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Abstract
The aim of this thesis is to develop two structure theorems for vector valued Siegel mod-
ular forms with respect to Igusa’s subgroup Γ2 [2, 4], the multiplier system induced by
the theta constants and the symmetric square of the standard representation ρe�ρe :
GL(2,C)→ Sym2(C2).
The thesis rests on the well-known fact that every holomorphic tensor on the upper
half-space H2 that is invariant under Γ2 [2, 4] is associated to a modular form. We de-
fine a space of meromorphic tensors that are holomorphic outside a divisor and become
holomorphic after a pullback along a certain covering map. Afterwards, we show that
modular forms of certain weights correspond to this particular space of tensors on the
homogeneous space Γ2 [2, 4]\H2 . As an immediate consequence of [Run93], this homoge-
neous space is a complex manifold and there is a ’nice’ embedding into the projective
space P3C. Therefore, we shall describe modular forms of the aforementioned type and of
certain weights as rational tensors with easily handable poles along ten quadrics. It can
be shown that these modular forms are linear combinations of Rankin-Cohen brackets
of the theta series of the second kind. We extend this result to arbitrary weights by a
simple argument from algebraic geometry.

Zusammenfassung
Das Ziel dieser Doktorarbeit ist es zwei Struktur-Theoreme für vektorwertige Siegelsche
Modulformen zu Igusas Untergruppe Γ2 [2, 4], dem durch die Theta-Reihen zweiter Art in-
duziertemMultiplikatorsystem und dem symmetrischen Quadrat der Standard-Darstellung
ρe�ρe : GL(2,C)→ Sym2(C2) zu entwickeln.
Die Arbeit beruht auf der wohlbekannten Tatsache, dass jeder holomorphe Tensor auf der
oberen Halbebene H2, der unter Γ2 [2, 4] invariant ist, mit einer Modulform identifiziert
werden kann. Man definiert einen Raum von meromorphen Tensoren, die holomorph
außerhalb eines Divisors sind und deren Pullbacks entlang gewisser Überlagerungen
holomorph werden. Die so spezifizierten Tensoren auf dem homogenen Raum Γ2 [2, 4]\H2

entsprechen gerade Modulformen von bestimmten Gewichten. Es folgt sofort aus [Run93],
dass dieser homogene Raum eine analytische Mannigfaltigkeit ist und dass es eine Ein-
bettung mit erstrebenswerten Eigenschaften in den projektiven Raum P3C gibt. Deshalb
lassen sich die im ersten Abschnitt beschriebenen Modulformen mit passenden Gewichten
als rationale Tensoren beschreiben. Diese Tensoren besitzen einfach handhabbare Pole
entlang zehn Quadriken. Man kann zeigen, dass diese Modulformen Linearkombinatio-
nen von Rankin-Cohen-Klammern der Theta-Reihen zweiter Art sind. Mit einfachen
Methoden der algebraischen Geometrie lässt sich dieses Resultat für beliebiges Gewicht
verallgemeinern.
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1 Introduction

A vector valued modular form with respect to a subgroup Γ ⊂ Sp(n,Z) of finite index is a
holomorphic function f : Hn → V that transforms under Γ as follows :

f(M〈Z〉) = j(M,Z)f(Z).

Here j denotes a factor of automorphy on a finite dimensional vector space V , i.e. a map
j : Γ×Hn → GL(V ) that is holomorphic in the second variable and satisfies the cocycle
relation j(MN,Z) = j(M,N 〈Z〉)j(N,Z).
The characters of Γ are easy examples of factors of automorphy. Furthermore, a given
polynomial representation ρ : GL(n,C) → GL(V ) induces the factor of automorphy
ρ((CZ + D)). For integral r, the functions

√
det(CZ +D)

r satisfy the cocyle rela-
tion up to ±1. In order to compensate this error, they are multiplied with multiplier
systems v(M) of weight r/2.

In [Tsu83], Tsushima calculated the dimension of vector spaces of vector valued cusp
forms by means of the Riemann-Roch-Hirzebruch-Theorem. In [Sat86], Satoh combined
this result with the decomposition of the vector space of vector valued modular forms
into the subspace of cusp forms and the subsapce of Eisenstein series, cf. [Ara83]. He
obtained a structure theorem for certain vector spaces of vector valued modular forms
with respect to the full modular group Sp(2,Z). We should also mention [Ibu12] and
[Aok12] which used the same strategy.

In this thesis, we use a geometric method to get similar results for Igusa’s group Γ2 [2, 4]
(cf. definition 4.8 on page 51) instead of the full modular group. We benefit from the
fact that the Satake compactification of Γ2 [2, 4] \H2 is simply the 3 dimensional projective
space P3C. This is a consequence of a couple of basic results by Igusa [Igu64a, Going-
down process, p.397] that was proven by Runge [Run93].

We shall investigate modular forms being linked to the symmetric square of the standard
representation ρe1 , i. e.

ρe�ρe : GL(2,C) −→ Aut
(
Sym2

(
C2
))
.

1We follow the notations of [Ste64, p.12] and [Olv99, p.64].
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1 Introduction

Here Sym2
(
C2
)
denotes the symmetric square of C2, which can be identified with the

space of symmetric 2×2 matrices. Then, the representation is given by

A 7−→
{
X 7→ AXAt

}
.

In particular, we shall study the spaces of modular forms with respect to representations
of the type

det k ⊗ (ρe�ρe) , k ∈ Z.

For these vector spaces we shall give generators and compute the dimensions. This can be
found either on the following pages or in theorem 5.23 on page 79.

Our approach relies on the fact that in the cases where k = 3r and k = 3r+1, these forms
can be identified with Γ2 [2, 4]- invariant holomorphic tensors of the form

(
f0(Z) · dZ0 + f1(Z) · dZ1 + f2(Z) · dZ2

)
⊗
(
dZ0∧dZ1∧dZ2

)⊗r(1.1)

and

(
g0(Z) · dZ1∧dZ2 + g1(Z) · dZ0∧dZ2 + g2(Z) · dZ0∧dZ1

)
⊗
(
dZ0∧dZ1∧dZ2

)⊗r
,

(1.2)

respectively. Here the points in H2 are of the form

Z =

(
Z0 Z1

Z1 Z2

)
.

The crucial fact is that the map

H2 −→ Γ2 [2, 4]\H2 ↪−→ P3C

branches over 10 explicitly given quadrics in P3C. This implies that Γ2 [2, 4]-invariant
tensors on H2 correspond to rational tensors on P3C which may have poles of certain
types along these 10 quadrics.

We shall elaborate on this result in the subsequent lines. The map H2 −→ P3C is given
by the four theta constants of the second kind f0, . . . , f3. These are Siegel modular
forms of weight 1/2 with respect to a common multiplier system vf , cf. theorem 4.24 on
page 56.
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It follows from Runge’s results that

A(Γ2 [2, 4], vf ) =
⊕
r∈N

[
Γ2 [2, 4], r/2, vrf

]
is the ring of all modular forms of transformation type

f(M〈Z〉) = vrf (M) ·
√

det(CZ +D)
r · f(Z).

This and the following theorem can be found on page 56. The ring of all modular forms of
integral weight with respect to the trivial multiplier system is

⊕
r∈N

[Γ2 [2, 4], r] =

⊕
d≥0

C4d [f0, f1, f2, f3]

 ⊕ ⊕
d≥0

C4d [f0, f1, f2, f3]

 · χ5.

Here χ5 denotes Igusa’s modular form of weight 5 with respect to the full modular
group. Furthermore, we use the notation Cd[f0, . . . , f3] for the space of homogeneous
polynomials of degree d.

The simplest case are tensors of the form f(Z) ·
(
dZ0 ∧ dZ1 ∧ dZ2

)⊗r . They belong to
complex valued modular forms transforming as follows

f(M〈Z〉) = det(CZ +D)3r · f(Z), M ∈ Γ2 [2, 4].

Returning to the vector valued case, we start with fixing some notation. Here and subse-
quently,M+

r stands for the vector space of modular forms of transformation type

f(M〈Z〉) = vrf (M) ·
√

det(CZ +D)
r · (CZ +D)f(Z)(CZ +D)t, M ∈ Γ2 [2, 4].

It is also possible to twist this vector space by the character v2
f . The spaceM−r consists

of the modular forms satisfying

f(M〈Z〉) = v2
f (M) · vrf (M) ·

√
det(CZ +D)

r · (CZ +D)f(Z)(CZ +D)t

for all M ∈ Γ2 [2, 4].

We shall study the graded A(Γ2 [2, 4], vf )-modules

M+(Γ2 [2, 4]) :=
⊕
r∈Z
M+

r and M−(Γ2 [2, 4]) :=
⊕
r∈Z
M−r .
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1 Introduction

The moduleM+ contains the so called Rankin-Cohen brackets. These are constructed by
means of scalar valued modular forms f, g and derivatives, i.e.

{f, g} = f ·Dg − g ·Df.

There is a similar construction {f, g, h} which defines an element in M−, cf. defini-
tion 5.16 on page 75.

The main results of this thesis (theorems 5.15 and 5.22 on pages 75 and 79, respectively)
are

M+(Γ2 [2, 4]) =
∑

0≤i<j≤3

(C[f0, . . . , f3]) {fi, fj}

and

M−(Γ2 [2, 4]) =
∑

0≤i1<i2<i3≤3

(C[f0, . . . , f3]) {fi1 , fi2 , fi3} .

For any given degree r, we shall exhibit explicit bases of M+
r and M−r . Consequently,

we obtain the Hilbert functions

dimM+
r = 3 ·

(
r + 1

3

)
+ 2 ·

(
r

2

)
+

(
r − 1

1

)
and

dimM−r = 3 ·
(
r − 2

3

)
+

(
r − 3

2

)
.

The case of modular forms with trivial multiplier system is of special interest. For inte-
gral r, we denote byMr(Γ2 [2, 4]) the space of all modular forms satisfying

f(M〈Z〉) = det (CZ +D)r · (CZ +D)f(Z)(CZ +D)t

for all M ∈ Γ2 [2, 4]. In what follows,M(Γ2 [2, 4]) stands for the direct sum of all vector
spacesMr(Γ2 [2, 4]).
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ForM(Γ2 [2, 4]) we obtain

M(Γ2 [2, 4]) =
∑

0≤i<j≤3

(C2+4Z[f0, . . . , f3]) {fi, fj}

⊕
∑

0≤i1<i2<i3≤3

(C1+4Z[f0, . . . , f3]) {fi1 , fi2 , fi3}

and

dim (Mk(Γ2 [2, 4])) =

{
3 ·
(

2k+1
3

)
+ 2 ·

(
2k
2

)
+
(

2k−1
1

)
, if k is even,

3 ·
(

2k−2
3

)
+
(

2k−3
2

)
, if k is odd.

Here Ca+4Z[f0, . . . , f3] denotes the direct sum of the vector spaces Cd[f0, . . . , f3] where
d ≡ a mod 4.

Note that the module M(Γ2 [2, 4]) contains the Γ2 [2, 4]-invariant holomorphic tensors
shown in eqs. (1.1) and (1.2). Using them, we shall give a brief overview of the structure
theorems’ proofs. As shown in theorem 4.35, these tensors correspond to rational tensors
on PnC having poles of certain types along 10 quadrics, that are given in theorem 4.34
on page 60. Heuristically speaking, these tensors become holomorphic after pulling them
back along 2-coverings that are ramified over the quadrics. We refer to definition 3.53
on page 47 for the exact wording. If the parameter r ∈ N of eqs. (1.1) and (1.2) is
even, then we can work out this condition explicitly, cf. corollaries 5.6 and 5.8 on pages
68 and 71, respectively. This shows the equalities M+

6r = M+
6r and M−6r = M−6r for

even r, cf. theorems 5.14 and 5.21. The case of arbitrary M+
s and M−s can be re-

duced to the above ones by multiplying with monomials in the fa, cf. theorems 5.15
and 5.22. This reduction uses the very simple structure of the ring of modular forms,
i.e. A(Γ2 [2, 4], vf ) = C[f0, . . . , f3].

We shall close the introduction with an outline of the chapters contents. In Chapter 2 we
recapitalize the basic notions of the used algebraic tools, e.g. tensor products and (irre-
ducible) group representations. Chapter 3 is dedicated to the analytic preliminaries such
as complex manifolds2, holomorphic functions, meromorphic tensors, analytic varieties
and covering maps. In particular, in section 3.12 we formalize the space of meromorphic
tensors with special poles as used above. We aim to present classical results on modular
forms and symplectic groups in Chapter 4. In particular, section 4.3 covers Siegel modular
forms and their link to holomorphic tensors. Furthermore in section 4.4, we briefly sketch

2Here, some parallels to [Wie10] may occur.
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1 Introduction

the theory of theta series of the first and especially of the second kind. Their structure
theorems 4.24 and 4.25 are of particular interest for this thesis. Eventually, section 4.5
discusses the homogeneous space Γ2 [2, 4] \H2 , its structure as a complex manifold, and
the used ramification divisor. In the fifth and final chapter all the aforementioned results
are combined in order to prove the thesis’ main theorems.
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2 Algebraic preliminaries

2.1 Polynomials

Definition 2.1 (Zero locus of a function)
We denote by Z (f) the zero locus of f : X → Cn. For a family of functions (fi)i∈I
Z((fi)i∈I) denotes the common zero locus of them, i.e.

⋂
i∈I Z(fi).

We recall Hilbert’s Nullstellensatz.

Theorem 2.2 (Hilbert’s Nullstellensatz)
Let P1, . . . , Pk ∈ C[X1, . . . , Xn]. If a = a(Z(P1, . . . , Pk)) is the ideal of polynomials van-
ishing on Z(P1, . . . , Pk), i.e. a =

{
P ∈ C[X1, . . . , Xn] : P (z) = 0 ∀z ∈ Z(P1, . . . , Pk)

}
,

then a = rad(P1, . . . , Pk) :=
{
P ∈ C[X1, . . . , Xn] : ∃ m > 0 : Pm ∈ (P1, . . . , Pk)

}
.

An immediate consequence is following result.

Corollary 2.3
If the zero locus of a polynomial Q is a subset of the zero locus of another polynomial P ,
then Q divides a power of P .

Definition 2.4 (Square-free element)
In an integral domain an element x is square-free if it cannot be divided by the square
of a non-unit.

Since the polynomial ring C[X1, . . . , Xn] is a unique factorization domain(UFD), we can
formulate corollary 2.3 for square-free polynomials.

Corollary 2.5
Given a square-free polynomial Q whose zero set is contained in another’s zero set Z (P ),
then Q divides P .

We recall that we denote by Cd[X1, . . . , Xn] the space of polynomials homogeneous of
degree d.
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2 Algebraic preliminaries

Lemma 2.6
For positive d, Cd[X1, . . . , Xn] is a vector space of dimension (d+n−1)!

d!(n−1)! .

If the product of two non-zero polynomials P and Q is homogeneous, then so are P
and Q. We deduce :

Lemma 2.7
The factorization of a homogeneous polynomial Q consists of homogeneous polynomials.

2.2 Tensor products

We recall some basics about tensor products of modules over commutative and unitary
rings.

Definition 2.8 (Tensor product of modules)
The tensor product (M1 ⊗R · · · ⊗R Mk, ten) of the modules M1, . . . ,Mk over R is a
pair consisting of a module M1 ⊗R · · · ⊗RMk and a multilinear map

ten : M1 × · · · ×Mk −→M1 ⊗R · · · ⊗RMk

with the following universal property : For each multilinear map M1 × · · · ×Mk −→ N ,
there exists exactly one linear map M1 ⊗R · · · ⊗R Mk −→ N such that the following
diagram commutes :

M1 ⊗R · · · ⊗RMk

M1 × · · · ×Mk

N.

ten

The tensor product is uniquely determined up to isomorphy.

We denote by v1⊗· · ·⊗ vk the image of (v1, . . . , vk) ∈M1×· · ·×Mk under the map ten.

Definition 2.9 (Dual space and basis)
Let V be a finite dimensional vector space over a field K. Then its dual space is
V ∗ = HomK (V,K).
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2.2 Tensor products

Given a basis e1, . . . , en, we define its dual basis e1∗, . . . , en∗ by ei∗(ej) = δij ∀i, j.

In the case of finite dimensional vector spaces (over fields), the tensor product can be
constructed as follows :

Remark 2.10 (Tensor product of vector spaces)
Let V1, . . . , Vk be finite dimensional vector spaces over a fieldK. There is an isomorphism
of V1 ⊗K · · · ⊗K Vk into the space of multilinear forms on V ∗1 × · · · × V ∗k ,

V1 ⊗K · · · ⊗K Vk −→ Mult (V ∗1 × · · · × V ∗k ,K)

which sends the element v1 ⊗ · · · ⊗ vk to the multilinear form

(φ1, . . . , φk) 7−→
k∏
i=1

φi(vi).

We recall the basic properties of tensor products deduced from the universal prop-
erty.

1. There is a natural isomorphism between (M1 ⊗R · · · ⊗RMl)⊗R(Ml+1 ⊗R · · · ⊗RMk)
and M1 ⊗R · · · ⊗RMk.

2. The modules M ⊗R N and N ⊗RM are naturally isomorphic.

3. A tuple of linear maps Ψi : Mi → Ni induces the linear map
Ψ = Ψ1 ⊗ . . .⊗Ψk : M1 ⊗R · · · ⊗RMk → N1 ⊗R · · · ⊗R Nk.

It is also possible to characterize the tensor product via its basis.

Lemma 2.11
Given vector spaces V1, . . . , Vk with basis

{
e1
i1

}
1≤i1≤dimV1

, . . . , and
{
ekik
}

1≤ik≤dimVk
,

respectively, then the tensor product V1 ⊗K · · · ⊗K Vk has got the basis{
e1
i1 ⊗ · · · ⊗ e

k
ik

}
1≤ij≤dimVj

1≤j≤k
.

The group of permutations on {1, . . . , n} denoted bySn acts on the space

V ⊗n := V ⊗K . . .⊗K V︸ ︷︷ ︸
n−times
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2 Algebraic preliminaries

by means of
v1 ⊗ . . .⊗ vn 7−→ vσ−1(1) ⊗ . . .⊗ vσ−1(n).

We denote by T σ the image of a tensor T under this map. We call a tensor T alternating
if it holds

T σ = sgn (σ)T

for all permutations σ in Sn and all vectors in V .

Remark 2.12 (The vector space of alternating tensors ΛnV )
The set of alternating tensors ΛnV is a vector space giving rise to a vector space epimor-
phism

alt : V ⊗n −� ΛnV,

T 7−→ |Sn|−1 ·
∑

σ∈Sn sgn (σ)T σ,

that coincides with the identity map on ΛnV .

Notation 2.13
We use the notation

v1 ∧ · · · ∧ vk = alt (v1 ⊗ . . .⊗ vk) .

For a given basis e1, . . . , en and a set of indices J = {j1, . . . , jk}, where 1 ≤ j1 < · · · <
jk ≤ n, we write

eJ = ej1 ∧ · · · ∧ ejk .

Lemma 2.14
ΛkV has got the basis {ej1 ∧ · · · ∧ ejk}1≤j1<···<jk≤n and consequently dimension

(
n
k

)
.

Finally, we recall that a linear map Ψ : V −→W induces a linear map

ΛkV −→ ΛkW, v1 ∧ · · · ∧ vk 7−→ Ψ(v1) ∧ · · · ∧Ψ(vk).

2.3 Group actions

A group action of a group G on a set S is a group homomorphism ρ : G −→ Aut(S) of G
into the group of automorphisms of S, i.e. bijective self-maps.

We normally denote ρ(g)(x) by gx or g(x).

Definition 2.15 (Stabilizer subgroup Gx)
For a given point x ∈ S and a group G acting on S the group Gx := {g ∈ G : g(x) = x}
is called stabilizer subgroup Gx of x.
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2.4 Group representations

The orbit Gx of x under G is the set of all gx, g ∈ G. The orbit space G\S is the
collection of all orbits.

Definition 2.16 (Free group action)
If each stabilizer subgroup Gx only consists of the identity element in G, then the group
action is free.

From now on, we assume that X = S is a topological space and that all maps ρ(g) are
homeomorphisms. Then, the orbit space carries the quotient topology. Thus, the natural
projection G −→ G\X is both continuous and open.

Definition 2.17 (Totally discontinuous group action)
A group G acts totally discontinuously on a locally compact Hausdorff space if for
any two compact subsets K1 and K2 the set {g ∈ G : g(K1) ∩K2 6= ∅} is finite.

Totally discontinuous group actions have pleasant properties as stated in the following
lemma.

Lemma 2.18
Let G be a group which acts totally discontinuously on X. Then

1. Gp is finite for every p in X;

2. the orbit space G\X is Hausdorff;

3. for every p in X there exists a neighbourhood U such that

• {g ∈ G : g(U) ∩ U 6= ∅} equals Gp;

• the natural map Gp\U → G\X is an open embedding;

4. given such a neighbourhood U of p, then it holds Gq ⊂ Gp for all q in U .

If in addition the group action is free, then the natural projection is a homeomor-
phism.

2.4 Group representations

Definition 2.19 (Group representation)
A representation of a group G on a vector space V is a group homomorphism

ρ : G −→ GL(V ).
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2 Algebraic preliminaries

A map ϕ from GL(n,C) to a finite dimensional vector space V is called polynomial if
for a given basis (ei) the associated coordinate functions ϕi are polynomial. Clearly, this
definition is independent of the chosen basis.

Definition 2.20 (Rational representation of GL(n,C))
A representation ρ of GL(n,C) on a vector space V is rational if there is a natural
number k for which detAk ·ρ(A) is a polynomial map to End (V ) or GL(V ), respectively.

Since C
[
X1, . . . , Xn2

]
is a UFD, there is a minimal integer for which detAk ·ρ(A) is still

polynomial. Its additive inverse is referred to as theweight of ρ.

We call a representation on V irreducible if the only G -invariant subspaces are {0}
and V .

Definition 2.21 (Reduced group representation)
A rational representation ρ is said to be reduced if it is irreducible and has got zero
weight.

The following examples of (reduced) representations of GL(n,C) are important for the
theory of Siegel modular forms.

1. We denote by ρe(A) = A the standard representation, that is of course a re-
duced representation. Its dual representation is ρ∗e(A) = A−t. For n = 2 the
representations det⊗ρ∗e and ρe are isomorphic. This follows from the formula

JAJ−1 = det(A)A−t, where J =

(
0 1
−1 0

)
.

2. The representation

ρe�ρe : GL(n,C) −→ Aut
(
Sym2(Cn)

)
,

A 7−→
{
X 7→ AXAt

}
,

is an other example of a reduced representation.

3. An other reduced representation is

det2 ρ∗e�ρ∗e : GL(n,C) −→ Aut
(
Sym2(Cn)

)
),

A 7−→
{
X 7→ det2(A)A−tXA−1

}
.
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3 Analytic preliminaries

We recall the definition of a complex differentiable function.

Definition 3.1 (Complex differentiable function)
Let U be an open subset of Cn. A function f : U → Cm is complex differentiable if
there is an associated function Df : U → L(Cn,Cm) satisfying

f(z) = f(a) +Df(a) (z − a) + o(‖z − a‖)

in every a ∈ U .

We denote the vector space of complex differentiable functions by O(U,Cm). Complex
differentiable functions are usually called holomorphic.

It is well known that each holomorphic function can be locally expressed as a power
series, i.e.

f(z) =
∑
ν

αν(z − a)ν =
∑

ν1,...,νn

αν1,...,νn · (z1 − a1)ν
1 · · · (zn − an)ν

n
.

Definition 3.2 (Biholomorphic function)
We call a bijective holomorphic function f : U −→ V with a holomorphic inverse

f−1 : V −→ U

biholomorphic.

A simple lemma shows that a bijective holomorphic function is automatically biholomor-
phic. We denote by Bihol(U) the group of all biholomorphic functions f : U → U .

3.1 Complex manifolds

The aim of this section is to introduce the concept of a complex manifold.
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3 Analytic preliminaries

Definition 3.3 (Holomorphic atlas)
A holomorphic atlas on a topological spaceX consists of an open cover (Ui)i∈I ofX and
a family of homeomorphisms φi : Ui → Vi

open
⊂ Cni such that the transition functions

φi ◦ φ−1
j are biholomorphic. We shall refer to φi as a chart.

Here φi ◦ φ−1
j denotes the homeomorphism with obvious restriction of codomain and

domain:
φi ◦ φ−1

j : φj(Ui ∩ Uj) −→ φi(Ui ∩ Uj).

Definition 3.4 (Equivalent atlases)
Two holomorphic atlases (Ui, φi)i∈I and (Ωj , ψj)j∈J are equivalent if their union is still
a holomorphic atlas.

Definition 3.5 (Holomorphic structure)
A holomorphic structure on a Hausdorff space M is an equivalence class of holomor-
phic atlases.

Every holomorphic atlas is contained in an equivalence class and induces a holomorphic
structure in this way.

Definition 3.6 (Complex manifold)
A Hausdorff space with a holomorphic structure on it is called a complex manifold.

Example 3.7
1. Any open subset U of Cn is a complex manifold because id : U = M −→ U ⊂ Cn

gives rise to a holomorphic structure.

2. Every open subset Ω of a complex manifold M is a complex manifold. Indeed, we
just have to restrict a holomorphic atlas of M to Ω.

3. We dedicate the whole section 3.2 to an important example, the projective space.

Definition 3.8 (Charts of complex manifolds)
A chart of a complex manifold is a map that is a chart in one of the holomorphic
structure’s atlases.

Given a point p on a manifold M , any chart around p maps into the same Cn. We define
the dimension ofM in p to be this natural number n. This is obviously a locally constant
function and hence constant on connected manifolds. In this case it is said to be the
dimension of the manifold, say M , denoted by dimM .

Definition 3.9 (Holomorphic functions between manifolds)
A continuous function f between two complex manifolds M and N is called holomor-
phic, if for any pair of charts z : U → z(U) and w : V → w(V ) ofM and N , respectively,
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satisfying f(U) ⊂ V the function
w ◦ f ◦ z−1

is holomorphic. We denote the set of all these functions by O(M,N).

3.2 The n-dimensional projective space

The topic of this section is the n-dimensional projective space.

Definition 3.10 (The n-dimensional projective space PnC)
We define the n-dimensional projective space PnC to be the collection of lines
through the origin in Cn+1. Each of these lines can be viewed as an equivalence class
on Cn+1 \ {0} for the relation

z ∼ w ⇐⇒ ∃ λ ∈ C∗ : z = λw.

The equivalence class of z is denoted by [z].

We shall equip the n-dimensional projective space PnC with the structure of a complex
manifold of dimension n in the subsequent lines.

The natural projection

π : Cn+1 \ {0} −→ PnC,
z =

(
z0, . . . , zn

)
7−→ [z] =

[
z0, . . . , zn

]
,

induces the quotient topology on PnC. The so constructed topological space PnC is
compact and Hausdorff.
There are homeomorphisms between the α-th affine space Aα = {[z] : zα 6= 0} and Cn
given by

φα : Aα −→ Cn,[
z0, . . . , zn

]
7−→

(
z0

zα , . . . ,
zα−1

zα , z
α+1

zα , . . . z
n

zα

)
.

These maps are homeomorphisms which define a holomorphic structure on PnC. Later,
we shall use these charts only in the cases where α = 0 or α = 1. We use the subsequent
notations

φ0(
[
z0, . . . , zn

]
) = (z1, . . . zn)

and
φ1(
[
z0, . . . , zn

]
) = (w0,w2, . . .wn).
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Then, we can transition between coordinates on A1 and A0 by

(w0,w2, . . .wn) =

(
1

z1
,
z2

z1
, . . . ,

zn

z1

)
.

3.3 Stalks of holomorphic functions

Let M be a complex manifold and p a point in M . We consider pairs (U, f) where U
is an open neighbourhood of p and f lies in O(U). Two pairs are called equivalent if
there exists a neighbourhood W satisfying p ∈ W ⊂ U ∩ V such that f and g coincide
on W . Such an equivalence class is called a (holomorphic) germ at p. The germ at
p belonging to (U, f) is denoted by [U, f ]p. This germ can be evaluated at p by f(p).
We write OM,p for the collection of all germs in p and call it the stalk of holomorphic
functions at p.

If U is an open neighbourhood of p, we can identify OU,p with OM,p. On OM,p there is a
natural algebra structure such that for each open neighbourhood U of p the map

O(U) −→ OM,p, f 7−→ [f ]M,p ,

is an algebra homomorphism.
In the case where M = Cn, the algebra of germs can be identified with the algebra of
convergent power series around p.

3.4 Tangent spaces

Definition 3.11 (Tangent vector)
A tangent vector or derivation at a point p is a C-linear map v : OM,p → C also
satisfying Leibniz’s law v(fg) = v(f)g(p) + v(g)f(p).

Clearly, the collection of tangent vectors at a point p has got a vector space structure. The
so obtained space is called the holomorphic tangent space TpM .

Simple examples of tangent vectors in TpCn are the partial differential operators ∂ ·
∂zi

∣∣
p
,

where i ranges over all integers form 1 to n. Applying these differential operators to
a constant function or to the polynomial (zi − pi)(zj − pj) returns 0. This implies the
following lemma.
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Lemma 3.12
The partial differential operators

{
∂ ·
∂zi

∣∣
p

}
1≤i≤n

form a basis of TpCn.

Using this lemma we can identify the tangent space TpCn of every single p with Cn.

The assignment (M,p) 7−→ TpM is functorial. Indeed, given a holomorphic map

φ : M −→ N

and a point p in M , there is a natural map

φ∗ : OV,φ(p) −→ OU,p, f 7−→ f ◦ φ.

This map induces a natural linear map

φ∗ : TpM −→ TqN, v 7−→ v ◦ φ∗,

called the pushforward map along φ.

Pushing forward is functorial in the sense that for any two holomorphic functions φ :
M −→ N and ψ : N −→ P it holds (ψ◦φ)∗ = ψ∗ ◦φ∗. In particular, it is an isomorphism
if φ is biholomorphic.

Let TpM be the tangent space of a point p on a manifold M = Mn. Then, there is a
canonical isomorphism Φ∗ between TpM and Tz(p)Cn, where z is a chart around p.

Lemma 3.13
Let φ : U → V be a holomorphic function between open subsets of Cn and Cm, respec-
tively. We identify the tangent space of U in a point p with Cn by means of the basis,
i.e.

TpU = C · ∂·
∂z1
⊕ · · · ⊕ C · ∂·

∂zn
,

cf. lemma 3.12. The same is true mutatis mutandis in Cm. Then, the matrix associated
with the map

φ∗ : TpM → Tφ(p)N

is the Jacobian matrix Jac(φ, p).

3.5 Cotangent spaces

Definition 3.14 (Cotangent space)
The dual space of TpM is called the holomorphic cotangent space and denoted by
(TpM)∗ = T ∗pM .
We call the elements of the cotangent space co-vectors, 1-forms or covariant vectors.
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Let f be a holomorphic function on some open neighbourhood of p ∈ M . We associate
to f the 1-form

dfp : TpM → C, v 7→ v(f).

In particular, for M
open
⊂ Cn and

zi : M −→ C, z 7−→ zi,

we stick to the notation dzip. These 1-forms generate the cotangent space. Indeed,
suppose f : M → C is a holomorphic function we show

(3.1) dfp =
∑
i

∂f

∂zi

∣∣∣∣
p

· dzip.

A holomorphic function φ : M −→ N induces a linear map called the pullback

φ∗ : T ∗φ(p)N −→ T ∗pM, ω 7−→ ω ◦ φ∗.

For any two holomorphic functions φ : M −→ N and ψ : N −→ P it holds

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗.

The cotangent space TpM∗ can be identified with Cn using the basis
{
dzip
}

1≤i≤n.

Lemma 3.15
Let φ : U → V be a holomorphic function between open subsets of Cn and Cm, respec-
tively. We identify the cotangent space of U in a point p with Cn by means of the basis,
i.e.

T ∗pU = C · dz1
p ⊕ · · · ⊕ C · dznp ,

cf. eq. (3.1) on this page. The same is true with necessary modifications in Cm. Then
the matrix associated with the map

φ∗ : T ∗pM → T ∗φ(p)N

is the transposed Jacobian matrix Jac(φ, p)t.
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3.6 Holomorphic tensors

3.6 Holomorphic tensors

In this section, we shall describe (holomorphic) tensors rather by their local properties.
Therefore, we observe the spaces

T ∗pM
⊗q = T ∗pM ⊗ . . .⊗ T ∗pM︸ ︷︷ ︸

q-times

.

Definition 3.16 (Covariant tensor)
A covariant holomorphic tensor ω on a manifold M is a map that assigns to each
point p an element

ωp ∈ T ∗pM⊗q

which depends holomorphically on p. It is clear what holomorphic dependence means :
locally, the manifold can be identified with Cn and consequently T ∗pM⊗q with

(
T ∗pCn

)⊗q.
We denote the vector space of all holomorphic tensors by

Ω⊗q(M).

For an open subset U ⊂ Cn, we define

dzi =
(
dzip
)
p∈U .

Each holomorphic tensor can be written as

ω =
∑
ν

ων dz
ν1 ⊗ · · · ⊗ dzνq , ν = (ν1, . . . , νq),

where each ων is simply a holomorphic function.

It is clear how to define the tensor product ω ⊗ η of two tensors ω and η. It is also
clear what is meant by an alternating holomorphic tensor. Their space is denoted
by ΛpΩ(M). For n = dimM , tensors in the space

(ΛnΩ)⊗k(M)

are calledmulti canonical. Later, we shall study tensors of the type

(ΛpΩ)⊗ (ΛnΩ)⊗k.

By definition, they are locally of the form∑
i1...ip

ωi1...ip dz
i1 ∧ · · · ∧ dzip ⊗ (dz1 ∧ · · · ∧ dzn)⊗k.
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Let φ : M → N be a holomorphic function between complex manifolds. Since the tensor
product is functorial, the pullback of 1-forms can be generalized in an obvious way to a
pullback of covariant tensors, i.e.

φ∗ : Ω⊗q(M) −→ Ω⊗q(N).

The above introduced types are preserved by pullbacks.

Definition 3.17 (Invariant tensors)
A covariant tensor field ω ∈ Ω⊗q(M) is called invariant under a subset S ofO(M,M) if it
holds φ∗ω = ω for all φ in S. The collection of these covariant tensorfields is (Ω⊗q(M))

S .

3.7 Holomorphic functions

We sum up the basic properties on holomorphic functions.

Theorem 3.18 (Implicit function theorem)
Let U be an open subset of Cnand f ∈ O(U,Cm) with m ≤ n. Suppose that for a given
root z0 ∈ Z (f) the leading principal minor (Jac(f, z0)ij)1≤i,j≤m is invertible.
Then, there are open subsets U1 and U2 of Cn−m and Cm, respectively, such that z0 lies
in V := U1 × U2 and f(z) vanishes on V iff (z1, . . . , zm) equals g(zm+1, . . . , zn).

Theorem 3.19 (Identity theorem)
Two holomorphic functions from a connected complex manifold M are equal if they co-
incide on a nonvoid open subset of M .

We denote by E and E∗ the standard and the punctured unit disc in C, respectively.

Theorem 3.20 (Laurent series)
A holomorphic function on En−1 × E∗ can be expanded in a Laurent series, i.e.

f(z) =
∞∑

k=−∞
ak(z

1, . . . , zn−1) · (zn)k.

Each ak is uniquely determined and belongs to O(En−1).

Theorem 3.21
Let p be a point on a complex manifold M , then OM,p is a unique factorization domain.
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3.8 Meromorphic functions and tensors

Proof
A proof can be found in [Huy05, Prop 1.1.15, p.14]. 2

We formulate Rückert’s Nullstellensatz in the ring of power series C
{
z1, . . . zn

}
; it can

be identified with the ring of germs at any point p.

Theorem 3.22 (Rückert’s Nullstellensatz)
Suppose P, P1, . . . , Pk are convergent power series in C

{
z1, . . . zn

}
. Take U to be a neigh-

bourhood of 0 such that P, P1, . . . , Pk converge on U .
If P1(z) = · · · = Pk(z) = 0 implies P (z) = 0 for z in U , then P lies in the radical of
(P1, . . . , Pk).

Corollary 3.23
Let f and g be two holomorphic functions on a complex manifold M such that Z (f) ⊂
Z (g). Then, for any given point p in M there is a natural number k such that [M,f ]p

divides
(

[M, g]p

)k
.

Theorem 3.24
If two germs [f]OU,p and [g]OU,p are coprime in OU,p, then they are also coprime in OU,q
for all q in a small neighbourhood of p.

Theorem 3.25 (Riemann extension theorem)
Suppose f is a non-zero holomorphic function on a domain D. And let

g : D \ Z (f)→ C

be another holomorphic function. Then, g is holomorphic on the whole of D if it is locally
bounded around Z (f).

3.8 Meromorphic functions and tensors

In this section, we follow [Fre11, p. 414].

Definition 3.26 (Meromorphicity of holomorphic functions)
Let f be a holomorphic function on an open and dense subset D of a manifold M . The
function f ismeromorphic onM if for any p ∈M there are two holomorphic functions g
and h on an open neighbourhood U ⊂ M of p satisfying f(z) = g(z)

h(z) for every z in U

such that h(z) 6= 0.

We call two pairs (D, f) and (D′, f ′) with the above property equivalent if f and f ′

coincide on D∩D′. In the following, a meromorphic function on M denotes such an
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equivalence class.

The set of meromorphic functions on a manifold M is a ring. If M is connected, then
this ring is a field.

Let f be a meromorphic function onM then there are an open cover ofM =
⋃
i∈I Ui and

holomorphic functions gi, hi : Ui → C such that f |Ui = gi/hi. We may assume that the
germs of gi and hi are coprime in each stalk OM,p, where p ∈ Ui due to theorem 3.24 on
the previous page. Under this assumption, we call such a family (Ui, gi, hi)i∈I a defining
datum for a meromorphic function f .

Two defining data (Ui, gi, hi)i∈I and (U ′j , g
′
j , h
′
j)j∈J define the same meromorphic func-

tion iff for each pair (i, j) there exists a holomorphic function φij ∈ O(Ui ∩ U ′j)∗ such
that

gi = φijg
′
j and hi = φijh

′
j on Ui ∩ U ′j .

Hence, we make the following definition.

Definition 3.27 (Zero and pole locus of a meromorphic function)
The zero locus Z (f) of a meromorphic function f given by a datum (Ui, gi, hi)i∈I is
the union

⋃
i∈I Z (gi). Similarly, the pole locus P (f) is

⋃
i∈I Z (hi).

Now, we extend the definitions from above to arbitrary tensors.

Definition 3.28 (Meromorphicity of holomorphic tensors)
Let ω be a holomorphic tensor on an open and dense subset D of a manifold M . The
tensor ω ismeromorphic onM if for any p ∈M there are an connected open neighbour-
hood U and a non-zero holomorphic function h : U → C such that h · ω is holomorphic
on U .

As in the case of meromorphic functions, ameromorphic tensor onM is an equivalence
class of pairs (D, ω). For a complex manifold M the set of meromorphic tensors is a
module over the ring of meromorphic functions. The tensor product of two meromorphic
tensors is again meromorphic.

The tensor dzi is an example of a meromorphic tensor on PnC.

By a theorem of Hurwitz (a special case of Chow’s Corollary, cf. [GH78, p. 168]), each
meromorphic tensor on PnC is rational, i.e. it is of the form∑

i1...ik

ωi1...ikdz
i1 ⊗ · · · ⊗ dzik
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with ωi1...ik rational ( a quotient of two polynomials).

It is also possible to pullback meromorphic tensors.

Remark 3.29 (Pullback of covariant meromorphic tensor fields)
Let ω be a covariant meromorphic tensor field on a manifold N that is holomorphic
on D. Then, it can be transported to another manifold M by a holomorphic function
φ : M → N if φ−1(D) becomes a dense subset in M .

Theorem 3.30
Any holomorphic rational function f = P

Q is polynomial.

3.9 Complex submanifolds and analytic subvarieties

Definition 3.31 (Complex submanifold)
A subset N of a complex manifold M is called a complex submanifold if for every
point p ∈ N there exist natural numbers k and n with k ≤ n and a chart φ : U → V ⊂ Cn
of M around p, such that

N ∩ U ∼= φ(U) ∩
{
z ∈ Cn : zj = 0, k + 1 ≤ j ≤ n

}
.

Each complex submanifold possesses the structure of a complex manifold.

We can generalize the concept of a submanifold.

Definition 3.32 (Analytic subvariety)
Suppose Y is a subset of a complex manifold M . If for every point p ∈ Y there is a
neighbourhood U and finitely many holomorphic functions in O(U) satisfying

U ∩ Y =
⋂

1≤i≤mp

Z (fi) ,

then Y is an analytic subvariety.

The functions f1, . . . , fmp are called local defining functions for Y .

The union and intersection of the closed subvarieties Y1 and Y2 are again analytic sub-
varieties.

Definition 3.33 (Regular and singular points of an analytic subvariety)
A point of an analytic subvariety Y ⊂ M is a regular point if there is an open neigh-
bourhood U ⊂ M such that Y ∩ U is a complex submanifold of U . A point that is not
regular is singular.
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We denote the regular and singular points of an analytic subvariety by Yreg and Ysing,
respectively.

Definition 3.34 (Irreducible analytic subvariety)
An analytic subvariety Y is irreducible if there are no analytic subvarieties Y1 and Y2

such that

Yi
closed
( Y and Y = Y1 ∪ Y2.

Irreducible polynomials produce irreducible varieties in the following manner.

Theorem 3.35
Let P be an irreducible polynomial then its zero set Z (P ) is an irreducible analytic variety.

We need the three subsequent deep theorems. Their proofs can be found in [GR65] on
pages 116 and 141, respectively.

Theorem 3.36
The regular locus Yreg is an open dense subset of Y and Ysing is an analytic subvariety.

Theorem 3.37
If Y is irreducible, then Yreg is connected and vice versa.

Theorem 3.38
Let Y be an analytic subvariety. Then, the closures of Yreg’s connected components are
irreducible analytic subvarieties.

The above mentioned irreducible subvarieties are called the irreducible components
of Y . It is also possible to characterize the components as maximal closed subvarieties
of Y .

The preimage of an analytic subvariety Y ⊂ N under a holomorphic function f : M → N
is an analytic subvariety in M .

Definition 3.39 (Dimension of irreducible analytic varieties)
The dimension of an irreducible analytic variety is the dimension of its regular
locus.

An analytic subvariety’s dimension is the supremum of its irreducible components’
dimensions. An analytic subvariety is pure dimensional if all irreducible components
have got the same dimension.

Let Y and M be an analytic variety and a complex manifold, respectively, of pure
dimensions. If Y is a subvariety of M , then its codimension is the natural number
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3.9 Complex submanifolds and analytic subvarieties

codimY = dimM − dimY .

Definition 3.40 (Hypersurface)
A hypersurface is an analytic subvariety of codimension 1.

Definition 3.41 (Negligible set)
We call a analytic subvariety A ⊂ M of a connected complex manifold analytically
negligible if all irreducible components have codimension greater or equal 2.

Given a chain Y1 ( Y2 (M of irreducible subvarieties of a connected manifold M , then
Y1 is negligible. Hence, the common zero set of two holomorphic functions f, g : M → C
is negligible iff the germs of f and g are coprime at each point p ∈M . A consequence is
the subsequent lemma.

Lemma 3.42
Suppose Q is an irreducible polynomial, then the analytic variety Z

(
Q, ∂Q

∂zi

)
is negligible.

Proof
Since ∂Q

∂zi
has a smaller degree than Q, the derivative ∂Q

∂zi
cannot divide Q. 2

Theorem 3.43 (Levi’s extension theorem)
Given a negligible set A, any meromorphic function f : M \ A → C extends to a mero-
morphic function on M .

Consequently, we can also continue meromorphic tensors over a negligible set.

Definition 3.44 (Weil-divisor)
A Weil-divisor D on a connected complex manifoldM is a mapping from the collection
of irreducible hypersurfaces into the integers. Furthermore, we require it to be locally
finite, i.e. every point has got an open neighbourhood U such that only finitely many
hypersurfaces with D(Y ) 6= 0 intersect U . D(Y ) is calledmultiplicity of Y . Sometimes,
the divisor is denoted by the formal sum∑

Y

D(Y ) · Y.

The support of D is the analytic subvariety

suppD =
⋃

D(Y )6=0

Y.

Therefore, we can define the singular locus of suppD and denote it by Dsing.
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3.10 Covering maps and spaces

We recall the notion of a (ramified) covering of topological spaces.

Definition 3.45 (Finite covering map)
We call a map p : Y → X between two topological spaces finite covering map if it
is open, continuous, proper, surjective, and finite, i.e. p−1(x) is finite in Y for every x
in X.

A point, say y ∈ Y , is a ramification point if p is not a homeomorphism around y. We
denote by Ram (p) the collection of p ’s ramification points in Y . We say that p is rami-
fied along Ram (p). We also say that p is ramified over p(Ram (p)). If the ramification
locus is void, then p is called unramified. The induced map

p : Y \ p−1(p(Ram (p))) −→ X \ p(Ram (p))

is an unramified covering.

We shall mainly use covering maps that are holomorphic functions between manifolds.

Definition 3.46 (Simple covering)
We call a holomorphic covering map f : M → N between two n dimensional complex
manifolds simple covering map if f (Ram (f)) is a smooth hypersurface.

We give an easy example :

Definition 3.47 (Standard element pk
n)

We call the map

pkn : En −→ En,
(z1, . . . , zn) 7−→ (z1, . . . , zn−1, (zn)k),

the k-th n-dimensional standard element, where n, k > 0.

The standard elements are obviously simple coverings.

Theorem 3.48
Let f : M → N be a simple covering. Then for each point p in M there are an open
neighbourhood U and biholomorphic functions U → En and f(U) → En such that the
subsequent diagram commutes for a suitable k
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3.11 Orders of singularities

U −−−−→ Eny ypkn
f(U) −−−−→ En.

Proof
The proof is deduced from the topological classification of unramified covering maps
of En−1 × E∗. These coverings correspond to the standard coverings. 2

Let R be a closed submanifold of codimension 1 of N . Then, for each point p ∈ R there
is a chart V → En that sends R to zn = 0. Hence, there is a simple covering U → V
that ramifies over R ∩ V .

Suppose now that N is an open subset of Cn and R is given as the zero set of a holo-
morphic function Q : N → C. If the assumptions of the implicit function theorem are
satisfied, then there is a simple covering that ramifies over Q = 0. This simple covering
can be given explicitly as follows :

Remark 3.49
Let V be an open subset of Cn and p an arbitrary point in V . Let Q : V → C be a
holomorphic function such that the assumptions of the implicit function theorem apply,
i.e.

Q(z) = 0 ⇐⇒ zn = φ(z1, . . . zn−1).

Then, the map

(z1, . . . zn) 7−→ (z1, . . . , zn−1, (zn)k + φ(z1, . . . zn−1))

defines a simple covering U0 → V0 of some open subset U0 ⊂ Cn and an open neighbour-
hood p ∈ V0 ⊂ V .

3.11 Orders of singularities

Let f : U → C be a non-vanishing holomorphic function on an open and connected
neighbourhood of 0 in Cn. We want to define the order of f along Y = {zn = 0} at 0.
For this, we consider a power series expansion of f∑

k≥0

ak(z
1, . . . , zn−1) · (zn)k.
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Then, the order is the smallest k such that ak is non-vanishing.

Given a non-vanishing holomorphic function on a connected complex manifold M and a
smooth hypersurface Y including p, then the order ord (f, Y, p) can be defined via charts.
For meromorphic functions this can be generalized. Let f be a non-zero meromorphic
function on M that can be written as g/h around p. Then, the order is defined as

ord (f, Y, p) := ord (g, Y, p)− ord (h, Y, p) .

This definition is clearly independent of the chosen holomorphic functions g and h.

The function ord (f, Y, ·) is locally constant, in particular, it is constant on connected
hypersurfaces.

Now, let X be an irreducible, closed, analytic hypersurface then Xreg is a connected
smooth hypersurface. Therefore, it is possible to define the order along X by

ord (f,X) := ord (f,Xreg) .

It holds
ord (f + g, Y ) ≥ min {ord (f, Y ) , ord (g, Y )}

and
ord (f · g, Y ) = ord (f, Y ) + ord (g, Y )

for all meromorphic functions f and g satisfying f + g 6= 0.

The order ord (f,X) is positive iff X is contained in the zero locus Z (f), cf. defini-
tion 3.27 on page 40. A negative order is related to the pole locus P (f) in the same
way.

This allows us to associate a divisor to a meromorphic function.

Definition 3.50 (Principal divisor (f))
Given a non-zero meromorphic function f , then its principal divisor is defined by

(f) :=
∑
Y

ord (f, Y ) · Y.

It is clear that this sum is locally finite.

We recall that the zero locus of an irreducible polynomialQ is an irreducible hypersurface.
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Lemma 3.51
The multiplicity of an irreducible polynomial Q along its zero set is one.

Lemma 3.52
Let p = pkn : En → En be the standard element and f : En → C a non-zero meromorphic
function. Then, the orders vary directly, i.e.

ord (f ◦ p, {zn = 0}) = k · ord (f, {zn = 0}) .

3.12 Covering holomorphic tensors

Definition 3.53 (Covering holomorphic tensors)
LetD be an effective divisor on a n-dimensional complex manifoldM , we define Ω⊗k(M,D)

as the space of tensors ω ∈ Ω⊗k(M \ suppD) with the supplementary property :

Let Y be an irreducible component of D and q a point in Y that is a regular
point in suppD. Then, there exist an open neighbourhood of q ∈ V and a
simple covering p : U → V with the subsequent properties :

1. p is ramified over Y ∩ V ;

2. p is equivalent to the standard element pkn, where k = D(Y ) + 1 in the
terms of theorem 3.48 on page 44;

3. ω’s pullback p∗ω is holomorphically extendable to the whole of U .

Y

M
V

ψ

p
D(Y )+1
n

ψ−1 ◦ pD(Y )+1
n

Figure 3.1: Illustration of definition 3.53
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Of course, the third condition in the previous defintion is independent of the chosen p. It is
not hard to show that these tensors are meromorphic onM . Later, we shall use tensors of
the following type (the notation should be self explicatory)(

ΛpΩ⊗ (ΛnΩ)⊗k
)

(M,D), where n = dimM.
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4 Modular forms

This chapter is a generalisation of the theory of modular functions of degree 1, which
can be found in such books as [FB09], to the ones with higher degrees as introduced in
[Fre91] and [Fre11].

4.1 Symplectic groups

Definition 4.1 (Partial order on symmetric matrices)
We say a real symmetric matrix A is greater (or equal) than the symmetric matrix B if
A−B is positive (semi-)definite, and denote this fact by A ≥ B or A > B, respectively.

We denote the vector space of symmetric n×nmatrices by

Sym2(Cn) :=
{
Z ∈M(n,C) : Z = Zt

}
.

Sym2(Cn) is naturally isomorphic to C
n(n+1)

2 and hence a complex manifold.

Definition 4.2 (Siegel upper half-space)
The Siegel upper half-space is the set Hn :=

{
Z ∈ Sym2(Cn) : ImZ > 0

}
.

The upper half-space Hn is an open and convex complex manifold. Since Hn is simply
connected, every non-vanishing holomorphic function onHn has got a holomorphic square
root.

We denote by ∆n the set of diagonal matrices in Hn.It can be seen easily that ∆n

is a closed submanifold of Hn. Hence, in the important case where n = 2, ∆n is a
hypersurface.

Given matrices B in Rn×n and A in Rn×m, we use the standard notation B [A] for AtBA.
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Definition 4.3 (Symplectic group)
Given the matrix

Jn =

(
0 In
−In 0

)
in the linear group of a commutative unital ring GL(2n,R), then the symplectic group
is the subgroup

Sp(n,R) := {M ∈ SL(2n,R) : Jn [M ] = Jn} .

Furthermore, we shorten Sp(n,Z) to Γn.

For n = 1, the symplectic group Sp(1, R) coincides with SL(2, R).

Theorem 4.4 (Generators for Sp(n,R))
The symplectic group Sp(n,R) for an Euclidean domain is generated by Jn and matrices

of the form
(
In S
0 In

)
with symmetric matrices S ∈ M(n,R).

Proof
For a proof we refer to [Fre83, A5.4 Satz, p.326]. 2

Throughout this thesis, we denote the generic element of Sp(n,R) byM =

(
A B
C D

)
.

Definition 4.5
By J we refer to the map

J : Sp(n,R)×Hn −→ M(n,C), (M,Z) 7−→ CZ +D.

Lemma 4.6
With the help of J we can prove the following facts :

1. J maps into GL(n,C);

2. M〈Z〉 = (AZ +B)(CZ +D)−1 lies in Hn for Z in Hn and M in Sp(n,R);

3. it holds M 〈Z〉 = Z for all Z in Hn iff M = ±I2n ∈ Sp(n,R);

4. M 〈N 〈Z〉〉 = (M ·N) 〈Z〉 for M and N in Sp(n,R);

5. the induced action of Sp(n,Z) is totally discontinuous;
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6. M〈Z〉 is holomorphic with derivative DM〈Z0〉 (W ) = (CZ0 +D)−tW (CZ0 +D)−1

and Jacobian determinant det(CZ0 +D)−(n+1).

Definition 4.7 (Principal congruence subgroup)
The kernel of the natural group homomorphism Sp(n,Z)→ Sp(n, Z/qZ) is the principal
congruence subgroup Γn [q] .

We call a subgroup Γ ⊂ Sp(n,R) a congruence subgroup if it contains a principal
congruence subgroup Γn [q] as subgroup of finite index.

LetA be a square matrix then (A)0 denotes the diagonal vector (a11, . . . , ann).

Definition 4.8 (Igusa’s group)
The Igusa’s group of level q is defined to be

Γn [q, 2q] :=
{
M ∈ Γn [q] :

(
ABt

)
0
≡
(
CDt

)
0
≡ 0 mod 2q

}
.

It can be shown that Igusa’s group is actually a group. Suppose that q is even then
Γn [q, 2q] is normal in the full modular group.

Lemma 4.9
The non-trivial subgroups of (Γ2[2,4]/±I4) of finite order are all of order 2. Their generators
are conjugated in Γ2/±I4 to the image of the matrix

1
−1

0

0
1
−1

 .

Proof
It is clear that squaring an arbitrary matrix M in Γ2 [2, 4] < Γ[2] gives a matrix in Γ[4].
It follows from rather basic algebraic facts that this group acts without fixed points.
Therefore, M is of order 2 and [Run93]’s Lemma 5.3 on page 23 completes the proof. 2

4.2 Factors of automorphy and multiplier systems of half
integral weight

Now, we shall state a definition of the factor of automorphy sufficient for this the-
sis.
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Definition 4.10 (Factor of automorphy)
For a subgroup Γ of Sp(n,R) and a finite dimensional C-vector space V a factor of
automorphy is a map

j : Γ×Hn → GL(V )

that is holomorphic in the second variable and satisfies the cocycle relation

j(MN,Z) = j(M,N 〈Z〉) ◦ j(N,Z).

The first example of a factor of automorphy is of the form j(M,Z) = χ(M), where χ is
a character on Γ.
Another example is the function J : Sp(n,R) × Hn −→ GL(n,C) as defined in defini-
tion 4.5 on page 50.

In the following we chose once and forall a holomorphic square root and denote it
by √

det(J (M,Z)) =
√
det(CZ +D).

Definition 4.11 (Multiplier system)
Let Γ be a congruence subgroup in Sp(n,R). A map vΓ = v : Γ −→ C∗ is called a
multiplier system of weight r/2 if the function

v(M)
√

detCZ +D
r

is a factor of automorphy.

It is worth mentioning that multiplier systems of integral weight are characters.

4.3 Modular forms of half integral weight

Let Γ be a congruence subgroup in Sp(n,R), v a multiplier system of weight r/2 and ρ be a
rational representation of GL(n,C) on a vector space V . Then,

v(M)
√

detCZ +D
r
ρ(CZ +D)

is a factor of automorphy.
By a vector valued modular form with respect to this factor of automorphy we mean
a holomorphic function f : Hn → V which transforms as

f(M〈Z〉) = v(M)
√

detCZ +D
r
ρ(CZ +D)f(Z)
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under Γ.

In the case where n = 1, the usual condition at the cusps has to be added. For n ≥ 2, the
Koecher principle ensures this, cf. [Fre83, Hilfssatz 4.11, p.175].

The vector space of modular forms is denoted by
[
Γ,
(
r
2 , ρ
)
, v
]
. If v is trivial and r = 2k

is even, then we shorten this to [Γ, (k, ρ)].

The pairs ( r2 , ρ) and ( r−2k
2 ,detk ·ρ) define the same factor of automorphy. Hence, for an

irreducible representation ρ we always may assume that ρ is reduced, i.e. it is polynomial
and does not vanish on {det(A) = 0}. After this normalization we call r/2 the weight
of a vector valued modular form.

Lemma 4.12
Vector valued modular forms of negative weight are identically zero.

The proof of the lemma is a modification of [Fre83, Satz 3.13, I.3. Modulformen n-ten
Grades, p.48].

Definition 4.13 (Graded algebra of modular forms)
We can construct from a multiplier system of weight 1/2 its graded algebra of modular
forms of half integral weight A(Γ, v) :=

⊕
r∈Z

[
Γ, r2 , v

r
]
.

Example 4.14
The vector space [Γ, ((n+ 1)k, ρe�ρe)] consists of all the holomorphic functions

f : Hn −→ Sym2(Cn)

satisfying

f(M〈Z〉) = det(CZ +D)(n+1)k · (CZ +D)f(Z)(CZ +D)t ∀ M ∈ Γ.

We want to identify vector valued modular forms with tensors on Hn; therefore, we fix
some notation.

We consider the wedge product of all 1-forms dZij in lexicographic order by∧
dZij =

∧
1≤i<j≤n

dZij .

Lemma 4.15
There is an isomorphism between the vector space [Γ, ((n+ 1)k, ρe�ρe)] of vector valued
modular forms transforming as

f(M〈Z〉) = det(CZ +D)(n+1)k · (CZ +D)f(Z)(CZ +D)t
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and the subspace of Γ-invariant tensors in
(

Ω⊗O
(

Λ
n(n+1)

2 Ω
)⊗k)

(Hn), i.e.

Φ :

((
Ω⊗O

(
Λ
n(n+1)

2 Ω
)⊗k)

(Hn)

)Γ

−→ [Γ, ((n+ 1)k, ρe�ρe)] ,

ω =
∑

i<j fij dZ
ij ⊗

(∧
dZij

)⊗k 7−→ (fij)1≤i,j≤n .

Proof
This follows directly from lemma 4.6 on page 50. 2

We shall also consider Γ-invariant tensors in
(

Λ(
n(n+1)

2
−1)Ω⊗O

(
Λ
n(n+1)

2 Ω
)⊗k)

(Hn).

They can be identified with vector valued modular forms transforming as

f(M〈Z〉) = det (CZ +D)(n+1)(k+1)(CZ +D)−tf(Z)(CZ +D)−1

under Γ, cf. [Fre83, 4.61 Folgerung, p.172].

We have already seen on page 30 that in the case where n = 2, the reduced represen-
tation det2(A)A−tXA−1 is isomorphic to ρe � ρe. Therefore, we obtain the subsequent
result.

Theorem 4.16
The vector space [Γ, (3k + 1, ρe�ρe)] is isomorphic to the subspace of Γ-invariant tensors

in
(

Λ2Ω⊗O
(
Λ3Ω

)⊗k)
(H2). The tensor

(
f0 dZ

1∧ dZ2 + f1 dZ
0∧ dZ2 + f2 dZ

0∧ dZ1
)
⊗
(∧

dZij
)⊗k

is mapped to the vector valued modular form(
f2 −f1

−f1 f0

)
.

4.4 Theta series

Definition 4.17 (Even vector)
We call a vector m = (m1,m2) ∈ Z2n even if the Euclidean scalar product of m1 and m2〈
m1,m2

〉
≡ 0 mod 2.
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Definition 4.18 (Theta series)
On Sym2(Cn) we define different kinds of theta series :

of the first kind

ϑ [m] (Z) := ϑ

[
m1

m2

]
(Z) :=

∑
g∈Zn

exp

(
πi

(
Z

[
g +

m1

2

]
+

(
g +

m1

2

)t
m2

))
for the characteristic m = (m1,m2) ∈ {0, 1}2n ⊂ Z2n;

of the second kind

fa(Z) := ϑ

[
a
0

]
(2Z) =

∑
g∈Zn

exp
(

2πiZ
[
g +

a

2

])
, for a ∈ {0, 1}n .

If desired we may observe the above parameter a as an element of (F2)n.
We shall multiply the different theta series of the first kind with even characteristic

θ(Z) :=
∏

m∈{0,1}2neven

ϑ [m] (Z).

The theta series of the first and second kind are holomorphic functions on Hn. We state
another of their properties that can be found on page 233 of [Igu64b].

Theorem 4.19
The theta series of the first and second kind are related in the following manner

ϑ2

[
m1

m2

]
(Z) =

∑
a∈(F2)n

(−1)〈a,m2〉fa+m1(Z) · fa(Z).

Corollary 4.20
The function θ2 can be expressed in terms of fa, i.e.

θ2 =
∏

m∈{0,1}2neven

ϑ2 [m] =
∏

m∈{0,1}2neven

 ∑
a∈(F2)n

(−1)〈a,m2〉fa+m1(Z) · fa(Z)

 .

Runge deduces on page 59 of [Run93] the following corollary.

Corollary 4.21
There is not a single Z in H2 which is a common root of all four thetas, i.e. fa(Z) = 0.
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On H2 the modular form θ looks like :

χ5(Z) := θ(Z) = ϑ

[
0 0
0 0

]
(Z) · ϑ

[
0 0
0 1

]
(Z) · ϑ

[
0 0
1 0

]
(Z) · ϑ

[
0 0
1 1

]
(Z) ·

ϑ

[
0 1
0 0

]
(Z) · ϑ

[
0 1
1 0

]
(Z) · ϑ

[
1 0
0 0

]
(Z) · ϑ

[
1 0
0 1

]
(Z) ·

ϑ

[
1 1
0 0

]
(Z) · ϑ

[
1 1
1 1

]
(Z).

Theorem 4.22 (Igusa)
χ5 is a cusp form of weight 5 to a multiplier system vχ5, i.e. χ5 ∈ [Sp(2,Z), 5, vχ5 ]0.

Proof
We refer to [Maa64] and in particular to page 135 for the explicit characterisation of vχ5

by

vχ5(J2) = 1, vχ5

(
I2 S
0 I2

)
= exp(πi(s0 + s1 + s2)) with S =

(
s0 s1

s1 s2

)
and vχ5

(
U 0
0 U−t

)
= exp(πi(u11u22 + (1 + u11 + u22)(1 + u12 + u21)))

with U =

(
u11 u12

u21 u22

)
∈ GL(2,Z). 2

A fundamental result on the zero locus of χ5 is the subsequent one, cf. Satz 2 in
[Fre65].

Theorem 4.23
The zero locus of the above χ5 on H2 is

⋃
M∈Γ2

M 〈∆2〉.

Later, we shall use the subsequent two theorems.

Theorem 4.24 (Structure theorem for A(Γ2 [2, 4], vf))
The functions f0, . . . , f3 are modular forms of weight 1/2 with respect to Igusa’s group Γ2 [2, 4]
and a common multiplier system vf . Nota bene v4

f = 1.
In particular, the whole ring of modular forms with respect to Γ2 [2, 4] is generated by the
theta constants, i.e.

A(Γ2 [2, 4], vf ) =
⊕
r∈N

[
Γ2 [2, 4],

r

2
, vrf

]
= C [f0, f1, f2, f3] .

The modular form χ5 has a trivial multiplier system on Γ2 [2, 4] and hence is not contained
inA(Γ2 [2, 4], vf ). The following variant of the previous theorem is also true.
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4.5 Quotient spaces

Theorem 4.25 (Structure theorem for Aint(Γ2 [2, 4]))
The graded algebra of scalar modular forms with respect to Γ2 [2, 4] and the trivial multi-
plier system can be decomposed

Aint(Γ2 [2, 4]) =
⊕
r∈N

[Γ2 [2, 4], r]

=

⊕
d≥0

C4d [f0, f1, f2, f3]

 ⊕ ⊕
d≥0

C4d [f0, f1, f2, f3]

 · χ5

This version can be found in [Run93, Remark 3.15, p.74]. And theorem 4.24 is a rather
simple consequence using the methods of Chapter 5, cf. theorem 5.24 on page 80.

4.5 Quotient spaces

We are now interested in the equivalence classes of Γ2 [2, 4]’s action on H2. We state
and prove the basic results for an arbitrary group Γ acting totally discontinuously on a
domain D in Cn.

4.5.1 The general case Γ\D

In this subsection, we consider a domain D ⊂ Cn and a group Γ acting totally discontin-
uously by biholomorphic functions on D

ρ : Γ→ Bihol(D) .

We use the notation
Γ := Γ/ker(ρ).

Lemma 4.26
Suppose a group Γ acts totally discontinuously on D ⊂ Cn. Then for any point p there
is a Γp-invariant neighbourhood U and a biholomorphic map λ : U → V ⊂ Cn, such
that λΓpλ

−1 acts linear, i.e. λΓpλ
−1 is a subgroup of GL(n,C), say Gp, that induces a

biholomorphic map Γp\U → Gp\V .

Proof
The proof can be found in [Car54, Lemme 1, p. 12-3]. 2
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4 Modular forms

We denote by S (Γ) the set of fixed points of Γ, i.e. S (Γ) =
{
p ∈ D : Γp ) {id}

}
. This

is a closed analytic subvariety.

The group Γ acts freely on D \ S (Γ). The quotient Γ\(D \ S (Γ)) carries the structure of a
complex manifold such that the natural projection is locally biholomorphic.

Definition 4.27 (Harmless point)
We call a point p in D Γ-harmless if it satisfies

1. Γp is cyclic with generator γp;

2. the fixed point set of γp is a smooth hypersurface around p.

By Harm (Γ) we denote the collection of non-harmless or harmful points in S (Γ).

Let p be a harmless point in D and Gp a linearization of Γp in the sense of lemma 4.26.
Let γp be the generator of Γpwe may assume that it is diagonal due to its finite order. Only
one diagonal entry may differ from 1 because the fixed point set has got codimension 1.
Therefore, γp is of the form 

1 0
. . .

1
0 ζ

 ,

where ζ is a d-th root of unity.

Using the map
(z1, . . . , zn) 7−→ (z1, . . . , (zn)d)

we can identify G\C
n with Cn.

For the sake of simplicity, we introduce the abbreviation ofD\Harm (Γ) toD0.

Lemma 4.28
The set S (Γ) \ Harm (Γ) of harmless fixed points is a closed analytic submanifold of D0

of codimension 1. The quotient Γ \ D0 is a complex analytic manifold. The projection

D0 −→ Γ \ D0

is locally a simple covering.

Lemma 4.29
A point p of S (Γ) is harmless iff S (Γ) is a smooth hypersurface around p. As a conse-
quence, the set of harmful points is negligible in D.
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4.5 Quotient spaces

In chapter 5 the occurring fixed points will all be harmless so this lemma is redundant.
Hence, we shall just sketch the proof.
We make use of the fact that the quotient Γ\D carries the structure of a complex normal
space in the sense of Serre, cf. [GR84, Chap 1, §1, 5. Complex Spaces, p.8]. The
image T of S (Γ) under the natural projection is a closed analytic subvariety of Γ\D . We
may assume that T is smooth and of codimension 1. In this new setting, the natural
projection is locally a simple covering.

If the group Γ acts freely on D, then the Γ-invariant holomorphic tensors on D can be
identified with holomorphic tensors on Γ\D .
We want to generalize this correspondence to groups with non-free action on D. There-
fore, we define the ramification divisor R in the quotient manifold Γ\D0 . R is sup-
ported by the image of S (Γ)\Harm (Γ). The multiplicity of an irreducible component Y
is given as follows. Take p to be in Y and x to be a point in D that also lies in the preimage
of p. Then, we set the multiplicity R(Y ) to be #Gx − 1.

For the subsequent theorem, we refer the reader to the definition of the space Ω⊗k(Γ\D0 ,R)
on page 47.

Theorem 4.30
There is an isomorphism between the vector space of Γ-invariant tensors on Ω⊗k(D)Γ

and the vector space Ω⊗k(Γ\D0 ,R), i.e.

π∗ : Ω⊗k(Γ\D0 ,R) −→ Ω⊗k(D)Γ, η 7−→ π∗η = ω.

Proof
Since the set Harm (Γ) is negligible, the space Ω⊗k(D)Γ coincides with Ω⊗k(D0)Γ. The
natural projection D0 → Γ\D0 is locally isomorphic to a standard element. The definition
of Ω⊗k(Γ\D0 ,R) yields the desired result. 2

4.5.2 The quotient space Γ2 [2, 4]\H2

We are now observing the special case of the group Γ2 [2, 4] acting on H2. This group acts
without harmful points on H2, as we can deduce from lemma 4.9 on page 51. It also fol-
lows that all elements of finite order are conjugated to the matrix

1
−1

0

0
1
−1

 .
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4 Modular forms

The fixed point set S (Γ2 [2, 4]) is a disjoint union of closed smooth hypersurfaces, the
images of the diagonal ∆2 under Γ2.

Lemma 4.31
The ramification divisor R in Γ2 [2, 4]\H2 consists of 10 components all with multiplicity 1.

We deduce from theorem 4.23 on page 56 the succeeding lemma.

Lemma 4.32
S (Γ2 [2, 4]), the subset of fixed points in H2, is the zero locus of χ5 =

∏
m∈{0,1}4even ϑ [m].

Moreover, the image of the zero locus of an individual ϑ [m] is one of the above mentioned
10 components of the type M〈∆2〉.

The map
F : H2 −→ C4 \ {0} , Z 7−→ (f0(Z), f1(Z), f2(Z), f3(Z)),

factors through a map

H2 C4 \ {0}

Γ2 [2, 4]\H2 P3C.

F

p π

φ

From Runge’s results [Run93] one can deduce the following striking theorem.

Theorem 4.33
The map φ : Γ2 [2, 4]\H2 → P3C is a holomorphic embedding and even biholomorphic on
its open image. The image’s complement is negligible.

Instead of observing divisors, functions, and tensors on Γ2 [2, 4]\H2 we can study their
counterparts on P3C. In particular, we can consider R as a divisor on P3C. From
theorem 4.19 on page 55 we deduce the subsequent theorem.

Theorem 4.34
The ramification divisor R considered on P3C is the sum of 10 quadrics given by the
following 10 polynomials

• Q0(z0, . . . , z3) = (z0)2 + (z1)2 + (z2)2 + (z3)2;

• Q1(z0, . . . , z3) = (z0)2 − (z1)2 + (z2)2 − (z3)2;
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4.5 Quotient spaces

• Q2(z0, . . . , z3) = (z0)2 + (z1)2 − (z2)2 − (z3)2;

• Q3(z0, . . . , z3) = (z0)2 − (z1)2 − (z2)2 + (z3)2;

• Q4(z0, . . . , z3) = 2(z0z1 + z2z3);

• Q6(z0, . . . , z3) = 2(z0z1 − z2z3);

• Q8(z0, . . . , z3) = 2(z0z2 + z1z3);

• Q9(z0, . . . , z3) = 2(z0z2 − z1z3);

• Q12(z0, . . . , z3) = 2(z0z3 + z1z2);

• Q15(z0, . . . , z3) = 2(z0z3 − z1z2).

We close this section with its main result.

Theorem 4.35
There is a natural isomorphism

Ω⊗q(H2)Γ2[2,4] ∼= Ω⊗q(P3C,R).

The tensors on the left hand side can be considered as certain vector valued Siegel
modular forms and the ones on the right hand side can be easily described in algebraic
terms.
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5 Existence results and structure
theorems

5.1 Construction of meromorphic tensors with prescribed
poles

For the construction of these tensors, we consider a homogeneous polynomial Q of de-
gree d in n+1 variables X0, . . . , Xn. We always assume that Q is square-free and that X0

does not divide Q. We want to describe meromorphic tensors on PnC that are holomor-
phic outside Q’s zero locus Z (Q). Any such tensor is determined by its restriction to the
affine chart A0. Recall that the projective coordinates of PnC are denoted by z0, . . . , zn

and the coordinates on A0 are(
z1, . . . , zn

)
:=

(
z1

z0
, . . . ,

zn

z0

)
.

Hence, every meromorphic tensor on PnC can be written in the form

ω =
∑
i1,...,ir

ωi1,...,irdz
i1 ⊗ . . .⊗ dzir .

The coefficient functions ωi1,...,ir are rational functions in the variables z1, . . . , zn.

By means of homogenization, every rational function f(z) can be written as the quotient
of two homogeneous polynomialsA,B ∈ C[X0, . . . , Xn] of common degree, i.e.

f(z) =
A(1, z1, . . . , zn)

B(1, z1, . . . , zn)
.

The restriction of the above introduced tensor ω to A0 is holomorphic outside
{
Q(1, z1, . . . , zn) = 0

}
iff the coefficients of ω can be written in the form

ωi1,...,ir(z
1, . . . , zn) =

Ai1,...,ir(1, z
1, . . . , zn)

QN (1, z1, . . . , zn)
,
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5 Existence results and structure theorems

where N is an appropriate natural number and Ai1,...,ir is a homogeneous polynomial of
degree N · degQ in n+ 1 variables.

This condition does not imply that ω is holomorphic on PnC \Z (Q). But, it is sufficient
to consider a second chart A1 because A0∪A1 is complemented by a negligible set. Recall
that the coordinates in this affine space are defined as

(
w0,w2 . . . ,wn

)
:=

(
z0

z1
,
z2

z1
, . . . ,

zn

z1

)
.

We change between these two charts by

(z1, . . . , zn) =

(
1

w0
,
w2

w0
, . . . ,

wn

w0

)
.

For the sake of simplicity we take ω to be of the type Ω⊗O(ΛnΩ)⊗k.

Lemma 5.1 (Construction of meromorphic 1-forms with prescribed poles)
Let ω be a meromorphic tensor on PnC which is holomorphic outside Z (Q), then ω can
be written in the form

ω =
n∑
i=1

ωi dz
i ⊗
(
dz1 ∧ · · · ∧ dzn

)⊗k
,

where

ωi(z
1, . . . , zn) =

Ai(1, z
1, . . . , zn)

QN (1, z1, . . . , zn)

with the following properties

1. N is a natural number;

2. Ai is a homogeneous polynomial of degree N · degQ;

3. (X0)k(n+1)+1 divides Ai;

4. and (X0)k(n+1)+2 divides the sum
∑n

i=1X
iAi.
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5.1 Construction of meromorphic tensors with prescribed poles

Proof
On A1 the tensor ω is of the form

ω =
n∑
i=2

(−1)k

(w0)k(n+1)+1
ωi

(
1

w0
,
w2

w0
, . . . ,

wn

w0

)
dwi ⊗

(
dw0 ∧ dw2 ∧ . . . ∧ dwn

)⊗k
− (−1)k

(w0)k(n+1)+2

(
ω1 +

n∑
i=2

wi · ωi

)
dw0 ⊗

(
dw0 ∧ dw2 ∧ . . . ∧ dwn

)⊗k
.

The coefficients in the first line are holomorphic outside
{
w0 = 0

}
iff (w0)k(n+1)+1 di-

vides Ai(w0, 1,w2, . . . ,wn). Since Ai is homogeneous, this means that (X0)k(n+1)+1

divides Ai for all i ≥ 2. Observing ω1 or its numerator A1, respectively, on A2 gives
an analogous result. The same argument shows that the coefficient in the second line is
holomorphic outside

{
w0 = 0

}
iff condition 4 is satisfied. 2

It is convenient to write the fourth condition in the following way. We introduce the
matrix

T =


−X1 −X2 . . . −Xn

0 X0 0
...

. . .
0 0 . . . X0

 .

Remark 5.2
Condition 4 in lemma 5.1 is equivalent to the condition that

X0 | T ·

A1
...
An

 .

There is a generalisation of the above lemma that can be proven analogously. We consider
tensors of the type

ΛpΩ⊗O (ΛnΩ)⊗k.

For this, we introduce a handy notation for the canonical basis elements of ΛpΩ. Given
a subset I ⊂ {1, . . . , n}, say I = {i1, . . . , ip} and i1 < · · · < ip, then dzI is short
for

dzI = dzi1 ∧ . . . ∧ dzip .

Lemma 5.3 (Construction of meromorphic p-forms with prescribed poles)
Let ω be a meromorphic tensor on PnC which is holomorphic outside Z (Q), then ω can
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5 Existence results and structure theorems

be written in the form

ω =
∑

I⊂{1,...,n}
|I|=p

ωI dz
I ⊗

(
dz1 ∧ · · · ∧ dzn

)⊗k
,

where

ωI(z
1, . . . , zn) =

AI(1, z
1, . . . , zn)

QN (1, z1, . . . , zn)

with the following properties

1. N is a natural number;

2. AI is a homogeneous polynomial of degree N · degQ;

3. (X0)k(n+1)+p divides AI ;

4. and it holds for all J ⊂ {2, . . . , n} with |J | = p− 1

(X0)k(n+1)+p+1
∣∣∣ ∑

1≤j≤n
j /∈J

(−1)pos(j,J∪{j}) ·Xj ·AJ∪{j},

where pos(i, I) returns i’s position in the ordered set I.

For p = n conditions 3 and 4 are merged to

3’. (X0)k(n+1)+n+1 divides A{1,...,n}.

Again, we reformulate condition 4. For this, we consider the ΛpCn-valued polynomial
(AI) where I runs through all subsets of {1, . . . , n} of order p.

Remark 5.4
Condition 4 in lemma 5.1 is equivalent to the condition that(

X0
)p | (ΛpT ) · (AI).

5.2 Existence results for covering holomorphic tensors

As in the previous section, we consider a square-free polynomial Q and a divisor with
support in {Q = 0}

R =
∑

amZ (Qm) , am ≥ 0.
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5.2 Existence results for covering holomorphic tensors

We want to describe the spaces(
Ω⊗O (ΛnΩ)⊗k

)
(PnC,R).

Since each element of this space, say ω, is holomorphic outside {Q = 0} it is of the form

(5.1) ωi(z
1, . . . , zn) =

Ai(1, z
1, . . . , zn)

QN (1, z1, . . . , zn)

with the following properties

1. N is a natural number;

2. Ai is a homogeneous polynomial of degree D · degQ;

3. (X0)k(n+1)+1 divides Ai;

4. and (X0)k(n+1)+2 divides the sum
∑n

i=1X
iAi,

cf. lemma 5.1 on page 64.

Theorem 5.5
We introduce the numbers 1

d := max
1≤m≤M

⌊
am

am + 1
k

⌋
and

D := max
1≤m≤M

⌊
am

am + 1
(k + 1)

⌋
.

Let ω be a tensor as in eq. (5.1) where we choose N minimal. We can state necessary
and sufficient conditions in terms of d and D for ω to lie in

(
Ω⊗O (ΛnΩ)⊗k

)
(PnC,R) :

ω ∈
(

Ω⊗O (ΛnΩ)⊗k
)

(PnC,R) =⇒ N ≤ D,

and
N ≤ d =⇒ ω ∈

(
Ω⊗O (ΛnΩ)⊗k

)
(PnC,R).

1in the following formula bxc denotes the floor function max {m ∈ Z | m ≤ x}.
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5 Existence results and structure theorems

Corollary 5.6
If it holds for all m

am + 1 | k,

then d=D. Hence, the space
(

Ω⊗O (ΛnΩ)⊗k
)

(PnC,R) is completely determined.

Proof (Theorem)
Let x be a smooth point of Q’s zero locus and Qm its prime factor that vanishes at x.
We have to consider an open neighbourhood x ∈ V ⊂ PnC and a simple covering U → V
which ramifies over Qm = 0. Since z0 does not divide Q, we may assume that V is a
subset of A0. Without loss of generality, we may assume that the n-th partial derivative
of Qm is non-zero in V . Now, we can use the construction from remark 3.49 on page 45.
The covering p is of the form

(z1, . . . , zn) 7−→ (z1, . . . , zn−1, (zn)am+1 + ϕ(z1, . . . , zn−1)),

where ϕ is implicitly defined by

Qm(1, z1, . . . , zn) = 0 ⇐⇒ zn = ϕ(z1, . . . , zn−1).

We have to observe the pullback p∗ω of the tensor

ω =
n∑
i+1

ωi dz
i ⊗
(
dz1 ∧ · · · ∧ dzn

)⊗k
,

where

ωi(z
1, . . . , zn) =

Ai(1, z
1, . . . , zn)

QN (1, z1, . . . , zn)

with the properties formulated in lemma 5.1. We have

p∗ω = (p∗ω)jdz
j ⊗

(
n∧

m=1

dzm

)⊗k
with coefficient functions

(p∗ω)n = ((am + 1) (zn)am)k+1 ωn ◦ p and

(p∗ω)j = ((am + 1) (zn)am)k
(
ωj ◦ p+ ωn ◦ p ·

∂ϕ

∂zj

)
for j 6= n.

We have to check whether the pullback p∗ω is holomorphic on U . This means that the
holomorphic functions (p∗ω)j must have non-negative orders along the line zn = 0, i.e.

ord ((p∗ω)j , Z (zn)) ≥ 0, 1 ≤ j ≤ n.
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5.2 Existence results for covering holomorphic tensors

In the case where j = n, this is equivalent to

ord (ωn ◦ p, Z (zn)) ≥ −am(k + 1).

Claim 1
The condition on all j ∈ {1, . . . n}

ord (ωj ◦ p, Z (zn)) ≥ −am(k + 1)

is necessary for p∗ω to be holomorphic.

Proof
Assuming that

ord (ωj ◦ p, Z (zn)) < −am(k + 1)

yields

ord

(
ωj ◦ p+ ωn ◦ p ·

∂ϕ

∂zj
, Z (zn)

)
= ord (ωj ◦ p, Z (zn)) < −am(k + 1)

because we have already verified the claim for j = n. 2

In the same way we derive sufficient conditions for p∗ω to be holomorphic.

Condition 2
The condition on all j ∈ {1, . . . n}

ord (ωj ◦ p, Z (zn)) ≥ −am · k

is sufficient for p∗ω to be holomorphic.

Now, we want to consider the coefficient functions ωj instead of the functions ωj ◦ p. The
zero set Z (zn) in U corresponds to the zero divisor (Qm) of the polynomialQm(1, z1, . . . , zn)
on V . We have

ord (ωj ◦ p, Z (zn)) = (am + 1) · ord (ωj , (Qm)) .

So, we obtain the necessary condition

ord (ωj , (Qm)) ≥ −
⌊

am
am + 1

(k + 1)

⌋
, 1 ≤ j ≤ n,

and the sufficient condition

ord (ωj , (Qm)) ≥ −
⌊

am
am + 1

k

⌋
, 1 ≤ j ≤ n,

for ω to be in the space
(

Ω⊗O (ΛnΩ)⊗k
)

(PnC,R). This completes the proof of the
theorem. 2
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5 Existence results and structure theorems

The same method as above also works for tensors of the type
(
ΛpΩ⊗O (ΛnΩ)⊗k

)
(PnC,R).

Such a tensor ω can be written in the form

(5.2) ω =
∑

I⊂{1,...,n}
|I|=p

ωI dz
I ⊗

(
dz1 ∧ · · · ∧ dzn

)⊗k
,

where

ωI(z
1, . . . , zn) =

AI(1, z
1, . . . , zn)

QN (1, z1, . . . , zn)

with the following properties

1. N is a natural number;

2. AI is a homogeneous polynomial of degree N · degQ;

3. (X0)k(n+1)+p divides AI ;

4. and it holds for all J ⊂ {2, . . . , n} with |J | = p− 1

(X0)k(n+1)+p+1
∣∣∣ ∑

1≤j≤n
j /∈J

(−1)pos(j,J∪{j}) ·Xj ·AJ∪{j},

where pos(i, I) returns i’s position in the ordered set I.

For p = n conditions 3 and 4 are merged to

3’. (X0)k(n+1)+n+1 divides A{1,...,n},

cf. lemma 5.3 on page 65.

We recall the constants from theorem 5.5 on page 67 :

d = max
1≤m≤M

⌊
am

am + 1
k

⌋
and

D = max
1≤m≤M

⌊
am

am + 1
(k + 1)

⌋
.

Theorem 5.7
Let ω be a tensor as in eq. (5.2), where we choose N minimal. A necessary condition
for ω to lie in ΛpΩ⊗O (ΛnΩ)⊗k(PnC,R) is N ≤ D. If p equals n, this is also sufficient.
Otherwise, it suffices to set N ≤ d.
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5.3 A structure theorem for vector valued modular forms w.r.t. the multiplier system vf

Corollary 5.8
If it holds for all m

am + 1 | k,

then d=D. As a consequence, the space ΛpΩ ⊗O (ΛnΩ)⊗k(PnC,R) is completely deter-
mined.

5.3 A structure theorem for vector valued modular forms
with respect to the multiplier system vf

We consider the polynomial Q =
∏

mQm of degree 20 that gives the divisor of χ5 in P3C,
cf. theorem 4.34 on page 60. We recall that[

Γ2 [2, 4],

(
12k

2
, ρe�ρe

)
, v12k
f

]
∼=
(

Ω⊗O
(
Λ3Ω

)⊗2k
)

(P3C, (Q))

according to lemma 4.15 on page 53.

Hence, we can reformulate the results of the previous sections in terms of modular
forms.

Theorem 5.9
If we denote by fa the theta constants of the second kind, then the determinant∣∣∣∣∣∣∣∣∣∣∣

∂
(
f1
f0

)
∂Z0

∂
(
f1
f0

)
∂Z1

∂
(
f1
f0

)
∂Z2

∂
(
f2
f0

)
∂Z0

∂
(
f2
f0

)
∂Z1

∂
(
f2
f0

)
∂Z2

∂
(
f3
f0

)
∂Z0

∂
(
f3
f0

)
∂Z1

∂
(
f3
f0

)
∂Z2

∣∣∣∣∣∣∣∣∣∣∣
equals

c5 ·
χ5

(f0)4

with a constant c5 in C.

Proof
A proof can be found on pages 15 and 16 of [FSM10]. 2

We shall present an easy and well-known lemma.
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5 Existence results and structure theorems

Lemma 5.10 (Rankin-Cohen bracket)
For f and g in

[
Γ2 [2, 4], 1

2 , vf
]
the Rankin-Cohen bracket

{f, g} := f ·Dg − g ·Df =

(f ∂g
∂Z0 − g ∂f

∂Z0

) (
f ∂g
∂Z1 − g ∂f

∂Z1

)(
f ∂g
∂Z1 − g ∂f

∂Z1

) (
f ∂g
∂Z2 − g ∂f

∂Z2

) = f2 ·D
(
g

f

)

lies in
[
Γ2 [2, 4], (1, ρe�ρe), v2

f

]
.

The next theorem will rely heavily on the just defined Rankin-Cohen brackets.

Theorem 5.11
Every modular form f ∈ [Γ2 [2, 4], (6s, ρe�ρe)] is of the form

f =
∑

1≤i≤3

Pi(f0, . . . f3) {f0, fi}
1

f0
,

where all Pi are homogeneous polynomials of degree 12s− 1. Conversely, such a sum lies
in [Γ2 [2, 4], (6s, ρe�ρe)] iff it is holomorphic which means

f0 |
∑

1≤i≤3

fi · Pi.

Proof
A modular form f ∈ [Γ2 [2, 4], (6s, ρe�ρe)] can be considered as tensor on P3C of the
form

3∑
i=1

Ri d

(
fi
f0

)
⊗
(
d

(
f1

f0

)
∧ · · · ∧ d

(
f3

f0

))⊗2s

.

In theorem 5.5 on page 67, we have seen that Ri is of the form

Ri =
Pi · f8s+1

0

χ2s
5

with Pi a polynomial of degree 12s− 1 and

f0 |
∑

1≤i≤3

fi · Pi.

We want to observe this tensor on the upper half plane. The functional determinant
of d

(
f1
f0

)
∧ · · · ∧ d

(
f3
f0

)
is χ5/f

4
0 , cf. theorem 5.9 on the previous page. Hence, the

modular form is of the desired type. 2
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5.3 A structure theorem for vector valued modular forms w.r.t. the multiplier system vf

We could have formulated the above theorem replacing f0 by any other fa.

We introduce the C[f0, . . . , f3]-module

M+(Γ2 [2, 4]) :=
⊕
r∈Z

[
Γ2 [2, 4],

(r
2
, ρe�ρe

)
, vrf

]
.

One of its C[f0, . . . , f3]-submodules is

M+ :=
∑

0≤i<j≤3

C[f0, . . . , f3] {fi, fj} .

Theorem 5.12 (Bracket relations)
The Rankin-Cohen brackets are related in the following manner :

R1 : f1 {f0, f2} = f2 {f0, f1} + f0 {f1, f2} ;

R2 : f1 {f0, f3} = f3 {f0, f1} + f0 {f1, f3} ;

R3 : f2 {f0, f3} = f3 {f0, f2} + f0 {f2, f3} ;

R4 : f2 {f1, f3} = f3 {f1, f2} + f1 {f2, f3} .

These are defining relations of the module M+. Therefore, the Hilbert function is

dimM+
r = 3 ·

(
r + 1

3

)
+ 2 ·

(
r

2

)
+

(
r − 1

1

)
.

Proof
Firstly, the four relations are simply consequences of the product rule. Secondly, we
mention that the three brackets {f0, fj} are C[f0, . . . , f3]- linearily independent, i.e. the
equality

(5.3)
3∑
j=1

Pj {f0, fj} = 0

implies that the polynomials Pj are all zero.

Thirdly, we consider an arbitrary relation

R :
∑

0≤i<j≤3

Pij {fi, fj} = 0.

It is equivalent to the subsequent three relations

f0P0j +

j−1∑
i=1

fiPij −
3∑

i=j+1

fiPji = 0, ∀ j ∈ {1, . . . , 3}
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5 Existence results and structure theorems

due to the given relations R1, . . . , R4 and eq. (5.3).

Applying R1, . . . , R4, the relation R can be transformed to a form where Pij is a polyno-
mial in the variables f0, . . . , fj . In this normal form we see that each Pij is zero. Indeed,
for j = 1 we obtain

f0P01 −
∑
i>1

fiP1i = 0.

Setting the variables f2, f3 zero yields

P01 = P01(f1) = 0.

Specialising now f3 gives P12 = P12(f1, f2) = 0 and hence P13 = 0.
The just proven equality P12 = 0 simplifies the above relation for j = 2 to

f0P02 − f3P23 = 0.

A similiar line of argument shows

P02 = P23 = 0.

Setting j = 3 gives the remaining coefficients. 2

The moduleM+ can be considered as a submodule of the free module∑
a

C[f0, . . . , f3] ·Dfa.

In this setting, an element of M+, say
∑

a Pa · Dfa, can be characterized by a single
C[f0, . . . , f3]- linear equation : ∑

a

faPa = 0.

This can be shown by decomposing each Pa into Qa + f3Ra, where any Qa is inde-
pendent of f3. Then, the first three Qa satisfy

∑2
a=0 faQa = 0 simplifying the prob-

lem.

A short magma[BCP97] code or the above appealing observation, that is due to Dr. Uwe
Weselmann, both imply the subsequent theorem.

Theorem 5.13
We have

3⋂
i=0

f0 · · · f3

fi
M+ = f0 · · · f3 ·M+.
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5.4 A structure theorem for vector valued modular forms twisted with the character v2
f

An immediate consequence is the succeeding theorem.

Theorem 5.14
Every modular form f ∈ [Γ2 [2, 4], (6s, ρe�ρe)] is of the form

f =
∑

0≤i<j≤3

Pij(f0, . . . f3) {fi, fj} ,

where any Pij is a homogeneous polynomials of degree 12s− 1.

We want to generalize this now to arbitrary weights.

Theorem 5.15 (Structure theorem)
We have

M+(Γ2 [2, 4]) =
⊕
r∈Z

[
Γ2 [2, 4],

(r
2
, ρe�ρe

)
, vrf

]
=

∑
0≤i<j≤3

C[f0, . . . , f3] {fi, fj} .

Proof
Let f be a modular form of weight r/2. If r is a multiply of 12, then we apply theo-
rem 5.14. Therefore, we may assume that fi · f lies in the right hand side. Now, we can
apply theorem 5.13. 2

5.4 A structure theorem for vector valued modular forms
twisted with the character vf

2

We consider the character v2
f on Γ2 [2, 4] and the twisted version ofM+ :

M−(Γ2 [2, 4]) :=
⊕
r∈Z

[
Γ2 [2, 4],

(r
2
, ρe�ρe

)
, vrf · v2

f

]
.

We shall present the analogous proclaims to the ones in section 5.3. Interestingly, most
of the proofs stay (almost) unchanged. The twist by v2

f is important if one is interested in
modular forms of odd weight and trivial multiplier system.

Definition 5.16 (Rankin-Cohen 3-bracket)
For f , g and h in O(H2) and 0 ≤ j1 < j2 ≤ 2 we define

{f, g, h}(j1,j2) :=

∣∣∣∣∣∣∣
∂f
∂Zj1

∂f
∂Zj2

f
∂g
∂Zj1

∂g
∂Zj2

g
∂h
∂Zj1

∂h
∂Zj2

h

∣∣∣∣∣∣∣ .
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5 Existence results and structure theorems

Then the Rankin-Cohen 3-bracket of f , g and h is

{f, g, h} :=

(
{f, g, h}(1,2) {f, g, h}(0,2)

{f, g, h}(0,2) {f, g, h}(0,1)

)
.

Theorem 5.17
Let f, g, h be elements of [Γ2 [2, 4], 1

2 , vf ] then

{f, g, h} ∈
[
Γ2 [2, 4],

(
5

2
, ρe�ρe

)
, v5
f · v2

f

]
.

Proof
The proof can be given by a direct computation which may be somewhat tedious. But,
we shall argue differently : We may assume that

f = f0, g = f1 and h = f2.

We consider the Γ-invariant tensor

d

(
f1

f0

)
∧ d
(
f2

f0

)
= ω0 · dZ1 ∧ dZ2 + ω2 · dZ0 ∧ dZ1 + ω1 · dZ0 ∧ dZ2,

where

ω0 =

∣∣∣∣∣∣∣
∂
(
f1
f0

)
∂Z1

∂
(
f1
f0

)
∂Z2

∂
(
f2
f0

)
∂Z1

∂
(
f2
f0

)
∂Z2

∣∣∣∣∣∣∣ , ω1 =

∣∣∣∣∣∣∣
∂
(
f1
f0

)
∂Z0

∂
(
f1
f0

)
∂Z2

∂
(
f2
f0

)
∂Z0

∂
(
f2
f0

)
∂Z2

∣∣∣∣∣∣∣ and ω2 =

∣∣∣∣∣∣∣
∂
(
f1
f0

)
∂Z0

∂
(
f1
f0

)
∂Z1

∂
(
f2
f0

)
∂Z0

∂
(
f2
f0

)
∂Z1

∣∣∣∣∣∣∣ .
We conclude from theorem 4.16 on page 54 that

f3
0 ·
(
ω2 −ω1

−ω1 ω0

)
∈
[
Γ2 [2, 4],

(
5

2
, ρe�ρe

)
, v5
f · v2

f

]
.

Calculating the determinants completes the proof. 2

Theorem 5.18
Every modular form f ∈ [Γ2 [2, 4], (6s+ 1, ρe�ρe)] is of the form

f =
1

f0
(P3 {f0, f1, f2} + P2 {f0, f1, f3} + P1 {f0, f2, f3}) ,
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5.4 A structure theorem for vector valued modular forms twisted with the character v2
f

where all Pi are homogeneous polynomials of degree 12s − 3 in the variables f0, . . . , f3.
Conversely, such a sum lies in [Γ2 [2, 4], (6s, ρe�ρe)] iff it is holomorphic which means

f0 | f1 · P3 − f3 · P1

and
f0 | f1 · P2 + f2 · P1.

Proof
The same line of argument as in theorem 5.11 on page 72 yields the desired result. 2

It is again possible to replace f0 by any other fa in the theorem’s formulation.

We recall the definition of the C[f0, . . . , f3]-module

M−(Γ2 [2, 4]) :=
⊕
r∈Z

[
Γ2 [2, 4],

(r
2
, ρe�ρe

)
, vrf · v2

f

]
.

An important C[f0, . . . , f3]-submodule is

M− :=
∑

0≤i<j<k≤3

C[f0, . . . , f3] {fi, fj , fk} .

In contrast to theorem 5.12 on page 73, the Rankin-Cohen 3-brackets just satisfy a single
relation.

Lemma 5.19 (3-bracket relation)
The Rankin-Cohen 3-brackets are related in the following manner

R5 : −f0 {f1, f2, f3} + f1 {f0, f2, f3} − f2 {f0, f1, f3} + f3 {f0, f1, f2} = 0.

This is a defining relation of the module M−. Hence, the Hilbert function is

dimM−r = 3 ·
(
r − 2

3

)
+

(
r − 3

2

)
.

Proof
i. Consider the matrix

A =


f0 f1 f2 f3

∂f0
∂Z0

∂f1
∂Z0

∂f2
∂Z0

∂f3
∂Z0

∂f0
∂Z1

∂f1
∂Z1

∂f2
∂Z1

∂f3
∂Z1

∂f0
∂Z2

∂f1
∂Z2

∂f2
∂Z2

∂f3
∂Z2
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5 Existence results and structure theorems

and its adjoint matrix

Adj(A) =


∂f{1,2,3}
∂Z{0,1,2}

−{f1, f2, f3}(1,2) + {f1, f2, f3}(0,2) −{f1, f2, f3}(0,1)

...
...

...
...

− ∂f{0,1,2}
∂Z{0,1,2}

+ {f0, f1, f2}(1,2) −{f0, f1, f2}(0,2) + {f0, f1, f2}(0,1)

 .

The product A ·Adj(A) is just c5 · χ5 · I4; this yields the desired relation.

ii. First, we mention that the three brackets {f0, fi, fj} are C[f0, . . . , f3]- linearily
independent. Second, we take R to be an arbitrary relation, i.e.

R :
∑

0≤i<j<k≤3

Pijk {fi, fj , fk} = 0.

Indexing Pijk by the missing index Pl, e.g. P123 by P0, R is equivalent to the
subsequent relations

f0Pi + (−1)ifiP0 = 0, ∀ i ∈ {1, . . . , 3}

due to the given relation R5 and the aforementioned linear independence.
Third, applying R5 the relation R can be transformed to a form where P0 is a
polynomial in the variables f1, . . . , f3. In this normal form we see that all Pijk
are zero. Indeed, setting f0 = 0 yields P0 = 0. This completes the proof as the
remaining brackets are linearily independent. 2

The moduleM− can be considered as a submodule of the free module∑
0≤a<b≤3

C[f0, . . . , f3] ·Dfa ∧Dfb.

In this setting, an element ofM−, say
∑

0≤a<b≤3 Pab ·Dfa ∧Dfb, can be characterized
by four C[f0, . . . , f3]- linear equations :

f1P01 + f2P02 + f3P03 = 0;

−f0P01 + f2P12 + f3P13 = 0;

−f0P02 − f2P12 + f3P23 = 0;

−f0P03 − f1P13 − f2P23 = 0.

A short magma[BCP97] code or the previous appealing observation, that is also due to
Dr. Uwe Weselmann, both imply the subsequent theorem.

78



5.5 A structure theorem for vector valued modular forms w.r.t. the trivial mult. system

Theorem 5.20
We have

3⋂
i=0

f0 · · · f3

fi
M− = f0 · · · f3 ·M−.

Similarly as in theorem 5.14 on page 75, we deduce easily the following theorem.

Theorem 5.21
Every modular form f ∈ [Γ2 [2, 4], (6s+ 1, ρe�ρe)] is of the form

f =
∑

0≤i<j<k≤3

Pijk(f0, . . . f3) {fi, fj , fk} ,

where every Pijk is a homogeneous polynomials of degree 12s− 3.

Again, generalising this to arbitrary weights is desirable and attainable.

Theorem 5.22 (Structure theorem)
We have

M−(Γ2 [2, 4]) =
⊕
r∈Z

[
Γ2 [2, 4],

(r
2
, ρe�ρe

)
, vrf · v2

f

]
=

∑
0≤i<j<k≤3

(C[f0, . . . , f3]) {fi, fj , fk} .

Proof
The proof is analogous to the one of theorem 5.15 on page 75. 2

5.5 A structure theorem for vector valued modular forms
with respect to the trivial multiplier system

We can extract from the modules M+(Γ2 [2, 4]) and M−(Γ2 [2, 4]) the modular forms
with trivial multiplier system.

Theorem 5.23 (Structure theorem for M(Γ2 [2, 4]))
We have⊕

k∈Z
[Γ2 [2, 4], (k, ρe�ρe)] =∑

0≤i<j≤3

(C2+4Z[f0, . . . , f3]) {fi, fj} ⊕
∑

0≤i1<i2<i3≤3

(C1+4Z[f0, . . . , f3]) {fi1 , fi2 , fi3}
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5 Existence results and structure theorems

and

dim [Γ2 [2, 4], (k, ρe�ρe)] =

{
3 ·
(

2k+1
3

)
+ 2 ·

(
2k
2

)
+
(

2k−1
1

)
, if k is even,

3 ·
(

2k−2
3

)
+
(

2k−3
2

)
, if k is odd.

5.6 A structure theorem for scalar valued modular forms

So far, we have treated tensors of the type

ΛpΩ⊗O (Λ3Ω)⊗k,

where p = 1, 2. It is worthwhile to mention that our method is also successful for
p = 3. In this case we get the structure theorems for the ring of scalar valued modular
forms. Recall that our method relied on the injectivity and ramification behaviour of the
map

[f0, . . . , f3] : Γ2 [2, 4]\H2 −→ P3C.

More precisely, we obtain the following theorem which is essentially due to Runge.

Theorem 5.24 (Structure theorem)
We have ⊕

r∈Z

[
Γ2 [2, 4],

r

2
, vrf

]
= C[f0, . . . , f3].

Twisting with v2
f yields⊕

r∈Z

[
Γ2 [2, 4],

r

2
, vrf · v2

f

]
= χ5 · C[f0, . . . , f3].

As a consequence, ⊕
r∈Z

[Γ2 [2, 4], r] = C4Z[f0, . . . , f3]⊕ C4Z[f0, . . . , f3] · χ5.

We omit the details of the proof, but stress that we start with tensorial weights, i.e.
k ∈ 3Z, as in the case of vector valued modular forms. Afterwards, we extend the
results to all weights again by intersecting appropriate modules. It is quite interesting
that Igusa’s modular form χ5 comes up automatically in our approach. This happens
while studying the holomorphicity of tensors by means of the ramification behaviour
of [f0, . . . , f3].
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A
action, see group action
affine

coordinates, zi, wj , 33
space, Aα, 33

alternating
holomorphic tensor, 37
tensor, 28

analytic
function, 31
subvariety, 41
irreducible, 42
of pure dimension, 42

atlas
holomorphic, 32
equivalent atlases, 32

B
biholomorphic, 31

C
chart

affine, 33
of a holomorphic atlas, 32
of a complex manifold, 32

co-vector, 35
cocycle relation, 52
codimension

of a pure dimensional subvariety, 42
complex

differentiable, 31
manifold, 32

submanifold, 41
coordinates

projective, 63
cotangent

space, T ∗pM , 35
basis, 36

covering, 44
covering holomorphic tensor, 47
simple covering map, 44

D
defining datum for a meromorphic func-

tion, 40
dimension

of a connected component, 32
of a manifold, 32
of an irreducible analytic variety, 42
pure dimensional subvariety, 42

divisor, 43
principal, 46
ramification, R, 59
support, 43

dual
basis, 27
representation, ρ∗e, 30
space, V ∗, 26

E
element

standard, pkn, 44
even vector, 54
extension
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Levi’s extension theorem
for meromorphic functions, 43
for meromorphic tensors, 43

F
factor of automorphy, 52
finite covering map, 44
fixed point, 58

set, S (Γ), 58
free

group action, 29
function

biholomorphic, 31
complex differentiable, 31
holomorphic, 31
between manifolds, O(M,N), 33

meromorphic, 40
rational, 41
transition, 32
zero locus of a fn„ Z (f), 25

G
germ, [U, f ]p, 34
group

of biholomorphic functions, Bihol(U),
31

action, 28
free, 29
totally discontinuous, 29

Igusa’s group, Γn [q, 2q], 51
representation, see representation
subgroup, see subgroup
symplectic, Sp(n,R), 50

H
half-space

Siegel upper half-space, Hn, 49
harmless

point, 58
set of non-harmless points, Harm (Γ),

58
holomorphic

germ, [U, f ]p, 34
function, 31
structure, 32
tensor, 37

homogeneous
polynomial, Cd[X1, . . . , Xn], 25

hypersurface, 43

I
invariant tensor, 38
irreducible

analytic subvariety, 42
component, 42
representation, 30

L
Levi’s extension theorem

for meromorphic functions, 43
for meromorphic tensors, 43

local
defining functions, 41
homeomorphism, 44

locus
pole, P (f), 40
regular, Yreg, 42
singular, Ysing, 42
zero, Z (f), 40

M
manifold

complex, 32
complex submanifold, 41
dimension, 32

matrix
diagonal, 49
symmetric, 49

meromorphic
function, 40
defining datum, 40

tensor, 40
modular form, 52

factor of automorphy, 52
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multiplier system, 52
scalar valued, 53
theta series, see theta series
vector valued, 52

multiplicity
of a divisor, D(Y ), 43

multiplier system, 52

N
negligible, 43

O
orbit

Gx, 29
space, S\G , 29

order, 46

P
point

fixed, see fixed point
harmless, 58
ramification, 44
regular, 41
singular, 41

pole locus, P (f), 40
principal

congruence subgroup, Γn [q], 51
divisor, 46

projective
coordinates, 63
space, PnC, 33

pullback, φ∗

of a co-vector, 36
of a covariant tensor field, 38
meromorphic, 41

pushforward map, φ∗, 35

R
ramification

divisor, R, 59
point, 44

Rankin-Cohen bracket, {f, g}, 72

Rankin-Cohen 3-bracket, {f, g, h}, 75
rational

function, 41
representation, 30
tensor, 40

regular
locus, Yreg, 42
point, 41

representation, 29
dual, ρ∗e, 30
irreducible, 30
rational, 30
reduced, 30
standard, ρe, 30
weight, 30

S
Siegel upper half-space, Hn, 49
simple covering map, 44
singular

locus, Ysing, 42
of a divisor, Dsing, 43

point, 41
square-free, 25
stalk of holomorphic functions, OM,p, 34
standard

element, pkn, 44
representation, ρe, 30

subgroup
congruence, 51
principal, Γn [q], 51

Igusa’s group, Γn [q, 2q], 51
stabilizer subgroup, Gx, 28

support
of a divisor, 43

symplectic group, Sp(n,R), 50

T
tangent

space, TpM , 34
basis, 35
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vector, 34
tensor

alternating, 28
alternating holomorphic tensor, 37

covariant, 37
invariant, 38

holomorphic, 37
covering holomorphic tensor, 47

meromorph, 40
multi canonical, 37
product
of covariant tensors, ω ⊗ η, 37
of modules, M ⊗R N , 26
of vector space, V ⊗K W , 27

rational, 40
theta series

of the first kind, ϑ [m], 55
of the second kind, fa, 55

totally discontinuous
group action, 29

transition function, 32

U
unramified, 44

V
variety

analytic subvariety, see analytic sub-
variety

vector valued modular form, 52

W
wedge product, v ∧ w, 28
weight

modular form, 53
rational group representation, 30

Weil-divisor, 43

Z
zero locus of a function, Z (f), 25
zero set of a function, Z (f), 25

88


	Nomenclature
	Introduction
	Algebraic preliminaries
	Polynomials
	Tensor products
	Group actions
	Group representations

	Analytic preliminaries
	Complex manifolds
	The n-dimensional projective space
	Stalks of holomorphic functions
	Tangent spaces
	Cotangent spaces
	Holomorphic tensors
	Holomorphic functions
	Meromorphic functions and tensors
	Complex submanifolds and analytic subvarieties
	Covering maps and spaces
	Orders of singularities
	Covering holomorphic tensors

	Modular forms
	Symplectic groups
	Factors of automorphy and multiplier systems of half integral weight
	Modular forms of half integral weight
	Theta series
	Quotient spaces
	The general case 
	The quotient space (Gamma2 [2,4])\IH2


	Existence results and structure theorems
	Construction of meromorphic tensors with prescribed poles
	Existence results for covering holomorphic tensors
	A structure theorem for vector valued modular forms with respect to the multiplier system vf
	A structure theorem for vector valued modular forms twisted with the character vf2
	A structure theorem for vector valued modular forms with respect to the trivial multiplier system
	A structure theorem for scalar valued modular forms

	Bibliography
	Index

