV plots of Pineda et al. (2008) (their Fig. 6). These authors study the

3Angle brackets indicate that the fitting is made over the averages in every column
density bin.

4We chose AV to make it more useful for comparisons with observations. It can be
easily converted to N using the relation given in Eq. 1.4.8
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Perseus complex separated in 6 components in order to avoid region-to-region
variations in their analysis which are labeled as “B5” (green), “IC348” (ma-
genta), “Shell” (cyan), “B1” (orange), “NGC1333” (blue) and “WestEnd”
(red). Their selection criteria is based on the local standard of rest (LSR)
velocity5 of different sections of the cloud (Fig. 4.6). The PDF in Fig. 4.4a
is close to the WCO distribution shown for all the regions in Pineda et al.
(2008) (Fig. 4.4b, left). The solid lines in Fig. 4.4b (right) shows the fit
Eq. 4.9 to the individual regions, with high dispersion on the data. We find
that the average fitting parameters for the whole molecular cloud complex
W0 = 42.29 K km s−1, k = 0.63 mag−1, AV,0 = 0.58 mag (Fig. 4.4b, left) are
in reasonably agreement with our data.

4.3 The X factor

We can also write the CO-to-H2 conversion factor (Eq. 4.1) as

X =

(

NCO

WCO

)(

NH2

NCO

)

. (4.10)

From this point of view, the X depends on 1) the H2–to–CO column density
ratio (Fig. 4.3) and 2) the ratio NCO/WCO (Fig. 4.5). Fig. 4.7 shows the
mass-weighted 2D PDF of the X–factor as a function of N . The white line
shows the average of the X–factor calculated in every N bin. The NH2-to-
NCO ratio (Fig. 4.3) is the stronger parameter on determining the X–factor,
especially at N . 7×1021 cm−2 because the ratioNCO/WCO is approximately
constant in this regime. At N . 7× 1021 cm−2, the ratio NCO/WCO is close
to saturation, therefore it makes the X–factor increase by less than one order
of magnitude.

Our global average is 〈Xtot〉 ≈ 2.1×1020 cm−2 K−1 km−1 s, which matches
the canonical Milky-Way value. However, our estimate of the X–factor at
N < 1022cm−2 is X∼1020−24 cm−2 K−1 km−1 s, which is significantly higher
than the one reported in observations (Liszt et al., 2010; Lee et al., 2013). In
Fig. 4.7, we over-plot a fit to the average 〈X〉 shown by the dashed cyan line.
We separated 〈X〉 in two segments, one at N . 8 × 1021 cm−2 (AV . 4.25
mag), the other is at column densities above that value. The fit is

5This is defined as the velocity of a point at a given position in the Galactic plane
which follows a circular orbit around the Galactic center with components (Π,Θ,Γ)LRS =
(0,Θ0, 0). Θ0 is the characteristic circular velocity of the objects which depends on the
Galactic radius (Mihalas and Binney, 1981)
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〈X〉 [cm−2 K−1 km−1 s] ≈
{

9.7× 1019〈AV /[mag]〉0.37 AV ≥ 4.25 mag
3.26× 1022〈AV /[mag]〉−3.73 AV < 4.25 mag.

(4.11)
At AV ≥ 4.25, the slope in the X–factor is very shallow and this segment
can be approximated by the average 〈X〉 = 2.1× 1020 cm−2 K−1 km−1 s (red
line).

Liszt et al. (2010) present an extensive study of diffuse and dense molec-
ular gas in the Milky-Way. They obtain X≈ 3 × 1020 cm−2 K−1 km−1 s
independent of the environmental conditions. In diffuse/translucent6 gas,
they reported a CO abundance NCO/N which is ∼4 orders of magnitude
higher than ours (see also Shetty et al., 2011b). Moreover, their measure-
ments of the abundances of OH and HCO+ (important species present in
some channels of CO formation) are also higher than ours by about 2-3 or-
ders of magnitude. Lee et al. (2013) also measure low values of the X–factor,
based in a study of the Perseus molecular cloud complex. They report values
of the order ∼ 1019−21 cm−2 K−1 km−1 s.

In order to explain a constant X–factor in these diffuse regions, it is
necessary to have a NCO-to-N ratio approximately 4 orders of magnitude
higher than our current value. One possible explanation for this discrepancy
is missing physics, i.e. physical processes that are still not included in our
code. These include turbulent mixing of material (e.g. Falgarone and Phillips,
1990; Falgarone and Puget, 1995; Décamp and Le Bourlot, 2002; Falgarone
et al., 2005; Glover et al., 2010), C-shocks, or for example, Shetty et al.
(2011b) explored different vrms in their models, and found that the X–factor
decreases when the vrms increases. On the side of the chemical network,
Glover and Clark (2012a) make a detailed analysis considering simpler and
more complex chemical networks than ours. However, the CO abundance in
their models changes by less than one order of magnitude.

It seems that there is still a long way to go to bring our model and
observational measurements of the X–factor in diffuse/translucent gas into
agreement. However, in dense gas, our average X–factor agrees very well
with the canonical Milky-Way value. In the next section, we calculate the
amount of molecular mass that are missed by applying a constant Milky Way
X–factor to our WCO map.

6Following Draine (2011), the molecular diffuse gas is defined by having AV . 1 mag,
while the translucent gas has 1 . AV /mag. 5. However in Liszt et al. (2010), they
consider that the molecular gas is diffuse for AV up to ∼ 4 mag. We therefore define the
gas as diffuse/translucent for lines of sight with AV . 4 mag, see Table 1.3.
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4.4 H2 column density estimate

Fig. 4.8a illustrates NH2, projected along the z-axis of the simulation vol-
ume. In Fig. 4.8b, we show a map of the H2 column density NH2,est inferred
from WCO (Eq. 4.1) assuming a constant XMW. Both maps show similar
morphology: the gas has a filamentary structure, and there are spatial vari-
ations in the column densities which are larger in Fig. 4.8b than in Fig. 4.8a.
In general, the gas appears to have a prominent over-dense region visible
towards the top-right of the figure, and an under-dense region visible near
the center-left of the image, which is particularly notable in Fig. 4.8b. The
ratio NH2,est/NH2 is shown in Fig. 4.8c, where NH2,est/NH2 ≈ 1 towards the
prominent over-dense zones. The biggest discrepancies between NH2,est and
NH2 are in the less dense lines of sight. The under-dense region is mostly
composed of lines of sight with AV . 3.5, where CO is not shielded enough
and can be easily photodissociated (e.g. van Dishoeck and Black, 1988; Visser
et al., 2009; Glover and Mac Low, 2011).

In order to quantify the difference between the estimated and the true
H2 column densities, we plot the mass-weighted 2D PDF of NH2,est as a
function of NH2 in Fig. 4.9. The yellow line indicates the correspondence
NH2,est = NH2. Only 10% of the mass is located below NH2 . 1021 cm−2,
where the emission comes mostly from optically thin gas. In this regime, most
of the lines of sight have NH2,est < NH2. For the rest of the cloud, 75% of the
mass is distributed along lines of sight with 21 . log10NH2/[cm

−2] . 21.5,
for which the majority has NH2,est ≈ NH2, and a significant fraction (∼20%)
is distributed along optically thin lines. Only 15% of the mass is distributed
at log10NH2/[cm

−2] & 21.5, Here the emission is optically thick and traces
an important amount of the H2 mass, hence NH2,est ≈ NH2.

In Fig. 4.9, we show the average 〈NH2,est〉 in every NH2 bin and make
a linear regression over this average in the logarithmic space (red line) at
NH2 < 2 × 1021 cm−2. The slope between 〈NH2,est〉 and NH2 is very steep
(∼5), in linear space it can be approximated by

〈NH2,est〉 ≈
{

〈NH2〉 NH2 ≥ 2× 1021 [cm−2]
4.27× 10−82〈NH2〉4.81[cm−2] NH2 < 2× 1021 [cm−2]

(4.12)

Fig. 4.10 shows the fraction of H2 gas missed by assuming a fixed XMW–
factor. First calculate the mass of H2 is calculated below a given N as a
function of N , then it is normalized it by the total true H2 mass. The true
H2 mass is represented by the solid line and the estimated one by the dotted
line. We find that NH2,est underestimates the true H2 mass at all column
densities. In total, NH2,est predicts about 85% of the H2 mass.
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In general, the fraction of H2 mass lost by assuming a constant XMW–
factor can be determined considering that

NH2,est

NH2
=

XMW

X
. (4.13)

We then use Eq. 4.11 to obtain:

〈

NH2,est

NH2

〉

≈
{

1 AV ≥ 4.25 mag
6.14× 10−3〈AV /[mag]〉3.73 AV < 4.25 mag

(4.14)

Given that our X and XMW factors are very similar at AV & 4.25,
we can approximate NH2,est ≈ NH2. At this regime, our calculation is in
agreement with observational and theoretical evidence, in which X ≈ XMW

for dense molecular gas with approximately solar metallicity (e.g. Dickman,
1978; Pineda et al., 2008; Liszt et al., 2010; Draine, 2011; Pety et al., 2011).

4.5 Summary and Conclusions

In this chapter, we analyzed the CO column density and the CO (J=1-
0) integrated emission along the line of sight, in order to study the physics
behind the X–factor in an individual simulation considered as a fiducial model
for the Milky-Way. Considering the WCO map and a single fixed conversion
factor for the Milky-Way XMW = 2 × 1020 cm−2 K−1 km−1 s, the H2 mass
was calculated. The main results are summarized as follow:

• In general, our NCO ranges for values which are consistent with those
obtained by Pineda et al. (2010). However, a more detailed compari-
son shows that both distribution have different shapes. Ours increases
sharply towards high AV , while Pineda et al. (2010)s result grows slower
at high AV .

• The ratioNH2/NCO is not constant. It varies by ∼4 orders of magnitude
at N . 1022 cm−2. It becomes approximately constant towards higher
N .

• WCO increases towards high N in a similar fashion than Pineda et al.
(2008) results. The ratio NCO/WCO is roughly constant at N . 7 ×
1021 cm−2. It then increases sharply in a narrow window 7 × 1021 .

N/[cm−2] . 8×1021. At higher N , NCO/WCO increases slowly because
the CO (J=1-0) emission line becomes saturated.
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• The X–factor exhibits a behavior represented by two “slopes” (in log-
arithmic space). At N . 1022 cm−2, it increases sharply by ∼4 orders
of magnitude towards lower column densities. For N & 1022 cm−2, it is
approximately constant. On average, XMW ≈ 〈Xtot〉 ≈ 2.1× 1020 cm−2

K−1 km−1 s.

• The total mass of H2 is underestimated by ∼15%.
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Figure 4.4: (a) Mass-weighted 2D PDF of the integrated CO (J=1-0) inten-
sity WCO as a function of N (bottom), and AV as reference (top). The white
line shows the average of WCO in every N bin. The cyan line shows a numer-
ical fit to the average (Eq. 4.8). The grey line shows a fit that follows the
work of Pineda et al. (2008) (Eq. 4.9). (b) Figure 6 from Pineda et al. (2008):
Left, Integrated intensity WCO vs. AV for all the Perseus data. Right: WCO

vs. AV of the individual regions (shown in Fig. 4.6) labeled as “B5” (green),
“IC348” (magenta), “Shell” (cyan), “B1” (orange), “NGC1333” (blue) and
“WestEnd” (red). Solid lines show the best fit of Eq. 4.9.
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Figure 4.5: 2D mass-weighted PDF of the WCO-to-NCO ratio as a function
of N (bottom), and AV as reference (top). The cyan line shows the average
of NCO in every N bin.

Figure 4.6: Extinction map of the Perseus molecular complex taken from
Pineda et al. (2008) (their Fig. 3). Each of the defined regions are in a
different color, “B5” (green), “IC348” (magenta), “Shell” (cyan), “B1” (or-
ange), “NGC1333” (blue) and “WestEnd” (red).
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Figure 4.7: 2D mass weighted PDF of the CO-to-H2 conversion factor X as
a function of N (bottom), and AV as reference (top). The white line shows
the average of the X–factor in every N bin. The cyan dashed line shows a
fit to the average.
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Figure 4.8: Images of: (a) the column density of H2, NH2, viewed along a
LoS parallel to the z-axis of the simulation volume. (b) As (a), but for the H2

column density estimated from WCO and considering a constant Milky-Way
like X = 2× 1020 cm−2 K−1 km−1 s, NH2,est. (c) The NH2,est-to-NH2 ratio.
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Figure 4.9: (a) Mass weighted 2D PDF of the estimated H2 column density
NH2,est as a function of the true NH2. The yellow line shows the one-to-one
relation. The red dashed line shows a fit of the average of NH2,est in every
true NH2 bin, at NH2 . 2× 1021 cm−2 where NH2,est ≈ 10−4NH2.
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Figure 4.10: Cumulative mass of H2 below a given column density as a
function of N (AV is plotted for reference at the top) normalized by the total
true mass of H2. The solid line shows the true H2 mass and the dotted line
shows the H2 mass estimated from the X–factor and WCO.
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Chapter 5

Statistics of the Temperatures,
CO, and H2 density
distributions in simulated
molecular clouds

Dense molecular clouds are the principal sites of star formation (e.g. Reddish,
1975; Shu et al., 1987; Ward-Thompson et al., 2007). The star formation pro-
cess can be roughly explained considering the following simplification: in a
gravitationally bound molecular cloud, turbulence produces the initial dense
gas seeds necessary for star formation. The density distribution in the cloud
is therefore not uniform, but its shape can be described by a lognormal func-
tion (§1.2.3 and §6). In places where the density is above a gravitational
instability criteria (§1.2.6), the dense cores1 may collapse to form proto-
stellar cores, which are defined as starless cores bound by gravity. They
are dense enough to accrete material from their surrounds (Ward-Thompson
et al., 2007). During the accretion, a circumstellar disk forms due to angu-
lar momentum conservation (Hartmann et al., 1998; Schmeja and Klessen,
2004). In addition, outflows and jets are discharged during this process, tak-
ing away part of the angular momentum from the innermost part of the disk
(Hartmann et al., 1998). In this prestellar phase, the cores may break into
smaller objects due to gravo-turbulent fragmentation (Schmeja and Klessen,
2004; Ward-Thompson et al., 2007), in which the angular momentum is then
transferred into the fragments (Zinnecker, 2004). If the radiative and dust
cooling keeps the material cold, each fragment may collapse to form a rota-

1Ward-Thompson et al. (2007) define a dense core as any region in molecular clouds
which is relatively over-dense in comparison with its neighboring environment.
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tionally supported disk, with a protostar at the center which is formed by
the lowest specific angular momentum material (Draine, 2011). Depending
on the initial mass, a protostar may become a star if it starts burning hy-
drogen at its center. In this simplified picture, we avoid the details of many
different processes involved in star formation in which there are still many
open questions, and in turn are seeds for different theories (e.g. Krumholz
and McKee, 2005; Hennebelle and Chabrier, 2011; Padoan and Nordlund,
2011; Federrath and Klessen, 2012).

Observations are key for constraining those different model scenarios. It
has been found that star formation depends on the local environment, i.e.
the parent molecular cloud. Hence, some models may be relevant in different
regions (Ward-Thompson et al., 2007). The effects of local density, thermal
pressure, turbulence, magnetic field strength, and the presence of nearby
stars, all play an important role in determining the evolution of the density
fluctuations of dense molecular cloud cores (Ward-Thompson et al., 2007;
Molina et al., 2012). It is therefore crucial to have an statistical analysis
of simulated molecular clouds covering a wide range of environmental condi-
tions in order to understand the physics behind the observational constraints.
Conversely, this statistical analysis may help to test the approximations usu-
ally assumed in observational works.

In this chapter, we extend the analysis made in chapter 3 and chapter
4 to a large set of numerical simulations. They were performed using a
fully dynamical 3D model of magnetized turbulence described in §2.1, in
which we vary the mean number density (n0), the metallicity (Z) and the
incident UV radiation field strength (UV), described in table 5.1. Our aim
here is to quantify the range of temperatures and densities present in the gas
containing most of the CO in the clouds. Also, we want to quantify the role
of CO emission on determining the H2 and CO column densities considering
commonly used observational methods.

Our choice of parameters results in average visual extinctions which cover
a range from diffuse to dark molecular clouds2. It is also important to men-
tion, that the standard deviation in the extinction ranges from several tenths
to several magnitudes, so most of the simulated clouds are not fully diffuse,
translucent or dark. They are an ensemble of zones with number densities
ranging from 10−3 . n/n0 . 50, which in turn results in lines of sight with
AV ranging from 0.1 . AV /〈AV 〉 . 4. In the particular case of the runs
n30-Z01 (which has a maximum AV = 0.42 mag) and n100-Z01 (in which
only 4% of the gas mass has AV ≥ 1), they are composed almost entirely of
diffuse gas.

2Our terminology here follows Draine (2011) (§1, Table 1.3)
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Table 5.1: List of simulations.

n0 [cm−3] Z/Z⊙ UV [G0] 〈AV 〉 ± σAV
[mag]

n300-Z01 300 0.1 1 1 ± 0.7
n300-Z03 300 0.3 1 3 ± 2
n300-Z06 300 0.6 1 6 ± 4
n30 30 1.0 1 1 ± 0.6
n100 100 1.0 1 3 ± 2
n180 180 1.0 1 6 ± 5
n300 300 1.0 1 10 ± 7
n1000 1000 1.0 1 33 ± 22
n30-Z01 30 0.1 1 0.1 ± 0.06
n100-Z01 100 0.1 1 0.3 ± 0.2
n1000-Z01 1000 0.1 1 3 ± 2
UV0 300 1.0 0 10 ± 7
UV10 300 1.0 10 10 ± 7
UV100 300 1.0 100 10 ± 7
UV1000 300 1.0 1000 10 ± 7

n0 – initial number density of hydrogen nuclei
Z/Z⊙ – metallicity
UV – ultra-violet radiation field strength expressed in the standard radiation
field strength G0 (Draine, 1978)
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5.1 CO and number density distributions

Fig. 5.1a shows the cumulative gas mass normalized by the total gas mass
of the cloud as a function of the number density. This plot then shows the
fraction of gas mass below a given number density. All the simulations have
∼ 98% of the mass at n/n0 ≥ 0.1, while ∼50% of it is at n/n0 ≥ 2. On
the other hand, the CO mass distribution does not follow that of the total
gas mass. Fig. 5.1b shows the cumulative CO mass normalized by the total
CO mass of the cloud as a function of n. All the simulations shows that
most of the CO (& 95%) is distributed above n & 100 cm−3 regardless of
the mean number density, metallicity or UV radiation field strength. The
density range containing most of the CO is a strong function of Z, which sets
the initial carbon abundance, and control the amount of dust shielding, and
the UV radiation field strength which sets the CO photodissociation rate.
The curves in Fig. 5.1b becomes steeper and shift towards high n when Z
decreases or the UV field strength is increased (panels b.1 and b.4). The CO
distribution depends on the mean density in a weaker fashion, although in
the case of the simulations n30-Z01 and n100-Z01 (orange and yellow lines in
Fig. 5.1b.3), the gas is mostly diffuse and there is little CO that can survive
photodissociation, given the low metallicity and mean density, which in turn
causes that CO is mostly found at low densities. This also partially affects
the simulation n30 which has an important diffuse component.

In order to make straightforward comparisons with observations, we might
convert the volume quantities into “observables”, instead of making a full
analysis of each of our simulations in the same fashion as the simulation
studied in Chapters 3 and 4, because the later would be tedious and repeti-
tive. We therefore decided to work with the averages of the individual clouds.
We will use extended plots, like Figs. 5.1a and 5.1b, in some occasions. The
averages and standard deviations are calculated as

〈B〉 =
∑

i,j,k

Bi,j,k ∗ weighti,j,k (5.1)

and

σB =

√

∑

i,j,k

(B2
i,j,k − 〈B〉2) ∗ weighti,j,k, (5.2)

where B is the physical quantity of our interest, and weighti,j,k is normalized
such as

1

Weight

∑

i,j,k

weighti,j,k = 1.
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Figure 5.1: (a) Cumulative gas mass below a given number density (normal-
ized by the total mass of the cloud) as a function of n. (b) same as (a), but
for the CO mass (normalized by the total CO mass of the cloud).

Fig. 5.2 shows the mass-weighted average of the CO abundance xCO =
nCO/n (on average, 〈nCO/n〉 ≈ 〈NCO/N〉) as a function of the mean AV .
The arrangement of colors is the same as in the previous figure and all the
simulations are labeled by their mean number density, metallicity and UV
radiation field strength. xCO increases sharply from ∼10−12 (at AV ≈ 0.1
mag) to few 10−6 (at AV ≈ 4 mag), where gas shielding becomes effective.
It then grows slowly towards high AV until it reaches its maximum value
xCO = xC = 1.41 × 10−4. The strong influence of the extinction on the
amount of CO is clear. As the extinction gets higher, the gas shielding
becomes important preventing the dissociation of CO. In the case of AV = 10
mag, the abundance of CO decreases by almost one order of magnitude when
the UV field strength is increased to ∼ 103 G0. There are more photons
permeating the cloud, therefore the probability of destroying CO molecules
grows.
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Figure 5.2: Mass-weighted average of the CO abundance xCO = nCO/n as
a function of the mean visual extinction 〈AV 〉. In all the figures, we refer
to 〈AV 〉 simply as AV . The colors are arranged in the same fashion as in
the previous figure. All the simulations are labeled by their mean number
density n0/cm

−3, metallicity Z/Z⊙ and UV radiation field strength UV/G0.

5.2 Tracing the temperature of molecular clouds

In the previous section, we analyzed the range of number densities containing
most of the CO in molecular clouds. Now, we study the range of temperatures
in which CO is mostly distributed.

5.2.1 Kinetic temperature

Fig. 5.3 shows the mean kinetic temperature in every n bin as a function of
number density. The temperature is not constant, but generally decreases
towards higher densities. The rise at high density in the low metallicity
runs is caused by H2 formation heating and may be overestimated. For the
simulations with Z = Z⊙ and UV=1, the temperature scales approximately
as 〈TK〉n ∝ n−0.45. The simulations with lower Z present higher 〈TK〉n at n &

10 cm−3, because the CO abundance falls and the dominant coolant changes
from CO to C+. For the simulations with Z = 0.1Z⊙, the temperature
scales roughly as 〈TK〉n ∝ n−0.4. In the case where we consider different
UV radiation field strengths, the relationship changes from the cloud with
UV= 0, in which 〈TK〉n ∝ n−0.23 (at n . 100 cm−3, 〈TK〉n is ∼ 15 K at
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higher number densities), to the simulation with UV= 1000: 〈TK〉n ∝ n−0.6.
The change on the slope for the runs with UV> 1 is caused by the graving
effectiveness of photoelectric heating from dust grains. Comparing Fig. 5.3
with Fig. 5.1b, we see that most of the CO is located at temperatures of
15-70 K, even though these regions may represent only a small fraction of
the cloud volume.

Figure 5.3: Average of the kinetic gas temperature in every number density
bin 〈TK〉n as a function of the number density. The error bars indicate the
scatter (±1σTK

) around the average. The lines and colors are arranged in
the same fashion as in Fig. 5.1.

Fig. 5.4 (top) shows the mass-weighted average of the temperature 〈TK〉M
as a function of the mean AV . The mean temperature decreases towards
high AV , although the scatter in 〈TK〉M at AV = 10 mag is very large, it is
about 100 K. We anyway performed a linear regression over the logarithm
of the data (black line) and find that 〈TK〉M relates to 〈AV 〉 roughly as
〈TK〉M ∝ 〈AV 〉−1/5. On the other hand, Fig. 5.4 (bottom) shows a similar
plot for the kinetic temperature but the CO mass-weighted average3. In this
case, the data shows less scatter around the linear regression (black line).

3We choose the CO mass-weighted average in this case because we will compare the
kinetic temperature with the temperature obtained from CO emission later.
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〈TK〉CO ≤ 〈TK〉M because CO traces only the highest density-cold gas in
the cloud. 〈TK〉CO decreases from ∼50 K at 〈AV 〉 = 0.1 mag to ∼12 K at
〈AV 〉 = 33 mag. This correspond to a relationship between temperature
and visual extinction that can be approximated by 〈TK〉CO ∝ 〈AV 〉−1/4. The
linear regression confirms the results, with a bit of scatter around this line
that increases as AV decreases.

5.2.2 CO (J=1-0) brightness temperature

At frequencies below sub-millimeter (ν ≤ 1.5 THz), the intensity at a given
frequency ν emitted by from an astrophysical object is usually expressed in
terms of the brightness temperature Tb given by the Rayleigh-Jeans approx-
imation (§1.4.4, Wilson et al., 2009)

Tb =
c2

2kν2
Iν . (5.3)

From the radiative transfer equation (§1.4.4) it is commonly assumed
that in LTE, Tb ≈ TK for optically thick gas (e.g. Wilson et al., 2009; Draine,
2011). We therefore test if the assumption of LTE is valid for our cloud
models by using the CO (J=1-0) emission4. In Fig. 5.5 (top), we plot the
COmass-weighted average of the brightness temperature 〈Tb〉CO as a function
of 〈TK〉CO. The scatter in this plot is large and there is not a clear trend
between 〈Tb〉CO and 〈TK〉CO. The values of 〈TK〉CO are always above 10 K,
while 〈Tb〉CO is below 5 K. We therefore can say that on average the emission
is not thermalized.

As we are dealing here with averages over whole clouds, in Fig. 5.5 (bot-
tom), we plot the CO mass-weighted average of integrated intensity along the
line of sight divided by dv 〈WCO/ dv 〉CO

5 as a function of 〈TK〉CO. In most
of the simulations 〈WCO/ dv 〉CO > 〈TK〉. The simulation n30 is the only one
which has 〈WCO/ dv 〉CO ≈ 〈TK〉. We skip the simulations n30-Z01, n100-Z01
because they have AV . 1 mag which implies low CO abundance along the
cloud.

The CO (J=1-0) transition is considered optically thick (e.g. Dickman,
1978; Liszt and Lucas, 1998; Pineda et al., 2008; Shetty et al., 2011a). Under
the assumption of LTE, the peak of this emission is used to calculate the ex-
citation temperature (Dickman, 1978), and from the excitation temperature
many other quantities like optical depths, CO column densities, and mass of
clouds. In Fig. 5.6, we select the maximum of the brightness temperature

4CO (J=1-0) transition is usually assumed to be thermalized (e.g. Martin et al., 1982;
Walmsley and Ungerechts, 1983; Roman-Duval et al., 2010)

5WCO =
∫

Tb(v ) dv , see §4.2
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along the line of sight. We then calculate the CO mass-weighted average of
these peaks 〈Tb,max〉CO and plot it as a function of 〈TK〉CO. 〈Tb,max〉CO grows
with increasing 〈TK〉CO. The black line shows the one-to-one relation between
the temperatures. The simulations with n0 ≥ 180 cm−3 and Z ≥ 0.3Z⊙ ap-
proach the black line, also the simulation n1000-Z01, showing that the peak
of the emission is indeed thermalized or close to be. We also skip in this case
the simulations with AV . 1 mag.

5.2.3 Excitation temperature

The excitation temperature Tex of the level u = 1 relative to the level l = 0
the is defined from the Boltzmann equation by (e.g. Draine, 2011)

Tex =
E10/k

ln
(

n0/g0
n1/g1

) , (5.4)

where n0 and n1 are the number density of molecules in the ground and
first excited level, with statistical weights g0 and g1 respectively, and E10 is
the difference of energies between both levels. If the system is in LTE, then
Tex = TK (see §3.3.3).

In other to find if our cloud models fulfill the LTE condition, we show the
CO mass-weighted average of the excitation temperature calculated using
Eq. 5.4, 〈T col

ex 〉CO
6, as a function of 〈TK〉CO in Fig. 5.7 (top). The black

line shows the one-to-one relation between the temperatures. All the data
points lie below the black line indicating that on average the simulations are
sub-thermally excited. However, the simulations with n0 ≥ 300 cm−3 and
Z ≥ 0.3Z⊙, as well as the simulation n1000-Z01, approach closely to the
one-to-one relation, indicating that they are close to LTE, on average.

We also calculate the excitation temperature from an “observational”
point of view, using the Dickman (1978) formula (see §3.3.3):

T col
ex,obs =

5.5 [K]

ln{1 + 5.5 [K]/(Tb,max + 0.82 [K])} . (5.5)

Fig. 5.7 (bottom) shows the CO mass-weighted average of this excitation
temperature 〈T col

ex,obs〉CO as a function of 〈TK〉CO. The simulations with n0 ≥
100 cm−3 and Z ≥ 0.3Z⊙, and the simulation n1000-Z01, are very close
to the one-to-one relation (black line). These cloud models have 〈Tb,max〉

6We consider the same convention as in §3.3.3, where we assumed the column excitation
temperature when we average Tex along the line of sight. Here, we are considering the
average over all three spatial directions, and name this average as 〈T col

ex 〉 for consistency
reasons.
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which are close to be thermalized. It is therefore not surprising that their
correspondent 〈T col

ex,obs〉 approach well to the black line.

Roman-Duval et al. (2010) present a very complete analysis of the physical
properties of 750 molecular clouds located in the Milky Way. They argue
that the average excitation temperature of the clouds diminishes by about
3 K with Galactocentric radius. In this work, we are not attempting to fit
the initial condition of our simulations to the environmental conditions at
different Galctocentric radius. However, we can study how our estimates
of the excitation temperature may change compared with different physical
parameters, like mean AV , N , or UV radiation field strength.

Fig. 5.8 (top) shows the CO mass-weighted average of 〈T col
ex 〉CO as a func-

tion of 〈AV 〉. In Fig. 5.8 (bottom), we plot the same but for 〈T col
ex,obs〉CO.

There is not correlation between the visual extinction and the excitation
temperature in either of both plots. In Figs. 5.9 (top and bottom), we repeat
the same calculation but this time the excitation temperature is plotted as a
function of the column density N . In particular, Fig. 5.9 (top) indicates that
〈T col

ex 〉CO grows with increasing N up to N ≈ 2 × 1022 cm−2, although there
is large scatter from simulations n300-Z01 and n300-Z03. From the “obser-
vational” point of view (Fig. 5.9 bottom), 〈T col

ex,obs〉CO increases towards high
N with less scatter than in Fig. 5.9 (top). We do not know if there is a clear
change in the average AV or N with Galactocentric radius, although it is a
possibility worthy to be explored in more detail.

On the other hand, it is known that the UV radiation field strength
increases towards the Galactic center (Rodŕıguez-Fernández et al., 2004),
as well as in nearby galaxies (Heiner et al., 2008). Hence in Figs. 5.10 (top)
and 5.10 (bottom), we plot 〈T col

ex 〉CO (top) and 〈T col
ex,obs〉CO as a function of the

UV radiation field strength. For those simulations with 1 ≤UV/G0≤ 1000
(n0 = 300 cm−3 and Z = Z⊙), 〈T col

ex 〉CO (Fig. 5.10 top) increases from ∼ 13
K for UV/G0 = 1 to ∼ 16 K for UV/G0 = 1000. In the case of Fig. 5.10
(bottom), 〈T col

ex,obs〉CO increases from ∼ 15 K for UV/G0 = 1 to ∼ 21 K for
UV/G0 = 1000. These results indicates that the subtle increment in Roman-
Duval et al. (2010) findings may be explained by the photoelectric heating
of the gas, which in turn is caused by the incident UV radiation field.
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5.3 CO column density

Fig. 5.11 shows the mass-weighted average of the “true”7 CO column density
NCO as a function of the mean AV . NCO increases towards high AV , scaling
in a relationship (black line) which is approximated as

〈NCO〉 = 3.63× 1014〈AV 〉3.77[cm−2]. (5.6)

However, NCO cannot be directly inferred from observations. It is esti-
mated from CO (J=1-0) observations using the excitation temperature and
the optical depth τ (for details see §3.4.1), generally using the relation

NCO,total ≈
2.31× 1014[cm−2]/[K]

(J + 1)

∫ τ
v
Tex(v ) exp

[

2.78J(J+1)
Tex(v )

]

dv

1− exp
[

−hν0/kTex(v )
] . (5.7)

In some observational works (Roman-Duval et al., 2010), the excitation
temperature is calculated at every velocity position along the line of sight,
then integrated together with the optical depth as indicated in Eq. 5.7, while
in other works, it is considered to be constant along the line of sight (e.g.
Goldsmith et al., 2008; Pineda et al., 2010). In the following figures, we com-
pare the effect of the method chosen to calculate the excitation temperature
in different environments8.

On one hand, Fig. 5.12 (top) shows the ratio between the CO mass-
weighted CO column density calculated by using Tex(v ) from the Boltzmann
Equation 5.4 into Eq. 5.7 N th,3D

CO -to-the “true” NCO as a function of the mean
AV . For all the simulations, the “true” NCO is underestimated by more than
30%, 〈N th,3D

CO /NCO〉CO < 0.7. This ratio increases from ∼ 0.05 at 〈AV 〉 = 1
mag to ∼0.65 at 〈AV 〉 = 33 mag, although at 〈AV 〉 = 10 mag the scatter is
large.

On the other hand, Fig. 5.12 (bottom) indicates the same as Fig. 5.12
(top) but considering Tex,obs(v ) calculated from the Dickman (1978) formula

(Eq. 3.6) Nobs,3D
CO . In this case, the estimates of the CO mass-weighted aver-

ages of the CO column density are higher than in the previous calculation, re-
sulting in better estimations of the “true” 〈NCO〉. The ratio 〈Nobs,3D

CO /NCO〉CO

7We assume as “true” the column densities obtained directly from zeus-mp calcula-
tions. This convention will be used for forthcoming comparisons with the estimates of the
CO and H2 column density from CO (J=1-0) emission.

8We intentionally left the simulations n30-Z01, n100-Z01, and n30 out of this part of the
analysis because of their low CO abundances, which in turn result in unrealistic estimates
of the CO column density.
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increases from ∼0.6 at 〈AV 〉 = 1 mag to ∼1.15 at 〈AV 〉 = 33 mag. Par-
ticularly at 〈AV 〉 = 10 mag, the simulations with variable UV present large
scatter, although the cloud model UV10 has the best estimation of the “true”
〈NCO〉. The difference between using Tex(v ) and Tex,obs(v ) into Eq. 5.7 range
from ∼40% at 〈AV 〉 = 33 mag to ∼90% at 〈AV 〉 = 1 mag. At 〈AV 〉 = 10
mag, the difference can be as high as 80%.

We now consider that the excitation temperature in Eq. 5.7 is constant
at every position along the line of sight. First, we calculate Tex from the
Boltzmann Equation 5.4, then make the CO mass-weighted average along the
line of sight, T col

ex , in order to estimate N th,2D
CO . Fig. 5.13 shows the average

of the ratio of N th,2D
CO to the “true” NCO as a function of the mean AV .

〈N th,2D
CO /NCO〉 does not show a clear trend with 〈AV 〉, and for most of the

simulations, it is very close to 1 (which is different from Fig. 5.12 top). For
all the cloud models but for n1000, UV10 and UV100, the “true” NCO is
overestimated.

On the other hand, Fig. 5.13 (bottom) depicts the same as Fig. 5.13
(top), but for the estimated CO column density Nobs,2D

CO (Eq. 5.7) calculated
from Dickman (1978) formulation (T col

ex,obs, Eq. 5.5). The ratio 〈Nobs,2D
CO /NCO〉

grows towards high 〈AV 〉. All the simulations but n300-Z01 overestimates
the “true” NCO from ∼20% at 〈AV 〉 = 3 mag to ∼50% at 〈AV 〉 = 33 mag.
A comparison between 〈Nobs,2D

CO /NCO〉 and its counterpart in 3D (Fig. 5.12
bottom) results in ratios which are 25-50% larger if one uses T col

ex,obs instead
of Tex,obs(v ) in Eq. 5.7.

The results in this section are consistent with the ones shown in §3.4.1.
The best estimates of the CO column density are given by considering the
Dickman (1978) approximation, but assuming that the excitation tempera-
ture is NOT uniformly distributed along the line of sight Tex,obs (Eq. 3.6).

5.4 The XCO-factor and H2 column density es-

timates

Historically, the CO-to-H2 conversion factor (the XCO-factor) was proposed
as an statistical study of CO and H2 column densities, covering many loca-
tions within many clouds in order to have general applicability of the results
(Dickman, 1978). In chapter 4, we studied this conversion factor along many
sight lines, but over only a single cloud example. In this section, we extend
that analysis to all the simulations.

The mass-weighted average of XCO is defined as
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〈XCO〉M =
〈NH2〉M
〈WCO〉M

, (5.8)

with standard deviation

σXCO
=

√

√

√

√

(

σ2
NH2

N2
H2

+
σ2
WCO

W 2
CO

− 2
COVNH2WCO

NH2WCO

)

XCO, (5.9)

where COVNH2WCO
is the covariance between NH2 and WCO.

Following the approach of Liszt et al. (2010), we rewrite 〈XCO〉CO as

〈XCO〉M =

( 〈NCO〉M
〈WCO〉M

)(〈NCO〉M
〈NH2〉M

)−1

. (5.10)

For the Milky-Way, the CO-to-H2 conversion factor 〈XMW〉 ≈ 2 × 1020

cm−2 K km s−1 (e.g. Solomon et al., 1987; McKee and Ostriker, 2007; Strong
et al., 2007). Frequently, this value is used regardless of the effects of different
environmental conditions, because the terms in Eq. 5.10 are considered to
cancel each other (Liszt et al., 2010; Pety et al., 2011). However in §4.3, we
found that the CO-to-H2 conversion factor may be different depending on
the environmental physical conditions. Therefore in the next sections, we
study how the two fractions in Eq. 5.109 influence the shape of 〈XCO〉M in
our cloud models.

5.4.1 The NCO-to-NH2 ratio

Usually, the NCO-to-NH2 ratio is referred as “CO abundance relative to H2”
(e.g. Leung and Liszt, 1976; Dickman, 1978; Frerking et al., 1982; Burgh
et al., 2007; Goldsmith et al., 2008; Liszt et al., 2010; Pineda et al., 2010;
Pety et al., 2011). For avoiding confusions with the definition of CO abun-
dance (xCO = nCO/n, §5.1), we refer to it simply as CO/H2. The measure-
ments of NCO and NH2 are independent, therefore we consider the average
of their ratio as 〈NCO〉/〈NH2〉. It is important to mention that 〈NCO〉/〈NH2〉
is certainly different than 〈NCO/NH2〉, indeed it is ∼ 1-3 higher. We choose
CO/H2=〈NCO〉/〈NH2〉, for consistency with Eq. 5.10 and with observations.

If CO/H2 is estimated from CO (J=1-0) emission (considering that NH2

is calculated using the X-factor), the value is approximately constant ∼ 10−4

(e.g. Dickman, 1978; Burgh et al., 2007; Pineda et al., 2010). However in
one hand, in observations it is usually necessary to assume LTE conditions

9The standard deviation of the two terms in Eq. 5.10 is calculated in the same fashion
as in Eq. 5.9.
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in order to estimate NCO, which values at AV . 3 mag can vary for ±30%
(Fig. 5.13 bottom). On the other hand at AV & 3 mag, CO emission becomes
optically thick (§4.2) making NCO difficult to determine if observations of
other CO isotopomers are not available (e.g. Pineda et al., 2008; Goodman
et al., 2009a).

Fortunately, there are measurements of CO/H2 independent of CO (J=1-
0) emission in the diffuse/translucent molecular gas. Direct observations of
the absorption lines of both species (at λ . 1510Å for CO, and at 912Å.
λ . 1110Å for H2) provide a better estimation of this ratio with values
ranging from ∼ 10−7 at AV ≈ 0.3 mag to ∼ 10−5 at AV ≈ 2 mag (Burgh
et al., 2007). This method was first applied for infrared sources embedded in
molecular clouds towards the star clusters NGC 2024 and NGC 2264, with
resulting values around (2-3)×10−4 (Lacy et al., 1994).

Fig. 5.14 (top) shows mass-weighted averages 〈NCO〉M/〈NH2〉M as a func-
tion of the mean AV . CO/H2 increases sharply from ∼ 10−10 at 〈AV 〉 ≈ 0.1
mag to ∼ 10−5 at 〈AV 〉 ≈ 4 mag. Our results at 〈AV 〉 . 1 mag differ by ap-
proximately 3 orders of magnitude in comparison to the work of Burgh et al.
(2007). We do not know exactly the reason of this discrepancy, although our
guess is that our model does not allow for physical processes like turbulent
mixing of material (e.g. Falgarone and Phillips, 1990; Falgarone and Puget,
1995; Décamp and Le Bourlot, 2002; Falgarone et al., 2005; Glover et al.,
2010), or C-shocks that can trigger CO formation in diffuse media (Shetty
et al., 2011a) (see §4.3). At 〈AV 〉 & 5 mag, CO/H2 increases by approxi-
mately one order of magnitude towards high 〈AV 〉. CO/H2 is approximately
10−4 at this regime, which is in good agreement the values measured in ob-
servations (Dickman, 1978; Lacy et al., 1994; Pineda et al., 2010).

Burgh et al. (2007) find that the column densities of CO and H2 follows a
power-law relationNCO ∝ Nα

H2 with α ≈ 2. Fig. 5.14 (bottom) shows 〈NCO〉M
as a function of 〈NH2〉M. 〈NCO〉M increases towards high 〈NH2〉M. The black
line indicates a linear regression made to the logarithm of 〈NCO〉M ∝ 〈NH2〉M,
in which α ≈ 3.2. The slope in this figure is very steep compared to the result
of Burgh et al. (2007), which is expected given our low CO/H2 at 〈AV 〉 ≤ 4
mag. If we select the data with visual extinction below 4 mag, the slope is
slightly shallower, with α ≈ 2.8.

5.4.2 The NCO-to-WCO ratio

Fig. 5.15 shows the average of the integrated CO (J=1-0) intensity in every
AV bin 〈WCO〉, plotted as a function of the mean AV . At AV . 20 mag,
〈WCO〉 changes remarkably for each of the simulations, which strongly de-
pends on the mean physical conditions. In these regions, 〈WCO〉 depends
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strongly on the CO abundance more than on the H2 density (the main col-
lisional partner), which is lower for simulations with a significant fraction of
translucent/diffuse gas (the shielding is less effective) or increasing UV ra-
diation field strength. At AV & 20 mag, the CO (J=1-0) intensity becomes
saturated, leading to an almost constant 〈WCO〉 ≈ 80 K km s−1.

In global averages, 〈WCO〉 presents large scatter at all mean visual extinc-
tions. Fig. 5.16 shows the mass-weighted average of the integrated intensity
〈WCO〉M as a function of the mean AV . At 〈AV 〉 . 1 mag, it varies from
∼0.1 K km s−1 for simulations n30-Z01 and n100-Z01 to ∼4 K km s−1 for
simulation n300-Z01. At larger 〈AV 〉, it changes from ∼1 K km s−1 to 80 K
km s−1. Although the scatter is large, we nevertheless perform a fitting in
the same fashion as in §4.2. Eq. 5.11 shows the best fit implemented using
an arbitrary function (dashed line in Fig. 5.16)

〈WCO〉M ≈ 12.14
√

ln(1 + 8× 10−5〈AV 〉7.94) [K km s−1]. (5.11)

On the other hand, Eq. 5.12 shows a fitting performed following the work
of Pineda et al. (2008), for which they considered the radiative transfer equa-
tion assuming that WCO and Tb behave in the same fashion (see §4.2). For
the averages of our cloud models, the best fit is

〈WCO〉M ≈ 56.7[1− e−0.114(〈AV 〉−1.007)] [K km s−1]. (5.12)

Given the large scatter in Fig. 5.16, Eqs. 5.11 and 5.12 roughly reproduce
〈WCO〉M at 〈AV 〉 . 10 mag. For the simulation at 〈AV 〉 = 33 mag, Eq. 5.11
provides the best fit.

Fig. 5.17 shows the ratio of the mass weighted averages of NCO-to-WCO

ratio as a function of the mean AV . This ratio changes from ∼ 1012 cm−2

K−1 km−1 s at 〈AV 〉 ≈ 0.1 mag to ∼ 1016 cm−2 K−1 km−1 s at 〈AV 〉 = 4 mag.
Liszt et al. (2010) claim that for diffuse/translucent clouds NCO/WCO = 1015

cm−2 K−1 km−1, and this value is nearly universal. However, their WCO

detection limit is 0.2 K km s−1. If we exclude the simulations n30-Z01, n100-
Z01, and n30 in Fig. 5.17, 〈NCO〉M/〈WCO〉M ≈ 1015 cm−2 K−1 km−1, which
matches Liszt et al. (2010) findings. Besides, Goldreich and Kwan (1974)
note that when TK is much greater than Tex, NCO/WCO decreases. In our
case, 〈TK〉CO ≫ 〈T col

ex 〉CO for the simulations n30-Z01, n100-Z01, and n30.

At higher 〈AV 〉 in Fig. 5.17, 〈NCO〉M/〈WCO〉M increases slowly towards
high 〈AV 〉 by about one order of magnitude, which is because CO (J=1-
0) emission becomes optically thick at high CO column densities. Eq. 5.13
shows a linear fit made in logarithmic space (dashed line in Fig. 5.17)
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〈NCO〉
〈WCO〉

[cm−2 K−1 km−1 s] ≈
{

4.84× 1014〈AV /[mag]〉2.36 〈AV 〉 < 8 mag
2.75× 1015〈AV /[mag]〉1.13 〈AV 〉 ≥ 8 mag.

(5.13)
Liszt et al. (2010) find that WCO ∝ NCO for diffuse/translucent and dark
gas. Eq. 5.13 at 〈AV 〉 ≥ 8 mag is very close to their relationship for dark
gas.

5.4.3 The X-factor

Fig. 5.18 shows the mass weighted average of the X-factor as a function of
the mean AV . The X-factor decreases from X∼ 1022 cm−2 K−1 km−1 s at
〈AV 〉 ≈ 0.1 mag to X= 3.5 × 1020 cm−2 K−1 km−1 s at 〈AV 〉 = 6 mag. At
〈AV 〉 ≥ 6 mag, it is approximately constant X≈ 3.5× 1020 cm−2 K−1 km−1,
although with significant scatter at 〈AV 〉 = 10 mag. The X-factor behaves
approximately as (dashed line in Fig. 5.18)

〈XCO〉 [cm−2 K−1 km−1 s] ≈
{

3.5× 1020 〈AV 〉 ≥ 6 mag
1.8× 1021〈AV /[mag]〉−0.9 〈AV 〉 < 6 mag.

(5.14)
The relation at 〈AV 〉 ≤ 6 mag is calculated with a linear regression on log-
arithmic space, while the value 3.5 × 1020 cm−2 K−1 km−1 is the average of
XCO at 6 ≤ 〈AV 〉/[mag] ≤ 10. The simulation n1000 is not included in the
calculation. For including it, we make a linear regression for the data at
〈AV 〉 ≥ 6 mag (dotted line in Fig. 5.18), which gives

〈XCO〉 = 1.3× 1020〈AV /[mag]〉0.4 〈AV 〉 ≥ 6 mag. (5.15)

In this relation, 〈XCO〉 grows smoothly towards high 〈AV 〉, which is expected
because WCO becomes optically thick with increasing 〈AV 〉.

〈XCO〉 differs from the CO-to-H2 conversion factor shown in §4.3 (the
single cloud example), especially at low visual extinction. Fig. 5.18 exhibits
lower values than in Fig. 4.7. The reason is that in Fig. 4.7, the X–factor is
shown for individual lines of sight. Here in Fig. 5.18, each point indicates a
X–factor averaged over all the sight lines in different molecular clouds. The
dispersion of the runs n30-Z01, n100-Z01, and n30, shows that the X–factor
can be approximately as high as the X–factor in Fig. 4.7.
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5.5 H2 mass estimates

In this section, we calculate the map of NH2 considering the map of WCO and
a fixed value XCO = XMW. The estimate of the total mass of H2 for each
simulation is

MH2 =
∑

i,j

WCOXMW, (5.16)

where i and j covers all the sight lines.
Fig. 5.19 shows the cumulative mass of H2 below a given N as a function

of N (AV is shown at the top for reference) normalized by the total “true”
mass of H2. The solid line indicates the “true” H2 mass while the dotted line
shows the estimated H2 mass from Eq. 5.16. For all the simulations but n300
and UV0, the H2 mass is underestimated if it is calculated using Eq. 5.16.
For simulation n300, the estimated H2 mass is equivalent to the “true” one
up to log10AV /[mag] ≈ 1.2 (AV ≈ 16 mag). At higher AV , the H2 mass is
underestimated by ∼20%. In the case of the simulation UV0, the estimated
H2 mass and the “true” H2 mass are approximately equivalent. Indeed, the
estimated H2 mass overestimates slightly the “true” H2 mass at all AV . This
particular cloud example is hypothetical, because we do not expect that a
real cloud would not be affected by UV radiation at all. This simulation has
a CO/H2 ratio which is slightly higher than that corresponding to a typical
Milky Way dark cloud.

Fig. 5.20 (top) shows the total estimated fraction of H2 (fH2mass) as a
function of the mean AV . fH2mass is the total estimated H2 mass normalized
by the total “true” H2 mass. It grows as 〈AV 〉 increases. Considering only
the simulations with UV=1 (with the exception of simulation n1000), the
“true” H2 mass is underestimated by ∼95% at 〈AV 〉 . 1 mag, up to ∼20%
at 〈AV 〉 ≈ 10 mag. For these cloud models, the fraction of H2 mass lost
fH2mass−lost can be approximated by

fH2mass−lost = 1− fH2mass ≈ 1− 0.092〈AV 〉/[mag], (5.17)

for UV=1 and 〈AV 〉 ≤ 10 mag.
Fig. 5.20 (bottom) is the same as Fig. 5.20 (top), but fH2mass is plotted

as a function of UV. fH2mass decreases towards high UV. The “true” H2 mass
is underestimated by ∼40% for UV=10 to ∼65% for UV=1000. For the
simulations with varying UV, fH2mass−lost can be approximated by

fH2mass−lost = 1− fH2mass ≈
{

0 UV = 0 G0

0.2 + 0.17 log10 UV UV ≥ 1 G0.
(5.18)
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Environmental conditions are very important for estimating a trustworthy
H2 mass. Cloud models with CO/H2 ratios ∼ 10−4 (〈AV 〉 & 6 mag) present
very different WCO maps, not only due to CO photodissociation at local
AV . 3 mag, but also because of CO (J=1-0) intensity saturation at higher
local AV . If a unique X-factor is used in order to estimate the H2 mass, these
values may be underestimated from a small percentage up to ∼70%. This
fraction cannot be related only to the visual extinction, but it has also to be
linked to the variations in the radiation field strength.

5.6 Summary and Conclusions

In this chapter, we made an analysis of the temperature and CO density
distributions and in a large set of numerical simulations. Radiative transfer
calculations were performed in order to study the CO (J=1-0) emission line.
From this, we calculated the brightness and excitation temperatures. The
later was used to infer the CO column density purely from emission. More-
over, we found variations on the X-factor depending on the environmental
conditions, as well as very different estimates of the H2 masses when they
are inferred from CO integrated intensity maps. The main results can be
summarized as follow:

• Most of the CO is located at number densities greater than 100 cm−3

and TK below 40 K, regardless of n0, Z and the UV radiation field
strength.

• The CO abundance increases as the product n0 × Z grows and/or the
UV radiation field strength becomes weaker.

• The average kinetic temperature decreases towards high AV . 〈TK〉CO

relates to AV in a fashion 〈TK〉CO ∝ 〈AV 〉1/4.

• The average brightness temperature of the clouds does not exhibit a
trend with the kinetic temperature, indicating that on average most of
the clouds are not in LTE. Although the peak Tb,max does.

• Most of the clouds are subthermally excited, meaning that 〈Tex〉CO is
a lower limit of 〈TK〉CO.

• 〈Tex〉CO exhibits a correlation with N , but not with AV . It also shows
a correlation with the UV field strength, although it is very subtle.
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• The best method to estimate the CO column density from CO emission
is using the complete PPV Tb spectrum to calculate Tex,obs in Eq. 5.7.
However, the accuracy still depends on n0, Z and UV on a second
order.

• 〈WCO〉M saturates for AV &6 mag, causing an approximately constant
X–factor. At lower visual extinctions, 〈WCO〉M varies by 2-3 orders of
magnitude, while the X–factor changes by less than 2.

• For AV . 10 mag, the estimates of H2 mass calculated from 〈WCO〉M
together with a single Milky Way-like X–factor improve towards high
AV . For higher visual extinctions, CO emission becomes saturated and
the H2 mass is underestimated.

In general, these results indicate that CO (J=1-0) emission does not trace
the kinetic temperature of molecular clouds. Molecular clouds are on average
not in LTE. It is necessary to consider other tracers for the temperatures
and densities (like C+, HCO+, NH3) of molecular gas in order to obtain a
trustworthy picture of the physical conditions of molecular clouds.
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Figure 5.4: Top: mass-weighted average of the kinetic temperature 〈TK〉M
as a function of the mean visual extinction. The black line shows a linear
regression made on the logarithm of the data, from which we obtain 〈TK〉M ∝
〈AV 〉−1/5. Bottom: same as Top but CO mass-weighted average 〈TK〉CO.
From the linear regression, we obtain 〈TK〉CO ∝ 〈AV 〉−1/4. The colors and
labels are arranged in the same fashion as in previous figures.
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Figure 5.5: Top: CO mass-weighted average of the brightness temperature
〈Tb〉 as a function of 〈TK〉CO. Bottom: same as Top but for the integrated
emission along the line of sight. The colors and labels are arranged in the
same fashion as in previous figures.
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Figure 5.6: CO mass-weighted average of the peak of the brightness tem-
perature along the line of sight 〈Tb,max〉 as a function of 〈TK〉CO. The black
line shows the one-to-one relation between the temperatures. The colors and
labels are arranged in the same fashion as in previous figures.
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Figure 5.7: Top: CO mass-weighted average of the excitation tempera-
ture calculated using the Boltzmann Equation 5.4 〈T col

ex 〉CO as a function of
〈TK〉CO. Bottom: Same as Top, but the excitation temperature is calculated
considering the Dickman (1978) formula (Eq. 5.5) 〈T col

ex,obs〉CO. In both fig-
ures, the black line shows the one-to-one relation between the temperatures.
The arrange of colors and labels are the same as in previous figures.
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Figure 5.8: Top: CO mass-weighted average of 〈T col
ex 〉CO as a function of

〈AV 〉. Bottom: Same as Top, but the excitation temperature is calculated
considering the Dickman (1978) formula 〈T col

ex,obs〉CO. The arrange of colors
and labels are the same as in previous figures.
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Figure 5.9: Top: CO mass-weighted average of 〈T col
ex 〉CO as a function of 〈N〉.

Bottom: Same as Top, but for 〈T col
ex,obs〉CO. The arrange of colors and labels

are the same as in previous figures.
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Figure 5.10: Top: CO mass-weighted average of 〈T col
ex 〉CO as a function of

〈N〉. Bottom: Same as Top, but for 〈T col
ex,obs〉CO. The arrange of colors and

labels are the same as in previous figures.
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Figure 5.11: Mass-weighted average of the “true” CO column density NCO

as a function of the mean AV . The arrange of colors and labels are the same
as in previous figures.
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Figure 5.12: Top: CO mass-weighted average of the estimated CO column
density using Tex(v ) (Boltzmann Equation 5.4) into Eq. 5.7 as a function
of 〈AV 〉. Bottom: Same as Top, but considering Tex,obs(v ) (Dickman, 1978
formula, Eq. 3.6). The arrange of colors and labels are the same as in previous
figures.
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Figure 5.13: Top: CO mass-weighted average of the estimated CO column
density using T col

ex (from Boltzmann Equation 5.4) into Eq. 5.7 as a function of
〈AV 〉. Bottom: Same as Top, but considering T col

ex,obs (Dickman, 1978 formula,
Eq. 5.5). The arrange of colors and labels are the same as in previous figures.
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Figure 5.14: Top: ratio of the mass-weighted averages 〈NCO〉M/〈NH2〉M as
a function of the mean AV . Bottom: mass-weighted average of NCO as a
function of the mass-weighted average of NH2. The black line shows the
relationship 〈NCO〉M ∝ 〈NH2〉3.2M . For AV ≤ 4 mag, 〈NCO〉M ∝ 〈NH2〉2.8M

(dotted line). The colors and labels are arranged in the same fashion as
previous figures.
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Figure 5.15: Average of the integrated intensity at every AV bin 〈WCO〉 as
a function of AV . The lines and colors are arranged in the same fashion as
Fig. 5.1.

Figure 5.16: Mass-weighted average of the integrated intensity 〈WCO〉M as
a function of the mean AV . The dashed line shows the fitting function
〈WCO〉M ≈ 12.14

√

ln(1 + 8× 10−5〈AV 〉7.94) [K km s−1]. Following Pineda
et al. (2008), the dotted line indicates the fitting 〈WCO〉M ≈ 56.7[1 −
e−0.114(〈AV 〉−1.007)] [K km s−1]. The arrange of colors and labels are the same
as in previous figures.
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Figure 5.17: Ratio of the mass weighted averages of NCO-to-WCO as a func-
tion of the mean AV . The dashed line shows the fit shown in Eq. 5.13. The
arrange of colors and labels are the same as in previous figures.

Figure 5.18: Mass weighted average of the X-factor as a function of the mean
AV . The dashed line shows the relationship given in Eq. 5.14 and the dotted
line indicates the fitting made for the data at 〈AV 〉 ≥ 6 mag. The arrange of
colors and labels are the same as in previous figures.
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Figure 5.19: Cumulative mass of H2 below a given column density as a
function of N (AV is plotted as reference at the top) normalized by the total
“true” mass of H2. The solid lines shows the true H2 mass and the dotted
lines shows the H2 mass estimated from XMW and WCO. The lines and colors
are arranged in the same fashion as previous figures.
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Figure 5.20: Top: Total fraction of H2 estimated from Eq. 5.16 and normal-
ized by the total “true” H2 mass as a function of the mean AV . The dashed
line shows a linear regression for the data with UV=1, excluding the simu-
lations n1000. Bottom: same as Top, but as a function of UV. The dashed
line indicates a linear regression made for the simulations with UV≥ 1. The
lines and colors are arranged in the same fashion as previous figures.



Chapter 6

Density variance–Mach number
relation

1 Detailed knowledge about the statistical characteristics of the density struc-
ture is of pivotal importance for many fields in astronomy and astrophysics.
Probability distribution functions (PDFs) of the density have been intro-
duced as a simple and robust measure of the one-point statistics for many
applications, ranging from cosmology, where the Press-Schechter formalism
was primarily established (Press and Schechter, 1974), to star formation and
theories of the initial mass function or the core mass function (e.g., Fleck,
1982; Zinnecker, 1984; Padoan et al., 1997; Klessen and Burkert, 2000; Li
et al., 2004; Hennebelle and Chabrier, 2008, 2009; Padoan and Nordlund,
2011).

In the star formation context, the relation between the width of the den-
sity PDF – the density variance or standard deviation – and the root-mean-
square (rms) Mach number in supersonic turbulent flow is a key ingredient
for analytical models of the star formation rate (Krumholz and McKee, 2005;
Padoan and Nordlund, 2011), and for the stellar initial mass function or the
core mass function (Padoan and Nordlund, 2002; Hennebelle and Chabrier,
2008, 2009). In this framework, supersonic turbulence plays a fundamen-
tal role in determining the density and velocity statistics of the interstellar
medium (Elmegreen and Scalo, 2004; McKee and Ostriker, 2007) and con-
trols stellar birth (Mac Low and Klessen, 2004). Conversely, the importance
of magnetic fields in the star formation process is still inconclusive, despite
decades of research (Mouschovias and Ciolek, 1999; McKee and Ostriker,
2007; Crutcher et al., 2009; Crutcher et al., 2010; Bertram et al., 2012).
Hence, the question of how magnetic fields affect the density variance–Mach

1This chapter is partially based on the published work in Molina et al. (2012).
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number relation is still not clearly answered, despite the empirical findings
of Ostriker et al. (2001) and the analytical ansatz provided by Padoan and
Nordlund (2011).

For purely hydrodynamical, supersonic, isothermal, turbulent gas, the
relation between the density variance and Mach number has been identified
and widely studied in numerical simulations (e.g., Padoan et al., 1997; Passot
and Vázquez-Semadeni, 1998; Federrath et al., 2008a; Federrath et al., 2008b;
Federrath et al., 2010; Price et al., 2011). This relation is commonly assumed
to be linear,

σρ/ρ0 = bM , (6.1)

where σ2
ρ/ρ0

is the density variance (to emphasise the density fluctuations
about the mean ρ0, it makes sense to express the density in terms of the
density contrast ρ/ρ0), b is a proportionality constant of order unity as ex-
plained in more detail below, and M is the rms Mach number. Usually, the
density contrast is written in terms of its logarithm, s ≡ ln(ρ/ρ0).

Several authors have noted that the PDF of the logarithm of the den-
sity contrast s – produced by supersonic turbulent flow of isothermal gas
– follows approximately a lognormal distribution (e.g. Vázquez-Semadeni,
1994; Padoan et al., 1997; Passot and Vázquez-Semadeni, 1998; Nordlund
and Padoan, 1999; Klessen, 2000; Ostriker et al., 2001; Li et al., 2003; Krit-
suk et al., 2007; Federrath et al., 2008b; Lemaster and Stone, 2008; Schmidt
et al., 2009; Glover et al., 2010; Federrath et al., 2010; Padoan and Nordlund,
2011; Collins et al., 2011; Price et al., 2011),

ps ds =
1

√

2πσ2
s

exp

[

−(s− s0)
2

2σ2
s

]

ds, (6.2)

where the mean s0 is related to the density variance by s0 = −σ2
s/2, due

to the constraint of mass conservation. Besides the empirical findings of
Vázquez-Semadeni (1994), Padoan et al. (1997), and Passot and Vázquez-
Semadeni (1998), there is no clear explanation for the shape of the PDF.
From a mathematical point of view, a log-normal distribution is the result
of independent random perturbations driven in a stationary system (Pope
and Ching, 1993) as a consequence of the central limit theorem (Vázquez-
Semadeni, 1994; Padoan et al., 1997; Nordlund and Padoan, 1999; Federrath
et al., 2010). The physical interpretation is that density fluctuations present
at a given location are produced by successive passages of shocks with am-
plitudes independent of the local density. For a log-normal distribution, the
density variance – given by Equation (6.1) – is equivalent to



145

σ2
s = ln

[

1 + b2M 2
]

. (6.3)

The parameter b in Equations (6.1) and (6.3) is related to the kinetic
energy injection mechanism – the forcing F, which drives the turbulence.
Federrath et al. (2008b) found that b = 1 for purely compressive (curl-free)
forcing, ∇ × F = 0, while b = 1/3 for purely solenoidal (divergence-free)
forcing, ∇ · F = 0. In a follow-up study, Federrath et al. (2010) showed
that b increases smoothly from 1/3 to 1, when the fraction of energy in
compressive modes, Fcomp/(Fsol + Fcomp) is gradually increased from 0 to 1.
For the natural mixture of modes, Fcomp/(Fsol + Fcomp) = 1/3, which is also
the mixture of forcing modes used in all our numerical experiments here,
they found b ≈ 0.4, so we will later use that value for comparing our analytic
model with numerical simulations.

When magnetic fields are included, the density variance is significantly
lower than in the unmagnetised case for simulations with Mach numbers
M & 10 (Ostriker et al., 2001; Price et al., 2011). Recently, Padoan and
Nordlund (2011) provided an analytical ansatz for the hydrodynamical den-
sity contrast in supersonic, turbulent flow, which in turn follows the approach
of Dyson and Williams (1980) for obtaining the density contrast for strong
adiabatic shocks, but extended to the magnetic case. Their σs–M relation
was, however, not tested with numerical simulations.

The density PDF may or may not deviate from a log-normal form when
other processes – like heat exchange and gravitation – are included. For ex-
ample, when a non-isothermal equation of state is considered, the PDF still
closely follows a log-normal distribution over a range of densities (see e.g.,
Glover and Mac Low, 2007b). However, depending on whether the equa-
tion of state is softer or harder than isothermal, it might acquire power-law
tails either at high or low densities (Passot and Vázquez-Semadeni, 1998;
Scalo et al., 1998; Wada, 2001; Li et al., 2003; McKee and Ostriker, 2007).
The density PDF also deviates from log-normal when gravity is included.
In this case, the PDF exhibits a power-law tail at high densities (Klessen,
2000; Federrath et al., 2008a; Kainulainen et al., 2009; Cho and Kim, 2011;
Kritsuk et al., 2011). In addition, turbulent intermittency also leads to devi-
ations from the log-normal PDF in the wings of the distribution (Federrath
et al., 2010). Consequently, the accuracy of the measurement of the den-
sity variance, using Equation (6.2), may be compromised depending on the
importance of the different processes involved in real molecular clouds.

Here, we shows first an analytical derivation for the σs–M relation in
supersonic turbulent isothermal gas including magnetic fields. Our results
are in qualitative agreement with Ostriker et al. (2001) and Price et al. (2011),
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however, here we present quantitative predictions and tests. Then, we present
the extension of the analytical prediction for non-isothermal gas.

6.1 Analytical derivation

Our basis for obtaining the density variance–Mach number relationship in-
volves determining how the density contrast changes with the Mach number.
The density variance σρ/ρ0 and the density contrast are related by:

σ2
ρ/ρ0 =

1

V

∫

V

(

ρ

ρ0
− 1

)2

dV, (6.4)

where ρ is the local density, ρ0 is the mean density in the volume, and
V is the volume of the cloud. The density contrast is a measure of the
density fluctuations in the flow, and therefore it is useful for identifying the
disturbances that originate from shock fronts and compressions.

6.1.1 Density contrast in magnetohydrodynamics

Supersonic turbulence in the interstellar medium generates a complex net-
work of shock waves (or simply shocks). When the velocity of the fluid
exceeds that of sound, it leads to the formation of shocks that are one of
the most important distinctive effects of the compressibility of the fluid (e.g.,
Landau and Lifshitz, 1987).

In order to study the density contrast in a molecular cloud, we first con-
sider the physics of the discontinuity formed by a single shock front. We then
generalize the results to the ensemble of shocks confined in a cloud. Following
Lequeux (2005), we describe a shock by choosing two control surfaces, one
on either side of the discontinuity, and parallel to each other. Let us choose
the shock surfaces as the reference frame, such that the control surfaces are
stationary with respect to the shock. We also define the “parallel” direction
as the one parallel to the flow of gas through the shock (i.e., perpendicular
to the shock front). From the well known equations of fluid dynamics, it is
then possible to derive equations that expresses the conservation of matter,
momentum, and energy flux for a magnetized inviscid, non-self gravitating,
neutral fluid:

v‖,1ρ1 = v‖,2ρ2, (6.5)

and

ρ1

(

v2‖,1 +
c2s,1
Γ1

+
v2A⊥,1

2

)

= ρ2

(

v2‖,2 +
c2s,2
Γ2

+
v2A⊥,2

2

)

, (6.6)
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respectively. In these equations, the subscripts 1 and 2 indicate the pre–
and post-shock conditions, respectively. The velocity of the gas into the
shock is v‖, while cs is the adiabatic sound speed, Γ corresponds to the index
of a polytrope Pth = KρΓ, and vA⊥ is the Alfvén velocity, defined here as
vA⊥ = B⊥/(4πρ)

1/2, where B⊥ is the magnetic field perpendicular to the flow
direction. The post-shock density is described by ρ2.

For the energy conservation equation, Eq. 1.5, we assume that the shock
surfaces are sufficiently close that the term for the net gain or loss of internal
energy due to radiative and chemical heating and cooling (Λ) in the shock
jump conditions is approximately (Draine, 2011)

∫ 2

1

Λdx ≈ 0, (6.7)

where x is denotes the “parallel” direction. Moreover, the thermal conduc-
tivity is neglected κT

~∇T = 0.
The equation for the conservation of energy is then:

(

v21
2

+ h1 + v2A⊥,1

)

ρ1
−→v1 =

(

v22
2

+ h2 + v2A⊥,1

)

ρ2
−→v2 , (6.8)

where h is the enthalpy. The enthalpy is

h =
Γ

Γ− 1

Pth

ρ
. (6.9)

Introducing Eq. 6.9 into Eq. 6.8 and considering only the module of the
“parallel” component of the velocity, we rewrite Eq. 6.8 as

v2‖,1
2

(Γ1 − 1) + c2s,1 + v2A⊥,1 =
v2‖,2
2

(Γ2 − 1) + c2s,2 + v2A⊥,2, (6.10)

where the sound speed is

c2s =

(

∂Pth

∂ρ

)

=
ΓPth

ρ
. (6.11)

6.1.2 The isothermal case

We now make two important approximations. As we wish to focus on the
role of magnetic fields in determining the density variance first, we assume
that the gas is isothermal, deferring consideration of non-isothermal effects
to §6.3. Our assumption of isothermality implies that Γ1 = Γ2 = 1, and
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here that cs,1 = cs,2 = cs. Second, as we are considering an entire molecular
cloud, we approximate it as an ensemble of shocks. We assume that we
can express the average pre-shock velocity in terms of the rms velocity v0 –
hereafter, the subscript “0” indicates the volume averages – as v2‖,0 = b2v20,
where the factor b depends on the number of degrees of freedom available
for the compressive modes (Federrath et al., 2008b). We also assume that
the typical pre-shock magnetic and thermal pressures are just those given by
volume averages over the total volume, allowing us to write them in terms of
the volume-averaged density ρ0 and the rms Alfvénic velocity vA,0. Similarly,
we assume that the typical pre-shock density is simply the volume-averaged
density. Making these assumptions, and introducing the ratio of the thermal
pressure to magnetic pressure

β ≡ Pth

Pmag
= 2

c2s
v2A

, (6.12)

we can rewrite Equation (6.6) as

b2M 2ρ0
ρ2

(

1− ρ0
ρ2

)

+
ρ0
ρ2

(

1 + β−1
0

)

=
(

1 + β−1
2

)

, (6.13)

where the rms Mach number is given by M = v0/cs.
In order to solve this equation for the characteristic density contrast as-

sociated with the shocked gas, ρ2/ρ0, it is necessary to determine β2, the
post-shock ratio of the thermal to magnetic pressures. The value of this
will depend on the change in the magnetic field strength through the shock,
which in turn depends on the orientation of the field with respect to the flow
of gas through the shock. Using magnetic flux and mass conservation during
compression, one can show that B ∝ ρα with 0 ≤ α ≤ 1, depending on the
field geometry and direction of compression. In the extreme case where the
gas flows in a direction parallel to the field lines, the field strength will be
the same on either side of the shock despite the jump in density, and the field
strength then will be independent of density, i.e., α = 0. In the other extreme
case where the field is oriented at right-angles to the gas flow, the shock jump
conditions for magnetic flux freezing imply that B ∝ ρ, i.e., α = 1. Mean-
while, compression of an isotropic field along all three spatial directions gives
B ∝ ρ2/3. However, for our “average shock”, we expect behaviour that lies
somewhere between 0 . α . 1. By looking at observations and existing sim-
ulations, we can get some guidance as to what this intermediate behaviour
should be.

Observationally, Crutcher (1999) presented a study of the magnetic field
strength in molecular clouds measured with the Zeeman effect. He fitted



6.1. ANALYTICAL DERIVATION 149

the results with a power law B ∝ ρα and found that α = 0.47 ± 0.08.
Crutcher et al. (2003) provided additional support for this result. More
recently, Crutcher et al. (2010) have presented a detailed compilation of
Zeeman data based on a much larger number of measurements. They find
that at number densities n < 300 cm−3, the data is consistent with a field
strength that is independent of density, while at higher densities they obtain
B ∝ ρ0.65±0.05.

From a theoretical point of view, Padoan and Nordlund (1999) noted
that their B distributions closely match the observational scaling given by
Crutcher (1999) and Crutcher et al. (2003), B ∝ ρ1/2, for high B in their high
Alfvénic Mach number regime. Kim et al. (2001) also study the relationship
between B and ρ, and find that α ≃ 0.4, albeit with large scatter, especially
at low densities. Additionally, Banerjee et al. (2009) report that the magnetic
field strength appears to scale in their simulations as B ∝ ρ1/2 for number
densities 102 . n . 104 cm−3, although with significant scatter around this
value. On the other hand, Hennebelle and Pérault (2000) found that the
magnetic field does not necessarily increase with the density. Aside from
these reports, if the magnetic flux is not conserved, but increases due to
turbulent dynamo amplification during compression, α can become larger
than the values quoted above, depending on the Reynolds numbers of the
gas (Schleicher et al., 2010; Sur et al., 2010; Federrath et al., 2011; Schober
et al., 2012b,a). Thus, even if the gas is compressed only parallel to the field
lines, turbulent tangling of the field can lead to α > 0 during compression.

Given the different possible relations between the magnetic field strength
and the density, we consider three cases to include in Equation (6.13): the
two extreme cases, where B is independent of the density, and where B ∝ ρ,
and an intermediate case with B ∝ ρ1/2. We also note that if we were to
take instead the relation B ∝ ρ0.65 suggested by the most recent observational
data, then we would obtain results quite similar to the B ∝ ρ1/2 case.

First case: B independent of ρ

We start by considering one extreme, the case where B is independent of the
density. In this scenario, Equation (6.13) becomes a second-order equation,
independent of the magnetic field strength

(

ρ2
ρ0

)2

−
(

b2M 2 + 1
)

(

ρ2
ρ0

)

+ b2M 2 = 0.

This equation results in a density contrast
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ρ2
ρ0

= b2M 2. (6.14)

Equation (6.14) matches the density contrast for the non-magnetic regime
(see e.g., Padoan et al., 1997). This is not surprising, because in this case we
are assuming that the gas and the magnetic field are not coupled. Therefore,
amplification of the magnetic field with density is not expected under these
conditions.

Second case: B ∝ ρ1/2

In the intermediate case in which B ∝ ρ1/2, we again find a second-order
equation for the density contrast, but with a dependence on the magnetic
field expressed in terms of β0. From Equation (6.13), we obtain

(

1 + β−1
0

)

(

ρ2
ρ0

)2

−
(

b2M 2 + 1 + β−1
0

)

(

ρ2
ρ0

)

+ b2M 2 = 0.

This equation has the solution:

ρ2
ρ0

= b2M 2

(

β0

β0 + 1

)

. (6.15)

In other words, the effect of the magnetic field in this case is to reduce the
density contrast by a factor β0/(β0 + 1). We see from this that in the weak
field limit where β0 → ∞, we recover the hydrodynamical result, while for
strong fields we have a smaller density contrast in the MHD case than in the
non-magnetic case.

Third case: B ∝ ρ

Finally, we investigate the other extreme case, where the magnetic field
strength is proportional to the density. In this case, Equation (6.13) results
in a third-order equation,

β−1
0

(

ρ2
ρ0

)3

+

(

ρ2
ρ0

)2

−
(

b2M 2 + 1 + β−1
0

)

(

ρ2
ρ0

)

+ b2M 2 = 0.

The solution for the density contrast is

ρ2
ρ0

=
1

2

(

−1− β0 +

√

(1 + β0)
2 + 4b2M 2β0

)

. (6.16)
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6.2 The isothermal σs–M relation

In the previous section, we presented three different expressions for the den-
sity contrast. They correspond to three different assumptions regarding the
relationship B ∝ ρα, with α = 0, 1/2, and 1. We now determine the density
variance of a fluid in which there are many shocks, for each of these three
cases.

We start by noting that in a highly supersonic flow, the dominant contri-
bution to the integral in Equation (4) will come from shocked regions, and
thus we can consider this equation as a volume average over an ensemble of
many shocks. We next assume that we can approximate the value of this in-
tegral with the result of integrating over a single “average” shock of the kind
considered in the previous section. As we already know the density contrast
of this representative shock, the only thing that remains to be done before
we can solve Equation (4) is to determine the appropriate volume over which
to integrate.

We approximate the cloud as a cubic box of side L, and consider an
infinitesimal part of its volume dV that encloses one shock. Therefore, the
size of dV depends on the size of the shock itself

dV ≈ dVsh. (6.17)

To define the shock volume, we make use of an approximation introduced
by Padoan and Nordlund (2011), where the volume of the shock is given by
the area of the box face times the shock width λ, Vsh = L2λ. However, in
the absence of viscosity, it is not straightforward to define the shock width
λ. Therefore, we follow Padoan and Nordlund (2011) and assume that the
shock width, if the compression is driven at the box scale, is given by

λ ≃ θLρ0/ρ2, (6.18)

where θ is the integral scale of the turbulence. Then, the volume of the shock
Vsh is given by

Vsh ≃ θL3ρ0
ρ2

. (6.19)

For turbulence driven on large scales, as appears to be the case in real molecu-
lar clouds (Ossenkopf and Mac Low, 2002; Brunt et al., 2009), we have θ ≃ 1.
Having made the assumption that the appropriate volume over which to av-
erage is the volume of our representative shock, and considering Equation
6.17, we approximate dV by
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dV = L3

(

ρ0
ρ2

)2

d

(

ρ2
ρ0

)

. (6.20)

Finally, inserting Equation (6.17) into Equation (6.4), yields

σ2
ρ/ρ0 =

∫
ρ
ρ0

1

(

1− ρ0
ρ2

)2

d

(

ρ2
ρ0

)

=
ρ

ρ0
− ρ0

ρ
− 2 ln

(

ρ

ρ0

)

. (6.21)

It is important to note that in this formulation, Equation (6.21) is physically
meaningless if the lower limit of the integral is set between 0 < ρ/ρ0 < 1.
This is due to the definition adopted for the shock width (Eq. 6.36), where
the shock thickness is defined only for ρ2/ρ0 > 1. For highly supersonic
turbulence, which is the regime that concerns us, the assumption ρ ≫ ρ0 is
valid. Then, the first term in Equation (6.21) dominates the variance and
we get

σ2
ρ/ρ0 ≈

ρ

ρ0
. (6.22)

For practical reasons, we prefer to consider the variance of the logarithm
of the density contrast, s = ln(ρ/ρ0), instead of the variance of the linear
density when we will compare this analytical model with numerical simu-
lations. These variances are related by (e.g., Federrath et al., 2008b; Price
et al., 2011)

σ2
s = ln

[

1 + σ2
ρ/ρ0

]

. (6.23)

We now insert the three cases considered in §6.1.1 into Equation (6.23), in
order to obtain the density variance–Mach number relation. The subscripts
of the following results are chosen based on the value α = 0, 1/2 and 1 of
the B ∝ ρα relationship.

• B independent of ρ

The density variance in this case is exactly the same as for the purely
hydrodynamical, isothermal case,

σ2
s,0 = ln

[

1 + b2M 2
]

. (6.24)

• B ∝ ρ1/2

In this case, the density variance is:
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σ2
s,1/2 = ln

[

1 + b2M 2

(

β0

β0 + 1

)

]

. (6.25)

This relation is similar to Equation (6.24) except for a correction factor
due to the effects of magnetic fields, which is a function of the plasma
β0 only.

• B ∝ ρ

Finally, the density variance–Mach number relation in this case is given
by

σ2
s,1 = ln

[

1 +
1

2

(

−1 − β0 +

√

(1 + β0)
2 + 4b2M 2β0

)

]

. (6.26)

The density variance has a strong dependence on β0, leaving the rms
Mach number as a marginal quantity in this relation.

In the last two cases, when β0 → 0, the Alfvénic velocity is much higher
than the sound speed, and both relations approach zero. In this scenario, the
magnetic pressure is infinitely large and prevents density fluctuations from
forming. The gas is “frozen” in the magnetic field. In the opposite limit,
when β0 → ∞, Equation (6.25) and Equation (6.26) simplify to the purely
hydrodynamical case, as expected. In the next section, we are going to test
these cases with numerical simulations.

6.2.1 Numerical test of the analytical model

Simulations

We have performed simulations of the evolution of the turbulent, dense,
inviscid, magnetised (MHD) and unmagnetised (HD), isothermal interstel-
lar medium using the zeus-mp hydrodynamical code (Norman, 2000; Hayes
et al., 2006), whose basic setup is explained in §2. We neglect chemical re-
actions in order to study the effects of magnetic fields in molecular clouds,
leaving the inclusion of the effects of chemistry (Glover et al., 2010) for §6.3.3.

Each of our simulations begins with an initially uniform gas distribution,
with a mean hydrogen number density of n0 = 1000 cm−3 and a resolution
of 2563 cells. The initial velocity field is turbulent, with power concentrated
on large scales with an initial rms velocity vrms = 5 kms−1. We do not
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perform a Helmholtz decomposition of the force field, and thus the turbulent
forcing consists of a natural mixture of solenoidal and compressive modes,
i.e., Fsol/(Fsol + Fcomp) ≈ 2/3. Note that Federrath et al. (2008b, 2010)
tested the two limiting cases of purely solenoidal (divergence-free) and purely
compressive (curl-free) forcing, as well as various mixtures of solenoidal and
compressive modes of the turbulent forcing. They found a strong influence
on the density PDF, producing a three times larger standard deviation for
compressive forcing compared to solenoidal forcing. They parameterized the
influence of the forcing by introducing the b-parameter in Equation (6.3).
Purely solenoidal forcing is characterized by b = 1/3, while purely compres-
sive forcing gives b = 1. For the natural mixture, they find b ≈ 0.4. Using
the present set of numerical models, we confirm that using b = 0.4 for the
natural mixture of forcing modes used here gives the best fits with our an-
alytically derived density variance–Mach number relation. The temperature
of the gas is constant and fixed to an initial value T0 = 1062, 170, 42 and
15 K, in order to sample a large set of Mach numbers 〈M 〉 ≃ 2, 5, 10 and
17, respectively. The crossing time is defined as tcross = L/2vrms ≈ 1.9 Myrs.
We present results from t = 3 Tcross ≈ 5.7 Myr, sampled every 0.17 Tcross, and
evolved until t = 4 Tcross ≈ 7.6 Myr. This period of time is long enough to
expect the turbulence to have reached a statistical steady state (Federrath
et al., 2009; Federrath et al., 2010; Glover et al., 2010; Price and Federrath,
2010).

For the MHD cases, the simulations begin with a uniform magnetic field
that is initially oriented parallel to the z-axis of the simulation. Four of these
simulations begin with an initial magnetic field strength Bi = 5.85µG, which
is our standard magnetic field strength hereafter. We also perform three
MHD runs with Bi = 10, 20 and 60µG, with M = 10, to check the behavior
of the results with increasing magnetic field strengths. We note that as the
simulations run, dynamo amplification can lead to increased field strength,
and thus we use the instantaneous magnetic field strength to compute β0.
Nevertheless, for simplicity we use the initial value of the magnetic field
strength to label runs MHD-B2, MHD-B20 and MHD-B60.

In Table 1, we list the simulations that we have performed. In our labels,
we use “H” to denote a hydrodynamic run and “MHD” to denote a magne-
tohydrodynamic run. Our multiple runs with fixed (or zero) magnetic field
strength but different sound-speeds are labelled with an “M”, followed by the
(approximate) rms Mach number of the simulation. Finally, the three runs
in which we examined the effect of varying the initial magnetic field strength
are labelled with a “B”, followed by the initial field strength in µG. In Table
1, we also list the values of the quantities: β0, the rms Alfvénic Mach number
MA,0 = v0/vA,0 and the sonic Mach number. They are measured in every
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Table 6.1: List of simulations.
Bi 〈β0〉 ± 1σ 〈MA,0〉 ± 1σ 〈σs〉 ± 1σ 〈M 〉 ± 1σ

HD-M2 0 ∞ 0 0.77 ± 0.02 2.21 ± 0.02
HD-M5 0 ∞ 0 1.3 ± 0.1 5.4 ± 0.1
HD-M10 0 ∞ 0 1.7 ± 0.1 10.6 ± 0.2
HD-M17 0 ∞ 0 1.92 ± 0.09 17.6 ± 0.5
MHD-M2 5.85 25 ± 5 8.1 ± 0.9 0.69 ± 0.02 2.09 ± 0.02
MHD-M5 5.85 4.8 ± 0.4 8.4 ± 0.8 1.18 ± 0.04 4.98 ± 0.07
MHD-M10 5.85 1.4 ± 0.5 9 ± 3 1.47 ± 0.06 10.2 ± 0.3
MHD-M17 5.85 0.3 ± 0.1 7 ± 2 1.61 ± 0.06 16.8 ± 0.5
MHD-B2 2 11.3 ± 0.5 27 ± 2 1.58 ± 0.09 10.5 ± 0.2
MHD-B20 20 0.083 ± 0.005 1.94 ± 0.06 1.48 ± 0.01 9.9 ± 0.2
MHD-B60 60 0.030 ± 0.001 1.24 ± 0.03 1.34 ± 0.01 10.3 ± 0.1

Bi – initial magnetic field strength in µG.
β0 – mean thermal to instantaneous magnetic pressure ratio.
MA,0 – rms Alfvénic Mach number.
σs – density variance.
M – rms Mach number.
The brackets indicate the time average calculated over the snapshots after
averaging over the spatial coordinates.

cell and then are spatially averaged over the datacube. The brackets denote
the time average over the seven snapshots, and the 1σ shows the temporal
standard deviation around the mean values.

6.2.2 Statistical Analysis

In this subsection, we explain the method used to measure the density vari-
ance for every snapshot in our simulations using the PDF as a robust sta-
tistical tool for this analysis (Price et al., 2011). Then, we parameterize
the instantaneous β0 in terms of M , in the direction of testing numerically
the σs–M relations presented in §6.2. Finally, we present the comparison
between our analytical model and the simulations.

Probability Density Function (PDF)

In Figure 6.1, we plot the volume-weighted dimensionless density PDFs for
MHD and HD isothermal gas with the same Mach number for comparison.
For these simulations, we find that all the PDFs have a log-normal shape
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around their peak. However, the PDFs deviate from log-normality especially
in the HD simulations at low densities, being more evident for M & 5. The
error bars in this figure show the 1σ variations around the time average. We
see that these variations cannot explain the tail at low densities. Therefore,
this deviation is not explained by intermittency fluctuations, and deserves
further study. However, the low-density tail does not significantly affect our
σs estimates, because the variance is computed from a log-normal fit in a
limited interval around the peak, giving the most reliable estimates of σs

(see Price et al., 2011). In this sense, the trend of the time averages observed
between MHD and HD simulations shows the magnetic field acting as a
density cushion, preventing the gas from reaching very low densities during
local expansion. As a consequence, there are larger parts of the volume with
density ρ ≈ ρ0 in the MHD case than in the HD case.

In order to avoid contamination from intermittency, numerical artifacts,
etc., in the wings of the PDFs, we perform a Gaussian fitting only in a data
subset selected by s, in each simulation. This subset consists of 60% of the
number of bins considered to calculate the density PDF which are distributed
symmetrically around the mean, s0. Then, we fit the Gaussian profile given
by Equation (6.2) to obtain σs in every snapshot of the simulations.

Density variance–rms Mach number test

In the interest of comparing the density variance–Mach number relation,
given by Equation (6.25) and Equation (6.26), with the results obtained in
the previous subsection, we parameterise the thermal-to-magnetic pressure
ratio in terms of the rms Mach number for our sequence of simulations. In
this sense, we rewrite Equation (6.12) as

β0 = 2
M 2

A,0

M 2
. (6.27)

Note that this parameter is calculated considering the instantaneous mag-
netic field strength and not the initial value.

Next, we select the four MHD simulations with different rms Mach num-
ber, but the same initial magnetic field strength, and use a linear regression
considering the logarithm of Equation (6.27): log10 β0 = log10C − 2 log10 M .
From the fit shown in Figure 6.2, we find C = 111±4. In Figure 6.2, we plot
β0 as a function of the rms Mach number for the different snapshots. The
triangles show β0 for the selected simulations with 〈M 〉 ≈ 2, 5, 10 and 17,
while the curve shows the linear regression.

In Figure 6.3, we combine the dimensionless standard deviation σs, ob-
tained from the fit over the numerical PDFs for every snapshot, and the
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Figure 6.1: Dimensionless density PDF for magnetised and unmagnetised
molecular clouds with the same initial conditions, n0 = 1000 cm−3, and
same turbulent rms velocity, but different sound speed. The most significant
features are: 1) the density variance increases with Mach number, and 2) the
density variance decreases with magnetic field strength. These simulations
have a ratio between thermal pressure and magnetic pressure β0 . 10. All
simulations have a resolution of 2563 zones.
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Figure 6.2: Parameterisation of β0 = Pth/P0,mag with respect to the rms
Mach number for the subset of simulations with roughly constant Alfvénic
Mach number, MA,0 ≈ 8 (see Table 6.1). The curve is a linear regression of
the MHD simulations with Bi = 5.85µG. The linear regression performed to
the logarithm of Equation (6.27) gives β0 = (111± 4)M−2.
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analytical prediction for the three cases of B ∝ ρα – with α =0,1/2, and 1 –
as a function of the rms Mach number. For the triangles around a given 〈M 〉,
the HD simulations exhibit larger σs compared with the MHD simulations,
as was expected from Figure 6.1. For comparison, we plot the analytical
prediction given by Equation (6.24), σα,0. This result matches the prediction
provided by Padoan et al. (1997). However, instead of using their proportion-
ality parameter b ≈ 0.5, we used the input value b = 0.4 (Federrath et al.,
2010, dashed line), which is the result of the natural mixing of solenoidal
and compressive modes in the turbulent forcing field. We also plot the two
extreme cases for the unmagnetised gas, σs,HD, with b = 1/3 (lower dotted
line) for purely solenoidal forcing and b = 1 for purely compressive forcing
(upper dotted line) for comparison.

In the same Figure, we superpose Equation (6.25, light grey solid line)
and Equation (6.26, dark grey solid line), both again with b = 0.4. We find
than the best agreement with the MHD simulations is given by Equation
(6.25), that is σs,1/2. The result obtained for the first case – B independent
of density (Equation 6.24) – may account only for low Mach number zones.
This case might be appropriate for diffuse clouds (Crutcher et al., 2010),
where the mean sound speed of the cloud may be of the same order as the
rms velocity. Here, at M ∼ 1, all the three cases converge to the HD result.

Our results are qualitatively in agreement with Ostriker et al. (2001)
and Price et al. (2011). These authors find that the density variance in
magnetised gas is significantly lower than in the HD counterparts for simu-
lations with a Mach number M & 10. In addition, Cho and Lazarian (2003)
study the density contrast resulting from the Alfvénic waves, slow and fast
magneto-sonic waves originating in different environments. The authors con-
cluded that the three kinds of waves can coexist in those environments. In
the regime that concerns us, β0 ≈ 1 and 5 . M . 10, their density contrasts
closely match ours.

To test the validity of our results for different Alfvénic Mach numbers,
we also performed three simulations with an initial magnetic field strength
different from the standard one, with MA,0 ≈ 27, 1.9, and 1.2, at 〈M 〉 ≈
10 (empty squares in Figure 6.3). Our model works well for MA,0 & 6,
but breaks down for our test with MA,0 . 2. The break occurs when the
turbulence becomes trans-Alfvénic or sub-Alfvénic, i.e., when MA,0 . 2.
This is due to anisotropies arising in this case, i.e., the turbulence is no
longer isotropic, as can be seen in Figure 6.4. This is because the back
reaction of the magnetic field onto the flow is extremely strong for flows
perpendicular to the magnetic field lines, if the turbulence is trans-Alfvénic
or sub-Alfvénic (see e.g., Cho and Lazarian, 2003; Brunt et al., 2010; Esquivel
and Lazarian, 2011). Since our analytic derivation is based on an ensemble
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Figure 6.3: Standard deviation of the dimensionless density contrast, plotted
as a function of the rms Mach number. Circles show the purely hydrody-
namical simulations that follow very well the Padoan et al. (1997) prediction,
σ2
s,HD = ln(1+b2M 2), with b = 0.4, expected for mixed-mode turbulent forc-

ing (Federrath et al., 2010, dashed line). The dotted lines are for comparison
with purely hydrodynamical model, assuming b = 1/3 for purely solenoidal
forcing and b = 1 for purely compressive forcing (Federrath et al., 2008b).
Triangles show the MHD simulations and the two formulas, Eqs. (6.25) and
(6.26), obtained in this work: σs,1/2 = {ln[1 + b2M 2β0/(β0 + 1)]}1/2 (light
grey solid line), and σs,1 (dark grey solid line). Those curves are plotted
for b = 0.4, and using our parameterisation, β0 = (111 ± 4)M−2 from Fig.
6.2. Squares, stars and diamonds show the additional MHD simulations with
different rms Alfvénic Mach number, MA,0 ≈ 27 (Bi = 2µG), MA,0 ≈ 1.9
(Bi = 20µG), and MA,0 ≈ 1.2 (Bi = 60µG).
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average (Eq. 6.4), assuming statistical isotropy, the anisotropies are the most
likely cause for the limitation of our model to super-Alfvénic turbulence. In
Figure 6.5, we show our prediction (Eq. 6.25)2 for a fixed Mach number
M ≈ 10 and forcing parameter b ≈ 0.4, which fits very well the data with
MA,0 & 6. These simulations show high dispersion – around the time average
– in the density variance and the rms Alfvénic Mach number showing the
fluctuations of the gas caused by the turbulence dominating the dynamics
of the flow, in contraposition of the simulations with small Alfvénic Mach
number. In the same Figure, we also plot the model curve Eq. (6.25) for the
same sonic Mach number 10 and b = 1. Although our turbulent forcing in
the simulations is by definition mixed, and thus we expect b ≈ 0.4 (Federrath
et al., 2010), we find it interesting to note that b = 1 – corresponding to purely
compressive forcing – gives a good fit to the data with very low Alfvénic Mach
number, MA,0 . 2. We speculate that the density field for very high magnetic
field strengths and thus very low Alfvénic Mach number starts behaving as
if it was driven by purely compressive forcing. This is very different from the
compression obtained with solenoidal or mixed forcing, but more similar to
compressive forcing, which also directly compresses the gas (Federrath et al.,
2008b). More data at MA,0 . 2 would be needed to sample this region and
the transition from b = 0.4 to 1 in detail, and we just note here that b = 1
seems to provide a good fit for MA,0 . 2, given the data at hand.

6.3 The non-isothermal case

6.3.1 Analytical derivation

In this section, we extend the work shown in §6.1.2 in order to obtain an
analytical relation between σs and M for non-isothermal gas. Here, we relax
some of the approximations applied in that section.

In the non-isothermal gas, the ratio of the thermal pressure to magnetic
pressure is

β =
2

Γ

c2s
v2A

. (6.28)

The index Γ is related to the ratio of the specific heats γ by

Q = W
(γ − Γ)

(γ − 1)
, (6.29)

2Equation (6.25) has been written in terms of the instantaneous Alfvénic Mach
number (Eq. 6.27), yielding the relation for the density variance: σ2

s,1/2 = ln[1 +

2b2M 2M 2

A,0/(2M
2

A,0 + M 2)].
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Figure 6.4: Density slices of the simulations at t = 6 Myr. The mean
magnetic field is oriented along the vertical axis. From left to right: ini-
tial magnetic field strength Bi = 2, 5.85, 20 and 60 µG. The turbulence
remains isotropic for super-Alfvénic gas MA,0 ≫ 1, but when it becomes
trans-Alfvénic or sub Alfvénic (MA,0 . 3), the turbulence becomes highly
anisotropic.

where Q is the heat exchange and W the work done by the system (Kip-
penhahn and Weigert, 1994; Carroll and Ostlie, 2006, www.codecogs.com3).
Expressing Q and W in terms of the pre- and post-shock conditions may be
tricky. In order to avoid confusions, we consider that Γ1 = Γ2 = γ0 as a first
approximation for simplicity (γ0 is the volume average of γ). Later in the
numerical test, we will explore the effects of considering different Γ.

In our simulations, we calculated the average of γρ>ρ0 only in the gas with
ρ > ρ0 and compared it with γ0. The ratio γρ>ρ0/γ0 ≈ 1 and does not depend
on the Mach number. Using Eqs. 6.5 and 6.10, we can the rewrite Equation
(6.6) as

ρ0
ρ2
(γ0b

2M 2 + 1 + β−1
0 ) = b2M 2(γ0+1

2
)
(

ρ0
ρ2

)2

+ (γ0−1)
2

b2M 2+

2 (γ0−1)
γ0

(

β−1
0 − γ0v2A,2

2c2s,1

)

+
γ0v2A,2

2c2s,1
+ 1.

(6.30)

In order to solve this equation for the density contrast ρ2/ρ0, it is nec-
essary to find a relation for vA,2 in terms of the of the pre-shock Alfvénic
velocity vA,0. To achieve this, we consider that the magnetic field strength
and the density are related following the three cases assumed in §6.1.2.

3http://www.codecogs.com/reference/engineering/thermodynamics/idea gases/expansion
and compression of ideal gases.php#comments
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Figure 6.5: Standard deviation of the dimensionless density contrast, plotted
as a function of the instantaneous rms Alfvénic Mach number at 〈M 〉 ≈
10. The different symbols show snapshots of simulations with MA,0 time
averages: 〈MA,0〉 ≈ 27 (squares), 〈MA,0〉 ≈ 9 (triangles), 〈MA,0〉 ≈ 1.9
(stars), and 〈MA,0〉 ≈ 1.2 (diamonds). When the turbulence becomes trans-
Alfvénic or sub-Alfvénic, 〈MA,0〉 . 2 (stars and diamonds), anisotropies arise
in the gas, because the back reaction of the magnetic field onto the flow is
extremely strong for flows perpendicular to the magnetic field lines. The
grey curve shows our prediction σs,1/2 using b ≈ 0.4 that fits very well the
data. Meanwhile, the black curve shows our prediction σs,1/2 considering
b = 1 (corresponding to purely compressive forcing). Although our turbulent
forcing in the simulations is by definition mixed, and thus we expect b ≈ 0.4
(Federrath et al., 2010), it is noteworthy to say that b = 1 gives a good fit to
the data with very low 〈MA,0〉 . 2.
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First case: B independent of ρ

At this extreme case, Eq. 6.30 becomes a second-order equation independent
of the magnetic field strength

(

ρ2
ρ0

)2 [

b2M 2 (γ0−1)
2

+ 2(γ0−1)
γ0

β−1
0 + 1

]

−
(

ρ2
ρ0

)

(γ0b
2M 2 + 2(γ0−1)

γ0
β−1
0 + 1) + b2M 2 (γ0+1)

2
= 0.

This equation results in

ρ2
ρ0

=
b2M 2(γ0 + 1)

2

[

(γ0 − 1)
(

b2M 2

2
+

2β−1

0

γ0

)

+ 1

] . (6.31)

In contrast with Eq. 6.14, Eq. 6.31 does depend on the magnetic field
strength. We are assuming that magnetic fields and matter are not coupled.
However, magnetic fields enter into play together with the non-isothermal
equation of state, which is intriguing. This point needs further investigation
to be understood. Eq. 6.31 reduces to ρ2/ρ0 = b2M 2 (e.g. Padoan et al.,
1997; Federrath et al., 2008b) for γ0 = 1.

Second case: B ∝ ρ1/2

For this case, Eq. 6.30 results again in a similar second-order equation, but
with a dependence on the magnetic field strength

(

ρ2
ρ0

)2 [

b2M 2 (γ0 − 1)

2
+ 1 + β−1

0

]

−
(

ρ2
ρ0

)

(γ0b
2
M

2+1+β−1
0 )+b2M 2 (γ0 + 1)

2
= 0.

The solution for this equation is

ρ2
ρ0

=
b2M 2(γ0 + 1)

b2M 2(γ0 − 1) + 2(1 + β−1
0 )

. (6.32)

In this case, the density contrast changes considerably compared to the
HD solution ρ2/ρ0 = b2M 2 (Eq. 6.14), as well as compared to the magnetized-
isothermal case ρ2/ρ0 = b2M 2(1 + β−1

0 )−1 (Eq. 6.15). The density contrast
is reduced by (γ0 + 1)/[b2M 2(γ0 − 1) + 2(1 + β−1

0 )].
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Third case: B ∝ ρ

For the extreme case in which magnetic fields act proportionally to the den-
sity, Eq. 6.30 arranges into a third order equation

(

ρ2
ρ0

)3
(2−γ0)

γ0
β−1
0 +

(

ρ2
ρ0

)2 (

b2M 2 (γ0−1)
2

+ 2(γ0−1)
γ0

β−1
0 + 1

)

−
(

ρ2
ρ0

)

(γ0b
2M 2 + 1 + β−1

0 ) + b2M 2 (γ0+1)
2

= 0,

which has the solution

ρ2
ρ0

= 1
4(γ0−2)

[

(γ0 − 1)γ0β0b
2M 2 + 2γ0(β0 + 1)−

√

[

(γ0 − 1)γ0β0b2M 2 + 2γ0(β0 + 1)
]2 − 8(γ0 + 1)(γ0 − 2)γ0β0b2M 2

]

.

(6.33)
This density contrast changes substantially in comparison with Eq. 6.16.

There is a strong influence of the plasma β0 as in Eq. 6.16, but γ0 seems to
have preponderance as well.

6.3.2 The σs–M relation

Here, we determine the density variance for a non-isothermal, magnetized,
supersonic turbulent fluid for which there are many shocks. We present
three different σs–M relation for each of the magnetic field dependences
with density. We assume Eq. 6.22 for ρ/ρ0 > 1, although given that the fluid
may be affected by strong heating, we have to include a contribution by the
gas with ρ < ρ2. Therefore, the density variance (Eq. 6.4) can be written as4

σ2
ρ/ρ0

= [σ2
ρ/ρ0

]ρ>ρ0 + [σ2
ρ/ρ0

]ρ<ρ0 . (6.34)

In the absence of viscosity, we propose that the shock width in the case
which ρ < ρ2 is given by

λρ<ρ0 ≃ θLρ2/ρ0(γ0 − 1), (6.35)

where θ ≃ 1 (Ossenkopf and Mac Low, 2002; Brunt et al., 2009). We add the
term γ0 − 1 for consistency with our previous result for highly supersonic-
isothermal turbulence. The volume of the shock Vsh is given by

4We do not include ρ ≈ ρ0 because this corresponds to the subsonic/transonic regime.
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Vsh,ρ<ρ0 ≃ L3ρ2
ρ0

(γ0 − 1). (6.36)

This is the volume of our representative shock. The volume differential in the
density variance equation 6.4 is approximately the differential of the volume
of the shock (Eq. 6.17) and is given by

dV = L3(γ0 − 1) d

(

ρ2
ρ0

)

. (6.37)

Inserting Eq. 6.37 into Eq. 6.4, we obtain

[σ2
ρ/ρ0

]ρ<ρ0 = (γ0 − 1)
∫ 1

ρ
ρ0

(

ρ2
ρ1

− 1
)2

d
(

ρ2
ρ0

)

=

(γ0 − 1)

[

1
3
−
(

ρ
ρ0

)3

+
(

ρ
ρ0

)2

− ρ
ρ0

]

.

(6.38)

where the shock thickness is defined only for ρ2/ρ0 < 1. In that case, the
cubic and quadratic terms are much smaller than the linear one. Hence,
Eq. 6.38 is approximately

[σ2
ρ/ρ0

]ρ<ρ0 ≈ (γ0 − 1)

(

1

3
− ρ

ρ0

)

. (6.39)

For highly supersonic turbulence, there are regions where ρ ≫ ρ0 as well as
ρ ≪ ρ0 (rarefaction waves). In the limit ρ/ρ0 → 0, [σ2

ρ/ρ0
]ρ<ρ0 = 1/3. We are

not interested in rarefaction waves by now. Besides, the width of the dimen-
sionless density distribution σρ/ρ0 may increase with incrementing the den-
sity contrast ρ/ρ0. However, the width of the density distribution [σρ/ρ0 ]ρ<ρ0

(Eq. 6.39) becomes narrower with high density contrast, we therefore change
the sign of this equation. In this way, the width [σρ/ρ0 ]ρ<ρ0 increases towards
high ρ/ρ0.

The density variance (Eq. 6.34) is then

σ2
ρ/ρ0

≈ ρ

ρ0
+ (γ0 − 1)

(

ρ

ρ0
− 1

3

)

. (6.40)

The density variance is frequently expressed in terms of the logarithm
of the density contrast (e.g. Padoan et al., 1997; Federrath et al., 2008b;
Glover et al., 2010; Padoan and Nordlund, 2011). For our comparison with
simulations, we insert Eq. 6.40 into Eq.n6.23 and get

σ2
s = ln

[

(4− γ0)

3
+ γ0

(

ρ

ρ0

)

]

. (6.41)
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Now we can use our ρ/ρ0 predictions from our three magnetic field cases
into Eq. 6.41 for obtaining their correspondent density variance-Mach number
analytical relations. Each of the relations are labeled in the same fashion than
in §6.1.2, but adding “th” to differentiate them from the isothermal relations.

• B independent of ρ

The density variance in this case is

σ2
s,0,th = ln











(4− γ0)

3
+

b2M 2γ0(γ0 + 1)

2

[

(γ0 − 1)
(

b2M 2

2
+

2β−1

0

γ0

)

+ 1

]











. (6.42)

• B ∝ ρ1/2

In this case, the density variance–Mach number relation is:

σ2
s,1/2,th = ln

[

(4− γ0)

3
+

b2M 2γ0(γ0 + 1)

b2M 2(γ0 − 1) + 2(1 + β−1
0 )

]

. (6.43)

In the isothermal limit γ0 = 1, Eq. 6.43 simplifies into the density
contrast for the magnetized-isothermal case (Eq. 6.25), which in turn
recovers the HD solution (Eq. 6.24) for weak magnetic fields, i.e. β0 →
∞.

• B ∝ ρ

Finally, the density variance results

σ2
s,1,th = ln

{

(4−γ0)
3

+ γ0
4(γ0−2)

[

(γ0 − 1)γ0β0b
2M 2 + 2γ0(β0 + 1)−

√

[

(γ0 − 1)γ0β0b2M 2 + 2γ0(β0 + 1)
]2 − 8(γ0 + 1)(γ0 − 2)γ0β0b2M 2

]

}

.

(6.44)

In the isothermal limit γ0 = 1, Eq. 6.44 becomes equivalent to Eq. 6.26,
which in turn simplifies to Eq. 6.24 in the HD limit β0 → ∞.

All the density variance predictions has a strong dependence on γ0, as well
as on β0 (Eqs. 6.43 and 6.44), leaving the rms Mach number as a marginal
quantity in this relation. In the next section we test Eqs. 6.42, 6.43, and 6.44
with numerical simulations.
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6.3.3 Numerical test

Simulations

For this test, we include the same the simulations used in §5, which are ex-
plained in detail in §2.1. Additionally, we include other simulations with
higher UV radiation field strengths, in order to study the effect of photoelec-
tric heating from dust grains on the density variance–Mach number relation.
Because these extra simulations have on average higher kinetic temperatures,
M is typically lower than the simulations in §5. In total, there are 25 simu-
lations. The details are listed in Table 6.2.

For most of our simulations, we report results for only 3 snapshots of
the simulation corresponding to an evolutionary time from t ≈5 Myrs to
t ≈5.7 Myrs (3Tcross), for which we expect the simulations to have reached
an statistically stationary state. For four of our simulations, we follow the
evolutionary time up to ∼ 30 Myrs. Although we know that this is an
unrealistic lifetime for a molecular cloud (they live for times . 107 Myrs, e.g.
Ballesteros-Paredes et al., 1999; Mac Low and Klessen, 2004), we wanted
to check if the different dynamical parameters were stable with increasing
simulation time. In total, the quantities seems to be stable, presenting only
small relative variations.

In Table 6.2, we list γ0, β0, MA , σs, and M at t ≈ 5.7 Myrs.

Probability Density Function (PDF)

Fig. 6.6 shows the volume-weighted PDF of the natural logarithm of the
dimensionless density s = ln(ρ/ρ0). The simulations are grouped by similar
characteristics for comparison which are specified at the top corners of the
figures. The varying parameters are specified at the bottom together with
the rms Mach-number. All the PDFs exhibit a log-normal shape (Eq. 6.2).
The width σs becomes narrower as the simulations present smaller M , which
in turn corresponds to stronger UV radiation field strength and/or smaller
product n0 × Z. Although the difference between simulations seems very
subtle, it is more evident for comparisons between the subset at the top of
the figure and the one at the bottom. Table 6.2 shows that σs changes only
by some tenths, while M varies by a factor of a few.

As in §6.1.2, the tail at low densities cannot be easily explained. Al-
though, there are three plausible reasons for this behavior: 1) intermittency
fluctuations (Federrath et al., 2008b), 2) the fixed pattern in which turbulence
is driven (Konstandin et al., 2012b), and/or 3) the use of a computationally
fixed grid. Given that two of these reasons are not physical, we measure σs

after limiting the PDF to an interval around the peak which contain 60% of
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Table 6.2: List of simulations.

n0 [cm−3] Z/Z⊙ UV [G0] γ0 β0 MA σs M

n300-Z01 300 0.1 1 1.61 7.22 4.3 1.357 7.2
n300-Z03 300 0.3 1 1.54 9.13 4.1 1.39 9
n300-Z06 300 0.6 1 1.49 3.3 4 1.410 10.7
n30 30 1.0 1 1.63 0.58 1.9 1.358 5.1
n100 100 1.0 1 1.55 1.02 2.49 1.392 8
n180 180 1.0 1 1.51 2.03 3.3 1.398 10.2
n300 300 1.0 1 1.47 2.42 3.9 1.424 12.4
n1000 1000 1.0 1 1.43 11.1 8.7 1.542 16.6
n30-Z01 30 0.1 1 1.67 1.60 1.6 1.312 4.3
n100-Z01 100 0.1 1 1.65 2.62 2.5 1.355 5.6
n1000-Z01 1000 0.1 1 1.51 15.77 8.8 1.495 10.5
UV0 300 1.0 0 1.46 1.65 3.9 1.422 16.6
UV10 300 1.0 10 1.47 5.87 4.1 1.396 9.7
UV100 300 1.0 100 1.51 25.59 4.3 1.332 7.2
UV1000 300 1.0 1000 1.60 20.16 4.5 1.284 5
n30-UV1000 30 1.0 1000 1.67 9.99 1.7 1.012 1.5
n60-UV1000 60 1.0 1000 1.67 40.37 2.2 1.1 2
n100-UV1000 100 1.0 1000 1.66 11.9 2.8 1.167 2.6
n180-UV100 180 1.0 100 1.57 15.17 3.9 1.278 5.4
n300Z01-UV10 300 1.0 10 1.62 13.72 4.4 1.325 5.5
n300Z01-UV100 300 1.0 100 1.66 39.37 5.2 1.21 3.9
n300Z01-UV1000 300 1.0 1000 1.67 69.44 5.2 1.145 3.1
n300Z03-UV10 300 1.0 10 1.55 7.52 4.3 1.369 6.9
n300Z03-UV100 300 1.0 1000 1.60 20.31 4.6 1.298 5
n300Z03-UV1000 300 1.0 1000 1.66 48.33 5.3 1.181 3.4

n0 – initial number density of hydrogen nuclei
Z/Z⊙ – metallicity
UV – ultra-violet radiation field strength expressed in the standard radiation
field strength G0 (Draine, 1978)
All these quantities are calculated at t ≈ 5.7 Myrs
γ0 – average ratio of the specific heats
β0 – average ratio of the thermal-to-magnetic pressure
MA – rms Alfvénic Mach number
M – rms Mach number
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Figure 6.6: Dimensionless density PDF for magnetised non-isothermal molec-
ular clouds. Labels in the panels indicate n0, Z, UV radiation field strength
and rms Mach number M for each simulation. The most significant features
are: 1) the density variance increases with M , and 2) the density variance
decreases as the product n0×Z decreases and the UV radiation field strength
becomes stronger.
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the data and is not affected by high fluctuations between one snapshot and
the next. Then, we perform a Gaussian fit to this interval.

σs–M test

In order to compare our σs–M predictions (Eqs. 6.42, 6.43, and 6.44) with
numerical simulations, we first parametrize γ0 and β0 in terms of the rms
Mach number. γ depends on the composition of the gas. For gas with a
number density of helium nHe = 0.1n, and a molecular abundance of H2

xH2 = 2nH2/n and an electron abundance xe = ne/n, γ is (Glover and Mac
Low, 2007a)

γ =
5.5 + 5xe − 1.5xH2

3.3 + 3xe − 0.5xH2
, (6.45)

where it is assumed that the rotational degrees of freedom of H2 are pop-
ulated, but the vibrational ones are unpopulated (Glover and Mac Low,
2007a).

Fig. 6.7 shows the average γ0 as a function of M . γ0 decreases from ∼1.66
at M ≈ 1 to ∼1.43 at M ≈ 17. The decreases of γ0 for simulations with
higher n0 × Z product and low UV field indicates that the hydrogen in the
cloud tends to be locked in H2 molecules.

We use three snapshots of the simulations at ≈ 5.7 Myrs to make a linear
regression of these data, which results in

γ0 = 1.705(±7× 10−3)− 0.0175(±9× 10−4)M . (6.46)

For β0, we rewrite Eq. 6.27 as

β0 ≈
2

γ0

M 2
A,0

M 2
. (6.47)

Note that this parameter is calculated considering the instantaneous mag-
netic field strength and not the initial value.

Fig. 6.8 shows β0 as a function of M . The points with arrows indicates
different simulation times from t ≈ 5 Myrs to t ≈ 30 Myrs. The variation in
β0 does not present any time correlation. For all the runs, β0 presents large
scatter. However applying a regression based on Eq. 6.47 in logarithmic space
(β0 = 207(±2)M−2, dashed line), we find two important facts: 1) simulations
with the same n0 locate along a parametrization of the kind β0 = aM−2

with a depending on n0. 2) Simulations with decreasing Z and/or increasing
UV radiation field strength, lie along of the parametrization curves for their
correspondent n0 (parallel to the dashed line) towards small M .
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Figure 6.7: Parameterisation of γ0 as a function of the rms Mach number.
The curve is a linear regression gives γ0 = 1.705(±7× 10−3)− 0.0175(±9×
10−4)M . All the simulations are labeled with their n0, Z, and UV. Colors
are arranged in the same fashion as in the previous figures.
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Figure 6.8: Parameterization of β0 = Pth/P0,mag with respect to the rms
Mach number. The curve is a linear regression on the logarithmic space
(Eq. 6.47) β0 = (207 ± 2)M−2. Labels and colors in the simulations are
arranged in the same fashion than in the previous figure.

The Alfvénic Mach number MA = v0/vA (table 6.2) grows with increasing
n0. Given that all our simulations have constant v0 ≈ 5 km s−1, it means
that vA decreases towards high n0. Remembering that the initial magnetic
field strength Bi = 5.86µG is the same for all the runs, and

vA =
B√
4πρ

, (6.48)

it implies that the instantaneous magnetic field strength B may depend on
the density B ∝ ρα with 0 ≤ α < 1/2. With the aim of keeping the number
of free parameters as smallest as possible, we use only one parametrization
with β0 = 207(±2)M−2, performed for the snapshots at t ≈ 5 Myrs.

Fig. 6.9 shows the standard deviation of the logarithmic density contrast
σs as a function of the rms Mach number. σs is obtained from the Gaussian
fit performed to each of the PDFs (Fig. 6.6). For each simulation, we average
σs over three snapshots at t ≈ 5 Myrs. σs increases towards high M but
in a smoother fashion than for the isothermal MHD simulations shown in
Fig. 6.3. The black dotted line shows the σs,1/2-M relation for the isothermal
case which fits best the isothermal-MHD simulations. The colored solid lines
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show our predictions for the non-isothermal-MHD gas, σs,0,th (blue line),
σs,1/2,th (red line), and σs,1,th (yellow line).

The three σs-M relations predict almost the same σ2 at M . 10, and
they seem to fit well the data. At higher M , σs,0,th and σs,1/2,th shows
better agreement with the simulations. The dashed line shows the typical
σs = ln(1 + b2M 2)1/2 for the HD isothermal case (e.g. Padoan et al., 1997;
Federrath et al., 2008b; Molina et al., 2012). From our findings on the β0–
M relation, σs,0,th (Eq. 6.42) and σs,1/2,th (Eq. 6.43) work the best for our
simulations. Comparing the dashed and dotted line, magnetic fields alone
stop σs from growing at high M because they work as a cushion of the gas
(§6.2.1). On the other hand, when a non-isothermal equation of state is
included (colored solid lines), σs changes by very little (∼ 0.5) across all our
M sample.

At M . 3, the photoelectric heating of dust grains by the UV radiation
field is very strong. Together with turbulence, there are higher density con-
trast shocks than in the isothermal-MHD or isothermal-HD counterpart. M

increases as the product n0 × Z grows and the UV radiation field strength
gets weaker. At M & 3, σs only increases by few tenths, even as M grows
by ∼ 10. Shocks heat the gas and generally it cools down through radiative
cooling. However, as M increases, so does AV , therefore part of the radiation
gets trap into the high density zones and may prevent the gas of cooling itself
down, and from reaching higher density contrasts. Fig. 5.3 shows that the
temperature generally decreases towards high n. All the simulations, except
the ones with Z < 0.6Z⊙, have TK approximately constant ∼ 10 − 15 K
at n & qn0, with q increasing as n0, or with increasing UV radiation field
strength. This issue is not totally clear and needs further study.

We now want to see how our σs–M relations works for B = 0 (β0 →
∞). In absence of magnetic fields, σs,0,th = σs,1/2,th, but σs,1,th diverges5.
Fig. 6.10 is the same as Fig. 6.9, but the solid red line shows σs,1/2,th with
β0 → ∞. σs,0,th and σs,1/2,th (with β0 → ∞) increases by less than 0.1 at
M = 26 in comparison with Fig. 6.9. This difference decreases towards lower
M , meaning that the role of magnetic fields is minor in comparison to the
temperature variations across the cloud.

We assume Γ = γ0, although in Fig. 6.11 study the effect of considering a
different γ0. Fig. 6.11 is the same as Fig. 6.9, but assuming that Γ is a fraction
of the ratio of the specific heats, Γ = f∗γ0 with f = 0.8 (dotted lines), 1 (solid
lines), 1.5 (dashed lines), and 2 (dash-dotted lines). The lines indicates σs,0,th

(blue) and σs,1/2,th (red). At M . 5, both σss matches each other for all Γ. In

5In the limit γ0 = 1, σs,1,th (Eq. 6.44) reduces to the isothermal-MHD case (Eq. 6.26),
which in turn simplifies to the HD case Eq. 6.24 for β0 → ∞.
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Figure 6.9: Standard deviation of the dimensionless density contrast, plotted
as a function of the rms Mach number. Dashed black line shows Padoan
et al. (1997) prediction, σ2

s,HD = ln(1 + b2M 2), with b = 0.4, expected
for mixed-mode turbulent forcing (Federrath et al., 2010). The dotted line
shows our magnetized-isothermal prediction σ2

s,1/2 = ln(1+b2M 2(1+β−1
0 )−1),

with b = 0.4. Solid colored lines show the σs–M relations obtained in
this work Eq. (6.42) σs,0,th (blue line), Eq. (6.43) σs,1/2,th (red line), and
Eq. (6.44) σs,1 (yellow line). Those curves are plotted for b = 0.4, and
using our parameterizations, β0 = (207 ± 2)M−2 from Fig. 6.8, and
γ0 = 1.702(±7 × 10−3) − (1.0175 ± 9 × 10−4)M from Fig. 6.7. Labels
in the simulations are arranged in the same fashion as previous figures.
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Figure 6.10: Same as Fig. 6.9, but only showing our prediction σs,1/2,th in
the limit β0 → ∞ (red line). The dashed shows the HD limit Eq. 6.24. Both
curves are plotted considering b = 0.4.
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The case of the softer Γ = 0.8γ0, σs,0,th and σs,1/2,th approach the isothermal-
MHD and HD relations (dotted and dashed black lines respectively). For
higher Γ (=[1, 1.5, and 2]γ0), the σss grow. At . 5M . 9, both σss (with
different Γ) are approximately the same. At M & 5, σss with Γ = (1.5, and
2)γ0 are flat and lower than σs with Γ = γ0. In the case of softer Γ = 0.8γ0,
both σss increase, although it is more remarkable for σs,0,th than for σs,1/2,th.
It is noteworthy to say that Γ > 1 for all M shown in this plot. It can be as
high as ∼ 3.4 if f = 2.

Finally, we compare for possible variations of b, for which b = 1/3 ac-
counts for purely solenoidal forcing (divergence-free) and b = 1 for purely
compressive forcing (curl-free) (Federrath et al., 2008b). Fig. 6.12 is the
same as Fig. 6.9, but it shows only the σs,1/2,th–M relation with b = 1/3
(long-dashed black line), b = 0.4 (solid red line), and b = 1 (dash-dotted
black line). For comparison, grey lines shows the σs,HD for the purely HD
case (the line styles are arranged in the same fashion for the different bs). At
M . 3, σs,1/2,th as well as σs,HD grow as b increases. At a given b, σs,1/2,th

is higher than σs,HD. At M & 5, σs,1/2,th becomes flat with very small dif-
ferences (∼ 0.1) from b = 1/3 to b = 1. On the contrary, σs,HD increases
towards high M and high b. The effect of radiative trapping at high M

prevents high compressions in the gas, almost independently of the mixture
of the forcing modes driving the turbulence.

Considering an equation of state different than isothermal have an as-
tonishing effect on the σs–M relation. The density variance measured from
non-isothermal MHD simulations cannot be explained by the simple canoni-
cal relation for purely hydrodynamical isothermal gas as is usually assumed.
It also cannot be accounted by our approximation for the isothermal-MHD
gas.

The predictions σs,0,th and σs,1/2,th fits very well the the simulations. Al-
though at M . 3, σs,0,th and σs,1/2,th are lower than the one measured from
the simulations. It may be for three different reasons: 1) Γ may not simply
scale with γ0. 2) Given the strong heating at these Mach numbers, b may
be higher than 0.4 for this simulations, which implies that there are more
compressions than expected from our input. 3) The previous point may not
be physical. At these Mach number the gas is transonic. Therefore, sonic
waves (which does not produce compressions) start to dominate over super-
sonic waves, and the compressive modes (∇ · F = 0) should be turned off in
the Navier-Stokes equation (1.2) for these particular simulations (Konstandin
et al., 2012b).
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Figure 6.11: Same as Fig. 6.9, but only showing our prediction σs,1/2,th =
{ln[1 + b2M 2β0/(β0 + 1)]}1/2 (red line) with b = 4. The black long dashed
shows σs,1/2,th with b = 1/3 and the black dash-dotted line indicates the
same function with b = 1. The grey lines shows the Padoan et al. (1997)
prediction, σ2

s,HD = ln(1 + b2M 2), with b = 0.4, expected for mixed-mode
turbulent forcing (Federrath et al., 2010) (solid grey line), with b = 1/3 (long
dashed grey line) and with b = 1 (dash-dotted grey line).
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Figure 6.12: Same as Fig. 6.9, but only showing our prediction σs,1/2,th =
{ln[1 + b2M 2β0/(β0 + 1)]}1/2 (red line) with b = 4. The black long dashed
shows σs,1/2,th with b = 1/3 and the black dash-dotted line indicates the
same function with b = 1. The grey lines shows the Padoan et al. (1997)
prediction, σ2

s,HD = ln(1 + b2M 2), with b = 0.4, expected for mixed-mode
turbulent forcing (Federrath et al., 2010) (solid grey line), with b = 1/3 (long
dashed grey line) and with b = 1 (dash-dotted grey line).
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6.4 Summary and Conclusions

We presented analytical predictions for the density variance–Mach number
relation in magnetized supersonic turbulent gas, considering a isothermal
and a non-isothermal equation of state. In this formulation, we considered
three different cases for the relation between the magnetic field strength
and density. The first case assumes that B is independent of ρ, the second
assumes that B ∝ ρ1/2, while the third is given by B ∝ ρ. The three resulting
σs–M relations were tested against numerical simulations. From this analysis
we conclude that:

• For the isothermal gas:

– If B is independent of the density, we recover the hydrodynamical
prediction of Padoan et al. (1997). In this case, the gas and the
magnetic field are not coupled. Therefore, an amplification of the
magnetic field with the shock is not expected. In this regime, all
our predictions converge to the purely hydrodynamical σs,0–M
relation.

– For the second case, B ∝ ρ1/2, we found a one-to-one relation
between M , β0 and the density variance. This σs,1/2–M relation
(Eq. 6.25) matches very well our numerical test considering b =
0.4, which is the input for the natural mixture of compressive-
to-solenoidal modes in the turbulent forcing field. This result is
in agreement with the ones presented by Ostriker et al. (2001)
and Price et al. (2011), where they found lower σs than in the
unmagnetized case for M & 10. Moreover, Cho and Lazarian
(2003) presented a density contrast that closely matches our result
for β0 ≈ 1 and 5 . M . 10.

– For the last case, B ∝ ρ, the σs,1–M relation (Eq. 6.26) predicts a
lower density variance than measured in our numerical simulations
for M ≥ 5, because our isothermal simulations are closer to B ∝
ρ1/2.

– The σs,1/2–M relation obtained for B ∝ ρ1/2 works very well for
intermediate to high Alfvénic Mach number, MA,0 & 6, but breaks
down for MA,0 . 2 at 〈M 〉 ≈ 10. This probably occurs because in
the presence of strong magnetic fields, the turbulence is no longer
isotropic. This is because the back reaction of the magnetic field
onto the flow is very strong for flows perpendicular to the magnetic
field lines.
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– Magnetic fields act as a density cushion in turbulent gas, prevent-
ing the gas from reaching very low densities as well as very high
densities when the gas is isothermal.

• For the non-isothermal gas:

– Our σs,th–M relations derived for the three possible relationships
of the magnetic field strength with density show good agreement
with the simulations. The results are marginally better for σs,0,th

(Eq. 6.42) and σs,1/2,th (Eq. 6.43).

– Particularly, If B is independent of the density, the σs,0,th–M re-
lation (Eq. 6.42) has a magnetic field term. The reason is not
well understood, although we know that this term comes from the
energy transport equation. The magnetic terms in the momen-
tum equation vanishes. This point has to be investigated in more
detail. In the isothermal limit γ = 1, the magnetic term van-
ishes together with the non-isothermal terms and the prediction
of Padoan et al. (1997) is recovered.

– For B ∝ ρ1/2, σs,1/2,th (Eq. 6.43) is very close to σs,0,th. In the limit
β0 → ∞, σs,1/2,th=σs,0,th, which also fits very well the simulated
data. This result indicates that when a non-isothermal equation
is considered, magnetic fields tends to be unimportant.

– In the case B ∝ ρ, σs,1,th (Eq. 6.44) differs from the other two
cases only towards high M .

– The distribution of β0 as a function of M shows that magnetic
fields and density have a relationship B ∝ ρα, with 0 ≤ α < 1/2.
This result explains the differences between our isothermal and
non-isothermal σs–M relation. When the equation of state is
non-isothermal, magnetic fields are diminished. This point needs
a more profound study.

– Although the current analytical derivation fits very well the data,
it needs further refinement. The intention is to discern if the
behavior at M ≈ 1 is caused by a stronger Γ, or if it is unphysical.
Moreover, it will also help us to understand the behavior of σs,0,th–
M .
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Chapter 7

Conclusion and outlook

In this thesis, we analyzed the physical conditions of a large set of molecular
clouds. The exploration of a wide range of physical parameters, allowed us to
make a rigorous study of the temperature, CO density and (J=1-0) emission,
as well as the number density distributions. The results are summarized in
two parts. The first involves the analysis based on the temperatures and CO
distribution. The second corresponds to the density variance study.

7.1 Analysis on the temperatures and CO dis-

tributions

• The majority of the CO is distributed towards high density (n & 100
cm−3), cold regions (TK . 40 K) where it is well shielded by dust
and H2. Its abundance is very small at lower number densities. This
condition applies regardless of the mean number density, metallicity or
incident UV radiation field strength.

• Molecular clouds are not in LTE. Therefore, CO is a biased tracer
of the kinetic temperature of the clouds because its radiation is not
thermalized. It is generally subthermally excited Tex . TK. Only at
high AV , 〈Tex〉 approaches 〈TK〉, on average.

• The estimates of NCO from CO (J=1-0) emission are closer to the
“true”NCO, if the approximation of Dickman (1978) (Eq. 3.6) is applied
considering the full PPV Tb spectrum.

• The X–factor varies by ∼2-4 orders of magnitude towards AV . 6 mag.
At higher AV , it is approximately constant. On average, our X–factor
is approximates the canonical X–factor for the Milky Way.

183



184 CHAPTER 7. CONCLUSION AND OUTLOOK

• The H2 mass estimated from CO (J=1-0) emission maps is generally
underestimated if a constant, Milky-Way X–factor is assumed. For
AV . 10 mag, the amount of CO is very low compared to H2, its
emission therefore does not represent the density of H2. At AV & 10
on the other hand, the CO (J=1-0) emission is optically thick and its
integrated intensity is saturated. In this case the H2 is underestimated
as well.

With the aim of approaching better to observational conditions, one of
the next steps will be to introduce “beaming” effects in the measurements of
“observable” quantities. The other important point is to extend this analysis
to simulations which includes self-gravity. The idea is to study how self-
gravity may change the conditions of the gas, particularly regions where
most of the CO exists.

7.2 Density variance–Mach number relation

• When the gas is isothermal, magnetic fields act as a density cushion
in turbulent gas, preventing the gas from reaching very low densities
as well as very high densities. In this case scenario, our analytical
σs,1/2–M relation explains very well the simulated data, because for
this simulations B ∝ ρ1/2.

• If a non-isothermal equation of state is included, magnetic fields tend
to be unimportant. B depends on ρ is a weaker fashion: B ∝ ρα, with
0 ≤ α < 1/2. The σs,th–M relations for α = 0 and α = 1/2 are very
similar and fits very well our simulations.

The results for the non-isothermal gas need to be explored in more extend.
Although our analytical derivations fits very well the data, there are still
many open questions. It is very important to understand the role of magnetic
files and the equation of state in molecular clouds. Moreover, it is necessary
to include self-gravity in this analysis. Because the σs–M relation is one of
the basic ingredients of theories for star formation and Initial stellar/core
mass functions.



7.2. DENSITY VARIANCE–MACH NUMBER RELATION 185

Appendix

Comparing position-position-position (PPP) and position-
position-velocity data cubes

Our radiative transfer model produces a spectral position-position-wavelength
(PPλ → x, y, λ) cube of the emission line of interest. The cube indicates the
intensity for a given wavelength at each (x, y) position (Shetty et al., 2011a).
In sub-mm or radio astronomy, the observational spectra are often expressed
in terms of velocity instead of wavelength or frequency. For this practical
reason, we transform the wavelength in the PPλ cube into the corresponding
LoS velocity (vz) through Doppler shift calculations vz = (1− λ0/λ)c, where
λ0 is the wavelength of the line center. The intensity spectrum results then
into a position-position-velocity (PPV) cube.

On the other hand, all the physical quantities produced by zeus-mp are
in a position-position-position (PPP) cubic base. We then transform the
PPV or PPP cubes into a common frame for comparing both datasets. For
convenience, we convert the PPP into PPV cubes, because the PPV cubes
do not contain information about the location of the cells along the LoS. In
addition among the PPP cubes, we have information of the three compo-
nents of the velocity at every position (x, y, z). Therefore, transforming the
positions along the LoS z into vz is a much simpler procedure than the other
way around.

We choose a broad range in wavelengths sufficient enough that all LoS
velocities in the simulation are detected, so that all emission from the model
is “observed”. The PPP cube is arranged by increasing vz considering a
∆vz that accounts for all the channels in the PPV cube. We also include
“Doppler catching” method in order to prevent Doppler jumps (see Shetty
et al., 2011b, and radmc-3d user manual1). All the channels are equally
spaced in velocity, and so it is very likely to have more than one cell in some
channels and none for others. As a result, the shape of the PDF of a given
physical quantity may be different if it is calculated from a PPP or a PPV
cube. For example, in Fig. 1a we show the number density PDF derived from
the PPP cube (solid line) which is clearly wider than the PDF from the PPV
cube (dashed line). In the case of densities in the PPV cube, the cells with vz
within the same velocity channel are added, the high density and low density
tails of the PDF derived from the PPV cube are therefore overpopulated in
comparison with the number density PDF of the PPP cube. The number
density PDF of the PPV cube looks “distorted” in comparison with the PPP

1http://www.ita.uni-heidelberg.de/∼dullemond/software/radmc-3d/
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Figure 1: (a) Volume-weighted PDF of the number density. The solid line
shows the PDF using the position-position-position (PPP) dataset, while the
dashed line indicates the PDF using the position-position-velocity (PPV)
data. (b) same as (a) but for the excitation temperature Tex.

counterpart.
In the case of temperatures, we choose to compute the mass-weighted

average of the temperature of the cells with vz within the same channel. In
Fig. 1b, we show the volume-weighted PDF of the excitation temperature
(Eq. 3.4) from the PPP (solid line) and PPV (dashed line) cubes. We see
that both PDFs have almost the same shape with very small differences and
the range of Tex covered by both curves is the same. In the case of the kinetic
temperature, there are also some differences, but the temperature range is
almost the same for both distributions. Therefore in the case of temperatures,
the PPP and PPV cubes have distributions which are basically equivalent.
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Padoan, P., Nordlund, A., and Jones, B. J. T.: 1997, MNRAS 288, 145

Passot, T. and Vázquez-Semadeni, E.: 1998, Phys. Rev. E. 58, 4501

Pety, J., Liszt, H. S., and Lucas, R.: 2011, in M. Röllig, R. Simon, V.
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